Sample records for kelp genes reveal

  1. Kelp genes reveal effects of subantarctic sea ice during the Last Glacial Maximum

    PubMed Central

    Fraser, Ceridwen I.; Nikula, Raisa; Spencer, Hamish G.; Waters, Jonathan M.

    2009-01-01

    The end of the Last Glacial Maximum (LGM) dramatically reshaped temperate ecosystems, with many species moving poleward as temperatures rose and ice receded. Whereas reinvading terrestrial taxa tracked melting glaciers, marine biota recolonized ocean habitats freed by retreating sea ice. The extent of sea ice in the Southern Hemisphere during the LGM has, however, yet to be fully resolved, with most palaeogeographic studies suggesting only minimal or patchy ice cover in subantarctic waters. Here, through population genetic analyses of the widespread Southern Bull Kelp (Durvillaea antarctica), we present evidence for persistent ice scour affecting subantarctic islands during the LGM. Using mitochondrial and chloroplast genetic markers (COI; rbcL) to genetically characterize some 300 kelp samples from 45 Southern Ocean localities, we reveal a remarkable pattern of recent recolonization in the subantarctic. Specifically, in contrast to the marked phylogeographic structure observed across coastal New Zealand and Chile (10- to 100-km scales), subantarctic samples show striking genetic homogeneity over vast distances (10,000-km scales), with a single widespread haplotype observed for each marker. From these results, we suggest that sea ice expanded further and ice scour during the LGM impacted shallow-water subantarctic marine ecosystems more extensively than previously suggested. PMID:19204277

  2. 21 CFR 172.365 - Kelp.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Kelp. 172.365 Section 172.365 Food and Drugs FOOD... Dietary and Nutritional Additives § 172.365 Kelp. Kelp may be safely added to a food as a source of the... lactating women. The food additive kelp is the dehydrated, ground product prepared from Macrocystis pyrifera...

  3. Methyl halide production associated with kelp

    NASA Technical Reports Server (NTRS)

    Dastoor, Minoo N.; Manley, Steven L.

    1985-01-01

    Methyl halides (MeX) are important trace constituents of the atmosphere because they, mostly MeCl, have a major impact on the atmospheric ozone layer. Also, MeCl may account for 5 pct. of the total Cl budget and MeI may have a central role in the biogeochemical cycling of iodine. High MeI concentrations were found in seawater from kelp beds and it has been suggested that MeI is produced by kelps and that MeI and MeBr along with numerous other halocarbons were released by non-kelp marine macroalgae. The objective was to determine if kelps (and other seaweeds) are sources of MeX and to assess their contribution to the estimated global source strength (EGSS) of MeX. Although the production of MeX appears to be associated with kelp, microbes involved with kelp degradation also produce MeX. Microbial MeX production may be of global significance. The microbial MeX production potential, assuming annual kelp production equals kelp degradation and 100 pct. conversion of kelp halides to MeX, is approx. 2 x the EGSS. This is not achieved but indicates that microbial production of MeX may be of global significance.

  4. A Mathematical Model for Estimation of Kelp Bed Productivity: Age Dependence and Contributions of Subsurface Kelp

    NASA Astrophysics Data System (ADS)

    Trumbo, S. K.; Palacios, S. L.; Zimmerman, R. C.; Kudela, R. M.

    2012-12-01

    Macrocystis pyrifera, giant kelp, is a major primary producer of the California coastal ocean that provides habitat for marine species through the formation of massive kelp beds. The estimation of primary productivity of these kelp beds is essential for a complete understanding of their health and of the biogeochemistry of the region. Current methods involve either the application of a proportionality constant to remotely sensed biomass or in situ frond density measurements. The purpose of this research was to improve upon conventional primary productivity estimates by developing a model which takes into account the spectral differences among juvenile, mature, and senescent tissues as well as the photosynthetic contributions of subsurface kelp. A modified version of a seagrass productivity model (Zimmerman 2006) was used to quantify carbon fixation. Inputs included estimates of the underwater light field as computed by solving the radiative transfer equation (with the Hydrolight(TM) software package) and biological parameters obtained from the literature. It was found that mature kelp is the most efficient primary producer, especially in light-limited environments, due to increased light absorptance. It was also found that incoming light attenuates below useful levels for photosynthesis more rapidly than has been previously accounted for in productivity estimates, with productivity dropping below half maximum at approximately 0.75 m. As a case study for comparison with the biomass method, the model was applied to Isla Vista kelp bed in Santa Barbara, using area estimates from the MODIS-ASTER Simulator (MASTER). A graphical user-interface was developed for users to provide inputs to run the kelp productivity model under varying conditions. Accurately quantifying kelp productivity is essential for understanding its interaction with offshore ecosystems as well as its contribution to the coastal carbon cycle.

  5. 21 CFR 172.365 - Kelp.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.365 Kelp. Kelp may be safely added to a food as a source of the...

  6. Widespread kelp-derived carbon in pelagic and benthic nearshore fishes

    USGS Publications Warehouse

    von Biela, Vanessa R.; Newsome, Seth D.; Bodkin, James L.; Kruse, Gordon H.; Zimmerman, Christian E.

    2016-01-01

    Kelp forests provide habitat for diverse and abundant fish assemblages, but the extent to which kelp provides a source of energy to fish and other predators is unclear. To examine the use of kelp-derived energy by fishes we estimated the contribution of kelp- and phytoplankton-derived carbon using carbon (δ13C) and nitrogen (δ15N) isotopes measured in muscle tissue. Benthic-foraging kelp greenling (Hexagrammos decagrammus) and pelagic-foraging black rockfish (Sebastes melanops) were collected at eight sites spanning ∼35 to 60°N from the California Current (upwelling) to Alaska Coastal Current (downwelling) in the northeast Pacific Ocean. Muscle δ13C values were expected to be higher for fish tissue primarily derived from kelp, a benthic macroalgae, and lower for tissue primarily derived from phytoplankton, pelagic microalgae. Muscle δ13C values were higher in benthic-feeding kelp greenling than in pelagic-feeding black rockfish at seven of eight sites, indicating more kelp-derived carbon in greenling as expected. Estimates of kelp carbon contributions ranged from 36 to 89% in kelp greenling and 32 to 65% in black rockfish using carbon isotope mixing models. Isotopic evidence suggests that these two nearshore fishes routinely derive energy from kelp and phytoplankton, across coastal upwelling and downwelling systems. Thus, the foraging mode of nearshore predators has a small influence on their ultimate energy source as energy produced by benthic macroalgae and pelagic microalgae were incorporated in fish tissue regardless of feeding mode and suggest strong and widespread benthic-pelagic coupling. Widespread kelp contributions to benthic- and pelagic-feeding fishes suggests that kelp energy provides a benefit to nearshore fishes and highlights the potential for kelp and fish production to be linked.

  7. 21 CFR 172.365 - Kelp.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.365 Kelp. Kelp may be safely added to a food as a source of the... the additive so as to provide a total amount of iodine in excess of 225 micrograms for foods labeled...

  8. 21 CFR 172.365 - Kelp.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.365 Kelp. Kelp may be safely added to a food as a source of the... the additive so as to provide a total amount of iodine in excess of 225 micrograms for foods labeled...

  9. Landsat satellite evidence of the decline of northern California bull kelp

    NASA Astrophysics Data System (ADS)

    Renshaw, A.; Houskeeper, H. F.; Kudela, R. M.

    2017-12-01

    Bull kelp (Nereocystis luetkeana), a species of canopy-forming brown macroalga dominant in the Pacific Northwest of North America, provides critical ecological services such as habitat for a diverse array of marine species, nutrient regulation, photosynthesis, and regional marine carbon cycling. Starting around 2014, annual aerial surveys of bull kelp forests along California's northern coastline conducted by the California Department of Fish and Wildlife (CDFW) have reported a sudden 93% reduction in bull kelp canopy area. Remote sensing using satellite imagery is a robust, highly accurate tool for detecting and quantifying the abundance of the canopy-forming giant kelp, Macrocystis pyrifera; however, it has not been successfully applied to measuring northern bull kelp forests. One of the main difficulties associated with bull kelp detection via satellite is the small surface area of bull kelp canopies. As a result, bull kelp beds often only constitute part of a satellite pixel, making it difficult to obtain a kelp reflectance signal significantly different than water's reflectance signal. As part of the NASA Student Airborne Research Program (SARP), we test a novel method for assessing bull kelp canopy using a multiple endmember spectral mixing analysis (MESMA) applied to Landsat 5 and Landsat 8 imagery from 2003-2016. Water and kelp spectral endmembers are selected along the northern California coastline from Havens Neck cape to Point Arena. MESMA results are ground truthed with the CDFW aerial multispectral imagery data. This project will present a satellite-based time series of bull kelp canopy area and evaluate canopy change in a northern California kelp ecosystem.

  10. Stability of strong species interactions resist the synergistic effects of local and global pollution in kelp forests.

    PubMed

    Falkenberg, Laura J; Russell, Bayden D; Connell, Sean D

    2012-01-01

    Foundation species, such as kelp, exert disproportionately strong community effects and persist, in part, by dominating taxa that inhibit their regeneration. Human activities which benefit their competitors, however, may reduce stability of communities, increasing the probability of phase-shifts. We tested whether a foundation species (kelp) would continue to inhibit a key competitor (turf-forming algae) under moderately increased local (nutrient) and near-future forecasted global pollution (CO(2)). Our results reveal that in the absence of kelp, local and global pollutants combined to cause the greatest cover and mass of turfs, a synergistic response whereby turfs increased more than would be predicted by adding the independent effects of treatments (kelp absence, elevated nutrients, forecasted CO(2)). The positive effects of nutrient and CO(2) enrichment on turfs were, however, inhibited by the presence of kelp, indicating the competitive effect of kelp was stronger than synergistic effects of moderate enrichment of local and global pollutants. Quantification of physicochemical parameters within experimental mesocosms suggests turf inhibition was likely due to an effect of kelp on physical (i.e. shading) rather than chemical conditions. Such results indicate that while forecasted climates may increase the probability of phase-shifts, maintenance of intact populations of foundation species could enable the continued strength of interactions and persistence of communities.

  11. The potential role of kelp forests on iodine speciation in coastal seawater

    PubMed Central

    Gonzales, Jennifer; Tymon, Teresa; Küpper, Frithjof C.; Edwards, Matthew S.

    2017-01-01

    Kelps have a major role in marine and atmospheric iodine cycling in the coastal zone of temperate regions, with potential wide-ranging impacts on ozone destruction in the coastal marine boundary layer. However, little is known about the impact of kelp forests on iodine speciation in coastal sea water. To address this, we examined iodide and iodate concentrations in seawater in and around a giant kelp forest near San Diego, CA, USA, and a nearby site that was not influenced by kelp biology. Our data shows that while both iodide and iodate concentrations remained unchanged during the year at the nearby site, these concentrations changed significantly in and around the kelp forest, and were strongly related to changes in kelp canopy biomass. In particular, iodide reached its highest concentration and iodate reached its lowest concentration during the summer when the kelp canopies were near their maximum, while the opposite pattern was observed during the winter and spring when the kelp canopies were near their minimum. Further, comparisons of these changes with corresponding changes in seawater temperature and wind speed indicated that these relationships were relatively small compared to those with changes in kelp biomass. Together, our data show a strong relationship between kelp biomass and iodine metabolism. PMID:28800586

  12. Restricted access Giant kelp, Macrocystis pyrifera, increases faunal diversity through physical engineering

    USGS Publications Warehouse

    Miller, Robert J.; Lafferty, Kevin D.; Lamy, Thomas; Kui, Li; Rassweiler, Andrew; Reed, Daniel C.

    2018-01-01

    Foundation species define the ecosystems they live in, but ecologists have often characterized dominant plants as foundational without supporting evidence. Giant kelp has long been considered a marine foundation species due to its complex structure and high productivity; however, there is little quantitative evidence to evaluate this. Here, we apply structural equation modelling to a 15-year time series of reef community data to evaluate how giant kelp affects the reef community. Although species richness was positively associated with giant kelp biomass, most direct paths did not involve giant kelp. Instead, the foundational qualities of giant kelp were driven mostly by indirect effects attributed to its dominant physical structure and associated engineering influence on the ecosystem, rather than by its use as food by invertebrates and fishes. Giant kelp structure has indirect effects because it shades out understorey algae that compete with sessile invertebrates. When released from competition, sessile species in turn increase the diversity of mobile predators. Sea urchin grazing effects could have been misinterpreted as kelp effects, because sea urchins can overgraze giant kelp, understorey algae and sessile invertebrates alike. Our results confirm the high diversity and biomass associated with kelp forests, but highlight how species interactions and habitat attributes can be misconstrued as direct consequences of a foundation species like giant kelp.

  13. The potential role of kelp forests on iodine speciation in coastal seawater.

    PubMed

    Gonzales, Jennifer; Tymon, Teresa; Küpper, Frithjof C; Edwards, Matthew S; Carrano, Carl J

    2017-01-01

    Kelps have a major role in marine and atmospheric iodine cycling in the coastal zone of temperate regions, with potential wide-ranging impacts on ozone destruction in the coastal marine boundary layer. However, little is known about the impact of kelp forests on iodine speciation in coastal sea water. To address this, we examined iodide and iodate concentrations in seawater in and around a giant kelp forest near San Diego, CA, USA, and a nearby site that was not influenced by kelp biology. Our data shows that while both iodide and iodate concentrations remained unchanged during the year at the nearby site, these concentrations changed significantly in and around the kelp forest, and were strongly related to changes in kelp canopy biomass. In particular, iodide reached its highest concentration and iodate reached its lowest concentration during the summer when the kelp canopies were near their maximum, while the opposite pattern was observed during the winter and spring when the kelp canopies were near their minimum. Further, comparisons of these changes with corresponding changes in seawater temperature and wind speed indicated that these relationships were relatively small compared to those with changes in kelp biomass. Together, our data show a strong relationship between kelp biomass and iodine metabolism.

  14. Climate-driven disparities among ecological interactions threaten kelp forest persistence.

    PubMed

    Provost, Euan J; Kelaher, Brendan P; Dworjanyn, Symon A; Russell, Bayden D; Connell, Sean D; Ghedini, Giulia; Gillanders, Bronwyn M; Figueira, WillIAM; Coleman, Melinda A

    2017-01-01

    The combination of ocean warming and acidification brings an uncertain future to kelp forests that occupy the warmest parts of their range. These forests are not only subject to the direct negative effects of ocean climate change, but also to a combination of unknown indirect effects associated with changing ecological landscapes. Here, we used mesocosm experiments to test the direct effects of ocean warming and acidification on kelp biomass and photosynthetic health, as well as climate-driven disparities in indirect effects involving key consumers (urchins and rock lobsters) and competitors (algal turf). Elevated water temperature directly reduced kelp biomass, while their turf-forming competitors expanded in response to ocean acidification and declining kelp canopy. Elevated temperatures also increased growth of urchins and, concurrently, the rate at which they thinned kelp canopy. Rock lobsters, which are renowned for keeping urchin populations in check, indirectly intensified negative pressures on kelp by reducing their consumption of urchins in response to elevated temperature. Overall, these results suggest that kelp forests situated towards the low-latitude margins of their distribution will need to adapt to ocean warming in order to persist in the future. What is less certain is how such adaptation in kelps can occur in the face of intensifying consumptive (via ocean warming) and competitive (via ocean acidification) pressures that affect key ecological interactions associated with their persistence. If such indirect effects counter adaptation to changing climate, they may erode the stability of kelp forests and increase the probability of regime shifts from complex habitat-forming species to more simple habitats dominated by algal turfs. © 2016 John Wiley & Sons Ltd.

  15. Recent physical-chemical anomalies and associated ecological responses in southern California kelp forests

    NASA Astrophysics Data System (ADS)

    Miller, R. J.; Reed, D.; Washburn, L.; Bell, T. W.; Blanchette, C. A.

    2016-02-01

    Time series data collected by the Santa Barbara Coastal Long-Term Ecological Research program on giant kelp forests and the environmental factors that influence them provide a unique opportunity to examine the extent and ecological consequences of recent anomalies in physical and chemical properties of a shallow water benthic marine ecosystem. Positive temperature anomalies have been recorded in all but two months since early 2013 with deviations ranging as high as 3.8 oC above the 14-year monthly mean, which is unprecedented in the time series. Positive anomalies in salinity (DS) were also observed every month since late 2012 and DS exceeded 0.3 for several months in 2013 and 2014. Positive DS values occurred in previous years, but were weaker and shorter in duration. Apart from 1-2 months, anomalies in nitrate, phosphate, and silicate turned consistently negative in late 2012. However, comparable anomalies in these nutrients occurred earlier in the record, especially before 2008 for nitrate and phosphate. Anomalies in key ecological characteristics of giant kelp forests associated with the large positive temperature anomalies have been much less striking. Water column chlorophyll a, the standing biomass of giant kelp and densities of many kelp forest consumers have been lower than normal in recent years, but not markedly so compared to other years in the time series. Shorter time series data on pigment concentrations in giant kelp revealed a declining trend in recent years, consistent with the below normal levels observed in kelp tissue nitrogen. The most dramatic change in kelp forests that coincided with the onset of the temperature anomalies was observed in sea stars, which first showed signs of a wasting disease in fall of 2013. The disease spread rapidly from north to south and by spring 2014 infections were prevalent throughout southern California. Large corresponding increases in the abundance of starfish prey have yet to be observed.

  16. Iodine-Induced Thyrotoxicosis After Ingestion of Kelp-Containing Tea

    PubMed Central

    Müssig, Karsten; Thamer, Claus; Bares, Roland; Lipp, Hans-Peter; Häring, Hans-Ulrich; Gallwitz, Baptist

    2006-01-01

    Complementary medication is en vogue and an increasing number of patients consume herbal medicine without reporting their use to physicians. We report a case of iodine-induced hyperthyroidism due to the ingestion of a kelp-containing tea. A 39-year-old woman with multinodular goiter presented with typical signs of hyperthyroidism, which was confirmed by endocrine tests. She was not exposed to iodinated radiocontrast media and did not take medications containing iodine, such as amiodarone. However, a detailed medical history revealed that she had been treated for a period of 4 weeks by a Chinese alternative practitioner with a herbal tea containing kelp because of her enlarged thyroid. The consumption of the tea was discontinued and an antithyroid drug therapy was initiated. Physicians should advise patients with underlying thyroid disease to avoid all complementary or alternative medications containing iodine. PMID:16808731

  17. Global patterns of kelp forest change over the past half-century.

    PubMed

    Krumhansl, Kira A; Okamoto, Daniel K; Rassweiler, Andrew; Novak, Mark; Bolton, John J; Cavanaugh, Kyle C; Connell, Sean D; Johnson, Craig R; Konar, Brenda; Ling, Scott D; Micheli, Fiorenza; Norderhaug, Kjell M; Pérez-Matus, Alejandro; Sousa-Pinto, Isabel; Reed, Daniel C; Salomon, Anne K; Shears, Nick T; Wernberg, Thomas; Anderson, Robert J; Barrett, Nevell S; Buschmann, Alejandro H; Carr, Mark H; Caselle, Jennifer E; Derrien-Courtel, Sandrine; Edgar, Graham J; Edwards, Matt; Estes, James A; Goodwin, Claire; Kenner, Michael C; Kushner, David J; Moy, Frithjof E; Nunn, Julia; Steneck, Robert S; Vásquez, Julio; Watson, Jane; Witman, Jon D; Byrnes, Jarrett E K

    2016-11-29

    Kelp forests (Order Laminariales) form key biogenic habitats in coastal regions of temperate and Arctic seas worldwide, providing ecosystem services valued in the range of billions of dollars annually. Although local evidence suggests that kelp forests are increasingly threatened by a variety of stressors, no comprehensive global analysis of change in kelp abundances currently exists. Here, we build and analyze a global database of kelp time series spanning the past half-century to assess regional and global trends in kelp abundances. We detected a high degree of geographic variation in trends, with regional variability in the direction and magnitude of change far exceeding a small global average decline (instantaneous rate of change = -0.018 y -1 ). Our analysis identified declines in 38% of ecoregions for which there are data (-0.015 to -0.18 y -1 ), increases in 27% of ecoregions (0.015 to 0.11 y -1 ), and no detectable change in 35% of ecoregions. These spatially variable trajectories reflected regional differences in the drivers of change, uncertainty in some regions owing to poor spatial and temporal data coverage, and the dynamic nature of kelp populations. We conclude that although global drivers could be affecting kelp forests at multiple scales, local stressors and regional variation in the effects of these drivers dominate kelp dynamics, in contrast to many other marine and terrestrial foundation species.

  18. Global patterns of kelp forest change over the past half-century

    PubMed Central

    Krumhansl, Kira A.; Okamoto, Daniel K.; Rassweiler, Andrew; Novak, Mark; Bolton, John J.; Cavanaugh, Kyle C.; Connell, Sean D.; Johnson, Craig R.; Konar, Brenda; Ling, Scott D.; Micheli, Fiorenza; Norderhaug, Kjell M.; Pérez-Matus, Alejandro; Sousa-Pinto, Isabel; Reed, Daniel C.; Salomon, Anne K.; Shears, Nick T.; Wernberg, Thomas; Anderson, Robert J.; Barrett, Nevell S.; Buschmann, Alejandro H.; Carr, Mark H.; Caselle, Jennifer E.; Derrien-Courtel, Sandrine; Edgar, Graham J.; Edwards, Matt; Estes, James A.; Goodwin, Claire; Kenner, Michael C.; Kushner, David J.; Nunn, Julia; Steneck, Robert S.; Vásquez, Julio; Watson, Jane; Witman, Jon D.

    2016-01-01

    Kelp forests (Order Laminariales) form key biogenic habitats in coastal regions of temperate and Arctic seas worldwide, providing ecosystem services valued in the range of billions of dollars annually. Although local evidence suggests that kelp forests are increasingly threatened by a variety of stressors, no comprehensive global analysis of change in kelp abundances currently exists. Here, we build and analyze a global database of kelp time series spanning the past half-century to assess regional and global trends in kelp abundances. We detected a high degree of geographic variation in trends, with regional variability in the direction and magnitude of change far exceeding a small global average decline (instantaneous rate of change = −0.018 y−1). Our analysis identified declines in 38% of ecoregions for which there are data (−0.015 to −0.18 y−1), increases in 27% of ecoregions (0.015 to 0.11 y−1), and no detectable change in 35% of ecoregions. These spatially variable trajectories reflected regional differences in the drivers of change, uncertainty in some regions owing to poor spatial and temporal data coverage, and the dynamic nature of kelp populations. We conclude that although global drivers could be affecting kelp forests at multiple scales, local stressors and regional variation in the effects of these drivers dominate kelp dynamics, in contrast to many other marine and terrestrial foundation species. PMID:27849580

  19. Deep-water kelp refugia as potential hotspots of tropical marine diversity and productivity.

    PubMed

    Graham, Michael H; Kinlan, Brian P; Druehl, Louis D; Garske, Lauren E; Banks, Stuart

    2007-10-16

    Classic marine ecological paradigms view kelp forests as inherently temperate-boreal phenomena replaced by coral reefs in tropical waters. These paradigms hinge on the notion that tropical surface waters are too warm and nutrient-depleted to support kelp productivity and survival. We present a synthetic oceanographic and ecophysiological model that accurately identifies all known kelp populations and, by using the same criteria, predicts the existence of >23,500 km(2) unexplored submerged (30- to 200-m depth) tropical kelp habitats. Predicted tropical kelp habitats were most probable in regions where bathymetry and upwelling resulted in mixed-layer shoaling above the depth of minimum annual irradiance dose for kelp survival. Using model predictions, we discovered extensive new deep-water Eisenia galapagensis populations in the Galápagos that increased in abundance with increasing depth to >60 m, complete with cold-water flora and fauna of temperate affinities. The predictability of deep-water kelp habitat and the discovery of expansive deep-water Galápagos kelp forests validate the extent of deep-water tropical kelp refugia, with potential implications for regional productivity and biodiversity, tropical food web ecology, and understanding of the resilience of tropical marine systems to climate change.

  20. Widespread kelp-derived carbon in pelagic and benthic nearshore fishes suggested by stable isotope analysis

    NASA Astrophysics Data System (ADS)

    von Biela, Vanessa R.; Newsome, Seth D.; Bodkin, James L.; Kruse, Gordon H.; Zimmerman, Christian E.

    2016-11-01

    Kelp forests provide habitat for diverse and abundant fish assemblages, but the extent to which kelp provides a source of energy to fish and other predators is unclear. To examine the use of kelp-derived energy by fishes we estimated the contribution of kelp- and phytoplankton-derived carbon using carbon (δ13C) and nitrogen (δ15N) isotopes measured in muscle tissue. Benthic-foraging kelp greenling (Hexagrammos decagrammus) and pelagic-foraging black rockfish (Sebastes melanops) were collected at eight sites spanning ∼35 to 60°N from the California Current (upwelling) to Alaska Coastal Current (downwelling) in the northeast Pacific Ocean. Muscle δ13C values were expected to be higher for fish tissue primarily derived from kelp, a benthic macroalgae, and lower for tissue primarily derived from phytoplankton, pelagic microalgae. Muscle δ13C values were higher in benthic-feeding kelp greenling than in pelagic-feeding black rockfish at seven of eight sites, indicating more kelp-derived carbon in greenling as expected. Estimates of kelp carbon contributions ranged from 36 to 89% in kelp greenling and 32 to 65% in black rockfish using carbon isotope mixing models. Isotopic evidence suggests that these two nearshore fishes routinely derive energy from kelp and phytoplankton, across coastal upwelling and downwelling systems. Thus, the foraging mode of nearshore predators has a small influence on their ultimate energy source as energy produced by benthic macroalgae and pelagic microalgae were incorporated in fish tissue regardless of feeding mode and suggest strong and widespread benthic-pelagic coupling. Widespread kelp contributions to benthic- and pelagic-feeding fishes suggests that kelp energy provides a benefit to nearshore fishes and highlights the potential for kelp and fish production to be linked.

  1. Elevated temperature drives kelp microbiome dysbiosis, while elevated carbon dioxide induces water microbiome disruption

    PubMed Central

    Morris, Megan M.; Brown, Matt; Doane, Michael; Edwards, Matthew S.; Michael, Todd P.; Dinsdale, Elizabeth A.

    2018-01-01

    Global climate change includes rising temperatures and increased pCO2 concentrations in the ocean, with potential deleterious impacts on marine organisms. In this case study we conducted a four-week climate change incubation experiment, and tested the independent and combined effects of increased temperature and partial pressure of carbon dioxide (pCO2), on the microbiomes of a foundation species, the giant kelp Macrocystis pyrifera, and the surrounding water column. The water and kelp microbiome responded differently to each of the climate stressors. In the water microbiome, each condition caused an increase in a distinct microbial order, whereas the kelp microbiome exhibited a reduction in the dominant kelp-associated order, Alteromondales. The water column microbiomes were most disrupted by elevated pCO2, with a 7.3 fold increase in Rhizobiales. The kelp microbiome was most influenced by elevated temperature and elevated temperature in combination with elevated pCO2. Kelp growth was negatively associated with elevated temperature, and the kelp microbiome showed a 5.3 fold increase Flavobacteriales and a 2.2 fold increase alginate degrading enzymes and sulfated polysaccharides. In contrast, kelp growth was positively associated with the combination of high temperature and high pCO2 ‘future conditions’, with a 12.5 fold increase in Planctomycetales and 4.8 fold increase in Rhodobacteriales. Therefore, the water and kelp microbiomes acted as distinct communities, where the kelp was stabilizing the microbiome under changing pCO2 conditions, but lost control at high temperature. Under future conditions, a new equilibrium between the kelp and the microbiome was potentially reached, where the kelp grew rapidly and the commensal microbes responded to an increase in mucus production. PMID:29474389

  2. Variability and similarities in the structural properties of two related Laminaria kelp species

    NASA Astrophysics Data System (ADS)

    Henry, Pierre-Yves

    2018-01-01

    Kelps of the genus Laminaria have long been studied and shown to exhibit a seasonal shift in growth and morphology, as nutrients and light levels change during the year. However, the variation of kelp biomechanical properties has been little explored despite the importance of these properties for the interaction of kelp with the flow. Previous research showed that aging does influence the algae biomechanical properties, so this study further investigates the variability of kelp biomechanical properties and morphological characteristics at a given site as a function of the season (growth phase), species, and different kelp parts. Mechanical parameters and morphological characteristics were measured on kelps sampled in winter and summer, and DNA sequencing was used to identify the two related species, L. digitata and L. hyperborea. Descriptive statistics and statistical analysis were used to detect trends in the modulation of kelp mechanical design. Although two distinct species were identified, only minor structural differences were observed between them. The biomechanical properties varied significantly along the kelp, and significant seasonal shifts occurred at the blade level, in relation to the different morphological changes during blade renewal. In general, the variations of the structural properties were mostly linked to the blade growth activity. The absence of significant variation in the mechanical design of the two species highlights the significance of the adaptation to the same local environmental conditions, this adaptation being a key process in vegetation-flow interactions and having implications on the interaction between kelp and hydrodynamics.

  3. Long-term patterns of benthic irradiance and kelp production in the central Beaufort sea reveal implications of warming for Arctic inner shelves

    NASA Astrophysics Data System (ADS)

    Bonsell, Christina; Dunton, Kenneth H.

    2018-03-01

    This study synthesizes a multidecadal dataset of annual growth of the Arctic endemic kelp Laminaria solidungula and corresponding measurements of in situ benthic irradiance from Stefansson Sound in the central Beaufort Sea. We incorporate long-term data on sea ice concentration (National Sea Ice Data Center) and wind (National Weather Service) to assess how ice extent and summer wind dynamics affect the benthic light environment and annual kelp production. We find evidence of significant changes in sea ice extent in Stefansson Sound, with an extension of the ice-free season by approximately 17 days since 1979. Although kelp elongation at 5-7 m depths varies significantly among sites and years (3.8-49.8 cm yr-1), there is no evidence for increased production with either earlier ice break-up or a longer summer ice-free period. This is explained by very low light transmittance to the benthos during the summer season (mean daily percent surface irradiance ± SD: 1.7 ± 3.6 to 4.5 ± 6.6, depending on depth, with light attenuation values ranging from 0.5 to 0.8 m-1), resulting in minimal potential for kelp production on most days. Additionally, on month-long timescales (35 days) in the ice-free summer, benthic light levels are negatively related to wind speed. The frequent, wind-driven resuspension of sediments following ice break-up significantly reduce light to the seabed, effectively nullifying the benefits of an increased ice-free season on annual kelp growth. Instead, benthic light and primary production may depend substantially on the 1-3 week period surrounding ice break-up when intermediate sea ice concentrations reduce wind-driven sediment resuspension. These results suggest that both benthic and water column primary production along the inner shelf of Arctic marginal seas may decrease, not increase, with reductions in sea ice extent.

  4. Wave disturbance overwhelms top-down and bottom-up control of primary production in California kelp forests.

    PubMed

    Reed, Daniel C; Rassweiler, Andrew; Carr, Mark H; Cavanaugh, Kyle C; Malone, Daniel P; Siegel, David A

    2011-11-01

    We took advantage of regional differences in environmental forcing and consumer abundance to examine the relative importance of nutrient availability (bottom-up), grazing pressure (top-down), and storm waves (disturbance) in determining the standing biomass and net primary production (NPP) of the giant kelp Macrocystis pyrifera in central and southern California. Using a nine-year data set collected from 17 sites we show that, despite high densities of sea urchin grazers and prolonged periods of low nutrient availability in southern California, NPP by giant kelp was twice that of central California where nutrient concentrations were consistently high and sea urchins were nearly absent due to predation by sea otters. Waves associated with winter storms were consistently higher in central California, and the loss of kelp biomass to winter wave disturbance was on average twice that of southern California. These observations suggest that the more intense wave disturbance in central California limited NPP by giant kelp under otherwise favorable conditions. Regional patterns of interannual variation in NPP were similar to those of wave disturbance in that year-to-year variation in disturbance and NPP were both greater in southern California. Our findings provide strong evidence that regional differences in wave disturbance overwhelmed those of nutrient supply and grazing intensity to determine NPP by giant kelp. The important role of disturbance in controlling NPP revealed by our study is likely not unique to giant kelp forests, as vegetation dynamics in many systems are dominated by post-disturbance succession with climax communities being relatively uncommon. The effects of disturbance frequency may be easier to detect in giant kelp because it is fast growing and relatively short lived, with cycles of disturbance and recovery occurring on time scales of years. Much longer data sets (decades to centuries) will likely be needed to properly evaluate the role of

  5. Physical-biological coupling in spore dispersal of kelp forest macroalgae

    NASA Astrophysics Data System (ADS)

    Gaylord, Brian; Reed, Daniel C.; Washburn, Libe; Raimondi, Peter T.

    2004-08-01

    The physical-biological linkages controlling the dispersal of spores produced by macroalgae that reside in kelp forests are complicated and laced with feedbacks. Here we discuss the fundamental elements of these interactions. Biological considerations include spore swimming and sinking speeds, their periods of viability in the plankton, and the height of spore release above the seafloor, which together determine the durations over which spores can be swept by horizontal currents before they contact the seafloor. Morphologies and material properties of canopy forming kelps may also influence the drag exerted on passing waters by the kelps, the plants' ability to persist in the face of rapid flows, and thereby the degree to which impinging currents are redirected around, or slowed within, kelp forests. Macroalgal life histories, and the size of spore sources as controlled by the dimensions of kelp forests and the density and fecundity of individuals within them, influence effective dispersal distances as well. Physical considerations encompass the mean speed, direction, and timescales of variability of currents relative to spore suspension times, the interaction of surface gravity waves with currents in producing turbulence in the benthic boundary layer, wind-driven surface mixing, water stratification, and shoreline bathymetry and substratum roughness, all of which can affect the interplay of vertical and horizontal transport of macroalgal spores. Intricate within-forest processes may induce attenuation of current speeds and consequent reductions in seabed shear, along with simultaneous production of small-scale turbulence in kelp wakes. Slower mean currents and smaller eddy scales in turn may attenuate vertical mixing within forests, thus extending spore suspension times. Further complexities likely arise due to changes in the relative rates of horizontal and vertical dispersion, modifications to the overall profiles of vertical mixing, and the creation of fine

  6. Movement of pulsed resource subsidies from kelp forests to deep fjords.

    PubMed

    Filbee-Dexter, Karen; Wernberg, Thomas; Norderhaug, Kjell Magnus; Ramirez-Llodra, Eva; Pedersen, Morten Foldager

    2018-05-01

    Resource subsidies in the form of allochthonous primary production drive secondary production in many ecosystems, often sustaining diversity and overall productivity. Despite their importance in structuring marine communities, there is little understanding of how subsidies move through juxtaposed habitats and into recipient communities. We investigated the transport of detritus from kelp forests to a deep Arctic fjord (northern Norway). We quantified the seasonal abundance and size structure of kelp detritus in shallow subtidal (0‒12 m), deep subtidal (12‒85 m), and deep fjord (400‒450 m) habitats using a combination of camera surveys, dive observations, and detritus collections over 1 year. Detritus formed dense accumulations in habitats adjacent to kelp forests, and the timing of depositions coincided with the discrete loss of whole kelp blades during spring. We tracked these blades through the deep subtidal and into the deep fjord, and showed they act as a short-term resource pulse transported over several weeks. In deep subtidal regions, detritus consisted mostly of fragments and its depth distribution was similar across seasons (50% of total observations). Tagged pieces of detritus moved slowly out of kelp forests (displaced 4‒50 m (mean 11.8 m ± 8.5 SD) in 11‒17 days, based on minimum estimates from recovered pieces), and most (75%) variability in the rate of export was related to wave exposure and substrate. Tight resource coupling between kelp forests and deep fjords indicate that changes in kelp abundance would propagate through to deep fjord ecosystems, with likely consequences for the ecosystem functioning and services they provide.

  7. In situ microscopy reveals reversible cell wall swelling in kelp sieve tubes: one mechanism for turgor generation and flow control?

    PubMed

    Knoblauch, Jan; Tepler Drobnitch, Sarah; Peters, Winfried S; Knoblauch, Michael

    2016-08-01

    Kelps, brown algae (Phaeophyceae) of the order Laminariales, possess sieve tubes for the symplasmic long-distance transport of photoassimilates that are evolutionarily unrelated but structurally similar to the tubes in the phloem of vascular plants. We visualized sieve tube structure and wound responses in fully functional, intact Bull Kelp (Nereocystis luetkeana [K. Mertens] Postels & Ruprecht 1840). In injured tubes, apparent slime plugs formed but were unlikely to cause sieve tube occlusion as they assembled at the downstream side of sieve plates. Cell walls expanded massively in the radial direction, reducing the volume of the wounded sieve elements by up to 90%. Ultrastructural examination showed that a layer of the immediate cell wall characterized by circumferential cellulose fibrils was responsible for swelling and suggested that alginates, abundant gelatinous polymers of the cell wall matrix, were involved. Wall swelling was rapid, reversible and depended on intracellular pressure, as demonstrated by pressure-injection of silicon oil. Our results revive the concept of turgor generation and buffering by swelling cell walls, which had fallen into oblivion over the last century. Because sieve tube transport is pressure-driven and controlled physically by tube diameter, a regulatory role of wall swelling in photoassimilate distribution is implied in kelps. © 2016 John Wiley & Sons Ltd.

  8. Utilizing Landsat 8 to measure kelp physiological health in the Santa Barbara Channel

    NASA Astrophysics Data System (ADS)

    Taylor, N.; Bausell, J.; Bell, T. W.; Kudela, R. M.; Scuderi, L. A.

    2017-12-01

    Giant Kelp (Macrocystis pyrifera) is an important primary producer and ecosystem engineer along the west coast of North America. While satellite sensors can easily quantify canopy area of kelp, gauging the physiological health of these macroalgae has proven more difficult. Bell et al. (2015) devised an algorithm that effectively estimated the chlorophyll to carbon ratio (Chl:C)—a proxy for kelp health—using AVIRIS imagery. However while AVIRIS shows great potential in mapping kelp forest health, as an airborne sensor its availability is inconsistent over time, making it less ideal for continuous kelp forest monitoring. We therefore extend this method of determining Chl:C based on reflectance values to Landsat 8 satellite imagery. Landsat 8 Level 2 reflectance was confined to within one standard deviation of the best fit line to exclude outliers, and used to generate an equation for estimating Chl:C. The construction of a Landsat time series using this algorithm spanning 2013-2015 displays a predictable seasonal cycle of physiological health. These seasonal shifts in Chl:C suggest that kelp physiology is closely linked to environmental conditions and total biomass. Similarly, the lower Chl:C of Isla Vista observed in 2015 could be caused by environmental stressors associated with El Niño such as increased sea surface temperature, decreased nutrient availability, and disturbance. The added implementation of Landsat to estimate health greatly increases the potential for understanding long and short-term variability in photosynthetic ability and growth rates of kelp forests.

  9. Persistent differences between coastal and offshore kelp forest communities in a warming Gulf of Maine

    PubMed Central

    Lamb, Robert W.

    2018-01-01

    Kelp forests provide important ecosystem services, yet coastal kelp communities are increasingly altered by anthropogenic impacts. Kelp forests in remote, offshore locations may provide an informative contrast due to reduced impacts from local stressors. We tested the hypothesis that shallow kelp assemblages (12–15 m depth) and associated fish and benthic communities in the coastal southwest Gulf of Maine (GOM) differed significantly from sites on Cashes Ledge, 145 km offshore by sampling five coastal and three offshore sites at 43.0 +/- 0.07° N latitude. Offshore sites on Cashes Ledge supported the greatest density (47.8 plants m2) and standing crop biomass (5.5 kg m2 fresh weight) of the foundation species Saccharina latissima kelp at this depth in the Western North Atlantic. Offshore densities of S. latissima were over 150 times greater than at coastal sites, with similar but lower magnitude trends for congeneric S. digitata. Despite these differences, S. latissima underwent a significant 36.2% decrease between 1987 and 2015 on Cashes Ledge, concurrent with a rapid warming of the GOM and invasion by the kelp-encrusting bryozoan Membranipora membranacea. In contrast to kelp, the invasive red alga Dasysiphonia japonica was significantly more abundant at coastal sites, suggesting light or dispersal limitation offshore. Spatial differences in fish abundance mirrored those of kelp, as the average biomass of all fish on Cashes Ledge was 305 times greater than at the coastal sites. Remote video censuses of cod (Gadus morhua), cunner (Tautaogolabrus adspersus), and pollock (Pollachius virens) corroborated these findings. Understory benthic communities also differed between regions, with greater abundance of sessile invertebrates offshore. Populations of kelp-consuming sea urchins Stronglyocentrotus droebachiensis, were virtually absent from Cashes Ledge while small urchins were abundant onshore, suggesting recruitment limitation offshore. Despite widespread warming

  10. Persistent differences between coastal and offshore kelp forest communities in a warming Gulf of Maine.

    PubMed

    Witman, Jon D; Lamb, Robert W

    2018-01-01

    Kelp forests provide important ecosystem services, yet coastal kelp communities are increasingly altered by anthropogenic impacts. Kelp forests in remote, offshore locations may provide an informative contrast due to reduced impacts from local stressors. We tested the hypothesis that shallow kelp assemblages (12-15 m depth) and associated fish and benthic communities in the coastal southwest Gulf of Maine (GOM) differed significantly from sites on Cashes Ledge, 145 km offshore by sampling five coastal and three offshore sites at 43.0 +/- 0.07° N latitude. Offshore sites on Cashes Ledge supported the greatest density (47.8 plants m2) and standing crop biomass (5.5 kg m2 fresh weight) of the foundation species Saccharina latissima kelp at this depth in the Western North Atlantic. Offshore densities of S. latissima were over 150 times greater than at coastal sites, with similar but lower magnitude trends for congeneric S. digitata. Despite these differences, S. latissima underwent a significant 36.2% decrease between 1987 and 2015 on Cashes Ledge, concurrent with a rapid warming of the GOM and invasion by the kelp-encrusting bryozoan Membranipora membranacea. In contrast to kelp, the invasive red alga Dasysiphonia japonica was significantly more abundant at coastal sites, suggesting light or dispersal limitation offshore. Spatial differences in fish abundance mirrored those of kelp, as the average biomass of all fish on Cashes Ledge was 305 times greater than at the coastal sites. Remote video censuses of cod (Gadus morhua), cunner (Tautaogolabrus adspersus), and pollock (Pollachius virens) corroborated these findings. Understory benthic communities also differed between regions, with greater abundance of sessile invertebrates offshore. Populations of kelp-consuming sea urchins Stronglyocentrotus droebachiensis, were virtually absent from Cashes Ledge while small urchins were abundant onshore, suggesting recruitment limitation offshore. Despite widespread warming of

  11. Large-scale geographic variation in distribution and abundance of Australian deep-water kelp forests.

    PubMed

    Marzinelli, Ezequiel M; Williams, Stefan B; Babcock, Russell C; Barrett, Neville S; Johnson, Craig R; Jordan, Alan; Kendrick, Gary A; Pizarro, Oscar R; Smale, Dan A; Steinberg, Peter D

    2015-01-01

    Despite the significance of marine habitat-forming organisms, little is known about their large-scale distribution and abundance in deeper waters, where they are difficult to access. Such information is necessary to develop sound conservation and management strategies. Kelps are main habitat-formers in temperate reefs worldwide; however, these habitats are highly sensitive to environmental change. The kelp Ecklonia radiate is the major habitat-forming organism on subtidal reefs in temperate Australia. Here, we provide large-scale ecological data encompassing the latitudinal distribution along the continent of these kelp forests, which is a necessary first step towards quantitative inferences about the effects of climatic change and other stressors on these valuable habitats. We used the Autonomous Underwater Vehicle (AUV) facility of Australia's Integrated Marine Observing System (IMOS) to survey 157,000 m2 of seabed, of which ca 13,000 m2 were used to quantify kelp covers at multiple spatial scales (10-100 m to 100-1,000 km) and depths (15-60 m) across several regions ca 2-6° latitude apart along the East and West coast of Australia. We investigated the large-scale geographic variation in distribution and abundance of deep-water kelp (>15 m depth) and their relationships with physical variables. Kelp cover generally increased with latitude despite great variability at smaller spatial scales. Maximum depth of kelp occurrence was 40-50 m. Kelp latitudinal distribution along the continent was most strongly related to water temperature and substratum availability. This extensive survey data, coupled with ongoing AUV missions, will allow for the detection of long-term shifts in the distribution and abundance of habitat-forming kelp and the organisms they support on a continental scale, and provide information necessary for successful implementation and management of conservation reserves.

  12. Large-Scale Geographic Variation in Distribution and Abundance of Australian Deep-Water Kelp Forests

    PubMed Central

    Marzinelli, Ezequiel M.; Williams, Stefan B.; Babcock, Russell C.; Barrett, Neville S.; Johnson, Craig R.; Jordan, Alan; Kendrick, Gary A.; Pizarro, Oscar R.; Smale, Dan A.; Steinberg, Peter D.

    2015-01-01

    Despite the significance of marine habitat-forming organisms, little is known about their large-scale distribution and abundance in deeper waters, where they are difficult to access. Such information is necessary to develop sound conservation and management strategies. Kelps are main habitat-formers in temperate reefs worldwide; however, these habitats are highly sensitive to environmental change. The kelp Ecklonia radiate is the major habitat-forming organism on subtidal reefs in temperate Australia. Here, we provide large-scale ecological data encompassing the latitudinal distribution along the continent of these kelp forests, which is a necessary first step towards quantitative inferences about the effects of climatic change and other stressors on these valuable habitats. We used the Autonomous Underwater Vehicle (AUV) facility of Australia’s Integrated Marine Observing System (IMOS) to survey 157,000 m2 of seabed, of which ca 13,000 m2 were used to quantify kelp covers at multiple spatial scales (10–100 m to 100–1,000 km) and depths (15–60 m) across several regions ca 2–6° latitude apart along the East and West coast of Australia. We investigated the large-scale geographic variation in distribution and abundance of deep-water kelp (>15 m depth) and their relationships with physical variables. Kelp cover generally increased with latitude despite great variability at smaller spatial scales. Maximum depth of kelp occurrence was 40–50 m. Kelp latitudinal distribution along the continent was most strongly related to water temperature and substratum availability. This extensive survey data, coupled with ongoing AUV missions, will allow for the detection of long-term shifts in the distribution and abundance of habitat-forming kelp and the organisms they support on a continental scale, and provide information necessary for successful implementation and management of conservation reserves. PMID:25693066

  13. Convergent evolution of vascular optimization in kelp (Laminariales).

    PubMed

    Drobnitch, Sarah Tepler; Jensen, Kaare H; Prentice, Paige; Pittermann, Jarmila

    2015-10-07

    Terrestrial plants and mammals, although separated by a great evolutionary distance, have each arrived at a highly conserved body plan in which universal allometric scaling relationships govern the anatomy of vascular networks and key functional metabolic traits. The universality of allometric scaling suggests that these phyla have each evolved an 'optimal' transport strategy that has been overwhelmingly adopted by extant species. To truly evaluate the dominance and universality of vascular optimization, however, it is critical to examine other, lesser-known, vascularized phyla. The brown algae (Phaeophyceae) are one such group--as distantly related to plants as mammals, they have convergently evolved a plant-like body plan and a specialized phloem-like transport network. To evaluate possible scaling and optimization in the kelp vascular system, we developed a model of optimized transport anatomy and tested it with measurements of the giant kelp, Macrocystis pyrifera, which is among the largest and most successful of macroalgae. We also evaluated three classical allometric relationships pertaining to plant vascular tissues with a diverse sampling of kelp species. Macrocystis pyrifera displays strong scaling relationships between all tested vascular parameters and agrees with our model; other species within the Laminariales display weak or inconsistent vascular allometries. The lack of universal scaling in the kelps and the presence of optimized transport anatomy in M. pyrifera raises important questions about the evolution of optimization and the possible competitive advantage conferred by optimized vascular systems to multicellular phyla. © 2015 The Author(s).

  14. Crossing the front: contrasting storm-forced dispersal dynamics revealed by biological, geological and genetic analysis of beach-cast kelp.

    PubMed

    Waters, Jonathan M; King, Tania M; Fraser, Ceridwen I; Craw, Dave

    2018-03-01

    The subtropical front (STF) generally represents a substantial oceanographic barrier to dispersal between cold-sub-Antarctic and warm-temperate water masses. Recent studies have suggested that storm events can drastically influence marine dispersal and patterns. Here we analyse biological and geological dispersal driven by two major, contrasting storm events in southern New Zealand, 2017. We integrate biological and physical data to show that a severe southerly system in July 2017 disrupted this barrier by promoting movement of substantial numbers of southern sub-Antarctic Durvillaea kelp rafts across the STF, to make landfall in mainland NZ. By contrast, a less intense easterly storm (Cyclone Cook, April 2017) resulted in more moderate dispersal distances, with minimal dispersal between the sub-Antarctic and mainland New Zealand. These quantitative analyses of approximately 200 freshly beach-cast kelp specimens indicate that storm intensity and wind direction can strongly influence marine dispersal and landfall outcomes. © 2018 The Author(s).

  15. Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective

    PubMed Central

    Smale, Dan A; Burrows, Michael T; Moore, Pippa; O'Connor, Nessa; Hawkins, Stephen J

    2013-01-01

    Kelp forests along temperate and polar coastlines represent some of most diverse and productive habitats on the Earth. Here, we synthesize information from >60 years of research on the structure and functioning of kelp forest habitats in European waters, with particular emphasis on the coasts of UK and Ireland, which represents an important biogeographic transition zone that is subjected to multiple threats and stressors. We collated existing data on kelp distribution and abundance and reanalyzed these data to describe the structure of kelp forests along a spatial gradient spanning more than 10° of latitude. We then examined ecological goods and services provided by kelp forests, including elevated secondary production, nutrient cycling, energy capture and flow, coastal defense, direct applications, and biodiversity repositories, before discussing current and future threats posed to kelp forests and identifying key knowledge gaps. Recent evidence unequivocally demonstrates that the structure of kelp forests in the NE Atlantic is changing in response to climate- and non-climate-related stressors, which will have major implications for the structure and functioning of coastal ecosystems. However, kelp-dominated habitats along much of the NE Atlantic coastline have been chronically understudied over recent decades in comparison with other regions such as Australasia and North America. The paucity of field-based research currently impedes our ability to conserve and manage these important ecosystems. Targeted observational and experimental research conducted over large spatial and temporal scales is urgently needed to address these knowledge gaps. PMID:24198956

  16. Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective.

    PubMed

    Smale, Dan A; Burrows, Michael T; Moore, Pippa; O'Connor, Nessa; Hawkins, Stephen J

    2013-10-01

    Kelp forests along temperate and polar coastlines represent some of most diverse and productive habitats on the Earth. Here, we synthesize information from >60 years of research on the structure and functioning of kelp forest habitats in European waters, with particular emphasis on the coasts of UK and Ireland, which represents an important biogeographic transition zone that is subjected to multiple threats and stressors. We collated existing data on kelp distribution and abundance and reanalyzed these data to describe the structure of kelp forests along a spatial gradient spanning more than 10° of latitude. We then examined ecological goods and services provided by kelp forests, including elevated secondary production, nutrient cycling, energy capture and flow, coastal defense, direct applications, and biodiversity repositories, before discussing current and future threats posed to kelp forests and identifying key knowledge gaps. Recent evidence unequivocally demonstrates that the structure of kelp forests in the NE Atlantic is changing in response to climate- and non-climate-related stressors, which will have major implications for the structure and functioning of coastal ecosystems. However, kelp-dominated habitats along much of the NE Atlantic coastline have been chronically understudied over recent decades in comparison with other regions such as Australasia and North America. The paucity of field-based research currently impedes our ability to conserve and manage these important ecosystems. Targeted observational and experimental research conducted over large spatial and temporal scales is urgently needed to address these knowledge gaps.

  17. Extreme Warming Challenges Sentinel Status of Kelp Forests as Indicators of Climate Change

    NASA Astrophysics Data System (ADS)

    Miller, R. J.; Reed, D.; Washburn, L.; Rassweiler, A.; Bell, T. W.; Harrer, S.

    2016-12-01

    The ecological effects of global warming are expected to be large, but are proving difficult and costly to measure. This has led to a growing interest in using sentinel species as early warning indicators of impending climate change effects on entire ecosystems, raising awareness of the importance of verifying that such conservation shortcuts have sound biological foundations. A recent large-scale warming event in the North Pacific Ocean of unprecedented magnitude and duration allowed us to evaluate the sentinel status of giant kelp, a coastal foundation species that thrives in cold, nutrient-rich waters and considered sensitive to warming. Here we show that giant kelp did not presage ecosystem effects of extreme warming off southern California despite its expected vulnerability. Fluctuations in the biomass of giant kelp, understory algae, invertebrates and fish remained within historical ranges despite 34 months of above average temperatures and below average nutrients. Sea stars and sea urchins were exceptions, plummeting due to disease outbreaks linked to the warming. Our results challenge the IPCC predictions about the vulnerability of kelp-dominated systems to extreme warming events and question their use as early indicators of climate change. The resilience of giant kelp to unprecedented warming not only questions our understanding of kelp ecology, but exposes the risk of relying on supposed sentinel species that are assumed to be very sensitive to climate change.

  18. Complex trophic interactions in kelp forest ecosystems

    USGS Publications Warehouse

    Estes, J.A.; Danner, E.M.; Doak, D.F.; Konar, B.; Springer, A.M.; Steinberg, P.D.; Tinker, M. Tim; Williams, T.M.

    2004-01-01

    The distributions and abundances of species and populations change almost continuously. Understanding the processes responsible is perhaps ecology’s most fundamental challenge. Kelp-forest ecosystems in southwest Alaska have undergone several phase shifts between alga- and herbivore-dominated states in recent decades. Overhunting and recovery of sea otters caused the earlier shifts. Studies focusing on these changes demonstrate the importance of top-down forcing processes, a variety of indirect food-web interactions associated with the otter-urchin-kelp trophic cascade, and the role of food-chain length in the coevolution of defense and resistance in plants and their herbivores. This system unexpectedly shifted back to an herbivore-dominated state during the 1990s, because of a sea-otter population collapse that apparently was driven by increased predation by killer whales. Reasons for this change remain uncertain but seem to be linked to the whole-sale collapse of marine mammals in the North Pacific Ocean and southern Bering Sea. We hypothesize that killer whales sequentially "fished down" pinniped and sea-otter populations after their earlier prey, the great whales, were decimated by commercial whaling. The dynamics of kelp forests in southwest Alaska thus appears to have been influenced by an ecological chain reaction that encompassed numerous species and large scales of space and time.

  19. Post-glacial redistribution and shifts in productivity of giant kelp forests

    PubMed Central

    Graham, Michael H.; Kinlan, Brian P.; Grosberg, Richard K.

    2010-01-01

    Quaternary glacial–interglacial cycles create lasting biogeographic, demographic and genetic effects on ecosystems, yet the ecological effects of ice ages on benthic marine communities are unknown. We analysed long-term datasets to develop a niche-based model of southern Californian giant kelp (Macrocystis pyrifera) forest distribution as a function of oceanography and geomorphology, and synthesized palaeo-oceanographic records to show that late Quaternary climate change probably drove high millennial variability in the distribution and productivity of this foundation species. Our predictions suggest that kelp forest biomass increased up to threefold from the glacial maximum to the mid-Holocene, then rapidly declined by 40–70 per cent to present levels. The peak in kelp forest productivity would have coincided with the earliest coastal archaeological sites in the New World. Similar late Quaternary changes in kelp forest distribution and productivity probably occurred in coastal upwelling systems along active continental margins worldwide, which would have resulted in complex shifts in the relative productivity of terrestrial and marine components of coastal ecosystems. PMID:19846450

  20. Kelp, cobbles, and currents: Biologic reduction of coarse grain entrainment stress

    USGS Publications Warehouse

    Masteller, Claire C; Finnegan, Noah J; Warrick, Jonathan; Miller, Ian M.

    2015-01-01

    Models quantifying the onset of sediment motion do not typically account for the effect of biotic processes because they are difficult to isolate and quantify in relation to physical processes. Here we investigate an example of the interaction of kelp (Order Laminariales) and coarse sediment transport in the coastal zone, where it is possible to directly quantify and test its effect. Kelp is ubiquitous along rocky coastlines and the impact on ecosystems has been well studied. We develop a physical model to explore the reduction in critical shear stress of large cobbles colonized by Nereocystis luetkeana, or bull kelp. Observations of coarse sediment motion at a site in the Strait of Juan de Fuca (northwest United States–Canada boundary channel) confirm the model prediction and show that kelp reduces the critical stress required for transport of a given grain size by as much as 92%, enabling annual coarse sediment transport rates comparable to those of fluvial systems. We demonstrate that biology is fundamental to the physical processes that shape the coastal zone in this setting.

  1. Long photoperiods sustain high pH in Arctic kelp forests.

    PubMed

    Krause-Jensen, Dorte; Marbà, Núria; Sanz-Martin, Marina; Hendriks, Iris E; Thyrring, Jakob; Carstensen, Jacob; Sejr, Mikael Kristian; Duarte, Carlos M

    2016-12-01

    Concern on the impacts of ocean acidification on calcifiers, such as bivalves, sea urchins, and foraminifers, has led to efforts to understand the controls on pH in their habitats, which include kelp forests and seagrass meadows. The metabolism of these habitats can lead to diel fluctuation in pH with increases during the day and declines at night, suggesting no net effect on pH at time scales longer than daily. We examined the capacity of subarctic and Arctic kelps to up-regulate pH in situ and experimentally tested the role of photoperiod in determining the capacity of Arctic macrophytes to up-regulate pH. Field observations at photoperiods of 15 and 24 hours in Greenland combined with experimental manipulations of photoperiod show that photoperiods longer than 21 hours, characteristic of Arctic summers, are conducive to sustained up-regulation of pH by kelp photosynthesis. We report a gradual increase in pH of 0.15 units and a parallel decline in pCO 2 of 100 parts per million over a 10-day period in an Arctic kelp forest over midsummer, with ample scope for continued pH increase during the months of continuous daylight. Experimental increase in CO 2 concentration further stimulated the capacity of macrophytes to deplete CO 2 and increase pH. We conclude that long photoperiods in Arctic summers support sustained up-regulation of pH in kelp forests, with potential benefits for calcifiers, and propose that this mechanism may increase with the projected expansion of Arctic vegetation in response to warming and loss of sea ice.

  2. Divergent growth strategies between red algae and kelps influence biomechanical properties.

    PubMed

    Krumhansl, Kira A; Demes, Kyle W; Carrington, Emily; Harley, Christopher D G

    2015-11-01

    Morphology and material properties are the main components of the mechanical design of organisms, with species groups developing different optimization strategies in the context of their physical environment. For intertidal and subtidal seaweeds, possessing highly flexible and extensible tissues allows individuals to bend and reconfigure in flow, thereby reducing drag. Previous research has shown that aging may compromise these qualities. Tissue age increases with distance from the blade's meristem, which differs in its position on kelps and red algae. Here, we assess whether longitudinal patterns of blade material properties differ between these two algal groups according to tissue age. We performed tensile tests on tissues samples excised from various positions along the extent of blades in nine kelp species (basal growth) and 15 species of red algae (apical growth). We found that older tissues were less flexible and extensible than younger tissues in all species tested. As predicted, tissue near the basal meristem in kelp was more flexible and extensible than older tissue at the blade's distal end. The opposite pattern was observed for red algae, with the most flexible and extensible tissues found near the apical meristem at the distal ends of blades. We propose that divergent patterns in the distribution of material properties along blades may have different consequences for the performance of kelps and red algae. The positioning of younger tissues at the blade base for kelps may enable these species to attain larger body sizes in wave-swept habitats. © 2015 Botanical Society of America.

  3. Extreme warming challenges sentinel status of kelp forests as indicators of climate change.

    PubMed

    Reed, Daniel; Washburn, Libe; Rassweiler, Andrew; Miller, Robert; Bell, Tom; Harrer, Shannon

    2016-12-13

    The desire to use sentinel species as early warning indicators of impending climate change effects on entire ecosystems is attractive, but we need to verify that such approaches have sound biological foundations. A recent large-scale warming event in the North Pacific Ocean of unprecedented magnitude and duration allowed us to evaluate the sentinel status of giant kelp, a coastal foundation species that thrives in cold, nutrient-rich waters and is considered sensitive to warming. Here, we show that giant kelp and the majority of species that associate with it did not presage ecosystem effects of extreme warming off southern California despite giant kelp's expected vulnerability. Our results challenge the general perception that kelp-dominated systems are highly vulnerable to extreme warming events and expose the more general risk of relying on supposed sentinel species that are assumed to be very sensitive to climate change.

  4. Extreme warming challenges sentinel status of kelp forests as indicators of climate change

    NASA Astrophysics Data System (ADS)

    Reed, Daniel; Washburn, Libe; Rassweiler, Andrew; Miller, Robert; Bell, Tom; Harrer, Shannon

    2016-12-01

    The desire to use sentinel species as early warning indicators of impending climate change effects on entire ecosystems is attractive, but we need to verify that such approaches have sound biological foundations. A recent large-scale warming event in the North Pacific Ocean of unprecedented magnitude and duration allowed us to evaluate the sentinel status of giant kelp, a coastal foundation species that thrives in cold, nutrient-rich waters and is considered sensitive to warming. Here, we show that giant kelp and the majority of species that associate with it did not presage ecosystem effects of extreme warming off southern California despite giant kelp's expected vulnerability. Our results challenge the general perception that kelp-dominated systems are highly vulnerable to extreme warming events and expose the more general risk of relying on supposed sentinel species that are assumed to be very sensitive to climate change.

  5. Fish predators reduce kelp frond loss via a trait-mediated trophic cascade.

    PubMed

    Haggerty, Miranda B; Anderson, Todd W; Long, Jeremy D

    2018-05-05

    Although trophic cascades were originally believed to be driven only by predators eating prey, there is mounting evidence that such cascades can be generated in large part via non-consumptive effects. This is especially important in cascades affecting habitat-forming foundation species that in turn, influence associated communities. Here, we use laboratory and field experiments to identify a trait-mediated indirect interaction between predators and an abundant kelp in a marine temperate reef system. Predation risk from a microcarnivorous fish, the señorita, suppressed grazing by the host-specific seaweed limpet, which in turn, influenced frond loss of the habitat-forming feather boa kelp. This trophic cascade was pronounced because minor amounts of limpet grazing decreased the strength required to break kelp fronds. Cues from fish predators mitigated kelp loss by decreasing limpet grazing; we found 86% of this indirect interaction between predator and kelp was attributed to the non-consumptive effect in the laboratory and 56% when applying the same effect size calculations to the field. In field manipulations, the non-consumptive effect of señorita was as strong as the total predator effect and most importantly, as strong as the uncaged, "open" treatment with natural levels of predators. Our findings demonstrate that the mere presence of this fish reduces frond loss of the feather boa kelp through a trait-mediated trophic cascade. Moreover, despite large volumes of water, current flow, and wave energy, we clearly demonstrate a strong non-consumptive effect via an apparent chemical cue from señorita, suggesting that chemically mediated trait-driven cascades may be more prevalent in subtidal marine systems than we are currently aware. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Modeling effects of climate change and phase shifts on detrital production of a kelp bed.

    PubMed

    Krumhansl, Kira A; Lauzon-Guay, Jean-Sébastien; Scheibling, Robert E

    2014-03-01

    The exchange of energy and nutrients between ecosystems (i.e., resource subsidies) plays a central role in ecological dynamics over a range of spatial and temporal scales. Little attention has been paid to the role of anthropogenic impacts on natural systems in altering the magnitude, timing, and quality of resource subsidies. Kelp ecosystems are highly productive on a local scale and export over 80% of kelp primary production as detritus, subsidizing consumers across broad spatial scales. Here, we generate a model of detrital production from a kelp bed in Nova Scotia to hindcast trends in detrital production based on temperature and wave height recorded in the study region from 1976 to 2009, and to project changes in detrital production that may result from future climate change. Historical and projected increases in temperature and wave height led to higher rates of detrital production through increased blade breakage and kelp dislodgment from the substratum, but this reduced kelp biomass and led to a decline in detrital production in the long-term. We also used the model to demonstrate that the phase shift from a highly productive kelp bed to a low-productivity barrens, driven by the grazing activity of sea urchins, reduces kelp detrital production by several orders of magnitude, an effect that would be exacerbated by projected increases in temperature and wave action. These results indicate that climate-mediated changes in ecological dynamics operating on local scales may alter the magnitude of resource subsidies to adjacent ecosystems, affecting ecological dynamics on regional scales.

  7. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp

    PubMed Central

    Vergés, Adriana; Doropoulos, Christopher; Malcolm, Hamish A.; Skye, Mathew; Garcia-Pizá, Marina; Marzinelli, Ezequiel M.; Campbell, Alexandra H.; Ballesteros, Enric; Hoey, Andrew S.; Vila-Concejo, Ana; Steinberg, Peter D.

    2016-01-01

    Some of the most profound effects of climate change on ecological communities are due to alterations in species interactions rather than direct physiological effects of changing environmental conditions. Empirical evidence of historical changes in species interactions within climate-impacted communities is, however, rare and difficult to obtain. Here, we demonstrate the recent disappearance of key habitat-forming kelp forests from a warming tropical–temperate transition zone in eastern Australia. Using a 10-y video dataset encompassing a 0.6 °C warming period, we show how herbivory increased as kelp gradually declined and then disappeared. Concurrently, fish communities from sites where kelp was originally abundant but subsequently disappeared became increasingly dominated by tropical herbivores. Feeding assays identified two key tropical/subtropical herbivores that consumed transplanted kelp within hours at these sites. There was also a distinct increase in the abundance of fishes that consume epilithic algae, and much higher bite rates by this group at sites without kelp, suggesting a key role for these fishes in maintaining reefs in kelp-free states by removing kelp recruits. Changes in kelp abundance showed no direct relationship to seawater temperatures over the decade and were also unrelated to other measured abiotic factors (nutrients and storms). Our results show that warming-mediated increases in fish herbivory pose a significant threat to kelp-dominated ecosystems in Australia and, potentially, globally. PMID:27849585

  8. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp.

    PubMed

    Vergés, Adriana; Doropoulos, Christopher; Malcolm, Hamish A; Skye, Mathew; Garcia-Pizá, Marina; Marzinelli, Ezequiel M; Campbell, Alexandra H; Ballesteros, Enric; Hoey, Andrew S; Vila-Concejo, Ana; Bozec, Yves-Marie; Steinberg, Peter D

    2016-11-29

    Some of the most profound effects of climate change on ecological communities are due to alterations in species interactions rather than direct physiological effects of changing environmental conditions. Empirical evidence of historical changes in species interactions within climate-impacted communities is, however, rare and difficult to obtain. Here, we demonstrate the recent disappearance of key habitat-forming kelp forests from a warming tropical-temperate transition zone in eastern Australia. Using a 10-y video dataset encompassing a 0.6 °C warming period, we show how herbivory increased as kelp gradually declined and then disappeared. Concurrently, fish communities from sites where kelp was originally abundant but subsequently disappeared became increasingly dominated by tropical herbivores. Feeding assays identified two key tropical/subtropical herbivores that consumed transplanted kelp within hours at these sites. There was also a distinct increase in the abundance of fishes that consume epilithic algae, and much higher bite rates by this group at sites without kelp, suggesting a key role for these fishes in maintaining reefs in kelp-free states by removing kelp recruits. Changes in kelp abundance showed no direct relationship to seawater temperatures over the decade and were also unrelated to other measured abiotic factors (nutrients and storms). Our results show that warming-mediated increases in fish herbivory pose a significant threat to kelp-dominated ecosystems in Australia and, potentially, globally.

  9. The Impact of Climatological Variables on Kelp Canopy Area in the Santa Barbara Channel

    NASA Astrophysics Data System (ADS)

    Zigner, K.; Bausell, J.; Kudela, R. M.

    2015-12-01

    Kelp canopy area (KCA), a proxy for kelp forest health, has important implications for small and large-scale processes pertaining to fisheries, near shore currents, and marine ecosystems. As part of the NASA Airborne Science Research Program (SARP), this study examines the impact of ocean chemistry and climatological variables on KCA in the Santa Barbara Channel through time series analysis. El Niño Southern Oscillation (ENSO), North Pacific Gyre Oscillation (NPGO), North Pacific Oscillation (NPO), and upwelling indices as well as sea surface temperature (SST), salinity, nitrate, and chlorophyll-a concentrations taken within the Santa Barbara channel (1990-2014) were acquired from the Climate Prediction Center (CPC), California Cooperative Oceanic Fisheries Investigation (CalCOFI), and Di Lorenzo's NPGO websites. These data were then averaged for winter (November-January) and summer (May-August) seasons and compared to KCA measurements derived from Landsat images via unsupervised classification. Regression, cumulative sum tests, and cross-correlation coefficients revealed a two year lag between KCA and the NPGO, indicating the presence of an additional factor driving both variables. Further analyses suggests that the NPO may be this driving factor, as indicated by the correlation (lag 0) with KCA. Comparing relationships between kelp and other variables over various time periods supports the acceleration of the NPGO and other variables in more recent years. Exploring relationships between KCA, NPGO, and NPO may provide insight into potential impacts of climate change on coastal marine ecosystems.

  10. The kelp highway hypothesis: marine ecology, the coastal migration theory, and the peopling of the Americas

    USGS Publications Warehouse

    Erlandson, Jon M.; Graham, Michael H.; Bourque, Bruce J.; Corbett, Debra; Estes, James A.; Steneck, Robert S.

    2007-01-01

    In this article, a collaborative effort between archaeologists and marine ecologists, we discuss the role kelp forest ecosystems may have played in facilitating the movement of maritime peoples from Asia to the Americas near the end of the Pleistocene. Growing in cool nearshore waters along rocky coastlines, kelp forests offer some of the most productive habitats on earth, with high primary productivity, magnified secondary productivity, and three-dimensional habitat supporting a diverse array of marine organisms. Today, extensive kelp forests are found around the North Pacific from Japan to Baja California. After a break in the tropicswhere nearshore mangrove forests and coral reefs are highly productivekelp forests are also found along the Andean Coast of South America. These Pacific Rim kelp forests support or shelter a wealth of shellfish, fish, marine mammals, seabirds, and seaweeds, resources heavily used historically by coastal peoples. By about 16,000 years ago, the North Pacific Coast offered a linear migration route, essentially unobstructed and entirely at sea level, from northeast Asia into the Americas. Recent reconstructions suggest that rising sea levels early in the postglacial created a highly convoluted and island-rich coast along Beringia's southern shore, conditions highly favorable to maritime hunter-gatherers. Along with the terrestrial resources available in adjacent landscapes, kelp forests and other nearshore habitats sheltered similar suites of food resources that required minimal adaptive adjustments for migrating coastal peoples. With reduced wave energy, holdfasts for boats, and productive fishing, these linear kelp forest ecosystems may have provided a kind of kelp highway for early maritime peoples colonizing the New World.

  11. Environmental controls on spatial patterns in the long-term persistence of giant kelp in central California

    USGS Publications Warehouse

    Young, Mary Alida; Cavanaugh, Kyle C.; Bell, Tom W.; Raimondi, Peter T.; Edwards, Christopher A.; Drake, Patrick T.; Erikson, Li H.; Storlazzi, Curt

    2016-01-01

    As marine management is moving towards the practice of protecting static areas, it is 44 important to make sure protected areas capture and protect persistent populations. Rocky reefs in 45 many temperate areas worldwide serve as habitat for canopy forming macroalgae and these 46 structure forming species of kelps (order Laminariales) often serve as important habitat for a great 47 diversity of species. Macrocystis pyrifera is the most common canopy forming kelp species found 48 along the coast of California but the distribution and abundance of M. pyrifera varies in space and 49 time. The purpose of this study is to determine what environmental parameters are correlated with 50 the spatial and temporal persistence of M. pyrifera along the central coast of California and how 51 well those environmental parameters can be used to predict areas where M. pyrifera is more likely 52 to persist. Nine environmental variables considered in this study included depth of the seafloor, 53 structure of the rocky reef, proportion of rocky reef, size of kelp patch, biomass of kelp within a 54 patch, distance from the edge of a kelp patch, sea surface temperature, wave orbital velocities, and 55 population connectivity of individual kelp patches. Using a generalized linear mixed effects model 56 (GLMM), the persistence of M. pyrifera was significantly associated with seven of the nine 57 variables considered: depth, complexity of the rocky reef, proportion of rock, patch biomass, 58 distance from the edge of a patch, population connectivity, and wave-orbital velocities. These 59 seven environmental variables were then used to predict the persistence of kelp across the central 60 coast and these predictions were compared to a reserved dataset of M. pyrifera persistence, which 61 was not used in the creation of the GLMM. The environmental variables were shown to accurately 62 predict the persistence of M. pyrifera within the central coast of California (r = 0.71, P<0.001). 63 Because

  12. A swath across the great divide: Kelp forests across the Samalga Pass biogeographic break

    USGS Publications Warehouse

    Konar, Brenda H.; Edwards, Matthew S.; Bland, Aaron; Metzger, Jacob; Ravelo, Alexandra; Traiger, Sarah; Weitzman, Ben P.

    2017-01-01

    Biogeographic breaks are often described as locations where a large number of species reach their geographic range limits. Samalga Pass, in the eastern Aleutian Archipelago, is a known biogeographic break for the spatial distribution of several species of offshore-pelagic communities, including numerous species of cold-water corals, zooplankton, fish, marine mammals, and seabirds. However, it remains unclear whether Samalga Pass also serves as a biogeographic break for nearshore benthic communities. The occurrence of biogeographic breaks across multiple habitats has not often been described. In this study, we examined if the biogeographic break for offshore-pelagic communities applies to nearshore kelp forests. To examine whether Samalga Pass serves as a biogeographic break for kelp forest communities, this study compared abundance, biomass and percent bottom cover of species associated with kelp forests on either side of the pass. We observed marked differences in kelp forest community structure, with some species reaching their geographic range limits on the opposing sides of the pass. In particular, the habitat-forming kelp Nereocystis luetkeana, and the predatory sea stars Pycnopodia helianthoides and Orthasterias koehleri all occurred on the eastern side of Samalga Pass but were not observed west of the pass. In contrast, the sea star Leptasterias camtschatica dispar was observed only on the western side of the pass. We also observed differences in overall abundance and biomass of numerous associated fish, invertebrate and macroalgal species on opposing sides of the pass. We conclude that Samalga Pass is important biogeographic break for kelp forest communities in the Aleutian Archipelago and may demark the geographic range limits of several ecologically important species.

  13. Construction of a high density SNP linkage map of kelp (Saccharina japonica) by sequencing Taq I site associated DNA and mapping of a sex determining locus.

    PubMed

    Zhang, Ning; Zhang, Linan; Tao, Ye; Guo, Li; Sun, Juan; Li, Xia; Zhao, Nan; Peng, Jie; Li, Xiaojie; Zeng, Liang; Chen, Jinsa; Yang, Guanpin

    2015-03-15

    Kelp (Saccharina japonica) has been intensively cultured in China for almost a century. Its genetic improvement is comparable with that of rice. However, the development of its molecular tools is extremely limited, thus its genes, genetics and genomics. Kelp performs an alternative life cycle during which sporophyte generation alternates with gametophyte generation. The gametophytes of kelp can be cloned and crossed. Due to these characteristics, kelp may serve as a reference for the biological and genetic studies of Volvox, mosses and ferns. We constructed a high density single nucleotide polymorphism (SNP) linkage map for kelp by restriction site associated DNA (RAD) sequencing. In total, 4,994 SNP-containing physical (tag-defined) RAD loci were mapped on 31 linkage groups. The map expanded a total genetic distance of 1,782.75 cM, covering 98.66% of the expected (1,806.94 cM). The length of RAD tags (85 bp) was extended to 400-500 bp with Miseq method, offering us an easiness of developing SNP chips and shifting SNP genotyping to a high throughput track. The number of linkage groups was in accordance with the documented with cytological methods. In addition, we identified a set of microsatellites (99 in total) from the extended RAD tags. A gametophyte sex determining locus was mapped on linkage group 2 in a window about 9.0 cM in width, which was 2.66 cM up to marker_40567 and 6.42 cM down to marker_23595. A high density SNP linkage map was constructed for kelp, an intensively cultured brown alga in China. The RAD tags were also extended so that a SNP chip could be developed. In addition, a set of microsatellites were identified among mapped loci, and a gametophyte sex determining locus was mapped. This map will facilitate the genetic studies of kelp including for example the evaluation of germplasm and the decipherment of the genetic bases of economic traits.

  14. An approach for identification and determination of arsenic species in the extract of kelp.

    PubMed

    Yu, Lee L; Wei, Chao; Zeisler, Rolf; Tong, Junting; Oflaz, Rabia; Bao, Haixia; Wang, Jun

    2015-05-01

    The National Institute of Standards and Technology is developing a kelp powder standard reference material (SRM) in support of dietary supplement measurements. Edible seaweeds such as kelp and laver consumed as diet or dietary supplement contain tens of mg/kg arsenic. The speciation information of arsenic in the seaweed should be provided because the total arsenic alone does not fully address the safety issue of the dietary supplement as the value assignment is originally intended. The inability to avail all arsenic species for value assignment measurements prevented the certification of arsenic species in the candidate SRM; however, approximately 70 % of total arsenic extracted with a 1:1 volume fraction of methanol:water mixture allowed arsenic speciation values to be assigned to a procedure-defined extract, which may be used for method validation in research to improve upon current extraction and measurement practices. Arsenic species in kelp and laver were identified using electrospray ionization ion trap time of flight mass spectrometry (ESI-IT-TOF). Arsenosugars As(328), As(482), and As(392) were found in the kelp candidate SRM while As(328) and As(482) were found in GBW 08521, a certified reference material (CRM) of laver produced by the National Institute of Metrology of China (NIM). A discovery that the digests of kelp and laver contained only dimethylarsinic acid led to the conclusion that the seaweeds did not contain detectible levels of arsenobetaine, arsenocholine or trimethylarsine oxide that could overlap with the peaks of arsenosugars in the separation. The mean ± s of (5.68 ± 0.28) mg/kg and (13.43 ± 0.31) mg/kg found for As(482) and As(392) in kelp, respectively, using instrumental neutron activation analysis (INAA) demonstrated that value assignment measurement of arsenosugars was possible without arsenosugar calibration standards.

  15. Projected climate changes threaten ancient refugia of kelp forests in the North Atlantic.

    PubMed

    Assis, Jorge; Araújo, Miguel B; Serrão, Ester A

    2018-01-01

    Intraspecific genetic variability is critical for species adaptation and evolution and yet it is generally overlooked in projections of the biological consequences of climate change. We ask whether ongoing climate changes can cause the loss of important gene pools from North Atlantic relict kelp forests that persisted over glacial-interglacial cycles. We use ecological niche modelling to predict genetic diversity hotspots for eight species of large brown algae with different thermal tolerances (Arctic to warm temperate), estimated as regions of persistence throughout the Last Glacial Maximum (20,000 YBP), the warmer Mid-Holocene (6,000 YBP), and the present. Changes in the genetic diversity within ancient refugia were projected for the future (year 2100) under two contrasting climate change scenarios (RCP2.6 and RCP8.5). Models predicted distributions that matched empirical distributions in cross-validation, and identified distinct refugia at the low latitude ranges, which largely coincide among species with similar ecological niches. Transferred models into the future projected polewards expansions and substantial range losses in lower latitudes, where richer gene pools are expected (in Nova Scotia and Iberia for cold affinity species and Gibraltar, Alboran, and Morocco for warm-temperate species). These effects were projected for both scenarios but were intensified under the extreme RCP8.5 scenario, with the complete borealization (circum-Arctic colonization) of kelp forests, the redistribution of the biogeographical transitional zones of the North Atlantic, and the erosion of global gene pools across all species. As the geographic distribution of genetic variability is unknown for most marine species, our results represent a baseline for identification of locations potentially rich in unique phylogeographic lineages that are also climatic relics in threat of disappearing. © 2017 John Wiley & Sons Ltd.

  16. Using Panchromatic Imagery in Place of Multispectral Imagery for Kelp Detection in Water

    DTIC Science & Technology

    2010-01-01

    Normalized Difference Vegetation Index ( NDVI ). In broadband panchromatic imagery, the kelp appears brighter than the water because of the strong...response of vegetation in the NIR, and can be reliably detected by means of a simple threshold; overall brightness is generally proportional to the NDVI ...Index ( NDVI ). In broadband panchromatic imagery, the kelp appears brighter than the water because of the strong response of vegetation in the NIR, and

  17. Spatially variable synergistic effects of disturbance and additional nutrients on kelp recruitment and recovery.

    PubMed

    Carnell, Paul E; Keough, Michael J

    2014-05-01

    Understanding the impact of multiple stressors on ecosystems is of pronounced importance, particularly when one or more of those stressors is anthropogenic. Here we investigated the role of physical disturbance and increased nutrients on reefs dominated by the canopy-forming kelp Ecklonia radiata. We combined experimental kelp canopy removals and additional nutrient at three different locations in a large embayment in temperate southeastern Australia. Over the following winter recruitment season, Ecklonia recruitment was unaffected by increased nutrients alone, but tripled at all sites where the canopy had been removed. At one site, the combination of disturbance and increased nutrients resulted in more than four times the recruitment of the introduced kelp Undaria pinnatifida. Six months after disturbance, the proliferation of the Undaria canopy in the canopy-removal and nutrient-addition treatment negatively influenced the recovery of the native kelp Ecklonia. Given the otherwise competitive dominance of adult Ecklonia, this provides a mechanism whereby Undaria could maintain open space for the following recruitment season. This interplay between disturbance, nutrients and the response of native and invasive species makes a compelling case for how a combination of factors can influence species dynamics.

  18. Trophic significance of the kelp Laminaria digitata (Lamour.) for the associated food web: a between-sites comparison

    NASA Astrophysics Data System (ADS)

    Schaal, Gauthier; Riera, Pascal; Leroux, Cédric

    2009-12-01

    This study aimed at establishing the trophic significance of the kelp Laminaria digitata for consumers inhabiting two rocky shores of Northern Brittany (France), displaying contrasted ecological conditions. The general trophic structure did not vary between these two sites, with a wide diversity of filter-feeders and predators, and only 14% of the species sampled belonging to the grazers' trophic group. The diversity of food sources fueling the food web appeared also similar. The food webs comprised four trophic levels and the prevalence of omnivory appeared relatively low compared to previous studies in the same area. Conversely, to the food web structure, which did not differ, the biochemical composition of L. digitata differed between the two sites, and was correlated to a larger diversity of grazers feeding on this kelp in sheltered conditions. This indicated that the spatial variability occurring in the nutritive value of L. digitata is likely to deeply affect the functioning of kelp-associated food webs. The contribution of L. digitata-derived organic matter to the diet of filter-feeders inhabiting these two environments was assessed using the mixing model Isosource, which showed the higher contribution of kelp matter in sheltered conditions. These results highlight the spatial variability that may occur in the functioning of kelp-associated food webs. Moreover, this suggests that hydrodynamics is likely to control the availability of kelp-derived organic matter to local filter-feeders, probably through an increase of detritus export in exposed areas.

  19. Indirect food web interactions: Sea otters and kelp forest fishes in the Aleutian archipelago

    USGS Publications Warehouse

    Reisewitz, S.E.; Estes, J.A.; Simenstad, C.A.

    2006-01-01

    Although trophic cascades - the effect of apex predators on progressively lower trophic level species through top-down forcing - have been demonstrated in diverse ecosystems, the broader potential influences of trophic cascades on other species and ecosystem processes are not well studied. We used the overexploitation, recovery and subsequent collapse of sea otter (Enhydra lutris) populations in the Aleutian archipelago to explore if and how the abundance and diet of kelp forest fishes are influenced by a trophic cascade linking sea otters with sea urchins and fleshy macroalgae. We measured the abundance of sea urchins (biomass density), kelp (numerical density) and fish (Catch per unit effort) at four islands in the mid-1980s (when otters were abundant at two of the islands and rare at the two others) and in 2000 (after otters had become rare at all four islands). Our fish studies focused on rock greenling (Hexagrammos lagocephalus), the numerically dominant species in this region. In the mid-1980s, the two islands with high-density otter populations supported dense kelp forests, relatively few urchins, and abundant rock greenling whereas the opposite pattern (abundant urchins, sparse kelp forests, and relatively few rock greenling) occurred at islands where otters were rare. In the 2000, the abundances of urchins, kelp and greenling were grossly unchanged at islands where otters were initially rare but had shifted to the characteristic pattern of otter-free systems at islands where otters were initially abundant. Significant changes in greenling diet occurred between the mid-1980s and the 2000 although the reasons for these changes were difficult to assess because of strong island-specific effects. Whereas urchin-dominated communities supported more diverse fish assemblages than kelp-dominated communities, this was not a simple effect of the otter-induced trophic cascade because all islands supported more diverse fish assemblages in 2000 than in the mid-1980s

  20. The influence of a rocky reef and giant kelp on the cross-shelf propagation of nearshore internal bores

    NASA Astrophysics Data System (ADS)

    Rainville, E. J.; Walter, R. K.; Leary, P.; Woodson, C. B.; Monismith, S. G.; Nickols, K. J.

    2017-12-01

    Kelp forests are one of the most vibrant and productive ecosystems in the California coastal ocean and the health of these ecosystems is heavily influenced by the local hydrodynamics. In southern Monterey Bay, the nearshore environment is characterized by large areas of rocky reef and giant kelp (Macrocystis pyrifera) forests. The physical environment at this location is dominated by nearshore internal bores, which produce transient stratification and mixing events associated with the delivery of subthermocline waters to shallow regions. During the spring of 2013, a large array of oceanographic moorings measuring temperature and velocity at an extremely high spatiotemporal resolution was deployed to investigate the role of rocky reefs and giant kelp forests on the cross-shelf propagation of shoaling internal waves and bores. We take advantage of a unique site location where a rocky reef with giant kelp was located adjacent to a large sandy channel to compare temperature dynamics and flow both inside and outside the kelp forest. Preliminary analysis suggests that the rocky reef and kelp forest act to limit the cross-shelf extent of the internal bore features and dampen temperature variance at higher frequencies when compared to the adjacent sand channel. Moreover, by defining an internal bore strength index, we will explore temperature and velocity dynamics with and without internal bore forcing along the two cross-shelf transects (i.e., rocky reef and sandy channel transects).

  1. Kelp and Eelgrass in Puget Sound

    DTIC Science & Technology

    2007-05-01

    Florida. 531 p. Cox, P.A. 1988. Hydophilous pollination . Annual Review in of Ecology and Systematics 19:261-280. Dayton, P.K. 1985. Ecology of kelp...Restoration of Coastal Plant Communities. CRC Press, Boca Raton, FL. Phillips, R.C. 1984. The ecology of eelgrass meadows in the Pacific Northwest...moderate to high waves or currents. Eelgrass, which is a flowering plant adapted to the marine environment, roots in sand or mud in shallow waters where

  2. Decline in Kelp in West Europe and Climate.

    PubMed

    Raybaud, Virginie; Beaugrand, Grégory; Goberville, Eric; Delebecq, Gaspard; Destombe, Christophe; Valero, Myriam; Davoult, Dominique; Morin, Pascal; Gevaert, François

    2013-01-01

    Kelp ecosystems form widespread underwater forests playing a major role in structuring the biodiversity at a regional scale. Some seaweeds such as Laminaria digitata are also economically important, being exploited for their alginate and iodine content. Although some studies have shown that kelp ecosystems are regressing and that multiple causes are likely to be at the origin of the disappearance of certain populations, the extent to which global climate change may play a role remains speculative. Here we show that many populations of L. digitata along European coasts are on the verge of local extinction due to a climate-caused increase in sea temperature. By modeling the spatial distribution of the seaweed, we evaluate the possible implications of global climate change for the geographical patterns of the species using temperature data from the Coupled Model Intercomparison Project phase 5 (CMIP5). Projections of the future range of L. digitata throughout the 21st century show large shifts in the suitable habitat of the kelp and a northward retreat of the southern limit of its current geographic distribution from France to Danish coasts and the southern regions of the United Kingdom. However, these projections depend on the intensity of warming. A medium to high warming is expected to lead to the extirpation of the species as early as the first half of the 21st century and there is high confidence that regional extinction will spread northwards by the end of this century. These changes are likely to cause the decline of species whose life cycle is closely dependent upon L. digitata and lead to the establishment of new ecosystems with lower ecological and economic values.

  3. Importance of kelp-derived organic carbon to the scallop Chlamys farreri in an integrated multi-trophic aquaculture system

    NASA Astrophysics Data System (ADS)

    Xu, Qiang; Gao, Fei; Yang, Hongsheng

    2016-03-01

    Bivalves and seaweeds are important cleaners that are widely used in integrated multi-trophic aquaculture (IMTA) systems. A beneficial relationship between seaweed and bivalve in the seaweed-based IMTA system has been confirmed, but the trophic importance of seaweed-derived particulate organic materials to the co-cultured bivalve is still unclear. We evaluated the trophic importance of the kelp Saccharina japonica to the co-cultured scallop Chlamys farreri in a typical IMTA farm in Sungo Bay (Weihai, North China). The dynamics of detritus carbon in the water were monitored during the culturing period. The proportion of kelp-derived organic matter in the diet of the co-cultured scallop was assessed via the stable carbon isotope method. Results showed that the detritus carbon in the water ranged from 75.52 to 265.19 μg/L, which was 25.6% to 73.8% of total particulate organic carbon (TPOC) during the study period. The amount of detritus carbon and its proportion in the TPOC changed throughout the culture cycle of the kelp. Stable carbon isotope analysis showed that the cultured scallop obtained 14.1% to 42.8% of its tissue carbon from the kelp, and that the percentages were closely correlated with the proportion of detritus carbon in the water ( F =0.993, P= 0.003). Evaluation showed that for 17 000 tons (wet weight) of annual scallop production, the kelp contributed about 139.3 tons of carbon (535.8 tons of dry mass). This confirms that cultured kelp plays a similar trophic role in IMTA systems as it does in a natural kelp bed. It is a major contributor to the detritus pool and supplies a vital food source to filter-feeding scallops in the IMTA system, especially during winter and early spring when phytoplankton are scarce.

  4. Cumulative stress restricts niche filling potential of habitat-forming kelps in a future climate.

    PubMed

    King, Nathan G; Wilcockson, David C; Webster, Richard; Smale, Dan A; Hoelters, Laura S; Moore, Pippa J

    2018-02-01

    Climate change is driving range contractions and local population extinctions across the globe. When this affects ecosystem engineers the vacant niches left behind are likely to alter the wider ecosystem unless a similar species can fulfil them.Here, we explore the stress physiology of two coexisting kelps undergoing opposing range shifts in the Northeast Atlantic and discuss what differences in stress physiology may mean for future niche filling.We used chlorophyll florescence ( F v /F m ) and differentiation of the heat shock response (HSR) to determine the capacity of the expanding kelp , Laminaria ochroleuca , to move into the higher shore position of the retreating kelp, Laminaria digitata . We applied both single and consecutive exposures to immersed and emersed high and low temperature treatments, replicating low tide exposures experienced in summer and winter.No interspecific differences in HSR were observed which was surprising given the species' different biogeographic distributions. However, chlorophyll florescence revealed clear differences between species with L. ochroleuca better equipped to tolerate high immersed temperatures but showed little capacity to tolerate frosts or high emersion temperatures.Many patterns observed were only apparent after consecutive exposures. Such cumulative effects have largely been overlooked in tolerance experiments on intertidal organisms despite being more representative of the stress experienced in natural habitats. We therefore suggest future experiments incorporate consecutive stress into their design.Climate change is predicted to result in fewer ground frosts and increased summer temperatures. Therefore, L. ochroleuca may be released from its summer cold limit in winter but still be prevented from moving up the shore due to desiccation in the summer. Laminaria ochroleuca will, however, likely be able to move into tidal pools. Therefore, only partial niche filling by L. ochroleuca will be possible in this system

  5. Trophic Cascades Induced by Lobster Fishing Are Not Ubiquitous in Southern California Kelp Forests

    PubMed Central

    Guenther, Carla M.; Lenihan, Hunter S.; Grant, Laura E.; Lopez-Carr, David; Reed, Daniel C.

    2012-01-01

    Fishing can trigger trophic cascades that alter community structure and dynamics and thus modify ecosystem attributes. We combined ecological data of sea urchin and macroalgal abundance with fishery data of spiny lobster (Panulirus interruptus) landings to evaluate whether: (1) patterns in the abundance and biomass among lobster (predator), sea urchins (grazer), and macroalgae (primary producer) in giant kelp forest communities indicated the presence of top-down control on urchins and macroalgae, and (2) lobster fishing triggers a trophic cascade leading to increased sea urchin densities and decreased macroalgal biomass. Eight years of data from eight rocky subtidal reefs known to support giant kelp forests near Santa Barbara, CA, USA, were analyzed in three-tiered least-squares regression models to evaluate the relationships between: (1) lobster abundance and sea urchin density, and (2) sea urchin density and macroalgal biomass. The models included reef physical structure and water depth. Results revealed a trend towards decreasing urchin density with increasing lobster abundance but little evidence that urchins control the biomass of macroalgae. Urchin density was highly correlated with habitat structure, although not water depth. To evaluate whether fishing triggered a trophic cascade we pooled data across all treatments to examine the extent to which sea urchin density and macroalgal biomass were related to the intensity of lobster fishing (as indicated by the density of traps pulled). We found that, with one exception, sea urchins remained more abundant at heavily fished sites, supporting the idea that fishing for lobsters releases top-down control on urchin grazers. Macroalgal biomass, however, was positively correlated with lobster fishing intensity, which contradicts the trophic cascade model. Collectively, our results suggest that factors other than urchin grazing play a major role in controlling macroalgal biomass in southern California kelp forests, and

  6. Active and passive migration in boring isopods Limnoria spp. (Crustacea, Peracarida) from kelp holdfasts

    NASA Astrophysics Data System (ADS)

    Miranda, Leonardo; Thiel, Martin

    2008-10-01

    Many boring isopods inhabit positively buoyant substrata (wood and algae), which float after detachment, permitting passive migration of inhabitants. Based on observations from previous studies, it was hypothesized that juvenile, subadult and male isopods migrate actively, and will rapidly abandon substrata after detachment. In contrast, reproductive females and small offspring were predicted to remain in floating substrata and thus have a high probability to disperse passively via rafting. In order to test this hypothesis, a colonization and an emigration experiment were conducted with giant kelp ( Macrocystis integrifolia), the holdfasts of which are inhabited by boring isopods from the genus Limnoria. A survey of benthic substrata in the kelp forest confirmed that limnoriids inhabited the holdfasts and did not occur in holdfast-free samples. Results of the colonization experiment showed that all life history stages of the boring isopods immigrated into young, largely uncolonized holdfasts, and after 16 weeks all holdfasts were densely colonized. In the emigration experiment, all life history stages of the isopods rapidly abandoned the detached holdfasts — already 5 min after detachment only few individuals remained in the floating holdfasts. After this initial rapid emigration of isopods, little changes in isopod abundance occurred during the following 24 h, and at the end of the experiment some individuals of all life history stages still remained in the holdfasts. These results indicate that all life history stages of Limnoria participate in both active migration and passive dispersal. It is discussed that storm-related dynamics within kelp forests may contribute to intense mixing of local populations of these burrow-dwelling isopods, and that most immigrants to young holdfasts probably are individuals emigrating from old holdfasts detached during storm events. The fact that some individuals of all life history stages and both sexes remain in floating

  7. The variable routes of rafting: stranding dynamics of floating bull kelp Durvillaea antarctica (Fucales, Phaeophyceae) on beaches in the SE Pacific.

    PubMed

    López, Boris A; Macaya, Erasmo C; Tala, Fadia; Tellier, Florence; Thiel, Martin

    2017-02-01

    Dispersal on floating seaweeds depends on availability, viability, and trajectories of the rafts. In the southern hemisphere, the bull kelp Durvillaea antarctica is one of the most common floating seaweeds, but phylogeographic studies had shown low connectivity between populations from continental Chile, which could be due to limitations in local supply and dispersal of floating kelps. To test this hypothesis, the spatiotemporal dynamics of kelp strandings were examined in four biogeographic districts along the Chilean coast (28°-42°S). We determined the biomass and demography of stranded individuals on 33 beaches for three subsequent years (2013, 2014, 2015) to examine whether rafting is restricted to certain districts and seasons (winter or summer). Stranded kelps were found on all beaches. Most kelps had only one stipe (one individual), although we also frequently found coalesced holdfasts with mature males and females, which would facilitate successful rafting dispersal, gamete release, and reproduction upon arrival. High biomasses of stranded kelps occurred in the northern-central (30°S-33°S) and southernmost districts (37°S-42°S), and lower biomasses in the northernmost (28°S-30°S) and southern-central districts (33°S-37°S). The highest percentages and sizes of epibionts (Lepas spp.), indicative of prolonged floating periods, were found on stranded kelps in the northernmost and southernmost districts. Based on these results, we conclude that rafting dispersal can vary regionally, being more common in the northernmost and southernmost districts, depending on intrinsic (seaweed biology) and extrinsic factors (shore morphology and oceanography) that affect local supply of kelps and regional hydrodynamics. © 2016 Phycological Society of America.

  8. Seasonal sea ice cover as principal driver of spatial and temporal variation in depth extension and annual production of kelp in Greenland

    PubMed Central

    Krause-Jensen, Dorte; Marbà, Núria; Olesen, Birgit; Sejr, Mikael K; Christensen, Peter Bondo; Rodrigues, João; Renaud, Paul E; Balsby, Thorsten JS; Rysgaard, Søren

    2012-01-01

    We studied the depth distribution and production of kelp along the Greenland coast spanning Arctic to sub-Arctic conditions from 78 °N to 64 °N. This covers a wide range of sea ice conditions and water temperatures, with those presently realized in the south likely to move northwards in a warmer future. Kelp forests occurred along the entire latitudinal range, and their depth extension and production increased southwards presumably in response to longer annual ice-free periods and higher water temperature. The depth limit of 10% kelp cover was 9–14 m at the northernmost sites (77–78 °N) with only 94–133 ice-free days per year, but extended to depths of 21–33 m further south (73 °N–64 °N) where >160 days per year were ice-free, and annual production of Saccharina longicruris and S. latissima, measured as the size of the annual blade, ranged up to sevenfold among sites. The duration of the open-water period, which integrates light and temperature conditions on an annual basis, was the best predictor (relative to summer water temperature) of kelp production along the latitude gradient, explaining up to 92% of the variation in depth extension and 80% of the variation in kelp production. In a decadal time series from a high Arctic site (74 °N), inter-annual variation in sea ice cover also explained a major part (up to 47%) of the variation in kelp production. Both spatial and temporal data sets thereby support the prediction that northern kelps will play a larger role in the coastal marine ecosystem in a warmer future as the length of the open-water period increases. As kelps increase carbon-flow and habitat diversity, an expansion of kelp forests may exert cascading effects on the coastal Arctic ecosystem. PMID:28741817

  9. Seasonal sea ice cover as principal driver of spatial and temporal variation in depth extension and annual production of kelp in Greenland.

    PubMed

    Krause-Jensen, Dorte; Marbà, Núria; Olesen, Birgit; Sejr, Mikael K; Christensen, Peter Bondo; Rodrigues, João; Renaud, Paul E; Balsby, Thorsten J S; Rysgaard, Søren

    2012-10-01

    We studied the depth distribution and production of kelp along the Greenland coast spanning Arctic to sub-Arctic conditions from 78 ºN to 64 ºN. This covers a wide range of sea ice conditions and water temperatures, with those presently realized in the south likely to move northwards in a warmer future. Kelp forests occurred along the entire latitudinal range, and their depth extension and production increased southwards presumably in response to longer annual ice-free periods and higher water temperature. The depth limit of 10% kelp cover was 9-14 m at the northernmost sites (77-78 ºN) with only 94-133 ice-free days per year, but extended to depths of 21-33 m further south (73 ºN-64 ºN) where >160 days per year were ice-free, and annual production of Saccharina longicruris and S. latissima, measured as the size of the annual blade, ranged up to sevenfold among sites. The duration of the open-water period, which integrates light and temperature conditions on an annual basis, was the best predictor (relative to summer water temperature) of kelp production along the latitude gradient, explaining up to 92% of the variation in depth extension and 80% of the variation in kelp production. In a decadal time series from a high Arctic site (74 ºN), inter-annual variation in sea ice cover also explained a major part (up to 47%) of the variation in kelp production. Both spatial and temporal data sets thereby support the prediction that northern kelps will play a larger role in the coastal marine ecosystem in a warmer future as the length of the open-water period increases. As kelps increase carbon-flow and habitat diversity, an expansion of kelp forests may exert cascading effects on the coastal Arctic ecosystem. © 2012 Blackwell Publishing Ltd.

  10. Connectivity of the habitat-forming kelp, Ecklonia radiata within and among estuaries and open coast.

    PubMed

    Coleman, Melinda A

    2013-01-01

    With marine protected areas being established worldwide there is a pressing need to understand how the physical setting in which these areas are placed influences patterns of dispersal and connectivity of important marine organisms. This is particularly critical for dynamic and complex nearshore marine environments where patterns of genetic structure of organisms are often chaotic and uncoupled from broad scale physical processes. This study determines the influence of habitat heterogeneity (presence of estuaries) on patterns of genetic structure and connectivity of the common kelp, Ecklonia radiata. There was no genetic differentiation of kelp between estuaries and the open coast and the presence of estuaries did not increase genetic differentiation among open coast populations. Similarly, there were no differences in level of inbreeding or genetic diversity between estuarine and open coast populations. The presence of large estuaries along rocky coastlines does not appear to influence genetic structure of this kelp and factors other than physical heterogeneity of habitat are likely more important determinants of regional connectivity. Marine reserves are currently lacking in this bioregion and may be designated in the future. Knowledge of the factors that influence important habitat forming organisms such as kelp contribute to informed and effective marine protected area design and conservation initiatives to maintain resilience of important marine habitats.

  11. Stability and change in kelp forest habitats at San Nicolas Island

    USGS Publications Warehouse

    Kenner, Michael C.; Tinker, M. Tim

    2018-01-01

    Kelp forest communities are highly variable over space and time. Despite this complexity it has been suggested that kelp forest communities can be classified into one of 2 states: kelp dominated or sea urchin dominated. It has been further hypothesized that these represent “alternate stable states” because a site can remain in either of these states for decades before some perturbation causes a rapid shift to the other state. Our research group has maintained a subtidal community monitoring program for 38 years at San Nicolas Island consisting of twice-annual scuba-based surveys at 6 sites distributed within 4 regions around the island. Three types of perturbations are thought to be relevant to subtidal community dynamics at San Nicolas: (1) physical disturbances in the form of major storm and El Niño/Southern Oscillation (ENSO) events; (2) invertebrate diseases, which periodically decimate urchin populations; and (3) the reintroduction and subsequent increase of sea otters (Enhydra lutris nereis). These 3 perturbations differ in spatial and temporal specificity; physical disturbances and disease outbreaks occur periodically and could affect all 4 regions, while sea otter predation has been concentrated primarily at the West End sites over the last 15 years. The different types of perturbations and the duration of the time series at the kelp forests at San Nicolas make the data set ideal for testing the “alternate stable state” hypothesis. We use nonmetric multidimensional scaling (NMDS) to examine spatial and temporal patterns of community similarity at the 4 regions. In particular, we evaluate support for the existence of stable states, which are represented on NMDS plots as distinct spatial clusters. Community dynamics at each site approximated a biased random walk in NMDS space, with one or more basins of attraction and occasional jumps between basins. We found evidence for alternative stable states at some sites, and we show that transitions from one

  12. Kelp as a bioindicator: does it matter which part of 5 m long plant is used for metal analysis?

    PubMed

    Burger, Joanna; Gochfeld, Michael; Jeitner, Christian; Gray, Matt; Shukla, Tara; Shukla, Sheila; Burke, Sean

    2007-05-01

    Kelp may be useful as a bioindicator because they are primary producers that are eaten by higher trophic level organisms, including people and livestock. Often when kelp or other algae species are used as bioindicators, the whole organism is homogenized. However, some kelp can be over 25 m long from their holdfast to the tip of the blade, making it important to understand how contaminant levels vary throughout the plant. We compared the levels of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in five different parts of the kelp Alaria nana to examine the variability of metal distribution. To be useful as a bioindicator, it is critical to know whether levels are constant throughout the kelp, or which part is the highest accumulator. Kelp were collected on Adak Island in the Aleutian Chain of Alaska from the Adak Harbor and Clam Cove, which opens onto the Bering Sea. In addition to determining if the levels differ in different parts of the kelp, we wanted to determine whether there were locational or size-related differences. Regression models indicated that between 14% and 43% of the variation in the levels of arsenic, cadmium, chromium, manganese, mercury, and selenium was explained by total length, part of the plant, and location (but not for lead). The main contributors to variability were length (for arsenic and selenium), location (mercury), and part of the plant (for arsenic, cadmium, chromium and manganese). The higher levels of selenium occurred at Clam Cove, while mercury was higher at the harbor. Where there was a significant difference among parts, the holdfast had the highest levels, although the differences were not great. These data indicate that consistency should be applied in selecting the part of kelp (and the length) to be used as a bioindicator. While any part of Alaria could be collected for some metals, for arsenic, cadmium, chromium, and manganese a conversion should be made among parts. In the Aleutians the holdfast can be

  13. An empirical test of 'universal' biomass scaling relationships in kelps: evidence of convergence with seed plants.

    PubMed

    Starko, Samuel; Martone, Patrick T

    2016-11-01

    Biomass allocation patterns have received substantial consideration, leading to the recognition of several 'universal' interspecific trends. Despite efforts to understand biomass partitioning among embryophytes, few studies have examined macroalgae that evolved independently, yet function ecologically in much the same ways as plants. Kelps allocate photosynthate among three organs (the blade(s), stipe(s) and holdfast) that are superficially convergent with organs of land plants, providing a unique opportunity to test the limits of 'universal' trends. In this study, we used an allometric approach to quantify interspecific biomass partitioning patterns in kelps and assess whether embryophyte-based predictions of biomass scaling can be applied to marine macrophytes that lack root-to-leaf hydraulic transport. Photosynthetic area and dry mass were found to scale to approximately the ¾ power and kelp biomass allocation patterns were shown to match closely to empirical measures of allometric scaling among woody plants. Larger kelp species were found to have increased relative stipe and holdfast mass than smaller species, highlighting important consequences of size for marine macroalgae. Our study provides insights into the evolution of size in the largest marine macrophytes and corroborates previous work suggesting that the morphology of divergent lineages of photoautotrophs may reflect similar selective pressures. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. Rope culture of the kelp Laminaria groenlandica in Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, R.J.; Calvin, N.I.

    1981-02-01

    This paper is an account of rope culture of the brown seaweed or kelp, Laminaria groenlandica, in Alaska. It describes the placement of the ropes, time of first appearance of young L. groenlandica, size of the plants at various ages, and other life history features applicable to the use of rope for the culture of seaweeds in Alaska. (Refs. 3).

  15. The gelatinous extracellular matrix facilitates transport studies in kelp: visualization of pressure-induced flow reversal across sieve plates

    PubMed Central

    Knoblauch, Jan; Peters, Winfried S.; Knoblauch, Michael

    2016-01-01

    Background and Aims In vascular plants, important questions regarding phloem function remain unanswered due to problems with invasive experimental procedures in this highly sensitive tissue. Certain brown algae (kelps; Laminariales) also possess sieve tubes for photoassimilate transport, but these are embedded in large volumes of a gelatinous extracellular matrix which isolates them from neighbouring cells. Therefore, we hypothesized that kelp sieve tubes might tolerate invasive experimentation better than their analogues in higher plants, and sought to establish Nereocystis luetkeana as an experimental system. Methods The predominant localization of cellulose and the gelatinous extracellular matrix in N. luetkeana was verified using specific fluorescent markers and confocal laser scanning microscopy. Sieve tubes in intact specimens were loaded with fluorescent dyes, either passively (carboxyfluorescein diacetate; CFDA) or by microinjection (rhodamine B), and the movement of the dyes was monitored by fluorescence microscopy. Key Results Application of CFDA demonstrated source to sink bulk flow in N. luetkeana sieve tubes, and revealed the complexity of sieve tube structure, with branches, junctions and lateral connections. Microinjection into sieve elements proved comparatively easy. Pulsed rhodamine B injection enabled the determination of flow velocity in individual sieve elements, and the direct visualization of pressure-induced reversals of flow direction across sieve plates. Conclusions The reversal of flow direction across sieve plates by pressurizing the downstream sieve element conclusively demonstrates that a critical requirement of the Münch theory is satisfied in kelp; no such evidence exists for tracheophytes. Because of the high tolerance of its sieve elements to experimental manipulation, N. luetkeana is a promising alternative to vascular plants for studying the fluid mechanics of sieve tube networks. PMID:26929203

  16. Using ecological function to develop recovery criteria for depleted species: Sea otters and kelp forests in the Aleutian archipelago

    USGS Publications Warehouse

    Estes, James A.; Tinker, M. Tim; Bodkin, James L.

    2010-01-01

    Recovery criteria for depleted species or populations normally are based on demographic measures, the goal being to maintain enough individuals over a sufficiently large area to assure a socially tolerable risk of future extinction. Such demographically based recovery criteria may be insufficient to restore the functional roles of strongly interacting species. We explored the idea of developing a recovery criterion for sea otters (Enhydra lutris) in the Aleutian archipelago on the basis of their keystone role in kelp forest ecosystems. We surveyed sea otters and rocky reef habitats at 34 island-time combinations. The system nearly always existed in either a kelp-dominated or deforested phase state, which was predictable from sea otter density. We used a resampling analysis of these data to show that the phase state at any particular island can be determined at 95% probability of correct classification with information from as few as six sites. When sea otter population status (and thus the phase state of the kelp forest) was allowed to vary randomly among islands, just 15 islands had to be sampled to estimate the true proportion that were kelp dominated (within 10%) with 90% confidence. We conclude that kelp forest phase state is a more appropriate, sensitive, and cost-effective measure of sea otter recovery than the more traditional demographically based metrics, and we suggest that similar approaches have broad potential utility in establishing recovery criteria for depleted populations of other functionally important species.

  17. Blade life span, structural investment, and nutrient allocation in giant kelp.

    PubMed

    Rodriguez, Gabriel E; Reed, Daniel C; Holbrook, Sally J

    2016-10-01

    The turnover of plant biomass largely determines the amount of energy flowing through an ecosystem and understanding the processes that regulate turnover has been of interest to ecologists for decades. Leaf life span theory has proven useful in explaining patterns of leaf turnover in relation to resource availability, but the predictions of this theory have not been tested for macroalgae. We measured blade life span, size, thickness, nitrogen content, pigment content, and maximum photosynthetic rate (P max) in the giant kelp (Macrocystis pyrifera) along a strong resource (light) gradient to test whether the predictions of leaf life span theory applied to this alga. We found that shorter blade life spans and larger blade areas were associated with increased light availability. In addition, nitrogen and P max decreased with blade age, and their decrease was greater in shorter lived blades. These observations are generally consistent with patterns observed for higher plants and the prevailing theory of leaf life span. By contrast, variation observed in pigments of giant kelp was inconsistent with that predicted by leaf life span theory, as blades growing in the most heavily shaded portion of the forest had the lowest chlorophyll content. This result may reflect the dual role of macroalgal blades in carbon fixation and nutrient absorption and the ability of giant kelp to modify blade physiology to optimize the acquisition of light and nutrients. Thus, the marine environment may place demands on resource acquisition and allocation that have not been previously considered with respect to leaf life span optimization.

  18. Diversity of kelp holdfast-associated fauna in an Arctic fjord - inconsistent responses to glacial mineral sedimentation across different taxa

    NASA Astrophysics Data System (ADS)

    Ronowicz, Marta; Kukliński, Piotr; Włodarska-Kowalczuk, Maria

    2018-05-01

    Kelp forests are complex underwater habitats that support diverse assemblages of animals ranging from sessile filter feeding invertebrates to fishes and marine mammals. In this study, the diversity of invertebrate fauna associated with kelp holdfasts was surveyed in a high Arctic glacial fjord (76 N, Hornsund, Svalbard). The effects of algal host identity (three kelp species: Laminaria digitata, Saccharina latissima and Alaria esculenta), depth (5 and 10 m) and glacier-derived disturbance (three sites with varying levels of mineral sedimentation) on faunal species richness and composition were studied based on 239 collected algal holdfasts. The species pool was mostly made up by three taxa: colonial Bryozoa and Hydrozoa, and Polychaeta. While the all-taxa species richness did not differ between depths, algal hosts and sites, the patterns varied when the two colonial sessile filter-feeding taxa were analysed alone (Hydrozoa and Bryozoa). The Hydrozoa sample species richness and average taxonomic distinctness were the highest at undisturbed sites, whereas Bryozoa species richness was higher in sediment-impacted localities, indicating relative insensitivity of this phylum to the increased level of mineral suspension in the water column. The average taxonomic distinctness of Bryozoa did not vary between sites. The species composition of kelp-associated fauna varied between sites and depths for the whole community and the most dominant taxa (Bryozoa, Hydrozoa). The high load of inorganic suspension and sedimentation did not cause pauperization of kelp holdfast-associated fauna but instead triggered the changes in species composition and shifts between dominant taxonomic groups.

  19. Contemporary habitat discontinuity and historic glacial ice drive genetic divergence in Chilean kelp

    PubMed Central

    2010-01-01

    Background South America's western coastline, extending in a near-straight line across some 35 latitudinal degrees, presents an elegant setting for assessing both contemporary and historic influences on cladogenesis in the marine environment. Southern bull-kelp (Durvillaea antarctica) has a broad distribution along much of the Chilean coast. This species represents an ideal model taxon for studies of coastal marine connectivity and of palaeoclimatic effects, as it grows only on exposed rocky coasts and is absent from beaches and ice-affected shores. We expected that, along the central Chilean coast, D. antarctica would show considerable phylogeographic structure as a consequence of the isolating effects of distance and habitat discontinuities. In contrast, we hypothesised that further south - throughout the region affected by the Patagonian Ice Sheet at the Last Glacial Maximum (LGM) - D. antarctica would show relatively little genetic structure, reflecting postglacial recolonisation. Results Mitochondrial (COI) and chloroplast (rbcL) DNA analyses of D. antarctica from 24 Chilean localities (164 individuals) revealed two deeply divergent (4.5 - 6.1% for COI, 1.4% for rbcL) clades from the centre and south of the country, with contrasting levels and patterns of genetic structure. Among populations from central Chile (32° - 44°S), substantial phylogeographic structure was evident across small spatial scales, and a significant isolation-by-distance effect was observed. Genetic disjunctions in this region appear to correspond to the presence of long beaches. In contrast to the genetic structure found among central Chilean populations, samples from the southern Chilean Patagonian region (49° - 56°S) were genetically homogeneous and identical to a haplotype recently found throughout the subantarctic region. Conclusions Southern (Patagonian) Chile has been recolonised by D. antarctica relatively recently, probably since the LGM. The inferred trans-oceanic ancestry of

  20. Using Online Citizen Science to Assess Giant Kelp Abundances Across the Globe with Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Byrnes, J.; Cavanaugh, K. C.; Haupt, A. J.; Trouille, L.; Rosenthal, I.; Bell, T. W.; Rassweiler, A.; Pérez-Matus, A.; Assis, J.

    2017-12-01

    Global scale long-term data sets that document the patterns and variability of human impacts on marine ecosystems are rare. This lack is particularly glaring for underwater species - even moreso for ecologically important ones. Here we demonstrate how online Citizen Science combined with Landsat satellite imagery can help build a picture of change in the dynamics of giant kelp, an important coastal foundation species around the globe, from the 1984 to the present. Giant kelp canopy is visible from Landsat images, but these images defy easy machine classification. To get useful data, images must be processed by hand. While academic researchers have applied this method successfully at sub-regional scales, unlocking the value of the full global dataset has not been possible until given the massive effort required. Here we present Floating Forests (http://floatingforests.org), an international collaboration between kelp forest researchers and the citizen science organization Zooniverse. Floating Forests provides an interface that allows citizen scientists to identify canopy cover of giant kelp on Landsat images, enabling us to scale up the dataset to the globe. We discuss lessons learned from the initial version of the project launched in 2014, a prototype of an image processing pipeline to bring Landsat imagery to citizen science platforms, methods of assessing accuracy of citizen scientists, and preliminary data from our relaunch of the project. Through this project we have developed generalizable tools to facilitate citizen science-based analysis of Landsat and other satellite and aerial imagery. We hope that this create a powerful dataset to unlock our understanding of how global change has altered these critically important species in the sea.

  1. The gelatinous extracellular matrix facilitates transport studies in kelp: visualization of pressure-induced flow reversal across sieve plates.

    PubMed

    Knoblauch, Jan; Peters, Winfried S; Knoblauch, Michael

    2016-04-01

    In vascular plants, important questions regarding phloem function remain unanswered due to problems with invasive experimental procedures in this highly sensitive tissue. Certain brown algae (kelps; Laminariales) also possess sieve tubes for photoassimilate transport, but these are embedded in large volumes of a gelatinous extracellular matrix which isolates them from neighbouring cells. Therefore, we hypothesized that kelp sieve tubes might tolerate invasive experimentation better than their analogues in higher plants, and sought to establish Nereocystis luetkeana as an experimental system. The predominant localization of cellulose and the gelatinous extracellular matrix in N. luetkeana was verified using specific fluorescent markers and confocal laser scanning microscopy. Sieve tubes in intact specimens were loaded with fluorescent dyes, either passively (carboxyfluorescein diacetate; CFDA) or by microinjection (rhodamine B), and the movement of the dyes was monitored by fluorescence microscopy. Application of CFDA demonstrated source to sink bulk flow in N. luetkeana sieve tubes, and revealed the complexity of sieve tube structure, with branches, junctions and lateral connections. Microinjection into sieve elements proved comparatively easy. Pulsed rhodamine B injection enabled the determination of flow velocity in individual sieve elements, and the direct visualization of pressure-induced reversals of flow direction across sieve plates. The reversal of flow direction across sieve plates by pressurizing the downstream sieve element conclusively demonstrates that a critical requirement of the Münch theory is satisfied in kelp; no such evidence exists for tracheophytes. Because of the high tolerance of its sieve elements to experimental manipulation, N. luetkeana is a promising alternative to vascular plants for studying the fluid mechanics of sieve tube networks. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company

  2. The Influence of Physical Factors on Kelp and Sea Urchin Distribution in Previously and Still Grazed Areas in the NE Atlantic

    PubMed Central

    Rinde, Eli; Christie, Hartvig; Fagerli, Camilla W.; Bekkby, Trine; Gundersen, Hege; Norderhaug, Kjell Magnus; Hjermann, Dag Ø.

    2014-01-01

    The spatial distribution of kelp (Laminaria hyperborea) and sea urchins (Strongylocentrotus droebachiensis) in the NE Atlantic are highly related to physical factors and to temporal changes in temperature. On a large scale, we identified borders for kelp recovery and sea urchin persistence along the north-south gradient. Sea urchin persistence was also related to the coast-ocean gradient. The southern border corresponds to summer temperatures exceeding about 10°C, a threshold value known to be critical for sea urchin recruitment and development. The outer border along the coast-ocean gradient is related to temperature, wave exposure and salinity. On a finer scale, kelp recovery occurs mainly at ridges in outer, wave exposed, saline and warm areas whereas sea urchins still dominate in inner, shallow and cold areas, particularly in areas with optimal current speed for sea urchin foraging. In contrast to other studies in Europe, we here show a positive influence of climate change to presence of a long-lived climax canopy-forming kelp. The extent of the coast-ocean gradient varies within the study area, and is especially wide in the southern part where the presence of islands and skerries increases the area of the shallow coastal zone. This creates a large area with intermediate physical conditions for the two species and a mosaic of kelp and sea urchin dominated patches. The statistical models (GAM and BRT) show high performance and indicate recovery of kelp in 45–60% of the study area. The study shows the value of combining a traditional (GAM) and a more complex (BRT) modeling approach to gain insight into complex spatial patterns of species or habitats. The results, methods and approaches are of general ecological relevance regardless of ecosystems and species, although they are particularly relevant for understanding and exploring the corresponding changes between algae and grazers in different coastal areas. PMID:24949954

  3. The influence of physical factors on kelp and sea urchin distribution in previously and still grazed areas in the NE Atlantic.

    PubMed

    Rinde, Eli; Christie, Hartvig; Fagerli, Camilla W; Bekkby, Trine; Gundersen, Hege; Norderhaug, Kjell Magnus; Hjermann, Dag Ø

    2014-01-01

    The spatial distribution of kelp (Laminaria hyperborea) and sea urchins (Strongylocentrotus droebachiensis) in the NE Atlantic are highly related to physical factors and to temporal changes in temperature. On a large scale, we identified borders for kelp recovery and sea urchin persistence along the north-south gradient. Sea urchin persistence was also related to the coast-ocean gradient. The southern border corresponds to summer temperatures exceeding about 10°C, a threshold value known to be critical for sea urchin recruitment and development. The outer border along the coast-ocean gradient is related to temperature, wave exposure and salinity. On a finer scale, kelp recovery occurs mainly at ridges in outer, wave exposed, saline and warm areas whereas sea urchins still dominate in inner, shallow and cold areas, particularly in areas with optimal current speed for sea urchin foraging. In contrast to other studies in Europe, we here show a positive influence of climate change to presence of a long-lived climax canopy-forming kelp. The extent of the coast-ocean gradient varies within the study area, and is especially wide in the southern part where the presence of islands and skerries increases the area of the shallow coastal zone. This creates a large area with intermediate physical conditions for the two species and a mosaic of kelp and sea urchin dominated patches. The statistical models (GAM and BRT) show high performance and indicate recovery of kelp in 45-60% of the study area. The study shows the value of combining a traditional (GAM) and a more complex (BRT) modeling approach to gain insight into complex spatial patterns of species or habitats. The results, methods and approaches are of general ecological relevance regardless of ecosystems and species, although they are particularly relevant for understanding and exploring the corresponding changes between algae and grazers in different coastal areas.

  4. Ocean acidification and kelp development: Reduced pH has no negative effects on meiospore germination and gametophyte development of Macrocystis pyrifera and Undaria pinnatifida.

    PubMed

    Leal, Pablo P; Hurd, Catriona L; Fernández, Pamela A; Roleda, Michael Y

    2017-06-01

    The absorption of anthropogenic CO 2 by the oceans is causing a reduction in the pH of the surface waters termed ocean acidification (OA). This could have substantial effects on marine coastal environments where fleshy (non-calcareous) macroalgae are dominant primary producers and ecosystem engineers. Few OA studies have focused on the early life stages of large macroalgae such as kelps. This study evaluated the effects of seawater pH on the ontogenic development of meiospores of the native kelp Macrocystis pyrifera and the invasive kelp Undaria pinnatifida, in south-eastern New Zealand. Meiospores of both kelps were released into four seawater pH treatments (pH T 7.20, extreme OA predicted for 2300; pH T 7.65, OA predicted for 2100; pH T 8.01, ambient pH; and pH T 8.40, pre-industrial pH) and cultured for 15 d. Meiospore germination, germling growth rate, and gametophyte size and sex ratio were monitored and measured. Exposure to reduced pH T (7.20 and 7.65) had positive effects on germling growth rate and gametophyte size in both M. pyrifera and U. pinnatifida, whereas, higher pH T (8.01 and 8.40) reduced the gametophyte size in both kelps. Sex ratio of gametophytes of both kelps was biased toward females under all pH T treatments, except for U. pinnatifida at pH T 7.65. Germling growth rate under OA was significantly higher in M. pyrifera compared to U. pinnatifida but gametophyte development was equal for both kelps under all seawater pH T treatments, indicating that the microscopic stages of the native M. pyrifera and the invasive U. pinnatifida will respond similarly to OA. © 2017 Phycological Society of America.

  5. Blade motion and nutrient flux to the kelp, Eisenia arborea.

    PubMed

    Denny, Mark; Roberson, Loretta

    2002-08-01

    Marine algae rely on currents and waves to replenish the nutrients required for photosynthesis. The interaction of algal blades with flow often involves dynamic reorientations of the blade surface (pitching and flapping) that may in turn affect nutrient flux. As a first step toward understanding the consequences of blade motion, we explore the effect of oscillatory pitching on the flux to a flat plate and to two morphologies of the kelp Eisenia arborea. In slow flow (equivalent to a water velocity of 2.7 cm s(-1)), pitching increases the time-averaged flux to both kelp morphologies, but not to the plate. In fast flow (equivalent to 20 cm s(-1) in water), pitching has negligible effect on flux regardless of shape. For many aspects of flux, the flat plate is a reliable model for the flow-protected algal blade, but predictions made from the plate would substantially underestimate the flux to the flow-exposed blade. These measurements highlight the complexities of flow-related nutrient transport and the need to understand better the dynamic interactions among nutrient flux, blade motion, blade morphology, and water flow.

  6. Multi-approach mapping to help spatial planning and management of the kelp species L. digitata and L. hyperborea: Case study of the Molène Archipelago, Brittany

    NASA Astrophysics Data System (ADS)

    Bajjouk, Touria; Rochette, Sébastien; Laurans, Martial; Ehrhold, Axel; Hamdi, Anouar; Le Niliot, Philippe

    2015-06-01

    The Molène Archipelago in Brittany (France) hosts one of the largest kelp forests in Europe. Beyond their recognized ecological importance as an essential habitat and food for a variety of marine species, kelp also contributes towards regional economies by means of the alginate industry. Thousands of tons of kelp are collected each year for the needs of the chemical and food industries. Kelp harvesting in Brittany mainly concerns two species, Laminaria digitata (59,000 t) and Laminaria hyperborea (24,000 t), that, together, represent approximately 95% of the national landings. Estimating the available standing stock and its distribution is a clear need for providing appropriate and sustainable management measures. Prior to estimating the spatial distribution of biomasses, we produced a detailed seabed topography map with accurate hard substrate delineation thanks to surveys and appropriate processing of airborne optical and acoustic imaging. Habitat suitability models of presence-absence and biomass were then developed for each species by relating in situ observations from underwater video and sampling to the many biotic and abiotic factors that may govern kelp species distribution. Our statistical approach combining generalized additive models (GAM) in a delta approach also provided spatial uncertainty associated with each prediction to help management decisions. This study confirmed that the adopted strategy, based on an integrated approach, enhanced knowledge on kelp biomass distributions in the Molène Archipelago and provided a promising direct link between research and management. Indeed, the high resolution topography and hard substrate maps produced for the study greatly improved knowledge on the sea bottom of the area. This was also of major importance for an accurate mapping of kelp distribution. The quality of the habitat suitability models was verified with fishing effort data (RECOPESCA program) and confirmed by local managers and kelp harvesters

  7. Genetic study of kelp ``901'' strain

    NASA Astrophysics Data System (ADS)

    Xia, Peng; Wang, Xiuliang; Li, Xiaojie; Zhao, Yushan; Yao, Lin; Duan, Delin

    2005-06-01

    Based on DNA extraction and optimization of random amplified reaction (RAPD) to the gametophytes and sporophytes of Kelp “901” strain, genetic study on variation was conducted to its parents and offsprings of F6, F7, F8, and F9 generation. RAPD results have shown that among 30 selected primers for gametophytes, 297 loci ranging from 200 to 3 000 bp were obtained in the average of 9.9 loci for each primer. This indicated a high polymorphic rate with RAPD detection. UPGMA (unweighted pair-group method arithmetic average) analysis showed that each male and female gametophyte of a generation could be clustered into one pair separately. The genetic distances of the Kelp 901 generation were 0.3212 0.4767, and the maximum was between F7 and F8 (0.4767). Identity analysis showed that F6 generation was more close to the female parent (0.6593), and F7 generation was more close to the male parent (0.578 8). To the sporophytes study in 24 selected primers for RAPD amplification, 191 loci ranging from 230 2800 bp were obtained, in the average to each primer of 8.0 loci. The heterozygosity to six populations were male parent (0.2239), female parent (0.1072), F6 (0.2164), F7(0.2286), F8(0.2296) and F9(0.3172). The nearest genetic distance was 0.083 5(F8, F9). Total heterozygosity (HT) of F6, F7, F8 and F9 generations was 0.3186, the average heterozygosity (HS) for F6, F7, F8 and F9 generations was 0.2480, and deduced coefficient of population differentiation (Gst) was 22.2%. Six sequence characterized amplified regions (SCAR) were preliminary screened through RAPD analysis. It needed to be verified in detail as they are significant for molecular marker assistance in breeding and selecting Laminaria.

  8. Evolutionary consequences of microhabitat: population-genetic structuring in kelp- vs. rock-associated chitons.

    PubMed

    Nikula, R; Spencer, H G; Waters, J M

    2011-12-01

    Rafting has long been invoked as a key marine dispersal mechanism, but biologists have thus far produced little genetic evidence to support this hypothesis. We hypothesize that coastal species associated with buoyant seaweeds should experience enhanced population connectivity owing to rafting. In particular, invertebrates strongly associated with the buoyant bull-kelp Durvillaea antarctica might be expected to have lower levels of population-genetic differentiation than taxa mainly exploiting nonbuoyant substrates. We undertook a comparative genetic study of two codistributed, congeneric chiton species, assessing population connectivity at scales of 61-516 km, using ≥ 186 polymorphic AFLP loci per species. Consistent with predictions, population-genetic differentiation was weaker in the kelp-associated Sypharochiton sinclairi than in the rock-associated S. pelliserpentis. Additionally, while we found a significant positive correlation between genetic and oceanographic distances in both chiton species, the correlation was stronger in S. pelliserpentis (R(2) = 0.28) than in S. sinclairi (R(2) = 0.18). These data support the hypothesis that epifaunal taxa can experience enhanced population-genetic connectivity as a result of their rafting ability. © 2011 Blackwell Publishing Ltd.

  9. Photosynthetic use of inorganic carbon in deep-water kelps from the Strait of Gibraltar.

    PubMed

    García-Sánchez, María Jesús; Delgado-Huertas, Antonio; Fernández, José Antonio; Flores-Moya, Antonio

    2016-03-01

    Mechanisms of inorganic carbon assimilation were investigated in the four deep-water kelps inhabiting sea bottoms at the Strait of Gibraltar; these species are distributed at different depths (Saccorhiza polysiches at shallower waters, followed by Laminaria ochroleuca, then Phyllariopsis brevipes and, at the deepest bottoms, Phyllariopsis purpurascens). To elucidate the capacity to use HCO3(-) as a source of inorganic carbon for photosynthesis in the kelps, different experimental approaches were used. Specifically, we measured the irradiance-saturated gross photosynthetic rate versus pH at a constant dissolved inorganic carbon (DIC) concentration of 2 mM, the irradiance-saturated apparent photosynthesis (APS) rate versus DIC, the total and the extracellular carbonic anhydrase (CAext), the observed and the theoretical photosynthetic rates supported by the spontaneous dehydration of HCO3(-) to CO2, and the δ(13)C signature in tissues of the algae. While S. polyschides and L. ochroleuca showed photosynthetic activity at pH 9.5 (around 1.0 µmol O2 m(-2) s(-1)), the activity was close to zero in both species of Phyllariopsis. The APS versus DIC was almost saturated for the DIC values of natural seawater (2 mM) in S. polyschides and L. ochroleuca, but the relationship was linear in P. brevipes and P. purpurascens. The four species showed total and CAext activities but the inhibition of the CAext originated the observed photosynthetic rates at pH 8.0 to be similar to the theoretical rates that could be supported by the spontaneous dehydration of HCO3(-). The isotopic (13)C signatures ranged from -17.40 ± 1.81 to -21.11 ± 1.73 ‰ in the four species. Additionally, the δ(13)C signature was also measured in the deep-water Laminaria rodriguezii growing at 60-80 m, showing even a more negative value of -26.49 ± 1.25 ‰. All these results suggest that the four kelps can use HCO3(-) as external carbon source for photosynthesis mainly by the action of external CAext, but

  10. Effects of experimental overgrowth on survival and change in the turf assemblage of a giant kelp forest

    USGS Publications Warehouse

    Miles, A.K.; Meslow, E.C.

    1990-01-01

    Crustose coralline algae were the prevalent cover among sessile organisms that paved or grew near the substratum, and also the most commonly overgrown species in a giant kelp Macrocystis pyrifera (L.) C.A. Agardh forest located off San Nicolas Island, California. Giant kelp was the largest and most conspicuous species that overgrew large patches of the substrata; overgrowth among turf organisms also appeared common. To determine the effects of giant kelp holdfasts on crustose coralline algae and other turf organisms,'artificial holdfasts' were placed on 0.125-m2 plots for 5, 8 and 12 months. In these treatments, 50?57% of the crustose coralline algae survived. Because these algae also recruited while covered, the total cover (survivorship plus recruitment) differed by only 7?26% from that sampled at the start of the study. The decline of these algae in control plots was similar to that in the treatment plots mostly because of overgrowth by sessile invertebrates. Bryozoans increased markedly on the control plots, whereas 0?12% survived in the treatment plots. Bryozoans and sponges also recruited under the artificial holdfasts. Some arborescent turf algae survived in the 5- and 8-month treatments; articulated coralline algae survived better than did foliose algae. High survival recruitment of crustose coralline algae while overgrown contributed to their prevalence in benthic communities.

  11. Assessing the ecosystem-level consequences of a small-scale artisanal kelp fishery within the context of climate-change.

    PubMed

    Krumhansl, Kira A; Bergman, Jordanna N; Salomon, Anne K

    2017-04-01

    Coastal communities worldwide rely on small-scale artisanal fisheries as a means of increasing food security and alleviating poverty. Even small-scale fishing activities, however, are prone to resource depletion and environmental degradation, which can erode livelihoods in the long run. Thus, there is a pressing need to identify viable and resilient artisanal fisheries, and generate knowledge to support management within the context of a rapidly changing climate. We examined the ecosystem-level consequences of an artisanal kelp fishery (Macrocystis pyrifera), finding small-scale harvest of this highly productive species poses minimal impacts on kelp recovery rates, survival, and biomass dynamics, and abundances of associated commercial and culturally important fish species. These results suggest that small-scale harvest poses minimal trade-offs for the other economic benefits provided by these ecosystems, and their inherent, spiritual, and cultural value to humans. However, we detected a negative impact of warmer seawater temperatures on kelp recovery rates following harvest, indicating that the viability of harvest, even at small scales, may be threatened by future increases in global ocean temperature. This suggests that negative impacts of artisanal fisheries may be more likely to arise in the context of a warming climate, further highlighting the widespread effects of global climate change on coastal fisheries and livelihoods. © 2016 by the Ecological Society of America.

  12. Carbon assimilation and transfer through kelp forests in the NE Atlantic is diminished under a warmer ocean climate.

    PubMed

    Pessarrodona, Albert; Moore, Pippa J; Sayer, Martin D J; Smale, Dan A

    2018-06-03

    Global climate change is affecting carbon cycling by driving changes in primary productivity and rates of carbon fixation, release and storage within Earth's vegetated systems. There is, however, limited understanding of how carbon flow between donor and recipient habitats will respond to climatic changes. Macroalgal-dominated habitats, such as kelp forests, are gaining recognition as important carbon donors within coastal carbon cycles, yet rates of carbon assimilation and transfer through these habitats are poorly resolved. Here, we investigated the likely impacts of ocean warming on coastal carbon cycling by quantifying rates of carbon assimilation and transfer in Laminaria hyperborea kelp forests-one of the most extensive coastal vegetated habitat types in the NE Atlantic-along a latitudinal temperature gradient. Kelp forests within warm climatic regimes assimilated, on average, more than three times less carbon and donated less than half the amount of particulate carbon compared to those from cold regimes. These patterns were not related to variability in other environmental parameters. Across their wider geographical distribution, plants exhibited reduced sizes toward their warm-water equatorward range edge, further suggesting that carbon flow is reduced under warmer climates. Overall, we estimated that Laminaria hyperborea forests stored ~11.49 Tg C in living biomass and released particulate carbon at a rate of ~5.71 Tg C year -1 . This estimated flow of carbon was markedly higher than reported values for most other marine and terrestrial vegetated habitat types in Europe. Together, our observations suggest that continued warming will diminish the amount of carbon that is assimilated and transported through temperate kelp forests in NE Atlantic, with potential consequences for the coastal carbon cycle. Our findings underline the need to consider climate-driven changes in the capacity of ecosystems to fix and donate carbon when assessing the impacts of

  13. Sea otters, kelp forests, and the extinction of Steller's sea cow.

    PubMed

    Estes, James A; Burdin, Alexander; Doak, Daniel F

    2016-01-26

    The late Pleistocene extinction of so many large-bodied vertebrates has been variously attributed to two general causes: rapid climate change and the effects of humans as they spread from the Old World to previously uninhabited continents and islands. Many large-bodied vertebrates, especially large apex predators, maintain their associated ecosystems through top-down forcing processes, especially trophic cascades, and megaherbivores also exert an array of strong indirect effects on their communities. Thus, a third possibility for at least some of the Pleistocene extinctions is that they occurred through habitat changes resulting from the loss of these other keystone species. Here we explore the plausibility of this mechanism, using information on sea otters, kelp forests, and the recent extinction of Steller's sea cows from the Commander Islands. Large numbers of sea cows occurred in the Commander Islands at the time of their discovery by Europeans in 1741. Although extinction of these last remaining sea cows during early years of the Pacific maritime fur trade is widely thought to be a consequence of direct human overkill, we show that it is also a probable consequence of the loss of sea otters and the co-occurring loss of kelp, even if not a single sea cow had been killed directly by humans. This example supports the hypothesis that the directly caused extinctions of a few large vertebrates in the late Pleistocene may have resulted in the coextinction of numerous other species.

  14. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift.

    PubMed

    Ling, S D; Johnson, C R; Frusher, S D; Ridgway, K R

    2009-12-29

    A key consideration in assessing impacts of climate change is the possibility of synergistic effects with other human-induced stressors. In the ocean realm, climate change and overfishing pose two of the greatest challenges to the structure and functioning of marine ecosystems. In eastern Tasmania, temperate coastal waters are warming at approximately four times the global ocean warming average, representing the fastest rate of warming in the Southern Hemisphere. This has driven range extension of the ecologically important long-spined sea urchin (Centrostephanus rodgersii), which has now commenced catastrophic overgrazing of productive Tasmanian kelp beds leading to loss of biodiversity and important rocky reef ecosystem services. Coincident with the overgrazing is heavy fishing of reef-based predators including the spiny lobster Jasus edwardsii. By conducting experiments inside and outside Marine Protected Areas we show that fishing, by removing large predatory lobsters, has reduced the resilience of kelp beds against the climate-driven threat of the sea urchin and thus increased risk of catastrophic shift to widespread sea urchin barrens. This shows that interactions between multiple human-induced stressors can exacerbate nonlinear responses of ecosystems to climate change and limit the adaptive capacity of these systems. Management actions focused on reducing the risk of catastrophic phase shift in ecosystems are particularly urgent in the face of ongoing warming and unprecedented levels of predator removal from the world's oceans.

  15. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift

    PubMed Central

    Ling, S. D.; Johnson, C. R.; Frusher, S. D.; Ridgway, K. R.

    2009-01-01

    A key consideration in assessing impacts of climate change is the possibility of synergistic effects with other human-induced stressors. In the ocean realm, climate change and overfishing pose two of the greatest challenges to the structure and functioning of marine ecosystems. In eastern Tasmania, temperate coastal waters are warming at approximately four times the global ocean warming average, representing the fastest rate of warming in the Southern Hemisphere. This has driven range extension of the ecologically important long-spined sea urchin (Centrostephanus rodgersii), which has now commenced catastrophic overgrazing of productive Tasmanian kelp beds leading to loss of biodiversity and important rocky reef ecosystem services. Coincident with the overgrazing is heavy fishing of reef-based predators including the spiny lobster Jasus edwardsii. By conducting experiments inside and outside Marine Protected Areas we show that fishing, by removing large predatory lobsters, has reduced the resilience of kelp beds against the climate-driven threat of the sea urchin and thus increased risk of catastrophic shift to widespread sea urchin barrens. This shows that interactions between multiple human-induced stressors can exacerbate nonlinear responses of ecosystems to climate change and limit the adaptive capacity of these systems. Management actions focused on reducing the risk of catastrophic phase shift in ecosystems are particularly urgent in the face of ongoing warming and unprecedented levels of predator removal from the world's oceans. PMID:20018706

  16. How kelp produce blade shapes suited to different flow regimes: A new wrinkle.

    PubMed

    Koehl, M A R; Silk, W K; Liang, H; Mahadevan, L

    2008-12-01

    Many species of macroalgae have flat, strap-like blades in habitats exposed to rapidly flowing water, but have wide, ruffled "undulate" blades at protected sites. We used the giant bull kelp, Nereocystis luetkeana, to investigate how these ecomorphological differences are produced. The undulate blades of N. luetkeana from sites with low flow remain spread out and flutter erratically in moving water, thereby not only enhancing interception of light, but also increasing drag. In contrast, strap-like blades of kelp from habitats with rapid flow collapse into streamlined bundles and flutter at low amplitude in flowing water, thus reducing both drag and interception of light. Transplant experiments in the field revealed that shape of the blade in N. luetkeana is a plastic trait. Laboratory experiments in which growing blades from different sites were subjected to tensile forces that mimicked the hydrodynamic drag experienced by blades in different flow regimes showed that change in shape is induced by mechanical stress. During growth experiments in the field and laboratory, we mapped the spatial distribution of growth in both undulate and strap-like blades to determine how these different morphologies were produced. The highest growth rates occur near the proximal ends of N. luetkeana blades of both morphologies, but the rates of transverse growth of narrow, strap-like blades are lower than those of wide, undulate blades. If rates of longitudinal growth at the edges of a blade exceed the rate of longitudinal growth along the midline of the blade, ruffles along the edges of the blade are produced by elastic buckling. In contrast, flat blades are produced when rates of longitudinal growth are similar across the width of a blade. Because ruffles are the result of elastic buckling, a compliant undulate N. luetkeana blade can easily be pushed into different configurations (e.g., the wavelengths of the ruffles along the edges of the blade can change, and the whole blade can

  17. Sea otters, kelp forests, and the extinction of Steller’s sea cow

    PubMed Central

    Estes, James A.; Burdin, Alexander; Doak, Daniel F.

    2016-01-01

    The late Pleistocene extinction of so many large-bodied vertebrates has been variously attributed to two general causes: rapid climate change and the effects of humans as they spread from the Old World to previously uninhabited continents and islands. Many large-bodied vertebrates, especially large apex predators, maintain their associated ecosystems through top-down forcing processes, especially trophic cascades, and megaherbivores also exert an array of strong indirect effects on their communities. Thus, a third possibility for at least some of the Pleistocene extinctions is that they occurred through habitat changes resulting from the loss of these other keystone species. Here we explore the plausibility of this mechanism, using information on sea otters, kelp forests, and the recent extinction of Steller's sea cows from the Commander Islands. Large numbers of sea cows occurred in the Commander Islands at the time of their discovery by Europeans in 1741. Although extinction of these last remaining sea cows during early years of the Pacific maritime fur trade is widely thought to be a consequence of direct human overkill, we show that it is also a probable consequence of the loss of sea otters and the co-occurring loss of kelp, even if not a single sea cow had been killed directly by humans. This example supports the hypothesis that the directly caused extinctions of a few large vertebrates in the late Pleistocene may have resulted in the coextinction of numerous other species. PMID:26504217

  18. The use of kelp sieve tube sap metal composition to characterize urban runoff in southern California coastal waters.

    PubMed

    Fink, Laurel A; Manley, Steven L

    2011-12-01

    This study introduces an innovative method for biomonitoring using giant kelp (Macrocystis pyrifera) sieve tube sap (STS) metal concentrations as an indication of pollution influence. STS was sampled from fronds collected from 10 southern California locations, including two reference sites on Santa Catalina Island. Using ICP-MS methodology, STS concentrations of 17 different metals were measured (n=495). Several metals associated with pollution showed the highest STS concentrations and most seasonal variation from populations inside the Port of Los Angeles/Long Beach. Lowest concentrations were measured at less-urbanized areas: Santa Catalina Island and Malibu. Some metals showed a spatial gradient in STS metal concentration with increasing distance from point sources (i.e. Los Angeles River). Cluster analyses indicate that polluted seawater may affect kelp uptake of metals essential for cellular function. Results show that this method can be useful in describing bioavailable metal pollution with implications for accumulation within an important ecosystem. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Ocean acidification reverses the positive effects of seawater pH fluctuations on growth and photosynthesis of the habitat-forming kelp, Ecklonia radiata.

    PubMed

    Britton, Damon; Cornwall, Christopher E; Revill, Andrew T; Hurd, Catriona L; Johnson, Craig R

    2016-05-27

    Ocean acidification (OA) is the reduction in seawater pH due to the absorption of human-released CO2 by the world's oceans. The average surface oceanic pH is predicted to decline by 0.4 units by 2100. However, kelp metabolically modifies seawater pH via photosynthesis and respiration in some temperate coastal systems, resulting in daily pH fluctuations of up to ±0.45 units. It is unknown how these fluctuations in pH influence the growth and physiology of the kelp, or how this might change with OA. In laboratory experiments that mimicked the most extreme pH fluctuations measured within beds of the canopy-forming kelp Ecklonia radiata in Tasmania, the growth and photosynthetic rates of juvenile E. radiata were greater under fluctuating pH (8.4 in the day, 7.8 at night) than in static pH treatments (8.4, 8.1, 7.8). However, pH fluctuations had no effect on growth rates and a negative effect on photosynthesis when the mean pH of each treatment was reduced by 0.3 units. Currently, pH fluctuations have a positive effect on E. radiata but this effect could be reversed in the future under OA, which is likely to impact the future ecological dynamics and productivity of habitats dominated by E. radiata.

  20. Future climate change is predicted to shift long-term persistence zones in the cold-temperate kelp Laminaria hyperborea.

    PubMed

    Assis, Jorge; Lucas, Ana Vaz; Bárbara, Ignacio; Serrão, Ester Álvares

    2016-02-01

    Global climate change is shifting species distributions worldwide. At rear edges (warmer, low latitude range margins), the consequences of small variations in environmental conditions can be magnified, producing large negative effects on species ranges. A major outcome of shifts in distributions that only recently received attention is the potential to reduce the levels of intra-specific diversity and consequently the global evolutionary and adaptive capacity of species to face novel disturbances. This is particularly important for low dispersal marine species, such as kelps, that generally retain high and unique genetic diversity at rear ranges resulting from long-term persistence, while ranges shifts during climatic glacial/interglacial cycles. Using ecological niche modelling, we (1) infer the major environmental forces shaping the distribution of a cold-temperate kelp, Laminaria hyperborea (Gunnerus) Foslie, and we (2) predict the effect of past climate changes in shaping regions of long-term persistence (i.e., climatic refugia), where this species might hypothetically harbour higher genetic diversity given the absence of bottlenecks and local extinctions over the long term. We further (3) assessed the consequences of future climate for the fate of L. hyperborea using different scenarios of greenhouse gas emissions (RCP 2.6 and RCP 8.5). Results show NW Iberia, SW Ireland and W English Channel, Faroe Islands and S Iceland, as regions where L. hyperborea may have persisted during past climate extremes until present day. All predictions for the future showed expansions to northern territories coupled with the significant loss of suitable habitats at low latitude range margins, where long-term persistence was inferred (e.g., NW Iberia). This pattern was particularly evident in the most agressive scenario of climate change (RCP 8.5), likely driving major biodiversity loss, changes in ecosystem functioning and the impoverishment of the global gene pool of L

  1. Limited effects of a keystone species: Trends of sea otters and kelp forests at the Semichi Islands, Alaska

    USGS Publications Warehouse

    Konar, Brenda

    2000-01-01

    Sea otters are well known as a keystone species because of their ability to transform sea urchin-dominated communities into kelp-dominated communities by preying on sea urchins and thus reducing the intensity of herbivory. After being locally extinct for more than a century, sea otters re-colonized the Semichi Islands in the Aleutian Archipelago, Alaska in the early 1990s. Here, otter populations increased to about 400 individuals by 1994, but rapidly declined to about 100 by 1997. Roughly 7 yr after initial otter re-colonization, there were only marginal changes in sea urchin biomass, mean maximum test size, and kelp density. These small changes may be the first steps in the cascading effects on community structure typically found with the invasion of a keystone species. However, no wholesale change in community structure occurred following re-colonization and growth of the sea otter population. Instead, this study describes a transition state and identifies factors such as keystone species density and residence time that can be important in dictating the degree to which otter effects are manifested.

  2. Micronutrients and kelp cultures: Evidence for cobalt and manganese deficiency in Southern California deep seawater

    USGS Publications Warehouse

    Kuwabara, J.S.

    1982-01-01

    It has been suggested that naturally occurring copper and zinc concentrations in deep seawater are toxic to marine organisms when the free ion forms are overabundant. The effects of micronutrients on the growth of gametophytes of the ecologically and commercially significant giant kelp (Macrocystis pyrifera) were studied in defined media. The results indicate that toxic copper and zinc ion concentrations as well as cobalt and manganese deficiencies may be among the factors controlling the growth of marine organisms in nature. Copyright ?? 1982 AAAS.

  3. Kelp Gulls (Larus dominicanus) killed and injured by discarded monofilament lines at a marine recreational fishery in northern Patagonia.

    PubMed

    Yorio, Pablo; Marinao, Cristian; Suárez, Nicolás

    2014-08-15

    Among marine debris, monofilament fishing lines often result in negative impacts on marine organisms. We characterized marine debris and incidence of lost and discarded monofilament lines along beaches used by recreational fishers, and report the impact of lines on Kelp Gulls (Larus dominicanus) at the Bahía San Blas protected area, site of one of the main shore-based recreational fisheries of the southwestern Atlantic. Over 55% of the marine debris recorded originated from recreational fishing activities. Balls of tangled monofilament lines were found at a rate of 40.5 items per km. A total of 27 adult Kelp Gulls were found entangled with monofilament. All individuals were tangled to vegetation within colony boundaries. Four of the gulls had a monofilament line protruding from the bill, showing that they may be also killed when trying to obtain bait. Our results indicate that lost or discarded monofilament lines in the Bahía San Blas recreational fishing area result in undesired impacts on coastal wildlife. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Earthquake-caused coastal uplift and its effects on rocky intertidal kelp communities.

    PubMed

    Castilla, J C

    1988-10-21

    The coastal uplift(approximately 40 to 60 centimeters) associated with the Chilean earthquake of 3 March 1985 caused extensive mortality of intertidal organisms at the Estación Costera de Investigaciones Marinas, Las Cruces. The kelp belt of the laminarian Lessonia nigrescens was particularly affected. Most of the primary space liberated at the upper border of this belt was invaded by species of barnacles, which showed an opportunistic colonization strategy. Drastic modifications in the environment such as coastal uplift, subsidence, or the effects of the El Niño phenomenon are characteristic of the southern Pacific. Modifications in the marine ecosystem that generate catastrophic and widespread mortalities of intertidal organisms can affect species composition, diversity, or local biogeography.

  5. Cross-species transcriptomic approach reveals genes in hamster implantation sites.

    PubMed

    Lei, Wei; Herington, Jennifer; Galindo, Cristi L; Ding, Tianbing; Brown, Naoko; Reese, Jeff; Paria, Bibhash C

    2014-12-01

    The mouse model has greatly contributed to understanding molecular mechanisms involved in the regulation of progesterone (P4) plus estrogen (E)-dependent blastocyst implantation process. However, little is known about contributory molecular mechanisms of the P4-only-dependent blastocyst implantation process that occurs in species such as hamsters, guineapigs, rabbits, pigs, rhesus monkeys, and perhaps humans. We used the hamster as a model of P4-only-dependent blastocyst implantation and carried out cross-species microarray (CSM) analyses to reveal differentially expressed genes at the blastocyst implantation site (BIS), in order to advance the understanding of molecular mechanisms of implantation. Upregulation of 112 genes and downregulation of 77 genes at the BIS were identified using a mouse microarray platform, while use of the human microarray revealed 62 up- and 38 down-regulated genes at the BIS. Excitingly, a sizable number of genes (30 up- and 11 down-regulated genes) were identified as a shared pool by both CSMs. Real-time RT-PCR and in situ hybridization validated the expression patterns of several up- and down-regulated genes identified by both CSMs at the hamster and mouse BIS to demonstrate the merit of CSM findings across species, in addition to revealing genes specific to hamsters. Functional annotation analysis found that genes involved in the spliceosome, proteasome, and ubiquination pathways are enriched at the hamster BIS, while genes associated with tight junction, SAPK/JNK signaling, and PPARα/RXRα signalings are repressed at the BIS. Overall, this study provides a pool of genes and evidence of their participation in up- and down-regulated cellular functions/pathways at the hamster BIS. © 2014 Society for Reproduction and Fertility.

  6. Chlorinated Dioxins and Furans from Kelp and Copper Sulfate ...

    EPA Pesticide Factsheets

    In 2002, dioxins were discovered in animal feed ingredients during a random sampling by Irish officials and subsequently traced to particular mineral supplements produced at a Minnesota plant in the United States. These products sold under the names of SQM Mineral Products and Carbosan Mineral Products provide trace minerals complexed to polysaccharides for delivery of trace minerals. The products were voluntarily recalled by the company until the source of the dioxins could be identified and the dioxins eliminated from the supplements. Preliminary investigations by the company and federal agencies indicated that the dioxins were apparently produced during the manufacturing process of supplements containing copper, zinc, manganese, magnesium and iron. Additional studies were initiated to identify the specific ingredients required for dioxin formation and to provide further insight into the conditions necessary for their production. Citation: Ferrario, J.; Byrne, C.; Winters, D.; Boone, T.; Vigo, C.; Dupuy, A.; 2003. Chlorinated Dioxins and Furans from Kelp and Copper Sulfate: Initial Investigations of Dioxin Formation in Mineral Feed Supplements. Organohalogen Compounds 63, 183-186.

  7. Changes in sea urchins and kelp following a reduction in sea otter density as a result of the Exxon Valdez oil spill

    USGS Publications Warehouse

    Dean, Thomas A.; Bodkin, James L.; Jewett, Stephen C.; Monson, Daniel H.; Jung, D.

    2000-01-01

    Interactions between sea otters Enhydra lutris, sea urchins Strongylocentrotus droebachiensis, and kelp were investigated following the reduction in sea otter density in Prince William Sound, Alaska, after the Exxon Valdez oil spill in 1989. At northern Knight Island, a heavily oiled portion of the sound, sea otter abundance was reduced by a minimum of 50% by the oil spill, and from 1995 through 1998 remained at an estimated 66% lower than in 1973. Where sea otter densities were reduced, there were proportionally more large sea urchins. However, except in some widely scattered aggregations, both density and biomass of sea urchins were similar in an area of reduced sea otter density compared with an area where sea otters remained about 10 times more abundant. Furthermore, there was no change in kelp abundance in the area of reduced sea otter density. This is in contrast to greatly increased biomass of sea urchins and greatly reduced kelp density observed following an approximate 90% decline in sea otter abundance in the western Aleutian Islands. The variation in community response to a reduction in sea otters may be related to the magnitude of the reduction and the non-linear response by sea urchins to changes in predator abundance. The number of surviving sea otters may have been high enough to suppress sea urchin populations in Prince William Sound, but not in the Aleutians. Alternatively, differences in response may have been due to differences in the frequency or magnitude of sea urchin recruitment. Densities of small sea urchins were much higher in the Aleutian system even prior to the reduction in sea otters, suggesting a higher rate of recruitment.

  8. Historical ecology and the conservation of large, hermaphroditic fishes in Pacific Coast kelp forest ecosystems

    PubMed Central

    Braje, Todd J.; Rick, Torben C.; Szpak, Paul; Newsome, Seth D.; McCain, Joseph M.; Elliott Smith, Emma A.; Glassow, Michael; Hamilton, Scott L.

    2017-01-01

    The intensive commercial exploitation of California sheephead (Semicossyphus pulcher) has become a complex, multimillion-dollar industry. The fishery is of concern because of high harvest levels and potential indirect impacts of sheephead removals on the structure and function of kelp forest ecosystems. California sheephead are protogynous hermaphrodites that, as predators of sea urchins and other invertebrates, are critical components of kelp forest ecosystems in the northeast Pacific. Overfishing can trigger trophic cascades and widespread ecological dysfunction when other urchin predators are also lost from the system. Little is known about the ecology and abundance of sheephead before commercial exploitation. Lack of a historical perspective creates a gap for evaluating fisheries management measures and marine reserves that seek to rebuild sheephead populations to historical baseline conditions. We use population abundance and size structure data from the zooarchaeological record, in concert with isotopic data, to evaluate the long-term health and viability of sheephead fisheries in southern California. Our results indicate that the importance of sheephead to the diet of native Chumash people varied spatially across the Channel Islands, reflecting modern biogeographic patterns. Comparing ancient (~10,000 calibrated years before the present to 1825 CE) and modern samples, we observed variability and significant declines in the relative abundance of sheephead, reductions in size frequency distributions, and shifts in the dietary niche between ancient and modern collections. These results highlight how size-selective fishing can alter the ecological role of key predators and how zooarchaeological data can inform fisheries management by establishing historical baselines that aid future conservation. PMID:28164155

  9. Infralittoral mapping around an oceanic archipelago using MERIS FR satellite imagery and deep kelp observations: A new tool for assessing MPA coverage targets

    NASA Astrophysics Data System (ADS)

    Amorim, Patrícia; Atchoi, Elizabeth; Berecibar, Estibaliz; Tempera, Fernando

    2015-06-01

    This work presents the first climatologic maps of diffuse attenuation of down-welling solar radiation (KdPAR and Kd490 coefficients) for the Azores derived from full resolution (FR) MERIS satellite imagery. Associating this information with a new mesoscale bathymetry compilation permits estimating the percentage of surface light reaching the seabed. A video annotation dataset derived from a deep kelp survey conducted on the Formigas Bank is subsequently used to estimate the light levels experienced by these bionomically-crucial frondose algae. Empirical light-based thresholds for the lower infralittoral boundary in the Azores are derived from the deepest kelp occurrences. This information is eventually used to map the geographical extent of this major marine biological zone in the archipelago, yielding an area estimate of 894.7 km2. The average depth of the infralittoral limit in the Azores is established at 69 m. It is determined that the present Azores marine protected area (MPA) network already covers 28.9% of the region's infralittoral grounds. However, island-specific values highlight that MPA percentage coverage varies between islands with values ranging from a marginal coverage of 7.3% (on Terceira Island) to 100% coverage around the island of Corvo and the Formigas Bank. These results suggest that conservation managers may make use of the current spatially-based protection framework of the archipelago to, on the whole and for this specific major habitat, surpass the goals suggested by international conventions and conservation fora for MPA coverage. However, an analysis of the statutory MPA regulations further reveals that measures in place are insufficient to provide a no-take and no-disturbance protection of infralittoral biotopes. In order to achieve the recommended strict protection of the currently protected infralittoral zones, conservation measures ought to be enhanced.

  10. Differential Gene Expression Reveals Candidate Genes for Drought Stress Response in Abies alba (Pinaceae)

    PubMed Central

    Ziegenhagen, Birgit; Liepelt, Sascha

    2015-01-01

    Increasing drought periods as a result of global climate change pose a threat to many tree species by possibly outpacing their adaptive capabilities. Revealing the genetic basis of drought stress response is therefore implemental for future conservation strategies and risk assessment. Access to informative genomic regions is however challenging, especially for conifers, partially due to their large genomes, which puts constraints on the feasibility of whole genome scans. Candidate genes offer a valuable tool to reduce the complexity of the analysis and the amount of sequencing work and costs. For this study we combined an improved drought stress phenotyping of needles via a novel terahertz water monitoring technique with Massive Analysis of cDNA Ends to identify candidate genes for drought stress response in European silver fir (Abies alba Mill.). A pooled cDNA library was constructed from the cotyledons of six drought stressed and six well-watered silver fir seedlings, respectively. Differential expression analyses of these libraries revealed 296 candidate genes for drought stress response in silver fir (247 up- and 49 down-regulated) of which a subset was validated by RT-qPCR of the twelve individual cotyledons. A majority of these genes code for currently uncharacterized proteins and hint on new genomic resources to be explored in conifers. Furthermore, we could show that some traditional reference genes from model plant species (GAPDH and eIF4A2) are not suitable for differential analysis and we propose a new reference gene, TPC1, for drought stress expression profiling in needles of conifer seedlings. PMID:25924061

  11. Trophic flows, kelp culture and fisheries in the marine ecosystem of an artificial reef zone in the Yellow Sea

    NASA Astrophysics Data System (ADS)

    Wu, Zhongxin; Zhang, Xiumei; Lozano-Montes, Hector M.; Loneragan, Neil R.

    2016-12-01

    This study evaluates the ecosystem structure and function of the nearshore reefs in the Lidao coastal ecosystem of northern China, a region of intensive kelp aquaculture, and fisheries enhancements, including the deployment of artificial reefs and release of cultured marine species. An Ecopath model, with 20 functional groups representing 81 species, was developed for a representative area in the region and Ecosim was used to explore two scenarios for alternative fishing practices and surrounding aquaculture activities. The mean trophic levels (TLs) of the functional groups ranged from 1.0 for the primary producers (phytoplankton, benthic algae and seagrass) and detritus to 4.14 for Type III fishes (fishes found in the water column above the artificial reefs, e.g., Scomberomorus niphonius). The mean transfer efficiency through the whole system was 11.7%, and the ecosystem had a relative low maturity, stability and disturbance resistance, indicating that it was at a developing stage. Nearly half of the total system biomass (48.9% of 620.20 t km-2 year-1), excluding detritus, was comprised of benthic finfish and invertebrates. The total yield from all fisheries (86.82 t/km2/year) was dominated by low trophic level herbivorous and detritivorous species, such as the sea cucumber Apostichopus japonicus (TL = 2.1, 46.07%), other echinoderms (sea urchins Asterias amurensis and Strongylocentrotus nudus, TL = 2.1, 34.6%) and abalone Haliotis discus hannai (TL = 2.0, 18.4%), and as a consequence, the mean TL of the catch was low (2.1). The results from the Ecosim simulation of closing all fisheries for 20 years predicted an increase of about 100% in the relative biomass of the main exploited species, A. japonicus and H. discus hannai. The simulated removal of all kelp farms over 10 years resulted in a two fold increase in the relative biomass of Type III fishes and a 120% increase in their main prey (i.e. Small pelagic fish), while the relative biomass of A. japonicus and

  12. Task 1: Whole-body concentrations of elements in kelp bass (Paralabrax clathratus), kelp rockfish (Sebastes atrovirens), and Pacific sanddab (Citharichthys sordidus) from offshore oil platforms and natural areas in the Southern California Bight

    USGS Publications Warehouse

    Love, Milton S.

    2009-01-01

    Resource managers are concerned that offshore oil platforms in the Southern California Bight may be contributing to environmental contaminants accumulated by marine fishes. To examine this possibility, 18 kelp bass (Paralabrax clathratus), 80 kelp rockfish (Sebastes atrovirens), and 98 Pacific sanddab (Citharichthys sordidus) were collected from five offshore oil platforms and 10 natural areas during 2005-2006 for whole-body analysis of 63 elements. The natural areas, which served as reference sites, were assumed to be relatively uninfluenced by contaminants originating from platforms. Forty-two elements were excluded from statistical comparisons for one of three reasons: they consisted of major cations that were unlikely to accumulate to potentially toxic concentrations under ambient exposure conditions; they were not detected by the analytical procedures; or they were detected at concentrations too low to yield reliable quantitative measurements. The remaining 21 elements consisted of aluminum, arsenic, barium, cadmium, chromium, cobalt, copper, gallium, iron, lead, lithium, manganese, mercury, nickel, rubidium, selenium, strontium, tin, titanium, vanadium, and zinc. Statistical comparisons of these 21 elements indicated that none consistently exhibited higher concentrations at oil platforms than at natural areas. Eight comparisons yielded significant interaction effects between total length (TL) of the fish and the two habitat types (oil platforms and natural areas). This indicated that relations between certain elemental concentrations (i.e., copper, rubidium, selenium, tin, titanium, and vanadium) and habitat type varied by TL of affected fish species. To better understand these interactions, we examined elemental concentrations in very small and very large individuals of affected species. Although significant interactions were detected for rubidium, tin, and selenium in kelp rockfish, the concentrations of these elements did not differ significantly between

  13. Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry

    PubMed Central

    Küpper, Frithjof C.; Carpenter, Lucy J.; McFiggans, Gordon B.; Palmer, Carl J.; Waite, Tim J.; Boneberg, Eva-Maria; Woitsch, Sonja; Weiller, Markus; Abela, Rafael; Grolimund, Daniel; Potin, Philippe; Butler, Alison; Luther, George W.; Kroneck, Peter M. H.; Meyer-Klaucke, Wolfram; Feiters, Martin C.

    2008-01-01

    Brown algae of the Laminariales (kelps) are the strongest accumulators of iodine among living organisms. They represent a major pump in the global biogeochemical cycle of iodine and, in particular, the major source of iodocarbons in the coastal atmosphere. Nevertheless, the chemical state and biological significance of accumulated iodine have remained unknown to this date. Using x-ray absorption spectroscopy, we show that the accumulated form is iodide, which readily scavenges a variety of reactive oxygen species (ROS). We propose here that its biological role is that of an inorganic antioxidant, the first to be described in a living system. Upon oxidative stress, iodide is effluxed. On the thallus surface and in the apoplast, iodide detoxifies both aqueous oxidants and ozone, the latter resulting in the release of high levels of molecular iodine and the consequent formation of hygroscopic iodine oxides leading to particles, which are precursors to cloud condensation nuclei. In a complementary set of experiments using a heterologous system, iodide was found to effectively scavenge ROS in human blood cells. PMID:18458346

  14. Systems-level analysis of risk genes reveals the modular nature of schizophrenia.

    PubMed

    Liu, Jiewei; Li, Ming; Luo, Xiong-Jian; Su, Bing

    2018-05-19

    Schizophrenia (SCZ) is a complex mental disorder with high heritability. Genetic studies (especially recent genome-wide association studies) have identified many risk genes for schizophrenia. However, the physical interactions among the proteins encoded by schizophrenia risk genes remain elusive and it is not known whether the identified risk genes converge on common molecular networks or pathways. Here we systematically investigated the network characteristics of schizophrenia risk genes using the high-confidence protein-protein interactions (PPI) from the human interactome. We found that schizophrenia risk genes encode a densely interconnected PPI network (P = 4.15 × 10 -31 ). Compared with the background genes, the schizophrenia risk genes in the interactome have significantly higher degree (P = 5.39 × 10 -11 ), closeness centrality (P = 7.56 × 10 -11 ), betweeness centrality (P = 1.29 × 10 -11 ), clustering coefficient (P = 2.22 × 10 -2 ), and shorter average shortest path length (P = 7.56 × 10 -11 ). Based on the densely interconnected PPI network, we identified 48 hub genes and 4 modules formed by highly interconnected schizophrenia genes. We showed that the proteins encoded by schizophrenia hub genes have significantly more direct physical interactions. Gene ontology (GO) analysis revealed that cell adhesion, cell cycle, immune system response, and GABR-receptor complex categories were enriched in the modules formed by highly interconnected schizophrenia risk genes. Our study reveals that schizophrenia risk genes encode a densely interconnected molecular network and demonstrates the modular nature of schizophrenia. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Rafting rocks reveal marine biological dispersal: A case study using clasts from beach-cast macroalgal holdfasts

    NASA Astrophysics Data System (ADS)

    Garden, Christopher J.; Craw, Dave; Waters, Jonathan M.; Smith, Abigail

    2011-12-01

    Tracking and quantifying biological dispersal presents a major challenge in marine systems. Most existing methods for measuring dispersal are limited by poor resolution and/or high cost. Here we use geological data to quantify the frequency of long-distance dispersal in detached bull-kelp (Phaeophyceae: Durvillaea) in southern New Zealand. Geological resolution in this region is enhanced by the presence of a number of distinct and readily-identifiable geological terranes. We sampled 13,815 beach-cast bull-kelp plants across 130 km of coastline. Rocks were found attached to 2639 of the rafted plants, and were assigned to specific geological terranes (source regions) to quantify dispersal frequencies and distances. Although the majority of kelp-associated rock specimens were found to be locally-derived, a substantial number (4%) showed clear geological evidence of long-distance dispersal, several having travelled over 200 km from their original source regions. The proportion of local versus foreign clasts varied considerably between regions. While short-range dispersal clearly predominates, long-distance travel of detached bull-kelp plants is shown to be a common and ongoing process that has potential to connect isolated coastal populations. Geological analyses represent a cost-effective and powerful method for assigning large numbers of drifted macroalgae to their original source regions.

  16. The Ecology of Microbial Communities Associated with Macrocystis pyrifera.

    PubMed

    Michelou, Vanessa K; Caporaso, J Gregory; Knight, Rob; Palumbi, Stephen R

    2013-01-01

    Kelp forests are characterized by high biodiversity and productivity, and the cycling of kelp-produced carbon is a vital process in this ecosystem. Although bacteria are assumed to play a major role in kelp forest carbon cycling, knowledge of the composition and diversity of these bacterial communities is lacking. Bacterial communities on the surface of Macrocystis pyrifera and adjacent seawater were sampled at the Hopkins Marine Station in Monterey Bay, CA, and further studied using 454-tag pyrosequencing of 16S RNA genes. Our results suggest that M. pyrifera-dominated kelp forests harbor distinct microbial communities that vary temporally. The distribution of sequence tags assigned to Gammaproteobacteria, Alphaproteobacteria and Bacteriodetes differed between the surface of the kelp and the surrounding water. Several abundant Rhodobacteraceae, uncultivated Gammaproteobacteria and Bacteriodetes-associated tags displayed considerable temporal variation, often with similar trends in the seawater and the surface of the kelp. Bacterial community structure and membership correlated with the kelp surface serving as host, and varied over time. Several kelp-specific taxa were highly similar to other bacteria known to either prevent the colonization of eukaryotic larvae or exhibit antibacterial activities. Some of these kelp-specific bacterial associations might play an important role for M. pyrifera. This study provides the first assessment of the diversity and phylogenetic profile of the bacterial communities associated with M. pyrifera.

  17. Reveal genes functionally associated with ACADS by a network study.

    PubMed

    Chen, Yulong; Su, Zhiguang

    2015-09-15

    Establishing a systematic network is aimed at finding essential human gene-gene/gene-disease pathway by means of network inter-connecting patterns and functional annotation analysis. In the present study, we have analyzed functional gene interactions of short-chain acyl-coenzyme A dehydrogenase gene (ACADS). ACADS plays a vital role in free fatty acid β-oxidation and regulates energy homeostasis. Modules of highly inter-connected genes in disease-specific ACADS network are derived by integrating gene function and protein interaction data. Among the 8 genes in ACADS web retrieved from both STRING and GeneMANIA, ACADS is effectively conjoined with 4 genes including HAHDA, HADHB, ECHS1 and ACAT1. The functional analysis is done via ontological briefing and candidate disease identification. We observed that the highly efficient-interlinked genes connected with ACADS are HAHDA, HADHB, ECHS1 and ACAT1. Interestingly, the ontological aspect of genes in the ACADS network reveals that ACADS, HAHDA and HADHB play equally vital roles in fatty acid metabolism. The gene ACAT1 together with ACADS indulges in ketone metabolism. Our computational gene web analysis also predicts potential candidate disease recognition, thus indicating the involvement of ACADS, HAHDA, HADHB, ECHS1 and ACAT1 not only with lipid metabolism but also with infant death syndrome, skeletal myopathy, acute hepatic encephalopathy, Reye-like syndrome, episodic ketosis, and metabolic acidosis. The current study presents a comprehensible layout of ACADS network, its functional strategies and candidate disease approach associated with ACADS network. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Quantifying Temporal and Spatial Variability of Nearshore Processes Around a Nearshore Kelp Forest Rocky Reef with the Kelp Forest Array Cabled Observatory

    NASA Astrophysics Data System (ADS)

    Squibb, M. E.; Monismith, S. G.; Woodson, C. B.; Dunckley, J. F.; Martone, R. G.; Litvin, S. Y.

    2015-12-01

    Oceanographic data from the Kelp Forest Array (KFA) cabled observatory is used to determine the frequency, intensity, duration and seasonal variation of low-pH and low-DO events, and relate them to temperature and density variability associated with internal waves and upwelling. We employ standard time series analyses to determine the frequency distributions of variance in pH, DO, and T and coherence analysis to identify frequency dependent co-variability among the three variables. Statistical analysis is used to identify the probability of a hypoxic event of given strength (e.g., DO < 4.5 mg/l17) lasting for a given duration and compare this between habitats. Joint probability distribution functions of low-DO are computed from the data in the same way. This approach can be used to identify the likelihood of extreme events with respect to specific DO thresholds of physiological relevance for species of interest in MPAs. The time scales and vertical structure of velocities, temperature, and dissolved oxygen associated with low-DO events are also analyzed to determine the dominant transport mechanisms for these events and how they are tied to internal shoaling waves prevalent in the southern part of Monterey Bay. The structure and evolution of shoaling internal "bores" are also shown to substantially alter the background nearshore dynamics with their arrival and relaxation. Our work in 2015 is contextualized by multi-year data sets from the three previous years which contain observations of both upwelling and non-upwelling periods.

  19. Gene array analysis reveals a common Runx transcriptional program controlling cell adhesion and survival

    PubMed Central

    Wotton, Sandy; Terry, Anne; Kilbey, Anna; Jenkins, Alma; Herzyk, Pawel; Cameron, Ewan; Neil, James C.

    2008-01-01

    The Runx genes play divergent roles in development and cancer, where they can act either as oncogenes or tumour suppressors. We compared the effects of ectopic Runx expression in established fibroblasts, where all three genes produce an indistinguishable phenotype entailing epithelioid morphology and increased cell survival under stress conditions. Gene array analysis revealed a strongly overlapping transcriptional signature, with no examples of opposing regulation of the same target gene. A common set of 50 highly regulated genes was identified after further filtering on regulation by inducible RUNX1-ER. This set revealed a strong bias towards genes with annotated roles in cancer and development, and a preponderance of targets encoding extracellular or surface proteins, reflecting the marked effects of Runx on cell adhesion. Furthermore, in silico prediction of resistance to glucocorticoid growth inhibition was confirmed in fibroblasts and lymphoid cells expressing ectopic Runx. The effects of fibroblast expression of common RUNX1 fusion oncoproteins (RUNX1-ETO, TEL-RUNX1, CBFB-MYH11) were also tested. While two direct Runx activation target genes were repressed (Ncam1, Rgc32), the fusion proteins appeared to disrupt regulation of down-regulated targets (Cebpd, Id2, Rgs2) rather than impose constitutive repression. These results elucidate the oncogenic potential of the Runx family and reveal novel targets for therapeutic inhibition. PMID:18560354

  20. Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates

    PubMed Central

    Long, Hannah K; Sims, David; Heger, Andreas; Blackledge, Neil P; Kutter, Claudia; Wright, Megan L; Grützner, Frank; Odom, Duncan T; Patient, Roger; Ponting, Chris P; Klose, Robert J

    2013-01-01

    Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive effects of DNA methylation on chromatin. In cold-blooded vertebrates, computational CGI predictions often reside away from gene promoters, suggesting a major divergence in gene promoter architecture across vertebrates. By experimentally identifying non-methylated DNA in the genomes of seven diverse vertebrates, we instead reveal that non-methylated islands (NMIs) of DNA are a central feature of vertebrate gene promoters. Furthermore, NMIs are present at orthologous genes across vast evolutionary distances, revealing a surprising level of conservation in this epigenetic feature. By profiling NMIs in different tissues and developmental stages we uncover a unifying set of features that are central to the function of NMIs in vertebrates. Together these findings demonstrate an ancient logic for NMI usage at gene promoters and reveal an unprecedented level of epigenetic conservation across vertebrate evolution. DOI: http://dx.doi.org/10.7554/eLife.00348.001 PMID:23467541

  1. Molecular evolution and diversification of snake toxin genes, revealed by analysis of intron sequences.

    PubMed

    Fujimi, T J; Nakajyo, T; Nishimura, E; Ogura, E; Tsuchiya, T; Tamiya, T

    2003-08-14

    The genes encoding erabutoxin (short chain neurotoxin) isoforms (Ea, Eb, and Ec), LsIII (long chain neurotoxin) and a novel long chain neurotoxin pseudogene were cloned from a Laticauda semifasciata genomic library. Short and long chain neurotoxin genes were also cloned from the genome of Laticauda laticaudata, a closely related species of L. semifasciata, by PCR. A putative matrix attached region (MAR) sequence was found in the intron I of the LsIII gene. Comparative analysis of 11 structurally relevant snake toxin genes (three-finger-structure toxins) revealed the molecular evolution of these toxins. Three-finger-structure toxin genes diverged from a common ancestor through two types of evolutionary pathways (long and short types), early in the course of evolution. At a later stage of evolution in each gene, the accumulation of mutations in the exons, especially exon II, by accelerated evolution may have caused the increased diversification in their functions. It was also revealed that the putative MAR sequence found in the LsIII gene was integrated into the gene after the species-level divergence.

  2. A novel phytomyxean parasite associated with galls on the bull-kelp Durvillaea antarctica (Chamisso) Hariot.

    PubMed

    Goecke, Franz; Wiese, Jutta; Núñez, Alejandra; Labes, Antje; Imhoff, Johannes F; Neuhauser, Sigrid

    2012-01-01

    Durvillaea antarctica (Fucales, Phaeophyceae) is a large kelp of high ecological and economic significance in the Southern Hemisphere. In natural beds along the central coast of Chile (Pacific Ocean), abnormal growth characterized by evident gall development and discolorations of the fronds/thallus was observed. Analysing these galls by light microscopy and scanning electron microscopy revealed the presence of endophytic eukaryotes showing typical characteristics for phytomyxean parasites. The parasite developed within enlarged cells of the subcortical tissue of the host. Multinucleate plasmodia developed into many, single resting spores. The affiliation of this parasite to the Phytomyxea (Rhizaria) was supported by 18S rDNA data, placing it within the Phagomyxida. Similar microorganisms were already reported once 23 years ago, indicating that these parasites are persistent and widespread in D. antarctica beds for long times. The symptoms caused by this parasite are discussed along with the ecological and economic consequences. Phytomyxean parasites may play an important role in the marine ecosystem, but they remain understudied in this environment. Our results demonstrate for the first time the presence of resting spores in Phagomyxida, an order in which resting spores were thought to be absent making this the first record of a phagomyxean parasite with a complete life cycle so far, challenging the existing taxonomic concepts within the Phytomyxea. The importance of the here described resting spores for the survival and ecology of the phagomyxid parasite will be discussed together with the impact this parasite may have on 'the strongest seaweed of the world', which is an important habitat forming and economic resource from the Southern Hemisphere.

  3. Novel candidate genes important for asthma and hypertension comorbidity revealed from associative gene networks.

    PubMed

    Saik, Olga V; Demenkov, Pavel S; Ivanisenko, Timofey V; Bragina, Elena Yu; Freidin, Maxim B; Goncharova, Irina A; Dosenko, Victor E; Zolotareva, Olga I; Hofestaedt, Ralf; Lavrik, Inna N; Rogaev, Evgeny I; Ivanisenko, Vladimir A

    2018-02-13

    Hypertension and bronchial asthma are a major issue for people's health. As of 2014, approximately one billion adults, or ~ 22% of the world population, have had hypertension. As of 2011, 235-330 million people globally have been affected by asthma and approximately 250,000-345,000 people have died each year from the disease. The development of the effective treatment therapies against these diseases is complicated by their comorbidity features. This is often a major problem in diagnosis and their treatment. Hence, in this study the bioinformatical methodology for the analysis of the comorbidity of these two diseases have been developed. As such, the search for candidate genes related to the comorbid conditions of asthma and hypertension can help in elucidating the molecular mechanisms underlying the comorbid condition of these two diseases, and can also be useful for genotyping and identifying new drug targets. Using ANDSystem, the reconstruction and analysis of gene networks associated with asthma and hypertension was carried out. The gene network of asthma included 755 genes/proteins and 62,603 interactions, while the gene network of hypertension - 713 genes/proteins and 45,479 interactions. Two hundred and five genes/proteins and 9638 interactions were shared between asthma and hypertension. An approach for ranking genes implicated in the comorbid condition of two diseases was proposed. The approach is based on nine criteria for ranking genes by their importance, including standard methods of gene prioritization (Endeavor, ToppGene) as well as original criteria that take into account the characteristics of an associative gene network and the presence of known polymorphisms in the analysed genes. According to the proposed approach, the genes IL10, TLR4, and CAT had the highest priority in the development of comorbidity of these two diseases. Additionally, it was revealed that the list of top genes is enriched with apoptotic genes and genes involved in

  4. Hidden histories of gene flow in highland birds revealed with genomic markers.

    PubMed

    Zarza, Eugenia; Faircloth, Brant C; Tsai, Whitney L E; Bryson, Robert W; Klicka, John; McCormack, John E

    2016-10-01

    Genomic studies are revealing that divergence and speciation are marked by gene flow, but it is not clear whether gene flow has played a prominent role during the generation of biodiversity in species-rich regions of the world where vicariance is assumed to be the principal mode by which new species form. We revisit a well-studied organismal system in the Mexican Highlands, Aphelocoma jays, to test for gene flow among Mexican sierras. Prior results from mitochondrial DNA (mtDNA) largely conformed to the standard model of allopatric divergence, although there was also evidence for more obscure histories of gene flow in a small sample of nuclear markers. We tested for these 'hidden histories' using genomic markers known as ultraconserved elements (UCEs) in concert with phylogenies, clustering algorithms and newer introgression tests specifically designed to detect ancient gene flow (e.g. ABBA/BABA tests). Results based on 4303 UCE loci and 2500 informative SNPs are consistent with varying degrees of gene flow among highland areas. In some cases, gene flow has been extensive and recent (although perhaps not ongoing today), whereas in other cases there is only a trace signature of ancient gene flow among species that diverged as long as 5 million years ago. These results show how a species complex thought to be a model for vicariance can reveal a more reticulate history when a broader portion of the genome is queried. As more organisms are studied with genomic data, we predict that speciation-with-bouts-of-gene-flow will turn out to be a common mode of speciation. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  5. Gene expression profiling in equine polysaccharide storage myopathy revealed inflammation, glycogenesis inhibition, hypoxia and mitochondrial dysfunctions.

    PubMed

    Barrey, Eric; Mucher, Elodie; Jeansoule, Nicolas; Larcher, Thibaut; Guigand, Lydie; Herszberg, Bérénice; Chaffaux, Stéphane; Guérin, Gérard; Mata, Xavier; Benech, Philippe; Canale, Marielle; Alibert, Olivier; Maltere, Péguy; Gidrol, Xavier

    2009-08-07

    Several cases of myopathies have been observed in the horse Norman Cob breed. Muscle histology examinations revealed that some families suffer from a polysaccharide storage myopathy (PSSM). It is assumed that a gene expression signature related to PSSM should be observed at the transcriptional level because the glycogen storage disease could also be linked to other dysfunctions in gene regulation. Thus, the functional genomic approach could be conducted in order to provide new knowledge about the metabolic disorders related to PSSM. We propose exploring the PSSM muscle fiber metabolic disorders by measuring gene expression in relationship with the histological phenotype. Genotypying analysis of GYS1 mutation revealed 2 homozygous (AA) and 5 heterozygous (GA) PSSM horses. In the PSSM muscles, histological data revealed PAS positive amylase resistant abnormal polysaccharides, inflammation, necrosis, and lipomatosis and active regeneration of fibers. Ultrastructural evaluation revealed a decrease of mitochondrial number and structural disorders. Extensive accumulation of an abnormal polysaccharide displaced and partially replaced mitochondria and myofibrils. The severity of the disease was higher in the two homozygous PSSM horses.Gene expression analysis revealed 129 genes significantly modulated (p < 0.05). The following genes were up-regulated over 2 fold: IL18, CTSS, LUM, CD44, FN1, GST01. The most down-regulated genes were the following: mitochondrial tRNA, SLC2A2, PRKCalpha, VEGFalpha. Data mining analysis showed that protein synthesis, apoptosis, cellular movement, growth and proliferation were the main cellular functions significantly associated with the modulated genes (p < 0.05). Several up-regulated genes, especially IL18, revealed a severe muscular inflammation in PSSM muscles. The up-regulation of glycogen synthase kinase-3 (GSK3beta) under its active form could be responsible for glycogen synthase (GYS1) inhibition and hypoxia-inducible factor (HIF1alpha

  6. Effect of Coriolus versicolor supplemented diet on innate immune response and disease resistance in kelp grouper Epinephelus bruneus against Listonella anguillarum.

    PubMed

    Harikrishnan, Ramasamy; Kim, Man-Chul; Kim, Ju-Sang; Balasundaram, Chellam; Heo, Moon-Soo

    2012-02-01

    The effect of Coriolus versicolor extract supplemented diets on innate immune response and disease resistance in kelp grouper, Epinephelus bruneus against Listonella anguillarum, is reported. Kelp grouper were divided into four groups of 25 each and fed with C. versicolor enriched diets at 0% (control), 0.01%, 0.1%, and 1.0% level. After 30 days of feeding, all fish were injected interaperitoneally (i.p.) with 50 μl of L. anguillarum (4.7 × 10(7) CFU) to investigate the immune parameters at weeks 1, 2, and 4. The reactive oxygen species and reactive nitrogen species production were significantly enhanced in fish fed with 0.1% and 1.0% supplementation diets from weeks 1-4 when compared to the non enriched diet fed and infected control. The phagocytic activity significantly increased with 0.1% and 1.0% diets on weeks 2 and 4. The leucocyte myeloperoxidase content, lysozyme activity, and total protein level significantly increased when fed with 0.1% and 1.0% supplementation diets from weeks 1-4. The cumulative mortality was 35% and 45% in 1.0% and 0.1% enriched diet fed groups whereas it was 55% and 80% in 0.01% and 0% groups respectively. The present results suggest that diets enriched with C. versicolor at 0.1% or 1.0% level positively enhance the innate immune system and affords protection from L. anguillarum. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Visual gene-network analysis reveals the cancer gene co-expression in human endometrial cancer

    PubMed Central

    2014-01-01

    Background Endometrial cancers (ECs) are the most common form of gynecologic malignancy. Recent studies have reported that ECs reveal distinct markers for molecular pathogenesis, which in turn is linked to the various histological types of ECs. To understand further the molecular events contributing to ECs and endometrial tumorigenesis in general, a more precise identification of cancer-associated molecules and signaling networks would be useful for the detection and monitoring of malignancy, improving clinical cancer therapy, and personalization of treatments. Results ECs-specific gene co-expression networks were constructed by differential expression analysis and weighted gene co-expression network analysis (WGCNA). Important pathways and putative cancer hub genes contribution to tumorigenesis of ECs were identified. An elastic-net regularized classification model was built using the cancer hub gene signatures to predict the phenotypic characteristics of ECs. The 19 cancer hub gene signatures had high predictive power to distinguish among three key principal features of ECs: grade, type, and stage. Intriguingly, these hub gene networks seem to contribute to ECs progression and malignancy via cell-cycle regulation, antigen processing and the citric acid (TCA) cycle. Conclusions The results of this study provide a powerful biomarker discovery platform to better understand the progression of ECs and to uncover potential therapeutic targets in the treatment of ECs. This information might lead to improved monitoring of ECs and resulting improvement of treatment of ECs, the 4th most common of cancer in women. PMID:24758163

  8. Kelp-derived three-dimensional hierarchical porous N, O-doped carbon for flexible solid-state symmetrical supercapacitors with excellent performance

    NASA Astrophysics Data System (ADS)

    Zhang, Yifu; Jiang, Hanmei; Wang, Qiushi; Zheng, Jiqi; Meng, Changgong

    2018-07-01

    Three-dimensional (3D) porous N, O-doped carbon with hierarchical structures composed of micropores, mesopores and macropores were synthesized by the direct carbonization of kelp with a "self-activation" process. The as-obtained 3D N, O-doped carbon remained abundant N and O functional groups and the BET specific surface area measured 656 m2 g-1. 3D hierarchical porous structures with the pore size ranged from several nanometers to hundred nanometers and lots of pores were attributed to mesopores with the average pore size of about 5.4 nm. Electrochemical properties of the 3D hierarchical porous N, O-doped carbon as a supercapactior (SC) electrode were investigated and it delivered excellent capacitance of 669 mF cm-2 at 1 mA cm-2 due to its 3D hierarchical porous structures with high specific surface area which is beneficial for improving ionic storage and transportation in electrodes. This kelp-derived carbon exhibited excellent cyclic performance with the retention of 104% after 10,000 cycles. A flexible solid-state symmetric SC (SSC) device was fabricated using the 3D hierarchical porous N, O-doped carbon and delivered an excellent capacitance of 412 mF cm-2 at 2 mA cm-2 and satisfying cyclic stability with the retention of 85% after 10,000 cycles. The areal energy density of the SSC device reach up to 0.146 mWh cm-2 at the power density of 0.8 mW cm-2. This facile route for low-cost carbonaceous materials with novel architecture and functionality can be as a promising alternative to synthesize biomass carbon for practical SC application.

  9. A Novel Phytomyxean Parasite Associated with Galls on the Bull-Kelp Durvillaea antarctica (Chamisso) Hariot

    PubMed Central

    Goecke, Franz; Wiese, Jutta; Núñez, Alejandra; Labes, Antje; Imhoff, Johannes F.; Neuhauser, Sigrid

    2012-01-01

    Durvillaea antarctica (Fucales, Phaeophyceae) is a large kelp of high ecological and economic significance in the Southern Hemisphere. In natural beds along the central coast of Chile (Pacific Ocean), abnormal growth characterized by evident gall development and discolorations of the fronds/thallus was observed. Analysing these galls by light microscopy and scanning electron microscopy revealed the presence of endophytic eukaryotes showing typical characteristics for phytomyxean parasites. The parasite developed within enlarged cells of the subcortical tissue of the host. Multinucleate plasmodia developed into many, single resting spores. The affiliation of this parasite to the Phytomyxea (Rhizaria) was supported by 18S rDNA data, placing it within the Phagomyxida. Similar microorganisms were already reported once 23 years ago, indicating that these parasites are persistent and widespread in D. antarctica beds for long times. The symptoms caused by this parasite are discussed along with the ecological and economic consequences. Phytomyxean parasites may play an important role in the marine ecosystem, but they remain understudied in this environment. Our results demonstrate for the first time the presence of resting spores in Phagomyxida, an order in which resting spores were thought to be absent making this the first record of a phagomyxean parasite with a complete life cycle so far, challenging the existing taxonomic concepts within the Phytomyxea. The importance of the here described resting spores for the survival and ecology of the phagomyxid parasite will be discussed together with the impact this parasite may have on ‘the strongest seaweed of the world’, which is an important habitat forming and economic resource from the Southern Hemisphere. PMID:23028958

  10. Analysis of global gene expression in Brachypodium distachyon reveals extensive network plasticity in response to abiotic stress.

    PubMed

    Priest, Henry D; Fox, Samuel E; Rowley, Erik R; Murray, Jessica R; Michael, Todd P; Mockler, Todd C

    2014-01-01

    Brachypodium distachyon is a close relative of many important cereal crops. Abiotic stress tolerance has a significant impact on productivity of agriculturally important food and feedstock crops. Analysis of the transcriptome of Brachypodium after chilling, high-salinity, drought, and heat stresses revealed diverse differential expression of many transcripts. Weighted Gene Co-Expression Network Analysis revealed 22 distinct gene modules with specific profiles of expression under each stress. Promoter analysis implicated short DNA sequences directly upstream of module members in the regulation of 21 of 22 modules. Functional analysis of module members revealed enrichment in functional terms for 10 of 22 network modules. Analysis of condition-specific correlations between differentially expressed gene pairs revealed extensive plasticity in the expression relationships of gene pairs. Photosynthesis, cell cycle, and cell wall expression modules were down-regulated by all abiotic stresses. Modules which were up-regulated by each abiotic stress fell into diverse and unique gene ontology GO categories. This study provides genomics resources and improves our understanding of abiotic stress responses of Brachypodium.

  11. Computational gene expression profiling under salt stress reveals patterns of co-expression

    PubMed Central

    Sanchita; Sharma, Ashok

    2016-01-01

    Plants respond differently to environmental conditions. Among various abiotic stresses, salt stress is a condition where excess salt in soil causes inhibition of plant growth. To understand the response of plants to the stress conditions, identification of the responsible genes is required. Clustering is a data mining technique used to group the genes with similar expression. The genes of a cluster show similar expression and function. We applied clustering algorithms on gene expression data of Solanum tuberosum showing differential expression in Capsicum annuum under salt stress. The clusters, which were common in multiple algorithms were taken further for analysis. Principal component analysis (PCA) further validated the findings of other cluster algorithms by visualizing their clusters in three-dimensional space. Functional annotation results revealed that most of the genes were involved in stress related responses. Our findings suggest that these algorithms may be helpful in the prediction of the function of co-expressed genes. PMID:26981411

  12. Characterization of the avian Trojan gene family reveals contrasting evolutionary constraints.

    PubMed

    Petrov, Petar; Syrjänen, Riikka; Smith, Jacqueline; Gutowska, Maria Weronika; Uchida, Tatsuya; Vainio, Olli; Burt, David W

    2015-01-01

    "Trojan" is a leukocyte-specific, cell surface protein originally identified in the chicken. Its molecular function has been hypothesized to be related to anti-apoptosis and the proliferation of immune cells. The Trojan gene has been localized onto the Z sex chromosome. The adjacent two genes also show significant homology to Trojan, suggesting the existence of a novel gene/protein family. Here, we characterize this Trojan family, identify homologues in other species and predict evolutionary constraints on these genes. The two Trojan-related proteins in chicken were predicted as a receptor-type tyrosine phosphatase and a transmembrane protein, bearing a cytoplasmic immuno-receptor tyrosine-based activation motif. We identified the Trojan gene family in ten other bird species and found related genes in three reptiles and a fish species. The phylogenetic analysis of the homologues revealed a gradual diversification among the family members. Evolutionary analyzes of the avian genes predicted that the extracellular regions of the proteins have been subjected to positive selection. Such selection was possibly a response to evolving interacting partners or to pathogen challenges. We also observed an almost complete lack of intracellular positively selected sites, suggesting a conserved signaling mechanism of the molecules. Therefore, the contrasting patterns of selection likely correlate with the interaction and signaling potential of the molecules.

  13. An integrative systems genetics approach reveals potential causal genes and pathways related to obesity.

    PubMed

    Kogelman, Lisette J A; Zhernakova, Daria V; Westra, Harm-Jan; Cirera, Susanna; Fredholm, Merete; Franke, Lude; Kadarmideen, Haja N

    2015-10-20

    Obesity is a multi-factorial health problem in which genetic factors play an important role. Limited results have been obtained in single-gene studies using either genomic or transcriptomic data. RNA sequencing technology has shown its potential in gaining accurate knowledge about the transcriptome, and may reveal novel genes affecting complex diseases. Integration of genomic and transcriptomic variation (expression quantitative trait loci [eQTL] mapping) has identified causal variants that affect complex diseases. We integrated transcriptomic data from adipose tissue and genomic data from a porcine model to investigate the mechanisms involved in obesity using a systems genetics approach. Using a selective gene expression profiling approach, we selected 36 animals based on a previously created genomic Obesity Index for RNA sequencing of subcutaneous adipose tissue. Differential expression analysis was performed using the Obesity Index as a continuous variable in a linear model. eQTL mapping was then performed to integrate 60 K porcine SNP chip data with the RNA sequencing data. Results were restricted based on genome-wide significant single nucleotide polymorphisms, detected differentially expressed genes, and previously detected co-expressed gene modules. Further data integration was performed by detecting co-expression patterns among eQTLs and integration with protein data. Differential expression analysis of RNA sequencing data revealed 458 differentially expressed genes. The eQTL mapping resulted in 987 cis-eQTLs and 73 trans-eQTLs (false discovery rate < 0.05), of which the cis-eQTLs were associated with metabolic pathways. We reduced the eQTL search space by focusing on differentially expressed and co-expressed genes and disease-associated single nucleotide polymorphisms to detect obesity-related genes and pathways. Building a co-expression network using eQTLs resulted in the detection of a module strongly associated with lipid pathways. Furthermore, we

  14. Nucleotide substitutions revealing specific functions of Polycomb group genes.

    PubMed

    Bajusz, Izabella; Sipos, László; Pirity, Melinda K

    2015-04-01

    POLYCOMB group (PCG) proteins belong to the family of epigenetic regulators of genes playing important roles in differentiation and development. Mutants of PcG genes were isolated first in the fruit fly, Drosophila melanogaster, resulting in spectacular segmental transformations due to the ectopic expression of homeotic genes. Homologs of Drosophila PcG genes were also identified in plants and in vertebrates and subsequent experiments revealed the general role of PCG proteins in the maintenance of the repressed state of chromatin through cell divisions. The past decades of gene targeting experiments have allowed us to make significant strides towards understanding how the network of PCG proteins influences multiple aspects of cellular fate determination during development. Being involved in the transmission of specific expression profiles of different cell lineages, PCG proteins were found to control wide spectra of unrelated epigenetic processes in vertebrates, such as stem cell plasticity and renewal, genomic imprinting and inactivation of X-chromosome. PCG proteins also affect regulation of metabolic genes being important for switching programs between pluripotency and differentiation. Insight into the precise roles of PCG proteins in normal physiological processes has emerged from studies employing cell culture-based systems and genetically modified animals. Here we summarize the findings obtained from PcG mutant fruit flies and mice generated to date with a focus on PRC1 and PRC2 members altered by nucleotide substitutions resulting in specific alleles. We also include a compilation of lessons learned from these models about the in vivo functions of this complex protein family. With multiple knockout lines, sophisticated approaches to study the consequences of peculiar missense point mutations, and insights from complementary gain-of-function systems in hand, we are now in a unique position to significantly advance our understanding of the molecular basis of

  15. Single-cell gene expression profiling reveals functional heterogeneity of undifferentiated human epidermal cells

    PubMed Central

    Tan, David W. M.; Jensen, Kim B.; Trotter, Matthew W. B.; Connelly, John T.; Broad, Simon; Watt, Fiona M.

    2013-01-01

    Human epidermal stem cells express high levels of β1 integrins, delta-like 1 (DLL1) and the EGFR antagonist LRIG1. However, there is cell-to-cell variation in the relative abundance of DLL1 and LRIG1 mRNA transcripts. Single-cell global gene expression profiling showed that undifferentiated cells fell into two clusters delineated by expression of DLL1 and its binding partner syntenin. The DLL1+ cluster had elevated expression of genes associated with endocytosis, integrin-mediated adhesion and receptor tyrosine kinase signalling. Differentially expressed genes were not independently regulated, as overexpression of DLL1 alone or together with LRIG1 led to the upregulation of other genes in the DLL1+ cluster. Overexpression of DLL1 and LRIG1 resulted in enhanced extracellular matrix adhesion and increased caveolin-dependent EGFR endocytosis. Further characterisation of CD46, one of the genes upregulated in the DLL1+ cluster, revealed it to be a novel cell surface marker of human epidermal stem cells. Cells with high endogenous levels of CD46 expressed high levels of β1 integrin and DLL1 and were highly adhesive and clonogenic. Knockdown of CD46 decreased proliferative potential and β1 integrin-mediated adhesion. Thus, the previously unknown heterogeneity revealed by our studies results in differences in the interaction of undifferentiated basal keratinocytes with their environment. PMID:23482486

  16. Comparative Metagenomics Revealed Commonly Enriched Gene Sets in Human Gut Microbiomes

    PubMed Central

    Kurokawa, Ken; Itoh, Takehiko; Kuwahara, Tomomi; Oshima, Kenshiro; Toh, Hidehiro; Toyoda, Atsushi; Takami, Hideto; Morita, Hidetoshi; Sharma, Vineet K.; Srivastava, Tulika P.; Taylor, Todd D.; Noguchi, Hideki; Mori, Hiroshi; Ogura, Yoshitoshi; Ehrlich, Dusko S.; Itoh, Kikuji; Takagi, Toshihisa; Sakaki, Yoshiyuki; Hayashi, Tetsuya; Hattori, Masahira

    2007-01-01

    Numerous microbes inhabit the human intestine, many of which are uncharacterized or uncultivable. They form a complex microbial community that deeply affects human physiology. To identify the genomic features common to all human gut microbiomes as well as those variable among them, we performed a large-scale comparative metagenomic analysis of fecal samples from 13 healthy individuals of various ages, including unweaned infants. We found that, while the gut microbiota from unweaned infants were simple and showed a high inter-individual variation in taxonomic and gene composition, those from adults and weaned children were more complex but showed a high functional uniformity regardless of age or sex. In searching for the genes over-represented in gut microbiomes, we identified 237 gene families commonly enriched in adult-type and 136 families in infant-type microbiomes, with a small overlap. An analysis of their predicted functions revealed various strategies employed by each type of microbiota to adapt to its intestinal environment, suggesting that these gene sets encode the core functions of adult and infant-type gut microbiota. By analysing the orphan genes, 647 new gene families were identified to be exclusively present in human intestinal microbiomes. In addition, we discovered a conjugative transposon family explosively amplified in human gut microbiomes, which strongly suggests that the intestine is a ‘hot spot’ for horizontal gene transfer between microbes. PMID:17916580

  17. Characterization of the Avian Trojan Gene Family Reveals Contrasting Evolutionary Constraints

    PubMed Central

    Petrov, Petar; Syrjänen, Riikka; Smith, Jacqueline; Gutowska, Maria Weronika; Uchida, Tatsuya; Vainio, Olli; Burt, David W

    2015-01-01

    “Trojan” is a leukocyte-specific, cell surface protein originally identified in the chicken. Its molecular function has been hypothesized to be related to anti-apoptosis and the proliferation of immune cells. The Trojan gene has been localized onto the Z sex chromosome. The adjacent two genes also show significant homology to Trojan, suggesting the existence of a novel gene/protein family. Here, we characterize this Trojan family, identify homologues in other species and predict evolutionary constraints on these genes. The two Trojan-related proteins in chicken were predicted as a receptor-type tyrosine phosphatase and a transmembrane protein, bearing a cytoplasmic immuno-receptor tyrosine-based activation motif. We identified the Trojan gene family in ten other bird species and found related genes in three reptiles and a fish species. The phylogenetic analysis of the homologues revealed a gradual diversification among the family members. Evolutionary analyzes of the avian genes predicted that the extracellular regions of the proteins have been subjected to positive selection. Such selection was possibly a response to evolving interacting partners or to pathogen challenges. We also observed an almost complete lack of intracellular positively selected sites, suggesting a conserved signaling mechanism of the molecules. Therefore, the contrasting patterns of selection likely correlate with the interaction and signaling potential of the molecules. PMID:25803627

  18. Production of individualized V gene databases reveals high levels of immunoglobulin genetic diversity

    NASA Astrophysics Data System (ADS)

    Corcoran, Martin M.; Phad, Ganesh E.; Bernat, Néstor Vázquez; Stahl-Hennig, Christiane; Sumida, Noriyuki; Persson, Mats A. A.; Martin, Marcel; Hedestam, Gunilla B. Karlsson

    2016-12-01

    Comprehensive knowledge of immunoglobulin genetics is required to advance our understanding of B cell biology. Validated immunoglobulin variable (V) gene databases are close to completion only for human and mouse. We present a novel computational approach, IgDiscover, that identifies germline V genes from expressed repertoires to a specificity of 100%. IgDiscover uses a cluster identification process to produce candidate sequences that, once filtered, results in individualized germline V gene databases. IgDiscover was tested in multiple species, validated by genomic cloning and cross library comparisons and produces comprehensive gene databases even where limited genomic sequence is available. IgDiscover analysis of the allelic content of the Indian and Chinese-origin rhesus macaques reveals high levels of immunoglobulin gene diversity in this species. Further, we describe a novel human IGHV3-21 allele and confirm significant gene differences between Balb/c and C57BL6 mouse strains, demonstrating the power of IgDiscover as a germline V gene discovery tool.

  19. Production of individualized V gene databases reveals high levels of immunoglobulin genetic diversity

    PubMed Central

    Corcoran, Martin M.; Phad, Ganesh E.; Bernat, Néstor Vázquez; Stahl-Hennig, Christiane; Sumida, Noriyuki; Persson, Mats A.A.; Martin, Marcel; Hedestam, Gunilla B. Karlsson

    2016-01-01

    Comprehensive knowledge of immunoglobulin genetics is required to advance our understanding of B cell biology. Validated immunoglobulin variable (V) gene databases are close to completion only for human and mouse. We present a novel computational approach, IgDiscover, that identifies germline V genes from expressed repertoires to a specificity of 100%. IgDiscover uses a cluster identification process to produce candidate sequences that, once filtered, results in individualized germline V gene databases. IgDiscover was tested in multiple species, validated by genomic cloning and cross library comparisons and produces comprehensive gene databases even where limited genomic sequence is available. IgDiscover analysis of the allelic content of the Indian and Chinese-origin rhesus macaques reveals high levels of immunoglobulin gene diversity in this species. Further, we describe a novel human IGHV3-21 allele and confirm significant gene differences between Balb/c and C57BL6 mouse strains, demonstrating the power of IgDiscover as a germline V gene discovery tool. PMID:27995928

  20. Stipe Length as an Indicator of Reproductive Maturity in the Kelp Ecklonia cava

    NASA Astrophysics Data System (ADS)

    Kim, Sangil; Youn, Suk Hyun; Oh, Hyun-Ju; Choi, Sun Kyeong; Kang, Yun Hee; Kim, Tae-Hoon; Lee, Hyuk Je; Choi, Kwang-Sik; Park, Sang Rul

    2018-05-01

    We conducted testing to determine whether stipe length is a useful indicator of reproductive maturity in the kelp Ecklonia cava, a species that plays a pivotal role in ecosystem functioning and services in subtidal areas. Approximately 100 sporophytes with stipes of various lengths were collected during the fertile period (July-November, 2013). We investigated the relationships between stipe length and other morphological characteristics to determine whether stipe length could indicate the age of reproductive maturity. Primary blade length, longest blade length, thallus height, and total length showed significant relationships with stipe length. The length of the primary and longest blades gradually declined as stipe length increased above 125 mm. Zoosporangial sori were found on the blades of more than 70% of individuals with stipes longer than 125 mm, but on only 8% of individuals with stipes less than 125 mm long. Stipe length therefore seems to be an acceptable proxy for reproductive maturity. Another factor to consider, however, is that all specimens with zoosporangial sori, regardless of stipe length, had a dry weight of 80 g or more; thus, individual biomass may also be an important parameter influencing the initiation of reproduction.

  1. Kelp waste extracts combined with acetate enhances the biofuel characteristics of Chlorella sorokiniana.

    PubMed

    Zheng, Shiyan; He, Meilin; Sui, Yangsui; Gebreluel, Temesgen; Zou, Shanmei; Kemuma, Nyabuto Dorothy; Wang, Changhai

    2017-02-01

    To probe the effect of kelp waste extracts (KWE) combined with acetate on biochemical composition of Chlorella sorokiniana, the cultures were performed under independent/combined treatment of KWE and acetate. The results showed that high cell density and biomass were obtained by KWE combined with acetate treatments, whose biomass productivity increased by 79.69-102.57% and 20.04-35.32% compared with 3.0gL -1 acetate and KWE treatments respectively. The maximal neutral lipid per cell and lipid productivity were gained in KWE combined with 3.0gL -1 acetate treatment, which increased by 16.32% and 129.03% compared with 3.0gL -1 acetate, and 253.35% and 70.74% compared with KWE treatment. Meanwhile, C18:3n3 and C18:2n6c contents were reduced to 4.90% and 11.88%, whereas C16:0 and C18:1n9c were improved to 28.71% and 37.76%. Hence, supplementing appropriate acetate in KWE cultures is supposed to be a great potential method for large-scale cultivation of C. sorokiniana to generate biofuel. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Transcriptomic Analysis of Leaf in Tree Peony Reveals Differentially Expressed Pigments Genes.

    PubMed

    Luo, Jianrang; Shi, Qianqian; Niu, Lixin; Zhang, Yanlong

    2017-02-20

    Tree peony (Paeonia suffruticosa Andrews) is an important traditional flower in China. Besides its beautiful flower, the leaf of tree peony has also good ornamental value owing to its leaf color change in spring. So far, the molecular mechanism of leaf color change in tree peony is unclear. In this study, the pigment level and transcriptome of three different color stages of tree peony leaf were analyzed. The purplish red leaf was rich in anthocyanin, while yellowish green leaf was rich in chlorophyll and carotenoid. Transcriptome analysis revealed that 4302 differentially expressed genes (DEGs) were upregulated, and 4225 were downregulated in the purplish red leaf vs. yellowish green leaf. Among these DEGs, eight genes were predicted to participate in anthocyanin biosynthesis, eight genes were predicted involved in porphyrin and chlorophyll metabolism, and 10 genes were predicted to participate in carotenoid metabolism. In addition, 27 MYBs, 20 bHLHs, 36 WD40 genes were also identified from DEGs. Anthocyanidin synthase (ANS) is the key gene that controls the anthocyanin level in tree peony leaf. Protochlorophyllide oxido-reductase (POR) is the key gene which regulated the chlorophyll content in tree peony leaf.

  3. Genomic analysis of primordial dwarfism reveals novel disease genes.

    PubMed

    Shaheen, Ranad; Faqeih, Eissa; Ansari, Shinu; Abdel-Salam, Ghada; Al-Hassnan, Zuhair N; Al-Shidi, Tarfa; Alomar, Rana; Sogaty, Sameera; Alkuraya, Fowzan S

    2014-02-01

    Primordial dwarfism (PD) is a disease in which severely impaired fetal growth persists throughout postnatal development and results in stunted adult size. The condition is highly heterogeneous clinically, but the use of certain phenotypic aspects such as head circumference and facial appearance has proven helpful in defining clinical subgroups. In this study, we present the results of clinical and genomic characterization of 16 new patients in whom a broad definition of PD was used (e.g., 3M syndrome was included). We report a novel PD syndrome with distinct facies in two unrelated patients, each with a different homozygous truncating mutation in CRIPT. Our analysis also reveals, in addition to mutations in known PD disease genes, the first instance of biallelic truncating BRCA2 mutation causing PD with normal bone marrow analysis. In addition, we have identified a novel locus for Seckel syndrome based on a consanguineous multiplex family and identified a homozygous truncating mutation in DNA2 as the likely cause. An additional novel PD disease candidate gene XRCC4 was identified by autozygome/exome analysis, and the knockout mouse phenotype is highly compatible with PD. Thus, we add a number of novel genes to the growing list of PD-linked genes, including one which we show to be linked to a novel PD syndrome with a distinct facial appearance. PD is extremely heterogeneous genetically and clinically, and genomic tools are often required to reach a molecular diagnosis.

  4. Genomic analysis of primordial dwarfism reveals novel disease genes

    PubMed Central

    Shaheen, Ranad; Faqeih, Eissa; Ansari, Shinu; Abdel-Salam, Ghada; Al-Hassnan, Zuhair N.; Al-Shidi, Tarfa; Alomar, Rana; Sogaty, Sameera; Alkuraya, Fowzan S.

    2014-01-01

    Primordial dwarfism (PD) is a disease in which severely impaired fetal growth persists throughout postnatal development and results in stunted adult size. The condition is highly heterogeneous clinically, but the use of certain phenotypic aspects such as head circumference and facial appearance has proven helpful in defining clinical subgroups. In this study, we present the results of clinical and genomic characterization of 16 new patients in whom a broad definition of PD was used (e.g., 3M syndrome was included). We report a novel PD syndrome with distinct facies in two unrelated patients, each with a different homozygous truncating mutation in CRIPT. Our analysis also reveals, in addition to mutations in known PD disease genes, the first instance of biallelic truncating BRCA2 mutation causing PD with normal bone marrow analysis. In addition, we have identified a novel locus for Seckel syndrome based on a consanguineous multiplex family and identified a homozygous truncating mutation in DNA2 as the likely cause. An additional novel PD disease candidate gene XRCC4 was identified by autozygome/exome analysis, and the knockout mouse phenotype is highly compatible with PD. Thus, we add a number of novel genes to the growing list of PD-linked genes, including one which we show to be linked to a novel PD syndrome with a distinct facial appearance. PD is extremely heterogeneous genetically and clinically, and genomic tools are often required to reach a molecular diagnosis. PMID:24389050

  5. Gene expression profiling reveals two separate mechanisms regulating apoptosis in rectal carcinomas in vivo

    PubMed Central

    de Bruin, Elza C.; van de Pas, Simone; van de Velde, Cornelis J. H.; van Krieken, J. Han J. M.; Peltenburg, Lucy T. C.; Marijnen, Corrie A. M.

    2007-01-01

    The level of apoptosis in rectal carcinomas of patients treated by surgery only predicts local failure; patients with intrinsically high-apoptotic tumors develop less local recurrences than patients with low levels of apoptosis. To identify genes involved in this intrinsic apoptotic process in vivo, 47 rectal tumors with known apoptotic phenotype (24 low- and 23 high-apoptotic) were analyzed by oligonucleotide microarray technology. We identified several genes differentially expressed between low- and high-apoptotic tumors. Unsupervised clustering of the tumors based on expression levels of these genes separated the low-apoptotic from the high-apoptotic tumors, indicating a gene expression-dependent regulation. In addition, this clustering revealed two subgroups of high-apoptotic tumors. One high-apoptotic subgroup showed subtle differences in mRNA and protein expression of the known apoptotic regulators BAX, cIAP2 and ARC compared to the low-apoptotic tumors. The other subgroup of high-apoptotic tumors showed high expression of immune-related genes; predominantly HLA class II and chemokines, but also HLA class I and interferon-inducible genes were highly expressed. Immunohistochemistry revealed HLA-DR expression in epithelial tumor cells in 70% of these high-apoptotic tumors. The expression data suggest that high levels of apoptosis in rectal carcinoma patients can be the result of either slightly altered expression of known pro- and anti-apoptotic genes or high expression of immune-related genes. Electronic supplementary material The online version of this article (doi: 10.1007/s10495-007-0088-2) contains supplementary material, which is available to authorized users. PMID:17610066

  6. An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora

    PubMed Central

    2011-01-01

    Background Coffee is one of the world's most important crops; it is consumed worldwide and plays a significant role in the economy of producing countries. Coffea arabica and C. canephora are responsible for 70 and 30% of commercial production, respectively. C. arabica is an allotetraploid from a recent hybridization of the diploid species, C. canephora and C. eugenioides. C. arabica has lower genetic diversity and results in a higher quality beverage than C. canephora. Research initiatives have been launched to produce genomic and transcriptomic data about Coffea spp. as a strategy to improve breeding efficiency. Results Assembling the expressed sequence tags (ESTs) of C. arabica and C. canephora produced by the Brazilian Coffee Genome Project and the Nestlé-Cornell Consortium revealed 32,007 clusters of C. arabica and 16,665 clusters of C. canephora. We detected different GC3 profiles between these species that are related to their genome structure and mating system. BLAST analysis revealed similarities between coffee and grape (Vitis vinifera) genes. Using KA/KS analysis, we identified coffee genes under purifying and positive selection. Protein domain and gene ontology analyses suggested differences between Coffea spp. data, mainly in relation to complex sugar synthases and nucleotide binding proteins. OrthoMCL was used to identify specific and prevalent coffee protein families when compared to five other plant species. Among the interesting families annotated are new cystatins, glycine-rich proteins and RALF-like peptides. Hierarchical clustering was used to independently group C. arabica and C. canephora expression clusters according to expression data extracted from EST libraries, resulting in the identification of differentially expressed genes. Based on these results, we emphasize gene annotation and discuss plant defenses, abiotic stress and cup quality-related functional categories. Conclusion We present the first comprehensive genome-wide transcript

  7. Gene Expression Profiling of Monkeypox Virus-Infected Cells Reveals Novel Interfaces for Host-Virus Interactions

    DTIC Science & Technology

    2010-07-28

    expression is plotted on Y -axis after normalization to mock-treated samples. Results plotted to compare calculated fold change in expression of each gene ...RESEARCH Open Access Gene expression profiling of monkeypox virus-infected cells reveals novel interfaces for host-virus interactions Abdulnaser...suppress antiviral cell defenses, exploit host cell machinery, and delay infection-induced cell death. However, a comprehensive study of all host genes

  8. Comparative Pathogenomics Reveals Horizontally Acquired Novel Virulence Genes in Fungi Infecting Cereal Hosts

    PubMed Central

    Gardiner, Donald M.; McDonald, Megan C.; Covarelli, Lorenzo; Solomon, Peter S.; Rusu, Anca G.; Marshall, Mhairi; Kazan, Kemal; Chakraborty, Sukumar; McDonald, Bruce A.; Manners, John M.

    2012-01-01

    Comparative analyses of pathogen genomes provide new insights into how pathogens have evolved common and divergent virulence strategies to invade related plant species. Fusarium crown and root rots are important diseases of wheat and barley world-wide. In Australia, these diseases are primarily caused by the fungal pathogen Fusarium pseudograminearum. Comparative genomic analyses showed that the F. pseudograminearum genome encodes proteins that are present in other fungal pathogens of cereals but absent in non-cereal pathogens. In some cases, these cereal pathogen specific genes were also found in bacteria associated with plants. Phylogenetic analysis of selected F. pseudograminearum genes supported the hypothesis of horizontal gene transfer into diverse cereal pathogens. Two horizontally acquired genes with no previously known role in fungal pathogenesis were studied functionally via gene knockout methods and shown to significantly affect virulence of F. pseudograminearum on the cereal hosts wheat and barley. Our results indicate using comparative genomics to identify genes specific to pathogens of related hosts reveals novel virulence genes and illustrates the importance of horizontal gene transfer in the evolution of plant infecting fungal pathogens. PMID:23028337

  9. Knowledge-guided gene prioritization reveals new insights into the mechanisms of chemoresistance.

    PubMed

    Emad, Amin; Cairns, Junmei; Kalari, Krishna R; Wang, Liewei; Sinha, Saurabh

    2017-08-11

    Identification of genes whose basal mRNA expression predicts the sensitivity of tumor cells to cytotoxic treatments can play an important role in individualized cancer medicine. It enables detailed characterization of the mechanism of action of drugs. Furthermore, screening the expression of these genes in the tumor tissue may suggest the best course of chemotherapy or a combination of drugs to overcome drug resistance. We developed a computational method called ProGENI to identify genes most associated with the variation of drug response across different individuals, based on gene expression data. In contrast to existing methods, ProGENI also utilizes prior knowledge of protein-protein and genetic interactions, using random walk techniques. Analysis of two relatively new and large datasets including gene expression data on hundreds of cell lines and their cytotoxic responses to a large compendium of drugs reveals a significant improvement in prediction of drug sensitivity using genes identified by ProGENI compared to other methods. Our siRNA knockdown experiments on ProGENI-identified genes confirmed the role of many new genes in sensitivity to three chemotherapy drugs: cisplatin, docetaxel, and doxorubicin. Based on such experiments and extensive literature survey, we demonstrate that about 73% of our top predicted genes modulate drug response in selected cancer cell lines. In addition, global analysis of genes associated with groups of drugs uncovered pathways of cytotoxic response shared by each group. Our results suggest that knowledge-guided prioritization of genes using ProGENI gives new insight into mechanisms of drug resistance and identifies genes that may be targeted to overcome this phenomenon.

  10. Reanalysis of RNA-Sequencing Data Reveals Several Additional Fusion Genes with Multiple Isoforms

    PubMed Central

    Kangaspeska, Sara; Hultsch, Susanne; Edgren, Henrik; Nicorici, Daniel; Murumägi, Astrid; Kallioniemi, Olli

    2012-01-01

    RNA-sequencing and tailored bioinformatic methodologies have paved the way for identification of expressed fusion genes from the chaotic genomes of solid tumors. We have recently successfully exploited RNA-sequencing for the discovery of 24 novel fusion genes in breast cancer. Here, we demonstrate the importance of continuous optimization of the bioinformatic methodology for this purpose, and report the discovery and experimental validation of 13 additional fusion genes from the same samples. Integration of copy number profiling with the RNA-sequencing results revealed that the majority of the gene fusions were promoter-donating events that occurred at copy number transition points or involved high-level DNA-amplifications. Sequencing of genomic fusion break points confirmed that DNA-level rearrangements underlie selected fusion transcripts. Furthermore, a significant portion (>60%) of the fusion genes were alternatively spliced. This illustrates the importance of reanalyzing sequencing data as gene definitions change and bioinformatic methods improve, and highlights the previously unforeseen isoform diversity among fusion transcripts. PMID:23119097

  11. Reanalysis of RNA-sequencing data reveals several additional fusion genes with multiple isoforms.

    PubMed

    Kangaspeska, Sara; Hultsch, Susanne; Edgren, Henrik; Nicorici, Daniel; Murumägi, Astrid; Kallioniemi, Olli

    2012-01-01

    RNA-sequencing and tailored bioinformatic methodologies have paved the way for identification of expressed fusion genes from the chaotic genomes of solid tumors. We have recently successfully exploited RNA-sequencing for the discovery of 24 novel fusion genes in breast cancer. Here, we demonstrate the importance of continuous optimization of the bioinformatic methodology for this purpose, and report the discovery and experimental validation of 13 additional fusion genes from the same samples. Integration of copy number profiling with the RNA-sequencing results revealed that the majority of the gene fusions were promoter-donating events that occurred at copy number transition points or involved high-level DNA-amplifications. Sequencing of genomic fusion break points confirmed that DNA-level rearrangements underlie selected fusion transcripts. Furthermore, a significant portion (>60%) of the fusion genes were alternatively spliced. This illustrates the importance of reanalyzing sequencing data as gene definitions change and bioinformatic methods improve, and highlights the previously unforeseen isoform diversity among fusion transcripts.

  12. Molecular profiles of pre- and postoperative breast cancer tumours reveal differentially expressed genes.

    PubMed

    Riis, Margit L H; Lüders, Torben; Markert, Elke K; Haakensen, Vilde D; Nesbakken, Anne-Jorun; Kristensen, Vessela N; Bukholm, Ida R K

    2012-01-01

    Gene expression studies on breast cancer have generally been performed on tissue obtained at the time of surgery. In this study, we have compared the gene expression profiles in preoperative tissue (core needle biopsies) while tumor is still in its normal milieu to postoperative tissue from the same tumor obtained during surgery. Thirteen patients were included of which eleven had undergone sentinel node diagnosis procedure before operation. Microarray gene expression analysis was performed using total RNA from all the samples. Paired significance analysis of microarrays revealed 228 differently expressed genes, including several early response stress-related genes such as members of the fos and jun families as well as genes of which the expression has previously been associated with cancer. The expression profiles found in the analyses of breast cancer tissue must be evaluated with caution. Different profiles may simply be the result of differences in the surgical trauma and timing of when samples are taken and not necessarily associated with tumor biology.

  13. Molecular Profiles of Pre- and Postoperative Breast Cancer Tumours Reveal Differentially Expressed Genes

    PubMed Central

    Riis, Margit L. H.; Lüders, Torben; Markert, Elke K.; Haakensen, Vilde D.; Nesbakken, Anne-Jorun; Kristensen, Vessela N.; Bukholm, Ida R. K.

    2012-01-01

    Gene expression studies on breast cancer have generally been performed on tissue obtained at the time of surgery. In this study, we have compared the gene expression profiles in preoperative tissue (core needle biopsies) while tumor is still in its normal milieu to postoperative tissue from the same tumor obtained during surgery. Thirteen patients were included of which eleven had undergone sentinel node diagnosis procedure before operation. Microarray gene expression analysis was performed using total RNA from all the samples. Paired significance analysis of microarrays revealed 228 differently expressed genes, including several early response stress-related genes such as members of the fos and jun families as well as genes of which the expression has previously been associated with cancer. The expression profiles found in the analyses of breast cancer tissue must be evaluated with caution. Different profiles may simply be the result of differences in the surgical trauma and timing of when samples are taken and not necessarily associated with tumor biology. PMID:23227362

  14. Metatranscriptome sequence analysis reveals diel periodicity of microbial community gene expression in the ocean's interior

    NASA Astrophysics Data System (ADS)

    Vislova, A.; Aylward, F.; Sosa, O.; DeLong, E.

    2016-02-01

    Previous work has revealed diel periodicity of gene expression in key metabolic pathways in both autotrophic and heterotrophic microbes in the surface ocean. In this study, we investigated patterns of diel periodicity of gene expression in depth profiles (25, 75, 125 and 250 meters). We postulated that microbial diel transcriptional signals would be increasingly dampened with depth, and that the timing of peak expression of specific transcripts would be shifted in time between depths, in accordance with depth-dependent diel light variability. Bacterioplankton were sampled from four depths every four hours at station ALOHA (22° 45' N 158° W) over 2 days. RNA was extracted from cells preserved on filters, converted to cDNA, and sequenced on the Illumina platform. Surprisingly, harmonic regression analysis revealed an increasing proportion of genes with diel periodic expression patterns with increasing depth between 25- 125 meters. At 250 meters, the proportion of genes exhibiting diel expression patterns decreased an order of magnitude compared to the photic zone. Community composition, functional gene categories, and diel patterns of gene expression were significantly different between the photic zone and 250 meter samples. The signals driving diel periodic gene expression in microbes at 250 meters is under further investigation. These data are now beginning provide a better understanding of the tempo and mode of microbial dynamics among specific taxa, throughout the ocean's interior.

  15. Identification of horizontally transferred genes in the genus Colletotrichum reveals a steady tempo of bacterial to fungal gene transfer.

    PubMed

    Jaramillo, Vinicio D Armijos; Sukno, Serenella A; Thon, Michael R

    2015-01-02

    Horizontal gene transfer (HGT) is the stable transmission of genetic material between organisms by means other than vertical inheritance. HGT has an important role in the evolution of prokaryotes but is relatively rare in eukaryotes. HGT has been shown to contribute to virulence in eukaryotic pathogens. We studied the importance of HGT in plant pathogenic fungi by identifying horizontally transferred genes in the genomes of three members of the genus Colletotrichum. We identified eleven HGT events from bacteria into members of the genus Colletotrichum or their ancestors. The HGT events include genes involved in amino acid, lipid and sugar metabolism as well as lytic enzymes. Additionally, the putative minimal dates of transference were calculated using a time calibrated phylogenetic tree. This analysis reveals a constant flux of genes from bacteria to fungi throughout the evolution of subphylum Pezizomycotina. Genes that are typically transferred by HGT are those that are constantly subject to gene duplication and gene loss. The functions of some of these genes suggest roles in niche adaptation and virulence. We found no evidence of a burst of HGT events coinciding with major geological events. In contrast, HGT appears to be a constant, albeit rare phenomenon in the Pezizomycotina, occurring at a steady rate during their evolution.

  16. Characterization of Heterobasidion occidentale transcriptomes reveals candidate genes and DNA polymorphisms for virulence variations.

    PubMed

    Liu, Jun-Jun; Shamoun, Simon Francis; Leal, Isabel; Kowbel, Robert; Sumampong, Grace; Zamany, Arezoo

    2018-05-01

    Characterization of genes involved in differentiation of pathogen species and isolates with variations of virulence traits provides valuable information to control tree diseases for meeting the challenges of sustainable forest health and phytosanitary trade issues. Lack of genetic knowledge and genomic resources hinders novel gene discovery, molecular mechanism studies and development of diagnostic tools in the management of forest pathogens. Here, we report on transcriptome profiling of Heterobasidion occidentale isolates with contrasting virulence levels. Comparative transcriptomic analysis identified orthologous groups exclusive to H. occidentale and its isolates, revealing biological processes involved in the differentiation of isolates. Further bioinformatics analyses identified an H. occidentale secretome, CYPome and other candidate effectors, from which genes with species- and isolate-specific expression were characterized. A large proportion of differentially expressed genes were revealed to have putative activities as cell wall modification enzymes and transcription factors, suggesting their potential roles in virulence and fungal pathogenesis. Next, large numbers of simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs) were detected, including more than 14 000 interisolate non-synonymous SNPs. These polymorphic loci and species/isolate-specific genes may contribute to virulence variations and provide ideal DNA markers for development of diagnostic tools and investigation of genetic diversity. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  17. Genomic analysis reveals extensive gene duplication within the bovine TRB locus

    PubMed Central

    Connelley, Timothy; Aerts, Jan; Law, Andy; Morrison, W Ivan

    2009-01-01

    , which is substantially larger than that described for humans and mice. Conclusion The analyses completed in this study reveal that, although the gene content and organization of the bovine TRB locus are broadly similar to that of humans and mice, multiple duplication events have led to a marked expansion in the number of TRB genes. Similar expansions in other ruminant TR loci suggest strong evolutionary pressures in this lineage have selected for the development of enlarged sets of TR genes that can contribute to diverse TR repertoires. PMID:19393068

  18. Simple F Test Reveals Gene-Gene Interactions in Case-Control Studies

    PubMed Central

    Chen, Guanjie; Yuan, Ao; Zhou, Jie; Bentley, Amy R.; Adeyemo, Adebowale; Rotimi, Charles N.

    2012-01-01

    Missing heritability is still a challenge for Genome Wide Association Studies (GWAS). Gene-gene interactions may partially explain this residual genetic influence and contribute broadly to complex disease. To analyze the gene-gene interactions in case-control studies of complex disease, we propose a simple, non-parametric method that utilizes the F-statistic. This approach consists of three steps. First, we examine the joint distribution of a pair of SNPs in cases and controls separately. Second, an F-test is used to evaluate the ratio of dependence in cases to that of controls. Finally, results are adjusted for multiple tests. This method was used to evaluate gene-gene interactions that are associated with risk of Type 2 Diabetes among African Americans in the Howard University Family Study. We identified 18 gene-gene interactions (P < 0.0001). Compared with the commonly-used logistical regression method, we demonstrate that the F-ratio test is an efficient approach to measuring gene-gene interactions, especially for studies with limited sample size. PMID:22837643

  19. N-Terminal Protease Gene Phylogeny Reveals the Potential for Novel Cyanobactin Diversity in Cyanobacteria

    PubMed Central

    Martins, Joana; Leão, Pedro N.; Ramos, Vitor; Vasconcelos, Vitor

    2013-01-01

    Cyanobactins are a recently recognized group of ribosomal cyclic peptides produced by cyanobacteria, which have been studied because of their interesting biological activities. Here, we have used a PCR-based approach to detect the N-terminal protease (A) gene from cyanobactin synthetase gene clusters, in a set of diverse cyanobacteria from our culture collection (Laboratory of Ecotoxicology, Genomics and Evolution (LEGE) CC). Homologues of this gene were found in Microcystis and Rivularia strains, and for the first time in Cuspidothrix, Phormidium and Sphaerospermopsis strains. Phylogenetic relationships inferred from available A-gene sequences, including those obtained in this work, revealed two new groups of phylotypes, harboring Phormidium, Sphaerospermopsis and Rivularia LEGE isolates. Thus, this study shows that, using underexplored cyanobacterial strains, it is still possible to expand the known genetic diversity of genes involved in cyanobactin biosynthesis. PMID:24351973

  20. Systematic Prioritization and Integrative Analysis of Copy Number Variations in Schizophrenia Reveal Key Schizophrenia Susceptibility Genes

    PubMed Central

    Luo, Xiongjian; Huang, Liang; Han, Leng; Luo, Zhenwu; Hu, Fang; Tieu, Roger; Gan, Lin

    2014-01-01

    Schizophrenia is a common mental disorder with high heritability and strong genetic heterogeneity. Common disease-common variants hypothesis predicts that schizophrenia is attributable in part to common genetic variants. However, recent studies have clearly demonstrated that copy number variations (CNVs) also play pivotal roles in schizophrenia susceptibility and explain a proportion of missing heritability. Though numerous CNVs have been identified, many of the regions affected by CNVs show poor overlapping among different studies, and it is not known whether the genes disrupted by CNVs contribute to the risk of schizophrenia. By using cumulative scoring, we systematically prioritized the genes affected by CNVs in schizophrenia. We identified 8 top genes that are frequently disrupted by CNVs, including NRXN1, CHRNA7, BCL9, CYFIP1, GJA8, NDE1, SNAP29, and GJA5. Integration of genes affected by CNVs with known schizophrenia susceptibility genes (from previous genetic linkage and association studies) reveals that many genes disrupted by CNVs are also associated with schizophrenia. Further protein-protein interaction (PPI) analysis indicates that protein products of genes affected by CNVs frequently interact with known schizophrenia-associated proteins. Finally, systematic integration of CNVs prioritization data with genetic association and PPI data identifies key schizophrenia candidate genes. Our results provide a global overview of genes impacted by CNVs in schizophrenia and reveal a densely interconnected molecular network of de novo CNVs in schizophrenia. Though the prioritized top genes represent promising schizophrenia risk genes, further work with different prioritization methods and independent samples is needed to confirm these findings. Nevertheless, the identified key candidate genes may have important roles in the pathogenesis of schizophrenia, and further functional characterization of these genes may provide pivotal targets for future therapeutics and

  1. Memory functions reveal structural properties of gene regulatory networks

    PubMed Central

    Perez-Carrasco, Ruben

    2018-01-01

    Gene regulatory networks (GRNs) control cellular function and decision making during tissue development and homeostasis. Mathematical tools based on dynamical systems theory are often used to model these networks, but the size and complexity of these models mean that their behaviour is not always intuitive and the underlying mechanisms can be difficult to decipher. For this reason, methods that simplify and aid exploration of complex networks are necessary. To this end we develop a broadly applicable form of the Zwanzig-Mori projection. By first converting a thermodynamic state ensemble model of gene regulation into mass action reactions we derive a general method that produces a set of time evolution equations for a subset of components of a network. The influence of the rest of the network, the bulk, is captured by memory functions that describe how the subnetwork reacts to its own past state via components in the bulk. These memory functions provide probes of near-steady state dynamics, revealing information not easily accessible otherwise. We illustrate the method on a simple cross-repressive transcriptional motif to show that memory functions not only simplify the analysis of the subnetwork but also have a natural interpretation. We then apply the approach to a GRN from the vertebrate neural tube, a well characterised developmental transcriptional network composed of four interacting transcription factors. The memory functions reveal the function of specific links within the neural tube network and identify features of the regulatory structure that specifically increase the robustness of the network to initial conditions. Taken together, the study provides evidence that Zwanzig-Mori projections offer powerful and effective tools for simplifying and exploring the behaviour of GRNs. PMID:29470492

  2. Genome-wide gene expression profiling reveals unsuspected molecular alterations in pemphigus foliaceus

    PubMed Central

    Malheiros, Danielle; Panepucci, Rodrigo A; Roselino, Ana M; Araújo, Amélia G; Zago, Marco A; Petzl-Erler, Maria Luiza

    2014-01-01

    Pemphigus foliaceus (PF) is a complex autoimmune disease characterized by bullous skin lesions and the presence of antibodies against desmoglein 1. In this study we sought to contribute to a better understanding of the molecular processes in endemic PF, as the identification of factors that participate in the pathogenesis is a prerequisite for understanding its biological basis and may lead to novel therapeutic interventions. CD4+ T lymphocytes are central to the development of the disease. Therefore, we compared genome-wide gene expression profiles of peripheral CD4+ T cells of various PF patient subgroups with each other and with that of healthy individuals. The patient sample was subdivided into three groups: untreated patients with the generalized form of the disease, patients submitted to immunosuppressive treatment, and patients with the localized form of the disease. Comparisons between different subgroups resulted in 135, 54 and 64 genes differentially expressed. These genes are mainly related to lymphocyte adhesion and migration, apoptosis, cellular proliferation, cytotoxicity and antigen presentation. Several of these genes were differentially expressed when comparing lesional and uninvolved skin from the same patient. The chromosomal regions 19q13 and 12p13 concentrate differentially expressed genes and are candidate regions for PF susceptibility genes and disease markers. Our results reveal genes involved in disease severity, potential therapeutic targets and previously unsuspected processes involved in the pathogenesis. Besides, this study adds original information that will contribute to the understanding of PF's pathogenesis and of the still poorly defined in vivo functions of most of these genes. PMID:24813052

  3. Climate-driven regime shift of a temperate marine ecosystem.

    PubMed

    Wernberg, Thomas; Bennett, Scott; Babcock, Russell C; de Bettignies, Thibaut; Cure, Katherine; Depczynski, Martial; Dufois, Francois; Fromont, Jane; Fulton, Christopher J; Hovey, Renae K; Harvey, Euan S; Holmes, Thomas H; Kendrick, Gary A; Radford, Ben; Santana-Garcon, Julia; Saunders, Benjamin J; Smale, Dan A; Thomsen, Mads S; Tuckett, Chenae A; Tuya, Fernando; Vanderklift, Mathew A; Wilson, Shaun

    2016-07-08

    Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests. Copyright © 2016, American Association for the Advancement of Science.

  4. [DNA microarray reveals changes in gene expression of endothelial cells under shear stress].

    PubMed

    Cheng, Min; Zhang, Wensheng; Chen, Huaiqing; Wu, Wenchao; Huang, Hua

    2004-04-01

    cDNA microarray technology is used as a powerful tool for rapid, comprehensive, and quantitative analysis of gene profiles of cultured human umbilical vein endothelial cells(HUVECs) in the normal static group and the shear stressed (4.20 dyne/cm2, 2 h) group. The total RNA from normal static cultured HUVECs was labeled by Cy3-dCTP, and total RNA of HUVECs from the paired shear stressed experiment was labeled by Cy5-dCTP. The expression ratios reported are the average from the two separate experiments. After bioinformatics analysis, we identified a total of 108 genes (approximately 0.026%) revealing differential expression. Of these 53 genes expressions were up-regulated, the most enhanced ones being human homolog of yeast IPP isomerase, human low density lipoprotein receptor gene, Squalene epoxidase gene, 7-dehydrocholesterol reductase, and 55 were down-regulated, the most decreased ones being heat shock 70 kD protein 1, TCB gene encoding cytosolic thyroid hormone-binding protein in HUVECs exposed to low shear stress. These results indicate that the cDNA microarray technique is effective in screening the differentially expressed genes in endothelial cells induced by various experimental conditions and the data may serve as stimuli to further researches.

  5. Ontogeny of hepatic energy metabolism genes in mice as revealed by RNA-sequencing.

    PubMed

    Renaud, Helen J; Cui, Yue Julia; Lu, Hong; Zhong, Xiao-bo; Klaassen, Curtis D

    2014-01-01

    The liver plays a central role in metabolic homeostasis by coordinating synthesis, storage, breakdown, and redistribution of nutrients. Hepatic energy metabolism is dynamically regulated throughout different life stages due to different demands for energy during growth and development. However, changes in gene expression patterns throughout ontogeny for factors important in hepatic energy metabolism are not well understood. We performed detailed transcript analysis of energy metabolism genes during various stages of liver development in mice. Livers from male C57BL/6J mice were collected at twelve ages, including perinatal and postnatal time points (n = 3/age). The mRNA was quantified by RNA-Sequencing, with transcript abundance estimated by Cufflinks. One thousand sixty energy metabolism genes were examined; 794 were above detection, of which 627 were significantly changed during at least one developmental age compared to adult liver. Two-way hierarchical clustering revealed three major clusters dependent on age: GD17.5-Day 5 (perinatal-enriched), Day 10-Day 20 (pre-weaning-enriched), and Day 25-Day 60 (adolescence/adulthood-enriched). Clustering analysis of cumulative mRNA expression values for individual pathways of energy metabolism revealed three patterns of enrichment: glycolysis, ketogenesis, and glycogenesis were all perinatally-enriched; glycogenolysis was the only pathway enriched during pre-weaning ages; whereas lipid droplet metabolism, cholesterol and bile acid metabolism, gluconeogenesis, and lipid metabolism were all enriched in adolescence/adulthood. This study reveals novel findings such as the divergent expression of the fatty acid β-oxidation enzymes Acyl-CoA oxidase 1 and Carnitine palmitoyltransferase 1a, indicating a switch from mitochondrial to peroxisomal β-oxidation after weaning; as well as the dynamic ontogeny of genes implicated in obesity such as Stearoyl-CoA desaturase 1 and Elongation of very long chain fatty acids-like 3. These

  6. Genome-wide DNA methylation analysis reveals estrogen-mediated epigenetic repression of metallothionein-1 gene cluster in breast cancer.

    PubMed

    Jadhav, Rohit R; Ye, Zhenqing; Huang, Rui-Lan; Liu, Joseph; Hsu, Pei-Yin; Huang, Yi-Wen; Rangel, Leticia B; Lai, Hung-Cheng; Roa, Juan Carlos; Kirma, Nameer B; Huang, Tim Hui-Ming; Jin, Victor X

    2015-01-01

    Recent genome-wide analysis has shown that DNA methylation spans long stretches of chromosome regions consisting of clusters of contiguous CpG islands or gene families. Hypermethylation of various gene clusters has been reported in many types of cancer. In this study, we conducted methyl-binding domain capture (MBDCap) sequencing (MBD-seq) analysis on a breast cancer cohort consisting of 77 patients and 10 normal controls, as well as a panel of 38 breast cancer cell lines. Bioinformatics analysis determined seven gene clusters with a significant difference in overall survival (OS) and further revealed a distinct feature that the conservation of a large gene cluster (approximately 70 kb) metallothionein-1 (MT1) among 45 species is much lower than the average of all RefSeq genes. Furthermore, we found that DNA methylation is an important epigenetic regulator contributing to gene repression of MT1 gene cluster in both ERα positive (ERα+) and ERα negative (ERα-) breast tumors. In silico analysis revealed much lower gene expression of this cluster in The Cancer Genome Atlas (TCGA) cohort for ERα + tumors. To further investigate the role of estrogen, we conducted 17β-estradiol (E2) and demethylating agent 5-aza-2'-deoxycytidine (DAC) treatment in various breast cancer cell types. Cell proliferation and invasion assays suggested MT1F and MT1M may play an anti-oncogenic role in breast cancer. Our data suggests that DNA methylation in large contiguous gene clusters can be potential prognostic markers of breast cancer. Further investigation of these clusters revealed that estrogen mediates epigenetic repression of MT1 cluster in ERα + breast cancer cell lines. In all, our studies identify thousands of breast tumor hypermethylated regions for the first time, in particular, discovering seven large contiguous hypermethylated gene clusters.

  7. Improving seedless kelp (Saccharina japonica) during its domestication by hybridizing gametophytes and seedling-raising from sporophytes

    PubMed Central

    Li, Xiaojie; Zhang, Zhuangzhi; Qu, Shancun; Liang, Guangjin; Sun, Juan; Zhao, Nan; Cui, Cuiju; Cao, Zengmei; Li, Yan; Pan, Jinhua; Yu, Shenhui; Wang, Qingyan; Li, Xia; Luo, Shiju; Song, Shaofeng; Guo, Li; Yang, Guanpin

    2016-01-01

    Dongfang no.7 (Saccharina japonica) was bred and maintained by hybridizing gametophytes, self-crossing the best individuals, selecting the best self-crossing line and seedling-raising from yearly reconstructed sporophytes. It increased the air dry yield by 43.2% in average over 2 widely farmed controls. Dongfang no.7 was seedling-raised from bulked sporophytes reconstructed from its representative gametophyte clones. Such strategy ensured it against variety contamination due to possible cross fertilization and occasional mixing and inbred depletion due to self-crossing number-limited sporophytes year after year. It derived from an intraspecific hybrid through 4 rounds of self-crossing and selection and retained a certain degree of genetic heterozygosity, thus being immune to inbred depletion due to purification of unknown detrimental alleles. Most importantly, it can be farmed in currently available system as the seedlings for large scale culture can be raised from reconstructed Dongfang no.7 sporophytes. Breeding and maintaining Dongfang no.7 provided a model that other varieties of kelp (S. japonica) and brown algae may follow during their domestication. PMID:26887644

  8. Genomic characterisation of Wongabel virus reveals novel genes within the Rhabdoviridae.

    PubMed

    Gubala, Aneta J; Proll, David F; Barnard, Ross T; Cowled, Chris J; Crameri, Sandra G; Hyatt, Alex D; Boyle, David B

    2008-06-20

    Viruses belonging to the family Rhabdoviridae infect a variety of different hosts, including insects, vertebrates and plants. Currently, there are approximately 200 ICTV-recognised rhabdoviruses isolated around the world. However, the majority remain poorly characterised and only a fraction have been definitively assigned to genera. The genomic and transcriptional complexity displayed by several of the characterised rhabdoviruses indicates large diversity and complexity within this family. To enable an improved taxonomic understanding of this family, it is necessary to gain further information about the poorly characterised members of this family. Here we present the complete genome sequence and predicted transcription strategy of Wongabel virus (WONV), a previously uncharacterised rhabdovirus isolated from biting midges (Culicoides austropalpalis) collected in northern Queensland, Australia. The 13,196 nucleotide genome of WONV encodes five typical rhabdovirus genes N, P, M, G and L. In addition, the WONV genome contains three genes located between the P and M genes (U1, U2, U3) and two open reading frames overlapping with the N and G genes (U4, U5). These five additional genes and their putative protein products appear to be novel, and their functions are unknown. Predictive analysis of the U5 gene product revealed characteristics typical of viroporins, and indicated structural similarities with the alpha-1 protein (putative viroporin) of viruses in the genus Ephemerovirus. Phylogenetic analyses of the N and G proteins of WONV indicated closest similarity with the avian-associated Flanders virus; however, the genomes of these two viruses are significantly diverged. WONV displays a novel and unique genome structure that has not previously been described for any animal rhabdovirus.

  9. Circuit-wide Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulating Depression Susceptibility.

    PubMed

    Bagot, Rosemary C; Cates, Hannah M; Purushothaman, Immanuel; Lorsch, Zachary S; Walker, Deena M; Wang, Junshi; Huang, Xiaojie; Schlüter, Oliver M; Maze, Ian; Peña, Catherine J; Heller, Elizabeth A; Issler, Orna; Wang, Minghui; Song, Won-Min; Stein, Jason L; Liu, Xiaochuan; Doyle, Marie A; Scobie, Kimberly N; Sun, Hao Sheng; Neve, Rachael L; Geschwind, Daniel; Dong, Yan; Shen, Li; Zhang, Bin; Nestler, Eric J

    2016-06-01

    Depression is a complex, heterogeneous disorder and a leading contributor to the global burden of disease. Most previous research has focused on individual brain regions and genes contributing to depression. However, emerging evidence in humans and animal models suggests that dysregulated circuit function and gene expression across multiple brain regions drive depressive phenotypes. Here, we performed RNA sequencing on four brain regions from control animals and those susceptible or resilient to chronic social defeat stress at multiple time points. We employed an integrative network biology approach to identify transcriptional networks and key driver genes that regulate susceptibility to depressive-like symptoms. Further, we validated in vivo several key drivers and their associated transcriptional networks that regulate depression susceptibility and confirmed their functional significance at the levels of gene transcription, synaptic regulation, and behavior. Our study reveals novel transcriptional networks that control stress susceptibility and offers fundamentally new leads for antidepressant drug discovery. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Genome-Wide Analyses Reveal Genes Subject to Positive Selection in Pasteurella multocida

    PubMed Central

    Cao, Peili; Guo, Dongchun; Liu, Jiasen; Jiang, Qian; Xu, Zhuofei; Qu, Liandong

    2017-01-01

    Pasteurella multocida, a Gram-negative opportunistic pathogen, has led to a broad range of diseases in mammals and birds, including fowl cholera in poultry, pneumonia and atrophic rhinitis in swine and rabbit, hemorrhagic septicemia in cattle, and bite infections in humans. In order to better interpret the genetic diversity and adaptation evolution of this pathogen, seven genomes of P. multocida strains isolated from fowls, rabbit and pigs were determined by using high-throughput sequencing approach. Together with publicly available P. multocida genomes, evolutionary features were systematically analyzed in this study. Clustering of 70,565 protein-coding genes showed that the pangenome of 33 P. multocida strains was composed of 1,602 core genes, 1,364 dispensable genes, and 1,070 strain-specific genes. Of these, we identified a full spectrum of genes related to virulence factors and revealed genetic diversity of these potential virulence markers across P. multocida strains, e.g., bcbAB, fcbC, lipA, bexDCA, ctrCD, lgtA, lgtC, lic2A involved in biogenesis of surface polysaccharides, hsf encoding autotransporter adhesin, and fhaB encoding filamentous haemagglutinin. Furthermore, based on genome-wide positive selection scanning, a total of 35 genes were subject to strong selection pressure. Extensive analyses of protein subcellular location indicated that membrane-associated genes were highly abundant among all positively selected genes. The detected amino acid sites undergoing adaptive selection were preferably located in extracellular space, perhaps associated with bacterial evasion of host immune responses. Our findings shed more light on conservation and distribution of virulence-associated genes across P. multocida strains. Meanwhile, this study provides a genetic context for future researches on the mechanism of adaptive evolution in P. multocida. PMID:28611758

  11. Genomic analysis of Meckel–Gruber syndrome in Arabs reveals marked genetic heterogeneity and novel candidate genes

    PubMed Central

    Shaheen, Ranad; Faqeih, Eissa; Alshammari, Muneera J; Swaid, Abdulrahman; Al-Gazali, Lihadh; Mardawi, Elham; Ansari, Shinu; Sogaty, Sameera; Seidahmed, Mohammed Z; AlMotairi, Muhammed I; Farra, Chantal; Kurdi, Wesam; Al-Rasheed, Shatha; Alkuraya, Fowzan S

    2013-01-01

    Meckel–Gruber syndrome (MKS, OMIM #249000) is a multiple congenital malformation syndrome that represents the severe end of the ciliopathy phenotypic spectrum. Despite the relatively common occurrence of this syndrome among Arabs, little is known about its genetic architecture in this population. This is a series of 18 Arab families with MKS, who were evaluated clinically and studied using autozygome-guided mutation analysis and exome sequencing. We show that autozygome-guided candidate gene analysis identified the underlying mutation in the majority (n=12, 71%). Exome sequencing revealed a likely pathogenic mutation in three novel candidate MKS disease genes. These include C5orf42, Ellis–van-Creveld disease gene EVC2 and SEC8 (also known as EXOC4), which encodes an exocyst protein with an established role in ciliogenesis. This is the largest and most comprehensive genomic study on MKS in Arabs and the results, in addition to revealing genetic and allelic heterogeneity, suggest that previously reported disease genes and the novel candidates uncovered by this study account for the overwhelming majority of MKS patients in our population. PMID:23169490

  12. Gene Expression Analysis Reveals New Possible Mechanisms of Vancomycin-Induced Nephrotoxicity and Identifies Gene Markers Candidates

    PubMed Central

    Dieterich, Christine; Puey, Angela; Lyn, Sylvia; Swezey, Robert; Furimsky, Anna; Fairchild, David; Mirsalis, Jon C.; Ng, Hanna H.

    2009-01-01

    Vancomycin, one of few effective treatments against methicillin-resistant Staphylococcus aureus, is nephrotoxic. The goals of this study were to (1) gain insights into molecular mechanisms of nephrotoxicity at the genomic level, (2) evaluate gene markers of vancomycin-induced kidney injury, and (3) compare gene expression responses after iv and ip administration. Groups of six female BALB/c mice were treated with seven daily iv or ip doses of vancomycin (50, 200, and 400 mg/kg) or saline, and sacrificed on day 8. Clinical chemistry and histopathology demonstrated kidney injury at 400 mg/kg only. Hierarchical clustering analysis revealed that kidney gene expression profiles of all mice treated at 400 mg/kg clustered with those of mice administered 200 mg/kg iv. Transcriptional profiling might thus be more sensitive than current clinical markers for detecting kidney damage, though the profiles can differ with the route of administration. Analysis of transcripts whose expression was changed by at least twofold compared with vehicle saline after high iv and ip doses of vancomycin suggested the possibility of oxidative stress and mitochondrial damage in vancomycin-induced toxicity. In addition, our data showed changes in expression of several transcripts from the complement and inflammatory pathways. Such expression changes were confirmed by relative real-time reverse transcription–polymerase chain reaction. Finally, our results further substantiate the use of gene markers of kidney toxicity such as KIM-1/Havcr1, as indicators of renal injury. PMID:18930951

  13. Gene expression analysis reveals new possible mechanisms of vancomycin-induced nephrotoxicity and identifies gene markers candidates.

    PubMed

    Dieterich, Christine; Puey, Angela; Lin, Sylvia; Lyn, Sylvia; Swezey, Robert; Furimsky, Anna; Fairchild, David; Mirsalis, Jon C; Ng, Hanna H

    2009-01-01

    Vancomycin, one of few effective treatments against methicillin-resistant Staphylococcus aureus, is nephrotoxic. The goals of this study were to (1) gain insights into molecular mechanisms of nephrotoxicity at the genomic level, (2) evaluate gene markers of vancomycin-induced kidney injury, and (3) compare gene expression responses after iv and ip administration. Groups of six female BALB/c mice were treated with seven daily iv or ip doses of vancomycin (50, 200, and 400 mg/kg) or saline, and sacrificed on day 8. Clinical chemistry and histopathology demonstrated kidney injury at 400 mg/kg only. Hierarchical clustering analysis revealed that kidney gene expression profiles of all mice treated at 400 mg/kg clustered with those of mice administered 200 mg/kg iv. Transcriptional profiling might thus be more sensitive than current clinical markers for detecting kidney damage, though the profiles can differ with the route of administration. Analysis of transcripts whose expression was changed by at least twofold compared with vehicle saline after high iv and ip doses of vancomycin suggested the possibility of oxidative stress and mitochondrial damage in vancomycin-induced toxicity. In addition, our data showed changes in expression of several transcripts from the complement and inflammatory pathways. Such expression changes were confirmed by relative real-time reverse transcription-polymerase chain reaction. Finally, our results further substantiate the use of gene markers of kidney toxicity such as KIM-1/Havcr1, as indicators of renal injury.

  14. Molecular evidence of RNA polymerase II gene reveals the origin of worldwide cultivated barley

    PubMed Central

    Wang, Yonggang; Ren, Xifeng; Sun, Dongfa; Sun, Genlou

    2016-01-01

    The origin and domestication of cultivated barley have long been under debate. A population-based resequencing and phylogenetic analysis of the single copy of RPB2 gene was used to address barley domestication, to explore genetic differentiation of barley populations on the worldwide scale, and to understand gene-pool exchanges during the spread and subsequent development of barley cultivation. Our results revealed significant genetic differentiation among three geographically distinct wild barley populations. Differences in haplotype composition among populations from different geographical regions revealed that modern cultivated barley originated from two major wild barley populations: one from the Near East Fertile Crescent and the other from the Tibetan Plateau, supporting polyphyletic origin of cultivated barley. The results of haplotype frequencies supported multiple domestications coupled with widespread introgression events that generated genetic admixture between divergent barley gene pools. Our results not only provide important insight into the domestication and evolution of cultivated barley, but also enhance our understanding of introgression and distinct selection pressures in different environments on shaping the genetic diversity of worldwide barley populations, thus further facilitating the effective use of the wild barley germplasm. PMID:27786300

  15. Comparative Genomic Analysis Reveals Organization, Function and Evolution of ars Genes in Pantoea spp.

    PubMed

    Wang, Liying; Wang, Jin; Jing, Chuanyong

    2017-01-01

    Numerous genes are involved in various strategies to resist toxic arsenic (As). However, the As resistance strategy in genus Pantoea is poorly understood. In this study, a comparative genome analysis of 23 Pantoea genomes was conducted. Two vertical genetic arsC -like genes without any contribution to As resistance were found to exist in the 23 Pantoea strains. Besides the two arsC -like genes, As resistance gene clusters arsRBC or arsRBCH were found in 15 Pantoea genomes. These ars clusters were found to be acquired by horizontal gene transfer (HGT) from sources related to Franconibacter helveticus, Serratia marcescens , and Citrobacter freundii . During the history of evolution, the ars clusters were acquired more than once in some species, and were lost in some strains, producing strains without As resistance capability. This study revealed the organization, distribution and the complex evolutionary history of As resistance genes in Pantoea spp.. The insights gained in this study improved our understanding on the As resistance strategy of Pantoea spp. and its roles in the biogeochemical cycling of As.

  16. Comparative Genomic Analysis Reveals Organization, Function and Evolution of ars Genes in Pantoea spp.

    PubMed Central

    Wang, Liying; Wang, Jin; Jing, Chuanyong

    2017-01-01

    Numerous genes are involved in various strategies to resist toxic arsenic (As). However, the As resistance strategy in genus Pantoea is poorly understood. In this study, a comparative genome analysis of 23 Pantoea genomes was conducted. Two vertical genetic arsC-like genes without any contribution to As resistance were found to exist in the 23 Pantoea strains. Besides the two arsC-like genes, As resistance gene clusters arsRBC or arsRBCH were found in 15 Pantoea genomes. These ars clusters were found to be acquired by horizontal gene transfer (HGT) from sources related to Franconibacter helveticus, Serratia marcescens, and Citrobacter freundii. During the history of evolution, the ars clusters were acquired more than once in some species, and were lost in some strains, producing strains without As resistance capability. This study revealed the organization, distribution and the complex evolutionary history of As resistance genes in Pantoea spp.. The insights gained in this study improved our understanding on the As resistance strategy of Pantoea spp. and its roles in the biogeochemical cycling of As. PMID:28377759

  17. First quantification of subtidal community structure at Tristan da Cunha Islands in the remote South Atlantic: from kelp forests to the deep sea

    PubMed Central

    Hamilton, Scott L.; Davis, Kathryn; Thompson, Christopher D. H.; Turchik, Alan; Jenkinson, Ryan; Simpson, Doug; Sala, Enric

    2018-01-01

    Tristan da Cunha Islands, an archipelago of four rocky volcanic islands situated in the South Atlantic Ocean and part of the United Kingdom Overseas Territories (UKOTs), present a rare example of a relatively unimpacted temperate marine ecosystem. We conducted the first quantitative surveys of nearshore kelp forests, offshore pelagic waters and deep sea habitats. Kelp forests had very low biodiversity and species richness, but high biomass and abundance of those species present. Spatial variation in assemblage structure for both nearshore fish and invertebrates/algae was greatest between the three northern islands and the southern island of Gough, where sea temperatures were on average 3-4o colder. Despite a lobster fishery that provides the bulk of the income to the Tristan islands, lobster abundance and biomass are comparable to or greater than many Marine Protected Areas in other parts of the world. Pelagic camera surveys documented a rich biodiversity offshore, including large numbers of juvenile blue sharks, Prionace glauca. Species richness and abundance in the deep sea is positively related to hard rocky substrate and biogenic habitats such as sea pens, crinoids, whip corals, and gorgonians were present at 40% of the deep camera deployments. We observed distinct differences in the deep fish community above and below ~750 m depth. Concurrent oceanographic sampling showed a discontinuity in temperature and salinity at this depth. While currently healthy, Tristan’s marine ecosystem is not without potential threats: shipping traffic leading to wrecks and species introductions, pressure to increase fishing effort beyond sustainable levels and the impacts of climate change all could potentially increase in the coming years. The United Kingdom has committed to protection of marine environments across the UKOTs, including Tristan da Cunha and these results can be used to inform future management decisions as well as provide a baseline against which future

  18. First quantification of subtidal community structure at Tristan da Cunha Islands in the remote South Atlantic: from kelp forests to the deep sea.

    PubMed

    Caselle, Jennifer E; Hamilton, Scott L; Davis, Kathryn; Thompson, Christopher D H; Turchik, Alan; Jenkinson, Ryan; Simpson, Doug; Sala, Enric

    2018-01-01

    Tristan da Cunha Islands, an archipelago of four rocky volcanic islands situated in the South Atlantic Ocean and part of the United Kingdom Overseas Territories (UKOTs), present a rare example of a relatively unimpacted temperate marine ecosystem. We conducted the first quantitative surveys of nearshore kelp forests, offshore pelagic waters and deep sea habitats. Kelp forests had very low biodiversity and species richness, but high biomass and abundance of those species present. Spatial variation in assemblage structure for both nearshore fish and invertebrates/algae was greatest between the three northern islands and the southern island of Gough, where sea temperatures were on average 3-4o colder. Despite a lobster fishery that provides the bulk of the income to the Tristan islands, lobster abundance and biomass are comparable to or greater than many Marine Protected Areas in other parts of the world. Pelagic camera surveys documented a rich biodiversity offshore, including large numbers of juvenile blue sharks, Prionace glauca. Species richness and abundance in the deep sea is positively related to hard rocky substrate and biogenic habitats such as sea pens, crinoids, whip corals, and gorgonians were present at 40% of the deep camera deployments. We observed distinct differences in the deep fish community above and below ~750 m depth. Concurrent oceanographic sampling showed a discontinuity in temperature and salinity at this depth. While currently healthy, Tristan's marine ecosystem is not without potential threats: shipping traffic leading to wrecks and species introductions, pressure to increase fishing effort beyond sustainable levels and the impacts of climate change all could potentially increase in the coming years. The United Kingdom has committed to protection of marine environments across the UKOTs, including Tristan da Cunha and these results can be used to inform future management decisions as well as provide a baseline against which future monitoring

  19. RNA-Seq reveals leaf cuticular wax-related genes in Welsh onion.

    PubMed

    Liu, Qianchun; Wen, Changlong; Zhao, Hong; Zhang, Liying; Wang, Jian; Wang, Yongqin

    2014-01-01

    The waxy cuticle plays a very important role in plant resistance to various biotic and abiotic stresses and is an important characteristic of Welsh onions. Two different types of biangan Welsh onions (BG) were selected for this study: BG, a wild-type covered by wax, which forms a continuous lipid membrane on its epidermal cells, and GLBG, a glossy mutant of BG whose epidermal cells are not covered by wax. To elucidate the waxy cuticle-related gene expression changes, we used RNA-Seq to compare these two Welsh onion varieties with distinct differences in cuticular wax. The de novo assembly yielded 42,881 putative unigenes, 25.41% of which are longer than 1,000 bp. Among the high-quality unique sequences, 22,289 (52.0%) had at least one significant match to an existing gene model. A total of 798 genes, representing 1.86% of the total putative unigenes, were differentially expressed between these two Welsh onion varieties. The expression patterns of four important unigenes that are related to waxy cuticle biosynthesis were confirmed by RT-qPCR and COG class annotation, which demonstrated that these genes play an important role in defense mechanisms and lipid transport and metabolism. To our knowledge, this study is the first exploration of the Welsh onion waxy cuticle. These results may help to reveal the molecular mechanisms underlying the waxy cuticle and will be useful for waxy gene cloning, genetics and breeding as well as phylogenetic and evolutionary studies of the Welsh onion.

  20. RNA-Seq Reveals Leaf Cuticular Wax-Related Genes in Welsh Onion

    PubMed Central

    Zhao, Hong; Zhang, Liying; Wang, Jian; Wang, Yongqin

    2014-01-01

    The waxy cuticle plays a very important role in plant resistance to various biotic and abiotic stresses and is an important characteristic of Welsh onions. Two different types of biangan Welsh onions (BG) were selected for this study: BG, a wild-type covered by wax, which forms a continuous lipid membrane on its epidermal cells, and GLBG, a glossy mutant of BG whose epidermal cells are not covered by wax. To elucidate the waxy cuticle-related gene expression changes, we used RNA-Seq to compare these two Welsh onion varieties with distinct differences in cuticular wax. The de novo assembly yielded 42,881 putative unigenes, 25.41% of which are longer than 1,000 bp. Among the high-quality unique sequences, 22,289 (52.0%) had at least one significant match to an existing gene model. A total of 798 genes, representing 1.86% of the total putative unigenes, were differentially expressed between these two Welsh onion varieties. The expression patterns of four important unigenes that are related to waxy cuticle biosynthesis were confirmed by RT-qPCR and COG class annotation, which demonstrated that these genes play an important role in defense mechanisms and lipid transport and metabolism. To our knowledge, this study is the first exploration of the Welsh onion waxy cuticle. These results may help to reveal the molecular mechanisms underlying the waxy cuticle and will be useful for waxy gene cloning, genetics and breeding as well as phylogenetic and evolutionary studies of the Welsh onion. PMID:25415343

  1. Dual gene activation and knockout screen reveals directional dependencies in genetic networks. | Office of Cancer Genomics

    Cancer.gov

    Understanding the direction of information flow is essential for characterizing how genetic networks affect phenotypes. However, methods to find genetic interactions largely fail to reveal directional dependencies. We combine two orthogonal Cas9 proteins from Streptococcus pyogenes and Staphylococcus aureus to carry out a dual screen in which one gene is activated while a second gene is deleted in the same cell. We analyze the quantitative effects of activation and knockout to calculate genetic interaction and directionality scores for each gene pair.

  2. Variation analysis of transcriptome changes reveals cochlear genes and their associated functions in cochlear susceptibility to acoustic overstimulation.

    PubMed

    Yang, Shuzhi; Cai, Qunfeng; Bard, Jonathan; Jamison, Jennifer; Wang, Jianmin; Yang, Weiping; Hu, Bo Hua

    2015-12-01

    Individual variation in the susceptibility of the auditory system to acoustic overstimulation has been well-documented at both the functional and structural levels. However, the molecular mechanism responsible for this variation is unclear. The current investigation was designed to examine the variation patterns of cochlear gene expression using RNA-seq data and to identify the genes with expression variation that increased following acoustic trauma. This study revealed that the constitutive expressions of cochlear genes displayed diverse levels of gene-specific variation. These variation patterns were altered by acoustic trauma; approximately one-third of the examined genes displayed marked increases in their expression variation. Bioinformatics analyses revealed that the genes that exhibited increased variation were functionally related to cell death, biomolecule metabolism, and membrane function. In contrast, the stable genes were primarily related to basic cellular processes, including protein and macromolecular syntheses and transport. There was no functional overlap between the stable and variable genes. Importantly, we demonstrated that glutamate metabolism is related to the variation in the functional response of the cochlea to acoustic overstimulation. Taken together, the results indicate that our analyses of the individual variations in transcriptome changes of cochlear genes provide important information for the identification of genes that potentially contribute to the generation of individual variation in cochlear responses to acoustic overstimulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Integrative Genomics Reveals Novel Molecular Pathways and Gene Networks for Coronary Artery Disease

    PubMed Central

    Mäkinen, Ville-Petteri; Civelek, Mete; Meng, Qingying; Zhang, Bin; Zhu, Jun; Levian, Candace; Huan, Tianxiao; Segrè, Ayellet V.; Ghosh, Sujoy; Vivar, Juan; Nikpay, Majid; Stewart, Alexandre F. R.; Nelson, Christopher P.; Willenborg, Christina; Erdmann, Jeanette; Blakenberg, Stefan; O'Donnell, Christopher J.; März, Winfried; Laaksonen, Reijo; Epstein, Stephen E.; Kathiresan, Sekar; Shah, Svati H.; Hazen, Stanley L.; Reilly, Muredach P.; Lusis, Aldons J.; Samani, Nilesh J.; Schunkert, Heribert; Quertermous, Thomas; McPherson, Ruth; Yang, Xia; Assimes, Themistocles L.

    2014-01-01

    The majority of the heritability of coronary artery disease (CAD) remains unexplained, despite recent successes of genome-wide association studies (GWAS) in identifying novel susceptibility loci. Integrating functional genomic data from a variety of sources with a large-scale meta-analysis of CAD GWAS may facilitate the identification of novel biological processes and genes involved in CAD, as well as clarify the causal relationships of established processes. Towards this end, we integrated 14 GWAS from the CARDIoGRAM Consortium and two additional GWAS from the Ottawa Heart Institute (25,491 cases and 66,819 controls) with 1) genetics of gene expression studies of CAD-relevant tissues in humans, 2) metabolic and signaling pathways from public databases, and 3) data-driven, tissue-specific gene networks from a multitude of human and mouse experiments. We not only detected CAD-associated gene networks of lipid metabolism, coagulation, immunity, and additional networks with no clear functional annotation, but also revealed key driver genes for each CAD network based on the topology of the gene regulatory networks. In particular, we found a gene network involved in antigen processing to be strongly associated with CAD. The key driver genes of this network included glyoxalase I (GLO1) and peptidylprolyl isomerase I (PPIL1), which we verified as regulatory by siRNA experiments in human aortic endothelial cells. Our results suggest genetic influences on a diverse set of both known and novel biological processes that contribute to CAD risk. The key driver genes for these networks highlight potential novel targets for further mechanistic studies and therapeutic interventions. PMID:25033284

  4. Systems Nutrigenomics Reveals Brain Gene Networks Linking Metabolic and Brain Disorders.

    PubMed

    Meng, Qingying; Ying, Zhe; Noble, Emily; Zhao, Yuqi; Agrawal, Rahul; Mikhail, Andrew; Zhuang, Yumei; Tyagi, Ethika; Zhang, Qing; Lee, Jae-Hyung; Morselli, Marco; Orozco, Luz; Guo, Weilong; Kilts, Tina M; Zhu, Jun; Zhang, Bin; Pellegrini, Matteo; Xiao, Xinshu; Young, Marian F; Gomez-Pinilla, Fernando; Yang, Xia

    2016-05-01

    Nutrition plays a significant role in the increasing prevalence of metabolic and brain disorders. Here we employ systems nutrigenomics to scrutinize the genomic bases of nutrient-host interaction underlying disease predisposition or therapeutic potential. We conducted transcriptome and epigenome sequencing of hypothalamus (metabolic control) and hippocampus (cognitive processing) from a rodent model of fructose consumption, and identified significant reprogramming of DNA methylation, transcript abundance, alternative splicing, and gene networks governing cell metabolism, cell communication, inflammation, and neuronal signaling. These signals converged with genetic causal risks of metabolic, neurological, and psychiatric disorders revealed in humans. Gene network modeling uncovered the extracellular matrix genes Bgn and Fmod as main orchestrators of the effects of fructose, as validated using two knockout mouse models. We further demonstrate that an omega-3 fatty acid, DHA, reverses the genomic and network perturbations elicited by fructose, providing molecular support for nutritional interventions to counteract diet-induced metabolic and brain disorders. Our integrative approach complementing rodent and human studies supports the applicability of nutrigenomics principles to predict disease susceptibility and to guide personalized medicine. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Metabolism of trimethylamines in kelp bass (Paralabrax clathratus) and marine and freshwater pink salmon (Oncorhynchus gorbuscha).

    PubMed

    Charest, R P; Chenoweth, M; Dunn, A

    1988-01-01

    3H or 14C labeled tracers were used to investigate the metabolism of trimethylamine (TMA), trimethylamine oxide (TMAO), choline, and betaine in free swimming kelp bass (Paralabrax clathratus). An indwelling cannula in the ventral aorta was used to administer tracer and with-draw blood samples. The concentrations of TMA and TMAO were determined in liver, muscle, and plasma. The TMA liver content is higher than that of muscle (0.85 vs less than 0.01 mumoles/g wet tissue) while the amount of TMAO in muscle greatly exceeds its liver concentration (60 vs 0.04 mumoles/g wet tissue). Prolonged fasting (21 and 75 days) or feeding the fish a squid diet containing high levels of TMAO did not alter the tissue concentrations of TMA or TMAO, suggesting that these compounds are endogenous in origin and that their tissue concentrations are subject to regulation. Comparison of the radiospecific activities of TMA and TMAO, and the administered TMA tracer suggest that TMA is channeled directly to TMAO in the liver without equilibration in the hepatic TMA pool. The conversion kinetics of TMA to TMAO and the distribution of these amines in liver and muscle with time suggest that labeled TMA is rapidly taken up into a sequestered pool from which it is slowly released, oxidized to TMAO in the liver, and then transported via the circulation to the muscle mass. The location of this proposed sequestered TMA pool was not determined. Experiments with labeled choline and betaine suggest that these compounds are interconverted in the liver and that enzymes are present for conversion of choline in equilibrium betaine----TMA----TMAO. Labeled dimethylamine (DMA) was not metabolized and is, therefore, probably not a precursor of TMA and TMAO. [14C]Trimethylamine (TMA) was also used to investigate the possible role of trimethylamine oxide (TMAO) as an osmoregulatory compound in migrating prespawning cannulated Pacific pink salmon (Oncorhynchus gorbuscha) taken from marine or fresh water

  6. Disease-aging network reveals significant roles of aging genes in connecting genetic diseases.

    PubMed

    Wang, Jiguang; Zhang, Shihua; Wang, Yong; Chen, Luonan; Zhang, Xiang-Sun

    2009-09-01

    One of the challenging problems in biology and medicine is exploring the underlying mechanisms of genetic diseases. Recent studies suggest that the relationship between genetic diseases and the aging process is important in understanding the molecular mechanisms of complex diseases. Although some intricate associations have been investigated for a long time, the studies are still in their early stages. In this paper, we construct a human disease-aging network to study the relationship among aging genes and genetic disease genes. Specifically, we integrate human protein-protein interactions (PPIs), disease-gene associations, aging-gene associations, and physiological system-based genetic disease classification information in a single graph-theoretic framework and find that (1) human disease genes are much closer to aging genes than expected by chance; and (2) diseases can be categorized into two types according to their relationships with aging. Type I diseases have their genes significantly close to aging genes, while type II diseases do not. Furthermore, we examine the topological characters of the disease-aging network from a systems perspective. Theoretical results reveal that the genes of type I diseases are in a central position of a PPI network while type II are not; (3) more importantly, we define an asymmetric closeness based on the PPI network to describe relationships between diseases, and find that aging genes make a significant contribution to associations among diseases, especially among type I diseases. In conclusion, the network-based study provides not only evidence for the intricate relationship between the aging process and genetic diseases, but also biological implications for prying into the nature of human diseases.

  7. A Gene-Oriented Haplotype Comparison Reveals Recently Selected Genomic Regions in Temperate and Tropical Maize Germplasm

    PubMed Central

    Zhang, Jie; Li, Yongxiang; Zheng, Jun; Zhang, Hongwei; Yang, Xiaohong; Wang, Jianhua; Wang, Guoying

    2017-01-01

    The extensive genetic variation present in maize (Zea mays) germplasm makes it possible to detect signatures of positive artificial selection that occurred during temperate and tropical maize improvement. Here we report an analysis of 532,815 polymorphisms from a maize association panel consisting of 368 diverse temperate and tropical inbred lines. We developed a gene-oriented approach adapting exonic polymorphisms to identify recently selected alleles by comparing haplotypes across the maize genome. This analysis revealed evidence of selection for more than 1100 genomic regions during recent improvement, and included regulatory genes and key genes with visible mutant phenotypes. We find that selected candidate target genes in temperate maize are enriched in biosynthetic processes, and further examination of these candidates highlights two cases, sucrose flux and oil storage, in which multiple genes in a common pathway can be cooperatively selected. Finally, based on available parallel gene expression data, we hypothesize that some genes were selected for regulatory variations, resulting in altered gene expression. PMID:28099470

  8. Dewatering treatments to increase dry matter content of the brown seaweed, kelp (Laminaria digitata ((Hudson) JV Lamouroux)).

    PubMed

    Gallagher, Joe A; Turner, Lesley B; Adams, Jessica M M; Dyer, Philip W; Theodorou, Michael K

    2017-01-01

    Macroalgal water content is an on-going problem for the use of readily accessible seaweeds in sustainable biorefining, including fuel production. Silage is a reduced-water, compactable, easily stored, transportable material. Ensiling could establish a non-seasonal supply of preserved algal biomass, but requires high initial dry matter content to mitigate environmental pollution risks from effluent. This study investigated potential dewatering methods for kelp harvested throughout the year. Treatments included air-drying, osmotic media and acids. Significant interactions between treatment and harvest-time were observed for traits of interest. Fresh weight loss during treatment was composed of changes in water and dry matter content. Air-drying gave reliable increase in final dry matter content; in summer and autumn 30% dry matter content was reached after 24h. Dilute hydrochloric acid reduced stickiness and rendered material suitable for dewatering by screw-pressing; it may be possible to use the consequent pH reduction to promote efficient preservation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Multilocus analysis reveals three candidate genes for Chinese migraine susceptibility.

    PubMed

    An, X-K; Fang, J; Yu, Z-Z; Lin, Q; Lu, C-X; Qu, H-L; Ma, Q-L

    2017-08-01

    Several genome-wide association studies (GWASs) in Caucasian populations have identified 12 loci that are significantly associated with migraine. More evidence suggests that serotonin receptors are also involved in migraine pathophysiology. In the present study, a case-control study was conducted in a cohort of 581 migraine cases and 533 ethnically matched controls among a Chinese population. Eighteen polymorphisms from serotonin receptors and GWASs were selected, and genotyping was performed using a Sequenom MALDI-TOF mass spectrometry iPLEX platform. The genotypic and allelic distributions of MEF2D rs2274316 and ASTN2 rs6478241 were significantly different between migraine patients and controls. Univariate and multivariate analysis revealed significant associations of polymorphisms in the MEF2D and ASTN2 genes with migraine susceptibility. MEF2D, PRDM16 and ASTN2 were also found to be associated with migraine without aura (MO) and migraine with family history. And, MEF2D and ASTN2 also served as genetic risk factors for the migraine without family history. The generalized multifactor dimensionality reduction analysis identified that MEF2D and HTR2E constituted the two-factor interaction model. Our study suggests that the MEF2D, PRDM16 and ASTN2 genes from GWAS are associated with migraine susceptibility, especially MO, among Chinese patients. It appears that there is no association with serotonin receptor related genes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Transcript Profiling Reveals the Presence of Abiotic Stress and Developmental Stage Specific Ascorbate Oxidase Genes in Plants

    PubMed Central

    Batth, Rituraj; Singh, Kapil; Kumari, Sumita; Mustafiz, Ananda

    2017-01-01

    Abiotic stress and climate change is the major concern for plant growth and crop yield. Abiotic stresses lead to enhanced accumulation of reactive oxygen species (ROS) consequently resulting in cellular damage and major losses in crop yield. One of the major scavengers of ROS is ascorbate (AA) which acts as first line of defense against external oxidants. An enzyme named ascorbate oxidase (AAO) is known to oxidize AA and deleteriously affect the plant system in response to stress. Genome-wide analysis of AAO gene family has led to the identification of five, three, seven, four, and six AAO genes in Oryza sativa, Arabidopsis, Glycine max, Zea mays, and Sorghum bicolor genomes, respectively. Expression profiling of these genes was carried out in response to various abiotic stresses and during various stages of vegetative and reproductive development using publicly available microarray database. Expression analysis in Oryza sativa revealed tissue specific expression of AAO genes wherein few members were exclusively expressed in either root or shoot. These genes were found to be regulated by both developmental cues as well as diverse stress conditions. The qRT-PCR analysis in response to salinity and drought stress in rice shoots revealed OsAAO2 to be the most stress responsive gene. On the other hand, OsAAO3 and OsAAO4 genes showed enhanced expression in roots under salinity/drought stresses. This study provides lead about important stress responsive AAO genes in various crop plants, which could be used to engineer climate resilient crop plants. PMID:28261251

  11. Driver gene classification reveals a substantial overrepresentation of tumor suppressors among very large chromatin-regulating proteins.

    PubMed

    Waks, Zeev; Weissbrod, Omer; Carmeli, Boaz; Norel, Raquel; Utro, Filippo; Goldschmidt, Yaara

    2016-12-23

    Compiling a comprehensive list of cancer driver genes is imperative for oncology diagnostics and drug development. While driver genes are typically discovered by analysis of tumor genomes, infrequently mutated driver genes often evade detection due to limited sample sizes. Here, we address sample size limitations by integrating tumor genomics data with a wide spectrum of gene-specific properties to search for rare drivers, functionally classify them, and detect features characteristic of driver genes. We show that our approach, CAnceR geNe similarity-based Annotator and Finder (CARNAF), enables detection of potentially novel drivers that eluded over a dozen pan-cancer/multi-tumor type studies. In particular, feature analysis reveals a highly concentrated pool of known and putative tumor suppressors among the <1% of genes that encode very large, chromatin-regulating proteins. Thus, our study highlights the need for deeper characterization of very large, epigenetic regulators in the context of cancer causality.

  12. Genome wide analysis reveals Zic3 interaction with distal regulatory elements of stage specific developmental genes in zebrafish.

    PubMed

    Winata, Cecilia L; Kondrychyn, Igor; Kumar, Vibhor; Srinivasan, Kandhadayar G; Orlov, Yuriy; Ravishankar, Ashwini; Prabhakar, Shyam; Stanton, Lawrence W; Korzh, Vladimir; Mathavan, Sinnakaruppan

    2013-10-01

    Zic3 regulates early embryonic patterning in vertebrates. Loss of Zic3 function is known to disrupt gastrulation, left-right patterning, and neurogenesis. However, molecular events downstream of this transcription factor are poorly characterized. Here we use the zebrafish as a model to study the developmental role of Zic3 in vivo, by applying a combination of two powerful genomics approaches--ChIP-seq and microarray. Besides confirming direct regulation of previously implicated Zic3 targets of the Nodal and canonical Wnt pathways, analysis of gastrula stage embryos uncovered a number of novel candidate target genes, among which were members of the non-canonical Wnt pathway and the neural pre-pattern genes. A similar analysis in zic3-expressing cells obtained by FACS at segmentation stage revealed a dramatic shift in Zic3 binding site locations and identified an entirely distinct set of target genes associated with later developmental functions such as neural development. We demonstrate cis-regulation of several of these target genes by Zic3 using in vivo enhancer assay. Analysis of Zic3 binding sites revealed a distribution biased towards distal intergenic regions, indicative of a long distance regulatory mechanism; some of these binding sites are highly conserved during evolution and act as functional enhancers. This demonstrated that Zic3 regulation of developmental genes is achieved predominantly through long distance regulatory mechanism and revealed that developmental transitions could be accompanied by dramatic changes in regulatory landscape.

  13. RNA sequencing analysis of human podocytes reveals glucocorticoid regulated gene networks targeting non-immune pathways

    PubMed Central

    Jiang, Lulu; Hindmarch, Charles C. T.; Rogers, Mark; Campbell, Colin; Waterfall, Christy; Coghill, Jane; Mathieson, Peter W.; Welsh, Gavin I.

    2016-01-01

    Glucocorticoids are steroids that reduce inflammation and are used as immunosuppressive drugs for many diseases. They are also the mainstay for the treatment of minimal change nephropathy (MCN), which is characterised by an absence of inflammation. Their mechanisms of action remain elusive. Evidence suggests that immunomodulatory drugs can directly act on glomerular epithelial cells or ‘podocytes’, the cell type which is the main target of injury in MCN. To understand the nature of glucocorticoid effects on non-immune cell functions, we generated RNA sequencing data from human podocyte cell lines and identified the genes that are significantly regulated in dexamethasone-treated podocytes compared to vehicle-treated cells. The upregulated genes are of functional relevance to cytoskeleton-related processes, whereas the downregulated genes mostly encode pro-inflammatory cytokines and growth factors. We observed a tendency for dexamethasone-upregulated genes to be downregulated in MCN patients. Integrative analysis revealed gene networks composed of critical signaling pathways that are likely targeted by dexamethasone in podocytes. PMID:27774996

  14. Transcriptome sequencing of Eucalyptus camaldulensis seedlings subjected to water stress reveals functional single nucleotide polymorphisms and genes under selection

    PubMed Central

    2012-01-01

    Background Water stress limits plant survival and production in many parts of the world. Identification of genes and alleles responding to water stress conditions is important in breeding plants better adapted to drought. Currently there are no studies examining the transcriptome wide gene and allelic expression patterns under water stress conditions. We used RNA sequencing (RNA-seq) to identify the candidate genes and alleles and to explore the evolutionary signatures of selection. Results We studied the effect of water stress on gene expression in Eucalyptus camaldulensis seedlings derived from three natural populations. We used reference-guided transcriptome mapping to study gene expression. Several genes showed differential expression between control and stress conditions. Gene ontology (GO) enrichment tests revealed up-regulation of 140 stress-related gene categories and down-regulation of 35 metabolic and cell wall organisation gene categories. More than 190,000 single nucleotide polymorphisms (SNPs) were detected and 2737 of these showed differential allelic expression. Allelic expression of 52% of these variants was correlated with differential gene expression. Signatures of selection patterns were studied by estimating the proportion of nonsynonymous to synonymous substitution rates (Ka/Ks). The average Ka/Ks ratio among the 13,719 genes was 0.39 indicating that most of the genes are under purifying selection. Among the positively selected genes (Ka/Ks > 1.5) apoptosis and cell death categories were enriched. Of the 287 positively selected genes, ninety genes showed differential expression and 27 SNPs from 17 positively selected genes showed differential allelic expression between treatments. Conclusions Correlation of allelic expression of several SNPs with total gene expression indicates that these variants may be the cis-acting variants or in linkage disequilibrium with such variants. Enrichment of apoptosis and cell death gene categories among the

  15. Embryonic stem cell-like features of testicular carcinoma in situ revealed by genome-wide gene expression profiling.

    PubMed

    Almstrup, Kristian; Hoei-Hansen, Christina E; Wirkner, Ute; Blake, Jonathon; Schwager, Christian; Ansorge, Wilhelm; Nielsen, John E; Skakkebaek, Niels E; Rajpert-De Meyts, Ewa; Leffers, Henrik

    2004-07-15

    Carcinoma in situ (CIS) is the common precursor of histologically heterogeneous testicular germ cell tumors (TGCTs), which in recent decades have markedly increased and now are the most common malignancy of young men. Using genome-wide gene expression profiling, we identified >200 genes highly expressed in testicular CIS, including many never reported in testicular neoplasms. Expression was further verified by semiquantitative reverse transcription-PCR and in situ hybridization. Among the highest expressed genes were NANOG and POU5F1, and reverse transcription-PCR revealed possible changes in their stoichiometry on progression into embryonic carcinoma. We compared the CIS expression profile with patterns reported in embryonic stem cells (ESCs), which revealed a substantial overlap that may be as high as 50%. We also demonstrated an over-representation of expressed genes in regions of 17q and 12, reported as unstable in cultured ESCs. The close similarity between CIS and ESCs explains the pluripotency of CIS. Moreover, the findings are consistent with an early prenatal origin of TGCTs and thus suggest that etiologic factors operating in utero are of primary importance for the incidence trends of TGCTs. Finally, some of the highly expressed genes identified in this study are promising candidates for new diagnostic markers for CIS and/or TGCTs.

  16. The mixed mating system of the sea palm kelp Postelsia palmaeformis: few costs to selfing

    PubMed Central

    Barner, Allison K.; Pfister, Catherine A.; Wootton, J. Timothy

    2011-01-01

    Naturally isolated populations have conflicting selection pressures for successful reproduction and inbreeding avoidance. These species with limited seasonal reproductive opportunities may use selfing as a means of reproductive assurance. We quantified the frequency of selfing and the fitness consequences for inbred versus outcrossed progeny of an annual kelp, the sea palm (Postelsia palmaeformis). Using experimentally established populations and microsatellite markers to assess the extent of selfing in progeny from six founding parents, we found the frequency of selfing was higher than expected in every population, and few fitness costs were detected in selfed offspring. Despite a decline in heterozygosity of 30 per cent in the first generation of selfing, self-fertilization did not affect individual size or reproduction, and correlated only with a marginally significant decline in survival. Our results suggest both that purging of deleterious recessive alleles may have already occurred and that selfing may be key to reproductive assurance in this species with limited dispersal. Postelsia has an alteration of a free-living diploid and haploid stage, where the haploid stage may provide increased efficiency for purging the genetic load. This life history is shared by many seaweeds and may thus be an important component of mating system evolution in the sea. PMID:20961896

  17. Genome-wide characterization of pectin methyl esterase genes reveals members differentially expressed in tolerant and susceptible wheats in response to Fusarium graminearum.

    PubMed

    Zega, Alessandra; D'Ovidio, Renato

    2016-11-01

    Pectin methyl esterase (PME) genes code for enzymes that are involved in structural modifications of the plant cell wall during plant growth and development. They are also involved in plant-pathogen interaction. PME genes belong to a multigene family and in this study we report the first comprehensive analysis of the PME gene family in bread wheat (Triticum aestivum L.). Like in other species, the members of the TaPME family are dispersed throughout the genome and their encoded products retain the typical structural features of PMEs. qRT-PCR analysis showed variation in the expression pattern of TaPME genes in different tissues and revealed that these genes are mainly expressed in flowering spikes. In our attempt to identify putative TaPME genes involved in wheat defense, we revealed a strong variation in the expression of the TaPME following Fusarium graminearum infection, the causal agent of Fusarium head blight (FHB). Particularly interesting was the finding that the expression profile of some PME genes was markedly different between the FHB-resistant wheat cultivar Sumai3 and the FHB-susceptible cultivar Bobwhite, suggesting a possible involvement of these PME genes in FHB resistance. Moreover, the expression analysis of the TaPME genes during F. graminearum progression within the spike revealed those genes that responded more promptly to pathogen invasion. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Chicken genome analysis reveals novel genes encoding biotin-binding proteins related to avidin family

    PubMed Central

    Niskanen, Einari A; Hytönen, Vesa P; Grapputo, Alessandro; Nordlund, Henri R; Kulomaa, Markku S; Laitinen, Olli H

    2005-01-01

    Background A chicken egg contains several biotin-binding proteins (BBPs), whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Results Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. Conclusion We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins. PMID:15777476

  19. Marine biomass program: plant breeding and genetics. Annual report, September 1984-December 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neushul, M.; Harger, B.W.W.; Lewis, R.J.

    1986-03-01

    By building on past efforts and adding to the data base that has been assembled, and through collaborative research with others, progress has been made toward the long-term goal of growing macroalgae in the sea as a future source of substitute natural gas. It is encouraging that the authors program is being emulated in Japan and Sweden, and that there is growing interest in using the unique GRI kelp seedstock collection by workers in Germany, Japan, Alaska, Oregon, California, and elsewhere. This annual report discusses progress made in propagating kelps, and the floating gulf-weed, Sargassum. Work on kelp genetics hasmore » revealed high levels of compatability between species and genera, based on 166 hybridization tests.« less

  20. Genome-wide identification and comparative expression analysis reveal a rapid expansion and functional divergence of duplicated genes in the WRKY gene family of cabbage, Brassica oleracea var. capitata.

    PubMed

    Yao, Qiu-Yang; Xia, En-Hua; Liu, Fei-Hu; Gao, Li-Zhi

    2015-02-15

    WRKY transcription factors (TFs), one of the ten largest TF families in higher plants, play important roles in regulating plant development and resistance. To date, little is known about the WRKY TF family in Brassica oleracea. Recently, the completed genome sequence of cabbage (B. oleracea var. capitata) allows us to systematically analyze WRKY genes in this species. A total of 148 WRKY genes were characterized and classified into seven subgroups that belong to three major groups. Phylogenetic and synteny analyses revealed that the repertoire of cabbage WRKY genes was derived from a common ancestor shared with Arabidopsis thaliana. The B. oleracea WRKY genes were found to be preferentially retained after the whole-genome triplication (WGT) event in its recent ancestor, suggesting that the WGT event had largely contributed to a rapid expansion of the WRKY gene family in B. oleracea. The analysis of RNA-Seq data from various tissues (i.e., roots, stems, leaves, buds, flowers and siliques) revealed that most of the identified WRKY genes were positively expressed in cabbage, and a large portion of them exhibited patterns of differential and tissue-specific expression, demonstrating that these gene members might play essential roles in plant developmental processes. Comparative analysis of the expression level among duplicated genes showed that gene expression divergence was evidently presented among cabbage WRKY paralogs, indicating functional divergence of these duplicated WRKY genes. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Comparative and evolutionary analysis of the HES/HEY gene family reveal exon/intron loss and teleost specific duplication events.

    PubMed

    Zhou, Mi; Yan, Jun; Ma, Zhaowu; Zhou, Yang; Abbood, Nibras Najm; Liu, Jianfeng; Su, Li; Jia, Haibo; Guo, An-Yuan

    2012-01-01

    HES/HEY genes encode a family of basic helix-loop-helix (bHLH) transcription factors with both bHLH and Orange domain. HES/HEY proteins are direct targets of the Notch signaling pathway and play an essential role in developmental decisions, such as the developments of nervous system, somitogenesis, blood vessel and heart. Despite their important functions, the origin and evolution of this HES/HEY gene family has yet to be elucidated. In this study, we identified genes of the HES/HEY family in representative species and performed evolutionary analysis to elucidate their origin and evolutionary process. Our results showed that the HES/HEY genes only existed in metazoans and may originate from the common ancestor of metazoans. We identified HES/HEY genes in more than 10 species representing the main lineages. Combining the bHLH and Orange domain sequences, we constructed the phylogenetic trees by different methods (Bayesian, ML, NJ and ME) and classified the HES/HEY gene family into four groups. Our results indicated that this gene family had undergone three expansions, which were along with the origins of Eumetazoa, vertebrate, and teleost. Gene structure analysis revealed that the HES/HEY genes were involved in exon and/or intron loss in different species lineages. Genes of this family were duplicated in bony fishes and doubled than other vertebrates. Furthermore, we studied the teleost-specific duplications in zebrafish and investigated the expression pattern of duplicated genes in different tissues by RT-PCR. Finally, we proposed a model to show the evolution of this gene family with processes of expansion, exon/intron loss, and motif loss. Our study revealed the evolution of HES/HEY gene family, the expression and function divergence of duplicated genes, which also provide clues for the research of Notch function in development. This study shows a model of gene family analysis with gene structure evolution and duplication.

  2. Analysis of clock-regulated genes in Neurospora reveals widespread posttranscriptional control of metabolic potential

    PubMed Central

    Hurley, Jennifer M.; Dasgupta, Arko; Emerson, Jillian M.; Zhou, Xiaoying; Ringelberg, Carol S.; Knabe, Nicole; Lipzen, Anna M.; Lindquist, Erika A.; Daum, Christopher G.; Barry, Kerrie W.; Grigoriev, Igor V.; Smith, Kristina M.; Galagan, James E.; Bell-Pedersen, Deborah; Freitag, Michael; Cheng, Chao; Loros, Jennifer J.; Dunlap, Jay C.

    2014-01-01

    Neurospora crassa has been for decades a principal model for filamentous fungal genetics and physiology as well as for understanding the mechanism of circadian clocks. Eukaryotic fungal and animal clocks comprise transcription-translation–based feedback loops that control rhythmic transcription of a substantial fraction of these transcriptomes, yielding the changes in protein abundance that mediate circadian regulation of physiology and metabolism: Understanding circadian control of gene expression is key to understanding eukaryotic, including fungal, physiology. Indeed, the isolation of clock-controlled genes (ccgs) was pioneered in Neurospora where circadian output begins with binding of the core circadian transcription factor WCC to a subset of ccg promoters, including those of many transcription factors. High temporal resolution (2-h) sampling over 48 h using RNA sequencing (RNA-Seq) identified circadianly expressed genes in Neurospora, revealing that from ∼10% to as much 40% of the transcriptome can be expressed under circadian control. Functional classifications of these genes revealed strong enrichment in pathways involving metabolism, protein synthesis, and stress responses; in broad terms, daytime metabolic potential favors catabolism, energy production, and precursor assembly, whereas night activities favor biosynthesis of cellular components and growth. Discriminative regular expression motif elicitation (DREME) identified key promoter motifs highly correlated with the temporal regulation of ccgs. Correlations between ccg abundance from RNA-Seq, the degree of ccg-promoter activation as reported by ccg-promoter–luciferase fusions, and binding of WCC as measured by ChIP-Seq, are not strong. Therefore, although circadian activation is critical to ccg rhythmicity, posttranscriptional regulation plays a major role in determining rhythmicity at the mRNA level. PMID:25362047

  3. Transcriptome Analysis of an Anthracnose-Resistant Tea Plant Cultivar Reveals Genes Associated with Resistance to Colletotrichum camelliae

    PubMed Central

    Wang, Lu; Wang, Yuchun; Cao, Hongli; Hao, Xinyuan; Zeng, Jianming; Yang, Yajun; Wang, Xinchao

    2016-01-01

    Tea plant breeding is a topic of great economic importance. However, disease remains a major cause of yield and quality losses. In this study, an anthracnose-resistant cultivar, ZC108, was developed. An infection assay revealed different responses to Colletotrichum sp. infection between ZC108 and its parent cultivar LJ43. ZC108 had greater resistance than LJ43 to Colletotrichum camelliae. Additionally, ZC108 exhibited earlier sprouting in the spring, as well as different leaf shape and plant architecture. Microarray data revealed that the genes that are differentially expressed between LJ43 and ZC108 mapped to secondary metabolism-related pathways, including phenylpropanoid biosynthesis, phenylalanine metabolism, and flavonoid biosynthesis pathways. In addition, genes involved in plant hormone biosynthesis and signaling as well as plant-pathogen interaction pathways were also changed. Quantitative real-time PCR was used to examine the expression of 27 selected genes in infected and uninfected tea plant leaves. Genes encoding a MADS-box transcription factor, NBS-LRR disease-resistance protein, and phenylpropanoid metabolism pathway components (CAD, CCR, POD, beta-glucosidase, ALDH and PAL) were among those differentially expressed in ZC108. PMID:26849553

  4. In-depth comparative analysis of malaria parasite genomes reveals protein-coding genes linked to human disease in Plasmodium falciparum genome.

    PubMed

    Liu, Xuewu; Wang, Yuanyuan; Liang, Jiao; Wang, Luojun; Qin, Na; Zhao, Ya; Zhao, Gang

    2018-05-02

    Plasmodium falciparum is the most virulent malaria parasite capable of parasitizing human erythrocytes. The identification of genes related to this capability can enhance our understanding of the molecular mechanisms underlying human malaria and lead to the development of new therapeutic strategies for malaria control. With the availability of several malaria parasite genome sequences, performing computational analysis is now a practical strategy to identify genes contributing to this disease. Here, we developed and used a virtual genome method to assign 33,314 genes from three human malaria parasites, namely, P. falciparum, P. knowlesi and P. vivax, and three rodent malaria parasites, namely, P. berghei, P. chabaudi and P. yoelii, to 4605 clusters. Each cluster consisted of genes whose protein sequences were significantly similar and was considered as a virtual gene. Comparing the enriched values of all clusters in human malaria parasites with those in rodent malaria parasites revealed 115 P. falciparum genes putatively responsible for parasitizing human erythrocytes. These genes are mainly located in the chromosome internal regions and participate in many biological processes, including membrane protein trafficking and thiamine biosynthesis. Meanwhile, 289 P. berghei genes were included in the rodent parasite-enriched clusters. Most are located in subtelomeric regions and encode erythrocyte surface proteins. Comparing cluster values in P. falciparum with those in P. vivax and P. knowlesi revealed 493 candidate genes linked to virulence. Some of them encode proteins present on the erythrocyte surface and participate in cytoadhesion, virulence factor trafficking, or erythrocyte invasion, but many genes with unknown function were also identified. Cerebral malaria is characterized by accumulation of infected erythrocytes at trophozoite stage in brain microvascular. To discover cerebral malaria-related genes, fast Fourier transformation (FFT) was introduced to extract

  5. Flexibility and symmetry of prokaryotic genome rearrangement reveal lineage-associated core-gene-defined genome organizational frameworks.

    PubMed

    Kang, Yu; Gu, Chaohao; Yuan, Lina; Wang, Yue; Zhu, Yanmin; Li, Xinna; Luo, Qibin; Xiao, Jingfa; Jiang, Daquan; Qian, Minping; Ahmed Khan, Aftab; Chen, Fei; Zhang, Zhang; Yu, Jun

    2014-11-25

    The prokaryotic pangenome partitions genes into core and dispensable genes. The order of core genes, albeit assumed to be stable under selection in general, is frequently interrupted by horizontal gene transfer and rearrangement, but how a core-gene-defined genome maintains its stability or flexibility remains to be investigated. Based on data from 30 species, including 425 genomes from six phyla, we grouped core genes into syntenic blocks in the context of a pangenome according to their stability across multiple isolates. A subset of the core genes, often species specific and lineage associated, formed a core-gene-defined genome organizational framework (cGOF). Such cGOFs are either single segmental (one-third of the species analyzed) or multisegmental (the rest). Multisegment cGOFs were further classified into symmetric or asymmetric according to segment orientations toward the origin-terminus axis. The cGOFs in Gram-positive species are exclusively symmetric and often reversible in orientation, as opposed to those of the Gram-negative bacteria, which are all asymmetric and irreversible. Meanwhile, all species showing strong strand-biased gene distribution contain symmetric cGOFs and often specific DnaE (α subunit of DNA polymerase III) isoforms. Furthermore, functional evaluations revealed that cGOF genes are hub associated with regard to cellular activities, and the stability of cGOF provides efficient indexes for scaffold orientation as demonstrated by assembling virtual and empirical genome drafts. cGOFs show species specificity, and the symmetry of multisegmental cGOFs is conserved among taxa and constrained by DNA polymerase-centric strand-biased gene distribution. The definition of species-specific cGOFs provides powerful guidance for genome assembly and other structure-based analysis. Prokaryotic genomes are frequently interrupted by horizontal gene transfer (HGT) and rearrangement. To know whether there is a set of genes not only conserved in position

  6. Hox gene cluster of the ascidian, Halocynthia roretzi, reveals multiple ancient steps of cluster disintegration during ascidian evolution.

    PubMed

    Sekigami, Yuka; Kobayashi, Takuya; Omi, Ai; Nishitsuji, Koki; Ikuta, Tetsuro; Fujiyama, Asao; Satoh, Noriyuki; Saiga, Hidetoshi

    2017-01-01

    Hox gene clusters with at least 13 paralog group (PG) members are common in vertebrate genomes and in that of amphioxus. Ascidians, which belong to the subphylum Tunicata (Urochordata), are phylogenetically positioned between vertebrates and amphioxus, and traditionally divided into two groups: the Pleurogona and the Enterogona. An enterogonan ascidian, Ciona intestinalis ( Ci ), possesses nine Hox genes localized on two chromosomes; thus, the Hox gene cluster is disintegrated. We investigated the Hox gene cluster of a pleurogonan ascidian, Halocynthia roretzi ( Hr ) to investigate whether Hox gene cluster disintegration is common among ascidians, and if so, how such disintegration occurred during ascidian or tunicate evolution. Our phylogenetic analysis reveals that the Hr Hox gene complement comprises nine members, including one with a relatively divergent Hox homeodomain sequence. Eight of nine Hr Hox genes were orthologous to Ci-Hox1 , 2, 3, 4, 5, 10, 12 and 13. Following the phylogenetic classification into 13 PGs, we designated Hr Hox genes as Hox1, 2, 3, 4, 5, 10, 11/12/13.a , 11/12/13.b and HoxX . To address the chromosomal arrangement of the nine Hox genes, we performed two-color chromosomal fluorescent in situ hybridization, which revealed that the nine Hox genes are localized on a single chromosome in Hr , distinct from their arrangement in Ci . We further examined the order of the nine Hox genes on the chromosome by chromosome/scaffold walking. This analysis suggested a gene order of Hox1 , 11/12/13.b, 11/12/13.a, 10, 5, X, followed by either Hox4, 3, 2 or Hox2, 3, 4 on the chromosome. Based on the present results and those previously reported in Ci , we discuss the establishment of the Hox gene complement and disintegration of Hox gene clusters during the course of ascidian or tunicate evolution. The Hox gene cluster and the genome must have experienced extensive reorganization during the course of evolution from the ancestral tunicate to Hr and Ci

  7. Comprehensive Gene expression meta-analysis and integrated bioinformatic approaches reveal shared signatures between thrombosis and myeloproliferative disorders

    PubMed Central

    Jha, Prabhash Kumar; Vijay, Aatira; Sahu, Anita; Ashraf, Mohammad Zahid

    2016-01-01

    Thrombosis is a leading cause of morbidity and mortality in patients with myeloproliferative disorders (MPDs), particularly polycythemia vera (PV) and essential thrombocythemia (ET). Despite the attempts to establish a link between them, the shared biological mechanisms are yet to be characterized. An integrated gene expression meta-analysis of five independent publicly available microarray data of the three diseases was conducted to identify shared gene expression signatures and overlapping biological processes. Using INMEX bioinformatic tool, based on combined Effect Size (ES) approaches, we identified a total of 1,157 differentially expressed genes (DEGs) (697 overexpressed and 460 underexpressed genes) shared between the three diseases. EnrichR tool’s rich library was used for comprehensive functional enrichment and pathway analysis which revealed “mRNA Splicing” and “SUMO E3 ligases SUMOylate target proteins” among the most enriched terms. Network based meta-analysis identified MYC and FN1 to be the most highly ranked hub genes. Our results reveal that the alterations in biomarkers of the coagulation cascade like F2R, PROS1, SELPLG and ITGB2 were common between the three diseases. Interestingly, the study has generated a novel database of candidate genetic markers, pathways and transcription factors shared between thrombosis and MPDs, which might aid in the development of prognostic therapeutic biomarkers. PMID:27892526

  8. Population genomics reveals a candidate gene involved in bumble bee pigmentation.

    PubMed

    Pimsler, Meaghan L; Jackson, Jason M; Lozier, Jeffrey D

    2017-05-01

    Variation in bumble bee color patterns is well-documented within and between species. Identifying the genetic mechanisms underlying such variation may be useful in revealing evolutionary forces shaping rapid phenotypic diversification. The widespread North American species Bombus bifarius exhibits regional variation in abdominal color forms, ranging from red-banded to black-banded phenotypes and including geographically and phenotypically intermediate forms. Identifying genomic regions linked to this variation has been complicated by strong, near species level, genome-wide differentiation between red- and black-banded forms. Here, we instead focus on the closely related black-banded and intermediate forms that both belong to the subspecies B. bifarius nearcticus . We analyze an RNA sequencing (RNAseq) data set and identify a cluster of single nucleotide polymorphisms (SNPs) within one gene, Xanthine dehydrogenase/oxidase -like, that exhibit highly unusual differentiation compared to the rest of the sequenced genome. Homologs of this gene contribute to pigmentation in other insects, and results thus represent a strong candidate for investigating the genetic basis of pigment variation in B. bifarius and other bumble bee mimicry complexes.

  9. Differential Anoxic Expression of Sugar-Regulated Genes Reveals Diverse Interactions between Sugar and Anaerobic Signaling Systems in Rice

    PubMed Central

    Lim, Mi-na; Lee, Sung-eun; Yim, Hui-kyeong; Kim, Jeong Hoe; Yoon, In Sun; Hwang, Yong-sic

    2013-01-01

    The interaction between the dual roles of sugar as a metabolic fuel and a regulatory molecule was unveiled by examining the changes in sugar signaling upon oxygen deprivation, which causes the drastic alteration in the cellular energy status. In our study, the expression of anaerobically induced genes is commonly responsive to sugar, either under the control of hexokinase or non-hexokinase mediated signaling cascades. Only sugar regulation via the hexokinase pathway was susceptible for O2 deficiency or energy deficit conditions evoked by uncoupler. Examination of sugar regulation of those genes under anaerobic conditions revealed the presence of multiple paths underlying anaerobic induction of gene expression in rice, subgrouped into three distinct types. The first of these, which was found in type-1 genes, involved neither sugar regulation nor additional anaerobic induction under anoxia, indicating that anoxic induction is a simple result from the release of sugar repression by O2-deficient conditions. In contrast, type-2 genes also showed no sugar regulation, albeit with enhanced expression under anoxia. Lastly, expression of type-3 genes is highly enhanced with sugar regulation sustained under anoxia. Intriguingly, the inhibition of the mitochondrial ATP synthesis can reproduce expression pattern of a specific set of anaerobically induced genes, implying that rice cells may sense O2 deprivation, partly via perception of the perturbed cellular energy status. Our study of interaction between sugar signaling and anaerobic conditions has revealed that sugar signaling and the cellular energy status are likely to communicate with each other and influence anaerobic induction of gene expression in rice. PMID:23852132

  10. DNA entropy reveals a significant difference in complexity between housekeeping and tissue specific gene promoters.

    PubMed

    Thomas, David; Finan, Chris; Newport, Melanie J; Jones, Susan

    2015-10-01

    The complexity of DNA can be quantified using estimates of entropy. Variation in DNA complexity is expected between the promoters of genes with different transcriptional mechanisms; namely housekeeping (HK) and tissue specific (TS). The former are transcribed constitutively to maintain general cellular functions, and the latter are transcribed in restricted tissue and cells types for specific molecular events. It is known that promoter features in the human genome are related to tissue specificity, but this has been difficult to quantify on a genomic scale. If entropy effectively quantifies DNA complexity, calculating the entropies of HK and TS gene promoters as profiles may reveal significant differences. Entropy profiles were calculated for a total dataset of 12,003 human gene promoters and for 501 housekeeping (HK) and 587 tissue specific (TS) human gene promoters. The mean profiles show the TS promoters have a significantly lower entropy (p<2.2e-16) than HK gene promoters. The entropy distributions for the 3 datasets show that promoter entropies could be used to identify novel HK genes. Functional features comprise DNA sequence patterns that are non-random and hence they have lower entropies. The lower entropy of TS gene promoters can be explained by a higher density of positive and negative regulatory elements, required for genes with complex spatial and temporary expression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. QTL mapping and transcriptome analysis of cowpea reveals candidate genes for root-knot nematode resistance.

    PubMed

    Santos, Jansen Rodrigo Pereira; Ndeve, Arsenio Daniel; Huynh, Bao-Lam; Matthews, William Charles; Roberts, Philip Alan

    2018-01-01

    Cowpea is one of the most important food and forage legumes in drier regions of the tropics and subtropics. However, cowpea yield worldwide is markedly below the known potential due to abiotic and biotic stresses, including parasitism by root-knot nematodes (Meloidogyne spp., RKN). Two resistance genes with dominant effect, Rk and Rk2, have been reported to provide resistance against RKN in cowpea. Despite their description and use in breeding for resistance to RKN and particularly genetic mapping of the Rk locus, the exact genes conferring resistance to RKN remain unknown. In the present work, QTL mapping using recombinant inbred line (RIL) population 524B x IT84S-2049 segregating for a newly mapped locus and analysis of the transcriptome changes in two cowpea near-isogenic lines (NIL) were used to identify candidate genes for Rk and the newly mapped locus. A major QTL, designated QRk-vu9.1, associated with resistance to Meloidogyne javanica reproduction, was detected and mapped on linkage group LG9 at position 13.37 cM using egg production data. Transcriptome analysis on resistant and susceptible NILs 3 and 9 days after inoculation revealed up-regulation of 109 and 98 genes and down-regulation of 110 and 89 genes, respectively, out of 19,922 unique genes mapped to the common bean reference genome. Among the differentially expressed genes, four and nine genes were found within the QRk-vu9.1 and QRk-vu11.1 QTL intervals, respectively. Six of these genes belong to the TIR-NBS-LRR family of resistance genes and three were upregulated at one or more time-points. Quantitative RT-PCR validated gene expression to be positively correlated with RNA-seq expression pattern for eight genes. Future functional analysis of these cowpea genes will enhance our understanding of Rk-mediated resistance and identify the specific gene responsible for the resistance.

  12. TALEN-engineered AR gene rearrangements reveal endocrine uncoupling of androgen receptor in prostate cancer

    PubMed Central

    Nyquist, Michael D.; Li, Yingming; Hwang, Tae Hyun; Manlove, Luke S.; Vessella, Robert L.; Silverstein, Kevin A. T.; Voytas, Daniel F.; Dehm, Scott M.

    2013-01-01

    Androgen receptor (AR) target genes direct development and survival of the prostate epithelial lineage, including prostate cancer (PCa). Thus, endocrine therapies that inhibit the AR ligand-binding domain (LBD) are effective in treating PCa. AR transcriptional reactivation is central to resistance, as evidenced by the efficacy of AR retargeting in castration-resistant PCa (CRPC) with next-generation endocrine therapies abiraterone and enzalutamide. However, resistance to abiraterone and enzalutamide limits this efficacy in most men, and PCa remains the second-leading cause of male cancer deaths. Here we show that AR gene rearrangements in CRPC tissues underlie a completely androgen-independent, yet AR-dependent, resistance mechanism. We discovered intragenic AR gene rearrangements in CRPC tissues, which we modeled using transcription activator-like effector nuclease (TALEN)-mediated genome engineering. This modeling revealed that these AR gene rearrangements blocked full-length AR synthesis, but promoted expression of truncated AR variant proteins lacking the AR ligand-binding domain. Furthermore, these AR variant proteins maintained the constitutive activity of the AR transcriptional program and a CRPC growth phenotype independent of full-length AR or androgens. These findings demonstrate that AR gene rearrangements are a unique resistance mechanism by which AR transcriptional activity can be uncoupled from endocrine regulation in CRPC. PMID:24101480

  13. Matrix factorization reveals aging-specific co-expression gene modules in the fat and muscle tissues in nonhuman primates

    NASA Astrophysics Data System (ADS)

    Wang, Yongcui; Zhao, Weiling; Zhou, Xiaobo

    2016-10-01

    Accurate identification of coherent transcriptional modules (subnetworks) in adipose and muscle tissues is important for revealing the related mechanisms and co-regulated pathways involved in the development of aging-related diseases. Here, we proposed a systematically computational approach, called ICEGM, to Identify the Co-Expression Gene Modules through a novel mathematical framework of Higher-Order Generalized Singular Value Decomposition (HO-GSVD). ICEGM was applied on the adipose, and heart and skeletal muscle tissues in old and young female African green vervet monkeys. The genes associated with the development of inflammation, cardiovascular and skeletal disorder diseases, and cancer were revealed by the ICEGM. Meanwhile, genes in the ICEGM modules were also enriched in the adipocytes, smooth muscle cells, cardiac myocytes, and immune cells. Comprehensive disease annotation and canonical pathway analysis indicated that immune cells, adipocytes, cardiomyocytes, and smooth muscle cells played a synergistic role in cardiac and physical functions in the aged monkeys by regulation of the biological processes associated with metabolism, inflammation, and atherosclerosis. In conclusion, the ICEGM provides an efficiently systematic framework for decoding the co-expression gene modules in multiple tissues. Analysis of genes in the ICEGM module yielded important insights on the cooperative role of multiple tissues in the development of diseases.

  14. Network Analysis Reveals Putative Genes Affecting Meat Quality in Angus Cattle.

    PubMed

    Mateescu, Raluca G; Garrick, Dorian J; Reecy, James M

    2017-01-01

    Improvements in eating satisfaction will benefit consumers and should increase beef demand which is of interest to the beef industry. Tenderness, juiciness, and flavor are major determinants of the palatability of beef and are often used to reflect eating satisfaction. Carcass qualities are used as indicator traits for meat quality, with higher quality grade carcasses expected to relate to more tender and palatable meat. However, meat quality is a complex concept determined by many component traits making interpretation of genome-wide association studies (GWAS) on any one component challenging to interpret. Recent approaches combining traditional GWAS with gene network interactions theory could be more efficient in dissecting the genetic architecture of complex traits. Phenotypic measures of 23 traits reflecting carcass characteristics, components of meat quality, along with mineral and peptide concentrations were used along with Illumina 54k bovine SNP genotypes to derive an annotated gene network associated with meat quality in 2,110 Angus beef cattle. The efficient mixed model association (EMMAX) approach in combination with a genomic relationship matrix was used to directly estimate the associations between 54k SNP genotypes and each of the 23 component traits. Genomic correlated regions were identified by partial correlations which were further used along with an information theory algorithm to derive gene network clusters. Correlated SNP across 23 component traits were subjected to network scoring and visualization software to identify significant SNP. Significant pathways implicated in the meat quality complex through GO term enrichment analysis included angiogenesis, inflammation, transmembrane transporter activity, and receptor activity. These results suggest that network analysis using partial correlations and annotation of significant SNP can reveal the genetic architecture of complex traits and provide novel information regarding biological mechanisms

  15. Gene expression profile analysis of Ligon lintless-1 (Li1) mutant reveals important genes and pathways in cotton leaf and fiber development.

    PubMed

    Ding, Mingquan; Jiang, Yurong; Cao, Yuefen; Lin, Lifeng; He, Shae; Zhou, Wei; Rong, Junkang

    2014-02-10

    Ligon lintless-1 (Li1) is a monogenic dominant mutant of Gossypium hirsutum (upland cotton) with a phenotype of impaired vegetative growth and short lint fibers. Despite years of research involving genetic mapping and gene expression profile analysis of Li1 mutant ovule tissues, the gene remains uncloned and the underlying pathway of cotton fiber elongation is still unclear. In this study, we report the whole genome-level deep-sequencing analysis of leaf tissues of the Li1 mutant. Differentially expressed genes in leaf tissues of mutant versus wild-type (WT) plants are identified, and the underlying pathways and potential genes that control leaf and fiber development are inferred. The results show that transcription factors AS2, YABBY5, and KANDI-like are significantly differentially expressed in mutant tissues compared with WT ones. Interestingly, several fiber development-related genes are found in the downregulated gene list of the mutant leaf transcriptome. These genes include heat shock protein family, cytoskeleton arrangement, cell wall synthesis, energy, H2O2 metabolism-related genes, and WRKY transcription factors. This finding suggests that the genes are involved in leaf morphology determination and fiber elongation. The expression data are also compared with the previously published microarray data of Li1 ovule tissues. Comparative analysis of the ovule transcriptomes of Li1 and WT reveals that a number of pathways important for fiber elongation are enriched in the downregulated gene list at different fiber development stages (0, 6, 9, 12, 15, 18dpa). Differentially expressed genes identified in both leaf and fiber samples are aligned with cotton whole genome sequences and combined with the genetic fine mapping results to identify a list of candidate genes for Li1. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Global analysis of gene expression in pulmonary fibrosis reveals distinct programs regulating lung inflammation and fibrosis

    NASA Astrophysics Data System (ADS)

    Kaminski, Naftali; Allard, John D.; Pittet, Jean F.; Zuo, Fengrong; Griffiths, Mark J. D.; Morris, David; Huang, Xiaozhu; Sheppard, Dean; Heller, Renu A.

    2000-02-01

    The molecular mechanisms of pulmonary fibrosis are poorly understood. We have used oligonucleotide arrays to analyze the gene expression programs that underlie pulmonary fibrosis in response to bleomycin, a drug that causes lung inflammation and fibrosis, in two strains of susceptible mice (129 and C57BL/6). We then compared the gene expression patterns in these mice with 129 mice carrying a null mutation in the epithelial-restricted integrin 6 subunit (6/-), which develop inflammation but are protected from pulmonary fibrosis. Cluster analysis identified two distinct groups of genes involved in the inflammatory and fibrotic responses. Analysis of gene expression at multiple time points after bleomycin administration revealed sequential induction of subsets of genes that characterize each response. The availability of this comprehensive data set should accelerate the development of more effective strategies for intervention at the various stages in the development of fibrotic diseases of the lungs and other organs.

  17. Comparative and Evolutionary Analysis of the HES/HEY Gene Family Reveal Exon/Intron Loss and Teleost Specific Duplication Events

    PubMed Central

    Ma, Zhaowu; Zhou, Yang; Abbood, Nibras Najm; Liu, Jianfeng; Su, Li; Jia, Haibo; Guo, An-Yuan

    2012-01-01

    Background HES/HEY genes encode a family of basic helix-loop-helix (bHLH) transcription factors with both bHLH and Orange domain. HES/HEY proteins are direct targets of the Notch signaling pathway and play an essential role in developmental decisions, such as the developments of nervous system, somitogenesis, blood vessel and heart. Despite their important functions, the origin and evolution of this HES/HEY gene family has yet to be elucidated. Methods and Findings In this study, we identified genes of the HES/HEY family in representative species and performed evolutionary analysis to elucidate their origin and evolutionary process. Our results showed that the HES/HEY genes only existed in metazoans and may originate from the common ancestor of metazoans. We identified HES/HEY genes in more than 10 species representing the main lineages. Combining the bHLH and Orange domain sequences, we constructed the phylogenetic trees by different methods (Bayesian, ML, NJ and ME) and classified the HES/HEY gene family into four groups. Our results indicated that this gene family had undergone three expansions, which were along with the origins of Eumetazoa, vertebrate, and teleost. Gene structure analysis revealed that the HES/HEY genes were involved in exon and/or intron loss in different species lineages. Genes of this family were duplicated in bony fishes and doubled than other vertebrates. Furthermore, we studied the teleost-specific duplications in zebrafish and investigated the expression pattern of duplicated genes in different tissues by RT-PCR. Finally, we proposed a model to show the evolution of this gene family with processes of expansion, exon/intron loss, and motif loss. Conclusions Our study revealed the evolution of HES/HEY gene family, the expression and function divergence of duplicated genes, which also provide clues for the research of Notch function in development. This study shows a model of gene family analysis with gene structure evolution and

  18. A multi-decade time series of kelp forest community structure at San Nicolas Island, California

    USGS Publications Warehouse

    Lafferty, Kevin D.; Kenner, Michael C.; Estes, James A.; Tinker, M. Tim; Bodkin, James L.; Cowen, Robert K.; Harrold, Christopher; Novak, Mark; Rassweiler, Andrew; Reed, Daniel C.

    2013-01-01

    San Nicolas Island is surrounded by broad areas of shallow subtidal habitat, characterized by dynamic kelp forest communities that undergo dramatic and abrupt shifts in community composition. Although these reefs are fished, the physical isolation of the island means that they receive less impact from human activities than most reefs in Southern California, making San Nicolas an ideal place to evaluate alternative theories about the dynamics of these communities. Here we present monitoring data from seven sampling stations surrounding the island, including data on fish, invertebrate, and algal abundance. These data are unusual among subtidal monitoring data sets in that they combine relatively frequent sampling (twice per year) with an exceptionally long time series (since 1980). Other outstanding qualities of the data set are the high taxonomic resolution captured and the monitoring of permanent quadrats and swaths where the history of the community structure at specific locations has been recorded through time. Finally, the data span a period that includes two of the strongest ENSO events on record, a major shift in the Pacific decadal oscillation, and the reintroduction of sea otters to the island in 1987 after at least 150 years of absence. These events provide opportunities to evaluate the effects of bottom-up forcing, top-down control, and physical disturbance on shallow rocky reef communities.

  19. Effect of Kelp Waste Extracts on the Growth and Development of Pakchoi (Brassica chinensis L.)

    NASA Astrophysics Data System (ADS)

    Zheng, Shiyan; Jiang, Jie; He, Meilin; Zou, Shanmei; Wang, Changhai

    2016-12-01

    To explore the effects of kelp waste extracts (KWE) on the growth and development of Brassia chinensis L., germination and greenhouse experiments were carried out under different concentrations of KWE. The results showed that a higher germination percentage (95%), associated with high germination index (8.70), germination energy (71.67%) and seedling vigor index (734.67), was obtained under a lower KWE concentration (2%) compared with the control. The radicle length (4.97 cm), fresh weight (0.32 g/10 seedlings) and dry weight (0.015 g/10 seedlings) were significantly increased in the treatment of 2% KWE. KWE also could enhance the root growth, the maximum leaf length × width and the fresh weight of plants, the optimal value of which increased by 8.37 cm, 58.14 cm2 and 7.76 g under the treatment of 10% KWE compared with the control respectively. Meanwhile, the contents of vitamin C and soluble sugars in pakchoi leaf were improved by 19.6 mg/100 g and 1.44 mg/g compared with the control, and the nitrate content was decreased by 212.27 mg/kg. Briefly, KWE could markedly stimulate the pakchoi seeds germination at a lower concentration (2%) and enhance the plant growth and quality at a higher concentration (10%).

  20. Transcriptome Analysis of Aspergillus flavus Reveals veA-Dependent Regulation of Secondary Metabolite Gene Clusters, Including the Novel Aflavarin Cluster

    PubMed Central

    Cary, J. W.; Han, Z.; Yin, Y.; Lohmar, J. M.; Shantappa, S.; Harris-Coward, P. Y.; Mack, B.; Ehrlich, K. C.; Wei, Q.; Arroyo-Manzanares, N.; Uka, V.; Vanhaecke, L.; Bhatnagar, D.; Yu, J.; Nierman, W. C.; Johns, M. A.; Sorensen, D.; Shen, H.; De Saeger, S.; Diana Di Mavungu, J.

    2015-01-01

    The global regulatory veA gene governs development and secondary metabolism in numerous fungal species, including Aspergillus flavus. This is especially relevant since A. flavus infects crops of agricultural importance worldwide, contaminating them with potent mycotoxins. The most well-known are aflatoxins, which are cytotoxic and carcinogenic polyketide compounds. The production of aflatoxins and the expression of genes implicated in the production of these mycotoxins are veA dependent. The genes responsible for the synthesis of aflatoxins are clustered, a signature common for genes involved in fungal secondary metabolism. Studies of the A. flavus genome revealed many gene clusters possibly connected to the synthesis of secondary metabolites. Many of these metabolites are still unknown, or the association between a known metabolite and a particular gene cluster has not yet been established. In the present transcriptome study, we show that veA is necessary for the expression of a large number of genes. Twenty-eight out of the predicted 56 secondary metabolite gene clusters include at least one gene that is differentially expressed depending on presence or absence of veA. One of the clusters under the influence of veA is cluster 39. The absence of veA results in a downregulation of the five genes found within this cluster. Interestingly, our results indicate that the cluster is expressed mainly in sclerotia. Chemical analysis of sclerotial extracts revealed that cluster 39 is responsible for the production of aflavarin. PMID:26209694

  1. Dynamic Compression of Chondrocyte-Agarose Constructs Reveals New Candidate Mechanosensitive Genes

    PubMed Central

    Bougault, Carole; Aubert-Foucher, Elisabeth; Paumier, Anne; Perrier-Groult, Emeline; Huot, Ludovic; Hot, David; Duterque-Coquillaud, Martine; Mallein-Gerin, Frédéric

    2012-01-01

    Articular cartilage is physiologically exposed to repeated loads. The mechanical properties of cartilage are due to its extracellular matrix, and homeostasis is maintained by the sole cell type found in cartilage, the chondrocyte. Although mechanical forces clearly control the functions of articular chondrocytes, the biochemical pathways that mediate cellular responses to mechanical stress have not been fully characterised. The aim of our study was to examine early molecular events triggered by dynamic compression in chondrocytes. We used an experimental system consisting of primary mouse chondrocytes embedded within an agarose hydrogel; embedded cells were pre-cultured for one week and subjected to short-term compression experiments. Using Western blots, we demonstrated that chondrocytes maintain a differentiated phenotype in this model system and reproduce typical chondrocyte-cartilage matrix interactions. We investigated the impact of dynamic compression on the phosphorylation state of signalling molecules and genome-wide gene expression. After 15 min of dynamic compression, we observed transient activation of ERK1/2 and p38 (members of the mitogen-activated protein kinase (MAPK) pathways) and Smad2/3 (members of the canonical transforming growth factor (TGF)-β pathways). A microarray analysis performed on chondrocytes compressed for 30 min revealed that only 20 transcripts were modulated more than 2-fold. A less conservative list of 325 modulated genes included genes related to the MAPK and TGF-β pathways and/or known to be mechanosensitive in other biological contexts. Of these candidate mechanosensitive genes, 85% were down-regulated. Down-regulation may therefore represent a general control mechanism for a rapid response to dynamic compression. Furthermore, modulation of transcripts corresponding to different aspects of cellular physiology was observed, such as non-coding RNAs or primary cilium. This study provides new insight into how chondrocytes respond

  2. Transcriptome analysis reveals differential gene expression in intramuscular adipose tissues of Jinhua and Landrace pigs.

    PubMed

    Miao, Zhiguo; Wei, Panpeng; Khan, Muhammad Akram; Zhang, Jinzhou; Guo, Liping; Liu, Dongyang; Zhang, Xiaojian; Bai, Yueyu; Wang, Shan

    2018-05-01

    Meat is a rich source of protein, fatty acids and carbohydrates for human needs. In addition to necessary nutrients, high fat contents in pork increase the tenderness and juiciness of the meat, featuring diverse application in various dishes. This study investigated the transcriptomic profiles of intramuscular adipose tissues in Jinhua and Landrace pigs by employing advanced RNA sequencing. Results showed significant interesting to note that there were significant differences in the expression of genes. 1,632 genes showed significant differential expression, 837 genes were up-regulated and 195 genes were down-regulated. Variations in genes responsible for cell aggregation, extracellular matrix formation, cellular lipid catabolic process, and fatty acid binding strongly supported that both pig breeds feature variable fat and muscle metabolism. Certain differentially expressed genes are included in the pathway of mitogen-activated protein kinase signaling pathway, Ras signaling pathway and insulin pathway. Results from real-time quantitative polymerase chain reaction also validated the differential expression of 17 mRNAs between meats of the two pig breeds. Overall, these findings reveal significant differences in fat and protein metabolism of intramuscular adipose tissues of two pig breeds at the transcriptomic level and suggest diversification at the genetic level between breeds of the same species.

  3. Genome-wide comparative analysis reveals similar types of NBS genes in hybrid Citrus sinensis genome and original Citrus clementine genome and provides new insights into non-TIR NBS genes

    USDA-ARS?s Scientific Manuscript database

    In this study, we identified and compared nucleotide-binding site (NBS) domain-containing genes from three Citrus genomes (C. clementina, C. sinensis from USA and C. sinensis from China). Phylogenetic analysis of all Citrus NBS genes across these three genomes revealed that there are three approxima...

  4. RNA-sequencing analysis reveals abundant developmental stage-specific and immunity-related genes in the pollen beetle Meligethes aeneus.

    PubMed

    Vogel, H; Badapanda, C; Knorr, E; Vilcinskas, A

    2014-02-01

    The pollen beetle (Meligethes aeneus) is a major pest of oilseed rape (Brassica napus) and other cruciferous crops in Europe. Pesticide-resistant pollen beetle populations are emerging, increasing the economic impact of this species. We isolated total RNA from the larval and adult stages, the latter either naïve or immunized by injection with bacteria and yeast. High-throughput RNA sequencing (RNA-Seq) was carried out to establish a comprehensive transcriptome catalogue and to screen for developmental stage-specific and immunity-related transcripts. We assembled the transcriptome de novo by combining sequence tags from all developmental stages and treatments. Gene expression data based on normalized read counts revealed several functional gene categories that were differentially expressed between larvae and adults, particularly genes associated with digestion and detoxification that were induced in larvae, and genes associated with reproduction and environmental signalling that were induced in adults. We also identified many genes associated with microbe recognition, immunity-related signalling and defence effectors, such as antimicrobial peptides (AMPs) and lysozymes. Digital gene expression analysis revealed significant differences in the profile of AMPs expressed in larvae, naïve adults and immune-challenged adults, providing insight into the steady-state differences between developmental stages and the complex transcriptional remodelling that occurs following the induction of immunity. Our data provide insight into the adaptive mechanisms used by phytophagous insects and could lead to the development of more effective control strategies for insect pests. © 2013 The Royal Entomological Society.

  5. Comparisons of Transcriptional Profiles of Gut Genes between Cry1Ab-Resistant and Susceptible Strains of Ostrinia nubilalis Revealed Genes Possibly Related to the Adaptation of Resistant Larvae to Transgenic Cry1Ab Corn.

    PubMed

    Yao, Jianxiu; Zhu, Yu-Cheng; Lu, Nanyan; Buschman, Lawrent L; Zhu, Kun Yan

    2017-01-30

    A microarray developed on the basis of 2895 unique transcripts from larval gut was used to compare gut gene expression profiles between a laboratory-selected Cry1Ab-resistant (R) strain and its isoline susceptible (S) strain of the European corn borer (Ostrinia nubilalis) after the larvae were fed the leaves of transgenic corn (MON810) expressing Cry1Ab or its non-transgenic isoline for 6 h. We revealed 398 gut genes differentially expressed (i.e., either up- or down-regulated genes with expression ratio ≥2.0) in S-strain, but only 264 gut genes differentially expressed in R-strain after being fed transgenic corn leaves. Although the percentages of down-regulated genes among the total number of differentially expressed genes (50% in S-strain and 45% in R-strain) were similar between the R- and S-strains, the expression ratios of down-regulated genes were much higher in S-strain than in R-strain. We revealed that 17 and 9 significantly up- or down-regulated gut genes from S and R-strain, respectively, including serine proteases and aminopeptidases. These genes may be associated with Cry1Ab toxicity by degradation, binding, and cellular defense. Overall, our study suggests enhanced adaptation of Cry1Ab-resistant larvae on transgenic Cry1Ab corn as revealed by lower number and lower ratios of differentially expressed genes in R-strain than in S-strain of O. nubilalis.

  6. Gene expression analysis reveals schizophrenia-associated dysregulation of immune pathways in peripheral blood mononuclear cells.

    PubMed

    Gardiner, Erin J; Cairns, Murray J; Liu, Bing; Beveridge, Natalie J; Carr, Vaughan; Kelly, Brian; Scott, Rodney J; Tooney, Paul A

    2013-04-01

    Peripheral blood mononuclear cells (PBMCs) represent an accessible tissue source for gene expression profiling in schizophrenia that could provide insight into the molecular basis of the disorder. This study used the Illumina HT_12 microarray platform and quantitative real time PCR (QPCR) to perform mRNA expression profiling on 114 patients with schizophrenia or schizoaffective disorder and 80 non-psychiatric controls from the Australian Schizophrenia Research Bank (ASRB). Differential expression analysis revealed altered expression of 164 genes (59 up-regulated and 105 down-regulated) in the PBMCs from patients with schizophrenia compared to controls. Bioinformatic analysis indicated significant enrichment of differentially expressed genes known to be involved or associated with immune function and regulating the immune response. The differential expression of 6 genes, EIF2C2 (Ago 2), MEF2D, EVL, PI3, S100A12 and DEFA4 was confirmed by QPCR. Genome-wide expression analysis of PBMCs from individuals with schizophrenia was characterized by the alteration of genes with immune system function, supporting the hypothesis that the disorder has a significant immunological component in its etiology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. In situ Expression of Functional Genes Reveals Nitrogen Cycling at High Temperatures in Terrestrial Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Loiacono, S. T.; Meyer-Dombard, D. R.

    2011-12-01

    An essential element for life, nitrogen occurs in all living organisms and is critical for the synthesis of amino acids, proteins, nucleic acids, and other forms of biomass. Thus, nitrogen cycling likely plays a vital role in microbial metabolic processes as well as nutrient availability. For microorganisms in "extreme" environments, this means developing adaptations that allow them to survive in harsh conditions and still perform the metabolisms essential to sustain life. Recent studies have screened biofilms and thermal sediments of Yellowstone National Park (YNP) thermal features for the presence of nifH genes, which code for a key enzyme in the nitrogen fixation process [1-4]. Furthermore, analysis of nitrogen isotopes in biofilms across a temperature and chemical gradient revealed that nitrogen fixation likely varies across the chemosynthetic/photosynthetic ecotone [5]. Although research has evaluated and confirmed the presence of nifH genes in various thermophilic microbial communities, the existence of a gene in the DNA of an organism does not verify its use. Instead, other methods, such as culturing, isotope tracer assays, and gene expression studies are required to provide direct evidence of biological nitrogen fixation. Culturing and isotope tracer approaches have successfully revealed high-temperature biological nitrogen fixation in both marine hydrothermal vent microbial communities [6] and in acidic, terrestrial hydrothermal sediment [3]. Transcriptomics-based techniques (using mRNA extracted from samples to confirm in situ expression of targeted genes) have been much more limited in number, and only a few studies have, to date, investigated in situ expression of the nifH gene in thermophilic microbial communities [2, 7]. This study explores the presence and expression of nifH genes in several features of the Lower Geyser Basin (LGB) of YNP. Nucleic acids from chemosynthetic and photosynthetic microbial communities were extracted and then amplified

  8. Alternative community structures in a kelp-urchin community: A qualitative modeling approach

    USGS Publications Warehouse

    Montano-Moctezuma, G.; Li, H.W.; Rossignol, P.A.

    2007-01-01

    Shifts in interaction patterns within a community may result from periodic disturbances and climate. The question arises as to the extent and significance of these shifting patterns. Using a novel approach to link qualitative mathematical models and field data, namely using the inverse matrix to identify the community matrix, we reconstructed community networks from kelp forests off the Oregon Coast. We simulated all ecologically plausible interactions among community members, selected the models whose outcomes match field observations, and identified highly frequent links to characterize the community network from a particular site. We tested all possible biologically reasonable community networks through qualitative simulations, selected those that matched patterns observed in the field, and further reduced the set of possibilities by retaining those that were stable. We found that a community can be represented by a set of alternative structures, or scenarios. From 11,943,936 simulated models, 0.23% matched the field observations; moreover, only 0.006%, or 748 models, were highly reliable in their predictions and met conditions for stability. Predator-prey interactions as well as non-predatory relationships were consistently found in most of the 748 models. These highly frequent connections were useful to characterize the community network in the study site. We suggest that alternative networks provide the community with a buffer to disturbance, allowing it to continuously reorganize to adapt to a variable environment. This is possible due to the fluctuating capacities of foraging species to consume alternate resources. This suggestion is sustained by our results, which indicate that none of the models that matched field observations were fully connected. This plasticity may contribute to the persistence of these communities. We propose that qualitative simulations represent a powerful technique to raise new hypotheses concerning community dynamics and to

  9. Combined Analysis of the Fruit Metabolome and Transcriptome Reveals Candidate Genes Involved in Flavonoid Biosynthesis in Actinidia arguta.

    PubMed

    Li, Yukuo; Fang, Jinbao; Qi, Xiujuan; Lin, Miaomiao; Zhong, Yunpeng; Sun, Leiming; Cui, Wen

    2018-05-15

    To assess the interrelation between the change of metabolites and the change of fruit color, we performed a combined metabolome and transcriptome analysis of the flesh in two different Actinidia arguta cultivars: "HB" ("Hongbaoshixing") and "YF" ("Yongfengyihao") at two different fruit developmental stages: 70d (days after full bloom) and 100d (days after full bloom). Metabolite and transcript profiling was obtained by ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometer and high-throughput RNA sequencing, respectively. The identification and quantification results of metabolites showed that a total of 28,837 metabolites had been obtained, of which 13,715 were annotated. In comparison of HB100 vs. HB70, 41 metabolites were identified as being flavonoids, 7 of which, with significant difference, were identified as bracteatin, luteolin, dihydromyricetin, cyanidin, pelargonidin, delphinidin and (-)-epigallocatechin. Association analysis between metabolome and transcriptome revealed that there were two metabolic pathways presenting significant differences during fruit development, one of which was flavonoid biosynthesis, in which 14 structural genes were selected to conduct expression analysis, as well as 5 transcription factor genes obtained by transcriptome analysis. RT-qPCR results and cluster analysis revealed that AaF3H , AaLDOX , AaUFGT , AaMYB , AabHLH , and AaHB2 showed the best possibility of being candidate genes. A regulatory network of flavonoid biosynthesis was established to illustrate differentially expressed candidate genes involved in accumulation of metabolites with significant differences, inducing red coloring during fruit development. Such a regulatory network linking genes and flavonoids revealed a system involved in the pigmentation of all-red-fleshed and all-green-fleshed A. arguta , suggesting this conjunct analysis approach is not only useful in understanding the relationship between genotype and phenotype

  10. Network analysis of ChIP-Seq data reveals key genes in prostate cancer.

    PubMed

    Zhang, Yu; Huang, Zhen; Zhu, Zhiqiang; Liu, Jianwei; Zheng, Xin; Zhang, Yuhai

    2014-09-03

    Prostate cancer (PC) is the second most common cancer among men in the United States, and it imposes a considerable threat to human health. A deep understanding of its underlying molecular mechanisms is the premise for developing effective targeted therapies. Recently, deep transcriptional sequencing has been used as an effective genomic assay to obtain insights into diseases and may be helpful in the study of PC. In present study, ChIP-Seq data for PC and normal samples were compared, and differential peaks identified, based upon fold changes (with P-values calculated with t-tests). Annotations of these peaks were performed. Protein-protein interaction (PPI) network analysis was performed with BioGRID and constructed with Cytoscape, following which the highly connected genes were screened. We obtained a total of 5,570 differential peaks, including 3,726 differentially enriched peaks in tumor samples and 1,844 differentially enriched peaks in normal samples. There were eight significant regions of the peaks. The intergenic region possessed the highest score (51%), followed by intronic (31%) and exonic (11%) regions. The analysis revealed the top 35 highly connected genes, which comprised 33 differential genes (such as YWHAQ, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein and θ polypeptide) from ChIP-Seq data and 2 differential genes retrieved from the PPI network: UBA52 (ubiquitin A-52 residue ribosomal protein fusion product (1) and SUMO2 (SMT3 suppressor of mif two 3 homolog (2) . Our findings regarding potential PC-related genes increase the understanding of PC and provides direction for future research.

  11. Comparative expression profiling reveals gene functions in female meiosis and gametophyte development in Arabidopsis.

    PubMed

    Zhao, Lihua; He, Jiangman; Cai, Hanyang; Lin, Haiyan; Li, Yanqiang; Liu, Renyi; Yang, Zhenbiao; Qin, Yuan

    2014-11-01

    Megasporogenesis is essential for female fertility, and requires the accomplishment of meiosis and the formation of functional megaspores. The inaccessibility and low abundance of female meiocytes make it particularly difficult to elucidate the molecular basis underlying megasporogenesis. We used high-throughput tag-sequencing analysis to identify genes expressed in female meiocytes (FMs) by comparing gene expression profiles from wild-type ovules undergoing megasporogenesis with those from the spl mutant ovules, which lack megasporogenesis. A total of 862 genes were identified as FMs, with levels that are consistently reduced in spl ovules in two biological replicates. Fluorescence-assisted cell sorting followed by RNA-seq analysis of DMC1:GFP-labeled female meiocytes confirmed that 90% of the FMs are indeed detected in the female meiocyte protoplast profiling. We performed reverse genetic analysis of 120 candidate genes and identified four FM genes with a function in female meiosis progression in Arabidopsis. We further revealed that KLU, a putative cytochrome P450 monooxygenase, is involved in chromosome pairing during female meiosis, most likely by affecting the normal expression pattern of DMC1 in ovules during female meiosis. Our studies provide valuable information for functional genomic analyses of plant germline development as well as insights into meiosis. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  12. QTL mapping and transcriptome analysis of cowpea reveals candidate genes for root-knot nematode resistance

    PubMed Central

    Ndeve, Arsenio Daniel; Huynh, Bao-Lam; Matthews, William Charles; Roberts, Philip Alan

    2018-01-01

    Cowpea is one of the most important food and forage legumes in drier regions of the tropics and subtropics. However, cowpea yield worldwide is markedly below the known potential due to abiotic and biotic stresses, including parasitism by root-knot nematodes (Meloidogyne spp., RKN). Two resistance genes with dominant effect, Rk and Rk2, have been reported to provide resistance against RKN in cowpea. Despite their description and use in breeding for resistance to RKN and particularly genetic mapping of the Rk locus, the exact genes conferring resistance to RKN remain unknown. In the present work, QTL mapping using recombinant inbred line (RIL) population 524B x IT84S-2049 segregating for a newly mapped locus and analysis of the transcriptome changes in two cowpea near-isogenic lines (NIL) were used to identify candidate genes for Rk and the newly mapped locus. A major QTL, designated QRk-vu9.1, associated with resistance to Meloidogyne javanica reproduction, was detected and mapped on linkage group LG9 at position 13.37 cM using egg production data. Transcriptome analysis on resistant and susceptible NILs 3 and 9 days after inoculation revealed up-regulation of 109 and 98 genes and down-regulation of 110 and 89 genes, respectively, out of 19,922 unique genes mapped to the common bean reference genome. Among the differentially expressed genes, four and nine genes were found within the QRk-vu9.1 and QRk-vu11.1 QTL intervals, respectively. Six of these genes belong to the TIR-NBS-LRR family of resistance genes and three were upregulated at one or more time-points. Quantitative RT-PCR validated gene expression to be positively correlated with RNA-seq expression pattern for eight genes. Future functional analysis of these cowpea genes will enhance our understanding of Rk-mediated resistance and identify the specific gene responsible for the resistance. PMID:29300744

  13. A customized gene expression microarray reveals that the brittle stem phenotype fs2 of barley is attributable to a retroelement in the HvCesA4 cellulose synthase gene.

    PubMed

    Burton, Rachel A; Ma, Gang; Baumann, Ute; Harvey, Andrew J; Shirley, Neil J; Taylor, Jillian; Pettolino, Filomena; Bacic, Antony; Beatty, Mary; Simmons, Carl R; Dhugga, Kanwarpal S; Rafalski, J Antoni; Tingey, Scott V; Fincher, Geoffrey B

    2010-08-01

    The barley (Hordeum vulgare) brittle stem mutants, fs2, designated X054 and M245, have reduced levels of crystalline cellulose compared with their parental lines Ohichi and Shiroseto. A custom-designed microarray, based on long oligonucleotide technology and including genes involved in cell wall metabolism, revealed that transcript levels of very few genes were altered in the elongation zone of stem internodes, but these included a marked decrease in mRNA for the HvCesA4 cellulose synthase gene of both mutants. In contrast, the abundance of several hundred transcripts changed in the upper, maturation zones of stem internodes, which presumably reflected pleiotropic responses to a weakened cell wall that resulted from the primary genetic lesion. Sequencing of the HvCesA4 genes revealed the presence of a 964-bp solo long terminal repeat of a Copia-like retroelement in the first intron of the HvCesA4 genes of both mutant lines. The retroelement appears to interfere with transcription of the HvCesA4 gene or with processing of the mRNA, and this is likely to account for the lower crystalline cellulose content and lower stem strength of the mutants. The HvCesA4 gene maps to a position on chromosome 1H of barley that coincides with the previously reported position of fs2.

  14. Blood-Gene Expression Reveals Reduced Circadian Rhythmicity in Individuals Resistant to Sleep Deprivation

    PubMed Central

    Arnardottir, Erna S.; Nikonova, Elena V.; Shockley, Keith R.; Podtelezhnikov, Alexei A.; Anafi, Ron C.; Tanis, Keith Q.; Maislin, Greg; Stone, David J.; Renger, John J.; Winrow, Christopher J.; Pack, Allan I.

    2014-01-01

    Study Objectives: To address whether changes in gene expression in blood cells with sleep loss are different in individuals resistant and sensitive to sleep deprivation. Design: Blood draws every 4 h during a 3-day study: 24-h normal baseline, 38 h of continuous wakefulness and subsequent recovery sleep, for a total of 19 time-points per subject, with every 2-h psychomotor vigilance task (PVT) assessment when awake. Setting: Sleep laboratory. Participants: Fourteen subjects who were previously identified as behaviorally resistant (n = 7) or sensitive (n = 7) to sleep deprivation by PVT. Intervention: Thirty-eight hours of continuous wakefulness. Measurements and Results: We found 4,481 unique genes with a significant 24-h diurnal rhythm during a normal sleep-wake cycle in blood (false discovery rate [FDR] < 5%). Biological pathways were enriched for biosynthetic processes during sleep. After accounting for circadian effects, two genes (SREBF1 and CPT1A, both involved in lipid metabolism) exhibited small, but significant, linear changes in expression with the duration of sleep deprivation (FDR < 5%). The main change with sleep deprivation was a reduction in the amplitude of the diurnal rhythm of expression of normally cycling probe sets. This reduction was noticeably higher in behaviorally resistant subjects than sensitive subjects, at any given P value. Furthermore, blood cell type enrichment analysis showed that the expression pattern difference between sensitive and resistant subjects is mainly found in cells of myeloid origin, such as monocytes. Conclusion: Individual differences in behavioral effects of sleep deprivation are associated with differences in diurnal amplitude of gene expression for genes that show circadian rhythmicity. Citation: Arnardottir ES, Nikonova EV, Shockley KR, Podtelezhnikov AA, Anafi RC, Tanis KQ, Maislin G, Stone DJ, Renger JJ, Winrow CJ, Pack AI. Blood-gene expression reveals reduced circadian rhythmicity in individuals resistant to

  15. Comparative genome analysis of PHB gene family reveals deep evolutionary origins and diverse gene function.

    PubMed

    Di, Chao; Xu, Wenying; Su, Zhen; Yuan, Joshua S

    2010-10-07

    PHB (Prohibitin) gene family is involved in a variety of functions important for different biological processes. PHB genes are ubiquitously present in divergent species from prokaryotes to eukaryotes. Human PHB genes have been found to be associated with various diseases. Recent studies by our group and others have shown diverse function of PHB genes in plants for development, senescence, defence, and others. Despite the importance of the PHB gene family, no comprehensive gene family analysis has been carried to evaluate the relatedness of PHB genes across different species. In order to better guide the gene function analysis and understand the evolution of the PHB gene family, we therefore carried out the comparative genome analysis of the PHB genes across different kingdoms. The relatedness, motif distribution, and intron/exon distribution all indicated that PHB genes is a relatively conserved gene family. The PHB genes can be classified into 5 classes and each class have a very deep evolutionary origin. The PHB genes within the class maintained the same motif patterns during the evolution. With Arabidopsis as the model species, we found that PHB gene intron/exon structure and domains are also conserved during the evolution. Despite being a conserved gene family, various gene duplication events led to the expansion of the PHB genes. Both segmental and tandem gene duplication were involved in Arabidopsis PHB gene family expansion. However, segmental duplication is predominant in Arabidopsis. Moreover, most of the duplicated genes experienced neofunctionalization. The results highlighted that PHB genes might be involved in important functions so that the duplicated genes are under the evolutionary pressure to derive new function. PHB gene family is a conserved gene family and accounts for diverse but important biological functions based on the similar molecular mechanisms. The highly diverse biological function indicated that more research needs to be carried out

  16. Gene response profiles for Daphnia pulex exposed to the environmental stressor cadmium reveals novel crustacean metallothioneins.

    PubMed

    Shaw, Joseph R; Colbourne, John K; Davey, Jennifer C; Glaholt, Stephen P; Hampton, Thomas H; Chen, Celia Y; Folt, Carol L; Hamilton, Joshua W

    2007-12-21

    Genomic research tools such as microarrays are proving to be important resources to study the complex regulation of genes that respond to environmental perturbations. A first generation cDNA microarray was developed for the environmental indicator species Daphnia pulex, to identify genes whose regulation is modulated following exposure to the metal stressor cadmium. Our experiments revealed interesting changes in gene transcription that suggest their biological roles and their potentially toxicological features in responding to this important environmental contaminant. Our microarray identified genes reported in the literature to be regulated in response to cadmium exposure, suggested functional attributes for genes that share no sequence similarity to proteins in the public databases, and pointed to genes that are likely members of expanded gene families in the Daphnia genome. Genes identified on the microarray also were associated with cadmium induced phenotypes and population-level outcomes that we experimentally determined. A subset of genes regulated in response to cadmium exposure was independently validated using quantitative-realtime (Q-RT)-PCR. These microarray studies led to the discovery of three genes coding for the metal detoxication protein metallothionein (MT). The gene structures and predicted translated sequences of D. pulex MTs clearly place them in this gene family. Yet, they share little homology with previously characterized MTs. The genomic information obtained from this study represents an important first step in characterizing microarray patterns that may be diagnostic to specific environmental contaminants and give insights into their toxicological mechanisms, while also providing a practical tool for evolutionary, ecological, and toxicological functional gene discovery studies. Advances in Daphnia genomics will enable the further development of this species as a model organism for the environmental sciences.

  17. Gene expression analysis of pancreatic cell lines reveals genes overexpressed in pancreatic cancer.

    PubMed

    Alldinger, Ingo; Dittert, Dag; Peiper, Matthias; Fusco, Alberto; Chiappetta, Gennaro; Staub, Eike; Lohr, Matthias; Jesnowski, Ralf; Baretton, Gustavo; Ockert, Detlef; Saeger, Hans-Detlev; Grützmann, Robert; Pilarsky, Christian

    2005-01-01

    Pancreatic cancer is one of the leading causes of cancer-related death. Using DNA gene expression analysis based on a custom made Affymetrix cancer array, we investigated the expression pattern of both primary and established pancreatic carcinoma cell lines. We analyzed the gene expression of 5 established pancreatic cancer cell lines (AsPC-1, BxPC-3, Capan-1, Capan-2 and HPAF II) and 5 primary isolates, 1 of them derived from benign pancreatic duct cells. Out of 1,540 genes which were expressed in at least 3 experiments, we found 122 genes upregulated and 18 downregulated in tumor cell lines compared to benign cells with a fold change >3. Several of the upregulated genes (like Prefoldin 5, ADAM9 and E-cadherin) have been associated with pancreatic cancer before. The other differentially regulated genes, however, play a so far unknown role in the course of human pancreatic carcinoma. By means of immunohistochemistry we could show that thymosin beta-10 (TMSB10), upregulated in tumor cell lines, is expressed in human pancreatic carcinoma, but not in non-neoplastic pancreatic tissue, suggesting a role for TMSB10 in the carcinogenesis of pancreatic carcinoma. Using gene expression profiling of pancreatic cell lines we were able to identify genes differentially expressed in pancreatic adenocarcinoma, which might contribute to pancreatic cancer development. Copyright 2005 S. Karger AG, Basel.

  18. cDNA microarray analyses reveal candidate marker genes for the detection of ascidian disease in Korea.

    PubMed

    Azumi, Kaoru; Usami, Takeshi; Kamimura, Akiko; Sabau, Sorin V; Miki, Yasufumi; Fujie, Manabu; Jung, Sung-Ju; Kitamura, Shin-Ichi; Suzuki, Satoru; Yokosawa, Hideyoshi

    2007-12-01

    A serious disease of the ascidian Halocynthia roretzi has been spread extensively among Korean aquaculture sites. To reveal the cause of the disease and establish a monitoring system for it, we constructed a cDNA microarray spotted with 2,688 cDNAs derived from H. roretzi hemocyte cDNA libraries to detect genes differentially expressed in hemocytes between diseased and non-diseased ascidians. We detected 21 genes showing increased expression and 16 genes showing decreased expression in hemocytes from diseased ascidians compared with those from non-diseased ascidians. RT-PCR analyses confirmed that the expression levels of genes encoding astacin, lysozyme, ribosomal protein PO, and ubiquitin-ribosomal protein L40e fusion protein were increased in hemocytes from diseased ascidians, while those of genes encoding HSP40, HSP70, fibronectin, carboxypeptidase and lactate dehydrogenase were decreased. These genes were expressed not only in hemocytes but also in various other tissues in ascidians. Furthermore, the expression of glutathione-S transferase omega, which is known to be up-regulated in H. roretzi hemocytes during inflammatory responses, was strongly increased in hemocytes from diseased ascidians. These gene expression profiles suggest that immune and inflammatory reactions occur in the hemocytes of diseased ascidians. These genes will be good markers for detecting and monitoring this disease of ascidians in Korean aquaculture sites.

  19. Exome sequencing in Jewish and Arab patients with rhabdomyolysis reveals single-gene etiology in 43% of cases.

    PubMed

    Vivante, Asaf; Ityel, Hadas; Pode-Shakked, Ben; Chen, Jing; Shril, Shirlee; van der Ven, Amelie T; Mann, Nina; Schmidt, Johanna Magdalena; Segel, Reeval; Aran, Adi; Zeharia, Avraham; Staretz-Chacham, Orna; Bar-Yosef, Omer; Raas-Rothschild, Annick; Landau, Yuval E; Lifton, Richard P; Anikster, Yair; Hildebrandt, Friedhelm

    2017-12-01

    Rhabdomyolysis is a clinical emergency that may cause acute kidney injury (AKI). It can be acquired or due to monogenic mutations. Around 60 different rare monogenic forms of rhabdomyolysis have been reported to date. In the clinical setting, identifying the underlying molecular diagnosis is challenging due to nonspecific presentation, the high number of causative genes, and current lack of data on the prevalence of monogenic forms. We employed whole exome sequencing (WES) to reveal the percentage of rhabdomyolysis cases explained by single-gene (monogenic) mutations in one of 58 candidate genes. We investigated a cohort of 21 unrelated families with rhabdomyolysis, in whom no underlying etiology had been previously established. Using WES, we identified causative mutations in candidate genes in nine of the 21 families (43%). We detected disease-causing mutations in eight of 58 candidate genes, grouped into the following categories: (1) disorders of fatty acid metabolism (CPT2), (2) disorders of glycogen metabolism (PFKM and PGAM2), (3) disorders of abnormal skeletal muscle relaxation and contraction (CACNA1S, MYH3, RYR1 and SCN4A), and (4) disorders of purine metabolism (AHCY). Our findings demonstrate a very high detection rate for monogenic etiologies using WES and reveal broad genetic heterogeneity for rhabdomyolysis. These results highlight the importance of molecular genetic diagnostics for establishing an etiologic diagnosis. Because these patients are at risk for recurrent episodes of rhabdomyolysis and subsequent risk for AKI, WES allows adequate prophylaxis and treatment for these patients and their family members and enables a personalized medicine approach.

  20. Differential Gene Expression by Lactobacillus plantarum WCFS1 in Response to Phenolic Compounds Reveals New Genes Involved in Tannin Degradation.

    PubMed

    Reverón, Inés; Jiménez, Natalia; Curiel, José Antonio; Peñas, Elena; López de Felipe, Félix; de Las Rivas, Blanca; Muñoz, Rosario

    2017-04-01

    Lactobacillus plantarum is a lactic acid bacterium that can degrade food tannins by the successive action of tannase and gallate decarboxylase enzymes. In the L. plantarum genome, the gene encoding the catalytic subunit of gallate decarboxylase ( lpdC , or lp_2945 ) is only 6.5 kb distant from the gene encoding inducible tannase ( L. plantarum tanB [ tanB Lp ], or lp_2956 ). This genomic context suggests concomitant activity and regulation of both enzymatic activities. Reverse transcription analysis revealed that subunits B ( lpdB , or lp_0271 ) and D ( lpdD , or lp_0272 ) of the gallate decarboxylase are cotranscribed, whereas subunit C ( lpdC , or lp_2945 ) is cotranscribed with a gene encoding a transport protein ( gacP , or lp_2943 ). In contrast, the tannase gene is transcribed as a monocistronic mRNA. Investigation of knockout mutations of genes located in this chromosomal region indicated that only mutants of the gallate decarboxylase (subunits B and C), tannase, GacP transport protein, and TanR transcriptional regulator ( lp_2942 ) genes exhibited altered tannin metabolism. The expression profile of genes involved in tannin metabolism was also analyzed in these mutants in the presence of methyl gallate and gallic acid. It is noteworthy that inactivation of tanR suppresses the induction of all genes overexpressed in the presence of methyl gallate and gallic acid. This transcriptional regulator was also induced in the presence of other phenolic compounds, such as kaempferol and myricetin. This study complements the catalog of L. plantarum expression profiles responsive to phenolic compounds, which enable this bacterium to adapt to a plant food environment. IMPORTANCE Lactobacillus plantarum is a bacterial species frequently found in the fermentation of vegetables when tannins are present. L. plantarum strains degrade tannins to the less-toxic pyrogallol by the successive action of tannase and gallate decarboxylase enzymes. The genes encoding these enzymes are

  1. Differential Gene Expression by Lactobacillus plantarum WCFS1 in Response to Phenolic Compounds Reveals New Genes Involved in Tannin Degradation

    PubMed Central

    Reverón, Inés; Jiménez, Natalia; Curiel, José Antonio; Peñas, Elena; López de Felipe, Félix; de las Rivas, Blanca

    2017-01-01

    ABSTRACT Lactobacillus plantarum is a lactic acid bacterium that can degrade food tannins by the successive action of tannase and gallate decarboxylase enzymes. In the L. plantarum genome, the gene encoding the catalytic subunit of gallate decarboxylase (lpdC, or lp_2945) is only 6.5 kb distant from the gene encoding inducible tannase (L. plantarum tanB [tanBLp], or lp_2956). This genomic context suggests concomitant activity and regulation of both enzymatic activities. Reverse transcription analysis revealed that subunits B (lpdB, or lp_0271) and D (lpdD, or lp_0272) of the gallate decarboxylase are cotranscribed, whereas subunit C (lpdC, or lp_2945) is cotranscribed with a gene encoding a transport protein (gacP, or lp_2943). In contrast, the tannase gene is transcribed as a monocistronic mRNA. Investigation of knockout mutations of genes located in this chromosomal region indicated that only mutants of the gallate decarboxylase (subunits B and C), tannase, GacP transport protein, and TanR transcriptional regulator (lp_2942) genes exhibited altered tannin metabolism. The expression profile of genes involved in tannin metabolism was also analyzed in these mutants in the presence of methyl gallate and gallic acid. It is noteworthy that inactivation of tanR suppresses the induction of all genes overexpressed in the presence of methyl gallate and gallic acid. This transcriptional regulator was also induced in the presence of other phenolic compounds, such as kaempferol and myricetin. This study complements the catalog of L. plantarum expression profiles responsive to phenolic compounds, which enable this bacterium to adapt to a plant food environment. IMPORTANCE Lactobacillus plantarum is a bacterial species frequently found in the fermentation of vegetables when tannins are present. L. plantarum strains degrade tannins to the less-toxic pyrogallol by the successive action of tannase and gallate decarboxylase enzymes. The genes encoding these enzymes are located

  2. Revealing the Strong Functional Association of adipor2 and cdh13 with adipoq: A Gene Network Study.

    PubMed

    Bag, Susmita; Anbarasu, Anand

    2015-04-01

    In the present study, we have analyzed functional gene interactions of adiponectin gene (adipoq). The key role of adipoq is in regulating energy homeostasis and it functions as a novel signaling molecule for adipose tissue. Modules of highly inter-connected genes in disease-specific adipoq network are derived by integrating gene function and protein interaction data. Among twenty genes in adipoq web, adipoq is effectively conjoined with two genes: Adiponectin receptor 2 (adipor2) and cadherin 13 (cdh13). The functional analysis is done via ontological briefing and candidate disease identification. We observed that the highly efficient-interlinked genes connected with adipoq are adipor2 and cdh13. Interestingly, the ontological aspect of adipor2 and cdh13 in the adipoq network reveal the fact that adipoq and adipor2 are involved mostly in glucose and lipid metabolic processes. The gene cdh13 indulge in cell adhesion process with adipoq and adipor2. Our computational gene web analysis also predicts potential candidate disease recognition, thus indicating the involvement of adipoq, adipor2, and cdh13 with not only with obesity but also with breast cancer, leukemia, renal cancer, lung cancer, and cervical cancer. The current study provides researchers a comprehensible layout of adipoq network, its functional strategies and candidate disease approach associated with adipoq network.

  3. Gene response profiles for Daphnia pulex exposed to the environmental stressor cadmium reveals novel crustacean metallothioneins

    PubMed Central

    Shaw, Joseph R; Colbourne, John K; Davey, Jennifer C; Glaholt, Stephen P; Hampton, Thomas H; Chen, Celia Y; Folt, Carol L; Hamilton, Joshua W

    2007-01-01

    Background Genomic research tools such as microarrays are proving to be important resources to study the complex regulation of genes that respond to environmental perturbations. A first generation cDNA microarray was developed for the environmental indicator species Daphnia pulex, to identify genes whose regulation is modulated following exposure to the metal stressor cadmium. Our experiments revealed interesting changes in gene transcription that suggest their biological roles and their potentially toxicological features in responding to this important environmental contaminant. Results Our microarray identified genes reported in the literature to be regulated in response to cadmium exposure, suggested functional attributes for genes that share no sequence similarity to proteins in the public databases, and pointed to genes that are likely members of expanded gene families in the Daphnia genome. Genes identified on the microarray also were associated with cadmium induced phenotypes and population-level outcomes that we experimentally determined. A subset of genes regulated in response to cadmium exposure was independently validated using quantitative-realtime (Q-RT)-PCR. These microarray studies led to the discovery of three genes coding for the metal detoxication protein metallothionein (MT). The gene structures and predicted translated sequences of D. pulex MTs clearly place them in this gene family. Yet, they share little homology with previously characterized MTs. Conclusion The genomic information obtained from this study represents an important first step in characterizing microarray patterns that may be diagnostic to specific environmental contaminants and give insights into their toxicological mechanisms, while also providing a practical tool for evolutionary, ecological, and toxicological functional gene discovery studies. Advances in Daphnia genomics will enable the further development of this species as a model organism for the environmental sciences

  4. Integrated analysis of microRNA and gene expression profiles reveals a functional regulatory module associated with liver fibrosis.

    PubMed

    Chen, Wei; Zhao, Wenshan; Yang, Aiting; Xu, Anjian; Wang, Huan; Cong, Min; Liu, Tianhui; Wang, Ping; You, Hong

    2017-12-15

    Liver fibrosis, characterized with the excessive accumulation of extracellular matrix (ECM) proteins, represents the final common pathway of chronic liver inflammation. Ever-increasing evidence indicates microRNAs (miRNAs) dysregulation has important implications in the different stages of liver fibrosis. However, our knowledge of miRNA-gene regulation details pertaining to such disease remains unclear. The publicly available Gene Expression Omnibus (GEO) datasets of patients suffered from cirrhosis were extracted for integrated analysis. Differentially expressed miRNAs (DEMs) and genes (DEGs) were identified using GEO2R web tool. Putative target gene prediction of DEMs was carried out using the intersection of five major algorithms: DIANA-microT, TargetScan, miRanda, PICTAR5 and miRWalk. Functional miRNA-gene regulatory network (FMGRN) was constructed based on the computational target predictions at the sequence level and the inverse expression relationships between DEMs and DEGs. DAVID web server was selected to perform KEGG pathway enrichment analysis. Functional miRNA-gene regulatory module was generated based on the biological interpretation. Internal connections among genes in liver fibrosis-related module were determined using String database. MiRNA-gene regulatory modules related to liver fibrosis were experimentally verified in recombinant human TGFβ1 stimulated and specific miRNA inhibitor treated LX-2 cells. We totally identified 85 and 923 dysregulated miRNAs and genes in liver cirrhosis biopsy samples compared to their normal controls. All evident miRNA-gene pairs were identified and assembled into FMGRN which consisted of 990 regulations between 51 miRNAs and 275 genes, forming two big sub-networks that were defined as down-network and up-network, respectively. KEGG pathway enrichment analysis revealed that up-network was prominently involved in several KEGG pathways, in which "Focal adhesion", "PI3K-Akt signaling pathway" and "ECM

  5. New genes of Xanthomonas citri subsp. citri involved in pathogenesis and adaptation revealed by a transposon-based mutant library

    PubMed Central

    2009-01-01

    Background Citrus canker is a disease caused by the phytopathogens Xanthomonas citri subsp. citri, Xanthomonas fuscans subsp. aurantifolli and Xanthomonas alfalfae subsp. citrumelonis. The first of the three species, which causes citrus bacterial canker type A, is the most widely spread and severe, attacking all citrus species. In Brazil, this species is the most important, being found in practically all areas where citrus canker has been detected. Like most phytobacterioses, there is no efficient way to control citrus canker. Considering the importance of the disease worldwide, investigation is needed to accurately detect which genes are related to the pathogen-host adaptation process and which are associated with pathogenesis. Results Through transposon insertion mutagenesis, 10,000 mutants of Xanthomonas citri subsp. citri strain 306 (Xcc) were obtained, and 3,300 were inoculated in Rangpur lime (Citrus limonia) leaves. Their ability to cause citrus canker was analyzed every 3 days until 21 days after inoculation; a set of 44 mutants showed altered virulence, with 8 presenting a complete loss of causing citrus canker symptoms. Sequencing of the insertion site in all 44 mutants revealed that 35 different ORFs were hit, since some ORFs were hit in more than one mutant, with mutants for the same ORF presenting the same phenotype. An analysis of these ORFs showed that some encoded genes were previously known as related to pathogenicity in phytobacteria and, more interestingly, revealed new genes never implicated with Xanthomonas pathogenicity before, including hypothetical ORFs. Among the 8 mutants with no canker symptoms are the hrpB4 and hrpX genes, two genes that belong to type III secretion system (TTSS), two hypothetical ORFS and, surprisingly, the htrA gene, a gene reported as involved with the virulence process in animal-pathogenic bacteria but not described as involved in phytobacteria virulence. Nucleic acid hybridization using labeled cDNA probes showed

  6. THE LESSONIA NIGRESCENS SPECIES COMPLEX (LAMINARIALES, PHAEOPHYCEAE) SHOWS STRICT PARAPATRY AND COMPLETE REPRODUCTIVE ISOLATION IN A SECONDARY CONTACT ZONE(1).

    PubMed

    Tellier, Florence; Tapia, Javier; Faugeron, Sylvain; Destombe, Christophe; Valero, Myriam

    2011-08-01

    During secondary contact between phylogenetically closely related species (sibling species) having diverged in allopatry, the maintenance of species integrity depends on intrinsic and extrinsic reproductive barriers. In kelps (Phaeophyceae), the observations of hybrids in laboratory conditions suggest that reproductive isolation is incomplete. However, not all interspecific crosses are successful, and very few hybrids have been observed in nature, despite the co-occurrence of many kelp species in sympatry. This suggests that there are reproductive barriers that maintain species integrity. In this study, we characterized the fine genetic structure of a secondary contact zone to clarify the extent of reproductive isolation between two sister species. In Lessonia nigrescens Bory (Laminariales, Phaeophyta) species complex, two cryptic species have been recently found out from gene phylogenies, and-waiting for a formal taxonomic description-we used their geographic distribution to name them (northern and southern species). We studied 12 populations, distributed along 50 km of coastline, and employed two molecular approaches, assigning individuals to phylogenetic species according to a diagnostic mitochondrial marker (351 individuals analyzed) and quantifying interspecific gene flow with four microsatellite markers (248 individuals analyzed). No hybridization or introgression was revealed, indicating complete reproductive isolation in natural conditions. Unexpectedly, our study demonstrated that the two species were strictly segregated in space. This absence of co-occurrence along the contact zone can partially explain the lack of hybridization, raising new interesting questions as to the mechanisms that limit sympatry at small spatial scales. © 2011 Phycological Society of America.

  7. Gene Set−Based Integrative Analysis Revealing Two Distinct Functional Regulation Patterns in Four Common Subtypes of Epithelial Ovarian Cancer

    PubMed Central

    Chang, Chia-Ming; Chuang, Chi-Mu; Wang, Mong-Lien; Yang, Yi-Ping; Chuang, Jen-Hua; Yang, Ming-Jie; Yen, Ming-Shyen; Chiou, Shih-Hwa; Chang, Cheng-Chang

    2016-01-01

    Clear cell (CCC), endometrioid (EC), mucinous (MC) and high-grade serous carcinoma (SC) are the four most common subtypes of epithelial ovarian carcinoma (EOC). The widely accepted dualistic model of ovarian carcinogenesis divided EOCs into type I and II categories based on the molecular features. However, this hypothesis has not been experimentally demonstrated. We carried out a gene set-based analysis by integrating the microarray gene expression profiles downloaded from the publicly available databases. These quantified biological functions of EOCs were defined by 1454 Gene Ontology (GO) term and 674 Reactome pathway gene sets. The pathogenesis of the four EOC subtypes was investigated by hierarchical clustering and exploratory factor analysis. The patterns of functional regulation among the four subtypes containing 1316 cases could be accurately classified by machine learning. The results revealed that the ERBB and PI3K-related pathways played important roles in the carcinogenesis of CCC, EC and MC; while deregulation of cell cycle was more predominant in SC. The study revealed that two different functional regulation patterns exist among the four EOC subtypes, which were compatible with the type I and II classifications proposed by the dualistic model of ovarian carcinogenesis. PMID:27527159

  8. Single-nucleotide polymorphism-gene intermixed networking reveals co-linkers connected to multiple gene expression phenotypes

    PubMed Central

    Gong, Bin-Sheng; Zhang, Qing-Pu; Zhang, Guang-Mei; Zhang, Shao-Jun; Zhang, Wei; Lv, Hong-Chao; Zhang, Fan; Lv, Sa-Li; Li, Chuan-Xing; Rao, Shao-Qi; Li, Xia

    2007-01-01

    Gene expression profiles and single-nucleotide polymorphism (SNP) profiles are modern data for genetic analysis. It is possible to use the two types of information to analyze the relationships among genes by some genetical genomics approaches. In this study, gene expression profiles were used as expression traits. And relationships among the genes, which were co-linked to a common SNP(s), were identified by integrating the two types of information. Further research on the co-expressions among the co-linked genes was carried out after the gene-SNP relationships were established using the Haseman-Elston sib-pair regression. The results showed that the co-expressions among the co-linked genes were significantly higher if the number of connections between the genes and a SNP(s) was more than six. Then, the genes were interconnected via one or more SNP co-linkers to construct a gene-SNP intermixed network. The genes sharing more SNPs tended to have a stronger correlation. Finally, a gene-gene network was constructed with their intensities of relationships (the number of SNP co-linkers shared) as the weights for the edges. PMID:18466544

  9. Knock-down of transcript abundance of a family of Kunitz proteinase inhibitor genes in white clover (Trifolium repens) reveals a redundancy and diversity of gene function.

    PubMed

    Islam, Afsana; Leung, Susanna; Burgess, Elisabeth P J; Laing, William A; Richardson, Kim A; Hofmann, Rainer W; Dijkwel, Paul P; McManus, Michael T

    2015-12-01

    The transcriptional regulation of four phylogenetically distinct members of a family of Kunitz proteinase inhibitor (KPI) genes isolated from white clover (Trifolium repens; designated Tr-KPI1, Tr-KPI2, Tr-KPI4 and Tr-KPI5) has been investigated to determine their wider functional role. The four genes displayed differential transcription during seed germination, and in different tissues of the mature plant, and transcription was also ontogenetically regulated. Heterologous over-expression of Tr-KPI1, Tr-KPI2, Tr-KPI4 and Tr-KPI5 in Nicotiana tabacum retarded larval growth of the herbivore Spodoptera litura, and an increase in the transcription of the pathogenesis-related genes PR1 and PR4 was observed in the Tr-KPI1 and Tr-KPI4 over-expressing lines. RNA interference (RNAi) knock-down lines in white clover displayed significantly altered vegetative growth phenotypes with inhibition of shoot growth and a stimulation of root growth, while knock-down of Tr-KPI1, Tr-KPI2 and Tr-KPI5 transcript abundance also retarded larval growth of S. litura. Examination of these RNAi lines revealed constitutive stress-associated phenotypes as well as altered transcription of cellular signalling genes. These results reveal a functional redundancy across members of the KPI gene family. Further, the regulation of transcription of at least one member of the family, Tr-KPI2, may occupy a central role in the maintenance of a cellular homeostasis. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  10. Targeted capture and resequencing of 1040 genes reveal environmentally driven functional variation in grey wolves.

    PubMed

    Schweizer, Rena M; Robinson, Jacqueline; Harrigan, Ryan; Silva, Pedro; Galverni, Marco; Musiani, Marco; Green, Richard E; Novembre, John; Wayne, Robert K

    2016-01-01

    In an era of ever-increasing amounts of whole-genome sequence data for individuals and populations, the utility of traditional single nucleotide polymorphisms (SNPs) array-based genome scans is uncertain. We previously performed a SNP array-based genome scan to identify candidate genes under selection in six distinct grey wolf (Canis lupus) ecotypes. Using this information, we designed a targeted capture array for 1040 genes, including all exons and flanking regions, as well as 5000 1-kb nongenic neutral regions, and resequenced these regions in 107 wolves. Selection tests revealed striking patterns of variation within candidate genes relative to noncandidate regions and identified potentially functional variants related to local adaptation. We found 27% and 47% of candidate genes from the previous SNP array study had functional changes that were outliers in sweed and bayenv analyses, respectively. This result verifies the use of genomewide SNP surveys to tag genes that contain functional variants between populations. We highlight nonsynonymous variants in APOB, LIPG and USH2A that occur in functional domains of these proteins, and that demonstrate high correlation with precipitation seasonality and vegetation. We find Arctic and High Arctic wolf ecotypes have higher numbers of genes under selection, which highlight their conservation value and heightened threat due to climate change. This study demonstrates that combining genomewide genotyping arrays with large-scale resequencing and environmental data provides a powerful approach to discern candidate functional variants in natural populations. © 2015 John Wiley & Sons Ltd.

  11. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system.

    PubMed

    Vonk, Freek J; Casewell, Nicholas R; Henkel, Christiaan V; Heimberg, Alysha M; Jansen, Hans J; McCleary, Ryan J R; Kerkkamp, Harald M E; Vos, Rutger A; Guerreiro, Isabel; Calvete, Juan J; Wüster, Wolfgang; Woods, Anthony E; Logan, Jessica M; Harrison, Robert A; Castoe, Todd A; de Koning, A P Jason; Pollock, David D; Yandell, Mark; Calderon, Diego; Renjifo, Camila; Currier, Rachel B; Salgado, David; Pla, Davinia; Sanz, Libia; Hyder, Asad S; Ribeiro, José M C; Arntzen, Jan W; van den Thillart, Guido E E J M; Boetzer, Marten; Pirovano, Walter; Dirks, Ron P; Spaink, Herman P; Duboule, Denis; McGlinn, Edwina; Kini, R Manjunatha; Richardson, Michael K

    2013-12-17

    Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection.

  12. Meta-analysis of human gene expression in response to Mycobacterium tuberculosis infection reveals potential therapeutic targets.

    PubMed

    Wang, Zhang; Arat, Seda; Magid-Slav, Michal; Brown, James R

    2018-01-10

    With the global emergence of multi-drug resistant strains of Mycobacterium tuberculosis, new strategies to treat tuberculosis are urgently needed such as therapeutics targeting potential human host factors. Here we performed a statistical meta-analysis of human gene expression in response to both latent and active pulmonary tuberculosis infections from nine published datasets. We found 1655 genes that were significantly differentially expressed during active tuberculosis infection. In contrast, no gene was significant for latent tuberculosis. Pathway enrichment analysis identified 90 significant canonical human pathways, including several pathways more commonly related to non-infectious diseases such as the LRRK2 pathway in Parkinson's disease, and PD-1/PD-L1 signaling pathway important for new immuno-oncology therapies. The analysis of human genome-wide association studies datasets revealed tuberculosis-associated genetic variants proximal to several genes in major histocompatibility complex for antigen presentation. We propose several new targets and drug-repurposing opportunities including intravenous immunoglobulin, ion-channel blockers and cancer immuno-therapeutics for development as combination therapeutics with anti-mycobacterial agents. Our meta-analysis provides novel insights into host genes and pathways important for tuberculosis and brings forth potential drug repurposing opportunities for host-directed therapies.

  13. Coexpression network based on natural variation in human gene expression reveals gene interactions and functions

    PubMed Central

    Nayak, Renuka R.; Kearns, Michael; Spielman, Richard S.; Cheung, Vivian G.

    2009-01-01

    Genes interact in networks to orchestrate cellular processes. Analysis of these networks provides insights into gene interactions and functions. Here, we took advantage of normal variation in human gene expression to infer gene networks, which we constructed using correlations in expression levels of more than 8.5 million gene pairs in immortalized B cells from three independent samples. The resulting networks allowed us to identify biological processes and gene functions. Among the biological pathways, we found processes such as translation and glycolysis that co-occur in the same subnetworks. We predicted the functions of poorly characterized genes, including CHCHD2 and TMEM111, and provided experimental evidence that TMEM111 is part of the endoplasmic reticulum-associated secretory pathway. We also found that IFIH1, a susceptibility gene of type 1 diabetes, interacts with YES1, which plays a role in glucose transport. Furthermore, genes that predispose to the same diseases are clustered nonrandomly in the coexpression network, suggesting that networks can provide candidate genes that influence disease susceptibility. Therefore, our analysis of gene coexpression networks offers information on the role of human genes in normal and disease processes. PMID:19797678

  14. A model of gene expression based on random dynamical systems reveals modularity properties of gene regulatory networks.

    PubMed

    Antoneli, Fernando; Ferreira, Renata C; Briones, Marcelo R S

    2016-06-01

    Here we propose a new approach to modeling gene expression based on the theory of random dynamical systems (RDS) that provides a general coupling prescription between the nodes of any given regulatory network given the dynamics of each node is modeled by a RDS. The main virtues of this approach are the following: (i) it provides a natural way to obtain arbitrarily large networks by coupling together simple basic pieces, thus revealing the modularity of regulatory networks; (ii) the assumptions about the stochastic processes used in the modeling are fairly general, in the sense that the only requirement is stationarity; (iii) there is a well developed mathematical theory, which is a blend of smooth dynamical systems theory, ergodic theory and stochastic analysis that allows one to extract relevant dynamical and statistical information without solving the system; (iv) one may obtain the classical rate equations form the corresponding stochastic version by averaging the dynamic random variables (small noise limit). It is important to emphasize that unlike the deterministic case, where coupling two equations is a trivial matter, coupling two RDS is non-trivial, specially in our case, where the coupling is performed between a state variable of one gene and the switching stochastic process of another gene and, hence, it is not a priori true that the resulting coupled system will satisfy the definition of a random dynamical system. We shall provide the necessary arguments that ensure that our coupling prescription does indeed furnish a coupled regulatory network of random dynamical systems. Finally, the fact that classical rate equations are the small noise limit of our stochastic model ensures that any validation or prediction made on the basis of the classical theory is also a validation or prediction of our model. We illustrate our framework with some simple examples of single-gene system and network motifs. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Gene expression profiles reveal key genes for early diagnosis and treatment of adamantinomatous craniopharyngioma.

    PubMed

    Yang, Jun; Hou, Ziming; Wang, Changjiang; Wang, Hao; Zhang, Hongbing

    2018-04-23

    Adamantinomatous craniopharyngioma (ACP) is an aggressive brain tumor that occurs predominantly in the pediatric population. Conventional diagnosis method and standard therapy cannot treat ACPs effectively. In this paper, we aimed to identify key genes for ACP early diagnosis and treatment. Datasets GSE94349 and GSE68015 were obtained from Gene Expression Omnibus database. Consensus clustering was applied to discover the gene clusters in the expression data of GSE94349 and functional enrichment analysis was performed on gene set in each cluster. The protein-protein interaction (PPI) network was built by the Search Tool for the Retrieval of Interacting Genes, and hubs were selected. Support vector machine (SVM) model was built based on the signature genes identified from enrichment analysis and PPI network. Dataset GSE94349 was used for training and testing, and GSE68015 was used for validation. Besides, RT-qPCR analysis was performed to analyze the expression of signature genes in ACP samples compared with normal controls. Seven gene clusters were discovered in the differentially expressed genes identified from GSE94349 dataset. Enrichment analysis of each cluster identified 25 pathways that highly associated with ACP. PPI network was built and 46 hubs were determined. Twenty-five pathway-related genes that overlapped with the hubs in PPI network were used as signatures to establish the SVM diagnosis model for ACP. The prediction accuracy of SVM model for training, testing, and validation data were 94, 85, and 74%, respectively. The expression of CDH1, CCL2, ITGA2, COL8A1, COL6A2, and COL6A3 were significantly upregulated in ACP tumor samples, while CAMK2A, RIMS1, NEFL, SYT1, and STX1A were significantly downregulated, which were consistent with the differentially expressed gene analysis. SVM model is a promising classification tool for screening and early diagnosis of ACP. The ACP-related pathways and signature genes will advance our knowledge of ACP pathogenesis

  16. Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes

    PubMed Central

    2010-01-01

    Background Camelina sativa, an oilseed crop in the Brassicaceae family, has inspired renewed interest due to its potential for biofuels applications. Little is understood of the nature of the C. sativa genome, however. A study was undertaken to characterize two genes in the fatty acid biosynthesis pathway, fatty acid desaturase (FAD) 2 and fatty acid elongase (FAE) 1, which revealed unexpected complexity in the C. sativa genome. Results In C. sativa, Southern analysis indicates the presence of three copies of both FAD2 and FAE1 as well as LFY, a known single copy gene in other species. All three copies of both CsFAD2 and CsFAE1 are expressed in developing seeds, and sequence alignments show that previously described conserved sites are present, suggesting that all three copies of both genes could be functional. The regions downstream of CsFAD2 and upstream of CsFAE1 demonstrate co-linearity with the Arabidopsis genome. In addition, three expressed haplotypes were observed for six predicted single-copy genes in 454 sequencing analysis and results from flow cytometry indicate that the DNA content of C. sativa is approximately three-fold that of diploid Camelina relatives. Phylogenetic analyses further support a history of duplication and indicate that C. sativa and C. microcarpa might share a parental genome. Conclusions There is compelling evidence for triplication of the C. sativa genome, including a larger chromosome number and three-fold larger measured genome size than other Camelina relatives, three isolated copies of FAD2, FAE1, and the KCS17-FAE1 intergenic region, and three expressed haplotypes observed for six predicted single-copy genes. Based on these results, we propose that C. sativa be considered an allohexaploid. The characterization of fatty acid synthesis pathway genes will allow for the future manipulation of oil composition of this emerging biofuel crop; however, targeted manipulations of oil composition and general development of C. sativa should

  17. Microbial signatures of oral dysbiosis, periodontitis and edentulism revealed by Gene Meter methodology.

    PubMed

    Hunter, M Colby; Pozhitkov, Alex E; Noble, Peter A

    2016-12-01

    Conceptual models suggest that certain microorganisms (e.g., the "red" complex) are indicative of a specific disease state (e.g., periodontitis); however, recent studies have questioned the validity of these models. Here, the abundances of 500+ microbial species were determined in 16 patients with clinical signs of one of the following oral conditions: periodontitis, established caries, edentulism, and oral health. Our goal was to determine if the abundances of certain microorganisms reflect dysbiosis or a specific clinical condition that could be used as a 'signature' for dental research. Microbial abundances were determined by the analysis of 138,718 calibrated probes using Gene Meter methodology. Each 16S rRNA gene was targeted by an average of 194 unique probes (n=25nt). The calibration involved diluting pooled gene target samples, hybridizing each dilution to a DNA microarray, and fitting the probe intensities to adsorption models. The fit of the model to the experimental data was used to assess individual and aggregate probe behavior; good fits (R 2 >0.90) were retained for back-calculating microbial abundances from patient samples. The abundance of a gene was determined from the median of all calibrated individual probes or from the calibrated abundance of all aggregated probes. With the exception of genes with low abundances (<2 arbitrary units), the abundances determined by the different calibrations were highly correlated (r~1.0). Seventeen genera were classified as 'signatures of dysbiosis' because they had significantly higher abundances in patients with periodontitis and edentulism when contrasted with health. Similarly, 13 genera were classified as 'signatures of periodontitis', and 14 genera were classified as 'signatures of edentulism'. The signatures could be used, individually or in combination, to assess the clinical status of a patient (e.g., evaluating treatments such as antibiotic therapies). Comparisons of the same patient samples revealed

  18. mRNA deep sequencing reveals 75 new genes and a complex transcriptional landscape in Mimivirus.

    PubMed

    Legendre, Matthieu; Audic, Stéphane; Poirot, Olivier; Hingamp, Pascal; Seltzer, Virginie; Byrne, Deborah; Lartigue, Audrey; Lescot, Magali; Bernadac, Alain; Poulain, Julie; Abergel, Chantal; Claverie, Jean-Michel

    2010-05-01

    Mimivirus, a virus infecting Acanthamoeba, is the prototype of the Mimiviridae, the latest addition to the nucleocytoplasmic large DNA viruses. The Mimivirus genome encodes close to 1000 proteins, many of them never before encountered in a virus, such as four amino-acyl tRNA synthetases. To explore the physiology of this exceptional virus and identify the genes involved in the building of its characteristic intracytoplasmic "virion factory," we coupled electron microscopy observations with the massively parallel pyrosequencing of the polyadenylated RNA fractions of Acanthamoeba castellanii cells at various time post-infection. We generated 633,346 reads, of which 322,904 correspond to Mimivirus transcripts. This first application of deep mRNA sequencing (454 Life Sciences [Roche] FLX) to a large DNA virus allowed the precise delineation of the 5' and 3' extremities of Mimivirus mRNAs and revealed 75 new transcripts including several noncoding RNAs. Mimivirus genes are expressed across a wide dynamic range, in a finely regulated manner broadly described by three main temporal classes: early, intermediate, and late. This RNA-seq study confirmed the AAAATTGA sequence as an early promoter element, as well as the presence of palindromes at most of the polyadenylation sites. It also revealed a new promoter element correlating with late gene expression, which is also prominent in Sputnik, the recently described Mimivirus "virophage." These results-validated genome-wide by the hybridization of total RNA extracted from infected Acanthamoeba cells on a tiling array (Agilent)--will constitute the foundation on which to build subsequent functional studies of the Mimivirus/Acanthamoeba system.

  19. A Dynamical Model Reveals Gene Co-Localizations in Nucleus

    PubMed Central

    Yao, Ye; Lin, Wei; Hennessy, Conor; Fraser, Peter; Feng, Jianfeng

    2011-01-01

    Co-localization of networks of genes in the nucleus is thought to play an important role in determining gene expression patterns. Based upon experimental data, we built a dynamical model to test whether pure diffusion could account for the observed co-localization of genes within a defined subnuclear region. A simple standard Brownian motion model in two and three dimensions shows that preferential co-localization is possible for co-regulated genes without any direct interaction, and suggests the occurrence may be due to a limitation in the number of available transcription factors. Experimental data of chromatin movements demonstrates that fractional rather than standard Brownian motion is more appropriate to model gene mobilizations, and we tested our dynamical model against recent static experimental data, using a sub-diffusion process by which the genes tend to colocalize more easily. Moreover, in order to compare our model with recently obtained experimental data, we studied the association level between genes and factors, and presented data supporting the validation of this dynamic model. As further applications of our model, we applied it to test against more biological observations. We found that increasing transcription factor number, rather than factory number and nucleus size, might be the reason for decreasing gene co-localization. In the scenario of frequency- or amplitude-modulation of transcription factors, our model predicted that frequency-modulation may increase the co-localization between its targeted genes. PMID:21760760

  20. Harnessing BET Inhibitor Sensitivity Reveals AMIGO2 as a Melanoma Survival Gene.

    PubMed

    Fontanals-Cirera, Barbara; Hasson, Dan; Vardabasso, Chiara; Di Micco, Raffaella; Agrawal, Praveen; Chowdhury, Asif; Gantz, Madeleine; de Pablos-Aragoneses, Ana; Morgenstern, Ari; Wu, Pamela; Filipescu, Dan; Valle-Garcia, David; Darvishian, Farbod; Roe, Jae-Seok; Davies, Michael A; Vakoc, Christopher R; Hernando, Eva; Bernstein, Emily

    2017-11-16

    Bromodomain and extraterminal domain inhibitors (BETi) represent promising therapeutic agents for metastatic melanoma, yet their mechanism of action remains unclear. Here we interrogated the transcriptional effects of BETi and identified AMIGO2, a transmembrane molecule, as a BET target gene essential for melanoma cell survival. AMIGO2 is upregulated in melanoma cells and tissues compared to human melanocytes and nevi, and AMIGO2 silencing in melanoma cells induces G1/S arrest followed by apoptosis. We identified the pseudokinase PTK7 as an AMIGO2 interactor whose function is regulated by AMIGO2. Epigenomic profiling and genome editing revealed that AMIGO2 is regulated by a melanoma-specific BRD2/4-bound promoter and super-enhancer configuration. Upon BETi treatment, BETs are evicted from these regulatory elements, resulting in AMIGO2 silencing and changes in PTK7 proteolytic processing. Collectively, this study uncovers mechanisms underlying the therapeutic effects of BETi in melanoma and reveals the AMIGO2-PTK7 axis as a targetable pathway for metastatic melanoma. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Genome-wide computational analysis reveals cardiomyocyte-specific transcriptional Cis-regulatory motifs that enable efficient cardiac gene therapy.

    PubMed

    Rincon, Melvin Y; Sarcar, Shilpita; Danso-Abeam, Dina; Keyaerts, Marleen; Matrai, Janka; Samara-Kuko, Ermira; Acosta-Sanchez, Abel; Athanasopoulos, Takis; Dickson, George; Lahoutte, Tony; De Bleser, Pieter; VandenDriessche, Thierry; Chuah, Marinee K

    2015-01-01

    Gene therapy is a promising emerging therapeutic modality for the treatment of cardiovascular diseases and hereditary diseases that afflict the heart. Hence, there is a need to develop robust cardiac-specific expression modules that allow for stable expression of the gene of interest in cardiomyocytes. We therefore explored a new approach based on a genome-wide bioinformatics strategy that revealed novel cardiac-specific cis-acting regulatory modules (CS-CRMs). These transcriptional modules contained evolutionary-conserved clusters of putative transcription factor binding sites that correspond to a "molecular signature" associated with robust gene expression in the heart. We then validated these CS-CRMs in vivo using an adeno-associated viral vector serotype 9 that drives a reporter gene from a quintessential cardiac-specific α-myosin heavy chain promoter. Most de novo designed CS-CRMs resulted in a >10-fold increase in cardiac gene expression. The most robust CRMs enhanced cardiac-specific transcription 70- to 100-fold. Expression was sustained and restricted to cardiomyocytes. We then combined the most potent CS-CRM4 with a synthetic heart and muscle-specific promoter (SPc5-12) and obtained a significant 20-fold increase in cardiac gene expression compared to the cytomegalovirus promoter. This study underscores the potential of rational vector design to improve the robustness of cardiac gene therapy.

  2. Digital Gene Expression Analysis Based on De Novo Transcriptome Assembly Reveals New Genes Associated with Floral Organ Differentiation of the Orchid Plant Cymbidium ensifolium

    PubMed Central

    Yang, Fengxi; Zhu, Genfa

    2015-01-01

    Cymbidium ensifolium belongs to the genus Cymbidium of the orchid family. Owing to its spectacular flower morphology, C. ensifolium has considerable ecological and cultural value. However, limited genetic data is available for this non-model plant, and the molecular mechanism underlying floral organ identity is still poorly understood. In this study, we characterize the floral transcriptome of C. ensifolium and present, for the first time, extensive sequence and transcript abundance data of individual floral organs. After sequencing, over 10 Gb clean sequence data were generated and assembled into 111,892 unigenes with an average length of 932.03 base pairs, including 1,227 clusters and 110,665 singletons. Assembled sequences were annotated with gene descriptions, gene ontology, clusters of orthologous group terms, the Kyoto Encyclopedia of Genes and Genomes, and the plant transcription factor database. From these annotations, 131 flowering-associated unigenes, 61 CONSTANS-LIKE (COL) unigenes and 90 floral homeotic genes were identified. In addition, four digital gene expression libraries were constructed for the sepal, petal, labellum and gynostemium, and 1,058 genes corresponding to individual floral organ development were identified. Among them, eight MADS-box genes were further investigated by full-length cDNA sequence analysis and expression validation, which revealed two APETALA1/AGL9-like MADS-box genes preferentially expressed in the sepal and petal, two AGAMOUS-like genes particularly restricted to the gynostemium, and four DEF-like genes distinctively expressed in different floral organs. The spatial expression of these genes varied distinctly in different floral mutant corresponding to different floral morphogenesis, which validated the specialized roles of them in floral patterning and further supported the effectiveness of our in silico analysis. This dataset generated in our study provides new insights into the molecular mechanisms underlying floral

  3. Genome-wide analysis of the Dof transcription factor gene family reveals soybean-specific duplicable and functional characteristics.

    PubMed

    Guo, Yong; Qiu, Li-Juan

    2013-01-01

    The Dof domain protein family is a classic plant-specific zinc-finger transcription factor family involved in a variety of biological processes. There is great diversity in the number of Dof genes in different plants. However, there are only very limited reports on the characterization of Dof transcription factors in soybean (Glycine max). In the present study, 78 putative Dof genes were identified from the whole-genome sequence of soybean. The predicted GmDof genes were non-randomly distributed within and across 19 out of 20 chromosomes and 97.4% (38 pairs) were preferentially retained duplicate paralogous genes located in duplicated regions of the genome. Soybean-specific segmental duplications contributed significantly to the expansion of the soybean Dof gene family. These Dof proteins were phylogenetically clustered into nine distinct subgroups among which the gene structure and motif compositions were considerably conserved. Comparative phylogenetic analysis of these Dof proteins revealed four major groups, similar to those reported for Arabidopsis and rice. Most of the GmDofs showed specific expression patterns based on RNA-seq data analyses. The expression patterns of some duplicate genes were partially redundant while others showed functional diversity, suggesting the occurrence of sub-functionalization during subsequent evolution. Comprehensive expression profile analysis also provided insights into the soybean-specific functional divergence among members of the Dof gene family. Cis-regulatory element analysis of these GmDof genes suggested diverse functions associated with different processes. Taken together, our results provide useful information for the functional characterization of soybean Dof genes by combining phylogenetic analysis with global gene-expression profiling.

  4. Fine Mapping and Transcriptome Analysis Reveal Candidate Genes Associated with Hybrid Lethality in Cabbage (Brassica Oleracea).

    PubMed

    Xiao, Zhiliang; Hu, Yang; Zhang, Xiaoli; Xue, Yuqian; Fang, Zhiyuan; Yang, Limei; Zhang, Yangyong; Liu, Yumei; Li, Zhansheng; Liu, Xing; Liu, Zezhou; Lv, Honghao; Zhuang, Mu

    2017-06-05

    Hybrid lethality is a deleterious phenotype that is vital to species evolution. We previously reported hybrid lethality in cabbage ( Brassica oleracea ) and performed preliminary mapping of related genes. In the present study, the fine mapping of hybrid lethal genes revealed that BoHL1 was located on chromosome C1 between BoHLTO124 and BoHLTO130, with an interval of 101 kb. BoHL2 was confirmed to be between insertion-deletion (InDels) markers HL234 and HL235 on C4, with a marker interval of 70 kb. Twenty-eight and nine annotated genes were found within the two intervals of BoHL1 and BoHL2 , respectively. We also applied RNA-Seq to analyze hybrid lethality in cabbage. In the region of BoHL1 , seven differentially expressed genes (DEGs) and five resistance (R)-related genes (two in common, i.e., Bo1g153320 and Bo1g153380 ) were found, whereas in the region of BoHL2 , two DEGs and four R-related genes (two in common, i.e., Bo4g173780 and Bo4g173810 ) were found. Along with studies in which R genes were frequently involved in hybrid lethality in other plants, these interesting R-DEGs may be good candidates associated with hybrid lethality. We also used SNP/InDel analyses and quantitative real-time PCR to confirm the results. This work provides new insight into the mechanisms of hybrid lethality in cabbage.

  5. Novel cancer gene variants and gene fusions of triple-negative breast cancers (TNBCs) reveal their molecular diversity conserved in the patient-derived xenograft (PDX) model.

    PubMed

    Jung, Jaeyun; Jang, Kiwon; Ju, Jung Min; Lee, Eunji; Lee, Jong Won; Kim, Hee Jung; Kim, Jisun; Lee, Sae Byul; Ko, Beom Seok; Son, Byung Ho; Lee, Hee Jin; Gong, Gyungyup; Ahn, Sei Yeon; Choi, Jung Kyoon; Singh, Shree Ram; Chang, Suhwan

    2018-08-01

    Despite the improved 5-year survival rate of breast cancer, triple-negative breast cancer (TNBC) remains a challenge due to lack of effective targeted therapy and higher recurrence and metastasis than other subtypes. To identify novel druggable targets and to understand its unique biology, we tried to implement 24 patient-derived xenografts (PDXs) of TNBC. The overall success rate of PDX implantation was 45%, much higher than estrogen receptor (ER)-positive cases. Immunohistochemical analysis revealed conserved ER/PR/Her2 negativity (with two exceptions) between the original and PDX tumors. Genomic analysis of 10 primary tumor-PDX pairs with Ion AmpliSeq CCP revealed high degree of variant conservation (85.0%-96.9%) between primary and PDXs. Further analysis showed 44 rare variants with a predicted high impact in 36 genes including Trp53, Pten, Notch1, and Col1a1. Among them, we confirmed frequent Notch1 variant. Furthermore, RNA-seq analysis of 24 PDXs revealed 594 gene fusions, of which 163 were in-frame, including AZGP1-GJC3 and NF1-AARSD1. Finally, western blot analysis of oncogenic signaling proteins supporting molecular diversity of TNBC PDXs. Overall, our report provides a molecular basis for the usefulness of the TNBC PDX model in preclinical study. Published by Elsevier B.V.

  6. Transcriptome and proteome data reveal candidate genes for pollinator attraction in sexually deceptive orchids.

    PubMed

    Sedeek, Khalid E M; Qi, Weihong; Schauer, Monica A; Gupta, Alok K; Poveda, Lucy; Xu, Shuqing; Liu, Zhong-Jian; Grossniklaus, Ueli; Schiestl, Florian P; Schlüter, Philipp M

    2013-01-01

    Sexually deceptive orchids of the genus Ophrys mimic the mating signals of their pollinator females to attract males as pollinators. This mode of pollination is highly specific and leads to strong reproductive isolation between species. This study aims to identify candidate genes responsible for pollinator attraction and reproductive isolation between three closely related species, O. exaltata, O. sphegodes and O. garganica. Floral traits such as odour, colour and morphology are necessary for successful pollinator attraction. In particular, different odour hydrocarbon profiles have been linked to differences in specific pollinator attraction among these species. Therefore, the identification of genes involved in these traits is important for understanding the molecular basis of pollinator attraction by sexually deceptive orchids. We have created floral reference transcriptomes and proteomes for these three Ophrys species using a combination of next-generation sequencing (454 and Solexa), Sanger sequencing, and shotgun proteomics (tandem mass spectrometry). In total, 121 917 unique transcripts and 3531 proteins were identified. This represents the first orchid proteome and transcriptome from the orchid subfamily Orchidoideae. Proteome data revealed proteins corresponding to 2644 transcripts and 887 proteins not observed in the transcriptome. Candidate genes for hydrocarbon and anthocyanin biosynthesis were represented by 156 and 61 unique transcripts in 20 and 7 genes classes, respectively. Moreover, transcription factors putatively involved in the regulation of flower odour, colour and morphology were annotated, including Myb, MADS and TCP factors. Our comprehensive data set generated by combining transcriptome and proteome technologies allowed identification of candidate genes for pollinator attraction and reproductive isolation among sexually deceptive orchids. This includes genes for hydrocarbon and anthocyanin biosynthesis and regulation, and the development of

  7. Transcriptome and Proteome Data Reveal Candidate Genes for Pollinator Attraction in Sexually Deceptive Orchids

    PubMed Central

    Sedeek, Khalid E. M.; Qi, Weihong; Schauer, Monica A.; Gupta, Alok K.; Poveda, Lucy; Xu, Shuqing; Liu, Zhong-Jian; Grossniklaus, Ueli; Schiestl, Florian P.; Schlüter, Philipp M.

    2013-01-01

    Background Sexually deceptive orchids of the genus Ophrys mimic the mating signals of their pollinator females to attract males as pollinators. This mode of pollination is highly specific and leads to strong reproductive isolation between species. This study aims to identify candidate genes responsible for pollinator attraction and reproductive isolation between three closely related species, O. exaltata, O. sphegodes and O. garganica. Floral traits such as odour, colour and morphology are necessary for successful pollinator attraction. In particular, different odour hydrocarbon profiles have been linked to differences in specific pollinator attraction among these species. Therefore, the identification of genes involved in these traits is important for understanding the molecular basis of pollinator attraction by sexually deceptive orchids. Results We have created floral reference transcriptomes and proteomes for these three Ophrys species using a combination of next-generation sequencing (454 and Solexa), Sanger sequencing, and shotgun proteomics (tandem mass spectrometry). In total, 121 917 unique transcripts and 3531 proteins were identified. This represents the first orchid proteome and transcriptome from the orchid subfamily Orchidoideae. Proteome data revealed proteins corresponding to 2644 transcripts and 887 proteins not observed in the transcriptome. Candidate genes for hydrocarbon and anthocyanin biosynthesis were represented by 156 and 61 unique transcripts in 20 and 7 genes classes, respectively. Moreover, transcription factors putatively involved in the regulation of flower odour, colour and morphology were annotated, including Myb, MADS and TCP factors. Conclusion Our comprehensive data set generated by combining transcriptome and proteome technologies allowed identification of candidate genes for pollinator attraction and reproductive isolation among sexually deceptive orchids. This includes genes for hydrocarbon and anthocyanin biosynthesis and

  8. Transcriptome analysis reveals enrichment of genes associated with auditory system in swimbladder of channel catfish.

    PubMed

    Yang, Yujia; Wang, Xiaozhu; Liu, Yang; Fu, Qiang; Tian, Changxu; Wu, Chenglong; Shi, Huitong; Yuan, Zihao; Tan, Suxu; Liu, Shikai; Gao, Dongya; Dunham, Rex; Liu, Zhanjiang

    2018-04-30

    In aquatic organisms, hearing is an important sense for acoustic communications and detection of sound-emitting predators and prey. Channel catfish is a dominant aquaculture species in the United States. As channel catfish can hear sounds of relatively high frequency, it serves as a good model for study auditory mechanisms. In catfishes, Weberian ossicles connect the swimbladder to the inner ear to transfer the forced vibrations and improve hearing ability. In this study, we examined the transcriptional profiles of channel catfish swimbladder and other four tissues (gill, liver, skin, and intestine). We identified a total of 1777 genes that exhibited preferential expression pattern in swimbladder of channel catfish. Based on Gene Ontology enrichment analysis, many of swimbladder-enriched genes were categorized into sensory perception of sound, auditory behavior, response to auditory stimulus, or detection of mechanical stimulus involved in sensory perception of sound, such as coch, kcnq4, sptbn1, sptbn4, dnm1, ush2a, and col11a1. Six signaling pathways associated with hearing (Glutamatergic synapse, GABAergic synapse pathways, Axon guidance, cAMP signaling pathway, Ionotropic glutamate receptor pathway, and Metabotropic glutamate receptor group III pathway) were over-represented in KEGG and PANTHER databases. Protein interaction prediction revealed an interactive relationship among the swimbladder-enriched genes and genes involved in sensory perception of sound. This study identified a set of genes and signaling pathways associated with auditory system in the swimbladder of channel catfish and provide resources for further study on the biological and physiological roles in catfish swimbladder. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system

    PubMed Central

    Vonk, Freek J.; Casewell, Nicholas R.; Henkel, Christiaan V.; Heimberg, Alysha M.; Jansen, Hans J.; McCleary, Ryan J. R.; Kerkkamp, Harald M. E.; Vos, Rutger A.; Guerreiro, Isabel; Calvete, Juan J.; Wüster, Wolfgang; Woods, Anthony E.; Logan, Jessica M.; Harrison, Robert A.; Castoe, Todd A.; de Koning, A. P. Jason; Pollock, David D.; Yandell, Mark; Calderon, Diego; Renjifo, Camila; Currier, Rachel B.; Salgado, David; Pla, Davinia; Sanz, Libia; Hyder, Asad S.; Ribeiro, José M. C.; Arntzen, Jan W.; van den Thillart, Guido E. E. J. M.; Boetzer, Marten; Pirovano, Walter; Dirks, Ron P.; Spaink, Herman P.; Duboule, Denis; McGlinn, Edwina; Kini, R. Manjunatha; Richardson, Michael K.

    2013-01-01

    Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection. PMID:24297900

  10. Deep sequencing and genome-wide analysis reveals the expansion of MicroRNA genes in the gall midge Mayetiola destructor

    PubMed Central

    2013-01-01

    Background MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in regulating post transcriptional gene expression. Gall midges encompass a large group of insects that are of economic importance and also possess fascinating biological traits. The gall midge Mayetiola destructor, commonly known as the Hessian fly, is a destructive pest of wheat and model organism for studying gall midge biology and insect – host plant interactions. Results In this study, we systematically analyzed miRNAs from the Hessian fly. Deep-sequencing a Hessian fly larval transcriptome led to the identification of 89 miRNA species that are either identical or very similar to known miRNAs from other insects, and 184 novel miRNAs that have not been reported from other species. A genome-wide search through a draft Hessian fly genome sequence identified a total of 611 putative miRNA-encoding genes based on sequence similarity and the existence of a stem-loop structure for miRNA precursors. Analysis of the 611 putative genes revealed a striking feature: the dramatic expansion of several miRNA gene families. The largest family contained 91 genes that encoded 20 different miRNAs. Microarray analyses revealed the expression of miRNA genes was strictly regulated during Hessian fly larval development and abundance of many miRNA genes were affected by host genotypes. Conclusion The identification of a large number of miRNAs for the first time from a gall midge provides a foundation for further studies of miRNA functions in gall midge biology and behavior. The dramatic expansion of identical or similar miRNAs provides a unique system to study functional relations among miRNA iso-genes as well as changes in sequence specificity due to small changes in miRNAs and in their mRNA targets. These results may also facilitate the identification of miRNA genes for potential pest control through transgenic approaches. PMID:23496979

  11. High-Throughput Analysis of Promoter Occupancy Reveals New Targets for Arx, a Gene Mutated in Mental Retardation and Interneuronopathies

    PubMed Central

    Quillé, Marie-Lise; Hirchaud, Edouard; Baron, Daniel; Benech, Caroline; Guihot, Jeanne; Placet, Morgane; Mignen, Olivier; Férec, Claude; Houlgatte, Rémi; Friocourt, Gaëlle

    2011-01-01

    Genetic investigations of X-linked intellectual disabilities have implicated the ARX (Aristaless-related homeobox) gene in a wide spectrum of disorders extending from phenotypes characterised by severe neuronal migration defects such as lissencephaly, to mild or moderate forms of mental retardation without apparent brain abnormalities but with associated features of dystonia and epilepsy. Analysis of Arx spatio-temporal localisation profile in mouse revealed expression in telencephalic structures, mainly restricted to populations of GABAergic neurons at all stages of development. Furthermore, studies of the effects of ARX loss of function in humans and animal models revealed varying defects, suggesting multiple roles of this gene during brain development. However, to date, little is known about how ARX functions as a transcription factor and the nature of its targets. To better understand its role, we combined chromatin immunoprecipitation and mRNA expression with microarray analysis and identified a total of 1006 gene promoters bound by Arx in transfected neuroblastoma (N2a) cells and in mouse embryonic brain. Approximately 24% of Arx-bound genes were found to show expression changes following Arx overexpression or knock-down. Several of the Arx target genes we identified are known to be important for a variety of functions in brain development and some of them suggest new functions for Arx. Overall, these results identified multiple new candidate targets for Arx and should help to better understand the pathophysiological mechanisms of intellectual disability and epilepsy associated with ARX mutations. PMID:21966449

  12. Transcriptome profiling of the whitefly Bemisia tabaci reveals stage-specific gene expression signatures for thiamethoxam resistance

    PubMed Central

    Yang, N; Xie, W; Jones, CM; Bass, C; Jiao, X; Yang, X; Liu, B; Li, R; Zhang, Y

    2013-01-01

    Bemisia tabaci has developed high levels of resistance to many insecticides including the neonicotinoids and there is strong evidence that for some compounds resistance is stage-specific. To investigate the molecular basis of B. tabaci resistance to the neonicotinoid thiamethoxam we used a custom whitefly microarray to compare gene expression in the egg, nymph and adult stages of a thiamethoxam-resistant strain (TH-R) with a susceptible strain (TH-S). Gene ontology and bioinformatic analyses revealed that in all life stages many of the differentially expressed transcripts encoded enzymes involved in metabolic processes and/or metabolism of xenobiotics. Several of these are candidate resistance genes and include the cytochrome P450 CYP6CM1, which has been shown to confer resistance to several neonicotinoids previously, a P450 belonging to the Cytochrome P450s 4 family and a glutathione S-transferase (GST) belonging to the sigma class. Finally several ATP-binding cassette transporters of the ABCG subfamily were highly over-expressed in the adult stage of the TH-R strain and may play a role in resistance by active efflux. Here, we evaluated both common and stage-specific gene expression signatures and identified several candidate resistance genes that may underlie B. tabaci resistance to thiamethoxam. PMID:23889345

  13. Comparative Genomics Reveals the Core Gene Toolbox for the Fungus-Insect Symbiosis

    PubMed Central

    Stata, Matt; Wang, Wei; White, Merlin M.; Moncalvo, Jean-Marc

    2018-01-01

    ABSTRACT Modern genomics has shed light on many entomopathogenic fungi and expanded our knowledge widely; however, little is known about the genomic features of the insect-commensal fungi. Harpellales are obligate commensals living in the digestive tracts of disease-bearing insects (black flies, midges, and mosquitoes). In this study, we produced and annotated whole-genome sequences of nine Harpellales taxa and conducted the first comparative analyses to infer the genomic diversity within the members of the Harpellales. The genomes of the insect gut fungi feature low (26% to 37%) GC content and large genome size variations (25 to 102 Mb). Further comparisons with insect-pathogenic fungi (from both Ascomycota and Zoopagomycota), as well as with free-living relatives (as negative controls), helped to identify a gene toolbox that is essential to the fungus-insect symbiosis. The results not only narrow the genomic scope of fungus-insect interactions from several thousands to eight core players but also distinguish host invasion strategies employed by insect pathogens and commensals. The genomic content suggests that insect commensal fungi rely mostly on adhesion protein anchors that target digestive system, while entomopathogenic fungi have higher numbers of transmembrane helices, signal peptides, and pathogen-host interaction (PHI) genes across the whole genome and enrich genes as well as functional domains to inactivate the host inflammation system and suppress the host defense. Phylogenomic analyses have revealed that genome sizes of Harpellales fungi vary among lineages with an integer-multiple pattern, which implies that ancient genome duplications may have occurred within the gut of insects. PMID:29764946

  14. mRNA deep sequencing reveals 75 new genes and a complex transcriptional landscape in Mimivirus

    PubMed Central

    Legendre, Matthieu; Audic, Stéphane; Poirot, Olivier; Hingamp, Pascal; Seltzer, Virginie; Byrne, Deborah; Lartigue, Audrey; Lescot, Magali; Bernadac, Alain; Poulain, Julie; Abergel, Chantal; Claverie, Jean-Michel

    2010-01-01

    Mimivirus, a virus infecting Acanthamoeba, is the prototype of the Mimiviridae, the latest addition to the nucleocytoplasmic large DNA viruses. The Mimivirus genome encodes close to 1000 proteins, many of them never before encountered in a virus, such as four amino-acyl tRNA synthetases. To explore the physiology of this exceptional virus and identify the genes involved in the building of its characteristic intracytoplasmic “virion factory,” we coupled electron microscopy observations with the massively parallel pyrosequencing of the polyadenylated RNA fractions of Acanthamoeba castellanii cells at various time post-infection. We generated 633,346 reads, of which 322,904 correspond to Mimivirus transcripts. This first application of deep mRNA sequencing (454 Life Sciences [Roche] FLX) to a large DNA virus allowed the precise delineation of the 5′ and 3′ extremities of Mimivirus mRNAs and revealed 75 new transcripts including several noncoding RNAs. Mimivirus genes are expressed across a wide dynamic range, in a finely regulated manner broadly described by three main temporal classes: early, intermediate, and late. This RNA-seq study confirmed the AAAATTGA sequence as an early promoter element, as well as the presence of palindromes at most of the polyadenylation sites. It also revealed a new promoter element correlating with late gene expression, which is also prominent in Sputnik, the recently described Mimivirus “virophage.” These results—validated genome-wide by the hybridization of total RNA extracted from infected Acanthamoeba cells on a tiling array (Agilent)—will constitute the foundation on which to build subsequent functional studies of the Mimivirus/Acanthamoeba system. PMID:20360389

  15. Origin of worldwide cultivated barley revealed by NAM-1 gene and grain protein content

    PubMed Central

    Wang, Yonggang; Ren, Xifeng; Sun, Dongfa; Sun, Genlou

    2015-01-01

    The origin, evolution, and distribution of cultivated barley provides powerful insights into the historic origin and early spread of agrarian culture. Here, population-based genetic diversity and phylogenetic analyses were performed to determine the evolution and origin of barley and how domestication and subsequent introgression have affected the genetic diversity and changes in cultivated barley on a worldwide scale. A set of worldwide cultivated and wild barleys from Asia and Tibet of China were analyzed using the sequences for NAM-1 gene and gene-associated traits-grain protein content (GPC). Our results showed Tibetan wild barley distinctly diverged from Near Eastern barley, and confirmed that Tibet is one of the origin and domestication centers for cultivated barley, and in turn supported a polyphyletic origin of domesticated barley. Comparison of haplotype composition among geographic regions revealed gene flow between Eastern and Western barley populations, suggesting that the Silk Road might have played a crucial role in the spread of genes. The GPC in the 118 cultivated and 93 wild barley accessions ranged from 6.73 to 12.35% with a mean of 9.43%. Overall, wild barley had higher averaged GPC (10.44%) than cultivated barley. Two unique haplotypes (Hap2 and Hap7) caused by a base mutations (at position 544) in the coding region of the NAM-1 gene might have a significant impact on the GPC. Single nucleotide polymorphisms and haplotypes of NAM-1 associated with GPC in barley could provide a useful method for screening GPC in barley germplasm. The Tibetan wild accessions with lower GPC could be useful for malt barley breeding. PMID:26483818

  16. Comparative transcript profiling of alloplasmic male-sterile lines revealed altered gene expression related to pollen development in rice (Oryza sativa L.).

    PubMed

    Hu, Jihong; Chen, Guanglong; Zhang, Hongyuan; Qian, Qian; Ding, Yi

    2016-08-05

    Cytoplasmic male sterility (CMS) is an ideal model for investigating the mitochondrial-nuclear interaction and down-regulated genes in CMS lines which might be the candidate genes for pollen development in rice. In this study, a set of rice alloplasmic sporophytic CMS lines was obtained by successive backcrossing of Meixiang B, with three different cytoplasmic types: D62A (D type), ZS97A (WA type) and XQZ-A (DA type). Using microarray, the anther transcript profiles of the three indica rice CMS lines revealed 622 differentially expressed genes (DEGs) in each of the three CMS lines compared with the maintainer line Meixiang B. GO and MapMan analysis indicated that these DEGs were mainly involved in lipid metabolism and cell wall organization. Compared with the gene expression of sporophytic and gametophytic CMS lines, 303 DEGs were identified and 56 of them were down-regulated in all the CMS lines of rice. These down-regulated DEGs in the CMS lines were found to be involved in tapetum or cell wall formation and their suppressed expression might be related to male sterility. Weighted gene co-expression network analysis (WGCNA) revealed that two modules were significantly associated with male sterility and many hub genes that were differentially expressed in the CMS lines. A large set of putative genes involved in anther development was identified in the present study. The results will give some information for the nuclear gene regulation by different cytoplasmic genotypes and provide a rich resource for further functional research on the pollen development in rice.

  17. A Customized Gene Expression Microarray Reveals That the Brittle Stem Phenotype fs2 of Barley Is Attributable to a Retroelement in the HvCesA4 Cellulose Synthase Gene1[W][OA

    PubMed Central

    Burton, Rachel A.; Ma, Gang; Baumann, Ute; Harvey, Andrew J.; Shirley, Neil J.; Taylor, Jillian; Pettolino, Filomena; Bacic, Antony; Beatty, Mary; Simmons, Carl R.; Dhugga, Kanwarpal S.; Rafalski, J. Antoni; Tingey, Scott V.; Fincher, Geoffrey B.

    2010-01-01

    The barley (Hordeum vulgare) brittle stem mutants, fs2, designated X054 and M245, have reduced levels of crystalline cellulose compared with their parental lines Ohichi and Shiroseto. A custom-designed microarray, based on long oligonucleotide technology and including genes involved in cell wall metabolism, revealed that transcript levels of very few genes were altered in the elongation zone of stem internodes, but these included a marked decrease in mRNA for the HvCesA4 cellulose synthase gene of both mutants. In contrast, the abundance of several hundred transcripts changed in the upper, maturation zones of stem internodes, which presumably reflected pleiotropic responses to a weakened cell wall that resulted from the primary genetic lesion. Sequencing of the HvCesA4 genes revealed the presence of a 964-bp solo long terminal repeat of a Copia-like retroelement in the first intron of the HvCesA4 genes of both mutant lines. The retroelement appears to interfere with transcription of the HvCesA4 gene or with processing of the mRNA, and this is likely to account for the lower crystalline cellulose content and lower stem strength of the mutants. The HvCesA4 gene maps to a position on chromosome 1H of barley that coincides with the previously reported position of fs2. PMID:20530215

  18. Genome sequence comparison reveals a candidate gene involved in male-hermaphrodite differentiation in papaya (Carica papaya) trees.

    PubMed

    Ueno, Hiroki; Urasaki, Naoya; Natsume, Satoshi; Yoshida, Kentaro; Tarora, Kazuhiko; Shudo, Ayano; Terauchi, Ryohei; Matsumura, Hideo

    2015-04-01

    The sex type of papaya (Carica papaya) is determined by the pair of sex chromosomes (XX, female; XY, male; and XY(h), hermaphrodite), in which there is a non-recombining genomic region in the Y and Y(h) chromosomes. This region is presumed to be involved in determination of males and hermaphrodites; it is designated as the male-specific region in the Y chromosome (MSY) and the hermaphrodite-specific region in the Y(h) chromosome (HSY). Here, we identified the genes determining male and hermaphrodite sex types by comparing MSY and HSY genomic sequences. In the MSY and HSY genomic regions, we identified 14,528 nucleotide substitutions and 965 short indels with a large gap and two highly diverged regions. In the predicted genes expressed in flower buds, we found no nucleotide differences leading to amino acid changes between the MSY and HSY. However, we found an HSY-specific transposon insertion in a gene (SVP like) showing a similarity to the Short Vegetative Phase (SVP) gene. Study of SVP-like transcripts revealed that the MSY allele encoded an intact protein, while the HSY allele encoded a truncated protein. Our findings demonstrated that the SVP-like gene is a candidate gene for male-hermaphrodite determination in papaya.

  19. Comparative genomics of four closely related Clostridium perfringens bacteriophages reveals variable evolution among core genes with therapeutic potential

    PubMed Central

    2011-01-01

    Background Because biotechnological uses of bacteriophage gene products as alternatives to conventional antibiotics will require a thorough understanding of their genomic context, we sequenced and analyzed the genomes of four closely related phages isolated from Clostridium perfringens, an important agricultural and human pathogen. Results Phage whole-genome tetra-nucleotide signatures and proteomic tree topologies correlated closely with host phylogeny. Comparisons of our phage genomes to 26 others revealed three shared COGs; of particular interest within this core genome was an endolysin (PF01520, an N-acetylmuramoyl-L-alanine amidase) and a holin (PF04531). Comparative analyses of the evolutionary history and genomic context of these common phage proteins revealed two important results: 1) strongly significant host-specific sequence variation within the endolysin, and 2) a protein domain architecture apparently unique to our phage genomes in which the endolysin is located upstream of its associated holin. Endolysin sequences from our phages were one of two very distinct genotypes distinguished by variability within the putative enzymatically-active domain. The shared or core genome was comprised of genes with multiple sequence types belonging to five pfam families, and genes belonging to 12 pfam families, including the holin genes, which were nearly identical. Conclusions Significant genomic diversity exists even among closely-related bacteriophages. Holins and endolysins represent conserved functions across divergent phage genomes and, as we demonstrate here, endolysins can have significant variability and host-specificity even among closely-related genomes. Endolysins in our phage genomes may be subject to different selective pressures than the rest of the genome. These findings may have important implications for potential biotechnological applications of phage gene products. PMID:21631945

  20. Relaxation rates of gene expression kinetics reveal the feedback signs of autoregulatory gene networks

    NASA Astrophysics Data System (ADS)

    Jia, Chen; Qian, Hong; Chen, Min; Zhang, Michael Q.

    2018-03-01

    The transient response to a stimulus and subsequent recovery to a steady state are the fundamental characteristics of a living organism. Here we study the relaxation kinetics of autoregulatory gene networks based on the chemical master equation model of single-cell stochastic gene expression with nonlinear feedback regulation. We report a novel relation between the rate of relaxation, characterized by the spectral gap of the Markov model, and the feedback sign of the underlying gene circuit. When a network has no feedback, the relaxation rate is exactly the decaying rate of the protein. We further show that positive feedback always slows down the relaxation kinetics while negative feedback always speeds it up. Numerical simulations demonstrate that this relation provides a possible method to infer the feedback topology of autoregulatory gene networks by using time-series data of gene expression.

  1. RNA Sequencing Reveals the Alteration of the Expression of Novel Genes in Ethanol-Treated Embryoid Bodies.

    PubMed

    Mandal, Chanchal; Kim, Sun Hwa; Chai, Jin Choul; Oh, Seon Mi; Lee, Young Seek; Jung, Kyoung Hwa; Chai, Young Gyu

    2016-01-01

    Fetal alcohol spectrum disorder is a collective term representing fetal abnormalities associated with maternal alcohol consumption. Prenatal alcohol exposure and related anomalies are well characterized, but the molecular mechanism behind this phenomenon is not well characterized. In this present study, our aim is to profile important genes that regulate cellular development during fetal development. Human embryonic carcinoma cells (NCCIT) are cultured to form embryoid bodies and then treated in the presence and absence of ethanol (50 mM). We employed RNA sequencing to profile differentially expressed genes in the ethanol-treated embryoid bodies from NCCIT vs. EB, NCCIT vs. EB+EtOH and EB vs. EB+EtOH data sets. A total of 632, 205 and 517 differentially expressed genes were identified from NCCIT vs. EB, NCCIT vs. EB+EtOH and EB vs. EB+EtOH, respectively. Functional annotation using bioinformatics tools reveal significant enrichment of differential cellular development and developmental disorders. Furthermore, a group of 42, 15 and 35 transcription factor-encoding genes are screened from all of the differentially expressed genes obtained from NCCIT vs. EB, NCCIT vs. EB+EtOH and EB vs. EB+EtOH, respectively. We validated relative gene expression levels of several transcription factors from these lists by quantitative real-time PCR. We hope that our study substantially contributes to the understanding of the molecular mechanism underlying the pathology of alcohol-mediated anomalies and ease further research.

  2. The complexity of gene expression dynamics revealed by permutation entropy

    PubMed Central

    2010-01-01

    Background High complexity is considered a hallmark of living systems. Here we investigate the complexity of temporal gene expression patterns using the concept of Permutation Entropy (PE) first introduced in dynamical systems theory. The analysis of gene expression data has so far focused primarily on the identification of differentially expressed genes, or on the elucidation of pathway and regulatory relationships. We aim to study gene expression time series data from the viewpoint of complexity. Results Applying the PE complexity metric to abiotic stress response time series data in Arabidopsis thaliana, genes involved in stress response and signaling were found to be associated with the highest complexity not only under stress, but surprisingly, also under reference, non-stress conditions. Genes with house-keeping functions exhibited lower PE complexity. Compared to reference conditions, the PE of temporal gene expression patterns generally increased upon stress exposure. High-complexity genes were found to have longer upstream intergenic regions and more cis-regulatory motifs in their promoter regions indicative of a more complex regulatory apparatus needed to orchestrate their expression, and to be associated with higher correlation network connectivity degree. Arabidopsis genes also present in other plant species were observed to exhibit decreased PE complexity compared to Arabidopsis specific genes. Conclusions We show that Permutation Entropy is a simple yet robust and powerful approach to identify temporal gene expression profiles of varying complexity that is equally applicable to other types of molecular profile data. PMID:21176199

  3. Global transcriptome analysis reveals extensive gene remodeling, alternative splicing and differential transcription profiles in non-seed vascular plant Selaginella moellendorffii.

    PubMed

    Zhu, Yan; Chen, Longxian; Zhang, Chengjun; Hao, Pei; Jing, Xinyun; Li, Xuan

    2017-01-25

    Selaginella moellendorffii, a lycophyte, is a model plant to study the early evolution and development of vascular plants. As the first and only sequenced lycophyte to date, the genome of S. moellendorffii revealed many conserved genes and pathways, as well as specialized genes different from flowering plants. Despite the progress made, little is known about long noncoding RNAs (lncRNA) and the alternative splicing (AS) of coding genes in S. moellendorffii. Its coding gene models have not been fully validated with transcriptome data. Furthermore, it remains important to understand whether the regulatory mechanisms similar to flowering plants are used, and how they operate in a non-seed primitive vascular plant. RNA-sequencing (RNA-seq) was performed for three S. moellendorffii tissues, root, stem, and leaf, by constructing strand-specific RNA-seq libraries from RNA purified using RiboMinus isolation protocol. A total of 176 million reads (44 Gbp) were obtained from three tissue types, and were mapped to S. moellendorffii genome. By comparing with 22,285 existing gene models of S. moellendorffii, we identified 7930 high-confidence novel coding genes (a 35.6% increase), and for the first time reported 4422 lncRNAs in a lycophyte. Further, we refined 2461 (11.0%) of existing gene models, and identified 11,030 AS events (for 5957 coding genes) revealed for the first time for lycophytes. Tissue-specific gene expression with functional implication was analyzed, and 1031, 554, and 269 coding genes, and 174, 39, and 17 lncRNAs were identified in root, stem, and leaf tissues, respectively. The expression of critical genes for vascular development stages, i.e. formation of provascular cells, xylem specification and differentiation, and phloem specification and differentiation, was compared in S. moellendorffii tissues, indicating a less complex regulatory mechanism in lycophytes than in flowering plants. The results were further strengthened by the evolutionary trend of

  4. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease.

    PubMed

    Potter, Paul K; Bowl, Michael R; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E; Simon, Michelle M; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V; Law, Gemma; MacLaren, Robert E; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H; Foster, Russell G; Jackson, Ian J; Peirson, Stuart N; Thakker, Rajesh V; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D M

    2016-08-18

    Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss.

  5. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease

    PubMed Central

    Potter, Paul K.; Bowl, Michael R.; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E.; Simon, Michelle M.; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V.; Law, Gemma; MacLaren, Robert E.; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H.; Foster, Russell G.; Jackson, Ian J.; Peirson, Stuart N.; Thakker, Rajesh V.; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M.; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D. M.

    2016-01-01

    Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss. PMID:27534441

  6. Glucose turnover in kelp bass (Paralabrax sp. ): in vivo studies with (6-/sup 3/H,6-/sup 14/C)glucose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bever, K.; Chenoweth, M.; Dunn, A.

    1977-01-01

    (6-/sup 3/H,6-/sup 14/C)glucose was injected via an indwelling arterial cannula in free-swimming, fed, and fasted kelp bass to determine hepatic glucose production, peripheral glucose uptake, minimal glucose mass, mean transit time, and the percent of carbon recycling under the two different nutritional states. Mean plasma glucose levels remained unchanged in fed and fasted fish (48 +- 8 vs. 43 +- 8 mg/100 ml). During steady-state conditions, glucose replacement rates of fed and fasted fish determined with (6-/sup 3/H)glucose are similar (0.035 +- 0.006 vs. 0.025 +- 0.003 mg/min per 100 g) and do not differ from rates determined with (6-/supmore » 14/C)glucose (0.035 +- 0.005 vs. 0.026 +- 0.002). The minimal glucose masses and the mean transit times determined with both isotopes are also similar suggesting that plasma glucose levels and glucose turnover are maintained in fish fasted up to 40 days with no apparent increase in carbon recycling. Nonsteady-state isotope experiments suggest that these fish can alter rates of hepatic glucose production and peripheral uptake in response to hyper- and hypoglycemia.« less

  7. Transcriptome Analysis Reveals Genes Commonly Induced by Botrytis cinerea Infection, Cold, Drought and Oxidative Stresses in Arabidopsis

    PubMed Central

    Al-Ameri, Salma; Al-Mahmoud, Bassam; Awwad, Falah; Al-Rawashdeh, Ahmed; Iratni, Rabah; AbuQamar, Synan

    2014-01-01

    Signaling pathways controlling biotic and abiotic stress responses may interact synergistically or antagonistically. To identify the similarities and differences among responses to diverse stresses, we analyzed previously published microarray data on the transcriptomic responses of Arabidopsis to infection with Botrytis cinerea (a biotic stress), and to cold, drought, and oxidative stresses (abiotic stresses). Our analyses showed that at early stages after B. cinerea inoculation, 1498 genes were up-regulated (B. cinerea up-regulated genes; BUGs) and 1138 genes were down-regulated (B. cinerea down-regulated genes; BDGs). We showed a unique program of gene expression was activated in response each biotic and abiotic stress, but that some genes were similarly induced or repressed by all of the tested stresses. Of the identified BUGs, 25%, 6% and 12% were also induced by cold, drought and oxidative stress, respectively; whereas 33%, 7% and 5.5% of the BDGs were also down-regulated by the same abiotic stresses. Coexpression and protein-protein interaction network analyses revealed a dynamic range in the expression levels of genes encoding regulatory proteins. Analysis of gene expression in response to electrophilic oxylipins suggested that these compounds are involved in mediating responses to B. cinerea infection and abiotic stress through TGA transcription factors. Our results suggest an overlap among genes involved in the responses to biotic and abiotic stresses in Arabidopsis. Changes in the transcript levels of genes encoding components of the cyclopentenone signaling pathway in response to biotic and abiotic stresses suggest that the oxylipin signal transduction pathway plays a role in plant defense. Identifying genes that are commonly expressed in response to environmental stresses, and further analyzing the functions of their encoded products, will increase our understanding of the plant stress response. This information could identify targets for genetic

  8. The Barley Genome Sequence Assembly Reveals Three Additional Members of the CslF (1,3;1,4)-β-Glucan Synthase Gene Family

    PubMed Central

    Schreiber, Miriam; Wright, Frank; MacKenzie, Katrin; Hedley, Pete E.; Schwerdt, Julian G.; Little, Alan; Burton, Rachel A.; Fincher, Geoffrey B.; Marshall, David; Waugh, Robbie; Halpin, Claire

    2014-01-01

    An important component of barley cell walls, particularly in the endosperm, is (1,3;1,4)-β- glucan, a polymer that has proven health benefits in humans and that influences processability in the brewing industry. Genes of the cellulose synthase-like (Csl) F gene family have been shown to be involved in (1,3;1,4)-β-glucan synthesis but many aspects of the biosynthesis are still unclear. Examination of the sequence assembly of the barley genome has revealed the presence of an additional three HvCslF genes (HvCslF11, HvCslF12 and HvCslF13) which may be involved in (1,3;1,4)-β-glucan synthesis. Transcripts of HvCslF11 and HvCslF12 mRNA were found in roots and young leaves, respectively. Transient expression of these genes in Nicotiana benthamiana resulted in phenotypic changes in the infiltrated leaves, although no authentic (1,3;1,4)-β-glucan was detected. Comparisons of the CslF gene families in cereals revealed evidence of intergenic recombination, gene duplications and translocation events. This significant divergence within the gene family might be related to multiple functions of (1,3;1,4)-β-glucans in the Poaceae. Emerging genomic and global expression data for barley and other cereals is a powerful resource for characterising the evolution and dynamics of complete gene families. In the case of the CslF gene family, the results will contribute to a more thorough understanding of carbohydrate metabolism in grass cell walls. PMID:24595438

  9. Gene Expression in the Scleractinian Acropora microphthalma Exposed to High Solar Irradiance Reveals Elements of Photoprotection and Coral Bleaching

    PubMed Central

    Starcevic, Antonio; Dunlap, Walter C.; Cullum, John; Shick, J. Malcolm; Hranueli, Daslav; Long, Paul F.

    2010-01-01

    Background The success of tropical reef-building corals depends on the metabolic co-operation between the animal host and the photosynthetic performance of endosymbiotic algae residing within its cells. To examine the molecular response of the coral Acropora microphthalma to high levels of solar irradiance, a cDNA library was constructed by PCR-based suppression subtractive hybridisation (PCR-SSH) from mRNA obtained by transplantation of a colony from a depth of 12.7 m to near-surface solar irradiance, during which the coral became noticeably paler from loss of endosymbionts in sun-exposed tissues. Methodology/Principal Findings A novel approach to sequence annotation of the cDNA library gave genetic evidence for a hypothetical biosynthetic pathway branching from the shikimic acid pathway that leads to the formation of 4-deoxygadusol. This metabolite is a potent antioxidant and expected precursor of the UV-protective mycosporine-like amino acids (MAAs), which serve as sunscreens in coral phototrophic symbiosis. Empirical PCR based evidence further upholds the contention that the biosynthesis of these MAA sunscreens is a ‘shared metabolic adaptation’ between the symbiotic partners. Additionally, gene expression induced by enhanced solar irradiance reveals a cellular mechanism of light-induced coral bleaching that invokes a Ca2+-binding synaptotagmin-like regulator of SNARE protein assembly of phagosomal exocytosis, whereby algal partners are lost from the symbiosis. Conclusions/Significance Bioinformatics analyses of DNA sequences obtained by differential gene expression of a coral exposed to high solar irradiance has revealed the identification of putative genes encoding key steps of the MAA biosynthetic pathway. Revealed also by this treatment are genes that implicate exocytosis as a cellular process contributing to a breakdown in the metabolically essential partnership between the coral host and endosymbiotic algae, which manifests as coral bleaching. PMID

  10. Gene expression in the scleractinian Acropora microphthalma exposed to high solar irradiance reveals elements of photoprotection and coral bleaching.

    PubMed

    Starcevic, Antonio; Dunlap, Walter C; Cullum, John; Shick, J Malcolm; Hranueli, Daslav; Long, Paul F

    2010-11-12

    The success of tropical reef-building corals depends on the metabolic co-operation between the animal host and the photosynthetic performance of endosymbiotic algae residing within its cells. To examine the molecular response of the coral Acropora microphthalma to high levels of solar irradiance, a cDNA library was constructed by PCR-based suppression subtractive hybridisation (PCR-SSH) from mRNA obtained by transplantation of a colony from a depth of 12.7 m to near-surface solar irradiance, during which the coral became noticeably paler from loss of endosymbionts in sun-exposed tissues. A novel approach to sequence annotation of the cDNA library gave genetic evidence for a hypothetical biosynthetic pathway branching from the shikimic acid pathway that leads to the formation of 4-deoxygadusol. This metabolite is a potent antioxidant and expected precursor of the UV-protective mycosporine-like amino acids (MAAs), which serve as sunscreens in coral phototrophic symbiosis. Empirical PCR based evidence further upholds the contention that the biosynthesis of these MAA sunscreens is a 'shared metabolic adaptation' between the symbiotic partners. Additionally, gene expression induced by enhanced solar irradiance reveals a cellular mechanism of light-induced coral bleaching that invokes a Ca(2+)-binding synaptotagmin-like regulator of SNARE protein assembly of phagosomal exocytosis, whereby algal partners are lost from the symbiosis. Bioinformatics analyses of DNA sequences obtained by differential gene expression of a coral exposed to high solar irradiance has revealed the identification of putative genes encoding key steps of the MAA biosynthetic pathway. Revealed also by this treatment are genes that implicate exocytosis as a cellular process contributing to a breakdown in the metabolically essential partnership between the coral host and endosymbiotic algae, which manifests as coral bleaching.

  11. Transcriptomic changes reveal gene networks responding to the overexpression of a blueberry DWARF AND DELAYED FLOWERING 1 gene in transgenic blueberry plants.

    PubMed

    Song, Guo-Qing; Gao, Xuan

    2017-06-19

    Constitutive expression of the CBF/DREB1 for increasing freezing tolerance in woody plants is often associated with other phenotypic changes including dwarf plant and delayed flowering. These phenotypic changes have been observed when Arabidopsis DWARF AND DELAYED FLOWERING 1 (DDF1) was overexpressed in A. thaliana plants. To date, the DDF1 orthologues have not been studied in woody plants. The aim of this study is to investigate transcriptomic responses to the overexpression of blueberry (Vaccinium corymbosum) DDF1 (herein, VcDDF1-OX). The VcDDF1-OX resulted in enhanced freezing tolerance in tetraploid blueberry plants and did not result in significant changes in plant size, chilling requirement, and flowering time. Comparative transcriptome analysis of transgenic 'Legacy-VcDDF1-OX' plants containing an overexpressed VcDDF1 with non-transgenic highbush blueberry 'Legacy' plants revealed the VcDDF1-OX derived differentially expressed (DE) genes and transcripts in the pathways of cold-response, plant flowering, DELLA proteins, and plant phytohormones. The increase in freezing tolerance was associated to the expression of cold-regulated genes (CORs) and the ethylene pathway genes. The unchanged plant size, dormancy and flowering were due to the minimal effect of the VcDDF1-OX on the expression of DELLA proteins, flowering pathway genes, and the other phytohormone genes related to plant growth and development. The DE genes in auxin and cytokinin pathways suggest that the VcDDF1-OX has also altered plant tolerance to drought and high salinity. A DDF1 orthologue in blueberry functioned differently from the DDF1 reported in Arabidopsis. The overexpression of VcDDF1 or its orthologues is a new approach to increase freezing tolerance of deciduous woody plant species with no obvious effect on plant size and plant flowering time.

  12. Silencing of a second dimethylallyltryptophan synthase of Penicillium roqueforti reveals a novel clavine alkaloid gene cluster.

    PubMed

    Fernández-Bodega, Ángeles; Álvarez-Álvarez, Rubén; Liras, Paloma; Martín, Juan F

    2017-08-01

    Penicillium roqueforti produces several prenylated indole alkaloids, including roquefortine C and clavine alkaloids. The first step in the biosynthesis of roquefortine C is the prenylation of tryptophan-derived dipeptides by a dimethylallyltryptophan synthase, specific for roquefortine biosynthesis (roquefortine prenyltransferase). A second dimethylallyltryptophan synthase, DmaW2, different from the roquefortine prenyltransferase, has been studied in this article. Silencing the gene encoding this second dimethylallyltryptophan synthase, dmaW2, proved that inactivation of this gene does not prevent the production of roquefortine C, but suppresses the formation of other indole alkaloids. Mass spectrometry studies have identified these compounds as isofumigaclavine A, the pathway final product and prenylated intermediates. The silencing does not affect the production of mycophenolic acid and andrastin A. A bioinformatic study of the genome of P. roqueforti revealed that DmaW2 (renamed IfgA) is a prenyltransferase involved in isofumigaclavine A biosynthesis encoded by a gene located in a six genes cluster (cluster A). A second three genes cluster (cluster B) encodes the so-called yellow enzyme and enzymes for the late steps for the conversion of festuclavine to isofumigaclavine A. The yellow enzyme contains a tyrosine-181 at its active center, as occurs in Neosartorya fumigata, but in contrast to the Clavicipitaceae fungi. A complete isofumigaclavines A and B biosynthetic pathway is proposed based on the finding of these studies on the biosynthesis of clavine alkaloids.

  13. Genetic and epigenetic variation in 5S ribosomal RNA genes reveals genome dynamics in Arabidopsis thaliana

    PubMed Central

    Simon, Lauriane; Rabanal, Fernando A; Dubos, Tristan; Oliver, Cecilia; Lauber, Damien; Poulet, Axel; Vogt, Alexander; Mandlbauer, Ariane; Le Goff, Samuel; Sommer, Andreas; Duborjal, Hervé; Tatout, Christophe

    2018-01-01

    Abstract Organized in tandem repeat arrays in most eukaryotes and transcribed by RNA polymerase III, expression of 5S rRNA genes is under epigenetic control. To unveil mechanisms of transcriptional regulation, we obtained here in depth sequence information on 5S rRNA genes from the Arabidopsis thaliana genome and identified differential enrichment in epigenetic marks between the three 5S rDNA loci situated on chromosomes 3, 4 and 5. We reveal the chromosome 5 locus as the major source of an atypical, long 5S rRNA transcript characteristic of an open chromatin structure. 5S rRNA genes from this locus translocated in the Landsberg erecta ecotype as shown by linkage mapping and chromosome-specific FISH analysis. These variations in 5S rDNA locus organization cause changes in the spatial arrangement of chromosomes in the nucleus. Furthermore, 5S rRNA gene arrangements are highly dynamic with alterations in chromosomal positions through translocations in certain mutants of the RNA-directed DNA methylation pathway and important copy number variations among ecotypes. Finally, variations in 5S rRNA gene sequence, chromatin organization and transcripts indicate differential usage of 5S rDNA loci in distinct ecotypes. We suggest that both the usage of existing and new 5S rDNA loci resulting from translocations may impact neighboring chromatin organization. PMID:29518237

  14. Genetic and epigenetic variation in 5S ribosomal RNA genes reveals genome dynamics in Arabidopsis thaliana.

    PubMed

    Simon, Lauriane; Rabanal, Fernando A; Dubos, Tristan; Oliver, Cecilia; Lauber, Damien; Poulet, Axel; Vogt, Alexander; Mandlbauer, Ariane; Le Goff, Samuel; Sommer, Andreas; Duborjal, Hervé; Tatout, Christophe; Probst, Aline V

    2018-04-06

    Organized in tandem repeat arrays in most eukaryotes and transcribed by RNA polymerase III, expression of 5S rRNA genes is under epigenetic control. To unveil mechanisms of transcriptional regulation, we obtained here in depth sequence information on 5S rRNA genes from the Arabidopsis thaliana genome and identified differential enrichment in epigenetic marks between the three 5S rDNA loci situated on chromosomes 3, 4 and 5. We reveal the chromosome 5 locus as the major source of an atypical, long 5S rRNA transcript characteristic of an open chromatin structure. 5S rRNA genes from this locus translocated in the Landsberg erecta ecotype as shown by linkage mapping and chromosome-specific FISH analysis. These variations in 5S rDNA locus organization cause changes in the spatial arrangement of chromosomes in the nucleus. Furthermore, 5S rRNA gene arrangements are highly dynamic with alterations in chromosomal positions through translocations in certain mutants of the RNA-directed DNA methylation pathway and important copy number variations among ecotypes. Finally, variations in 5S rRNA gene sequence, chromatin organization and transcripts indicate differential usage of 5S rDNA loci in distinct ecotypes. We suggest that both the usage of existing and new 5S rDNA loci resulting from translocations may impact neighboring chromatin organization.

  15. Transcriptomics reveals tissue/organ-specific differences in gene expression in the starfish Patiria pectinifera.

    PubMed

    Kim, Chan-Hee; Go, Hye-Jin; Oh, Hye Young; Jo, Yong Hun; Elphick, Maurice R; Park, Nam Gyu

    2018-02-01

    Starfish (Phylum Echinodermata) are of interest from an evolutionary perspective because as deuterostomian invertebrates they occupy an "intermediate" phylogenetic position with respect to chordates (e.g. vertebrates) and protostomian invertebrates (e.g. Drosophila). Furthermore, starfish are model organisms for research on fertilization, embryonic development, innate immunity and tissue regeneration. However, large-scale molecular data for starfish tissues/organs are limited. To provide a comprehensive genetic resource for the starfish Patiria pectinifera, we report de novo transcriptome assemblies and global gene expression analysis for six P. pectinifera tissues/organs - body wall (BW), coelomic epithelium (CE), tube feet (TF), stomach (SM), pyloric caeca (PC) and gonad (GN). A total of 408 million high-quality reads obtained from six cDNA libraries were assembled de novo using Trinity, resulting in a total of 549,598 contigs with a mean length of 835 nucleotides (nt), an N50 of 1473nt, and GC ratio of 42.5%. A total of 126,136 contigs (22.9%) were obtained as predicted open reading frames (ORFs) by TransDecoder, of which 102,187 were annotated with NCBI non-redundant (NR) hits, and 51,075 and 10,963 were annotated with Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) using the Blast2GO program, respectively. Gene expression analysis revealed that tissues/organs are grouped into three clusters: BW/CE/TF, SM/PC, and GN, which likely reflect functional relationships. 2408, 8560, 2687, 1727, 3321, and 2667 specifically expressed genes were identified for BW, GN, PC, CE, SM and TF, respectively, using the ROKU method. This study provides a valuable transcriptome resource and novel molecular insights into the functional biology of different tissues/organs in starfish as a model organism. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Aberrant gene expression in mucosa adjacent to tumor reveals a molecular crosstalk in colon cancer

    PubMed Central

    2014-01-01

    Background A colorectal tumor is not an isolated entity growing in a restricted location of the body. The patient’s gut environment constitutes the framework where the tumor evolves and this relationship promotes and includes a complex and tight correlation of the tumor with inflammation, blood vessels formation, nutrition, and gut microbiome composition. The tumor influence in the environment could both promote an anti-tumor or a pro-tumor response. Methods A set of 98 paired adjacent mucosa and tumor tissues from colorectal cancer (CRC) patients and 50 colon mucosa from healthy donors (246 samples in total) were included in this work. RNA extracted from each sample was hybridized in Affymetrix chips Human Genome U219. Functional relationships between genes were inferred by means of systems biology using both transcriptional regulation networks (ARACNe algorithm) and protein-protein interaction networks (BIANA software). Results Here we report a transcriptomic analysis revealing a number of genes activated in adjacent mucosa from CRC patients, not activated in mucosa from healthy donors. A functional analysis of these genes suggested that this active reaction of the adjacent mucosa was related to the presence of the tumor. Transcriptional and protein-interaction networks were used to further elucidate this response of normal gut in front of the tumor, revealing a crosstalk between proteins secreted by the tumor and receptors activated in the adjacent colon tissue; and vice versa. Remarkably, Slit family of proteins activated ROBO receptors in tumor whereas tumor-secreted proteins transduced a cellular signal finally activating AP-1 in adjacent tissue. Conclusions The systems-level approach provides new insights into the micro-ecology of colorectal tumorogenesis. Disrupting this intricate molecular network of cell-cell communication and pro-inflammatory microenvironment could be a therapeutic target in CRC patients. PMID:24597571

  17. Immuno-Navigator, a batch-corrected coexpression database, reveals cell type-specific gene networks in the immune system

    PubMed Central

    Vandenbon, Alexis; Dinh, Viet H.; Mikami, Norihisa; Kitagawa, Yohko; Teraguchi, Shunsuke; Ohkura, Naganari; Sakaguchi, Shimon

    2016-01-01

    High-throughput gene expression data are one of the primary resources for exploring complex intracellular dynamics in modern biology. The integration of large amounts of public data may allow us to examine general dynamical relationships between regulators and target genes. However, obstacles for such analyses are study-specific biases or batch effects in the original data. Here we present Immuno-Navigator, a batch-corrected gene expression and coexpression database for 24 cell types of the mouse immune system. We systematically removed batch effects from the underlying gene expression data and showed that this removal considerably improved the consistency between inferred correlations and prior knowledge. The data revealed widespread cell type-specific correlation of expression. Integrated analysis tools allow users to use this correlation of expression for the generation of hypotheses about biological networks and candidate regulators in specific cell types. We show several applications of Immuno-Navigator as examples. In one application we successfully predicted known regulators of importance in naturally occurring Treg cells from their expression correlation with a set of Treg-specific genes. For one high-scoring gene, integrin β8 (Itgb8), we confirmed an association between Itgb8 expression in forkhead box P3 (Foxp3)-positive T cells and Treg-specific epigenetic remodeling. Our results also suggest that the regulation of Treg-specific genes within Treg cells is relatively independent of Foxp3 expression, supporting recent results pointing to a Foxp3-independent component in the development of Treg cells. PMID:27078110

  18. RNA-Seq Analysis Reveals Genes Underlying Different Disease Responses to Porcine Circovirus Type 2 in Pigs

    PubMed Central

    Wang, Pengfei; Wang, Liyuan; Sun, Yi; Liu, Gen; Zhang, Ping; Kang, Li; Jiang, Shijin; Jiang, Yunliang

    2016-01-01

    Porcine circovirus type 2 (PCV2), an economically important pathogen, causes postweaning multisystemic wasting syndrome (PMWS) and other syndrome diseases collectively known as porcine circovirus-associated disease (PCVAD). Previous studies revealed breed-dependent differences in porcine susceptibility to PCV2; however, the genetic mechanism underlying different resistance to PCV2 infection remains largely unknown. In this study, we found that Yorkshire × Landrace (YL) pigs exhibited serious clinical features typifying PCV2 disease, while the Laiwu (a Chinese indigenous pig breed, LW) pigs showed little clinical symptoms of the disease during PCV2 infection. At 35 days post infection (dpi), the PCV2 DNA copy in YL pigs was significantly higher than that in LW pigs (P < 0.05). The serum level of IL-4, IL-6, IL-8, IL-12 and TGF-β1 in LW pigs and TNF-α in YL pigs increased significantly at the early infected stages, respectively; while that of IL-10 and IFN-γ in YL pigs was greatly increased at 35 dpi. RNA-seq analysis revealed that, at 35 dpi, 83 genes were up-regulated and 86 genes were down-regulated in the lung tissues of LW pigs, while in YL pigs, the numbers were 187 and 18, respectively. In LW pigs, the differentially expressed genes (DEGs) were mainly involved in complement and coagulation cascades, metabolism of xenobiotics by cytochrome P450, RIG-I-like receptor signaling and B cell receptor signaling pathways. Four up-regulated genes (TFPI, SERPNC1, SERPNA1, and SERPNA5) that are enriched in complement and coagulation cascades pathway were identified in the PCV2-infected LW pigs, among which the mRNA expression of SERPNA1, as well as three genes including TGF-β1, TGF-β2 and VEGF that are regulated by SERPNA1 was significantly increased (P < 0.05). We speculate that higher expression of SERPNA1 may effectively suppress excessive inflammation reaction and reduce the pathological degree of lung tissue in PCV2-infected pigs. Collectively, our findings

  19. A Minimal Set of Glycolytic Genes Reveals Strong Redundancies in Saccharomyces cerevisiae Central Metabolism

    PubMed Central

    Solis-Escalante, Daniel; Kuijpers, Niels G. A.; Barrajon-Simancas, Nuria; van den Broek, Marcel; Pronk, Jack T.

    2015-01-01

    As a result of ancestral whole-genome and small-scale duplication events, the genomes of Saccharomyces cerevisiae and many eukaryotes still contain a substantial fraction of duplicated genes. In all investigated organisms, metabolic pathways, and more particularly glycolysis, are specifically enriched for functionally redundant paralogs. In ancestors of the Saccharomyces lineage, the duplication of glycolytic genes is purported to have played an important role leading to S. cerevisiae's current lifestyle favoring fermentative metabolism even in the presence of oxygen and characterized by a high glycolytic capacity. In modern S. cerevisiae strains, the 12 glycolytic reactions leading to the biochemical conversion from glucose to ethanol are encoded by 27 paralogs. In order to experimentally explore the physiological role of this genetic redundancy, a yeast strain with a minimal set of 14 paralogs was constructed (the “minimal glycolysis” [MG] strain). Remarkably, a combination of a quantitative systems approach and semiquantitative analysis in a wide array of growth environments revealed the absence of a phenotypic response to the cumulative deletion of 13 glycolytic paralogs. This observation indicates that duplication of glycolytic genes is not a prerequisite for achieving the high glycolytic fluxes and fermentative capacities that are characteristic of S. cerevisiae and essential for many of its industrial applications and argues against gene dosage effects as a means of fixing minor glycolytic paralogs in the yeast genome. The MG strain was carefully designed and constructed to provide a robust prototrophic platform for quantitative studies and has been made available to the scientific community. PMID:26071034

  20. Genome-wide STAT3 binding analysis after histone deacetylase inhibition reveals novel target genes in dendritic cells

    PubMed Central

    Sun, Yaping; Iyer, Matthew; McEachin, Richard; Zhao, Meng; Wu, Yi-Mi; Cao, Xuhong; Oravecz-Wilson, Katherine; Zajac, Cynthia; Mathewson, Nathan; Wu, Shin-Rong Julia; Rossi, Corinne; Toubai, Tomomi; Qin, Zhaohui S.; Chinnaiya, Arul M.; Reddy, Pavan

    2016-01-01

    STAT3 is a master transcriptional regulator that plays an important role in the induction of both immune activation and immune tolerance in dendritic cells (DCs). The transcriptional targets of STAT3 in promoting DC activation are becoming increasingly understood; however, the mechanisms underpinning its role in causing DC suppression remain largely unknown. To determine the functional gene targets of STAT3, we compared the genome-wide binding of STAT3 using ChIP-seq coupled with gene expression microarrays to determine STAT3-dependent gene regulation in DCs after histone deacetylase (HDAC) inhibition. HDAC inhibition boosted the ability of STAT3 to bind to distinct DNA targets and regulate gene expression. Among the top 500 STAT3 binding sites, the frequency of canonical motifs was significantly higher than that of non-canonical motifs. Functional analysis revealed that after treatment with an HDAC inhibitor, the upregulated STAT3 target genes were those that were primarily the negative regulators of pro-inflammatory cytokines and those in the IL-10 signaling pathway. The downregulated STAT3-dependent targets were those involved in immune effector processes and antigen processing/presentation. The expression and functional relevance of these genes were validated. Specifically, functional studies confirmed that the upregulation of IL-10Ra by STAT3 contributed to the suppressive function of DCs following HDAC inhibition. PMID:27866206

  1. Placental gene-expression profiles of intrahepatic cholestasis of pregnancy reveal involvement of multiple molecular pathways in blood vessel formation and inflammation.

    PubMed

    Du, QiaoLing; Pan, YouDong; Zhang, YouHua; Zhang, HaiLong; Zheng, YaJuan; Lu, Ling; Wang, JunLei; Duan, Tao; Chen, JianFeng

    2014-07-07

    Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-associated liver disease with potentially deleterious consequences for the fetus, particularly when maternal serum bile-acid concentration >40 μM. However, the etiology and pathogenesis of ICP remain elusive. To reveal the underlying molecular mechanisms for the association of maternal serum bile-acid level and fetal outcome in ICP patients, DNA microarray was applied to characterize the whole-genome expression profiles of placentas from healthy women and women diagnosed with ICP. Thirty pregnant women recruited in this study were categorized evenly into three groups: healthy group; mild ICP, with serum bile-acid concentration ranging from 10-40 μM; and severe ICP, with bile-acid concentration >40 μM. Gene Ontology analysis in combination with construction of gene-interaction and gene co-expression networks were applied to identify the core regulatory genes associated with ICP pathogenesis, which were further validated by quantitative real-time PCR and histological staining. The core regulatory genes were mainly involved in immune response, VEGF signaling pathway and G-protein-coupled receptor signaling, implying essential roles of immune response, vasculogenesis and angiogenesis in ICP pathogenesis. This implication was supported by the observed aggregated immune-cell infiltration and deficient blood vessel formation in ICP placentas. Our study provides a system-level insight into the placental gene-expression profiles of women with mild or severe ICP, and reveals multiple molecular pathways in immune response and blood vessel formation that might contribute to ICP pathogenesis.

  2. Ensemble gene function prediction database reveals genes important for complex I formation in Arabidopsis thaliana.

    PubMed

    Hansen, Bjoern Oest; Meyer, Etienne H; Ferrari, Camilla; Vaid, Neha; Movahedi, Sara; Vandepoele, Klaas; Nikoloski, Zoran; Mutwil, Marek

    2018-03-01

    Recent advances in gene function prediction rely on ensemble approaches that integrate results from multiple inference methods to produce superior predictions. Yet, these developments remain largely unexplored in plants. We have explored and compared two methods to integrate 10 gene co-function networks for Arabidopsis thaliana and demonstrate how the integration of these networks produces more accurate gene function predictions for a larger fraction of genes with unknown function. These predictions were used to identify genes involved in mitochondrial complex I formation, and for five of them, we confirmed the predictions experimentally. The ensemble predictions are provided as a user-friendly online database, EnsembleNet. The methods presented here demonstrate that ensemble gene function prediction is a powerful method to boost prediction performance, whereas the EnsembleNet database provides a cutting-edge community tool to guide experimentalists. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  3. 5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells

    PubMed Central

    Malashchuk, Igor; Lajoie, Brian R.; Mardaryev, Andrei N.; Gdula, Michal R.; Sharov, Andrey A.; Kohwi-Shigematsu, Terumi; Fessing, Michael Y.

    2017-01-01

    Mammalian genomes contain several dozens of large (>0.5 Mbp) lineage-specific gene loci harbouring functionally related genes. However, spatial chromatin folding, organization of the enhancer-promoter networks and their relevance to Topologically Associating Domains (TADs) in these loci remain poorly understood. TADs are principle units of the genome folding and represents the DNA regions within which DNA interacts more frequently and less frequently across the TAD boundary. Here, we used Chromatin Conformation Capture Carbon Copy (5C) technology to characterize spatial chromatin interaction network in the 3.1 Mb Epidermal Differentiation Complex (EDC) locus harbouring 61 functionally related genes that show lineage-specific activation during terminal keratinocyte differentiation in the epidermis. 5C data validated by 3D-FISH demonstrate that the EDC locus is organized into several TADs showing distinct lineage-specific chromatin interaction networks based on their transcription activity and the gene-rich or gene-poor status. Correlation of the 5C results with genome-wide studies for enhancer-specific histone modifications (H3K4me1 and H3K27ac) revealed that the majority of spatial chromatin interactions that involves the gene-rich TADs at the EDC locus in keratinocytes include both intra- and inter-TAD interaction networks, connecting gene promoters and enhancers. Compared to thymocytes in which the EDC locus is mostly transcriptionally inactive, these interactions were found to be keratinocyte-specific. In keratinocytes, the promoter-enhancer anchoring regions in the gene-rich transcriptionally active TADs are enriched for the binding of chromatin architectural proteins CTCF, Rad21 and chromatin remodeler Brg1. In contrast to gene-rich TADs, gene-poor TADs show preferential spatial contacts with each other, do not contain active enhancers and show decreased binding of CTCF, Rad21 and Brg1 in keratinocytes. Thus, spatial interactions between gene promoters and

  4. Combined analysis of DNA methylome and transcriptome reveal novel candidate genes with susceptibility to bovine Staphylococcus aureus subclinical mastitis.

    PubMed

    Song, Minyan; He, Yanghua; Zhou, Huangkai; Zhang, Yi; Li, Xizhi; Yu, Ying

    2016-07-14

    Subclinical mastitis is a widely spread disease of lactating cows. Its major pathogen is Staphylococcus aureus (S. aureus). In this study, we performed genome-wide integrative analysis of DNA methylation and transcriptional expression to identify candidate genes and pathways relevant to bovine S. aureus subclinical mastitis. The genome-scale DNA methylation profiles of peripheral blood lymphocytes in cows with S. aureus subclinical mastitis (SA group) and healthy controls (CK) were generated by methylated DNA immunoprecipitation combined with microarrays. We identified 1078 differentially methylated genes in SA cows compared with the controls. By integrating DNA methylation and transcriptome data, 58 differentially methylated genes were shared with differently expressed genes, in which 20.7% distinctly hypermethylated genes showed down-regulated expression in SA versus CK, whereas 14.3% dramatically hypomethylated genes showed up-regulated expression. Integrated pathway analysis suggested that these genes were related to inflammation, ErbB signalling pathway and mismatch repair. Further functional analysis revealed that three genes, NRG1, MST1 and NAT9, were strongly correlated with the progression of S. aureus subclinical mastitis and could be used as powerful biomarkers for the improvement of bovine mastitis resistance. Our studies lay the groundwork for epigenetic modification and mechanistic studies on susceptibility of bovine mastitis.

  5. Combined analysis of DNA methylome and transcriptome reveal novel candidate genes with susceptibility to bovine Staphylococcus aureus subclinical mastitis

    PubMed Central

    Song, Minyan; He, Yanghua; Zhou, Huangkai; Zhang, Yi; Li, Xizhi; Yu, Ying

    2016-01-01

    Subclinical mastitis is a widely spread disease of lactating cows. Its major pathogen is Staphylococcus aureus (S. aureus). In this study, we performed genome-wide integrative analysis of DNA methylation and transcriptional expression to identify candidate genes and pathways relevant to bovine S. aureus subclinical mastitis. The genome-scale DNA methylation profiles of peripheral blood lymphocytes in cows with S. aureus subclinical mastitis (SA group) and healthy controls (CK) were generated by methylated DNA immunoprecipitation combined with microarrays. We identified 1078 differentially methylated genes in SA cows compared with the controls. By integrating DNA methylation and transcriptome data, 58 differentially methylated genes were shared with differently expressed genes, in which 20.7% distinctly hypermethylated genes showed down-regulated expression in SA versus CK, whereas 14.3% dramatically hypomethylated genes showed up-regulated expression. Integrated pathway analysis suggested that these genes were related to inflammation, ErbB signalling pathway and mismatch repair. Further functional analysis revealed that three genes, NRG1, MST1 and NAT9, were strongly correlated with the progression of S. aureus subclinical mastitis and could be used as powerful biomarkers for the improvement of bovine mastitis resistance. Our studies lay the groundwork for epigenetic modification and mechanistic studies on susceptibility of bovine mastitis. PMID:27411928

  6. Transcriptome meta-analysis reveals common differential and global gene expression profiles in cystic fibrosis and other respiratory disorders and identifies CFTR regulators.

    PubMed

    Clarke, Luka A; Botelho, Hugo M; Sousa, Lisete; Falcao, Andre O; Amaral, Margarida D

    2015-11-01

    A meta-analysis of 13 independent microarray data sets was performed and gene expression profiles from cystic fibrosis (CF), similar disorders (COPD: chronic obstructive pulmonary disease, IPF: idiopathic pulmonary fibrosis, asthma), environmental conditions (smoking, epithelial injury), related cellular processes (epithelial differentiation/regeneration), and non-respiratory "control" conditions (schizophrenia, dieting), were compared. Similarity among differentially expressed (DE) gene lists was assessed using a permutation test, and a clustergram was constructed, identifying common gene markers. Global gene expression values were standardized using a novel approach, revealing that similarities between independent data sets run deeper than shared DE genes. Correlation of gene expression values identified putative gene regulators of the CF transmembrane conductance regulator (CFTR) gene, of potential therapeutic significance. Our study provides a novel perspective on CF epithelial gene expression in the context of other lung disorders and conditions, and highlights the contribution of differentiation/EMT and injury to gene signatures of respiratory disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Abiotic influences on bicarbonate use in the giant kelp, Macrocystis pyrifera, in the Monterey Bay.

    PubMed

    Drobnitch, Sarah Tepler; Nickols, Kerry; Edwards, Matthew

    2017-02-01

    In the Monterey Bay region of central California, the giant kelp Macrocystis pyrifera experiences broad fluctuations in wave forces, temperature, light availability, nutrient availability, and seawater carbonate chemistry, all of which may impact their productivity. In particular, current velocities and light intensity may strongly regulate the supply and demand of inorganic carbon (Ci) as substrates for photosynthesis. Macrocystis pyrifera can acquire and utilize both CO 2 and bicarbonate (HCO 3 - ) as Ci substrates for photosynthesis and growth. Given the variability in carbon delivery (due to current velocities and varying [DIC]) and demand (in the form of saturating irradiance), we hypothesized that the proportion of CO 2 and bicarbonate utilized is not constant for M. pyrifera, but a variable function of their fluctuating environment. We further hypothesized that populations acclimated to different wave exposure and irradiance habitats would display different patterns of bicarbonate uptake. To test these hypotheses, we carried out oxygen evolution trials in the laboratory to measure the proportion of bicarbonate utilized by M. pyrifera via external CA under an orthogonal cross of velocity, irradiance, and acclimation treatments. Our Monterey Bay populations of M. pyrifera exhibited proportionally higher external bicarbonate utilization in high irradiance and high flow velocity conditions than in sub-saturating irradiance or low flow velocity conditions. However, there was no significant difference in proportional bicarbonate use between deep blades and canopy blades, nor between individuals from wave-exposed versus wave-protected sites. This study contributes a new field-oriented perspective on the abiotic controls of carbon utilization physiology in macroalgae. © 2016 Phycological Society of America.

  8. Annual and Spatial Variation of the Kelp Forest Fish Assemblage at San Nicolas Island, California

    USGS Publications Warehouse

    Cowen, R.J.; Bodkin, James L.

    1993-01-01

    The kelp forest fishes of San Nicolas Island, California were studied from 1981-1986 to examine the causes of among-site and among-year variation in the fish assemblages. Fish counts and seven physical and biological variables were recorded at six sites around the island every spring and fall. Over the study period, a total of 45 fish species from 18 families were recorded, though members of nive families dominated at all sites. Among-site variation was considereable with two sites on the south side of the island having two to four times as many non-schooling fishes as the other four sites. Three variables, based on stepwise multiple regression techniques, were important predictors of site-specific fish abundance: 1) vertical relief; 2) sand cover and 3) understory algal cover. The total number of fishes varied interannually by a factor of three. Due to recruitment occuring each spring, there was a strong seasonal component to the variation in fish abundance. The extent of seasonal and interannual variaton of fish abundance is an indication of the variable nature of recruitment to this area. Over the 6 yr period, there were three distinct groupings of fish assemblages correspondong to pre- (Fall 1981 - Fall 1982), during spring (Spring 1983 - Spring 1984) and post El Nino (Fall 1984 - Fall 1986) sampling dates. During El Nino sampling period, there was considerable recruitment of southern affinity fish species, increasing both the abundance and diversity of the fish assemblages. Large-scale oceanographic processes, coupled with site-specific features of the reef habitat, produce a moderately diverse, though relatively abundant fish fauna at San Nicolas Island.

  9. A comparative cDNA microarray analysis reveals a spectrum of genes regulated by Pax6 in mouse lens

    PubMed Central

    Chauhan, Bharesh K.; Reed, Nathan A.; Yang, Ying; Čermák, Lukáš; Reneker, Lixing; Duncan, Melinda K.; Cvekl, Aleš

    2007-01-01

    Background Pax6 is a transcription factor that is required for induction, growth, and maintenance of the lens; however, few direct target genes of Pax6 are known. Results In this report, we describe the results of a cDNA microarray analysis of lens transcripts from transgenic mice over-expressing Pax6 in lens fibre cells in order to narrow the field of potential direct Pax6 target genes. This study revealed that the transcript levels were significantly altered for 508 of the 9700 genes analysed, including five genes encoding the cell adhesion molecules β1-integrin, JAM1, L1 CAM, NCAM-140 and neogenin. Notably, comparisons between the genes differentially expressed in Pax6 heterozygous and Pax6 over-expressing lenses identified 13 common genes, including paralemmin, GDIβ, ATF1, Hrp12 and Brg1. Immunohistochemistry and Western blotting demonstrated that Brg1 is expressed in the embryonic and neonatal (2-week-old) but not in 14-week adult lenses, and confirmed altered expression in transgenic lenses over-expressing Pax6. Furthermore, EMSA demonstrated that the BRG1 promoter contains Pax6 binding sites, further supporting the proposition that it is directly regulated by Pax6. Conclusions These results provide a list of genes with possible roles in lens biology and cataracts that are directly or indirectly regulated by Pax6. PMID:12485166

  10. Sequence characterization of S100A8 gene reveals structural differences of protein and transcriptional factor binding sites in water buffalo and yak.

    PubMed

    Kathiravan, P; Goyal, S; Kataria, R S; Mishra, B P; Jayakumar, S; Joshi, B K

    2011-01-01

    The present study was undertaken to characterize the structure of S100A8 gene and its promoter in water buffalo and yak. Sequence data of 2.067 kb, 2.071 kb, and 2.052 kb with respect to complete S100A8 gene including 5' flanking region was generated in river buffalo, swamp buffalo, and yak, respectively. BLAST analysis of coding DNA sequences (CDS) of S100A8 gene revealed 95% homology of buffalo sequence with cattle, 85% with pig and horse, 83% with dog, 72-73% with murines, and around 79% with primates and humans. Phylogenetic analysis of predicted CDS revealed distinct clustering of murines, primates, and domestic animals with bovines and bubalines forming a subcluster among farm animals. In silico translation of predicted CDS revealed a sequence of 89 amino acids with 7 amino acid changes between cattle and buffalo and 2 changes between cattle and yak. The search for Pfam family revealed the N-terminal calcium binding domain and the noncanonical EF hand domain in the carboxy terminus, with more variations being observed in the N-terminal domain among different species. Two amino acid changes observed in carboxy terminal EF hand domain resulted in altered secondary structure of yak S100A8 protein. Analysis of S100A8 gene promoter revealed 14 putative motifs for transcriptional factor binding sites. Two putative motifs viz. C/EBP and v-Myb were found to be absent in swamp buffalo as compared to river buffalo and cattle. Differences in the structure of S100A8 protein and the transcriptional factor binding sites identified in the present study need to be analyzed further for their functional significance in yak and swamp buffalo respectively. Copyright © Taylor & Francis Group, LLC

  11. RNA-Seq reveals seven promising candidate genes affecting the proportion of thick egg albumen in layer-type chickens.

    PubMed

    Wan, Yi; Jin, Sihua; Ma, Chendong; Wang, Zhicheng; Fang, Qi; Jiang, Runshen

    2017-12-22

    Eggs with a much higher proportion of thick albumen are preferred in the layer industry, as they are favoured by consumers. However, the genetic factors affecting the thick egg albumen trait have not been elucidated. Using RNA sequencing, we explored the magnum transcriptome in 9 Rhode Island white layers: four layers with phenotypes of extremely high ratios of thick to thin albumen (high thick albumen, HTA) and five with extremely low ratios (low thick albumen, LTA). A total of 220 genes were differentially expressed, among which 150 genes were up-regulated and 70 were down-regulated in the HTA group compared with the LTA group. Gene Ontology (GO) analysis revealed that the up-regulated genes in HTA were mainly involved in a wide range of regulatory functions. In addition, a large number of these genes were related to glycosphingolipid biosynthesis, focal adhesion, ECM-receptor interactions and cytokine-cytokine receptor interactions. Based on functional analysis, ST3GAL4, FUT4, ITGA2, SDC3, PRLR, CDH4 and GALNT9 were identified as promising candidate genes for thick albumen synthesis and metabolism during egg formation. These results provide new insights into the molecular mechanisms of egg albumen traits and may contribute to future breeding strategies that optimise the proportion of thick egg albumen.

  12. 8D.07: GENE EXPRESSION ANALYSIS AND BIOINFORMATICS REVEALED POTENTIAL TRANSCRIPTION FACTORS ASSOCIATED WITH RENIN-ANGIOTENSIN-ALDOSTERONE SYSTEM IN ATHEROMA.

    PubMed

    Nehme, A; Zibara, K; Cerutti, C; Bricca, G

    2015-06-01

    The implication of the renin-angiotensin-aldosterone system (RAAS) in atheroma development is well described. However, a complete view of the local RAAS in atheroma is still missing. In this study we aimed to reveal the organization of RAAS in atheroma at the transcriptomic level and identify the transcriptional regulators behind it. Extended RAAS (extRAAS) was defined as the set of 37 genes coding for classical and novel RAAS participants (Figure 1). Five microarray datasets containing overall 590 samples representing carotid and peripheral atheroma were downloaded from the GEO database. Correlation-based hierarchical clustering (R software) of extRAAS genes within each dataset allowed the identification of modules of co-expressed genes. Reproducible co-expression modules across datasets were then extracted. Transcription factors (TFs) having common binding sites (TFBSs) in the promoters of coordinated genes were identified using the Genomatix database tools and analyzed for their correlation with extRAAS genes in the microarray datasets. Expression data revealed the expressed extRAAS components and their relative abundance displaying the favored pathways in atheroma. Three co-expression modules with more than 80% reproducibility across datasets were extracted. Two of them (M1 and M2) contained genes coding for angiotensin metabolizing enzymes involved in different pathways: M1 included ACE, MME, RNPEP, and DPP3, in addition to 7 other genes; and M2 included CMA1, CTSG, and CPA3. The third module (M3) contained genes coding for receptors known to be implicated in atheroma (AGTR1, MR, GR, LNPEP, EGFR and GPER). M1 and M3 were negatively correlated in 3 of 5 datasets. We identified 19 TFs that have enriched TFBSs in the promoters of genes of M1, and two for M3, but none was found for M2. Among the extracted TFs, ELF1, MAX, and IRF5 showed significant positive correlations with peptidase-coding genes from M1 and negative correlations with receptors-coding genes from

  13. Energy performance and greenhouse gas emissions of kelp cultivation for biogas and fertilizer recovery in Sweden.

    PubMed

    Pechsiri, Joseph S; Thomas, Jean-Baptiste E; Risén, Emma; Ribeiro, Mauricio S; Malmström, Maria E; Nylund, Göran M; Jansson, Anette; Welander, Ulrika; Pavia, Henrik; Gröndahl, Fredrik

    2016-12-15

    The cultivation of seaweed as a feedstock for third generation biofuels is gathering interest in Europe, however, many questions remain unanswered in practise, notably regarding scales of operation, energy returns on investment (EROI) and greenhouse gas (GHG) emissions, all of which are crucial to determine commercial viability. This study performed an energy and GHG emissions analysis, using EROI and GHG savings potential respectively, as indicators of commercial viability for two systems: the Swedish Seafarm project's seaweed cultivation (0.5ha), biogas and fertilizer biorefinery, and an estimation of the same system scaled up and adjusted to a cultivation of 10ha. Based on a conservative estimate of biogas yield, neither the 0.5ha case nor the up-scaled 10ha estimates met the (commercial viability) target EROI of 3, nor the European Union Renewable Energy Directive GHG savings target of 60% for biofuels, however the potential for commercial viability was substantially improved by scaling up operations: GHG emissions and energy demand, per unit of biogas, was almost halved by scaling operations up by a factor of twenty, thereby approaching the EROI and GHG savings targets set, under beneficial biogas production conditions. Further analysis identified processes whose optimisations would have a large impact on energy use and emissions (such as anaerobic digestion) as well as others embodying potential for further economies of scale (such as harvesting), both of which would be of interest for future developments of kelp to biogas and fertilizer biorefineries. Copyright © 2016. Published by Elsevier B.V.

  14. Transcriptome analysis of adipose tissues from two fat-tailed sheep breeds reveals key genes involved in fat deposition.

    PubMed

    Li, Baojun; Qiao, Liying; An, Lixia; Wang, Weiwei; Liu, Jianhua; Ren, Youshe; Pan, Yangyang; Jing, Jiongjie; Liu, Wenzhong

    2018-05-08

    The level of fat deposition in carcass is a crucial factor influencing meat quality. Guangling Large-Tailed (GLT) and Small-Tailed Han (STH) sheep are important local Chinese fat-tailed breeds that show distinct patterns of fat depots. To gain a better understanding of fat deposition, transcriptome profiles were determined by RNA-sequencing of perirenal, subcutaneous, and tail fat tissues from both the sheep breeds. The common highly expressed genes (co-genes) in all the six tissues, and the genes that were differentially expressed (DE genes) between these two breeds in the corresponding tissues were analyzed. Approximately 47 million clean reads were obtained for each sample, and a total of 17,267 genes were annotated. Of the 47 highly expressed co-genes, FABP4, ADIPOQ, FABP5, and CD36 were the four most highly transcribed genes among all the known genes related to adipose deposition. FHC, FHC-pseudogene, and ZC3H10 were also highly expressed genes and could, thus, have roles in fat deposition. A total of 2091, 4233, and 4131 DE genes were identified in the perirenal, subcutaneous, and tail fat tissues between the GLT and STH breeds, respectively. Gene Ontology (GO) analysis showed that some DE genes were associated with adipose metabolism. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that PPAR signaling pathway and ECM-receptor interaction were specifically enriched. Four genes, namely LOC101102230, PLTP, C1QTNF7, and OLR1 were up-regulated and two genes, SCD and UCP-1, were down-regulated in all the tested tissues of STH. Among the genes involved in ECM-receptor interaction, the genes encoding collagens, laminins, and integrins were quite different depending on the depots or the breeds. In STH, genes such as LAMB3, RELN, TNXB, and ITGA8, were identified to be up regulated and LAMB4 was observed to be down regulated. This study unravels the complex transcriptome profiles in sheep fat tissues, highlighting the candidate genes involved

  15. Structural organization of the genes for rat von Ebner's gland proteins 1 and 2 reveals their close relationship to lipocalins.

    PubMed

    Kock, K; Ahlers, C; Schmale, H

    1994-05-01

    The rat von Ebner's gland protein 1 (VEGP 1) is a secretory protein, which is abundantly expressed in the small acinar von Ebner's salivary glands of the tongue. Based on the primary structure of this protein we have previously suggested that it is a member of the lipocalin superfamily of lipophilic-ligand carrier proteins. Although the physiological role of VEGP 1 is not clear, it might be involved in sensory or protective functions in the taste epithelium. Here, we report the purification of VEGP 1 and of a closely related secretory polypeptide, VEGP 2, the isolation of a cDNA clone encoding VEGP 2, and the isolation and structural characterization of the genes for both proteins. Protein purification by gel-filtration and anion-exchange chromatography using Mono Q revealed the presence of two different immunoreactive VEGP species. N-terminal sequence determination of peptide fragments isolated after protease Asp-N digestion allowed the identification of a new VEGP, named VEGP 2, in addition to the previously characterized VEGP 1. The complete VEGP 2 sequence was deduced from a cDNA clone isolated from a von Ebner's gland cDNA library. The VEGP 2 cDNA encodes a protein of 177 amino acids and is 94% identical to VEGP 1. DNA sequence analysis of the rat VEGP 1 and 2 genes isolated from rat genomic libraries revealed that both span about 4.5 kb and contain seven exons. The VEGP 1 and 2 genes are non-allelic distinct genes in the rat genome and probably arose by gene duplication. The high degree of nucleotide sequence identity in introns A-C (94-100%) points to a recent gene conversion event that included the 5' part of the genes. The genomic organization of the rat VEGP genes closely resembles that found in other lipocalins such as beta-lactoglobulin, mouse urinary proteins (MUPs) and prostaglandin D synthase, and therefore provides clear evidence that VEGPs belong to this superfamily of proteins.

  16. High-throughput RNA sequencing reveals structural differences of orthologous brain-expressed genes between western lowland gorillas and humans.

    PubMed

    Lipovich, Leonard; Hou, Zhuo-Cheng; Jia, Hui; Sinkler, Christopher; McGowen, Michael; Sterner, Kirstin N; Weckle, Amy; Sugalski, Amara B; Pipes, Lenore; Gatti, Domenico L; Mason, Christopher E; Sherwood, Chet C; Hof, Patrick R; Kuzawa, Christopher W; Grossman, Lawrence I; Goodman, Morris; Wildman, Derek E

    2016-02-01

    The human brain and human cognitive abilities are strikingly different from those of other great apes despite relatively modest genome sequence divergence. However, little is presently known about the interspecies divergence in gene structure and transcription that might contribute to these phenotypic differences. To date, most comparative studies of gene structure in the brain have examined humans, chimpanzees, and macaque monkeys. To add to this body of knowledge, we analyze here the brain transcriptome of the western lowland gorilla (Gorilla gorilla gorilla), an African great ape species that is phylogenetically closely related to humans, but with a brain that is approximately one-third the size. Manual transcriptome curation from a sample of the planum temporale region of the neocortex revealed 12 protein-coding genes and one noncoding-RNA gene with exons in the gorilla unmatched by public transcriptome data from the orthologous human loci. These interspecies gene structure differences accounted for a total of 134 amino acids in proteins found in the gorilla that were absent from protein products of the orthologous human genes. Proteins varying in structure between human and gorilla were involved in immunity and energy metabolism, suggesting their relevance to phenotypic differences. This gorilla neocortical transcriptome comprises an empirical, not homology- or prediction-driven, resource for orthologous gene comparisons between human and gorilla. These findings provide a unique repository of the sequences and structures of thousands of genes transcribed in the gorilla brain, pointing to candidate genes that may contribute to the traits distinguishing humans from other closely related great apes. © 2015 Wiley Periodicals, Inc.

  17. Transcriptome Analysis of Tomato Flower Pedicel Tissues Reveals Abscission Zone-Specific Modulation of Key Meristem Activity Genes

    PubMed Central

    Sun, Xiuli; Zhang, Rongzhi; Wu, Liang; Liang, Yanchun; Mao, Long

    2013-01-01

    Tomato flower abscises at the anatomically distinct abscission zone that separates the pedicel into basal and apical portions. During abscission, cell separation occurs only at the abscission zone indicating distinctive molecular regulation in its cells. We conducted a transcriptome analysis of tomato pedicel tissues during ethylene promoted abscission. We found that the abscission zone was the most active site with the largest set of differentially expressed genes when compared with basal and apical portions. Gene Ontology analyses revealed enriched transcription regulation and hydrolase activities in the abscission zone. We also demonstrate coordinated responses of hormone and cell wall related genes. Besides, a number of ESTs representing homologs of key Arabidopsis shoot apical meristem activity genes were found to be preferentially expressed in the abscission zone, including WUSCHEL (WUS), KNAT6, LATERAL ORGAN BOUNDARIES DOMAIN PROTEIN 1(LBD1), and BELL-like homeodomain protein 1 (BLH1), as well as tomato axillary meristem genes BLIND (Bl) and LATERAL SUPPRESSOR (Ls). More interestingly, the homologs of WUS and the potential functional partner OVATE FAMILIY PROTEIN (OFP) were subsequently down regulated during abscission while Bl and AGL12 were continuously and specifically induced in the abscission zone. The expression patterns of meristem activity genes corroborate the idea that cells of the abscission zone confer meristem-like nature and coincide with the course of abscission and post-abscission cell differentiation. Our data therefore propose a possible regulatory scheme in tomato involving meristem genes that may be required not only for the abscission zone development, but also for abscission. PMID:23390523

  18. Analysis of gene expression during parabolic flights reveals distinct early gravity responses in Arabidopsis roots.

    PubMed

    Aubry-Hivet, D; Nziengui, H; Rapp, K; Oliveira, O; Paponov, I A; Li, Y; Hauslage, J; Vagt, N; Braun, M; Ditengou, F A; Dovzhenko, A; Palme, K

    2014-01-01

    Plant roots are among most intensively studied biological systems in gravity research. Altered gravity induces asymmetric cell growth leading to root bending. Differential distribution of the phytohormone auxin underlies root responses to gravity, being coordinated by auxin efflux transporters from the PIN family. The objective of this study was to compare early transcriptomic changes in roots of Arabidopsis thaliana wild type, and pin2 and pin3 mutants under parabolic flight conditions and to correlate these changes to auxin distribution. Parabolic flights allow comparison of transient 1-g, hypergravity and microgravity effects in living organisms in parallel. We found common and mutation-related genes differentially expressed in response to transient microgravity phases. Gene ontology analysis of common genes revealed lipid metabolism, response to stress factors and light categories as primarily involved in response to transient microgravity phases, suggesting that fundamental reorganisation of metabolic pathways functions upstream of a further signal mediating hormonal network. Gene expression changes in roots lacking the columella-located PIN3 were stronger than in those deprived of the epidermis and cortex cell-specific PIN2. Moreover, repetitive exposure to microgravity/hypergravity and gravity/hypergravity flight phases induced an up-regulation of auxin responsive genes in wild type and pin2 roots, but not in pin3 roots, suggesting a critical function of PIN3 in mediating auxin fluxes in response to transient microgravity phases. Our study provides important insights towards understanding signal transduction processes in transient microgravity conditions by combining for the first time the parabolic flight platform with the transcriptome analysis of different genetic mutants in the model plant, Arabidopsis. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  19. Reversal of gene dysregulation in cultured cytotrophoblasts reveals possible causes of preeclampsia

    PubMed Central

    Zhou, Yan; Gormley, Matthew J.; Hunkapiller, Nathan M.; Kapidzic, Mirhan; Stolyarov, Yana; Feng, Victoria; Nishida, Masakazu; Drake, Penelope M.; Bianco, Katherine; Wang, Fei; McMaster, Michael T.; Fisher, Susan J.

    2013-01-01

    During human pregnancy, a subset of placental cytotrophoblasts (CTBs) differentiates into cells that aggressively invade the uterus and its vasculature, anchoring the progeny and rerouting maternal blood to the placenta. In preeclampsia (PE), CTB invasion is limited, reducing placental perfusion and/or creating intermittent flow. This syndrome, affecting 4%–8% of pregnancies, entails maternal vascular alterations (e.g., high blood pressure, proteinuria, and edema) and, in some patients, fetal growth restriction. The only cure is removal of the faulty placenta, i.e., delivery. Previously, we showed that defective CTB differentiation contributes to the placental component of PE, but the causes were unknown. Here, we cultured CTBs isolated from PE and control placentas for 48 hours, enabling differentiation and invasion. In various severe forms of PE, transcriptomics revealed common aberrations in CTB gene expression immediately after isolation, including upregulation of SEMA3B, which resolved in culture. The addition of SEMA3B to normal CTBs inhibited invasion and recreated aspects of the PE phenotype. Additionally, SEMA3B downregulated VEGF signaling through the PI3K/AKT and GSK3 pathways, effects that were observed in PE CTBs. We propose that, in severe PE, the in vivo environment dysregulates CTB gene expression; the autocrine actions of the upregulated molecules (including SEMA3B) impair CTB differentiation, invasion and signaling; and patient-specific factors determine the signs. PMID:23934129

  20. Phylogeny of haemosporidian blood parasites revealed by a multi-gene approach.

    PubMed

    Borner, Janus; Pick, Christian; Thiede, Jenny; Kolawole, Olatunji Matthew; Kingsley, Manchang Tanyi; Schulze, Jana; Cottontail, Veronika M; Wellinghausen, Nele; Schmidt-Chanasit, Jonas; Bruchhaus, Iris; Burmester, Thorsten

    2016-01-01

    The apicomplexan order Haemosporida is a clade of unicellular blood parasites that infect a variety of reptilian, avian and mammalian hosts. Among them are the agents of human malaria, parasites of the genus Plasmodium, which pose a major threat to human health. Illuminating the evolutionary history of Haemosporida may help us in understanding their enormous biological diversity, as well as tracing the multiple host switches and associated acquisitions of novel life-history traits. However, the deep-level phylogenetic relationships among major haemosporidian clades have remained enigmatic because the datasets employed in phylogenetic analyses were severely limited in either gene coverage or taxon sampling. Using a PCR-based approach that employs a novel set of primers, we sequenced fragments of 21 nuclear genes from seven haemosporidian parasites of the genera Leucocytozoon, Haemoproteus, Parahaemoproteus, Polychromophilus and Plasmodium. After addition of genomic data from 25 apicomplexan species, the unreduced alignment comprised 20,580 bp from 32 species. Phylogenetic analyses were performed based on nucleotide, codon and amino acid data employing Bayesian inference, maximum likelihood and maximum parsimony. All analyses resulted in highly congruent topologies. We found consistent support for a basal position of Leucocytozoon within Haemosporida. In contrast to all previous studies, we recovered a sister group relationship between the genera Polychromophilus and Plasmodium. Within Plasmodium, the sauropsid and mammal-infecting lineages were recovered as sister clades. Support for these relationships was high in nearly all trees, revealing a novel phylogeny of Haemosporida, which is robust to the choice of the outgroup and the method of tree inference. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Transcriptome profiling of anthocyanin-related genes reveals effects of light intensity on anthocyanin biosynthesis in red leaf lettuce.

    PubMed

    Zhang, Yanzhao; Xu, Shuzhen; Cheng, Yanwei; Peng, Zhengfeng; Han, Jianming

    2018-01-01

    Red leaf lettuce ( Lactuca sativa L.) is popular due to its high anthocyanin content, but poor leaf coloring often occurs under low light intensity. In order to reveal the mechanisms of anthocyanins affected by light intensity, we compared the transcriptome of L. sativa L. var. capitata under light intensities of 40 and 100 μmol m -2 s -1 . A total of 62,111 unigenes were de novo assembled with an N50 of 1,681 bp, and 48,435 unigenes were functionally annotated in public databases. A total of 3,899 differentially expressed genes (DEGs) were detected, of which 1,377 unigenes were up-regulated and 2,552 unigenes were down-regulated in the high light samples. By Kyoto Encyclopedia of Genes and Genomes enrichment analysis, the DEGs were significantly enriched in 14 pathways. Using gene annotation and phylogenetic analysis, we identified seven anthocyanin structural genes, including CHS , CHI , F3H , F3'H , DFR , ANS , and 3GT , and two anthocyanin transport genes, GST and MATE . In terms of anthocyanin regulatory genes, five MYBs and one bHLH gene were identified. An HY5 gene was discovered, which may respond to light-signaling and regulate anthocyanin structural genes. These genes showed a log2FC of 2.7-9.0 under high irradiance, and were validated using quantitative real-time-PCR. In conclusion, our results indicated transcriptome variance in red leaf lettuce under low and high light intensity, and observed a anthocyanin biosynthesis and regulation pattern. The data should further help to unravel the molecular mechanisms of anthocyanins influenced by light intensity.

  2. Microarray analysis reveals key genes and pathways in Tetralogy of Fallot

    PubMed Central

    He, Yue-E; Qiu, Hui-Xian; Jiang, Jian-Bing; Wu, Rong-Zhou; Xiang, Ru-Lian; Zhang, Yuan-Hai

    2017-01-01

    The aim of the present study was to identify key genes that may be involved in the pathogenesis of Tetralogy of Fallot (TOF) using bioinformatics methods. The GSE26125 microarray dataset, which includes cardiovascular tissue samples derived from 16 children with TOF and five healthy age-matched control infants, was downloaded from the Gene Expression Omnibus database. Differential expression analysis was performed between TOF and control samples to identify differentially expressed genes (DEGs) using Student's t-test, and the R/limma package, with a log2 fold-change of >2 and a false discovery rate of <0.01 set as thresholds. The biological functions of DEGs were analyzed using the ToppGene database. The ReactomeFIViz application was used to construct functional interaction (FI) networks, and the genes in each module were subjected to pathway enrichment analysis. The iRegulon plugin was used to identify transcription factors predicted to regulate the DEGs in the FI network, and the gene-transcription factor pairs were then visualized using Cytoscape software. A total of 878 DEGs were identified, including 848 upregulated genes and 30 downregulated genes. The gene FI network contained seven function modules, which were all comprised of upregulated genes. Genes enriched in Module 1 were enriched in the following three neurological disorder-associated signaling pathways: Parkinson's disease, Alzheimer's disease and Huntington's disease. Genes in Modules 0, 3 and 5 were dominantly enriched in pathways associated with ribosomes and protein translation. The Xbox binding protein 1 transcription factor was demonstrated to be involved in the regulation of genes encoding the subunits of cytoplasmic and mitochondrial ribosomes, as well as genes involved in neurodegenerative disorders. Therefore, dysfunction of genes involved in signaling pathways associated with neurodegenerative disorders, ribosome function and protein translation may contribute to the pathogenesis of TOF

  3. The low density lipoprotein receptor-related protein 1: Unique tissue-specific functions revealed by selective gene knockout studies

    PubMed Central

    Lillis, Anna P.; Van Duyn, Lauren B.; Murphy-Ullrich, Joanne E.; Strickland, Dudley K.

    2008-01-01

    The low-density lipoprotein (LDL) receptor-related protein (originally called LRP, but now referred to as LRP1) is a large endocytic receptor that is widely expressed in several tissues. LRP1 is a member of the LDL receptor family that plays diverse roles in various biological processes including lipoprotein metabolism, degradation of proteases, activation of lysosomal enzymes and cellular entry of bacterial toxins and viruses. Deletion of the LRP1 gene leads to lethality in mice, revealing a critical, but as of yet, undefined role in development. Tissue-specific gene deletion studies reveal an important contribution of LRP1 in the vasculature, central nervous system, in macrophages and in adipocytes. Three important properties of LRP1 dictate its diverse role in physiology: first, its ability to recognize more than thirty distinct ligands; second, its ability to bind a large number of cytoplasmic adaptor proteins via determinants located on its cytoplasmic domain in a phosphorylation-specific manner; and third, its ability to associate with and modulate the activity of other transmembrane receptors such as integrins and receptor tyrosine kinases. PMID:18626063

  4. Systematic CRISPR-Cas9-Mediated Modifications of Plasmodium yoelii ApiAP2 Genes Reveal Functional Insights into Parasite Development

    PubMed Central

    Zhang, Cui; Li, Zhenkui; Cui, Huiting; Jiang, Yuanyuan; Yang, Zhenke; Wang, Xu; Gao, Han; Liu, Cong; Zhang, Shujia

    2017-01-01

    ABSTRACT Malaria parasites have a complex life cycle with multiple developmental stages in mosquito and vertebrate hosts, and different developmental stages express unique sets of genes. Unexpectedly, many transcription factors (TFs) commonly found in eukaryotic organisms are absent in malaria parasites; instead, a family of genes encoding proteins similar to the plant Apetala2 (ApiAP2) transcription factors is expanded in the parasites. Several malaria ApiAP2 genes have been shown to play a critical role in parasite development; however, the functions of the majority of the ApiAP2 genes remain to be elucidated. In particular, no study on the Plasmodium yoelii ApiAP2 (PyApiAP2) gene family has been reported so far. This study systematically investigated the functional roles of PyApiAP2 genes in parasite development. Twenty-four of the 26 PyApiAP2 genes were selected for disruption, and 12 were successfully knocked out using the clustered regularly interspaced short palindromic repeat–CRISPR-associated protein 9 (CRISPR-Cas9) method. The effects of gene knockout (KO) on parasite development in mouse and mosquito stages were evaluated. Ten of 12 successfully disrupted genes, including two genes that have not been functionally characterized in any Plasmodium species previously, were shown to be critical for P. yoelii development of sexual and mosquito stages. Additionally, seven of the genes were labeled for protein expression analysis, revealing important information supporting their functions. This study represents the first systematic functional characterization of the P. yoelii ApiAP2 gene family and discovers important insights on the roles of the ApiAP2 genes in parasite development. PMID:29233900

  5. Novel genes involved in severe early-onset obesity revealed by rare copy number and sequence variants

    PubMed Central

    Flores, Raquel; González, Juan R.; Argente, Jesús; Pérez-Jurado, Luis A.

    2017-01-01

    Obesity is a multifactorial disorder with high heritability (50–75%), which is probably higher in early-onset and severe cases. Although rare monogenic forms and several genes and regions of susceptibility, including copy number variants (CNVs), have been described, the genetic causes underlying the disease still remain largely unknown. We searched for rare CNVs (>100kb in size, altering genes and present in <1/2000 population controls) in 157 Spanish children with non-syndromic early-onset obesity (EOO: body mass index >3 standard deviations above the mean at <3 years of age) using SNP array molecular karyotypes. We then performed case control studies (480 EOO cases/480 non-obese controls) with the validated CNVs and rare sequence variants (RSVs) detected by targeted resequencing of selected CNV genes (n = 14), and also studied the inheritance patterns in available first-degree relatives. A higher burden of gain-type CNVs was detected in EOO cases versus controls (OR = 1.71, p-value = 0.0358). In addition to a gain of the NPY gene in a familial case with EOO and attention deficit hyperactivity disorder, likely pathogenic CNVs included gains of glutamate receptors (GRIK1, GRM7) and the X-linked gastrin-peptide receptor (GRPR), all inherited from obese parents. Putatively functional RSVs absent in controls were also identified in EOO cases at NPY, GRIK1 and GRPR. A patient with a heterozygous deletion disrupting two contiguous and related genes, SLCO4C1 and SLCO6A1, also had a missense RSV at SLCO4C1 on the other allele, suggestive of a recessive model. The genes identified showed a clear enrichment of shared co-expression partners with known genes strongly related to obesity, reinforcing their role in the pathophysiology of the disease. Our data reveal a higher burden of rare CNVs and RSVs in several related genes in patients with EOO compared to controls, and implicate NPY, GRPR, two glutamate receptors and SLCO4C1 in highly penetrant forms of familial obesity

  6. Novel genes involved in severe early-onset obesity revealed by rare copy number and sequence variants.

    PubMed

    Serra-Juhé, Clara; Martos-Moreno, Gabriel Á; Bou de Pieri, Francesc; Flores, Raquel; González, Juan R; Rodríguez-Santiago, Benjamín; Argente, Jesús; Pérez-Jurado, Luis A

    2017-05-01

    Obesity is a multifactorial disorder with high heritability (50-75%), which is probably higher in early-onset and severe cases. Although rare monogenic forms and several genes and regions of susceptibility, including copy number variants (CNVs), have been described, the genetic causes underlying the disease still remain largely unknown. We searched for rare CNVs (>100kb in size, altering genes and present in <1/2000 population controls) in 157 Spanish children with non-syndromic early-onset obesity (EOO: body mass index >3 standard deviations above the mean at <3 years of age) using SNP array molecular karyotypes. We then performed case control studies (480 EOO cases/480 non-obese controls) with the validated CNVs and rare sequence variants (RSVs) detected by targeted resequencing of selected CNV genes (n = 14), and also studied the inheritance patterns in available first-degree relatives. A higher burden of gain-type CNVs was detected in EOO cases versus controls (OR = 1.71, p-value = 0.0358). In addition to a gain of the NPY gene in a familial case with EOO and attention deficit hyperactivity disorder, likely pathogenic CNVs included gains of glutamate receptors (GRIK1, GRM7) and the X-linked gastrin-peptide receptor (GRPR), all inherited from obese parents. Putatively functional RSVs absent in controls were also identified in EOO cases at NPY, GRIK1 and GRPR. A patient with a heterozygous deletion disrupting two contiguous and related genes, SLCO4C1 and SLCO6A1, also had a missense RSV at SLCO4C1 on the other allele, suggestive of a recessive model. The genes identified showed a clear enrichment of shared co-expression partners with known genes strongly related to obesity, reinforcing their role in the pathophysiology of the disease. Our data reveal a higher burden of rare CNVs and RSVs in several related genes in patients with EOO compared to controls, and implicate NPY, GRPR, two glutamate receptors and SLCO4C1 in highly penetrant forms of familial obesity.

  7. Tn-seq of Caulobacter crescentus under uranium stress reveals genes essential for detoxification and stress tolerance

    DOE PAGES

    Yung, Mimi C.; Park, Dan M.; Overton, K. Wesley; ...

    2015-07-20

    Ubiquitous aquatic bacterium Caulobacter crescentus is highly resistant to uranium (U) and facilitates U biomineralization and thus holds promise as an agent of U bioremediation. In order to gain an understanding of how C. crescentus tolerates U, we employed transposon (Tn) mutagenesis paired with deep sequencing (Tn-seq) in a global screen for genomic elements required for U resistance. Of the 3,879 annotated genes in the C. crescentus genome, 37 were found to be specifically associated with fitness under U stress, 15 of which were subsequently tested through mutational analysis. Systematic deletion analysis revealed that mutants lacking outer membrane transporters (rsaFamore » and rsaFb), a stress-responsive transcription factor (cztR), or a ppGpp synthetase/hydrolase (spoT) exhibited a significantly lower survival rate under U stress. RsaFa and RsaFb, which are homologues of TolC in Escherichia coli, have previously been shown to mediate S-layer export. Transcriptional analysis revealed upregulation of rsaF a and rsaF b by 4- and 10-fold, respectively, in the presence of U. We additionally show that rsaFa mutants accumulated higher levels of U than the wild type, with no significant increase in oxidative stress levels. These results suggest a function for RsaF a and RsaF b in U efflux and/or maintenance of membrane integrity during U stress. In addition, we present data implicating CztR and SpoT in resistance to U stress. Together, our findings reveal novel gene targets that are key to understanding the molecular mechanisms of U resistance in C. crescentus.« less

  8. Gene expression profiling of canine osteosarcoma reveals genes associated with short and long survival times

    PubMed Central

    Selvarajah, Gayathri T; Kirpensteijn, Jolle; van Wolferen, Monique E; Rao, Nagesha AS; Fieten, Hille; Mol, Jan A

    2009-01-01

    Background Gene expression profiling of spontaneous tumors in the dog offers a unique translational opportunity to identify prognostic biomarkers and signaling pathways that are common to both canine and human. Osteosarcoma (OS) accounts for approximately 80% of all malignant bone tumors in the dog. Canine OS are highly comparable with their human counterpart with respect to histology, high metastatic rate and poor long-term survival. This study investigates the prognostic gene profile among thirty-two primary canine OS using canine specific cDNA microarrays representing 20,313 genes to identify genes and cellular signaling pathways associated with survival. This, the first report of its kind in dogs with OS, also demonstrates the advantages of cross-species comparison with human OS. Results The 32 tumors were classified into two prognostic groups based on survival time (ST). They were defined as short survivors (dogs with poor prognosis: surviving fewer than 6 months) and long survivors (dogs with better prognosis: surviving 6 months or longer). Fifty-one transcripts were found to be differentially expressed, with common upregulation of these genes in the short survivors. The overexpressed genes in short survivors are associated with possible roles in proliferation, drug resistance or metastasis. Several deregulated pathways identified in the present study, including Wnt signaling, Integrin signaling and Chemokine/cytokine signaling are comparable to the pathway analysis conducted on human OS gene profiles, emphasizing the value of the dog as an excellent model for humans. Conclusion A molecular-based method for discrimination of outcome for short and long survivors is useful for future prognostic stratification at initial diagnosis, where genes and pathways associated with cell cycle/proliferation, drug resistance and metastasis could be potential targets for diagnosis and therapy. The similarities between human and canine OS makes the dog a suitable pre

  9. Vertical Distribution of Bacterial Communities in the Indian Ocean as Revealed by Analyses of 16S rRNA and nasA Genes.

    PubMed

    Jiang, Xuexia; Jiao, Nianzhi

    2016-09-01

    Bacteria play an important role in the marine biogeochemical cycles. However, research on the bacterial community structure of the Indian Ocean is scarce, particularly within the vertical dimension. In this study, we investigated the bacterial diversity of the pelagic, mesopelagic and bathypelagic zones of the southwestern Indian Ocean (50.46°E, 37.71°S). The clone libraries constructed by 16S rRNA gene sequence revealed that most phylotypes retrieved from the Indian Ocean were highly divergent from those retrieved from other oceans. Vertical differences were observed based on the analysis of natural bacterial community populations derived from the 16S rRNA gene sequences. Based on the analysis of the nasA gene sequences from GenBank database, a pair of general primers was developed and used to amplify the bacterial nitrate-assimilating populations. Environmental factors play an important role in mediating the bacterial communities in the Indian Ocean revealed by canonical correlation analysis.

  10. Identification of genes specifically or preferentially expressed in maize silk reveals similarity and diversity in transcript abundance of different dry stigmas.

    PubMed

    Xu, Xiao Hui; Chen, Hao; Sang, Ya Lin; Wang, Fang; Ma, Jun Ping; Gao, Xin-Qi; Zhang, Xian Sheng

    2012-07-02

    In plants, pollination is a critical step in reproduction. During pollination, constant communication between male pollen and the female stigma is required for pollen adhesion, germination, and tube growth. The detailed mechanisms of stigma-mediated reproductive processes, however, remain largely unknown. Maize (Zea mays L.), one of the world's most important crops, has been extensively used as a model species to study molecular mechanisms of pollen and stigma interaction. A comprehensive analysis of maize silk transcriptome may provide valuable information for investigating stigma functionality. A comparative analysis of expression profiles between maize silk and dry stigmas of other species might reveal conserved and diverse mechanisms that underlie stigma-mediated reproductive processes in various plant species. Transcript abundance profiles of mature silk, mature pollen, mature ovary, and seedling were investigated using RNA-seq. By comparing the transcriptomes of these tissues, we identified 1,427 genes specifically or preferentially expressed in maize silk. Bioinformatic analyses of these genes revealed many genes with known functions in plant reproduction as well as novel candidate genes that encode amino acid transporters, peptide and oligopeptide transporters, and cysteine-rich receptor-like kinases. In addition, comparison of gene sets specifically or preferentially expressed in stigmas of maize, rice (Oryza sativa L.), and Arabidopsis (Arabidopsis thaliana [L.] Heynh.) identified a number of homologous genes involved either in pollen adhesion, hydration, and germination or in initial growth and penetration of pollen tubes into the stigma surface. The comparison also indicated that maize shares a more similar profile and larger number of conserved genes with rice than with Arabidopsis, and that amino acid and lipid transport-related genes are distinctively overrepresented in maize. Many of the novel genes uncovered in this study are potentially involved

  11. Identification of genes specifically or preferentially expressed in maize silk reveals similarity and diversity in transcript abundance of different dry stigmas

    PubMed Central

    2012-01-01

    Background In plants, pollination is a critical step in reproduction. During pollination, constant communication between male pollen and the female stigma is required for pollen adhesion, germination, and tube growth. The detailed mechanisms of stigma-mediated reproductive processes, however, remain largely unknown. Maize (Zea mays L.), one of the world’s most important crops, has been extensively used as a model species to study molecular mechanisms of pollen and stigma interaction. A comprehensive analysis of maize silk transcriptome may provide valuable information for investigating stigma functionality. A comparative analysis of expression profiles between maize silk and dry stigmas of other species might reveal conserved and diverse mechanisms that underlie stigma-mediated reproductive processes in various plant species. Results Transcript abundance profiles of mature silk, mature pollen, mature ovary, and seedling were investigated using RNA-seq. By comparing the transcriptomes of these tissues, we identified 1,427 genes specifically or preferentially expressed in maize silk. Bioinformatic analyses of these genes revealed many genes with known functions in plant reproduction as well as novel candidate genes that encode amino acid transporters, peptide and oligopeptide transporters, and cysteine-rich receptor-like kinases. In addition, comparison of gene sets specifically or preferentially expressed in stigmas of maize, rice (Oryza sativa L.), and Arabidopsis (Arabidopsis thaliana [L.] Heynh.) identified a number of homologous genes involved either in pollen adhesion, hydration, and germination or in initial growth and penetration of pollen tubes into the stigma surface. The comparison also indicated that maize shares a more similar profile and larger number of conserved genes with rice than with Arabidopsis, and that amino acid and lipid transport-related genes are distinctively overrepresented in maize. Conclusions Many of the novel genes uncovered in this

  12. Laminar and dorsoventral molecular organization of the medial entorhinal cortex revealed by large-scale anatomical analysis of gene expression.

    PubMed

    Ramsden, Helen L; Sürmeli, Gülşen; McDonagh, Steven G; Nolan, Matthew F

    2015-01-01

    Neural circuits in the medial entorhinal cortex (MEC) encode an animal's position and orientation in space. Within the MEC spatial representations, including grid and directional firing fields, have a laminar and dorsoventral organization that corresponds to a similar topography of neuronal connectivity and cellular properties. Yet, in part due to the challenges of integrating anatomical data at the resolution of cortical layers and borders, we know little about the molecular components underlying this organization. To address this we develop a new computational pipeline for high-throughput analysis and comparison of in situ hybridization (ISH) images at laminar resolution. We apply this pipeline to ISH data for over 16,000 genes in the Allen Brain Atlas and validate our analysis with RNA sequencing of MEC tissue from adult mice. We find that differential gene expression delineates the borders of the MEC with neighboring brain structures and reveals its laminar and dorsoventral organization. We propose a new molecular basis for distinguishing the deep layers of the MEC and show that their similarity to corresponding layers of neocortex is greater than that of superficial layers. Our analysis identifies ion channel-, cell adhesion- and synapse-related genes as candidates for functional differentiation of MEC layers and for encoding of spatial information at different scales along the dorsoventral axis of the MEC. We also reveal laminar organization of genes related to disease pathology and suggest that a high metabolic demand predisposes layer II to neurodegenerative pathology. In principle, our computational pipeline can be applied to high-throughput analysis of many forms of neuroanatomical data. Our results support the hypothesis that differences in gene expression contribute to functional specialization of superficial layers of the MEC and dorsoventral organization of the scale of spatial representations.

  13. Laminar and Dorsoventral Molecular Organization of the Medial Entorhinal Cortex Revealed by Large-scale Anatomical Analysis of Gene Expression

    PubMed Central

    Ramsden, Helen L.; Sürmeli, Gülşen; McDonagh, Steven G.; Nolan, Matthew F.

    2015-01-01

    Neural circuits in the medial entorhinal cortex (MEC) encode an animal’s position and orientation in space. Within the MEC spatial representations, including grid and directional firing fields, have a laminar and dorsoventral organization that corresponds to a similar topography of neuronal connectivity and cellular properties. Yet, in part due to the challenges of integrating anatomical data at the resolution of cortical layers and borders, we know little about the molecular components underlying this organization. To address this we develop a new computational pipeline for high-throughput analysis and comparison of in situ hybridization (ISH) images at laminar resolution. We apply this pipeline to ISH data for over 16,000 genes in the Allen Brain Atlas and validate our analysis with RNA sequencing of MEC tissue from adult mice. We find that differential gene expression delineates the borders of the MEC with neighboring brain structures and reveals its laminar and dorsoventral organization. We propose a new molecular basis for distinguishing the deep layers of the MEC and show that their similarity to corresponding layers of neocortex is greater than that of superficial layers. Our analysis identifies ion channel-, cell adhesion- and synapse-related genes as candidates for functional differentiation of MEC layers and for encoding of spatial information at different scales along the dorsoventral axis of the MEC. We also reveal laminar organization of genes related to disease pathology and suggest that a high metabolic demand predisposes layer II to neurodegenerative pathology. In principle, our computational pipeline can be applied to high-throughput analysis of many forms of neuroanatomical data. Our results support the hypothesis that differences in gene expression contribute to functional specialization of superficial layers of the MEC and dorsoventral organization of the scale of spatial representations. PMID:25615592

  14. Genome sequencing and comparative genomics reveal a repertoire of putative pathogenicity genes in chilli anthracnose fungus Colletotrichum truncatum.

    PubMed

    Rao, Soumya; Nandineni, Madhusudan R

    2017-01-01

    Colletotrichum truncatum, a major fungal phytopathogen, causes the anthracnose disease on an economically important spice crop chilli (Capsicum annuum), resulting in huge economic losses in tropical and sub-tropical countries. It follows a subcuticular intramural infection strategy on chilli with a short, asymptomatic, endophytic phase, which contrasts with the intracellular hemibiotrophic lifestyle adopted by most of the Colletotrichum species. However, little is known about the molecular determinants and the mechanism of pathogenicity in this fungus. A high quality whole genome sequence and gene annotation based on transcriptome data of an Indian isolate of C. truncatum from chilli has been obtained. Analysis of the genome sequence revealed a rich repertoire of pathogenicity genes in C. truncatum encoding secreted proteins, effectors, plant cell wall degrading enzymes, secondary metabolism associated proteins, with potential roles in the host-specific infection strategy, placing it next only to the Fusarium species. The size of genome assembly, number of predicted genes and some of the functional categories were similar to other sequenced Colletotrichum species. The comparative genomic analyses with other species and related fungi identified some unique genes and certain highly expanded gene families of CAZymes, proteases and secondary metabolism associated genes in the genome of C. truncatum. The draft genome assembly and functional annotation of potential pathogenicity genes of C. truncatum provide an important genomic resource for understanding the biology and lifestyle of this important phytopathogen and will pave the way for designing efficient disease control regimens.

  15. Genome sequencing and comparative genomics reveal a repertoire of putative pathogenicity genes in chilli anthracnose fungus Colletotrichum truncatum

    PubMed Central

    Rao, Soumya

    2017-01-01

    Colletotrichum truncatum, a major fungal phytopathogen, causes the anthracnose disease on an economically important spice crop chilli (Capsicum annuum), resulting in huge economic losses in tropical and sub-tropical countries. It follows a subcuticular intramural infection strategy on chilli with a short, asymptomatic, endophytic phase, which contrasts with the intracellular hemibiotrophic lifestyle adopted by most of the Colletotrichum species. However, little is known about the molecular determinants and the mechanism of pathogenicity in this fungus. A high quality whole genome sequence and gene annotation based on transcriptome data of an Indian isolate of C. truncatum from chilli has been obtained. Analysis of the genome sequence revealed a rich repertoire of pathogenicity genes in C. truncatum encoding secreted proteins, effectors, plant cell wall degrading enzymes, secondary metabolism associated proteins, with potential roles in the host-specific infection strategy, placing it next only to the Fusarium species. The size of genome assembly, number of predicted genes and some of the functional categories were similar to other sequenced Colletotrichum species. The comparative genomic analyses with other species and related fungi identified some unique genes and certain highly expanded gene families of CAZymes, proteases and secondary metabolism associated genes in the genome of C. truncatum. The draft genome assembly and functional annotation of potential pathogenicity genes of C. truncatum provide an important genomic resource for understanding the biology and lifestyle of this important phytopathogen and will pave the way for designing efficient disease control regimens. PMID:28846714

  16. Spliced leader-based analyses reveal the effects of polycyclic aromatic hydrocarbons on gene expression in the copepod Pseudodiaptomus poplesia.

    PubMed

    Zhuang, Yunyun; Yang, Feifei; Xu, Donghui; Chen, Hongju; Zhang, Huan; Liu, Guangxing

    2017-02-01

    Polycyclic aromatic hydrocarbons (PAHs) are a group of toxic and carcinogenic pollutants that can adversely affect the development, growth and reproduction of marine organisms including copepods. However, knowledge on the molecular mechanisms regulating the response to PAH exposure in marine planktonic copepods is limited. In this study, we investigated the survival and gene expression of the calanoid copepod Pseudodiaptomus poplesia upon exposure to two PAHs, 1, 2-dimethylnaphthalene (1, 2-NAPH) and pyrene. Acute toxicity responses resulted in 96-h LC 50 of 788.98μgL -1 and 54.68μgL -1 for 1, 2-NAPH and pyrene, respectively. Using the recently discovered copepod spliced leader as a primer, we constructed full-length cDNA libraries from copepods exposed to sublethal concentrations and revealed 289 unique genes of diverse functions, including stress response genes and novel genes previously undocumented for this species. Eighty-three gene families were specifically expressed in PAH exposure libraries. We further analyzed the expression of seven target genes by reverse transcription-quantitative PCR in a time-course test with three sublethal concentrations. These target genes have primary roles in detoxification, oxidative defense, and signal transduction, and include different forms of glutathione S-transferase (GST), glutathione peroxidases (GPX), peroxiredoxin (PRDX), methylmalonate-semialdehyde dehydrogenase (MSDH) and ras-related C3 botulinum toxin substrate (RAC1). Expression stability of seven candidate reference genes were evaluated and the two most stable ones (RPL15 and RPS20 for 1, 2-NAPH exposure, RPL15 and EF1D for pyrene exposure) were used to normalize the expression levels of the target genes. Significant upregulation was detected in GST-T, GST-DE, GPX4, PRDX6 and RAC1 upon 1, 2-NAPH exposure, and GST-DE and MSDH upon pyrene exposure. These results indicated that the oxidative stress was induced and that signal transduction might be affected by PAH

  17. Gene Expression Profiling Reveals a Massive, Aneuploidy-Dependent Transcriptional Deregulation and Distinct Differences between Lymph Node–Negative and Lymph Node–Positive Colon Carcinomas

    PubMed Central

    Grade, Marian; Hörmann, Patrick; Becker, Sandra; Hummon, Amanda B.; Wangsa, Danny; Varma, Sudhir; Simon, Richard; Liersch, Torsten; Becker, Heinz; Difilippantonio, Michael J.; Ghadimi, B. Michael; Ried, Thomas

    2016-01-01

    To characterize patterns of global transcriptional deregulation in primary colon carcinomas, we did gene expression profiling of 73 tumors [Unio Internationale Contra Cancrum stage II (n = 33) and stage III (n = 40)] using oligonucleotide microarrays. For 30 of the tumors, expression profiles were compared with those from matched normal mucosa samples. We identified a set of 1,950 genes with highly significant deregulation between tumors and mucosa samples (P < 1e–7). A significant proportion of these genes mapped to chromosome 20 (P = 0.01). Seventeen genes had a >5-fold average expression difference between normal colon mucosa and carcinomas, including up-regulation of MYC and of HMGA1, a putative oncogene. Furthermore, we identified 68 genes that were significantly differentially expressed between lymph node–negative and lymph node–positive tumors (P < 0.001), the functional annotation of which revealed a preponderance of genes that play a role in cellular immune response and surveillance. The microarray-derived gene expression levels of 20 deregulated genes were validated using quantitative real-time reverse transcription-PCR in >40 tumor and normal mucosa samples with good concordance between the techniques. Finally, we established a relationship between specific genomic imbalances, which were mapped for 32 of the analyzed colon tumors by comparative genomic hybridization, and alterations of global transcriptional activity. Previously, we had conducted a similar analysis of primary rectal carcinomas. The systematic comparison of colon and rectal carcinomas revealed a significant overlap of genomic imbalances and transcriptional deregulation, including activation of the Wnt/β-catenin signaling cascade, suggesting similar pathogenic pathways. PMID:17210682

  18. Gene expression profiling reveals a massive, aneuploidy-dependent transcriptional deregulation and distinct differences between lymph node-negative and lymph node-positive colon carcinomas.

    PubMed

    Grade, Marian; Hörmann, Patrick; Becker, Sandra; Hummon, Amanda B; Wangsa, Danny; Varma, Sudhir; Simon, Richard; Liersch, Torsten; Becker, Heinz; Difilippantonio, Michael J; Ghadimi, B Michael; Ried, Thomas

    2007-01-01

    To characterize patterns of global transcriptional deregulation in primary colon carcinomas, we did gene expression profiling of 73 tumors [Unio Internationale Contra Cancrum stage II (n = 33) and stage III (n = 40)] using oligonucleotide microarrays. For 30 of the tumors, expression profiles were compared with those from matched normal mucosa samples. We identified a set of 1,950 genes with highly significant deregulation between tumors and mucosa samples (P < 1e-7). A significant proportion of these genes mapped to chromosome 20 (P = 0.01). Seventeen genes had a >5-fold average expression difference between normal colon mucosa and carcinomas, including up-regulation of MYC and of HMGA1, a putative oncogene. Furthermore, we identified 68 genes that were significantly differentially expressed between lymph node-negative and lymph node-positive tumors (P < 0.001), the functional annotation of which revealed a preponderance of genes that play a role in cellular immune response and surveillance. The microarray-derived gene expression levels of 20 deregulated genes were validated using quantitative real-time reverse transcription-PCR in >40 tumor and normal mucosa samples with good concordance between the techniques. Finally, we established a relationship between specific genomic imbalances, which were mapped for 32 of the analyzed colon tumors by comparative genomic hybridization, and alterations of global transcriptional activity. Previously, we had conducted a similar analysis of primary rectal carcinomas. The systematic comparison of colon and rectal carcinomas revealed a significant overlap of genomic imbalances and transcriptional deregulation, including activation of the Wnt/beta-catenin signaling cascade, suggesting similar pathogenic pathways.

  19. Identification, characterization, and expression analysis of calmodulin and calmodulin-like genes in grapevine (Vitis vinifera) reveal likely roles in stress responses.

    PubMed

    Vandelle, Elodie; Vannozzi, Alessandro; Wong, Darren; Danzi, Davide; Digby, Anne-Marie; Dal Santo, Silvia; Astegno, Alessandra

    2018-06-04

    Calcium (Ca 2+ ) is an ubiquitous key second messenger in plants, where it modulates many developmental and adaptive processes in response to various stimuli. Several proteins containing Ca 2+ binding domain have been identified in plants, including calmodulin (CaM) and calmodulin-like (CML) proteins, which play critical roles in translating Ca 2+ signals into proper cellular responses. In this work, a genome-wide analysis conducted in Vitis vinifera identified three CaM- and 62 CML-encoding genes. We assigned gene family nomenclature, analyzed gene structure, chromosomal location and gene duplication, as well as protein motif organization. The phylogenetic clustering revealed a total of eight subgroups, including one unique clade of VviCaMs distinct from VviCMLs. VviCaMs were found to contain four EF-hand motifs whereas VviCML proteins have one to five. Most of grapevine CML genes were intronless, while VviCaMs were intron rich. All the genes were well spread among the 19 grapevine chromosomes and displayed a high level of duplication. The expression profiling of VviCaM/VviCML genes revealed a broad expression pattern across all grape organs and tissues at various developmental stages, and a significant modulation in biotic stress-related responses. Our results highlight the complexity of CaM/CML protein family also in grapevine, supporting the versatile role of its different members in modulating cellular responses to various stimuli, in particular to biotic stresses. This work lays the foundation for further functional and structural studies on specific grapevine CaMs/CMLs in order to better understand the role of Ca 2+ -binding proteins in grapevine and to explore their potential for further biotechnological applications. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Methods of Combinatorial Optimization to Reveal Factors Affecting Gene Length

    PubMed Central

    Bolshoy, Alexander; Tatarinova, Tatiana

    2012-01-01

    In this paper we present a novel method for genome ranking according to gene lengths. The main outcomes described in this paper are the following: the formulation of the genome ranking problem, presentation of relevant approaches to solve it, and the demonstration of preliminary results from prokaryotic genomes ordering. Using a subset of prokaryotic genomes, we attempted to uncover factors affecting gene length. We have demonstrated that hyperthermophilic species have shorter genes as compared with mesophilic organisms, which probably means that environmental factors affect gene length. Moreover, these preliminary results show that environmental factors group together in ranking evolutionary distant species. PMID:23300345

  1. Kelp and dolphin gulls cause perineal wounds in South American fur seal pups (Arctocephalus australis) at Guafo Island, Chilean Patagonia

    PubMed Central

    Muñoz, Francisco; Montalva, Felipe; Perez-Venegas, Diego; Pavés, Héctor; Gottdenker, Nicole

    2017-01-01

    During five reproductive seasons, we documented the presence, extent and origin of perineal wounds in South American fur seal pups (Arctocephalus australis) on Guafo Island, Northern Chilean Patagonia. The seasonal prevalence of perineal wounds ranged from 5 to 9%, and new cases were more common at the end of the breeding season (February), when pups were on average two months old and were actively expelling hookworms (Uncinaria sp). Histologically, wounds corresponded to marked ulcerative lymphoplasmacytic and histiocytic dermatitis with granulation tissue and mixed bacterial colonies. In 2015 and 2017, kelp gulls (Larus dominicanus) and dolphin gulls (Leucophaeus scoresbii) were observed picking and wounding the perineal area of marked pups. This behaviour occurred more frequently after the pups' defecation, when sea gulls engaged in consumption of pups' faeces. The affected pups usually had moderate to marked hookworm infections along with bloody diarrhoea and anaemia. Pups with severe wounds (23% of affected animals) had swollen perineal areas and signs of secondary systemic bacterial infection. We propose that seagulls on Guafo Island have learned to consume remains of blood and parasites in the faeces of pups affected by hookworm infection, causing perineal wounds during this process. We conclude that this perineal wounding is an unintentional, occasional negative effect of an otherwise commensal gull–fur seal relationship. PMID:28791178

  2. Kelp and dolphin gulls cause perineal wounds in South American fur seal pups (Arctocephalus australis) at Guafo Island, Chilean Patagonia.

    PubMed

    Seguel, Mauricio; Muñoz, Francisco; Montalva, Felipe; Perez-Venegas, Diego; Pavés, Héctor; Gottdenker, Nicole

    2017-07-01

    During five reproductive seasons, we documented the presence, extent and origin of perineal wounds in South American fur seal pups ( Arctocephalus australis ) on Guafo Island, Northern Chilean Patagonia. The seasonal prevalence of perineal wounds ranged from 5 to 9%, and new cases were more common at the end of the breeding season (February), when pups were on average two months old and were actively expelling hookworms ( Uncinaria sp). Histologically, wounds corresponded to marked ulcerative lymphoplasmacytic and histiocytic dermatitis with granulation tissue and mixed bacterial colonies. In 2015 and 2017, kelp gulls ( Larus dominicanus ) and dolphin gulls ( Leucophaeus scoresbii ) were observed picking and wounding the perineal area of marked pups. This behaviour occurred more frequently after the pups' defecation, when sea gulls engaged in consumption of pups' faeces. The affected pups usually had moderate to marked hookworm infections along with bloody diarrhoea and anaemia. Pups with severe wounds (23% of affected animals) had swollen perineal areas and signs of secondary systemic bacterial infection. We propose that seagulls on Guafo Island have learned to consume remains of blood and parasites in the faeces of pups affected by hookworm infection, causing perineal wounds during this process. We conclude that this perineal wounding is an unintentional, occasional negative effect of an otherwise commensal gull-fur seal relationship.

  3. ISC1-dependent metabolic adaptation reveals an indispensable role for mitochondria in induction of nuclear genes during the diauxic shift in Saccharomyces cerevisiae.

    PubMed

    Kitagaki, Hiroshi; Cowart, L Ashley; Matmati, Nabil; Montefusco, David; Gandy, Jason; de Avalos, Silvia Vaena; Novgorodov, Sergei A; Zheng, Jim; Obeid, Lina M; Hannun, Yusuf A

    2009-04-17

    Growth of Saccharomyces cerevisiae following glucose depletion (the diauxic shift) depends on a profound metabolic adaptation accompanied by a global reprogramming of gene expression. In this study, we provide evidence for a heretofore unsuspected role for Isc1p in mediating this reprogramming. Initial studies revealed that yeast cells deleted in ISC1, the gene encoding inositol sphingolipid phospholipase C, which resides in mitochondria in the post-diauxic phase, showed defective aerobic respiration in the post-diauxic phase but retained normal intrinsic mitochondrial functions, including intact mitochondrial DNA, normal oxygen consumption, and normal mitochondrial polarization. Microarray analysis revealed that the Deltaisc1 strain failed to up-regulate genes required for nonfermentable carbon source metabolism during the diauxic shift, thus suggesting a mechanism for the defective supply of respiratory substrates into mitochondria in the post-diauxic phase. This defect in regulating nuclear gene induction in response to a defect in a mitochondrial enzyme raised the possibility that mitochondria may initiate diauxic shift-associated regulation of nucleus-encoded genes. This was established by demonstrating that in respiratory-deficient petite cells these genes failed to be up-regulated across the diauxic shift in a manner similar to the Deltaisc1 strain. Isc1p- and mitochondrial function-dependent genes significantly overlapped with Adr1p-, Snf1p-, and Cat8p-dependent genes, suggesting some functional link among these factors. However, the retrograde response was not activated in Deltaisc1, suggesting that the response of Deltaisc1 cannot be simply attributed to mitochondrial dysfunction. These results suggest a novel role for Isc1p in allowing the reprogramming of gene expression during the transition from anaerobic to aerobic metabolism.

  4. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes

    PubMed Central

    Biankin, Andrew V.; Waddell, Nicola; Kassahn, Karin S.; Gingras, Marie-Claude; Muthuswamy, Lakshmi B.; Johns, Amber L.; Miller, David K.; Wilson, Peter J.; Patch, Ann-Marie; Wu, Jianmin; Chang, David K.; Cowley, Mark J.; Gardiner, Brooke B.; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J.; Gill, Anthony J.; Pinho, Andreia V.; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J. Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R. Scott; Humphris, Jeremy L.; Kaplan, Warren; Jones, Marc D.; Colvin, Emily K.; Nagrial, Adnan M.; Humphrey, Emily S.; Chou, Angela; Chin, Venessa T.; Chantrill, Lorraine A.; Mawson, Amanda; Samra, Jaswinder S.; Kench, James G.; Lovell, Jessica A.; Daly, Roger J.; Merrett, Neil D.; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q.; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M.; Fisher, William E.; Brunicardi, F. Charles; Hodges, Sally E.; Reid, Jeffrey G.; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R.; Dinh, Huyen; Buhay, Christian J.; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E.; Yung, Christina K.; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A.; Petersen, Gloria M.; Gallinger, Steven; Hruban, Ralph H.; Maitra, Anirban; Iacobuzio-Donahue, Christine A.; Schulick, Richard D.; Wolfgang, Christopher L.; Morgan, Richard A.; Lawlor, Rita T.; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A.; Mann, Karen M.; Jenkins, Nancy A.; Perez-Mancera, Pedro A.; Adams, David J.; Largaespada, David A.; Wessels, Lodewyk F. A.; Rust, Alistair G.; Stein, Lincoln D.; Tuveson, David A.; Copeland, Neal G.; Musgrove, Elizabeth A.; Scarpa, Aldo; Eshleman, James R.; Hudson, Thomas J.; Sutherland, Robert L.; Wheeler, David A.; Pearson, John V.; McPherson, John D.; Gibbs, Richard A.; Grimmond, Sean M.

    2012-01-01

    Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis. PMID:23103869

  5. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.

    PubMed

    Biankin, Andrew V; Waddell, Nicola; Kassahn, Karin S; Gingras, Marie-Claude; Muthuswamy, Lakshmi B; Johns, Amber L; Miller, David K; Wilson, Peter J; Patch, Ann-Marie; Wu, Jianmin; Chang, David K; Cowley, Mark J; Gardiner, Brooke B; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J; Gill, Anthony J; Pinho, Andreia V; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R Scott; Humphris, Jeremy L; Kaplan, Warren; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chou, Angela; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Daly, Roger J; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M; Fisher, William E; Brunicardi, F Charles; Hodges, Sally E; Reid, Jeffrey G; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R; Dinh, Huyen; Buhay, Christian J; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E; Yung, Christina K; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A; Petersen, Gloria M; Gallinger, Steven; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A; Mann, Karen M; Jenkins, Nancy A; Perez-Mancera, Pedro A; Adams, David J; Largaespada, David A; Wessels, Lodewyk F A; Rust, Alistair G; Stein, Lincoln D; Tuveson, David A; Copeland, Neal G; Musgrove, Elizabeth A; Scarpa, Aldo; Eshleman, James R; Hudson, Thomas J; Sutherland, Robert L; Wheeler, David A; Pearson, John V; McPherson, John D; Gibbs, Richard A; Grimmond, Sean M

    2012-11-15

    Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.

  6. Disruption of Msx-1 and Msx-2 reveals roles for these genes in craniofacial, eye, and axial development.

    PubMed

    Foerst-Potts, L; Sadler, T W

    1997-05-01

    In mouse embryos, the muscle segment homeobox genes, Msx-1 and Msx-2 are expressed during critical stages of neural tube, neural crest, and craniofacial development, suggesting that these genes play important roles in organogenesis and cell differentiation. Although the patterns of expression are intriguing, little is known about the function of these genes in vertebrate embryonic development. Therefore, the expression of both genes, separately and together, was disrupted using antisense oligodeoxynucleotides and whole embryo culture techniques. Antisense attenuation of Msx-1 during early stages of neurulation produced hypoplasia of the maxillary, mandibular, and frontonasal prominences, eye anomalies, and somite and neural tube abnormalities. Eye defects consisted of enlarged optic vesicles, which may ultimately result in micropthalmia similar to that observed in Small eye mice homozygous for mutations in the Pax-6 gene. Histological sections and SEM analysis revealed a thinning of the neuroepithelium in the diencephalon and optic vesicle and mesenchymal deficiencies in the craniofacial region. Injections of Msx-2 antisense oligodeoxynucleotides produced similar malformations as those targeting Msx-1, with the exception that there was an increase in number and severity of neural tube and somite defects. Embryos injected with the combination of Msx-1 + Msx-2 antisense oligodeoxynucleotides showed no novel abnormalities, suggesting that the genes do not operate in a redundant manner.

  7. Prohibitin-2 gene reveals sex-related differences in the salmon louse Caligus rogercresseyi.

    PubMed

    Farlora, Rodolfo; Nuñez-Acuña, Gustavo; Gallardo-Escárate, Cristian

    2015-06-10

    Prohibitins are evolutionarily conserved proteins present in multiple cellular compartments, and are involved in diverse cellular processes, including steroid hormone transcription and gametogenesis. In the present study, we report for the first time the characterization of the prohibitin-2 (Phb2) gene in the sea lice Caligus rogercresseyi. The CrPhb2 cDNA showed a total length of 1406 bp, which contained a predicted open reading frame (ORF) of 894 base pairs (bp) encoding for 298 amino acids. Multiple sequence alignments of prohibitin proteins from other arthropods revealed a high degree of amino acid sequence conservation. In silico Illumina read counts and RT-qPCR analyses showed a sex-dependent differential expression, with mRNA levels exhibiting a 1.7-fold (RT-qPCR) increase in adult females compared with adult males. A total of nine single nucleotide polymorphisms (SNPs) were identified, three were located in the 5' UTR of the Phb2 messenger and six in the ORF, but no mutations associated with sex were found. These results contribute to expand the present knowledge of the reproduction-related genes in C. rogercresseyi, and may be useful in future experiments aimed at controlling the impacts of sea lice in fish farming. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Neurobehavioral Integrity of Chimpanzee Newborns: Comparisons across groups and across species reveal gene-environment interaction effects

    PubMed Central

    Bard, Kim A.; Brent, Linda; Lester, Barry; Worobey, John; Suomi, Stephen J.

    2014-01-01

    The aims of this article are to describe the neurobehavioral integrity of chimpanzee newborns, to investigate how early experiences affect the neurobehavioral organization of chimpanzees, and to explore species differences by comparing chimpanzee newborns to a group of typically developing human newborns. Neurobehavioral integrity related to orientation, motor performance, arousal, and state regulation of 55 chimpanzee (raised in four different settings) and 42 human newborns was measured with the Neonatal Behavioral Assessment Scale (NBAS) a semi-structured 25-minute interactive assessment. Thirty-eight chimpanzees were tested every other day from birth, and analyses revealed significant developmental changes in 19 of 27 NBAS scores. The cross-group and cross-species comparisons were conducted at 2 and 30 days of age. Among the 4 chimpanzee groups, significant differences were found in 23 of 24 NBAS scores. Surprisingly, the cross-species comparisons revealed that the human group was distinct in only 1 of 25 NBAS scores (the human group had significantly less muscle tone than all the chimpanzee groups). The human group was indistinguishable from at least one of the chimpanzee groups in the remaining 24 of 25 NBAS scores. The results of this study support the conclusion that the interplay between genes and environment, rather than genes alone or environment alone, accounts for phenotypic expressions of newborn neurobehavioral integrity in hominids. PMID:25110465

  9. Making teeth to order: conserved genes reveal an ancient molecular pattern in paddlefish (Actinopterygii)

    PubMed Central

    Smith, Moya M.; Johanson, Zerina; Butts, Thomas; Ericsson, Rolf; Modrell, Melinda; Tulenko, Frank J.; Davis, Marcus C.; Fraser, Gareth J.

    2015-01-01

    Ray-finned fishes (Actinopterygii) are the dominant vertebrate group today (+30 000 species, predominantly teleosts), with great morphological diversity, including their dentitions. How dental morphological variation evolved is best addressed by considering a range of taxa across actinopterygian phylogeny; here we examine the dentition of Polyodon spathula (American paddlefish), assigned to the basal group Acipenseriformes. Although teeth are present and functional in young individuals of Polyodon, they are completely absent in adults. Our current understanding of developmental genes operating in the dentition is primarily restricted to teleosts; we show that shh and bmp4, as highly conserved epithelial and mesenchymal genes for gnathostome tooth development, are similarly expressed at Polyodon tooth loci, thus extending this conserved developmental pattern within the Actinopterygii. These genes map spatio-temporal tooth initiation in Polyodon larvae and provide new data in both oral and pharyngeal tooth sites. Variation in cellular intensity of shh maps timing of tooth morphogenesis, revealing a second odontogenic wave as alternate sites within tooth rows, a dental pattern also present in more derived actinopterygians. Developmental timing for each tooth field in Polyodon follows a gradient, from rostral to caudal and ventral to dorsal, repeated during subsequent loss of teeth. The transitory Polyodon dentition is modified by cessation of tooth addition and loss. As such, Polyodon represents a basal actinopterygian model for the evolution of developmental novelty: initial conservation, followed by tooth loss, accommodating the adult trophic modification to filter-feeding. PMID:25788604

  10. Genome-Wide Comparative Analysis Reveals Similar Types of NBS Genes in Hybrid Citrus sinensis Genome and Original Citrus clementine Genome and Provides New Insights into Non-TIR NBS Genes

    PubMed Central

    Wang, Yunsheng; Zhou, Lijuan; Li, Dazhi; Dai, Liangying; Lawton-Rauh, Amy; Srimani, Pradip K.; Duan, Yongping; Luo, Feng

    2015-01-01

    In this study, we identified and compared nucleotide-binding site (NBS) domain-containing genes from three Citrus genomes (C. clementina, C. sinensis from USA and C. sinensis from China). Phylogenetic analysis of all Citrus NBS genes across these three genomes revealed that there are three approximately evenly numbered groups: one group contains the Toll-Interleukin receptor (TIR) domain and two different Non-TIR groups in which most of proteins contain the Coiled Coil (CC) domain. Motif analysis confirmed that the two groups of CC-containing NBS genes are from different evolutionary origins. We partitioned NBS genes into clades using NBS domain sequence distances and found most clades include NBS genes from all three Citrus genomes. This suggests that three Citrus genomes have similar numbers and types of NBS genes. We also mapped the re-sequenced reads of three pomelo and three mandarin genomes onto the C. sinensis genome. We found that most NBS genes of the hybrid C. sinensis genome have corresponding homologous genes in both pomelo and mandarin genomes. The homologous NBS genes in pomelo and mandarin suggest that the parental species of C. sinensis may contain similar types of NBS genes. This explains why the hybrid C. sinensis and original C. clementina have similar types of NBS genes in this study. Furthermore, we found that sequence variation amongst Citrus NBS genes were shaped by multiple independent and shared accelerated mutation accumulation events among different groups of NBS genes and in different Citrus genomes. Our comparative analyses yield valuable insight into the structure, organization and evolution of NBS genes in Citrus genomes. Furthermore, our comprehensive analysis showed that the non-TIR NBS genes can be divided into two groups that come from different evolutionary origins. This provides new insights into non-TIR genes, which have not received much attention. PMID:25811466

  11. Genome-wide comparative analysis reveals similar types of NBS genes in hybrid Citrus sinensis genome and original Citrus clementine genome and provides new insights into non-TIR NBS genes.

    PubMed

    Wang, Yunsheng; Zhou, Lijuan; Li, Dazhi; Dai, Liangying; Lawton-Rauh, Amy; Srimani, Pradip K; Duan, Yongping; Luo, Feng

    2015-01-01

    In this study, we identified and compared nucleotide-binding site (NBS) domain-containing genes from three Citrus genomes (C. clementina, C. sinensis from USA and C. sinensis from China). Phylogenetic analysis of all Citrus NBS genes across these three genomes revealed that there are three approximately evenly numbered groups: one group contains the Toll-Interleukin receptor (TIR) domain and two different Non-TIR groups in which most of proteins contain the Coiled Coil (CC) domain. Motif analysis confirmed that the two groups of CC-containing NBS genes are from different evolutionary origins. We partitioned NBS genes into clades using NBS domain sequence distances and found most clades include NBS genes from all three Citrus genomes. This suggests that three Citrus genomes have similar numbers and types of NBS genes. We also mapped the re-sequenced reads of three pomelo and three mandarin genomes onto the C. sinensis genome. We found that most NBS genes of the hybrid C. sinensis genome have corresponding homologous genes in both pomelo and mandarin genomes. The homologous NBS genes in pomelo and mandarin suggest that the parental species of C. sinensis may contain similar types of NBS genes. This explains why the hybrid C. sinensis and original C. clementina have similar types of NBS genes in this study. Furthermore, we found that sequence variation amongst Citrus NBS genes were shaped by multiple independent and shared accelerated mutation accumulation events among different groups of NBS genes and in different Citrus genomes. Our comparative analyses yield valuable insight into the structure, organization and evolution of NBS genes in Citrus genomes. Furthermore, our comprehensive analysis showed that the non-TIR NBS genes can be divided into two groups that come from different evolutionary origins. This provides new insights into non-TIR genes, which have not received much attention.

  12. Molecular genetic analysis reveals that a nonribosomal peptide synthetase-like (NRPS-like) gene in Aspergillus nidulans is responsible for microperfuranone biosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, Hsu-Hua; Chiang, Yi Ming; Entwistle, Ruth

    2012-04-10

    Genome sequencing of Aspergillus species including A. nidulans has revealed that there are far more secondary metabolite biosynthetic gene clusters than secondary metabolites isolated from these organisms. This implies that these organisms can produce additional secondary metabolites have not yet been elucidated. The A. nidulans genome contains twelve nonribosomal peptide synthetase (NRPS), one hybrid polyketide synthase/nonribosomal peptide synthetase (PKS/NRPS), and fourteen NRPS-like genes. The only NRPS-like gene in A. nidulans with a known product is tdiA which is involved in terrequinone A biosynthesis. To attempt to identify the products of these NRPS-like genes, we replaced the native promoters of themore » NRPS-like genes with the inducible alcohol dehydrogenase (alcA) promoter. Our results demonstrated that induction of the single NRPS-like gene AN3396.4 led to the enhanced production of microperfuranone. Furthermore, heterologous expression of AN3396.4 in A. niger confirmed that only one NRPS-like gene, AN3396.4, is necessary for the production of microperfuranone.« less

  13. A New Pathogen Transmission Mechanism in the Ocean: The Case of Sea Otter Exposure to the Land-Parasite Toxoplasma gondii

    PubMed Central

    Mazzillo, Fernanda F. M.; Shapiro, Karen; Silver, Mary W.

    2013-01-01

    Toxoplasma gondii is a land-derived parasite that infects humans and marine mammals. Infections are a significant cause of mortality for endangered southern sea otters (Enhydra lutris nereis), but the transmission mechanism is poorly understood. Otter exposure to T. gondii has been linked to the consumption of marine turban snails in kelp (Macrocystis pyrifera) forests. It is unknown how turban snails acquire oocysts, as snails scrape food particles attached to surfaces, whereas T. gondii oocysts enter kelp beds as suspended particles via runoff. We hypothesized that waterborne T. gondii oocysts attach to kelp surfaces when encountering exopolymer substances (EPS) forming the sticky matrix of biofilms on kelp, and thus become available to snails. Results of a dietary composition analysis of field-collected snails and of kelp biofilm indicate that snails graze the dense kelp-biofilm assemblage composed of pennate diatoms and bacteria inserted within the EPS gel-like matrix. To test whether oocysts attach to kelp blades via EPS, we designed a laboratory experiment simulating the kelp forest canopy in tanks spiked with T. gondii surrogate microspheres and controlled for EPS and transparent exopolymer particles (TEP - the particulate form of EPS). On average, 19% and 31% of surrogates were detected attached to kelp surfaces covered with EPS in unfiltered and filtered seawater treatments, respectively. The presence of TEP in the seawater did not increase surrogate attachment. These findings support a novel transport mechanism of T. gondii oocysts: as oocysts enter the kelp forest canopy, a portion adheres to the sticky kelp biofilms. Snails grazing this biofilm encounter oocysts as ‘bycatch’ and thereby deliver the parasite to sea otters that prey upon snails. This novel mechanism can have health implications beyond T. gondii and otters, as a similar route of pathogen transmission may be implicated with other waterborne pathogens to marine wildlife and humans

  14. Comparative transcriptome analysis reveals differentially expressed genes associated with sex expression in garden asparagus (Asparagus officinalis).

    PubMed

    Li, Shu-Fen; Zhang, Guo-Jun; Zhang, Xue-Jin; Yuan, Jin-Hong; Deng, Chuan-Liang; Gao, Wu-Jun

    2017-08-22

    Garden asparagus (Asparagus officinalis) is a highly valuable vegetable crop of commercial and nutritional interest. It is also commonly used to investigate the mechanisms of sex determination and differentiation in plants. However, the sex expression mechanisms in asparagus remain poorly understood. De novo transcriptome sequencing via Illumina paired-end sequencing revealed more than 26 billion bases of high-quality sequence data from male and female asparagus flower buds. A total of 72,626 unigenes with an average length of 979 bp were assembled. In comparative transcriptome analysis, 4876 differentially expressed genes (DEGs) were identified in the possible sex-determining stage of female and male/supermale flower buds. Of these DEGs, 433, including 285 male/supermale-biased and 149 female-biased genes, were annotated as flower related. Of the male/supermale-biased flower-related genes, 102 were probably involved in anther development. In addition, 43 DEGs implicated in hormone response and biosynthesis putatively associated with sex expression and reproduction were discovered. Moreover, 128 transcription factor (TF)-related genes belonging to various families were found to be differentially expressed, and this finding implied the essential roles of TF in sex determination or differentiation in asparagus. Correlation analysis indicated that miRNA-DEG pairs were also implicated in asparagus sexual development. Our study identified a large number of DEGs involved in the sex expression and reproduction of asparagus, including known genes participating in plant reproduction, plant hormone signaling, TF encoding, and genes with unclear functions. We also found that miRNAs might be involved in the sex differentiation process. Our study could provide a valuable basis for further investigations on the regulatory networks of sex determination and differentiation in asparagus and facilitate further genetic and genomic studies on this dioecious species.

  15. Transcriptome Profiling Revealed Stress-Induced and Disease Resistance Genes Up-Regulated in PRSV Resistant Transgenic Papaya

    PubMed Central

    Fang, Jingping; Lin, Aiting; Qiu, Weijing; Cai, Hanyang; Umar, Muhammad; Chen, Rukai; Ming, Ray

    2016-01-01

    Papaya is a productive and nutritious tropical fruit. Papaya Ringspot Virus (PRSV) is the most devastating pathogen threatening papaya production worldwide. Development of transgenic resistant varieties is the most effective strategy to control this disease. However, little is known about the genome-wide functional changes induced by particle bombardment transformation. We conducted transcriptome sequencing of PRSV resistant transgenic papaya SunUp and its PRSV susceptible progenitor Sunset to compare the transcriptional changes in young healthy leaves prior to infection with PRSV. In total, 20,700 transcripts were identified, and 842 differentially expressed genes (DEGs) randomly distributed among papaya chromosomes. Gene ontology (GO) category analysis revealed that microtubule-related categories were highly enriched among these DEGs. Numerous DEGs related to various transcription factors, transporters and hormone biosynthesis showed clear differences between the two cultivars, and most were up-regulated in transgenic papaya. Many known and novel stress-induced and disease-resistance genes were most highly expressed in SunUp, including MYB, WRKY, ERF, NAC, nitrate and zinc transporters, and genes involved in the abscisic acid, salicylic acid, and ethylene signaling pathways. We also identified 67,686 alternative splicing (AS) events in Sunset and 68,455 AS events in SunUp, mapping to 10,994 and 10,995 papaya annotated genes, respectively. GO enrichment for the genes displaying AS events exclusively in Sunset was significantly different from those in SunUp. Transcriptomes in Sunset and transgenic SunUp are very similar with noteworthy differences, which increased PRSV-resistance in transgenic papaya. No detrimental pathways and allergenic or toxic proteins were induced on a genome-wide scale in transgenic SunUp. Our results provide a foundation for unraveling the mechanism of PRSV resistance in transgenic papaya. PMID:27379138

  16. Genomics analysis of potassium channel genes in songbirds reveals molecular specializations of brain circuits for the maintenance and production of learned vocalizations

    PubMed Central

    2013-01-01

    Background A fundamental question in molecular neurobiology is how genes that determine basic neuronal properties shape the functional organization of brain circuits underlying complex learned behaviors. Given the growing availability of complete vertebrate genomes, comparative genomics represents a promising approach to address this question. Here we used genomics and molecular approaches to study how ion channel genes influence the properties of the brain circuitry that regulates birdsong, a learned vocal behavior with important similarities to human speech acquisition. We focused on potassium (K-)Channels, which are major determinants of neuronal cell excitability. Starting with the human gene set of K-Channels, we used cross-species mRNA/protein alignments, and syntenic analysis to define the full complement of orthologs, paralogs, allelic variants, as well as novel loci not previously predicted in the genome of zebra finch (Taeniopygia guttata). We also compared protein coding domains in chicken and zebra finch orthologs to identify genes under positive selective pressure, and those that contained lineage-specific insertions/deletions in functional domains. Finally, we conducted comprehensive in situ hybridizations to determine the extent of brain expression, and identify K-Channel gene enrichments in nuclei of the avian song system. Results We identified 107 K-Channel finch genes, including 6 novel genes common to non-mammalian vertebrate lineages. Twenty human genes are absent in songbirds, birds, or sauropsids, or unique to mammals, suggesting K-Channel properties may be lineage-specific. We also identified specific family members with insertions/deletions and/or high dN/dS ratios compared to chicken, a non-vocal learner. In situ hybridization revealed that while most K-Channel genes are broadly expressed in the brain, a subset is selectively expressed in song nuclei, representing molecular specializations of the vocal circuitry. Conclusions Together

  17. Exome sequencing and digital PCR analyses reveal novel mutated genes related to the metastasis of pancreatic ductal adenocarcinoma.

    PubMed

    Zhou, Bin; Irwanto, Astrid; Guo, Yun-Miao; Bei, Jin-Xin; Wu, Qiao; Chen, Ge; Zhang, Tai-Ping; Lei, Jin-Jv; Feng, Qi-Sheng; Chen, Li-Zhen; Liu, Jianjun; Zhao, Yu-Pei

    2012-08-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant cancers with more than 94% mortality rate mainly due to the widespread metastases. To find out the somatically mutated genes related to the metastasis of PDAC, we analyzed the matched tumor and normal tissue samples from a patient diagnosed with liver metastatic PDAC using intensive exome capture-sequencing analysis (> 170× coverage). Searching for the somatic mutations that drive the clonal expansion of metastasis, we identified 12 genes with higher allele frequencies (AFs) of functional mutations in the metastatic tumor, including known genes KRAS and TP53 for metastasis. Of the 10 candidate genes, 6 (ADRB1, DCLK1, KCNH2, NOP14, SIGLEC1, and ZC3H7A), together with KRAS and TP53, were clustered into a single network (p value = 1 × 10(-22)) that is related to cancer development. Moreover, these candidate genes showed abnormal expression in PDAC tissues and functional impacts on the migration, proliferation, and colony formation abilities of pancreatic cancer cell lines. Furthermore, through digital PCR analysis, we revealed potential genomic mechanisms for the KRAS and TP53 mutations in the metastatic tumor. Taken together, our study shows the possibility for such personalized genomic profiling to provide new biological insight into the metastasis of PDAC.

  18. Comparative Plasmodium gene overexpression reveals distinct perturbation of sporozoite transmission by profilin

    PubMed Central

    Sato, Yuko; Hliscs, Marion; Dunst, Josefine; Goosmann, Christian; Brinkmann, Volker; Montagna, Georgina N.; Matuschewski, Kai

    2016-01-01

    Plasmodium relies on actin-based motility to migrate from the site of infection and invade target cells. Using a substrate-dependent gliding locomotion, sporozoites are able to move at fast speed (1–3 μm/s). This motility relies on a minimal set of actin regulatory proteins and occurs in the absence of detectable filamentous actin (F-actin). Here we report an overexpression strategy to investigate whether perturbations of F-actin steady-state levels affect gliding locomotion and host invasion. We selected two vital Plasmodium berghei G-actin–binding proteins, C-CAP and profilin, in combination with three stage-specific promoters and mapped the phenotypes afforded by overexpression in all three extracellular motile stages. We show that in merozoites and ookinetes, additional expression does not impair life cycle progression. In marked contrast, overexpression of C-CAP and profilin in sporozoites impairs circular gliding motility and salivary gland invasion. The propensity for productive motility correlates with actin accumulation at the parasite tip, as revealed by combinations of an actin-stabilizing drug and transgenic parasites. Strong expression of profilin, but not C-CAP, resulted in complete life cycle arrest. Comparative overexpression is an alternative experimental genetic strategy to study essential genes and reveals effects of regulatory imbalances that are not uncovered from deletion-mutant phenotyping. PMID:27226484

  19. Integrated in silico analyses of regulatory and metabolic networks of Synechococcus sp. PCC 7002 reveal relationships between gene centrality and essentiality

    DOE PAGES

    Song, Hyun-Seob; McClure, Ryan S.; Bernstein, Hans C.; ...

    2015-03-27

    Cyanobacteria dynamically relay environmental inputs to intracellular adaptations through a coordinated adjustment of photosynthetic efficiency and carbon processing rates. The output of such adaptations is reflected through changes in transcriptional patterns and metabolic flux distributions that ultimately define growth strategy. To address interrelationships between metabolism and regulation, we performed integrative analyses of metabolic and gene co-expression networks in a model cyanobacterium, Synechococcus sp. PCC 7002. Centrality analyses using the gene co-expression network identified a set of key genes, which were defined here as ‘topologically important.’ Parallel in silico gene knock-out simulations, using the genome-scale metabolic network, classified what we termedmore » as ‘functionally important’ genes, deletion of which affected growth or metabolism. A strong positive correlation was observed between topologically and functionally important genes. Functionally important genes exhibited variable levels of topological centrality; however, the majority of topologically central genes were found to be functionally essential for growth. Subsequent functional enrichment analysis revealed that both functionally and topologically important genes in Synechococcus sp. PCC 7002 are predominantly associated with translation and energy metabolism, two cellular processes critical for growth. This research demonstrates how synergistic network-level analyses can be used for reconciliation of metabolic and gene expression data to uncover fundamental biological principles.« less

  20. Integrated in silico analyses of regulatory and metabolic networks of Synechococcus sp. PCC 7002 reveal relationships between gene centrality and essentiality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Hyun-Seob; McClure, Ryan S.; Bernstein, Hans C.

    Cyanobacteria dynamically relay environmental inputs to intracellular adaptations through a coordinated adjustment of photosynthetic efficiency and carbon processing rates. The output of such adaptations is reflected through changes in transcriptional patterns and metabolic flux distributions that ultimately define growth strategy. To address interrelationships between metabolism and regulation, we performed integrative analyses of metabolic and gene co-expression networks in a model cyanobacterium, Synechococcus sp. PCC 7002. Centrality analyses using the gene co-expression network identified a set of key genes, which were defined here as ‘topologically important.’ Parallel in silico gene knock-out simulations, using the genome-scale metabolic network, classified what we termedmore » as ‘functionally important’ genes, deletion of which affected growth or metabolism. A strong positive correlation was observed between topologically and functionally important genes. Functionally important genes exhibited variable levels of topological centrality; however, the majority of topologically central genes were found to be functionally essential for growth. Subsequent functional enrichment analysis revealed that both functionally and topologically important genes in Synechococcus sp. PCC 7002 are predominantly associated with translation and energy metabolism, two cellular processes critical for growth. This research demonstrates how synergistic network-level analyses can be used for reconciliation of metabolic and gene expression data to uncover fundamental biological principles.« less

  1. Evolution of Hox-like genes in Cnidaria: Study of Hydra Hox repertoire reveals tailor-made Hox-code for Cnidarians.

    PubMed

    Reddy, Puli Chandramouli; Unni, Manu K; Gungi, Akhila; Agarwal, Pallavi; Galande, Sanjeev

    2015-11-01

    Hox and ParaHox genes play decisive roles in patterning the anterior-posterior body axis in Bilateria. Evolutionary origin of Hox genes and primary body axis predate the divergence of Bilateria and Cnidaria. However, function of Cnidarian Hox-like genes and their regulation in axis determination is obscure due to studies limited to a few representative model systems. Present investigation is conducted using Hydra, a Hydrozoan member of phylum Cnidaria, to gain insights into the roles of Cnidarian Hox-like genes in primary axis formation. Here, we report identification of six Hox-like genes from our in-house transcriptome data. Phylogenetic analysis of these genes shows bilaterian counterparts of Hox1, Gsx and Mox. Additionally, we report CnoxB_HVUL, CnoxC2_HVUL and CnoxC3_HVUL belonging to two Cnidarian specific groups. In situ hybridization analysis of Hydra homologues provided important clues about their possible roles in pattern formation of polyps and bud development. Specifically, Hox1_HVUL is regulated by Wnt signaling and plays critical role in head formation. Collating information about expression patterns of different Hox-like genes from previous reports and this study reveals no conformity within Cnidaria. Indicating that unlike in Bilateria, there is no consolidated Hox-code determining primary body axis in Cnidaria. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Genetic analysis of tachyzoite to bradyzoite differentiation mutants in Toxoplasma gondii reveals a hierarchy of gene induction.

    PubMed

    Singh, Upinder; Brewer, Jeremy L; Boothroyd, John C

    2002-05-01

    Developmental switching in Toxoplasma gondii, from the virulent tachyzoite to the relatively quiescent bradyzoite stage, is responsible for disease propagation and reactivation. We have generated tachyzoite to bradyzoite differentiation (Tbd-) mutants in T. gondii and used these in combination with a cDNA microarray to identify developmental pathways in bradyzoite formation. Four independently generated Tbd- mutants were analysed and had defects in bradyzoite development in response to multiple bradyzoite-inducing conditions, a stable phenotype after in vivo passages and a markedly reduced brain cyst burden in a murine model of chronic infection. Transcriptional profiles of mutant and wild-type parasites, growing under bradyzoite conditions, revealed a hierarchy of developmentally regulated genes, including many bradyzoite-induced genes whose transcripts were reduced in all mutants. A set of non-developmentally regulated genes whose transcripts were less abundant in Tbd- mutants were also identified. These may represent genes that mediate downstream effects and/or whose expression is dependent on the same transcription factors as the bradyzoite-induced set. Using these data, we have generated a model of transcription regulation during bradyzoite development in T. gondii. Our approach shows the utility of this system as a model to study developmental biology in single-celled eukaryotes including protozoa and fungi.

  3. PXK locus in systemic lupus erythematosus: fine mapping and functional analysis reveals novel susceptibility gene ABHD6.

    PubMed

    Oparina, Nina Y; Delgado-Vega, Angelica M; Martinez-Bueno, Manuel; Magro-Checa, César; Fernández, Concepción; Castro, Rafaela Ortega; Pons-Estel, Bernardo A; D'Alfonso, Sandra; Sebastiani, Gian Domenico; Witte, Torsten; Lauwerys, Bernard R; Endreffy, Emoke; Kovács, László; Escudero, Alejandro; López-Pedrera, Chary; Vasconcelos, Carlos; da Silva, Berta Martins; Frostegård, Johan; Truedsson, Lennart; Martin, Javier; Raya, Enrique; Ortego-Centeno, Norberto; de Los Angeles Aguirre, Maria; de Ramón Garrido, Enrique; Palma, María-Jesús Castillo; Alarcon-Riquelme, Marta E; Kozyrev, Sergey V

    2015-03-01

    To perform fine mapping of the PXK locus associated with systemic lupus erythematosus (SLE) and study functional effects that lead to susceptibility to the disease. Linkage disequilibrium (LD) mapping was conducted by using 1251 SNPs (single nucleotide polymorphism) covering a 862 kb genomic region on 3p14.3 comprising the PXK locus in 1467 SLE patients and 2377 controls of European origin. Tag SNPs and genotypes imputed with IMPUTE2 were tested for association by using SNPTEST and PLINK. The expression QTLs data included three independent datasets for lymphoblastoid cells of European donors: HapMap3, MuTHER and the cross-platform eQTL catalogue. Correlation analysis of eQTLs was performed using Vassarstats. Alternative splicing for the PXK gene was analysed on mRNA from PBMCs. Fine mapping revealed long-range LD (>200 kb) extended over the ABHD6, RPP14, PXK, and PDHB genes on 3p14.3. The highly correlated variants tagged an SLE-associated haplotype that was less frequent in the patients compared with the controls (OR=0.89, p=0.00684). A robust correlation between the association with SLE and enhanced expression of ABHD6 gene was revealed, while neither expression, nor splicing alterations associated with SLE susceptibility were detected for PXK. The SNP allele frequencies as well as eQTL pattern analysed in the CEU and CHB HapMap3 populations indicate that the SLE association and the effect on ABHD6 expression are specific to Europeans. These results confirm the genetic association of the locus 3p14.3 with SLE in Europeans and point to the ABHD6 and not PXK, as the major susceptibility gene in the region. We suggest a pathogenic mechanism mediated by the upregulation of ABHD6 in individuals carrying the SLE-risk variants. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Development of a Kelp-type Structure Module in a Coastal Ocean Model to Assess the Hydrodynamic Impact of Seawater Uranium Extraction Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Taiping; Khangaonkar, Tarang; Long, Wen

    2014-02-07

    In recent years, with the rapid growth of global energy demand, the interest in extracting uranium from seawater for nuclear energy has been renewed. While extracting seawater uranium is not yet commercially viable, it serves as a “backstop” to the conventional uranium resources and provides an essentially unlimited supply of uranium resource. With recent advances in seawater uranium extraction technology, extracting uranium from seawater could be economically feasible when the extraction devices are deployed at a large scale (e.g., several hundred km2). There is concern however that the large scale deployment of adsorbent farms could result in potential impacts tomore » the hydrodynamic flow field in an oceanic setting. In this study, a kelp-type structure module was incorporated into a coastal ocean model to simulate the blockage effect of uranium extraction devices on the flow field. The module was quantitatively validated against laboratory flume experiments for both velocity and turbulence profiles. The model-data comparison showed an overall good agreement and validated the approach of applying the model to assess the potential hydrodynamic impact of uranium extraction devices or other underwater structures in coastal oceans.« less

  5. Genome-wide profiling of 24 hr diel rhythmicity in the water flea, Daphnia pulex: network analysis reveals rhythmic gene expression and enhances functional gene annotation.

    PubMed

    Rund, Samuel S C; Yoo, Boyoung; Alam, Camille; Green, Taryn; Stephens, Melissa T; Zeng, Erliang; George, Gary F; Sheppard, Aaron D; Duffield, Giles E; Milenković, Tijana; Pfrender, Michael E

    2016-08-18

    Marine and freshwater zooplankton exhibit daily rhythmic patterns of behavior and physiology which may be regulated directly by the light:dark (LD) cycle and/or a molecular circadian clock. One of the best-studied zooplankton taxa, the freshwater crustacean Daphnia, has a 24 h diel vertical migration (DVM) behavior whereby the organism travels up and down through the water column daily. DVM plays a critical role in resource tracking and the behavioral avoidance of predators and damaging ultraviolet radiation. However, there is little information at the transcriptional level linking the expression patterns of genes to the rhythmic physiology/behavior of Daphnia. Here we analyzed genome-wide temporal transcriptional patterns from Daphnia pulex collected over a 44 h time period under a 12:12 LD cycle (diel) conditions using a cosine-fitting algorithm. We used a comprehensive network modeling and analysis approach to identify novel co-regulated rhythmic genes that have similar network topological properties and functional annotations as rhythmic genes identified by the cosine-fitting analyses. Furthermore, we used the network approach to predict with high accuracy novel gene-function associations, thus enhancing current functional annotations available for genes in this ecologically relevant model species. Our results reveal that genes in many functional groupings exhibit 24 h rhythms in their expression patterns under diel conditions. We highlight the rhythmic expression of immunity, oxidative detoxification, and sensory process genes. We discuss differences in the chronobiology of D. pulex from other well-characterized terrestrial arthropods. This research adds to a growing body of literature suggesting the genetic mechanisms governing rhythmicity in crustaceans may be divergent from other arthropod lineages including insects. Lastly, these results highlight the power of using a network analysis approach to identify differential gene expression and provide novel

  6. Transcriptome Analysis of Three Sheep Intestinal Regions reveals Key Pathways and Hub Regulatory Genes of Large Intestinal Lipid Metabolism.

    PubMed

    Chao, Tianle; Wang, Guizhi; Ji, Zhibin; Liu, Zhaohua; Hou, Lei; Wang, Jin; Wang, Jianmin

    2017-07-13

    The large intestine, also known as the hindgut, is an important part of the animal digestive system. Recent studies on digestive system development in ruminants have focused on the rumen and the small intestine, but the molecular mechanisms underlying sheep large intestine metabolism remain poorly understood. To identify genes related to intestinal metabolism and to reveal molecular regulation mechanisms, we sequenced and compared the transcriptomes of mucosal epithelial tissues among the cecum, proximal colon and duodenum. A total of 4,221 transcripts from 3,254 genes were identified as differentially expressed transcripts. Between the large intestine and duodenum, differentially expressed transcripts were found to be significantly enriched in 6 metabolism-related pathways, among which PPAR signaling was identified as a key pathway. Three genes, CPT1A, LPL and PCK1, were identified as higher expression hub genes in the large intestine. Between the cecum and colon, differentially expressed transcripts were significantly enriched in 5 lipid metabolism related pathways, and CEPT1 and MBOAT1 were identified as hub genes. This study provides important information regarding the molecular mechanisms of intestinal metabolism in sheep and may provide a basis for further study.

  7. Gene Expression Profiles in Paired Gingival Biopsies from Periodontitis-Affected and Healthy Tissues Revealed by Massively Parallel Sequencing

    PubMed Central

    Båge, Tove; Lagervall, Maria; Jansson, Leif; Lundeberg, Joakim; Yucel-Lindberg, Tülay

    2012-01-01

    Periodontitis is a chronic inflammatory disease affecting the soft tissue and bone that surrounds the teeth. Despite extensive research, distinctive genes responsible for the disease have not been identified. The objective of this study was to elucidate transcriptome changes in periodontitis, by investigating gene expression profiles in gingival tissue obtained from periodontitis-affected and healthy gingiva from the same patient, using RNA-sequencing. Gingival biopsies were obtained from a disease-affected and a healthy site from each of 10 individuals diagnosed with periodontitis. Enrichment analysis performed among uniquely expressed genes for the periodontitis-affected and healthy tissues revealed several regulated pathways indicative of inflammation for the periodontitis-affected condition. Hierarchical clustering of the sequenced biopsies demonstrated clustering according to the degree of inflammation, as observed histologically in the biopsies, rather than clustering at the individual level. Among the top 50 upregulated genes in periodontitis-affected tissues, we investigated two genes which have not previously been demonstrated to be involved in periodontitis. These included interferon regulatory factor 4 and chemokine (C-C motif) ligand 18, which were also expressed at the protein level in gingival biopsies from patients with periodontitis. In conclusion, this study provides a first step towards a quantitative comprehensive insight into the transcriptome changes in periodontitis. We demonstrate for the first time site-specific local variation in gene expression profiles of periodontitis-affected and healthy tissues obtained from patients with periodontitis, using RNA-seq. Further, we have identified novel genes expressed in periodontitis tissues, which may constitute potential therapeutic targets for future treatment strategies of periodontitis. PMID:23029519

  8. A chromatin activity based chemoproteomic approach reveals a transcriptional repressome for gene-specific silencing

    PubMed Central

    Liu, Cui; Yu, Yanbao; Liu, Feng; Wei, Xin; Wrobel, John A.; Gunawardena, Harsha P.; Zhou, Li; Jin, Jian; Chen, Xian

    2015-01-01

    Immune cells develop endotoxin tolerance (ET) after prolonged stimulation. ET increases the level of a repression mark H3K9me2 in the transcriptional-silent chromatin specifically associated with pro-inflammatory genes. However, it is not clear what proteins are functionally involved in this process. Here we show that a novel chromatin activity based chemoproteomic (ChaC) approach can dissect the functional chromatin protein complexes that regulate ET-associated inflammation. Using UNC0638 that binds the enzymatically active H3K9-specific methyltransferase G9a/GLP, ChaC reveals that G9a is constitutively active at a G9a-dependent mega-dalton repressome in primary endotoxin-tolerant macrophages. G9a/GLP broadly impacts the ET-specific reprogramming of the histone code landscape, chromatin remodeling, and the activities of select transcription factors. We discover that the G9a-dependent epigenetic environment promotes the transcriptional repression activity of c-Myc for gene-specific co-regulation of chronic inflammation. ChaC may be also applicable to dissect other functional protein complexes in the context of phenotypic chromatin architectures. PMID:25502336

  9. Effects of seven antifouling compounds on photosynthesis and inorganic carbon use in sugar kelp Saccharina latissima (Linnaeus).

    PubMed

    Johansson, Per; Eriksson, Karl Martin; Axelsson, Lennart; Blanck, Hans

    2012-10-01

    Macroalgae depend on carbon-concentrating mechanisms (CCMs) to maintain a high photosynthetic activity under conditions of low carbon dioxide (CO(2)) availability. Because such conditions are prevalent in marine environments, CCMs are important for upholding the macroalgal primary productivity in coastal zones. This study evaluated the effects of seven antifouling compounds-chlorothalonil, DCOIT, dichlofluanid, diuron, irgarol, tolylfluanid, and zinc pyrithione (ZnTP)-on the photosynthesis and CCM of sugar kelp (Saccharina latissima (L.)). Concentration-response curves of these toxicants were established using inhibition of carbon incorporation, whereas their effects over time and their inhibition of the CCM were studied using inhibition of O(2) evolution. We demonstrate that exposure to all compounds except ZnTP (< 1000 nM) resulted in toxicity to photosynthesis of S. latissima. However, carbon incorporation and O(2) evolution differed in their ability to detect toxicity from some of the compounds. Diuron, irgarol, DCOIT, tolylfluanid, and, to some extent, dichlofluanid inhibited carbon incorporation. Chlorothalonil did not inhibit carbon incorporation but clearly inhibited oxygen (O(2)) evolution. Photosynthesis showed only little recovery during the 2-h postexposure period. Inhibition of photosynthesis even increased after the end of exposure to chlorothalonil and tolylfluanid. Through changes in pH of the medium, toxic effects on the CCM could be studied isolated from photosynthesis effects. The CCM of S. latissima was inhibited by chlorothalonil, DCOIT, dichlofluanid, and tolylfluanid. Such inhibition of the CCM, or the absence thereof, deepens the understanding the mechanism of action of the studied compounds.

  10. Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters.

    PubMed

    Dallery, Jean-Félix; Lapalu, Nicolas; Zampounis, Antonios; Pigné, Sandrine; Luyten, Isabelle; Amselem, Joëlle; Wittenberg, Alexander H J; Zhou, Shiguo; de Queiroz, Marisa V; Robin, Guillaume P; Auger, Annie; Hainaut, Matthieu; Henrissat, Bernard; Kim, Ki-Tae; Lee, Yong-Hwan; Lespinet, Olivier; Schwartz, David C; Thon, Michael R; O'Connell, Richard J

    2017-08-29

    The ascomycete fungus Colletotrichum higginsianum causes anthracnose disease of brassica crops and the model plant Arabidopsis thaliana. Previous versions of the genome sequence were highly fragmented, causing errors in the prediction of protein-coding genes and preventing the analysis of repetitive sequences and genome architecture. Here, we re-sequenced the genome using single-molecule real-time (SMRT) sequencing technology and, in combination with optical map data, this provided a gapless assembly of all twelve chromosomes except for the ribosomal DNA repeat cluster on chromosome 7. The more accurate gene annotation made possible by this new assembly revealed a large repertoire of secondary metabolism (SM) key genes (89) and putative biosynthetic pathways (77 SM gene clusters). The two mini-chromosomes differed from the ten core chromosomes in being repeat- and AT-rich and gene-poor but were significantly enriched with genes encoding putative secreted effector proteins. Transposable elements (TEs) were found to occupy 7% of the genome by length. Certain TE families showed a statistically significant association with effector genes and SM cluster genes and were transcriptionally active at particular stages of fungal development. All 24 subtelomeres were found to contain one of three highly-conserved repeat elements which, by providing sites for homologous recombination, were probably instrumental in four segmental duplications. The gapless genome of C. higginsianum provides access to repeat-rich regions that were previously poorly assembled, notably the mini-chromosomes and subtelomeres, and allowed prediction of the complete SM gene repertoire. It also provides insights into the potential role of TEs in gene and genome evolution and host adaptation in this asexual pathogen.

  11. Avian Influenza Virus Isolated in Wild Waterfowl in Argentina: Evidence of a potentially unique phylogenetic lineage in South America

    PubMed Central

    Pereda, Ariel J.; Uhart, Marcela; Perez, Alberto A.; Zaccagnini, Maria E.; La Sala, Luciano; Decarre, Julieta; Goijman, Andrea; Solari, Laura; Suarez, Romina; Craig, Maria I.; Vagnozzi, Ariel; Rimondi, Agustina; König, Guido; Terrera, Maria V.; Kaloghlian, Analia; Song, Haichen; Sorrell, Erin M.; Perez, Daniel R.

    2008-01-01

    Avian Influenza (AI) viruses have been sporadically isolated in South America. The most recent reports are from an outbreak in commercial poultry in Chile in 2002 and its putative ancestor from a wild bird in Bolivia in 2001. Extensive surveillance in wild birds was carried out in Argentina during 2006-2007. Using RRT-PCR, 12 AI positive detections were made from cloacal swabs. One of those positive samples yielded an AI virus isolated from a wild kelp gull (Larus dominicanus) captured in the South Atlantic coastline of Argentina. Further characterization by nucleotide sequencing reveals that it belongs to the H13N9 subtype. Phylogenetic analysis of the 8 viral genes suggests that the 6 internal genes are related to the isolates from Chile and Bolivia. The analysis also indicates that a cluster of phylogenetically related AI viruses from South America may have evolved independently, with minimal gene exchange, from influenza viruses in other latitudes. The data produced from our investigations are valuable contributions to the study of AI viruses in South America. PMID:18632129

  12. Transcriptional profiling reveals regulated genes in the hippocampus during memory formation

    NASA Technical Reports Server (NTRS)

    Donahue, Christine P.; Jensen, Roderick V.; Ochiishi, Tomoyo; Eisenstein, Ingrid; Zhao, Mingrui; Shors, Tracey; Kosik, Kenneth S.

    2002-01-01

    Transcriptional profiling (TP) offers a powerful approach to identify genes activated during memory formation and, by inference, the molecular pathways involved. Trace eyeblink conditioning is well suited for the study of regional gene expression because it requires the hippocampus, whereas the highly parallel task, delay conditioning, does not. First, we determined when gene expression was most regulated during trace conditioning. Rats were exposed to 200 trials per day of paired and unpaired stimuli each day for 4 days. Changes in gene expression were most apparent 24 h after exposure to 200 trials. Therefore, we profiled gene expression in the hippocampus 24 h after 200 trials of trace eyeblink conditioning, on multiple arrays using additional animals. Of 1,186 genes on the filter array, seven genes met the statistical criteria and were also validated by real-time polymerase chain reaction. These genes were growth hormone (GH), c-kit receptor tyrosine kinase (c-kit), glutamate receptor, metabotropic 5 (mGluR5), nerve growth factor-beta (NGF-beta), Jun oncogene (c-Jun), transmembrane receptor Unc5H1 (UNC5H1), and transmembrane receptor Unc5H2 (UNC5H2). All these genes, except for GH, were downregulated in response to trace conditioning. GH was upregulated; therefore, we also validated the downregulation of the GH inhibitor, somatostatin (SST), even though it just failed to meet criteria on the arrays. By during situ hybridization, GH was expressed throughout the cell layers of the hippocampus in response to trace conditioning. None of the genes regulated in trace eyeblink conditioning were similarly affected by delay conditioning, a task that does not require the hippocampus. These findings demonstrate that transcriptional profiling can exhibit a repertoire of genes sensitive to the formation of hippocampal-dependent associative memories.

  13. Conserved features of eukaryotic hsp70 genes revealed by comparison with the nucleotide sequence of human hsp70.

    PubMed Central

    Hunt, C; Morimoto, R I

    1985-01-01

    We have determined the nucleotide sequence of the human hsp70 gene and 5' flanking region. The hsp70 gene is transcribed as an uninterrupted primary transcript of 2440 nucleotides composed of a 5' noncoding leader sequence of 212 nucleotides, a 3' noncoding region of 242 nucleotides, and a continuous open reading frame of 1986 nucleotides that encodes a protein with predicted molecular mass of 69,800 daltons. Upstream of the 5' terminus are the canonical TATAAA box, the sequence ATTGG that corresponds in the inverted orientation to the CCAAT motif, and the dyad sequence CTGGAAT/ATTCCCG that shares homology in 12 of 14 positions with the consensus transcription regulatory sequence common to Drosophila heat shock genes. Comparison of the predicted amino acid sequences of human hsp70 with the published sequences of Drosophila hsp70 and Escherichia coli dnaK reveals that human hsp70 is 73% identical to Drosophila hsp70 and 47% identical to E. coli dnaK. Surprisingly, the nucleotide sequences of the human and Drosophila genes are 72% identical and human and E. coli genes are 50% identical, which is more highly conserved than necessary given the degeneracy of the genetic code. The lack of accumulated silent nucleotide substitutions leads us to propose that there may be additional information in the nucleotide sequence of the hsp70 gene or the corresponding mRNA that precludes the maximum divergence allowed in the silent codon positions. PMID:3931075

  14. Heterologous expression of the filarial nematode alt gene products reveals their potential to inhibit immune function

    PubMed Central

    Gomez-Escobar, Natalia; Bennett, Clare; Prieto-Lafuente, Lidia; Aebischer, Toni; Blackburn, Clare C; Maizels, Rick M

    2005-01-01

    Background Parasites exploit sophisticated strategies to evade host immunity that require both adaptation of existing genes and evolution of new gene families. We have addressed this question by testing the immunological function of novel genes from helminth parasites, in which conventional transgenesis is not yet possible. We investigated two such novel genes from Brugia malayi termed abundant larval transcript (alt), expression of which reaches ~5% of total transcript at the time parasites enter the human host. Results To test the hypothesis that ALT proteins modulate host immunity, we adopted an alternative transfection strategy to express these products in the protozoan parasite Leishmania mexicana. We then followed the course of infection in vitro in macrophages and in vivo in mice. Expression of ALT proteins, but not a truncated mutant, conferred greater infectivity of macrophages in vitro, reaching 3-fold higher parasite densities. alt-transfected parasites also caused accelerated disease in vivo, and fewer mice were able to clear infection of organisms expressing ALT. alt-transfected parasites were more resistant to IFN-γ-induced killing by macrophages. Expression profiling of macrophages infected with transgenic L. mexicana revealed consistently higher levels of GATA-3 and SOCS-1 transcripts, both associated with the Th2-type response observed in in vivo filarial infection. Conclusion Leishmania transfection is a tractable and informative approach to determining immunological functions of single genes from heterologous organisms. In the case of the filarial ALT proteins, our data suggest that they may participate in the Th2 bias observed in the response to parasite infection by modulating cytokine-induced signalling within immune system cells. PMID:15788098

  15. Whole-genome association analysis of pork meat pH revealed three significant regions and several potential genes in Finnish Yorkshire pigs.

    PubMed

    Verardo, Lucas L; Sevón-Aimonen, Marja-Liisa; Serenius, Timo; Hietakangas, Ville; Uimari, Pekka

    2017-02-13

    One of the most commonly used quality measurements of pork is pH measured 24 h after slaughter. The most probable mode of inheritance for this trait is oligogenic with several known major genes, such as PRKAG3. In this study, we used whole-genome SNP genotypes of over 700 AI boars; after a quality check, 42,385 SNPs remained for association analysis. All the boars were purebred Finnish Yorkshire. To account for relatedness of the animals, a pedigree-based relationship matrix was used in a mixed linear model to test the effect of SNPs on pH measured from loin. A bioinformatics analysis was performed to identify the most promising genes in the significant regions related to meat quality. Genome-wide association study (GWAS) revealed three significant chromosomal regions: one on chromosome 3 (39.9 Mb-40.1 Mb) and two on chromosome 15 (58.5 Mb-60.5 Mb and 132 Mb-135 Mb including PRKAG3). A conditional analysis with a significant SNP in the PRKAG3 region, MARC0083357, as a covariate in the model retained the significant SNPs on chromosome 3. Even though linkage disequilibrium was relatively high over a long distance between MARC0083357 and other significant SNPs on chromosome 15, some SNPs retained their significance in the conditional analysis, even in the vicinity of PRKAG3. The significant regions harbored several genes, including two genes involved in cyclic AMP (cAMP) signaling: ADCY9 and CREBBP. Based on functional and transcription factor-gene networks, the most promising candidate genes for meat pH are ADCY9, CREBBP, TRAP1, NRG1, PRKAG3, VIL1, TNS1, and IGFBP5, and the key transcription factors related to these genes are HNF4A, PPARG, and Nkx2-5. Based on SNP association, pathway, and transcription factor analysis, we were able to identify several genes with potential to control muscle cell homeostasis and meat quality. The associated SNPs can be used in selection for better pork. We also showed that post-GWAS analysis reveals important information about the

  16. Two divergent Symbiodinium genomes reveal conservation of a gene cluster for sunscreen biosynthesis and recently lost genes.

    PubMed

    Shoguchi, Eiichi; Beedessee, Girish; Tada, Ipputa; Hisata, Kanako; Kawashima, Takeshi; Takeuchi, Takeshi; Arakaki, Nana; Fujie, Manabu; Koyanagi, Ryo; Roy, Michael C; Kawachi, Masanobu; Hidaka, Michio; Satoh, Noriyuki; Shinzato, Chuya

    2018-06-14

    The marine dinoflagellate, Symbiodinium, is a well-known photosynthetic partner for coral and other diverse, non-photosynthetic hosts in subtropical and tropical shallows, where it comprises an essential component of marine ecosystems. Using molecular phylogenetics, the genus Symbiodinium has been classified into nine major clades, A-I, and one of the reported differences among phenotypes is their capacity to synthesize mycosporine-like amino acids (MAAs), which absorb UV radiation. However, the genetic basis for this difference in synthetic capacity is unknown. To understand genetics underlying Symbiodinium diversity, we report two draft genomes, one from clade A, presumed to have been the earliest branching clade, and the other from clade C, in the terminal branch. The nuclear genome of Symbiodinium clade A (SymA) has more gene families than that of clade C, with larger numbers of organelle-related genes, including mitochondrial transcription terminal factor (mTERF) and Rubisco. While clade C (SymC) has fewer gene families, it displays specific expansions of repeat domain-containing genes, such as leucine-rich repeats (LRRs) and retrovirus-related dUTPases. Interestingly, the SymA genome encodes a gene cluster for MAA biosynthesis, potentially transferred from an endosymbiotic red alga (probably of bacterial origin), while SymC has completely lost these genes. Our analysis demonstrates that SymC appears to have evolved by losing gene families, such as the MAA biosynthesis gene cluster. In contrast to the conservation of genes related to photosynthetic ability, the terminal clade has suffered more gene family losses than other clades, suggesting a possible adaptation to symbiosis. Overall, this study implies that Symbiodinium ecology drives acquisition and loss of gene families.

  17. Genomic Analysis Reveals Contrasting PIFq Contribution to Diurnal Rhythmic Gene Expression in PIF-Induced and -Repressed Genes.

    PubMed

    Martin, Guiomar; Soy, Judit; Monte, Elena

    2016-01-01

    Members of the PIF quartet (PIFq; PIF1, PIF3, PIF4, and PIF5) collectively contribute to induce growth in Arabidopsis seedlings under short day (SD) conditions, specifically promoting elongation at dawn. Their action involves the direct regulation of growth-related and hormone-associated genes. However, a comprehensive definition of the PIFq-regulated transcriptome under SD is still lacking. We have recently shown that SD and free-running (LL) conditions correspond to "growth" and "no growth" conditions, respectively, correlating with greater abundance of PIF protein in SD. Here, we present a genomic analysis whereby we first define SD-regulated genes at dawn compared to LL in the wild type, followed by identification of those SD-regulated genes whose expression depends on the presence of PIFq. By using this sequential strategy, we have identified 349 PIF/SD-regulated genes, approximately 55% induced and 42% repressed by both SD and PIFq. Comparison with available databases indicates that PIF/SD-induced and PIF/SD-repressed sets are differently phased at dawn and mid-morning, respectively. In addition, we found that whereas rhythmicity of the PIF/SD-induced gene set is lost in LL, most PIF/SD-repressed genes keep their rhythmicity in LL, suggesting differential regulation of both gene sets by the circadian clock. Moreover, we also uncovered distinct overrepresented functions in the induced and repressed gene sets, in accord with previous studies in other examined PIF-regulated processes. Interestingly, promoter analyses showed that, whereas PIF/SD-induced genes are enriched in direct PIF targets, PIF/SD-repressed genes are mostly indirectly regulated by the PIFs and might be more enriched in ABA-regulated genes.

  18. Emergent Self-Organized Criticality in Gene Expression Dynamics: Temporal Development of Global Phase Transition Revealed in a Cancer Cell Line

    PubMed Central

    Tsuchiya, Masa; Giuliani, Alessandro; Hashimoto, Midori; Erenpreisa, Jekaterina; Yoshikawa, Kenichi

    2015-01-01

    Background The underlying mechanism of dynamic control of the genome-wide expression is a fundamental issue in bioscience. We addressed it in terms of phase transition by a systemic approach based on both density analysis and characteristics of temporal fluctuation for the time-course mRNA expression in differentiating MCF-7 breast cancer cells. Methodology In a recent work, we suggested criticality as an essential aspect of dynamic control of genome-wide gene expression. Criticality was evident by a unimodal-bimodal transition through flattened unimodal expression profile. The flatness on the transition suggests the existence of a critical transition at which up- and down-regulated expression is balanced. Mean field (averaging) behavior of mRNAs based on the temporal expression changes reveals a sandpile type of transition in the flattened profile. Furthermore, around the transition, a self-similar unimodal-bimodal transition of the whole expression occurs in the density profile of an ensemble of mRNA expression. These singular and scaling behaviors identify the transition as the expression phase transition driven by self-organized criticality (SOC). Principal Findings Emergent properties of SOC through a mean field approach are revealed: i) SOC, as a form of genomic phase transition, consolidates distinct critical states of expression, ii) Coupling of coherent stochastic oscillations between critical states on different time-scales gives rise to SOC, and iii) Specific gene clusters (barcode genes) ranging in size from kbp to Mbp reveal similar SOC to genome-wide mRNA expression and ON-OFF synchronization to critical states. This suggests that the cooperative gene regulation of topological genome sub-units is mediated by the coherent phase transitions of megadomain-scaled conformations between compact and swollen chromatin states. Conclusion and Significance In summary, our study provides not only a systemic method to demonstrate SOC in whole-genome expression

  19. Genome resequencing and transcriptome profiling reveal structural diversity and expression patterns of constitutive disease resistance genes in Huanglongbing-tolerant Poncirus trifoliata and its hybrids

    PubMed Central

    Rawat, Nidhi; Kumar, Brajendra; Albrecht, Ute; Du, Dongliang; Huang, Ming; Yu, Qibin; Zhang, Yi; Duan, Yong-Ping; Bowman, Kim D; Gmitter, Fred G; Deng, Zhanao

    2017-01-01

    Huanglongbing (HLB) is the most destructive bacterial disease of citrus worldwide. While most citrus varieties are susceptible to HLB, Poncirus trifoliata, a close relative of Citrus, and some of its hybrids with Citrus are tolerant to HLB. No specific HLB tolerance genes have been identified in P. trifoliata but recent studies have shown that constitutive disease resistance (CDR) genes were expressed at much higher levels in HLB-tolerant Poncirus hybrids and the expression of CDR genes was modulated by Candidatus Liberibacter asiaticus (CLas), the pathogen of HLB. The current study was undertaken to mine and characterize the CDR gene family in Citrus and Poncirus and to understand its association with HLB tolerance in Poncirus. We identified 17 CDR genes in two citrus genomes, deduced their structures, and investigated their phylogenetic relationships. We revealed that the expansion of the CDR family in Citrus seems to be due to segmental and tandem duplication events. Through genome resequencing and transcriptome sequencing, we identified eight CDR genes in the Poncirus genome (PtCDR1-PtCDR8). The number of SNPs was the highest in PtCDR2 and the lowest in PtCDR7. Most of the deletion and insertion events were observed in the UTR regions of Citrus and Poncirus CDR genes. PtCDR2 and PtCDR8 were in abundance in the leaf transcriptomes of two HLB-tolerant Poncirus genotypes and were also upregulated in HLB-tolerant, Poncirus hybrids as revealed by real-time PCR analysis. These two CDR genes seem to be good candidate genes for future studies of their role in citrus-CLas interactions. PMID:29152310

  20. Gene expression profile of mouse prostate tumors reveals dysregulations in major biological processes and identifies potential murine targets for preclinical development of human prostate cancer therapy.

    PubMed

    Haram, Kerstyn M; Peltier, Heidi J; Lu, Bin; Bhasin, Manoj; Otu, Hasan H; Choy, Bob; Regan, Meredith; Libermann, Towia A; Latham, Gary J; Sanda, Martin G; Arredouani, Mohamed S

    2008-10-01

    Translation of preclinical studies into effective human cancer therapy is hampered by the lack of defined molecular expression patterns in mouse models that correspond to the human counterpart. We sought to generate an open source TRAMP mouse microarray dataset and to use this array to identify differentially expressed genes from human prostate cancer (PCa) that have concordant expression in TRAMP tumors, and thereby represent lead targets for preclinical therapy development. We performed microarrays on total RNA extracted and amplified from eight TRAMP tumors and nine normal prostates. A subset of differentially expressed genes was validated by QRT-PCR. Differentially expressed TRAMP genes were analyzed for concordant expression in publicly available human prostate array datasets and a subset of resulting genes was analyzed by QRT-PCR. Cross-referencing differentially expressed TRAMP genes to public human prostate array datasets revealed 66 genes with concordant expression in mouse and human PCa; 56 between metastases and normal and 10 between primary tumor and normal tissues. Of these 10 genes, two, Sox4 and Tubb2a, were validated by QRT-PCR. Our analysis also revealed various dysregulations in major biologic pathways in the TRAMP prostates. We report a TRAMP microarray dataset of which a gene subset was validated by QRT-PCR with expression patterns consistent with previous gene-specific TRAMP studies. Concordance analysis between TRAMP and human PCa associated genes supports the utility of the model and suggests several novel molecular targets for preclinical therapy.

  1. CRISPR-Cas9-mediated gene knockout in primary human airway epithelial cells reveals a proinflammatory role for MUC18.

    PubMed

    Chu, H W; Rios, C; Huang, C; Wesolowska-Andersen, A; Burchard, E G; O'Connor, B P; Fingerlin, T E; Nichols, D; Reynolds, S D; Seibold, M A

    2015-10-01

    Targeted knockout of genes in primary human cells using CRISPR-Cas9-mediated genome-editing represents a powerful approach to study gene function and to discern molecular mechanisms underlying complex human diseases. We used lentiviral delivery of CRISPR-Cas9 machinery and conditional reprogramming culture methods to knockout the MUC18 gene in human primary nasal airway epithelial cells (AECs). Massively parallel sequencing technology was used to confirm that the genome of essentially all cells in the edited AEC populations contained coding region insertions and deletions (indels). Correspondingly, we found mRNA expression of MUC18 was greatly reduced and protein expression was absent. Characterization of MUC18 knockout cell populations stimulated with TLR2, 3 and 4 agonists revealed that IL-8 (a proinflammatory chemokine) responses of AECs were greatly reduced in the absence of functional MUC18 protein. Our results show the feasibility of CRISPR-Cas9-mediated gene knockouts in AEC culture (both submerged and polarized), and suggest a proinflammatory role for MUC18 in airway epithelial response to bacterial and viral stimuli.

  2. Expression atlas and comparative coexpression network analyses reveal important genes involved in the formation of lignified cell wall in Brachypodium distachyon.

    PubMed

    Sibout, Richard; Proost, Sebastian; Hansen, Bjoern Oest; Vaid, Neha; Giorgi, Federico M; Ho-Yue-Kuang, Severine; Legée, Frédéric; Cézart, Laurent; Bouchabké-Coussa, Oumaya; Soulhat, Camille; Provart, Nicholas; Pasha, Asher; Le Bris, Philippe; Roujol, David; Hofte, Herman; Jamet, Elisabeth; Lapierre, Catherine; Persson, Staffan; Mutwil, Marek

    2017-08-01

    While Brachypodium distachyon (Brachypodium) is an emerging model for grasses, no expression atlas or gene coexpression network is available. Such tools are of high importance to provide insights into the function of Brachypodium genes. We present a detailed Brachypodium expression atlas, capturing gene expression in its major organs at different developmental stages. The data were integrated into a large-scale coexpression database ( www.gene2function.de), enabling identification of duplicated pathways and conserved processes across 10 plant species, thus allowing genome-wide inference of gene function. We highlight the importance of the atlas and the platform through the identification of duplicated cell wall modules, and show that a lignin biosynthesis module is conserved across angiosperms. We identified and functionally characterised a putative ferulate 5-hydroxylase gene through overexpression of it in Brachypodium, which resulted in an increase in lignin syringyl units and reduced lignin content of mature stems, and led to improved saccharification of the stem biomass. Our Brachypodium expression atlas thus provides a powerful resource to reveal functionally related genes, which may advance our understanding of important biological processes in grasses. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  3. Episootiology of viral hemorrhagic septicemia virus in Pacific herring from the spawn-on-kelp fishery in Prince William Sound, Alaska, USA

    USGS Publications Warehouse

    Hershberger, P.K.; Kocan, R.M.; Elder, N.E.; Meyers, T.R.; Winton, J.R.

    1999-01-01

    Both the prevalence and tissue titer of viral hemorrhagic septicemia virus (VHSV) increased in Pacific herring Clupea pallasi following their introduction into net pens (pounds) used in the closed pound spawn-on-kelp (SOK) fishery in Prince William Sound, Alaska. VHSV was also found in water samples from inside and outside the SOK pounds after herring had been confined for several days; however, water samples taken near wild free-ranging, spawning herring either failed to test positive or tested weakly positive for virus. Little or no virus was found in tissue samples from free-ranging, spawning herring captured from the vicinity of the pounds, nor did the prevalence of VHSV increase following spawning as it did in impounded herring. The data indicated that increased prevalences of VHSV were correlated with confinement of herring for the closed pound SOK fishery and that infection was spread within the pounds through waterborne exposure to virus particles originating from impounded fish. In addition, pounds containing predominantly young fish had higher prevalences of VHSV, suggesting that older fish may be partially immune, perhaps as a result of previous infection with the virus. Operation of SOK pounds during spawning seasons in which young herring predominate may amplify the disease and possibly exacerbate the population fluctuations observed in wild herring stocks.

  4. Two New Alleles of the abscisic aldehyde oxidase 3 Gene Reveal Its Role in Abscisic Acid Biosynthesis in Seeds1

    PubMed Central

    González-Guzmán, Miguel; Abia, David; Salinas, Julio; Serrano, Ramón; Rodríguez, Pedro L.

    2004-01-01

    The abscisic aldehyde oxidase 3 (AAO3) gene product of Arabidopsis catalyzes the final step in abscisic acid (ABA) biosynthesis. An aao3-1 mutant in a Landsberg erecta genetic background exhibited a wilty phenotype in rosette leaves, whereas seed dormancy was not affected (Seo et al., 2000a). Therefore, it was speculated that a different aldehyde oxidase would be the major contributor to ABA biosynthesis in seeds (Seo et al., 2000a). Through a screening based on germination under high-salt concentration, we isolated two mutants in a Columbia genetic background, initially named sre2-1 and sre2-2 (for salt resistant). Complementation tests with different ABA-deficient mutants indicated that sre2-1 and sre2-2 mutants were allelic to aao3-1, and therefore they were renamed as aao3-2 and aao3-3, respectively. Indeed, molecular characterization of the aao3-2 mutant revealed a T-DNA insertional mutation that abolished the transcription of AAO3 gene, while sequence analysis of AAO3 in aao3-3 mutant revealed a deletion of three nucleotides and several missense mutations. Physiological characterization of aao3-2 and aao3-3 mutants revealed a wilty phenotype and osmotolerance in germination assays. In contrast to aao3-1, both aao3-2 and aao3-3 mutants showed a reduced dormancy. Accordingly, ABA levels were reduced in dry seeds and rosette leaves of both aao3-2 and aao3-3. Taken together, these results indicate that AAO3 gene product plays a major role in seed ABA biosynthesis. PMID:15122034

  5. Near-isogenic cotton germplasm lines that differ in fiber-bundle strength have temporal differences in fiber gene expression patterns as revealed by comparative high-throughput profiling.

    PubMed

    Hinchliffe, Doug J; Meredith, William R; Yeater, Kathleen M; Kim, Hee Jin; Woodward, Andrew W; Chen, Z Jeffrey; Triplett, Barbara A

    2010-05-01

    Gene expression profiles of developing cotton (Gossypium hirsutum L.) fibers from two near-isogenic lines (NILs) that differ in fiber-bundle strength, short-fiber content, and in fewer than two genetic loci were compared using an oligonucleotide microarray. Fiber gene expression was compared at five time points spanning fiber elongation and secondary cell wall (SCW) biosynthesis. Fiber samples were collected from field plots in a randomized, complete block design, with three spatially distinct biological replications for each NIL at each time point. Microarray hybridizations were performed in a loop experimental design that allowed comparisons of fiber gene expression profiles as a function of time between the two NILs. Overall, developmental expression patterns revealed by the microarray experiment agreed with previously reported cotton fiber gene expression patterns for specific genes. Additionally, genes expressed coordinately with the onset of SCW biosynthesis in cotton fiber correlated with gene expression patterns of other SCW-producing plant tissues. Functional classification and enrichment analysis of differentially expressed genes between the two NILs revealed that genes associated with SCW biosynthesis were significantly up-regulated in fibers of the high-fiber quality line at the transition stage of cotton fiber development. For independent corroboration of the microarray results, 15 genes were selected for quantitative reverse transcription PCR analysis of fiber gene expression. These analyses, conducted over multiple field years, confirmed the temporal difference in fiber gene expression between the two NILs. We hypothesize that the loci conferring temporal differences in fiber gene expression between the NILs are important regulatory sequences that offer the potential for more targeted manipulation of cotton fiber quality.

  6. Gene expression profiling of Japanese psoriatic skin reveals an increased activity in molecular stress and immune response signals.

    PubMed

    Kulski, Jerzy K; Kenworthy, William; Bellgard, Matthew; Taplin, Ross; Okamoto, Koichi; Oka, Akira; Mabuchi, Tomotaka; Ozawa, Akira; Tamiya, Gen; Inoko, Hidetoshi

    2005-12-01

    Gene expression profiling was performed on biopsies of affected and unaffected psoriatic skin and normal skin from seven Japanese patients to obtain insights into the pathways that control this disease. HUG95A Affymetrix DNA chips that contained oligonucleotide arrays of approximately 12,000 well-characterized human genes were used in the study. The statistical analysis of the Affymetrix data, based on the ranking of the Student t-test statistic, revealed a complex regulation of molecular stress and immune gene responses. The majority of the 266 induced genes in affected and unaffected psoriatic skin were involved with interferon mediation, immunity, cell adhesion, cytoskeleton restructuring, protein trafficking and degradation, RNA regulation and degradation, signalling transduction, apoptosis and atypical epidermal cellular proliferation and differentiation. The disturbances in the normal protein degradation equilibrium of skin were reflected by the significant increase in the gene expression of various protease inhibitors and proteinases, including the induced components of the ATP/ubiquitin-dependent non-lysosomal proteolytic pathway that is involved with peptide processing and presentation to T cells. Some of the up-regulated genes, such as TGM1, IVL, FABP5, CSTA and SPRR, are well-known psoriatic markers involved in atypical epidermal cellular organization and differentiation. In the comparison between the affected and unaffected psoriatic skin, the transcription factor JUNB was found at the top of the statistical rankings for the up-regulated genes in affected skin, suggesting that it has an important but as yet undefined role in psoriasis. Our gene expression data and analysis suggest that psoriasis is a chronic interferon- and T-cell-mediated immune disease of the skin where the imbalance in epidermal cellular structure, growth and differentiation arises from the molecular antiviral stress signals initiating inappropriate immune responses.

  7. Heart morphogenesis gene regulatory networks revealed by temporal expression analysis.

    PubMed

    Hill, Jonathon T; Demarest, Bradley; Gorsi, Bushra; Smith, Megan; Yost, H Joseph

    2017-10-01

    During embryogenesis the heart forms as a linear tube that then undergoes multiple simultaneous morphogenetic events to obtain its mature shape. To understand the gene regulatory networks (GRNs) driving this phase of heart development, during which many congenital heart disease malformations likely arise, we conducted an RNA-seq timecourse in zebrafish from 30 hpf to 72 hpf and identified 5861 genes with altered expression. We clustered the genes by temporal expression pattern, identified transcription factor binding motifs enriched in each cluster, and generated a model GRN for the major gene batteries in heart morphogenesis. This approach predicted hundreds of regulatory interactions and found batteries enriched in specific cell and tissue types, indicating that the approach can be used to narrow the search for novel genetic markers and regulatory interactions. Subsequent analyses confirmed the GRN using two mutants, Tbx5 and nkx2-5 , and identified sets of duplicated zebrafish genes that do not show temporal subfunctionalization. This dataset provides an essential resource for future studies on the genetic/epigenetic pathways implicated in congenital heart defects and the mechanisms of cardiac transcriptional regulation. © 2017. Published by The Company of Biologists Ltd.

  8. Essential Genes for In Vitro Growth of the Endophyte Herbaspirillum seropedicae SmR1 as Revealed by Transposon Insertion Site Sequencing.

    PubMed

    Rosconi, Federico; de Vries, Stefan P W; Baig, Abiyad; Fabiano, Elena; Grant, Andrew J

    2016-11-15

    The interior of plants contains microorganisms (referred to as endophytes) that are distinct from those present at the root surface or in the surrounding soil. Herbaspirillum seropedicae strain SmR1, belonging to the betaproteobacteria, is an endophyte that colonizes crops, including rice, maize, sugarcane, and sorghum. Different approaches have revealed genes and pathways regulated during the interactions of H. seropedicae with its plant hosts. However, functional genomic analysis of transposon (Tn) mutants has been hampered by the lack of genetic tools. Here we successfully employed a combination of in vivo high-density mariner Tn mutagenesis and targeted Tn insertion site sequencing (Tn-seq) in H. seropedicae SmR1. The analysis of multiple gene-saturating Tn libraries revealed that 395 genes are essential for the growth of H. seropedicae SmR1 in tryptone-yeast extract medium. A comparative analysis with the Database of Essential Genes (DEG) showed that 25 genes are uniquely essential in H. seropedicae SmR1. The Tn mutagenesis protocol developed and the gene-saturating Tn libraries generated will facilitate elucidation of the genetic mechanisms of the H. seropedicae endophytic lifestyle. A focal point in the study of endophytes is the development of effective biofertilizers that could help to reduce the input of agrochemicals in croplands. Besides the ability to promote plant growth, a good biofertilizer should be successful in colonizing its host and competing against the native microbiota. By using a systematic Tn-based gene-inactivation strategy and massively parallel sequencing of Tn insertion sites (Tn-seq), it is possible to study the fitness of thousands of Tn mutants in a single experiment. We have applied the combination of these techniques to the plant-growth-promoting endophyte Herbaspirillum seropedicae SmR1. The Tn mutant libraries generated will enable studies into the genetic mechanisms of H. seropedicae-plant interactions. The approach that we

  9. Essential Genes for In Vitro Growth of the Endophyte Herbaspirillum seropedicae SmR1 as Revealed by Transposon Insertion Site Sequencing

    PubMed Central

    Rosconi, Federico; de Vries, Stefan P. W.; Baig, Abiyad; Fabiano, Elena

    2016-01-01

    ABSTRACT The interior of plants contains microorganisms (referred to as endophytes) that are distinct from those present at the root surface or in the surrounding soil. Herbaspirillum seropedicae strain SmR1, belonging to the betaproteobacteria, is an endophyte that colonizes crops, including rice, maize, sugarcane, and sorghum. Different approaches have revealed genes and pathways regulated during the interactions of H. seropedicae with its plant hosts. However, functional genomic analysis of transposon (Tn) mutants has been hampered by the lack of genetic tools. Here we successfully employed a combination of in vivo high-density mariner Tn mutagenesis and targeted Tn insertion site sequencing (Tn-seq) in H. seropedicae SmR1. The analysis of multiple gene-saturating Tn libraries revealed that 395 genes are essential for the growth of H. seropedicae SmR1 in tryptone-yeast extract medium. A comparative analysis with the Database of Essential Genes (DEG) showed that 25 genes are uniquely essential in H. seropedicae SmR1. The Tn mutagenesis protocol developed and the gene-saturating Tn libraries generated will facilitate elucidation of the genetic mechanisms of the H. seropedicae endophytic lifestyle. IMPORTANCE A focal point in the study of endophytes is the development of effective biofertilizers that could help to reduce the input of agrochemicals in croplands. Besides the ability to promote plant growth, a good biofertilizer should be successful in colonizing its host and competing against the native microbiota. By using a systematic Tn-based gene-inactivation strategy and massively parallel sequencing of Tn insertion sites (Tn-seq), it is possible to study the fitness of thousands of Tn mutants in a single experiment. We have applied the combination of these techniques to the plant-growth-promoting endophyte Herbaspirillum seropedicae SmR1. The Tn mutant libraries generated will enable studies into the genetic mechanisms of H. seropedicae-plant interactions. The

  10. Transcriptome sequencing of purple petal spot region in tree peony reveals differentially expressed anthocyanin structural genes.

    PubMed

    Zhang, Yanzhao; Cheng, Yanwei; Ya, Huiyuan; Xu, Shuzhen; Han, Jianming

    2015-01-01

    The pigmented cells in defined region of a petal constitute the petal spots. Petal spots attract pollinators and are found in many angiosperm families. Several cultivars of tree peony contain a single red or purple spot at the base of petal that makes the flower more attractive for the ornamental market. So far, the understanding of the molecular mechanism of spot formation is inadequate. In this study, we sequenced the transcriptome of the purple spot and the white non-spot of tree peony flower. We assembled and annotated 67,892 unigenes. Comparative analyses of the two transcriptomes showed 1,573 differentially expressed genes, among which 933 were up-regulated, and 640 were down-regulated in the purple spot. Subsequently, we examined four anthocyanin structural genes, including PsCHS, PsF3'H, PsDFR, and PsANS, which expressed at a significantly higher level in the purple spot than in the white non-spot. We further validated the digital expression data using quantitative real-time PCR. Our result uncovered transcriptome variance between the spot and non-spot of tree peony flower, and revealed that the co-expression of four anthocyanin structural genes was responsible for spot pigment in tree peony. The data will further help to unravel the genetic mechanism of peony flower spot formation.

  11. Revealing Alzheimer's disease genes spectrum in the whole-genome by machine learning.

    PubMed

    Huang, Xiaoyan; Liu, Hankui; Li, Xinming; Guan, Liping; Li, Jiankang; Tellier, Laurent Christian Asker M; Yang, Huanming; Wang, Jian; Zhang, Jianguo

    2018-01-10

    Alzheimer's disease (AD) is an important, progressive neurodegenerative disease, with a complex genetic architecture. A key goal of biomedical research is to seek out disease risk genes, and to elucidate the function of these risk genes in the development of disease. For this purpose, expanding the AD-associated gene set is necessary. In past research, the prediction methods for AD related genes has been limited in their exploration of the target genome regions. We here present a genome-wide method for AD candidate genes predictions. We present a machine learning approach (SVM), based upon integrating gene expression data with human brain-specific gene network data, to discover the full spectrum of AD genes across the whole genome. We classified AD candidate genes with an accuracy and the area under the receiver operating characteristic (ROC) curve of 84.56% and 94%. Our approach provides a supplement for the spectrum of AD-associated genes extracted from more than 20,000 genes in a genome wide scale. In this study, we have elucidated the whole-genome spectrum of AD, using a machine learning approach. Through this method, we expect for the candidate gene catalogue to provide a more comprehensive annotation of AD for researchers.

  12. Construction of local gene network for revealing different liver function of rats fed deep-fried oil with or without resistant starch.

    PubMed

    Wang, Zhiwei; Liao, Tianqi; Zhou, Zhongkai; Wang, Yuyang; Diao, Yongjia; Strappe, Padraig; Prenzler, Paul; Ayton, Jamie; Blanchard, Chris

    2016-09-06

    To study the mechanism underlying the liver damage induced by deep-fried oil (DO) consumption and the beneficial effects from resistant starch (RS) supplement, differential gene expression and pathway network were analyzed based on RNA sequencing data from rats. The up/down regulated genes and corresponding signaling pathways were used to construct a novel local gene network (LGN). The topology of the network showed characteristics of small-world network, with some pathways demonstrating a high degree. Some changes in genes led to a larger probability occurrence of disease or infection with DO intake. More importantly, the main pathways were found to be almost the same between the two LGNs (30 pathways overlapped in total 48) with gene expression profile. This finding may indicate that RS supplement in DO-containing diet may mainly regulate the genes that related to DO damage, and RS in the diet may provide direct signals to the liver cells and modulate its effect through a network involving complex gene regulatory events. It is the first attempt to reveal the mechanism of the attenuation of liver dysfunction from RS supplement in the DO-containing diet using differential gene expression and pathway network. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Systems Biology Analysis of Gene Expression during In Vivo Mycobacterium avium paratuberculosis Enteric Colonization Reveals Role for Immune Tolerance

    PubMed Central

    Khare, Sangeeta; Lawhon, Sara D.; Drake, Kenneth L.; Nunes, Jairo E. S.; Figueiredo, Josely F.; Rossetti, Carlos A.; Gull, Tamara; Everts, Robin E.; Lewin, Harris A.; Galindo, Cristi L.; Garner, Harold R.; Adams, Leslie Garry

    2012-01-01

    Survival and persistence of Mycobacterium avium subsp. paratuberculosis (MAP) in the intestinal mucosa is associated with host immune tolerance. However, the initial events during MAP interaction with its host that lead to pathogen survival, granulomatous inflammation, and clinical disease progression are poorly defined. We hypothesize that immune tolerance is initiated upon initial contact of MAP with the intestinal Peyer's patch. To test our hypothesis, ligated ileal loops in neonatal calves were infected with MAP. Intestinal tissue RNAs were collected (0.5, 1, 2, 4, 8 and 12 hrs post-infection), processed, and hybridized to bovine gene expression microarrays. By comparing the gene transcription responses of calves infected with the MAP, informative complex patterns of expression were clearly visible. To interpret these complex data, changes in the gene expression were further analyzed by dynamic Bayesian analysis, and genes were grouped into the specific pathways and gene ontology categories to create a holistic model. This model revealed three different phases of responses: i) early (30 min and 1 hr post-infection), ii) intermediate (2, 4 and 8 hrs post-infection), and iii) late (12 hrs post-infection). We describe here the data that include expression profiles for perturbed pathways, as well as, mechanistic genes (genes predicted to have regulatory influence) that are associated with immune tolerance. In the Early Phase of MAP infection, multiple pathways were initiated in response to MAP invasion via receptor mediated endocytosis and changes in intestinal permeability. During the Intermediate Phase, perturbed pathways involved the inflammatory responses, cytokine-cytokine receptor interaction, and cell-cell signaling. During the Late Phase of infection, gene responses associated with immune tolerance were initiated at the level of T-cell signaling. Our study provides evidence that MAP infection resulted in differentially regulated genes, perturbed pathways

  14. Comparative Transcriptome Analyses Reveal Core Parasitism Genes and Suggest Gene Duplication and Repurposing as Sources of Structural Novelty

    PubMed Central

    Yang, Zhenzhen; Wafula, Eric K.; Honaas, Loren A.; Zhang, Huiting; Das, Malay; Fernandez-Aparicio, Monica; Huang, Kan; Bandaranayake, Pradeepa C.G.; Wu, Biao; Der, Joshua P.; Clarke, Christopher R.; Ralph, Paula E.; Landherr, Lena; Altman, Naomi S.; Timko, Michael P.; Yoder, John I.; Westwood, James H.; dePamphilis, Claude W.

    2015-01-01

    The origin of novel traits is recognized as an important process underlying many major evolutionary radiations. We studied the genetic basis for the evolution of haustoria, the novel feeding organs of parasitic flowering plants, using comparative transcriptome sequencing in three species of Orobanchaceae. Around 180 genes are upregulated during haustorial development following host attachment in at least two species, and these are enriched in proteases, cell wall modifying enzymes, and extracellular secretion proteins. Additionally, about 100 shared genes are upregulated in response to haustorium inducing factors prior to host attachment. Collectively, we refer to these newly identified genes as putative “parasitism genes.” Most of these parasitism genes are derived from gene duplications in a common ancestor of Orobanchaceae and Mimulus guttatus, a related nonparasitic plant. Additionally, the signature of relaxed purifying selection and/or adaptive evolution at specific sites was detected in many haustorial genes, and may play an important role in parasite evolution. Comparative analysis of gene expression patterns in parasitic and nonparasitic angiosperms suggests that parasitism genes are derived primarily from root and floral tissues, but with some genes co-opted from other tissues. Gene duplication, often taking place in a nonparasitic ancestor of Orobanchaceae, followed by regulatory neofunctionalization, was an important process in the origin of parasitic haustoria. PMID:25534030

  15. Analysis of a new homozygous deletion in the tumor suppressor region at 3p12.3 reveals two novel intronic noncoding RNA genes.

    PubMed

    Angeloni, Debora; ter Elst, Arja; Wei, Ming Hui; van der Veen, Anneke Y; Braga, Eleonora A; Klimov, Eugene A; Timmer, Tineke; Korobeinikova, Luba; Lerman, Michael I; Buys, Charles H C M

    2006-07-01

    Homozygous deletions or loss of heterozygosity (LOH) at human chromosome band 3p12 are consistent features of lung and other malignancies, suggesting the presence of a tumor suppressor gene(s) (TSG) at this location. Only one gene has been cloned thus far from the overlapping region deleted in lung and breast cancer cell lines U2020, NCI H2198, and HCC38. It is DUTT1 (Deleted in U Twenty Twenty), also known as ROBO1, FLJ21882, and SAX3, according to HUGO. DUTT1, the human ortholog of the fly gene ROBO, has homology with NCAM proteins. Extensive analyses of DUTT1 in lung cancer have not revealed any mutations, suggesting that another gene(s) at this location could be of importance in lung cancer initiation and progression. Here, we report the discovery of a new, small, homozygous deletion in the small cell lung cancer (SCLC) cell line GLC20, nested in the overlapping, critical region. The deletion was delineated using several polymorphic markers and three overlapping P1 phage clones. Fiber-FISH experiments revealed the deletion was approximately 130 kb. Comparative genomic sequence analysis uncovered short sequence elements highly conserved among mammalian genomes and the chicken genome. The discovery of two EST clusters within the deleted region led to the isolation of two noncoding RNA (ncRNA) genes. These were subsequently found differentially expressed in various tumors when compared to their normal tissues. The ncRNA and other highly conserved sequence elements in the deleted region may represent miRNA targets of importance in cancer initiation or progression. Published 2006 Wiley-Liss, Inc.

  16. The evolutionary fate of the chloroplast and nuclear rps16 genes as revealed through the sequencing and comparative analyses of four novel legume chloroplast genomes from Lupinus

    PubMed Central

    Keller, J.; Rousseau-Gueutin, M.; Martin, G.E.; Morice, J.; Boutte, J.; Coissac, E.; Ourari, M.; Aïnouche, M.; Salmon, A.; Cabello-Hurtado, F.

    2017-01-01

    Abstract The Fabaceae family is considered as a model system for understanding chloroplast genome evolution due to the presence of extensive structural rearrangements, gene losses and localized hypermutable regions. Here, we provide sequences of four chloroplast genomes from the Lupinus genus, belonging to the underinvestigated Genistoid clade. Notably, we found in Lupinus species the functional loss of the essential rps16 gene, which was most likely replaced by the nuclear rps16 gene that encodes chloroplast and mitochondrion targeted RPS16 proteins. To study the evolutionary fate of the rps16 gene, we explored all available plant chloroplast, mitochondrial and nuclear genomes. Whereas no plant mitochondrial genomes carry an rps16 gene, many plants still have a functional nuclear and chloroplast rps16 gene. Ka/Ks ratios revealed that both chloroplast and nuclear rps16 copies were under purifying selection. However, due to the dual targeting of the nuclear rps16 gene product and the absence of a mitochondrial copy, the chloroplast gene may be lost. We also performed comparative analyses of lupine plastomes (SNPs, indels and repeat elements), identified the most variable regions and examined their phylogenetic utility. The markers identified here will help to reveal the evolutionary history of lupines, Genistoids and closely related clades. PMID:28338826

  17. Functional Metagenomics Reveals Previously Unrecognized Diversity of Antibiotic Resistance Genes in Gulls

    PubMed Central

    Martiny, Adam C.; Martiny, Jennifer B. H.; Weihe, Claudia; Field, Andrew; Ellis, Julie C.

    2011-01-01

    Wildlife may facilitate the spread of antibiotic resistance (AR) between human-dominated habitats and the surrounding environment. Here, we use functional metagenomics to survey the diversity and genomic context of AR genes in gulls. Using this approach, we found a variety of AR genes not previously detected in gulls and wildlife, including class A and C β-lactamases as well as six tetracycline resistance gene types. An analysis of the flanking sequences indicates that most of these genes are present in Enterobacteriaceae and various Gram-positive bacteria. In addition to finding known gene types, we detected 31 previously undescribed AR genes. These undescribed genes include one most similar to an uncharacterized gene in Verrucomicrobium and another to a putative DNA repair protein in Lactobacillus. Overall, the study more than doubled the number of clinically relevant AR gene types known to be carried by gulls or by wildlife in general. Together with the propensity of gulls to visit human-dominated habitats, this high diversity of AR gene types suggests that gulls could facilitate the spread of AR. PMID:22347872

  18. Expression profiling of mouse subplate reveals a dynamic gene network and disease association with autism and schizophrenia

    PubMed Central

    Hoerder-Suabedissen, Anna; Oeschger, Franziska M.; Krishnan, Michelle L.; Belgard, T. Grant; Wang, Wei Zhi; Lee, Sheena; Webber, Caleb; Petretto, Enrico; Edwards, A. David; Molnár, Zoltán

    2013-01-01

    The subplate zone is a highly dynamic transient sector of the developing cerebral cortex that contains some of the earliest generated neurons and the first functional synapses of the cerebral cortex. Subplate cells have important functions in early establishment and maturation of thalamocortical connections, as well as in the development of inhibitory cortical circuits in sensory areas. So far no role has been identified for cells in the subplate in the mature brain and disease association of the subplate-specific genes has not been analyzed systematically. Here we present gene expression evidence for distinct roles of the mouse subplate across development as well as unique molecular markers to extend the repertoire of subplate labels. Performing systematic comparisons between different ages (embryonic days 15 and 18, postnatal day 8, and adult), we reveal the dynamic and constant features of the markers labeling subplate cells during embryonic and early postnatal development and in the adult. This can be visualized using the online database of subplate gene expression at https://molnar.dpag.ox.ac.uk/subplate/. We also identify embryonic similarities in gene expression between the ventricular zones, intermediate zone, and subplate, and distinct postnatal similarities between subplate, layer 5, and layers 2/3. The genes expressed in a subplate-specific manner at some point during development show a statistically significant enrichment for association with autism spectrum disorders and schizophrenia. Our report emphasizes the importance of the study of transient features of the developing brain to better understand neurodevelopmental disorders. PMID:23401504

  19. A quantitative validated model reveals two phases of transcriptional regulation for the gap gene giant in Drosophila.

    PubMed

    Hoermann, Astrid; Cicin-Sain, Damjan; Jaeger, Johannes

    2016-03-15

    Understanding eukaryotic transcriptional regulation and its role in development and pattern formation is one of the big challenges in biology today. Most attempts at tackling this problem either focus on the molecular details of transcription factor binding, or aim at genome-wide prediction of expression patterns from sequence through bioinformatics and mathematical modelling. Here we bridge the gap between these two complementary approaches by providing an integrative model of cis-regulatory elements governing the expression of the gap gene giant (gt) in the blastoderm embryo of Drosophila melanogaster. We use a reverse-engineering method, where mathematical models are fit to quantitative spatio-temporal reporter gene expression data to infer the regulatory mechanisms underlying gt expression in its anterior and posterior domains. These models are validated through prediction of gene expression in mutant backgrounds. A detailed analysis of our data and models reveals that gt is regulated by domain-specific CREs at early stages, while a late element drives expression in both the anterior and the posterior domains. Initial gt expression depends exclusively on inputs from maternal factors. Later, gap gene cross-repression and gt auto-activation become increasingly important. We show that auto-regulation creates a positive feedback, which mediates the transition from early to late stages of regulation. We confirm the existence and role of gt auto-activation through targeted mutagenesis of Gt transcription factor binding sites. In summary, our analysis provides a comprehensive picture of spatio-temporal gene regulation by different interacting enhancer elements for an important developmental regulator. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Identification and analysis of Eimeria nieschulzi gametocyte genes reveal splicing events of gam genes and conserved motifs in the wall-forming proteins within the genus Eimeria (Coccidia, Apicomplexa)

    PubMed Central

    Wiedmer, Stefanie; Erdbeer, Alexander; Volke, Beate; Randel, Stephanie; Kapplusch, Franz; Hanig, Sacha; Kurth, Michael

    2017-01-01

    The genus Eimeria (Apicomplexa, Coccidia) provides a wide range of different species with different hosts to study common and variable features within the genus and its species. A common characteristic of all known Eimeria species is the oocyst, the infectious stage where its life cycle starts and ends. In our study, we utilized Eimeria nieschulzi as a model organism. This rat-specific parasite has complex oocyst morphology and can be transfected and even cultivated in vitro up to the oocyst stage. We wanted to elucidate how the known oocyst wall-forming proteins are preserved in this rodent Eimeria species compared to other Eimeria. In newly obtained genomics data, we were able to identify different gametocyte genes that are orthologous to already known gam genes involved in the oocyst wall formation of avian Eimeria species. These genes appeared putatively as single exon genes, but cDNA analysis showed alternative splicing events in the transcripts. The analysis of the translated sequence revealed different conserved motifs but also dissimilar regions in GAM proteins, as well as polymorphic regions. The occurrence of an underrepresented gam56 gene version suggests the existence of a second distinct E. nieschulzi genotype within the E. nieschulzi Landers isolate that we maintain. PMID:29210668

  1. Whole-exome sequencing reveals the spectrum of gene mutations and the clonal evolution patterns in paediatric acute myeloid leukaemia.

    PubMed

    Shiba, Norio; Yoshida, Kenichi; Shiraishi, Yuichi; Okuno, Yusuke; Yamato, Genki; Hara, Yusuke; Nagata, Yasunobu; Chiba, Kenichi; Tanaka, Hiroko; Terui, Kiminori; Kato, Motohiro; Park, Myoung-Ja; Ohki, Kentaro; Shimada, Akira; Takita, Junko; Tomizawa, Daisuke; Kudo, Kazuko; Arakawa, Hirokazu; Adachi, Souichi; Taga, Takashi; Tawa, Akio; Ito, Etsuro; Horibe, Keizo; Sanada, Masashi; Miyano, Satoru; Ogawa, Seishi; Hayashi, Yasuhide

    2016-11-01

    Acute myeloid leukaemia (AML) is a molecularly and clinically heterogeneous disease. Targeted sequencing efforts have identified several mutations with diagnostic and prognostic values in KIT, NPM1, CEBPA and FLT3 in both adult and paediatric AML. In addition, massively parallel sequencing enabled the discovery of recurrent mutations (i.e. IDH1/2 and DNMT3A) in adult AML. In this study, whole-exome sequencing (WES) of 22 paediatric AML patients revealed mutations in components of the cohesin complex (RAD21 and SMC3), BCORL1 and ASXL2 in addition to previously known gene mutations. We also revealed intratumoural heterogeneities in many patients, implicating multiple clonal evolution events in the development of AML. Furthermore, targeted deep sequencing in 182 paediatric AML patients identified three major categories of recurrently mutated genes: cohesion complex genes [STAG2, RAD21 and SMC3 in 17 patients (8·3%)], epigenetic regulators [ASXL1/ASXL2 in 17 patients (8·3%), BCOR/BCORL1 in 7 patients (3·4%)] and signalling molecules. We also performed WES in four patients with relapsed AML. Relapsed AML evolved from one of the subclones at the initial phase and was accompanied by many additional mutations, including common driver mutations that were absent or existed only with lower allele frequency in the diagnostic samples, indicating a multistep process causing leukaemia recurrence. © 2016 John Wiley & Sons Ltd.

  2. Single-Copy Nuclear Genes Place Haustorial Hydnoraceae within Piperales and Reveal a Cretaceous Origin of Multiple Parasitic Angiosperm Lineages

    PubMed Central

    Naumann, Julia; Salomo, Karsten; Der, Joshua P.; Wafula, Eric K.; Bolin, Jay F.; Maass, Erika; Frenzke, Lena; Samain, Marie-Stéphanie; Neinhuis, Christoph

    2013-01-01

    Extreme haustorial parasites have long captured the interest of naturalists and scientists with their greatly reduced and highly specialized morphology. Along with the reduction or loss of photosynthesis, the plastid genome often decays as photosynthetic genes are released from selective constraint. This makes it challenging to use traditional plastid genes for parasitic plant phylogenetics, and has driven the search for alternative phylogenetic and molecular evolutionary markers. Thus, evolutionary studies, such as molecular clock-based age estimates, are not yet available for all parasitic lineages. In the present study, we extracted 14 nuclear single copy genes (nSCG) from Illumina transcriptome data from one of the “strangest plants in the world”, Hydnora visseri (Hydnoraceae). A ∼15,000 character molecular dataset, based on all three genomic compartments, shows the utility of nSCG for reconstructing phylogenetic relationships in parasitic lineages. A relaxed molecular clock approach with the same multi-locus dataset, revealed an ancient age of ∼91 MYA for Hydnoraceae. We then estimated the stem ages of all independently originated parasitic angiosperm lineages using a published dataset, which also revealed a Cretaceous origin for Balanophoraceae, Cynomoriaceae and Apodanthaceae. With the exception of Santalales, older parasite lineages tend to be more specialized with respect to trophic level and have lower species diversity. We thus propose the “temporal specialization hypothesis” (TSH) implementing multiple independent specialization processes over time during parasitic angiosperm evolution. PMID:24265760

  3. Quantifying the contribution of chromatin dynamics to stochastic gene expression reveals long, locus-dependent periods between transcriptional bursts.

    PubMed

    Viñuelas, José; Kaneko, Gaël; Coulon, Antoine; Vallin, Elodie; Morin, Valérie; Mejia-Pous, Camila; Kupiec, Jean-Jacques; Beslon, Guillaume; Gandrillon, Olivier

    2013-02-25

    A number of studies have established that stochasticity in gene expression may play an important role in many biological phenomena. This therefore calls for further investigations to identify the molecular mechanisms at stake, in order to understand and manipulate cell-to-cell variability. In this work, we explored the role played by chromatin dynamics in the regulation of stochastic gene expression in higher eukaryotic cells. For this purpose, we generated isogenic chicken-cell populations expressing a fluorescent reporter integrated in one copy per clone. Although the clones differed only in the genetic locus at which the reporter was inserted, they showed markedly different fluorescence distributions, revealing different levels of stochastic gene expression. Use of chromatin-modifying agents showed that direct manipulation of chromatin dynamics had a marked effect on the extent of stochastic gene expression. To better understand the molecular mechanism involved in these phenomena, we fitted these data to a two-state model describing the opening/closing process of the chromatin. We found that the differences between clones seemed to be due mainly to the duration of the closed state, and that the agents we used mainly seem to act on the opening probability. In this study, we report biological experiments combined with computational modeling, highlighting the importance of chromatin dynamics in stochastic gene expression. This work sheds a new light on the mechanisms of gene expression in higher eukaryotic cells, and argues in favor of relatively slow dynamics with long (hours to days) periods of quiet state.

  4. RNA-seq reveals more consistent reference genes for gene expression studies in human non-melanoma skin cancers

    PubMed Central

    Tan, Jean-Marie; Payne, Elizabeth J.; Lin, Lynlee L.; Sinnya, Sudipta; Raphael, Anthony P.; Lambie, Duncan; Frazer, Ian H.; Dinger, Marcel E.; Soyer, H. Peter

    2017-01-01

    Identification of appropriate reference genes (RGs) is critical to accurate data interpretation in quantitative real-time PCR (qPCR) experiments. In this study, we have utilised next generation RNA sequencing (RNA-seq) to analyse the transcriptome of a panel of non-melanoma skin cancer lesions, identifying genes that are consistently expressed across all samples. Genes encoding ribosomal proteins were amongst the most stable in this dataset. Validation of this RNA-seq data was examined using qPCR to confirm the suitability of a set of highly stable genes for use as qPCR RGs. These genes will provide a valuable resource for the normalisation of qPCR data for the analysis of non-melanoma skin cancer. PMID:28852586

  5. Detection of gene communities in multi-networks reveals cancer drivers

    NASA Astrophysics Data System (ADS)

    Cantini, Laura; Medico, Enzo; Fortunato, Santo; Caselle, Michele

    2015-12-01

    We propose a new multi-network-based strategy to integrate different layers of genomic information and use them in a coordinate way to identify driving cancer genes. The multi-networks that we consider combine transcription factor co-targeting, microRNA co-targeting, protein-protein interaction and gene co-expression networks. The rationale behind this choice is that gene co-expression and protein-protein interactions require a tight coregulation of the partners and that such a fine tuned regulation can be obtained only combining both the transcriptional and post-transcriptional layers of regulation. To extract the relevant biological information from the multi-network we studied its partition into communities. To this end we applied a consensus clustering algorithm based on state of art community detection methods. Even if our procedure is valid in principle for any pathology in this work we concentrate on gastric, lung, pancreas and colorectal cancer and identified from the enrichment analysis of the multi-network communities a set of candidate driver cancer genes. Some of them were already known oncogenes while a few are new. The combination of the different layers of information allowed us to extract from the multi-network indications on the regulatory pattern and functional role of both the already known and the new candidate driver genes.

  6. Genome-wide identification and expression profiling reveal tissue-specific expression and differentially-regulated genes involved in gibberellin metabolism between Williams banana and its dwarf mutant.

    PubMed

    Chen, Jingjing; Xie, Jianghui; Duan, Yajie; Hu, Huigang; Hu, Yulin; Li, Weiming

    2016-05-27

    Dwarfism is one of the most valuable traits in banana breeding because semi-dwarf cultivars show good resistance to damage by wind and rain. Moreover, these cultivars present advantages of convenient cultivation, management, and so on. We obtained a dwarf mutant '8818-1' through EMS (ethyl methane sulphonate) mutagenesis of Williams banana 8818 (Musa spp. AAA group). Our research have shown that gibberellins (GAs) content in 8818-1 false stems was significantly lower than that in its parent 8818 and the dwarf type of 8818-1 could be restored by application of exogenous GA3. Although GA exerts important impacts on the 8818-1 dwarf type, our understanding of the regulation of GA metabolism during banana dwarf mutant development remains limited. Genome-wide screening revealed 36 candidate GA metabolism genes were systematically identified for the first time; these genes included 3 MaCPS, 2 MaKS, 1 MaKO, 2 MaKAO, 10 MaGA20ox, 4 MaGA3ox, and 14 MaGA2ox genes. Phylogenetic tree and conserved protein domain analyses showed sequence conservation and divergence. GA metabolism genes exhibited tissue-specific expression patterns. Early GA biosynthesis genes were constitutively expressed but presented differential regulation in different tissues in Williams banana. GA oxidase family genes were mainly transcribed in young fruits, thus suggesting that young fruits were the most active tissue involved in GA metabolism, followed by leaves, bracts, and finally approximately mature fruits. Expression patterns between 8818 and 8818-1 revealed that MaGA20ox4, MaGA20ox5, and MaGA20ox7 of the MaGA20ox gene family and MaGA2ox7, MaGA2ox12, and MaGA2ox14 of the MaGA2ox gene family exhibited significant differential expression and high-expression levels in false stems. These genes are likely to be responsible for the regulation of GAs content in 8818-1 false stems. Overall, phylogenetic evolution, tissue specificity and differential expression analyses of GA metabolism genes can provide a

  7. Characterization of Arabidopsis Transcriptional Responses to Different Aphid Species Reveals Genes that Contribute to Host Susceptibility and Non-host Resistance

    PubMed Central

    Jaouannet, Maëlle; Morris, Jenny A.; Hedley, Peter E.; Bos, Jorunn I. B.

    2015-01-01

    Aphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance remain to be elucidated. Here, we investigated and compared Arabidopsis thaliana host and non-host responses to aphids at the transcriptional level using three different aphid species, Myzus persicae, Myzus cerasi and Rhopalosiphum pisum. Gene expression analyses revealed a high level of overlap in the overall gene expression changes during the host and non-host interactions with regards to the sets of genes differentially expressed and the direction of expression changes. Despite this overlap in transcriptional responses across interactions, there was a stronger repression of genes involved in metabolism and oxidative responses specifically during the host interaction with M. persicae. In addition, we identified a set of genes with opposite gene expression patterns during the host versus non-host interactions. Aphid performance assays on Arabidopsis mutants that were selected based on our transcriptome analyses identified novel genes contributing to host susceptibility, host defences during interactions with M. persicae as well to non-host resistance against R. padi. Understanding how plants respond to aphid species that differ in their ability to infest plant species, and identifying the genes and signaling pathways involved, is essential for the development of novel and durable aphid control in crop plants. PMID:25993686

  8. Comparative Transcriptomic Analysis of Two Brassica napus Near-Isogenic Lines Reveals a Network of Genes That Influences Seed Oil Accumulation.

    PubMed

    Wang, Jingxue; Singh, Sanjay K; Du, Chunfang; Li, Chen; Fan, Jianchun; Pattanaik, Sitakanta; Yuan, Ling

    2016-01-01

    Rapeseed ( Brassica napus ) is an important oil seed crop, providing more than 13% of the world's supply of edible oils. An in-depth knowledge of the gene network involved in biosynthesis and accumulation of seed oil is critical for the improvement of B. napus . Using available genomic and transcriptomic resources, we identified 1,750 acyl-lipid metabolism (ALM) genes that are distributed over 19 chromosomes in the B . napus genome. B. rapa and B. oleracea , two diploid progenitors of B. napus , contributed almost equally to the ALM genes. Genome collinearity analysis demonstrated that the majority of the ALM genes have arisen due to genome duplication or segmental duplication events. In addition, we profiled the expression patterns of the ALM genes in four different developmental stages. Furthermore, we developed two B. napus near isogenic lines (NILs). The high oil NIL, YC13-559, accumulates significantly higher (∼10%) seed oil compared to the other, YC13-554. Comparative gene expression analysis revealed upregulation of lipid biosynthesis-related regulatory genes in YC13-559, including SHOOTMERISTEMLESS, LEAFY COTYLEDON 1 (LEC1), LEC2, FUSCA3, ABSCISIC ACID INSENSITIVE 3 (ABI3), ABI4, ABI5 , and WRINKLED1 , as well as structural genes, such as ACETYL-CoA CARBOXYLASE, ACYL-CoA DIACYLGLYCEROL ACYLTRANSFERASE , and LONG - CHAIN ACYL-CoA SYNTHETASES . We observed that several genes related to the phytohormones, gibberellins, jasmonate, and indole acetic acid, were differentially expressed in the NILs. Our findings provide a broad account of the numbers, distribution, and expression profiles of acyl-lipid metabolism genes, as well as gene networks that potentially control oil accumulation in B . napus seeds. The upregulation of key regulatory and structural genes related to lipid biosynthesis likely plays a major role for the increased seed oil in YC13-559.

  9. Solutions to Peto's paradox revealed by mathematical modelling and cross-species cancer gene analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caulin, Aleah F.; Graham, Trevor A.; Wang, Li-San

    Whales have 1000-fold more cells than humans and mice have 1000-fold fewer; however, cancer risk across species does not increase with the number of somatic cells and the lifespan of the organism. This observation is known as Peto's paradox. How much would evolution have to change the parameters of somatic evolution in order to equalize the cancer risk between species that differ by orders of magnitude in size? Analysis of previously published models of colorectal cancer suggests that a two- to three-fold decrease in the mutation rate or stem cell division rate is enough to reduce a whale's cancer riskmore » to that of a human. Similarly, the addition of one to two required tumour-suppressor gene mutations would also be sufficient. Also, we surveyed mammalian genomes and did not find a positive correlation of tumour-suppressor genes with increasing body mass and longevity. However, we found evidence of the amplification of TP53 in elephants, MAL in horses and FBXO31 in microbats, which might explain Peto's paradox in those species. Lastly, exploring parameters that evolution may have fine-tuned in large, long-lived organisms will help guide future experiments to reveal the underlying biology responsible for Peto's paradox and guide cancer prevention in humans.« less

  10. Molecular modularity and asymmetry of the molluscan mantle revealed by a gene expression atlas.

    PubMed

    Herlitze, Ines; Marie, Benjamin; Marin, Frédéric; Jackson, Daniel J

    2018-06-01

    Conchiferan molluscs construct a biocalcified shell that likely supported much of their evolutionary success. However, beyond broad proteomic and transcriptomic surveys of molluscan shells and the shell-forming mantle tissue, little is known of the spatial and ontogenetic regulation of shell fabrication. In addition, most efforts have been focused on species that deposit nacre, which is at odds with the majority of conchiferan species that fabricate shells using a crossed-lamellar microstructure, sensu lato. By combining proteomic and transcriptomic sequencing with in situ hybridization we have identified a suite of gene products associated with the production of the crossed-lamellar shell in Lymnaea stagnalis. With this spatial expression data we are able to generate novel hypotheses of how the adult mantle tissue coordinates the deposition of the calcified shell. These hypotheses include functional roles for unusual and otherwise difficult-to-study proteins such as those containing repetitive low-complexity domains. The spatial expression readouts of shell-forming genes also reveal cryptic patterns of asymmetry and modularity in the shell-forming cells of larvae and adult mantle tissue. This molecular modularity of the shell-forming mantle tissue hints at intimate associations between structure, function, and evolvability and may provide an elegant explanation for the evolutionary success of the second largest phylum among the Metazoa.

  11. Solutions to Peto's paradox revealed by mathematical modelling and cross-species cancer gene analysis

    DOE PAGES

    Caulin, Aleah F.; Graham, Trevor A.; Wang, Li-San; ...

    2015-06-08

    Whales have 1000-fold more cells than humans and mice have 1000-fold fewer; however, cancer risk across species does not increase with the number of somatic cells and the lifespan of the organism. This observation is known as Peto's paradox. How much would evolution have to change the parameters of somatic evolution in order to equalize the cancer risk between species that differ by orders of magnitude in size? Analysis of previously published models of colorectal cancer suggests that a two- to three-fold decrease in the mutation rate or stem cell division rate is enough to reduce a whale's cancer riskmore » to that of a human. Similarly, the addition of one to two required tumour-suppressor gene mutations would also be sufficient. Also, we surveyed mammalian genomes and did not find a positive correlation of tumour-suppressor genes with increasing body mass and longevity. However, we found evidence of the amplification of TP53 in elephants, MAL in horses and FBXO31 in microbats, which might explain Peto's paradox in those species. Lastly, exploring parameters that evolution may have fine-tuned in large, long-lived organisms will help guide future experiments to reveal the underlying biology responsible for Peto's paradox and guide cancer prevention in humans.« less

  12. Microgenomic analysis reveals cell type-specific gene expression patterns between ray and fusiform initials within the cambial meristem of Populus.

    PubMed

    Goué, Nadia; Lesage-Descauses, Marie-Claude; Mellerowicz, Ewa J; Magel, Elisabeth; Label, Philippe; Sundberg, Björn

    2008-01-01

    The vascular cambium is the meristem in trees that produce wood. This meristem consists of two types of neighbouring initials: fusiform cambial cells (FCCs), which give rise to the axial cell system (i.e. fibres and vessel elements), and ray cambial cells (RCCs), which give rise to rays. There is little molecular information on the mechanisms whereby the differing characteristics of these neighbouring cells are maintained. A microgenomic approach was adopted in which the transcriptomes of FCCs and RCCs dissected out from the cambial meristem of poplar (Populus trichocarpa x Populus deltoïdes var. Boelare) were analysed, and a transcriptional database for these two cell types established. Photosynthesis genes were overrepresented in RCCs, providing molecular support for the presence of photosynthetic systems in rays. Genes that putatively encode transporters (vesicle, lipid and metal ion transporters and aquaporins) in RCCs were also identified. In addition, many cell wall-related genes showed cell type-specific expression patterns. Notably, genes involved in pectin metabolism and xyloglucan metabolism were overrepresented in RCCs and FCCs, respectively. The results demonstrate the use of microgenomics to reveal differences in biological processes in neighbouring meristematic cells, and to identify key genes involved in these processes.

  13. RNA sequencing reveals target genes of temporomandibular joint osteoarthritis in rats after the treatment of low-intensity pulsed ultrasound.

    PubMed

    He, Dong; An, Yanxin; Li, Yanhua; Wang, Jing; Wu, Gaoyi; Chen, Lei; Zhu, Guoxiong

    2018-06-06

    To explore the potential molecular mechanism of low-intensity pulsed ultrasound (LIPUS) in the treatment of temporomandibular joint osteoarthritis (TMJ-OA), and identify the target genes for therapy of TMJ-OA. Rat TMJ-OA was induced by unilateral occlusal trauma (UOT). At 8 weeks, the experimental group rats were treated by LIPUS for 4 weeks (5 days every week). The cartilage was examined by histological techniques. Gene expression profile in control, placebo and LIPUS-treated group were measured by RNA sequencing (RNA-Seq). Gene oncology (GO) and kyoto encyclopedia of genes and genomes (KEGG) annotated were performed and ten differentially expressed genes (DEGs) were further validated in another individual by quantitative real-time polymerase chain reaction (qRT-PCR). Per-2, a circadian rhythm gene, was further confirmed by western blot. TMJ-OA model was successfully established in rats through UOT. LIPUS played a positive role in attenuating the retrogression of cartilage. The cartilage lesion was determined by HE and Safranin-O staining. A significant and bran-new gene profile of 58 mRNAs was obtained from the RNA-Seq (LIPUS-treated/placebo) and generated approximately 30GB data. Annotation, functional classification and pathway of the data were analyzed based on GO and KEGG database and ten candidate DEGs were identified. Some of these genes were proved to be related to OA, such as matrix-degrading enzyme (ADAMTS-8), complement (C1qa, C3, C5aR1). Some were reported for the first time in TMJ-OA, such as circadian gene (Per-2, Dbp, Npas2 and Arntl). According to the results of qRT-PCR validation, the sequencing data was with a high degree of credibility. The circadian gene Per-2 was up-regulated by LIPUS in TMJ-OA on the mRNA and protein level. This study reveals the potential therapeutic genes related to TMJ-OA. Especially the circadian Per-2 gene was detected up-regulated by the treatment of LIPUS. It provides us a precious, new target OA-related gene and

  14. Comparative genomics of maize ear rot pathogens reveals expansion of carbohydrate-active enzymes and secondary metabolism backbone genes in Stenocarpella maydis.

    PubMed

    Zaccaron, Alex Z; Woloshuk, Charles P; Bluhm, Burton H

    2017-11-01

    Stenocarpella maydis is a plant pathogenic fungus that causes Diplodia ear rot, one of the most destructive diseases of maize. To date, little information is available regarding the molecular basis of pathogenesis in this organism, in part due to limited genomic resources. In this study, a 54.8 Mb draft genome assembly of S. maydis was obtained with Illumina and PacBio sequencing technologies, and analyzed. Comparative genomic analyses with the predominant maize ear rot pathogens Aspergillus flavus, Fusarium verticillioides, and Fusarium graminearum revealed an expanded set of carbohydrate-active enzymes for cellulose and hemicellulose degradation in S. maydis. Analyses of predicted genes involved in starch degradation revealed six putative α-amylases, four extracellular and two intracellular, and two putative γ-amylases, one of which appears to have been acquired from bacteria via horizontal transfer. Additionally, 87 backbone genes involved in secondary metabolism were identified, which represents one of the largest known assemblages among Pezizomycotina species. Numerous secondary metabolite gene clusters were identified, including two clusters likely involved in the biosynthesis of diplodiatoxin and chaetoglobosins. The draft genome of S. maydis presented here will serve as a useful resource for molecular genetics, functional genomics, and analyses of population diversity in this organism. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  15. Comparative Genomics Reveals the Core Gene Toolbox for the Fungus-Insect Symbiosis.

    PubMed

    Wang, Yan; Stata, Matt; Wang, Wei; Stajich, Jason E; White, Merlin M; Moncalvo, Jean-Marc

    2018-05-15

    Modern genomics has shed light on many entomopathogenic fungi and expanded our knowledge widely; however, little is known about the genomic features of the insect-commensal fungi. Harpellales are obligate commensals living in the digestive tracts of disease-bearing insects (black flies, midges, and mosquitoes). In this study, we produced and annotated whole-genome sequences of nine Harpellales taxa and conducted the first comparative analyses to infer the genomic diversity within the members of the Harpellales. The genomes of the insect gut fungi feature low (26% to 37%) GC content and large genome size variations (25 to 102 Mb). Further comparisons with insect-pathogenic fungi (from both Ascomycota and Zoopagomycota), as well as with free-living relatives (as negative controls), helped to identify a gene toolbox that is essential to the fungus-insect symbiosis. The results not only narrow the genomic scope of fungus-insect interactions from several thousands to eight core players but also distinguish host invasion strategies employed by insect pathogens and commensals. The genomic content suggests that insect commensal fungi rely mostly on adhesion protein anchors that target digestive system, while entomopathogenic fungi have higher numbers of transmembrane helices, signal peptides, and pathogen-host interaction (PHI) genes across the whole genome and enrich genes as well as functional domains to inactivate the host inflammation system and suppress the host defense. Phylogenomic analyses have revealed that genome sizes of Harpellales fungi vary among lineages with an integer-multiple pattern, which implies that ancient genome duplications may have occurred within the gut of insects. IMPORTANCE Insect guts harbor various microbes that are important for host digestion, immune response, and disease dispersal in certain cases. Bacteria, which are among the primary endosymbionts, have been studied extensively. However, fungi, which are also frequently encountered

  16. Evolution of MHC class I genes in the endangered loggerhead sea turtle (Caretta caretta) revealed by 454 amplicon sequencing.

    PubMed

    Stiebens, Victor A; Merino, Sonia E; Chain, Frédéric J J; Eizaguirre, Christophe

    2013-04-30

    In evolutionary and conservation biology, parasitism is often highlighted as a major selective pressure. To fight against parasites and pathogens, genetic diversity of the immune genes of the major histocompatibility complex (MHC) are particularly important. However, the extensive degree of polymorphism observed in these genes makes it difficult to conduct thorough population screenings. We utilized a genotyping protocol that uses 454 amplicon sequencing to characterize the MHC class I in the endangered loggerhead sea turtle (Caretta caretta) and to investigate their evolution at multiple relevant levels of organization. MHC class I genes revealed signatures of trans-species polymorphism across several reptile species. In the studied loggerhead turtle individuals, it results in the maintenance of two ancient allelic lineages. We also found that individuals carrying an intermediate number of MHC class I alleles are larger than those with either a low or high number of alleles. Multiple modes of evolution seem to maintain MHC diversity in the loggerhead turtles, with relatively high polymorphism for an endangered species.

  17. A phylogeographic investigation of the kelp genus Laminaria (Laminariales, Phaeophyceae), with emphasis on the South Atlantic Ocean.

    PubMed

    Rothman, Mark D; Mattio, Lydiane; Anderson, Robert J; Bolton, John J

    2017-08-01

    The genus Laminaria has a wide distribution range compared with other kelp genera because it is found in both the North and the South Atlantic, on both sides of the North Pacific, as well as in the Mediterranean. Hypotheses behind this biogeographical pattern have been discussed by several authors but have not yet been fully evaluated with time-calibrated phylogenies. Based on the analysis of four molecular markers (ITS2, rbcL, atp8 and trnWI), our goal was to reassess the Laminaria species diversity in South Africa, assess its relationship with the other species distributed in the South Atlantic and reconstruct the historical biogeography of the genus. Our results confirm the occurrence of a single species, L. pallida, in southern Africa, and its sister relationship with the North Atlantic L. ochroleuca. Both species belonged to a clade containing the other South Atlantic species: L. abyssalis from Brazil, and the Mediterranean L. rodriguezii. Our time-calibrated phylogenies suggest that Laminaria originated in the northern Pacific around 25 mya, followed by at least two migration events through the Bering Strait after its opening (~5.32 mya). Today, the first is represented by L. solidungula in the Arctic, while the second gave rise to the rest of the Atlantic species. The colonization of the North Atlantic was followed by a gradual colonization southward along the west coast of Europe, into the Mediterranean (~2.07 mya) and two recent, but disconnected, migrations (~1.34 and 0.87 mya) across the equator, giving rise to L. abyssalis in Brazil and L. pallida in southern Africa, respectively. © 2017 Phycological Society of America.

  18. Phylogeny and phylogeography of functional genes shared among seven terrestrial subsurface metagenomes reveal N-cycling and microbial evolutionary relationships

    PubMed Central

    Lau, Maggie C. Y.; Cameron, Connor; Magnabosco, Cara; Brown, C. Titus; Schilkey, Faye; Grim, Sharon; Hendrickson, Sarah; Pullin, Michael; Sherwood Lollar, Barbara; van Heerden, Esta; Kieft, Thomas L.; Onstott, Tullis C.

    2014-01-01

    Comparative studies on community phylogenetics and phylogeography of microorganisms living in extreme environments are rare. Terrestrial subsurface habitats are valuable for studying microbial biogeographical patterns due to their isolation and the restricted dispersal mechanisms. Since the taxonomic identity of a microorganism does not always correspond well with its functional role in a particular community, the use of taxonomic assignments or patterns may give limited inference on how microbial functions are affected by historical, geographical and environmental factors. With seven metagenomic libraries generated from fracture water samples collected from five South African mines, this study was carried out to (1) screen for ubiquitous functions or pathways of biogeochemical cycling of CH4, S, and N; (2) to characterize the biodiversity represented by the common functional genes; (3) to investigate the subsurface biogeography as revealed by this subset of genes; and (4) to explore the possibility of using metagenomic data for evolutionary study. The ubiquitous functional genes are NarV, NPD, PAPS reductase, NifH, NifD, NifK, NifE, and NifN genes. Although these eight common functional genes were taxonomically and phylogenetically diverse and distinct from each other, the dissimilarity between samples did not correlate strongly with geographical or environmental parameters or residence time of the water. Por genes homologous to those of Thermodesulfovibrio yellowstonii detected in all metagenomes were deep lineages of Nitrospirae, suggesting that subsurface habitats have preserved ancestral genetic signatures that inform the study of the origin and evolution of prokaryotes. PMID:25400621

  19. A splice junction-targeted CRISPR approach (spJCRISPR) reveals human FOXO3B to be a protein-coding gene.

    PubMed

    Santo, Evan E; Paik, Jihye

    2018-06-17

    The rapid development of CRISPR technology is revolutionizing molecular approaches to the dissection of complex biological phenomena. Here we describe an alternative generally applicable implementation of the CRISPR-Cas9 system that allows for selective knockdown of extremely homologous genes. This strategy employs the lentiviral delivery of paired sgRNAs and nickase Cas9 (Cas9D10A) to achieve targeted deletion of splice junctions. This general strategy offers several advantages over standard single-guide exon-targeting CRISPR-Cas9 such as greatly reduced off-target effects, more restricted genomic editing, routine disruption of target gene mRNA expression and the ability to differentiate between closely related genes. Here we demonstrate the utility of this strategy by achieving selective knockdown of the highly homologous human genes FOXO3A and suspected pseudogene FOXO3B. We find the spJCRISPR strategy to efficiently and selectively disrupt FOXO3A and FOXO3B mRNA and protein expression; thus revealing that the human FOXO3B locus encodes a bona fide human gene. Unlike FOXO3A, we find the FOXO3B protein to be cytosolically localized in both the presence and absence of active Akt. The ability to selectively target and efficiently disrupt the expression of the closely-related FOXO3A and FOXO3B genes demonstrates the efficacy of the spJCRISPR approach. Copyright © 2018. Published by Elsevier B.V.

  20. A Knockout Screen of ApiAP2 Genes Reveals Networks of Interacting Transcriptional Regulators Controlling the Plasmodium Life Cycle.

    PubMed

    Modrzynska, Katarzyna; Pfander, Claudia; Chappell, Lia; Yu, Lu; Suarez, Catherine; Dundas, Kirsten; Gomes, Ana Rita; Goulding, David; Rayner, Julian C; Choudhary, Jyoti; Billker, Oliver

    2017-01-11

    A family of apicomplexa-specific proteins containing AP2 DNA-binding domains (ApiAP2s) was identified in malaria parasites. This family includes sequence-specific transcription factors that are key regulators of development. However, functions for the majority of ApiAP2 genes remain unknown. Here, a systematic knockout screen in Plasmodium berghei identified ten ApiAP2 genes that were essential for mosquito transmission: four were critical for the formation of infectious ookinetes, and three were required for sporogony. We describe non-essential functions for AP2-O and AP2-SP proteins in blood stages, and identify AP2-G2 as a repressor active in both asexual and sexual stages. Comparative transcriptomics across mutants and developmental stages revealed clusters of co-regulated genes with shared cis promoter elements, whose expression can be controlled positively or negatively by different ApiAP2 factors. We propose that stage-specific interactions between ApiAP2 proteins on partly overlapping sets of target genes generate the complex transcriptional network that controls the Plasmodium life cycle. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Gene Discovery in the Apicomplexa as Revealed by EST Sequencing and Assembly of a Comparative Gene Database

    PubMed Central

    Li, Li; Brunk, Brian P.; Kissinger, Jessica C.; Pape, Deana; Tang, Keliang; Cole, Robert H.; Martin, John; Wylie, Todd; Dante, Mike; Fogarty, Steven J.; Howe, Daniel K.; Liberator, Paul; Diaz, Carmen; Anderson, Jennifer; White, Michael; Jerome, Maria E.; Johnson, Emily A.; Radke, Jay A.; Stoeckert, Christian J.; Waterston, Robert H.; Clifton, Sandra W.; Roos, David S.; Sibley, L. David

    2003-01-01

    Large-scale EST sequencing projects for several important parasites within the phylum Apicomplexa were undertaken for the purpose of gene discovery. Included were several parasites of medical importance (Plasmodium falciparum, Toxoplasma gondii) and others of veterinary importance (Eimeria tenella, Sarcocystis neurona, and Neospora caninum). A total of 55,192 ESTs, deposited into dbEST/GenBank, were included in the analyses. The resulting sequences have been clustered into nonredundant gene assemblies and deposited into a relational database that supports a variety of sequence and text searches. This database has been used to compare the gene assemblies using BLAST similarity comparisons to the public protein databases to identify putative genes. Of these new entries, ∼15%–20% represent putative homologs with a conservative cutoff of p < 10−9, thus identifying many conserved genes that are likely to share common functions with other well-studied organisms. Gene assemblies were also used to identify strain polymorphisms, examine stage-specific expression, and identify gene families. An interesting class of genes that are confined to members of this phylum and not shared by plants, animals, or fungi, was identified. These genes likely mediate the novel biological features of members of the Apicomplexa and hence offer great potential for biological investigation and as possible therapeutic targets. [The sequence data from this study have been submitted to dbEST division of GenBank under accession nos.: Toxoplasma gondii: –, –, –, –, – , –, –, –, –. Plasmodium falciparum: –, –, –, –. Sarcocystis neurona: , , , , , , , , , , , , , –, –, –, –, –. Eimeria tenella: –, –, –, –, –, –, –, –, – , –, –, –, –, –, –, –, –, –, –, –. Neospora caninum: –, –, , – , –, –.] PMID:12618375

  2. The evolutionary fate of the chloroplast and nuclear rps16 genes as revealed through the sequencing and comparative analyses of four novel legume chloroplast genomes from Lupinus.

    PubMed

    Keller, J; Rousseau-Gueutin, M; Martin, G E; Morice, J; Boutte, J; Coissac, E; Ourari, M; Aïnouche, M; Salmon, A; Cabello-Hurtado, F; Aïnouche, A

    2017-08-01

    The Fabaceae family is considered as a model system for understanding chloroplast genome evolution due to the presence of extensive structural rearrangements, gene losses and localized hypermutable regions. Here, we provide sequences of four chloroplast genomes from the Lupinus genus, belonging to the underinvestigated Genistoid clade. Notably, we found in Lupinus species the functional loss of the essential rps16 gene, which was most likely replaced by the nuclear rps16 gene that encodes chloroplast and mitochondrion targeted RPS16 proteins. To study the evolutionary fate of the rps16 gene, we explored all available plant chloroplast, mitochondrial and nuclear genomes. Whereas no plant mitochondrial genomes carry an rps16 gene, many plants still have a functional nuclear and chloroplast rps16 gene. Ka/Ks ratios revealed that both chloroplast and nuclear rps16 copies were under purifying selection. However, due to the dual targeting of the nuclear rps16 gene product and the absence of a mitochondrial copy, the chloroplast gene may be lost. We also performed comparative analyses of lupine plastomes (SNPs, indels and repeat elements), identified the most variable regions and examined their phylogenetic utility. The markers identified here will help to reveal the evolutionary history of lupines, Genistoids and closely related clades. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  3. Characterization of the interferon genes in homozygous rainbow trout reveals two novel genes, alternate splicing and differential regulation of duplicated genes

    USGS Publications Warehouse

    Purcell, M.K.; Laing, K.J.; Woodson, J.C.; Thorgaard, G.H.; Hansen, J.D.

    2009-01-01

    The genes encoding the type I and type II interferons (IFNs) have previously been identified in rainbow trout and their proteins partially characterized. These previous studies reported a single type II IFN (rtIFN-??) and three rainbow trout type I IFN genes that are classified into either group I (rtIFN1, rtIFN2) or group II (rtIFN3). In this present study, we report the identification of a novel IFN-?? gene (rtIFN-??2) and a novel type I group II IFN (rtIFN4) in homozygous rainbow trout and predict that additional IFN genes or pseudogenes exist in the rainbow trout genome. Additionally, we provide evidence that short and long forms of rtIFN1 are actively and differentially transcribed in homozygous trout, and likely arose due to alternate splicing of the first exon. Quantitative reverse transcriptase PCR (qRT-PCR) assays were developed to systematically profile all of the rainbow trout IFN transcripts, with high specificity at an individual gene level, in na??ve fish and after stimulation with virus or viral-related molecules. Cloned PCR products were used to ensure the specificity of the qRT-PCR assays and as absolute standards to assess transcript abundance of each gene. All IFN genes were modulated in response to Infectious hematopoietic necrosis virus (IHNV), a DNA vaccine based on the IHNV glycoprotein, and poly I:C. The most inducible of the type I IFN genes, by all stimuli tested, were rtIFN3 and the short transcript form of rtIFN1. Gene expression of rtIFN-??1 and rtIFN-??2 was highly up-regulated by IHNV infection and DNA vaccination but rtIFN-??2 was induced to a greater magnitude. The specificity of the qRT-PCR assays reported here will be useful for future studies aimed at identifying which cells produce IFNs at early time points after infection. ?? 2008 Elsevier Ltd.

  4. Transcriptome sequencing of purple petal spot region in tree peony reveals differentially expressed anthocyanin structural genes

    PubMed Central

    Zhang, Yanzhao; Cheng, Yanwei; Ya, Huiyuan; Xu, Shuzhen; Han, Jianming

    2015-01-01

    The pigmented cells in defined region of a petal constitute the petal spots. Petal spots attract pollinators and are found in many angiosperm families. Several cultivars of tree peony contain a single red or purple spot at the base of petal that makes the flower more attractive for the ornamental market. So far, the understanding of the molecular mechanism of spot formation is inadequate. In this study, we sequenced the transcriptome of the purple spot and the white non-spot of tree peony flower. We assembled and annotated 67,892 unigenes. Comparative analyses of the two transcriptomes showed 1,573 differentially expressed genes, among which 933 were up-regulated, and 640 were down-regulated in the purple spot. Subsequently, we examined four anthocyanin structural genes, including PsCHS, PsF3′H, PsDFR, and PsANS, which expressed at a significantly higher level in the purple spot than in the white non-spot. We further validated the digital expression data using quantitative real-time PCR. Our result uncovered transcriptome variance between the spot and non-spot of tree peony flower, and revealed that the co-expression of four anthocyanin structural genes was responsible for spot pigment in tree peony. The data will further help to unravel the genetic mechanism of peony flower spot formation. PMID:26583029

  5. Comparative Transcriptome Analysis Reveal Candidate Genes Potentially Involved in Regulation of Primocane Apex Rooting in Raspberry (Rubus spp.).

    PubMed

    Liu, Jianfeng; Ming, Yuetong; Cheng, Yunqing; Zhang, Yuchu; Xing, Jiyang; Sun, Yuqi

    2017-01-01

    Raspberries ( Rubus spp.) exhibit a unique rooting process that is initiated from the stem apex of primocane, conferring an unusual asexual mode of reproduction to this plant. However, the full complement of genes involved in this process has not been identified. To this end, the present study analyzed the transcriptomes of the Rubus primocane and floricane stem apex at three developmental stages by Digital Gene Expression profiling to identify genes that regulate rooting. Sequencing and de novo assembly yielded 26.82 Gb of nucleotides and 59,173 unigenes; 498, 7,346, 4,110, 7,900, 9,397, and 4,776 differently expressed genes were identified in paired comparisons of SAF1 (floricane at developmental stage 1) vs. SAP1 (primocane at developmental stage 1), SAF2 vs. SAP2, SAF3 vs. SAP3, SAP1 vs. SAP2, SAP1 vs. SAP3, and SAP2 vs. SAP3, respectively. SAP1 maintains an extension growth pattern; SAP2 then exhibits growth arrest and vertical (downward) gravitropic deflection; and finally, short roots begin to form on the apex of SAP3. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis of SAP1 vs. SAP2 revealed 12 pathways that were activated in response to shoot growth arrest and root differentiation, including circadian rhythm-plant (ko04712) and plant hormone signal transduction (ko04075). Our results indicate that genes related to circadian rhythm, ethylene and auxin signaling, shoot growth, and root development are potentially involved in the regulation of primocane apex rooting in Rubus . These findings provide a basis for elucidating the molecular mechanisms of primocane apex rooting in this economically valuable crop.

  6. Comparative Transcriptome Analysis Reveal Candidate Genes Potentially Involved in Regulation of Primocane Apex Rooting in Raspberry (Rubus spp.)

    PubMed Central

    Liu, Jianfeng; Ming, Yuetong; Cheng, Yunqing; Zhang, Yuchu; Xing, Jiyang; Sun, Yuqi

    2017-01-01

    Raspberries (Rubus spp.) exhibit a unique rooting process that is initiated from the stem apex of primocane, conferring an unusual asexual mode of reproduction to this plant. However, the full complement of genes involved in this process has not been identified. To this end, the present study analyzed the transcriptomes of the Rubus primocane and floricane stem apex at three developmental stages by Digital Gene Expression profiling to identify genes that regulate rooting. Sequencing and de novo assembly yielded 26.82 Gb of nucleotides and 59,173 unigenes; 498, 7,346, 4,110, 7,900, 9,397, and 4,776 differently expressed genes were identified in paired comparisons of SAF1 (floricane at developmental stage 1) vs. SAP1 (primocane at developmental stage 1), SAF2 vs. SAP2, SAF3 vs. SAP3, SAP1 vs. SAP2, SAP1 vs. SAP3, and SAP2 vs. SAP3, respectively. SAP1 maintains an extension growth pattern; SAP2 then exhibits growth arrest and vertical (downward) gravitropic deflection; and finally, short roots begin to form on the apex of SAP3. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis of SAP1 vs. SAP2 revealed 12 pathways that were activated in response to shoot growth arrest and root differentiation, including circadian rhythm—plant (ko04712) and plant hormone signal transduction (ko04075). Our results indicate that genes related to circadian rhythm, ethylene and auxin signaling, shoot growth, and root development are potentially involved in the regulation of primocane apex rooting in Rubus. These findings provide a basis for elucidating the molecular mechanisms of primocane apex rooting in this economically valuable crop. PMID:28659963

  7. Short communication: Iodine concentrations in serum, milk, and tears after feeding Ascophyllum nodosum to dairy cows-A pilot study.

    PubMed

    Sorge, U S; Henriksen, M; Bastan, A; Cremers, N; Olsen, K; Crooker, B A

    2016-10-01

    Kelp (Ascophyllum nodosum) is rich in iodine and often fed by organic dairy producers as a mineral supplement to support animal health. A commonly held belief is that kelp supplementation decreases susceptibility to infectious bovine keratoconjunctivitis due to increased iodine concentrations in tears. Whereas serum and milk iodine concentrations are positively correlated and modulated by oral iodine supplementation, nothing is known about the iodine concentration of tears. Therefore, the 3 objectives of this pilot study were to determine (1) the iodine content of tears, milk, and serum of cows after being fed kelp for 30d; (2) the trace mineral and thyroid status of cows before (d 0) and after being fed kelp for 30d; and (3) the in vitro growth rate of bacteria in tears (Moraxella bovis) or milk (Staphylococcus aureus, Escherichia coli, Streptococcus uberis) collected from cows fed no kelp (d 0) or kelp (d 30). Cows (n=3/treatment) were individually fed 56g of kelp per day (n=3/treatment) or not (n=3/no treatment) for 30 d. Daily feed intake of the TMR was recorded and weekly TMR, kelp, milk, blood and tear samples were collected and analyzed for iodine. The feed samples were pooled and further analyzed for other minerals. On d 0 and 30, liver biopsies and blood samples were collected and analyzed for mineral content and thyroid hormone concentrations, respectively. An inhibition test used milk and tear-soaked plates from kelp-fed cows (d 0 and 30) as well as 1 and 7.5% iodine as positive and distilled water as negative control. As expected, serum iodine concentrations were positively correlated with milk and tear iodine concentrations. Whereas the iodine concentrations in serum increased significantly in the kelp-fed cows during the 30-d study, milk and tear iodine concentrations increased only numerically in these cows compared with the control group. Liver mineral profiles were comparable between groups and generally did not change over the course of the study

  8. Global analysis of human duplicated genes reveals the relative importance of whole-genome duplicates originated in the early vertebrate evolution.

    PubMed

    Acharya, Debarun; Ghosh, Tapash C

    2016-01-22

    Gene duplication is a genetic mutation that creates functionally redundant gene copies that are initially relieved from selective pressures and may adapt themselves to new functions with time. The levels of gene duplication may vary from small-scale duplication (SSD) to whole genome duplication (WGD). Studies with yeast revealed ample differences between these duplicates: Yeast WGD pairs were functionally more similar, less divergent in subcellular localization and contained a lesser proportion of essential genes. In this study, we explored the differences in evolutionary genomic properties of human SSD and WGD genes, with the identifiable human duplicates coming from the two rounds of whole genome duplication occurred early in vertebrate evolution. We observed that these two groups of duplicates were also dissimilar in terms of their evolutionary and genomic properties. But interestingly, this is not like the same observed in yeast. The human WGDs were found to be functionally less similar, diverge more in subcellular level and contain a higher proportion of essential genes than the SSDs, all of which are opposite from yeast. Additionally, we explored that human WGDs were more divergent in their gene expression profile, have higher multifunctionality and are more often associated with disease, and are evolutionarily more conserved than human SSDs. Our study suggests that human WGD duplicates are more divergent and entails the adaptation of WGDs to novel and important functions that consequently lead to their evolutionary conservation in the course of evolution.

  9. BAC and RNA sequencing reveal the brown planthopper resistance gene BPH15 in a recombination cold spot that mediates a unique defense mechanism.

    PubMed

    Lv, Wentang; Du, Ba; Shangguan, Xinxin; Zhao, Yan; Pan, Yufang; Zhu, Lili; He, Yuqing; He, Guangcun

    2014-08-11

    Brown planthopper (BPH, Nilaparvata lugens Stål), is the most destructive phloem-feeding insect pest of rice (Oryza sativa). The BPH-resistance gene BPH15 has been proved to be effective in controlling the pest and widely applied in rice breeding programs. Nevertheless, molecular mechanism of the resistance remain unclear. In this study, we narrowed down the position of BPH15 on chromosome 4 and investigated the transcriptome of BPH15 rice after BPH attacked. We analyzed 13,000 BC2F2 plants of cross between susceptible rice TN1 and the recombinant inbred line RI93 that carrying the BPH15 gene from original resistant donor B5. BPH15 was mapped to a 0.0269 cM region on chromosome 4, which is 210-kb in the reference genome of Nipponbare. Sequencing bacterial artificial chromosome (BAC) clones that span the BPH15 region revealed that the physical size of BPH15 region in resistant rice B5 is 580-kb, much bigger than the corresponding region in the reference genome of Nipponbare. There were 87 predicted genes in the BPH15 region in resistant rice. The expression profiles of predicted genes were analyzed. Four jacalin-related lectin proteins genes and one LRR protein gene were found constitutively expressed in resistant parent and considered the candidate genes of BPH15. The transcriptomes of resistant BPH15 introgression line and the susceptible recipient line were analyzed using high-throughput RNA sequencing. In total, 2,914 differentially expressed genes (DEGs) were identified. BPH-responsive transcript profiles were distinct between resistant and susceptible plants and between the early stage (6 h after infestation, HAI) and late stage (48 HAI). The key defense mechanism was related to jasmonate signaling, ethylene signaling, receptor kinase, MAPK cascades, Ca(2+) signaling, PR genes, transcription factors, and protein posttranslational modifications. Our work combined BAC and RNA sequencing to identify candidate genes of BPH15 and revealed the resistance mechanism

  10. Metagenomic approach reveals variation of microbes with arsenic and antimony metabolism genes from highly contaminated soil.

    PubMed

    Luo, Jinming; Bai, Yaohui; Liang, Jinsong; Qu, Jiuhui

    2014-01-01

    Microbes have great potential for arsenic (As) and antimony (Sb) bioremediation in heavily contaminated soil because they have the ability to biotransform As and Sb to species that have less toxicity or are more easily removed. In this study, we integrated a metagenomic method with physicochemical characterization to elucidate the composition of microbial community and functional genes (related to As and Sb) in a high As (range from 34.11 to 821.23 mg kg-1) and Sb (range from 226.67 to 3923.07 mg kg-1) contaminated mine field. Metagenomic analysis revealed that microbes from 18 phyla were present in the 5 samples of soil contaminated with high As and Sb. Moreover, redundancy analysis (RDA) of the relationship between the 18 phyla and the concentration of As and Sb demonstrated that 5 phyla of microbes, i.e. Actinobacteria, Firmicutes, Nitrospirae, Tenericutes and Gemmatimonadetes were positively correlated with As and Sb concentration. The distribution, diversity and abundance of functional genes (including arsC, arrA, aioA, arsB and ACR3) were much higher for the samples containing higher As and Sb concentrations. Based on correlation analysis, the results showed a positive relationship between arsC-like (R2 = 0.871) and aioA-like (R2 = 0.675) gene abundance and As concentration, and indicated that intracellular As(V) reduction and As(III) oxidation could be the dominant As detoxification mechanism enabling the microbes to survive in the environment. This study provides a direct and reliable reference on the diversity of microbial community and functional genes in an extremely high concentration As- and Sb-contaminated environment.

  11. Metagenomic Approach Reveals Variation of Microbes with Arsenic and Antimony Metabolism Genes from Highly Contaminated Soil

    PubMed Central

    Luo, Jinming; Bai, Yaohui; Liang, Jinsong; Qu, Jiuhui

    2014-01-01

    Microbes have great potential for arsenic (As) and antimony (Sb) bioremediation in heavily contaminated soil because they have the ability to biotransform As and Sb to species that have less toxicity or are more easily removed. In this study, we integrated a metagenomic method with physicochemical characterization to elucidate the composition of microbial community and functional genes (related to As and Sb) in a high As (range from 34.11 to 821.23 mg kg−1) and Sb (range from 226.67 to 3923.07 mg kg−1) contaminated mine field. Metagenomic analysis revealed that microbes from 18 phyla were present in the 5 samples of soil contaminated with high As and Sb. Moreover, redundancy analysis (RDA) of the relationship between the 18 phyla and the concentration of As and Sb demonstrated that 5 phyla of microbes, i.e. Actinobacteria, Firmicutes, Nitrospirae, Tenericutes and Gemmatimonadetes were positively correlated with As and Sb concentration. The distribution, diversity and abundance of functional genes (including arsC, arrA, aioA, arsB and ACR3) were much higher for the samples containing higher As and Sb concentrations. Based on correlation analysis, the results showed a positive relationship between arsC-like (R2 = 0.871) and aioA-like (R2 = 0.675) gene abundance and As concentration, and indicated that intracellular As(V) reduction and As(III) oxidation could be the dominant As detoxification mechanism enabling the microbes to survive in the environment. This study provides a direct and reliable reference on the diversity of microbial community and functional genes in an extremely high concentration As- and Sb-contaminated environment. PMID:25299175

  12. De novo transcriptome assembly and quantification reveal differentially expressed genes between soft-seed and hard-seed pomegranate (Punica granatum L.).

    PubMed

    Xue, Hui; Cao, Shangyin; Li, Haoxian; Zhang, Jie; Niu, Juan; Chen, Lina; Zhang, Fuhong; Zhao, Diguang

    2017-01-01

    Pomegranate (Punica granatum L.) belongs to Punicaceae, and is valued for its social, ecological, economic, and aesthetic values, as well as more recently for its health benefits. The 'Tunisia' variety has softer seeds and big arils that are easily swallowed. It is a widely popular fruit; however, the molecular mechanisms of the formation of hard and soft seeds is not yet clear. We conducted a de novo assembly of the seed transcriptome in P. granatum L. and revealed differential gene expression between the soft-seed and hard-seed pomegranate varieties. A total of 35.1 Gb of data were acquired in this study, including 280,881,106 raw reads. Additionally, de novo transcriptome assembly generated 132,287 transcripts and 105,743 representative unigenes; approximately 13,805 unigenes (37.7%) were longer than 1,000 bp. Using bioinformatics annotation libraries, a total of 76,806 unigenes were annotated and, among the high-quality reads, 72.63% had at least one significant match to an existing gene model. Gene expression and differentially expressed genes were analyzed. The seed formation of the two pomegranate cultivars involves lignin biosynthesis and metabolism, including some genes encoding laccase and peroxidase, WRKY, MYB, and NAC transcription factors. In the hard-seed pomegranate, lignin-related genes and cellulose synthesis-related genes were highly expressed; in soft-seed pomegranates, expression of genes related to flavonoids and programmed cell death was slightly higher. We validated selection of the identified genes using qRT-PCR. This is the first transcriptome analysis of P. granatum L. This transcription sequencing greatly enriched the pomegranate molecular database, and the high-quality SSRs generated in this study will aid the gene cloning from pomegranate in the future. It provides important insights into the molecular mechanisms underlying the formation of soft seeds in pomegranate.

  13. De novo transcriptome assembly and quantification reveal differentially expressed genes between soft-seed and hard-seed pomegranate (Punica granatum L.)

    PubMed Central

    Xue, Hui; Cao, Shangyin; Li, Haoxian; Zhang, Jie; Niu, Juan; Chen, Lina; Zhang, Fuhong; Zhao, Diguang

    2017-01-01

    Pomegranate (Punica granatum L.) belongs to Punicaceae, and is valued for its social, ecological, economic, and aesthetic values, as well as more recently for its health benefits. The ‘Tunisia’ variety has softer seeds and big arils that are easily swallowed. It is a widely popular fruit; however, the molecular mechanisms of the formation of hard and soft seeds is not yet clear. We conducted a de novo assembly of the seed transcriptome in P. granatum L. and revealed differential gene expression between the soft-seed and hard-seed pomegranate varieties. A total of 35.1 Gb of data were acquired in this study, including 280,881,106 raw reads. Additionally, de novo transcriptome assembly generated 132,287 transcripts and 105,743 representative unigenes; approximately 13,805 unigenes (37.7%) were longer than 1,000 bp. Using bioinformatics annotation libraries, a total of 76,806 unigenes were annotated and, among the high-quality reads, 72.63% had at least one significant match to an existing gene model. Gene expression and differentially expressed genes were analyzed. The seed formation of the two pomegranate cultivars involves lignin biosynthesis and metabolism, including some genes encoding laccase and peroxidase, WRKY, MYB, and NAC transcription factors. In the hard-seed pomegranate, lignin-related genes and cellulose synthesis-related genes were highly expressed; in soft-seed pomegranates, expression of genes related to flavonoids and programmed cell death was slightly higher. We validated selection of the identified genes using qRT-PCR. This is the first transcriptome analysis of P. granatum L. This transcription sequencing greatly enriched the pomegranate molecular database, and the high-quality SSRs generated in this study will aid the gene cloning from pomegranate in the future. It provides important insights into the molecular mechanisms underlying the formation of soft seeds in pomegranate. PMID:28594931

  14. Transcriptomics Reveal Several Gene Expression Patterns in the Piezophile Desulfovibrio hydrothermalis in Response to Hydrostatic Pressure

    PubMed Central

    Amrani, Amira; Bergon, Aurélie; Holota, Hélène; Tamburini, Christian; Garel, Marc; Ollivier, Bernard; Imbert, Jean; Dolla, Alain; Pradel, Nathalie

    2014-01-01

    RNA-seq was used to study the response of Desulfovibrio hydrothermalis, isolated from a deep-sea hydrothermal chimney on the East-Pacific Rise at a depth of 2,600 m, to various hydrostatic pressure growth conditions. The transcriptomic datasets obtained after growth at 26, 10 and 0.1 MPa identified only 65 differentially expressed genes that were distributed among four main categories: aromatic amino acid and glutamate metabolisms, energy metabolism, signal transduction, and unknown function. The gene expression patterns suggest that D. hydrothermalis uses at least three different adaptation mechanisms, according to a hydrostatic pressure threshold (HPt) that was estimated to be above 10 MPa. Both glutamate and energy metabolism were found to play crucial roles in these mechanisms. Quantitation of the glutamate levels in cells revealed its accumulation at high hydrostatic pressure, suggesting its role as a piezolyte. ATP measurements showed that the energy metabolism of this bacterium is optimized for deep-sea life conditions. This study provides new insights into the molecular mechanisms linked to hydrostatic pressure adaptation in sulfate-reducing bacteria. PMID:25215865

  15. Gene-gene interactions and gene polymorphisms of VEGFA and EG-VEGF gene systems in recurrent pregnancy loss.

    PubMed

    Su, Mei-Tsz; Lin, Sheng-Hsiang; Chen, Yi-Chi; Kuo, Pao-Lin

    2014-06-01

    Both vascular endothelial growth factor A (VEGFA) and endocrine gland-derived vascular endothelial growth factor (EG-VEGF) systems play major roles in angiogenesis. A body of evidence suggests VEGFs regulate critical processes during pregnancy and have been associated with recurrent pregnancy loss (RPL). However, little information is available regarding the interaction of these two major major angiogenesis-related systems in early human pregnancy. This study was conducted to investigate the association of gene polymorphisms and gene-gene interaction among genes in VEGFA and EG-VEGF systems and idiopathic RPL. A total of 98 women with history of idiopathic RPL and 142 controls were included, and 5 functional SNPs selected from VEGFA, KDR, EG-VEGF (PROK1), PROKR1 and PROKR2 were genotyped. We used multifactor dimensionality reduction (MDR) analysis to choose a best model and evaluate gene-gene interactions. Ingenuity pathways analysis (IPA) was introduced to explore possible complex interactions. Two receptor gene polymorphisms [KDR (Q472H) and PROKR2 (V331M)] were significantly associated with idiopathic RPL (P<0.01). The MDR test revealed that the KDR (Q472H) polymorphism was the best loci to be associated with RPL (P=0.02). IPA revealed EG-VEGF and VEGFA systems shared several canonical signaling pathways that may contribute to gene-gene interactions, including the Akt, IL-8, EGFR, MAPK, SRC, VHL, HIF-1A and STAT3 signaling pathways. Two receptor gene polymorphisms [KDR (Q472H) and PROKR2 (V331M)] were significantly associated with idiopathic RPL. EG-VEGF and VEGFA systems shared several canonical signaling pathways that may contribute to gene-gene interactions, including the Akt, IL-8, EGFR, MAPK, SRC, VHL, HIF-1A and STAT3.

  16. Analysis of the Nicotiana tabacum Stigma/Style Transcriptome Reveals Gene Expression Differences between Wet and Dry Stigma Species1[W][OA

    PubMed Central

    Quiapim, Andréa C.; Brito, Michael S.; Bernardes, Luciano A.S.; daSilva, Idalete; Malavazi, Iran; DePaoli, Henrique C.; Molfetta-Machado, Jeanne B.; Giuliatti, Silvana; Goldman, Gustavo H.; Goldman, Maria Helena S.

    2009-01-01

    The success of plant reproduction depends on pollen-pistil interactions occurring at the stigma/style. These interactions vary depending on the stigma type: wet or dry. Tobacco (Nicotiana tabacum) represents a model of wet stigma, and its stigmas/styles express genes to accomplish the appropriate functions. For a large-scale study of gene expression during tobacco pistil development and preparation for pollination, we generated 11,216 high-quality expressed sequence tags (ESTs) from stigmas/styles and created the TOBEST database. These ESTs were assembled in 6,177 clusters, from which 52.1% are pistil transcripts/genes of unknown function. The 21 clusters with the highest number of ESTs (putative higher expression levels) correspond to genes associated with defense mechanisms or pollen-pistil interactions. The database analysis unraveled tobacco sequences homologous to the Arabidopsis (Arabidopsis thaliana) genes involved in specifying pistil identity or determining normal pistil morphology and function. Additionally, 782 independent clusters were examined by macroarray, revealing 46 stigma/style preferentially expressed genes. Real-time reverse transcription-polymerase chain reaction experiments validated the pistil-preferential expression for nine out of 10 genes tested. A search for these 46 genes in the Arabidopsis pistil data sets demonstrated that only 11 sequences, with putative equivalent molecular functions, are expressed in this dry stigma species. The reverse search for the Arabidopsis pistil genes in the TOBEST exposed a partial overlap between these dry and wet stigma transcriptomes. The TOBEST represents the most extensive survey of gene expression in the stigmas/styles of wet stigma plants, and our results indicate that wet and dry stigmas/styles express common as well as distinct genes in preparation for the pollination process. PMID:19052150

  17. CRISPR/Cas9-Mediated Gene Disruption Reveals the Importance of Zinc Metabolism for Fitness of the Dimorphic Fungal Pathogen Blastomyces dermatitidis

    PubMed Central

    Kujoth, Gregory C.; Sullivan, Thomas D.; Merkhofer, Richard; Lee, Taek-Jin; Wang, Huafeng; Brandhorst, Tristan; Wüthrich, Marcel

    2018-01-01

    ABSTRACT Blastomyces dermatitidis is a human fungal pathogen of the lung that can lead to disseminated disease in healthy and immunocompromised individuals. Genetic analysis of this fungus is hampered by the relative inefficiency of traditional recombination-based gene-targeting approaches. Here, we demonstrate the feasibility of applying CRISPR/Cas9-mediated gene editing to Blastomyces, including to simultaneously target multiple genes. We created targeting plasmid vectors expressing Cas9 and either one or two single guide RNAs and introduced these plasmids into Blastomyces via Agrobacterium gene transfer. We succeeded in disrupting several fungal genes, including PRA1 and ZRT1, which are involved in scavenging and uptake of zinc from the extracellular environment. Single-gene-targeting efficiencies varied by locus (median, 60% across four loci) but were approximately 100-fold greater than traditional methods of Blastomyces gene disruption. Simultaneous dual-gene targeting proceeded with efficiencies similar to those of single-gene-targeting frequencies for the respective targets. CRISPR/Cas9 disruption of PRA1 or ZRT1 had a variable impact on growth under zinc-limiting conditions, showing reduced growth at early time points in low-passage-number cultures and growth similar to wild-type levels by later passage. Individual impairment of PRA1 or ZRT1 resulted in a reduction of the fungal burden in a mouse model of Blastomyces infection by a factor of ~1 log (range, up to 3 logs), and combined disruption of both genes had no additional impact on the fungal burden. These results underscore the utility of CRISPR/Cas9 for efficient gene disruption in dimorphic fungi and reveal a role for zinc metabolism in Blastomyces fitness in vivo. PMID:29615501

  18. Global Gene Expression Analysis in PKCα-/- Mouse Skin Reveals Structural Changes in the Dermis and Defective Wound Granulation Tissue.

    PubMed

    Cooper, Nichola H; Balachandra, Jeya P; Hardman, Matthew J

    2015-12-01

    The skin's mechanical integrity is maintained by an organized and robust dermal extracellular matrix (ECM). Resistance to mechanical disruption hinges primarily on homeostasis of the dermal collagen fibril architecture, which is regulated, at least in part, by members of the small leucine-rich proteoglycan (SLRP) family. Here we present data linking protein kinase C alpha (PKCα) to the regulated expression of multiple ECM components including SLRPs. Global microarray profiling reveals deficiencies in ECM gene expression in PKCα-/- skin correlating with abnormal collagen fibril morphology, disorganized dermal architecture, and reduced skin strength. Detailed analysis of the skin and wounds from wild-type and PKCα-/- mice reveals a failure to upregulate collagen and other ECM components in response to injury, resulting in delayed granulation tissue deposition in PKCα-/- wounds. Thus, our data reveal a previously unappreciated role for PKCα in the regulation of ECM structure and deposition during skin wound healing.

  19. NDH expression marks major transitions in plant evolution and reveals coordinate intracellular gene loss.

    PubMed

    Ruhlman, Tracey A; Chang, Wan-Jung; Chen, Jeremy J W; Huang, Yao-Ting; Chan, Ming-Tsair; Zhang, Jin; Liao, De-Chih; Blazier, John C; Jin, Xiaohua; Shih, Ming-Che; Jansen, Robert K; Lin, Choun-Sea

    2015-04-11

    Key innovations have facilitated novel niche utilization, such as the movement of the algal predecessors of land plants into terrestrial habitats where drastic fluctuations in light intensity, ultraviolet radiation and water limitation required a number of adaptations. The NDH (NADH dehydrogenase-like) complex of Viridiplantae plastids participates in adapting the photosynthetic response to environmental stress, suggesting its involvement in the transition to terrestrial habitats. Although relatively rare, the loss or pseudogenization of plastid NDH genes is widely distributed across diverse lineages of photoautotrophic seed plants and mutants/transgenics lacking NDH function demonstrate little difference from wild type under non-stressed conditions. This study analyzes large transcriptomic and genomic datasets to evaluate the persistence and loss of NDH expression across plants. Nuclear expression profiles showed accretion of the NDH gene complement at key transitions in land plant evolution, such as the transition to land and at the base of the angiosperm lineage. While detection of transcripts for a selection of non-NDH, photosynthesis related proteins was independent of the state of NDH, coordinate, lineage-specific loss of plastid NDH genes and expression of nuclear-encoded NDH subunits was documented in Pinaceae, gnetophytes, Orchidaceae and Geraniales confirming the independent and complete loss of NDH in these diverse seed plant taxa. The broad phylogenetic distribution of NDH loss and the subtle phenotypes of mutants suggest that the NDH complex is of limited biological significance in contemporary plants. While NDH activity appears dispensable under favorable conditions, there were likely sufficiently frequent episodes of abiotic stress affecting terrestrial habitats to allow the retention of NDH activity. These findings reveal genetic factors influencing plant/environment interactions in a changing climate through 450 million years of land plant

  20. Gene Profiling in Patients with Systemic Sclerosis Reveals the Presence of Oncogenic Gene Signatures

    PubMed Central

    Dolcino, Marzia; Pelosi, Andrea; Fiore, Piera Filomena; Patuzzo, Giuseppe; Tinazzi, Elisa; Lunardi, Claudio; Puccetti, Antonio

    2018-01-01

    Systemic sclerosis (SSc) is a rare connective tissue disease characterized by three pathogenetic hallmarks: vasculopathy, dysregulation of the immune system, and fibrosis. A particular feature of SSc is the increased frequency of some types of malignancies, namely breast, lung, and hematological malignancies. Moreover, SSc may also be a paraneoplastic disease, again indicating a strong link between cancer and scleroderma. The reason of this association is still unknown; therefore, we aimed at investigating whether particular genetic or epigenetic factors may play a role in promoting cancer development in patients with SSc and whether some features are shared by the two conditions. We therefore performed a gene expression profiling of peripheral blood mononuclear cells (PBMCs) derived from patients with limited and diffuse SSc, showing that the various classes of genes potentially linked to the pathogenesis of SSc (such as apoptosis, endothelial cell activation, extracellular matrix remodeling, immune response, and inflammation) include genes that directly participate in the development of malignancies or that are involved in pathways known to be associated with carcinogenesis. The transcriptional analysis was then complemented by a complex network analysis of modulated genes which further confirmed the presence of signaling pathways associated with carcinogenesis. Since epigenetic mechanisms, such as microRNAs (miRNAs), are believed to play a central role in the pathogenesis of SSc, we also evaluated whether specific cancer-related miRNAs could be deregulated in the serum of SSc patients. We focused our attention on miRNAs already found upregulated in SSc such as miR-21-5p, miR-92a-3p, and on miR-155-5p, miR 126-3p and miR-16-5p known to be deregulated in malignancies associated to SSc, i.e., breast, lung, and hematological malignancies. miR-21-5p, miR-92a-3p, miR-155-5p, and miR-16-5p expression was significantly higher in SSc sera compared to healthy controls

  1. RNA-seq reveals transcriptome changes in goats following myostatin gene knockout

    PubMed Central

    Cai, Bei; Zhou, Shiwei; Zhu, Haijing; Qu, Lei; Wang, Xiaolong

    2017-01-01

    Myostatin (MSTN) is a powerful negative regulator of skeletal muscle mass in mammalian species that is primarily expressed in skeletal muscles, and mutations of its encoding gene can result in the double-muscling trait. In this study, the CRISPR/Cas9 technique was used to edit MSTN in Shaanbei Cashmere goats and generate knockout animals. RNA sequencing was used to determine and compare the transcriptome profiles of the muscles from three wild-type (WT) goats, three fibroblast growth factor 5 (FGF5) knockout goats (FGF5+/- group) and three goats with disrupted expression of both the FGF5 and MSTN genes (FM+/- group). The sequence reads were obtained using the Illumina HiSeq 2000 system and mapped to the Capra hircus reference genome using TopHat (v2.0.9). In total, 68.93, 62.04 and 66.26 million clean sequencing reads were obtained from the WT, FM+/- and FGF5+/- groups, respectively. There were 201 differentially expressed genes (DEGs) between the WT and FGF5+/- groups, with 86 down- and 115 up-regulated genes in the FGF5+/- group. Between the WT and FM+/- groups, 121 DEGs were identified, including 81 down- and 40 up-regulated genes in the FM+/- group. A total of 198 DEGs were detected between the FGF5+/- group and FM+/- group, with 128 down- and 70 up-regulated genes in the FM+/- group. At the transcriptome level, we found substantial changes in genes involved in fatty acid metabolism and the biosynthesis of unsaturated fatty acids, such as stearoyl-CoA dehydrogenase, 3-hydroxyacyl-CoA dehydratase 2, ELOVL fatty acid elongase 6 and fatty acid synthase, suggesting that the expression levels of these genes may be directly regulated by MSTN and that these genes are likely downstream targets of MSTN with potential roles in lipid metabolism in goats. Moreover, five randomly selected DEGs were further validated with qRT-PCR, and the results were consistent with the transcriptome analysis. The present study provides insight into the unique transcriptome profile of the

  2. Epizootiology of viral hemorrhagic septicemia virus in Pacific herring from the spawn-on-kelp fishery in Prince William Sound, Alaska, USA

    USGS Publications Warehouse

    Hershberger, P.K.; Kocan, R.M.; Elder, N.E.; Meyers, T.R.; Winton, J.R.

    1999-01-01

    Both the prevalence and tissue titer of viral hemorrhagic septicemia virus (VHSV) increased in Pacific herring Clupea pallasi following their introduction into net pens (pounds) used in the closed pound spawn-on-kelp (SOK) fishery in Prince William Sound, Alaska. VHSV was also found in water samples from inside and outside the SOK pounds after herring had been confined for several days; however, water samples taken near wild free-ranging, spawning herring either failed to test positive or tested weakly positive for virus. Little or no virus was found in tissue samples from free-ranging, spawning herring captured from the vicinity of the pounds, nor did the prevalence of VHSV increase following spawning as it did in impounded herring. The data indicated that increased prevalences of VHSV were correlated with confinement of herring for the closed pound SOK fishery and that infection was spread within the pounds through waterborne exposure to virus particles originating from impounded fish. In addition, pounds containing predominantly young fish had higher prevalences of VHSV, suggesting that older fish may be partially immune, perhaps as a result of previous infection with the virus. Operation of SOK pounds during spawning seasons in which young herring predominate may amplify the disease and possibly exacerbate the population fluctuations observed in wild herring stocks.

  3. Single cell transcriptome analysis of MCF-7 reveals consistently and inconsistently expressed gene groups each associated with distinct cellular localization and functions

    PubMed Central

    Chen, Tzu-Han; Shiau, Hsin-Chieh

    2018-01-01

    Single cell transcriptome (SCT) analysis provides superior resolution to illustrate tumor cell heterogeneity for clinical implications. We characterized four SCTs of MCF-7 using 143 housekeeping genes (HKGs) as control, of which lactate dehydrogenase B (LDHB) expression is silenced. These SCT libraries mapped to 11,423, 11,486, 10,380, and 11,306 RefSeq genes (UCSC), respectively. High consistency in HKG expression levels across all four SCTs, along with transcriptional silencing of LDHB, was observed, suggesting a high sensitivity and reproducibility of the SCT analysis. Cross-library comparison on expression levels by scatter plotting revealed a linear correlation and an 83–94% overlap in transcript isoforms and expressed genes were also observed. To gain insight of transcriptional diversity among the SCTs, expressed genes were split into consistently expressed (CE) (expressed in all SCTs) and inconsistently expressed (IE) (expressed in some but not all SCTs) genes for further characterization, along with the 142 expressed HKGs as a reference. Distinct transcriptional strengths were found among these groups, with averages of 1,612.0, 88.0 and 1.2 FPKM for HKGs, CE and IE, respectively. Comparison between CE and IE groups further indicated that expressions of CE genes vary more significantly than that of IE genes. Gene Ontology analysis indicated that proteins encoded by CE genes are mainly involved in fundamental intracellular activities, while proteins encoded by IE genes are mainly for extracellular activities, especially acting as receptors or ion channels. The diversified gene expressions, especially for those encoded by IE genes, may contribute to cancer drug resistance. PMID:29920548

  4. Molecular assays reveal the presence and diversity of genes encoding pea footrot pathogenicity determinants in Nectria haematococca and in agricultural soils.

    PubMed

    Etebu, E; Osborn, A M

    2009-05-01

    The aim of this study was to develop molecular assays for investigating the presence and diversity of pathogenicity genes from the pea footrot pathogen Nectria haematococca (anamorph Fusarium solani f.sp. pisi) in soils. Polymerase chain reaction (PCR) assays were developed to amplify four N. haematococca pathogenicity genes (PDA, PEP1, PEP3 and PEP5) from isolates and soil-DNA from five agricultural fields with a prior footrot history. A collection of 15 fungi isolated on medium selective for Fusarium spp. exhibited variation in their virulence to peas as assessed via a disease index (DI: 0-5; no virulence to the highest virulence). PCR analyses showed that three isolates in which all four pathogenicity genes were detected resulted in the highest DI (>3.88). All four pathogenicity genes were detected in soil-DNA obtained from all five fields with a footrot disease history, but were not amplified from soils, which had no footrot history. Denaturing gradient gel electrophoresis and/or sequence analysis revealed diversity amongst the pathogenicity genes. The PCR assays developed herein enable the specific detection of pathogenic N. haematococca in soils without recourse to culture. Molecular assays that specifically target pathogenicity genes have the capacity to assess the presence of the footrot-causing pathogen in agricultural soils.

  5. Genome Sequencing of the Phytoseiid Predatory Mite Metaseiulus occidentalis Reveals Completely Atomized Hox Genes and Superdynamic Intron Evolution

    PubMed Central

    Hoy, Marjorie A.; Waterhouse, Robert M.; Wu, Ke; Estep, Alden S.; Ioannidis, Panagiotis; Palmer, William J.; Pomerantz, Aaron F.; Simão, Felipe A.; Thomas, Jainy; Jiggins, Francis M.; Murphy, Terence D.; Pritham, Ellen J.; Robertson, Hugh M.; Zdobnov, Evgeny M.; Gibbs, Richard A.; Richards, Stephen

    2016-01-01

    Metaseiulus occidentalis is an eyeless phytoseiid predatory mite employed for the biological control of agricultural pests including spider mites. Despite appearances, these predator and prey mites are separated by some 400 Myr of evolution and radically different lifestyles. We present a 152-Mb draft assembly of the M. occidentalis genome: Larger than that of its favored prey, Tetranychus urticae, but considerably smaller than those of many other chelicerates, enabling an extremely contiguous and complete assembly to be built—the best arachnid to date. Aided by transcriptome data, genome annotation cataloged 18,338 protein-coding genes and identified large numbers of Helitron transposable elements. Comparisons with other arthropods revealed a particularly dynamic and turbulent genomic evolutionary history. Its genes exhibit elevated molecular evolution, with strikingly high numbers of intron gains and losses, in stark contrast to the deer tick Ixodes scapularis. Uniquely among examined arthropods, this predatory mite’s Hox genes are completely atomized, dispersed across the genome, and it encodes five copies of the normally single-copy RNA processing Dicer-2 gene. Examining gene families linked to characteristic biological traits of this tiny predator provides initial insights into processes of sex determination, development, immune defense, and how it detects, disables, and digests its prey. As the first reference genome for the Phytoseiidae, and for any species with the rare sex determination system of parahaploidy, the genome of the western orchard predatory mite improves genomic sampling of chelicerates and provides invaluable new resources for functional genomic analyses of this family of agriculturally important mites. PMID:26951779

  6. Analysis of the meiotic transcriptome reveals the genes related to the regulation of pollen abortion in cytoplasmic male-sterile pepper (Capsicum annuum L.).

    PubMed

    Qiu, Yilan; Liao, Lijuan; Jin, Xiaorui; Mao, Dandan; Liu, Rushi

    2018-01-30

    CMS, which refers to the inability to generate functional pollen grains while still producing a normal gynoecium, has been widely used for pepper hybrid seed production. Pepper line 8214A is an excellent CMS line exhibiting 100% male sterility and superior economic characteristics. A TUNEL assay revealed the nuclear DNA is damaged in 8214A PMCs during meiosis. TEM images indicated that the 8214A PMCs exhibited asynchronous meiosis after prophase I, and some PMCs degraded prematurely with morphological features typical of PCD. Additionally, at the end of meiosis, the 8214A PMCs formed abnormal non-tetrahedral tetrads that degraded in situ. To identify the genes involved in the pollen abortion of line 8214A, the transcriptional profiles of the 8214A and the 8214B anthers (i.e., from the fertile maintainer line) during meiosis were analyzed using an RNA-seq approach. A total of 1355 genes were determined to be differentially expressed, including 424 and 931 up- and down- regulated genes, respectively, in the 8214A anthers during meiosis relative to the expression levels in the 8214B. The expression levels of ubiquitin ligase and cell cycle-related genes were apparently down-regulated, while the expression of methyltransferase genes was up-regulated in the 8214A anthers during meiosis, which likely contributed to the PCD of these PMCs during meiosis. Thus, our results may be useful for revealing the molecular mechanism regulating the pollen abortion of CMS pepper. Copyright © 2017. Published by Elsevier B.V.

  7. Genome-wide detection of selection signatures in Chinese indigenous Laiwu pigs revealed candidate genes regulating fat deposition in muscle.

    PubMed

    Chen, Minhui; Wang, Jiying; Wang, Yanping; Wu, Ying; Fu, Jinluan; Liu, Jian-Feng

    2018-05-18

    Currently, genome-wide scans for positive selection signatures in commercial breed have been investigated. However, few studies have focused on selection footprints of indigenous breeds. Laiwu pig is an invaluable Chinese indigenous pig breed with extremely high proportion of intramuscular fat (IMF), and an excellent model to detect footprint as the result of natural and artificial selection for fat deposition in muscle. In this study, based on GeneSeek Genomic profiler Porcine HD data, three complementary methods, F ST , iHS (integrated haplotype homozygosity score) and CLR (composite likelihood ratio), were implemented to detect selection signatures in the whole genome of Laiwu pigs. Totally, 175 candidate selected regions were obtained by at least two of the three methods, which covered 43.75 Mb genomic regions and corresponded to 1.79% of the genome sequence. Gene annotation of the selected regions revealed a list of functionally important genes for feed intake and fat deposition, reproduction, and immune response. Especially, in accordance to the phenotypic features of Laiwu pigs, among the candidate genes, we identified several genes, NPY1R, NPY5R, PIK3R1 and JAKMIP1, involved in the actions of two sets of neurons, which are central regulators in maintaining the balance between food intake and energy expenditure. Our results identified a number of regions showing signatures of selection, as well as a list of functionally candidate genes with potential effect on phenotypic traits, especially fat deposition in muscle. Our findings provide insights into the mechanisms of artificial selection of fat deposition and further facilitate follow-up functional studies.

  8. Bacterial competition reveals differential regulation of the pks genes by Bacillus subtilis.

    PubMed

    Vargas-Bautista, Carol; Rahlwes, Kathryn; Straight, Paul

    2014-02-01

    Bacillus subtilis is adaptable to many environments in part due to its ability to produce a broad range of bioactive compounds. One such compound, bacillaene, is a linear polyketide/nonribosomal peptide. The pks genes encode the enzymatic megacomplex that synthesizes bacillaene. The majority of pks genes appear to be organized as a giant operon (>74 kb from pksC-pksR). In previous work (P. D. Straight, M. A. Fischbach, C. T. Walsh, D. Z. Rudner, and R. Kolter, Proc. Natl. Acad. Sci. U. S. A. 104:305-310, 2007, doi:10.1073/pnas.0609073103), a deletion of the pks operon in B. subtilis was found to induce prodiginine production by Streptomyces coelicolor. Here, colonies of wild-type B. subtilis formed a spreading population that induced prodiginine production from Streptomyces lividans, suggesting differential regulation of pks genes and, as a result, bacillaene. While the parent colony showed widespread induction of pks expression among cells in the population, we found the spreading cells uniformly and transiently repressed the expression of the pks genes. To identify regulators that control pks genes, we first determined the pattern of pks gene expression in liquid culture. We next identified mutations in regulatory genes that disrupted the wild-type pattern of pks gene expression. We found that expression of the pks genes requires the master regulator of development, Spo0A, through its repression of AbrB and the stationary-phase regulator, CodY. Deletions of degU, comA, and scoC had moderate effects, disrupting the timing and level of pks gene expression. The observed patterns of expression suggest that complex regulation of bacillaene and other antibiotics optimizes competitive fitness for B. subtilis.

  9. Avirulence gene mapping in the Hessian fly (Mayetiola destructor) reveals a protein phosphatase 2C effector gene family.

    PubMed

    Zhao, Chaoyang; Shukle, Richard; Navarro-Escalante, Lucio; Chen, Mingshun; Richards, Stephen; Stuart, Jeffrey J

    2016-01-01

    The genetic tractability of the Hessian fly (HF, Mayetiola destructor) provides an opportunity to investigate the mechanisms insects use to induce plant gall formation. Here we demonstrate that capacity using the newly sequenced HF genome by identifying the gene (vH24) that elicits effector-triggered immunity in wheat (Triticum spp.) seedlings carrying HF resistance gene H24. vH24 was mapped within a 230-kb genomic fragment near the telomere of HF chromosome X1. That fragment contains only 21 putative genes. The best candidate vH24 gene in this region encodes a protein containing a secretion signal and a type-2 serine/threonine protein phosphatase (PP2C) domain. This gene has an H24-virulence associated insertion in its promoter that appears to silence transcription of the gene in H24-virulent larvae. Candidate vH24 is a member of a small family of genes that encode secretion signals and PP2C domains. It belongs to the fraction of genes in the HF genome previously predicted to encode effector proteins. Because PP2C proteins are not normally secreted, our results suggest that these are PP2C effectors that HF larvae inject into wheat cells to redirect, or interfere, with wheat signal transduction pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Antennal and Abdominal Transcriptomes Reveal Chemosensory Genes in the Asian Citrus Psyllid, Diaphorina citri.

    PubMed

    Wu, Zhongzhen; Zhang, He; Bin, Shuying; Chen, Lei; Han, Qunxin; Lin, Jintian

    2016-01-01

    The Asian citrus psyllid, Diaphorina citri is the principal vector of the highly destructive citrus disease called Huanglongbing (HLB) or citrus greening, which is a major threat to citrus cultivation worldwide. More effective pest control strategies against this pest entail the identification of potential chemosensory proteins that could be used in the development of attractants or repellents. However, the molecular basis of olfaction in the Asian citrus psyllid is not completely understood. Therefore, we performed this study to analyze the antennal and abdominal transcriptome of the Asian citrus psyllid. We identified a large number of transcripts belonging to nine chemoreception-related gene families and compared their expression in male and female adult antennae and terminal abdomen. In total, 9 odorant binding proteins (OBPs), 12 chemosensory proteins (CSPs), 46 odorant receptors (ORs), 20 gustatory receptors (GRs), 35 ionotropic receptors (IRs), 4 sensory neuron membrane proteins (SNMPs) and 4 different gene families encoding odorant-degrading enzymes (ODEs): 80 cytochrome P450s (CYPs), 12 esterase (ESTs), and 5 aldehyde dehydrogenases (ADE) were annotated in the D. citri antennal and abdominal transcriptomes. Our results revealed that a large proportion of chemosensory genes exhibited no distinct differences in their expression patterns in the antennae and terminal abdominal tissues. Notably, RNA sequencing (RNA-seq) data and quantitative real time-PCR (qPCR) analyses showed that 4 DictOBPs, 4 DictCSPs, 4 DictIRs, 1 DictSNMP, and 2 DictCYPs were upregulated in the antennae relative to that in terminal abdominal tissues. Furthermore, 2 DictOBPs (DictOBP8 and DictOBP9), 2 DictCSPs (DictOBP8 and DictOBP12), 4 DictIRs (DictIR3, DictIR6, DictIR10, and DictIR35), and 1 DictCYP (DictCYP57) were expressed at higher levels in the male antennae than in the female antennae. Our study provides the first insights into the molecular basis of chemoreception in this insect

  11. 43 CFR Appendix II to Part 11 - Format for Data Inputs and Modifications to the NRDAM/CME

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of water that does not contain vegetation (e.g., wetland, seagrass, or kelp) or invertebrate reef (e... kelp) or invertebrate reef (e.g., coral reef) and is classified as “seaward” in Table 6.2, Volume I of..., seagrass, or kelp) or invertebrate reef (e.g., coral reef). Tidal current—currents caused by alternating...

  12. Some ethylene biosynthesis and AP2/ERF genes reveal a specific pattern of expression during somatic embryogenesis in Hevea brasiliensis

    PubMed Central

    2012-01-01

    Background Ethylene production and signalling play an important role in somatic embryogenesis, especially for species that are recalcitrant in in vitro culture. The AP2/ERF superfamily has been identified and classified in Hevea brasiliensis. This superfamily includes the ERFs involved in response to ethylene. The relative transcript abundance of ethylene biosynthesis genes and of AP2/ERF genes was analysed during somatic embryogenesis for callus lines with different regeneration potential, in order to identify genes regulated during that process. Results The analysis of relative transcript abundance was carried out by real-time RT-PCR for 142 genes. The transcripts of ERFs from group I, VII and VIII were abundant at all stages of the somatic embryogenesis process. Forty genetic expression markers for callus regeneration capacity were identified. Fourteen markers were found for proliferating calli and 35 markers for calli at the end of the embryogenesis induction phase. Sixteen markers discriminated between normal and abnormal embryos and, lastly, there were 36 markers of conversion into plantlets. A phylogenetic analysis comparing the sequences of the AP2 domains of Hevea and Arabidopsis genes enabled us to predict the function of 13 expression marker genes. Conclusions This first characterization of the AP2/ERF superfamily in Hevea revealed dramatic regulation of the expression of AP2/ERF genes during the somatic embryogenesis process. The gene expression markers of proliferating callus capacity to regenerate plants by somatic embryogenesis should make it possible to predict callus lines suitable to be used for multiplication. Further functional characterization of these markers opens up prospects for discovering specific AP2/ERF functions in the Hevea species for which somatic embryogenesis is difficult. PMID:23268714

  13. Computational genomic analysis of PARK7 interactome reveals high BBS1 gene expression as a prognostic factor favoring survival in malignant pleural mesothelioma.

    PubMed

    Vavougios, Georgios D; Solenov, Evgeniy I; Hatzoglou, Chrissi; Baturina, Galina S; Katkova, Liubov E; Molyvdas, Paschalis Adam; Gourgoulianis, Konstantinos I; Zarogiannis, Sotirios G

    2015-10-01

    The aim of our study was to assess the differential gene expression of Parkinson protein 7 (PARK7) interactome in malignant pleural mesothelioma (MPM) using data mining techniques to identify novel candidate genes that may play a role in the pathogenicity of MPM. We constructed the PARK7 interactome using the ConsensusPathDB database. We then interrogated the Oncomine Cancer Microarray database using the Gordon Mesothelioma Study, for differential gene expression of the PARK7 interactome. In ConsensusPathDB, 38 protein interactors of PARK7 were identified. In the Gordon Mesothelioma Study, 34 of them were assessed out of which SUMO1, UBC3, KIAA0101, HDAC2, DAXX, RBBP4, BBS1, NONO, RBBP7, HTRA2, and STUB1 were significantly overexpressed whereas TRAF6 and MTA2 were significantly underexpressed in MPM patients (network 2). Furthermore, Kaplan-Meier analysis revealed that MPM patients with high BBS1 expression had a median overall survival of 16.5 vs. 8.7 mo of those that had low expression. For validation purposes, we performed a meta-analysis in Oncomine database in five sarcoma datasets. Eight network 2 genes (KIAA0101, HDAC2, SUMO1, RBBP4, NONO, RBBP7, HTRA2, and MTA2) were significantly differentially expressed in an array of 18 different sarcoma types. Finally, Gene Ontology annotation enrichment analysis revealed significant roles of the PARK7 interactome in NuRD, CHD, and SWI/SNF protein complexes. In conclusion, we identified 13 novel genes differentially expressed in MPM, never reported before. Among them, BBS1 emerged as a novel predictor of overall survival in MPM. Finally, we identified that PARK7 interactome is involved in novel pathways pertinent in MPM disease. Copyright © 2015 the American Physiological Society.

  14. Expression of tomato prosystemin gene in Arabidopsis reveals systemic translocation of its mRNA and confers necrotrophic fungal resistance.

    PubMed

    Zhang, Haiyan; Yu, Pengli; Zhao, Jiuhai; Jiang, Hongling; Wang, Haiyang; Zhu, Yingfang; Botella, Miguel A; Šamaj, Jozef; Li, Chuanyou; Lin, Jinxing

    2018-01-01

    Systemin (SYS), an octadecapeptide hormone processed from a 200-amino-acid precursor (prosystemin, PS), plays a central role in the systemic activation of defense genes in tomato in response to herbivore and pathogen attacks. However, whether PS mRNA is transferable and its role in systemic defense responses remain unknown. We created the transgenic tomato PS gene tagged with the green fluorescent protein (PS-GFP) using a shoot- or root-specific promoter, and the constitutive 35S promoter in Arabidopsis. Subcellular localization of PS-/SYS-GFP was observed using confocal laser scanning microscopy and gene transcripts were determined using quantitative real-time PCR. In Arabidopsis, PS protein can be processed and SYS is secreted. Shoot-/root-specific expression of PS-GFP in Arabidopsis, and grafting experiments, revealed that the PS mRNA moves in a bi-directional manner. We also found that ectopic expression of PS improves Arabidopsis resistance to the necrotrophic fungus Botrytis cinerea, consistent with substantial upregulation of the transcript levels of specific pathogen-responsive genes. Our results provide novel insights into the multifaceted mechanism of SYS signaling transport and its potential application in genetic engineering for increasing pathogen resistance across diverse plant families. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  15. Analyses of mitochondrial genes reveal two sympatric but genetically divergent lineages of Rhipicephalus appendiculatus in Kenya.

    PubMed

    Kanduma, Esther G; Mwacharo, Joram M; Githaka, Naftaly W; Kinyanjui, Peter W; Njuguna, Joyce N; Kamau, Lucy M; Kariuki, Edward; Mwaura, Stephen; Skilton, Robert A; Bishop, Richard P

    2016-06-22

    The ixodid tick Rhipicephalus appendiculatus transmits the apicomplexan protozoan parasite Theileria parva, which causes East coast fever (ECF), the most economically important cattle disease in eastern and southern Africa. Recent analysis of micro- and minisatellite markers showed an absence of geographical and host-associated genetic sub-structuring amongst field populations of R. appendiculatus in Kenya. To assess further the phylogenetic relationships between field and laboratory R. appendiculatus tick isolates, this study examined sequence variations at two mitochondrial genes, cytochrome c oxidase subunit I (COI) and 12S ribosomal RNA (rRNA), and the nuclear encoded ribosomal internal transcribed spacer 2 (ITS2) of the rRNA gene, respectively. The analysis of 332 COI sequences revealed 30 polymorphic sites, which defined 28 haplotypes that were separated into two distinct haplogroups (A and B). Inclusion of previously published haplotypes in our analysis revealed a high degree of phylogenetic complexity never reported before in haplogroup A. Neither haplogroup however, showed any clustering pattern related to either the geographical sampling location, the type of tick sampled (laboratory stocks vs field populations) or the mammalian host species. This finding was supported by the results obtained from the analysis of 12S rDNA sequences. Analysis of molecular variance (AMOVA) indicated that 90.8 % of the total genetic variation was explained by the two haplogroups, providing further support for their genetic divergence. These results were, however, not replicated by the nuclear transcribed ITS2 sequences likely because of recombination between the nuclear genomes maintaining a high level of genetic sequence conservation. COI and 12S rDNA are better markers than ITS2 for studying intraspecific diversity. Based on these genes, two major genetic groups of R. appendiculatus that have gone through a demographic expansion exist in Kenya. The two groups show no

  16. Data mining reveals a network of early-response genes as a consensus signature of drug-induced in vitro and in vivo toxicity.

    PubMed

    Zhang, J D; Berntenis, N; Roth, A; Ebeling, M

    2014-06-01

    Gene signatures of drug-induced toxicity are of broad interest, but they are often identified from small-scale, single-time point experiments, and are therefore of limited applicability. To address this issue, we performed multivariate analysis of gene expression, cell-based assays, and histopathological data in the TG-GATEs (Toxicogenomics Project-Genomics Assisted Toxicity Evaluation system) database. Data mining highlights four genes-EGR1, ATF3, GDF15 and FGF21-that are induced 2 h after drug administration in human and rat primary hepatocytes poised to eventually undergo cytotoxicity-induced cell death. Modelling and simulation reveals that these early stress-response genes form a functional network with evolutionarily conserved structure and intrinsic dynamics. This is underlined by the fact that early induction of this network in vivo predicts drug-induced liver and kidney pathology with high accuracy. Our findings demonstrate the value of early gene-expression signatures in predicting and understanding compound-induced toxicity. The identified network can empower first-line tests that reduce animal use and costs of safety evaluation.

  17. MicroRNA profiling reveals dysregulated microRNAs and their target gene regulatory networks in cemento-ossifying fibroma.

    PubMed

    Pereira, Thaís Dos Santos Fontes; Brito, João Artur Ricieri; Guimarães, André Luiz Sena; Gomes, Carolina Cavaliéri; de Lacerda, Júlio Cesar Tanos; de Castro, Wagner Henriques; Coimbra, Roney Santos; Diniz, Marina Gonçalves; Gomez, Ricardo Santiago

    2018-01-01

    Cemento-ossifying fibroma (COF) is a benign fibro-osseous neoplasm of uncertain pathogenesis, and its treatment results in morbidity. MicroRNAs (miRNA) are small non-coding RNAs that regulate gene expression and may represent therapeutic targets. The purpose of the study was to generate a comprehensive miRNA profile of COF compared to normal bone. Additionally, the most relevant pathways and target genes of differentially expressed miRNA were investigated by in silico analysis. Nine COF and ten normal bone samples were included in the study. miRNA profiling was carried out by using TaqMan® OpenArray® Human microRNA panel containing 754 validated human miRNAs. We identified the most relevant miRNAs target genes through the leader gene approach, using STRING and Cytoscape software. Pathways enrichment analysis was performed using DIANA-miRPath. Eleven miRNAs were downregulated (hsa-miR-95-3p, hsa-miR-141-3p, hsa-miR-205-5p, hsa-miR-223-3p, hsa-miR-31-5p, hsa-miR-944, hsa-miR-200b-3p, hsa-miR-135b-5p, hsa-miR-31-3p, hsa-miR-223-5p and hsa-miR-200c-3p), and five were upregulated (hsa-miR-181a-5p, hsa-miR-181c-5p, hsa-miR-149-5p, hsa-miR-138-5p and hsa-miR-199a-3p) in COF compared to normal bone. Eighteen common target genes were predicted, and the leader genes approach identified the following genes involved in human COF: EZH2, XIAP, MET and TGFBR1. According to the biology of bone and COF, the most relevant KEGG pathways revealed by enrichment analysis were proteoglycans in cancer, miRNAs in cancer, pathways in cancer, p53-, PI3K-Akt-, FoxO- and TGF-beta signalling pathways, which were previously found to be differentially regulated in bone neoplasms, odontogenic tumours and osteogenesis. miRNA dysregulation occurs in COF, and EZH2, XIAP, MET and TGFBR1 are potential targets for functional analysis validation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Comparative Plasmodium gene overexpression reveals distinct perturbation of sporozoite transmission by profilin.

    PubMed

    Sato, Yuko; Hliscs, Marion; Dunst, Josefine; Goosmann, Christian; Brinkmann, Volker; Montagna, Georgina N; Matuschewski, Kai

    2016-07-15

    Plasmodium relies on actin-based motility to migrate from the site of infection and invade target cells. Using a substrate-dependent gliding locomotion, sporozoites are able to move at fast speed (1-3 μm/s). This motility relies on a minimal set of actin regulatory proteins and occurs in the absence of detectable filamentous actin (F-actin). Here we report an overexpression strategy to investigate whether perturbations of F-actin steady-state levels affect gliding locomotion and host invasion. We selected two vital Plasmodium berghei G-actin-binding proteins, C-CAP and profilin, in combination with three stage-specific promoters and mapped the phenotypes afforded by overexpression in all three extracellular motile stages. We show that in merozoites and ookinetes, additional expression does not impair life cycle progression. In marked contrast, overexpression of C-CAP and profilin in sporozoites impairs circular gliding motility and salivary gland invasion. The propensity for productive motility correlates with actin accumulation at the parasite tip, as revealed by combinations of an actin-stabilizing drug and transgenic parasites. Strong expression of profilin, but not C-CAP, resulted in complete life cycle arrest. Comparative overexpression is an alternative experimental genetic strategy to study essential genes and reveals effects of regulatory imbalances that are not uncovered from deletion-mutant phenotyping. © 2016 Sato et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. High-throughput sequencing of mGluR signaling pathway genes reveals enrichment of rare variants in autism.

    PubMed

    Kelleher, Raymond J; Geigenmüller, Ute; Hovhannisyan, Hayk; Trautman, Edwin; Pinard, Robert; Rathmell, Barbara; Carpenter, Randall; Margulies, David

    2012-01-01

    Identification of common molecular pathways affected by genetic variation in autism is important for understanding disease pathogenesis and devising effective therapies. Here, we test the hypothesis that rare genetic variation in the metabotropic glutamate-receptor (mGluR) signaling pathway contributes to autism susceptibility. Single-nucleotide variants in genes encoding components of the mGluR signaling pathway were identified by high-throughput multiplex sequencing of pooled samples from 290 non-syndromic autism cases and 300 ethnically matched controls on two independent next-generation platforms. This analysis revealed significant enrichment of rare functional variants in the mGluR pathway in autism cases. Higher burdens of rare, potentially deleterious variants were identified in autism cases for three pathway genes previously implicated in syndromic autism spectrum disorder, TSC1, TSC2, and SHANK3, suggesting that genetic variation in these genes also contributes to risk for non-syndromic autism. In addition, our analysis identified HOMER1, which encodes a postsynaptic density-localized scaffolding protein that interacts with Shank3 to regulate mGluR activity, as a novel autism-risk gene. Rare, potentially deleterious HOMER1 variants identified uniquely in the autism population affected functionally important protein regions or regulatory sequences and co-segregated closely with autism among children of affected families. We also identified rare ASD-associated coding variants predicted to have damaging effects on components of the Ras/MAPK cascade. Collectively, these findings suggest that altered signaling downstream of mGluRs contributes to the pathogenesis of non-syndromic autism.

  20. High-Throughput Sequencing of mGluR Signaling Pathway Genes Reveals Enrichment of Rare Variants in Autism

    PubMed Central

    Hovhannisyan, Hayk; Trautman, Edwin; Pinard, Robert; Rathmell, Barbara; Carpenter, Randall; Margulies, David

    2012-01-01

    Identification of common molecular pathways affected by genetic variation in autism is important for understanding disease pathogenesis and devising effective therapies. Here, we test the hypothesis that rare genetic variation in the metabotropic glutamate-receptor (mGluR) signaling pathway contributes to autism susceptibility. Single-nucleotide variants in genes encoding components of the mGluR signaling pathway were identified by high-throughput multiplex sequencing of pooled samples from 290 non-syndromic autism cases and 300 ethnically matched controls on two independent next-generation platforms. This analysis revealed significant enrichment of rare functional variants in the mGluR pathway in autism cases. Higher burdens of rare, potentially deleterious variants were identified in autism cases for three pathway genes previously implicated in syndromic autism spectrum disorder, TSC1, TSC2, and SHANK3, suggesting that genetic variation in these genes also contributes to risk for non-syndromic autism. In addition, our analysis identified HOMER1, which encodes a postsynaptic density-localized scaffolding protein that interacts with Shank3 to regulate mGluR activity, as a novel autism-risk gene. Rare, potentially deleterious HOMER1 variants identified uniquely in the autism population affected functionally important protein regions or regulatory sequences and co-segregated closely with autism among children of affected families. We also identified rare ASD-associated coding variants predicted to have damaging effects on components of the Ras/MAPK cascade. Collectively, these findings suggest that altered signaling downstream of mGluRs contributes to the pathogenesis of non-syndromic autism. PMID:22558107

  1. Bacterial Competition Reveals Differential Regulation of the pks Genes by Bacillus subtilis

    PubMed Central

    Vargas-Bautista, Carol; Rahlwes, Kathryn

    2014-01-01

    Bacillus subtilis is adaptable to many environments in part due to its ability to produce a broad range of bioactive compounds. One such compound, bacillaene, is a linear polyketide/nonribosomal peptide. The pks genes encode the enzymatic megacomplex that synthesizes bacillaene. The majority of pks genes appear to be organized as a giant operon (>74 kb from pksC-pksR). In previous work (P. D. Straight, M. A. Fischbach, C. T. Walsh, D. Z. Rudner, and R. Kolter, Proc. Natl. Acad. Sci. U. S. A. 104:305–310, 2007, doi:10.1073/pnas.0609073103), a deletion of the pks operon in B. subtilis was found to induce prodiginine production by Streptomyces coelicolor. Here, colonies of wild-type B. subtilis formed a spreading population that induced prodiginine production from Streptomyces lividans, suggesting differential regulation of pks genes and, as a result, bacillaene. While the parent colony showed widespread induction of pks expression among cells in the population, we found the spreading cells uniformly and transiently repressed the expression of the pks genes. To identify regulators that control pks genes, we first determined the pattern of pks gene expression in liquid culture. We next identified mutations in regulatory genes that disrupted the wild-type pattern of pks gene expression. We found that expression of the pks genes requires the master regulator of development, Spo0A, through its repression of AbrB and the stationary-phase regulator, CodY. Deletions of degU, comA, and scoC had moderate effects, disrupting the timing and level of pks gene expression. The observed patterns of expression suggest that complex regulation of bacillaene and other antibiotics optimizes competitive fitness for B. subtilis. PMID:24187085

  2. Comparison of gene co-networks reveals the molecular mechanisms of the rice (Oryza sativa L.) response to Rhizoctonia solani AG1 IA infection.

    PubMed

    Zhang, Jinfeng; Zhao, Wenjuan; Fu, Rong; Fu, Chenglin; Wang, Lingxia; Liu, Huainian; Li, Shuangcheng; Deng, Qiming; Wang, Shiquan; Zhu, Jun; Liang, Yueyang; Li, Ping; Zheng, Aiping

    2018-05-05

    Rhizoctonia solani causes rice sheath blight, an important disease affecting the growth of rice (Oryza sativa L.). Attempts to control the disease have met with little success. Based on transcriptional profiling, we previously identified more than 11,947 common differentially expressed genes (TPM > 10) between the rice genotypes TeQing and Lemont. In the current study, we extended these findings by focusing on an analysis of gene co-expression in response to R. solani AG1 IA and identified gene modules within the networks through weighted gene co-expression network analysis (WGCNA). We compared the different genes assigned to each module and the biological interpretations of gene co-expression networks at early and later modules in the two rice genotypes to reveal differential responses to AG1 IA. Our results show that different changes occurred in the two rice genotypes and that the modules in the two groups contain a number of candidate genes possibly involved in pathogenesis, such as the VQ protein. Furthermore, these gene co-expression networks provide comprehensive transcriptional information regarding gene expression in rice in response to AG1 IA. The co-expression networks derived from our data offer ideas for follow-up experimentation that will help advance our understanding of the translational regulation of rice gene expression changes in response to AG1 IA.

  3. Gene and enhancer trap tagging of vascular-expressed genes in poplar trees

    Treesearch

    Andrew Groover; Joseph R. Fontana; Gayle Dupper; Caiping Ma; Robert Martienssen; Steven Strauss; Richard Meilan

    2004-01-01

    We report a gene discovery system for poplar trees based on gene and enhancer traps. Gene and enhancer trap vectors carrying the β-glucuronidase (GUS) reporter gene were inserted into the poplar genome via Agrobacterium tumefaciens transformation, where they reveal the expression pattern of genes at or near the insertion sites. Because GUS...

  4. Characterization of a Multiresistant Mosaic Plasmid from a Fish Farm Sediment Exiguobacterium sp. Isolate Reveals Aggregation of Functional Clinic-Associated Antibiotic Resistance Genes

    PubMed Central

    Yang, Jing; Wang, Chao; Wu, Jinyu; Liu, Li; Zhang, Gang

    2014-01-01

    The genus Exiguobacterium can adapt readily to, and survive in, diverse environments. Our study demonstrated that Exiguobacterium sp. strain S3-2, isolated from marine sediment, is resistant to five antibiotics. The plasmid pMC1 in this strain carries seven putative resistance genes. We functionally characterized these resistance genes in Escherichia coli, and genes encoding dihydrofolate reductase and macrolide phosphotransferase were considered novel resistance genes based on their low similarities to known resistance genes. The plasmid G+C content distribution was highly heterogeneous. Only the G+C content of one block, which shared significant similarity with a plasmid from Exiguobacterium arabatum, fit well with the mean G+C content of the host. The remainder of the plasmid was composed of mobile elements with a markedly lower G+C ratio than the host. Interestingly, five mobile elements located on pMC1 showed significant similarities to sequences found in pathogens. Our data provided an example of the link between resistance genes in strains from the environment and the clinic and revealed the aggregation of antibiotic resistance genes in bacteria isolated from fish farms. PMID:24362420

  5. Gene transfer agent (GTA) genes reveal diverse and dynamic Roseobacter and Rhodobacter populations in the Chesapeake Bay.

    PubMed

    Zhao, Yanlin; Wang, Kui; Budinoff, Charles; Buchan, Alison; Lang, Andrew; Jiao, Nianzhi; Chen, Feng

    2009-03-01

    Within the bacterial class Alphaproteobacteria, the order Rhodobacterales contains the Roseobacter and Rhodobacter clades. Roseobacters are abundant and play important biogeochemical roles in marine environments. Roseobacter and Rhodobacter genomes contain a conserved gene transfer agent (GTA) gene cluster, and GTA-mediated gene transfer has been observed in these groups of bacteria. In this study, we investigated the genetic diversity of these two groups in Chesapeake Bay surface waters using a specific PCR primer set targeting the conserved Rhodobacterales GTA major capsid protein gene (g5). The g5 gene was successfully amplified from 26 Rhodobacterales isolates and the bay microbial communities using this primer set. Four g5 clone libraries were constructed from microbial assemblages representing different regions and seasons of the bay and yielded diverse sequences. In total, 12 distinct g5 clusters could be identified among 158 Chesapeake Bay clones, 11 fall within the Roseobacter clade, and one falls in the Rhodobacter clade. The vast majority of the clusters (10 out of 12) lack cultivated representatives. The composition of g5 sequences varied dramatically along the bay during the wintertime, and a distinct Roseobacter population composition between winter and summer was observed. The congruence between g5 and 16S rRNA gene phylogenies indicates that g5 may serve as a useful genetic marker to investigate diversity and abundance of Roseobacter and Rhodobacter in natural environments. The presence of the g5 gene in the natural populations of Roseobacter and Rhodobacter implies that genetic exchange through GTA transduction could be an important mechanism for maintaining the metabolic flexibility of these groups of bacteria.

  6. "Contrasting patterns of selection at Pinus pinaster Ait. Drought stress candidate genes as revealed by genetic differentiation analyses".

    PubMed

    Eveno, Emmanuelle; Collada, Carmen; Guevara, M Angeles; Léger, Valérie; Soto, Alvaro; Díaz, Luis; Léger, Patrick; González-Martínez, Santiago C; Cervera, M Teresa; Plomion, Christophe; Garnier-Géré, Pauline H

    2008-02-01

    The importance of natural selection for shaping adaptive trait differentiation among natural populations of allogamous tree species has long been recognized. Determining the molecular basis of local adaptation remains largely unresolved, and the respective roles of selection and demography in shaping population structure are actively debated. Using a multilocus scan that aims to detect outliers from simulated neutral expectations, we analyzed patterns of nucleotide diversity and genetic differentiation at 11 polymorphic candidate genes for drought stress tolerance in phenotypically contrasted Pinus pinaster Ait. populations across its geographical range. We compared 3 coalescent-based methods: 2 frequentist-like, including 1 approach specifically developed for biallelic single nucleotide polymorphisms (SNPs) here and 1 Bayesian. Five genes showed outlier patterns that were robust across methods at the haplotype level for 2 of them. Two genes presented higher F(ST) values than expected (PR-AGP4 and erd3), suggesting that they could have been affected by the action of diversifying selection among populations. In contrast, 3 genes presented lower F(ST) values than expected (dhn-1, dhn2, and lp3-1), which could represent signatures of homogenizing selection among populations. A smaller proportion of outliers were detected at the SNP level suggesting the potential functional significance of particular combinations of sites in drought-response candidate genes. The Bayesian method appeared robust to low sample sizes, flexible to assumptions regarding migration rates, and powerful for detecting selection at the haplotype level, but the frequentist-like method adapted to SNPs was more efficient for the identification of outlier SNPs showing low differentiation. Population-specific effects estimated in the Bayesian method also revealed populations with lower immigration rates, which could have led to favorable situations for local adaptation. Outlier patterns are discussed

  7. Environmental Influences on Kelp Performance across the Reproductive Period: An Ecological Trade-Off between Gametophyte Survival and Growth?

    PubMed Central

    Mohring, Margaret B.; Kendrick, Gary A.; Wernberg, Thomas; Rule, Michael J.; Vanderklift, Mathew A.

    2013-01-01

    Most kelps (order Laminariales) exhibit distinct temporal patterns in zoospore production, gametogenesis and gametophyte reproduction. Natural fluctuations in ambient environmental conditions influence the intrinsic characteristics of gametes, which define their ability to tolerate varied conditions. The aim of this work was to document seasonal patterns in reproduction and gametophyte growth and survival of Ecklonia radiata (C. Agardh) J. Agardh in south-western Australia. These results were related to patterns in local environmental conditions in an attempt to ascertain which factors explain variation throughout the season. E. radiata was fertile (produced zoospores) for three and a half months over summer and autumn. Every two weeks during this time, gametophytes were grown in a range of temperatures (16–22°C) in the laboratory. Zoospore densities were highly variable among sample periods; however, zoospores released early in the season produced gametophytes which had greater rates of growth and survival, and these rates declined towards the end of the reproductive season. Growth rates of gametophytes were positively related to day length, with the fastest growing recruits released when the days were longest. Gametophytes consistently survived best in the lowest temperature (16°C), yet exhibited optimum growth in higher culture temperatures (20–22°C). These results suggest that E. radiata releases gametes when conditions are favourable for growth, and E. radiata gametophytes are tolerant of the range of temperatures observed at this location. E. radiata releases the healthiest gametophytes when day length and temperature conditions are optimal for better germination, growth, and sporophyte production, perhaps as a mechanism to help compete against other species for space and other resources. PMID:23755217

  8. Comprehensive analysis of gene expression patterns in Friedreich's ataxia fibroblasts by RNA sequencing reveals altered levels of protein synthesis factors and solute carriers

    PubMed Central

    Li, Yanjie; Lu, Yue; Lin, Kevin; Hauser, Lauren A.; Lynch, David R.

    2017-01-01

    ABSTRACT Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease usually caused by large homozygous expansions of GAA repeat sequences in intron 1 of the frataxin (FXN) gene. FRDA patients homozygous for GAA expansions have low FXN mRNA and protein levels when compared with heterozygous carriers or healthy controls. Frataxin is a mitochondrial protein involved in iron–sulfur cluster synthesis, and many FRDA phenotypes result from deficiencies in cellular metabolism due to lowered expression of FXN. Presently, there is no effective treatment for FRDA, and biomarkers to measure therapeutic trial outcomes and/or to gauge disease progression are lacking. Peripheral tissues, including blood cells, buccal cells and skin fibroblasts, can readily be isolated from FRDA patients and used to define molecular hallmarks of disease pathogenesis. For instance, FXN mRNA and protein levels as well as FXN GAA-repeat tract lengths are routinely determined using all of these cell types. However, because these tissues are not directly involved in disease pathogenesis, their relevance as models of the molecular aspects of the disease is yet to be decided. Herein, we conducted unbiased RNA sequencing to profile the transcriptomes of fibroblast cell lines derived from 18 FRDA patients and 17 unaffected control individuals. Bioinformatic analyses revealed significantly upregulated expression of genes encoding plasma membrane solute carrier proteins in FRDA fibroblasts. Conversely, the expression of genes encoding accessory factors and enzymes involved in cytoplasmic and mitochondrial protein synthesis was consistently decreased in FRDA fibroblasts. Finally, comparison of genes differentially expressed in FRDA fibroblasts to three previously published gene expression signatures defined for FRDA blood cells showed substantial overlap between the independent datasets, including correspondingly deficient expression of antioxidant defense genes. Together, these results

  9. Expression Profiling of Castanea Genes during Resistant and Susceptible Interactions with the Oomycete Pathogen Phytophthora cinnamomi Reveal Possible Mechanisms of Immunity

    PubMed Central

    Santos, Carmen; Duarte, Sofia; Tedesco, Sara; Fevereiro, Pedro; Costa, Rita L.

    2017-01-01

    The most dangerous pathogen affecting the production of chestnuts is Phytophthora cinnamomi a hemibiotrophic that causes root rot, also known as ink disease. Little information has been acquired in chestnut on the molecular defense strategies against this pathogen. The expression of eight candidate genes potentially involved in the defense to P. cinnamomi was quantified by digital PCR in Castanea genotypes showing different susceptibility to the pathogen. Seven of the eight candidate genes displayed differentially expressed levels depending on genotype and time-point after inoculation. Cast_Gnk2-like revealed to be the most expressed gene across all experiments and the one that best discriminates between susceptible and resistant genotypes. Our data suggest that the pre-formed defenses are crucial for the resistance of C. crenata to P. cinnamomi. A lower and delayed expression of the eight studied genes was found in the susceptible Castanea sativa, which may be related with the establishment and spread of the disease in this species. A working model integrating the obtained results is presented. PMID:28443110

  10. Single molecule real-time sequencing of Xanthomonas oryzae genomes reveals a dynamic structure and complex TAL (transcription activator-like) effector gene relationships

    PubMed Central

    Booher, Nicholas J.; Carpenter, Sara C. D.; Sebra, Robert P.; Wang, Li; Salzberg, Steven L.; Leach, Jan E.

    2015-01-01

    Pathogen-injected, direct transcriptional activators of host genes, TAL (transcription activator-like) effectors play determinative roles in plant diseases caused by Xanthomonas spp. A large domain of nearly identical, 33–35 aa repeats in each protein mediates DNA recognition. This modularity makes TAL effectors customizable and thus important also in biotechnology. However, the repeats render TAL effector (tal) genes nearly impossible to assemble using next-generation, short reads. Here, we demonstrate that long-read, single molecule real-time (SMRT) sequencing solves this problem. Taking an ensemble approach to first generate local, tal gene contigs, we correctly assembled de novo the genomes of two strains of the rice pathogen X. oryzae completed previously using the Sanger method and even identified errors in those references. Sequencing two more strains revealed a dynamic genome structure and a striking plasticity in tal gene content. Our results pave the way for population-level studies to inform resistance breeding, improve biotechnology and probe TAL effector evolution. PMID:27148456

  11. The gene expression profile of resistant and susceptible Bombyx mori strains reveals cypovirus-associated variations in host gene transcript levels.

    PubMed

    Guo, Rui; Wang, Simei; Xue, Renyu; Cao, Guangli; Hu, Xiaolong; Huang, Moli; Zhang, Yangqi; Lu, Yahong; Zhu, Liyuan; Chen, Fei; Liang, Zi; Kuang, Sulan; Gong, Chengliang

    2015-06-01

    High-throughput paired-end RNA sequencing (RNA-Seq) was performed to investigate the gene expression profile of a susceptible Bombyx mori strain, Lan5, and a resistant B. mori strain, Ou17, which were both orally infected with B. mori cypovirus (BmCPV) in the midgut. There were 330 and 218 up-regulated genes, while there were 147 and 260 down-regulated genes in the Lan5 and Ou17 strains, respectively. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment for differentially expressed genes (DEGs) were carried out. Moreover, gene interaction network (STRING) analyses were performed to analyze the relationships among the shared DEGs. Some of these genes were related and formed a large network, in which the genes for B. mori cuticular protein RR-2 motif 123 (BmCPR123) and the gene for B. mori DNA replication licensing factor Mcm2-like (BmMCM2) were key genes among the common up-regulated DEGs, whereas the gene for B. mori heat shock protein 20.1 (Bmhsp20.1) was the central gene among the shared down-regulated DEGs between Lan5 vs Lan5-CPV and Ou17 vs Ou17-CPV. These findings established a comprehensive database of genes that are differentially expressed in response to BmCPV infection between silkworm strains that differed in resistance to BmCPV and implied that these DEGs might be involved in B. mori immune responses against BmCPV infection.

  12. Genome-wide characterization of the WRKY gene family in radish (Raphanus sativus L.) reveals its critical functions under different abiotic stresses.

    PubMed

    Karanja, Bernard Kinuthia; Fan, Lianxue; Xu, Liang; Wang, Yan; Zhu, Xianwen; Tang, Mingjia; Wang, Ronghua; Zhang, Fei; Muleke, Everlyne M'mbone; Liu, Liwang

    2017-11-01

    The radish WRKY gene family was genome-widely identified and played critical roles in response to multiple abiotic stresses. The WRKY is among the largest transcription factors (TFs) associated with multiple biological activities for plant survival, including control response mechanisms against abiotic stresses such as heat, salinity, and heavy metals. Radish is an important root vegetable crop and therefore characterization and expression pattern investigation of WRKY transcription factors in radish is imperative. In the present study, 126 putative WRKY genes were retrieved from radish genome database. Protein sequence and annotation scrutiny confirmed that RsWRKY proteins possessed highly conserved domains and zinc finger motif. Based on phylogenetic analysis results, RsWRKYs candidate genes were divided into three groups (Group I, II and III) with the number 31, 74, and 20, respectively. Additionally, gene structure analysis revealed that intron-exon patterns of the WRKY genes are highly conserved in radish. Linkage map analysis indicated that RsWRKY genes were distributed with varying densities over nine linkage groups. Further, RT-qPCR analysis illustrated the significant variation of 36 RsWRKY genes under one or more abiotic stress treatments, implicating that they might be stress-responsive genes. In total, 126 WRKY TFs were identified from the R. sativus genome wherein, 35 of them showed abiotic stress-induced expression patterns. These results provide a genome-wide characterization of RsWRKY TFs and baseline for further functional dissection and molecular evolution investigation, specifically for improving abiotic stress resistances with an ultimate goal of increasing yield and quality of radish.

  13. Whole-genome de novo sequencing reveals unique genes that contributed to the adaptive evolution of the Mikado pheasant.

    PubMed

    Lee, Chien-Yueh; Hsieh, Ping-Han; Chiang, Li-Mei; Chattopadhyay, Amrita; Li, Kuan-Yi; Lee, Yi-Fang; Lu, Tzu-Pin; Lai, Liang-Chuan; Lin, En-Chung; Lee, Hsinyu; Ding, Shih-Torng; Tsai, Mong-Hsun; Chen, Chien-Yu; Chuang, Eric Y

    2018-05-01

    The Mikado pheasant (Syrmaticus mikado) is a nearly endangered species indigenous to high-altitude regions of Taiwan. This pheasant provides an opportunity to investigate evolutionary processes following geographic isolation. Currently, the genetic background and adaptive evolution of the Mikado pheasant remain unclear. We present the draft genome of the Mikado pheasant, which consists of 1.04 Gb of DNA and 15,972 annotated protein-coding genes. The Mikado pheasant displays expansion and positive selection of genes related to features that contribute to its adaptive evolution, such as energy metabolism, oxygen transport, hemoglobin binding, radiation response, immune response, and DNA repair. To investigate the molecular evolution of the major histocompatibility complex (MHC) across several avian species, 39 putative genes spanning 227 kb on a contiguous region were annotated and manually curated. The MHC loci of the pheasant revealed a high level of synteny, several rapidly evolving genes, and inverse regions compared to the same loci in the chicken. The complete mitochondrial genome was also sequenced, assembled, and compared against four long-tailed pheasants. The results from molecular clock analysis suggest that ancestors of the Mikado pheasant migrated from the north to Taiwan about 3.47 million years ago. This study provides a valuable genomic resource for the Mikado pheasant, insights into its adaptation to high altitude, and the evolutionary history of the genus Syrmaticus, which could potentially be useful for future studies that investigate molecular evolution, genomics, ecology, and immunogenetics.

  14. Whole-Genome Analysis Reveals That Active Heat Shock Factor Binding Sites Are Mostly Associated with Non-Heat Shock Genes in Drosophila melanogaster

    PubMed Central

    Gonsalves, Sarah E.; Moses, Alan M.; Razak, Zak; Robert, Francois; Westwood, J. Timothy

    2011-01-01

    During heat shock (HS) and other stresses, HS gene transcription in eukaryotes is up-regulated by the transcription factor heat shock factor (HSF). While the identities of the major HS genes have been known for more than 30 years, it has been suspected that HSF binds to numerous other genes and potentially regulates their transcription. In this study, we have used a chromatin immunoprecipitation and microarray (ChIP-chip) approach to identify 434 regions in the Drosophila genome that are bound by HSF. We have also performed a transcript analysis of heat shocked Kc167 cells and third instar larvae and compared them to HSF binding sites. The heat-induced transcription profiles were quite different between cells and larvae and surprisingly only about 10% of the genes associated with HSF binding sites show changed transcription. There were also genes that showed changes in transcript levels that did not appear to correlate with HSF binding sites. Analysis of the locations of the HSF binding sites revealed that 57% were contained within genes with approximately 2/3rds of these sites being in introns. We also found that the insulator protein, BEAF, has enriched binding prior to HS to promoters of genes that are bound by HSF upon HS but that are not transcriptionally induced during HS. When the genes associated with HSF binding sites in promoters were analyzed for gene ontology terms, categories such as stress response and transferase activity were enriched whereas analysis of genes having HSF binding sites in introns identified those categories plus ones related to developmental processes and reproduction. These results suggest that Drosophila HSF may be regulating many genes besides the known HS genes and that some of these genes may be regulated during non-stress conditions. PMID:21264254

  15. Whole-genome analysis reveals that active heat shock factor binding sites are mostly associated with non-heat shock genes in Drosophila melanogaster.

    PubMed

    Gonsalves, Sarah E; Moses, Alan M; Razak, Zak; Robert, Francois; Westwood, J Timothy

    2011-01-14

    During heat shock (HS) and other stresses, HS gene transcription in eukaryotes is up-regulated by the transcription factor heat shock factor (HSF). While the identities of the major HS genes have been known for more than 30 years, it has been suspected that HSF binds to numerous other genes and potentially regulates their transcription. In this study, we have used a chromatin immunoprecipitation and microarray (ChIP-chip) approach to identify 434 regions in the Drosophila genome that are bound by HSF. We have also performed a transcript analysis of heat shocked Kc167 cells and third instar larvae and compared them to HSF binding sites. The heat-induced transcription profiles were quite different between cells and larvae and surprisingly only about 10% of the genes associated with HSF binding sites show changed transcription. There were also genes that showed changes in transcript levels that did not appear to correlate with HSF binding sites. Analysis of the locations of the HSF binding sites revealed that 57% were contained within genes with approximately 2/3rds of these sites being in introns. We also found that the insulator protein, BEAF, has enriched binding prior to HS to promoters of genes that are bound by HSF upon HS but that are not transcriptionally induced during HS. When the genes associated with HSF binding sites in promoters were analyzed for gene ontology terms, categories such as stress response and transferase activity were enriched whereas analysis of genes having HSF binding sites in introns identified those categories plus ones related to developmental processes and reproduction. These results suggest that Drosophila HSF may be regulating many genes besides the known HS genes and that some of these genes may be regulated during non-stress conditions.

  16. Preliminary observations on the benthic marine algae of the Gorringe seabank (northeast Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Tittley, Ian; da Silva Vaz Álvaro, Nuno Miguel; de Melo Azevedo Neto, Ana Isabel

    2014-06-01

    Examination of marine samples collected in 2006 from the Gettysburg and Ormonde seamounts on the Gorringe seabank southwest of Portugal has revealed 29 benthic Chlorophyta, Phaeophyceae (Ochrophyta), and Rhodophyta that were identified provisionally to genus and to species. Combining lists for the present and a previous expedition brings the total of algae thus far recorded to 48. The brown alga Zonaria tournefourtii and the red alga Cryptopleura ramosa were the most abundant species in the present collections. The kelp Laminaria ochroleuca was present only in the Gettysburg samples while Saccorhiza polyschides was observed only on the Ormonde seamount. Comparisons with the benthic marine algae recorded on seamounts in the mid-Atlantic Azores archipelago show features in common, notably kelp forests of L. ochroleuca at depths below 30 m and Z. tournefortii dominance in shallower waters.

  17. Whole-exome sequencing reveals a novel missense mutation in the MARS gene related to a rare Charcot-Marie-Tooth neuropathy type 2U.

    PubMed

    Sagi-Dain, Lena; Shemer, Lilach; Zelnik, Nathanel; Zoabi, Yusri; Orit, Sadeh; Adir, Vardit; Schif, Aharon; Peleg, Amir

    2018-06-01

    Charcot-Marie-Tooth (CMT) is a heterogeneous group of progressive disorders, characterized by chronic motor and sensory polyneuropathy. This hereditary disorder is related to numerous genes and varying inheritance patterns. Thus, many patients do not reach a final genetic diagnosis. We describe a 13-year-old girl presenting with progressive bilateral leg weakness and gait instability. Extensive laboratory studies and spinal magnetic resonance imaging scan were normal. Nerve conduction studies revealed severe lower limb peripheral neuropathy with prominent demyelinative component. Following presumptive diagnosis of chronic inflammatory demyelinating polyneuropathy, the patient received treatment with steroids and intravenous immunoglobulins courses for several months, with no apparent improvement. Whole-exome sequencing revealed a novel heterozygous c.2209C>T (p.Arg737Trp) mutation in the MARS gene (OMIM 156560). This gene has recently been related to CMT type 2U. In-silico prediction programs classified this mutation as a probable cause for protein malfunction. Allele frequency data reported this variant in 0.003% of representative Caucasian population. Family segregation analysis study revealed that the patient had inherited the variant from her 60-years old mother, reported as healthy. Neurologic examination of the mother demonstrated decreased tendon reflexes, while nerve conduction studies were consistent with demyelinative and axonal sensory-motor polyneuropathy. Our report highlights the importance of next-generation sequencing approach to facilitate the proper molecular diagnosis of highly heterogeneous neurologic disorders. Amongst other numerous benefits, this approach might prevent unnecessary diagnostic testing and potentially harmful medical treatment. © 2018 Peripheral Nerve Society.

  18. Analysis of the neurofibromatosis 2 gene reveals molecular variants of meningioma.

    PubMed Central

    Wellenreuther, R.; Kraus, J. A.; Lenartz, D.; Menon, A. G.; Schramm, J.; Louis, D. N.; Ramesh, V.; Gusella, J. F.; Wiestler, O. D.; von Deimling, A.

    1995-01-01

    There is evidence from cytogenetic and loss of heterozygosity studies for the involvement of a tumor suppressor gene on chromosome 22 in the formation of meningiomas. Recently, the NF2 gene, which causes neurofibromatosis type 2 and which is located in the affected region on chromosome 22, has been identified. A previous study on 8 of the 17 exons of the NF2 gene described mutations in 16% of meningiomas. We have analyzed the entire coding region of the NF2 gene in 70 sporadic meningiomas and identified 43 mutations in 41 patients. These resulted predominantly in immediate truncation, splicing abnormalities, or an altered reading frame of the predicted protein product. Although there was no evidence for distinct hotspots, all mutations occurred in the first 13 exons, the region of homology with the filopodial proteins moesin, ezrin, and radixin. The association of loss of heterozygosity on chromosome 22 with mutations in the NF2 gene was significant. These data suggest that NF2 represents the meningioma locus on chromosome 22. NF2 mutations occurred significantly more frequently in fibroblastic meningioma (70%) and transitional meningioma (83%) than in meningiothelial meningioma (25%), thus indicating a differential molecular pathogenesis of these meningioma variants. Images Figure 1 PMID:7717450

  19. Homozygosity mapping reveals new nonsense mutation in the FAM161A gene causing autosomal recessive retinitis pigmentosa in a Palestinian family.

    PubMed

    Zobor, Ditta; Balousha, Ghassan; Baumann, Britta; Wissinger, Bernd

    2014-01-01

    Retinitis pigmentosa (RP) is a heterogenous group of inherited retinal degenerations caused by mutations in at least 45 genes. Recently, the FAM161A gene was identified as the causative gene for RP28, an autosomal recessive form of RP. We performed a clinical and molecular genetic study of a consanguineous Palestinian family with two three siblings affected with retinitis pigmentosa. DNA samples were collected from the index patient, his father, his affected sister, and two non-affected brothers. DNA sample from the index was subjected to high resolution genome-wide SNP array. Assuming identity-by-descent in this consanguineous family we applied homozygosity mapping to identify disease causing genes. The index patient reported night blindness since the age of 20 years, followed by moderate disease progression with decrease of peripheral vision, the development of photophobia and later on reduced central vision. At the age of 40 his visual acuity was counting fingers (CF) for both eyes, color discrimination was not possible and his visual fields were severely constricted. Funduscopic examination revealed a typical appearance of advanced RP with optic disc pallor, narrowed retinal vessels, bone-spicule like pigmentary changes in the mid-periphery and atrophic changes in the macula. His younger affected brother (37 years) was reported with overall milder symptoms, while the youngest sister (21 years) reported problems only with night vision. Applying high-density SNP arrays we identified several homozygous genomic regions one of which included the recently identified FAM161A gene mutated in RP28-linked autosomal recessive RP. Sequencing analysis revealed the presence of a novel homozygous nonsense mutation, c.1003C>T/p.R335X in the index patient and the affected sister. We identified an RP28-linked RP family in the Palestinian population caused by a novel nonsense mutation in FAM161A. RP in this family shows a typical disease onset with moderate to rapid progression

  20. Homozygosity mapping reveals new nonsense mutation in the FAM161A gene causing autosomal recessive retinitis pigmentosa in a Palestinian family

    PubMed Central

    Zobor, Ditta; Balousha, Ghassan; Baumann, Britta

    2014-01-01

    Purpose: Retinitis pigmentosa (RP) is a heterogenous group of inherited retinal degenerations caused by mutations in at least 45 genes. Recently, the FAM161A gene was identified as the causative gene for RP28, an autosomal recessive form of RP. Methods: We performed a clinical and molecular genetic study of a consanguineous Palestinian family with two three siblings affected with retinitis pigmentosa. DNA samples were collected from the index patient, his father, his affected sister, and two non-affected brothers. DNA sample from the index was subjected to high resolution genome-wide SNP array. Assuming identity-by-descent in this consanguineous family we applied homozygosity mapping to identify disease causing genes. Results: The index patient reported night blindness since the age of 20 years, followed by moderate disease progression with decrease of peripheral vision, the development of photophobia and later on reduced central vision. At the age of 40 his visual acuity was counting fingers (CF) for both eyes, color discrimination was not possible and his visual fields were severely constricted. Funduscopic examination revealed a typical appearance of advanced RP with optic disc pallor, narrowed retinal vessels, bone-spicule like pigmentary changes in the mid-periphery and atrophic changes in the macula. His younger affected brother (37 years) was reported with overall milder symptoms, while the youngest sister (21 years) reported problems only with night vision. Applying high-density SNP arrays we identified several homozygous genomic regions one of which included the recently identified FAM161A gene mutated in RP28-linked autosomal recessive RP. Sequencing analysis revealed the presence of a novel homozygous nonsense mutation, c.1003C>T/p.R335X in the index patient and the affected sister. Conclusion: We identified an RP28-linked RP family in the Palestinian population caused by a novel nonsense mutation in FAM161A. RP in this family shows a typical disease

  1. Global Genome and Transcriptome Analyses of Magnaporthe oryzae Epidemic Isolate 98-06 Uncover Novel Effectors and Pathogenicity-Related Genes, Revealing Gene Gain and Lose Dynamics in Genome Evolution

    PubMed Central

    Dong, Yanhan; Li, Ying; Zhao, Miaomiao; Jing, Maofeng; Liu, Xinyu; Liu, Muxing; Guo, Xianxian; Zhang, Xing; Chen, Yue; Liu, Yongfeng; Liu, Yanhong; Ye, Wenwu; Zhang, Haifeng; Wang, Yuanchao; Zheng, Xiaobo; Wang, Ping; Zhang, Zhengguang

    2015-01-01

    Genome dynamics of pathogenic organisms are driven by pathogen and host co-evolution, in which pathogen genomes are shaped to overcome stresses imposed by hosts with various genetic backgrounds through generation of a variety of isolates. This same principle applies to the rice blast pathogen Magnaporthe oryzae and the rice host; however, genetic variations among different isolates of M. oryzae remain largely unknown, particularly at genome and transcriptome levels. Here, we applied genomic and transcriptomic analytical tools to investigate M. oryzae isolate 98-06 that is the most aggressive in infection of susceptible rice cultivars. A unique 1.4 Mb of genomic sequences was found in isolate 98-06 in comparison to reference strain 70-15. Genome-wide expression profiling revealed the presence of two critical expression patterns of M. oryzae based on 64 known pathogenicity-related (PaR) genes. In addition, 134 candidate effectors with various segregation patterns were identified. Five tested proteins could suppress BAX-mediated programmed cell death in Nicotiana benthamiana leaves. Characterization of isolate-specific effector candidates Iug6 and Iug9 and PaR candidate Iug18 revealed that they have a role in fungal propagation and pathogenicity. Moreover, Iug6 and Iug9 are located exclusively in the biotrophic interfacial complex (BIC) and their overexpression leads to suppression of defense-related gene expression in rice, suggesting that they might participate in biotrophy by inhibiting the SA and ET pathways within the host. Thus, our studies identify novel effector and PaR proteins involved in pathogenicity of the highly aggressive M. oryzae field isolate 98-06, and reveal molecular and genomic dynamics in the evolution of M. oryzae and rice host interactions. PMID:25837042

  2. Comparative transcriptome and gene co-expression network analysis reveal genes and signaling pathways adaptively responsive to varied adverse stresses in the insect fungal pathogen, Beauveria bassiana.

    PubMed

    He, Zhangjiang; Zhao, Xin; Lu, Zhuoyue; Wang, Huifang; Liu, Pengfei; Zeng, Fanqin; Zhang, Yongjun

    2018-01-01

    Sensing, responding, and adapting to the surrounding environment are crucial for all living organisms to survive, proliferate, and differentiate in their biological niches. Beauveria bassiana is an economically important insect-pathogenic fungus which is widely used as a biocontrol agent to control a variety of insect pests. The fungal pathogen unavoidably encounters a variety of adverse environmental stresses and defense response from the host insects during application of the fungal agents. However, few are known about the transcription response of the fungus to respond or adapt varied adverse stresses. Here, we comparatively analyzed the transcriptome of B. bassiana in globe genome under the varied stationary-phase stresses including osmotic agent (0.8 M NaCl), high temperature (32 °C), cell wall-perturbing agent (Congo red), and oxidative agents (H 2 O 2 or menadione). Total of 12,412 reads were obtained, and mapped to the 6767 genes of the B. bassiana. All of these stresses caused transcription responses involved in basal metabolism, cell wall construction, stress response or cell rescue/detoxification, signaling transduction and gene transcription regulation, and likely other cellular processes. An array of genes displayed similar transcription patterns in response to at least two of the five stresses, suggesting a shared transcription response to varied adverse stresses. Gene co-expression network analysis revealed that mTOR signaling pathway, but not HOG1 MAP kinase pathway, played a central role in regulation the varied adverse stress responses, which was verified by RNAi-mediated knockdown of TOR1. Our findings provided an insight of transcription response and gene co-expression network of B. bassiana in adaptation to varied environments. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. A genome-wide association study reveals candidate genes for the supernumerary nipple phenotype in sheep (Ovis aries).

    PubMed

    Peng, W-F; Xu, S-S; Ren, X; Lv, F-H; Xie, X-L; Zhao, Y-X; Zhang, M; Shen, Z-Q; Ren, Y-L; Gao, L; Shen, M; Kantanen, J; Li, M-H

    2017-10-01

    Genome-wide association studies (GWASs) have been widely applied in livestock to identify genes associated with traits of economic interest. Here, we conducted the first GWAS of the supernumerary nipple phenotype in Wadi sheep, a native Chinese sheep breed, based on Ovine Infinium HD SNP BeadChip genotypes in a total of 144 ewes (75 cases with four teats, including two normal and two supernumerary teats, and 69 control cases with two teats). We detected 63 significant SNPs at the chromosome-wise threshold. Additionally, one candidate region (chr1: 170.723-170.734 Mb) was identified by haplotype-based association tests, with one SNP (rs413490006) surrounding functional genes BBX and CD47 on chromosome 1 being commonly identified as significant by the two mentioned analyses. Moreover, Gene Ontology enrichment for the significant SNPs identified by the GWAS analysis was functionally clustered into the categories of receptor activity and synaptic membrane. In addition, pathway mapping revealed four promising pathways (Wnt, oxytocin, MAPK and axon guidance) involved in the development of the supernumerary nipple phenotype. Our results provide novel and important insights into the genetic mechanisms underlying the phenotype of supernumerary nipples in mammals, including humans. These findings may be useful for future breeding and genetics in sheep and other livestock. © 2017 Stichting International Foundation for Animal Genetics.

  4. Genetic analysis of Chinese families reveals a novel truncation allele of the retinitis pigmentosa GTPase regulator gene

    PubMed Central

    Hu, Fang; Zeng, Xiang-Yun; Liu, Lin-Lin; Luo, Yao-Ling; Jiang, Yi-Ping; Wang, Hui; Xie, Jing; Hu, Cheng-Quan; Gan, Lin; Huang, Liang

    2014-01-01

    AIM To make comprehensive molecular diagnosis for retinitis pigmentosa (RP) patients in a consanguineous Han Chinese family using next generation sequencing based Capture-NGS screen technology. METHODS A five-generation Han Chinese family diagnosed as non-syndromic X-linked recessive RP (XLRP) was recruited, including four affected males, four obligate female carriers and eleven unaffected family members. Capture-NGS was performed using a custom designed capture panel covers 163 known retinal disease genes including 47 RP genes, followed by the validation of detected mutation using Sanger sequencing in all recruited family members. RESULTS Capture-NGS in one affected 47-year-old male reveals a novel mutation, c.2417_2418insG:p.E806fs, in exon ORF15 of RP GTPase regulator (RPGR) gene results in a frameshift change that results in a premature stop codon and a truncated protein product. The mutation was further validated in three of four affected males and two of four female carriers but not in the other unaffected family members. CONCLUSION We have identified a novel mutation, c.2417_2418insG:p.E806fs, in a Han Chinese family with XLRP. Our findings expand the mutation spectrum of RPGR and the phenotypic spectrum of XLRP in Han Chinese families, and confirms Capture-NGS could be an effective and economic approach for the comprehensive molecular diagnosis of RP. PMID:25349787

  5. RNA-Seq Reveals Dynamic Changes of Gene Expression in Key Stages of Intestine Regeneration in the Sea Cucumber Apostichopus japonicas

    PubMed Central

    Sun, Lina; Yang, Hongsheng; Chen, Muyan; Ma, Deyou; Lin, Chenggang

    2013-01-01

    Background Sea cucumbers (Holothuroidea; Echinodermata) have the capacity to regenerate lost tissues and organs. Although the histological and cytological aspects of intestine regeneration have been extensively studied, little is known of the genetic mechanisms involved. There has, however, been a renewed effort to develop a database of Expressed Sequence Tags (ESTs) in Apostichopus japonicus, an economically-important species that occurs in China. This is important for studies on genetic breeding, molecular markers and special physiological phenomena. We have also constructed a library of ESTs obtained from the regenerative body wall and intestine of A. japonicus. The database has increased to ∼30000 ESTs. Results We used RNA-Seq to determine gene expression profiles associated with intestinal regeneration in A. japonicus at 3, 7, 14 and 21 days post evisceration (dpe). This was compared to profiles obtained from a normally-functioning intestine. Approximately 5 million (M) reads were sequenced in every library. Over 2400 up-regulated genes (>10%) and over 1000 down-regulated genes (∼5%) were observed at 3 and 7dpe (log2Ratio≥1, FDR≤0.001). Specific “Go terms” revealed that the DEGs (Differentially Expressed Genes) performed an important function at every regeneration stage. Besides some expected pathways (for example, Ribosome and Spliceosome pathway term), the “Notch signaling pathway,” the “ECM-receptor interaction” and the “Cytokine-cytokine receptor interaction” were significantly enriched. We also investigated the expression profiles of developmental genes, ECM-associated genes and Cytoskeletal genes. Twenty of the most important differentially expressed genes (DEGs) were verified by Real-time PCR, which resulted in a trend concordance of almost 100% between the two techniques. Conclusion Our studies demonstrated dynamic changes in global gene expression during intestine regeneration and presented a series of candidate genes and

  6. Mapping of Gene Expression Reveals CYP27A1 as a Susceptibility Gene for Sporadic ALS

    PubMed Central

    van Rheenen, Wouter; Franke, Lude; Jansen, Ritsert C.; van Es, Michael A.; van Vught, Paul W. J.; Blauw, Hylke M.; Groen, Ewout J. N.; Horvath, Steve; Estrada, Karol; Rivadeneira, Fernando; Hofman, Albert; Uitterlinden, Andre G.; Robberecht, Wim; Andersen, Peter M.; Melki, Judith; Meininger, Vincent; Hardiman, Orla; Landers, John E.; Brown, Robert H.; Shatunov, Aleksey; Shaw, Christopher E.; Leigh, P. Nigel; Al-Chalabi, Ammar; Ophoff, Roel A.

    2012-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive, neurodegenerative disease characterized by loss of upper and lower motor neurons. ALS is considered to be a complex trait and genome-wide association studies (GWAS) have implicated a few susceptibility loci. However, many more causal loci remain to be discovered. Since it has been shown that genetic variants associated with complex traits are more likely to be eQTLs than frequency-matched variants from GWAS platforms, we conducted a two-stage genome-wide screening for eQTLs associated with ALS. In addition, we applied an eQTL analysis to finemap association loci. Expression profiles using peripheral blood of 323 sporadic ALS patients and 413 controls were mapped to genome-wide genotyping data. Subsequently, data from a two-stage GWAS (3,568 patients and 10,163 controls) were used to prioritize eQTLs identified in the first stage (162 ALS, 207 controls). These prioritized eQTLs were carried forward to the second sample with both gene-expression and genotyping data (161 ALS, 206 controls). Replicated eQTL SNPs were then tested for association in the second-stage GWAS data to find SNPs associated with disease, that survived correction for multiple testing. We thus identified twelve cis eQTLs with nominally significant associations in the second-stage GWAS data. Eight SNP-transcript pairs of highest significance (lowest p = 1.27×10−51) withstood multiple-testing correction in the second stage and modulated CYP27A1 gene expression. Additionally, we show that C9orf72 appears to be the only gene in the 9p21.2 locus that is regulated in cis, showing the potential of this approach in identifying causative genes in association loci in ALS. This study has identified candidate genes for sporadic ALS, most notably CYP27A1. Mutations in CYP27A1 are causal to cerebrotendinous xanthomatosis which can present as a clinical mimic of ALS with progressive upper motor neuron loss, making it a plausible susceptibility gene for

  7. Alcohol-Induced Histone Acetylation Reveals a Gene Network Involved in Alcohol Tolerance

    PubMed Central

    Ghezzi, Alfredo; Krishnan, Harish R.; Lew, Linda; Prado, Francisco J.; Ong, Darryl S.; Atkinson, Nigel S.

    2013-01-01

    Sustained or repeated exposure to sedating drugs, such as alcohol, triggers homeostatic adaptations in the brain that lead to the development of drug tolerance and dependence. These adaptations involve long-term changes in the transcription of drug-responsive genes as well as an epigenetic restructuring of chromosomal regions that is thought to signal and maintain the altered transcriptional state. Alcohol-induced epigenetic changes have been shown to be important in the long-term adaptation that leads to alcohol tolerance and dependence endophenotypes. A major constraint impeding progress is that alcohol produces a surfeit of changes in gene expression, most of which may not make any meaningful contribution to the ethanol response under study. Here we used a novel genomic epigenetic approach to find genes relevant for functional alcohol tolerance by exploiting the commonalities of two chemically distinct alcohols. In Drosophila melanogaster, ethanol and benzyl alcohol induce mutual cross-tolerance, indicating that they share a common mechanism for producing tolerance. We surveyed the genome-wide changes in histone acetylation that occur in response to these drugs. Each drug induces modifications in a large number of genes. The genes that respond similarly to either treatment, however, represent a subgroup enriched for genes important for the common tolerance response. Genes were functionally tested for behavioral tolerance to the sedative effects of ethanol and benzyl alcohol using mutant and inducible RNAi stocks. We identified a network of genes that are essential for the development of tolerance to sedation by alcohol. PMID:24348266

  8. Transcriptome of interstitial cells of Cajal reveals unique and selective gene signatures

    PubMed Central

    Park, Paul J.; Fuchs, Robert; Wei, Lai; Jorgensen, Brian G.; Redelman, Doug; Ward, Sean M.; Sanders, Kenton M.

    2017-01-01

    Transcriptome-scale data can reveal essential clues into understanding the underlying molecular mechanisms behind specific cellular functions and biological processes. Transcriptomics is a continually growing field of research utilized in biomarker discovery. The transcriptomic profile of interstitial cells of Cajal (ICC), which serve as slow-wave electrical pacemakers for gastrointestinal (GI) smooth muscle, has yet to be uncovered. Using copGFP-labeled ICC mice and flow cytometry, we isolated ICC populations from the murine small intestine and colon and obtained their transcriptomes. In analyzing the transcriptome, we identified a unique set of ICC-restricted markers including transcription factors, epigenetic enzymes/regulators, growth factors, receptors, protein kinases/phosphatases, and ion channels/transporters. This analysis provides new and unique insights into the cellular and biological functions of ICC in GI physiology. Additionally, we constructed an interactive ICC genome browser (http://med.unr.edu/physio/transcriptome) based on the UCSC genome database. To our knowledge, this is the first online resource that provides a comprehensive library of all known genetic transcripts expressed in primary ICC. Our genome browser offers a new perspective into the alternative expression of genes in ICC and provides a valuable reference for future functional studies. PMID:28426719

  9. Comparative transcriptome analysis revealing dormant conidia and germination associated genes in Aspergillus species: an essential role for AtfA in conidial dormancy.

    PubMed

    Hagiwara, Daisuke; Takahashi, Hiroki; Kusuya, Yoko; Kawamoto, Susumu; Kamei, Katsuhiko; Gonoi, Tohru

    2016-05-17

    Fungal conidia are usually dormant unless the extracellular conditions are right for germination. Despite the importance of dormancy, little is known about the molecular mechanism underlying entry to, maintenance of, and exit from dormancy. To gain comprehensive and inter-species insights, transcriptome analyses were conducted across Aspergillus fumigatus, Aspergillus niger, and Aspergillus oryzae. We found transcripts of 687, 694, and 812 genes were enriched in the resting conidia compared with hyphae in A. fumigatus, A. niger, and A. oryzae, respectively (conidia-associated genes). Similarly, transcripts of 766, 1,241, and 749 genes were increased in the 1 h-cultured conidia compared with the resting conidia (germination-associated genes). Among the three Aspergillus species, we identified orthologous 6,172 genes, 91 and 391 of which are common conidia- and germination-associated genes, respectively. A variety of stress-related genes, including the catalase genes, were found in the common conidia-associated gene set, and ribosome-related genes were significantly enriched among the germination-associated genes. Among the germination-associated genes, we found that calA-family genes encoding a thaumatin-like protein were extraordinary expressed in early germination stage in all Aspergillus species tested here. In A. fumigatus 63 % of the common conidia-associated genes were expressed in a bZIP-type transcriptional regulator AtfA-dependent manner, indicating that AtfA plays a pivotal role in the maintenance of resting conidial physiology. Unexpectedly, the precocious expression of the germination-associated calA and an abnormal metabolic activity were detected in the resting conidia of the atfA mutant, suggesting that AtfA was involved in the retention of conidial dormancy. A comparison among transcriptomes of hyphae, resting conidia, and 1 h-grown conidia in the three Aspergillus species revealed likely common factors involved in conidial dormancy. Atf

  10. Transcriptome Sequencing Reveals Wide Expression Reprogramming of Basal and Unknown Genes in Leptospira biflexa Biofilms

    PubMed Central

    Spangenberg, Lucía; Lopes Bastos, Bruno; Graña, Martín; Vasconcelos, Larissa; Almeida, Áurea; Greif, Gonzalo; Robello, Carlos; Ristow, Paula

    2016-01-01

    ABSTRACT The genus Leptospira is composed of pathogenic and saprophytic spirochetes. Pathogenic Leptospira is the etiological agent of leptospirosis, a globally spread neglected disease. A key ecological feature of some pathogenic species is their ability to survive both within and outside the host. For most leptospires, the ability to persist outside the host is associated with biofilm formation, a most important bacterial strategy to face and overcome hostile environmental conditions. The architecture and biochemistry of leptospiral biofilms are rather well understood; however, the genetic program underpinning biofilm formation remains mostly unknown. In this work, we used the saprophyte Leptospira biflexa as a model organism to assess over- and underrepresented transcripts during the biofilm state, using transcriptome sequencing (RNA-seq) technology. Our results showed that some basal biological processes like DNA replication and cell division are downregulated in the mature biofilm. Additionally, we identified significant expression reprogramming for genes involved in motility, sugar/lipid metabolism, and iron scavenging, as well as for outer membrane-encoding genes. A careful manual annotation process allowed us to assign molecular functions to many previously uncharacterized genes that are probably involved in biofilm metabolism. We also provided evidence for the presence of small regulatory RNAs in this species. Finally, coexpression networks were reconstructed to pinpoint functionally related gene clusters that may explain how biofilm maintenance is regulated. Beyond elucidating some genetic aspects of biofilm formation, this work reveals a number of pathways whose functional dissection may impact our understanding of leptospiral biology, in particular how these organisms adapt to environmental changes. IMPORTANCE In this work, we describe the first transcriptome based on RNA-seq technology focused on studying transcriptional changes associated with biofilm

  11. Transcriptome Sequencing Reveals Wide Expression Reprogramming of Basal and Unknown Genes in Leptospira biflexa Biofilms.

    PubMed

    Iraola, Gregorio; Spangenberg, Lucía; Lopes Bastos, Bruno; Graña, Martín; Vasconcelos, Larissa; Almeida, Áurea; Greif, Gonzalo; Robello, Carlos; Ristow, Paula; Naya, Hugo

    2016-01-01

    The genus Leptospira is composed of pathogenic and saprophytic spirochetes. Pathogenic Leptospira is the etiological agent of leptospirosis, a globally spread neglected disease. A key ecological feature of some pathogenic species is their ability to survive both within and outside the host. For most leptospires, the ability to persist outside the host is associated with biofilm formation, a most important bacterial strategy to face and overcome hostile environmental conditions. The architecture and biochemistry of leptospiral biofilms are rather well understood; however, the genetic program underpinning biofilm formation remains mostly unknown. In this work, we used the saprophyte Leptospira biflexa as a model organism to assess over- and underrepresented transcripts during the biofilm state, using transcriptome sequencing (RNA-seq) technology. Our results showed that some basal biological processes like DNA replication and cell division are downregulated in the mature biofilm. Additionally, we identified significant expression reprogramming for genes involved in motility, sugar/lipid metabolism, and iron scavenging, as well as for outer membrane-encoding genes. A careful manual annotation process allowed us to assign molecular functions to many previously uncharacterized genes that are probably involved in biofilm metabolism. We also provided evidence for the presence of small regulatory RNAs in this species. Finally, coexpression networks were reconstructed to pinpoint functionally related gene clusters that may explain how biofilm maintenance is regulated. Beyond elucidating some genetic aspects of biofilm formation, this work reveals a number of pathways whose functional dissection may impact our understanding of leptospiral biology, in particular how these organisms adapt to environmental changes. IMPORTANCE In this work, we describe the first transcriptome based on RNA-seq technology focused on studying transcriptional changes associated with biofilm growth

  12. Gene Expression Correlated with Severe Asthma Characteristics Reveals Heterogeneous Mechanisms of Severe Disease.

    PubMed

    Modena, Brian D; Bleecker, Eugene R; Busse, William W; Erzurum, Serpil C; Gaston, Benjamin M; Jarjour, Nizar N; Meyers, Deborah A; Milosevic, Jadranka; Tedrow, John R; Wu, Wei; Kaminski, Naftali; Wenzel, Sally E

    2017-06-01

    Severe asthma (SA) is a heterogeneous disease with multiple molecular mechanisms. Gene expression studies of bronchial epithelial cells in individuals with asthma have provided biological insight and underscored possible mechanistic differences between individuals. Identify networks of genes reflective of underlying biological processes that define SA. Airway epithelial cell gene expression from 155 subjects with asthma and healthy control subjects in the Severe Asthma Research Program was analyzed by weighted gene coexpression network analysis to identify gene networks and profiles associated with SA and its specific characteristics (i.e., pulmonary function tests, quality of life scores, urgent healthcare use, and steroid use), which potentially identified underlying biological processes. A linear model analysis confirmed these findings while adjusting for potential confounders. Weighted gene coexpression network analysis constructed 64 gene network modules, including modules corresponding to T1 and T2 inflammation, neuronal function, cilia, epithelial growth, and repair mechanisms. Although no network selectively identified SA, genes in modules linked to epithelial growth and repair and neuronal function were markedly decreased in SA. Several hub genes of the epithelial growth and repair module were found located at the 17q12-21 locus, near a well-known asthma susceptibility locus. T2 genes increased with severity in those treated with corticosteroids but were also elevated in untreated, mild-to-moderate disease compared with healthy control subjects. T1 inflammation, especially when associated with increased T2 gene expression, was elevated in a subgroup of younger patients with SA. In this hypothesis-generating analysis, gene expression networks in relation to asthma severity provided potentially new insight into biological mechanisms associated with the development of SA and its phenotypes.

  13. Differential co-expression analysis reveals a novel prognostic gene module in ovarian cancer.

    PubMed

    Gov, Esra; Arga, Kazim Yalcin

    2017-07-10

    Ovarian cancer is one of the most significant disease among gynecological disorders that women suffered from over the centuries. However, disease-specific and effective biomarkers were still not available, since studies have focused on individual genes associated with ovarian cancer, ignoring the interactions and associations among the gene products. Here, ovarian cancer differential co-expression networks were reconstructed via meta-analysis of gene expression data and co-expressed gene modules were identified in epithelial cells from ovarian tumor and healthy ovarian surface epithelial samples to propose ovarian cancer associated genes and their interactions. We propose a novel, highly interconnected, differentially co-expressed, and co-regulated gene module in ovarian cancer consisting of 84 prognostic genes. Furthermore, the specificity of the module to ovarian cancer was shown through analyses of datasets in nine other cancers. These observations underscore the importance of transcriptome based systems biomarkers research in deciphering the elusive pathophysiology of ovarian cancer, and here, we present reciprocal interplay between candidate ovarian cancer genes and their transcriptional regulatory dynamics. The corresponding gene module might provide new insights on ovarian cancer prognosis and treatment strategies that continue to place a significant burden on global health.

  14. Essential and Dispensable Virus-Encoded Replication Elements Revealed by Efforts To Develop Hypoviruses as Gene Expression Vectors

    PubMed Central

    Suzuki, Nobuhiro; Geletka, Lynn M.; Nuss, Donald L.

    2000-01-01

    We have investigated whether hypoviruses, viral agents responsible for virulence attenuation (hypovirulence) of the chestnut blight fungus Cryphonectria parasitica, could serve as gene expression vectors. The infectious cDNA clone of the prototypic hypovirus CHV1-EP713 was modified to generate 20 different vector candidates. Although transient expression was achieved for a subset of vectors that contained the green fluorescent protein gene from Aequorea victoria, long-term expression (past day 8) was not observed for any vector construct. Analysis of viral RNAs recovered from transfected fungal colonies revealed that the foreign genes were readily deleted from the replicating virus, although small portions of foreign sequences were retained by some vectors after months of replication. However, the results of vector viability and progeny characterization provided unexpected new insights into essential and dispensable elements of hypovirus replication. The N-terminal portion (codons 1 to 24) of the 5′-proximal open reading frame (ORF), ORF A, was found to be required for virus replication, while the remaining 598 codons of this ORF were completely dispensable. Substantial alterations were tolerated in the pentanucleotide UAAUG that contains the ORF A termination codon and the overlapping putative initiation codon of the second of the two hypovirus ORFs, ORF B. Replication competence was maintained following either a frameshift mutation that caused a two-codon extension of ORF A or a modification that produced a single-ORF genomic organization. These results are discussed in terms of determinants of hypovirus replication, the potential utility of hypoviruses as gene expression vectors, and possible mechanisms by which hypoviruses recognize and delete foreign sequences. PMID:10906211

  15. Differential gene expression profiling of matched primary renal cell carcinoma and metastases reveals upregulation of extracellular matrix genes.

    PubMed

    Ho, T H; Serie, D J; Parasramka, M; Cheville, J C; Bot, B M; Tan, W; Wang, L; Joseph, R W; Hilton, T; Leibovich, B C; Parker, A S; Eckel-Passow, J E

    2017-03-01

    The majority of renal cell carcinoma (RCC) studies analyze primary tumors, and the corresponding results are extrapolated to metastatic RCC tumors. However, it is unknown if gene expression profiles from primary RCC tumors differs from patient-matched metastatic tumors. Thus, we sought to identify differentially expressed genes between patient-matched primary and metastatic RCC tumors in order to understand the molecular mechanisms underlying the development of RCC metastases. We compared gene expression profiles between patient-matched primary and metastatic RCC tumors using a two-stage design. First, we used Affymetrix microarrays on 15 pairs of primary RCC [14 clear cell RCC (ccRCC), 1 papillary] tumors and patient-matched pulmonary metastases. Second, we used a custom NanoString panel to validate seven candidate genes in an independent cohort of 114 ccRCC patients. Differential gene expression was evaluated using a mixed effect linear model; a random effect denoting patient was included to account for the paired data. Third, The Cancer Genome Atlas (TCGA) data were used to evaluate associations with metastasis-free and overall survival in primary ccRCC tumors. We identified and validated up regulation of seven genes functionally involved in the formation of the extracellular matrix (ECM): DCN, SLIT2, LUM, LAMA2, ADAMTS12, CEACAM6 and LMO3. In primary ccRCC, CEACAM6 and LUM were significantly associated with metastasis-free and overall survival (P < 0.01). We evaluated gene expression profiles using the largest set to date, to our knowledge, of patient-matched primary and metastatic ccRCC tumors and identified up regulation of ECM genes in metastases. Our study implicates up regulation of ECM genes as a critical molecular event leading to visceral, bone and soft tissue metastases in ccRCC. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email

  16. A transcriptomic study reveals differentially expressed genes and pathways respond to simulated acid rain in Arabidopsis thaliana.

    PubMed

    Liu, Ting-Wu; Niu, Li; Fu, Bin; Chen, Juan; Wu, Fei-Hua; Chen, Juan; Wang, Wen-Hua; Hu, Wen-Jun; He, Jun-Xian; Zheng, Hai-Lei

    2013-01-01

    Acid rain, as a worldwide environmental issue, can cause serious damage to plants. In this study, we provided the first case study on the systematic responses of arabidopsis (Arabidopsis thaliana (L.) Heynh.) to simulated acid rain (SiAR) by transcriptome approach. Transcriptomic analysis revealed that the expression of a set of genes related to primary metabolisms, including nitrogen, sulfur, amino acid, photosynthesis, and reactive oxygen species metabolism, were altered under SiAR. In addition, transport and signal transduction related pathways, especially calcium-related signaling pathways, were found to play important roles in the response of arabidopsis to SiAR stress. Further, we compared our data set with previously published data sets on arabidopsis transcriptome subjected to various stresses, including wound, salt, light, heavy metal, karrikin, temperature, osmosis, etc. The results showed that many genes were overlapped in several stresses, suggesting that plant response to SiAR is a complex process, which may require the participation of multiple defense-signaling pathways. The results of this study will help us gain further insights into the response mechanisms of plants to acid rain stress.

  17. RNA-Seq profiling reveals novel hepatic gene expression pattern in aflatoxin B1 treated rats.

    PubMed

    Merrick, B Alex; Phadke, Dhiral P; Auerbach, Scott S; Mav, Deepak; Stiegelmeyer, Suzy M; Shah, Ruchir R; Tice, Raymond R

    2013-01-01

    Deep sequencing was used to investigate the subchronic effects of 1 ppm aflatoxin B1 (AFB1), a potent hepatocarcinogen, on the male rat liver transcriptome prior to onset of histopathological lesions or tumors. We hypothesized RNA-Seq would reveal more differentially expressed genes (DEG) than microarray analysis, including low copy and novel transcripts related to AFB1's carcinogenic activity compared to feed controls (CTRL). Paired-end reads were mapped to the rat genome (Rn4) with TopHat and further analyzed by DESeq and Cufflinks-Cuffdiff pipelines to identify differentially expressed transcripts, new exons and unannotated transcripts. PCA and cluster analysis of DEGs showed clear separation between AFB1 and CTRL treatments and concordance among group replicates. qPCR of eight high and medium DEGs and three low DEGs showed good comparability among RNA-Seq and microarray transcripts. DESeq analysis identified 1,026 differentially expressed transcripts at greater than two-fold change (p<0.005) compared to 626 transcripts by microarray due to base pair resolution of transcripts by RNA-Seq, probe placement within transcripts or an absence of probes to detect novel transcripts, splice variants and exons. Pathway analysis among DEGs revealed signaling of Ahr, Nrf2, GSH, xenobiotic, cell cycle, extracellular matrix, and cell differentiation networks consistent with pathways leading to AFB1 carcinogenesis, including almost 200 upregulated transcripts controlled by E2f1-related pathways related to kinetochore structure, mitotic spindle assembly and tissue remodeling. We report 49 novel, differentially-expressed transcripts including confirmation by PCR-cloning of two unique, unannotated, hepatic AFB1-responsive transcripts (HAfT's) on chromosomes 1.q55 and 15.q11, overexpressed by 10 to 25-fold. Several potentially novel exons were found and exon refinements were made including AFB1 exon-specific induction of homologous family members, Ugt1a6 and Ugt1a7c. We find the

  18. Gene expression profiling during asexual development of the late blight pathogen Phytophthora infestans reveals a highly dynamic transcriptome.

    PubMed

    Judelson, Howard S; Ah-Fong, Audrey M V; Aux, George; Avrova, Anna O; Bruce, Catherine; Cakir, Cahid; da Cunha, Luis; Grenville-Briggs, Laura; Latijnhouwers, Maita; Ligterink, Wilco; Meijer, Harold J G; Roberts, Samuel; Thurber, Carrie S; Whisson, Stephen C; Birch, Paul R J; Govers, Francine; Kamoun, Sophien; van West, Pieter; Windass, John

    2008-04-01

    Much of the pathogenic success of Phytophthora infestans, the potato and tomato late blight agent, relies on its ability to generate from mycelia large amounts of sporangia, which release zoospores that encyst and form infection structures. To better understand these stages, Affymetrix GeneChips based on 15,650 unigenes were designed and used to profile the life cycle. Approximately half of P. infestans genes were found to exhibit significant differential expression between developmental transitions, with approximately (1)/(10) being stage-specific and most changes occurring during zoosporogenesis. Quantitative reverse-transcription polymerase chain reaction assays confirmed the robustness of the array results and showed that similar patterns of differential expression were obtained regardless of whether hyphae were from laboratory media or infected tomato. Differentially expressed genes encode potential cellular regulators, especially protein kinases; metabolic enzymes such as those involved in glycolysis, gluconeogenesis, or the biosynthesis of amino acids or lipids; regulators of DNA synthesis; structural proteins, including predicted flagellar proteins; and pathogenicity factors, including cell-wall-degrading enzymes, RXLR effector proteins, and enzymes protecting against plant defense responses. Curiously, some stage-specific transcripts do not appear to encode functional proteins. These findings reveal many new aspects of oomycete biology, as well as potential targets for crop protection chemicals.

  19. Gene Expression Profiling Reveals Novel Candidate Markers of Ovarian Carcinoma Intraperitoneal Metastasis.

    PubMed

    Elsnerova, Katerina; Bartakova, Alena; Tihlarik, Josef; Bouda, Jiri; Rob, Lukas; Skapa, Petr; Hruda, Martin; Gut, Ivan; Mohelnikova-Duchonova, Beatrice; Soucek, Pavel; Vaclavikova, Radka

    2017-01-01

    Epithelial ovarian cancer (EOC) has the highest mortality among gynecological carcinomas. The lack of specific markers for prognostic determination of EOC progression hinders the search for novel effective therapies. The aim of the present study was (i) to explore differences in expressions of ATP-binding cassette (ABC) and solute carrier (SLC) transporter genes, genes associated with drug metabolism and cell cycle regulation between control ovarian tissues (n = 14), primary EOCs (n = 44) and intraperitoneal metastases (n = 29); (ii) to investigate associations of gene expression levels with prognosis of patients with intraperitoneal metastases. In all tissue samples, transcript levels of the above target genes were assessed using quantitative real-time PCR. Gene expression levels were compared between particular tissue types and evaluated with regard to progression-free survival (PFS) and drug-resistance status of patients with metastases. Gene expression of ABCA7 significantly increased and that of ESR2 decreased in the order control ovarian tissues - primary EOCs - metastases. High expressions of ABCA2 / 8 / 9 / 10 , ABCB1 , ABCC9 , ABCG2 , ATP7A , SLC16A14 , and SOD3 genes were significantly associated with longer progression-free survival of patients. In intraperitoneal metastases, expression of all of these genes highly correlated and indicated prognostic profile. Transporters from the ABCA family, ABCG2, and ESR2 are involved mainly in lipid metabolism, membrane transport, and cell proliferation. These processes are thus probably the most important for EOC progression. Based on these results, we have proposed novel markers of ovarian carcinoma progression and metastatic spread which might be potentially useful as therapeutic targets. Their significance should be further explored on a larger independent set of patients.

  20. Candidate gene screen in the red flour beetle Tribolium reveals six3 as ancient regulator of anterior median head and central complex development.

    PubMed

    Posnien, Nico; Koniszewski, Nikolaus Dieter Bernhard; Hein, Hendrikje Jeannette; Bucher, Gregor

    2011-12-01

    Several highly conserved genes play a role in anterior neural plate patterning of vertebrates and in head and brain patterning of insects. However, head involution in Drosophila has impeded a systematic identification of genes required for insect head formation. Therefore, we use the red flour beetle Tribolium castaneum in order to comprehensively test the function of orthologs of vertebrate neural plate patterning genes for a function in insect head development. RNAi analysis reveals that most of these genes are indeed required for insect head capsule patterning, and we also identified several genes that had not been implicated in this process before. Furthermore, we show that Tc-six3/optix acts upstream of Tc-wingless, Tc-orthodenticle1, and Tc-eyeless to control anterior median development. Finally, we demonstrate that Tc-six3/optix is the first gene known to be required for the embryonic formation of the central complex, a midline-spanning brain part connected to the neuroendocrine pars intercerebralis. These functions are very likely conserved among bilaterians since vertebrate six3 is required for neuroendocrine and median brain development with certain mutations leading to holoprosencephaly.