Sample records for kelly robotics institute

  1. Kelly takes a Self-Portrait during EVA 32

    NASA Image and Video Library

    2015-10-28

    ISS045E082998 (10/28/2015) --- NASA astronaut Scott Kelly snaps a quick space selfie during his first ever spacewalk on Oct 28, 2015. Kelly and NASA astronaut Kjell Lindgren worked outside for seven hours and 16 minutes on a series of tasks to service and upgrade the International Space Station. They wrapped a dark matter detection experiment in a thermal blanket, lubricated the tip of the Canadarm2 robotic arm and then routed power and data cables for a future docking port.

  2. Kelly and Lindgren conduct EMU Resize OPS

    NASA Image and Video Library

    2015-10-07

    ISS045E050652 (10/07/2015) --- US astronauts Scott Kelly (bottom)and Kjell Lindgren (top) are counting down to a pair of spacewalks, now targeted for Oct. 28 and Nov. 6. The duo serviced their spacesuits replacing lithium batteries, checking their gloves and verifying power to video cameras. On the first spacewalk, the spacewalkers will lubricate the tip of the robotic arm Canadarm2, route power cables and place a thermal shroud over the Alpha Magnetic Spectrometer. During the second spacewalk, Kelly and Lindgren will refill coolant reservoirs and configure the port truss cooling system back to its original configuration after repair work completed back in 2012.

  3. View of Kelly outside the A/L during EVA 32

    NASA Image and Video Library

    2015-10-28

    ISS045E082968 (10/28/2015) --- NASA astronaut Scott Kelly is photographed just outside the airlock during his first ever spacewalk on Oct 28, 2015. Kelly and NASA astronaut Kjell Lindgren worked outside for seven hours and 16 minutes on a series of tasks to service and upgrade the International Space Station. They wrapped a dark matter detection experiment in a thermal blanket, lubricated the tip of the Canadarm2 robotic arm and then routed power and data cables for a future docking port.

  4. Voss and Kelly in the Laboratory

    NASA Image and Video Library

    2001-03-19

    STS102-E-5310 (19 March 2001) --- Astronauts James S. Voss (left) and James M. Kelly share a friendly moment onboard the International Space Station's U.S. laboratory Destiny in spite of the long-standing academic/athletic rivalry between their respective alma maters--Auburn University and the University of Alabama. Voss, STS-102 mission specialist-turned Expedition Two flight engineer and a 1972 alumnus of Auburn with a bachelor of science degree in aerospace engineering, sports a T-shirt paying tribute to his university. Kelly, STS-102 pilot and masters of science degree graduate in aerospace engineering from the University of Alabama in 1996, is wearing a cap from that institution of higher learning.

  5. Voss and Kelly in the Laboratory

    NASA Image and Video Library

    2001-03-19

    STS102-E-5307 (19 March 2001) --- Astronauts James S. Voss (left) and James M. Kelly share a friendly moment onboard the International Space Station's U.S. laboratory Destiny in spite of the long-standing academic/athletic rivalry between their respective alma maters--Auburn University and the University of Alabama. Voss, STS-102 mission specialist-turned Expedition Two flight engineer and a 1972 alumnus of Auburn with a bachelor of science degree in aerospace engineering, sports a T-shirt paying tribute to his university. Kelly, STS-102 pilot and masters of science degree graduate in aerospace engineering from the University of Alabama in 1996, is wearing a cap from that institution of higher learning.

  6. STS-114 Crew Interview: James M. Kelly, PLT

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Pilot James M. Kelly, Lieutenant Colonel USAF, is shown during a prelaunch interview. He expresses the major goals of the mission which are to replace the Expedition Six crew of the International Space Station (ISS), install the Raffello Multi-Purpose Logistics Module, deliver the External Stowage Platform to the ISS, and replace the Control Moment Gyroscope (CMG). The major task that he has is to be the backup pilot for Commander Eileen Collins. He talks about the three new research racks brought up to the International Space Station inside the U.S. Destiny Laboratory along with the Window Observational Research Facility (WORF), Human Research Facility 2 (HRF-2), and a Minus Eighty Degree Laboratory Freezer (MELF-1). Kelly also explains how he uses the ISS' Robotic arm to lift the MPLM out of Atlantis' payload bay and attach it to the Unity node to unload hardware, supplies and maintenance items. This will be his second trip to the International Space Station.

  7. Robotic equipment malfunction during robotic prostatectomy: a multi-institutional study.

    PubMed

    Lavery, Hugh J; Thaly, Rahul; Albala, David; Ahlering, Thomas; Shalhav, Arieh; Lee, David; Fagin, Randy; Wiklund, Peter; Dasgupta, Prokar; Costello, Anthony J; Tewari, Ashutosh; Coughlin, Geoff; Patel, Vipul R

    2008-09-01

    Robotic-assisted laparoscopic prostatectomy (RALP) is growing in popularity as a treatment option for prostate cancer. As a new technology, little is known regarding the reliability of the da Vinci robotic system. Intraoperative robotic equipment malfunction may force the surgeon to convert the procedure to an open or pure laparoscopic procedure, or possibly even abort the procedure. We report the first large-scale, multi-institutional review of robotic equipment malfunction. A questionnaire was designed to evaluate the rate of perioperative robotic malfunction during RALP. High-volume, experienced surgeons were asked to complete this evaluation based on the analysis of their data. Questions included the overall number of RALPs performed, the number of equipment malfunctions, the number of procedures that had to be converted or aborted, and the part of the robotic system that malfunctioned. Eleven institutions participated in the study with a median surgeon volume of 700 cases, accounting for a total case volume of 8240. Critical failure occurred in 34 cases (0.4%) leading to the cancellation of 24 cases prior to the procedure, and the conversion to two laparoscopic and eight open procedures. The most common components of the robot to malfunction were the arms and optical system. Critical robotic equipment malfunction is extremely rare in institutions that perform high volumes of RALPs, with a nonrecoverable malfunction rate of only 0.4%.

  8. Kelly with CIR

    NASA Image and Video Library

    2010-10-26

    ISS025-E-009308 (26 Oct. 2010) --- NASA astronaut Scott Kelly, Expedition 25 flight engineer, works on the Combustion Integrated Rack (CIR) Multi-user Drop Combustion Apparatus (MDCA) in the Destiny laboratory of the International Space Station. Kelly set up an experiment run on the Fluids & Combustion Facility (FCF) with a new fuel reservoir, ground-assisted by Payload Operations Integration Center/Huntsville (POIC).

  9. Formalization, implementation, and modeling of institutional controllers for distributed robotic systems.

    PubMed

    Pereira, José N; Silva, Porfírio; Lima, Pedro U; Martinoli, Alcherio

    2014-01-01

    The work described is part of a long term program of introducing institutional robotics, a novel framework for the coordination of robot teams that stems from institutional economics concepts. Under the framework, institutions are cumulative sets of persistent artificial modifications made to the environment or to the internal mechanisms of a subset of agents, thought to be functional for the collective order. In this article we introduce a formal model of institutional controllers based on Petri nets. We define executable Petri nets-an extension of Petri nets that takes into account robot actions and sensing-to design, program, and execute institutional controllers. We use a generalized stochastic Petri net view of the robot team controlled by the institutional controllers to model and analyze the stochastic performance of the resulting distributed robotic system. The ability of our formalism to replicate results obtained using other approaches is assessed through realistic simulations of up to 40 e-puck robots. In particular, we model a robot swarm and its institutional controller with the goal of maintaining wireless connectivity, and successfully compare our model predictions and simulation results with previously reported results, obtained by using finite state automaton models and controllers.

  10. STS-134 press conference with Mark Kelly

    NASA Image and Video Library

    2011-02-04

    JSC2011-E-015243 (4 Feb. 2011) --- NASA astronaut Mark Kelly, STS-134 commander, speaks to reporters during a news conference at NASA's Johnson Space Center. Peggy Whitson, Astronaut Office chief, is seated next to Kelly. The briefing was held to discuss Kelly resuming training as the STS-134 shuttle mission commander. With the exception of some proficiency training, Kelly has been on personal leave since Jan. 8 to care for his wife, congresswoman Gabrielle Giffords, who was critically wounded in a Tucson, Ariz. shooting. Photo credit: NASA or National Aeronautics and Space Administration

  11. Kelly Witter

    EPA Pesticide Factsheets

    As the Director of EPA-RTP's STEM (Science, Technology, Engineering, & Math) Outreach Program, Kelly collaborates with schools and the community to develop and implement educational outreach programs, particularly in minority and low-income K-12 schools.

  12. Dynamic electronic institutions in agent oriented cloud robotic systems.

    PubMed

    Nagrath, Vineet; Morel, Olivier; Malik, Aamir; Saad, Naufal; Meriaudeau, Fabrice

    2015-01-01

    The dot-com bubble bursted in the year 2000 followed by a swift movement towards resource virtualization and cloud computing business model. Cloud computing emerged not as new form of computing or network technology but a mere remoulding of existing technologies to suit a new business model. Cloud robotics is understood as adaptation of cloud computing ideas for robotic applications. Current efforts in cloud robotics stress upon developing robots that utilize computing and service infrastructure of the cloud, without debating on the underlying business model. HTM5 is an OMG's MDA based Meta-model for agent oriented development of cloud robotic systems. The trade-view of HTM5 promotes peer-to-peer trade amongst software agents. HTM5 agents represent various cloud entities and implement their business logic on cloud interactions. Trade in a peer-to-peer cloud robotic system is based on relationships and contracts amongst several agent subsets. Electronic Institutions are associations of heterogeneous intelligent agents which interact with each other following predefined norms. In Dynamic Electronic Institutions, the process of formation, reformation and dissolution of institutions is automated leading to run time adaptations in groups of agents. DEIs in agent oriented cloud robotic ecosystems bring order and group intellect. This article presents DEI implementations through HTM5 methodology.

  13. STS-134 press conference with Mark Kelly

    NASA Image and Video Library

    2011-02-04

    JSC2011-E-015241 (4 Feb. 2011) --- NASA astronaut Mark Kelly, STS-134 commander, listens to a reporter?s question during a news conference at NASA's Johnson Space Center. Seated next to Kelly are (left to right) Nicole Cloutier-Lemasters, public affairs officer; Brent Jett, Flight Crew Operations Directorate chief and Peggy Whitson, Astronaut Office chief. The briefing was held to discuss Kelly resuming training as the STS-134 shuttle mission commander. With the exception of some proficiency training, Kelly has been on personal leave since Jan. 8 to care for his wife, congresswoman Gabrielle Giffords, who was critically wounded in a Tucson, Ariz. shooting. Photo credit: NASA or National Aeronautics and Space Administration

  14. STS-134 press conference with Mark Kelly

    NASA Image and Video Library

    2011-02-04

    JSC2011-E-015242 (4 Feb. 2011) --- NASA astronaut Mark Kelly, STS-134 commander, listens to a reporter?s question during a news conference at NASA's Johnson Space Center. The briefing was held to discuss Kelly resuming training as the STS-134 shuttle mission commander. With the exception of some proficiency training, Kelly has been on personal leave since Jan. 8 to care for his wife, congresswoman Gabrielle Giffords, who was critically wounded in a Tucson, Ariz. shooting. Photo credit: NASA or National Aeronautics and Space Administration

  15. STS-134 press conference with Mark Kelly

    NASA Image and Video Library

    2011-02-04

    JSC2011-E-015244 (4 Feb. 2011) --- NASA astronaut Mark Kelly, STS-134 commander, speaks to reporters during a news conference at NASA's Johnson Space Center. The briefing was held to discuss Kelly resuming training as the STS-134 shuttle mission commander. With the exception of some proficiency training, Kelly has been on personal leave since Jan. 8 to care for his wife, congresswoman Gabrielle Giffords, who was critically wounded in a Tucson, Ariz. shooting. Photo credit: NASA or National Aeronautics and Space Administration

  16. STS-134 press conference with Mark Kelly

    NASA Image and Video Library

    2011-02-04

    JSC2011-E-015245 (4 Feb. 2011) --- NASA astronaut Mark Kelly, STS-134 commander, describes a blue wristband to reporters during a news conference at NASA's Johnson Space Center. The briefing was held to discuss Kelly resuming training as the STS-134 shuttle mission commander. With the exception of some proficiency training, Kelly has been on personal leave since Jan. 8 to care for his wife, congresswoman Gabrielle Giffords, who was critically wounded in a Tucson, Ariz. shooting. The wristband, which has a peace sign, heart and ?Gabby,? was delivered by Giffords? office. Photo credit: NASA or National Aeronautics and Space Administration

  17. Kelly during Twins Study Experiment Operations

    NASA Image and Video Library

    2015-09-24

    ISS045E028258 (09/24/2015) --- NASA astronaut Scott Kelly gives himself a flu shot for an ongoing study on the human immune system. The vaccination is part of NASA’s Twins Study, a compilation of multiple investigations that take advantage of a unique opportunity to study identical twin astronauts Scott and Mark Kelly, while Scott spends a year aboard the International Space Station and Mark remains on Earth.

  18. Kelly in Cupola

    NASA Image and Video Library

    2010-10-13

    ISS025-E-007263 (13 Oct. 2010) --- NASA astronaut Scott Kelly, Expedition 25 flight engineer, is pictured in the Cupola aboard the International Space Station some four days after his arrival and that of two other crew members to bring the population aboard the orbital outpost to six.

  19. Working Out Works for Shawn Kelly | Poster

    Cancer.gov

    By Nancy Parrish, Staff Writer When Shawn Kelly found out last year that he had high blood pressure, he was determined to do something about it. Luckily for Kelly, an instrumentation technician III, Facilities Maintenance and Engineering, he works at the Advanced Technology Research Facility (ATRF), where he can take advantage of the gym there, known as the Wellness Center.

  20. Kelly mud saver valve sub

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddoch, J.A.

    1986-12-02

    A mud saver valve is described for preventing drilling mud from escaping from a kelly when a drill string is broken below the kelly, the valve comprising: a tubular valve body having first and second ends, the first end being provided with means for attachment in fluid communicating relationship with the kelly, the second end being provided with means for attachment to the drill string; an annular seat fixed in the interior of the valve body adjacent its first end; a tubular closure member within the valve body. The closure member is provided with a selectively closed seating end formore » seating in valve closing engagement with the annular seat, an open non-seating end in fluid communicating relationship with the drill string, and an annular expansion in the outer diameter of the closure member adjacent the seating end; a top and bottom spacer ring disposed in sliding relationship around the tubular closure member intermediate the annular expansion and the non-seating end of the closure member. The spacer ring and annular expansion cooperatively define an annular chamber around the closure member; and a helical spring disposed around the closure member towards the annular seat.« less

  1. Setting up a pediatric robotic urology program: A USA institution experience.

    PubMed

    Murthy, Prithvi B; Schadler, Eric D; Orvieto, Marcelo; Zagaja, Gregory; Shalhav, Arieh L; Gundeti, Mohan S

    2018-02-01

    Implementing a robotic urological surgery program requires institutional support, and necessitates a comprehensive, detail-oriented plan that accounts for training, oversight, cost and case volume. Given the prevalence of robotic surgery in adult urology, in many instances it might be feasible to implement a pediatric robotic urology program within the greater context of adult urology. This involves, from an institutional standpoint, proportional distribution of equipment cost and operating room time. However, the pediatric urology team primarily determines goals for volume expansion, operative case selection, resident training and surgical innovation within the specialty. In addition to the clinical model, a robust economic model that includes marketing must be present. This review specifically highlights these factors in relationship to establishing and maintaining a pediatric robotic urology program. In addition, we share our data involving robot use over the program's first nine years (December 2007-December 2016). © 2017 The Japanese Urological Association.

  2. Kelly and Lawrence in Destiny Laboratory module during berthing of MPLM

    NASA Image and Video Library

    2005-08-05

    ISS011-E-11515 (5 August 2005) --- On the early Friday morning agenda for Astronauts James M. Kelly, pilot, and Wendy B. Lawrence, mission specialist, was important robotics duty at the controls of the Canadarm2 in the U.S. Lab, Destiny, on the International Space Station. Several digital photos in this sequence reveal the focal point of their work on the other end of the arm as the Italian-built Multi-Purpose Logistics Module Raffaello. The MPLM was being moved from its temporary parking place on the Station's Unity node to the payload bay of Discovery. The astronauts had arrived nine days ago with tons of fresh supplies for the Station, and with much effort, replaced that space on Raffaello with unneeded materials from the orbital outpost.

  3. 75 FR 16662 - Airworthiness Directives; Kelly Aerospace Energy Systems, LLC Rebuilt Turbochargers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... Airworthiness Directives; Kelly Aerospace Energy Systems, LLC Rebuilt Turbochargers AGENCY: Federal Aviation... airworthiness directive (AD) for certain Kelly Aerospace Energy Systems, LLC (KAES) rebuilt turbochargers. This... Federal holidays. Fax: (202) 493-2251. Contact Kelly Aerospace Energy Systems, LLC, 2900 Selma Highway...

  4. Kelly at SSRMS controls in Destiny laboratory module

    NASA Image and Video Library

    2005-08-05

    S114-E-7484 (5 August 2005) --- Astronaut James M. Kelly, STS-114 pilot, works in the Destiny laboratory of the International Space Station while Space Shuttle Discovery was docked to the Station. Astronauts Kelly and Wendy B. Lawrence (out of frame), mission specialist, joined forces to re-stow the Italian-built Raffaello Multi-Purpose Logistics Module (MPLM) in the cargo bay.

  5. Kelly in Node 1

    NASA Image and Video Library

    2010-10-11

    ISS025-E-007052 (12 Oct. 2010) --- NASA astronaut Scott Kelly, Expedition 25 flight engineer, is pictured inside the Unity node onboard the International Space Station some three days after his arrival and that of two crewmates to bring the total population on the orbital outpost to six.

  6. STS-108 Crew Interviews: Mark Kelly

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-108 Pilot Mark Kelly is seen during a prelaunch interview. He answers questions about the mission's goals and significance, explaining the meaning of 'utilization flight 1' (UF-1) as opposed to an 'assembly flight'. He gives details on the payload (Starshine Satellite, Avian Development Facility, and Rafaello Multipurpose Logistics Module (MPLM)), his role in the rendezvous, docking, and undocking of the Endeavour Orbiter to the International Space Station (ISS), how he will participate in the unloading and reloading of the MPLM, and the way in which the old and new resident crews of ISS will exchanged. Kelly ends with his thoughts on the short-term and long-term future of the International Space Station.

  7. STS-114: Crew Interviews: 1. Jim Kelly 2. Charlie Camarda

    NASA Technical Reports Server (NTRS)

    2005-01-01

    1) STS-114 Pilot James Kelly mentions his primary job as the Pilot is to back up Commander Eileen Collins all through the flight. James discusses in detail his robotics operations for all of the extravehicular activities and spacewalk work, as well as moving the logistics module back and forth, onto the station and back in the payload bay. He shares his thoughts on the Columbia, the STS-114 mission as a new chapter in space exploration, and the International Space Station. 2) STS-114 Mission Specialist Charlie Camarda discusses his major role in the mission, his feelings for this being his first Space Shuttle flight; shares his thoughts on the Columbia; mentioned that STS-114 is a baby step to what is needed to do for the next step in space exploration, and gave some examples on how the International Space Station can help pave the path to future space exploration.

  8. Scott Kelly Talks About His Year in Space

    NASA Image and Video Library

    2016-05-25

    An agency wide All-Hands event on May 25 at NASA Headquarters featured Deputy Administrator Dava Newman and retired NASA astronaut Scott Kelly, reflecting on Kelly’s one-year mission aboard the International Space Station. The event, shown on NASA TV and the agency’s website, also featured video highlights of the mission and questions from employees watching at NASA centers around the country. During the unprecedented ISS mission, Kelly and Mikhail Kornienko of Roscosmos collected critical data on how the human body responds to long duration space flight.

  9. Progress Update: Glenn Kelly - June 2010

    ScienceCinema

    Kelly, Glenn

    2017-12-12

    A profile of Glenn Kelly, an example of how the Recovery Act is positively impacting lives. The volunteer is now able to better support his family and is learning about environmental cleanup at the Savannah River Site.

  10. Apparatus for attaching a cleaning tool to a robotic manipulator

    DOEpatents

    Killian, Mark A.; Zollinger, W. Thor

    1992-01-01

    An apparatus for connecting a cleaning tool to a robotic manipulator so that the tool can be used in contaminated areas on horizontal, vertical and sloped surfaces. The apparatus comprises a frame and a handle, with casters on the frame to facilitate movement. The handle is pivotally and releasibly attached to the frame at a preselected position of a plurality of attachment positions. The apparatus is specifically configured for the KELLY VACUUM SYSTEM but can be modified for use with any standard mobile robot and cleaning tool.

  11. View of STS-134 Commander Kelly on the Flight Deck

    NASA Image and Video Library

    2011-05-16

    S134-E-005608 (16 May 2011) --- Astronaut Mark Kelly, STS-134 commander, gets down to work soon after Endeavour reaches Earth orbit. Kelly is seated at the commander's station on the shuttle's forward flight deck. Five other veteran crew members are joining the commander on a 16-day mission, much of which will be devoted to work on the International Space Station. Photo credit: NASA

  12. Apparatus for attaching a cleaning tool to a robotic manipulator

    DOEpatents

    Killian, M.A.; Zollinger, W.T.

    1991-01-01

    This invention is comprised of an apparatus for connecting a cleaning tool to a robotic manipulator so that the tool can be used in contaminated areas on horizontal, vertical and sloped surfaces. The apparatus comprises a frame and a handle, with casters on the frame to facilitate movement. The handle is pivotally and releasibly attached to the frame at a preselected position of a plurality of attachment positions. The apparatus is specifically configured for the KELLY VACUUM SYSTEM but can be modified for use with any standard mobile robot and cleaning tool.

  13. Apparatus for attaching a cleaning tool to a robotic manipulator

    DOEpatents

    Killian, M.A.; Zollinger, W.T.

    1992-09-22

    An apparatus is described for connecting a cleaning tool to a robotic manipulator so that the tool can be used in contaminated areas on horizontal, vertical and sloped surfaces. The apparatus comprises a frame and a handle, with casters on the frame to facilitate movement. The handle is pivotally and releasibly attached to the frame at a preselected position of a plurality of attachment positions. The apparatus is specifically configured for the Kelly Vacuum System but can be modified for use with any standard mobile robot and cleaning tool. 14 figs.

  14. Kelly works on the MSG

    NASA Image and Video Library

    2010-12-27

    ISS026-E-022582 (27 Dec. 2010) --- NASA astronaut Scott Kelly, Expedition 26 commander, works with Capillary Channel Flow (CCF) experiment hardware in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. CCF is a versatile experiment for studying a critical variety of inertial-capillary dominated flows key to spacecraft systems that cannot be studied on the ground.

  15. Kelly works on the MSG

    NASA Image and Video Library

    2010-12-27

    ISS026-E-022581 (27 Dec. 2010) --- NASA astronaut Scott Kelly, Expedition 26 commander, works with Capillary Channel Flow (CCF) experiment hardware in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. CCF is a versatile experiment for studying a critical variety of inertial-capillary dominated flows key to spacecraft systems that cannot be studied on the ground.

  16. 75 FR 418 - Certificate of Alternative Compliance for the Offshore Supply Vessel KELLY ANN CANDIES

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... Compliance for the Offshore Supply Vessel KELLY ANN CANDIES AGENCY: Coast Guard, DHS. ACTION: Notice. SUMMARY... supply vessel KELLY ANN CANDIES as required by 33 U.S.C. 1605(c) and 33 CFR 81.18. DATES: The Certificate... Purpose The offshore supply vessel KELLY ANN CANDIES will be used for offshore supply operations. Full...

  17. Developing the mechatronics and robotics at Nizhny Tagil Technological Institute of Ural Federal University

    NASA Astrophysics Data System (ADS)

    Goman, V. V.; Fedoreev, S. A.

    2018-02-01

    This report concerns the development trends of education in the field of the Mechatronics and Robotics at Nizhny Tagil Technological Institute (branch of Ural Federal University). The paper considers new teaching technologies, experience in upgrade of the laboratory facilities and some results of development Mechatronics and Robotics educational courses.

  18. Hazardous waste: Siting of storage facility at Kelly Air Force Base, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-01-01

    This report provides information on whether the hazardous waste storage facility at Kelly Air Force Base meets Resource Conservation and Recovery Act, state, and Air Force siting requirements; on whether the Air Force or the Defense Reutilization and Marketing Office selected the best site available to protect the public and to preserve good public relations with the community; on whether the Air Force, Kelly Air Force Base, or the Defense Logistics Agency adjusted siting standards as a result of the adverse publicity the hazardous waste facility has generated; and on whether Kelly Air Force Base is revising its hazardous wastemore » management organization so that it is similar to the organizations at Tinker and McClellan Air Force Bases.« less

  19. 77 FR 22376 - Culturally Significant Objects Imported for Exhibition Determinations: “Ellsworth Kelly: Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... DEPARTMENT OF STATE [Public Notice 7845] Culturally Significant Objects Imported for Exhibition Determinations: ``Ellsworth Kelly: Plant Drawings'' SUMMARY: Notice is hereby given of the following... object to be included in the exhibition ``Ellsworth Kelly: Plant Drawings,'' imported from abroad for...

  20. Robotic Surgical Training in an Academic Institution

    PubMed Central

    Chitwood, W. Randolph; Nifong, L. Wiley; Chapman, William H. H.; Felger, Jason E.; Bailey, B. Marcus; Ballint, Tara; Mendleson, Kim G.; Kim, Victor B.; Young, James A.; Albrecht, Robert A.

    2001-01-01

    Objective To detail robotic procedure development and clinical applications for mitral valve, biliary, and gastric reflux operations, and to implement a multispecialty robotic surgery training curriculum for both surgeons and surgical teams. Summary Background Data Remote, accurate telemanipulation of intracavitary instruments by general and cardiac surgeons is now possible. Complex technologic advancements in surgical robotics require well-designed training programs. Moreover, efficient robotic surgical procedures must be developed methodically and safely implemented clinically. Methods Advanced training on robotic systems provides surgeon confidence when operating in tiny intracavitary spaces. Three-dimensional vision and articulated instrument control are essential. The authors’ two da Vinci robotic systems have been dedicated to procedure development, clinical surgery, and training of surgical specialists. Their center has been the first United States site to train surgeons formally in clinical robotics. Results Established surgeons and residents have been trained using a defined robotic surgical educational curriculum. Also, 30 multispecialty teams have been trained in robotic mechanics and electronics. Initially, robotic procedures were developed experimentally and are described. In the past year the authors have performed 52 robotic-assisted clinical operations: 18 mitral valve repairs, 20 cholecystectomies, and 14 Nissen fundoplications. These respective operations required 108, 28, and 73 minutes of robotic telemanipulation to complete. Procedure times for the last half of the abdominal operations decreased significantly, as did the knot-tying time in mitral operations. There have been no deaths and few complications. One mitral patient had postoperative bleeding. Conclusion Robotic surgery can be performed safely with excellent results. The authors have developed an effective curriculum for training teams in robotic surgery. After training, surgeons

  1. Collins and Kelly in U.S. Laboratory

    NASA Image and Video Library

    2005-08-05

    S114-E-7150 (5 August 2005) --- Astronauts Eileen M. Collins (foreground) and James M. Kelly, STS-114 commander and pilot, respectively, work with the Mobile Service System (MSS) and Canadarm2 controls in the Destiny laboratory of the International Space Station while Space Shuttle Discovery was docked to the Station.

  2. Kelly in the Cupola Module during Expedition 26

    NASA Image and Video Library

    2010-11-26

    ISS026-E-005313 (26 Nov. 2010) --- A fish-eye lens attached to an electronic still camera was used to capture this image of NASA astronaut Scott Kelly, Expedition 26 commander, in the Cupola of the International Space Station.

  3. Kelly takes photo of BCAT-5 Payload Setup

    NASA Image and Video Library

    2011-02-23

    ISS026-E-028666 (23 Feb. 2011) --- NASA astronaut Scott Kelly, Expedition 26 commander, uses a digital still camera to photograph the Binary Colloidal Alloy Test-5 (BCAT-5) payload setup in the Kibo laboratory of the International Space Station.

  4. Financial Impact of the Robotic Approach in Liver Surgery: A Comparative Study of Clinical Outcomes and Costs Between the Robotic and Open Technique in a Single Institution.

    PubMed

    Daskalaki, Despoina; Gonzalez-Heredia, Raquel; Brown, Marc; Bianco, Francesco M; Tzvetanov, Ivo; Davis, Myriam; Kim, Jihun; Benedetti, Enrico; Giulianotti, Pier C

    2017-04-01

    One of the perceived major drawbacks of minimally invasive techniques has always been its cost. This is especially true for the robotic approach and is one of the main reasons that has prevented its wider acceptance among hospitals and surgeons. The aim of our study was to evaluate the clinical outcomes and economic impact of robotic and open liver surgery in a single institution. Sixty-eight robotic and 55 open hepatectomies were performed at our institution between January 1, 2009 and December 31, 2013. Demographics, perioperative data, and postoperative outcomes were collected and compared between the two groups. An independent company performed the financial analysis. The economic parameters comprised direct variable costs, direct fixed costs, and indirect costs. Mean estimated blood loss was significantly less in the robotic group (438 versus 727.8 mL; P = .038). Overall morbidity was significantly lower in the robotic group (22% versus 40%; P = .047). Clavien III/IV complications were also lower, with 4.4% in the robotic versus 16.3% in the open group (P = .043). The length of stay in the intensive care unit (ICU) was shorter for patients who underwent a robotic procedure (2.1 versus 3.3 days; P = .004). The average total cost, including readmissions, was $37,518 for robotic surgery and $41,948 for open technique. Robotic liver resections had less overall morbidity, ICU, and hospital stay. This translates into decreased average costs for robotic surgery. These procedures are financially comparable to open resections and do not represent a financial burden to the hospital.

  5. STS-108 Pilot Kelly suits up for launch

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-108 Pilot Kelly suits up for launch KSC-01PD-1776 KENNEDY SPACE CENTER, Fla. -- STs-108 Pilot Mark E. Kelly is helped with his launch and entry suit in preparation for the second launch attempt of Space Shuttle Endeavour. The first attempt Dec. 4 was scrubbed due to poor weather conditions at KSC. The main goals of the mission are to carry the Expedition 4 crew to the International Space Station as replacement for Expedition 3; carry the Multi-Purpose Logistics Module Raffaello filled with water, equipment and supplies; and install thermal blankets over equipment at the base of the ISS solar wings. STS-108 is the final Shuttle mission of 2001 and the 107th Shuttle flight overall. It is the 12th flight to the Space Station. Launch is scheduled for 5:19 p.m. EST Dec. 5, 2001, from Launch Pad 39B.

  6. Financial Impact of the Robotic Approach in Liver Surgery: A Comparative Study of Clinical Outcomes and Costs Between the Robotic and Open Technique in a Single Institution

    PubMed Central

    Daskalaki, Despoina; Brown, Marc; Bianco, Francesco M.; Tzvetanov, Ivo; Davis, Myriam; Kim, Jihun; Benedetti, Enrico; Giulianotti, Pier C.

    2017-01-01

    Abstract Background: One of the perceived major drawbacks of minimally invasive techniques has always been its cost. This is especially true for the robotic approach and is one of the main reasons that has prevented its wider acceptance among hospitals and surgeons. The aim of our study was to evaluate the clinical outcomes and economic impact of robotic and open liver surgery in a single institution. Methods: Sixty-eight robotic and 55 open hepatectomies were performed at our institution between January 1, 2009 and December 31, 2013. Demographics, perioperative data, and postoperative outcomes were collected and compared between the two groups. An independent company performed the financial analysis. The economic parameters comprised direct variable costs, direct fixed costs, and indirect costs. Results: Mean estimated blood loss was significantly less in the robotic group (438 versus 727.8 mL; P = .038). Overall morbidity was significantly lower in the robotic group (22% versus 40%; P = .047). Clavien III/IV complications were also lower, with 4.4% in the robotic versus 16.3% in the open group (P = .043). The length of stay in the intensive care unit (ICU) was shorter for patients who underwent a robotic procedure (2.1 versus 3.3 days; P = .004). The average total cost, including readmissions, was $37,518 for robotic surgery and $41,948 for open technique. Conclusions: Robotic liver resections had less overall morbidity, ICU, and hospital stay. This translates into decreased average costs for robotic surgery. These procedures are financially comparable to open resections and do not represent a financial burden to the hospital. PMID:28186429

  7. NASA and NSBRI's Kelly Twins Study: Progress Implementing the First Integrated Omics Pilot Demonstration Study in Space

    NASA Technical Reports Server (NTRS)

    Scott, Graham B. I.; Charles, John; Kundrot, Craig; Shelhamer, Mark

    2016-01-01

    This opportunity has emerged from NASA's decision to fly veteran NASA astronaut Scott Kelly aboard the International Space Station (ISS) for a period of one year commencing in March 2015, while his identical twin brother, retired NASA astronaut Mark Kelly, remains on Earth. Scott Kelly, a veteran of two Space Shuttle flights as well as a six-month ISS mission, will have a cumulative duration of 540 days in low Earth orbit at the conclusion of the one-year flight, while Mark Kelly, a veteran of four Space Shuttle flights, has a cumulative duration of 54 days ( 2 hours and 4 minutes) in low Earth orbit. This opportunity originated at the initiative of the twin astronauts themselves

  8. Kelly Latimer

    NASA Image and Video Library

    2007-03-09

    Kelly Latimer is a research pilot in the Flight Crew Branch of NASA's Dryden Flight Research Center, Edwards, Calif. Latimer joined NASA in March 2007 and will fly the T38, T-34, G-III, C-17 and the "Ikhana" Predator B. Latimer is Dryden's first female research test pilot. Prior to joining NASA, Latimer was on active duty with the U.S. Air Force. She has accumulated more than 5,000 hours of military and civilian flight experience in 30 aircraft. Latimer's first association with NASA was while attending graduate school at George Washington University, Washington, D.C. Her studies included work with the Joint Institute for the Advancement of Flight Sciences at NASA's Langley Research Center, Hampton, Va. She flew an Air Force C-17 during a 2005 NASA study to reduce aircraft noise. A team of California Polytechnic State University students and Northrop Grumman personnel were stationed on Rogers Dry Lake located at Edwards Air Force Base, Calif., to record the noise footprint of the aircraft as it made various landing approaches to Edwards' runway. Latimer completed undergraduate pilot training at Reese Air Force Base, Texas, in 1990. She remained at Reese as a T-38 instructor pilot until 1993. She was assigned as a C-141 aircraft commander at McCord Air Force Base, Tacoma, Wash., until 1996. Latimer graduated from the U.S. Air Force Test Pilot School at Edwards in Class 96B. She served as a C-17 and C-141 experimental test pilot at Edwards until 2000. She then became the chief of the Performance Branch and a T-38 instructor pilot at The Air Force Test Pilot School. She returned to McCord in 2002, where she was a C-17 aircraft commander and the operations officer for the 62nd Operations Support Squadron. In 2004, Latimer became the commander of Edwards' 418th Flight Test Squadron and director of the Global Reach Combined Test Force. Following that assignment, she deployed to Iraq as an advisor to the Iraqi Air Force. Her last active duty tour was as an instructor a

  9. Positive surgical margins after robotic assisted radical prostatectomy: a multi-institutional study.

    PubMed

    Patel, Vipul R; Coelho, Rafael F; Rocco, Bernardo; Orvieto, Marcelo; Sivaraman, Ananthakrishnan; Palmer, Kenneth J; Kameh, Darien; Santoro, Luigi; Coughlin, Geoff D; Liss, Michael; Jeong, Wooju; Malcolm, John; Stern, Joshua M; Sharma, Saurabh; Zorn, Kevin C; Shikanov, Sergey; Shalhav, Arieh L; Zagaja, Gregory P; Ahlering, Thomas E; Rha, Koon H; Albala, David M; Fabrizio, Michael D; Lee, David I; Chauhan, Sanket

    2011-08-01

    Positive surgical margins are an independent predictive factor for biochemical recurrence after radical prostatectomy. We analyzed the incidence of and associative factors for positive surgical margins in a multi-institutional series of 8,418 robotic assisted radical prostatectomies. We analyzed the records of 8,418 patients who underwent robotic assisted radical prostatectomy at 7 institutions. Of the patients 323 had missing data on margin status. Positive surgical margins were categorized into 4 groups, including apex, bladder neck, posterolateral and multifocal. The records of 6,169 patients were available for multivariate analysis. The variables entered into the logistic regression models were age, body mass index, preoperative prostate specific antigen, biopsy Gleason score, prostate weight and pathological stage. A second model was built to identify predictive factors for positive surgical margins in the subset of patients with organ confined disease (pT2). The overall positive surgical margin rate was 15.7% (1,272 of 8,095 patients). The positive surgical margin rate for pT2 and pT3 disease was 9.45% and 37.2%, respectively. On multivariate analysis pathological stage (pT2 vs pT3 OR 4.588, p<0.001) and preoperative prostate specific antigen (4 or less vs greater than 10 ng/ml OR 2.918, p<0.001) were the most important independent predictive factors for positive surgical margins after robotic assisted radical prostatectomy. Increasing prostate weight was associated with a lower risk of positive surgical margins after robotic assisted radical prostatectomy (OR 0.984, p<0.001) and a higher body mass index was associated with a higher risk of positive surgical margins (OR 1.032, p<0.001). For organ confined disease preoperative prostate specific antigen was the most important factor that independently correlated with positive surgical margins (4 or less vs greater than 10 ng/ml OR 3.8, p<0.001). The prostatic apex followed by a posterolateral site was the most

  10. Robot-assisted Surgery for Benign Ureteral Strictures: Experience and Outcomes from Four Tertiary Care Institutions.

    PubMed

    Buffi, Nicolò Maria; Lughezzani, Giovanni; Hurle, Rodolfo; Lazzeri, Massimo; Taverna, Gianluigi; Bozzini, Giorgio; Bertolo, Riccardo; Checcucci, Enrico; Porpiglia, Francesco; Fossati, Nicola; Gandaglia, Giorgio; Larcher, Alessandro; Suardi, Nazareno; Montorsi, Francesco; Lista, Giuliana; Guazzoni, Giorgio; Mottrie, Alexandre

    2017-06-01

    Minimally invasive treatment of benign ureteral strictures is still challenging because of its technical complexity. In this context, robot-assisted surgery may overcome the limits of the laparoscopic approach. To evaluate outcomes for robotic ureteral repair in a multi-institutional cohort of patients treated for ureteropelvic junction obstruction and ureteral stricture (US) at four tertiary referral centres. This retrospective study reports data for 183 patients treated with standard robot-assisted pyeloplasty (PYP) and robotic uretero-ureterostomy (UUY) at four high-volume centres from January 2006 to September 2014. Robotic PYP and robot-assisted UUY were performed according to previously reported surgical techniques. Preoperative, intraoperative, and postoperative variables and outcomes were assessed. A descriptive statistical analysis was performed. No robot-assisted UUY cases required surgical conversion, while 2.8% of PYP cases were not completed robotically. The median operative time was 120 and 150min for robot-assisted PYP and robot-assisted UUY, respectively. No intraoperative complications were reported. The overall complication rate for all procedures was 11% (n=20) and complications were mostly of low grade. The high-grade complication rate was 2.2% (n=4). At median follow-up of 24 mo, the overall success rate was >90% for both procedures. The study limitations include its retrospective nature and the heterogeneity of the study population. Robotic surgery for benign US is safe and effective, with limited risk of high-grade complications and good intermediate-term results. In this study we review the use of robotic surgery at four different tertiary care centres in the treatment of patients affected by benign ureteral strictures. Our results demonstrate that robotic surgery is a safe alternative to the standard open approach in the treatment of ureteral strictures. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All

  11. Perioperative Outcomes of Robotic and Laparoscopic Simple Prostatectomy: A European-American Multi-institutional Analysis.

    PubMed

    Autorino, Riccardo; Zargar, Homayoun; Mariano, Mirandolino B; Sanchez-Salas, Rafael; Sotelo, René J; Chlosta, Piotr L; Castillo, Octavio; Matei, Deliu V; Celia, Antonio; Koc, Gokhan; Vora, Anup; Aron, Monish; Parsons, J Kellogg; Pini, Giovannalberto; Jensen, James C; Sutherland, Douglas; Cathelineau, Xavier; Nuñez Bragayrac, Luciano A; Varkarakis, Ioannis M; Amparore, Daniele; Ferro, Matteo; Gallo, Gaetano; Volpe, Alessandro; Vuruskan, Hakan; Bandi, Gaurav; Hwang, Jonathan; Nething, Josh; Muruve, Nic; Chopra, Sameer; Patel, Nishant D; Derweesh, Ithaar; Champ Weeks, David; Spier, Ryan; Kowalczyk, Keith; Lynch, John; Harbin, Andrew; Verghese, Mohan; Samavedi, Srinivas; Molina, Wilson R; Dias, Emanuel; Ahallal, Youness; Laydner, Humberto; Cherullo, Edward; De Cobelli, Ottavio; Thiel, David D; Lagerkvist, Mikael; Haber, Georges-Pascal; Kaouk, Jihad; Kim, Fernando J; Lima, Estevao; Patel, Vipul; White, Wesley; Mottrie, Alexander; Porpiglia, Francesco

    2015-07-01

    Laparoscopic and robotic simple prostatectomy (SP) have been introduced with the aim of reducing the morbidity of the standard open technique. To report a large multi-institutional series of minimally invasive SP (MISP). Consecutive cases of MISP done for the treatment of bladder outlet obstruction (BOO) due to benign prostatic enlargement (BPE) between 2000 and 2014 at 23 participating institutions in the Americas and Europe were included in this retrospective analysis. Laparoscopic or robotic SP. Demographic data and main perioperative outcomes were gathered and analyzed. A multivariable analysis was conducted to identify factors associated with a favorable trifecta outcome, arbitrarily defined as a combination of the following postoperative events: International Prostate Symptom Score <8, maximum flow rate >15ml/s, and no perioperative complications. Overall, 1330 consecutive cases were analyzed, including 487 robotic (36.6%) and 843 laparoscopic (63.4%) SP cases. Median overall prostate volume was 100ml (range: 89-128). Median estimated blood loss was 200ml (range: 150-300). An intraoperative transfusion was required in 3.5% of cases, an intraoperative complication was recorded in 2.2% of cases, and the conversion rate was 3%. Median length of stay was 4 d (range: 3-5). On pathology, prostate cancer was found in 4% of cases. Overall postoperative complication rate was 10.6%, mostly of low grade. At a median follow-up of 12 mo, a significant improvement was observed for subjective and objective indicators of BOO. Trifecta outcome was not significantly influenced by the type of procedure (robotic vs laparoscopic; p=0.136; odds ratio [OR]: 1.6; 95% confidence interval [CI], 0.8-2.9), whereas operative time (p=0.01; OR: 0.9; 95% CI, 0.9-1.0) and estimated blood loss (p=0.03; OR: 0.9; 95% CI, 0.9-1.0) were the only two significant factors. Retrospective study design, lack of a control arm, and limited follow-up represent major limitations of the present analysis

  12. 75 FR 58409 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Dental... unwarranted invasion of personal privacy. Name of Committee: National Institute of Dental and Craniofacial... Kelly, Scientific Review Officer, Scientific Review Branch, [[Page 58410

  13. Robotics: An Introduction to Today’s Robot and Future Trends.

    DTIC Science & Technology

    1983-07-01

    trial applications." What qualities define a machine as a robot? The Robot Institute of Amer- ica defines a robot as follows: "A robot is a reprogrammable ...manufactures a robot with a spin- ning wrist. Second, and this is the key feature, robots are reprogrammable and hence versatile. An automatic lathe is not...robot spot-welds an automobile frame. In Figure 8, a single robot transferring a transmission case is shown, but a total of eight robots are

  14. Applications of Kelly's Personal Construct Theory to Vocational Guidance

    ERIC Educational Resources Information Center

    Paszkowska-Rogacz, Anna; Kabzinska, Zofia

    2012-01-01

    This paper outlines selected applications of Kelly's Personal Construct Theory to vocational guidance. The authors elicited personal constructs using the Rep Test (Role Construct Repertory Test) and compared them with Holland's occupational typology. The sample (N = 136, F = 85, M = 51, average age of 21.97) was composed of students of various…

  15. 75 FR 52537 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Dental... unwarranted invasion of personal privacy. Name of Committee: National Institute of Dental and Craniofacial... Kelly, Scientific Review Officer, Scientific Review Branch, National Inst of Dental & Craniofacial...

  16. 75 FR 66795 - TTM Technologies, Including On-Site Leased Workers From Kelly Services, Aerotek, and an On-Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... follows: ``All workers TTM Technologies, including on-site leased workers from Kelly Services and Aerotek... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-64,993] TTM Technologies, Including On-Site Leased Workers From Kelly Services, Aerotek, and an On-Site Leased Worker From Orbotech...

  17. Robotic Enrichment Processing of Roche 454 Titanium Emlusion PCR at the DOE Joint Genome Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Matthew; Wilson, Steven; Bauer, Diane

    2010-05-28

    Enrichment of emulsion PCR product is the most laborious and pipette-intensive step in the 454 Titanium process, posing the biggest obstacle for production-oriented scale up. The Joint Genome Institute has developed a pair of custom-made robots based on the Microlab Star liquid handling deck manufactured by Hamilton to mediate the complexity and ergonomic demands of the 454 enrichment process. The robot includes a custom built centrifuge, magnetic deck positions, as well as heating and cooling elements. At present processing eight emulsion cup samples in a single 2.5 hour run, these robots are capable of processing up to 24 emulsion cupmore » samples. Sample emulsions are broken using the standard 454 breaking process and transferred from a pair of 50ml conical tubes to a single 2ml tube and loaded on the robot. The robot performs the enrichment protocol and produces beads in 2ml tubes ready for counting. The robot follows the Roche 454 enrichment protocol with slight exceptions to the manner in which it resuspends beads via pipette mixing rather than vortexing and a set number of null bead removal washes. The robotic process is broken down in similar discrete steps: First Melt and Neutralization, Enrichment Primer Annealing, Enrichment Bead Incubation, Null Bead Removal, Second Melt and Neutralization and Sequencing Primer Annealing. Data indicating our improvements in enrichment efficiency and total number of bases per run will also be shown.« less

  18. 76 FR 57061 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-15

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Dental... unwarranted invasion of personal privacy. Name of Committee: National Institute of Dental and Craniofacial...). Contact Person: Mary Kelly, Scientific Review Officer, Scientific Review Branch, National Inst of Dental...

  19. Kelly D. Brownell: Award for Distinguished Scientific Applications of Psychology

    ERIC Educational Resources Information Center

    American Psychologist, 2012

    2012-01-01

    Presents a short biography of Kelly D. Brownwell, winner of the American Psychological Association's Award for Distinguished Scientific Applications of Psychology (2012). He won the award for outstanding contributions to our understanding of the etiology and management of obesity and the crisis it poses for the modern world. A seminal thinker in…

  20. Botanical insecticides in controlling Kelly's citrus thrips (Thysanoptera: Thripidae) on organic grapefruits.

    PubMed

    Vassiliou, V A

    2011-12-01

    Kelly's citrus thrips, Pezothrips kellyanus (Bagnall) (Thysanoptera: Thripidae) was first recorded in Cyprus in 1996 and became an economic citrus pest. In Cyprus, Kelly's citrus thrips larvae cause feeding damage mainly on immature lemon and grapefruit fruits. Use of botanical insecticides is considered an alternative tool compared with synthetic chemicals, in offering solutions for healthy and sustainable citrus production. During 2008-2010, the efficacy of the botanical insecticides azadirachtin (Neemex 0.3%W/W and Oikos 10 EC), garlic extract (Alsa), and pyrethrins (Vioryl 5%SC) was evaluated in field trials against Kelly's citrus thrips larval stage I and II aiming at controlling the pest's population and damage to organic grapefruit fruits. In each of the trial years treatments with pyrethrins and azadirachtin (Neemex 0.3%W/W) were the most effective against Kelly's citrus thrips compared with the untreated control (for 2008: P < 0.018; for 2009: P < 0.000; for 2010: P < 0.008). In 2008, the mean number of damaged fruits in treatments with pyrethrins and Neemex was 9.6 (19.2%) and 9.7 (19.5%) respectively, compared with 12.2 (24.3%) in the untreated control. In 2009, the mean number of damaged fruits in treatment with pyrethrins was 3.7 (7.3%) and 3.9 (7.8%) in treatment with Neemex compared with 8.6 (17.3%) in the untreated control, while in 2010 the mean damaged fruits in these treatments was recorded at 18.7 (37.5%) and 19.6 (39.2), respectively, compared with 29.6 fruits (59.2%) in the control. Oikos 10 EC showed significant effect only in 2009 and 2010. In these years, the mean number of damaged fruits was recorded at 5.5 and 21.2 compared with 8.6 and 29.6 fruits in the untreated control, respectively. Garlic extract showed the lowest effect from all the botanicals used compared with the untreated control.

  1. 75 FR 2150 - National Institute of Dental & Craniofacial Research; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Dental... Dental and Craniofacial Research Special Emphasis Panel; Review R13. Date: February 19, 2010. Time: 2 p.m...: Mary Kelly, Scientific Review Officer, Scientific Review Branch, National Inst. of Dental...

  2. Focusing in Arthurs-Kelly-type joint measurements with correlated probes.

    PubMed

    Bullock, Thomas J; Busch, Paul

    2014-09-19

    Joint approximate measurement schemes of position and momentum provide us with a means of inferring pieces of complementary information if we allow for the irreducible noise required by quantum theory. One such scheme is given by the Arthurs-Kelly model, where information about a system is extracted via indirect probe measurements, assuming separable uncorrelated probes. Here, following Di Lorenzo [Phys. Rev. Lett. 110, 120403 (2013)], we extend this model to both entangled and classically correlated probes, achieving full generality. We show that correlated probes can produce more precise joint measurement outcomes than the same probes can achieve if applied alone to realize a position or momentum measurement. This phenomenon of focusing may be useful where one tries to optimize measurements with limited physical resources. Contrary to Di Lorenzo's claim, we find that there are no violations of Heisenberg's error-disturbance relation in these generalized Arthurs-Kelly models. This is simply due to the fact that, as we show, the measured observable of the system under consideration is covariant under phase space translations and as such is known to obey a tight joint measurement error relation.

  3. In Situ Biological Treatment Test at Kelly Air Force Base. Volume 2. Field Test Results and Cost Model

    DTIC Science & Technology

    1987-07-01

    Groundwater." Developments in Industrial Microbiology, Volume 24, pp. 225-234. Society of Industrial Microbiology, Arlington, Virginia. 18. Product ...ESL-TR-85-52 cv) VOLUME II CN IN SITU BIOLOGICAL TREATMENT TEST AT KELLY AIR FORCE BASE, VOLUME !1: FIELD TEST RESULTS AND COST MODEL R.S. WETZEL...Kelly Air Force Base, Volume II: Field Test Results and Cost Model (UNCLASSIFIED) 12 PERSONAL AUTHOR(S) Roger S. Wetzel, Connie M. Durst, Donald H

  4. International Feminist Perspectives on Educational Reform: The Work of Gail Paradise Kelly. Garland Reference Library of Social Science. Volume 1030.

    ERIC Educational Resources Information Center

    Kelly, David H., Ed.

    This volume presents articles by Gail Paradise Kelly spanning nearly 20 years of her professional career. Kelly, a leading scholar in the field of gender in education, was Professor of Education and Chairperson of the Department of Education, Organization, and Policy at State University of New York, Buffalo when she died in January of 1991. This…

  5. Lawrence and Kelly at SSRMS controls in Destiny laboratory module

    NASA Image and Video Library

    2005-08-05

    S114-E-7490 (5 August 2005) --- Astronauts Wendy B. Lawrence (foreground), STS-114 mission specialist, and James M. Kelly, pilot, work with the Mobile Service System (MSS) and Canadarm2 controls in the Destiny laboratory of the International Space Station while Space Shuttle Discovery was docked to the Station. The two were re-stowing the Italian-built Raffaello Multi-Purpose Logistics Module (MPLM) in the cargo bay.

  6. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-15

    Intrepid Systems robot, foreground, and the University of Waterloo (Canada) robot, take to the practice field on Friday, June 15, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Robot teams will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  7. Robotic transthoracic esophagectomy.

    PubMed

    Puntambekar, Shailesh; Kenawadekar, Rahul; Kumar, Sanjay; Joshi, Saurabh; Agarwal, Geetanjali; Reddy, Sunil; Mallik, Jainul

    2015-04-23

    We have initially published our experience with the robotic transthoracic esophagectomy in 32 patients from a single institute. The present paper is the extension of our experience with robotic system and to best of our knowledge this represents the largest series of robotic transthoracic esophagectomy worldwide. The objective of this study was to investigate the feasibility of the robotic transthoracic esophagectomy for esophageal cancer in a series of patients from a single institute. A retrospective review of medical records was conducted for 83 esophageal cancer patients who underwent robotic esophagectomy at our institute from December 2009 to December 2012. All patients underwent a thorough clinical examination and pre-operative investigations. All patients underwent robotic esophageal mobilization. En-bloc dissection with lymphadenectomy was performed in all cases with preservation of Azygous vein. Relevant data were gathered from medical records. The study population comprised of 50 men and 33 women with mean age of 59.18 years. The mean operative time was 204.94 mins (range 180 to 300). The mean blood loss was 86.75 ml (range 50 to 200). The mean number of lymph node yield was 18. 36 (range 13 to 24). None of the patient required conversion. The mean ICU stay and hospital stay was 1 day (range 1 to 3) and 10.37 days (range 10 to 13), respectively. A total of 16 (19.28%) complication were reported in these patents. Commonly reported complication included dysphagia, pleural effusion and anastomotic leak. No treatment related mortality was observed. After a median follow-up period of 10 months, 66 patients (79.52%) survived with disease free stage. We found robot-assisted thoracoscopic esophagectomy feasible in cases of esophageal cancer. The procedure allowed precise en-bloc dissection with lymphadenectomy in mediastinum with reduced operative time, blood loss and complications.

  8. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    NASA Deputy Administrator Lori Garver, left, listens as Worcester Polytechnic Institute (WPI) Robotics Resource Center Director and NASA-WPI Sample Return Robot Centennial Challenge Judge Ken Stafford points out how the robots navigate the playing field during the challenge on Saturday, June 16, 2012 in Worcester, Mass. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  9. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    NASA Deputy Administrator Lori Garver, right, listens as Worcester Polytechnic Institute (WPI) Robotics Resource Center Director and NASA-WPI Sample Return Robot Centennial Challenge Judge Ken Stafford points out how the robots navigate the playing field during the challenge on Saturday, June 16, 2012 in Worcester, Mass. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  10. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-15

    University of Waterloo (Canada) Robotics Team members test their robot on the practice field one day prior to the NASA-WPI Sample Return Robot Centennial Challenge, Friday, June 15, 2012 at the Worcester Polytechnic Institute in Worcester, Mass. Teams will compete for a $1.5 million NASA prize to build an autonomous robot that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  11. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-14

    A University of Waterloo Robotics Team member tests their robot on the practice field two days prior to the NASA-WPI Sample Return Robot Centennial Challenge, Thursday, June 14, 2012 at the Worcester Polytechnic Institute in Worcester, Mass. Teams will compete for a $1.5 million NASA prize to build an autonomous robot that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  12. DARPA Robotics Challenge (DRC) Using Human-Machine Teamwork to Perform Disaster Response with a Humanoid Robot

    DTIC Science & Technology

    2017-02-01

    DARPA ROBOTICS CHALLENGE (DRC) USING HUMAN-MACHINE TEAMWORK TO PERFORM DISASTER RESPONSE WITH A HUMANOID ROBOT FLORIDA INSTITUTE FOR HUMAN AND...AND SUBTITLE DARPA ROBOTICS CHALLENGE (DRC) USING HUMAN-MACHINE TEAMWORK TO PERFORM DISASTER RESPONSE WITH A HUMANOID ROBOT 5a. CONTRACT NUMBER...Human and Machine Cognition (IHMC) from 2012-2016 through three phases of the Defense Advanced Research Projects Agency (DARPA) Robotics Challenge

  13. Inverse treatment planning for spinal robotic radiosurgery: an international multi‐institutional benchmark trial

    PubMed Central

    Wang, Lei; Baus, Wolfgang; Grimm, Jimm; Lacornerie, Thomas; Nilsson, Joakim; Luchkovskyi, Sergii; Cano, Isabel Palazon; Shou, Zhenyu; Ayadi, Myriam; Treuer, Harald; Viard, Romain; Siebert, Frank‐Andre; Chan, Mark K.H.; Hildebrandt, Guido; Dunst, Jürgen; Imhoff, Detlef; Wurster, Stefan; Wolff, Robert; Romanelli, Pantaleo; Lartigau, Eric; Semrau, Robert; Soltys, Scott G.; Schweikard, Achim

    2016-01-01

    Stereotactic radiosurgery (SRS) is the accurate, conformal delivery of high‐dose radiation to well‐defined targets while minimizing normal structure doses via steep dose gradients. While inverse treatment planning (ITP) with computerized optimization algorithms are routine, many aspects of the planning process remain user‐dependent. We performed an international, multi‐institutional benchmark trial to study planning variability and to analyze preferable ITP practice for spinal robotic radiosurgery. 10 SRS treatment plans were generated for a complex‐shaped spinal metastasis with 21 Gy in 3 fractions and tight constraints for spinal cord (V14Gy<2 cc, V18Gy<0.1 cc) and target (coverage >95%). The resulting plans were rated on a scale from 1 to 4 (excellent‐poor) in five categories (constraint compliance, optimization goals, low‐dose regions, ITP complexity, and clinical acceptability) by a blinded review panel. Additionally, the plans were mathematically rated based on plan indices (critical structure and target doses, conformity, monitor units, normal tissue complication probability, and treatment time) and compared to the human rankings. The treatment plans and the reviewers' rankings varied substantially among the participating centers. The average mean overall rank was 2.4 (1.2‐4.0) and 8/10 plans were rated excellent in at least one category by at least one reviewer. The mathematical rankings agreed with the mean overall human rankings in 9/10 cases pointing toward the possibility for sole mathematical plan quality comparison. The final rankings revealed that a plan with a well‐balanced trade‐off among all planning objectives was preferred for treatment by most participants, reviewers, and the mathematical ranking system. Furthermore, this plan was generated with simple planning techniques. Our multi‐institutional planning study found wide variability in ITP approaches for spinal robotic radiosurgery. The participants', reviewers', and

  14. Inverse treatment planning for spinal robotic radiosurgery: an international multi-institutional benchmark trial.

    PubMed

    Blanck, Oliver; Wang, Lei; Baus, Wolfgang; Grimm, Jimm; Lacornerie, Thomas; Nilsson, Joakim; Luchkovskyi, Sergii; Cano, Isabel Palazon; Shou, Zhenyu; Ayadi, Myriam; Treuer, Harald; Viard, Romain; Siebert, Frank-Andre; Chan, Mark K H; Hildebrandt, Guido; Dunst, Jürgen; Imhoff, Detlef; Wurster, Stefan; Wolff, Robert; Romanelli, Pantaleo; Lartigau, Eric; Semrau, Robert; Soltys, Scott G; Schweikard, Achim

    2016-05-08

    Stereotactic radiosurgery (SRS) is the accurate, conformal delivery of high-dose radiation to well-defined targets while minimizing normal structure doses via steep dose gradients. While inverse treatment planning (ITP) with computerized optimization algorithms are routine, many aspects of the planning process remain user-dependent. We performed an international, multi-institutional benchmark trial to study planning variability and to analyze preferable ITP practice for spinal robotic radiosurgery. 10 SRS treatment plans were generated for a complex-shaped spinal metastasis with 21 Gy in 3 fractions and tight constraints for spinal cord (V14Gy < 2 cc, V18Gy < 0.1 cc) and target (coverage > 95%). The resulting plans were rated on a scale from 1 to 4 (excellent-poor) in five categories (constraint compliance, optimization goals, low-dose regions, ITP complexity, and clinical acceptability) by a blinded review panel. Additionally, the plans were mathemati-cally rated based on plan indices (critical structure and target doses, conformity, monitor units, normal tissue complication probability, and treatment time) and compared to the human rankings. The treatment plans and the reviewers' rankings varied substantially among the participating centers. The average mean overall rank was 2.4 (1.2-4.0) and 8/10 plans were rated excellent in at least one category by at least one reviewer. The mathematical rankings agreed with the mean overall human rankings in 9/10 cases pointing toward the possibility for sole mathematical plan quality comparison. The final rankings revealed that a plan with a well-balanced trade-off among all planning objectives was preferred for treatment by most par-ticipants, reviewers, and the mathematical ranking system. Furthermore, this plan was generated with simple planning techniques. Our multi-institutional planning study found wide variability in ITP approaches for spinal robotic radiosurgery. The participants', reviewers', and mathematical match

  15. Assimilation, Resistance, Rapprochement, and Loss: Response to Woodrum, Faircloth, Greenwood, and Kelly

    ERIC Educational Resources Information Center

    Corbett, Michael

    2009-01-01

    In this article, the author offers his responses to the commentaries made by Arlie Woodrum (2009), Susan Faircloth (2009), David Greenwood (2009), and Ursula Kelly (2009) on his book "Learning to Leave," as well as his article, "Rural Schooling in Mobile Modernity: Returning to the Places I've Been." Each of the commentators…

  16. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    Intrepid Systems Team member Mark Curry, left, talks with NASA Deputy Administrator Lori Garver and NASA Chief Technologist Mason Peck, right, about his robot named "MXR - Mark's Exploration Robot" on Saturday, June 16, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Curry's robot team was one of the final teams participating in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  17. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-15

    Intrepid Systems robot "MXR - Mark's Exploration Robot" takes to the practice field and tries to capture the white object in the foreground on Friday, June 15, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Intrepid Systems' robot team will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  18. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    Children visiting the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event try to catch basketballs being thrown by a robot from FIRST Robotics at Burncoat High School (Mass.) on Saturday, June 16, 2012 at WPI in Worcester, Mass. The TouchTomorrow event was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  19. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-15

    Intrepid Systems Team member Mark Curry, right, answers questions from 8th grade Sullivan Middle School (Mass.) students about his robot named "MXR - Mark's Exploration Robot" on Friday, June 15, 2012, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Curry's robot team will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  20. New Hires at the National Cancer Institute at Frederick | Poster

    Cancer.gov

    Forty-nine people joined the facility in September and October 2013. The National Cancer Institute welcomes… Aamir Akram Clarissa Alexander Robert Buckheit Brian Chan Kelly Dempsey Christopher Descalzi Ahmed Fahim Devikala Gurusamy Jaewoo Hong Rhushikesh Kulkarni James Shaum Dionysios Watson Yuheng Xi Yi Xiang Thomas Zengeya

  1. Robotic surgery update.

    PubMed

    Jacobsen, G; Elli, F; Horgan, S

    2004-08-01

    Minimally invasive surgical techniques have revolutionized the field of surgery. Telesurgical manipulators (robots) and new information technologies strive to improve upon currently available minimally invasive techniques and create new possibilities. A retrospective review of all robotic cases at a single academic medical center from August 2000 until November 2002 was conducted. A comprehensive literature evaluation on robotic surgical technology was also performed. Robotic technology is safely and effectively being applied at our institution. Robotic and information technologies have improved upon minimally invasive surgical techniques and created new opportunities not attainable in open surgery. Robotic technology offers many benefits over traditional minimal access techniques and has been proven safe and effective. Further research is needed to better define the optimal application of this technology. Credentialing and educational requirements also need to be delineated.

  2. Robot-Aided Neurorehabilitation

    PubMed Central

    Krebs, Hermano Igo; Hogan, Neville; Aisen, Mindy L.; Volpe, Bruce T.

    2009-01-01

    Our goal is to apply robotics and automation technology to assist, enhance, quantify, and document neurorehabilitation. This paper reviews a clinical trial involving 20 stroke patients with a prototype robot-aided rehabilitation facility developed at the Massachusetts Institute of Technology, Cambridge, (MIT) and tested at Burke Rehabilitation Hospital, White Plains, NY. It also presents our approach to analyze kinematic data collected in the robot-aided assessment procedure. In particular, we present evidence 1) that robot-aided therapy does not have adverse effects, 2) that patients tolerate the procedure, and 3) that peripheral manipulation of the impaired limb may influence brain recovery. These results are based on standard clinical assessment procedures. We also present one approach using kinematic data in a robot-aided assessment procedure. PMID:9535526

  3. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    "Harry" a Goldendoodle is seen wearing a NASA backpack during the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event that was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 in Worcester, Mass. The challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  4. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    Team members of "Survey" drive their robot around the campus on Saturday, June 16, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. The Survey team was one of the final teams participating in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  5. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-15

    Wunderkammer Laboratory Team leader Jim Rothrock, left, answers questions from 8th grade Sullivan Middle School (Mass.) students about his robot named "Cerberus" on Friday, June 15, 2012, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Rothrock's robot team will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  6. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-15

    SpacePRIDE Team members Chris Williamson, right, and Rob Moore, second from right, answer questions from 8th grade Sullivan Middle School (Mass.) students about their robot on Friday, June 15, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. SpacePRIDE's robot team will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  7. Initial experience with robotic pancreatic surgery in Singapore: single institution experience with 30 consecutive cases.

    PubMed

    Goh, Brian K P; Low, Tze-Yi; Lee, Ser-Yee; Chan, Chung-Yip; Chung, Alexander Y F; Ooi, London L P J

    2018-05-24

    Presently, the worldwide experience with robotic pancreatic surgery (RPS) is increasing although widespread adoption remains limited. In this study, we report our initial experience with RPS. This is a retrospective review of a single institution prospective database of 72 consecutive robotic hepatopancreatobiliary surgeries performed between 2013 and 2017. Of these, 30 patients who underwent RPS were included in this study of which 25 were performed by a single surgeon. The most common procedure was robotic distal pancreatectomy (RDP) which was performed in 20 patients. This included eight subtotal pancreatectomies, two extended pancreatecto-splenectomies (en bloc gastric resection) and 10 spleen-saving-RDP. Splenic preservation was successful in 10/11 attempted spleen-saving-RDP. Eight patients underwent pancreaticoduodenectomies (five hybrid with open reconstruction), one patient underwent a modified Puestow procedure and one enucleation of uncinate tumour. Four patients had extended resections including two RDP with gastric resection and two pancreaticoduodenectomies with vascular resection. There was one (3.3%) open conversion and seven (23.3%) major (>Grade II) morbidities. Overall, there were four (13.3%) clinically significant (Grade B) pancreatic fistulas of which three required percutaneous drainage. These occurred after three RDP and one robotic enucleation. There was one reoperation for port-site hernia and no 30-day/in-hospital mortalities. The median post-operative stay was 6.5 (range: 3-36) days and there were six (20%) 30-day readmissions. Our initial experience showed that RPS can be adopted safely with a low open conversion rate for a wide variety of procedures including pancreaticoduodenectomy. © 2018 Royal Australasian College of Surgeons.

  8. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    Panoramic of some of the exhibits available on the campus of the Worcester Polytechnic Institute (WPI) during their "TouchTomorrow" education and outreach event that was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 in Worcester, Mass. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Anthony Shrout)

  9. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    Posters for the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event are seen posted around the campus on Saturday, June 16, 2012 at WPI in Worcester, Mass. The TouchTomorrow event was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  10. Reducing robotic prostatectomy costs by minimizing instrumentation.

    PubMed

    Delto, Joan C; Wayne, George; Yanes, Rafael; Nieder, Alan M; Bhandari, Akshay

    2015-05-01

    Since the introduction of robotic surgery for radical prostatectomy, the cost-benefit of this technology has been under scrutiny. While robotic surgery professes to offer multiple advantages, including reduced blood loss, reduced length of stay, and expedient recovery, the associated costs tend to be significantly higher, secondary to the fixed cost of the robot as well as the variable costs associated with instrumentation. This study provides a simple framework for the careful consideration of costs during the selection of equipment and materials. Two experienced robotic surgeons at our institution as well as several at other institutions were queried about their preferred instrument usage for robot-assisted prostatectomy. Costs of instruments and materials were obtained and clustered by type and price. A minimal set of instruments was identified and compared against alternative instrumentation. A retrospective review of 125 patients who underwent robotically assisted laparoscopic prostatectomy for prostate cancer at our institution was performed to compare estimated blood loss (EBL), operative times, and intraoperative complications for both surgeons. Our surgeons now conceptualize instrument costs as proportional changes to the cost of the baseline minimal combination. Robotic costs at our institution were reduced by eliminating an energy source like the Ligasure or vessel sealer, exploiting instrument versatility, and utilizing inexpensive tools such as Hem-o-lok clips. Such modifications reduced surgeon 1's cost of instrumentation to ∼40% less compared with surgeon 2 and up to 32% less than instrumentation used by surgeons at other institutions. Surgeon 1's combination may not be optimal for all robotic surgeons; however, it establishes a minimally viable toolbox for our institution through a rudimentary cost analysis. A similar analysis may aid others in better conceptualizing long-term costs not as nominal, often unwieldy prices, but as percent changes in

  11. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    Visitors, some with their dogs, line up to make their photo inside a space suit exhibit during the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event that was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 in Worcester, Mass. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  12. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    The bronze statue of the goat mascot for Worcester Polytechnic Institute (WPI) named "Gompei" is seen wearing a staff t-shirt for the "TouchTomorrow" education and outreach event that was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 in Worcester, Mass. The challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  13. A Guide for Developing Human-Robot Interaction Experiments in the Robotic Interactive Visualization and Experimentation Technology (RIVET) Simulation

    DTIC Science & Technology

    2016-05-01

    research, Kunkler (2006) suggested that the similarities between computer simulation tools and robotic surgery systems (e.g., mechanized feedback...distribution is unlimited. 49 Davies B. A review of robotics in surgery . Proceedings of the Institution of Mechanical Engineers, Part H: Journal...ARL-TR-7683 ● MAY 2016 US Army Research Laboratory A Guide for Developing Human- Robot Interaction Experiments in the Robotic

  14. Lawrence and Kelly's hands on controls in the Destiny laboratory module

    NASA Image and Video Library

    2005-08-05

    S114-E-7493 (5 August 2005) --- This image features a close-up view the hands of astronauts Wendy B. Lawrence, STS-114 mission specialist, and James M. Kelly, pilot, at the Mobile Service System (MSS) and Canadarm2 controls in the Destiny laboratory of the International Space Station while Space Shuttle Discovery was docked to the Station. The two were re-stowing the Italian-built Raffaello Multi-Purpose Logistics Module (MPLM) in the cargo bay.

  15. Use of the Kelly Decontamination System for the cleanup of the auxiliary and fuel-handling buildings at TMI-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoyt, K.R.; Pavelek, M.D. II

    1987-01-01

    Following the accident at Three Mile Island Unit 2 (TMI-2) substantial areas in the auxiliary and fuel-handling buildings were contaminated. Overflowing sumps backed up floor drains and contaminated a substantial portion of the 282-ft elevation floor. In addition, contamination was spread into the overheads when the nitrogen purge system, which had become internally contaminated, was relieved of overpressure. Operating experience with the Kelly Decontamination System has been exceptional. The system has been defined as a tool of the trade for labor personnel to operate as part of their duties. A detailed training program was provided by the Kelly Division ofmore » Container Products Corporation for the engineers who then trained labor personnel in the operation of the equipment. There were very few problems with personnel on the equipment for routine decontamination operations. The Kelly Decontamination System has proven to be a dose and cost-effective alternative to hands-on decontamination techniques at TMI-2 and should have wide application for large-scale decontamination operations.« less

  16. 77 FR 51030 - Kelly Dean Shrum: Debarment Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-23

    ...The Food and Drug Administration (FDA) is issuing an order under the Federal Food, Drug, and Cosmetic Act (the FD&C Act) permanently debarring Kelly Dean Shrum, from providing services in any capacity to a person that has an approved or pending drug product application. FDA bases this order on a finding that Dr. Shrum was convicted of a felony under Federal law for conduct relating to the regulation of a drug product under the FD&C Act. Dr. Shrum was given notice of the proposed permanent debarment and an opportunity to request a hearing within the timeframe prescribed by regulation. Dr. Shrum failed to respond. Dr. Shrum's failure to respond constitutes a waiver of his right to a hearing concerning this action.

  17. Perioperative risk assessment in robotic general surgery: lessons learned from 884 cases at a single institution.

    PubMed

    Buchs, Nicolas C; Addeo, Pietro; Bianco, Francesco M; Gorodner, Veronica; Ayloo, Subhashini M; Elli, Enrique F; Oberholzer, José; Benedetti, Enrico; Giulianotti, Pier C

    2012-08-01

    To assess factors associated with morbidity and mortality following the use of robotics in general surgery. Case series. University of Illinois at Chicago. Eight hundred eighty-four consecutive patients who underwent a robotic procedure in our institution between April 2007 and July 2010. Perioperative morbidity and mortality. During the study period, 884 patients underwent a robotic procedure. The conversion rate was 2%, the mortality rate was 0.5%, and the overall postoperative morbidity rate was 16.7%. The reoperation rate was 2.4%. Mean length of stay was 4.5 days (range, 0.2-113 days). In univariate analysis, several factors were associated with increased morbidity and included either patient-related (cardiovascular and renal comorbidities, American Society of Anesthesiologists score ≥ 3, body mass index [calculated as weight in kilograms divided by height in meters squared] <30, age ≥ 70 years, and malignant disease) or procedure-related (blood loss ≥ 500 mL, transfusion, multiquadrant operation, and advanced procedure) factors. In multivariate analysis, advanced procedure, multiquadrant surgery, malignant disease, body mass index of less than 30, hypertension, and transfusion were factors significantly associated with a higher risk for complications. American Society of Anesthesiologists score of 3 or greater, age 70 years or older, cardiovascular comorbidity, and blood loss of 500 mL or more were also associated with increased risk for mortality. Use of the robotic approach for general surgery can be achieved safely with low morbidity and mortality. Several risk factors have been identified as independent causes for higher morbidity and mortality. These can be used to identify patients at risk before and during the surgery and, in the future, to develop a scoring system for the use of robotic general surgery

  18. Essential Kinematics for Autonomous Vehicles

    DTIC Science & Technology

    1994-05-02

    AD-.A282 456 Essential Kinematics for Autonomous Vehicles Alonzo Kelly DTICCMU-RI-TR-94- 14 AU 031994 F The Robotics Institute Carnegie Mellon...kit of concepts and techniques that will equip the reader to master a large class of kinematic modelling problems. Control of autonomous vehicles in 3D...transformation from system ’a’ to system b’. Essential Kinematics for Autonomous Vehicles page 1. The specification of derivatives will be necessarily

  19. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    NASA Program Manager for Centennial Challenges Sam Ortega help show a young visitor how to drive a rover as part of the interactive NASA Mars rover exhibit during the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event that was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 in Worcester, Mass. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  20. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    A visitor to the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event helps demonstrate how a NASA rover design enables the rover to climb over obstacles higher than it's own body on Saturday, June 16, 2012 at WPI in Worcester, Mass. The event was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  1. Developing a successful robotics program.

    PubMed

    Luthringer, Tyler; Aleksic, Ilija; Caire, Arthur; Albala, David M

    2012-01-01

    Advancements in the robotic surgical technology have revolutionized the standard of care for many surgical procedures. The purpose of this review is to evaluate the important considerations in developing a new robotics program at a given healthcare institution. Patients' interest in robotic-assisted surgery has and continues to grow because of improved outcomes and decreased periods of hospitalization. Resulting market forces have created a solid foundation for the implementation of robotic surgery into surgical practice. Given proper surgeon experience and an efficient system, robotic-assisted procedures have been cost comparable to open surgical alternatives. Surgeon training and experience is closely linked to the efficiency of a new robotics program. Formally trained robotic surgeons have better patient outcomes and shorter operative times. Training in robotics has shown no negative impact on patient outcomes or mentor learning curves. Individual economic factors of local healthcare settings must be evaluated when planning for a new robotics program. The high cost of the robotic surgical platform is best offset with a large surgical volume. A mature, experienced surgeon is integral to the success of a new robotics program.

  2. Walking Robot Locomotion System Conception

    NASA Astrophysics Data System (ADS)

    Ignatova, D.; Abadjieva, E.; Abadjiev, V.; Vatzkitchev, Al.

    2014-09-01

    This work is a brief analysis on the application and perspective of using the walking robots in different areas in practice. The most common characteristics of walking four legs robots are presented here. The specific features of the applied actuators in walking mechanisms are also shown in the article. The experience of Institute of Mechanics - BAS is illustrated in creation of Spiroid and Helicon1 gears and their assembly in actuation of studied robots. Loading on joints reductors of robot legs is modelled, when the geometrical and the walking parameters of the studied robot are preliminary defined. The obtained results are purposed for designing the control of the loading of reductor type Helicon in the legs of the robot, when it is experimentally tested.

  3. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Kenneth Stafford, Assistant Director of Robotics Engineering and Director of the Robotics Resource Center at the Worcester Polytechnic Institute (WPI), verifies the location of the target sample during the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  4. Robot-assisted versus open sacrocolpopexy: a cost-minimization analysis.

    PubMed

    Elliott, Christopher S; Hsieh, Michael H; Sokol, Eric R; Comiter, Craig V; Payne, Christopher K; Chen, Bertha

    2012-02-01

    Abdominal sacrocolpopexy is considered a standard of care operation for apical vaginal vault prolapse repair. Using outcomes at our center we evaluated whether the robotic approach to sacrocolpopexy is as cost-effective as the open approach. After obtaining institutional review board approval we performed cost-minimization analysis in a retrospective cohort of patients who underwent sacrocolpopexy at our institution between 2006 and 2010. Threshold values, that is model variable values at which the most cost effective approach crosses over to an alternative approach, were determined by testing model variables over realistic ranges using sensitivity analysis. Hospital billing data were also evaluated to confirm our findings. Operative time was similar for robotic and open surgery (226 vs 221 minutes) but postoperative length of stay differed significantly (1.0 vs 3.3 days, p <0.001). Base case analysis revealed an overall 10% cost savings for robot-assisted vs open sacrocolpopexy ($10,178 vs $11,307). Tornado analysis suggested that the number of institutional robotic cases done annually, length of stay and cost per hospitalization day in the postoperative period were the largest drivers of cost. Analysis of our hospital billing data showed a similar trend with robotic surgery costing 4.2% less than open surgery. A robot-assisted approach to sacrocolpopexy can be equally or less costly than an open approach. This depends on a sufficient institutional robotic case volume and a shorter postoperative stay for patients who undergo the robot-assisted procedure. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  5. IN MEMORIAM: Hugh P Kelly, 3 September 1931 - 29 June 1992

    NASA Astrophysics Data System (ADS)

    Hansen, Jørgen E.

    1993-01-01

    It is said that Racah was one of the few physicists who was able not only to read Hermann Weyl's book "The Theory of Groups and Quantum Mechanics" but also to understand enough to use it himself. Something similar applies to Hugh Kelly, who introduced the methods of Many-Body Perturbation Theory (MBPT), which was being developed by nuclear physicists like Keith Brueckner whom Hugh worked with as a post-doc, into atomic physics. Since atomic physics with its "known" forces is a perfect area in which to apply the methods of MBPT, it is clear that this would have happened sooner or later. Hugh Kelly's achievement is that it happened very early. Hugh's death this summer after a long battle with cancer is a great loss to atomic physics and to his many friends in the community. Hugh P Kelly got his PhD from the University of California at Berkeley in 1963 under the supervision of Kenneth Watson and in 1965 he was hired as assistant Professor at the University of Virginia. His appointment was to a large extent due to the support of M E Rose, also a nuclear physicist with interest in atoms as is clear from his book "Elementary Theory of Angular Momentum". Hugh remained at the University of Virginia for the rest of his life, over the years serving as Department Chairman, Faculty Dean and, during the last years, as University Provost, but throughout Hugh pursued his real passion which was Physics. It is a clear sign of his dedication that he is sole author on a large number of papers particularly of course in the early years when he alone was Atomic Theory in Charlottesville. Hugh contributed to many areas of atomic physics although early on photoionization became his favourite subject and the one where he made his main contribution: first for closed shell atoms, but later extending his techniques to open shell systems for which the normal MBPT techniques did not apply. Hugh had a good nose for finding projects that were of topical interest and many of his papers are

  6. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    NASA Deputy Administrator Lori Garver and NASA Chief Technologist Mason Peck stop to look at the bronze statue of the goat mascot for Worcester Polytechnic Institute (WPI) named "Gompei" that is wearing a staff t-shirt for the "TouchTomorrow" education and outreach event that was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 in Worcester, Mass. The challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  7. Robotic Telesurgery Research

    DTIC Science & Technology

    2010-10-01

    Miniature In Vivo Robotic System for the Surgical Treatment of Diverticular Disease Source of Support: National Institute of Health (NIH) Total...completion time   • Suturing   • Gastrotomy   • Partial colon resection   • Completion of a fully closed procedure - the robot was inserted...repositioned over the sigmoid colon in the left pelvis of the swine and was used, with one grasper hand and one cautery hand, to dissect out the mesentery of

  8. Feasibility of robotic inguinal hernia repair, a single-institution experience.

    PubMed

    Escobar Dominguez, Jose E; Ramos, Michael Gonzalez; Seetharamaiah, Rupa; Donkor, Charan; Rabaza, Jorge; Gonzalez, Anthony

    2016-09-01

    With the growth of the discipline of laparoscopic surgery, technology has been further developed to facilitate the performance of minimally invasive hernia repair. Most of the published literature regarding robotic inguinal hernia repair has been performed by urologists who have dealt with this entity in a concomitant way during radical prostatectomies. General surgeons, who perform the vast majority of inguinal herniorrhaphies worldwide, have yet to describe the role of robotic inguinal hernia repair. Here, we describe our initial experience and create the foundation for future research questions regarding robotic inguinal hernia repair. A retrospective chart review was performed in 78 patients who underwent robotic transabdominal preperitoneal TAPP inguinal hernia repair with a prosthetic mesh using the da Vinci platform (Intuitive Surgical Inc). Data collected included patient demographics, past medical history, previous surgeries, details related to the surgical procedure, perioperative outcomes and complications. A total of 123 hernias were repaired. Forty-five patients had bilateral robotic inguinal herniorrhaphies, and the mean age was 55.1 years (SD 15.1), with a mean BMI of 27.6 (SD 6.1). There were 71 male and 7 female patients. Surgical complications included hematoma in three patients (3.9 %), two seromas (2.6 %) and one superficial surgical site infection at a trocar site (1.3 %), which resolved with oral antibiotics. Chronic postoperative complications (>30 days post-surgery) included the persistence of hematomas in two patients (2.6 %). Same day discharge was achieved in 60 patients (76.9 %) with a mean length of stay of 8 h (SD 2.65). Neither mortality nor conversion to open surgery occurred. Our early experience has demonstrated that the robotic transabdominal preperitoneal (TAPP) inguinal hernia repair is a safe and versatile approach that allows the general surgeon to perform this procedure in more complex cases such as those involving

  9. 76 FR 175 - Continental Structural Plastics Including On-Site Leased Workers From Kelly Services and Time...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... Plastics Including On-Site Leased Workers From Kelly Services and Time Staffing; North Baltimore, OH... Adjustment Assistance on December 31, 2008, applicable to workers of Continental Structural Plastics, North... Baltimore, Ohio location of Continental Structural Plastics. The Department has determined that these...

  10. Robotic Mining Competition - Setup

    NASA Image and Video Library

    2018-05-14

    On the first day of NASA's 9th Robotic Mining Competition, set-up day on May 14, team members from the Illinois Institute of Technology work on their robot miner in the RobotPits in the Educator Resource Center at Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  11. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Team AERO, from the Worcester Polytechnic Institute (WPI) transports their robot to the competition field for the level one of the competition during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  12. Integrating robotic partial nephrectomy to an existing robotic surgery program.

    PubMed

    Yuh, Bertram; Muldrew, Shantel; Menchaca, Anita; Yip, Wesley; Lau, Clayton; Wilson, Timothy; Josephson, David

    2012-04-01

    As more centers develop robotic proficiency, progressing to a successful robot-assisted partial nephrectomy (RAPN) program depends on a number of factors. We describe our technique, results, and analysis of program setup for RAPN. Between 2005 and 2011, 92 RAPNs were performed following maturation of a robotic prostatectomy program. Operating rooms and supply rooms were outfitted for efficient robotic throughput. Tilepro and intraoperative ultrasound were used for all cases. Training and experiential learning for surgeons, anesthesia and nursing staff was a high priority. An onsite robotic technician helped troubleshoot, prepare the room and staff prior to starting surgery, and provide assistance with different robotic models. Average operative time decreased over time from 235 min to 199 min (p = .03). Warm ischemia time decreased from 26 minutes to 23 minutes (p = .02) despite an increased complexity of tumors and operations on multiple tumors. Median estimated blood loss was 150 mL. Average length of hospital stay was 3 days (range 1-9). Average size of lesions was 2.7 cm (range 0.7-8.6). Final pathology demonstrated 71 (77%) malignant lesions and 21 (23%) benign lesions. The addition of a robot-assisted partial nephrectomy program to an institutional robotic program can be coordinated with several key steps. Outcomes from an operational, oncologic, and renal functional standpoint are acceptable. Despite increased complexity of tumors and treatment of multiple lesions, operative and warm ischemia times showed a decrease over time. An organizational model that involves the surgeons, anesthesia, nursing staff, and possibly a robotic technical specialist helps to overcome the learning curve.

  13. Training in urological robotic surgery. Future perspectives.

    PubMed

    El Sherbiny, Ahmed; Eissa, Ahmed; Ghaith, Ahmed; Morini, Elena; Marzotta, Lucilla; Sighinolfi, Maria Chiara; Micali, Salvatore; Bianchi, Giampaolo; Rocco, Bernardo

    2018-01-01

    As robotics are becoming more integrated into the medical field, robotic training is becoming more crucial in order to overcome the lack of experienced robotic surgeons. However, there are several obstacles facing the development of robotic training programs like the high cost of training and the increased operative time during the initial period of the learning curve, which, in turn increase the operative cost. Robotic-assisted laparoscopic prostatectomy is the most commonly performed robotic surgery. Moreover, robotic surgery is becoming more popular among urologic oncologists and pediatric urologists. The need for a standardized and validated robotic training curriculum was growing along with the increased number of urologic centers and institutes adopting the robotic technology. Robotic training includes proctorship, mentorship or fellowship, telementoring, simulators and video training. In this chapter, we are going to discuss the different training methods, how to evaluate robotic skills, the available robotic training curriculum, and the future perspectives.

  14. 75 FR 28295 - Federal-Mogul, Including On-Site Leased Workers From Kelly Services, Summerton, SC; Amended...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-20

    ... workers were sufficiently under the control of the subject firm to be considered leased workers. Based on... On-Site Leased Workers From Kelly Services, Summerton, SC; Amended Certification Regarding Eligibility To Apply for Worker Adjustment Assistance In accordance with Section 223 of the Trade Act of 1974...

  15. 76 FR 13227 - Continental Structural Plastics, Including On-Site Leased Workers From Kelly Services and Doepker...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... Plastics, Including On-Site Leased Workers From Kelly Services and Doepker Group, Inc., Formerly Known As... Continental Structural Plastics, North Baltimore, Ohio. The workers produce exterior body panels and under... to TA-W-64,458 is hereby issued as follows: All workers of Continental Structural Plastics, including...

  16. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    A pair of Worcester Polytechnic Institute (WPI) students walk past a pair of team KuuKulgur's robots on the campus quad, during a final tuneup before the start of competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team KuuKulgur is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  17. A Qualitative Comparative Analysis Exploring How the Arrangement of Higher Education Governance Shapes the Contribution of Two-Year Institutions to State Educational Attainment

    ERIC Educational Resources Information Center

    White, Carol Cutler

    2016-01-01

    Two-year institutions of higher education are critical to state educational attainment (Auguste, Cota, Kartik, & Laboissiere, 2010; Wildavsky, Kelly, & Carey, 2011c), but the institutions may be hindered in contributing to attainment increases by the arrangement of governance (McLendon & Ness, 2003). The purpose of the study was to…

  18. Medical Movies on the Web Debuts with Gene Kelly's "Combat Fatigue Irritability" 1945 Film | NIH MedlinePlus the ...

    MedlinePlus

    ... please turn JavaScript on. Medical Movies on the Web Debuts with Gene Kelly's "Combat Fatigue Irritability" 1945 ... of Medicine To view Medical Movies on the Web, go to: www.nlm.nih.gov/hmd/collections/ ...

  19. 76 FR 46852 - Workers From Kelly Services, Working On-Site at Delphi Automotive Systems, LLC, Powertrain...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ... Services, Working On-Site at Delphi Automotive Systems, LLC, Powertrain Division, El Paso, TX; Amended..., 2011, applicable to leased workers from Kelly Services working on-site at Delphi Automotive Systems... automotive components. The notice will be published soon in the Federal Register. At the request of the State...

  20. Positive surgical margins in robot-assisted partial nephrectomy: a multi-institutional analysis of oncologic outcomes (leave no tumor behind).

    PubMed

    Khalifeh, Ali; Kaouk, Jihad H; Bhayani, Sam; Rogers, Craig; Stifelman, Michael; Tanagho, Youssef S; Kumar, Ramesh; Gorin, Michael A; Sivarajan, Ganesh; Samarasekera, Dinesh; Allaf, Mohamad E

    2013-11-01

    Expanding indications for robot-assisted partial nephrectomy raise major oncologic concerns for positive surgical margins. Previous reports showed no correlation between positive surgical margins and oncologic outcomes. We report a multi-institutional experience with the oncologic outcomes of positive surgical margins on robot-assisted partial nephrectomy. Pathological and clinical followup data were reviewed from an institutional review board approved, prospectively maintained joint database from 5 institutions. Tumors with malignant pathology were isolated and statistically analyzed for demographics and oncologic followup. The log rank test was used to compare recurrence-free and metastasis-free survival between patients with positive and negative surgical margins. The proportional hazards method was used to assess the influence of multiple factors, including positive surgical margins, on recurrence and metastasis. A total of 943 robot-assisted partial nephrectomies for malignant tumors were successfully completed. Of the patients 21 (2.2%) had positive surgical margins on final pathological assessment, resulting in 2 groups, including the 21 with positive surgical margins and 922 with negative surgical margins. Positive surgical margin cases had higher recurrence and metastasis rates (p<0.001). As projected by the Kaplan-Meier method in the population as a whole at followup out to 63.6 months, 5-year recurrence-free and metastasis-free survival was 94.8% and 97.5%, respectively. There was a statistically significant difference in recurrence-free and metastasis-free survival between patients with positive and negative surgical margins (log rank test<0.001), which favored negative surgical margins. Positive surgical margins showed an 18.4-fold higher HR for recurrence when adjusted for multiple tumors, tumor size, tumor growth pattern and pathological stage. Positive surgical margins on final pathological evaluation increase the HR of recurrence and metastasis. In

  1. The Influence of Emerging Nursing Administrative and Leadership Researchers: An Interview With Dr Lesly Kelly.

    PubMed

    Adams, Jeffrey M

    2017-02-01

    This department highlights emerging nursing leaders who have demonstrated leadership in advancing innovation and patient care in practice, policy, research, education, and theory. This interview profiles Lesly Kelly, PhD, RN, Assistant Professor at the Arizona State University College of Nursing and Health Innovation and Nursing and Clinical Research Program Director at Banner-University Medical Center Phoenix.

  2. Robotics in medicine

    NASA Astrophysics Data System (ADS)

    Kuznetsov, D. N.; Syryamkin, V. I.

    2015-11-01

    Modern technologies play a very important role in our lives. It is hard to imagine how people can get along without personal computers, and companies - without powerful computer centers. Nowadays, many devices make modern medicine more effective. Medicine is developing constantly, so introduction of robots in this sector is a very promising activity. Advances in technology have influenced medicine greatly. Robotic surgery is now actively developing worldwide. Scientists have been carrying out research and practical attempts to create robotic surgeons for more than 20 years, since the mid-80s of the last century. Robotic assistants play an important role in modern medicine. This industry is new enough and is at the early stage of development; despite this, some developments already have worldwide application; they function successfully and bring invaluable help to employees of medical institutions. Today, doctors can perform operations that seemed impossible a few years ago. Such progress in medicine is due to many factors. First, modern operating rooms are equipped with up-to-date equipment, allowing doctors to make operations more accurately and with less risk to the patient. Second, technology has enabled to improve the quality of doctors' training. Various types of robots exist now: assistants, military robots, space, household and medical, of course. Further, we should make a detailed analysis of existing types of robots and their application. The purpose of the article is to illustrate the most popular types of robots used in medicine.

  3. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Worcester Polytechnic Institute (WPI) President Laurie Leshin, speaks at a breakfast opening the TouchTomorrow Festival, held in conjunction with the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  4. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The entrance to Institute Park is seen during the level one challenge as during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  5. Cystostomie percutanée à la pince de Kelly: indications, technique et résultats

    PubMed Central

    Diabaté, Ibrahima; Ouédraogo, Bouréima; Sow, Ibrahima; Bâ, Aliou

    2015-01-01

    Introduction La dérivation urinaire sus-pubienne est pratiquée dans différentes circonstances. Cette étude vise à décrire la technique de cystostomie percutanée (CPC) pratiquée à l'aide d'une pince de Kelly pour la pose d'une sonde de Foley, à définir les indications de cette technique et à rapporter les résultats. Méthodes Du 1er janvier 2005 au 31 décembre 2014, il a été réalisé 194 CPC à la pince de Kelly dans notre service, en urgence, sous anesthésie locale, chez des patients en rétention vésicale. Cette technique, dérivée de la cystostomie par ponction au trocart vise à placer dans la vessie une sonde de Foley après incision cutanée et aponévrotique (de 1 cm sur la ligne médiane, à 1,5 - 2 cm au-dessus de la symphyse pubienne) et la ponction vésicale à la pince de Kelly à travers cette incision. Résultats Les 194 patients étaient tous de sexe masculin, âgés en moyenne de 50 ans ± 21 (extrêmes de 17 ans et 86 ans). Les pathologies à l'origine des rétentions vésicales étaient: les rétrécissements urétraux (n=119), les hypertrophies bénignes de la prostate (n=47), les cancers de prostate (n=21), les traumatismes de l'urètre (n=7). Tous les patients ont été opérés avec succès par cette méthode et les suites ont été simples. Le temps de réalisation était de 6 minutes ± 1. Les sondes de Foley mises en place étaient de charrière 16 (n=59), charrière 18 (n=116) et charrière 20 (n=19). La cicatrisation du trajet de la CPC après l'ablation de la sonde de Foley n'a posée aucun problème chez 146 patients suivis, les 48 autres ayant été perdus de vue. Conclusion La CPC à la pince de Kelly est une technique simple, rapide et pas onéreuse. Ses indications sont les mêmes que pour toute CPC et elle représente une alternative à la cystostomie par chirurgie ouverte. PMID:26893798

  6. 75 FR 28296 - Clark Engineering Co., Inc., Including On-Site Leased Workers From Kelly Services and Qualified...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-20

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-72,773] Clark Engineering Co... of Clark Engineering Co., Inc., including on-site leased workers of Kelly Services, Owosso, Michigan... from Qualified Staffing were employed on-site at the Owosso, Michigan location of Clark Engineering Co...

  7. Robotic microsurgery in male infertility and urology-taking robotics to the next level.

    PubMed

    Gudeloglu, Ahmet; Brahmbhatt, Jamin V; Parekattil, Sijo J

    2014-03-01

    The initial reports of robotic assisted microsurgery began to appear in the early 1990s. Animal and early human studies were the initial publications. Larger series papers have recently been published from a few institutions. The field of robotic assisted microsurgery is still in evolution and so are adjunctive tools and instruments. It is clearly a different and unique skill set-is it microsurgery or is it robotic surgery, or both. It is clear from history that the art of surgery evolves over time to encompass new technology as long as the outcomes are better for the patient. Our current robotic platforms may not be ideal for microsurgery, however, the use of adjunctive tools and instrument refinement will further its future potential. This review article presents the current state of the art in various robotic assisted microsurgical procedures in male infertility and urology. Some novel applications of taking microsurgery to areas not classically accessible (intra-abdominal vasovasostomy) and adjunctive tools will also be presented.

  8. Impact of robotic general surgery course on participants' surgical practice.

    PubMed

    Buchs, Nicolas C; Pugin, François; Volonté, Francesco; Hagen, Monika E; Morel, Philippe

    2013-06-01

    Courses, including lectures, live surgery, and hands-on session, are part of the recommended curriculum for robotic surgery. However, for general surgery, this approach is poorly reported. The study purpose was to evaluate the impact of robotic general surgery course on the practice of participants. Between 2007 and 2011, 101 participants attended the Geneva International Robotic Surgery Course, held at the University Hospital of Geneva, Switzerland. This 2-day course included theory lectures, dry lab, live surgery, and hands-on session on cadavers. After a mean of 30.1 months (range, 2-48), a retrospective review of the participants' surgical practice was performed using online research and surveys. Among the 101 participants, there was a majority of general (58.4 %) and colorectal surgeons (10.9 %). Other specialties included urologists (7.9 %), gynecologists (6.9 %), pediatric surgeons (2 %), surgical oncologists (1 %), engineers (6.9 %), and others (5.9 %). Data were fully recorded in 99 % of cases; 46 % of participants started to perform robotic procedures after the course, whereas only 6.9 % were already familiar with the system before the course. In addition, 53 % of the attendees worked at an institution where a robotic system was already available. All (100 %) of participants who started a robotic program after the course had an available robotic system at their institution. A course that includes lectures, live surgery, and hands-on session with cadavers is an effective educational method for spreading robotic skills. However, this is especially true for participants whose institution already has a robotic system available.

  9. Best Practices for Robotic Surgery Programs

    PubMed Central

    Goldenberg, David; Winder, Joshua S.; Juza, Ryan M.; Lyn-Sue, Jerome R.

    2017-01-01

    Background and Objectives: Robotic surgical programs are increasing in number. Efficient methods by which to monitor and evaluate robotic surgery teams are needed. Methods: Best practices for an academic university medical center were created and instituted in 2009 and continue to the present. These practices have led to programmatic development that has resulted in a process that effectively monitors leadership team members; attending, resident, fellow, and staff training; credentialing; safety metrics; efficiency; and case volume recommendations. Results: Guidelines for hospitals and robotic directors that can be applied to one's own robotic surgical services are included with examples of management of all aspects of a multispecialty robotic surgery program. Conclusion: The use of these best practices will ensure a robotic surgery program that is successful and well positioned for a safe and productive environment for current clinical practice. PMID:28729780

  10. 77 FR 14832 - RR Donnelley, Inc., Including On-Site Leased Workers From Manpower and Kelly Services, Bloomsburg...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-13

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-80,485] RR Donnelley, Inc., Including On-Site Leased Workers From Manpower and Kelly Services, Bloomsburg, PA; Notice of Affirmative... the claim is of sufficient weight to justify reconsideration of the U.S. Department of Labor's prior...

  11. Incidence and location of positive surgical margin among open, laparoscopic and robot-assisted radical prostatectomy in prostate cancer patients: a single institutional analysis.

    PubMed

    Koizumi, Atsushi; Narita, Shintaro; Nara, Taketoshi; Takayama, Koichiro; Kanda, Sohei; Numakura, Kazuyuki; Tsuruta, Hiroshi; Maeno, Atsushi; Huang, Mingguo; Saito, Mitsuru; Inoue, Takamitsu; Tsuchiya, Norihiko; Satoh, Shigeru; Nanjo, Hiroshi; Habuchi, Tomonori

    2018-06-19

    To evaluate the positive surgical margin rates and locations in radical prostatectomy among three surgical approaches, including open radical prostatectomy, laparoscopic radical prostatectomy and robot-assisted radical prostatectomy. We retrospectively reviewed clinical outcomes at our institution of 450 patients who received radical prostatectomy. Multiple surgeons were involved in the three approaches, and a single pathologist conducted the histopathological diagnoses. Positive surgical margin rates and locations among the three approaches were statistically assessed, and the risk factors of positive surgical margin were analyzed. This study included 127, 136 and 187 patients in the open radical prostatectomy, laparoscopic radical prostatectomy and robot-assisted radical prostatectomy groups, respectively. The positive surgical margin rates were 27.6% (open radical prostatectomy), 18.4% (laparoscopic radical prostatectomy) and 13.4% (robot-assisted radical prostatectomy). In propensity score-matched analyses, the positive surgical margin rate in the robot-assisted radical prostatectomy was significantly lower than that in the open radical prostatectomy, whereas there was no significant difference in the positive surgical margin rates between robot-assisted radical prostatectomy and laparoscopic radical prostatectomy. In the multivariable analysis, PSA level at diagnosis and surgical approach (open radical prostatectomy vs robot-assisted radical prostatectomy) were independent risk factors for positive surgical margin. The apex was the most common location of positive surgical margin in the open radical prostatectomy and laparoscopic radical prostatectomy groups, whereas the bladder neck was the most common location in the robot-assisted radical prostatectomy group. The significant difference of positive surgical margin locations continued after the propensity score adjustment. Robot-assisted radical prostatectomy may potentially achieve the lowest positive

  12. Monro-Kellie 2.0: The dynamic vascular and venous pathophysiological components of intracranial pressure

    PubMed Central

    2016-01-01

    For 200 years, the ‘closed box’ analogy of intracranial pressure (ICP) has underpinned neurosurgery and neuro-critical care. Cushing conceptualised the Monro-Kellie doctrine stating that a change in blood, brain or CSF volume resulted in reciprocal changes in one or both of the other two. When not possible, attempts to increase a volume further increase ICP. On this doctrine’s “truth or relative untruth” depends many of the critical procedures in the surgery of the central nervous system. However, each volume component may not deserve the equal weighting this static concept implies. The slow production of CSF (0.35 ml/min) is dwarfed by the dynamic blood in and outflow (∼700 ml/min). Neuro-critical care practice focusing on arterial and ICP regulation has been questioned. Failure of venous efferent flow to precisely match arterial afferent flow will yield immediate and dramatic changes in intracranial blood volume and pressure. Interpreting ICP without interrogating its core drivers may be misleading. Multiple clinical conditions and the cerebral effects of altitude and microgravity relate to imbalances in this dynamic rather than ICP per se. This article reviews the Monro-Kellie doctrine, categorises venous outflow limitation conditions, relates physiological mechanisms to clinical conditions and suggests specific management options. PMID:27174995

  13. Monro-Kellie 2.0: The dynamic vascular and venous pathophysiological components of intracranial pressure.

    PubMed

    Wilson, Mark H

    2016-08-01

    For 200 years, the 'closed box' analogy of intracranial pressure (ICP) has underpinned neurosurgery and neuro-critical care. Cushing conceptualised the Monro-Kellie doctrine stating that a change in blood, brain or CSF volume resulted in reciprocal changes in one or both of the other two. When not possible, attempts to increase a volume further increase ICP. On this doctrine's "truth or relative untruth" depends many of the critical procedures in the surgery of the central nervous system. However, each volume component may not deserve the equal weighting this static concept implies. The slow production of CSF (0.35 ml/min) is dwarfed by the dynamic blood in and outflow (∼700 ml/min). Neuro-critical care practice focusing on arterial and ICP regulation has been questioned. Failure of venous efferent flow to precisely match arterial afferent flow will yield immediate and dramatic changes in intracranial blood volume and pressure. Interpreting ICP without interrogating its core drivers may be misleading. Multiple clinical conditions and the cerebral effects of altitude and microgravity relate to imbalances in this dynamic rather than ICP per se. This article reviews the Monro-Kellie doctrine, categorises venous outflow limitation conditions, relates physiological mechanisms to clinical conditions and suggests specific management options. © The Author(s) 2016.

  14. An exploration of adult body shape and limb proportions at Kellis 2, Dakhleh Oasis, Egypt.

    PubMed

    Bleuze, Michele M; Wheeler, Sandra M; Dupras, Tosha L; Williams, Lana J; El Molto, J

    2014-03-01

    Several studies have shown that the human body generally conforms to the ecogeographical expectations of Bergmann's and Allen's rules; however, recent evidence suggests that these expectations may not hold completely for some populations. Egypt is located at the crossroads of Sub-Saharan Africa, Southern Europe, and the Near East, and gene flow among groups in these regions may confound ecogeographical patterning. In this study, we test the fit of the adult physique of a large sample (N = 163) of females and males from the Kellis 2 cemetery (Dakhleh Oasis, Egypt) against ecogeographical predictions. Body shape (i.e., body mass relative to stature) was assessed by the femur head diameter to bicondylar femur length index (FHD/BFL), and brachial and crural indices were calculated to examine intralimb proportions. Body shape in the Kellis 2 sample is not significantly different from high-latitude groups and a Lower Nubian sample, and intralimb proportions are not significantly different from mid-latitude and other low-latitude groups. This study demonstrates the potential uniqueness of body shape and intralimb proportions in an ancient Egyptian sample, and further highlights the complex relationship between ecogeographic patterning and adaptation. Copyright © 2013 Wiley Periodicals, Inc.

  15. STS-121: Discovery Pre-Flight Crew News Briefing

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The STS-121 crew is shown during this pre-flight news briefing. Steve Lindsey, Commander, begins with saying that they are only a few weeks from flight and the vehicle is in good shape. Mark Kelly, Pilot, is introduced by Lindsey and he discusses Kelly's main objective which is to direct the three spacewalks scheduled. Kelly introduces Mike Fossum, Mission Specialist. Kelly says that Fossum will be involved in three spacewalks. Fossum introduces Lisa Nowak, Mission Specialist, who is involved in robotics. Also Stephanie Wilson, Mission Specialist, will be involved in robotics. Piers Sellers, Mission Specialist, is introduced by Wilson, who is the lead spacewalker for this mission. Sellers then introduce Thomas Reiter, Mission Specialist, who is involved in spacewalks. The educational background of each crew member is given. Questions from the news media on the subjects of long term flights on the International Space Station, Ice frost ramp replacement, Orbiter Boom Sensor System (OBSS) stability, foam loss during STS-114 flight, duration of the mission, and mental preparation for test flights are addressed.

  16. Robotic kidney transplantation with regional hypothermia: a step-by-step description of the Vattikuti Urology Institute-Medanta technique (IDEAL phase 2a).

    PubMed

    Menon, Mani; Sood, Akshay; Bhandari, Mahendra; Kher, Vijay; Ghosh, Prasun; Abaza, Ronney; Jeong, Wooju; Ghani, Khurshid R; Kumar, Ramesh K; Modi, Pranjal; Ahlawat, Rajesh

    2014-05-01

    We recently reported on preclinical and feasibility studies (Innovation, Development, Exploration, Assessment, Long-term study [IDEAL] phase 0-1) of the development of robotic kidney transplantation (RKT) with regional hypothermia. This paper presents the IDEAL phase 2a studies of technique development. To describe the technique of RKT with regional hypothermia developed at two tertiary care institutions (Vattikuti Urology Institute and Medanta Hospital). We report on the safety profile and early graft function in these patients. This is a prospective study of 50 consecutive patients who underwent live-donor RKT at Medanta Hospital following a 3-yr planning/simulation phase at the Vattikuti Urology Institute. Demographic details, and perioperative and postoperative outcomes are reported for the initial 25 recipients who have completed a minimum 6-mo follow-up. Positioning and port placement were similar to that used for robotic radical prostatectomy. Allograft cooling was achieved by ice slush delivered through a GelPOINT device. The accompanying video details the operative technique. The primary outcome was posttransplant graft function. Secondary outcomes included technical success or failure and complication rates. Fifty patients underwent RKT successfully, 7 in the phase 1 and 43 in the phase 2 stages of the study. For the initial 25 patients, mean console, warm ischemia, arterial, and venous anastomotic times were 135, 2.4, 12, and 13.4 min, respectively. All grafts were cooled to 18-20 °C with no change in core body temperature. All grafts functioned immediately posttransplant and the mean serum creatinine level at discharge was 1.3mg/dl (range: 0.8-3.1mg/dl). No patient developed anastomotic leaks, wound complications, or wound infections. At 6-mo of follow-up, no patient had developed a lymphocele detected on CT scanning. Two patients underwent re-exploration, and one patient died of congestive heart failure (1.5 mo posttransplant). RKT with regional

  17. Innovation in robotic surgery: the Indian scenario.

    PubMed

    Deshpande, Suresh V

    2015-01-01

    Robotics is the science. In scientific words a "Robot" is an electromechanical arm device with a computer interface, a combination of electrical, mechanical, and computer engineering. It is a mechanical arm that performs tasks in Industries, space exploration, and science. One such idea was to make an automated arm - A robot - In laparoscopy to control the telescope-camera unit electromechanically and then with a computer interface using voice control. It took us 5 long years from 2004 to bring it to the level of obtaining a patent. That was the birth of the Swarup Robotic Arm (SWARM) which is the first and the only Indian contribution in the field of robotics in laparoscopy as a total voice controlled camera holding robotic arm developed without any support by industry or research institutes.

  18. A comparative direct cost analysis of pediatric urologic robot-assisted laparoscopic surgery versus open surgery: could robot-assisted surgery be less expensive?

    PubMed

    Rowe, Courtney K; Pierce, Michael W; Tecci, Katherine C; Houck, Constance S; Mandell, James; Retik, Alan B; Nguyen, Hiep T

    2012-07-01

    Cost in healthcare is an increasing and justifiable concern that impacts decisions about the introduction of new devices such as the da Vinci(®) surgical robot. Because equipment expenses represent only a portion of overall medical costs, we set out to make more specific cost comparisons between open and robot-assisted laparoscopic surgery. We performed a retrospective, observational, matched cohort study of 146 pediatric patients undergoing either open or robot-assisted laparoscopic urologic surgery from October 2004 to September 2009 at a single institution. Patients were matched based on surgery type, age, and fiscal year. Direct internal costs from the institution were used to compare the two surgery types across several procedures. Robot-assisted surgery direct costs were 11.9% (P=0.03) lower than open surgery. This cost difference was primarily because of the difference in hospital length of stay between patients undergoing open vs robot-assisted surgery (3.8 vs 1.6 days, P<0.001). Maintenance fees and equipment expenses were the primary contributors to robotic surgery costs, while open surgery costs were affected most by room and board expenses. When estimates of the indirect costs of robot purchase and maintenance were included, open surgery had a lower total cost. There were no differences in follow-up times or complication rates. Direct costs for robot-assisted surgery were significantly lower than equivalent open surgery. Factors reducing robot-assisted surgery costs included: A consistent and trained robotic surgery team, an extensive history of performing urologic robotic surgery, selection of patients for robotic surgery who otherwise would have had longer hospital stays after open surgery, and selection of procedures without a laparoscopic alternative. The high indirect costs of robot purchase and maintenance remain major factors, but could be overcome by high surgical volume and reduced prices as competitors enter the market.

  19. 75 FR 60142 - Amsted Rail Company, Inc., a Subsidiary of Amsted, Including On-Site Leased Workers From Kelly...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ..., Granite City, IL; Amended Certification Regarding Eligibility To Apply for Worker Adjustment Assistance In... from Kelly Services and Account Temps, Granite City, Illinois. The Department's Notice was published in... Amsted, Granite City, Illinois, separated from employment on or after September 20, 2006 through January...

  20. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Team KuuKulgur waits to begin the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  1. A Chance at Life: The Value of Legislative Action and Institutional Leadership for DACA Students

    ERIC Educational Resources Information Center

    Patel, Pooja

    2017-01-01

    Signed under the Obama administration, Deferred Action for Childhood Arrivals (DACA) grants a working permit to those who entered the U.S. before age 16, allowing students to enroll at institutions of higher education and join the military. In June 2017, the head of the Department of Homeland Security, John Kelly said that the DACA program would…

  2. Should Community College Be Free? Forum. "Education Next" Talks with Sara Goldrick-Rab and Andrew P. Kelly

    ERIC Educational Resources Information Center

    Goldrick-Rab, Sara; Kelly, Andrew P.

    2016-01-01

    In this article, "Education Next" talks with Sara Goldrick-Rab and Andrew Kelly. President Obama's proposal for tuition-free community college, seems to have laid down a marker for the Democratic Party. Vermont senator Bernie Sanders is touting his plan for free four-year public college on the primary trail; Massachusetts senator…

  3. Robotic inferior vena cava surgery.

    PubMed

    Davila, Victor J; Velazco, Cristine S; Stone, William M; Fowl, Richard J; Abdul-Muhsin, Haidar M; Castle, Erik P; Money, Samuel R

    2017-03-01

    Inferior vena cava (IVC) surgery is uncommon and has traditionally been performed through open surgical approaches. Renal cell carcinoma with IVC extension generally requires vena cavotomy and reconstruction. Open removal of malpositioned IVC filters (IVCF) is occasionally required after endovascular retrieval attempts have failed. As our experience with robotic surgery has advanced, we have applied this technology to surgery of the IVC. We reviewed our institution's experience with robotic surgical procedures involving the IVC to determine its safety and efficacy. All patients undergoing robotic surgery that included cavotomy and repair from 2011 to 2014 were retrospectively reviewed. Data were obtained detailing preoperative demographics, operative details, and postoperative morbidity and mortality. Ten patients (6 men) underwent robotic vena caval procedures at our institution. Seven patients underwent robotic nephrectomy with removal of IVC tumor thrombus and retroperitoneal lymph node dissection. Three patients underwent robotic explantation of an IVCF after multiple endovascular attempts at removal had failed. The patients with renal cell carcinoma were a mean age of was 65.4 years (range, 55-74 years). Six patients had right-sided malignancy. All patients had T3b lesions at time of diagnosis. Mean tumor length extension into the IVC was 5 cm (range, 1-8 cm). All patients underwent robotic radical nephrectomy, with caval tumor thrombus removal and retroperitoneal lymph node dissection. The average operative time for patients undergoing surgery for renal cell carcinoma was 273 minutes (range, 137-382 minutes). Average intraoperative blood loss was 428 mL (range, 150-1200 mL). The patients with IVCF removal were a mean age of 33 years (range, 24-41 years). Average time from IVCF placement until robotic removal was 35.5 months (range, 4.3-57.3 months). Before robotic IVCF removal, a minimum of two endovascular retrievals were attempted. Average operative time

  4. TRC research products: Components for service robots

    NASA Technical Reports Server (NTRS)

    Lob, W. Stuart

    1994-01-01

    Transitions Research Corporation has developed a variety of technologies to accomplish its central mission: the creation of commercially viable robots for the service industry. Collectively, these technologies comprise the TRC 'robot tool kit.' The company started by developing a robot base that serves as a foundation for mobile robot research and development, both within TRC and at customer sites around the world. A diverse collection of sensing techniques evolved more recently, many of which have been made available to the international mobile robot research community as commercial products. These 'tool-kit' research products are described in this paper. The largest component of TRC's commercial operation is a product called HelpMate for material transport and delivery in health care institutions.

  5. A perspective on space robotics in Japan

    NASA Technical Reports Server (NTRS)

    Ohkami, Yoshiaki; Nakatani, Ichiro; Wakabayashi, Yasufumi; Iwata, Tsutomu

    1994-01-01

    This report summarizes the research and development status and perspective on space robotics in Japan. The R & D status emphasizes the current on-going projects at NASDA including the JEM Remote Manipulator System (JEMRMS) to be used on Space Station Freedom and the robotics experiments on Engineering Satellite 7 (ETS-7). As a future perspective, not only NASDA, but also ISAS and other government institutes have been promoting their own research in space robotics in order to support wide spread space activities in the future. Included in this future research is an autonomous satellite retrieval experiment, a dexterous robot experiment, an on-orbit servicing platform, an IVA robot, and several moon/planetary rovers proposed by NASDA or ISAS and other organizations.

  6. Adoption of robotics in a general surgery residency program: at what cost?

    PubMed

    Mehaffey, J Hunter; Michaels, Alex D; Mullen, Matthew G; Yount, Kenan W; Meneveau, Max O; Smith, Philip W; Friel, Charles M; Schirmer, Bruce D

    2017-06-01

    Robotic technology is increasingly being utilized by general surgeons. However, the impact of introducing robotics to surgical residency has not been examined. This study aims to assess the financial costs and training impact of introducing robotics at an academic general surgery residency program. All patients who underwent laparoscopic or robotic cholecystectomy, ventral hernia repair (VHR), and inguinal hernia repair (IHR) at our institution from 2011-2015 were identified. The effect of robotic surgery on laparoscopic case volume was assessed with linear regression analysis. Resident participation, operative time, hospital costs, and patient charges were also evaluated. We identified 2260 laparoscopic and 139 robotic operations. As the volume of robotic cases increased, the number of laparoscopic cases steadily decreased. Residents participated in all laparoscopic cases and 70% of robotic cases but operated from the robot console in only 21% of cases. Mean operative time was increased for robotic cholecystectomy (+22%), IHR (+55%), and VHR (+61%). Financial analysis revealed higher median hospital costs per case for robotic cholecystectomy (+$411), IHR (+$887), and VHR (+$1124) as well as substantial associated fixed costs. Introduction of robotic surgery had considerable negative impact on laparoscopic case volume and significantly decreased resident participation. Increased operative time and hospital costs are substantial. An institution must be cognizant of these effects when considering implementing robotics in departments with a general surgery residency program. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Phoenix Robotic Arm

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A vital instrument on NASA's Phoenix Mars Lander is the robotic arm, which will dig into the icy soil and bring samples back to the science deck of the spacecraft for analysis. In September 2006 at a Lockheed Martin Space Systems clean room facility near Denver, spacecraft technician Billy Jones inspects the arm during the assembly phase of the mission.

    Using the robotic arm -- built by the Jet Propulsion Laboratory, Pasadena -- the Phoenix mission will study the history of water and search for complex organic molecules in the ice-rich soil.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen, and the Max Planck Institute in Germany. JPL is a division of the California Institute of Technology in Pasadena.

  8. 77 FR 9969 - Johnson Controls D/B/A Hoover Universal, Inc. Including On-Site Leased Workers from Kelly...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... Johnson Controls, including on-site leased workers from Kelly Services, Sycamore, Illinois. The notice was... amended notice applicable to TA-W-73,074 is hereby issued as follows: ''All workers of Johnston Controls... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-73,074] Johnson Controls D/B/A...

  9. Aufbau des humanoiden Roboters BART III

    NASA Astrophysics Data System (ADS)

    Resetov, Dimitri; Pietsch, Björn; Gerth, Wilfried

    Der vorliegende Beitrag präsentiert den humanoiden Roboter BART III, der am Institut für Regelungstechnik als eine robuste und erweiterbare Plattform für weiterführende Grundlagenforschung zur zweibeinigen Fortbewegung entwickelt wurde. Im Gegensatz zu den bisher am IRT genutzten Robotern BARt-UH und LISA besitzt der neue Roboter einen beweglichen Oberkörper mit einem Bauchgelenk und Armen. BART III besitzt insgesamt 19 aktive Freiheitsgrade, 12 davon im Unterkörper. Ein weiteres Merkmal des Roboters ist die im gesamten Körper verteilte Ansteuerelektronik, die neben der lokalen Motorregelung diverse sicherheitsrelevante Funktionen übernimmt.

  10. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Sample Return Robot Challenge staff members confer before the team Survey robots makes it's attempt at the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  11. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    A robot from the University of Waterloo Robotics Team is seen during the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  12. Use of pharmacy delivery robots in intensive care units.

    PubMed

    Summerfield, Marc R; Seagull, F Jacob; Vaidya, Neelesh; Xiao, Yan

    2011-01-01

    The use of pharmacy delivery robots in an institution's intensive care units was evaluated. In 2003, the University of Maryland Medical Center (UMMC) began a pilot program to determine the logistic capability and functional utility of robotic technology in the delivery of medications from satellite pharmacies to patient care units. Three satellite pharmacies currently used the robotic system. Five data sources (electronic robot activation records, logs, interviews, surveys, and observations) were used to assess five key aspects of robotic delivery: robot use, reliability, timeliness, cost minimization, and acceptance. A 19-item survey using a 7-point Likert-type scale was developed to determine if pharmacy delivery robots changed nurses' perception of pharmacy service. The components measured included general satisfaction, reliability, timeliness, stat orders, services, interaction with pharmacy, and status tracking. A total of 23 pre-implementation, 96 post-implementation, and 30 two-year follow-up surveys were completed. After implementation of the robotic delivery system, time from fax to label, order preparation time, and idle time for medications to be delivered decreased, while nurses' general satisfaction with the pharmacy and opinion of the reliability of pharmacy delivery significantly increased. Robotic delivery did not influence the perceived quality of delivery service or the timeliness of orders or stat orders. Robot reliability was a major issue for the technician but not for pharmacists, who did not have as much interaction with the devices. By considering the needs of UMMC and its patients and matching them with available technology, the institution was able to improve the medication-use process and timeliness of medication departure from the pharmacy.

  13. Robotics in general thoracic surgery procedures.

    PubMed

    Latif, M Jawad; Park, Bernard J

    2017-01-01

    The use of robotic technology in general thoracic surgical practice continues to expand across various institutions and at this point many major common thoracic surgical procedures have been successfully performed by general thoracic surgeons using the robotic technology. These procedures include lung resections, excision of mediastinal masses, esophagectomy and reconstruction for malignant and benign esophageal pathologies. The success of robotic technology can be attributed to highly magnified 3-D visualization, dexterity afforded by 7 degrees of freedom that allow difficult dissections in narrow fields and the ease of reproducibility once the initial set up and instruments become familiar to the surgeon. As the application of robotic technology trickle downs from major academic centers to community hospitals, it becomes imperative that its role, limitations, learning curve and financial impact are understood by the novice robotic surgeon. In this article, we share our experience as it relates to the setup, common pitfalls and long term results for more commonly performed robotic assisted lung and thymic resections using the 4 arm da Vinci Xi robotic platform (Intuitive Surgical, Inc., Sunnyvale, CA, USA) to help guide those who are interested in adopting this technology.

  14. Contemporary referral pattern for robotic prostatectomy.

    PubMed

    Dangle, Pankaj P; Abaza, Ronney

    2010-01-01

    In spite of the current widespread application of robotic surgery in the treatment of prostate cancer, it remains unclear whether current patterns of use are based on patient benefit or driven by marketing. We sought to investigate this possibility by analyzing the source of our patient population for robot-assisted laparoscopic prostatectomy (RALP). We reviewed 200 consecutive patients who underwent robotic prostatectomy by a single surgeon (RA) at our institution. The source of referral for each patient was analyzed along with individual patient characteristics to identify whether only low-risk or unusually ideal candidates were referred. Of the 200 patients, 90.5% were referred by a urologist with only 5.5% being referred by another urologist at our institution. Only <10 patients cited media or marketing sources as the reason for self-referral, and 10 were referred by primary care physicians or other acquaintances. This referral pattern did not change between the first and second 100 patients. Referred patients included those up to 80 years of age, up to 51 kg/m(2) in body mass index, and up to Gleason 9 on biopsy, with 36% of those referred by urologists having some history of previous abdominal or prostate surgery. The referral pattern for RALP at our institution may reflect a growing acceptance of robotic surgery among urologists in our region and is unlikely driven by patient-directed marketing. Additionally, urologists may also be more confident in the role of RALP as evidenced by their referral of even complex and higher-risk patients.

  15. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Team KuuKulgur watches as their robots attempt the level one competition during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  16. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The Retrievers team robot is seen as it attempts the level one challenge the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  17. The debate over robotics in benign gynecology.

    PubMed

    Rardin, Charles R

    2014-05-01

    The debate over the role of the da Vinci surgical robotic platform in benign gynecology is raging with increasing fervor and, as product liability issues arise, greater financial stakes. Although the best currently available science suggests that, in the hands of experts, robotics offers little in surgical advantage over laparoscopy, at increased expense, the observed decrease in laparotomy for hysterectomy is almost certainly, at least in part, attributable to the availability of the robot. In this author's opinion, the issue is not whether the robot has any role but rather to define the role in an institutional environment that also supports the safe use of vaginal and laparoscopic approaches in an integrated minimally invasive surgery program. Programs engaging robotic surgery should have a clear and self-determined regulatory process and should resist pressures in place that may preferentially support robotics over other forms of minimally invasive surgery. Copyright © 2014 Mosby, Inc. All rights reserved.

  18. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The University of Waterloo Robotics Team, from Canada, prepares to place their robot on the start platform during the level one challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  19. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    The University of Waterloo Robotics Team, from Ontario, Canada, prepares their robot for the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. The team from the University of Waterloo is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  20. The Summer Robotic Autonomy Course

    NASA Technical Reports Server (NTRS)

    Nourbakhsh, Illah R.

    2002-01-01

    We offered a first Robotic Autonomy course this summer, located at NASA/Ames' new NASA Research Park, for approximately 30 high school students. In this 7-week course, students worked in ten teams to build then program advanced autonomous robots capable of visual processing and high-speed wireless communication. The course made use of challenge-based curricula, culminating each week with a Wednesday Challenge Day and a Friday Exhibition and Contest Day. Robotic Autonomy provided a comprehensive grounding in elementary robotics, including basic electronics, electronics evaluation, microprocessor programming, real-time control, and robot mechanics and kinematics. Our course then continued the educational process by introducing higher-level perception, action and autonomy topics, including teleoperation, visual servoing, intelligent scheduling and planning and cooperative problem-solving. We were able to deliver such a comprehensive, high-level education in robotic autonomy for two reasons. First, the content resulted from close collaboration between the CMU Robotics Institute and researchers in the Information Sciences and Technology Directorate and various education program/project managers at NASA/Ames. This collaboration produced not only educational content, but will also be focal to the conduct of formative and summative evaluations of the course for further refinement. Second, CMU rapid prototyping skills as well as the PI's low-overhead perception and locomotion research projects enabled design and delivery of affordable robot kits with unprecedented sensory- locomotory capability. Each Trikebot robot was capable of both indoor locomotion and high-speed outdoor motion and was equipped with a high-speed vision system coupled to a low-cost pan/tilt head. As planned, follow the completion of Robotic Autonomy, each student took home an autonomous, competent robot. This robot is the student's to keep, as she explores robotics with an extremely capable tool in the

  1. Integrating Mobile Robotics and Vision with Undergraduate Computer Science

    ERIC Educational Resources Information Center

    Cielniak, G.; Bellotto, N.; Duckett, T.

    2013-01-01

    This paper describes the integration of robotics education into an undergraduate Computer Science curriculum. The proposed approach delivers mobile robotics as well as covering the closely related field of Computer Vision and is directly linked to the research conducted at the authors' institution. The paper describes the most relevant details of…

  2. Tips on establishing a robotics program in an academic setting.

    PubMed

    Steers, William D

    2006-02-17

    Over the past 5 years, robotic-assisted laparoscopic surgery has gone from being a novelty to an accepted approach for intra-abdominal and pelvic surgery. Driving this trend has been the large number of robotic-assisted laparoscopic prostatectomies performed throughout the U.S. Nearly a quarter of the prostatectomies done for prostate cancer in the U.S. in 2006 will use robotic assistance, yet reports fail to confirm cost effectiveness. The most important predictor of a successful program is a champion at the institution. Studies have demonstrated safety and immediate benefits with regard to reduced surgical morbidity such as pain, loss of work, quality of life, and blood loss for a variety of surgeries patients. Specific to prostatectomy for cancer, long-term data on biochemical (PSA) failures and cancer cures, as well as validated secondary outcomes for continence and potency, are still unavailable. Benefits accrue for the surgeon as well with improved ergonomics and potential extension of a surgical career. Yet, enthusiasm for robotics must be tempered by this lack of data and economic limitations. However, if a thoughtful and thorough process in initiating a robotic program is undertaken, the risks to the institution can be minimized. With proper training, the risk to the patient is reduced and with due diligence with regard to market and operative resources, the risk to the surgeon can be eliminated. This report reviews the steps to assess, plan, initiate, and maintain a robotics program at an academic institution with the hope that other programs can benefit from lessons acquired by early adopters of this expensive technology.

  3. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Russel Howe of team Survey speaks with Sample Return Robot Challenge staff members after the team's robot failed to leave the starting platform during it's attempt at the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  4. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    A team KuuKulgur Robot from Estonia is seen on the practice field during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team KuuKulgur is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  5. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Sam Ortega, NASA program manager of Centennial Challenges, watches as robots attempt the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  6. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    The team Survey robot retrieves a sample during a demonstration of the level two challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  7. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The team AERO robot drives off the starting platform during the level one competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  8. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Team Cephal's robot is seen on the starting platform during a rerun of the level one challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  9. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The Oregon State University Mars Rover Team's robot is seen during level one competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  10. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    Jerry Waechter of team Middleman from Dunedin, Florida, works on their robot named Ro-Bear during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team Middleman is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  11. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    A robot from the Intrepid Systems team is seen during the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  12. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    A team KuuKulgur robot is seen as it begins the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  13. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The team Mountaineers robot is seen as it attempts the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  14. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Members of the Oregon State University Mars Rover Team prepare their robot to attempt the level one competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  15. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The Stellar Automation Systems team poses for a picture with their robot after attempting the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  16. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    The team Survey robot is seen as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  17. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    All four of team KuuKulgur's robots are seen as they attempt the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  18. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Spectators watch as the team Survey robot conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  19. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Team Middleman's robot, Ro-Bear, is seen as it starts the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  20. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    The team Mountaineers robot is seen after picking up the sample during a rerun of the level one challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  1. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Two of team KuuKulgur's robots are seen as they attempt a rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  2. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Members of team Survey follow their robot as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  3. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    A team KuuKulgur robot approaches the sample as it attempts the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  4. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    The team survey robot is seen on the starting platform before begging it's attempt at the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  5. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The Mountaineers team from West Virginia University, watches as their robot attempts the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  6. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    The team Survey robot is seen as it conducts a demonstration of the level two challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  7. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Team Survey's robot is seen as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  8. Retroperitoneal access for robotic renal surgery.

    PubMed

    Anderson, Barrett G; Wright, Alec J; Potretzke, Aaron M; Figenshau, R Sherburne

    2018-01-01

    Retroperitoneal access for robotic renal surgery is an effective alternative to the commonly used transperitoneal approach. We describe our contemporary experience and technique for attaining retroperitoneal access. We outline our institutional approach to retroperitoneal access for the instruction of urologists at the beginning of the learning curve. The patient is placed in the lateral decubitus position. The first incision is made just inferior to the tip of the twelfth rib as described by Hsu, et al. After the lumbodorsal fascia is traversed, the retroperitoneal space is dilated with a round 10 millimeter AutoSutureTM (Covidien, Mansfield, MA) balloon access device. The following trocars are used: A 130 millimeter KiiR balloon trocar (Applied Medical, Rancho Santa Margarita, CA), three robotic, and one assistant. Key landmarks for the access and dissection are detailed. 177 patients underwent a retroperitoneal robotic procedure from 2007 to 2015. Procedures performed include 158 partial nephrectomies, 16 pyeloplasties, and three radical nephrectomies. The robotic fourth arm was utilized in all cases. When compared with the transperitoneal approach, the retroperitoneal approach was associated with shorter operative times and decreased length of stay (1). Selection bias and surgeon preference accounted for the higher proportion of patients who underwent partial nephrectomy off-camp via the retroperitoneal approach. Retroperitoneal robotic surgery may confer several advantages. In patients with previous abdominal surgery or intra-abdominal conditions, the retroperitoneum can be safely accessed while avoiding intraperitoneal injuries. The retroperitoneum also provides a confined space that may minimize the sequelae of potential complications including urine leak. Moreover, at our institution, retroperitoneal robotic surgery is associated with shorter operative times and a decreased length of stay when compared with the transperitoneal approach (2). In selected

  9. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  10. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  11. Robotics/Automated Systems Technicians.

    ERIC Educational Resources Information Center

    Doty, Charles R.

    Major resources exist that can be used to develop or upgrade programs in community colleges and technical institutes that educate robotics/automated systems technicians. The first category of resources is Economic, Social, and Education Issues. The Office of Technology Assessment (OTA) report, "Automation and the Workplace," presents analyses of…

  12. Robot-Aided Neurorehabilitation: A Pediatric Robot for Ankle Rehabilitation

    PubMed Central

    Michmizos, Konstantinos P.; Rossi, Stefano; Castelli, Enrico; Cappa, Paolo; Krebs, Hermano Igo

    2015-01-01

    This paper presents the pediAnklebot, an impedance-controlled low-friction, backdriveable robotic device developed at the Massachusetts Institute of Technology that trains the ankle of neurologically impaired children of ages 6-10 years old. The design attempts to overcome the known limitations of the lower extremity robotics and the unknown difficulties of what constitutes an appropriate therapeutic interaction with children. The robot's pilot clinical evaluation is on-going and it incorporates our recent findings on the ankle sensorimotor control in neurologically intact subjects, namely the speed-accuracy tradeoff, the deviation from an ideally smooth ankle trajectory, and the reaction time. We used these concepts to develop the kinematic and kinetic performance metrics that guided the ankle therapy in a similar fashion that we have done for our upper extremity devices. Here we report on the use of the device in at least 9 training sessions for 3 neurologically impaired children. Results demonstrated a statistically significant improvement in the performance metrics assessing explicit and implicit motor learning. Based on these initial results, we are confident that the device will become an effective tool that harnesses plasticity to guide habilitation during childhood. PMID:25769168

  13. Strategy in the Robotic Age: A Case for Autonomous Warfare

    DTIC Science & Technology

    2014-09-01

    6. Robots and Robotics The term robot is a loaded word. For many people it conjures a vision of fictional characters from movies like The...released in the early 1930s to review the experiences of WWI, it was censored , and a version modified to maintain the institutional legacies was...apprehensive, and doctrine was non-existent. Today, America is emerging from two wars and subsequently a war-weary public. The United States is a

  14. Space Station Crew Member Discusses Robotics with Puerto Rican Students

    NASA Image and Video Library

    2018-01-12

    Aboard the International Space Station, Expedition 54 Flight Engineer Joe Acaba of NASA discussed various elements of robotic hardware and robotic work on the orbital laboratory during an in-flight educational event Jan. 12 with students gathered at the Puerto Rico Institute of Robotics in San Juan, Puerto Rico. Acaba, who has roots in Puerto Rico, is scheduled to return to Earth in late February to complete a five-and-a-half month mission.

  15. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Russel Howe of team Survey, center, works on a laptop to prepare the team's robot for a demonstration run after the team's robot failed to leave the starting platform during it's attempt at the level two challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  16. 78 FR 48468 - M/A-Com Technology Solutions, Including On-Site Leased Workers of Kelly Temps and Aerotek CE...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ...-W-82,242 is hereby issued as follows: All workers of M/A-Com Technology Solutions, including on-site... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-80,242; TA-W-80,242A] M/A-Com.../A-Com Technology Solutions, Including On-Site Leased Workers of Kelly Temps and Aerotek CE, Long...

  17. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Robots that will be competing in the Level one competition are seen as they sit in impound prior to the start of competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  18. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Ahti Heinla, left, and Sulo Kallas, right, from Estonia, prepare team KuuKulgur's robot for the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  19. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    A sample can be seen on the competition field as the team Survey robot conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  20. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Jascha Little of team Survey is seen as he follows the teams robot as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  1. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The University of California Santa Cruz Rover Team poses for a picture with their robot after attempting the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  2. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    The University of California Santa Cruz Rover Team's robot is seen prior to starting it's second attempt at the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  3. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The Oregon State University Mars Rover Team poses for a picture with their robot following their attempt at the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  4. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Jim Rothrock, left, and Carrie Johnson, right, of the Wunderkammer Laboratory team pose for a picture with their robot after attempting the level one competition during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  5. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    The Oregon State University Mars Rover Team follows their robot on the practice field during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. The Oregon State University Mars Rover Team is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  6. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Jerry Waechter of team Middleman from Dunedin, Florida, speaks about his team's robot, Ro-Bear, as it makes it attempt at the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  7. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    The Oregon State University Mars Rover Team, from Corvallis, Oregon, follows their robot on the practice field during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. The Oregon State University Mars Rover Team is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  8. Tips on Establishing a Robotics Program in an Academic Setting

    PubMed Central

    Steers, William D.

    2006-01-01

    Over the past 5 years, robotic-assisted laparoscopic surgery has gone from being a novelty to an accepted approach for intra-abdominal and pelvic surgery. Driving this trend has been the large number of robotic-assisted laparoscopic prostatectomies performed throughout the U.S. Nearly a quarter of the prostatectomies done for prostate cancer in the U.S. in 2006 will use robotic assistance, yet reports fail to confirm cost effectiveness. The most important predictor of a successful program is a champion at the institution. Studies have demonstrated safety and immediate benefits with regard to reduced surgical morbidity such as pain, loss of work, quality of life, and blood loss for a variety of surgeries patients. Specific to prostatectomy for cancer, long-term data on biochemical (PSA) failures and cancer cures, as well as validated secondary outcomes for continence and potency, are still unavailable. Benefits accrue for the surgeon as well with improved ergonomics and potential extension of a surgical career. Yet, enthusiasm for robotics must be tempered by this lack of data and economic limitations. However, if a thoughtful and thorough process in initiating a robotic program is undertaken, the risks to the institution can be minimized. With proper training, the risk to the patient is reduced and with due diligence with regard to market and operative resources, the risk to the surgeon can be eliminated. This report reviews the steps to assess, plan, initiate, and maintain a robotics program at an academic institution with the hope that other programs can benefit from lessons acquired by early adopters of this expensive technology. PMID:17619728

  9. Former President George H.W. Bush paid a visit to NASA's Johnson Space Center to speak with Expedition 46 Commander Scott Kelly and Flight Engineer Tim Kopra and take a tour of the Space Vehicle Mockup Facility. Kelly���s twin brother, Mark Kelly and his wife, former Congresswoman Gabrielle Giffords were also present. Photo Date: February 5, 2016. Location: Building 30 - ISS Flight Control Room. Photographer: Robert Markowitz

    NASA Image and Video Library

    2016-02-05

    Former President George H.W. Bush paid a visit to NASA's Johnson Space Center to speak with Expedition 46 Commander Scott Kelly and Flight Engineer Tim Kopra and take a tour of the Space Vehicle Mockup Facility. Kelly’s twin brother, Mark Kelly and his wife, former Congresswoman Gabrielle Giffords were also present. Photo Date: February 5, 2016. Location: Building 30 - ISS Flight Control Room. Photographer: Robert Markowitz

  10. On the Shock-Response-Spectrum Recursive Algorithm of Kelly and Richman

    NASA Technical Reports Server (NTRS)

    Martin, Justin N.; Sinclair, Andrew J.; Foster, Winfred A.

    2010-01-01

    The monograph Principles and Techniques of Shock Data Analysis written by Kelly and Richman in 1969 has become a seminal reference on the shock response spectrum (SRS) [1]. Because of its clear physical descriptions and mathematical presentation of the SRS, it has been cited in multiple handbooks on the subject [2, 3] and research articles [4 10]. Because of continued interest, two additional versions of the monograph have been published: a second edition by Scavuzzo and Pusey in 1996 [11] and a reprint of the original edition in 2008 [12]. The main purpose of this note is to correct several typographical errors in the manuscript's presentation of a recursive algorithm for SRS calculations. These errors are consistent across all three editions of the monograph. The secondary purpose of this note is to present a Matlab implementation of the corrected algorithm.

  11. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Sam Ortega, NASA program manager for Centennial Challenges, is seen during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  12. Multi-institutional analysis of robotic partial nephrectomy for hilar versus nonhilar lesions in 446 consecutive cases.

    PubMed

    Dulabon, Lori M; Kaouk, Jihad H; Haber, Georges-Pascal; Berkman, Douglas S; Rogers, Craig G; Petros, Firas; Bhayani, Sam B; Stifelman, Michael D

    2011-03-01

    Minimally invasive approaches to partial nephrectomy have been rapidly gaining popularity but require advanced laparoscopic surgical skills. Renal hilar tumors, due to their anatomic location, pose additional technical challenges to the operating surgeon. We compared the outcomes of robot-assisted partial nephrectomy (RPN) for hilar and nonhilar tumors in our large multicenter contemporary series of patients. We retrospectively reviewed prospectively collected data on 446 consecutive patients who underwent RPN by renal surgeons experienced in minimally invasive techniques at four academic institutions from June 2006 to March 2010. Patients were stratified into two groups: those with hilar lesions and those with nonhilar lesions. Patient demographics, operative outcomes, and postoperative outcomes, including oncologic outcomes, were recorded. Forty-one patients (9%) had hilar renal masses; 405 patients (91%) had nonhilar masses. There was no statistical differences in patient demographics except for larger median tumor size in the hilar cohort (3.2 cm vs 2.6 cm; p=0.001). The only significant difference in operative outcomes was an increase in warm ischemia times for the hilar group versus the nonhilar group (26.3±7.4 min vs 19.6±10.0 min; p=<0.0001). There were no differences in postoperative outcomes; however, there was a trend for increased risk of malignancy and higher stage tumors in the hilar lesion group. Final pathologic margin status was similar in both groups. Only one patient in the nonhilar group had evidence of recurrence at 21 mo. The study was limited by the lack of standard anatomic classification of renal tumors and the potential influence of the surgeons' prior robotic experience. The data represent the largest series of its kind and strongly suggest that RPN is a safe, effective, and feasible option for the minimally invasive approach to renal hilar tumors with no increased risk of adverse outcomes compared with nonhilar tumors in the hands of

  13. Robot-assisted simple prostatectomy: multi-institutional outcomes for glands larger than 100 grams.

    PubMed

    Vora, Anup; Mittal, Sameer; Hwang, Jonathan; Bandi, Gaurav

    2012-05-01

    To present our experience with robot-assisted simple prostatectomy in patients with large gland adenoma (>100 g) that would not be amenable to transurethral treatments. From August 2009 to May 2011, 13 robot-assisted simple suprapubic prostatectomies were performed in patients with symptomatic large gland (>100 g) prostatomegaly on transrectal ultrasonography (mean 163 cc). Essential aspects of our technique include a transverse cystotomy just proximal to the prostatovesical junction and use of a robotic tenotomy grasper to aid in adenoma dissection. Mean operative time was 179 minutes (range 90-270 min), and mean estimated blood loss was 219 mL (range 50-500 mL). Mean hospital stay was 2.7 days (range 1-8 d), and the mean urethral catheterization time was 8.8 days (range 5-14 d). None of the patients needed blood transfusion. One patient had an intraoperative urinary leak after bladder closure that was managed with prolonged urethral catheterization (14 d). Histopathologic analysis confirmed benign prostatic hyperplasia (BPH) in all patients, and mean specimen weight on pathologic examination was 127 g (range 100-165 g). Mean follow-up duration was 7.2 months with all patients having a minimum of a 4-month follow-up. Significant improvements were noted in the International Prostate Symptom Score (preoperative vs postoperative 18.1 vs 5.3, p<0.001) and the maximum urine flow rate (preoperative vs postoperative 4.3 vs 19.1 mL/min, P<0.001). Minimally invasive robot-assisted simple prostatectomy is technically feasible in patients with large volume (>100 g) BPH and is associated with significant improvements in obstructive urinary symptoms. Surgeons with robotic expertise may consider using this approach for treatment of their patients with large volume BPH.

  14. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Members of the Mountaineers team from West Virginia University celebrate after their robot returned to the starting platform after picking up the sample during a rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  15. General surgery residents' perception of robot-assisted procedures during surgical training.

    PubMed

    Farivar, Behzad S; Flannagan, Molly; Leitman, I Michael

    2015-01-01

    With the continued expansion of robotically assisted procedures, general surgery residents continue to receive more exposure to this new technology as part of their training. There are currently no guidelines or standardized training requirements for robot-assisted procedures during general surgical residency. The aim of this study was to assess the effect of this new technology on general surgery training from the residents' perspective. An anonymous, national, web-based survey was conducted on residents enrolled in general surgery training in 2013. The survey was sent to 240 Accreditation Council for Graduate Medical Education-approved general surgery training programs. Overall, 64% of the responding residents were men and had an average age of 29 years. Half of the responses were from postgraduate year 1 (PGY1) and PGY2 residents, and the remainder was from the PGY3 level and above. Overall, 50% of the responses were from university training programs, 32% from university-affiliated programs, and 18% from community-based programs. More than 96% of residents noted the availability of the surgical robot system at their training institution. Overall, 63% of residents indicated that they had participated in robotic surgical cases. Most responded that they had assisted in 10 or fewer robotic cases with the most frequent activities being assisting with robotic trocar placement and docking and undocking the robot. Only 18% reported experience with operating the robotic console. More senior residents (PGY3 and above) were involved in robotic cases compared with junior residents (78% vs 48%, p < 0.001). Overall, 60% of residents indicated that they received no prior education or training before their first robotic case. Approximately 64% of residents reported that formal training in robotic surgery was important in residency training and 46% of residents indicated that robotic-assisted cases interfered with resident learning. Only 11% felt that robotic-assisted cases

  16. Total robotic pancreaticoduodenectomy: a systematic review of the literature.

    PubMed

    Kornaropoulos, Michail; Moris, Demetrios; Beal, Eliza W; Makris, Marinos C; Mitrousias, Apostolos; Petrou, Athanasios; Felekouras, Evangelos; Michalinos, Adamantios; Vailas, Michail; Schizas, Dimitrios; Papalampros, Alexandros

    2017-11-01

    Pancreaticoduodenectomy (PD) is a complex operation with high perioperative morbidity and mortality, even in the highest volume centers. Since the development of the robotic platform, the number of reports on robotic-assisted pancreatic surgery has been on the rise. This article reviews the current state of completely robotic PD. A systematic literature search was performed including studies published between January 2000 and July 2016 reporting PDs in which all procedural steps (dissection, resection and reconstruction) were performed robotically. Thirteen studies met the inclusion criteria, including a total of 738 patients. Data regarding perioperative outcomes such as operative time, blood loss, mortality, morbidity, conversion and oncologic outcomes were analyzed. No major differences were observed in mortality, morbidity and oncologic parameters, between robotic and non-robotic approaches. However, operative time was longer in robotic PD, whereas the estimated blood loss was lower. The conversion rate to laparotomy was 6.5-7.8%. Robotic PD is feasible and safe in high-volume institutions, where surgeons are experienced and medical staff are appropriately trained. Randomized controlled trials are required to further investigate outcomes of robotic PD. Additionally, cost analysis and data on long-term oncologic outcomes are needed to evaluate cost-effectiveness of the robotic approach in comparison with the open technique.

  17. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    The NASA Centennial Challenges prize, level one, is presented to team Mountaineers for successfully completing level one of the NASA 2014 Sample Return Robot Challenge, from left, Ryan Watson, Team Mountaineers; Lucas Behrens, Team Mountaineers; Jarred Strader, Team Mountaineers; Yu Gu, Team Mountaineers; Scott Harper, Team Mountaineers; Dorothy Rasco, NASA Deputy Associate Administrator for the Space Technology Mission Directorate; Laurie Leshin, Worcester Polytechnic Institute (WPI) President; David Miller, NASA Chief Technologist; Alexander Hypes, Team Mountaineers; Nick Ohi,Team Mountaineers; Marvin Cheng, Team Mountaineers; Sam Ortega, NASA Program Manager for Centennial Challenges; and Tanmay Mandal, Team Mountaineers;, Saturday, June 14, 2014, at Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team Mountaineers was the only team to complete the level one challenge. During the competition, teams were required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge was to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  18. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    The University of California Santa Cruz Rover Team prepares their rover for the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  19. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    David Miller, NASA Chief Technologist, speaks at a breakfast opening the TouchTomorrow Festival, held in conjunction with the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  20. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Sam Ortega, NASA Centennial Challenges Program Manager, speaks at a breakfast opening the TouchTomorrow Festival, held in conjunction with the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  1. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    James Leopore, of team Fetch, from Alexandria, Virginia, speaks with judges as he prepares for the NASA 2014 Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team Fetch is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  2. STS-102 Pilot Kelly talks to media at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-102 Pilot James Kelly answers a question from the media during an interview session at the slidewire basket landing near Launch Pad 39B. He and other crew members are at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Discovery will also be transporting the Expedition Two crew to the Space Station, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  3. Software for project-based learning of robot motion planning

    NASA Astrophysics Data System (ADS)

    Moll, Mark; Bordeaux, Janice; Kavraki, Lydia E.

    2013-12-01

    Motion planning is a core problem in robotics concerned with finding feasible paths for a given robot. Motion planning algorithms perform a search in the high-dimensional continuous space of robot configurations and exemplify many of the core algorithmic concepts of search algorithms and associated data structures. Motion planning algorithms can be explained in a simplified two-dimensional setting, but this masks many of the subtleties and complexities of the underlying problem. We have developed software for project-based learning of motion planning that enables deep learning. The projects that we have developed allow advanced undergraduate students and graduate students to reflect on the performance of existing textbook algorithms and their own variations on such algorithms. Formative assessment has been conducted at three institutions. The core of the software used for this teaching module is also used within the Robot Operating System, a widely adopted platform by the robotics research community. This allows for transfer of knowledge and skills to robotics research projects involving a large variety robot hardware platforms.

  4. 78 FR 13896 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Robotics...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-01

    ... Production Act of 1993--Robotics Technology Consortium, Inc. Notice is hereby given that, on February 5, 2013... seq. (``the Act''), Robotics Technology Consortium, Inc. (``RTC'') has filed written notifications... Institute LLC, Monticello, FL; Humanistic Robotics, Inc., Philadelphia, PA; Polaris Sales, Inc., Medina, MN...

  5. Da Vinci robot error and failure rates: single institution experience on a single three-arm robot unit of more than 700 consecutive robot-assisted laparoscopic radical prostatectomies.

    PubMed

    Zorn, Kevin C; Gofrit, Ofer N; Orvieto, Marcelo A; Mikhail, Albert A; Galocy, R Matthew; Shalhav, Arieh L; Zagaja, Gregory P

    2007-11-01

    Previous reports have suggested that a 2% to 5% device failure rate (FR) be quoted when counseling patients about robot-assisted laparoscopic radical prostatectomy (RLRP). We sought to evaluate our FR on the da Vinci system. Since February 2003, more than 800 RLRPs have been performed at our institution using a single three-armed robotic unit. A prospective database was analyzed to determine the device FR and whether it resulted in case abortion or open conversion. Intuitive Surgical Systems provided data concerning the system's performance, including its fault rate. Error messages were classified as recoverable and non-recoverable faults. Between February 2003 and November 2006, 725 RLRP cases were available for evaluation. There were no intraoperative device failures that resulted in a case conversion. Technical errors resulting in surgeon handicap occurred in 3 cases (0.4%). Four patients (0.5%) had their procedures aborted secondary to system failure at initial set-up prior to patient entrance to the operating room. Data analysis retrieved from the da Vinci console reported on a total of 807 procedures since 2003. Only 4 cases (0.4%) were reported from the Intuitive Surgical database to result in either an aborted or a converted case, which compares favorably with our results. Since the last computer system upgrade (September 2005), the mean recoverable and non-recoverable fault rates per procedure were 0.21 and 0.05, respectively. For all the advanced features the da Vinci system offers, it is surprisingly reliable. Throughout our RLRP experience, device failure resulted in case conversion, procedure abortion, and surgeon handicap in 0, 0.5%, and 0.4% of procedures, respectively. As such, a lowered device FR of 0.5% should be used when counseling patients undergoing RLRP. To avoid futile general anesthesia, a policy should be enforced to ensure that the da Vinci system is completely set up before the patient enters the operating room.

  6. Automation and Robotics in the Laboratory.

    ERIC Educational Resources Information Center

    DiCesare, Frank; And Others

    1985-01-01

    A general laboratory course featuring microcomputer interfacing for data acquisition, process control and automation, and robotics was developed at Rensselaer Polytechnic Institute and is now available to all junior engineering students. The development and features of the course are described. (JN)

  7. Robotics

    NASA Astrophysics Data System (ADS)

    Popov, E. P.; Iurevich, E. I.

    The history and the current status of robotics are reviewed, as are the design, operation, and principal applications of industrial robots. Attention is given to programmable robots, robots with adaptive control and elements of artificial intelligence, and remotely controlled robots. The applications of robots discussed include mechanical engineering, cargo handling during transportation and storage, mining, and metallurgy. The future prospects of robotics are briefly outlined.

  8. Impact of robotic technology on hysterectomy route and associated implications for resident education.

    PubMed

    Jeppson, Peter C; Rahimi, Salma; Gattoc, Leda; Westermann, Lauren B; Cichowski, Sara; Raker, Christina; LeBrun, Emily Elise Weber; Sung, Vivian W

    2015-02-01

    We sought to compare the proportion of benign hysterectomies performed vaginally and the mean number of hysterectomies with resident involvement by route before and after robot implementation. This multicenter, retrospective cohort study using nonsynchronous controls was conducted through the Society of Gynecologic Surgeons Fellows' Pelvic Research Network. The route of hysterectomy for benign disease was compared for 1-year periods before (prerobot) and after (postrobot) robotic introduction at 4 academic institutions. We reviewed medical records and recorded patient demographics, hysterectomy approach, preoperative and postoperative diagnosis, and resident involvement. In all, 1440 hysterectomies were included: 732 in the prerobot group and 708 in the postrobot group. Median age was 46 years and mean body mass index was 29.5 (standard deviation, 6.9). The proportion of hysterectomies performed via the vaginal route decreased from 42.5% prerobot to 30.5% postrobot (P < .0001) and via the abdominal route from 22.1% prerobot to 16.5% postrobot (P = .001). The proportion of hysterectomies performed laparoscopically increased from 1.6% prerobot to 11.9% postrobot (P < .0001). At a mean of 2.3 years after introduction of the robot into an institution, hysterectomies performed using robotic assistance accounted for 23.3% of hysterectomies for benign disease. Mean uterine weight was similar in the prerobot and postrobot groups. Resident involvement in all hysterectomies done via all routes other than robotic increased from 81.0% prerobot to 88.6% postrobot; however, residents were involved in only 58.9% of robotic hysterectomies. The proportion of hysterectomies performed vaginally has significantly decreased since the adoption of robotic technology at institutions included in this study. The proportion of hysterectomies with resident involvement is lower with a robotic approach than any other route. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Statement before the Committee on Health, Education, Labor and Pensions (HELP) on Reauthorization of the Higher Education Act: Exploring Institutional Risk-Sharing

    ERIC Educational Resources Information Center

    Kelly, Andrew P.

    2015-01-01

    Andrew Kelly, the director of the Center on Higher Education Reform at the American Enterprise Institute, shares his views on the concept of risk-sharing in higher education. The author presents the question: How would a risk-sharing policy--where colleges bear some financial responsibility for a portion of the federal loans that their students do…

  10. Control Algorithms for a Shape-shifting Tracked Robotic Vehicle Climbing Obstacles

    DTIC Science & Technology

    2008-12-01

    robot be- havioural skills. The Swiss Federal Institute of Technology is developing the shape-shifting robotic platform Octopus [6] (Figure l(b...and traverse steep (a) Lurker (b) Octopus (c) NUGV (d) Chaos (e) STRV Figure 1: Shape-shifting robotic vehicles in different research labs. DRDC...situations. The system is assumed stuck when vv?; + v~ + v’i) < 0.01 mls or Vx < O. Only forward movements are considered in this work, for this reason

  11. Space station automation and robotics study. Operator-systems interface

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This is the final report of a Space Station Automation and Robotics Planning Study, which was a joint project of the Boeing Aerospace Company, Boeing Commercial Airplane Company, and Boeing Computer Services Company. The study is in support of the Advanced Technology Advisory Committee established by NASA in accordance with a mandate by the U.S. Congress. Boeing support complements that provided to the NASA Contractor study team by four aerospace contractors, the Stanford Research Institute (SRI), and the California Space Institute. This study identifies automation and robotics (A&R) technologies that can be advanced by requirements levied by the Space Station Program. The methodology used in the study is to establish functional requirements for the operator system interface (OSI), establish the technologies needed to meet these requirements, and to forecast the availability of these technologies. The OSI would perform path planning, tracking and control, object recognition, fault detection and correction, and plan modifications in connection with extravehicular (EV) robot operations.

  12. Robotic pancreaticoduodenectomy.

    PubMed

    Sola, Richard; Kirks, Russell C; Iannitti, David A; Vrochides, Dionisios; Martinie, John B

    2016-01-01

    Pancreaticoduodenectomy (PD) is considered one of the most complex and technically challenging abdominal surgeries performed by general surgeons. With increasing use of minimally invasive surgery, this operation continues to be performed most commonly in an open fashion. Open PD (OPD) is characterized by high morbidity and mortality rates in published series. Since the early 2000s, use of robotics for PD has slowly evolved. For appropriately selected patients, robotic PD (RPD) has been shown to have less intraoperative blood loss, decreased morbidity and mortality, shorter hospital length of stay, and similar oncological outcomes compared with OPD. At our high-volume center, we have found lower complication rates for RPD along with no difference in total cost when compared with OPD. With demonstrated non-inferior oncologic outcomes for RPD, the potential exists that RPD may be the future standard in surgical management for pancreatic disease. We present a case of a patient with a pancreatic head mass and describe our institution's surgical technique for RPD.

  13. Survey of robotic surgery training in obstetrics and gynecology residency.

    PubMed

    Gobern, Joseph M; Novak, Christopher M; Lockrow, Ernest G

    2011-01-01

    To examine the status of resident training in robotic surgery in obstetrics and gynecology programs in the United States, an online survey was emailed to residency program directors of 247 accredited programs identified through the Accreditation Council for Graduate Medical Education website. Eighty-three of 247 program directors responded, representing a 34% response rate. Robotic surgical systems for gynecologic procedures were used at 65 (78%) institutions. Robotic surgery training was part of residency curriculum at 48 (58%) residency programs. Half of respondents were undecided on training effectiveness. Most program directors believed the role of robotic surgery would increase and play a more integral role in gynecologic surgery. Robotic surgery was widely reported in residency training hospitals with limited availability of effective resident training. Robotic surgery training in obstetrics and gynecology residency needs further assessment and may benefit from a structured curriculum. Published by Elsevier Inc.

  14. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Dorothy Rasco, NASA Deputy Associate Administrator for the Space Technology Mission Directorate, speaks at the TouchTomorrow Festival, held in conjunction with the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  15. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Sam Ortega, NASA program manager for Centennial Challenges, is interviewed by a member of the media before the start of level two competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  16. Robot and robot system

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E. (Inventor); Marzwell, Neville I. (Inventor); Wall, Jonathan N. (Inventor); Poole, Michael D. (Inventor)

    2011-01-01

    A robot and robot system that are capable of functioning in a zero-gravity environment are provided. The robot can include a body having a longitudinal axis and having a control unit and a power source. The robot can include a first leg pair including a first leg and a second leg. Each leg of the first leg pair can be pivotally attached to the body and constrained to pivot in a first leg pair plane that is substantially perpendicular to the longitudinal axis of the body.

  17. Application of dexterous space robotics technology to myoelectric prostheses

    NASA Astrophysics Data System (ADS)

    Hess, Clifford; Li, Larry C. H.; Farry, Kristin A.; Walker, Ian D.

    1994-02-01

    Future space missions will require robots equipped with highly dexterous robotic hands to perform a variety of tasks. A major technical challenge in making this possible is an improvement in the way these dexterous robotic hands are remotely controlled or teleoperated. NASA is currently investigating the feasibility of using myoelectric signals to teleoperate a dexterous robotic hand. In theory, myoelectric control of robotic hands will require little or no mechanical parts and will greatly reduce the bulk and weight usually found in dexterous robotic hand control devices. An improvement in myoelectric control of multifinger hands will also benefit prosthetics users. Therefore, as an effort to transfer dexterous space robotics technology to prosthetics applications and to benefit from existing myoelectric technology, NASA is collaborating with the Limbs of Love Foundation, the Institute for Rehabilitation and Research, and Rice University in developing improved myoelectric control multifinger hands and prostheses. In this paper, we will address the objectives and approaches of this collaborative effort and discuss the technical issues associated with myoelectric control of multifinger hands. We will also report our current progress and discuss plans for future work.

  18. Application of dexterous space robotics technology to myoelectric prostheses

    NASA Technical Reports Server (NTRS)

    Hess, Clifford; Li, Larry C. H.; Farry, Kristin A.; Walker, Ian D.

    1994-01-01

    Future space missions will require robots equipped with highly dexterous robotic hands to perform a variety of tasks. A major technical challenge in making this possible is an improvement in the way these dexterous robotic hands are remotely controlled or teleoperated. NASA is currently investigating the feasibility of using myoelectric signals to teleoperate a dexterous robotic hand. In theory, myoelectric control of robotic hands will require little or no mechanical parts and will greatly reduce the bulk and weight usually found in dexterous robotic hand control devices. An improvement in myoelectric control of multifinger hands will also benefit prosthetics users. Therefore, as an effort to transfer dexterous space robotics technology to prosthetics applications and to benefit from existing myoelectric technology, NASA is collaborating with the Limbs of Love Foundation, the Institute for Rehabilitation and Research, and Rice University in developing improved myoelectric control multifinger hands and prostheses. In this paper, we will address the objectives and approaches of this collaborative effort and discuss the technical issues associated with myoelectric control of multifinger hands. We will also report our current progress and discuss plans for future work.

  19. Robotic Rock Classification

    NASA Technical Reports Server (NTRS)

    Hebert, Martial

    1999-01-01

    This report describes a three-month research program undertook jointly by the Robotics Institute at Carnegie Mellon University and Ames Research Center as part of the Ames' Joint Research Initiative (JRI.) The work was conducted at the Ames Research Center by Mr. Liam Pedersen, a graduate student in the CMU Ph.D. program in Robotics under the supervision Dr. Ted Roush at the Space Science Division of the Ames Research Center from May 15 1999 to August 15, 1999. Dr. Martial Hebert is Mr. Pedersen's research adviser at CMU and is Principal Investigator of this Grant. The goal of this project is to investigate and implement methods suitable for a robotic rover to autonomously identify rocks and minerals in its vicinity, and to statistically characterize the local geological environment. Although primary sensors for these tasks are a reflection spectrometer and color camera, the goal is to create a framework under which data from multiple sensors, and multiple readings on the same object, can be combined in a principled manner. Furthermore, it is envisioned that knowledge of the local area, either a priori or gathered by the robot, will be used to improve classification accuracy. The key results obtained during this project are: The continuation of the development of a rock classifier; development of theoretical statistical methods; development of methods for evaluating and selecting sensors; and experimentation with data mining techniques on the Ames spectral library. The results of this work are being applied at CMU, in particular in the context of the Winter 99 Antarctica expedition in which the classification techniques will be used on the Nomad robot. Conversely, the software developed based on those techniques will continue to be made available to NASA Ames and the data collected from the Nomad experiments will also be made available.

  20. Exploratorium: Robots.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic robotics. It explains how to make a vibrating robotic bug and features articles on robots. Contents include: (1) "Where Robot Mice and Robot Men Run Round in Robot Towns" (Ray Bradbury); (2) "Robots at Work" (Jake Widman); (3) "Make a Vibrating Robotic Bug" (Modesto Tamez); (4) "The Robot…

  1. Unusual presentation of bilateral ureteroceles with ureterolithiasis in a patient after robotic prostatectomy.

    PubMed

    Lees, Toby; Kella, Naveen

    2012-05-01

    We present a unique case of incidentally discovered symptomatic, stone-laden ureteroceles after robotic prostatectomy at a high-volume institution. The 2-month postoperative timeline to presentation and laser unroofing management strategy for bilateral ureteroceles after robotic prostatectomy are described. Copyright © 2012. Published by Elsevier Inc.

  2. Fuzzy Integral-Based Gaze Control of a Robotic Head for Human Robot Interaction.

    PubMed

    Yoo, Bum-Soo; Kim, Jong-Hwan

    2015-09-01

    During the last few decades, as a part of effort to enhance natural human robot interaction (HRI), considerable research has been carried out to develop human-like gaze control. However, most studies did not consider hardware implementation, real-time processing, and the real environment, factors that should be taken into account to achieve natural HRI. This paper proposes a fuzzy integral-based gaze control algorithm, operating in real-time and the real environment, for a robotic head. We formulate the gaze control as a multicriteria decision making problem and devise seven human gaze-inspired criteria. Partial evaluations of all candidate gaze directions are carried out with respect to the seven criteria defined from perceived visual, auditory, and internal inputs, and fuzzy measures are assigned to a power set of the criteria to reflect the user defined preference. A fuzzy integral of the partial evaluations with respect to the fuzzy measures is employed to make global evaluations of all candidate gaze directions. The global evaluation values are adjusted by applying inhibition of return and are compared with the global evaluation values of the previous gaze directions to decide the final gaze direction. The effectiveness of the proposed algorithm is demonstrated with a robotic head, developed in the Robot Intelligence Technology Laboratory at Korea Advanced Institute of Science and Technology, through three interaction scenarios and three comparison scenarios with another algorithm.

  3. Performance standards for urban search and rescue robots

    NASA Astrophysics Data System (ADS)

    Messina, Elena; Jacoff, Adam

    2006-05-01

    In this paper, we describe work in performance standards for urban search and rescue (USAR) robots begun in 2004 by the Department of Homeland Security. This program is being coordinated by the National Institute of Standards and Technology and will result in consensus standards developed through ASTM International, under the Operational Equipment Subcommittee of their Homeland Security Committee. The first phase of the program involved definition of requirements by subject matter experts. Responders participated in a series of workshops to identify deployment categories for robots, performance categories, and ranges of acceptable or target performance in the various categories. Over one hundred individual requirements were identified, within main categories such as Human-System Interaction, Logistics, Operating Environment, and System (which includes Chassis, Communications, Mobility, Payload, Power, and Sensing). To ensure that the robot developers and eventual end users work closely together, "responders meet robots" events at situationally relevant sites are being held to refine and extend the performance requirements and develop standard test methods. The results of these standard performance tests will be captured in a compendium of existing and developmental robots with classifications and descriptors to differentiate particular robotic capabilities. This, along with ongoing efforts to categorize situational USAR constraints such as building collapse types or the presence of hazardous materials, will help responders match particular robotic capabilities to response needs. In general, these efforts will enable responders to effectively use robotic tools to enhance their effectiveness while reducing risk to personnel during disasters.

  4. Development of dog-like retrieving capability in a ground robot

    NASA Astrophysics Data System (ADS)

    MacKenzie, Douglas C.; Ashok, Rahul; Rehg, James M.; Witus, Gary

    2013-01-01

    This paper presents the Mobile Intelligence Team's approach to addressing the CANINE outdoor ground robot competition. The competition required developing a robot that provided retrieving capabilities similar to a dog, while operating fully autonomously in unstructured environments. The vision team consisted of Mobile Intelligence, the Georgia Institute of Technology, and Wayne State University. Important computer vision aspects of the project were the ability to quickly learn the distinguishing characteristics of novel objects, searching images for the object as the robot drove a search pattern, identifying people near the robot for safe operations, correctly identify the object among distractors, and localizing the object for retrieval. The classifier used to identify the objects will be discussed, including an analysis of its performance, and an overview of the entire system architecture presented. A discussion of the robot's performance in the competition will demonstrate the system's successes in real-world testing.

  5. Full robot-assisted gastrectomy with intracorporeal robot-sewn anastomosis produces satisfying outcomes

    PubMed Central

    Liu, Xin-Xin; Jiang, Zhi-Wei; Chen, Ping; Zhao, Yan; Pan, Hua-Feng; Li, Jie-Shou

    2013-01-01

    AIM: To evaluate the feasibility and safety of full robot-assisted gastrectomy with intracorporeal robot hand-sewn anastomosis in the treatment of gastric cancer. METHODS: From September 2011 to March 2013, 110 consecutive patients with gastric cancer at the authors’ institution were enrolled for robotic gastrectomies. According to tumor location, total gastrectomy, distal or proximal subtotal gastrectomy with D2 lymphadenectomy was fully performed by the da Vinci Robotic Surgical System. All construction, including Roux-en-Y jejunal limb, esophagojejunal, gastroduodenal and gastrojejunal anastomoses were fully carried out by the intracorporeal robot-sewn method. At the end of surgery, the specimen was removed through a 3-4 cm incision at the umbilicus trocar point. The details of the surgical technique are well illustrated. The benefits in terms of surgical and oncologic outcomes are well documented, as well as the failure rate and postoperative complications. RESULTS: From a total of 110 enrolled patients, radical gastrectomy could not be performed in 2 patients due to late stage disease; 1 patient was converted to laparotomy because of uncontrollable hemorrhage, and 1 obese patient was converted due to difficult exposure; 2 patients underwent extra-corporeal anastomosis by minilaparotomy to ensure adequate tumor margin. Robot-sewn anastomoses were successfully performed for 12 proximal, 38 distal and 54 total gastrectomies. The average surgical time was 272.52 ± 53.91 min and the average amount of bleeding was 80.78 ± 32.37 mL. The average number of harvested lymph nodes was 23.1 ± 5.3. All specimens showed adequate surgical margin. With regard to tumor staging, 26, 32 and 46 patients were staged as I, II and III, respectively. The average hospitalization time after surgery was 6.2 d. One patient experienced a duodenal stump anastomotic leak, which was mild and treated conservatively. One patient was readmitted for intra-abdominal infection and was

  6. Cost-effectiveness of open versus laparoscopic versus robotic-assisted laparoscopic cystectomy and urinary diversion.

    PubMed

    Zehnder, Pascal; Gill, Inderbir S

    2011-09-01

    To provide insight into the recently published cost comparisons in the context of open, laparoscopic, and robotic-assisted laparoscopic radical cystectomy and to demonstrate the complexity of such economic analyses. Most economic evaluations are from a hospital perspective and summarize short-term perioperative therapeutic costs. However, the contributing factors (e.g. study design, included variables, robotic amortization plan, supply contract, surgical volume, surgeons' experience, etc.) vary substantially between the institutions. In addition, a real cost-effective analysis considering cost per quality-adjusted life-year gained is not feasible because of the lack of long-term oncologic and functional outcome data with the robotic procedure. On the basis of a modeled cost analysis using results from published series, robotic-assisted cystectomy was - with few exceptions - found to be more expensive when compared with the open approach. Immediate costs are affected most by operative time, followed by length of hospital stay, robotic supply, case volume, robotic cost, and transfusion rate. Any complication substantially impacts overall costs. Economic cost evaluations are complex analyses influenced by numerous factors that hardly allow an interinstitutional comparison. Robotic-assisted cystectomy is constantly refined with many institutions being somewhere on their learning curve. Transparent reports of oncologic and functional outcome data from centers of expertise applying standardized methods will help to properly analyze the real long-term benefits of robotic surgery and successor technologies and prevent us from becoming slaves of successful marketing strategies.

  7. User-centric design of a personal assistance robot (FRASIER) for active aging.

    PubMed

    Padir, Taşkin; Skorinko, Jeanine; Dimitrov, Velin

    2015-01-01

    We present our preliminary results from the design process for developing the Worcester Polytechnic Institute's personal assistance robot, FRASIER, as an intelligent service robot for enabling active aging. The robot capabilities include vision-based object detection, tracking the user and help with carrying heavy items such as grocery bags or cafeteria trays. This work-in-progress report outlines our motivation and approach to developing the next generation of service robots for the elderly. Our main contribution in this paper is the development of a set of specifications based on the adopted user-centered design process, and realization of the prototype system designed to meet these specifications.

  8. Soft Robotics: Academic Insights and Perspectives Through Bibliometric Analysis

    PubMed Central

    Bao, Guanjun; Fang, Hui; Chen, Lingfeng; Xu, Fang; Yang, Qinghua; Zhang, Libin

    2018-01-01

    Abstract Soft robotics is of growing interest in the robot community as well as in public media, and there is an increase in the quality and quantity of publications related to this topic. To formally elaborate this growth, we have used a bibliometric analysis to evaluate the publications in the field from 1990 to 2017 based on the Science Citation Index Expanded database. We present a detailed overview and discussion based on keywords, citation, h-index, year, journal, institution, country, author, and review articles. The results show that the United States takes the leading position in this research field, followed by China and Italy. Harvard University has the most publications, high average number of citations per publication and the highest h-index. IEEE Transactions on Robotics ranks first among the top 20 academic journals publishing articles related to this field, whereas Soft Robotics holds the top position in journals categorized with “ROBOTICS.” Actuator, fabrication, control, material, sensing, simulation, bionics, stiffness, modeling, power, motion, and application are the hot topics of soft robotics. Smart materials, bionics, morphological computation, and embodiment control are expected to contribute to this field in the future. Application and commercialization appear to be the initial driving force and final goal for soft robots. PMID:29782219

  9. Soft Robotics: Academic Insights and Perspectives Through Bibliometric Analysis.

    PubMed

    Bao, Guanjun; Fang, Hui; Chen, Lingfeng; Wan, Yuehua; Xu, Fang; Yang, Qinghua; Zhang, Libin

    2018-06-01

    Soft robotics is of growing interest in the robot community as well as in public media, and there is an increase in the quality and quantity of publications related to this topic. To formally elaborate this growth, we have used a bibliometric analysis to evaluate the publications in the field from 1990 to 2017 based on the Science Citation Index Expanded database. We present a detailed overview and discussion based on keywords, citation, h-index, year, journal, institution, country, author, and review articles. The results show that the United States takes the leading position in this research field, followed by China and Italy. Harvard University has the most publications, high average number of citations per publication and the highest h-index. IEEE Transactions on Robotics ranks first among the top 20 academic journals publishing articles related to this field, whereas Soft Robotics holds the top position in journals categorized with "ROBOTICS." Actuator, fabrication, control, material, sensing, simulation, bionics, stiffness, modeling, power, motion, and application are the hot topics of soft robotics. Smart materials, bionics, morphological computation, and embodiment control are expected to contribute to this field in the future. Application and commercialization appear to be the initial driving force and final goal for soft robots.

  10. Use of Robotic Pets in Providing Stimulation for Nursing Home Residents with Dementia.

    PubMed

    Naganuma, M; Ohkubo, E; Kato, N

    2015-01-01

    Trial experiments utilized robotic pets to facilitate self-reliance in nursing home residents. A remote-control robot modeled clear and meaningful behaviors to elderly residents. Special attention was paid to its effects on mental and social domains. Employing the robot as a gaze target and center of attention created a cue to initiate a communication channel between residents who normally show no interest in each other. The Sony AIBO robot in this study uses commercially available wireless equipment, and all its components are easily accessible to any medical or welfare institution interested in additional practice of these activities.

  11. Robotic versus laparoscopic resection of liver tumours

    PubMed Central

    Berber, Eren; Akyildiz, Hizir Yakup; Aucejo, Federico; Gunasekaran, Ganesh; Chalikonda, Sricharan; Fung, John

    2010-01-01

    Background There are scant data in the literature regarding the role of robotic liver surgery. The aim of the present study was to develop techniques for robotic liver tumour resection and to draw a comparison with laparoscopic resection. Methods Over a 1-year period, nine patients underwent robotic resection of peripherally located malignant lesions measuring <5 cm. These patients were compared prospectively with 23 patients who underwent laparoscopic resection of similar tumours at the same institution. Statistical analyses were performed using Student's t-test, χ2-test and Kaplan–Meier survival. All data are expressed as mean ± SEM. Results The groups were similar with regards to age, gender and tumour type (P = NS). Tumour size was similar in both groups (robotic −3.2 ± 1.3 cm vs. laparoscopic −2.9 ± 1.3 cm, P = 0.6). Skin-to-skin operative time was 259 ± 28 min in the robotic vs. 234 ± 17 min in the laparoscopic group (P = 0.4). There was no difference between the two groups regarding estimated blood loss (EBL) and resection margin status. Conversion to an open operation was only necessary in one patient in the robotic group. Complications were observed in one patient in the robotic and four patients in the laparoscopic groups. The patients were followed up for a mean of 14 months and disease-free survival (DFS) was equivalent in both groups (P = 0.6). Conclusion The results of this initial study suggest that, for selected liver lesions, a robotic approach provides similar peri-operative outcomes compared with laparoscopic liver resection (LLR). PMID:20887327

  12. Robotic surgery

    MedlinePlus

    Robot-assisted surgery; Robotic-assisted laparoscopic surgery; Laparoscopic surgery with robotic assistance ... computer station and directs the movements of a robot. Small surgical tools are attached to the robot's ...

  13. A Haptic Guided Robotic System for Endoscope Positioning and Holding.

    PubMed

    Cabuk, Burak; Ceylan, Savas; Anik, Ihsan; Tugasaygi, Mehtap; Kizir, Selcuk

    2015-01-01

    To determine the feasibility, advantages, and disadvantages of using a robot for holding and maneuvering the endoscope in transnasal transsphenoidal surgery. The system used in this study was a Stewart Platform based robotic system that was developed by Kocaeli University Department of Mechatronics Engineering for positioning and holding of endoscope. After the first use on an artificial head model, the system was used on six fresh postmortem bodies that were provided by the Morgue Specialization Department of the Forensic Medicine Institute (Istanbul, Turkey). The setup required for robotic system was easy, the time for registration procedure and setup of the robot takes 15 minutes. The resistance was felt on haptic arm in case of contact or friction with adjacent tissues. The adaptation process was shorter with the mouse to manipulate the endoscope. The endoscopic transsphenoidal approach was achieved with the robotic system. The endoscope was guided to the sphenoid ostium with the help of the robotic arm. This robotic system can be used in endoscopic transsphenoidal surgery as an endoscope positioner and holder. The robot is able to change the position easily with the help of an assistant and prevents tremor, and provides a better field of vision for work.

  14. Socially intelligent robots: dimensions of human-robot interaction.

    PubMed

    Dautenhahn, Kerstin

    2007-04-29

    Social intelligence in robots has a quite recent history in artificial intelligence and robotics. However, it has become increasingly apparent that social and interactive skills are necessary requirements in many application areas and contexts where robots need to interact and collaborate with other robots or humans. Research on human-robot interaction (HRI) poses many challenges regarding the nature of interactivity and 'social behaviour' in robot and humans. The first part of this paper addresses dimensions of HRI, discussing requirements on social skills for robots and introducing the conceptual space of HRI studies. In order to illustrate these concepts, two examples of HRI research are presented. First, research is surveyed which investigates the development of a cognitive robot companion. The aim of this work is to develop social rules for robot behaviour (a 'robotiquette') that is comfortable and acceptable to humans. Second, robots are discussed as possible educational or therapeutic toys for children with autism. The concept of interactive emergence in human-child interactions is highlighted. Different types of play among children are discussed in the light of their potential investigation in human-robot experiments. The paper concludes by examining different paradigms regarding 'social relationships' of robots and people interacting with them.

  15. Kelley Hot Spring Geothermal Project: Kelly Hot Spring Agricultural Center conceptual design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longyear, A.B.

    1980-06-01

    The proposed core activity in the Kelly Hot Spring Agricultural Center is a nominal 1200 sow swine raising complex. The swine raising is to be a totally confined operation for producing premium pork in controlled environment facilities that utilize geothermal energy. The complex will include a feedmill for producing the various feed formulae required for the animals from breeding through gestation, farrowing, nursery, growing and finishing. The market animals are shipped live by truck to slaughter in Modesto, California. A complete waste management facility will include manure collection from all raising areas, transport via a water flush sysem to methanemore » (biogas) generators, manure separation, settling ponds and disposition of the surplus agricultural quality water. The design is based upon the best commercial practices in confined swine raising in the US today. The most unique feature of the facility is the utilization of geothermal hot water for space heating and process energy throughout the complex.« less

  16. Robot-assisted radical cystectomy and pelvic lymph node dissection: initial experience at Roswell Park Cancer Institute.

    PubMed

    Guru, Khurshid A; Kim, Hyung L; Piacente, Pamela M; Mohler, James L

    2007-03-01

    One series of robot-assisted radical cystectomy with pelvic lymph node dissection has been reported. We report our operative technique and initial experience. Twenty consecutive patients underwent robot-assisted radical cystectomy, pelvic lymph node dissection, and open urinary diversion for operable bladder cancer from October 2005 to June 2006. Data were collected prospectively on patient demographics, intraoperative parameters, pathologic staging, and postoperative outcomes. The mean patient age was 70 years (range 56 to 90). The mean body mass index was 26 kg/m2 (range 17.3 to 36). Fourteen patients had undergone previous abdominal surgery. The mean operative time was 197 minutes for robot-assisted radical cystectomy, 44 minutes for pelvic lymph node dissection, and 133 minutes for urinary diversion. The mean blood loss was 555 mL. One case was converted to an open procedure because of the patient's inability to tolerate the Trendelenburg position. The mean hospital stay was 10 days. Two patients had major complications. One patient had positive vaginal margins and 9 of 26 nodes were positive. Four patients had incidental prostate cancer. The mean time to the return to nonstrenuous activity was 4 weeks and to strenuous activity was 10 weeks. Robot-assisted radical cystectomy and pelvic lymph node dissection can be performed safely in patients who are considered candidates for open cystectomy. Long-term oncologic control data and functional outcomes are needed to assess the true benefits of robot-assisted radical cystectomy.

  17. Resident education in robotic-assisted vertical sleeve gastrectomy: outcomes and cost-analysis of 411 consecutive cases.

    PubMed

    Ecker, Brett L; Maduka, Richard; Ramdon, Andre; Dempsey, Daniel T; Dumon, Kristoffel R; Williams, Noel N

    2016-02-01

    Robotic technology is increasingly prevalent in bariatric surgery, yet there are national deficiencies in exposure of surgical residents to robotic techniques. The purpose of this study is to accurately characterize the perioperative outcomes of a resident teaching model using the robotic-assisted sleeve gastrectomy. University Hospital. We identified 411 consecutive patients who underwent robotic sleeve gastrectomy at our institution from a prospectively maintained administrative database. Perioperative morbidity, operative time, and supply cost of the procedure were analyzed. Mean operative time was 96.4±24.9 minutes; mean robot usage time was 63.9 minutes (range 30.0-122.0 min). Ninety-day morbidities included reoperation (0.72%), major bleeding complications (0.48%), staple line leak (0.24%), stricture (0.97%), need for blood transfusion (3.86%), surgical site infection (1.69%), deep vein thrombosis (0.48%), and pulmonary embolism (0.48%). Mortality was nil. The resident cohort achieved operative time plateaus after five consecutive cases. Subset analysis for fiscal year 2014 demonstrated significantly increased supply cost for robotic sleeve gastrectomy compared with its laparoscopic equivalent. Robotic-assisted sleeve gastrectomy can be instituted as a model for resident robotic education with rates of morbidity and operative times equivalent to historical laparoscopic controls. The robot's enhanced ergonomics and its opportunity for resident education must be weighed against its increased supply cost. Copyright © 2016 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  18. Malfunction and failure of robotic systems during general surgical procedures.

    PubMed

    Agcaoglu, Orhan; Aliyev, Shamil; Taskin, Halit Eren; Chalikonda, Sricharan; Walsh, Matthew; Costedio, Meagan M; Kroh, Matthew; Rogula, Tomasz; Chand, Bipan; Gorgun, Emre; Siperstein, Allan; Berber, Eren

    2012-12-01

    There has been recent interest in using robots for general surgical procedures. This shift in technique raises the issue of patient safety with automated instrumentation. Although the safety of robotics has been established for urologic procedures, there are scant data on its use in general surgical procedures. The aim of this study is to analyze the incidence of robotic malfunction and its consequences for general surgical procedures. All robotic general surgical procedures performed at a tertiary center between 2008 and 2011 were reviewed from institutional review board (IRB)-approved prospective databases. A total of 223 cases were done robotically, including 102 endocrine, 83 hepatopancreaticobiliary, 17 upper gastrointestinal, and 21 lower gastrointestinal colorectal procedures. There were 10 cases of robotic malfunction (4.5%). These failures were related to robotic instruments (n = 4), optical system (n = 3), robotic arms (n = 2), and robotic console (n = 1). None of these failures led to adverse patient consequences or conversion to open. Six (2.7%) cases were converted to open due to bleeding (n = 3), difficult dissection plane (n = 1), invasion of tumor to surrounding structures (n = 1), and intolerance of pneumoperitoneum due to CO(2) retention (n = 1). There was no mortality, and morbidity was 1% (n = 2). To our knowledge, this is the largest North American report to date on robotic general surgical procedures. Our results show that robotic malfunction occurs in a minority of cases, with no adverse consequences. We believe that awareness of these failures and knowing how to troubleshoot are important to maintain the efficiency of these procedures.

  19. URobotics—Urology Robotics at Johns Hopkins

    PubMed Central

    Stoianovici, D

    2011-01-01

    URobotics (Urology Robotics) is a program of the Urology Department at the Johns Hopkins Medical Institutions dedicated to the development of new technology for urologic surgery (http://urology.jhu.edu/urobotics). The program is unique in that it is the only academic engineering program exclusively applied to urology. The program combines efforts and expertise from the medical and engineering fields through a close partnership of clinical and technical personnel. Since its creation in 1996, the URobotics lab has created several devices, instruments, and robotic systems, several of which have been successfully used in the operating room. This article reviews the technology developed in our laboratory and its surgical applications, and highlights our future directions. PMID:11954067

  20. Survey of minimally invasive general surgery fellows training in robotic surgery.

    PubMed

    Shaligram, Abhijit; Meyer, Avishai; Simorov, Anton; Pallati, Pradeep; Oleynikov, Dmitry

    2013-06-01

    Minimally invasive surgery fellowships offer experience in robotic surgery, the nature of which is poorly defined. The objective of this survey was to determine the current status and opportunities for robotic surgery training available to fellows training in the United States and Canada. Sixty-five minimally invasive surgery fellows, attending a fundamentals of fellowship conference, were asked to complete a questionnaire regarding their demographics and experiences with robotic surgery and training. Fifty-one of the surveyed fellows completed the questionnaire (83 % response). Seventy-two percent of respondents had staff surgeons trained in performing robotic procedures, with 55 % of respondents having general surgery procedures performed robotically at their institution. Just over half (53 %) had access to a simulation facility for robotic training. Thirty-three percent offered mechanisms for certification and 11 % offered fellowships in robotic surgery. One-third of the minimally invasive surgery fellows felt they had been trained in robotic surgery and would consider making it part of their practice after fellowship. However, most (80 %) had no plans to pursue robotic surgery fellowships. Although a large group (63 %) felt optimistic about the future of robotic surgery, most respondents (72.5 %) felt their current experience with robotic surgery training was poor or below average. There is wide variation in exposure to and training in robotic surgery in minimally invasive surgery fellowship programs in the United States and Canada. Although a third of trainees felt adequately trained for performing robotic procedures, most fellows felt that their current experience with training was not adequate.

  1. Robotic Lobectomy Utilizing the Robotic Stapler.

    PubMed

    Pearlstein, Daryl Phillip

    2016-12-01

    A drawback of robotic lobectomy is the inability of the operating surgeon to perform stapler division of the pulmonary vessels and bronchi. With the advent of the robotic stapler, the surgeon is able to control this instrument from the console. The robotic stapler presents certain challenges. This article outlines techniques to use the robotic stapler for the safe and predictable performance of lobectomies. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Robotics crosscutting program: Technology summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Office of Environmental Management (EM) is responsible for cleaning up the legacy of radioactive and chemically hazardous waste at contaminated sites and facilities throughout the U.S. Department of Energy (DOE) nuclear weapons complex, preventing further environmental contamination, and instituting responsible environmental management. Initial efforts to achieve this mission resulted in the establishment of environmental restoration and waste management programs. However, as EM began to execute its responsibilities, decision makers became aware that the complexity and magnitude of this mission could not be achieved efficiently, affordably, safely, or reasonably with existing technology. Once the need for advanced cleanup technologies becamemore » evident, EM established an aggressive, innovative program of applied research and technology development. The Office of Technology Development (OTD) was established in November 1989 to advance new and improved environmental restoration and waste management technologies that would reduce risks to workers, the public, and the environment; reduce cleanup costs; and devise methods to correct cleanup problems that currently have no solutions. In 1996, OTD added two new responsibilities - management of a Congressionally mandated environmental science program and development of risk policy, requirements, and guidance. OTD was renamed the Office of Science and Technology (OST). This documents presents information concerning robotics tank waste retrieval overview, robotic chemical analysis automation, robotics decontamination and dismantlement, and robotics crosscutting and advanced technology.« less

  3. Robotic laparoscopic surgery: cost and training.

    PubMed

    Amodeo, A; Linares Quevedo, A; Joseph, J V; Belgrano, E; Patel, H R H

    2009-06-01

    developing a robotic surgical program: it is very important to show that robotics will add a dimension that will benefit the hospital, the patient care and institutional recognition. Another essential task to overcome is the important education of the operating room nursing staff, a significant difference between this modality and traditional surgery. Without operating room environment support, most surgeons will revert to traditional methods even after a few successful robotics cases. As the field of robotic surgery continues to grow, graduate medical education and continuing medical education programs that address the surgical robotic learning needs of residents and practicing surgeons need to be developed.

  4. [Robots in general surgery: present and future].

    PubMed

    Galvani, Carlos; Horgan, Santiago

    2005-09-01

    Robotic surgery is an emerging technology. We began to use this technique in 2000, after it was approved by the Food and Drug Administration. Our preliminary experience was satisfactory. We report 4 years' experience of using this technique in our institution. Between August 2000 and December 2004, 399 patients underwent robotic surgery using the Da Vinci system. We performed 110 gastric bypass procedures, 30 Lap band, 59 Heller myotomies, 12 Nissen fundoplications, 6 epiphrenic diverticula, 18 total esophagectomies, 3 esophageal leiomyoma resections, 1 pyloroplasty, 2 gastrojejunostomies, 2 transduodenal sphincteroplasties, 10 adrenalectomies and 145 living-related donor nephrectomies. Operating times for fundoplications and Lap band were longer. After the learning curve, the operating times and morbidity of the remaining procedures were considerably reduced. Robot-assisted surgery allows advanced laparoscopic procedures to be performed with enhanced results given that it reduces the learning curve as measured by operating time and morbidity.

  5. Robotic surgery in children: adopt now, await, or dismiss?

    PubMed

    Cundy, Thomas P; Marcus, Hani J; Hughes-Hallett, Archie; Khurana, Sanjeev; Darzi, Ara

    2015-12-01

    The role of robot-assisted surgery in children remains controversial. This article aims to distil this debate into an evidence informed decision-making taxonomy; to adopt this technology (1) now, (2) later, or (3) not at all. Robot-assistance is safe, feasible and effective in selected cases as an adjunctive tool to enhance capabilities of minimally invasive surgery, as it is known today. At present, expectations of rigid multi-arm robotic systems to deliver higher quality care are over-estimated and poorly substantiated by evidence. Such systems are associated with high costs. Further comparative effectiveness evidence is needed to define the case-mix for which robot-assistance might be indicated. It seems unlikely that we should expect compelling patient benefits when it is only the mode of minimally invasive surgery that differs. Only large higher-volume institutions that share the robot amongst multiple specialty groups are likely to be able to sustain higher associated costs with today's technology. Nevertheless, there is great potential for next-generation surgical robotics to enable better ways to treat childhood surgical diseases through less invasive techniques that are not possible today. This will demand customized technology for selected patient populations or procedures. Several prototype robots exclusively designed for pediatric use are already under development. Financial affordability must be a high priority to ensure clinical accessibility.

  6. Robotically performed total mesorectal excision for rectal cancer.

    PubMed

    Alecu, L; Stănciulea, O; Poesina, D; Tomulescu, V; Vasilescu, C; Popescu, I

    2015-01-01

    Rectal cancer is an important health problem, due to the increasing number of new cases and the quality of life issues brought forth by surgical treatment in these patients. The aim of the study was to analyse the results of robotic surgery in the treatment of lower and middle rectal cancer,locations in which TME is performed. Patients diagnosed with and operated on for rectal cancer by the means of robotic surgery between 2008-2012 at the Fundeni Clinical Institute were retrospectively analysed. A number of 117 patients with rectal cancer were operated on by robotic surgery, of which 79 (67.52%) were submitted to total mesorectal excision (TME). The most frequently performed surgery was low anterior resection, followed by rectal amputation through abdominoperineal approach.Anastomosis fistula was observed in 9 (11.39%) patients. Local recurrence was encountered in 2 (2.53%) of the robotically performed surgeries. 1. Robotically assisted total mesorectal excision is feasible, safe and can be performed with a small number of complications and a low local recurrence rate; 2. The main advantages are oncological safety and quality of life; 3.Conversion to open surgery is rarely encountered; 4. Protection loop ileostomy existence allows avoiding reintervention in case anastomotic fistula occurs in patients with low anterior resection. 5. Robotic surgery may become gold standard in the surgical treatment of rectal cancer. Celsius.

  7. Reliability of robotic system during general surgical procedures in a university hospital.

    PubMed

    Buchs, Nicolas C; Pugin, François; Volonté, Francesco; Morel, Philippe

    2014-01-01

    Data concerning the reliability of robotic systems are scarce, especially for general surgery. The aim of this study was to assess the incidence and consequences of robotic malfunction in a teaching institution. From January 2006 to September 2012, 526 consecutive robotic general surgical procedures were performed. All failures were prospectively recorded in a computerized database and reviewed retrospectively. Robotic malfunctions occurred in 18 cases (3.4%). These dysfunctions concerned the robotic instruments in 9 cases, the robotic arms in 4 cases, the surgical console in 3 cases, and the optical system in 2 cases. Two malfunctions were considered critical, and 1 led to a laparoscopic conversion (conversion rate due to malfunction, .2%). Overall, there were more dysfunctions at the beginning of the study period (2006 to 2010) than more recently (2011 to 2012) (4.2% vs 2.6%, P = .35). The robotic system malfunction rate was low. Most malfunctions could be resolved during surgery, allowing the procedures to be completed safely. With increased experience, the system malfunction rate seems to be reduced. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Generic robot architecture

    DOEpatents

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2010-09-21

    The present invention provides methods, computer readable media, and apparatuses for a generic robot architecture providing a framework that is easily portable to a variety of robot platforms and is configured to provide hardware abstractions, abstractions for generic robot attributes, environment abstractions, and robot behaviors. The generic robot architecture includes a hardware abstraction level and a robot abstraction level. The hardware abstraction level is configured for developing hardware abstractions that define, monitor, and control hardware modules available on a robot platform. The robot abstraction level is configured for defining robot attributes and provides a software framework for building robot behaviors from the robot attributes. Each of the robot attributes includes hardware information from at least one hardware abstraction. In addition, each robot attribute is configured to substantially isolate the robot behaviors from the at least one hardware abstraction.

  9. Molecular Robots Obeying Asimov's Three Laws of Robotics.

    PubMed

    Kaminka, Gal A; Spokoini-Stern, Rachel; Amir, Yaniv; Agmon, Noa; Bachelet, Ido

    2017-01-01

    Asimov's three laws of robotics, which were shaped in the literary work of Isaac Asimov (1920-1992) and others, define a crucial code of behavior that fictional autonomous robots must obey as a condition for their integration into human society. While, general implementation of these laws in robots is widely considered impractical, limited-scope versions have been demonstrated and have proven useful in spurring scientific debate on aspects of safety and autonomy in robots and intelligent systems. In this work, we use Asimov's laws to examine these notions in molecular robots fabricated from DNA origami. We successfully programmed these robots to obey, by means of interactions between individual robots in a large population, an appropriately scoped variant of Asimov's laws, and even emulate the key scenario from Asimov's story "Runaround," in which a fictional robot gets into trouble despite adhering to the laws. Our findings show that abstract, complex notions can be encoded and implemented at the molecular scale, when we understand robots on this scale on the basis of their interactions.

  10. The NIST SPIDER, A Robot Crane

    PubMed Central

    Albus, James; Bostelman, Roger; Dagalakis, Nicholas

    1992-01-01

    The Robot Systems Division of the National Institute of Standards and Technology has been experimenting for several years with new concepts for robot cranes. These concepts utilize the basic idea of the Stewart Platform parallel link manipulator. The unique feature of the NIST approach is to use cables as the parallel links and to use winches as the actuators. So long as the cables are all in tension, the load is kinematically constrained, and the cables resist perturbing forces and moments with equal stiffness to both positive and negative loads. The result is that the suspended load is constrained with a mechanical stiffness determined by the elasticity of the cables, the suspended weight, and the geometry of the mechanism. Based on these concepts, a revolutionary new type of robot crane, the NIST SPIDER (Stewart Platform Instrumented Drive Environmental Robot) has been developed that can control the position, velocity, and force of tools and heavy machinery in all six degrees of freedom (x, y, z, roll, pitch, and yaw). Depending on what is suspended from its work platform, the SPIDER can perform a variety of tasks. Examples are: cutting, excavating and grading, shaping and finishing, lifting and positioning. A 6 m version of the SPIDER has been built and critical performance characteristics analyzed. PMID:28053439

  11. The NIST SPIDER, A Robot Crane.

    PubMed

    Albus, James; Bostelman, Roger; Dagalakis, Nicholas

    1992-01-01

    The Robot Systems Division of the National Institute of Standards and Technology has been experimenting for several years with new concepts for robot cranes. These concepts utilize the basic idea of the Stewart Platform parallel link manipulator. The unique feature of the NIST approach is to use cables as the parallel links and to use winches as the actuators. So long as the cables are all in tension, the load is kinematically constrained, and the cables resist perturbing forces and moments with equal stiffness to both positive and negative loads. The result is that the suspended load is constrained with a mechanical stiffness determined by the elasticity of the cables, the suspended weight, and the geometry of the mechanism. Based on these concepts, a revolutionary new type of robot crane, the NIST SPIDER (Stewart Platform Instrumented Drive Environmental Robot) has been developed that can control the position, velocity, and force of tools and heavy machinery in all six degrees of freedom ( x, y, z , roll, pitch, and yaw). Depending on what is suspended from its work platform, the SPIDER can perform a variety of tasks. Examples are: cutting, excavating and grading, shaping and finishing, lifting and positioning. A 6 m version of the SPIDER has been built and critical performance characteristics analyzed.

  12. Korea's Robotland: Merging Intelligent Robotics Strategic Policy, Business Development, and Fun

    NASA Astrophysics Data System (ADS)

    Jun, Eugene

    South Korea specializes in the design and manufacture of service and entertainment robots for consumer use. The government of South Korea considers robotics one of the countries main growth industries. To boost robot industry and accelerate the social demand of intelligent robots, a theme park titled ’Robotland’ is being constructed in Korea near Incheon International airport, the gateway to Seoul. A total of 700 million will be invested by the Korean government, the city of Incheon and financial investors. The 760,000 square meter site (188 acres) will contains a number of displays featuring famous robots and robot characters from around the world. Ultra-modern rides and amusement facilities, exhibition halls, shopping arcades and hotels, featuring advanced ubiquitous environments, will also be included in the park. In addition, Robotland will contain R&D centers and educational institutions. The Grand opening is scheduled in 2012. In this session, attendees will hear of development plans for Robotland, along with the social and business issues that are driving the development of the world’s first theme park.

  13. Robotics.

    ERIC Educational Resources Information Center

    Waddell, Steve; Doty, Keith L.

    1999-01-01

    "Why Teach Robotics?" (Waddell) suggests that the United States lags behind Europe and Japan in use of robotics in industry and teaching. "Creating a Course in Mobile Robotics" (Doty) outlines course elements of the Intelligent Machines Design Lab. (SK)

  14. Modelling of industrial robot in LabView Robotics

    NASA Astrophysics Data System (ADS)

    Banas, W.; Cwikła, G.; Foit, K.; Gwiazda, A.; Monica, Z.; Sekala, A.

    2017-08-01

    Currently can find many models of industrial systems including robots. These models differ from each other not only by the accuracy representation parameters, but the representation range. For example, CAD models describe the geometry of the robot and some even designate a mass parameters as mass, center of gravity, moment of inertia, etc. These models are used in the design of robotic lines and sockets. Also systems for off-line programming use these models and many of them can be exported to CAD. It is important to note that models for off-line programming describe not only the geometry but contain the information necessary to create a program for the robot. Exports from CAD to off-line programming system requires additional information. These models are used for static determination of reachability points, and testing collision. It’s enough to generate a program for the robot, and even check the interaction of elements of the production line, or robotic cell. Mathematical models allow robots to study the properties of kinematic and dynamic of robot movement. In these models the geometry is not so important, so are used only selected parameters such as the length of the robot arm, the center of gravity, moment of inertia. These parameters are introduced into the equations of motion of the robot and motion parameters are determined.

  15. Training and outcome monitoring in robotic urologic surgery.

    PubMed

    Liberman, Daniel; Trinh, Quoc-Dien; Jeldres, Claudio; Valiquette, Luc; Zorn, Kevin C

    2011-11-08

    The use of robot-assisted laparoscopic technology is rapidly expanding, with applicability in numerous disciplines of surgery. Training to perform robot-assisted laparoscopic urological procedures requires a motivated learner, a motivated teacher or proctor, a curriculum with stepwise learning objectives, and regular access to a training robot. In light of the many constraints that limit surgical training, animal models should be utilized to quantifiably improve the surgical skills of residents and surgical fellows, before these skills are put into practice on patients. A system based on appropriate supervision, graduated responsibility, real-time feedback, and objective measure of progress has proven to be safe and effective. Surgical team education directed towards cohesion is perhaps the most important aspect of training. At present, there are very few published guidelines for the safe introduction of robotic urologic surgery at an institution. Increasing evidence demonstrates the effects of learning curve and surgical volume on oncological and functional outcomes in robotic surgery (RS). This necessitates the introduction of mechanisms and guidelines by which trainee surgeons can attain a sufficient level of skill, without compromising the safety of patients. Guidelines for outcome monitoring following RS should be developed, to ensure patient safety and sufficient baseline surgeon skill.

  16. Soft Robotics: New Perspectives for Robot Bodyware and Control

    PubMed Central

    Laschi, Cecilia; Cianchetti, Matteo

    2014-01-01

    The remarkable advances of robotics in the last 50 years, which represent an incredible wealth of knowledge, are based on the fundamental assumption that robots are chains of rigid links. The use of soft materials in robotics, driven not only by new scientific paradigms (biomimetics, morphological computation, and others), but also by many applications (biomedical, service, rescue robots, and many more), is going to overcome these basic assumptions and makes the well-known theories and techniques poorly applicable, opening new perspectives for robot design and control. The current examples of soft robots represent a variety of solutions for actuation and control. Though very first steps, they have the potential for a radical technological change. Soft robotics is not just a new direction of technological development, but a novel approach to robotics, unhinging its fundamentals, with the potential to produce a new generation of robots, in the support of humans in our natural environments. PMID:25022259

  17. Robotic nephroureterectomy: a simplified approach requiring no patient repositioning or robot redocking.

    PubMed

    Zargar, Homayoun; Krishnan, Jayram; Autorino, Riccardo; Akca, Oktay; Brandao, Luis Felipe; Laydner, Humberto; Samarasekera, Dinesh; Ko, Oliver; Haber, Georges-Pascal; Kaouk, Jihad H; Stein, Robert J

    2014-10-01

    Robotic technology is increasingly adopted in urologic surgery and a variety of techniques has been described for minimally invasive treatment of upper tract urothelial cancer (UTUC). To describe a simplified surgical technique of robot-assisted nephroureterectomy (RANU) and to report our single-center surgical outcomes. Patients with history of UTUC treated with this modality between April 2010 and August 2013 were included in the analysis. Institutional review board approval was obtained. Informed consent was signed by all patients. A simplified single-step RANU not requiring repositioning or robot redocking. Lymph node dissection was performed selectively. Descriptive analysis of patients' characteristics, perioperative outcomes, histopathology, and short-term follow-up data was performed. The analysis included 31 patients (mean age: 72.4±10.6 yr; mean body mass index: 26.6±5.1kg/m(2)). Twenty-six of 30 tumors (86%) were high grade. Mean tumor size was 3.1±1.8cm. Of the 31 patients, 13 (42%) had pT3 stage disease. One periureteric positive margin was noted in a patient with bulky T3 disease. The mean number of lymph nodes removed was 9.4 (standard deviation: 5.6; range: 3-21). Two of 14 patients (14%) had positive lymph nodes on final histology. No patients required a blood transfusion. Six patients experienced complications postoperatively, with only one being a high grade (Clavien 3b) complication. Median hospital stay was 5 d. Within the follow-up period, seven patients experienced bladder recurrences and four patients developed metastatic disease. Our RANU technique eliminates the need for patient repositioning or robot redocking. This technique can be safely reproduced, with surgical outcomes comparable to other established techniques. We describe a surgical technique using the da Vinci robot for a minimally invasive treatment of patients presenting with upper tract urothelial cancer. This technique can be safely implemented with good surgical outcomes

  18. Soft Robotics.

    PubMed

    Whitesides, George M

    2018-04-09

    This description of "soft robotics" is not intended to be a conventional review, in the sense of a comprehensive technical summary of a developing field. Rather, its objective is to describe soft robotics as a new field-one that offers opportunities to chemists and materials scientists who like to make "things" and to work with macroscopic objects that move and exert force. It will give one (personal) view of what soft actuators and robots are, and how this class of soft devices fits into the more highly developed field of conventional "hard" robotics. It will also suggest how and why soft robotics is more than simply a minor technical "tweak" on hard robotics and propose a unique role for chemistry, and materials science, in this field. Soft robotics is, at its core, intellectually and technologically different from hard robotics, both because it has different objectives and uses and because it relies on the properties of materials to assume many of the roles played by sensors, actuators, and controllers in hard robotics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Robot-assisted intracorporeal ileal conduit: Marionette technique and initial experience at Roswell Park Cancer Institute.

    PubMed

    Guru, Khurshid; Seixas-Mikelus, Stéfanie A; Hussain, Abid; Blumenfeld, Aaron J; Nyquist, John; Chandrasekhar, Rameela; Wilding, Gregory E

    2010-10-01

    To present our technique and initial experience with patients who underwent robot-assisted intracorporeal creation of ileal conduit and to compare them with patients who underwent extracorporeal ileal diversion after robot-assisted radical cystectomy. Twenty-six patients diagnosed with invasive transitional cell carcinoma of the bladder underwent a robot-assisted radical cystectomy with bilateral extended pelvic lymphadenectomy with ileal conduit diversion. Total intracorporeal ileal conduit creation was performed in the last 13 patients. Operative data and short-term outcomes between the 2 groups were assessed. The novel surgical technique for intracorporeal ileal conduit will be presented. The intracorporeal group (IC) included 2 female and 11 male patients (mean age 71 years). The extracorporeal group (EC) included 4 female and 9 male patients (mean age 66 years). No significant differences were noted between the groups in terms of patient age, BMI, sex, prior surgery, or pathologic stage. Overall operative time and intraoperative complications were similar. No significant differences were noted between the 2 groups in terms of diversion time or estimated blood loss. There were 4 complications recorded in IC patients, including nonspecific colitis, small bowel obstruction requiring exploratory laparotomy with lysis of adhesions, a urine leak that eventually resolved but required a temporary nephrostomy tube, and a fever of unknown origin that resolved without intervention. Robot-assisted intracorporeal ileal conduit can be accomplished safely with acceptable operative times even during early experience. Larger series with favorable results will be required to add this new paradigm to minimally invasive surgery for bladder cancer. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. The thermal regime and species composition of fish and invertebrates in Kelly Warm Spring, Grand Teton National Park, Wyoming

    USGS Publications Warehouse

    Harper, David; Farag, Aida

    2017-01-01

    We evaluated the thermal regime and relative abundance of native and nonnative fish and invertebrates within Kelly Warm Spring and Savage Ditch, Grand Teton National Park, Wyoming. Water temperatures within the system remained relatively warm year-round with mean temperatures >20 °C near the spring source and >5 °C approximately 2 km downstream of the source. A total of 7 nonnative species were collected: Convict/Zebra Cichlid (Cichlasoma nigrofasciatum), Green Swordtail (Xiphophorus hellerii), Tadpole Madtom (Noturus gyrinus), Guppy (Poecilia reticulata), Goldfish (Carassius auratus), red-rimmed melania snail (Melanoides tuberculata), and American bullfrog tadpoles (Lithobates catesbeianus). Nonnative fish (Zebra Cichlids and Green Swordtails), red-rimmed melania snails, and bullfrog tadpoles dominated the upper 2 km of the system. Abundance estimates of the Zebra Cichlid exceeded 12,000 fish/km immediately downstream of the spring source. Relative abundance of native species increased movingdownstream as water temperatures attenuated with distance from the thermally warmed spring source; however, nonnative species were captured 4 km downstream from the spring. Fish diseases were prevalent in both native and nonnative fish from the Kelly Warm Spring pond. Clinostomum marginatum, a trematode parasite, was found in native species samples, and the tapeworm Diphyllobothrium dendriticum was present in samples from nonnative species. Diphyllobothrium dendriticum is rare in Wyoming. Salmonella spp. were also found in some samples of nonnative species. These bacteria are associated with aquarium fish and aquaculture and are generally not found in the wild.

  1. Robotic surgery.

    PubMed

    Stoianovici, D

    2000-09-01

    The industrial revolution demonstrated the capability of robotic systems to facilitate and improve manufacturing. As a result, robotics extended to various other domains, including the delivery of health care. Hence, robots have been developed to assist hospital staff, to facilitate laboratory analyses, to augment patient rehabilitation, and even to advance surgical performance. As robotics lead usefulness and gain wider acceptance among the surgical community, the urologist should become familiar with this new interdisciplinary field and its "URobotics" subset: robotics applied to urology. This article reviews the current applications and experience, issues and debates in surgical robotics, and highlights future directions in the field.

  2. Residency Training in Robotic General Surgery: A Survey of Program Directors.

    PubMed

    George, Lea C; O'Neill, Rebecca; Merchant, Aziz M

    2018-01-01

    Robotic surgery continues to expand in minimally invasive surgery; however, the literature is insufficient to understand the current training process for general surgery residents. Therefore, the objectives of this study were to identify the current approach to and perspectives on robotic surgery training. An electronic survey was distributed to general surgery program directors identified by the Accreditation Council for Graduate Medical Education website. Multiple choice and open-ended questions regarding current practices and opinions on robotic surgery training in general surgery residency programs were used. 20 program directors were surveyed, a majority being from medium-sized programs (4-7 graduating residents per year). Most respondents (73.68%) had a formal robotic surgery curriculum at their institution, with 63.16% incorporating simulation training. Approximately half of the respondents believe that more time should be dedicated to robotic surgery training (52.63%), with simulation training prior to console use (84.21%). About two-thirds of the respondents (63.16%) believe that a formal robotic surgery curriculum should be established as a part of general surgery residency, with more than half believing that exposure should occur in postgraduate year one (55%). A formal robotics curriculum with simulation training and early surgical exposure for general surgery residents should be given consideration in surgical residency training.

  3. NASA Center for Intelligent Robotic Systems for Space Exploration

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's program for the civilian exploration of space is a challenge to scientists and engineers to help maintain and further develop the United States' position of leadership in a focused sphere of space activity. Such an ambitious plan requires the contribution and further development of many scientific and technological fields. One research area essential for the success of these space exploration programs is Intelligent Robotic Systems. These systems represent a class of autonomous and semi-autonomous machines that can perform human-like functions with or without human interaction. They are fundamental for activities too hazardous for humans or too distant or complex for remote telemanipulation. To meet this challenge, Rensselaer Polytechnic Institute (RPI) has established an Engineering Research Center for Intelligent Robotic Systems for Space Exploration (CIRSSE). The Center was created with a five year $5.5 million grant from NASA submitted by a team of the Robotics and Automation Laboratories. The Robotics and Automation Laboratories of RPI are the result of the merger of the Robotics and Automation Laboratory of the Department of Electrical, Computer, and Systems Engineering (ECSE) and the Research Laboratory for Kinematics and Robotic Mechanisms of the Department of Mechanical Engineering, Aeronautical Engineering, and Mechanics (ME,AE,&M), in 1987. This report is an examination of the activities that are centered at CIRSSE.

  4. Robotic surgical skill acquisition: What one needs to know?

    PubMed

    Sood, Akshay; Jeong, Wooju; Ahlawat, Rajesh; Campbell, Logan; Aggarwal, Shruti; Menon, Mani; Bhandari, Mahendra

    2015-01-01

    Robotic surgery has been eagerly adopted by patients and surgeons alike in the field of urology, over the last decade. However, there is a lack of standardization in training curricula and accreditation guidelines to ensure surgeon competence and patient safety. Accordingly, in this review, we aim to highlight 'who' needs to learn 'what' and 'how', to become competent in robotic surgery. We demonstrate that both novice and experienced open surgeons require supervision and mentoring during the initial phases of robotic surgery skill acquisition. The experienced open surgeons possess domain knowledge, however, need to acquire technical knowledge under supervision (either in simulated or clinical environment) to successfully transition to robotic surgery, whereas, novice surgeons need to acquire both domain as well as technical knowledge to become competent in robotic surgery. With regard to training curricula, a variety of training programs such as academic fellowships, mini-fellowships, and mentored skill courses exist, and cater to the needs and expectations of postgraduate surgeons adequately. Fellowships provide the most comprehensive training, however, may not be suitable to all surgeon-learners secondary to the long-term time commitment. For these surgeon-learners short-term courses such as the mini-fellowships or mentored skill courses might be more apt. Lastly, with regards to credentialing uniformity in criteria regarding accreditation is lacking but earnest efforts are underway. Currently, accreditation for competence in robotic surgery is institutional specific.

  5. Developing a programmatic approach to investigating and remediating many unrelated comprehensive environmental response, compensation, and liability act sites at Kelly Air Force Base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamp, G.; Regan, P.; Ninesteel, R.

    1988-01-01

    Kelly Air Force Base (AFB), which was founded in 1917, is involved in logistics and maintenance activities supporting the Air Logistics Command. In addition, Kelly AFB hosts over 50 tenant organizations representing the Air Force, Department of Defense, and other government agencies. Over the years waste disposal from this complex was conducted in a manner that led to the identification of over 30 sites to be included in the Installation Restoration Program (IRP) after the Phase 1 investigation. A methodology was needed to prioritize the Remedial Investigations and Feasibility Study (RI/FS) activities for the sites. A Strategy Plan was developedmore » that involved reviewing and interpreting existing data, identifying data voids relative to site specific RI/FS activities, and developing methodology to prioritize activities. Sites were prioritized, and a comprehensive IRP planning document was developed. One data deficiency was revealed -- the lack of understanding of the Basewide hydrogeologic conditions necessary to establish an effective restoration program. A Hydrogeologic Investigation was initiated to provide this data. This data will allow better interpretation of the interaction of the sites, particularly those in close proximity, and improved planning of remediation activities.« less

  6. Interactive Exploration Robots: Human-Robotic Collaboration and Interactions

    NASA Technical Reports Server (NTRS)

    Fong, Terry

    2017-01-01

    For decades, NASA has employed different operational approaches for human and robotic missions. Human spaceflight missions to the Moon and in low Earth orbit have relied upon near-continuous communication with minimal time delays. During these missions, astronauts and mission control communicate interactively to perform tasks and resolve problems in real-time. In contrast, deep-space robotic missions are designed for operations in the presence of significant communication delay - from tens of minutes to hours. Consequently, robotic missions typically employ meticulously scripted and validated command sequences that are intermittently uplinked to the robot for independent execution over long periods. Over the next few years, however, we will see increasing use of robots that blend these two operational approaches. These interactive exploration robots will be remotely operated by humans on Earth or from a spacecraft. These robots will be used to support astronauts on the International Space Station (ISS), to conduct new missions to the Moon, and potentially to enable remote exploration of planetary surfaces in real-time. In this talk, I will discuss the technical challenges associated with building and operating robots in this manner, along with lessons learned from research conducted with the ISS and in the field.

  7. Robotic Surgery

    PubMed Central

    Lanfranco, Anthony R.; Castellanos, Andres E.; Desai, Jaydev P.; Meyers, William C.

    2004-01-01

    Objective: To review the history, development, and current applications of robotics in surgery. Background: Surgical robotics is a new technology that holds significant promise. Robotic surgery is often heralded as the new revolution, and it is one of the most talked about subjects in surgery today. Up to this point in time, however, the drive to develop and obtain robotic devices has been largely driven by the market. There is no doubt that they will become an important tool in the surgical armamentarium, but the extent of their use is still evolving. Methods: A review of the literature was undertaken using Medline. Articles describing the history and development of surgical robots were identified as were articles reporting data on applications. Results: Several centers are currently using surgical robots and publishing data. Most of these early studies report that robotic surgery is feasible. There is, however, a paucity of data regarding costs and benefits of robotics versus conventional techniques. Conclusions: Robotic surgery is still in its infancy and its niche has not yet been well defined. Its current practical uses are mostly confined to smaller surgical procedures. PMID:14685095

  8. Miniature in vivo robotics and novel robotic surgical platforms.

    PubMed

    Shah, Bhavin C; Buettner, Shelby L; Lehman, Amy C; Farritor, Shane M; Oleynikov, Dmitry

    2009-05-01

    Robotic surgical systems, such as the da Vinci Surgical System (Intuitive Surgical, Inc., Sunnyvale, California), have revolutionized laparoscopic surgery but are limited by large size, increased costs, and limitations in imaging. Miniature in vivo robots are being developed that are inserted entirely into the peritoneal cavity for laparoscopic and natural orifice transluminal endoscopic surgical (NOTES) procedures. In the future, miniature camera robots and microrobots should be able to provide a mobile viewing platform. This article discusses the current state of miniature robotics and novel robotic surgical platforms and the development of future robotic technology for general surgery and urology.

  9. Cooperating mobile robots

    DOEpatents

    Harrington, John J.; Eskridge, Steven E.; Hurtado, John E.; Byrne, Raymond H.

    2004-02-03

    A miniature mobile robot provides a relatively inexpensive mobile robot. A mobile robot for searching an area provides a way for multiple mobile robots in cooperating teams. A robotic system with a team of mobile robots communicating information among each other provides a way to locate a source in cooperation. A mobile robot with a sensor, a communication system, and a processor, provides a way to execute a strategy for searching an area.

  10. Development of a semi-autonomous service robot with telerobotic capabilities

    NASA Technical Reports Server (NTRS)

    Jones, J. E.; White, D. R.

    1987-01-01

    The importance to the United States of semi-autonomous systems for application to a large number of manufacturing and service processes is very clear. Two principal reasons emerge as the primary driving forces for development of such systems: enhanced national productivity and operation in environments whch are hazardous to humans. Completely autonomous systems may not currently be economically feasible. However, autonomous systems that operate in a limited operation domain or that are supervised by humans are within the technology capability of this decade and will likely provide reasonable return on investment. The two research and development efforts of autonomy and telerobotics are distinctly different, yet interconnected. The first addresses the communication of an intelligent electronic system with a robot while the second requires human communication and ergonomic consideration. Discussed here are work in robotic control, human/robot team implementation, expert system robot operation, and sensor development by the American Welding Institute, MTS Systems Corporation, and the Colorado School of Mines--Center for Welding Research.

  11. Robotic, laparoscopic and open surgery for gastric cancer compared on surgical, clinical and oncological outcomes: a multi-institutional chart review. A study protocol of the International study group on Minimally Invasive surgery for GASTRIc Cancer—IMIGASTRIC

    PubMed Central

    Desiderio, Jacopo; Jiang, Zhi-Wei; Nguyen, Ninh T; Zhang, Shu; Reim, Daniel; Alimoglu, Orhan; Azagra, Juan-Santiago; Yu, Pei-Wu; Coburn, Natalie G; Qi, Feng; Jackson, Patrick G; Zang, Lu; Brower, Steven T; Kurokawa, Yukinori; Facy, Olivier; Tsujimoto, Hironori; Coratti, Andrea; Annecchiarico, Mario; Bazzocchi, Francesca; Avanzolini, Andrea; Gagniere, Johan; Pezet, Denis; Cianchi, Fabio; Badii, Benedetta; Novotny, Alexander; Eren, Tunc; Leblebici, Metin; Goergen, Martine; Zhang, Ben; Zhao, Yong-Liang; Liu, Tong; Al-Refaie, Waddah; Ma, Junjun; Takiguchi, Shuji; Lequeu, Jean-Baptiste; Trastulli, Stefano; Parisi, Amilcare

    2015-01-01

    Introduction Gastric cancer represents a great challenge for healthcare providers and requires a multidisciplinary treatment approach in which surgery plays a major role. Minimally invasive surgery has been progressively developed, first with the advent of laparoscopy and recently with the spread of robotic surgery, but a number of issues are currently being debated, including the limitations in performing an effective extended lymph node dissection, the real advantages of robotic systems, the role of laparoscopy for Advanced Gastric Cancer, the reproducibility of a total intracorporeal technique and the oncological results achievable during long-term follow-up. Methods and analysis A multi-institutional international database will be established to evaluate the role of robotic, laparoscopic and open approaches in gastric cancer, comprising of information regarding surgical, clinical and oncological features. A chart review will be conducted to enter data of participants with gastric cancer, previously treated at the participating institutions. The database is the first of its kind, through an international electronic submission system and a HIPPA protected real time data repository from high volume gastric cancer centres. Ethics and dissemination This study is conducted in compliance with ethical principles originating from the Helsinki Declaration, within the guidelines of Good Clinical Practice and relevant laws/regulations. A multicentre study with a large number of patients will permit further investigation of the safety and efficacy as well as the long-term outcomes of robotic, laparoscopic and open approaches for the management of gastric cancer. Trial registration number NCT02325453; Pre-results. PMID:26482769

  12. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Members of team Mountaineers pose with officials from the 2014 NASA Centennial Challenges Sample Return Robot Challenge on Saturday, June 14, 2014 at Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team Mountaineer was the only team to complete the level one challenge this year. Team Mountaineer members, from left (in blue shirts) are: Ryan Watson, Marvin Cheng, Scott Harper, Jarred Strader, Lucas Behrens, Yu Gu, Tanmay Mandal, Alexander Hypes, and Nick Ohi Challenge judges and competition staff (in white and green polo shirts) from left are: Sam Ortega, NASA Centennial Challenge program manager; Ken Stafford, challenge technical advisor, WPI; Colleen Shaver, challenge event manager, WPI. During the competition, teams were required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge was to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  13. [Robotics].

    PubMed

    Bier, J

    2000-05-01

    Content of this paper is the current state of the art of robots in surgery and the ongoing work on the field of surgical robotics at the Clinic for Maxillofacial Surgery at the Charité. Robots in surgery allows the surgeon to transform the accuracy of the imaging systems directly during the intervention and to plan an intervention beforehand. In this paper firstly the state of the art is described. Subsequently the scientific work at the clinic is described in detail. The paper closes with a outlook for future applications of robotics systems in maxillofacial surgery.

  14. SU-F-P-31: Dosimetric Effects of Roll and Pitch Corrections Using Robotic Table

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamalui, M; Su, Z; Flampouri, S

    Purpose: To quantify the dosimetric effect of roll and pitch corrections being performed by two types of robotic tables available at our institution: BrainLabTM 5DOF robotic table installed at VERO (BrainLab&MHI) dedicated SBRT linear accelerator and 6DOF robotic couch by IBA Proton Therapy with QFixTM couch top. Methods: Planning study used a thorax phantom (CIRSTM), scanned at 4DCT protocol; targets (IGTV, PTV) were determined according to the institutional lung site-specific standards. 12 CT sets were generated with Pitch and Roll angles ranging from −4 to +4 degrees each. 2 table tops were placed onto the scans according to the modality-specificmore » patient treatment workflows. The pitched/rolled CT sets were fused to the original CT scan and the verification treatment plans were generated (12 photon SBRT plans and 12 proton conventional fractionation lung plans). Then the CT sets were fused again to simulate the effect of patient roll/pitch corrections by the robotic table. DVH sets were evaluated for all cases. Results: The effect of not correcting the phantom position for roll/pitch in photon SBRT cases was reducing the target coverage by 2% as maximum; correcting the positional errors by robotic table varied the target coverage within 0.7%. in case of proton treatment, not correcting the phantom position led to the coverage loss up to 4%, applying the corrections using robotic table reduced the coverage variation to less than 2% for PTV and within 1% for IGTV. Conclusion: correcting the patient position by using robotic tables is highly preferable, despite the small dosimetric changes introduced by the devices.« less

  15. Robot-Aided Neurorehabilitation: A Robot for Wrist Rehabilitation

    PubMed Central

    Krebs, Hermano Igo; Volpe, Bruce T.; Williams, Dustin; Celestino, James; Charles, Steven K.; Lynch, Daniel; Hogan, Neville

    2009-01-01

    In 1991, a novel robot, MIT-MANUS, was introduced to study the potential that robots might assist in and quantify the neuro-rehabilitation of motor function. MIT-MANUS proved an excellent tool for shoulder and elbow rehabilitation in stroke patients, showing in clinical trials a reduction of impairment in movements confined to the exercised joints. This successful proof of principle as to additional targeted and intensive movement treatment prompted a test of robot training examining other limb segments. This paper focuses on a robot for wrist rehabilitation designed to provide three rotational degrees-of-freedom. The first clinical trial of the device will enroll 200 stroke survivors. Ultimately 160 stroke survivors will train with both the proximal shoulder and elbow MIT-MANUS robot, as well as with the novel distal wrist robot, in addition to 40 stroke survivor controls. So far 52 stroke patients have completed the robot training (ongoing protocol). Here, we report on the initial results on 36 of these volunteers. These results demonstrate that further improvement should be expected by adding additional training to other limb segments. PMID:17894265

  16. Robot-aided neurorehabilitation: a robot for wrist rehabilitation.

    PubMed

    Krebs, Hermano Igo; Volpe, Bruce T; Williams, Dustin; Celestino, James; Charles, Steven K; Lynch, Daniel; Hogan, Neville

    2007-09-01

    In 1991, a novel robot, MIT-MANUS, was introduced to study the potential that robots might assist in and quantify the neuro-rehabilitation of motor function. MIT-MANUS proved an excellent tool for shoulder and elbow rehabilitation in stroke patients, showing in clinical trials a reduction of impairment in movements confined to the exercised joints. This successful proof of principle as to additional targeted and intensive movement treatment prompted a test of robot training examining other limb segments. This paper focuses on a robot for wrist rehabilitation designed to provide three rotational degrees-of-freedom. The first clinical trial of the device will enroll 200 stroke survivors. Ultimately 160 stroke survivors will train with both the proximal shoulder and elbow MIT-MANUS robot, as well as with the novel distal wrist robot, in addition to 40 stroke survivor controls. So far 52 stroke patients have completed the robot training (ongoing protocol). Here, we report on the initial results on 36 of these volunteers. These results demonstrate that further improvement should be expected by adding additional training to other limb segments.

  17. Robotic and endoscopic transoral thyroidectomy: feasibility and description of the technique in the cadaveric model.

    PubMed

    Kahramangil, Bora; Mohsin, Khuzema; Alzahrani, Hassan; Bu Ali, Daniah; Tausif, Syed; Kang, Sang-Wook; Kandil, Emad; Berber, Eren

    2017-12-01

    Numerous new approaches have been described over the years to improve the cosmetic outcomes of thyroid surgery. Transoral approach is a new technique that aims to achieve superior cosmetic outcomes by concealing the incision in the oral cavity. Transoral thyroidectomy through vestibular approach was performed in two institutions on cadaveric models. Procedure was performed endoscopically in one institution, while the robotic technique was utilized at the other. Transoral thyroidectomy was successfully performed at both institutions with robotic and endoscopic techniques. All vital structures were identified and preserved. Transoral thyroidectomy has been performed in animal and cadaveric models, as well as in some clinical studies. Our initial experience indicates the feasibility of this approach. More clinical studies are required to elucidate its full utility.

  18. Transoral robotic-assisted laryngeal cleft repair in the pediatric patient.

    PubMed

    Leonardis, Rachel L; Duvvuri, Umamaheswar; Mehta, Deepak

    2014-09-01

    To assess the feasibility of performing robotic-assisted laryngeal cleft repair in the pediatric population. Retrospective chart review at a tertiary academic children's hospital. All patients underwent transoral robotic-assisted laryngeal cleft repair from March 2011 to June 2013. Demographics, robotic docking time, operative time, and postoperative course and swallowing function were collected and analyzed. Five children, three male and two female, underwent successful transoral robotic-assisted laryngeal cleft repair for closure of a type I laryngeal cleft. Mean age at time of surgery was 21.6 months (standard deviation 6.1 months; range, 15-29 months). From case 1 to case 5, robotic docking time (18-10 minutes), robotic operative time (102-36 minutes), and total operating room time (173-105 minutes) decreased. There were no complications with time until extubation (range, 2-3 days), length of intensive care unit stay (range, 3-4 days), and total hospital stay (range, 3-5 days) within acceptable range following laryngeal cleft repair. Modified barium swallow (two patients) or fiberoptic endoscopic evaluation of swallowing (three patients) was performed postoperatively, with all patients showing complete resolution of penetration and aspiration. In addition, all patients experienced subjective resolution of dysphagia and/or choking with feeds postoperatively. Transoral robotic-assisted laryngeal cleft repair may offer specific advantages over a traditional endoscopic approach. In our experience, the procedure was well tolerated and associated with definitive surgical cure in all patients. The scope of robotic technology continually expands and should be considered a feasible tool at an institution-based level. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  19. Mobile Robot and Mobile Manipulator Research Towards ASTM Standards Development.

    PubMed

    Bostelman, Roger; Hong, Tsai; Legowik, Steven

    2016-01-01

    Performance standards for industrial mobile robots and mobile manipulators (robot arms onboard mobile robots) have only recently begun development. Low cost and standardized measurement techniques are needed to characterize system performance, compare different systems, and to determine if recalibration is required. This paper discusses work at the National Institute of Standards and Technology (NIST) and within the ASTM Committee F45 on Driverless Automatic Guided Industrial Vehicles. This includes standards for both terminology, F45.91, and for navigation performance test methods, F45.02. The paper defines terms that are being considered. Additionally, the paper describes navigation test methods that are near ballot and docking test methods being designed for consideration within F45.02. This includes the use of low cost artifacts that can provide alternatives to using relatively expensive measurement systems.

  20. Robotic intelligence kernel

    DOEpatents

    Bruemmer, David J [Idaho Falls, ID

    2009-11-17

    A robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.

  1. iss045e152270

    NASA Image and Video Library

    2015-12-01

    ISS045e152270 (12/01/2015) --- NASA astronaut Kjell Lindgren takes images of the Earth on board the International Space Station on Dec. 1, 2015 from the Cupola, the 360 degree viewing and robotic Canadarm 2 control area. Later this area will be used by Lindgren and NASA astronaut Scott Kelly to use the station’s Canadarm 2 robotic arm to reach out and grapple the Orbital ATK CRS-4 "Cygnus" spaceship full of equipment and supplies.

  2. The climbing crawling robot (a unique cable robot for space and Earth)

    NASA Technical Reports Server (NTRS)

    Kerley, James J.; May, Edward; Eklund, Wayne

    1991-01-01

    Some of the greatest concerns in robotic designs have been the high center of gravity of the robot, the irregular or flat surface that the robot has to work on, the weight of the robot that has to handle heavy weights or use heavy forces, and the ability of the robot to climb straight up in the air. This climbing crawling robot handles these problems well with magnets, suction cups, or actuators. The cables give body to the robot and it performs very similar to a caterpillar. The computer program is simple and inexpensive as is the robot. One of the important features of this system is that the robot can work in pairs or triplets to handle jobs that would be extremely difficult for single robots. The light weight of the robot allows it to handle quite heavy weights. The number of feet give the robot many roots where a simple set of feet would give it trouble.

  3. Robotic surgery: new robots and finally some real competition!

    PubMed

    Rao, Pradeep P

    2018-04-01

    For the last 20 years, the predominant robot used in laparoscopic surgery has been Da Vinci by Intuitive Surgical. This monopoly situation has led to rising costs and relatively slow innovation. This article aims to discuss the two new robotic devices for laparoscopic surgery which have received regulatory approval for human use in different parts of the world. A short description of the Senhance Surgical Robotic System and the REVO-I Robot Platform and their pros and cons compared to the Da Vinci system is presented. A discussion about the differences between the three robotic systems now in the market is presented, as well as a short review of the present state of robotic assistance in surgery and where we are headed.

  4. Robotic surgical education: a collaborative approach to training postgraduate urologists and endourology fellows.

    PubMed

    Mirheydar, Hossein; Jones, Marklyn; Koeneman, Kenneth S; Sweet, Robert M

    2009-01-01

    Currently, robotic training for inexperienced, practicing surgeons is primarily done vis-à-vis industry and/or society-sponsored day or weekend courses, with limited proctorship opportunities. The objective of this study was to assess the impact of an extended-proctorship program at up to 32 months of follow-up. An extended-proctorship program for robotic-assisted laparoscopic radical prostatectomy was established at our institution. The curriculum consisted of 3 phases: (1) completing an Intuitive Surgical 2-day robotic training course with company representatives; (2) serving as assistant to a trained proctor on 5 to 6 cases; and (3) performing proctored cases up to 1 year until confidence was achieved. Participants were surveyed and asked to evaluate on a 5-point Likert scale their operative experience in robotics and satisfaction regarding their training. Nine of 9 participants are currently performing robotic-assisted laparoscopic radical prostatectomy (RALP) independently. Graduates of our program have performed 477 RALP cases. The mean number of cases performed within phase 3 was 20.1 (range, 5 to 40) prior to independent practice. The program received a rating of 4.2/5 for effectiveness in teaching robotic surgery skills. Our robotic program, with extended proctoring, has led to an outstanding take-rate for disseminating robotic skills in a metropolitan community.

  5. Residency Training in Robotic General Surgery: A Survey of Program Directors

    PubMed Central

    George, Lea C.; O'Neill, Rebecca

    2018-01-01

    Objective Robotic surgery continues to expand in minimally invasive surgery; however, the literature is insufficient to understand the current training process for general surgery residents. Therefore, the objectives of this study were to identify the current approach to and perspectives on robotic surgery training. Methods An electronic survey was distributed to general surgery program directors identified by the Accreditation Council for Graduate Medical Education website. Multiple choice and open-ended questions regarding current practices and opinions on robotic surgery training in general surgery residency programs were used. Results 20 program directors were surveyed, a majority being from medium-sized programs (4–7 graduating residents per year). Most respondents (73.68%) had a formal robotic surgery curriculum at their institution, with 63.16% incorporating simulation training. Approximately half of the respondents believe that more time should be dedicated to robotic surgery training (52.63%), with simulation training prior to console use (84.21%). About two-thirds of the respondents (63.16%) believe that a formal robotic surgery curriculum should be established as a part of general surgery residency, with more than half believing that exposure should occur in postgraduate year one (55%). Conclusion A formal robotics curriculum with simulation training and early surgical exposure for general surgery residents should be given consideration in surgical residency training. PMID:29854454

  6. Rovers Pave the Way for Hospital Robots

    NASA Technical Reports Server (NTRS)

    2013-01-01

    The Jet Propulsion Laboratory provided funding for the Massachusetts Institute of Technology to develop capabilities for robotics like Rocky 7. After developing the operating system, Daniel Theobald started working at Cambridge, Massachusetts-based Vecna Technologies. Today, Vecna's QC Bot incorporates systems based on the NASA work and is being used to ease logistics at hospitals. The technology has contributed to 20 new jobs.

  7. Herbert: A Second Generation Mobile Robot.

    DTIC Science & Technology

    1988-01-01

    PROJECT. TASK S Artificial Inteligence Laboratory AREA A WORK UNIT NUMBERS ’ ~ 545 Technology Square Cambridge, MA 02139 11. CONTROLLING OFFICE NAME...AD-AI93 632 WMRT: A SECOND GENERTION MOBILE ROWT(U) / MASSACHUSETTS IMST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB R BROOKS ET AL .JAN l8 Al-M...MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY A. I. Memo 1016 January, 1988 HERBERT: A SECOND GENERATION MOBILE ROBOT Rodney A

  8. Robotic vascular resections during Whipple procedure.

    PubMed

    Allan, Bassan J; Novak, Stephanie M; Hogg, Melissa E; Zeh, Herbert J

    2018-01-01

    Indications for resection of pancreatic cancers have evolved to include selected patients with involvement of peri-pancreatic vascular structures. Open Whipple procedures have been the standard approach for patients requiring reconstruction of the portal vein (PV) or superior mesenteric vein (SMV). Recently, high-volume centers are performing minimally invasive Whipple procedures with portovenous resections. Our institution has performed seventy robotic Whipple procedures with concomitant vascular resections. This report outlines our technique.

  9. Robotic surgical skill acquisition: What one needs to know?

    PubMed Central

    Sood, Akshay; Jeong, Wooju; Ahlawat, Rajesh; Campbell, Logan; Aggarwal, Shruti; Menon, Mani; Bhandari, Mahendra

    2015-01-01

    Robotic surgery has been eagerly adopted by patients and surgeons alike in the field of urology, over the last decade. However, there is a lack of standardization in training curricula and accreditation guidelines to ensure surgeon competence and patient safety. Accordingly, in this review, we aim to highlight ‘who’ needs to learn ‘what’ and ‘how’, to become competent in robotic surgery. We demonstrate that both novice and experienced open surgeons require supervision and mentoring during the initial phases of robotic surgery skill acquisition. The experienced open surgeons possess domain knowledge, however, need to acquire technical knowledge under supervision (either in simulated or clinical environment) to successfully transition to robotic surgery, whereas, novice surgeons need to acquire both domain as well as technical knowledge to become competent in robotic surgery. With regard to training curricula, a variety of training programs such as academic fellowships, mini-fellowships, and mentored skill courses exist, and cater to the needs and expectations of postgraduate surgeons adequately. Fellowships provide the most comprehensive training, however, may not be suitable to all surgeon-learners secondary to the long-term time commitment. For these surgeon-learners short-term courses such as the mini-fellowships or mentored skill courses might be more apt. Lastly, with regards to credentialing uniformity in criteria regarding accreditation is lacking but earnest efforts are underway. Currently, accreditation for competence in robotic surgery is institutional specific. PMID:25598593

  10. Tips on robotic single-site surgery suture technique: Screwing and clockwise direction suture technique for Robotic single-site surgery.

    PubMed

    Moon, Hye-Sung

    2018-06-01

    Using the da Vinci single-site platform, surgeons can perform more minimally invasive surgery. However, surgical challenges exist due to the limitations of single-site instrumental movements. To aid in the performance of successful robotic single-site hysterectomy, a new suturing technique using the current set of limited instruments is introduced in this study. New vaginal cuff suturing techniques have been used in 55 robotic single-site hysterectomies in our institute over the past 2 years. A needle driver approach utilizing screwing and advancing the needle driver in the correct direction at an increasing angle from the transverse cuff margin with dragging and formation of an adequate loop of thread was used when suturing the vaginal cuff. Using the new vaginal suturing techniques, easy and firm vaginal cuff closure with reduced operative time relative to previous hysterectomies was achieved. The new vaginal cuff suturing techniques may convince more surgeons to perform robotic single-site hysterectomies more frequently and with greater ease. Copyright © 2018. Published by Elsevier B.V.

  11. Flexible robotic actuators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morin, Stephen A.; Shepherd, Robert F.; Stokes, Adam

    Systems and methods for providing flexible robotic actuators are disclosed. Some embodiments of the disclosed subject matter include a soft robot capable of providing a radial deflection motions; a soft tentacle actuator capable of providing a variety of motions and providing transportation means for various types of materials; and a hybrid robotic system that retains desirable characteristics of both soft robots and hard robots. Some embodiments of the disclosed subject matter also include methods for operating the disclosed robotic systems.

  12. Resident training in a new robotic thoracic surgery program.

    PubMed

    White, Yasmine N; Dedhia, Priya; Bergeron, Edward J; Lin, Jules; Chang, Andrew A; Reddy, Rishindra M

    2016-03-01

    The volume of robot-assisted operations has drastically increased over the past decade. New programs have focused on training surgeons, whereas resident training has lagged behind. The objective of this study was to evaluate our institutional experience with resident participation in thoracic robotic surgery cases since the initiation of our program. The first 100 robotic thoracic surgery cases at our institution were retrospectively reviewed and categorized into three sequential cohorts. Procedure type, patient and operative characteristics, level of resident participation (primary surgeon [PS] or assistant), and postoperative variables were evaluated. Of the first 100 cases, 38% were lung resections, 23% were esophageal operations, and 20% were sympathectomies. The distribution of cases changed over time with the proportion of pulmonary resections significantly increasing. Patient age (P < 0.05), body mass index (P = not significant [NS]), and comorbidities (P = NS) increased over time. Resident participation as PS increased from 33%-59% between the early and late cohorts (P < 0.05). A subset analysis of the 20 lobectomies (7 attending PS, 13 residents) showed similar patient characteristics (P = NS): age (67 versus 69), body mass index (29.5 versus 26.1), and American Society of Anesthesiologists category (2.8 versus 2.8). Operative and postoperative characteristics were also similar (P = NS) regardless of PS: operative time (260 versus 249 min), estimated blood loss (187 versus 203 mL), and length of stay (4.8 versus 4.7 d). Residents can participate as the PS in a variety of thoracic operations during the implementation of a robotics program. Operative time, estimated blood loss, and length of stay were similar regardless of level of resident participation. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Robotic exoskeleton assessment of transient ischemic attack.

    PubMed

    Simmatis, Leif; Krett, Jonathan; Scott, Stephen H; Jin, Albert Y

    2017-01-01

    We used a robotic exoskeleton to quantify specific patterns of abnormal upper limb motor behaviour in people who have had transient ischemic attack (TIA). A cohort of people with TIA was recruited within two weeks of symptom onset. All individuals completed a robotic-based assessment of 8 behavioural tasks related to upper limb motor and proprioceptive function, as well as cognitive function. Robotic task performance was compared to a large cohort of controls without neurological impairments corrected for the influence of age. Impairment in people with TIA was defined as performance below the 5th percentile of controls. Participants with TIA were also assessed with the National Institutes of Health Stroke Scale (NIHSS) score, Chedoke-McMaster Stroke Assessment (CMSA) of the arm, the Behavioural Inattention Test (BIT), the Purdue pegboard test (PPB), and the Montreal Cognitive Assessment (MoCA). Age-related white matter change (ARWMC), prior infarction and cella-media index (CMI) were assessed from baseline CT scan that was performed within 24 hours of TIA. Acute infarction was assessed from diffusion-weighted imaging in a subset of people with TIA. Twenty-two people with TIA were assessed. Robotic assessment showed impaired upper limb motor function in 7/22 people with TIA patients and upper limb sensory impairment in 4/22 individuals. Cognitive tasks involving robotic assessment of the upper limb were completed in 13 participants, of whom 8 (61.5%) showed significant impairment. Abnormal performance in the CMSA arm inventory was present in 12/22 (54.5%) participants. ARWMC was 11.8 ± 6.4 and CMI was 5.4 ± 1.5. DWI was positive in 0 participants. Quantitative robotic assessment showed that people who have had a TIA display a spectrum of upper limb motor and sensory performance deficits as well as cognitive function deficits despite resolution of symptoms and no evidence of tissue infarction.

  14. Single-port laparoscopic and robotic partial nephrectomy.

    PubMed

    Kaouk, Jihad H; Goel, Raj K

    2009-05-01

    Partial nephrectomy (PN) for small renal masses provides effective oncologic outcomes. Single-port laparoscopic (SPL) and robotic surgeries are evolving approaches to advance minimally invasive surgery. To determine the feasibility of laparoscopic and robotic single-port PN. Since 2007, evaluation of patients undergoing SPL and single-port robotic (SPR) PN at a primary referral center was performed. Patients with small, solitary, exophytic-enhancing renal masses were selected. Patients with a solitary kidney, endophytic or hilar tumors, and previous abdominal and/or kidney surgery were excluded. Perioperative and pathologic data were entered prospectively into an institutional review board (IRB)-approved database. Tumor location determined either an open Hasson transperitoneal or retroperitoneal approach. A single multichannel port or Triport provided intra-abdominal access. The Harmonic Scalpel was used for tumor excision under normal renal perfusion. The da Vinci surgical robot was used for SPR cases. Patient demographics, perioperative, hematologic, and pathologic data as well as pain assessment using the Visual Analog Pain Scale (VAPS) were assessed. A total of seven patients underwent single-port PN (SPL=5, SPR=2). One patient with a right anterior upper-pole mass required conversion from SPL to standard laparoscopy following tumor excision because of intraoperative bleeding. Pathology revealed six lesions compatible with renal cell carcinoma (RCC) and one benign cyst. One negative frozen section came back focally positive on final histopathology. All other surgical margins were negative. A mean difference of 3.0+/-2.0 g/dl in hemoglobin was noted in all patients. Minimal pain was noted at discharge following both laparoscopic and robotic single-port surgery (VAPS=1.7+/-1.2 vs 1+/-0.5/10). SPL and SPR PN is feasible for select exophytic tumors. Robotics may improve surgical capabilities during single-port surgery.

  15. A comparative cost analysis of robot-assisted versus traditional laparoscopic partial nephrectomy.

    PubMed

    Hyams, Elias; Pierorazio, Philip; Mullins, Jeffrey K; Ward, Maryann; Allaf, Mohamad

    2012-07-01

    Robot-assisted laparoscopic partial nephrectomy (RALPN) is supplanting traditional laparoscopic partial nephrectomy (LPN) as the technique of choice for minimally invasive nephron-sparing surgery. This evolution has resulted from potential clinical benefits, as well as proliferation of robotic systems and patient demand for robot-assisted surgery. We sought to quantify the costs associated with the use of robotics for minimally invasive partial nephrectomy. A cost analysis was performed for 20 consecutive robot-assisted partial nephrectomy (RPN) and LPN patients at our institution from 2009 to 2010. Data included actual perioperative and hospitalization costs as well as professional fees. Capital costs were estimated using purchase costs and amortization of two robotic systems from 2001 to 2009, as well as maintenance contract costs. The estimated cost/case was obtained using total robotic surgical volume during this period. Total estimated costs were compared between groups. A separate analysis was performed assuming "ideal" robotic utilization during a comparable period. RALPN had a cost premium of +$1066/case compared with LPN, assuming actual robot utilization from 2001 to 2009. Assuming "ideal" utilization during a comparable period, this premium decreased to +$334; capital costs per case decreased from $1907 to $1175. Tumor size, operative time, and length of stay were comparable between groups. RALPN is associated with a small to moderate cost premium depending on assumptions regarding robotic surgical volume. Saturated utilization of robotic systems decreases attributable capital costs and makes comparison with laparoscopy more favorable. Purported clinical benefits of RPN (eg, decreased warm ischemia time, increased utilization of nephron-sparing surgery) need further study, because these may have cost implications.

  16. Multi-robot control interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruemmer, David J; Walton, Miles C

    Methods and systems for controlling a plurality of robots through a single user interface include at least one robot display window for each of the plurality of robots with the at least one robot display window illustrating one or more conditions of a respective one of the plurality of robots. The user interface further includes at least one robot control window for each of the plurality of robots with the at least one robot control window configured to receive one or more commands for sending to the respective one of the plurality of robots. The user interface further includes amore » multi-robot common window comprised of information received from each of the plurality of robots.« less

  17. Robot-assisted Ivor-Lewis esophagectomy with intrathoracic robot-sewn anastomosis.

    PubMed

    Jin, Runsen; Xiang, Jie; Han, Dingpei; Zhang, Yajie; Li, Hecheng

    2017-11-01

    This video clip demonstrated a performance of robot-assisted Ivor-Lewis esophagectomy with intrathoracic robot-sewn anastomosis. The patient had an esophageal mass located approximately 33 cm away from incisor, and robot-assisted Ivor-Lewis esophagectomy was applied for him. Importantly, a double-layer esophago-gastric anastomosis was made by robotic hand-sewn suture. Our early experience demonstrated that the robot-sewn intrathoracic anastomosis is feasible and safe with a lower complication rate and the absence of anastomotic leakage.

  18. In-hospital mortality and morbidity after robotic coronary artery surgery.

    PubMed

    Cavallaro, Paul; Rhee, Amanda J; Chiang, Yuting; Itagaki, Shinobu; Seigerman, Matthew; Chikwe, Joanna

    2015-02-01

    The objective of this study was to assess the impact of robotic approaches on outcomes of coronary bypass surgery. Retrospective national database analysis. United States hospitals. A weighted sample of 484,128 patients undergoing isolated coronary artery surgery identified from the Nationwide Inpatient Sample from 2008 through 2010. Robotically assisted coronary artery bypass surgery versus conventional bypass surgery. Robotic approaches were used in 2,582 patients (0.4%). Patients undergoing robotic surgery were less likely to be female (odds ratio [OR] 0.71, 95% confidence interval [CI] 0.57-0.87), present with acute myocardial infarction (OR 0.53, 95% CI 0.38-0.73), or have cerebrovascular disease (OR 0.41, 95% CI 0.23-0.71) compared to patients undergoing conventional surgery. In 59% of robotic cases, a single bypass was performed, and 2 bypasses were performed in 25% of cases. After adjusting for comorbidity, reduced postoperative stroke (0.0% v 1.5%, p = 0.045) and transfusion (13.5% v 24.4%, p = 0.001) rates were observed in patients who underwent robotic single-bypass surgery compared to conventional surgery. In patients undergoing multiple bypass grafts, higher mortality (1.1% v 0.5%), and cardiovascular complications (12.2% v 10.6%) were observed when robotic assistance was used, but the differences were not statistically significant (p = 0.5). The mean number of robotic cases carried out annually at institutions sampled was 6. Robotic assistance is associated with lower rates of postoperative complications in highly selected patients undergoing single coronary artery bypass surgery, but the benefits of this approach are reduced in patients who require multiple coronary artery bypass grafts. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Robotic and endoscopic transoral thyroidectomy: feasibility and description of the technique in the cadaveric model

    PubMed Central

    Kahramangil, Bora; Mohsin, Khuzema; Alzahrani, Hassan; Bu Ali, Daniah; Tausif, Syed; Kang, Sang-Wook; Kandil, Emad

    2017-01-01

    Background Numerous new approaches have been described over the years to improve the cosmetic outcomes of thyroid surgery. Transoral approach is a new technique that aims to achieve superior cosmetic outcomes by concealing the incision in the oral cavity. Methods Transoral thyroidectomy through vestibular approach was performed in two institutions on cadaveric models. Procedure was performed endoscopically in one institution, while the robotic technique was utilized at the other. Results Transoral thyroidectomy was successfully performed at both institutions with robotic and endoscopic techniques. All vital structures were identified and preserved. Conclusions Transoral thyroidectomy has been performed in animal and cadaveric models, as well as in some clinical studies. Our initial experience indicates the feasibility of this approach. More clinical studies are required to elucidate its full utility. PMID:29302476

  20. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Students from Hagerty High School in Oviedo, Fla., participants in FIRST Robotics, show off their robots' capabilities at the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  1. Robotic surgery, video-assisted thoracic surgery, and open surgery for early stage lung cancer: comparison of costs and outcomes at a single institute.

    PubMed

    Novellis, Pierluigi; Bottoni, Edoardo; Voulaz, Emanuele; Cariboni, Umberto; Testori, Alberto; Bertolaccini, Luca; Giordano, Laura; Dieci, Elisa; Granato, Lorenzo; Vanni, Elena; Montorsi, Marco; Alloisio, Marco; Veronesi, Giulia

    2018-02-01

    Robotic surgery is increasingly used to resect lung cancer. However costs are high. We compared costs and outcomes for robotic surgery, video-assisted thoracic surgery (VATS), and open surgery, to treat non-small cell lung cancer (NSCLC). We retrospectively assessed 103 consecutive patients given lobectomy or segmentectomy for clinical stage I or II NSCLC. Three surgeons could choose VATS or open, the fourth could choose between all three techniques. Between-group differences were assessed by Fisher's exact, two-way analysis of variance (ANOVA), and Wilcoxon-Mann-Whitney test. P values <0.05 were considered significant. Twenty-three patients were treated by robot, 41 by VATS, and 39 by open surgery. Age, physical status, pulmonary function, comorbidities, stage, and perioperative complications did not differ between the groups. Pathological tumor size was greater in the open than VATS and robotic groups (P=0.025). Duration of surgery was 150, 191 and 116 minutes, by robotic, VATS and open approaches, respectively (P<0.001). Significantly more lymph node stations were removed (P<0.001), and median length of stay was shorter (4, 5 and 6 days, respectively; P<0.001) in the robotic than VATS and open groups. Estimated costs were 82%, 68% and 69%, respectively, of the regional health service reimbursement for robotic, VATS and open approaches. Robotic surgery for early lung cancer was associated with shorter stay and more extensive lymph node dissection than VATS and open surgery. Duration of surgery was shorter for robotic than VATS. Although the cost of robotic thoracic surgery is high, the hospital makes a profit.

  2. Mobile Robot and Mobile Manipulator Research Towards ASTM Standards Development

    PubMed Central

    Bostelman, Roger; Hong, Tsai; Legowik, Steven

    2017-01-01

    Performance standards for industrial mobile robots and mobile manipulators (robot arms onboard mobile robots) have only recently begun development. Low cost and standardized measurement techniques are needed to characterize system performance, compare different systems, and to determine if recalibration is required. This paper discusses work at the National Institute of Standards and Technology (NIST) and within the ASTM Committee F45 on Driverless Automatic Guided Industrial Vehicles. This includes standards for both terminology, F45.91, and for navigation performance test methods, F45.02. The paper defines terms that are being considered. Additionally, the paper describes navigation test methods that are near ballot and docking test methods being designed for consideration within F45.02. This includes the use of low cost artifacts that can provide alternatives to using relatively expensive measurement systems. PMID:28690359

  3. Robotic virtual reality simulation plus standard robotic orientation versus standard robotic orientation alone: a randomized controlled trial.

    PubMed

    Vaccaro, Christine M; Crisp, Catrina C; Fellner, Angela N; Jackson, Christopher; Kleeman, Steven D; Pavelka, James

    2013-01-01

    The objective of this study was to compare the effect of virtual reality simulation training plus robotic orientation versus robotic orientation alone on performance of surgical tasks using an inanimate model. Surgical resident physicians were enrolled in this assessor-blinded randomized controlled trial. Residents were randomized to receive either (1) robotic virtual reality simulation training plus standard robotic orientation or (2) standard robotic orientation alone. Performance of surgical tasks was assessed at baseline and after the intervention. Nine of 33 modules from the da Vinci Skills Simulator were chosen. Experts in robotic surgery evaluated each resident's videotaped performance of the inanimate model using the Global Rating Scale (GRS) and Objective Structured Assessment of Technical Skills-modified for robotic-assisted surgery (rOSATS). Nine resident physicians were enrolled in the simulation group and 9 in the control group. As a whole, participants improved their total time, time to incision, and suture time from baseline to repeat testing on the inanimate model (P = 0.001, 0.003, <0.001, respectively). Both groups improved their GRS and rOSATS scores significantly (both P < 0.001); however, the GRS overall pass rate was higher in the simulation group compared with the control group (89% vs 44%, P = 0.066). Standard robotic orientation and/or robotic virtual reality simulation improve surgical skills on an inanimate model, although this may be a function of the initial "practice" on the inanimate model and repeat testing of a known task. However, robotic virtual reality simulation training increases GRS pass rates consistent with improved robotic technical skills learned in a virtual reality environment.

  4. Evolutionary Developmental Robotics: Improving Morphology and Control of Physical Robots.

    PubMed

    Vujovic, Vuk; Rosendo, Andre; Brodbeck, Luzius; Iida, Fumiya

    2017-01-01

    Evolutionary algorithms have previously been applied to the design of morphology and control of robots. The design space for such tasks can be very complex, which can prevent evolution from efficiently discovering fit solutions. In this article we introduce an evolutionary-developmental (evo-devo) experiment with real-world robots. It allows robots to grow their leg size to simulate ontogenetic morphological changes, and this is the first time that such an experiment has been performed in the physical world. To test diverse robot morphologies, robot legs of variable shapes were generated during the evolutionary process and autonomously built using additive fabrication. We present two cases with evo-devo experiments and one with evolution, and we hypothesize that the addition of a developmental stage can be used within robotics to improve performance. Moreover, our results show that a nonlinear system-environment interaction exists, which explains the nontrivial locomotion patterns observed. In the future, robots will be present in our daily lives, and this work introduces for the first time physical robots that evolve and grow while interacting with the environment.

  5. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Students gather to watch as a DARwin-OP miniature humanoid robot from Virginia Tech Robotics demonstrates its soccer abilities at the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  6. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – A child gets an up-close look at Charli, an autonomous walking robot developed by Virginia Tech Robotics, during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  7. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    The NASA Centennial Challenges prize, level one, is presented to team Mountaineers for successfully completing level one of the NASA 2014 Sample Return Robot Challenge, from left, Ken Stafford, WPI Challenge technical advisor; Colleen Shaver, WPI Challenge Manager; Ryan Watson, Team Mountaineers; Marvin Cheng, Team Mountaineers; Alexander Hypes, Team Mountaineers; Jarred Strader, Team Mountaineers; Lucas Behrens, Team Mountaineers; Yu Gu, Team Mountaineers; Nick Ohi, Team Mountaineers; Dorothy Rasco, NASA Deputy Associate Administrator for the Space Technology Mission Directorate; Scott Harper, Team Mountaineers; Tanmay Mandal, Team Mountaineers; David Miller, NASA Chief Technologist; Sam Ortega, NASA Program Manager for Centennial Challenges, Saturday, June 14, 2014, at Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team Mountaineers was the only team to complete the level one challenge. During the competition, teams were required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge was to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  8. The learning curve of robot-assisted radical cystectomy: results from the International Robotic Cystectomy Consortium.

    PubMed

    Hayn, Matthew H; Hussain, Abid; Mansour, Ahmed M; Andrews, Paul E; Carpentier, Paul; Castle, Erik; Dasgupta, Prokar; Rimington, Peter; Thomas, Raju; Khan, Shamim; Kibel, Adam; Kim, Hyung; Manoharan, Murugesan; Menon, Mani; Mottrie, Alex; Ornstein, David; Peabody, James; Pruthi, Raj; Palou Redorta, Joan; Richstone, Lee; Schanne, Francis; Stricker, Hans; Wiklund, Peter; Chandrasekhar, Rameela; Wilding, Greg E; Guru, Khurshid A

    2010-08-01

    Robot-assisted radical cystectomy (RARC) has evolved as a minimally invasive alternative to open radical cystectomy for patients with invasive bladder cancer. We sought to define the learning curve for RARC by evaluating results from a multicenter, contemporary, consecutive series of patients who underwent this procedure. Utilizing the International Robotic Cystectomy Consortium database, a prospectively maintained and institutional review board-approved database, we identified 496 patients who underwent RARC by 21 surgeons at 14 institutions from 2003 to 2009. Cut-off points for operative time, lymph node yield (LNY), estimated blood loss (EBL), and margin positivity were identified. Using specifically designed statistical mixed models, we were able to inversely predict the number of patients required for an institution to reach the predetermined cut-off points. Mean operative time was 386 min, mean EBL was 408 ml, and mean LNY was 18. Overall, 34 of 482 patients (7%) had a positive surgical margin (PSM). Using statistical models, it was estimated that 21 patients were required for operative time to reach 6.5h and 8, 20, and 30 patients were required to reach an LNY of 12, 16, and 20, respectively. For all patients, PSM rates of <5% were achieved after 30 patients. For patients with pathologic stage higher than T2, PSM rates of <15% were achieved after 24 patients. RARC is a challenging procedure but is a technique that is reproducible throughout multiple centers. This report helps to define the learning curve for RARC and demonstrates an acceptable level of proficiency by the 30th case for proxy measures of RARC quality. Copyright (c) 2010 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  9. Modified robotic-assisted thyroidectomy: an initial experience with the retroauricular approach.

    PubMed

    Kandil, Emad; Saeed, Ahmad; Mohamed, Salah E; Alsaleh, Nuha; Aslam, Rizwan; Moulthrop, Thomas

    2015-03-01

    New approaches for robotic-assisted thyroidectomy, including the retroauricular approach, were recently described. We have modified the established surgical approach for retroauricular robotic thyroidectomy. Herein, we report our initial experience to identify challenges and limitations of this new surgical approach. Prospective case series. This study was performed under institutional review board approval for patients who underwent retroauricular robotic hemithyroidectomy at an academic North American institution. The retroauricular approach was modified by using the space between the two heads of the sternocleidomastoid muscle as our working space. Additionally, selected patients underwent concomitant neck lift surgery with robotic thyroid surgery. Clinical characteristics, total operative time, blood loss, surgical outcomes, and length of hospital stay were evaluated. Twelve female patients were included in this study. Mean age was 45 ± 4.43 years, and mean body mass index was 28.6 ± 2.15. Mean thyroid nodule size was 1.15 ± 0.26 cm(3). All cases were completed successfully via single retroauricular incision. There was no conversion to an open approach. Four out of 12 patients (33%) underwent additional concomitant neck lift surgery, with a mean total operative time of 156 ± 15.88 minutes. The mean operative time for the remaining eight patients who underwent the robotic approach without additional neck lift surgery was 145.4 ± 10.08 minutes. There were no cases of permanent vocal cord paralysis or permanent hypoparathyroidism. Mean blood loss was 22.4 ± 4.32 mL. Four patients (33%) were discharged home on the same day of surgery, and the remaining eight patients were discharged after an overnight stay. Single-incision retroauricular robotic hemithyroidectomy can be a safe and feasible alternative to other remote access techniques. Neck lift surgery can be performed safely in a select group of patients. However, future studies are

  10. Comparative assessment of physical and cognitive ergonomics associated with robotic and traditional laparoscopic surgeries.

    PubMed

    Lee, Gyusung I; Lee, Mija R; Clanton, Tameka; Clanton, Tamera; Sutton, Erica; Park, Adrian E; Marohn, Michael R

    2014-02-01

    We conducted this study to investigate how physical and cognitive ergonomic workloads would differ between robotic and laparoscopic surgeries and whether any ergonomic differences would be related to surgeons' robotic surgery skill level. Our hypothesis is that the unique features in robotic surgery will demonstrate skill-related results both in substantially less physical and cognitive workload and uncompromised task performance. Thirteen MIS surgeons were recruited for this institutional review board-approved study and divided into three groups based on their robotic surgery experiences: laparoscopy experts with no robotic experience, novices with no or little robotic experience, and robotic experts. Each participant performed six surgical training tasks using traditional laparoscopy and robotic surgery. Physical workload was assessed by using surface electromyography from eight muscles (biceps, triceps, deltoid, trapezius, flexor carpi ulnaris, extensor digitorum, thenar compartment, and erector spinae). Mental workload assessment was conducted using the NASA-TLX. The cumulative muscular workload (CMW) from the biceps and the flexor carpi ulnaris with robotic surgery was significantly lower than with laparoscopy (p < 0.05). Interestingly, the CMW from the trapezius was significantly higher with robotic surgery than with laparoscopy (p < 0.05), but this difference was only observed in laparoscopic experts (LEs) and robotic surgery novices. NASA-TLX analysis showed that both robotic surgery novices and experts expressed lower global workloads with robotic surgery than with laparoscopy, whereas LEs showed higher global workload with robotic surgery (p > 0.05). Robotic surgery experts and novices had significantly higher performance scores with robotic surgery than with laparoscopy (p < 0.05). This study demonstrated that the physical and cognitive ergonomics with robotic surgery were significantly less challenging. Additionally, several ergonomic components

  11. Inguinal hernia repair: is there a benefit to using the robot?

    PubMed

    Charles, Eric J; Mehaffey, J Hunter; Tache-Leon, Carlos A; Hallowell, Peter T; Sawyer, Robert G; Yang, Zequan

    2018-04-01

    The number of robotic surgical procedures performed yearly is constantly rising, due to improved dexterity and visualization capabilities compared with conventional methods. We hypothesized that outcomes after robotic-assisted inguinal hernia repair would not be significantly different from outcomes after laparoscopic or open repair. All patients undergoing inguinal hernia repair between 2012 and 2016 were identified using institutional American College of Surgeons National Surgical Quality Improvement Program data. Demographics; preoperative, intraoperative, and postoperative characteristics; and outcomes were evaluated based on method of repair (Robot, Lap, or Open). Categorical variables were analyzed by Chi-square test and continuous variables using Mann-Whitney U. A total of 510 patients were identified who underwent unilateral inguinal hernia repair (Robot: 13.8% [n = 69], Lap: 48.1% [n = 241], Open: 38.1% [n = 191]). There were no demographic differences between groups other than age (Robot: 52 [39-62], Lap: 57 [45-67], and Open: 56 [48-67] years, p = 0.03). Operative duration was also different (Robot: 105 [76-146] vs. Lap: 81 [61-103] vs. Open: 71 [56-88] min, p < 0.001). There were no operative mortalities and all patients except one were discharged home the same day. Postoperative occurrences (adverse events, readmissions, and death) were similar between groups (Robot: 2.9% [2], Lap: 3.3% [8], Open: 5.2% [10], p = 0.53). Although rare, there was a significant difference in rate of postoperative skin and soft tissue infection (Robot: 2.9% [2] vs. Lap: 0% [0] vs. Open: 0.5% [1], p = 0.02). Cost was significantly different between groups (Robot: $7162 [$5942-8375] vs. Lap: $4527 [$2310-6003] vs. Open: $4264 [$3277-5143], p < 0.001). Outcomes after robotic-assisted inguinal hernia repair were similar to outcomes after laparoscopic or open repair. Longer operative duration during robotic repair may contribute to higher rates

  12. Put Your Robot In, Put Your Robot Out: Sequencing through Programming Robots in Early Childhood

    ERIC Educational Resources Information Center

    Kazakoff, Elizabeth R.; Bers, Marina Umaschi

    2014-01-01

    This article examines the impact of programming robots on sequencing ability in early childhood. Thirty-four children (ages 4.5-6.5 years) participated in computer programming activities with a developmentally appropriate tool, CHERP, specifically designed to program a robot's behaviors. The children learned to build and program robots over three…

  13. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – A miniature humanoid robot known as DARwin-OP, from Virginia Tech Robotics, plays soccer with a red tennis ball for a crowd of students at the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  14. Robotic Surgical Education: a Collaborative Approach to Training Postgraduate Urologists and Endourology Fellows

    PubMed Central

    Mirheydar, Hossein; Jones, Marklyn; Koeneman, Kenneth S.

    2009-01-01

    Objective: Currently, robotic training for inexperienced, practicing surgeons is primarily done vis-à-vis industry and/or society-sponsored day or weekend courses, with limited proctorship opportunities. The objective of this study was to assess the impact of an extended-proctorship program at up to 32 months of follow-up. Methods: An extended-proctorship program for robotic-assisted laparoscopic radical prostatectomy was established at our institution. The curriculum consisted of 3 phases: (1) completing an Intuitive Surgical 2-day robotic training course with company representatives; (2) serving as assistant to a trained proctor on 5 to 6 cases; and (3) performing proctored cases up to 1 year until confidence was achieved. Participants were surveyed and asked to evaluate on a 5-point Likert scale their operative experience in robotics and satisfaction regarding their training Results: Nine of 9 participants are currently performing robotic-assisted laparoscopic radical prostatectomy (RALP) independently. Graduates of our program have performed 477 RALP cases. The mean number of cases performed within phase 3 was 20.1 (range, 5 to 40) prior to independent practice. The program received a rating of 4.2/5 for effectiveness in teaching robotic surgery skills. Conclusion: Our robotic program, with extended proctoring, has led to an outstanding take-rate for disseminating robotic skills in a metropolitan community. PMID:19793464

  15. Robot-sewn ileoileal anastomosis during robot-assisted cystectomy.

    PubMed

    Loertzer, P; Siemer, S; Stöckle, M; Ohlmann, C H

    2018-07-01

    To analyze the feasibility and perioperative results of patients undergoing robot-assisted cystectomy with intracorporeal urinary diversion and robot-sewn ileoileal anastomosis. This is a mono-centric analysis of perioperative data from 48 consecutive patients undergoing robot-assisted cystectomy with intracorporeal urinary diversion and robot-sewn ileoileal anastomosis. Data include the preoperative variables, operative and postoperative course and complication rates related to bowel anastomosis. End points were time spent for anastomosis and intra- and postoperative complication rates. Median operating time was 23.0 (13-60) min for the ileoileal anastomosis. Median overall operating time was 295 (200-780) min, with a median of 282 (200-418) min and 414.0 (225-780) min for the ileum conduit (N = 35) and ileal neobladder (N = 13). Two patients developed paralytic ileus; in another patient acute peritonitis occurred, but was caused by urinary leakage and therefore unrelated to the bowel anastomosis. No anastomotic leakage was noticed. Costs for the robot-sewn anastomosis was 8€ compared to 1250€ for a stapled anastomosis which was performed in previous cases. Limitations are the non-comparative nature of the analysis and the limited number of patients. Robot-sewn ileoileal anastomosis is feasible with low complication rates. Compared to the stapled anastomosis, a robot-sewn ileoileal anastomosis may serve as an alternative and cost-saving approach.

  16. Hopping robot

    DOEpatents

    Spletzer, Barry L.; Fischer, Gary J.; Marron, Lisa C.; Martinez, Michael A.; Kuehl, Michael A.; Feddema, John T.

    2001-01-01

    The present invention provides a hopping robot that includes a misfire tolerant linear actuator suitable for long trips, low energy steering and control, reliable low energy righting, miniature low energy fuel control. The present invention provides a robot with hopping mobility, capable of traversing obstacles significant in size relative to the robot and capable of operation on unpredictable terrain over long range. The present invention further provides a hopping robot with misfire-tolerant combustion actuation, and with combustion actuation suitable for use in oxygen-poor environments.

  17. Robot Wars: US Empire and geopolitics in the robotic age

    PubMed Central

    Shaw, Ian GR

    2017-01-01

    How will the robot age transform warfare? What geopolitical futures are being imagined by the US military? This article constructs a robotic futurology to examine these crucial questions. Its central concern is how robots – driven by leaps in artificial intelligence and swarming – are rewiring the spaces and logics of US empire, warfare, and geopolitics. The article begins by building a more-than-human geopolitics to de-center the role of humans in conflict and foreground a worldly understanding of robots. The article then analyzes the idea of US empire, before speculating upon how and why robots are materializing new forms of proxy war. A three-part examination of the shifting spaces of US empire then follows: (1) Swarm Wars explores the implications of miniaturized drone swarming; (2) Roboworld investigates how robots are changing US military basing strategy and producing new topological spaces of violence; and (3) The Autogenic Battle-Site reveals how autonomous robots will produce emergent, technologically event-ful sites of security and violence – revolutionizing the battlespace. The conclusion reflects on the rise of a robotic US empire and its consequences for democracy. PMID:29081605

  18. Robot Wars: US Empire and geopolitics in the robotic age.

    PubMed

    Shaw, Ian Gr

    2017-10-01

    How will the robot age transform warfare? What geopolitical futures are being imagined by the US military? This article constructs a robotic futurology to examine these crucial questions. Its central concern is how robots - driven by leaps in artificial intelligence and swarming - are rewiring the spaces and logics of US empire, warfare, and geopolitics. The article begins by building a more-than-human geopolitics to de-center the role of humans in conflict and foreground a worldly understanding of robots. The article then analyzes the idea of US empire, before speculating upon how and why robots are materializing new forms of proxy war. A three-part examination of the shifting spaces of US empire then follows: (1) Swarm Wars explores the implications of miniaturized drone swarming; (2) Roboworld investigates how robots are changing US military basing strategy and producing new topological spaces of violence; and (3) The Autogenic Battle-Site reveals how autonomous robots will produce emergent, technologically event-ful sites of security and violence - revolutionizing the battlespace. The conclusion reflects on the rise of a robotic US empire and its consequences for democracy.

  19. Robotic hysterectomy versus conventional laparoscopic hysterectomy: outcome and cost analyses of a matched case-control study.

    PubMed

    Sarlos, Dimitri; Kots, Lavonne; Stevanovic, Nebojsa; Schaer, Gabriel

    2010-05-01

    Robotic surgery, with its technical advances, promises to open a new window to minimally invasive surgery in gynaecology. Feasibility and safety of this surgical innovation have been demonstrated in several studies, and now a critical analysis of these new developments regarding outcome and costs is in place. So far only a few studies compare robotic with conventional laparoscopic surgery in gynaecology. Our objective was to evaluate our initial experience performing total robot-assisted hysterectomy with the da Vinci surgical system and compare peri-operative outcome and costs with total laparoscopic hysterectomy. For this prospective matched case-control study at our institution, peri-operative data from our first 40 consecutive total robot-assisted hysterectomies for benign indications were recorded and matched 1:1 with total laparoscopic hysterectomies according to age, BMI and uterus weight. Surgical costs were calculated for both procedures. Surgeons' subjective impressions of robotics were evaluated with a self-developed questionnaire. No conversions to laparotomy or severe peri-operative complications occurred. Mean operating time was 109 (113; 50-170) min for the robotic group and 83 (80; 55-165) min for the conventional laparoscopic group. Mean postoperative hospitalisation for robotic surgery was 3.3 (3; 2-6) days versus 3.9 (4; 2-7) days for the conventional laparoscopic group. Average surgical cost of a robot-assisted laparoscopic hysterectomy was 4067 euros compared to 2151 euros for the conventional laparoscopic procedure at our institution. For the robotic group wider range of motion of the instruments and better ergonomics were considered to be an advantage, and lack of direct access to the patient was stated as a disadvantage. Robot-assited hysterectomy is a feasible and interesting new technique with comparable outcome to total laparoscopic hysterectomy. Operating times of total laparoscopic hysterectomy seem to be achieved quickly especially for

  20. INL Multi-Robot Control Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2005-03-30

    The INL Multi-Robot Control Interface controls many robots through a single user interface. The interface includes a robot display window for each robot showing the robot’s condition. More than one window can be used depending on the number of robots. The user interface also includes a robot control window configured to receive commands for sending to the respective robot and a multi-robot common window showing information received from each robot.

  1. Basic Robotics.

    ERIC Educational Resources Information Center

    Mullen, Frank

    This curriculum outline consists of instructional materials and information concerning resources for use in teaching a course in robotics. Addressed in the individual sections of the outline are the following topics: the nature of an industrial robot; the parts of an industrial robot (the manipulator, the power structure, and the control system);…

  2. Industrial Robots.

    ERIC Educational Resources Information Center

    Reed, Dean; Harden, Thomas K.

    Robots are mechanical devices that can be programmed to perform some task of manipulation or locomotion under automatic control. This paper discusses: (1) early developments of the robotics industry in the United States; (2) the present structure of the industry; (3) noneconomic factors related to the use of robots; (4) labor considerations…

  3. Mobile robot knowledge base

    NASA Astrophysics Data System (ADS)

    Heath Pastore, Tracy; Barnes, Mitchell; Hallman, Rory

    2005-05-01

    Robot technology is developing at a rapid rate for both commercial and Department of Defense (DOD) applications. As a result, the task of managing both technology and experience information is growing. In the not-to-distant past, tracking development efforts of robot platforms, subsystems and components was not too difficult, expensive, or time consuming. To do the same today is a significant undertaking. The Mobile Robot Knowledge Base (MRKB) provides the robotics community with a web-accessible, centralized resource for sharing information, experience, and technology to more efficiently and effectively meet the needs of the robot system user. The resource includes searchable information on robot components, subsystems, mission payloads, platforms, and DOD robotics programs. In addition, the MRKB website provides a forum for technology and information transfer within the DOD robotics community and an interface for the Robotic Systems Pool (RSP). The RSP manages a collection of small teleoperated and semi-autonomous robotic platforms, available for loan to DOD and other qualified entities. The objective is to put robots in the hands of users and use the test data and fielding experience to improve robot systems.

  4. Establishing the Learning Curve of Robotic Sacral Colpopexy in a Start-up Robotics Program.

    PubMed

    Sharma, Shefali; Calixte, Rose; Finamore, Peter S

    2016-01-01

    To determine the learning curve of the following segments of a robotic sacral colpopexy: preoperative setup, operative time, postoperative transition, and room turnover. A retrospective cohort study to determine the number of cases needed to reach points of efficiency in the various segments of a robotic sacral colpopexy (Canadian Task Force II-2). A university-affiliated community hospital. Women who underwent robotic sacral colpopexy at our institution from 2009 to 2013 comprise the study population. Patient characteristics and operative reports were extracted from a patient database that has been maintained since the inception of the robotics program at Winthrop University Hospital and electronic medical records. Based on additional procedures performed, 4 groups of patients were created (A-D). Learning curves for each of the segment times of interest were created using penalized basis spline (B-spline) regression. Operative time was further analyzed using an inverse curve and sequential grouping. A total of 176 patients were eligible. Nonparametric tests detected no difference in procedure times between the 4 groups (A-D) of patients. The preoperative and postoperative points of efficiency were 108 and 118 cases, respectively. The operative points of proficiency and efficiency were 25 and 36 cases, respectively. Operative time was further analyzed using an inverse curve that revealed that after 11 cases the surgeon had reached 90% of the learning plateau. Sequential grouping revealed no significant improvement in operative time after 60 cases. Turnover time could not be assessed because of incomplete data. There is a difference in the operative time learning curve for robotic sacral colpopexy depending on the statistical analysis used. The learning curve of the operative segment showed an improvement in operative time between 25 and 36 cases when using B-spline regression. When the data for operative time was fit to an inverse curve, a learning rate of 11 cases

  5. Self-Reconfigurable Robots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HENSINGER, DAVID M.; JOHNSTON, GABRIEL A.; HINMAN-SWEENEY, ELAINE M.

    2002-10-01

    A distributed reconfigurable micro-robotic system is a collection of unlimited numbers of distributed small, homogeneous robots designed to autonomously organize and reorganize in order to achieve mission-specified geometric shapes and functions. This project investigated the design, control, and planning issues for self-configuring and self-organizing robots. In the 2D space a system consisting of two robots was prototyped and successfully displayed automatic docking/undocking to operate dependently or independently. Additional modules were constructed to display the usefulness of a self-configuring system in various situations. In 3D a self-reconfiguring robot system of 4 identical modules was built. Each module connects to its neighborsmore » using rotating actuators. An individual component can move in three dimensions on its neighbors. We have also built a self-reconfiguring robot system consisting of 9-module Crystalline Robot. Each module in this robot is actuated by expansion/contraction. The system is fully distributed, has local communication (to neighbors) capabilities and it has global sensing capabilities.« less

  6. Robot geometry calibration

    NASA Technical Reports Server (NTRS)

    Hayati, Samad; Tso, Kam; Roston, Gerald

    1988-01-01

    Autonomous robot task execution requires that the end effector of the robot be positioned accurately relative to a reference world-coordinate frame. The authors present a complete formulation to identify the actual robot geometric parameters. The method applies to any serial link manipulator with arbitrary order and combination of revolute and prismatic joints. A method is also presented to solve the inverse kinematic of the actual robot model which usually is not a so-called simple robot. Experimental results performed by utilizing a PUMA 560 with simple measurement hardware are presented. As a result of this calibration a precision move command is designed and integrated into a robot language, RCCL, and used in the NASA Telerobot Testbed.

  7. An overview of artificial intelligence and robotics. Volume 2: Robotics

    NASA Technical Reports Server (NTRS)

    Gevarter, W. B.

    1982-01-01

    This report provides an overview of the rapidly changing field of robotics. The report incorporates definitions of the various types of robots, a summary of the basic concepts, utilized in each of the many technical areas, review of the state of the art and statistics of robot manufacture and usage. Particular attention is paid to the status of robot development, the organizations involved, their activities, and their funding.

  8. Introducing robotic surgery into an endometrial cancer service--a prospective evaluation of clinical and economic outcomes in a UK institution.

    PubMed

    Ind, Thomas E J; Marshall, Chris; Hacking, Matthew; Harris, Michelle; Bishop, Liz; Barton, Desmond; Bridges, Jane E; Shepherd, John H; Nobbenhuis, Marielle

    2016-03-01

    We have assessed how the introduction of robotics in a publicly funded endometrial cancer service affects clinical and economic outcomes. The study included 196 women. Costs were divided into those for wards, high dependency, staffing, theatres, pharmacy, blood products, imaging, pathology and rehabilitation. Capital depreciation was included. Prior to the introduction of robotics, 78/130 (60.0%) cases were performed open, compared to 17/66 (25.8%) afterwards (p < 0.0001). The median operative time increased 37 min (95% CI 17-55 min; p = 0.0002); the median blood loss was 55 ml lower (95% CI 0-150 ml; p = 0.0181); the stay was 2 days shorter (95% CI 1-3; p < 0.0001). Complications reduced from 64/130 (49.2%) to 19/66 (28.8%) (p = 0.0045). Costs reduced from £11 476 to £10 274 (p = 0.0065). Conversions for 'straight stick' surgery were 18.2% (14/77) compared to 0.0% (0/24) for robotics (p = 0.0164). Introducing robotics resulted in fewer laparotomies, shorter stays, fewer complications and lower costs. © 2015 The Authors. The International Journal of Medical Robotics and Computer Assisted Surgery Published by John Wiley & Sons Ltd.

  9. Robot Rescue

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2004-01-01

    Tests with robots and the high-fidelity Hubble Space Telescope mockup astronauts use to train for servicing missions have convinced NASA managers it may be possible to maintain and upgrade the orbiting observatory without sending a space shuttle to do the job. In a formal request last week, the agency gave bidders until July 16 to sub-mit proposals for a robotic mission to the space telescope before the end of 2007. At a minimum, the mission would attach a rocket motor to deorbit the telescope safely when its service life ends. In the best case, it would use state-of-the- art robotics to prolong its life on orbit and install new instruments. With the space shuttle off-limits for the job under strict post-Columbia safety policies set by Administrator Sean O'Keefe, NASA has designed a "straw- man" robotic mission that would use an Atlas V or Delta N to launch a 20,ooO-lb. "Hubble Robotic Vehicle" to service the telescope. There, a robotic arm would grapple it, much as the shuttle does.

  10. Robotic hepatobiliary and pancreatic surgery: lessons learned and predictors for conversion.

    PubMed

    Hanna, Erin M; Rozario, Nigel; Rupp, Christopher; Sindram, David; Iannitti, David A; Martinie, John B

    2013-06-01

    The use of surgical robots has slowly gained an increasing presence in the realm of hepatobiliary and pancreatic (HPB) surgery. With additional experience, anecdotal evidence has been useful in guiding patient selection for complex robotic procedures. In the following analysis, we reviewed our case series and looked for predictors of conversion in robotic HPB surgery. We retrospectively reviewed all patients who underwent robotic HPB procedures by a single surgeon at two institutions during March 2006-June 2012. Patient demographics, operative data, procedure type and conversion information were recorded. Trends were analysed for indications for conversion. A subset analysis of robotic-assisted laparoscopic distal pancreatomy was performed and compared with laparoscopic and open distal pancreatectomy during the same time period by the same surgeon. During this time period, 77 patients underwent robotic hepatobiliary and pancreatic procedures. All procedures were performed by a single surgeon (J.M.) and included 38 males (49%) and 39 females (51%). Median age was 59 and the majority of patients were ASA class III. There were 24 conversions, which decreased in frequency from 2009 (7) to 2011 (3). Reasons for conversion included significant obesity and technical difficulty. Patients with conversions had more intraoperative blood loss (966 vs 176 ml), more frequently received transfusion (29% vs 2%) and were more likely to have postoperative intensive care. Overall length of stay was longer following conversion (8.3 vs 5.6 days). Robotic-assisted hepatobiliary and pancreatic procedures are often extremely complex, with a significant learning curve. Recognizing factors that prohibit successful completion of a robotic-assisted surgical procedure is key for patient safety. Careful patient selection in the appropriate settings facilitates the maximal benefit of robotic-assisted complex HPB surgery. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Advanced robot locomotion.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry

    This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics naturalmore » human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.« less

  12. Augmented-reality-based skills training for robot-assisted urethrovesical anastomosis: a multi-institutional randomised controlled trial.

    PubMed

    Chowriappa, Ashirwad; Raza, Syed Johar; Fazili, Anees; Field, Erinn; Malito, Chelsea; Samarasekera, Dinesh; Shi, Yi; Ahmed, Kamran; Wilding, Gregory; Kaouk, Jihad; Eun, Daniel D; Ghazi, Ahmed; Peabody, James O; Kesavadas, Thenkurussi; Mohler, James L; Guru, Khurshid A

    2015-02-01

    To validate robot-assisted surgery skills acquisition using an augmented reality (AR)-based module for urethrovesical anastomosis (UVA). Participants at three institutions were randomised to a Hands-on Surgical Training (HoST) technology group or a control group. The HoST group was given procedure-based training for UVA within the haptic-enabled AR-based HoST environment. The control group did not receive any training. After completing the task, the control group was offered to cross over to the HoST group (cross-over group). A questionnaire administered after HoST determined the feasibility and acceptability of the technology. Performance of UVA using an inanimate model on the daVinci Surgical System (Intuitive Surgical Inc., Sunnyvale, CA, USA) was assessed using a UVA evaluation score and a Global Evaluative Assessment of Robotic Skills (GEARS) score. Participants completed the National Aeronautics and Space Administration Task Load Index (NASA TLX) questionnaire for cognitive assessment, as outcome measures. A Wilcoxon rank-sum test was used to compare outcomes among the groups (HoST group vs control group and control group vs cross-over group). A total of 52 individuals participated in the study. UVA evaluation scores showed significant differences in needle driving (3.0 vs 2.3; P = 0.042), needle positioning (3.0 vs 2.4; P = 0.033) and suture placement (3.4 vs 2.6; P = 0.014) in the HoST vs the control group. The HoST group obtained significantly higher scores (14.4 vs 11.9; P 0.012) on the GEARS. The NASA TLX indicated lower temporal demand and effort in the HoST group (5.9 vs 9.3; P = 0.001 and 5.8 vs 11.9; P = 0.035, respectively). In all, 70% of participants found that HoST was similar to the real surgical procedure, and 75% believed that HoST could improve confidence for carrying out the real intervention. Training in UVA in an AR environment improves technical skill acquisition with minimal cognitive demand. © 2014 The Authors. BJU International

  13. Human-Robot Interaction

    NASA Technical Reports Server (NTRS)

    Sandor, Aniko; Cross, E. Vincent, II; Chang, Mai Lee

    2015-01-01

    Human-robot interaction (HRI) is a discipline investigating the factors affecting the interactions between humans and robots. It is important to evaluate how the design of interfaces affect the human's ability to perform tasks effectively and efficiently when working with a robot. By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed to appropriately support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for the design of robotic systems. For efficient and effective remote navigation of a rover, a human operator needs to be aware of the robot's environment. However, during teleoperation, operators may get information about the environment only through a robot's front-mounted camera causing a keyhole effect. The keyhole effect reduces situation awareness which may manifest in navigation issues such as higher number of collisions, missing critical aspects of the environment, or reduced speed. One way to compensate for the keyhole effect and the ambiguities operators experience when they teleoperate a robot is adding multiple cameras and including the robot chassis in the camera view. Augmented reality, such as overlays, can also enhance the way a person sees objects in the environment or in camera views by making them more visible. Scenes can be augmented with integrated telemetry, procedures, or map information. Furthermore, the addition of an exocentric (i.e., third-person) field of view from a camera placed in the robot's environment may provide operators with the additional information needed to gain spatial awareness of the robot. Two research studies investigated possible mitigation approaches to address the keyhole effect: 1) combining the inclusion of the robot chassis in the camera view with augmented reality overlays, and 2) modifying the camera

  14. Safety of robotic general surgery in elderly patients.

    PubMed

    Buchs, Nicolas C; Addeo, Pietro; Bianco, Francesco M; Ayloo, Subhashini; Elli, Enrique F; Giulianotti, Pier C

    2010-08-01

    As the life expectancy of people in Western countries continues to rise, so too does the number of elderly patients. In parallel, robotic surgery continues to gain increasing acceptance, allowing for more complex operations to be performed by minimally invasive approach and extending indications for surgery to this population. The aim of this study is to assess the safety of robotic general surgery in patients 70 years and older. From April 2007 to December 2009, patients 70 years and older, who underwent various robotic procedures at our institution, were stratified into three categories of surgical complexity (low, intermediate, and high). There were 73 patients, including 39 women (53.4%) and 34 men (46.6%). The median age was 75 years (range 70-88 years). There were 7, 24, and 42 patients included, respectively, in the low, intermediate, and high surgical complexity categories. Approximately 50% of patients underwent hepatic and pancreatic resections. There was no statistically significant difference between the three groups in terms of morbidity, mortality, readmission or transfusion. Mean overall operative time was 254 ± 133 min (range 15-560 min). Perioperative mortality and morbidity was 1.4% and 15.1%, respectively. Transfusion rate was 9.6%, and median length of stay was 6 days (range 0-30 days). Robotic surgery can be performed safely in the elderly population with low mortality, acceptable morbidity, and short hospital stay. Age should not be considered as a contraindication to robotic surgery even for advanced procedures.

  15. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking?

    PubMed Central

    Knaepen, Kristel; Mierau, Andreas; Swinnen, Eva; Fernandez Tellez, Helio; Michielsen, Marc; Kerckhofs, Eric; Lefeber, Dirk; Meeusen, Romain

    2015-01-01

    In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support). Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force) and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning. PMID:26485148

  16. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking?

    PubMed

    Knaepen, Kristel; Mierau, Andreas; Swinnen, Eva; Fernandez Tellez, Helio; Michielsen, Marc; Kerckhofs, Eric; Lefeber, Dirk; Meeusen, Romain

    2015-01-01

    In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support). Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force) and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning.

  17. A history of robots: from science fiction to surgical robotics.

    PubMed

    Hockstein, N G; Gourin, C G; Faust, R A; Terris, D J

    2007-01-01

    Surgical robotics is an evolving field with great advances having been made over the last decade. The origin of robotics was in the science-fiction literature and from there industrial applications, and more recently commercially available, surgical robotic devices have been realized. In this review, we examine the field of robotics from its roots in literature to its development for clinical surgical use. Surgical mills and telerobotic devices are discussed, as are potential future developments.

  18. Robotic colorectal surgery: previous laparoscopic colorectal experience is not essential.

    PubMed

    Sian, Tanvir Singh; Tierney, G M; Park, H; Lund, J N; Speake, W J; Hurst, N G; Al Chalabi, H; Smith, K J; Tou, S

    2018-06-01

    A background in minimally invasive colorectal surgery (MICS) has been thought to be essential prior to robotic-assisted colorectal surgery (RACS). Our aim was to determine whether MICS is essential prior to starting RACS training based on results from our initial experience with RACS. Two surgeons from our centre received robotic training through the European Academy of Robotic Colorectal Surgery (EARCS). One surgeon had no prior formal MICS training. We reviewed the first 30 consecutive robotic colorectal procedures from a prospectively maintained database between November 2014 and January 2016 at our institution. Fourteen patients were male. Median age was 64.5 years (range 36-82) and BMI was 27.5 (range 20-32.5). Twelve procedures (40%) were performed by the non-MICS-trained surgeon: ten high anterior resections (one conversion), one low anterior resection and one abdomino-perineal resection of rectum (APER). The MICS-trained surgeon performed nine high and four low anterior resections, one APER and in addition three right hemicolectomies and one abdominal suture rectopexy. There were no intra-operative complications and two patients required re-operation. Median post-operative stay was five days (range 1-26). There were two 30-day re-admissions. All oncological resections had clear margins and median node harvest was 18 (range 9-39). Our case series demonstrates that a background in MICS is not essential prior to starting RACS training. Not having prior MICS training should not discourage surgeons from considering applying for a robotic training programme. Safe and successful robotic colorectal services can be established after completing a formal structured robotic training programme.

  19. Robot Deception and Squirrel Behavior: A Case Study in Bio-inspired Robotics

    DTIC Science & Technology

    2014-08-01

    employed by doctors/ nurses among others. It is important to focus on this aspect when we consider a robot’s deceptive capabilities in human- robot ... Robot Deception and Squirrel Behavior: A Case Study in Bio-inspired Robotics Jaeeun Shim and Ronald C. Arkin Mobile Robot ...Abstract A common behavior in animals and human beings is deception. Deceptive behavior in robotics is potentially beneficial in several domains

  20. Robotic Surgery

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Automated Endoscopic System for Optimal Positioning, or AESOP, was developed by Computer Motion, Inc. under a SBIR contract from the Jet Propulsion Lab. AESOP is a robotic endoscopic positioning system used to control the motion of a camera during endoscopic surgery. The camera, which is mounted at the end of a robotic arm, previously had to be held in place by the surgical staff. With AESOP the robotic arm can make more precise and consistent movements. AESOP is also voice controlled by the surgeon. It is hoped that this technology can be used in space repair missions which require precision beyond human dexterity. A new generation of the same technology entitled the ZEUS Robotic Surgical System can make endoscopic procedures even more successful. ZEUS allows the surgeon control various instruments in its robotic arms, allowing for the precision the procedure requires.

  1. Multigait soft robot

    PubMed Central

    Shepherd, Robert F.; Ilievski, Filip; Choi, Wonjae; Morin, Stephen A.; Stokes, Adam A.; Mazzeo, Aaron D.; Chen, Xin; Wang, Michael; Whitesides, George M.

    2011-01-01

    This manuscript describes a unique class of locomotive robot: A soft robot, composed exclusively of soft materials (elastomeric polymers), which is inspired by animals (e.g., squid, starfish, worms) that do not have hard internal skeletons. Soft lithography was used to fabricate a pneumatically actuated robot capable of sophisticated locomotion (e.g., fluid movement of limbs and multiple gaits). This robot is quadrupedal; it uses no sensors, only five actuators, and a simple pneumatic valving system that operates at low pressures (< 10 psi). A combination of crawling and undulation gaits allowed this robot to navigate a difficult obstacle. This demonstration illustrates an advantage of soft robotics: They are systems in which simple types of actuation produce complex motion. PMID:22123978

  2. Robot-assisted versus laparoscopic rectal resection for cancer in a single surgeon's experience: a cost analysis covering the initial 50 robotic cases with the da Vinci Si.

    PubMed

    Morelli, Luca; Guadagni, Simone; Lorenzoni, Valentina; Di Franco, Gregorio; Cobuccio, Luigi; Palmeri, Matteo; Caprili, Giovanni; D'Isidoro, Cristiano; Moglia, Andrea; Ferrari, Vincenzo; Di Candio, Giulio; Mosca, Franco; Turchetti, Giuseppe

    2016-09-01

    The aim of this study is to compare surgical parameters and the costs of robotic surgery with those of laparoscopic approach in rectal cancer based on a single surgeon's early robotic experience. Data from 25 laparoscopic (LapTME) and the first 50 robotic (RobTME) rectal resections performed at our institution by an experienced laparoscopic surgeon (>100 procedures) between 2009 and 2014 were retrospectively analyzed and compared. Patient demographic, procedure, and outcome data were gathered. Costs of the two procedures were collected, differentiated into fixed and variable costs, and analyzed against the robotic learning curve according to the cumulative sum (CUSUM) method. Based on CUSUM analysis, RobTME group was divided into three phases (Rob1: 1-19; Rob2: 20-40; Rob3: 41-50). Overall median operative time (OT) was significantly lower in LapTME than in RobTME (270 vs 312.5 min, p = 0.006). A statistically significant change in OT by phase of robotic experience was detected in the RobTME group (p = 0.010). Overall mean costs associated with LapTME procedures were significantly lower than with RobTME (p < 0.001). Statistically significant reductions in variable and overall costs were found between robotic phases (p < 0.009 for both). With fixed costs excluded, the difference between laparoscopic and Rob3 was no longer statistically significant. Our results suggest a significant optimization of robotic rectal surgery's costs with experience. Efforts to reduce the dominant fixed cost are recommended to maintain the sustainability of the system and benefit from the technical advantages offered by the robot.

  3. Robotics in endoscopy.

    PubMed

    Klibansky, David; Rothstein, Richard I

    2012-09-01

    The increasing complexity of intralumenal and emerging translumenal endoscopic procedures has created an opportunity to apply robotics in endoscopy. Computer-assisted or direct-drive robotic technology allows the triangulation of flexible tools through telemanipulation. The creation of new flexible operative platforms, along with other emerging technology such as nanobots and steerable capsules, can be transformational for endoscopic procedures. In this review, we cover some background information on the use of robotics in surgery and endoscopy, and review the emerging literature on platforms, capsules, and mini-robotic units. The development of techniques in advanced intralumenal endoscopy (endoscopic mucosal resection and endoscopic submucosal dissection) and translumenal endoscopic procedures (NOTES) has generated a number of novel platforms, flexible tools, and devices that can apply robotic principles to endoscopy. The development of a fully flexible endoscopic surgical toolkit will enable increasingly advanced procedures to be performed through natural orifices. The application of platforms and new flexible tools to the areas of advanced endoscopy and NOTES heralds the opportunity to employ useful robotic technology. Following the examples of the utility of robotics from the field of laparoscopic surgery, we can anticipate the emerging role of robotic technology in endoscopy.

  4. TROTER's (Tiny Robotic Operation Team Experiment): A new concept of space robots

    NASA Technical Reports Server (NTRS)

    Su, Renjeng

    1990-01-01

    In view of the future need of automation and robotics in space and the existing approaches to the problem, we proposed a new concept of robots for space construction. The new concept is based on the basic idea of decentralization. Decentralization occurs, on the one hand, in using teams of many cooperative robots for construction tasks. Redundancy and modular design are explored to achieve high reliability for team robotic operations. Reliability requirement on individual robots is greatly reduced. Another area of decentralization is manifested by the proposed control hierarchy which eventually includes humans in the loop. The control strategy is constrained by various time delays and calls for different levels of abstraction of the task dynamics. Such technology is needed for remote control of robots in an uncertain environment. Thus, concerns of human safety around robots are relaxed. This presentation also introduces the required technologies behind the new robotic concept.

  5. Development of robotic program: an Asian experience.

    PubMed

    Sahabudin, R M; Arni, T; Ashani, N; Arumuga, K; Rajenthran, S; Murali, S; Patel, V; Hemal, A; Menon, M

    2006-06-01

    Robotic surgery was started in the Department of Urology, Hospital Kuala Lumpur, in April 2004. We present our experience in developing the program and report the results of our first 50 cases of robotic radical prostatectomy. A three-arm da Vinci robotic system was installed in our hospital in March 2004. Prior to installation, the surgeons underwent training at various centers in the United States and Paris. The operating theatre was renovated to house the system. Subsequently, the initial few cases were done with the help of proctors. Data were prospectively collected on all patients who underwent robot-assisted radical prostatectomy for localized carcinoma of the prostate. Fifty patients underwent robot assisted radical prostatectomy from March 2004 to June 2005. Their ages ranged from 52 to 75 years, (average age 60.2 years). PSA levels ranged from 2.5 to 35 ng/ml (mean 10.6 ng/ml). Prostate volume ranged from 18 to 130 cc (average 32.4 cc). Average operating time for the first 20 cases was 4 h and for the next 30 cases was 2.5 h. Patients were discharged 1-3 days post-operatively. Catheters were removed on the fifth day following a cystogram. The positive margin rate as defined by the presence of cancer cells at the inked margin was 30%. Twenty-one patients had T1c disease and one had T1b on clinical staging. Of these, two were apical margin positive. Twenty-six patients had T2 disease and eight of them were apical margin positive. Two patients had T3 disease, one of whom was apical margin positive. Five patients (10%) had PSA recurrence. Five patients had a poorly differentiated carcinoma and the rest had Gleason 6 or 7. Eighty percent of the patients were continent on follow-up at 3 months. Of those who were potent before the surgery, 50% were potent at 3-6 months. The robotic surgery program was successfully implemented at our center on the lines of a structured program, developed at Vattikuti Urology Institute (VUI). We succeeded in creating a team and

  6. Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space 1994

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space (i-SAIRAS 94), held October 18-20, 1994, in Pasadena, California, was jointly sponsored by NASA, ESA, and Japan's National Space Development Agency, and was hosted by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology. i-SAIRAS 94 featured presentations covering a variety of technical and programmatic topics, ranging from underlying basic technology to specific applications of artificial intelligence and robotics to space missions. i-SAIRAS 94 featured a special workshop on planning and scheduling and provided scientists, engineers, and managers with the opportunity to exchange theoretical ideas, practical results, and program plans in such areas as space mission control, space vehicle processing, data analysis, autonomous spacecraft, space robots and rovers, satellite servicing, and intelligent instruments.

  7. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Andrew Nick of Kennedy Space Center's Swamp Works shows off RASSOR, a robotic miner, at the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  8. Comparison of Robotic Pyeloplasty and Standard Laparoscopic Pyeloplasty in Infants: A Bi-Institutional Study.

    PubMed

    Neheman, Amos; Kord, Eyal; Zisman, Amnon; Darawsha, Abd Elhalim; Noh, Paul H

    2018-04-01

    To compare outcomes between robotic pyeloplasty (RP) and standard laparoscopic pyeloplasty (LP) in the infant population for the treatment of ureteropelvic junction (UPJ) obstruction. We performed a retrospective cohort study of all children under 1 year of age who underwent RP or LP at two different medical centers between October 2009 and February 2016. Patient demographics, perioperative data, complications, and results were reviewed. Thirteen patients underwent standard LP, and 21 patients underwent RP during the study period. Median age and median weight at time of operation for the whole cohort were 6.1 months and 7.9 kg. Surgery success rates were similar with 95% and 92% in RP and LP, respectively. There was no statistically significant difference in operating time between the 2 groups, with a median time of 156 minutes in RP (range 125-249) and 192 minutes (range 98-229) in standard LP (P = .35). Median length of hospital stay was significantly shorter in the robotic group with a median stay of 1 day (range 1-3) and 7 days (range 7-12) in the standard LP group.(P < .0001) Drains or nephrostomy tubes were used more often in the laparoscopic group (100%, 13/13) as opposed to RP (9.5%, 2/21, P < .0001) There was a comparable complication rate between the 2 groups, 30.8% for LP and 23.8% for RP (P = .65). The minimally invasive dismembered pyeloplasty is safe and effective in the infant population and produces high success rates. The results, complication rates, and operative time were comparable between the two surgical methods while the standard LP demonstrated longer hospital stay. Both the robotic approach and the LP can be successfully utilized for the benefit of infants with UPJ obstruction.

  9. 75 FR 26761 - Eunice Kennedy Shriver National Institute of Child Health & Human Development; Notice of Closed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... National Institute of Child Health & Human Development; Notice of Closed Meeting Pursuant to section 10(d... Institute of Child Health and Human Development Special Emphasis Panel; Asymmetric Robotic Gait Training and... Review Administrator, Division of Scientific Review, National Institute of Child Health and Human...

  10. 76 FR 40737 - Eunice Kennedy Shriver National Institute of Child Health & Human Development; Notice of Closed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... National Institute of Child Health & Human Development; Notice of Closed Meeting Pursuant to section 10(d...: National Institute of Child Health and Human Development Special Emphasis Group, Asymmetric Robotic Gait... Scientific Review, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, 6100...

  11. [Robots and intellectual property].

    PubMed

    Larrieu, Jacques

    2013-12-01

    This topic is part of the global issue concerning the necessity to adapt intellectual property law to constant changes in technology. The relationship between robots and IP is dual. On one hand, the robots may be regarded as objects of intellectual property. A robot, like any new machine, could qualify for a protection by a patent. A copyright may protect its appearance if it is original. Its memory, like a database, could be covered by a sui generis right. On the other hand, the question of the protection of the outputs of the robot must be raised. The robots, as the physical embodiment of artificial intelligence, are becoming more and more autonomous. Robot-generated works include less and less human inputs. Are these objects created or invented by a robot copyrightable or patentable? To whom the ownership of these IP rights will be allocated? To the person who manufactured the machine ? To the user of the robot? To the robot itself? All these questions are worth discussing.

  12. Evolution of robotic arms.

    PubMed

    Moran, Michael E

    2007-01-01

    The foundation of surgical robotics is in the development of the robotic arm. This is a thorough review of the literature on the nature and development of this device with emphasis on surgical applications. We have reviewed the published literature and classified robotic arms by their application: show, industrial application, medical application, etc. There is a definite trend in the manufacture of robotic arms toward more dextrous devices, more degrees-of-freedom, and capabilities beyond the human arm. da Vinci designed the first sophisticated robotic arm in 1495 with four degrees-of-freedom and an analog on-board controller supplying power and programmability. von Kemplen's chess-playing automaton left arm was quite sophisticated. Unimate introduced the first industrial robotic arm in 1961, it has subsequently evolved into the PUMA arm. In 1963 the Rancho arm was designed; Minsky's Tentacle arm appeared in 1968, Scheinman's Stanford arm in 1969, and MIT's Silver arm in 1974. Aird became the first cyborg human with a robotic arm in 1993. In 2000 Miguel Nicolalis redefined possible man-machine capacity in his work on cerebral implantation in owl-monkeys directly interfacing with robotic arms both locally and at a distance. The robotic arm is the end-effector of robotic systems and currently is the hallmark feature of the da Vinci Surgical System making its entrance into surgical application. But, despite the potential advantages of this computer-controlled master-slave system, robotic arms have definite limitations. Ongoing work in robotics has many potential solutions to the drawbacks of current robotic surgical systems.

  13. Robotic-Assisted Videothoracoscopic Surgery of the Lung.

    PubMed

    Velez-Cubian, Frank O; Ng, Emily P; Fontaine, Jacques P; Toloza, Eric M

    2015-07-01

    Despite initial concerns about the general safety of videothoracoscopic surgery, minimally invasive videothoracoscopic surgical procedures have advantages over traditional open thoracic surgery via thoracotomy. Robotic-assisted minimally invasive surgery has expanded to almost every surgical specialty, including thoracic surgery. Adding a robotic-assisted surgical system to a videothoracoscopic surgical procedure corrects several shortcomings of videothoracoscopic surgical cameras and instruments. We performed a literature search on robotic-assisted pulmonary resections and compared the published robotic series data with our experience at the H. Lee Moffitt Cancer Center & Research Institute. All perioperative outcomes, such as intraoperative data, postoperative complications, chest tube duration, hospital length of stay (LOS), and in-hospital mortality rates were noted. Our literature search found 23 series from multiple surgical centers. We divided the literature into 2 groups based on the year published (2005-2010 and 2011-2014). Operative times from earlier studies ranged from 150 to 240 minutes compared with 90 to 242 minutes for later studies. Conversion rates (to open lung resection) from the earlier studies ranged from 0% to 19% compared with 0% to 11% in the later studies. Mortality rates for the earlier studies ranged from 0% to 5% compared with 0% to 2% for the later studies. Since 2010, our group has performed more than 600 robotic-assisted thoracic surgical procedures, including more than 200 robotic-assisted pulmonary lobectomies, which we also divided into 2 groups. Our median skin-to-skin operative time improved from 179 minutes for our early group (n = 104) to 172 minutes for our later group (n = 104). The overall conversion rate was 9.6% and the emergent conversion rate (for bleeding) was 5% for our robotic-assisted lobectomies. The most common postoperative complications in our cohort were prolonged air leak (> 7 days; 16.8%) and atrial

  14. [History of robotics: from archytas of tarentum until Da Vinci robot. (Part II)].

    PubMed

    Sánchez-Martín, F M; Jiménez Schlegl, P; Millán Rodríguez, F; Salvador-Bayarri, J; Monllau Font, V; Palou Redorta, J; Villavicencio Mavrich, H

    2007-03-01

    Robotic surgery is a reality. In order to to understand how new robots work is interesting to know the history of ancient (see part i) and modern robotics. The desire to design automatic machines imitating humans continued for more than 4000 years. Archytas of Tarentum (at around 400 a.C.), Heron of Alexandria, Hsieh-Fec, Al-Jazari, Bacon, Turriano, Leonardo da Vinci, Vaucanson o von Kempelen were robot inventors. At 1942 Asimov published the three robotics laws. Mechanics, electronics and informatics advances at XXth century developed robots to be able to do very complex self governing works. At 1985 the robot PUMA 560 was employed to introduce a needle inside the brain. Later on, they were designed surgical robots like World First, Robodoc, Gaspar o Acrobot, Zeus, AESOP, Probot o PAKI-RCP. At 2000 the FDA approved the da Vinci Surgical System (Intuitive Surgical Inc, Sunnyvale, CA, USA), a very sophisticated robot to assist surgeons. Currently urological procedures like prostatectomy, cystectomy and nephrectomy are performed with the da Vinci, so urology has become a very suitable speciality to robotic surgery.

  15. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – A visitor to the Robot Rocket Rally takes an up-close look at RASSOR, a robotic miner developed by NASA Kennedy Space Center's Swamp Works. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  16. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Students observe as Otherlab shows off a life-size, inflatable robot from its "" program. The demonstration was one of several provided during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  17. SSVEP-based Experimental Procedure for Brain-Robot Interaction with Humanoid Robots.

    PubMed

    Zhao, Jing; Li, Wei; Mao, Xiaoqian; Li, Mengfan

    2015-11-24

    Brain-Robot Interaction (BRI), which provides an innovative communication pathway between human and a robotic device via brain signals, is prospective in helping the disabled in their daily lives. The overall goal of our method is to establish an SSVEP-based experimental procedure by integrating multiple software programs, such as OpenViBE, Choregraph, and Central software as well as user developed programs written in C++ and MATLAB, to enable the study of brain-robot interaction with humanoid robots. This is achieved by first placing EEG electrodes on a human subject to measure the brain responses through an EEG data acquisition system. A user interface is used to elicit SSVEP responses and to display video feedback in the closed-loop control experiments. The second step is to record the EEG signals of first-time subjects, to analyze their SSVEP features offline, and to train the classifier for each subject. Next, the Online Signal Processor and the Robot Controller are configured for the online control of a humanoid robot. As the final step, the subject completes three specific closed-loop control experiments within different environments to evaluate the brain-robot interaction performance. The advantage of this approach is its reliability and flexibility because it is developed by integrating multiple software programs. The results show that using this approach, the subject is capable of interacting with the humanoid robot via brain signals. This allows the mind-controlled humanoid robot to perform typical tasks that are popular in robotic research and are helpful in assisting the disabled.

  18. SSVEP-based Experimental Procedure for Brain-Robot Interaction with Humanoid Robots

    PubMed Central

    Zhao, Jing; Li, Wei; Mao, Xiaoqian; Li, Mengfan

    2015-01-01

    Brain-Robot Interaction (BRI), which provides an innovative communication pathway between human and a robotic device via brain signals, is prospective in helping the disabled in their daily lives. The overall goal of our method is to establish an SSVEP-based experimental procedure by integrating multiple software programs, such as OpenViBE, Choregraph, and Central software as well as user developed programs written in C++ and MATLAB, to enable the study of brain-robot interaction with humanoid robots. This is achieved by first placing EEG electrodes on a human subject to measure the brain responses through an EEG data acquisition system. A user interface is used to elicit SSVEP responses and to display video feedback in the closed-loop control experiments. The second step is to record the EEG signals of first-time subjects, to analyze their SSVEP features offline, and to train the classifier for each subject. Next, the Online Signal Processor and the Robot Controller are configured for the online control of a humanoid robot. As the final step, the subject completes three specific closed-loop control experiments within different environments to evaluate the brain-robot interaction performance. The advantage of this approach is its reliability and flexibility because it is developed by integrating multiple software programs. The results show that using this approach, the subject is capable of interacting with the humanoid robot via brain signals. This allows the mind-controlled humanoid robot to perform typical tasks that are popular in robotic research and are helpful in assisting the disabled. PMID:26650051

  19. Robotics for Human Exploration

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Deans, Mathew; Bualat, Maria

    2013-01-01

    Robots can do a variety of work to increase the productivity of human explorers. Robots can perform tasks that are tedious, highly repetitive or long-duration. Robots can perform precursor tasks, such as reconnaissance, which help prepare for future human activity. Robots can work in support of astronauts, assisting or performing tasks in parallel. Robots can also perform "follow-up" work, completing tasks designated or started by humans. In this paper, we summarize the development and testing of robots designed to improve future human exploration of space.

  20. The Tactile Ethics of Soft Robotics: Designing Wisely for Human-Robot Interaction.

    PubMed

    Arnold, Thomas; Scheutz, Matthias

    2017-06-01

    Soft robots promise an exciting design trajectory in the field of robotics and human-robot interaction (HRI), promising more adaptive, resilient movement within environments as well as a safer, more sensitive interface for the objects or agents the robot encounters. In particular, tactile HRI is a critical dimension for designers to consider, especially given the onrush of assistive and companion robots into our society. In this article, we propose to surface an important set of ethical challenges for the field of soft robotics to meet. Tactile HRI strongly suggests that soft-bodied robots balance tactile engagement against emotional manipulation, model intimacy on the bonding with a tool not with a person, and deflect users from personally and socially destructive behavior the soft bodies and surfaces could normally entice.

  1. Tandem robot control system and method for controlling mobile robots in tandem

    DOEpatents

    Hayward, David R.; Buttz, James H.; Shirey, David L.

    2002-01-01

    A control system for controlling mobile robots provides a way to control mobile robots, connected in tandem with coupling devices, to navigate across difficult terrain or in closed spaces. The mobile robots can be controlled cooperatively as a coupled system in linked mode or controlled individually as separate robots.

  2. Robot-assisted general surgery.

    PubMed

    Hazey, Jeffrey W; Melvin, W Scott

    2004-06-01

    With the initiation of laparoscopic techniques in general surgery, we have seen a significant expansion of minimally invasive techniques in the last 16 years. More recently, robotic-assisted laparoscopy has moved into the general surgeon's armamentarium to address some of the shortcomings of laparoscopic surgery. AESOP (Computer Motion, Goleta, CA) addressed the issue of visualization as a robotic camera holder. With the introduction of the ZEUS robotic surgical system (Computer Motion), the ability to remotely operate laparoscopic instruments became a reality. US Food and Drug Administration approval in July 2000 of the da Vinci robotic surgical system (Intuitive Surgical, Sunnyvale, CA) further defined the ability of a robotic-assist device to address limitations in laparoscopy. This includes a significant improvement in instrument dexterity, dampening of natural hand tremors, three-dimensional visualization, ergonomics, and camera stability. As experience with robotic technology increased and its applications to advanced laparoscopic procedures have become more understood, more procedures have been performed with robotic assistance. Numerous studies have shown equivalent or improved patient outcomes when robotic-assist devices are used. Initially, robotic-assisted laparoscopic cholecystectomy was deemed safe, and now robotics has been shown to be safe in foregut procedures, including Nissen fundoplication, Heller myotomy, gastric banding procedures, and Roux-en-Y gastric bypass. These techniques have been extrapolated to solid-organ procedures (splenectomy, adrenalectomy, and pancreatic surgery) as well as robotic-assisted laparoscopic colectomy. In this chapter, we review the evolution of robotic technology and its applications in general surgical procedures.

  3. Investigation of Stress and Failure in Granular Soils for Lightweight Robotic Vehicle Applications

    DTIC Science & Technology

    2012-08-27

    Robots, terrain, terramechanics Carmine Senatore, Markus Wulfmeier, Paramsothy Jayakumar , Karl Iagnemma Massachusetts Institute of Technology (MIT) Office...USA Markus Wulfmeier Gottfried Wilhelm Leibniz Universität Hannover Hannover, Germany Jamie MacLennan Paramsothy Jayakumar U.S. Army

  4. Robot Design

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Martin Marietta Aero and Naval Systems has advanced the CAD art to a very high level at its Robotics Laboratory. One of the company's major projects is construction of a huge Field Material Handling Robot for the Army's Human Engineering Lab. Design of FMR, intended to move heavy and dangerous material such as ammunition, was a triumph in CAD Engineering. Separate computer problems modeled the robot's kinematics and dynamics, yielding such parameters as the strength of materials required for each component, the length of the arms, their degree of freedom and power of hydraulic system needed. The Robotics Lab went a step further and added data enabling computer simulation and animation of the robot's total operational capability under various loading and unloading conditions. NASA computer program (IAC), integrated Analysis Capability Engineering Database was used. Program contains a series of modules that can stand alone or be integrated with data from sensors or software tools.

  5. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – A visitor to the Robot Rocket Rally tries his hand at virtual reality in a demonstration of the Oculus Rift technology, provided by the Open Source Robotics Foundation. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  6. Principles of robotics: regulating robots in the real world

    NASA Astrophysics Data System (ADS)

    Boden, Margaret; Bryson, Joanna; Caldwell, Darwin; Dautenhahn, Kerstin; Edwards, Lilian; Kember, Sarah; Newman, Paul; Parry, Vivienne; Pegman, Geoff; Rodden, Tom; Sorrell, Tom; Wallis, Mick; Whitby, Blay; Winfield, Alan

    2017-04-01

    This paper proposes a set of five ethical principles, together with seven high-level messages, as a basis for responsible robotics. The Principles of Robotics were drafted in 2010 and published online in 2011. Since then the principles have influenced, and continue to influence, a number of initiatives in robot ethics but have not, to date, been formally published. This paper remedies that omission.

  7. Robotic surgery for benign duodenal tumors.

    PubMed

    Downs-Canner, Stephanie; Van der Vliet, Wald J; Thoolen, Stijn J J; Boone, Brian A; Zureikat, Amer H; Hogg, Melissa E; Bartlett, David L; Callery, Mark P; Kent, Tara S; Zeh, Herbert J; Moser, A James

    2015-02-01

    Benign duodenal and periampullary tumors are uncommon lesions requiring careful attention to their complex anatomic relationships with the major and minor papillae as well as the gastric outlet during surgical intervention. While endoscopy is less morbid than open resection, many lesions are not amenable to endoscopic removal. Robotic surgery offers technical advantages above traditional laparoscopy, and we demonstrate the safety and feasibility of this approach for a variety of duodenal lesions. We performed a retrospective review of all robotic duodenal resections between April 2010 and December 2013 from two institutions. Demographic, clinicopathologic, and operative details were recorded with special attention to the post-operative course. Twenty-six patients underwent robotic duodenal resection for a variety of diagnoses. The majority (88 %) were symptomatic at presentation. Nine patients underwent transduodenal ampullectomy, seven patients underwent duodenal resection, six patients underwent transduodenal resection of a mass, and four patients underwent segmental duodenal resection. Median operative time was 4 h with a median estimated blood loss of 50 cm(3) and no conversions to an open operation. The rate of major Clavien-Dindo grades 3-4 complications was 15 % at post-operative days 30 and 90 without mortality. Final pathology demonstrated a median tumor size of 2.9 cm with a final histologic diagnoses of adenoma (n = 13), neuroendocrine tumor (n = 6), gastrointestinal stromal tumor (GIST) (n = 2), lipoma (n = 2), Brunner's gland hamartoma (n = 1), leiomyoma (n = 1), and gangliocytic paraganglioma (n = 1). Robotic duodenal resection is safe and feasible for benign and premalignant duodenal tumors not amenable to endoscopic resection.

  8. Supersmart Robots: The Next Generation of Robots Has Evolutionary Capabilities

    ERIC Educational Resources Information Center

    Simkins, Michael

    2008-01-01

    Robots that can learn new behaviors. Robots that can reproduce themselves. Science fiction? Not anymore. Roboticists at Cornell's Computational Synthesis Lab have developed just such engineered creatures that offer interesting implications for education. The team, headed by Hod Lipson, was intrigued by the question, "How can you get robots to be…

  9. Fundamentals of soft robot locomotion

    PubMed Central

    2017-01-01

    Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human–robot interaction and locomotion. Although field applications have emerged for soft manipulation and human–robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This paper aims to provide a reference guide for researchers approaching mobile soft robotics, to describe the underlying principles of soft robot locomotion with its pros and cons, and to envisage applications and further developments for mobile soft robotics. PMID:28539483

  10. Fundamentals of soft robot locomotion.

    PubMed

    Calisti, M; Picardi, G; Laschi, C

    2017-05-01

    Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human-robot interaction and locomotion. Although field applications have emerged for soft manipulation and human-robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This paper aims to provide a reference guide for researchers approaching mobile soft robotics, to describe the underlying principles of soft robot locomotion with its pros and cons, and to envisage applications and further developments for mobile soft robotics. © 2017 The Author(s).

  11. Exploring TeleRobotics: A Radio-Controlled Robot

    ERIC Educational Resources Information Center

    Deal, Walter F., III; Hsiung, Steve C.

    2007-01-01

    Robotics is a rich and exciting multidisciplinary area to study and learn about electronics and control technology. The interest in robotic devices and systems provides the technology teacher with an excellent opportunity to make many concrete connections between electronics, control technology, and computers and science, engineering, and…

  12. Advancing the Strategic Messages Affecting Robot Trust Effect: The Dynamic of User- and Robot-Generated Content on Human-Robot Trust and Interaction Outcomes.

    PubMed

    Liang, Yuhua Jake; Lee, Seungcheol Austin

    2016-09-01

    Human-robot interaction (HRI) will soon transform and shift the communication landscape such that people exchange messages with robots. However, successful HRI requires people to trust robots, and, in turn, the trust affects the interaction. Although prior research has examined the determinants of human-robot trust (HRT) during HRI, no research has examined the messages that people received before interacting with robots and their effect on HRT. We conceptualize these messages as SMART (Strategic Messages Affecting Robot Trust). Moreover, we posit that SMART can ultimately affect actual HRI outcomes (i.e., robot evaluations, robot credibility, participant mood) by affording the persuasive influences from user-generated content (UGC) on participatory Web sites. In Study 1, participants were assigned to one of two conditions (UGC/control) in an original experiment of HRT. Compared with the control (descriptive information only), results showed that UGC moderated the correlation between HRT and interaction outcomes in a positive direction (average Δr = +0.39) for robots as media and robots as tools. In Study 2, we explored the effect of robot-generated content but did not find similar moderation effects. These findings point to an important empirical potential to employ SMART in future robot deployment.

  13. Next-generation robotic surgery--from the aspect of surgical robots developed by industry.

    PubMed

    Nakadate, Ryu; Arata, Jumpei; Hashizume, Makoto

    2015-02-01

    At present, much of the research conducted worldwide focuses on extending the ability of surgical robots. One approach is to extend robotic dexterity. For instance, accessibility and dexterity of the surgical instruments remains the largest issue for reduced port surgery such as single port surgery or natural orifice surgery. To solve this problem, a great deal of research is currently conducted in the field of robotics. Enhancing the surgeon's perception is an approach that uses advanced sensor technology. The real-time data acquired through the robotic system combined with the data stored in the robot (such as the robot's location) provide a major advantage. This paper aims at introducing state-of-the-art products and pre-market products in this technological advancement, namely the robotic challenge in extending dexterity and hopefully providing the path to robotic surgery in the near future.

  14. Humanlike robots: the upcoming revolution in robotics

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph

    2009-08-01

    Humans have always sought to imitate the human appearance, functions and intelligence. Human-like robots, which for many years have been a science fiction, are increasingly becoming an engineering reality resulting from the many advances in biologically inspired technologies. These biomimetic technologies include artificial intelligence, artificial vision and hearing as well as artificial muscles, also known as electroactive polymers (EAP). Robots, such as the vacuum cleaner Rumba and the robotic lawnmower, that don't have human shape, are already finding growing use in homes worldwide. As opposed to other human-made machines and devices, this technology raises also various questions and concerns and they need to be addressed as the technology advances. These include the need to prevent accidents, deliberate harm, or their use in crime. In this paper the state-of-the-art of the ultimate goal of biomimetics, the development of humanlike robots, the potentials and the challenges are reviewed.

  15. Humanlike Robots - The Upcoming Revolution in Robotics

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2009-01-01

    Humans have always sought to imitate the human appearance, functions and intelligence. Human-like robots, which for many years have been a science fiction, are increasingly becoming an engineering reality resulting from the many advances in biologically inspired technologies. These biomimetic technologies include artificial intelligence, artificial vision and hearing as well as artificial muscles, also known as electroactive polymers (EAP). Robots, such as the vacuum cleaner Rumba and the robotic lawnmower, that don't have human shape, are already finding growing use in homes worldwide. As opposed to other human-made machines and devices, this technology raises also various questions and concerns and they need to be addressed as the technology advances. These include the need to prevent accidents, deliberate harm, or their use in crime. In this paper the state-of-the-art of the ultimate goal of biomimetics, the development of humanlike robots, the potentials and the challenges are reviewed.

  16. Robotic transanal endoscopic microsurgery: technical details for the lateral approach.

    PubMed

    Buchs, Nicolas C; Pugin, François; Volonte, Francesco; Hagen, Monika E; Morel, Philippe; Ris, Frederic

    2013-10-01

    Transanal endoscopic microsurgery is a minimally invasive approach reserved for the resection of selected rectal tumors. However, this approach is technically demanding. Although robotic technology may overcome the limitations of this approach, the system can be difficult to dock, especially in the lithotomy position. The study aim is thus to report the technical details of robotic transanal endoscopic microsurgery with the use of a lateral approach. This study is a prospective evaluation of robotic transanal endoscopic microsurgery in a single tertiary institution, under a protocol approved by our local ethics committee. Patients underwent a routine mechanical bowel preparation and were placed in the left or right lateral position according to the tumor location. A circular anal dilatator was used together with the glove port technique. The robotic system was then docked over the hip. A 30° optic and 2 articulated instruments were used with an additional assistant trocar. The tumor excision was realized with an atraumatic grasper and an articulated cautery hook, and the defect was closed with barbed continuous stiches in each case. The primary outcome was the safety and feasibility of the procedure. Three patients underwent a robotic transanal endoscopic microsurgery with the use of the lateral approach. Mean operative time was 110 minutes, including 20 minutes for the docking of the robot. There was 1 intraoperative complication (a pneumoperitoneum without intraabdominal lesion) and no postoperative complications. Mean hospital stay was 3 days. Margins were negative in all the cases. The study was limited by the small number of patients. Robotic transanal endoscopic microsurgery with use of the lateral approach is feasible and may facilitate the local resection of small lesions of the mid and lower rectum. It might assume an important place in sphincter-preserving surgery, especially for selected and early rectal cancer (see Video, Supplemental Digital Content 1

  17. Flex Robotic System in transoral robotic surgery: The first 40 patients.

    PubMed

    Mattheis, Stefan; Hasskamp, Pia; Holtmann, Laura; Schäfer, Christina; Geisthoff, Urban; Dominas, Nina; Lang, Stephan

    2017-03-01

    The Flex Robotic System is a new robotic device specifically developed for transoral robotic surgery (TORS). We performed a prospective clinical study, assessing the safety and efficacy of the Medrobotics Flex Robotic System. A total of 40 patients required a surgical procedure for benign lesions (n = 30) or T1 and T2 carcinomas (n = 10). Access and visualization of different anatomic subsites were individually graded by the surgeon. Setup times, access and visualization times, surgical results, as well as adverse events were documented intraoperatively. The lesions could be exposed and visualized properly in 38 patients (95%) who went on to have a surgical procedure performed with the Flex Robotic System, which were intraoperatively evaluated as successful. No serious adverse events occurred. Lesions in the oropharynx, hypopharynx, or supraglottic larynx could be successfully resected using the Flex Robotic System, thus making the system a safe and effective tool in transoral robotic surgery. © 2016 Wiley Periodicals, Inc. Head Neck 39: 471-475, 2017. © 2016 Wiley Periodicals, Inc.

  18. Inverse kinematic solution for near-simple robots and its application to robot calibration

    NASA Technical Reports Server (NTRS)

    Hayati, Samad A.; Roston, Gerald P.

    1986-01-01

    This paper provides an inverse kinematic solution for a class of robot manipulators called near-simple manipulators. The kinematics of these manipulators differ from those of simple-robots by small parameter variations. Although most robots are by design simple, in practice, due to manufacturing tolerances, every robot is near-simple. The method in this paper gives an approximate inverse kinematics solution for real time applications based on the nominal solution for these robots. The validity of the results are tested both by a simulation study and by applying the algorithm to a PUMA robot.

  19. Competencies Identification for Robotics Training.

    ERIC Educational Resources Information Center

    Tang, Le D.

    A study focused on the task of identifying competencies for robotics training. The level of robotics training was limited to that of robot technicians. Study objectives were to obtain a list of occupational competencies; to rank their order of importance; and to compare opinions from robot manufacturers, robot users, and robotics educators…

  20. Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion.

    PubMed

    Marras, Stefano; Porfiri, Maurizio

    2012-08-07

    The integration of biomimetic robots in a fish school may enable a better understanding of collective behaviour, offering a new experimental method to test group feedback in response to behavioural modulations of its 'engineered' member. Here, we analyse a robotic fish and individual golden shiners (Notemigonus crysoleucas) swimming together in a water tunnel at different flow velocities. We determine the positional preference of fish with respect to the robot, and we study the flow structure using a digital particle image velocimetry system. We find that biomimetic locomotion is a determinant of fish preference as fish are more attracted towards the robot when its tail is beating rather than when it is statically immersed in the water as a 'dummy'. At specific conditions, the fish hold station behind the robot, which may be due to the hydrodynamic advantage obtained by swimming in the robot's wake. This work makes a compelling case for the need of biomimetic locomotion in promoting robot-animal interactions and it strengthens the hypothesis that biomimetic robots can be used to study and modulate collective animal behaviour.

  1. Promoting Interactions Between Humans and Robots Using Robotic Emotional Behavior.

    PubMed

    Ficocelli, Maurizio; Terao, Junichi; Nejat, Goldie

    2016-12-01

    The objective of a socially assistive robot is to create a close and effective interaction with a human user for the purpose of giving assistance. In particular, the social interaction, guidance, and support that a socially assistive robot can provide a person can be very beneficial to patient-centered care. However, there are a number of research issues that need to be addressed in order to design such robots. This paper focuses on developing effective emotion-based assistive behavior for a socially assistive robot intended for natural human-robot interaction (HRI) scenarios with explicit social and assistive task functionalities. In particular, in this paper, a unique emotional behavior module is presented and implemented in a learning-based control architecture for assistive HRI. The module is utilized to determine the appropriate emotions of the robot to display, as motivated by the well-being of the person, during assistive task-driven interactions in order to elicit suitable actions from users to accomplish a given person-centered assistive task. A novel online updating technique is used in order to allow the emotional model to adapt to new people and scenarios. Experiments presented show the effectiveness of utilizing robotic emotional assistive behavior during HRI scenarios.

  2. Evolution of robots throughout history from Hephaestus to Da Vinci Robot.

    PubMed

    Iavazzo, Christos; Gkegke, Xanthi-Ekaterini D; Iavazzo, Paraskevi-Evangelia; Gkegkes, Ioannis D

    2014-01-01

    Da Vinci robot is increasingly used for operations adding the advantages of robots to the favor of medicine. This is a historical article with the aim to present the evolution of robots in the medical area from the time of ancient myths to Renaissance and finally to the current revolutionary applications. We endeavored to collect several elegant narratives on the topic. The use of imagination could help the reader to find similarities. A trip from the Greek myths of Hephaestus through Aristotle and Leonardo Da Vinci to the robots of Karel Capek and Isaac Asimov and finally the invention of the medical robots is presented.

  3. [Rehabilitation and nursing-care robots].

    PubMed

    Hachisuka, Kenji

    2016-04-01

    In the extremely aged society, rehabilitation staff will be required to provide ample rehabilitation training for more stroke patients and more aged people with disabilities despite limitations in human resources. A nursing-care robot is one potential solution from the standpoint of rehabilitation. The nursing-care robot is defined as a robot which assists aged people and persons with disabilities in daily life and social life activities. The nursing-care robot consists of an independent support robot, caregiver support robot, and life support robot. Although many nursing-care robots have been developed, the most appropriate robot must be selected according to its features and the needs of patients and caregivers in the field of nursing-care.

  4. Evidence for robots.

    PubMed

    Shenoy, Ravikiran; Nathwani, Dinesh

    2017-01-01

    Robots have been successfully used in commercial industry and have enabled humans to perform tasks which are repetitive, dangerous and requiring extreme force. Their role has evolved and now includes many aspects of surgery to improve safety and precision. Orthopaedic surgery is largely performed on bones which are rigid immobile structures which can easily be performed by robots with great precision. Robots have been designed for use in orthopaedic surgery including joint arthroplasty and spine surgery. Experimental studies have been published evaluating the role of robots in arthroscopy and trauma surgery. In this article, we will review the incorporation of robots in orthopaedic surgery looking into the evidence in their use. © The Authors, published by EDP Sciences, 2017.

  5. Evidence for robots

    PubMed Central

    Shenoy, Ravikiran; Nathwani, Dinesh

    2017-01-01

    Robots have been successfully used in commercial industry and have enabled humans to perform tasks which are repetitive, dangerous and requiring extreme force. Their role has evolved and now includes many aspects of surgery to improve safety and precision. Orthopaedic surgery is largely performed on bones which are rigid immobile structures which can easily be performed by robots with great precision. Robots have been designed for use in orthopaedic surgery including joint arthroplasty and spine surgery. Experimental studies have been published evaluating the role of robots in arthroscopy and trauma surgery. In this article, we will review the incorporation of robots in orthopaedic surgery looking into the evidence in their use. PMID:28534472

  6. Open core control software for surgical robots.

    PubMed

    Arata, Jumpei; Kozuka, Hiroaki; Kim, Hyung Wook; Takesue, Naoyuki; Vladimirov, B; Sakaguchi, Masamichi; Tokuda, Junichi; Hata, Nobuhiko; Chinzei, Kiyoyuki; Fujimoto, Hideo

    2010-05-01

    In these days, patients and doctors in operation room are surrounded by many medical devices as resulting from recent advancement of medical technology. However, these cutting-edge medical devices are working independently and not collaborating with each other, even though the collaborations between these devices such as navigation systems and medical imaging devices are becoming very important for accomplishing complex surgical tasks (such as a tumor removal procedure while checking the tumor location in neurosurgery). On the other hand, several surgical robots have been commercialized, and are becoming common. However, these surgical robots are not open for collaborations with external medical devices in these days. A cutting-edge "intelligent surgical robot" will be possible in collaborating with surgical robots, various kinds of sensors, navigation system and so on. On the other hand, most of the academic software developments for surgical robots are "home-made" in their research institutions and not open to the public. Therefore, open source control software for surgical robots can be beneficial in this field. From these perspectives, we developed Open Core Control software for surgical robots to overcome these challenges. In general, control softwares have hardware dependencies based on actuators, sensors and various kinds of internal devices. Therefore, these control softwares cannot be used on different types of robots without modifications. However, the structure of the Open Core Control software can be reused for various types of robots by abstracting hardware dependent parts. In addition, network connectivity is crucial for collaboration between advanced medical devices. The OpenIGTLink is adopted in Interface class which plays a role to communicate with external medical devices. At the same time, it is essential to maintain the stable operation within the asynchronous data transactions through network. In the Open Core Control software, several

  7. 75 FR 26761 - Eunice Kennedy Shriver National Institute of Child Health and Human Development; Notice of Closed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... National Institute of Child Health and Human Development; Notice of Closed Meeting Pursuant to section 10(d... Institute of Child Health and Human Development Special Emphasis Panel; Asymmetric Robotic Gait Training and... Review Administrator, Division of Scientific Review, National Institute of Child Health and Human...

  8. Hitchhiking Robots: A Collaborative Approach for Efficient Multi-Robot Navigation in Indoor Environments.

    PubMed

    Ravankar, Abhijeet; Ravankar, Ankit A; Kobayashi, Yukinori; Emaru, Takanori

    2017-08-15

    Hitchhiking is a means of transportation gained by asking other people for a (free) ride. We developed a multi-robot system which is the first of its kind to incorporate hitchhiking in robotics, and discuss its advantages. Our method allows the hitchhiker robot to skip redundant computations in navigation like path planning, localization, obstacle avoidance, and map update by completely relying on the driver robot. This allows the hitchhiker robot, which performs only visual servoing, to save computation while navigating on the common path with the driver robot. The driver robot, in the proposed system performs all the heavy computations in navigation and updates the hitchhiker about the current localized positions and new obstacle positions in the map. The proposed system is robust to recover from `driver-lost' scenario which occurs due to visual servoing failure. We demonstrate robot hitchhiking in real environments considering factors like service-time and task priority with different start and goal configurations of the driver and hitchhiker robots. We also discuss the admissible characteristics of the hitchhiker, when hitchhiking should be allowed and when not, through experimental results.

  9. Robotic hysterectomy strategies in the morbidly obese patient.

    PubMed

    Almeida, Oscar D

    2013-01-01

    The purpose of this study was to present strategies for performing computer-enhanced telesurgery in the morbidly obese patient. This was a prospective, institutional review board-approved, descriptive feasibility study (Canadian Task Force classification II-2) conducted at a university-affiliated hospital. Twelve class III morbidly obese women with a body mass index of 40 kg/m(2) or greater were selected to undergo robotic-assisted total laparoscopic hysterectomy. Robotic-assisted total laparoscopic hysterectomy, classified as type IVE, with complete detachment of the cardinal-uterosacral ligament complex, unilateral or bilateral, with entry into the vagina was performed. The median estimated blood loss was 146.3 mL (range, 15-550 mL), the mean length of stay in the hospital was 25.3 hours (range, 23- 48 hours), and the complication rate was 0%. The rate of conversion to laparotomy was 8%. The median surgical time was 109.6 minutes (range, 99 -145 minutes). Robotic-assisted total laparoscopic hysterectomy can be a safe and effective method of performing hysterectomies in select morbidly obese patients, allowing them the opportunity to undergo minimally invasive surgery without increased perioperative complications.

  10. 250 Robotic Pancreatic Resections: Safety and Feasibility

    PubMed Central

    Zureikat, Amer H.; Moser, A. James; Boone, Brian A.; Bartlett, David L.; Zenati, Mazen; Zeh, Herbert J.

    2015-01-01

    Background and Objectives Computer Assisted Robotic Surgery allows complex resections and anastomotic reconstructions to be performed with nearly identical standards to open surgery. We applied this technology to a variety of pancreatic resections to assess the safety, feasibility, versatility and reliability of this technology. Methods A retrospective review of a prospective database of robotic pancreatic resections at a single institution between August 2008 and November 2012 was performed. Peri-operative outcomes were analyzed. Results 250 consecutive robotic pancreatic resections were analyzed; pancreaticoduodenectomy (PD =132), distal pancreatectomy (DP=83), central pancreatectomy (CP=13), pancreatic enucleation (10), total pancreatectomy (TP=5), Appleby resection (4), and Frey procedure (3). Thirty day and 90 day mortality was 0.8 % and 2.0%. Rate of Clavien 3 and 4 complications was 14 and 6 %. The ISGPF grade C fistula rate was 4%. Mean operative time for the two most common procedures was 529 ± 103 mins for PD, and 257 ± 93 mins for DP. Continuous improvement in operative times was observed over the course of the experience. Conversion to open procedure was required in 16 patients (6%);(11 PD, 2 DP, 2 CP, 1 TP) for failure to progress (14) and bleeding (2). Conclusions This represents to our knowledge the largest series of robotic pancreatic resections. Safety and feasibility metrics including the low incidence of conversion support the robustness of this platform and suggest no unanticipated risks inherent to this new technology. By defining these early outcome metrics this report begins to establish a framework for comparative effectiveness studies of this platform. PMID:24002300

  11. Educational Robotics as Mindtools

    ERIC Educational Resources Information Center

    Mikropoulos, Tassos A.; Bellou, Ioanna

    2013-01-01

    Although there are many studies on the constructionist use of educational robotics, they have certain limitations. Some of them refer to robotics education, rather than educational robotics. Others follow a constructionist approach, but give emphasis only to design skills, creativity and collaboration. Some studies use robotics as an educational…

  12. Robotic vehicle

    DOEpatents

    Box, W.D.

    1997-02-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  13. Robotic vehicle

    DOEpatents

    Box, W.D.

    1998-08-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  14. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1998-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  15. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1997-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  16. Lymphovascular space invasion in robotic surgery for endometrial cancer.

    PubMed

    Hopkins, Mark R; Richmond, Abby M; Cheng, Georgina; Davidson, Susan; Spillman, Monique A; Sheeder, Jeanelle; Post, Miriam D; Guntupalli, Saketh R

    2014-01-01

    Minimally invasive surgery has become a standard treatment for endometrial cancer and offers significant benefits over abdominal approaches. There are discrepant data regarding lymphovascular space invasion (LVSI) and positive peritoneal cytology with the use of a uterine manipulator, with previous small-scale studies demonstrating an increased incidence of these prognostically important events. We sought to determine if there was a higher incidence of LVSI in patients who underwent robot-assisted surgery for endometrial cancer. We performed a single-institution review of medical records for patients who underwent open abdominal or robot-assisted hysterectomy for endometrial cancer over a 24-month period. The following data were abstracted: age, tumor grade and stage, size, depth of invasion, LVSI, and peritoneal cytology. For patients with LVSI, slides were reviewed by 2 pathologists for confirmation of LVSI. Of 104 patients identified, LVSI was reported in 39 (37.5%) and positive peritoneal cytology in 6 (4.8%). Rates of peritoneal cytology were not significantly different between the 2 groups (odds ratio, 0.55; 95% confidence interval, 0.10-3.17; P=.50). LVSI was reported in significantly fewer robot-assisted hysterectomies than open procedures (odds ratio, 0.39; 95% confidence interval, 0.17-0.92; P=.03). In subgroup analyses restricted to early-stage disease (stage≤II), there was no significant difference in LVSI between open and robot-assisted hysterectomies (odds ratio, 0.64; 95% confidence interval, 0.22-1.85; P=.43). In this retrospective study, we found that use of a uterine manipulator in robot-assisted surgery did not increase the incidence of LVSI.

  17. Hopping Robot with Wheels

    NASA Technical Reports Server (NTRS)

    Barlow, Edward; Marzwell, Nevellie; Fuller, Sawyer; Fionni, Paolo; Tretton, Andy; Burdick, Joel; Schell, Steve

    2003-01-01

    A small prototype mobile robot is capable of (1) hopping to move rapidly or avoid obstacles and then (2) moving relatively slowly and precisely on the ground by use of wheels in the manner of previously reported exploratory robots of the "rover" type. This robot is a descendant of a more primitive hopping robot described in "Minimally Actuated Hopping Robot" (NPO- 20911), NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 50. There are many potential applications for robots with hopping and wheeled-locomotion (roving) capabilities in diverse fields of endeavor, including agriculture, search-and-rescue operations, general military operations, removal or safe detonation of land mines, inspection, law enforcement, and scientific exploration on Earth and remote planets. The combination of hopping and roving enables this robot to move rapidly over very rugged terrain, to overcome obstacles several times its height, and then to position itself precisely next to a desired target. Before a long hop, the robot aims itself in the desired hopping azimuth and at a desired takeoff angle above horizontal. The robot approaches the target through a series of hops and short driving operations utilizing the steering wheels for precise positioning.

  18. Human-robot interaction tests on a novel robot for gait assistance.

    PubMed

    Tagliamonte, Nevio Luigi; Sergi, Fabrizio; Carpino, Giorgio; Accoto, Dino; Guglielmelli, Eugenio

    2013-06-01

    This paper presents tests on a treadmill-based non-anthropomorphic wearable robot assisting hip and knee flexion/extension movements using compliant actuation. Validation experiments were performed on the actuators and on the robot, with specific focus on the evaluation of intrinsic backdrivability and of assistance capability. Tests on a young healthy subject were conducted. In the case of robot completely unpowered, maximum backdriving torques were found to be in the order of 10 Nm due to the robot design features (reduced swinging masses; low intrinsic mechanical impedance and high-efficiency reduction gears for the actuators). Assistance tests demonstrated that the robot can deliver torques attracting the subject towards a predicted kinematic status.

  19. Robot environment expert system

    NASA Technical Reports Server (NTRS)

    Potter, J. L.

    1985-01-01

    The Robot Environment Expert System uses a hexidecimal tree data structure to model a complex robot environment where not only the robot arm moves, but also the robot itself and other objects may move. The hextree model allows dynamic updating, collision avoidance and path planning over time, to avoid moving objects.

  20. Hazardous Environment Robotics

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Jet Propulsion Laboratory (JPL) developed video overlay calibration and demonstration techniques for ground-based telerobotics. Through a technology sharing agreement with JPL, Deneb Robotics added this as an option to its robotics software, TELEGRIP. The software is used for remotely operating robots in nuclear and hazardous environments in industries including automotive and medical. The option allows the operator to utilize video to calibrate 3-D computer models with the actual environment, and thus plan and optimize robot trajectories before the program is automatically generated.

  1. Coordinated Control Of Mobile Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1995-01-01

    Computationally efficient scheme developed for on-line coordinated control of both manipulation and mobility of robots that include manipulator arms mounted on mobile bases. Applicable to variety of mobile robotic manipulators, including robots that move along tracks (typically, painting and welding robots), robots mounted on gantries and capable of moving in all three dimensions, wheeled robots, and compound robots (consisting of robots mounted on other robots). Theoretical basis discussed in several prior articles in NASA Tech Briefs, including "Increasing the Dexterity of Redundant Robots" (NPO-17801), "Redundant Robot Can Avoid Obstacles" (NPO-17852), "Configuration-Control Scheme Copes With Singularities" (NPO-18556), "More Uses for Configuration Control of Robots" (NPO-18607/NPO-18608).

  2. Hitchhiking Robots: A Collaborative Approach for Efficient Multi-Robot Navigation in Indoor Environments

    PubMed Central

    Ravankar, Abhijeet; Ravankar, Ankit A.; Kobayashi, Yukinori; Emaru, Takanori

    2017-01-01

    Hitchhiking is a means of transportation gained by asking other people for a (free) ride. We developed a multi-robot system which is the first of its kind to incorporate hitchhiking in robotics, and discuss its advantages. Our method allows the hitchhiker robot to skip redundant computations in navigation like path planning, localization, obstacle avoidance, and map update by completely relying on the driver robot. This allows the hitchhiker robot, which performs only visual servoing, to save computation while navigating on the common path with the driver robot. The driver robot, in the proposed system performs all the heavy computations in navigation and updates the hitchhiker about the current localized positions and new obstacle positions in the map. The proposed system is robust to recover from ‘driver-lost’ scenario which occurs due to visual servoing failure. We demonstrate robot hitchhiking in real environments considering factors like service-time and task priority with different start and goal configurations of the driver and hitchhiker robots. We also discuss the admissible characteristics of the hitchhiker, when hitchhiking should be allowed and when not, through experimental results. PMID:28809803

  3. Value-based assessment of robotic pancreas and liver surgery

    PubMed Central

    Patti, James C.; Ore, Ana Sofia; Barrows, Courtney; Velanovich, Vic

    2017-01-01

    Current healthcare economic evaluations are based only on the perspective of a single stakeholder to the healthcare delivery process. A true value-based decision incorporates all of the outcomes that could be impacted by a single episode of surgical care. We define the value proposition for robotic surgery using a stakeholder model incorporating the interests of all groups participating in the provision of healthcare services: patients, surgeons, hospitals and payers. One of the developing and expanding fields that could benefit the most from a complete value-based analysis is robotic hepatopancreaticobiliary (HPB) surgery. While initial robot purchasing costs are high, the benefits over laparoscopic surgery are considerable. Performing a literature search we found a total of 18 economic evaluations for robotic HPB surgery. We found a lack of evaluations that were carried out from a perspective that incorporates all of the impacts of a single episode of surgical care and that included a comprehensive hospital cost assessment. For distal pancreatectomies, the two most thorough examinations came to conflicting results regarding total cost savings compared to laparoscopic approaches. The most thorough pancreaticoduodenectomy evaluation found non-significant savings for total hospital costs. Robotic hepatectomies showed no cost savings over laparoscopic and only modest savings over open techniques. Lastly, robotic cholecystectomies were found to be more expensive than the gold-standard laparoscopic approach. Existing cost accounting data associated with robotic HPB surgery is incomplete and unlikely to reflect the state of this field in the future. Current data combines the learning curves for new surgical procedures being undertaken by HPB surgeons with costs derived from a market dominated by a single supplier of robotic instruments. As a result, the value proposition for stakeholders in this process cannot be defined. In order to solve this problem, future studies

  4. Value-based assessment of robotic pancreas and liver surgery.

    PubMed

    Patti, James C; Ore, Ana Sofia; Barrows, Courtney; Velanovich, Vic; Moser, A James

    2017-08-01

    Current healthcare economic evaluations are based only on the perspective of a single stakeholder to the healthcare delivery process. A true value-based decision incorporates all of the outcomes that could be impacted by a single episode of surgical care. We define the value proposition for robotic surgery using a stakeholder model incorporating the interests of all groups participating in the provision of healthcare services: patients, surgeons, hospitals and payers. One of the developing and expanding fields that could benefit the most from a complete value-based analysis is robotic hepatopancreaticobiliary (HPB) surgery. While initial robot purchasing costs are high, the benefits over laparoscopic surgery are considerable. Performing a literature search we found a total of 18 economic evaluations for robotic HPB surgery. We found a lack of evaluations that were carried out from a perspective that incorporates all of the impacts of a single episode of surgical care and that included a comprehensive hospital cost assessment. For distal pancreatectomies, the two most thorough examinations came to conflicting results regarding total cost savings compared to laparoscopic approaches. The most thorough pancreaticoduodenectomy evaluation found non-significant savings for total hospital costs. Robotic hepatectomies showed no cost savings over laparoscopic and only modest savings over open techniques. Lastly, robotic cholecystectomies were found to be more expensive than the gold-standard laparoscopic approach. Existing cost accounting data associated with robotic HPB surgery is incomplete and unlikely to reflect the state of this field in the future. Current data combines the learning curves for new surgical procedures being undertaken by HPB surgeons with costs derived from a market dominated by a single supplier of robotic instruments. As a result, the value proposition for stakeholders in this process cannot be defined. In order to solve this problem, future studies

  5. Open core control software for surgical robots

    PubMed Central

    Kozuka, Hiroaki; Kim, Hyung Wook; Takesue, Naoyuki; Vladimirov, B.; Sakaguchi, Masamichi; Tokuda, Junichi; Hata, Nobuhiko; Chinzei, Kiyoyuki; Fujimoto, Hideo

    2010-01-01

    Object In these days, patients and doctors in operation room are surrounded by many medical devices as resulting from recent advancement of medical technology. However, these cutting-edge medical devices are working independently and not collaborating with each other, even though the collaborations between these devices such as navigation systems and medical imaging devices are becoming very important for accomplishing complex surgical tasks (such as a tumor removal procedure while checking the tumor location in neurosurgery). On the other hand, several surgical robots have been commercialized, and are becoming common. However, these surgical robots are not open for collaborations with external medical devices in these days. A cutting-edge “intelligent surgical robot” will be possible in collaborating with surgical robots, various kinds of sensors, navigation system and so on. On the other hand, most of the academic software developments for surgical robots are “home-made” in their research institutions and not open to the public. Therefore, open source control software for surgical robots can be beneficial in this field. From these perspectives, we developed Open Core Control software for surgical robots to overcome these challenges. Materials and methods In general, control softwares have hardware dependencies based on actuators, sensors and various kinds of internal devices. Therefore, these control softwares cannot be used on different types of robots without modifications. However, the structure of the Open Core Control software can be reused for various types of robots by abstracting hardware dependent parts. In addition, network connectivity is crucial for collaboration between advanced medical devices. The OpenIGTLink is adopted in Interface class which plays a role to communicate with external medical devices. At the same time, it is essential to maintain the stable operation within the asynchronous data transactions through network. In the Open

  6. Evolution of robotics in surgery and implementing a perioperative robotics nurse specialist role.

    PubMed

    Francis, Paula

    2006-03-01

    Use of robotics is expanding rapidly in the medical arena. Not only are a growing number of facilities purchasing robotic systems, but the number of surgeons using them also is increasing, which creates many challenges (eg, cost, training, safety). The evolution of robotics in surgery is presented within the context of virtual reality, telepresence, telemanipulation, and passive (ie, master-slave) robotic surgical systems. A new perioperative nursing role, the robotics nurse specialist, was developed and implemented at one facility. The need for a robotics nurse specialist and how this role can help the entire surgical team promote positive patient and facility outcomes also is discussed.

  7. Experiences with an application of industrial robotics for accurate patient positioning in proton radiotherapy.

    PubMed

    Allgower, C E; Schreuder, A N; Farr, J B; Mascia, A E

    2007-03-01

    Protons beams deliver targeted radiation doses with greater precision than is possible with electrons or megavoltage X-ray photons, but to retain this advantage, patient positioning systems at proton clinics must meet tighter accuracy requirements. For this and other reasons, robots were incorporated into the treatment room systems at MPRI. The Midwest Proton Radiotherapy Institute (MPRI) is the first radiotherapy facility in the United States to use commercial robots with six degrees of freedom for patient positioning, rather than a traditional bed with four degrees of freedom. This paper outlines the ways in which robots are used at MPRI and attempts to distil insights from the experience of treating over 200 radiotherapy patients with a robotic system from February 2004 to late 2006. The system has performed well, and with great reliability, but there is room for future improvement, especially in ease of use and in reducing the time to get patients into position. Copyright 2006 John Wiley & Sons, Ltd.

  8. Robot Handcontroller

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The PER-Force robotic handcontroller provides a sense of touch or "feel" to an operator manipulating robots. The force simulation and wide range of motion greatly enhances the efficiency of robotic and computer operations. The handcontroller was developed for the Space Station by Cybernet Systems Corporation under a Small Business Innovation Research (SBIR) contract. Commercial applications include underwater use, underground excavations, research laboratories, hazardous waste handling and in manufacturing operations in which it is unsafe or impractical for humans to work.

  9. Inventing Japan's 'robotics culture': the repeated assembly of science, technology, and culture in social robotics.

    PubMed

    Sabanović, Selma

    2014-06-01

    Using interviews, participant observation, and published documents, this article analyzes the co-construction of robotics and culture in Japan through the technical discourse and practices of robotics researchers. Three cases from current robotics research--the seal-like robot PARO, the Humanoid Robotics Project HRP-2 humanoid, and 'kansei robotics' - show the different ways in which scientists invoke culture to provide epistemological grounding and possibilities for social acceptance of their work. These examples show how the production and consumption of social robotic technologies are associated with traditional crafts and values, how roboticists negotiate among social, technical, and cultural constraints while designing robots, and how humans and robots are constructed as cultural subjects in social robotics discourse. The conceptual focus is on the repeated assembly of cultural models of social behavior, organization, cognition, and technology through roboticists' narratives about the development of advanced robotic technologies. This article provides a picture of robotics as the dynamic construction of technology and culture and concludes with a discussion of the limits and possibilities of this vision in promoting a culturally situated understanding of technology and a multicultural view of science.

  10. ROBOTIC SURGERY: BIOETHICAL ASPECTS

    PubMed Central

    SIQUEIRA-BATISTA, Rodrigo; SOUZA, Camila Ribeiro; MAIA, Polyana Mendes; SIQUEIRA, Sávio Lana

    2016-01-01

    ABSTRACT Introduction: The use of robots in surgery has been increasingly common today, allowing the emergence of numerous bioethical issues in this area. Objective: To present review of the ethical aspects of robot use in surgery. Method: Search in Pubmed, SciELO and Lilacs crossing the headings "bioethics", "surgery", "ethics", "laparoscopy" and "robotic". Results: Of the citations obtained, were selected 17 articles, which were used for the preparation of the article. It contains brief presentation on robotics, its inclusion in health and bioethical aspects, and the use of robots in surgery. Conclusion: Robotic surgery is a reality today in many hospitals, which makes essential bioethical reflection on the relationship between health professionals, automata and patients. PMID:28076489

  11. Robotic arm

    DOEpatents

    Kwech, Horst

    1989-04-18

    A robotic arm positionable within a nuclear vessel by access through a small diameter opening and having a mounting tube supported within the vessel and mounting a plurality of arm sections for movement lengthwise of the mounting tube as well as for movement out of a window provided in the wall of the mounting tube. An end effector, such as a grinding head or welding element, at an operating end of the robotic arm, can be located and operated within the nuclear vessel through movement derived from six different axes of motion provided by mounting and drive connections between arm sections of the robotic arm. The movements are achieved by operation of remotely-controllable servo motors, all of which are mounted at a control end of the robotic arm to be outside the nuclear vessel.

  12. Toward cognitive robotics

    NASA Astrophysics Data System (ADS)

    Laird, John E.

    2009-05-01

    Our long-term goal is to develop autonomous robotic systems that have the cognitive abilities of humans, including communication, coordination, adapting to novel situations, and learning through experience. Our approach rests on the recent integration of the Soar cognitive architecture with both virtual and physical robotic systems. Soar has been used to develop a wide variety of knowledge-rich agents for complex virtual environments, including distributed training environments and interactive computer games. For development and testing in robotic virtual environments, Soar interfaces to a variety of robotic simulators and a simple mobile robot. We have recently made significant extensions to Soar that add new memories and new non-symbolic reasoning to Soar's original symbolic processing, which should significantly improve Soar abilities for control of robots. These extensions include episodic memory, semantic memory, reinforcement learning, and mental imagery. Episodic memory and semantic memory support the learning and recalling of prior events and situations as well as facts about the world. Reinforcement learning provides the ability of the system to tune its procedural knowledge - knowledge about how to do things. Mental imagery supports the use of diagrammatic and visual representations that are critical to support spatial reasoning. We speculate on the future of unmanned systems and the need for cognitive robotics to support dynamic instruction and taskability.

  13. Development of a robotic patient positioning system with a wide beam-angle range for fixed-beam particle therapy

    NASA Astrophysics Data System (ADS)

    Choi, Hongseok; Park, Jong-Oh; Ko, Seong Young; Park, Sukho; Cho, Sungho; Jung, Won-Gyun; Park, Yong Kyun; Kang, Jung Suk

    2016-10-01

    This paper describes a robotic patient positioning system (PPS) for a fixed-beam heavy-ion therapy system. In order to extend the limited irradiation angle range of the fixed beam, we developed a 6-degree-of-freedom (6-DOF) serial-link robotic arm and used it as the robotic PPS for the fixed-beam heavy-ion therapy system. This research aims to develop a robotic PPS for use in the Korea Heavy Ion Medical Accelerator (KHIMA) system, which is under development at the Korea Institute of Radiological & Medical Sciences (KIRAMS). In particular, we select constraints and criteria that will be used for designing and evaluating the robotic PPS through full consultation with KIRAMS. In accordance with the constraints and criteria, we develop a 6-DOF serial-link robotic arm that consists of six revolute joints for the robotic PPS, where the robotic arm covers the upper body of a patient as a treatment area and achieves a 15 ° roll and pitch angle in the treatment area without any collision. Various preliminary experiments confirm that the robotic PPS can meet all criteria for extension of the limited irradiation angle range in the treatment area and has a positioning repeatability of 0.275 mm.

  14. Robotic Follow Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2005-03-30

    The Robotic Follow Algorithm enables allows any robotic vehicle to follow a moving target while reactively choosing a route around nearby obstacles. The robotic follow behavior can be used with different camera systems and can be used with thermal or visual tracking as well as other tracking methods such as radio frequency tags.

  15. [Robotic surgery in gynecology].

    PubMed

    Csorba, Roland

    2012-06-24

    Minimally invasive surgery has revolutionized gynecological interventions over the past 30 years. The introduction of the da Vinci robotic surgery in 2005 has resulted in large changes in surgical management. The robotic platform allows less experienced laparoscopic surgeons to perform more complex procedures. It can be utilized mainly in general gynecology and reproductive gynecology. The robot is being increasingly used for procedures such as hysterectomy, myomectomy, adnexal surgery, and tubal anastomosis. In urogynecology, the robot is being utilized for sacrocolopexy as well. In the field of gynecologic oncology, the robot is being increasingly used for hysterectomy and lymphadenectomy in oncologic diseases. Despite the rapid and widespread adaption of robotic surgery in gynecology, there are no randomized trials comparing its efficacy and safety to other traditional surgical approaches. This article presents the development, technical aspects and indications of robotic surgery in gynecology, based on the previously published reviews. Robotic surgery can be highly advantageous with the right amount of training, along with appropriate patient selection. Patients will have less blood loss, less post-operative pain, faster recovery, and fewer complications compared to open surgery and laparoscopy. However, until larger randomized control trials are completed which report long-term outcomes, robotic surgery cannot be stated to have priority over other surgical methods.

  16. Continuum limbed robots for locomotion

    NASA Astrophysics Data System (ADS)

    Mutlu, Alper

    This thesis focuses on continuum robots based on pneumatic muscle technology. We introduce a novel approach to use these muscles as limbs of lightweight legged robots. The flexibility of the continuum legs of these robots offers the potential to perform some duties that are not possible with classical rigid-link robots. Potential applications are as space robots in low gravity, and as cave explorer robots. The thesis covers the fabrication process of continuum pneumatic muscles and limbs. It also provides some new experimental data on this technology. Afterwards, the designs of two different novel continuum robots - one tripod, one quadruped - are introduced. Experimental data from tests using the robots is provided. The experimental results are the first published example of locomotion with tripod and quadruped continuum legged robots. Finally, discussion of the results and how far this technology can go forward is presented.

  17. Space robotics in Japan

    NASA Technical Reports Server (NTRS)

    Whittaker, William; Lowrie, James W.; Mccain, Harry; Bejczy, Antal; Sheridan, Tom; Kanade, Takeo; Allen, Peter

    1994-01-01

    Japan has been one of the most successful countries in the world in the realm of terrestrial robot applications. The panel found that Japan has in place a broad base of robotics research and development, ranging from components to working systems for manufacturing, construction, and human service industries. From this base, Japan looks to the use of robotics in space applications and has funded work in space robotics since the mid-1980's. The Japanese are focusing on a clear image of what they hope to achieve through three objectives for the 1990's: developing long-reach manipulation for tending experiments on Space Station Freedom, capturing satellites using a free-flying manipulator, and surveying part of the moon with a mobile robot. This focus and a sound robotics infrastructure is enabling the young Japanese space program to develop relevant systems for extraterrestrial robotics applications.

  18. [Robotic laparoscopic cholecystectomy].

    PubMed

    Langer, D; Pudil, J; Ryska, M

    2006-09-01

    Laparoscopic approach profusely utilized in many surgical fields was enhanced by da Vinci robotic surgical system in range of surgery wards, imprimis in the United States today. There was multispecialized robotic centre program initiated in the Central Military Hospital in Prague in December 2005. Within the scope of implementing the da Vinci robotic system to clinical practice we executed robotic-assisted laparoscopic cholecystectomy. We have accomplished elective laparoscopic cholecystectomy using the da Vinci robotic surgical system. Operating working group (two doctors, two scrub nurses) had completed certificated foreign training. Both of the surgeons have many years experience of laparoscopic cholecystectomy. Operator controlled instruments from the surgeon's console, assistant placed clips on ends of cystic duct and cystic artery from auxiliary port after capnoperitoneum installation. We evacuated gallbladder in plastic bag from abdominal cavity in place of original paraumbilical port. We were exploiting three working arms in all our cases, holding surgical camera, electrocautery hook and Cadiere forceps. We had been observing procedure time, technical complications connected with robotic system, length of hospital stay and complication incidence rate. We managed to finish all operations in laparoscopic way. Group of our patients formed 11 male patients (35.5%) and 20 women (64.5%), mean aged 52.5 years in range of 27 77 years. The average operation procedure lasted 100 minutes, in the group of last 11 patients only 69 minutes. We recorded paraumbilical wound infections in 3 (9.7 %) patients. We had not experienced any technical problems with robotic surgical system. Length of hospital stay was 3 days. Considering our initial experience with robotic lasparoscopic cholecystectomy we evaluate da Vinci robotic surgical system to be safe and sophisticated operating manipulator which however does not substitute the surgeon key-role of controlling position and

  19. Mergeable nervous systems for robots.

    PubMed

    Mathews, Nithin; Christensen, Anders Lyhne; O'Grady, Rehan; Mondada, Francesco; Dorigo, Marco

    2017-09-12

    Robots have the potential to display a higher degree of lifetime morphological adaptation than natural organisms. By adopting a modular approach, robots with different capabilities, shapes, and sizes could, in theory, construct and reconfigure themselves as required. However, current modular robots have only been able to display a limited range of hardwired behaviors because they rely solely on distributed control. Here, we present robots whose bodies and control systems can merge to form entirely new robots that retain full sensorimotor control. Our control paradigm enables robots to exhibit properties that go beyond those of any existing machine or of any biological organism: the robots we present can merge to form larger bodies with a single centralized controller, split into separate bodies with independent controllers, and self-heal by removing or replacing malfunctioning body parts. This work takes us closer to robots that can autonomously change their size, form and function.Robots that can self-assemble into different morphologies are desired to perform tasks that require different physical capabilities. Mathews et al. design robots whose bodies and control systems can merge and split to form new robots that retain full sensorimotor control and act as a single entity.

  20. Open Issues in Evolutionary Robotics.

    PubMed

    Silva, Fernando; Duarte, Miguel; Correia, Luís; Oliveira, Sancho Moura; Christensen, Anders Lyhne

    2016-01-01

    One of the long-term goals in evolutionary robotics is to be able to automatically synthesize controllers for real autonomous robots based only on a task specification. While a number of studies have shown the applicability of evolutionary robotics techniques for the synthesis of behavioral control, researchers have consistently been faced with a number of issues preventing the widespread adoption of evolutionary robotics for engineering purposes. In this article, we review and discuss the open issues in evolutionary robotics. First, we analyze the benefits and challenges of simulation-based evolution and subsequent deployment of controllers versus evolution on real robotic hardware. Second, we discuss specific evolutionary computation issues that have plagued evolutionary robotics: (1) the bootstrap problem, (2) deception, and (3) the role of genomic encoding and genotype-phenotype mapping in the evolution of controllers for complex tasks. Finally, we address the absence of standard research practices in the field. We also discuss promising avenues of research. Our underlying motivation is the reduction of the current gap between evolutionary robotics and mainstream robotics, and the establishment of evolutionary robotics as a canonical approach for the engineering of autonomous robots.

  1. STS-103 Pilot Kelly and MS Clervoy and Smith DEPART PAFB for Houston

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-103 Pilot Scott J. Kelly holds his daughter as he talks to Mission Specialists and fellow crew members Jean-Frangois Clervoy of France and Steven L. Smith on the runway at Patrick Air Force Base in Cocoa Beach, Fla. The STS-103 crew and their families are preparing to board an airplane that will return them to their home base at the Johnson Space Center in Houston following the successful completion of their mission. Discovery landed in darkness the previous evening, Dec. 27, on runway 33 at KSC's Shuttle Landing Facility at 7:00:47 p.m. EST. This was the first time that a Shuttle crew spent the Christmas holiday in space. The other STS-103 crew members are Commander Curtis L. Brown Jr. and Mission Specialists C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), and Claude Nicollier of Switzerland. The STS-103 mission accomplished outfitting the Hubble Space Telescope with six new gyroscopes, six new voltage/temperature improvement kits, a new onboard computer, a new solid state recorder and new data transmitter, a new fine guidance sensor along with new insulation on parts of the orbiting telescope. This was the 96th flight in the Space Shuttle program and the 27th for the orbiter Discovery.

  2. Evolving self-assembly in autonomous homogeneous robots: experiments with two physical robots.

    PubMed

    Ampatzis, Christos; Tuci, Elio; Trianni, Vito; Christensen, Anders Lyhne; Dorigo, Marco

    2009-01-01

    This research work illustrates an approach to the design of controllers for self-assembling robots in which the self-assembly is initiated and regulated by perceptual cues that are brought forth by the physical robots through their dynamical interactions. More specifically, we present a homogeneous control system that can achieve assembly between two modules (two fully autonomous robots) of a mobile self-reconfigurable system without a priori introduced behavioral or morphological heterogeneities. The controllers are dynamic neural networks evolved in simulation that directly control all the actuators of the two robots. The neurocontrollers cause the dynamic specialization of the robots by allocating roles between them based solely on their interaction. We show that the best evolved controller proves to be successful when tested on a real hardware platform, the swarm-bot. The performance achieved is similar to the one achieved by existing modular or behavior-based approaches, also due to the effect of an emergent recovery mechanism that was neither explicitly rewarded by the fitness function, nor observed during the evolutionary simulation. Our results suggest that direct access to the orientations or intentions of the other agents is not a necessary condition for robot coordination: Our robots coordinate without direct or explicit communication, contrary to what is assumed by most research works in collective robotics. This work also contributes to strengthening the evidence that evolutionary robotics is a design methodology that can tackle real-world tasks demanding fine sensory-motor coordination.

  3. [Robotics in pediatric surgery].

    PubMed

    Camps, J I

    2011-10-01

    Despite the extensive use of robotics in the adult population, the use of robotics in pediatrics has not been well accepted. There is still a lack of awareness from pediatric surgeons on how to use the robotic equipment, its advantages and indications. Benefit is still controversial. Dexterity and better visualization of the surgical field are one of the strong values. Conversely, cost and a lack of small instruments prevent the use of robotics in the smaller patients. The aim of this manuscript is to present the controversies about the use of robotics in pediatric surgery.

  4. Robotic Colorectal Surgery

    PubMed Central

    2008-01-01

    Robotic colorectal surgery has gradually been performed more with the help of the technological advantages of the da Vinci® system. Advanced technological advantages of the da Vinci® system compared with standard laparoscopic colorectal surgery have been reported. These are a stable camera platform, three-dimensional imaging, excellent ergonomics, tremor elimination, ambidextrous capability, motion scaling, and instruments with multiple degrees of freedom. However, despite these technological advantages, most studies did not report the clinical advantages of robotic colorectal surgery compared to standard laparoscopic colorectal surgery. Only one study recently implies the real benefits of robotic rectal cancer surgery. The purpose of this review article is to outline the early concerns of robotic colorectal surgery using the da Vinci® system, to present early clinical outcomes from the most current series, and to discuss not only the safety and the feasibility but also the real benefits of robotic colorectal surgery. Moreover, this article will comment on the possible future clinical advantages and limitations of the da Vinci® system in robotic colorectal surgery. PMID:19108010

  5. Toward a framework for levels of robot autonomy in human-robot interaction.

    PubMed

    Beer, Jenay M; Fisk, Arthur D; Rogers, Wendy A

    2014-07-01

    A critical construct related to human-robot interaction (HRI) is autonomy, which varies widely across robot platforms. Levels of robot autonomy (LORA), ranging from teleoperation to fully autonomous systems, influence the way in which humans and robots may interact with one another. Thus, there is a need to understand HRI by identifying variables that influence - and are influenced by - robot autonomy. Our overarching goal is to develop a framework for levels of robot autonomy in HRI. To reach this goal, the framework draws links between HRI and human-automation interaction, a field with a long history of studying and understanding human-related variables. The construct of autonomy is reviewed and redefined within the context of HRI. Additionally, the framework proposes a process for determining a robot's autonomy level, by categorizing autonomy along a 10-point taxonomy. The framework is intended to be treated as guidelines to determine autonomy, categorize the LORA along a qualitative taxonomy, and consider which HRI variables (e.g., acceptance, situation awareness, reliability) may be influenced by the LORA.

  6. Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion

    PubMed Central

    Marras, Stefano; Porfiri, Maurizio

    2012-01-01

    The integration of biomimetic robots in a fish school may enable a better understanding of collective behaviour, offering a new experimental method to test group feedback in response to behavioural modulations of its ‘engineered’ member. Here, we analyse a robotic fish and individual golden shiners (Notemigonus crysoleucas) swimming together in a water tunnel at different flow velocities. We determine the positional preference of fish with respect to the robot, and we study the flow structure using a digital particle image velocimetry system. We find that biomimetic locomotion is a determinant of fish preference as fish are more attracted towards the robot when its tail is beating rather than when it is statically immersed in the water as a ‘dummy’. At specific conditions, the fish hold station behind the robot, which may be due to the hydrodynamic advantage obtained by swimming in the robot's wake. This work makes a compelling case for the need of biomimetic locomotion in promoting robot–animal interactions and it strengthens the hypothesis that biomimetic robots can be used to study and modulate collective animal behaviour. PMID:22356819

  7. [Robot-aided training in rehabilitation].

    PubMed

    Hachisuka, Kenji

    2010-02-01

    Recently, new training techniques that involve the use of robots have been used in the rehabilitation of patients with hemiplegia and paraplegia. Robots used for training the arm include the MIT-MANUS, Arm Trainer, mirror-image motion enabler (MIME) robot, and the assisted rehabilitation and measurement (ARM) Guide. Robots that are used for lower-limb training are the Rehabot, Gait Trainer, Lokomat, LOPES Exoskeleton Robot, and Gait Assist Robot. Robot-aided therapy has enabled the functional training of the arm and the lower limbs in an effective, easy, and comfortable manner. Therefore, with this type of therapy, the patients can repeatedly undergo sufficient and accurate training for a prolonged period. However, evidence of the benefits of robot-aided training has not yet been established.

  8. Current status of robotic simulators in acquisition of robotic surgical skills.

    PubMed

    Kumar, Anup; Smith, Roger; Patel, Vipul R

    2015-03-01

    This article provides an overview of the current status of simulator systems in robotic surgery training curriculum, focusing on available simulators for training, their comparison, new technologies introduced in simulation focusing on concepts of training along with existing challenges and future perspectives of simulator training in robotic surgery. The different virtual reality simulators available in the market like dVSS, dVT, RoSS, ProMIS and SEP have shown face, content and construct validity in robotic skills training for novices outside the operating room. Recently, augmented reality simulators like HoST, Maestro AR and RobotiX Mentor have been introduced in robotic training providing a more realistic operating environment, emphasizing more on procedure-specific robotic training . Further, the Xperience Team Trainer, which provides training to console surgeon and bed-side assistant simultaneously, has been recently introduced to emphasize the importance of teamwork and proper coordination. Simulator training holds an important place in current robotic training curriculum of future robotic surgeons. There is a need for more procedure-specific augmented reality simulator training, utilizing advancements in computing and graphical capabilities for new innovations in simulator technology. Further studies are required to establish its cost-benefit ratio along with concurrent and predictive validity.

  9. Robotic follow system and method

    DOEpatents

    Bruemmer, David J [Idaho Falls, ID; Anderson, Matthew O [Idaho Falls, ID

    2007-05-01

    Robot platforms, methods, and computer media are disclosed. The robot platform includes perceptors, locomotors, and a system controller, which executes instructions for a robot to follow a target in its environment. The method includes receiving a target bearing and sensing whether the robot is blocked front. If the robot is blocked in front, then the robot's motion is adjusted to avoid the nearest obstacle in front. If the robot is not blocked in front, then the method senses whether the robot is blocked toward the target bearing and if so, sets the rotational direction opposite from the target bearing, and adjusts the rotational velocity and translational velocity. If the robot is not blocked toward the target bearing, then the rotational velocity is adjusted proportional to an angle of the target bearing and the translational velocity is adjusted proportional to a distance to the nearest obstacle in front.

  10. Combined virtual and real robotic test-bed for single operator control of multiple robots

    NASA Astrophysics Data System (ADS)

    Lee, Sam Y.-S.; Hunt, Shawn; Cao, Alex; Pandya, Abhilash

    2010-04-01

    Teams of heterogeneous robots with different dynamics or capabilities could perform a variety of tasks such as multipoint surveillance, cooperative transport and explorations in hazardous environments. In this study, we work with heterogeneous robots of semi-autonomous ground and aerial robots for contaminant localization. We developed a human interface system which linked every real robot to its virtual counterpart. A novel virtual interface has been integrated with Augmented Reality that can monitor the position and sensory information from video feed of ground and aerial robots in the 3D virtual environment, and improve user situational awareness. An operator can efficiently control the real multi-robots using the Drag-to-Move method on the virtual multi-robots. This enables an operator to control groups of heterogeneous robots in a collaborative way for allowing more contaminant sources to be pursued simultaneously. The advanced feature of the virtual interface system is guarded teleoperation. This can be used to prevent operators from accidently driving multiple robots into walls and other objects. Moreover, the feature of the image guidance and tracking is able to reduce operator workload.

  11. KC-135 materials handling robotics

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1991-01-01

    Robot dynamics and control will become an important issue for implementing productive platforms in space. Robotic operations will become necessary for man-tended stations and for efficient performance of routine operations in a manned platform. The current constraints on the use of robotic devices in a microgravity environment appears to be due to an anticipated increase in acceleration levels due to manipulator motion and for safety concerns. The objective of this study will be to provide baseline data to meet that need. Most texts and papers dealing with the kinematics and dynamics of robots assume that the manipulator is composed of joints separated by rigid links. However, in recent years several groups have begun to study the dynamics of flexible manipulators, primarily for applying robots in space and for improving the efficiency and precision of robotic systems. Robotic systems which are being planned for implementation in space have a number of constraints to overcome. Additional concepts which have to be worked out in any robotic implementation for a space platform include teleoperation and degree of autonomous control. Some significant results in developing a robotic workcell for performing robotics research on the KC-135 aircraft in preperation for space-based robotics applications in the future were generated. In addition, it was shown that TREETOPS can be used to simulate the dynamics of robot manipulators for both space and ground-based applications.

  12. A Human-Robot Interaction Perspective on Assistive and Rehabilitation Robotics.

    PubMed

    Beckerle, Philipp; Salvietti, Gionata; Unal, Ramazan; Prattichizzo, Domenico; Rossi, Simone; Castellini, Claudio; Hirche, Sandra; Endo, Satoshi; Amor, Heni Ben; Ciocarlie, Matei; Mastrogiovanni, Fulvio; Argall, Brenna D; Bianchi, Matteo

    2017-01-01

    Assistive and rehabilitation devices are a promising and challenging field of recent robotics research. Motivated by societal needs such as aging populations, such devices can support motor functionality and subject training. The design, control, sensing, and assessment of the devices become more sophisticated due to a human in the loop. This paper gives a human-robot interaction perspective on current issues and opportunities in the field. On the topic of control and machine learning, approaches that support but do not distract subjects are reviewed. Options to provide sensory user feedback that are currently missing from robotic devices are outlined. Parallels between device acceptance and affective computing are made. Furthermore, requirements for functional assessment protocols that relate to real-world tasks are discussed. In all topic areas, the design of human-oriented frameworks and methods is dominated by challenges related to the close interaction between the human and robotic device. This paper discusses the aforementioned aspects in order to open up new perspectives for future robotic solutions.

  13. The "halo effect" in Korea: change in practice patterns since the introduction of robot-assisted laparoscopic radical prostatectomy.

    PubMed

    Sung, Ee-Rah; Jeong, Wooju; Park, Sung Yul; Ham, Won Sik; Choi, Young Deuk; Hong, Sung Joon; Rha, Koon Ho

    2009-03-01

    Acquisition of the da Vinci surgical system (Intuitive Surgical, Mountain View, USA) has enabled robot-assisted surgery to become an acceptable alternative to open radical prostatectomy (ORP). Implementation of robotics at a single institution in Korea induced a gradual increase in the number of performances of robot-assisted laparoscopic radical prostatectomy (RALP) to surgically treat localized prostate cancer. We analyzed the impact of robotic instrumentation on practice patterns among urologists and explain the change in value in ORP and RALP-the standard treatment and the new approach or innovation of robotic technology. The overall number of prostatectomies has increased over time because the number of RALPs has grown drastically whereas the number of OPRs did not decrease during the period of evaluation. Our experience emphasizes the potential of RALP to become the gold standard in the treatment of localized prostate cancer in various parts of the world.

  14. Human-robot skills transfer interfaces for a flexible surgical robot.

    PubMed

    Calinon, Sylvain; Bruno, Danilo; Malekzadeh, Milad S; Nanayakkara, Thrishantha; Caldwell, Darwin G

    2014-09-01

    In minimally invasive surgery, tools go through narrow openings and manipulate soft organs to perform surgical tasks. There are limitations in current robot-assisted surgical systems due to the rigidity of robot tools. The aim of the STIFF-FLOP European project is to develop a soft robotic arm to perform surgical tasks. The flexibility of the robot allows the surgeon to move within organs to reach remote areas inside the body and perform challenging procedures in laparoscopy. This article addresses the problem of designing learning interfaces enabling the transfer of skills from human demonstration. Robot programming by demonstration encompasses a wide range of learning strategies, from simple mimicking of the demonstrator's actions to the higher level imitation of the underlying intent extracted from the demonstrations. By focusing on this last form, we study the problem of extracting an objective function explaining the demonstrations from an over-specified set of candidate reward functions, and using this information for self-refinement of the skill. In contrast to inverse reinforcement learning strategies that attempt to explain the observations with reward functions defined for the entire task (or a set of pre-defined reward profiles active for different parts of the task), the proposed approach is based on context-dependent reward-weighted learning, where the robot can learn the relevance of candidate objective functions with respect to the current phase of the task or encountered situation. The robot then exploits this information for skills refinement in the policy parameters space. The proposed approach is tested in simulation with a cutting task performed by the STIFF-FLOP flexible robot, using kinesthetic demonstrations from a Barrett WAM manipulator. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Robotic-assisted repair of iatrogenic ureteral ligation following robotic-assisted hysterectomy.

    PubMed

    Kalisvaart, Jonathan F; Finley, David S; Ornstein, David K

    2008-01-01

    Ureteral injuries, while rare, do occur during gynecologic procedures. The expansion of laparoscopic and robotic pelvic surgical procedures increases the risk of ureteral injury from these procedures and suggests a role for minimally invasive approaches to the delayed repair of ureteral injuries. We present, to our knowledge, the first case of delayed robotic-assisted ureteral deligation and ureterolysis following iatrogenic ureteral injury occurring during a robotic abdominal hysterectomy. We present a case report and review of the literature. A 57-year-old female underwent a seemingly uncomplicated robotic-assisted laparoscopic total abdominal hysterectomy and bilateral oophorectomy for symptomatic fibroids. On postoperative day 8, she presented with persistent right flank pain. Imaging studies revealed high-grade ureteral obstruction consistent with suture ligation of the right ureter. She underwent successful robotic-assisted ureteral deligation and ureterolysis. Her postoperative course was unremarkable, and she was discharged home on postoperative day 1 from the deligation. Robotic-assisted management of complications from urologic or gynecologic surgery is technically feasible. This can potentially preserve the advantages to the patient that are being seen from the initial less-invasive surgery.

  16. Robotic total pancreatectomy with or without autologous islet cell transplantation: replication of an open technique through a minimal access approach.

    PubMed

    Zureikat, Amer H; Nguyen, Trang; Boone, Brian A; Wijkstrom, Martin; Hogg, Melissa E; Humar, Abhinav; Zeh, Herbert

    2015-01-01

    Total pancreatectomy (TP) is a morbid but sometimes necessary operation. Robotic TP is not often reported but may harbor some advantages compared to the open approach. This manuscript details a single institution's outcomes and technique of robotic TP. An accompanying video demonstrates a robotic TP with auto islet cell transplantation (IAT) in which (1) the arterial blood supply and venous drainage are kept intact until the last step of the TP to minimize warm ischemia time and (2) extirpation of the entire pancreas is performed without dividing the pancreatic neck to maximize islet recovery. This study is a retrospective review of a prospective database of perioperative outcomes of all consecutive robotic TPs at a single institution. This included a single robotic TP with IAT performed on a twenty-year-old patient with chronic pancreatitis. Between 2010 and January 2014, ten robotic TPs were performed (7 males, mean age 58 years), one of which included an IAT. Median body mass index was 28. Indications were intraductal papillary mucinous neoplasms (6), pancreatic adenocarcinoma (1), and chronic pancreatitis (3). The median operative time was 560 min with a median estimated blood loss of 650 ml. One case was converted to laparotomy. Ninety days mortality and Clavien III-IV complication rate were 0 and 20 %, respectively. The average length of stay was 10 ± 3 days, with only 1 readmission within 90 days. The single TP and IAT were completed successfully without conversion, and were achieved without division of the pancreatic neck thereby maintaining vascular inflow to an entire specimen up until extraction. This represents the largest series of robotic TP, demonstrating its safety and feasibility. Additionally, TP and IAT using the technique described above can be recapitulated using the robotic approach.

  17. A Survey of Space Robotics

    NASA Technical Reports Server (NTRS)

    Pedersen, L.; Kortenkamp, D.; Wettergreen, D.; Nourbakhsh, I.; Korsmeyer, David (Technical Monitor)

    2003-01-01

    In this paper we summarize a survey conducted by NASA to determine the state-of-the-art in space robotics and to predict future robotic capabilities under either nominal and intensive development effort. The space robotics assessment study examined both in-space operations including assembly, inspection, and maintenance and planetary surface operations like mobility and exploration. Applications of robotic autonomy and human-robot cooperation were considered. The study group devised a decomposition of robotic capabilities and then suggested metrics to specify the technical challenges associated with each. The conclusion of this paper identifies possible areas in which investment in space robotics could lead to significant advances of important technologies.

  18. EPSRC Principles of Robotics: commentary on safety, robots as products, and responsibility

    NASA Astrophysics Data System (ADS)

    Boddington, Paula

    2017-04-01

    The EPSRC Principles of Robotics refer to safety. How safety is understood is relative to how tasks are characterised and identified. But the exact task(s) a robot plays within a complex system of agency may be hard to identify. If robots are seen as products, it is nonetheless vital that the safety and other implications of their use in situ must also be considered carefully, and they must be fit for purpose. The Principles identify humans as responsible, rather than robots. We must thus understand how the replacement of human agency by robotic agency may impact upon attributions of responsibility. The Principles seek to fit into existing systems of law and ethics. But these may need development, and in certain context, attention to more local regulations is also needed. A distinction between ethical issues related to the design of robotics, and to their use, may be needed in the Principles.

  19. Service Oriented Robotic Architecture for Space Robotics: Design, Testing, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Fluckiger, Lorenzo Jean Marc E; Utz, Hans Heinrich

    2013-01-01

    This paper presents the lessons learned from six years of experiments with planetary rover prototypes running the Service Oriented Robotic Architecture (SORA) developed by the Intelligent Robotics Group (IRG) at the NASA Ames Research Center. SORA relies on proven software engineering methods and technologies applied to space robotics. Based on a Service Oriented Architecture and robust middleware, SORA encompasses on-board robot control and a full suite of software tools necessary for remotely operated exploration missions. SORA has been eld tested in numerous scenarios of robotic lunar and planetary exploration. The experiments conducted by IRG with SORA exercise a large set of the constraints encountered in space applications: remote robotic assets, ight relevant science instruments, distributed operations, high network latencies and unreliable or intermittent communication links. In this paper, we present the results of these eld tests in regard to the developed architecture, and discuss its bene ts and limitations.

  20. Urologic robots and future directions.

    PubMed

    Mozer, Pierre; Troccaz, Jocelyne; Stoianovici, Dan

    2009-01-01

    Robot-assisted laparoscopic surgery in urology has gained immense popularity with the daVinci system, but a lot of research teams are working on new robots. The purpose of this study is to review current urologic robots and present future development directions. Future systems are expected to advance in two directions: improvements of remote manipulation robots and developments of image-guided robots. The final goal of robots is to allow safer and more homogeneous outcomes with less variability of surgeon performance, as well as new tools to perform tasks on the basis of medical transcutaneous imaging, in a less invasive way, at lower costs. It is expected that improvements for a remote system could be augmented in reality, with haptic feedback, size reduction, and development of new tools for natural orifice translumenal endoscopic surgery. The paradigm of image-guided robots is close to clinical availability and the most advanced robots are presented with end-user technical assessments. It is also notable that the potential of robots lies much further ahead than the accomplishments of the daVinci system. The integration of imaging with robotics holds a substantial promise, because this can accomplish tasks otherwise impossible. Image-guided robots have the potential to offer a paradigm shift.

  1. UROLOGIC ROBOTS AND FUTURE DIRECTIONS

    PubMed Central

    Mozer, Pierre; Troccaz, Jocelyne; Stoianovici, Dan

    2009-01-01

    Purpose of review Robot-assisted laparoscopic surgery in urology has gained immense popularity with the Da Vinci system but a lot of research teams are working on new robots. The purpose of this paper is to review current urologic robots and present future developments directions. Recent findings Future systems are expected to advance in two directions: improvements of remote manipulation robots and developments of image-guided robots. Summary The final goal of robots is to allow safer and more homogeneous outcomes with less variability of surgeon performance, as well as new tools to perform tasks based on medical transcutaneous imaging, in a less invasive way, at lower costs. It is expected that improvements for remote system could be augmented reality, haptic feed back, size reduction and development of new tools for NOTES surgery. The paradigm of image-guided robots is close to a clinical availability and the most advanced robots are presented with end-user technical assessments. It is also notable that the potential of robots lies much further ahead than the accomplishments of the daVinci system. The integration of imaging with robotics holds a substantial promise, because this can accomplish tasks otherwise impossible. Image guided robots have the potential to offer a paradigm shift. PMID:19057227

  2. Atmospheric Seeing and Transparency Robotic Observatory

    NASA Astrophysics Data System (ADS)

    Cline, J. D.; Castelaz, M. W.

    2002-12-01

    A robotic 12.7 cm telescope and camera (together called OVIEW) have been designed to do photometry of 50 of the brightest stars in the local sky 24 hours a day. Each star is imaged through a broadband 500 nm filter. Software automatically analyzes the brightness of the star and the stellar seeing disk. The results are published in real-time on a web page. Comparison of stellar brightness with known apparent magnitude is a measure of transparency with instrument resolution of one arcsecond. We will describe the observatory, software, and website. We will also describe other telescopes on the Optical Ridge at the Pisgah Astronomical Research Institute (PARI). On the same pier as OVIEW is a second robotic 12.7 cm telescope and camera that image the sun and moon. The solar and lunar images are published live on the Internet. Also on the Optical Ridge is a robotic 20 cm telescope. This telescope is operated by UNC-Chapel Hill and has been operating on the Optical Ridge for more than 2 years surveying the plane of the Milky Way for binary low mass stars. UNC-Chapel Hill also operates a 25 cm telescope with an IR camera for photometry of gamma ray burst optical afterglows. An additional 25 cm telescope with a new 3.2 megapixel CCD is used for undergraduate research and W UMa binary star photometry. We acknowledge the AAS Small Grant Program for partial support of the solar/lunar telescope.

  3. [History of robotics: from Archytas of Tarentum until da Vinci robot. (Part I)].

    PubMed

    Sánchez Martín, F M; Millán Rodríguez, F; Salvador Bayarri, J; Palou Redorta, J; Rodríguez Escovar, F; Esquena Fernández, S; Villavicencio Mavrich, H

    2007-02-01

    Robotic surgery is the newst technologic option in urology. To understand how new robots work is interesting to know their history. The desire to design machines imitating humans continued for more than 4000 years. There are references to King-su Tse (clasic China) making up automaton at 500 a. C. Archytas of Tarentum (at around 400 a.C.) is considered the father of mechanical engineering, and one of the occidental robotics classic referents. Heron of Alexandria, Hsieh-Fec, Al-Jazari, Roger Bacon, Juanelo Turriano, Leonardo da Vinci, Vaucanson o von Kempelen were robot inventors in the middle age, renaissance and classicism. At the XIXth century, automaton production underwent a peak and all engineering branches suffered a great development. At 1942 Asimov published the three robotics laws, based on mechanics, electronics and informatics advances. At XXth century robots able to do very complex self governing works were developed, like da Vinci Surgical System (Intuitive Surgical Inc, Sunnyvale, CA, USA), a very sophisticated robot to assist surgeons.

  4. Robotic hand with modular extensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salisbury, Curt Michael; Quigley, Morgan

    A robotic device is described herein. The robotic device includes a frame that comprises a plurality of receiving regions that are configured to receive a respective plurality of modular robotic extensions. The modular robotic extensions are removably attachable to the frame at the respective receiving regions by way of respective mechanical fuses. Each mechanical fuse is configured to trip when a respective modular robotic extension experiences a predefined load condition, such that the respective modular robotic extension detaches from the frame when the load condition is met.

  5. Intracorporeal Double-J stent placement during robot-assisted urinary tract reconstruction: technical considerations.

    PubMed

    Mufarrij, Patrick W; Rajamahanty, Srinivas; Krane, L Spencer; Hemal, Ashok K

    2012-09-01

    An integral component of many urologic reconstructive surgical procedures is the positioning of a Double-J stent to span the anastomosis. Some surgeons prefer to place a retrograde stent during cystoscopy, either during or after the reconstruction. In this communication, we describe our straightforward and effective approach of performing this critical step intracorporeally using robotic assistance in a variety of upper tract urologic reconstructive procedures. We examined our Institutional Review Board-approved database of robotic surgeries to identify reconstructive operations that included the intracorporeal placement of a Double-J stent since 2008. Our step-by-step method for stent placement during various robotic urologic reconstructions is detailed, including procedures involving the proximal, mid, and distal ureter. With the aid of a bedside assistant-surgeon, we delineate how the console surgeon is able to perform this step of the procedure completely intracorporeally, without the need for repositioning or cystoscopy. Since the inception of our robotic surgical program in 2008, we have used these robotic stent placement techniques in 150 patients. The average time of robotic intracorporeal stent placement across the anastomosis was 3.5 minutes. Three patients did experience proximal stent migration, as documented on postoperative radiographs, but all were treated with conservative measures, because their anastomosis was not affected and severe symptoms did not develop. No patient needed stent replacement, and each stent was subsequently removed ureteroscopically without sequelae. Our robotic intracorporeal Double-J stent placement approach is simple and effective, avoids the need for cystoscopy and fluoroscopy, and can be used in any type of upper urinary tract urologic reconstruction.

  6. Industrial robots on the line

    NASA Astrophysics Data System (ADS)

    Ayres, R.; Miller, S.

    1982-06-01

    The characteristics, applications, and operational capabilities of currently available robots are examined. Designed to function at tasks of a repetitive, hazardous, or uncreative nature, robot appendages are controlled by microprocessors which permit some simple decision-making on-the-job, and have served for sample gathering on the Mars Viking lander. Critical developmental areas concern active sensors at the robot grappler-object interface, where sufficient data must be gathered for the central processor to which the robot is attached to conclude the state of completion and suitability of the workpiece. Although present robots must be programmed through every step of a particular industrial process, thus limiting each robot to specialized tasks, the potential for closed cells of batch-processing robot-run units is noted to be close to realization. Finally, consideration is given to methods for retraining the human workforce that robots replace

  7. Robotics research projects report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsia, T.C.

    The research results of the Robotics Research Laboratory are summarized. Areas of research include robotic control, a stand-alone vision system for industrial robots, and sensors other than vision that would be useful for image ranging, including ultrasonic and infra-red devices. One particular project involves RHINO, a 6-axis robotic arm that can be manipulated by serial transmission of ASCII command strings to its interfaced controller. (LEW)

  8. Tool Changer For Robot

    NASA Technical Reports Server (NTRS)

    Voellmer, George M.

    1992-01-01

    Mechanism enables robot to change tools on end of arm. Actuated by motion of robot: requires no additional electrical or pneumatic energy to make or break connection between tool and wrist at end of arm. Includes three basic subassemblies: wrist interface plate attached to robot arm at wrist, tool interface plate attached to tool, and holster. Separate tool interface plate and holster provided for each tool robot uses.

  9. Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction.

    PubMed

    de Greeff, Joachim; Belpaeme, Tony

    2015-01-01

    Social learning is a powerful method for cultural propagation of knowledge and skills relying on a complex interplay of learning strategies, social ecology and the human propensity for both learning and tutoring. Social learning has the potential to be an equally potent learning strategy for artificial systems and robots in specific. However, given the complexity and unstructured nature of social learning, implementing social machine learning proves to be a challenging problem. We study one particular aspect of social machine learning: that of offering social cues during the learning interaction. Specifically, we study whether people are sensitive to social cues offered by a learning robot, in a similar way to children's social bids for tutoring. We use a child-like social robot and a task in which the robot has to learn the meaning of words. For this a simple turn-based interaction is used, based on language games. Two conditions are tested: one in which the robot uses social means to invite a human teacher to provide information based on what the robot requires to fill gaps in its knowledge (i.e. expression of a learning preference); the other in which the robot does not provide social cues to communicate a learning preference. We observe that conveying a learning preference through the use of social cues results in better and faster learning by the robot. People also seem to form a "mental model" of the robot, tailoring the tutoring to the robot's performance as opposed to using simply random teaching. In addition, the social learning shows a clear gender effect with female participants being responsive to the robot's bids, while male teachers appear to be less receptive. This work shows how additional social cues in social machine learning can result in people offering better quality learning input to artificial systems, resulting in improved learning performance.

  10. Robot Tracer with Visual Camera

    NASA Astrophysics Data System (ADS)

    Jabbar Lubis, Abdul; Dwi Lestari, Yuyun; Dafitri, Haida; Azanuddin

    2017-12-01

    Robot is a versatile tool that can function replace human work function. The robot is a device that can be reprogrammed according to user needs. The use of wireless networks for remote monitoring needs can be utilized to build a robot that can be monitored movement and can be monitored using blueprints and he can track the path chosen robot. This process is sent using a wireless network. For visual robot using high resolution cameras to facilitate the operator to control the robot and see the surrounding circumstances.

  11. Perspectives future space on robotics

    NASA Technical Reports Server (NTRS)

    Lavery, Dave

    1994-01-01

    Last year's flight of the German ROTEX robot flight experiment heralded the start of a new era for space robotics. ROTEX is the first of at least 10 new robotic systems and experiments that will fly before 2000. These robots will augment astronaut on-orbit capabilities and extend virtual human presence to lunar and planetary surfaces. The robotic systems to be flown in the next five years fall into three categories: extravehicular robotic (EVR) servicers, science payload servicers, and planetary surface rovers. A description of the work on these systems is presented.

  12. Guarded Motion for Mobile Robots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2005-03-30

    The Idaho National Laboratory (INL) has created codes that ensure that a robot will come to a stop at a precise, specified distance from any obstacle regardless of the robot's initial speed, its physical characteristics, and the responsiveness of the low-level motor control schema. This Guarded Motion for Mobile Robots system iteratively adjusts the robot's action in response to information about the robot's environment.

  13. Robotic Thumb Assembly

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Bridgwater, Lyndon (Inventor); Platt, Robert (Inventor); Wampler, II, Charles W. (Inventor); Goza, S. Michael (Inventor)

    2013-01-01

    An improved robotic thumb for a robotic hand assembly is provided. According to one aspect of the disclosure, improved tendon routing in the robotic thumb provides control of four degrees of freedom with only five tendons. According to another aspect of the disclosure, one of the five degrees of freedom of a human thumb is replaced in the robotic thumb with a permanent twist in the shape of a phalange. According to yet another aspect of the disclosure, a position sensor includes a magnet having two portions shaped as circle segments with different center points. The magnet provides a linearized output from a Hall effect sensor.

  14. Robotic hair restoration.

    PubMed

    Rose, Paul T; Nusbaum, Bernard

    2014-01-01

    The latest innovation to hair restoration surgery has been the introduction of a robotic system for harvesting grafts. This system uses the follicular unit extraction/follicular isolation technique method for harvesting follicular units, which is particularly well suited to the abilities of a robotic technology. The ARTAS system analyzes images of the donor area and then a dual-chamber needle and blunt dissecting punch are used to harvest the follicular units. The robotic technology is now being used in various locations around the world. This article discusses the use of the robotic system, its capabilities, and the advantages and disadvantages of the system. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. 30 Years of Robotic Surgery.

    PubMed

    Leal Ghezzi, Tiago; Campos Corleta, Oly

    2016-10-01

    The idea of reproducing himself with the use of a mechanical robot structure has been in man's imagination in the last 3000 years. However, the use of robots in medicine has only 30 years of history. The application of robots in surgery originates from the need of modern man to achieve two goals: the telepresence and the performance of repetitive and accurate tasks. The first "robot surgeon" used on a human patient was the PUMA 200 in 1985. In the 1990s, scientists developed the concept of "master-slave" robot, which consisted of a robot with remote manipulators controlled by a surgeon at a surgical workstation. Despite the lack of force and tactile feedback, technical advantages of robotic surgery, such as 3D vision, stable and magnified image, EndoWrist instruments, physiologic tremor filtering, and motion scaling, have been considered fundamental to overcome many of the limitations of the laparoscopic surgery. Since the approval of the da Vinci(®) robot by international agencies, American, European, and Asian surgeons have proved its factibility and safety for the performance of many different robot-assisted surgeries. Comparative studies of robotic and laparoscopic surgical procedures in general surgery have shown similar results with regard to perioperative, oncological, and functional outcomes. However, higher costs and lack of haptic feedback represent the major limitations of current robotic technology to become the standard technique of minimally invasive surgery worldwide. Therefore, the future of robotic surgery involves cost reduction, development of new platforms and technologies, creation and validation of curriculum and virtual simulators, and conduction of randomized clinical trials to determine the best applications of robotics.

  16. Mechanochemically Active Soft Robots.

    PubMed

    Gossweiler, Gregory R; Brown, Cameron L; Hewage, Gihan B; Sapiro-Gheiler, Eitan; Trautman, William J; Welshofer, Garrett W; Craig, Stephen L

    2015-10-14

    The functions of soft robotics are intimately tied to their form-channels and voids defined by an elastomeric superstructure that reversibly stores and releases mechanical energy to change shape, grip objects, and achieve complex motions. Here, we demonstrate that covalent polymer mechanochemistry provides a viable mechanism to convert the same mechanical potential energy used for actuation in soft robots into a mechanochromic, covalent chemical response. A bis-alkene functionalized spiropyran (SP) mechanophore is cured into a molded poly(dimethylsiloxane) (PDMS) soft robot walker and gripper. The stresses and strains necessary for SP activation are compatible with soft robot function. The color change associated with actuation suggests opportunities for not only new color changing or camouflaging strategies, but also the possibility for simultaneous activation of latent chemistry (e.g., release of small molecules, change in mechanical properties, activation of catalysts, etc.) in soft robots. In addition, mechanochromic stress mapping in a functional robotic device might provide a useful design and optimization tool, revealing spatial and temporal force evolution within the robot in a way that might be coupled to autonomous feedback loops that allow the robot to regulate its own activity. The demonstration motivates the simultaneous development of new combinations of mechanophores, materials, and soft, active devices for enhanced functionality.

  17. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Bruce Yost of NASA's Ames Research Center discusses a small satellite, known as PhoneSat, during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  18. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Ron Diftler of NASA's Johnson Space Center in Houston demonstrates the leg movements of Robonaut 2 during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  19. Roboter in der Raumfahrt

    NASA Astrophysics Data System (ADS)

    Hirzinger, G.

    (Robots in space)—The paper emphasizes the enormous automation impact in industry caused by microelectronics, a "byproduct" of space-technology. The evolutionary stages of robotic are outlined and it is shown that there are a lot of reasons for more automation, artificial intelligence and robotic in space, too. The telemanipulator concept is compared with the industrial robot concept, both showing up an increasing degree of similarity. The state of the art in sensory systems is discussed. By hand of the typical operations needed in space as rendezvous, assembly and docking the required robot skill is indicated. As a conclusion it is stated that the basic technologies available with industrial robots today could solve a lot of space problems. What remains to do—apart of course from ongoing research—is better integration and adaption of industrial techniques to the need of space technology.

  20. Applying robotics to HAZMAT

    NASA Technical Reports Server (NTRS)

    Welch, Richard V.; Edmonds, Gary O.

    1994-01-01

    The use of robotics in situations involving hazardous materials can significantly reduce the risk of human injuries. The Emergency Response Robotics Project, which began in October 1990 at the Jet Propulsion Laboratory, is developing a teleoperated mobile robot allowing HAZMAT (hazardous materials) teams to remotely respond to incidents involving hazardous materials. The current robot, called HAZBOT III, can assist in locating characterizing, identifying, and mitigating hazardous material incidents without risking entry team personnel. The active involvement of the JPL Fire Department HAZMAT team has been vital in developing a robotic system which enables them to perform remote reconnaissance of a HAZMAT incident site. This paper provides a brief review of the history of the project, discusses the current system in detail, and presents other areas in which robotics can be applied removing people from hazardous environments/operations.

  1. The cost of conversion in robotic and laparoscopic colorectal surgery.

    PubMed

    Cleary, Robert K; Mullard, Andrew J; Ferraro, Jane; Regenbogen, Scott E

    2018-03-01

    Conversion from minimally invasive to open colorectal surgery remains common and costly. Robotic colorectal surgery is associated with lower rates of conversion than laparoscopy, but institutions and payers remain concerned about equipment and implementation costs. Recognizing that reimbursement reform and bundled payments expand perspectives on cost to include the entire surgical episode, we evaluated the role of minimally invasive conversion in total payments. This is an observational study from a linked data registry including clinical data from the Michigan Surgical Quality Collaborative and payment data from the Michigan Value Collaborative between July 2012 and April 2015. We evaluated colorectal resections initiated with open and minimally invasive approaches, and compared reported risk-adjusted and price-standardized 30-day episode payments and their components. We identified 1061 open, 1604 laparoscopic, and 275 robotic colorectal resections. Adjusted episode payments were significantly higher for open operations than for minimally invasive procedures completed without conversion ($19,489 vs. $15,518, p < 0.001). The conversion rate was significantly higher with laparoscopic than robotic operations (15.1 vs. 7.6%, p < 0.001). Adjusted episode payments for minimally invasive operations converted to open were significantly higher than for those completed by minimally invasive approaches ($18,098 vs. $15,518, p < 0.001). Payments for operations completed robotically were greater than those completed laparoscopically ($16,949 vs. $15,250, p < 0.001), but the difference was substantially decreased when conversion to open cases was included ($16,939 vs. $15,699, p = 0.041). Episode payments for open colorectal surgery exceed both laparoscopic and robotic minimally invasive options. Conversion to open surgery significantly increases the payments associated with minimally invasive colorectal surgery. Because conversion rates in robotic colorectal

  2. Robotic technology in urology

    PubMed Central

    Murphy, D; Challacombe, B; Khan, M S; Dasgupta, P

    2006-01-01

    Urology has increasingly become a technology‐driven specialty. The advent of robotic surgical systems in the past 10 years has led to urologists becoming the world leaders in the use of such technology. In this paper, we review the history and current status of robotic technology in urology. From the earliest uses of robots for transurethral resection of the prostate, to robotic devices for manipulating laparoscopes and to the current crop of master–slave devices for robotic‐assisted laparoscopic surgery, the evolution of robotics in the urology operating theatre is presented. Future possibilities, including the prospects for nanotechnology in urology, are awaited. PMID:17099094

  3. Robotic systems in spine surgery.

    PubMed

    Onen, Mehmet Resid; Naderi, Sait

    2014-01-01

    Surgical robotic systems have been available for almost twenty years. The first surgical robotic systems were designed as supportive systems for laparoscopic approaches in general surgery (the first procedure was a cholecystectomy in 1987). The da Vinci Robotic System is the most common system used for robotic surgery today. This system is widely used in urology, gynecology and other surgical disciplines, and recently there have been initial reports of its use in spine surgery, for transoral access and anterior approaches for lumbar inter-body fusion interventions. SpineAssist, which is widely used in spine surgery, and Renaissance Robotic Systems, which are considered the next generation of robotic systems, are now FDA approved. These robotic systems are designed for use as guidance systems in spine instrumentation, cement augmentations and biopsies. The aim is to increase surgical accuracy while reducing the intra-operative exposure to harmful radiation to the patient and operating team personnel during the intervention. We offer a review of the published literature related to the use of robotic systems in spine surgery and provide information on using robotic systems.

  4. Tandem mobile robot system

    DOEpatents

    Buttz, James H.; Shirey, David L.; Hayward, David R.

    2003-01-01

    A robotic vehicle system for terrain navigation mobility provides a way to climb stairs, cross crevices, and navigate across difficult terrain by coupling two or more mobile robots with a coupling device and controlling the robots cooperatively in tandem.

  5. Systematic review of operative outcomes of robotic surgical procedures performed with endoscopic linear staplers or robotic staplers.

    PubMed

    Gutierrez, Mario; Ditto, Richard; Roy, Sanjoy

    2018-05-09

    A comprehensive review of operative outcomes of robotic surgical procedures performed with the da Vinci robotic system using either endoscopic linear staplers (ELS) or robotic staplers is not available in the published literature. We conducted a literature search to identify publications of robotic surgical procedures in all specialties performed with either ELS or robotic staplers. Twenty-nine manuscripts and six abstracts with relevant information on operative outcomes published from January 2011 to September 2017 were identified. Given the relatively recent market release of robotic staplers in 2014, comparative perioperative clinical outcomes data on the performance of ELS vs. robotic staplers in robotic surgery is very sparse in the published literature. Only three comparative studies of surgeries with the da Vinci robotic system plus ELS vs. da Vinci plus robotic staplers were identified; two in robotic colorectal surgery and the other in robotic gastric bypass surgery. These comparative studies illustrate some nuances in device design and usability, which may impact outcomes and cost, and therefore may be important to consider when selecting the appropriate stapling technologies/technique for different robotic surgeries. Comparative perioperative data on the use of ELS vs. robotic staplers in robotic surgery is scarce (three studies), and current literature identifies both types of devices as safe and effective. Given the longer clinical history of ELS and its relatively more robust evidence base, there may be trade-offs to consider before switching to robotic staplers in certain robotic procedures. However, this literature review may serve as an initial reference for future research.

  6. Full autonomous microline trace robot

    NASA Astrophysics Data System (ADS)

    Yi, Deer; Lu, Si; Yan, Yingbai; Jin, Guofan

    2000-10-01

    Optoelectric inspection may find applications in robotic system. In micro robotic system, smaller optoelectric inspection system is preferred. However, as miniaturizing the size of the robot, the number of the optoelectric detector becomes lack. And lack of the information makes the micro robot difficult to acquire its status. In our lab, a micro line trace robot has been designed, which autonomous acts based on its optoelectric detection. It has been programmed to follow a black line printed on the white colored ground. Besides the optoelectric inspection, logical algorithm in the microprocessor is also important. In this paper, we propose a simply logical algorithm to realize robot's intelligence. The robot's intelligence is based on a AT89C2051 microcontroller which controls its movement. The technical details of the micro robot are as follow: dimension: 30mm*25mm*35*mm; velocity: 60mm/s.

  7. Robotic comfort zones

    NASA Astrophysics Data System (ADS)

    Likhachev, Maxim; Arkin, Ronald C.

    2000-10-01

    The paper investigates how the psychological notion of comfort can be useful in the design of robotic systems. A review of the existing study of human comfort, especially regarding its presence in infants, is conducted with the goal being to determine the relevant characteristics for mapping it onto the robotics domain. Focus is place on the identification of the salient features in the environment that affect the comfort level. Factors involved include current state familiarity, working conditions, the amount and location of available resources, etc. As part of our newly developed comfort function theory, the notion of an object as a psychological attachment for a robot is also introduced, as espoused in Bowlby's theory of attachment. The output space of the comfort function and its dependency on the comfort level are analyzed. The results of the derivation of this comfort function are then presented in terms of the impact they have on robotic behavior. Justification for the use of the comfort function are then presented in terms of the impact they have on robotic behavior. Justification for the use of the comfort function in the domain of robotics is presented with relevance for real-world operations. Also, a transformation of the theoretical discussion into a mathematical framework suitable for implementation within a behavior-based control system is presented. The paper concludes with results of simulation studies and real robot experiments using the derived comfort function.

  8. Rehabilitation robotics

    PubMed Central

    KREBS, H.I.; VOLPE, B.T.

    2015-01-01

    This chapter focuses on rehabilitation robotics which can be used to augment the clinician’s toolbox in order to deliver meaningful restorative therapy for an aging population, as well as on advances in orthotics to augment an individual’s functional abilities beyond neurorestoration potential. The interest in rehabilitation robotics and orthotics is increasing steadily with marked growth in the last 10 years. This growth is understandable in view of the increased demand for caregivers and rehabilitation services escalating apace with the graying of the population. We will provide an overview on improving function in people with a weak limb due to a neurological disorder who cannot properly control it to interact with the environment (orthotics); we will then focus on tools to assist the clinician in promoting rehabilitation of an individual so that s/he can interact with the environment unassisted (rehabilitation robotics). We will present a few clinical results occurring immediately poststroke as well as during the chronic phase that demonstrate superior gains for the upper extremity when employing rehabilitation robotics instead of usual care. These include the landmark VA-ROBOTICS multisite, randomized clinical study which demonstrates clinical gains for chronic stroke that go beyond usual care at no additional cost. PMID:23312648

  9. Rehabilitation robotics.

    PubMed

    Krebs, H I; Volpe, B T

    2013-01-01

    This chapter focuses on rehabilitation robotics which can be used to augment the clinician's toolbox in order to deliver meaningful restorative therapy for an aging population, as well as on advances in orthotics to augment an individual's functional abilities beyond neurorestoration potential. The interest in rehabilitation robotics and orthotics is increasing steadily with marked growth in the last 10 years. This growth is understandable in view of the increased demand for caregivers and rehabilitation services escalating apace with the graying of the population. We provide an overview on improving function in people with a weak limb due to a neurological disorder who cannot properly control it to interact with the environment (orthotics); we then focus on tools to assist the clinician in promoting rehabilitation of an individual so that s/he can interact with the environment unassisted (rehabilitation robotics). We present a few clinical results occurring immediately poststroke as well as during the chronic phase that demonstrate superior gains for the upper extremity when employing rehabilitation robotics instead of usual care. These include the landmark VA-ROBOTICS multisite, randomized clinical study which demonstrates clinical gains for chronic stroke that go beyond usual care at no additional cost. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. A Human–Robot Interaction Perspective on Assistive and Rehabilitation Robotics

    PubMed Central

    Beckerle, Philipp; Salvietti, Gionata; Unal, Ramazan; Prattichizzo, Domenico; Rossi, Simone; Castellini, Claudio; Hirche, Sandra; Endo, Satoshi; Amor, Heni Ben; Ciocarlie, Matei; Mastrogiovanni, Fulvio; Argall, Brenna D.; Bianchi, Matteo

    2017-01-01

    Assistive and rehabilitation devices are a promising and challenging field of recent robotics research. Motivated by societal needs such as aging populations, such devices can support motor functionality and subject training. The design, control, sensing, and assessment of the devices become more sophisticated due to a human in the loop. This paper gives a human–robot interaction perspective on current issues and opportunities in the field. On the topic of control and machine learning, approaches that support but do not distract subjects are reviewed. Options to provide sensory user feedback that are currently missing from robotic devices are outlined. Parallels between device acceptance and affective computing are made. Furthermore, requirements for functional assessment protocols that relate to real-world tasks are discussed. In all topic areas, the design of human-oriented frameworks and methods is dominated by challenges related to the close interaction between the human and robotic device. This paper discusses the aforementioned aspects in order to open up new perspectives for future robotic solutions. PMID:28588473

  11. Multi-Robot Assembly Strategies and Metrics.

    PubMed

    Marvel, Jeremy A; Bostelman, Roger; Falco, Joe

    2018-02-01

    We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies.

  12. Multi-Robot Assembly Strategies and Metrics

    PubMed Central

    MARVEL, JEREMY A.; BOSTELMAN, ROGER; FALCO, JOE

    2018-01-01

    We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies. PMID:29497234

  13. Validity and reliability of the robotic objective structured assessment of technical skills

    PubMed Central

    Siddiqui, Nazema Y.; Galloway, Michael L.; Geller, Elizabeth J.; Green, Isabel C.; Hur, Hye-Chun; Langston, Kyle; Pitter, Michael C.; Tarr, Megan E.; Martino, Martin A.

    2015-01-01

    Objective Objective structured assessments of technical skills (OSATS) have been developed to measure the skill of surgical trainees. Our aim was to develop an OSATS specifically for trainees learning robotic surgery. Study Design This is a multi-institutional study in eight academic training programs. We created an assessment form to evaluate robotic surgical skill through five inanimate exercises. Obstetrics/gynecology, general surgery, and urology residents, fellows, and faculty completed five robotic exercises on a standard training model. Study sessions were recorded and randomly assigned to three blinded judges who scored performance using the assessment form. Construct validity was evaluated by comparing scores between participants with different levels of surgical experience; inter- and intra-rater reliability were also assessed. Results We evaluated 83 residents, 9 fellows, and 13 faculty, totaling 105 participants; 88 (84%) were from obstetrics/gynecology. Our assessment form demonstrated construct validity, with faculty and fellows performing significantly better than residents (mean scores: 89 ± 8 faculty; 74 ± 17 fellows; 59 ± 22 residents, p<0.01). In addition, participants with more robotic console experience scored significantly higher than those with fewer prior console surgeries (p<0.01). R-OSATS demonstrated good inter-rater reliability across all five drills (mean Cronbach's α: 0.79 ± 0.02). Intra-rater reliability was also high (mean Spearman's correlation: 0.91 ± 0.11). Conclusions We developed an assessment form for robotic surgical skill that demonstrates construct validity, inter- and intra-rater reliability. When paired with standardized robotic skill drills this form may be useful to distinguish between levels of trainee performance. PMID:24807319

  14. Minimal access portoenterostomy: advantages and disadvantages of standard laparoscopic and robotic techniques.

    PubMed

    Dutta, Sanjeev; Woo, Russell; Albanese, Craig T

    2007-04-01

    Minimal access portoenterostomy (Kasai procedure) for biliary atresia represents a technically challenging operation. The standard laparoscopic approach yields results comparable to the open technique. After an initial experience with standard laparoscopy, we assessed the potentially superior optics and dexterity of a surgical robotic system for performing portoenterostomy. We reviewed our experience with minimal access portoenterostomy to compare the relative advantages and disadvantages of standard laparoscopic and robotic approaches to biliary atresia. We reviewed the charts of all patients who underwent either laparoscopic or robotic portoenterostomy at our institution between October 2002 and October 2005. Outcome measures included the need to convert to laparotomy, complications, functional outcome expressed either as the direct bilirubin at most recent follow-up (> or = 3 months) or age at transplant, and density of adhesions at transplant. Surgeons' impressions of the two minimal access modalities were also reviewed. A total of 10 patients underwent minimal access portoenterostomy (7 standard laparoscopy; 3 robotic-assisted). Mean follow-up was 20 months (range, 1-36 months). There were no conversions to laparotomy and no intraoperative complications. There was one port site infection that resolved with antibiotics. Five patients (4 laparoscopic, 1 robotic) had progressed to transplantation at the time of follow-up. At transplant, one patient had mild adhesions and two had dense adhesions. Adhesions were not noted for 2 patients. We believe both surgical modalities are feasible from a technical point of view. However, the optical and dexterity advantages of the robotic system were offset by the large instrument size and lack of force feedback.

  15. Intelligent Articulated Robot

    NASA Astrophysics Data System (ADS)

    Nyein, Aung Kyaw; Thu, Theint Theint

    2008-10-01

    In this paper, an articulated type of industrial used robot is discussed. The robot is mainly intended to be used in pick and place operation. It will sense the object at the specified place and move it to a desired location. A peripheral interface controller (PIC16F84A) is used as the main controller of the robot. Infrared LED and IR receiver unit for object detection and 4-bit bidirectional universal shift registers (74LS194) and high current and high voltage Darlington transistors arrays (ULN2003) for driving the arms' motors are used in this robot. The amount of rotation for each arm is regulated by the limit switches. The operation of the robot is very simple but it has the ability of to overcome resetting position after power failure. It can continue its work from the last position before the power is failed without needing to come back to home position.

  16. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Two young visitors get an up-close look at an engineering model of Robonaut 2, complete with a set of legs, during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  17. Design-Oriented Enhanced Robotics Curriculum

    ERIC Educational Resources Information Center

    Yilmaz, M.; Ozcelik, S.; Yilmazer, N.; Nekovei, R.

    2013-01-01

    This paper presents an innovative two-course, laboratory-based, and design-oriented robotics educational model. The robotics curriculum exposed senior-level undergraduate students to major robotics concepts, and enhanced the student learning experience in hybrid learning environments by incorporating the IEEE Region-5 annual robotics competition…

  18. A conceptual cognitive architecture for robots to learn behaviors from demonstrations in robotic aid area.

    PubMed

    Tan, Huan; Liang, Chen

    2011-01-01

    This paper proposes a conceptual hybrid cognitive architecture for cognitive robots to learn behaviors from demonstrations in robotic aid situations. Unlike the current cognitive architectures, this architecture puts concentration on the requirements of the safety, the interaction, and the non-centralized processing in robotic aid situations. Imitation learning technologies for cognitive robots have been integrated into this architecture for rapidly transferring the knowledge and skills between human teachers and robots.

  19. Survival of falling robots

    NASA Astrophysics Data System (ADS)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-02-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  20. Survival of falling robots

    NASA Technical Reports Server (NTRS)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-01-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.