Sample records for ken cockrell pilot

  1. STS-111 commander, Ken Cockrell, greets dignitaries and recovery technicians on the runway at Edward

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-111 commander Ken Cockrell greets dignitaries and recovery technicians on the runway at Edwards Air Force Base following the landing of the space shuttle Endeavour on June 19, 2002. Behind Cockrell are (from left) mission specialists Philippe Perrin and Franklin Chang-Diaz and Shuttle pilot Paul Lockhart.

  2. STS-111 Crew Interviews: Ken Cockrell, Commander

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-111 Mission Commander Ken Cockrell is seen during this preflight interview, answering questions about his inspiration in becoming an astronaut and provides an overview of the mission. He discusses the following topics: the docking of the Endeavour Orbiter to the International Space Station (ISS), the delivery of the Mobile Base System (MBS) to the ISS, the crew transfer activities (the Expedition 5 crew is replacing the Expedition 4 crew on the ISS), the planned extravehicular activities (EVAs), and the installation of the MBS onto the ISS. Cockrell provides a detailed description of the MBS and its significance for the ISS. He also describes prelaunch activities, mission training and international cooperation during the mission.

  3. Official portrait of astronaut candidate Kenneth D. Cockrell

    NASA Image and Video Library

    1990-08-02

    Official portrait of astronaut candidate Kenneth D. Cockrell, a member of Astronaut Class 13 (1990) and a space shuttle pilot candidate. Cockrell wears a navy blue flight suit and holds space shuttle model.

  4. Astronauts Cockrell, Shepherd and Polansky during hatch opening

    NASA Image and Video Library

    2001-02-11

    STS98-E-5130 (11 February 2001) --- The crews of Atlantis and the International Space Station open the Destiny laboratory on February 11 in this digital still camera view. From the left are astronauts Kenneth D. Cockrell, STS-98 commander; William M. (Bill) Shepherd, Expedition One commander; and Mark L. Polansky, STS-98 pilot. Later, the astronauts and cosmonauts spent the first full day of what are planned to be years of work ahead inside the orbiting science and command center. After Shepherd opened the Destiny hatch, he and Cockrell ventured inside at 8:38 a.m. (CST). As depicted in subsequent digital images in this series, members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crew also continued equipment transfers from the shuttle to the station.

  5. Astronauts Cockrell, Shepherd and Polansky during hatch opening

    NASA Image and Video Library

    2001-02-11

    STS98-E-5131 (11 February 2001) --- The crews of Atlantis and the International Space Station open the Destiny laboratory on February 11 in this digital still camera view. From the left are astronauts Kenneth D. Cockrell, STS-98 commander; William M. (Bill) Shepherd, Expedition One commander; and Mark L. Polansky, STS-98 pilot. Later, the astronauts and cosmonauts spent the first full day of what are planned to be years of work ahead inside the orbiting science and command center. After Shepherd opened the Destiny hatch, he and Cockrell ventured inside at 8:38 a.m. (CST). As depicted in subsequent digital images in this series, members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crew also continued equipment transfers from the shuttle to the station.

  6. Astronauts Cockrell, Shepherd and Polansky during hatch opening

    NASA Image and Video Library

    2001-02-11

    STS98-E-5133 (11 February 2001) --- The crew commanders of Atlantis and the International Space Station shake hands following the opening of the Destiny laboratory on February 11 in this digital still camera view. From the left are astronauts Kenneth D. Cockrell, STS-98 commander; William M. (Bill) Shepherd, Expedition One commander; and Mark L. Polansky, STS-98 pilot. Later, the astronauts and cosmonauts spent the first full day of what are planned to be years of work ahead inside the orbiting science and command center. After Shepherd opened the Destiny hatch, he and Cockrell ventured inside at 8:38 a.m. (CST). As depicted in subsequent digital images in this series, members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crew also continued equipment transfers from the shuttle to the station.

  7. Astronauts Cockrell, Shepherd and Polansky prior to opening hatch

    NASA Image and Video Library

    2001-02-11

    STS98-E-5123 (11 February 2001) --- This digital still camera shot shows STS-98 mission commander Kenneth D. Cockrell (from left), Expedition One commander William M. (Bill) Shepherd and STS-98 pilot Mark L. Polansky pausing at Unity's closed hatch to the newly attached Destiny laboratory. The crews of Atlantis and the International Space Station opened the laboratory shortly after this photo was made on Feb. 11; and the astronauts and cosmonauts spent the first full day of what are planned to be years of work ahead inside the orbiting science and command center. Shepherd opened the Destiny hatch, and he and shuttle commander Cockrell ventured inside at 8:38 a.m. (CST), Feb. 11. As depicted in subsequent digital images in this series, members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crew also continued equipment transfers from the shuttle to the station.

  8. L to R: STS-98 Mission Specialist Thomas Jones, Pilot Mark Polansky, and Commander Kenneth Cockrell

    NASA Technical Reports Server (NTRS)

    2001-01-01

    L to R: STS-98 Mission Specialist Thomas Jones, Pilot Mark Polansky, and Commander Kenneth Cockrell greet STS-92 Commander Brian Duffy, Dryden Center Director Kevin Petersen, and AFFTC Commander Major General Richard Reynolds after landing on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. Space Shuttle Atlantis landed at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000.

  9. Using KenKen to Build Reasoning Skills

    ERIC Educational Resources Information Center

    Reiter, Harold B.; Thornton, John; Vennebush, G. Patrick

    2013-01-01

    KenKen® is the new Sudoku. Like Sudoku, KenKen requires extensive use of logical reasoning. Unlike Sudoku, KenKen requires significant reasoning with numbers and operations and helps develop number sense. The creator of KenKen puzzles, Tetsuya Miyamoto, believed that "if you give children good learning materials, they will think and learn and…

  10. Triangular Numbers, Gaussian Integers, and KenKen

    ERIC Educational Resources Information Center

    Watkins, John J.

    2012-01-01

    Latin squares form the basis for the recreational puzzles sudoku and KenKen. In this article we show how useful several ideas from number theory are in solving a KenKen puzzle. For example, the simple notion of triangular number is surprisingly effective. We also introduce a variation of KenKen that uses the Gaussian integers in order to…

  11. L to R: STS-98 Mission Specialist Thomas Jones, Pilot Mark Polansky, and Commander Kenneth Cockrell greet STS-92 Commander Brian Duffy, Dryden Center Director Kevin Petersen, and AFFTC Commander Major General Richard Reynolds

    NASA Image and Video Library

    2001-02-20

    L to R: STS-98 Mission Specialist Thomas Jones, Pilot Mark Polansky, and Commander Kenneth Cockrell greet STS-92 Commander Brian Duffy, Dryden Center Director Kevin Petersen, and AFFTC Commander Major General Richard Reynolds after landing on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located.

  12. 75 FR 34639 - Safety Zone; Reedville July 4th Celebration, Cockrell's Creek, Reedville, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ...-AA00 Safety Zone; Reedville July 4th Celebration, Cockrell's Creek, Reedville, VA AGENCY: Coast Guard... Cockrell's Creek in the vicinity of Reedville, Virginia in support of the Reedville July 4th Celebration... notice of proposed rulemaking (NPRM) entitled Reedville July 4th Celebration, Cockrell's Creek, Reedville...

  13. STS-98 crew talks about the mission during a media briefing

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-98 Commander Ken Cockrell answers a question from the media during a briefing at Launch Pad 39A. Other crew members present are Pilot Mark Polansky, Mission Specialist Thomas Jones, [Cockrell], and Mission Specialists Marsha Ivins and Robert Curbeam. All are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training and a simulated launch countdown. STS-98 is the seventh construction flight to the International Space Station, carrying as payload the U.S. Lab Destiny, a key element in the construction of the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m.

  14. Group 13, 1990 ASCAN Cockrell during Elgin AFB water survival training

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Group 13, 1990 Astronaut Candidate (ASCAN) Kenneth D. Cockrell (center), wearing flight suit, treads water in Elgin Air Force Base (AFB) pool during water survival exercises. In the foreground is Daniel W. Bursch. Ronald M. Sega appears behind Cockrell. 22 ASCANs participated in water survival training from 08-14-90 through 08-17-90.

  15. STS-98 Commander Cockrell talks with Leinbach and Bridges at SLF

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-98 Mission Commander Kenneth Cockrell (center) talks with Launch Director Michael Leinbach (red and white jacket) and Center Director Roy Bridges (right) at the Shuttle Landing Facility after the crew's arrival Sunday to complete preparations for launch. Behind him are, from left to right, Mission Specialist Thomas Jones; Tom Kwiatkowski, NASA, Johnson Space Center (JSC); and Robert Hanley, United Space Alliance, JSC. The crew also includes Pilot Mark Polansky and Mission Specialists Marsha Ivins and Robert Curbeam. STS-98 is the seventh construction flight to the International Space Station, carrying as payload the U.S. Lab Destiny, a key element in the construction of the ISS. Launch of STS-98 is scheduled for Feb. 7 at 6:11 p.m. EST.

  16. STS-98 crew talks about the mission during a media briefing

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-98 crew talks to the press at a briefing at Launch Pad 39A. Holding the microphone is Commander Ken Cockrell, who answers a question about the mission. The other crew members are (left to right) Pilot Mark Polansky, Mission Specialist Thomas Jones, [Cockrell], and Mission Specialists Marsha Ivins and Robert Curbeam. They are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training and a simulated launch countdown. STS-98 is the seventh construction flight to the International Space Station, carrying as payload the U.S. Lab Destiny, a key element in the construction of the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m.

  17. Cockrell washs hair and face

    NASA Image and Video Library

    1996-12-16

    STS080-312-004 (19 Nov.-7 Dec. 1996) --- Astronaut Kenneth D. Cockrell, STS-80 mission commander, washes his hair on the middeck of the Earth-orbiting space shuttle Columbia. Displaying a sense of humor, the commander asked astronaut Story Musgrave, who is bald, to address this visual during a briefing with Johnson Space Center (JSC) employees on Jan. 14, 1997. Equal to the task, Musgrave cracked a number of bald jokes and remarked that it was much easier to polish a head in zero gravity than to wash one.

  18. STS-111 Crew Training Clip

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The STS-111 Crew is in training for space flight. The crew consists of Commander Ken Cockrell, Pilot Paul Lockhart, Mission Specialists Franklin Chang-Diaz and Philippe Perrin. The crew training begins with Post Insertion Operations with the Full Fuselage Trainer (FFT). Franklin Chang-Diaz, Philippe Perrin and Paul Lockhart are shown in training for airlock and Neutral Buoyancy Lab (NBL) activities. Bailout in Crew Compartment Training (CCT) with Expedition Five is also shown. The crew also gets experience with photography, television, and habitation equipment.

  19. Oneida Cockrell: Pioneer in the Field of Early Childhood Education

    ERIC Educational Resources Information Center

    Simpson, Jean

    2012-01-01

    In this article the author profiles Oneida Cockrell, a pioneer in the field of early childhood education. She was the founder and director of the Garden Apartments Nursery School and Kindergarten, located in the prestigious Michigan Boulevard Garden Apartments building (commonly known as the Rosenwald Apartments) in Chicago's West Hyde Park…

  20. Concerning Ken Hines …

    NASA Astrophysics Data System (ADS)

    McKellar, Bruce H. J.; Amos, Ken

    The following sections are included: * Obituary published in the `Age' newspaper * Curriculum vitae: Kenneth Charles Hines * Some short stories about Ken * Roger Hosking reminisces * Ken Amos reminisces * Vic Kowalenko reminisces * Zwi Barnea reminisces * "Legend's" Thursday lunch club award number four * Graeme Lister reminisces * Bob Dewar reminisces * Norm Frankel reminisces

  1. Genetics Home Reference: Senior-Løken syndrome

    MedlinePlus

    ... Facebook Twitter Home Health Conditions Senior-Løken syndrome Senior-Løken syndrome Printable PDF Open All Close All ... Javascript to view the expand/collapse boxes. Description Senior-Løken syndrome is a rare disorder characterized by ...

  2. STS-69 Flight Day 10 Highlights

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In honor of the Extravehicular Activity (EVA) spacewalk today, the tenth day of the STS-69 mission, the astronauts, Cmdr. Dave Walker, Pilot Ken Cockrell, and Mission Specialists Jim Voss, Jim Newman, and Mike Gernhardt, were awakened to the Frankie Valle and the Four Seasons tune, 'Walk Like A Man.' Voss and Gernhardt tested the new thermal spacesuits and some new tools in the shuttle's cargo bay for six hours. The EVA was successful. The rest of the astronauts monitored the EVA and packed up the equipment and experiments in preparation for their reentry flight tomorrow.

  3. CDR Cockrell in U.S. Laboratory /Destiny rack

    NASA Image and Video Library

    2001-02-11

    STS98-E-5149 (11 February 2001) --- Astronaut Kenneth D. Cockrell, STS-98 commander, emerges from behind temporary covering in the newly attached Destiny laboratory onboard the International Space Station (ISS). After the Destiny hatch was opened early in the day, members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crews also took some photos and continued equipment transfers from the shuttle to the station. The scene was taken with a digital still camera.

  4. CDR Cockrell in U.S. Laboratory /Destiny rack

    NASA Image and Video Library

    2001-02-11

    STS98-E-5150 (11 February 2001) --- Astronaut Kenneth D. Cockrell, STS-98 commander, emerges from behind wall covering in the newly attached Destiny laboratory onboard the International Space Station (ISS). After the Destiny hatch was opened early in the day, members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crews also took some photos and continued equipment transfers from the shuttle to the station. The scene was taken with a digital still camera.

  5. KSC-98pc1752

    NASA Image and Video Library

    1998-12-01

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Center Director Roy Bridges, Program Manager of the International Space Station (ISS) Randy Brinkley, and STS-98 crew members Pilot Mark Polansky, Commander Ken Cockrell and Mission Specialist Marsha Ivins wait for the unveiling of the name "Destiny" for the U.S. Lab module, which is behind them on a workstand. The lab, scheduled to be launched on Space Shuttle Endeavour in early 2000, will become the centerpiece of scientific research on the ISS. Polansky, Cockrell and Ivins are part of the five-member crew expected to be aboard. The Shuttle will spend six days docked to the station while the laboratory is attached and three space walks are conducted to complete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for station systems, including high data-rate communications, and maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights

  6. 75 FR 26157 - Safety Zone; Reedville July 4th Celebration, Cockrell's Creek, Reedville, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ...-AA00 Safety Zone; Reedville July 4th Celebration, Cockrell's Creek, Reedville, VA AGENCY: Coast Guard... Reedville July 4th Celebration event. This action is intended to restrict vessel traffic movement on... established in the interest of public safety during the Reedville July 4th Celebration event and will be...

  7. Memories of Ken Mason.

    PubMed

    Brazier, Margaret; McCall Smith, Alexander; Laurie, Graeme; McLean, Shelia; Jackson, Emily; Neal, Mary; Biggs, Hazel; Ost, Suzanne

    2017-08-01

    John Kenyon Mason (19 December 1919-26 January 2017), CBE, MD, LLD, FRCPath, DMJ, FRCPE, FRSE, and known as Ken Mason to us all, was Regius Professor of Forensic Medicine at the University of Edinburgh from 1973-1985 and thereafter Emeritus Professor of Forensic Medicine and Honorary Fellow in the School of Law at the University of Edinburgh. A formal obituary to Professor Mason is published in the Scotsman (http://www.scotsman.com/news/obituaries/obituary-professor-ken-mason-medical-jurisprudence-pioneer-1-4357181). We offer some personal tributes to our friend and colleague. © The Author 2017. Published by Oxford University Press; all rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. STS-98 crew talks about the mission during a media briefing

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Four members of the STS-98 crew pose for a photo at Launch Pad 39A. Standing, left to right, are Mission Specialist Robert Curbeam, Pilot Mark Polansky, Commander Ken Cockrell and Mission Specialist Thomas Jones. Not pictured is Mission Specialist Marsha Ivins. The crew is at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training and a simulated launch countdown. STS-98 is the seventh construction flight to the International Space Station, carrying as payload the U.S. Lab Destiny, a key element in the construction of the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m.

  9. STS-98 crew talks about the mission during a media briefing

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- A humorous question from the media (out of view) produces smiles among the STS-98 crew during a briefing at Launch Pad 39A. Standing, left to right, are Pilot Mark Polansky, Mission Specialist Thomas Jones (with microphone), Commander Ken Cockrell, and Mission Specialists Marsha Ivins and Robert Curbeam. All are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training and a simulated launch countdown. STS-98 is the seventh construction flight to the International Space Station, carrying as payload the U.S. Lab Destiny, a key element in the construction of the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m.

  10. KSC-00pp1601

    NASA Image and Video Library

    2000-10-23

    In the Space Station Processing Facility, a worker is surprised by the camera as she exits the U.S. Lab, Destiny. Inside the lab is the STS-98 crew, which is taking part in Crew Equipment Interface Test activities, becoming familiar with equipment it will be handling during the mission. The crew comprises Commander Ken Cockrell, Pilot Mark Polansky and Mission Specialists Robert Curbeam, Thomas Jones and Marsha Ivins. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001

  11. KSC-00pp1598

    NASA Image and Video Library

    2000-10-23

    In the Space Station Processing Facility, members of the STS-98 crew check out components inside the U.S. Lab, Destiny, under the watchful eye of trainers. The crew comprises Commander Ken Cockrell, Pilot Mark Polansky and Mission Specialists Robert Curbeam, Thomas Jones and Marsha Ivins. They are taking part in Crew Equipment Interface Test activities, becoming familiar with equipment they will be handling during the mission. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001

  12. KSC-00pp1603

    NASA Image and Video Library

    2000-10-23

    In the Space Station Processing Facility, STS-98 Mission Specialist Marsha Ivins maneuvers a part of the U.S. Lab, Destiny. The crew is checking out equipment inside the lab as part of Crew Equipment Interface Test activities, becoming familiar with equipment it will be handling during the mission. Others in the crew are Commander Ken Cockrell, Pilot Mark Polansky and Mission Specialists Robert Curbeam and Thomas Jones. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001

  13. KSC-00pp1599

    NASA Image and Video Library

    2000-10-23

    In the Space Station Processing Facility, workers at left watch while members of the STS-98 crew check out equipment inside the U.S. Lab, Destiny (at right). The crew comprises Commander Ken Cockrell, Pilot Mark Polansky and Mission Specialists Robert Curbeam, Thomas Jones and Marsha Ivins. They are taking part in Crew Equipment Interface Test activities, becoming familiar with equipment they will be handling during the mission. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001

  14. STS-98 crew members take part in CEIT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, a worker is surprised by the camera as she exits the U.S. Lab, Destiny. Inside the lab is the STS-98 crew, which is taking part in Crew Equipment Interface Test activities, becoming familiar with equipment it will be handling during the mission. The crew comprises Commander Ken Cockrell, Pilot Mark Polansky and Mission Specialists Robert Curbeam, Thomas Jones and Marsha Ivins. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001.

  15. STS-98 crew members take part in CEIT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, STS-98 Mission Specialist Marsha Ivins maneuvers a part of the U.S. Lab, Destiny. The crew is checking out equipment inside the lab as part of Crew Equipment Interface Test activities, becoming familiar with equipment it will be handling during the mission. Others in the crew are Commander Ken Cockrell, Pilot Mark Polansky and Mission Specialists Robert Curbeam and Thomas Jones. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001.

  16. STS-98 crew poses for photo after media briefing

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- After a media briefing at Launch Pad 39A, the STS-98 crew poses in the slidewire basket landing zone. Standing, left to right, are Pilot Mark Polansky, Mission Specialist Thomas Jones, Commander Ken Cockrell and Mission Specialists Marsha Ivins and Robert Curbeam. All are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training and a simulated launch countdown. STS-98 is the seventh construction flight to the International Space Station, carrying as payload the U.S. Lab Destiny, a key element in the construction of the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m.

  17. STS-69 Flight Day 3 Highlights

    NASA Technical Reports Server (NTRS)

    1995-01-01

    On the third day of the STS-69 mission, the flight crew (Cmdr. Dave Walker, Pilot Ken Cockrell, and Mission Specialists Jim Voss, Mike Gernhardt, and Jim Newman) test the Orbital Maneuvering System and prepare for the retrieval of the SPARTAN satellite with a checkout procedure of the space shuttle's robot arm. Physiological and chemical experiments on fluid dynamics are conducted as part of the Sea Lab project. Urine and blood samples from the crew are collected and studied under microgravity conditions, and a slime mold experiment is conducted to determine the properties of motion, growth, and chemistry in zero gravity conditions. Earth views include cloud cover, a hurricane, and a close-up of its eye.

  18. Cockrell and Rominger go through de-orbit preparations in the flight deck

    NASA Image and Video Library

    1996-12-06

    STS080-360-002 (19 Nov.-7 Dec. 1996) --- From the commander's station on the port side of the space shuttle Columbia's forward flight deck, astronaut Kenneth D. Cockrell prepares for a minor firing of Reaction Control System (RCS) engines during operations with the Wake Shield Facility (WSF). The activity was recorded with a 35mm camera on flight day seven. The commander is attired in a liquid-cooled biological garment.

  19. Identification of erosional and inundation hazard zones in Ken-Betwa river linking area, India, using remote sensing and GIS.

    PubMed

    Avtar, Ram; Singh, Chander Kumar; Shashtri, Satayanarayan; Mukherjee, Saumitra

    2011-11-01

    Ken-Betwa river link is one of the pilot projects of the Inter Linking of Rivers program of Government of India in Bundelkhand Region. It will connect the Ken and Betwa rivers through a system of dams, reservoirs, and canals to provide storage for excess rainfall during the monsoon season and avoid floods. The main objective of this study is to identify erosional and inundation prone zones of Ken-Betwa river linking site in India using remote sensing and geographic information system tools. In this study, Landsat Thematic Mapper data of year 2005, digital elevation model from the Shuttle Radar Topographic Mission, and other ancillary data were analyzed to create various thematic maps viz. geomorphology, land use/land cover, NDVI, geology, soil, drainage density, elevation, slope, and rainfall. The integrated thematic maps were used for hazard zonation. This is based on categorizing the different hydrological and geomorphological processes influencing the inundation and erosion intensity. Result shows that the southern part of the study area which lies in Panna district of Madhya Pradesh, India, is more vulnerable than the other areas.

  20. KSC-98pc1751

    NASA Image and Video Library

    1998-12-01

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Program Manager of the International Space Station (ISS) Randy Brinkley addresses the media before unveiling the name of "Destiny" given the U.S. Lab module, the centerpiece of scientific research on the ISS. With Brinkley on the stand are Center Director Roy Bridges (behind him), and (left to right) STS-98 Commander Ken Cockrell, Pilot Mark Polansky, and Mission Specialist Marsha Ivins. The lab, which is behind them on a workstand, is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the International Space Station. Polansky, Cockrell and Ivins are part of the five-member crew expected to be aboard. The Shuttle will spend six days docked to the station while the laboratory is attached and three space walks are conducted to complete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for station systems, including high data-rate communications, and maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights

  1. KSC-00pp1600

    NASA Image and Video Library

    2000-10-23

    In the Space Station Processing Facility, workers in the foreground watch and wait while members of the STS-98 crew check out the U.S. Lab, Destiny in the background. The crew comprises Commander Ken Cockrell, Pilot Mark Polansky and Mission Specialists Robert Curbeam, Thomas Jones and Marsha Ivins. They are taking part in Crew Equipment Interface Test activities, becoming familiar with equipment they will be handling during the mission. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001

  2. KSC-00pp1605

    NASA Image and Video Library

    2000-10-23

    Inside the U.S. Lab, Destiny, members of the STS-98 crew work with technicians (in the background) to learn more about the equipment in the module. They are taking part in Crew Equipment Interface Test activities. At left, back to camera, is Mission Specialist Marsha Ivins. Standing are Mission Specialists Thomas Jones (left) and Robert Curbeam (right). Other crew members not seen are Commander Ken Cockrell and Pilot Mark Polansky. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001

  3. KSC-00pp1604

    NASA Image and Video Library

    2000-10-23

    In the Space Station Processing Facility, STS-98 Mission Specialist Marsha Ivins wields a tool on part of the U.S. Lab, Destiny. The crew is checking out equipment inside the lab as part of Crew Equipment Interface Test activities, becoming familiar with equipment it will be handling during the mission. Others in the crew are Commander Ken Cockrell, Pilot Mark Polansky and Mission Specialists Robert Curbeam and Thomas Jones. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001

  4. KSC-00pp1606

    NASA Image and Video Library

    2000-10-23

    In the Space Station Processing Facility, STS-98 Mission Specialist Thomas Jones works on a part of the U.S. Lab, Destiny. Watching at right is Pilot Mark Polansky. Jones and Polansky, along with other crew members, are taking part in Crew Equipment Interface Test activities to become familiar with equipment they will be handling during the mission. Others in the crew are Commander Ken Cockrell and Mission Specialists Robert Curbeam and Marsha Ivins. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001

  5. STS-69 Flight Day 9 Video File

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The song, 'He's A Tramp', from the Walt Disney cartoon movie, 'Lady and the Tramp', awakened the astronauts, Cmdr. Dave Walker, Pilot Ken Cockrell, and Mission Specialists Jim Voss, Jim Newman, and Mike Gernhardt, on the ninth day of the STS-69 mission. The Wake Shield Facility (WSF) was again unberthed from the shuttle cargo bay and , using the shuttle's robot arm, held over the side of the shuttle for five hours where it collected data on the electrical field build-up around the spacecraft as part of the Charging Hazards and Wake Studies Experiment (CHAWS). Voss and Gernhardt rehearsed their Extravehicular Activity (EVA) spacewalk, which was planned for the next day. Earth views included cloud cover, a hurricane, and its eye.

  6. STS-69 flight day 9 highlights

    NASA Astrophysics Data System (ADS)

    1995-09-01

    The song, 'He's A Tramp', from the Walt Disney cartoon movie, 'Lady and the Tramp', awakened the astronauts, Cmdr. Dave Walker, Pilot Ken Cockrell, and Mission Specialists Jim Voss, Jim Newman, and Mike Gernhardt, on the ninth day of the STS-69 mission. The Wake Shield Facility (WSF) was again unberthed from the shuttle cargo bay and , using the shuttle's robot arm, held over the side of the shuttle for five hours where it collected data on the electrical field build-up around the spacecraft as part of the Charging Hazards and Wake Studies Experiment (CHAWS). Voss and Gernhardt rehearsed their Extravehicular Activity (EVA) spacewalk, which was planned for the next day. Earth views included cloud cover, a hurricane, and its eye.

  7. STS-98 crew members take part in CEIT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the U.S. Lab, Destiny, members of the STS-98 crew work with technicians (in the background) to learn more about the equipment in the module. They are taking part in Crew Equipment Interface Test activities. At left, back to camera, is Mission Specialist Marsha Ivins. Standing are Mission Specialists Thomas Jones (left) and Robert Curbeam (right). Other crew members not seen are Commander Ken Cockrell and Pilot Mark Polansky. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001.

  8. STS-98 crew members take part in CEIT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-98 Mission Specialist Robert Curbeam (right) raises his arms as he checks out equipment inside the U.S. Lab, Destiny. At left of center is Mission Specialist Marsha Ivins. Curbeam and Ivins, along with other crew members, are taking part in Crew Equipment Interface Test activities becoming familiar with equipment they will be handling during the mission. Others in the crew are Commander Ken Cockrell, Pilot Mark Polansky and Mission Specialist Thomas Jones. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001.

  9. STS-98 MS Ivins talks about her role in the mission

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- During a media briefing at Launch Pad 39A, STS-98 Mission Specialist Marsha Ivins (second from right) describes how the robotic arm will lift the payload from the orbiter'''s bay and maneuver it into position for attachment to the International Space Station. The other crew members are (left to right) Pilot Mark Polansky, Mission Specialist Thomas Jones, Commander Ken Cockrell and Robert Curbeam. All are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training and a simulated launch countdown. STS-98 is the seventh construction flight to the International Space Station, carrying as payload the U.S. Lab Destiny, a key element in the construction of the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m.

  10. KSC01pp0022

    NASA Image and Video Library

    2001-01-03

    STS-98 Pilot Mark Polansky is pleased to arrive at KSC’s Shuttle Landing Facility for Terminal Countdown Test Activities. In preparation for the Jan. 19 launch, he and the rest of the crew Commander Ken Cockrell and Mission Specialists Robert Curbeam, Thomas Jones and Marsha Ivins will be training in emergency procedures from the pad, checking the payload and taking part in a simulated countdown. The payload for the mission is the U.S. Lab Destiny, a key element in the construction of the International Space Station. The lab has five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. STS-98 is the seventh construction flight to the ISS.

  11. KSC-00pp1602

    NASA Image and Video Library

    2000-10-23

    In the Space Station Processing Facility, members of the STS-98 crew check out equipment in the U.S. Lab, Destiny, with the help of workers. In the background, looking over her shoulder, is Mission Specialist Marsha Ivins. Others in the crew are Commander Ken Cockrell, Pilot Mark Polansky and Mission Specialists Robert Curbeam and Thomas Jones. The crew is taking part in Crew Equipment Interface Test activities, becoming familiar with equipment it will be handling during the mission. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001

  12. KSC-01pp1511

    NASA Image and Video Library

    2001-08-20

    KENNEDY SPACE CENTER, Fla. -- The STS-111 crew pause before departing KSC for Houston. The crew spent time in the Space Station Processing Facility for training on the payload they will be transporting: The Mobile Base System (MBS). Standing left to right are Pilot Paul Lockhart, Commander Ken Cockrell and Mission Specialists Phillippe Perrin, with the French space agency CNES, and Franklin Chang-Diaz. During the mission, the MBS will be installed on the Mobile Transporter to complete the Canadian Mobile Servicing System, or MSS. The mechanical arm will then have the capability to "inchworm" from the U.S. Lab Destiny to the MSS and travel along the Truss to work sites. The Expedition Five crew will be replacing Expedition Four. Launch of Endeavour on mission STS-111 is scheduled for April 18, 2002

  13. The Extraordinary Ken Vieth

    ERIC Educational Resources Information Center

    Warwick, Sharon

    2009-01-01

    This article features Ken Vieth, an artist, a best-selling author, an international workshop presenter, and a master teacher with 33 years of experience working with students at the secondary level. Vieth first came to the notice of Davis Publications years ago through his many articles in this journal. He has written more than 60 articles for…

  14. KSC-98pc1753

    NASA Image and Video Library

    1998-12-01

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Program Manager of the International Space Station (ISS) Randy Brinkley addresses the media before lowering the banner to unveil the name of "Destiny" given the U.S. Lab module, the centerpiece of scientific research on the ISS. With Brinkley on the stand are Center Director Roy Bridges (behind him on the left), and (the other side, left to right) STS-98 Commander Ken Cockrell, Pilot Mark Polansky, and Mission Specialist Marsha Ivins. The lab, which is behind them on a workstand, is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the International Space Station. Polansky, Cockrel and Ivins are part of the five-member crew expected to be aboard. The Shuttle will spend six days docked to the station while the laboratory is attached and three space walks are conducted to complete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for station systems, including high data-rate communications, and maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights

  15. KSC01pp0227

    NASA Image and Video Library

    2001-02-04

    KENNEDY SPACE CENTER, FLA. -- The STS-98 crew crosses the parking apron at the KSC Shuttle Landing Facility after their arrival aboard the T-38 jets in the background. Getting ready to greet the media are, left to right, Mission Specialist Thomas Jones, Pilot Mark Polansky, Commander Ken Cockrell, and Mission Specialists Robert Curbeam and Marsha Ivins. The crew has returned to KSC to prepare for their launch to the International Space Station. The seventh construction flight to the Space Station, STS-98 will carry the U.S. Laboratory Destiny, a key module for space experiments. The 11-day mission includes three spacewalks to complete outside assembly and connection of electrical and plumbing lines between the laboratory, Station and a relocated Shuttle docking port. Launch is targeted for Feb. 7 at 6:11 p.m. EST

  16. Set selection dynamical system neural networks with partial memories, with applications to Sudoku and KenKen puzzles.

    PubMed

    Boreland, B; Clement, G; Kunze, H

    2015-08-01

    After reviewing set selection and memory model dynamical system neural networks, we introduce a neural network model that combines set selection with partial memories (stored memories on subsets of states in the network). We establish that feasible equilibria with all states equal to ± 1 correspond to answers to a particular set theoretic problem. We show that KenKen puzzles can be formulated as a particular case of this set theoretic problem and use the neural network model to solve them; in addition, we use a similar approach to solve Sudoku. We illustrate the approach in examples. As a heuristic experiment, we use online or print resources to identify the difficulty of the puzzles and compare these difficulties to the number of iterations used by the appropriate neural network solver, finding a strong relationship. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Meet EPA Scientist Ken Bailey, M.En.

    EPA Pesticide Factsheets

    Ken Bailey is currently on detail to EPA's Office of Research and Development from the Office of the Secretary of the Interior, Assistant Secretary/Indian Affairs. He is an environmental scientist specializing in remote sensing.

  18. Living in Space

    NASA Technical Reports Server (NTRS)

    Brown, Ray (Editor)

    1993-01-01

    In this educational video from the 'Liftoff to Learning' series, astronauts from the STS-56 Mission (Ken Cockrell, Mike Foale, Ellen Ochoa, Steve Oswald, and Ken Cameron) explain and show through demonstrations how microgravity affects the way astronauts live onboard the Space Shuttle, and how these same daily habits or processes differ on Earth. A tour of the Space Shuttle is given, including the sleeping compartments, the kitchen area, the storage compartments, and the Waste Collection System (or WCS, as they call it). Daily habits (brushing teeth, shampooing hair and bathing, eating,...) are explained and actively illustrated, along with reasons of how these applications differ from their employment on Earth.

  19. The STS-98 crew poses for group photo near top of FSS

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-98 crew poses for a group photo on the 215-foot level of the Fixed Service Structure at Launch Pad 39A. Dressed in their orange launch and entry suits are (left to right) Commander Ken Cockrell, Mission Specialist Marsha Ivins, Pilot Mark Polansky and Mission Specialists Robert Curbeam and Thomas Jones. Behind them can be seen the white nose cone of a solid rocket booster and the orange external tank on Space Shuttle Atlantis. The crew is taking part in emergency egress training and a simulated launch countdown as part of Terminal Countdown Demonstration Test activities. STS-98 is the seventh construction flight to the International Space Station, carrying as payload the U.S. Lab Destiny, a key element in the construction of the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST.

  20. KSC-98pc1755

    NASA Image and Video Library

    1998-12-01

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-98 crew members Pilot Mark Polansky, Mission Specialist Marsha Ivins and Commander Ken Cockrell pose underneath the banner revealing the name Destiny given to the U.S. Lab module. They are part of the five-member crew scheduled to carry the lab into space aboard Space Shuttle Endeavour early in the year 2000 where it will become the centerpiece of scientific research on the International Space Station. The Shuttle will spend six days docked to the station while the laboratory is attached and three space walks are conducted to complete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for station systems, including high data-rate communications, and maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights

  1. STS-69 Flight Day 6 Highlights

    NASA Technical Reports Server (NTRS)

    1995-01-01

    After being awakened by the Beatles song, 'A Hard Days Night', the flightcrew of the STS-69 mission, Cmdr. Dave Walker, Pilot Ken Cockrell, and Mission Specialists Jim Voss, Jim Newman, and Mike Gernhardt, began their sixth day in orbit by monitoring the free orbiting Wake Shield Facility (WSF). Later Cmdr. Walker conducted an interview with television reporters from Atlanta and Boston, answering questions about the mission and general questions about NASA's space program. The crew filmed a video for themselves performing daily routines (eating, shaving, exercising), as well as some of the physiological experiments, and shuttle equipment maintenance and checkout. One of the secondary experiments included the Commercial Generic Bioprocessing Apparatus-7 (CGBA-7), which served as an incubator and experiment station for a variety of tests (agricultural, pharmaceutical, biomedical, and environmental). Earth views included some cloud cover, the Gulf of Mexico, Texas, and the Atlantic Ocean.

  2. STS-69 flight day 6 highlights

    NASA Astrophysics Data System (ADS)

    1995-09-01

    After being awakened by the Beatles song, 'A Hard Days Night', the flightcrew of the STS-69 mission, Cmdr. Dave Walker, Pilot Ken Cockrell, and Mission Specialists Jim Voss, Jim Newman, and Mike Gernhardt, began their sixth day in orbit by monitoring the free orbiting Wake Shield Facility (WSF). Later Cmdr. Walker conducted an interview with television reporters from Atlanta and Boston, answering questions about the mission and general questions about NASA's space program. The crew filmed a video fo themselves performing daily routines (eating, shaving, exercising), as well as some of the physiological experiments, and shuttle equipment maintenance and checkout. One of the secondary experiments included the Commercial Generic Bioprocessing Apparatus-7 (CGBA-7), which served as an incubator and experiment station for a variety of tests (agricultural, pharmaceutical, biomedical, and environmental). Earth views included some cloud cover, the Gulf of Mexico, Texas, and the Atlantic Ocean.

  3. The Drosophila BCL6 homolog Ken and Barbie promotes somatic stem cell self-renewal in the testis niche.

    PubMed

    Issigonis, Melanie; Matunis, Erika

    2012-08-15

    Stem cells sustain tissue regeneration by their remarkable ability to replenish the stem cell pool and to generate differentiating progeny. Signals from local microenvironments, or niches, control stem cell behavior. In the Drosophila testis, a group of somatic support cells called the hub creates a stem cell niche by locally activating the Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway in two adjacent types of stem cells: germline stem cells (GSCs) and somatic cyst stem cells (CySCs). Here, we find that ken and barbie (ken) is autonomously required for the self-renewal of CySCs but not GSCs. Furthermore, Ken misexpression in the CySC lineage induces the cell-autonomous self-renewal of somatic cells as well as the nonautonomous self-renewal of germ cells outside the niche. Thus, Ken, like Stat92E and its targets ZFH1 (Leatherman and Dinardo, 2008) and Chinmo (Flaherty et al., 2010), is necessary and sufficient for CySC renewal. However, ken is not a JAK-STAT target in the testis, but instead acts in parallel to Stat92E to ensure CySC self-renewal. Ken represses a subset of Stat92E targets in the embryo (Arbouzova et al., 2006) suggesting that Ken maintains CySCs by repressing differentiation factors. In support of this hypothesis, we find that the global JAK-STAT inhibitor Protein tyrosine phosphatase 61F (Ptp61F) is a JAK-STAT target in the testis that is repressed by Ken. Together, our work demonstrates that Ken has an important role in the inhibition of CySC differentiation. Studies of ken may inform our understanding of its vertebrate orthologue B-Cell Lymphoma 6 (BCL6) and how misregulation of this oncogene leads to human lymphomas. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. The STS-98 crew gathers for snack before launch

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-98 crew gathers around a table for a snack before getting ready for launch on Space Shuttle Atlantis. Seated left to right are Mission Specialist Thomas Jones, Pilot Mark Polansky, Commander Ken Cockrell and Mission Specialists Marsha Ivins and Robert Curbeam. STS-98 is the seventh construction flight to the International Space Station. Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle'''s robotic arm. Three spacewalks, by Curbeam and Jones, are required to complete the planned construction work during the 11-day mission. Launch is targeted for 6:11 p.m. EST and the planned landing at KSC Feb. 18 about 1:39 p.m. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA'''s Space Shuttle program.

  5. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Center Director Roy Bridges (left), Program Manager of the International Space Station (ISS) Randy Brinkley (second from left) and STS-98 Commander Ken Cockrell (right) applaud the unveiling of the name "Destiny" for the U.S. Laboratory module. The lab, which is behnd them on a workstand, is scheduled to be launched on STS-98 on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS. The Shuttle will spend six days docked to the Station while the laboratory is attached and three spacewalks are conducted to compete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for Station systems, including high data-rate communications, and maintain the Station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights.

    NASA Image and Video Library

    1998-12-01

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Center Director Roy Bridges (left), Program Manager of the International Space Station (ISS) Randy Brinkley (second from left) and STS-98 Commander Ken Cockrell (right) applaud the unveiling of the name "Destiny" for the U.S. Laboratory module. The lab, which is behnd them on a workstand, is scheduled to be launched on STS-98 on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS. The Shuttle will spend six days docked to the Station while the laboratory is attached and three spacewalks are conducted to compete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for Station systems, including high data-rate communications, and maintain the Station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights.

  6. The Genius of Passion: Esquire, Coronet and Ken Magazines.

    ERIC Educational Resources Information Center

    Nelson, Jack A.

    In a time of modern magazine management practices and well-researched corporate decisions, the development of "Esquire" magazine in 1933 offers a refreshing example of Entrepreneurship. David A. Smart, publisher of "Esquire,""Coronet" (an arts magazine) and "Ken" (a news weekly), plunged ahead in the…

  7. The Movie Maker as Historian: Conversations with Ken Burns.

    ERIC Educational Resources Information Center

    Thelen, David

    1994-01-01

    Reports on two interviews between a historian and Ken Burns, the documentary filmmaker. Discusses the role and interrelationship of academic historians in the making of documentary historical films. Argues that academic historians have lost touch with the public and this role has fallen to amateur historians. (CFR)

  8. Reclaiming "Lost Prizes": An Interview with Ken McCluskey

    ERIC Educational Resources Information Center

    Van Bockern, Steve

    2012-01-01

    This article presents an interview with Dr. Ken McCluskey, Dean and Professor of Education at the University of Winnipeg. He is known internationally for his work in several areas including: (1) mentoring; (2) attention-deficit hyperactivity disorder; (3) at-risk children and youth (where his "Lost Prizes" and related projects serve as…

  9. KSC-01pp1510

    NASA Image and Video Library

    2001-08-20

    KENNEDY SPACE CENTER, Fla. -- The STS-111 crew spend time in the Space Station Processing Facility learning more about the payload they will be transporting: The Mobile Base System (MBS). Standing left to right in the back row are Expedition Five Commander Valeri Kozun, with the Russian Aviation and Space Agency; Mission Specialist Phillippe Perrin, with the French space agency CNES; Pilot Paul Lockhart; trainer Chris Hardcastle; Mission Specialist Franklin Chang-Diaz; and Commander Ken Cockrell. Flanked by trainers in the front row is (center) Peggy Whitson, another of the Expedition Five crew who will ferried to the International Space Station. The MBS will be installed on the Mobile Transporter to complete the Canadian Mobile Servicing System, or MSS. The mechanical arm will then have the capability to "inchworm" from the U.S. Lab Destiny to the MSS and travel along the Truss to work sites. The Expedition Five crew will be replacing Expedition Four. Launch of Endeavour on mission STS-111 is scheduled for April 18, 2002

  10. Using Ken Burns's "The Civil War" in the Classroom

    ERIC Educational Resources Information Center

    Levin, Kevin M.

    2010-01-01

    When it aired in 1989, Ken Burns's epic documentary about America's Civil War garnered the largest audience in PBS history. Viewers who had little interest or knowledge of the Civil War were attracted to the powerful images and sounds as well as the narration by David McCullough and commentary by Shelby Foote--the combination of which served to…

  11. KSC-98pc1750

    NASA Image and Video Library

    1998-12-02

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Center Director Roy Bridges (left), Program Manager of the International Space Station (ISS) Randy Brinkley (second from left) and (right) STS-98 Commander Ken Cockrell applaud the unveiling of the name Destiny given the U.S. Lab module. The lab, which is behind them on a workstand, is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS. Cockrell is part of the five-member crew expected to be aboard. The Shuttle will spend six days docked to the station while the laboratory is attached and three space walks are conducted to complete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for station systems, including high data-rate communications, and maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights

  12. KSC-00pp1762

    NASA Image and Video Library

    2000-11-18

    KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility bay 3, STS-98 Commander Ken Cockrell conducts window inspection, checking for leaks, in the cockpit of Atlantis. He and the rest of the crew are at KSC for Crew Equipment Interface Test activities. Launch on mission STS-98 is scheduled for Jan. 18, 2001. It will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated

  13. KSC00pp1762

    NASA Image and Video Library

    2000-11-18

    KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility bay 3, STS-98 Commander Ken Cockrell conducts window inspection, checking for leaks, in the cockpit of Atlantis. He and the rest of the crew are at KSC for Crew Equipment Interface Test activities. Launch on mission STS-98 is scheduled for Jan. 18, 2001. It will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated

  14. KSC01padig048

    NASA Image and Video Library

    2001-02-05

    KENNEDY SPACE CENTER, FLA. -- STS-98 Commander Ken Cockrell, near the nose of the Shuttle Training Aircraft he just landed, makes his way across the parking apron of the Shuttle Landing Facility. The cockpit of the STA is outfitted like the Shuttle, which provides practice at the controls, especially for landing. The STS-98 crew recently arrived at KSC to prepare for their launch Feb. 7 to the International Space Station. The seventh construction flight to the Space Station, it will carry the U.S. Laboratory Destiny, a key module for space experiments

  15. GPS-ARM: Computational Analysis of the APC/C Recognition Motif by Predicting D-Boxes and KEN-Boxes

    PubMed Central

    Ren, Jian; Cao, Jun; Zhou, Yanhong; Yang, Qing; Xue, Yu

    2012-01-01

    Anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase incorporated with Cdh1 and/or Cdc20 recognizes and interacts with specific substrates, and faithfully orchestrates the proper cell cycle events by targeting proteins for proteasomal degradation. Experimental identification of APC/C substrates is largely dependent on the discovery of APC/C recognition motifs, e.g., the D-box and KEN-box. Although a number of either stringent or loosely defined motifs proposed, these motif patterns are only of limited use due to their insufficient powers of prediction. We report the development of a novel GPS-ARM software package which is useful for the prediction of D-boxes and KEN-boxes in proteins. Using experimentally identified D-boxes and KEN-boxes as the training data sets, a previously developed GPS (Group-based Prediction System) algorithm was adopted. By extensive evaluation and comparison, the GPS-ARM performance was found to be much better than the one using simple motifs. With this powerful tool, we predicted 4,841 potential D-boxes in 3,832 proteins and 1,632 potential KEN-boxes in 1,403 proteins from H. sapiens, while further statistical analysis suggested that both the D-box and KEN-box proteins are involved in a broad spectrum of biological processes beyond the cell cycle. In addition, with the co-localization information, we predicted hundreds of mitosis-specific APC/C substrates with high confidence. As the first computational tool for the prediction of APC/C-mediated degradation, GPS-ARM is a useful tool for information to be used in further experimental investigations. The GPS-ARM is freely accessible for academic researchers at: http://arm.biocuckoo.org. PMID:22479614

  16. Discovery of candidate KEN-box motifs using cell cycle keyword enrichment combined with native disorder prediction and motif conservation.

    PubMed

    Michael, Sushama; Travé, Gilles; Ramu, Chenna; Chica, Claudia; Gibson, Toby J

    2008-02-15

    KEN-box-mediated target selection is one of the mechanisms used in the proteasomal destruction of mitotic cell cycle proteins via the APC/C complex. While annotating the Eukaryotic Linear Motif resource (ELM, http://elm.eu.org/), we found that KEN motifs were significantly enriched in human protein entries with cell cycle keywords in the UniProt/Swiss-Prot database-implying that KEN-boxes might be more common than reported. Matches to short linear motifs in protein database searches are not, per se, significant. KEN-box enrichment with cell cycle Gene Ontology terms suggests that collectively these motifs are functional but does not prove that any given instance is so. Candidates were surveyed for native disorder prediction using GlobPlot and IUPred and for motif conservation in homologues. Among >25 strong new candidates, the most notable are human HIPK2, CHFR, CDC27, Dab2, Upf2, kinesin Eg5, DNA Topoisomerase 1 and yeast Cdc5 and Swi5. A similar number of weaker candidates were present. These proteins have yet to be tested for APC/C targeted destruction, providing potential new avenues of research.

  17. STS-56 MS1 Foale and MS2 Cockrell on aft flight deck of Discovery, OV-103

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 Mission Specialist 1 (MS1) Michael Foale (left) and MS2 Kenneth D. Cockrell pose on aft flight deck of Discovery, Orbiter Vehicle (OV) 103, for this in-cabin electronic still camera (ESC) photograph. The two crewmembers are positioned in front of the onorbit station with a beam of sunlight shining through overhead window W8. The cable on the bottom right is part of the Hand-held, Earth-oriented, Real-time, Cooperative, User-friendly, Location-targeting and Environmental System (HERCULES), connecting the HERCULES Attitude Processor (HAP) to the Inertial Measurement Unit (IMU). In-cabin shots with the camera are for test purposes only. HERCULES is a device that makes it simple for Shuttle crewmembers to take pictures of Earth as they merely point and shoot any interesting feature, whose latitude and longitude are automatically determined in real time. Digital file name is ESC01008.TGA.

  18. Artist: Ken Hodges Composite image explaining Objective and Motivation for Galileo Probe Heat Loads:

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Artist: Ken Hodges Composite image explaining Objective and Motivation for Galileo Probe Heat Loads: Galileo Probe descending into Jupiters Atmosphere shows heat shield separation with parachute deployed. (Ref. JPL P-19180)

  19. KSC-99pp0903

    NASA Image and Video Library

    1999-07-19

    KENNEDY SPACE CENTER, FLA. -- At a women's forum about "Past, Present and Future of Space," held in the Apollo/Saturn V Center, guests line the stage. From left, they are Marta Bohn-Meyer, the first woman to pilot an SR-71; astronauts Ellen Ochoa, Ken Cockrell, Joan Higginbotham, and Yvonne Cagle; former astronaut Sally Ride, the first American woman to fly in space; and Jennifer Harris, the Mars 2001 Operations System Development Manager at the Jet Propulsion Laboratory. The forum included a welcome by Center Director Roy Bridges and remarks by Donna Shalala, secretary of Department of Health and Human Services. The attendees are planning to view the launch of STS-93 at the Banana Creek viewing site. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. The primary payload of the five-day mission is the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. Liftoff is scheduled for July 20 at 12:36 a.m. EDT

  20. Guests line the stage at a women's forum at the Apollo/Saturn V Center

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At a women's forum about 'Past, Present and Future of Space,' held in the Apollo/Saturn V Center, guests line the stage. From left, they are Marta Bohn-Meyer, the first woman to pilot an SR- 71; astronauts Ellen Ochoa, Ken Cockrell, Joan Higginbotham, and Yvonne Cagle; former astronaut Sally Ride, the first American woman to fly in space; and Jennifer Harris, the Mars 2001 Operations System Development Manager at the Jet Propulsion Laboratory. The forum included a welcome by Center Director Roy Bridges and remarks by Donna Shalala, secretary of Department of Health and Human Services. The attendees are planning to view the launch of STS-93 at the Banana Creek viewing site. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. The primary payload of the five-day mission is the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. Liftoff is scheduled for July 20 at 12:36 a.m. EDT.

  1. 75 FR 28001 - Ken Willis; Notice of Authorization for Continued Project Operation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-19

    ..., licensee for the Fire Mountain Lodge Hydroelectric Project, filed an Application for a New License pursuant to the Federal Power Act (FPA) and the Commission's regulations thereunder. The Fire Mountain Lodge..., notice is hereby given that Ken Willis is authorized to continue operation of the Fire Mountain Lodge...

  2. KSC00pp1761

    NASA Image and Video Library

    2000-11-18

    KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility bay 3, the STS-98 crew talks with United Space Alliance worker Larry Oshein (right). Standing left to right are Mission Specialist Robert Curbeam, Commander Ken Cockrell, Mission Specialist Tom Jones, and Mission Specialists Mark Polansky and Marsha Ivins. The crew is at KSC for Crew Equipment Interface Test activities. Launch on mission STS-98 is scheduled for Jan. 18, 2001. It will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated

  3. KSC-00pp1761

    NASA Image and Video Library

    2000-11-18

    KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility bay 3, the STS-98 crew talks with United Space Alliance worker Larry Oshein (right). Standing left to right are Mission Specialist Robert Curbeam, Commander Ken Cockrell, Mission Specialist Tom Jones, and Mission Specialists Mark Polansky and Marsha Ivins. The crew is at KSC for Crew Equipment Interface Test activities. Launch on mission STS-98 is scheduled for Jan. 18, 2001. It will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated

  4. Expedition 6 Crew Interviews: Ken Bowersox CDR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition 6 Commander Ken Bowersox is seen during a prelaunch interview. He gives details on the mission's goals and significance, his role in the mission, what his responsibilities will be as commander, what the crew exchange will be like (transferring the Expedition 6 crew in place of the Expedition 5 crew on the International Space Station (ISS)) and what day-to-day life on an extended stay mission is like. Bowersox also discusses in some detail the planned extravehicular activities (EVAs), the anticipated use of the robot arms in installing the P1 truss and the on-going science experiments which will be conducted by the Expedition 6 crew. He touches on challenges posed by a late change in the crew roster. Bowersox ends with his thoughts on the value on the ISS in fostering international cooperation.

  5. Save Time and Money through Chemistry (by Ken Carpenter)

    NASA Astrophysics Data System (ADS)

    Hazari, Al

    1998-01-01

    Useful Chemistry Publishing: Dayton, OH, 1997. 261 pp. Figs. and tables. ISBN: 0965566714. $24.95 (soft cover only). Would you like to learn about the 5 W's of everyday chemistry and chemicals? Who(m) should you see to learn to identify and appraise jewelry? What should you eat for breakfast? When should you get up from your sleep? Where is cholesterol in the human body? Why do pool owners add hydrochloric acid? Then read Save Time and Money through Chemistry, by Ken Carpenter. This book is loaded with practical and useful chemistry information that every person who took chemistry in high school or college wishes he or she had been introduced or exposed to. I know I do.

  6. Educational Imperatives of the Evolution of Consciousness: The Integral Visions of Rudolf Steiner and Ken Wilber

    ERIC Educational Resources Information Center

    Gidley, Jennifer M.

    2007-01-01

    Rudolf Steiner and Ken Wilber claim that human consciousness is evolving beyond the "formal", abstract, intellectual mode toward a "post-formal", integral mode. Wilber calls this "vision-logic" and Steiner calls it "consciousness/spiritual soul". Both point to the emergence of more complex, dialectical,…

  7. Expedition Six Commander Ken Bowersox at pad before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - Expedition Six Commander Ken Bowersox pauses in front of Space Shuttle Endeavour at Launch Pad 39A during a tour of Kennedy Space Center prior to his launch. The primary mission of STS-113 is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. Another major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 between midnight and 4 a.m. EST.

  8. STS-98 crewmember move rack into U.S. Laboratory / Destiny module

    NASA Image and Video Library

    2001-02-07

    STS098-322-0001 (7-20 February 2001) --- Three STS-98 astronauts move a rack into position aboard the newly attached Destiny laboratory. From the left to right are astronauts Robert L. Curbeam, mission specialist; Mark L. Polansky, pilot; and Kenneth D. Cockrell, mission commander.

  9. STS-98 crew checks out the U.S. Lab Destiny in Atlantis' payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the payload bay of the orbiter Atlantis, STS-98 Commander Ken Cockrell (center) and Mission Specialist Marsha Ivins (right) look over the mission payload, the U.S. Lab Destiny (in the background). The crew is at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. A key element in the construction of the International Space Station, Destiny is a pressurized module designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 13 locations especially designed to support experiments. The module already has five system racks installed inside. Launch of STS-98 on its 11-day mission is scheduled for Jan. 19 at 2:11 a.m. EST.

  10. Video- Astronauts Don Pettit and Ken Bowersox Paint Water Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. Science begets art in this video as Dr. Pettit and commander Ken Bowersox demonstrate two dimensional diffusion using food coloring in a film of water when they created an intriguing birdlike image. Dr. Pettit wonders aloud 'It makes us wonder what Matisse could do with a medium like this.'

  11. STS-98 crew checks out the U.S. Lab Destiny in Atlantis' payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Members of the STS-98 crew, along with Scott Thurston (left), with the VITT office, check out the U.S. Lab Destiny in the payload bay of the orbiter Atlantis. Wearing white caps are Commander Ken Cockrell (center) and Mission Specialist Marsha Ivins (right). The crew is at KSC for Terminal Countdown Demonstration Test activities, which include a simulated launch countdown. Destiny, a key element in the construction of the International Space Station, is a pressurized module designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 13 locations especially designed to support experiments. The module already has five system racks installed inside. Launch of STS-98 on its 11-day mission is scheduled for Jan. 19 at 2:11 a.m. EST.

  12. STS-98 crew checks out the U.S. Lab Destiny in Atlantis' payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Along with Scott Thurston (left), of the VITT office, members of the STS-98 crew Mission Specialist Robert Curbeam, Commander Ken Cockrell and Mission Specialist Marsha Ivins are in Atlantis''' payload bay to check out their mission payload, the U.S. Lab Destiny. The crew is at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. A key element in the construction of the International Space Station, Destiny is a pressurized module designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 13 locations especially designed to support experiments. The module already has five system racks installed inside. Launch of STS-98 on its 11-day mission is scheduled for Jan. 19 at 2:11 a.m. EST.

  13. STS-98 crew checks out the U.S. Lab Destiny in Atlantis' payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-98 Mission Specialist Robert Curbeam (left), Commander Ken Cockrell (center) and Mission Specialist Marsha Ivins (right) look over the U.S. Lab Destiny in the payload bay of the orbiter Atlantis. Behind Ivins is Scott Thurston, of the VITT office. The crew is at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. A key element in the construction of the International Space Station, Destiny is a pressurized module designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 13 locations especially designed to support experiments. The module already has five system racks installed inside. Launch of STS-98 on its 11-day mission is scheduled for Jan. 19 at 2:11 a.m. EST.

  14. STS-98 Flight Control Team Photo in the WFCR

    NASA Image and Video Library

    2001-01-08

    JSC2001-00001 (January 2001) --- The STS-98 astronaut crew poses with about five dozen flight controllers making up its ascent/entry team in the shuttle flight control room of the Johnson Space Center's Mission Control Center (MCC). Standing with the STS-98 insignia is flight director LeRoy Cain. He is flanked by astronauts Marsha S. Ivins, mission specialist, and Kenneth D. Cockrell, mission commander. Behind Cockrell is astronaut Robert L. Curbeam, Jr., mission specialist; and behind Ivins and Cain is astronaut Mark L. Polansky, pilot. Astronaut Thomas D. Jones, mission specialist (blue shirt) stands near the flight director sign. Astronaut Scott D. Altman, CAPCOM or Spacecraft Communicator, is immediately behind Cain. Launch is currently scheduled for February 6, 2001.

  15. Photographic documentation of the return of the STS-98 crew to Ellington Field

    NASA Image and Video Library

    2001-02-22

    JSC2001-E-04804 (21 February 2001) --- Astronauts Mark L. Polansky (left) and Kenneth D. Cockrell (center), pilot and commander, respectively, for the STS-98 mission, are greeted by Steven A. Hawley of the Flight Crew Operations Directorate upon their return to Houston. The greetings took place prior to a welcoming ceremony at Ellington Field.

  16. STS-111 Flight Day 2 Highlights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On Flight Day 2 of STS-111, the crew of Endeavour (Kenneth Cockrell, Commander; Paul Lockhart, Pilot; Franklin Chang-Diaz, Mission Specialist; Philippe Perrin, Mission Specialist) and the Expedition 5 crew (Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer), having successfully entered orbit around the Earth, begin to maneuver towards the International Space Station (ISS), where the Expedition 5 crew will replace the Expedition 4 crew. Live video is shown of the Earth from several vantage points aboard the Shuttle. The center-line camera, which will allow Shuttle pilots to align the docking apparatus with that on the ISS, provides footage of the Earth. Chang-Diaz participates in an interview, in Spanish, conducted from the ground via radio communications, with Cockrell also appearing. Footage of the Earth includes: Daytime video of the Eastern United States with some cloud cover as Endeavour passes over the Florida panhandle, Georgia, and the Carolinas; Daytime video of Lake Michigan unobscured by cloud cover; Nighttime low-light camera video of Madrid, Spain.

  17. STS-98 on-orbit crew portrait

    NASA Image and Video Library

    2001-02-07

    STS098-365-0034 (7-20 February 2001) --- The crew of the STS-98 mission poses for the traditional inflight portrait on the flight deck of the Space Shuttle Atlantis. From left are astronauts Kenneth D. Cockrell, mission commander; Marsha S. Ivins, mission specialist; Thomas D. Jones, mission specialist; Mark L. Polansky, pilot; and Robert L. Curbeam, mission specialist.

  18. The Unseen Déjà-Vu: From Erkki Huhtamo's Topoi to Ken Jacobs' Remakes: Commentary to Edwin Carels "Revisiting Tom Tom: Performative anamnesis and autonomous vision in Ken Jacobs' appropriations of Tom Tom the Piper's Son".

    PubMed

    Strauven, Wanda

    2018-01-01

    This commentary on Edwin Carels' essay "Revisiting Tom Tom : Performative anamnesis and autonomous vision in Ken Jacobs' appropriations of Tom Tom the Piper's Son " broadens up the media-archaeological framework in which Carels places his text. Notions such as Huhtamo's topos and Zielinski's "deep time" are brought into the discussion in order to point out the difficulty to see what there is to see and to question the position of the viewer in front of experimental films like Tom Tom the Piper's Son and its remakes.

  19. Renormalization Group Theory, the Epsilon Expansion and Ken Wilson as I knew Him

    NASA Astrophysics Data System (ADS)

    Fisher, Michael E.

    The tasks posed for renormalization group theory (RGT) within statistical physics by critical phenomena theory in the 1960's are set out briefly in contradistinction to quantum field theory (QFT), which was the origin for Ken Wilson's concerns. Kadanoff's 1966 block spin scaling picture and its difficulties are presented;Wilson's early vision of flows is described from the author's perspective. How Wilson's subsequent breakthrough ideas, published in 1971, led to the epsilon expansion and the resulting clarity is related. Concluding sections complete the general picture of flows in a space of Hamiltonians, universality and scaling. The article represents a 40% condensation (but with added items) of an earlier account: Rev. Mod. Phys. 70, 653-681 (1998).

  20. STS-111 Food Testing

    NASA Image and Video Library

    2001-08-27

    JSC2001-E-25712 (27 August 2001) --- The STS-111 crewmembers are briefed by dietitian Gloria Mongan with Lockheed Martin Space Operations during food testing in the Flight Projects Division Laboratory at the Johnson Space Center (JSC). From back to front are astronauts Kenneth D. Cockrell and Paul S. Lockhart, mission commander and pilot, respectively, and Franklin R. Chang-Diaz and Philippe Perrin, both mission specialists. Perrin represents CNES, the French Space Agency.

  1. STS-69 preflight crew portrait

    NASA Image and Video Library

    1995-06-01

    STS069-S-002 (June 1995) --- These five NASA astronauts have been named as crewmembers for the STS-69 mission, scheduled onboard the Space Shuttle Endeavour in late July of 1995. David M. Walker (right front) is mission commander; with Kenneth D. Cockrell (left front) scheduled to serve as pilot. On the back row are (left to right) Michael L. Gernhardt and James H. Newman, both mission specialists; and James S. Voss, payload commander.

  2. STS-69 crewmembers on Endeavour's flight deck

    NASA Image and Video Library

    1995-09-25

    STS069-363-010 (7-18 September 1995) --- Astronaut Kenneth D. Cockrell, pilot, looks over a logbook on Space Shuttle Endeavour’s flight deck during rendezvous operations involving one of two temporarily free-flying craft. Astronaut James H. Newman (background), mission specialist, eyeballs the target. Endeavour, with a five-member crew, launched on September 7, 1995, from the Kennedy Space Center (KSC). The multifaceted mission ended September 18, 1995, with a successful landing on Runway 33 at KSC.

  3. STS-98 CDR and Expedition One Flight Engineer say goodbye

    NASA Image and Video Library

    2001-02-16

    STS98-E-5295 (16 February 2001) --- Astronaut Kenneth D. Cockrell (left), STS-98 mission commander, participates in farewells with Expedition One crew members. Cosmonaut Sergei K. Krikalev (right foreground), Expedition One flight engineer, is one of three crew members who will stay behind for several weeks prior to return to Earth. Astronauts Mark L. Polansky, STS-98 pilot, and Robert L. Curbeam, mission specialist, are also pictured. The scene was recorded with a digital still camera.

  4. Eddie Patterson enjoyed "flying" a C-17 simulator during Take Your Children to Work Day June 22 while Dryden engineer Ken Norlin and other students look on

    NASA Image and Video Library

    2004-06-22

    Eddie Patterson, a fourth-grade student at Tehachapi's Tompkins Elementary School, enjoyed "flying" a C-17 multi-engine aircraft simulator during Take Your Children to Work Day June 22 at NASA Dryden Flight Research Center while NASA Dryden engineer Ken Norlin and other students look on.

  5. KSC-82PC-0669

    NASA Image and Video Library

    1982-06-27

    CAPE CANAVERAL, Fla. - STS-4 thunders away from Launch Pad 39A at 10:59:59 a.m. EDT, bound for a seven-day Earth orbital mission and the final developmental flight for the Space Transportation System. The fourth Space Shuttle mission is piloted by Commander Ken Mattingly and Pilot Henry Hartsfield Jr. Photo Credit: NASA

  6. Space Shuttle Projects

    NASA Image and Video Library

    1995-06-02

    These five NASA astronauts were the crew members for the STS-69 mission that launched aboard the Space Shuttle Endeavour September 7, 1995. Pictured on the front row (left to right) are David M. Walker, mission commander; and Kenneth D. Cockrell, pilot. On the back row (left to right) are Michael L. Gernhardt and James H. Newman, both mission specialists; and James S. Voss, payload commander. The mission’s two primary payloads included the Spartan 201-3 and Wake Shield Facility-2 (WSF-2).

  7. STS-98 crewmembers prepare for rendezvous and docking with ISS

    NASA Image and Video Library

    2001-02-09

    STS98-E-5030 (9 February 2001) --- Three members of the STS-98 crew prepare for rendezvous with the International Space Station (ISS). Astronaut Thomas D. Jones (right), mission specialist, temporarily mans the pilot's station on the flight deck of the Space Shuttle Atlantis. Astronaut Mark L. Polansky, left, sits at the commander's station for this maneuver. At lower left is Astronaut Robert L. Curbeam, mission specialist. Astronaut Kenneth D. Cockrell, mission commander, is just out of frame at right. The photograph was recorded with a digital still camera.

  8. STS098-S-002

    NASA Image and Video Library

    2000-12-01

    STS098-S-002 (December 2000) --- These five astronauts have been in training for the STS-98 mission, scheduled for launch aboard the Space Shuttle Atlantis in January of 2001. The crew is composed of astronauts Kenneth D. Cockrell (right front), mission commander; and Mark L. Polansky (left front), pilot; along with astronauts Marsha S. Ivins, Robert L. Curbeam, Jr., (left rear) and Thomas D. Jones (right rear), all mission specialists. Curbeam and Jones are the scheduled extravehicular activity (EVA) participants for the International Space Station's 5a mission.

  9. Statistical evaluation of rainfall time series in concurrence with agriculture and water resources of Ken River basin, Central India (1901-2010)

    NASA Astrophysics Data System (ADS)

    Meshram, Sarita Gajbhiye; Singh, Sudhir Kumar; Meshram, Chandrashekhar; Deo, Ravinesh C.; Ambade, Balram

    2017-12-01

    Trend analysis of long-term rainfall records can be used to facilitate better agriculture water management decision and climate risk studies. The main objective of this study was to identify the existing trends in the long-term rainfall time series over the period 1901-2010 utilizing 12 hydrological stations located at the Ken River basin (KRB) in Madhya Pradesh, India. To investigate the different trends, the rainfall time series data were divided into annual and seasonal (i.e., pre-monsoon, monsoon, post-monsoon, and winter season) sub-sets, and a statistical analysis of data using the non-parametric Mann-Kendall (MK) test and the Sen's slope approach was applied to identify the nature of the existing trends in rainfall series for the Ken River basin. The obtained results were further interpolated with the aid of the Quantum Geographic Information System (GIS) approach employing the inverse distance weighted approach. The results showed that the monsoon and the winter season exhibited a negative trend in rainfall changes over the period of study, and this was true for all stations, although the changes during the pre- and the post-monsoon seasons were less significant. The outcomes of this research study also suggest significant decreases in the seasonal and annual trends of rainfall amounts in the study period. These findings showing a clear signature of climate change impacts on KRB region potentially have implications in terms of climate risk management strategies to be developed during major growing and harvesting seasons and also to aid in the appropriate water resource management strategies that must be implemented in decision-making process.

  10. Crewmember repairing the Regenerative Carbon Dioxide Removal System wiring.

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Mission Pilot Ken Bowersox, busy at work on the wiring harness for the Regenerative Carbon Dioxide Removal System located under the mid deck floor. Photo shows Bowersox splicing wires together to 'fool' a faulty sensor that caused the 'air conditioner' to shut down.

  11. Ceremony honoring Astronaut Voss receving promotion

    NASA Image and Video Library

    1995-09-21

    STS069-347-013 (7-18 September 1995) --- Upon the announcement of his new status as a Colonel, selectee, Lieutenant Colonel James S. Voss (United States Army), gets a preview of the new rank with the aid of fellow crewmembers. They are astronauts David M. Walker (right) and Kenneth D. Cockrell, commander and pilot, respectively. Mission specialist Voss, payload commander, made his third flight in space. The Space Shuttle Endeavour, with a five-member crew, launched on September 7, 1995, from the Kennedy Space Center (KSC). The mission ended September 18, 1995, with a successful landing on Runway 33 at KSC.

  12. Geoengineering and seismological aspects of the Niigata-Ken Chuetsu-Oki earthquake of 16 July 2007

    USGS Publications Warehouse

    Kayen, R.; Brandenberg, S.J.; CoIlins, B.D.; Dickenson, S.; Ashford, S.; Kawamata, Y.; Tanaka, Y.; Koumoto, H.; Abrahamson, N.; Cluff, L.; Tokimatsu, K.

    2009-01-01

    The M6.6 Niigata-Ken Chuetsu-Oki earthquake of 16 July 2007 occurred off the west coast of Japan with a focal depth of 10 km, immediately west of Kashiwazaki City and Kariwa Village in southern Niigata Prefecture. Peak horizontal ground accelerations of 0.68 g were measured in Kashiwazaki City, as well as at the reactor floor level of the world's largest nuclear reactor, located on the coast at Kariwa Village. Liquefaction of historic and modern river deposits, aeolian dune sand, and manmade fill was widespread in the coastal region nearest the epicenter and caused ground deformations that damaged bridges, embankments, roadways, buildings, ports, railways and utilities. Landslides along the coast of southern Niigata Prefecture and in mountainous regions inland of Kashiwazaki were also widespread affecting transportation infrastructure. Liquefaction and a landslide also damaged the nuclear power plant sites. This paper, along with a companion digital map database available at http://walrus.wr.usgs.gOv/infobank/n/nii07jp/html/n-ii-07-jp.sites.kmz, describes the seismological and geo-engineering aspects of the event. ?? 2009, Earthquake Engineering Research Institute.

  13. LIDAR Investigation Of The 2004 Niigata Ken Chuetsu, Japan, Earthquake

    NASA Astrophysics Data System (ADS)

    Kayen, R.; Pack, R. T.; Sugimoto, S.; Tanaka, H.

    2005-12-01

    The 23 October 2004 Niigata Ken Chuetsu, Japan, Mw 6.6 earthquake was the most significant earthquake to affect Japan since the 1995 Kobe earthquake. Forty people were killed, almost 3,000 injured, and numerous landslides destroyed entire upland villages. Landslides and permanent ground deformation caused extensive damage to roads, rail lines and other lifelines, resulting in major economic disruption. The cities and towns most significantly affected by the earthquake were Nagaoka, Ojiya, and the mountainous rural areas of Yamakoshi village and Kawaguchi town. Our EERI team traveled with a tripod mounted LIDAR (Light Detection and Ranging) unit, a scanning-laser that creates ultra high-resolution 3-D digital terrain models of the earthquake damaged surfaces the ground, structures, and life-lines. This new technology allows for rapid and remote sensing of damaged terrain. Ground-based LIDAR has an accuracy range of 0.5-2.5 cm, and can illuminate targets up to 400m away from the sensor. During a single tripod-mounted LIDAR scan of 10 minutes, several million survey points are collected and processed into an ultra-high resolution terrain model of the damaged ground or structure. There are several benefits in acquiring these LIDAR data in the initial reconnaissance effort after the earthquake. First, we record the detailed failure morphologies of damaged ground and structures in order to make measurements that are either impractical or impossible by conventional survey means. The digital terrain models allow us to enlarge, enhance and rotate data in order to visualize damage in orientations and scales not previously possible. This ability to visualize damage allows us to better understand failure modes. Finally, LIDAR allows us to archive 3-D terrain models so that the engineering community can evaluate analytical and numerical models of deformation potential against detailed field measurements. Here, we discuss the findings of this 2004 Niigata Chuetsu Earthquake (M6

  14. T-38 AT SLF DURING STS-80 CREW ARRIVAL

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A T-38 parked at KSC's Shuttle Landing Facility is profiled against the brilliant twilight sky. The five astronauts assigned to Space Shuttle Mission STS-80 arrived from Houston at around 6:30 p.m.: Mission Commander Kenneth D. Cockrell; Pilot Kent V. Rominger; and Mission Specialists Tamara E. Jernigan, Thomas D. Jones and Story Musgrave headed for the crew quarters in the Operations and Checkout Building. Tomorrow, Nov. 12, the launch countdown will begin at 1 p.m. with the countdown clock set at T- 43 hours. The Space Shuttle Columbia is scheduled for liftoff from Launch Pad 39B at 2:50 p.m. EST, Nov. 15.

  15. STS-80 Flight Day 2

    NASA Technical Reports Server (NTRS)

    1996-01-01

    On this second day of the STS-80 mission, the flight crew, Cmdr. Kenneth D. Cockrell, Pilot Kent V. Rominger, Mission Specialists, Tamara E. Jernigan, Thomas D. Jones, and F. Story Musgrave, complete the first major objective of the mission with the deployment of the Orbiting Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS) on the reusable Shuttle Pallet Satellite. Release of ORFEUS from Columbia's robot arm came at 8 hours 15 minutes mission elapsed time. Three hours after the release, ground controllers inform the crew that the instrument package appears to be working properly. This begins two weeks of gathering data on the origin and makeup of stars.

  16. International Space Station (ISS)

    NASA Image and Video Library

    2002-03-08

    Launched aboard the Space Shuttle Endeavor on June 6, 2002, these four astronauts comprised the prime crew for NASA's STS-111 mission. Astronaut Kenneth D. Cockrell (front right) was mission commander, and astronaut Paul S. Lockhart (front left) was pilot. Astronauts Philippe Perrin (rear left), representing the French Space Agency, and Franklin R. Chang-Diaz were mission specialists assigned to extravehicular activity (EVA) work on the International Space Station (ISS). In addition to the delivery and installation of the Mobile Base System (MBS), this crew dropped off the Expedition Five crew members at the orbital outpost, and brought back the Expedition Four trio at mission's end.

  17. Eyes Behind the Lines: US Army Long-Range Reconnaissance and Surveillance Units

    DTIC Science & Technology

    2005-01-01

    while still at Fort Campbell, Ken - tucky, converted its divisional Recondo School into a provisional LRRP unit in the summer of 967, before the...helicopter rather than a Hughes OH-6A light observa- tion helicopter (LOH, but commonly called “ loach ”), which had a crew of two (pilot and observer

  18. STS-124 crew visits Stennis

    NASA Image and Video Library

    2008-07-23

    NASA's John C. Stennis Space Center Deputy Director Gene Goldman (center) welcomed members of the STS-124 Discovery space shuttle crew during their July 23 visit to the center. Crew members who visited Stennis were (l to r) Pilot Ken Ham, Mission Specialist Karen Nyberg, Kelly, and Mission Specialists Ron Garan and Mike Fossum.

  19. STS-60 crew walkout from O&C

    NASA Image and Video Library

    1994-02-03

    STS-60 pilot Ken Reightler (front left) and Mission Commander Charlie Bolden (front right) lead the way from the O&C bldg. enroute to Discovery at Pad 39A. Behidn are (from felt) Mission Specs Sega adn Krikalev: Payload Commander Chang-Diaz: and Misssion Spec Davis. (Op. No. D6022)(Item D-112C)

  20. Views of STS-4 crew during a training session in the SMS

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Views of STS-4 crew during a training session in the Shuttle Mission Simulator (SMS). Astronaut Henry W. Hartsfield, Jr., STS-4 pilot, takes part in training session wearing an ejection/escape (EES) spacesuit and helmet (31368); Astronaut Thomas K. (Ken) Mattingly, II., STS-4 crew commander, takes part in training session wearing an ejection/escape suit (31369).

  1. STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.

    NASA Image and Video Library

    2009-12-22

    JSC2009-E-286973 (22 Dec. 2009) --- Astronauts Ken Ham (left), STS-132 commander; Tony Antonelli (center), pilot; and Mike Good, mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  2. STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.

    NASA Image and Video Library

    2009-12-22

    JSC2009-E-286968 (22 Dec. 2009) --- Astronauts Ken Ham (left), STS-132 commander; Tony Antonelli (right), pilot; and Mike Good, mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  3. STS-111 & Expedition 4 Crew Return Ceremony

    NASA Image and Video Library

    2002-06-24

    JSC2002-E-26021 (21 June 2002) --- Johnson Space Center’s (JSC) Director Jefferson Davis Howell, Jr. speaks from the lectern in Hangar 990 at Ellington Field during the STS-111 and Expedition Four crew return ceremonies. Seated (from left) are General Vasily Tsiblyiev, Deputy Director of the Gagarin Cosmonaut Training Center; cosmonaut Yury I. Onufrienko, Expedition Four mission commander; astronauts Carl E. Walz and Daniel W. Bursch, both Expedition Four flight engineers; NASA Administrator Sean O'Keefe; astronauts Kenneth D. Cockrell, STS-111 mission commander; Paul S. Lockhart, pilot; Franklin R. Chang-Diaz and Philippe Perrin, both mission specialists. Tsiblyiev and Onufrienko represent Rosaviakosmos, and Perrin represents CNES, the French Space Agency.

  4. STS-80 Columbia, OV 102, liftoff from KSC Launch Pad 39B

    NASA Image and Video Library

    1996-11-19

    STS080-S-007 (19 Nov. 1996) --- One of the nearest remote camera stations to Launch Pad B captured this profile image of space shuttle Columbia's liftoff from the Kennedy Space Center's (KSC) Launch Complex 39 at 2:55:47 p.m. (EST), November 19, 1996. Onboard are astronauts Kenneth D. Cockrell, mission commander; Kent V. Rominger, pilot; along with Story Musgrave, Tamara E. Jernigan and Thomas D. Jones, all mission specialists. The two primary payloads for STS-80 stowed in Columbia?s cargo bay for later deployment and testing are the Wake Shield Facility (WSF-3) and the Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS) with its associated Shuttle Pallet Satellite (SPAS).

  5. SPARTAN-201-3 spacecraft prior to being re-captured

    NASA Image and Video Library

    1995-09-10

    STS069-703-00H (10 September 1995) --- Prior to being re-captured by Space Shuttle Endeavour’s Remote Manipulator System (RMS), the Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN-201) spacecraft was recorded on film, backdropped against the darkness of space over a heavily cloud-covered Earth. Endeavour, with a five-member crew, launched on September 7, 1995, from the Kennedy Space Center (KSC) and ended its mission there on September 18, 1995, with a successful landing on Runway 33. The multifaceted mission carried a crew of astronauts David M. Walker, mission commander; Kenneth D. Cockrell, pilot; and James S. Voss (payload commander), James H. Newman and Michael L. Gernhardt, all mission specialists.

  6. 14 CFR 61.94 - Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Student pilot seeking a sport pilot... Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations at... operational control tower in other airspace. (a) A student pilot seeking a sport pilot certificate or a...

  7. 14 CFR 61.94 - Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Student pilot seeking a sport pilot... Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations at... operational control tower in other airspace. (a) A student pilot seeking a sport pilot certificate or a...

  8. 14 CFR 61.94 - Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Student pilot seeking a sport pilot... Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations at... operational control tower in other airspace. (a) A student pilot seeking a sport pilot certificate or a...

  9. 14 CFR 61.94 - Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Student pilot seeking a sport pilot... Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations at... operational control tower in other airspace. (a) A student pilot seeking a sport pilot certificate or a...

  10. 14 CFR 61.94 - Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Student pilot seeking a sport pilot... Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations at... operational control tower in other airspace. (a) A student pilot seeking a sport pilot certificate or a...

  11. 76 FR 54095 - Pilot in Command Proficiency Check and Other Changes to the Pilot and Pilot School Certification...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ... Command Proficiency Check and Other Changes to the Pilot and Pilot School Certification Rules AGENCY... regulations concerning pilot, flight instructor, and pilot school certification. This rule will require pilot... and permits pilot schools and provisional pilot schools to apply for a combined private pilot...

  12. STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.

    NASA Image and Video Library

    2009-12-22

    JSC2009-E-286974 (22 Dec. 2009) --- Astronauts Ken Ham (left background), STS-132 commander; Tony Antonelli (right background), pilot; and Mike Good, mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  13. STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.

    NASA Image and Video Library

    2009-12-22

    JSC2009-E-286962 (22 Dec. 2009) --- Astronauts Ken Ham (right background), STS-132 commander; Tony Antonelli (left), pilot; and Mike Good, mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  14. STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.

    NASA Image and Video Library

    2009-12-22

    JSC2009-E-286976 (22 Dec. 2009) --- Astronauts Ken Ham (left), STS-132 commander; Tony Antonelli (right background), pilot; and Mike Good, mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  15. STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.

    NASA Image and Video Library

    2009-12-22

    JSC2009-E-286972 (22 Dec. 2009) --- Astronauts Ken Ham (right background), STS-132 commander; Tony Antonelli (left), pilot; and Mike Good, mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  16. Linking the Pilot Structural Model and Pilot Workload

    NASA Technical Reports Server (NTRS)

    Bachelder, Edward; Hess, Ronald; Aponso, Bimal; Godfroy-Cooper, Martine

    2018-01-01

    Behavioral models are developed that closely reproduced pulsive control response of two pilots using markedly different control techniques while conducting a tracking task. An intriguing find was that the pilots appeared to: 1) produce a continuous, internally-generated stick signal that they integrated in time; 2) integrate the actual stick position; and 3) compare the two integrations to either issue or cease a pulse command. This suggests that the pilots utilized kinesthetic feedback in order to sense and integrate stick position, supporting the hypothesis that pilots can access and employ the proprioceptive inner feedback loop proposed by Hess's pilot Structural Model. A Pilot Cost Index was developed, whose elements include estimated workload, performance, and the degree to which the pilot employs kinesthetic feedback. Preliminary results suggest that a pilot's operating point (parameter values) may be based on control style and index minimization.

  17. T-38 A- AIRCRAFT (NASA 924)

    NASA Image and Video Library

    1983-12-07

    S82-28952 (1 April 1982) --- Crew members from STS-2 and STS-4 meet with the recently returned STS-3 astronauts for a debriefing session at the Johnson Space Center. Taking notes at bottom left foreground is astronaut John W. Young, STS-1 commander and chief of the Astronaut Office at JSC. Clockwise around the table, beginning with Young, are George W. S. Abbey, JSC Director of Flight Operations; and astronauts Joe E. Engle, STS-2 commander; Henry W. Hartsfield Jr., STS-4 pilot; C. Gordon Fullerton, STS-3 pilot; Jack R. Lousma, STS-3 commander; Thomas K. (Ken) Mattingly, STS-4 commander; and Richard H. Truly, STS-2 pilot. Photo credit: NASA

  18. KSC-2013-3561

    NASA Image and Video Library

    2013-08-15

    DRYDEN FLIGHT RESEARCH CENTER, Calif. - Simulation technicians Brent Bieber, left, and Dennis Pitts install a boilerplate Dream Chaser canopy structure over the cockpit of a flight simulator in the simulation laboratory at NASA's Dryden Flight Research Center in California. The modification will give Dream Chaser pilot-astronauts a more representative view of the actual flight profiles the spacecraft would fly during piloted approach and landing tests. Sierra Nevada Corporation's Space Systems division is conducting uncrewed captive- and free-flight approach and landing tests of its Dream Chaser at Dryden during the summer and fall. Photo credit: NASA/Ken Ulbrich

  19. Pilots 2.0: DIRAC pilots for all the skies

    NASA Astrophysics Data System (ADS)

    Stagni, F.; Tsaregorodtsev, A.; McNab, A.; Luzzi, C.

    2015-12-01

    In the last few years, new types of computing infrastructures, such as IAAS (Infrastructure as a Service) and IAAC (Infrastructure as a Client), gained popularity. New resources may come as part of pledged resources, while others are opportunistic. Most of these new infrastructures are based on virtualization techniques. Meanwhile, some concepts, such as distributed queues, lost appeal, while still supporting a vast amount of resources. Virtual Organizations are therefore facing heterogeneity of the available resources and the use of an Interware software like DIRAC to hide the diversity of underlying resources has become essential. The DIRAC WMS is based on the concept of pilot jobs that was introduced back in 2004. A pilot is what creates the possibility to run jobs on a worker node. Within DIRAC, we developed a new generation of pilot jobs, that we dubbed Pilots 2.0. Pilots 2.0 are not tied to a specific infrastructure; rather they are generic, fully configurable and extendible pilots. A Pilot 2.0 can be sent, as a script to be run, or it can be fetched from a remote location. A pilot 2.0 can run on every computing resource, e.g.: on CREAM Computing elements, on DIRAC Computing elements, on Virtual Machines as part of the contextualization script, or IAAC resources, provided that these machines are properly configured, hiding all the details of the Worker Nodes (WNs) infrastructure. Pilots 2.0 can be generated server and client side. Pilots 2.0 are the “pilots to fly in all the skies”, aiming at easy use of computing power, in whatever form it is presented. Another aim is the unification and simplification of the monitoring infrastructure for all kinds of computing resources, by using pilots as a network of distributed sensors coordinated by a central resource monitoring system. Pilots 2.0 have been developed using the command pattern. VOs using DIRAC can tune pilots 2.0 as they need, and extend or replace each and every pilot command in an easy way. In this

  20. STS-56 crewmembers on aft flight deck of Discovery, Orbiter Vehicle (OV) 103

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 crewmembers pose on aft flight deck of Discovery, Orbiter Vehicle (OV) 103, for this in-cabin electronic still camera (ESC) photograph. Clockwise from the bottom right corner are Commander Kenneth Cameron, Mission Specialist 3 (MS3) Ellen Ochoa, MS2 Kenneth D. Cockrell, and Pilot Stephen S. Oswald. The crewmembers are positioned in front of the onorbit station. The image was recorder with the Hand-held, Earth-oriented, Real-time, Cooperative, User-friendly, Location-targeting and Environmental System (HERCULES). HERCULES is a device that makes it simple for Shuttle crewmembers to take pictures of Earth as they merely point and shoot any interesting feature, whose latitude and longitude are automatically determined in real time. In-cabin shots are for test purposes only.

  1. 14 CFR 61.73 - Military pilots or former military pilots: Special rules.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Military pilots or former military pilots... Ratings and Pilot Authorizations § 61.73 Military pilots or former military pilots: Special rules. (a... a disciplinary action involving aircraft operations, a U.S. military pilot or former military pilot...

  2. 14 CFR 61.73 - Military pilots or former military pilots: Special rules.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Military pilots or former military pilots... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Aircraft Ratings and Pilot Authorizations § 61.73 Military pilots or former military pilots: Special rules. (a...

  3. Assessment of Land Degradation and Greening in Ken River Basin of Central India

    NASA Astrophysics Data System (ADS)

    Pandey, Ashish; Palmate, Santosh S.

    2017-04-01

    Natural systems have significant impact of land degradation on biodiversity loss, food and water insecurity. To achieve the sustainable development goals, advances in remote sensing and geographical information systems (GIS) are progressively utilized to combat climate change, land degradation and poverty issues of developing country. The Ken River Basin (KRB) has dominating land cover pattern of agriculture and forest area. Nowadays, this pattern is affected due to climate change and anthropogenic activity like deforestation. In this study, land degradation and greening status of KRB of Central India during the years 2001 to 2013 have been assessed using MODIS land cover (MCD12Q1) data sets. International Geosphere Biosphere Programme (IGBP) land cover data has been extracted from the MCD12Q1 data product. Multiple rasters of MODIS landcover were analyzed and compared for assigning unique combination of land cover dynamics employing ArcGIS software. Result reveals that 14.38% natural vegetation was degraded, and crop land and woody savannas were greened by 9.68% to 6.94% respectively. Natural vegetation degradation have been observed in the upper KRB area, and resulted to increase in crop land (3418.87 km2) and woody savannas (1242.23 km2) area. Due to transition of 1043.6 km2 area of deciduous broadleaf forest to woody savannas greening was also observed. Moreover, both crop land and woody savannas showed inter-transitions of 669.31 km2 into crop land to woody savannas, and 874.09 km2 into woody savannas to crop land. The present analysis reveals that natural vegetation has more land conversions into woody savannas and crop land in the KRB area. Further, Spatial change analysis shows that land degradation and greening has occurred mostly in the upper part of the KRB. The study reveals that the land transition information can be useful for proper planning and management of natural resources.

  4. View of the Apollo 16 Command/Service Module from the Lunar module in orbit

    NASA Image and Video Library

    1971-04-20

    AS16-113-18282 (23 April 1972) --- The Apollo Command and Service Modules (CSM) "Casper" approaches the Lunar Module (LM) "Orion", from which this photograph was made. The two spacecraft are about to make their final rendezvous of the mission, on April 23, 1972. Astronauts John W. Young, commander, and Charles M. Duke Jr., lunar module pilot, aboard the LM, were returning to the CSM, in lunar orbit, after three successful days on the lunar surface. Astronaut Thomas K. (Ken) Mattingly II, command module pilot, remained with the CSM in lunar orbit, while Young and Duke descended in the LM to explore the Descartes region of the moon.

  5. 76 FR 63183 - Pilot in Command Proficiency Check and Other Changes to the Pilot and Pilot School Certification...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ...-0938; Amendment Nos. 61-128, 91-324, 141-15, and 142-7] RIN 2120-AJ18 Pilot in Command Proficiency..., the FAA expanded the obligation for a pilot-in-command (PIC) proficiency check to pilots of all... as follows: Sec. 61.58 Pilot-in-command proficiency check: Operation of aircraft requiring more than...

  6. 14 CFR 61.113 - Private pilot privileges and limitations: Pilot in command.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: Pilot in command. 61.113 Section 61.113 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... INSTRUCTORS Private Pilots § 61.113 Private pilot privileges and limitations: Pilot in command. (a) Except as... act as pilot in command of an aircraft that is carrying passengers or property for compensation or...

  7. 14 CFR 61.113 - Private pilot privileges and limitations: Pilot in command.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...: Pilot in command. 61.113 Section 61.113 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... INSTRUCTORS Private Pilots § 61.113 Private pilot privileges and limitations: Pilot in command. (a) Except as... act as pilot in command of an aircraft that is carrying passengers or property for compensation or...

  8. 14 CFR 61.113 - Private pilot privileges and limitations: Pilot in command.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...: Pilot in command. 61.113 Section 61.113 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... INSTRUCTORS Private Pilots § 61.113 Private pilot privileges and limitations: Pilot in command. (a) Except as... act as pilot in command of an aircraft that is carrying passengers or property for compensation or...

  9. 14 CFR 61.113 - Private pilot privileges and limitations: Pilot in command.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: Pilot in command. 61.113 Section 61.113 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... INSTRUCTORS Private Pilots § 61.113 Private pilot privileges and limitations: Pilot in command. (a) Except as... act as pilot in command of an aircraft that is carrying passengers or property for compensation or...

  10. 14 CFR 61.113 - Private pilot privileges and limitations: Pilot in command.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...: Pilot in command. 61.113 Section 61.113 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... INSTRUCTORS Private Pilots § 61.113 Private pilot privileges and limitations: Pilot in command. (a) Except as... act as pilot in command of an aircraft that is carrying passengers or property for compensation or...

  11. STS-69 Sideview of Shuttle Touch Down

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-69 Mission Commander David M. Walker guides the orbiter Endeavour to an end-of-mission landing on Runway 33 of KSC's Shuttle Landing Facility. Main gear touchdown at 7:37:56 a.m. EDT marked the 25th end-of-mission landing at Kennedy. The fifth Space Shuttle flight of 1995 was a multifaceted one. For the first time, two spacecraft -- the Wake Shield Facility-2 and the Spartan-201-3 -- were deployed and later retrieved on the same flight. An extravehicular activity, or spacewalk, was conducted and the crew oversaw a variety of experiments located in both the orbiter payload bay and middeck. Besides Walker, the crew included Pilot Kenneth D. Cockrell; Payload Commander James S. Voss; and Mission Specialists Michael L. Gernhardt and James H. Newman.

  12. STS-69 Parachute Deployed after Touch Down on Runway 33

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-69 Mission Commander David M. Walker guides the orbiter Endeavour to an end-of-mission landing on Runway 33 of KSC's Shuttle Landing Facility. Main gear touchdown at 7:37:56 a.m. EDT marked the 25th end-of-mission landing at Kennedy. The fifth Space Shuttle flight of 1995 was a multifaceted one. For the first time, two spacecraft -- the Wake Shield Facility-2 and the Spartan-201-3 -- were deployed and later retrieved on the same flight. An extravehicular activity, or spacewalk, was conducted and the crew oversaw a variety of experiments located in both the orbiter payload bay and middeck. Besides Walker, the crew included Pilot Kenneth D. Cockrell; Payload Commander James S. Voss; and Mission Specialists Michael L. Gernhardt and James H. Newman.

  13. STS-69 Main Gear Touch Down at Shuttle Landing Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-69 Mission Commander David M. Walker guides the orbiter Endeavour to an end-of-mission landing on Runway 33 of KSC's Shuttle Landing Facility. Main gear touchdown at 7:37:56 a.m. EDT marked the 25th end-of-mission landing at Kennedy. The fifth Space Shuttle flight of 1995 was a multifaceted one. For the first time, two spacecraft -- the Wake Shield Facility-2 and the Spartan-201-3 -- were deployed and later retrieved on the same flight. An extravehicular activity, or spacewalk, was conducted and the crew oversaw a variety of experiments located in both the orbiter payload bay and middeck. Besides Walker, the crew included Pilot Kenneth D. Cockrell; Payload Commander James S. Voss; and Mission Specialists Michael L. Gernhardt and James H. Newman.

  14. KSC-02pd0709

    NASA Image and Video Library

    2002-05-17

    KENNEDY SPACE CENTER, FLA. -- The Expedition 5 crew poses during suitup prior to going to the launch pad for a simulated countdown. From left are astronaut Sergei Treschev, astronaut Peggy Whitson and Commander Valeri Korzun. Treschev and Korzun are with the Russian Space Agency. The simulation is part of STS-111 Terminal Countdown Demonstration Test activities, which also includes the mission crew Commander Kenneth Cockrell, Pilot Paul Lockhart and Mission Specialists Franklin Chang-Diaz and Philippe Perrin, with the French Space Agency. The payload on the mission to the International Space Station includes the Mobile Base System, an Orbital Replacement Unit and Multi-Purpose Logistics Module Leonardo. The Expedition 5 crew is traveling on Endeavour to replace the Expedition 4 crew on the Station. Launch of Endeavour is scheduled for May 30, 2002.

  15. Accident rates for novice glider pilots vs. pilots with experience.

    PubMed

    Jarvis, Steve; Harris, Don

    2007-12-01

    It is a popular notion in gliding that newly soloed pilots have a low accident rate. The intention of this study was to review the support for such a hypothesis from literature and to explore it using UK accident totals and measures of flying exposure. Log sheets from UK gliding clubs were used to estimate flying exposure for inexperienced glider pilots. This was used along with accident data and annual flight statistics for the period 2004-2006 in order to estimate accident rates that could be compared between the pilot groups. The UK accident rate for glider pilots from 2004-2006 was 1 accident in every 3534 launches and 1590 flying hours. The lowest estimated rate for pilots with up to 1 h of experience was 1 accident every 976 launches and 149 h flown. For pilots with up to 10 h of experience the figures were 1 accident in 1274 launches and 503 h. From 2004-2006 UK glider pilots with 10 h or less experience in command had twice the number of accidents per launch and three times as many accidents per hour flown than average for UK glider pilots. Pilots with only 1 h of experience or less were involved in at least 10 times the number of accidents per hour flown than the UK average and had more than 3.5 times the number of accidents per launch.

  16. 76 FR 19267 - Pilot, Flight Instructor, and Pilot School Certification; Technical Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-07

    .... No. 61-127] RIN 2120-AI86 Pilot, Flight Instructor, and Pilot School Certification; Technical... for pilots, flight instructors, ground instructors, and pilot schools. This document reinstates two... Aviation and Commercial Division, Flight Standards Service, Federal Aviation Administration, 800...

  17. STS-80 Mission Highlights Resource Tape

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The flight crew of STS-80, Cmdr. Kenneth D. Cockrell, Pilot Kent V. Rominger, Mission Specialists, Tamara E. Jernigan, Thomas D. Jones, and F. Story Musgrave are seen performing pre-launch activities such as eating the traditional breakfast, being suited-up, and riding out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew is readied in the 'white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including the countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters (SRB) from the shuttle. The crew completes the first major objective of the mission with the deployment of the Orbiting Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS) on the reusable Shuttle Pallet Satellite. The crew than begins final preparations for the release of Wake Shield. Jones powers up the shuttle's Canadian-built robot arm and grapples the satellite, while Jernigan powers up the Orbiter Space Vision System, which will be used to track precisely the Wake Shield's location. Cockrell places Columbia in a gravity gradient attitude to minimize disturbances during the release. Jones uses the robot arm to hold Wake Shield in position for a two-and-a-half hour cleansing by atomic oxygen molecules before moving the arm to the deploy position. The failure of the hatch to properly open causes the cancellation of all EVA's planned for this mission by Jernigan and Jones. The mission ends with the shuttle landing at the Kennedy Space Center.

  18. Rep. Ken Calvert, R-Calif., chairman of the House Subcommittee on Space and Aeronautics, was briefed by X-43A engineer Laurie Grindle during his tour of Dryden

    NASA Image and Video Library

    2005-06-02

    Rep. Ken Calvert, (R-Calif.), chairman of the House Subcommittee on Space and Aeronautics, received an update on the mission of NASA's Dryden Flight Research Center during a visit on June 2, 2005. Rep. Calvert, accompanied by several staff members, was briefed by center management on the Dryden's role as a flight research institution, and then reviewed some of the center's recent, current and upcoming flight research projects during a tour of the facility. During the afternoon, Rep. Calvert received similar briefings on a variety of projects at several aerospace development firms at the Civilian Flight Test Center in Mojave. Rep. Calvert's tour of NASA Dryden was the second in a series of visits to all 10 NASA field centers to better acquaint him with the roles and responsibilities of each center.

  19. Roll paper pilot. [mathematical model for predicting pilot rating of aircraft in roll task

    NASA Technical Reports Server (NTRS)

    Naylor, F. R.; Dillow, J. D.; Hannen, R. A.

    1973-01-01

    A mathematical model for predicting the pilot rating of an aircraft in a roll task is described. The model includes: (1) the lateral-directional aircraft equations of motion; (2) a stochastic gust model; (3) a pilot model with two free parameters; and (4) a pilot rating expression that is a function of rms roll angle and the pilot lead time constant. The pilot gain and lead time constant are selected to minimize the pilot rating expression. The pilot parameters are then adjusted to provide a 20% stability margin and the adjusted pilot parameters are used to compute a roll paper pilot rating of the aircraft/gust configuration. The roll paper pilot rating was computed for 25 aircraft/gust configurations. A range of actual ratings from 2 to 9 were encountered and the roll paper pilot ratings agree quite well with the actual ratings. In addition there is good correlation between predicted and measured rms roll angle.

  20. Recreational Pilot and Private Pilot Knowledge Test Guide

    DOT National Transportation Integrated Search

    1995-01-01

    The Flight Standards Service of the Federal Aviation Administration (FAA) has developed this guide to help : applicants meet the knowledge requirements for recreational pilot and private pilot certification. : This guide contains information about el...

  1. Pilot-optimal augmentation synthesis

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.

    1978-01-01

    An augmentation synthesis method usable in the absence of quantitative handling qualities specifications, and yet explicitly including design objectives based on pilot-rating concepts, is presented. The algorithm involves the unique approach of simultaneously solving for the stability augmentation system (SAS) gains, pilot equalization and pilot rating prediction via optimal control techniques. Simultaneous solution is required in this case since the pilot model (gains, etc.) depends upon the augmented plant dynamics, and the augmentation is obviously not a priori known. Another special feature is the use of the pilot's objective function (from which the pilot model evolves) to design the SAS.

  2. Predicting Pilot Error in Nextgen: Pilot Performance Modeling and Validation Efforts

    NASA Technical Reports Server (NTRS)

    Wickens, Christopher; Sebok, Angelia; Gore, Brian; Hooey, Becky

    2012-01-01

    We review 25 articles presenting 5 general classes of computational models to predict pilot error. This more targeted review is placed within the context of the broader review of computational models of pilot cognition and performance, including such aspects as models of situation awareness or pilot-automation interaction. Particular emphasis is placed on the degree of validation of such models against empirical pilot data, and the relevance of the modeling and validation efforts to Next Gen technology and procedures.

  3. Pilot Certification, Age of Pilot, and Drug Use in Fatal Civil Aviation Accidents.

    PubMed

    Akparibo, Issaka Y; Stolfi, Adrienne

    2017-10-01

    This study examined the association between mean age of pilot, pilot license, pilot medical certificate and drug use trends in pilots fatally injured in aircraft accidents. The prevalence of prescription drugs, OTC drugs, controlled drugs and drugs that may be potentially impairing was also examined. This study was a descriptive observational study in which the NTSB Aviation Accident Database was searched from the period beginning January 1, 2012 to December 31, 2014. During the study period a total of 706 accidents involving 711 fatalities were investigated by the NTSB. This study included 633 of these accidents, involving 646 fatalities. Of these pilots, 42.1% had drugs in their biological samples. The prevalence of prescription drugs, controlled drugs, OTC drugs, opioids, and potentially impairing drugs in the fatally injured pilot population over the study period was 28.9%, 15.0%, 20.1%, 5.1%, and 25.5%, respectively. Pilots with any drugs in their samples were significantly older than those without drugs. Medical certificate held was associated with drug use; pilots who held third class certificates had the highest prevalence at 54.1%. Pilot license was not associated with drug use. In 3.8% of the accidents, drugs were a contributing factor in the cause. Despite current FAA medical regulations, potentially impairing drugs are frequently found in biological samples of fatally injured pilots in the U.S. More education of airmen by aviation medical examiners is needed on the safety of drug use.Akparibo IY, Stolfi A. Pilot certification, age of pilot, and drug use in fatal civil aviation accidents. Aerosp Med Hum Perform. 2017; 88(10):931-936.

  4. Crew of STS-98, L to R: Mission Specialists Robert L. Curbeam, Thomas D. Jones, and Marsha S. Ivins,

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The crew of STS-98 poses for a group photo shortly before leaving NASA's Dryden Flight Research Center after a successful landing of the Space Shuttle Atlantis the day before. L to R: Mission Specialists Robert L. Curbeam, Thomas D. Jones, and Marsha S. Ivins, Commander Kenneth D. Cockrell, and Pilot Mark L. Polansky. Space Shuttle Atlantis landed at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000.

  5. KSC-02pd0706

    NASA Image and Video Library

    2002-05-17

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-111 Mission Specialist Philippe Perrin, with the French Space Agency, looks over the payload installed in Endeavour's payload bay. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include payload familiarization and a simulated launch countdown. The crew also comprises Commander Kenneth Cockrell, Pilot Paul Lockhart and Mission Specialist Franklin Chang-Diaz. The payload on mission STS-111 to the International Space Station includes the Mobile Base System, an Orbital Replacement Unit and Multi-Purpose Logistics Module Leonardo. Traveling on Endeavour is also the Expedition 5 crew - Commander Valeri Korzun, Peggy Whitson and Sergei Treschev -- who will replace the Expedition 4 crew on the Station. Korzun and Treschev are with the Russian Space Agency. Launch of Endeavour is scheduled for May 30, 2002

  6. KSC-02pd0707

    NASA Image and Video Library

    2002-05-17

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-111 Mission Specialists Philippe Perrin, with the French Space Agency, and Franklin Chang-Diaz pause during their checkout of the payload installed in Endeavour's payload bay. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include payload familiarization and a simulated launch countdown. The crew also comprises Commander Kenneth Cockrell and Pilot Paul Lockhart. The payload on the mission to the International Space Station includes the Mobile Base System, an Orbital Replacement Unit and Multi-Purpose Logistics Module Leonardo. Traveling on Endeavour is also the Expedition 5 crew - Commander Valeri Korzun, Peggy Whitson and Sergei Treschev -- who will replace the Expedition 4 crew on the Station. Korzun and Treschev are with the Russian Space Agency. Launch of Endeavour is scheduled for May 30, 2002.

  7. Characterization of Pilot Technique

    NASA Technical Reports Server (NTRS)

    Bachelder, Edward; Aponso, Bimal; Godfroy, Martine

    2017-01-01

    Skilled pilots often use pulse control when controlling higher order (i.e. acceleration-command) vehicle dynamics. Pulsing does not produce a stick response that resembles what the human Crossover Model predicts. The Crossover Model (CM) assumes the pilot provides compensation necessary (lead or lag) such that the suite of display-human-vehicle approximates an integrator in the region of crossover frequency. However, it is shown that the CM does appear to drive the pilots pulsing behavior in a very predictable manner. Roughly speaking, the pilot generates pulses such that the area under the pulse (pulse amplitude multiplied by pulse width) is approximately equal to area under the hypothetical CM output. This can allow a pilot to employ constant amplitude pulsing so that only the pulse duration (width) is modulated a drastic simplification over the demands of continuous tracking. A pilot pulse model is developed, with which the parameters of the pilots internally-generated CM can be computed in real time for pilot monitoring and display compensation. It is also demonstrated that pursuit tracking may be activated when pulse control is employed.

  8. Modeling Pilot Pulse Control

    NASA Technical Reports Server (NTRS)

    Bachelder, Edward; Hess, Ronald; Godfroy-Cooper, Martine; Aponso, Bimal

    2017-01-01

    In this study, behavioral models are developed that closely reproduced pulsive control response of two pilots from the experimental pool using markedly different control techniques (styles) while conducting a tracking task. An intriguing find was that the pilots appeared to: 1) produce a continuous, internally-generated stick signal that they integrated in time; 2) integrate the actual stick position; and 3) compare the two integrations to issue and cease pulse commands. This suggests that the pilots utilized kinesthetic feedback in order to perceive and integrate stick position, supporting the hypothesis that pilots can access and employ the proprioceptive inner feedback loop proposed by Hess' pilot Structural Model. The Pulse Models used in conjunction with the pilot Structural Model closely recreated the pilot data both in the frequency and time domains during closed-loop simulation. This indicates that for the range of tasks and control styles encountered, the models captured the fundamental mechanisms governing pulsive and control processes. The pilot Pulse Models give important insight for the amount of remnant (stick output uncorrelated with the forcing function) that arises from nonlinear pilot technique, and for the remaining remnant arising from different sources unrelated to tracking control (i.e. neuromuscular tremor, reallocation of cognitive resources, etc.).

  9. STS-132 crew during their MSS/SIMP EVA3 OPS 4 training

    NASA Image and Video Library

    2010-01-28

    JSC2010-E-014956 (28 Jan. 2010) --- NASA astronauts Ken Ham (left foreground), STS-132 commander; Michael Good, mission specialist; and Tony Antonelli (right), pilot, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements.

  10. Pilot performance

    NASA Technical Reports Server (NTRS)

    Nicholls, Jennifer

    1988-01-01

    For many years, the emphasis has been placed on the performance of the aircraft, rather than on those who fly the aircraft. This is largely due to the relative safety of flying. Just in the last few years there have been several major accidents that have shown that flying is not quite as safe as it was thought to be. Sixty-five percent of these accidents are a result of pilot performance decrements, and so it is obvious that there is a need to reduce that figure. A study has been mandated to evaluate the performance of pilots. This includes workload, circadium rhythms, jet lag, and any other factors which might affect a pilot's performance in the cockpit. The purpose of this study is to find out when and why the decrement in a pilot's performance occur and how to remedy the situation.

  11. 14 CFR 91.1089 - Qualifications: Check pilots (aircraft) and check pilots (simulator).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Qualifications: Check pilots (aircraft) and check pilots (simulator). 91.1089 Section 91.1089 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... RULES Fractional Ownership Operations Program Management § 91.1089 Qualifications: Check pilots...

  12. 14 CFR 91.1089 - Qualifications: Check pilots (aircraft) and check pilots (simulator).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Qualifications: Check pilots (aircraft) and check pilots (simulator). 91.1089 Section 91.1089 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... RULES Fractional Ownership Operations Program Management § 91.1089 Qualifications: Check pilots...

  13. Acceleration effects on neck muscle strength: pilots vs. non-pilots.

    PubMed

    Seng, Kok-Yong; Lam, Pin-Min; Lee, Vee-Sin

    2003-02-01

    Conditioning of neck muscles, if any, due to repeated exposures to +Gz forces has received little research attention. This study was conducted to evaluate and compare the neck muscle strength of test volunteers representative of the general populations of fighter aircraft pilots and non-pilots. The tests were performed using a special attachment device on a computerized dynamometer. Ten pilots and ten non-pilots volunteered as test subjects. Each individual's maximal isometric neck muscle strength was evaluated in the extension, flexion, and left and right lateral bending directions in a single day. Peak values from the measurements were used for data analysis. Overall neck strength was calculated as the mean values for the four directions in each group. The overall muscular strength of the necks of pilots did not differ significantly from that of non-pilots, nor did exposure to +Gz forces lead to specific changes in isometric muscle strength across any of the four principal directions. Neck muscle strength in the four measured directions pooled across the two subgroups were statistically significant. The widespread practice of adopting protective head-positioning strategies to minimize neck strains, coupled with results from this research study, suggest that the neck muscles are subjected to reduced in-flight strengthening workouts during exposures to +Gz forces. To maximize in-flight performance and minimize +Gz-induced neck injuries, fighter pilots should be encouraged to perform on-land neck muscle strengthening exercise and in-flight head-positioning techniques. More research is needed to fine-tune this countermeasure strategy against cervical spine injury.

  14. Bruxism in military pilots and non-pilots: tooth wear and psychological stress.

    PubMed

    Lurie, Orit; Zadik, Yehuda; Einy, Shmuel; Tarrasch, Ricardo; Raviv, Gil; Goldstein, Liav

    2007-02-01

    Bruxism is the diurnal or nocturnal para-functional habit of clenching or grinding the teeth and affects 5-10% of the general western population. Bruxism can cause pain and irreversible damage to the teeth, periodontium, masticatory muscles, and temporo-mandibular joint. Variables such as general stress, work-related stress, and personality traits have been increasingly considered as initiating, predisposing, and perpetuating factors for bruxism. We sought to evaluate the potential of work-related stress and personality factors to induce bruxism among military pilots and non-pilot officers. Subjects were 57 healthy male Israel Air Force officers (mean age 25.8+/-4.3 yr). Of these, 17 were jet-pilots, 18 helicopter-pilots, and 22 non-pilot officers. Tooth-wear was classified according to a six-point scale. In addition, the subjects responded to a battery of psychological questionnaires for self-assessment of stress at the workplace and their coping behavior. Bruxism of clinical importance (i.e., with dentin exposure) was found in 69% of the aircrew members but only 27% of the non-pilot group. No difference was found between groups regarding stress levels. Military aircrews may be relatively vulnerable to deleterious bruxism as well as other signs of chronic stress. Among bruxers, pilots tended to show coping strategies that were significantly more emotional and less task-oriented than non-pilots, whereas non-bruxers showed no significant differences in coping behavior. This study suggest that integrating dental and psychological preventive intervention may be helpful.

  15. STS-4 post flight crew debriefing in JSC conference room

    NASA Technical Reports Server (NTRS)

    1982-01-01

    STS-4 Commander Ken Mattingly and Pilot Henry Hartsfield discuss mission events with astronauts and administrators during a post flight crew debriefing held in a JSC conference room. Seated around the conference table clockwise (from lower left) are astronaut William B. Lenoir, Hartsfield, Mattingly, astronaut Robert F. Overmyer, astronaut S. David Griggs, astronaut Karol J. Bobko, astronaut John W. Young, administrator George W. Abbey, and astronaut Vance D. Brand. On the perimeter of the room are astronaut George D. Nelson (left) and astronaut Francis (Dick) Scobee (right).

  16. Piloting Changes to Changing Aircraft Dynamics: What Do Pilots Need to Know?

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Gregory, Irene M.

    2011-01-01

    An experiment was conducted to quantify the effects of changing dynamics on a subject s ability to track a signal in order to eventually model a pilot adapting to changing aircraft dynamics. The data will be used to identify primary aircraft dynamics variables that influence changes in pilot s response and produce a simplified pilot model that incorporates this relationship. Each run incorporated a different set of second-order aircraft dynamics representing short period transfer function pitch attitude response: damping ratio, frequency, gain, zero location, and time delay. The subject s ability to conduct the tracking task was the greatest source of root mean square error tracking variability. As for the aircraft dynamics, the factors that affected the subjects ability to conduct the tracking were the time delay, frequency, and zero location. In addition to creating a simplified pilot model, the results of the experiment can be utilized in an advisory capacity. A situation awareness/prediction aid based on the pilot behavior and aircraft dynamics may help tailor pilot s inputs more quickly so that PIO or an upset condition can be avoided.

  17. Pilot Decision-Making Training

    DTIC Science & Technology

    1990-05-01

    Pilot Decisional Attitude Questionnaire (PDAQ). 2. Aeronautical Decision Making . a. The pilot judgment problem b. Relationship of judgment to training...lmEr OAT . REPOR TYPE ANO GATES COVEIRO May 1990 Final - June 1985 - December 1988 4 .MU AN m . .m m t 4i C ’u. SUM L FUNING MUMBRS Pilot Decision - Making ...13 AGSTRACT (Maxu’m 200 wo f -The effectiveness of a simulator-based approach to training pilot skills in risk assessment and decision making was

  18. 49 CFR 230.110 - Pilots.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Pilots. 230.110 Section 230.110 Transportation... and Equalizing System § 230.110 Pilots. (a) General provisions. Pilots shall be securely attached... clearance. The minimum clearance of pilot above the rail shall be 3 inches and the maximum clearance shall...

  19. Assessing Aircraft Susceptibility to Nonlinear Aircraft-Pilot Coupling/Pilot-Induced Oscillations

    NASA Technical Reports Server (NTRS)

    Hess, R.A.; Stout, P. W.

    1997-01-01

    A unified approach for assessing aircraft susceptibility to aircraft-pilot coupling (or pilot-induced oscillations) which was previously reported in the literature and applied to linear systems is extended to nonlinear systems, with emphasis upon vehicles with actuator rate saturation. The linear methodology provided a tool for predicting: (1) handling qualities levels, (2) pilot-induced oscillation rating levels and (3) a frequency range in which pilot-induced oscillations are likely to occur. The extension to nonlinear systems provides a methodology for predicting the latter two quantities. Eight examples are presented to illustrate the use of the technique. The dearth of experimental flight-test data involving systematic variation and assessment of the effects of actuator rate limits presently prevents a more thorough evaluation of the methodology.

  20. 14 CFR 91.5 - Pilot in command of aircraft requiring more than one required pilot.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Pilot in command of aircraft requiring more... RULES General § 91.5 Pilot in command of aircraft requiring more than one required pilot. No person may... the pilot in command meets the requirements of § 61.58 of this chapter. ...

  1. 14 CFR 91.5 - Pilot in command of aircraft requiring more than one required pilot.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Pilot in command of aircraft requiring more... RULES General § 91.5 Pilot in command of aircraft requiring more than one required pilot. No person may... the pilot in command meets the requirements of § 61.58 of this chapter. ...

  2. 14 CFR 91.5 - Pilot in command of aircraft requiring more than one required pilot.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Pilot in command of aircraft requiring more... RULES General § 91.5 Pilot in command of aircraft requiring more than one required pilot. No person may... the pilot in command meets the requirements of § 61.58 of this chapter. ...

  3. 14 CFR 91.5 - Pilot in command of aircraft requiring more than one required pilot.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Pilot in command of aircraft requiring more... RULES General § 91.5 Pilot in command of aircraft requiring more than one required pilot. No person may... the pilot in command meets the requirements of § 61.58 of this chapter. ...

  4. 14 CFR 91.5 - Pilot in command of aircraft requiring more than one required pilot.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Pilot in command of aircraft requiring more... RULES General § 91.5 Pilot in command of aircraft requiring more than one required pilot. No person may... the pilot in command meets the requirements of § 61.58 of this chapter. ...

  5. Hurricane Marilyn, Caribbean

    NASA Image and Video Library

    1995-09-15

    STS069-715-019 (15 September 1995) --- This photograph of Hurricane Marilyn was captured on film as it moves over Puerto Rico, in this 70mm frame. The southern half of Puerto Rico can be seen outside the cloud cover. The island of Hispaniola is seen in lower left-hand corner. During the 11-plus day mission, the astronauts aboard the Space Shuttle Endeavour caught with their cameras at least two large oceanic storms. Another hurricane, named Luis, followed a similar path earlier in the flight. Endeavour, with a five-member crew, launched on September 7, 1995, from the Kennedy Space Center (KSC) and ended its mission there September 18, 1995, with a successful landing on Runway 33. The multifaceted mission carried the crew of astronauts David M. Walker, mission commander; Kenneth D. Cockrell, pilot; and James S. Voss (payload commander), James H. Newman, Michael L. Gernhardt, all mission specialists.

  6. KSC-02pd0554

    NASA Image and Video Library

    2002-04-23

    KENNEDY SPACE CENTER, FLA. -- The STS-111 crew looks at the replacement pitch roll joint for the SSRMS (Canadarm 2) they will be installing on the mission to the International Space Station. The crew comprises Commander Kenneth Cockrell, Pilot Paul Lockhart, and Mission Specialists Franklin Chang-Diaz and Phillippe Perrin, who is with the French Space Agency. Part of the payload on mission STS-111 is the Mobile Base System (MBS), which will be installed on the Mobile Transporter to complete the Canadian Mobile Servicing System, or MSS. The mechanical arm will then have the capability to "inchworm" from the U.S. Lab Destiny to the MSS and travel along the truss to work sites. STS-111 is the second utilization flight (UF-2) to the Space Station and will also carry the Expedition 5 crew to replace Expedition 4. Launch is scheduled for May 30, 2002

  7. KSC-02pd0555

    NASA Image and Video Library

    2002-04-23

    KENNEDY SPACE CENTER, FLA. -- The STS-111 crew looks at the replacement pitch roll joint for the SSRMS (Canadarm 2) they will be installing on the mission to the International Space Station. The crew comprises Commander Kenneth Cockrell, Pilot Paul Lockhart, and Mission Specialists Franklin Chang-Diaz and Phillippe Perrin, who is with the French Space Agency. Part of the payload on mission STS-111 is the Mobile Base System (MBS), which will be installed on the Mobile Transporter to complete the Canadian Mobile Servicing System, or MSS. The mechanical arm will then have the capability to "inchworm" from the U.S. Lab Destiny to the MSS and travel along the truss to work sites. STS-111 is the second utilization flight (UF-2) to the Space Station and will also carry the Expedition 5 crew to replace Expedition 4. Launch is scheduled for May 30, 2002

  8. Pilot weather advisor

    NASA Technical Reports Server (NTRS)

    Kilgore, W. A.; Seth, S.; Crabill, N. L.; Shipley, S. T.; Graffman, I.; Oneill, J.

    1992-01-01

    The results of the work performed by ViGYAN, Inc., to demonstrate the Pilot Weather Advisor cockpit weather data system using a broadcast satellite communication system are presented. The Pilot Weather Advisor demonstrated that the technical problems involved with transmitting significant amount of weather data to an aircraft in-flight or on-the-ground via satellite are solvable with today's technology. The Pilot Weather Advisor appears to be a viable solution for providing accurate and timely weather information for general aviation aircraft.

  9. DIRAC universal pilots

    NASA Astrophysics Data System (ADS)

    Stagni, F.; McNab, A.; Luzzi, C.; Krzemien, W.; Consortium, DIRAC

    2017-10-01

    In the last few years, new types of computing models, such as IAAS (Infrastructure as a Service) and IAAC (Infrastructure as a Client), gained popularity. New resources may come as part of pledged resources, while others are in the form of opportunistic ones. Most but not all of these new infrastructures are based on virtualization techniques. In addition, some of them, present opportunities for multi-processor computing slots to the users. Virtual Organizations are therefore facing heterogeneity of the available resources and the use of an Interware software like DIRAC to provide the transparent, uniform interface has become essential. The transparent access to the underlying resources is realized by implementing the pilot model. DIRAC’s newest generation of generic pilots (the so-called Pilots 2.0) are the “pilots for all the skies”, and have been successfully released in production more than a year ago. They use a plugin mechanism that makes them easily adaptable. Pilots 2.0 have been used for fetching and running jobs on every type of resource, being it a Worker Node (WN) behind a CREAM/ARC/HTCondor/DIRAC Computing element, a Virtual Machine running on IaaC infrastructures like Vac or BOINC, on IaaS cloud resources managed by Vcycle, the LHCb High Level Trigger farm nodes, and any type of opportunistic computing resource. Make a machine a “Pilot Machine”, and all diversities between them will disappear. This contribution describes how pilots are made suitable for different resources, and the recent steps taken towards a fully unified framework, including monitoring. Also, the cases of multi-processor computing slots either on real or virtual machines, with the whole node or a partition of it, is discussed.

  10. 76 FR 62813 - Pilot Program To Evaluate Proposed Proprietary Name Submissions; Public Meeting on Pilot Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ...] Pilot Program To Evaluate Proposed Proprietary Name Submissions; Public Meeting on Pilot Program Results... voluntary pilot program that enabled participating pharmaceutical firms to evaluate proposed proprietary... public meeting at the end of fiscal year 2011 to discuss the results of the pilot program, but the Agency...

  11. KSC-08pd1271

    NASA Image and Video Library

    2008-05-09

    CAPE CANAVERAL, Fla. -- Two of the crewmembers for the STS-124 mission, Pilot Ken Ham and Mission Specialist Akihiko Hoshide, depart NASA's Kennedy Space Center in a T-38 training jet after a successful launch dress rehearsal called the terminal countdown demonstration test. The crew is expected to return in late May for the May 31 launch of space shuttle Discovery. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Photo credit: NASA/Kim Shiflett

  12. Space Shuttle Projects

    NASA Image and Video Library

    1991-04-05

    Launched aboard the Space Shuttle Atlantis on April 5, 1991 at 9:22:44am (EST), the STS-37 mission hurtles toward space. Her crew included Steven R. Nagel, commander; Kenneth D. (Ken) Cameron, pilot; and Jay Apt, Jerry L. Ross, and Linda M. Godwin, all mission specialists. The crew’s major objective was the deployment of the Gamma Ray Observatory (GRO). Included in the observatory were the Burst and Transient Source Experiment (BATSE); the Imaging Compton Telescope (COMPTEL); the Energetic Gamma Ray Experiment Telescope (EGRET); and the Oriented Scintillation Spectrometer Telescope (OSSEE).

  13. STS-132 ascent flight control team photo with Flight Director Richard Jones and the STS-132 crew

    NASA Image and Video Library

    2010-06-08

    JSC2010-E-090665 (8 June 2010) --- The members of the STS-132 Ascent flight control team and crew members pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Richard Jones (right) and NASA astronaut Ken Ham, STS-132 commander, hold the STS-132 mission logo. Additional crew members pictured are NASA astronauts Tony Antonelli, pilot; along with Garrett Reisman, Piers Sellers, Michael Good and Steve Bowen, all mission specialists. Photo credit: NASA or National Aeronautics and Space Administration

  14. Single-Pilot Workload Management

    NASA Technical Reports Server (NTRS)

    Rogers, Jason; Williams, Kevin; Hackworth, Carla; Burian, Barbara; Pruchnicki, Shawn; Christopher, Bonny; Drechsler, Gena; Silverman, Evan; Runnels, Barry; Mead, Andy

    2013-01-01

    Integrated glass cockpit systems place a heavy cognitive load on pilots (Burian Dismukes, 2007). Researchers from the NASA Ames Flight Cognition Lab and the FAA Flight Deck Human Factors Lab examined task and workload management by single pilots. This poster describes pilot performance regarding programming a reroute while at cruise and meeting a waypoint crossing restriction on the initial descent.

  15. CREW TRAINING - APOLLO XVI

    NASA Image and Video Library

    1972-03-02

    S72-30694 (28 Jan. 1972) --- Astronauts John W. Young, left, Apollo 16 commander, and Charles M. Duke Jr., lunar module pilot, prepare to begin a simulated traverse in a training area at the Kennedy Space Center (KSC). The fifth National Aeronautics and Space Administration (NASA) Apollo lunar landing mission is scheduled to land in the mountainous highlands region near the crater Descartes to explore the area for a three-day period. Among the experiments to fly on Apollo 16 is the soil mechanics (S-200) experiment or self-recording penetrometer, a model of which is held here by Duke. A training model of the Lunar Roving Vehicle (LRV) is parked between the two crew men. Astronaut Thomas K. (Ken) Mattingly II is prime crew command module pilot for the mission.

  16. Pilot-model measurements of pilot responses in a lateral-directional control task

    NASA Technical Reports Server (NTRS)

    Adams, J. J.

    1976-01-01

    Pilot response during an aircraft bank-angle compensatory control task was measured by using an adaptive modeling technique. In the main control loop, which is the bank angle to aileron command loop, the pilot response was the same as that measured previously in single-input, single-output systems. The pilot used a rudder to aileron control coordination that canceled up to 80 percent of the vehicle yawing moment due to aileron deflection.

  17. Pre-Study Walkthrough with a Commercial Pilot for a Preliminary Single Pilot Operations Experiment

    NASA Technical Reports Server (NTRS)

    O'Connor-Dreher, Ryan; Roberts, Z.; Ziccardi, J.; Vu, K-P. L.; Strybel, T.; Koteskey, Robert William; Lachter, Joel B.; Vi Dao, Quang; Johnson, Walter W.; Battiste, V.

    2013-01-01

    The number of crew members in commercial flights has decreased to two members, down from the five-member crew required 50 years ago. One question of interest is whether the crew should be reduced to one pilot. In order to determine the critical factors involved in safely transitioning to a single pilot, research must examine whether any performance deficits arise with the loss of a crew member. With a concrete understanding of the cognitive and behavioral role of a co-pilot, aeronautical technologies and procedures can be developed that make up for the removal of the second aircrew member. The current project describes a pre-study walkthrough process that can be used to help in the development of scenarios for testing future concepts and technologies for single pilot operations. Qualitative information regarding the tasks performed by the pilots can be extracted with this technique and adapted for future investigations of single pilot operations.

  18. Unmanned Aircraft: A Pilot's Perspective

    NASA Technical Reports Server (NTRS)

    Pestana, Mark E.

    2010-01-01

    This slide presentation reviews some of the challenges of "piloting" a unmanned aircraft. The topic include the pilot-vehicle interact design, the concept of pilot/operator, and role of NASA's Ikhana UAS in the western states fire mission.

  19. Novel Estimation of Pilot Performance Characteristics

    NASA Technical Reports Server (NTRS)

    Bachelder, Edward N.; Aponso, Bimal

    2017-01-01

    Two mechanisms internal to the pilot that affect performance during a tracking task are: 1) Pilot equalization (i.e. lead/lag); and 2) Pilot gain (i.e. sensitivity to the error signal). For some applications McRuer's Crossover Model can be used to anticipate what equalization will be employed to control a vehicle's dynamics. McRuer also established approximate time delays associated with different types of equalization - the more cognitive processing that is required due to equalization difficulty, the larger the time delay. However, the Crossover Model does not predict what the pilot gain will be. A nonlinear pilot control technique, observed and coined by the authors as 'amplitude clipping', is shown to improve stability, performance, and reduce workload when employed with vehicle dynamics that require high lead compensation by the pilot. Combining linear and nonlinear methods a novel approach is used to measure the pilot control parameters when amplitude clipping is present, allowing precise measurement in real time of key pilot control parameters. Based on the results of an experiment which was designed to probe workload primary drivers, a method is developed that estimates pilot spare capacity from readily observable measures and is tested for generality using multi-axis flight data. This paper documents the initial steps to developing a novel, simple objective metric for assessing pilot workload and its variation over time across a wide variety of tasks. Additionally, it offers a tangible, easily implementable methodology for anticipating a pilot's operating parameters and workload, and an effective design tool. The model shows promise in being able to precisely predict the actual pilot settings and workload, and observed tolerance of pilot parameter variation over the course of operation. Finally, an approach is proposed for generating Cooper-Harper ratings based on the workload and parameter estimation methodology.

  20. 14 CFR 183.23 - Pilot examiners.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Pilot examiners. 183.23 Section 183.23... REGULATIONS REPRESENTATIVES OF THE ADMINISTRATOR Kinds of Designations: Privileges § 183.23 Pilot examiners. Any pilot examiner, instrument rating examiner, or airline transport pilot examiner may— (a) As...

  1. 14 CFR 183.23 - Pilot examiners.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pilot examiners. 183.23 Section 183.23... REGULATIONS REPRESENTATIVES OF THE ADMINISTRATOR Kinds of Designations: Privileges § 183.23 Pilot examiners. Any pilot examiner, instrument rating examiner, or airline transport pilot examiner may— (a) As...

  2. Pilot-Wave Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Bush, John W. M.

    2015-01-01

    Yves Couder, Emmanuel Fort, and coworkers recently discovered that a millimetric droplet sustained on the surface of a vibrating fluid bath may self-propel through a resonant interaction with its own wave field. This article reviews experimental evidence indicating that the walking droplets exhibit certain features previously thought to be exclusive to the microscopic, quantum realm. It then reviews theoretical descriptions of this hydrodynamic pilot-wave system that yield insight into the origins of its quantum-like behavior. Quantization arises from the dynamic constraint imposed on the droplet by its pilot-wave field, and multimodal statistics appear to be a feature of chaotic pilot-wave dynamics. I attempt to assess the potential and limitations of this hydrodynamic system as a quantum analog. This fluid system is compared to quantum pilot-wave theories, shown to be markedly different from Bohmian mechanics and more closely related to de Broglie's original conception of quantum dynamics, his double-solution theory, and its relatively recent extensions through researchers in stochastic electrodynamics.

  3. 33 CFR 385.12 - Pilot projects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pilot projects. 385.12 Section... Processes § 385.12 Pilot projects. (a) The Plan includes pilot projects to address uncertainties associated... management, and wastewater reuse. The purpose of the pilot projects is to develop information necessary to...

  4. 14 CFR 23.771 - Pilot compartment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Pilot compartment. 23.771 Section 23.771... Cargo Accommodations § 23.771 Pilot compartment. For each pilot compartment— (a) The compartment and its equipment must allow each pilot to perform his duties without unreasonable concentration or fatigue; (b...

  5. 14 CFR 61.51 - Pilot logbooks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Pilot logbooks. 61.51 Section 61.51... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS General § 61.51 Pilot logbooks. (a) Training... training device, or aviation training device, as appropriate. (v) The name of a safety pilot, if required...

  6. 14 CFR 29.771 - Pilot compartment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Pilot compartment. 29.771 Section 29.771... Pilot compartment. For each pilot compartment— (a) The compartment and its equipment must allow each pilot to perform his duties without unreasonable concentration or fatigue; (b) If there is provision for...

  7. 14 CFR 61.51 - Pilot logbooks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Pilot logbooks. 61.51 Section 61.51... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS General § 61.51 Pilot logbooks. (a) Training... training device, or aviation training device, as appropriate. (v) The name of a safety pilot, if required...

  8. 33 CFR 385.12 - Pilot projects.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pilot projects. 385.12 Section... Processes § 385.12 Pilot projects. (a) The Plan includes pilot projects to address uncertainties associated... management, and wastewater reuse. The purpose of the pilot projects is to develop information necessary to...

  9. 14 CFR 29.771 - Pilot compartment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pilot compartment. 29.771 Section 29.771... Pilot compartment. For each pilot compartment— (a) The compartment and its equipment must allow each pilot to perform his duties without unreasonable concentration or fatigue; (b) If there is provision for...

  10. 33 CFR 385.12 - Pilot projects.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pilot projects. 385.12 Section... Processes § 385.12 Pilot projects. (a) The Plan includes pilot projects to address uncertainties associated... management, and wastewater reuse. The purpose of the pilot projects is to develop information necessary to...

  11. 33 CFR 385.12 - Pilot projects.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pilot projects. 385.12 Section... Processes § 385.12 Pilot projects. (a) The Plan includes pilot projects to address uncertainties associated... management, and wastewater reuse. The purpose of the pilot projects is to develop information necessary to...

  12. Prediction of pilot opinion ratings using an optimal pilot model. [of aircraft handling qualities in multiaxis tasks

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1977-01-01

    A brief review of some of the more pertinent applications of analytical pilot models to the prediction of aircraft handling qualities is undertaken. The relative ease with which multiloop piloting tasks can be modeled via the optimal control formulation makes the use of optimal pilot models particularly attractive for handling qualities research. To this end, a rating hypothesis is introduced which relates the numerical pilot opinion rating assigned to a particular vehicle and task to the numerical value of the index of performance resulting from an optimal pilot modeling procedure as applied to that vehicle and task. This hypothesis is tested using data from piloted simulations and is shown to be reasonable. An example concerning a helicopter landing approach is introduced to outline the predictive capability of the rating hypothesis in multiaxis piloting tasks.

  13. STS-28 Columbia, OV-102, Pilot Richards at forward flight deck pilots station

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Pilot Richard N. Richards, sitting at forward flight deck pilots station controls, looks back to aft flight deck during STS-28, a Department of Defense (DOD) dedicated mission. Control panels F7 and F8 and portable laptop computer propped on panel F4 appear in front of Richards. Behind him are the pilots seat seat back and head rest. A stuffed toy animal is positioned on C1 panel.

  14. Remotely Piloted Aircraft for Research

    NASA Technical Reports Server (NTRS)

    Rezek, T. W.

    1985-01-01

    NASA Technical Memorandum presents overview of remotely-piloted research vehicle (RPRV) activities. Controlled from ground, vehicles allow new concepts tried without subjecting pilots to danger. Critical role of pilot in flight testing with RPRV's demonstrated repeatedly, and many system anomalies uncovered with no risk to human life.

  15. 14 CFR 141.43 - Pilot briefing areas.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Pilot briefing areas. 141.43 Section 141.43... OTHER CERTIFICATED AGENCIES PILOT SCHOOLS Personnel, Aircraft, and Facilities Requirements § 141.43 Pilot briefing areas. (a) An applicant for a pilot school certificate or provisional pilot school...

  16. 14 CFR 141.43 - Pilot briefing areas.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pilot briefing areas. 141.43 Section 141.43... OTHER CERTIFICATED AGENCIES PILOT SCHOOLS Personnel, Aircraft, and Facilities Requirements § 141.43 Pilot briefing areas. (a) An applicant for a pilot school certificate or provisional pilot school...

  17. Models of Pilot Behavior and Their Use to Evaluate the State of Pilot Training

    NASA Astrophysics Data System (ADS)

    Jirgl, Miroslav; Jalovecky, Rudolf; Bradac, Zdenek

    2016-07-01

    This article discusses the possibilities of obtaining new information related to human behavior, namely the changes or progressive development of pilots' abilities during training. The main assumption is that a pilot's ability can be evaluated based on a corresponding behavioral model whose parameters are estimated using mathematical identification procedures. The mean values of the identified parameters are obtained via statistical methods. These parameters are then monitored and their changes evaluated. In this context, the paper introduces and examines relevant mathematical models of human (pilot) behavior, the pilot-aircraft interaction, and an example of the mathematical analysis.

  18. MS Ivins and Astronaut Shepherd at work in Destiny module

    NASA Image and Video Library

    2001-02-11

    STS98-E-5143 (11 February 2001) --- Astronauts Marsha S. Ivins (from the left), STS-98 mission specialist, Kenneth D. Cockrell, STS-98 mission commander; and William M. Shepherd, Expedition One mission commander, discuss the organizational "game plan" onboard the newly opened Destiny laboratory on the International Space Station (ISS). After Shepherd opened the Destiny hatch, he and Cockrell ventured inside at 8:38 a.m. (CST), February 11, 2001. As depicted in subsequent digital images in this series, members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crew also took some photos and continued equipment transfers from the shuttle to the station.

  19. HL-10 pilots assist with pilot entry into lifting body

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Not every moment of a test pilot's day is serious business. In a moment of levity, NASA pilots Bill Dana (left) and John A. Manke try to drag Air Force test pilot Peter Hoag away from the HL-10 lifting body while Air Force Major Jerauld R. Gentry helps from the cockpit. These four men were the principal pilots for the HL-10 program. This was not the only prank involving the HL-10 and its pilots. Once 'Captain Midnight' (Gentry) and the 'Midnight skulkers' sneaked into the NASA hangar and put 'U.S. Air Force' on the aircraft using stick-on letters. Later, while Gentry was making a lifting-body flight, his 1954 Ford was 'borrowed' from the parking lot, painted with yellow-green zinc-chromate primer, and decorated with large stick-on flowers about one foot in diameter. After Gentry returned from the flight, he was surprised to see what had happened to his car. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting

  20. 46 CFR 401.220 - Registration of pilots.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Registration of pilots. 401.220 Section 401.220 Shipping... Registration of Pilots § 401.220 Registration of pilots. (a) The Director shall determine the number of pilots... waters of the Great Lakes and to provide for equitable participation of United States Registered Pilots...

  1. 46 CFR 401.220 - Registration of pilots.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Registration of pilots. 401.220 Section 401.220 Shipping... Registration of Pilots § 401.220 Registration of pilots. (a) The Director shall determine the number of pilots... waters of the Great Lakes and to provide for equitable participation of United States Registered Pilots...

  2. General Aviation Pilot Education Program.

    ERIC Educational Resources Information Center

    Cole, Warren L.

    General Aviation Pilot Education (GAPE) was a safety program designed to improve the aeronautical education of the general aviation pilot in anticipation that the national aircraft accident rate might be improved. GAPE PROGRAM attempted to reach the average general aviation pilot with specific and factual information regarding the pitfalls of his…

  3. The effects of display and autopilot functions on pilot workload for Single Pilot Instrument Flight Rule (SPIFR) operations

    NASA Technical Reports Server (NTRS)

    Hoh, Roger H.; Smith, James C.; Hinton, David A.

    1987-01-01

    An analytical and experimental research program was conducted to develop criteria for pilot interaction with advanced controls and displays in single pilot instrument flight rules (SPIFR) operations. The analytic phase reviewed fundamental considerations for pilot workload taking into account existing data, and using that data to develop a divided attention SPIFR pilot workload model. The pilot model was utilized to interpret the two experimental phases. The first experimental phase was a flight test program that evaluated pilot workload in the presence of current and near-term displays and autopilot functions. The second experiment was conducted on a King Air simulator, investigating the effects of co-pilot functions in the presence of very high SPIFR workload. The results indicate that the simplest displays tested were marginal for SPIFR operations. A moving map display aided the most in mental orientation, but had inherent deficiencies as a stand alone replacement for an HSI. Autopilot functions were highly effective for reducing pilot workload. The simulator tests showed that extremely high workload situations can be adequately handled when co-pilot functions are provided.

  4. STS-98 crew takes part in Multi-Equipment Interface Test.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Members of the STS-98 crew check out equipment in the U.S. Lab Destiny during a Multi-Equipment Interface Test. During the mission, the crew will install the Lab in the International Space Station during a series of three space walks. The STS-98 mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. Making up the five-member crew on STS-98 are Commander Kenneth D. Cockrell, Pilot Mark L. Polansky, and Mission Specialists Robert L. Curbeam Jr., Thomas D. Jones (Ph.D.) and Marsha S. Ivins. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.

  5. STS-98 crew takes part in Multi-Equipment Interface Test.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-98 Commander Kenneth D. Cockrell (left) and Mission Specialist Thomas D. Jones (Ph.D.) check out equipment in the U.S. Lab Destiny during a Multi-Equipment Interface Test. During the mission, Jones will help install the Lab on the International Space Station in a series of three space walks. The STS-98 mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. Others in the five-member crew on STS-98 are Pilot Mark L. Polansky, and Mission Specialists Robert L. Curbeam Jr. and Marsha S. Ivins. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.

  6. STS-111 Flight Day 09 Highlights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The STS-111 flight crew consists of Kenneth D. Cockrell, Commander, Paul S. Lockhart, Pilot, Franklin R. Chang-Diaz, Mission Specialist, Philippe Perrin, (CNES), Mission Specialist, Valery G. Korzun, (RSA), ISS Up, Peggy A. Whitson, ISS Up , Sergei Y. Treschev (RSC), ISS Up, Yuri I. Onufriyenko (RSA), ISS Down, Carl E. Walz, and Daniel W. Bursch (ISS) Down. The main goal on this ninth day of flight STS-111, is to replace the wrist roll joint of the Robotic Arm on the International Space Station. Live footage of the wrist roll joint replacement is presented. Paul Lockhart is the spacewalk coordinator for this mission. Franklin Chang-Diaz and Philippe Perrin, are responsible for replacing the wrist roll joint and performing maintenance activities. The spacewalk to repair this joint occurs outside the Space Station's Quest Airlock. The wrist roll joint was replaced successfully. The spacewalk took approximately 7 hours and 17 minutes to complete.

  7. KSC-02pd0506

    NASA Image and Video Library

    2002-03-09

    KENNEDY SPACE CENTER, FLA. -- Members of the STS-111 crew (dressed in green) look over equipment in the payload bay of Endeavour. The crew comprises Commander Kenneth Cockrell, Pilot Paul Lockhart and Mission Specialists Franklin Chang-Diaz and Phillipe Perrin, who is with the French Space Agency (CNES). The crew is taking part in a Crew Equipment Interface Test in preparation for launch. Mission STS-111 will carry to the International Space Station the Multipurpose Logistics Module (MPLM), filled with experiment racks and three stowage and resupply racks, and the Mobile Base System (MBS), which will attach to the Mobile Transporter and complete the Canadian Mobile Servicing System, or MSS. The Station's mechanical arm will then have the capability to "inchworm" from the U.S. Lab to the MSS and travel along the truss to work sites on the Station. Launch of Endeavour on mission STS-111 is scheduled for May 30, 2002

  8. PLT Polansky looks through hatch at U.S. Laboratory / Destiny module

    NASA Image and Video Library

    2001-02-11

    STS98-E-5115 (11 February 2001) --- This medium shot, photographed with a digital still camera, shows STS-98 pilot Mark L. Polansky looking through the observation port on Unity's closed hatch to the newly attached Destiny laboratory. The crews of Atlantis and the International Space Station opened the laboratory shortly after this photo was made on Feb. 11; and the astronauts and cosmonauts spent the first full day of what are planned to be years of work ahead inside the orbiting science and command center. Station commander William M. (Bill) Shepherd opened the Destiny hatch, and he and shuttle commander Kenneth D. Cockrell ventured inside at 8:38 a.m. (CST), Feb. 11. As depicted in subsequent digital images in this series, members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crew also continued equipment transfers from the shuttle to the station.

  9. sts111-s-008

    NASA Image and Video Library

    2002-06-05

    STS111-S-008 (5 June 2002) --- The Space Shuttle Endeavour leaves the launch pad, headed into space for mission STS-111 to the International Space Station (ISS). Liftoff occurred at 5:22:49 p.m. (EDT), June 5, 2002. The STS-111 crew includes astronauts Kenneth D. Cockrell, commander; Paul S. Lockhart, pilot, and Franklin R. Chang-Diaz and Philippe Perrin, mission specialists. Also onboard were the Expedition Five crew members including cosmonaut Valery G. Korzun, commander, along with astronaut Peggy A. Whitson and cosmonaut Sergei Y. Treschev, flight engineers. Perrin represents CNES, the French space agency, and Korzun and Treschev are with the Russian Aviation and Space Agency (Rosaviakosmos). This mission marks the 14th Shuttle flight to the International Space Station and the third Shuttle mission this year. Mission STS-111 is the 18th flight of Endeavour and the 110th flight overall in NASA's Space Shuttle program.

  10. Global positioning system supported pilot's display

    NASA Technical Reports Server (NTRS)

    Scott, Marshall M., Jr.; Erdogan, Temel; Schwalb, Andrew P.; Curley, Charles H.

    1991-01-01

    The hardware, software, and operation of the Microwave Scanning Beam Landing System (MSBLS) Flight Inspection System Pilot's Display is discussed. The Pilot's Display is used in conjunction with flight inspection tests that certify the Microwave Scanning Beam Landing System used at Space Shuttle landing facilities throughout the world. The Pilot's Display was developed for the pilot of test aircraft to set up and fly a given test flight path determined by the flight inspection test engineers. This display also aids the aircraft pilot when hazy or cloud cover conditions exist that limit the pilot's visibility of the Shuttle runway during the flight inspection. The aircraft position is calculated using the Global Positioning System and displayed in the cockpit on a graphical display.

  11. 14 CFR 121.437 - Pilot qualification: Certificates required.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Pilot qualification: Certificates required... Pilot qualification: Certificates required. (a) No pilot may act as pilot in command of an aircraft (or... pilots) unless he holds an airline transport pilot certificate and an appropriate type rating for that...

  12. 14 CFR 121.437 - Pilot qualification: Certificates required.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pilot qualification: Certificates required... Pilot qualification: Certificates required. (a) No pilot may act as pilot in command of an aircraft (or... pilots) unless he holds an airline transport pilot certificate and an appropriate type rating for that...

  13. To Educate Pilots.

    ERIC Educational Resources Information Center

    Roberts, Dayton Y.

    1968-01-01

    As the highly trained ex-military pilots of World War II began to retire from commercial flying, there was concern over the pilot shortage, especially among the airlines with their growing needs. Miami-Dade Junior College, in January 1965, was the first to respond to this need. Although initial enrollment was expected to be small, 150 applications…

  14. Rand Symposium on Pilot Training and the Pilot Career. (Santa Monica, Calif., Feb. 23-27, 1970).

    ERIC Educational Resources Information Center

    Stewart, W. A.; Wainstein, E. S.

    This document contains discussions of the following: The pilot career; Career and education; The pilot skill--definition, measurement, and retention; Relevance of training to combat; Selection; Motivation; Training innovations and the role of research; Simulators; The instructor pilot; Topics for research. (Author/CK)

  15. 14 CFR 61.58 - Pilot-in-command proficiency check: Operation of aircraft requiring more than one pilot flight...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Pilot-in-command proficiency check...: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS General § 61.58 Pilot-in-command proficiency check... this section, to serve as pilot in command of an aircraft that is type certificated for more than one...

  16. 14 CFR 61.58 - Pilot-in-command proficiency check: Operation of aircraft requiring more than one pilot flight...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Pilot-in-command proficiency check...: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS General § 61.58 Pilot-in-command proficiency check... this section, to serve as pilot in command of an aircraft that is type certificated for more than one...

  17. 48 CFR 212.7102 - Pilot program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Pilot program. 212.7102... OF DEFENSE ACQUISITION PLANNING ACQUISITION OF COMMERCIAL ITEMS Pilot Program for Acquisition of Military-Purpose Nondevelopmental Items 212.7102 Pilot program. ...

  18. Retaining U.S. Air Force Pilots When the Civilian Demand for Pilots Is Growing

    DTIC Science & Technology

    2016-01-01

    pilot retention and determine the changes in ARP and AP that could offset those effects. It also simulates the effects of eliminating AP for pilots...array of compensation policies for pilots, thereby providing the USAF with an empirically based analytical platform to determine the special and...greatly from the input and support of our project monitor, Maj Ryan Theiss, Chief, Rated Force Policy-Mobility Forces (HQ USAF/A1PPR), as well as Lt

  19. 17 CFR 249.821 - Form PILOT, information required of self-regulatory organizations operating pilot trading systems...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... required of self-regulatory organizations operating pilot trading systems pursuant to § 240.19b-5 of this... (CONTINUED) FORMS, SECURITIES EXCHANGE ACT OF 1934 Forms for Self-Regulatory Organization Rule Changes and... Associations § 249.821 Form PILOT, information required of self-regulatory organizations operating pilot...

  20. 17 CFR 249.821 - Form PILOT, information required of self-regulatory organizations operating pilot trading systems...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... required of self-regulatory organizations operating pilot trading systems pursuant to § 240.19b-5 of this... (CONTINUED) FORMS, SECURITIES EXCHANGE ACT OF 1934 Forms for Self-Regulatory Organization Rule Changes and... Associations § 249.821 Form PILOT, information required of self-regulatory organizations operating pilot...

  1. 17 CFR 249.821 - Form PILOT, information required of self-regulatory organizations operating pilot trading systems...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... required of self-regulatory organizations operating pilot trading systems pursuant to § 240.19b-5 of this... (CONTINUED) FORMS, SECURITIES EXCHANGE ACT OF 1934 Forms for Self-Regulatory Organization Rule Changes and... Associations § 249.821 Form PILOT, information required of self-regulatory organizations operating pilot...

  2. 17 CFR 249.821 - Form PILOT, information required of self-regulatory organizations operating pilot trading systems...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... required of self-regulatory organizations operating pilot trading systems pursuant to § 240.19b-5 of this... (CONTINUED) FORMS, SECURITIES EXCHANGE ACT OF 1934 Forms for Self-Regulatory Organization Rule Changes and... Associations § 249.821 Form PILOT, information required of self-regulatory organizations operating pilot...

  3. 17 CFR 249.821 - Form PILOT, information required of self-regulatory organizations operating pilot trading systems...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... required of self-regulatory organizations operating pilot trading systems pursuant to § 240.19b-5 of this... (CONTINUED) FORMS, SECURITIES EXCHANGE ACT OF 1934 Forms for Self-Regulatory Organization Rule Changes and... Associations § 249.821 Form PILOT, information required of self-regulatory organizations operating pilot...

  4. STS-132 Crewmembers in the Columbus Module during Joint Operations

    NASA Image and Video Library

    2010-05-21

    S132-E-009105 (22 May 2010) --- On the eve of the day they must bid farewell to their International Space Station hosts and head back to Earth, the STS-132 crew members gather for an impromptu chat session onboard the orbital outpost. At lower left foreground is NASA astronaut Steve Bowen, mission specialist. Clockwise from his position are NASA astronauts Michael Good, Tony Antonelli, Garrett Reisman and Ken Ham. Ham and Antonelli are Atlantis’ commander and pilot, respectively, Reisman and Good, along with Piers Sellers (out of frame), are all mission specialists. Photo credit: NASA or National Aeronautics and Space Administration

  5. Space Science

    NASA Image and Video Library

    1991-01-28

    This is the STS-37 Crew portrait. Pictured from left to right are Kenneth D. (Ken) Cameron, pilot; Jay Apt, mission specialist; Steven R. Nagel, commander; and Jerry L. Ross and Linda M. Godwin, mission specialists. Launched aboard the Space Shuttle Atlantis on April 5, 1991 at 9:22:44am (EST), the crew’s major objective was the deployment of the Gamma Ray Observatory (GRO). Included in the observatory were the Burst and Transient Source Experiment (BATSE); the Imaging Compton Telescope (COMPTEL); the Energetic Gamma Ray Experiment Telescope (EGRET); and the Oriented Scintillation Spectrometer Telescope (OSSEE).

  6. KSC-08pd1455

    NASA Image and Video Library

    2008-05-28

    CAPE CANAVERAL, Fla. -- After their arrival on the Shuttle Landing Facility at NASA's Kennedy Space Center, the crew members of space shuttle Discovery's STS-124 mission pose for a group photo. From left are Mission Specialists Gregory Chamitoff and Akihiko Hoshide, Pilot Ken Ham, Mission Specialists Karen Nyberg and Mike Fossum, Commander Mark Kelly and Mission Specialist Ron Garan. Launch of Discovery is scheduled for 5:02 p.m. May 31. On the STS-124 mission, the crew of seven will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Photo credit: NASA/Kim Shiflett

  7. 14 CFR 29.773 - Pilot compartment view.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Pilot compartment view. 29.773 Section 29... Accommodations § 29.773 Pilot compartment view. (a) Nonprecipitation conditions. For nonprecipitation conditions, the following apply: (1) Each pilot compartment must be arranged to give the pilots a sufficiently...

  8. 14 CFR 29.773 - Pilot compartment view.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pilot compartment view. 29.773 Section 29... Accommodations § 29.773 Pilot compartment view. (a) Nonprecipitation conditions. For nonprecipitation conditions, the following apply: (1) Each pilot compartment must be arranged to give the pilots a sufficiently...

  9. 14 CFR 25.773 - Pilot compartment view.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Pilot compartment view. 25.773 Section 25... § 25.773 Pilot compartment view. (a) Nonprecipitation conditions. For nonprecipitation conditions, the following apply: (1) Each pilot compartment must be arranged to give the pilots a sufficiently extensive...

  10. 14 CFR 25.773 - Pilot compartment view.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pilot compartment view. 25.773 Section 25... § 25.773 Pilot compartment view. (a) Nonprecipitation conditions. For nonprecipitation conditions, the following apply: (1) Each pilot compartment must be arranged to give the pilots a sufficiently extensive...

  11. 48 CFR 212.7002 - Pilot program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Pilot program. 212.7002... OF DEFENSE ACQUISITION PLANNING ACQUISITION OF COMMERCIAL ITEMS Pilot Program for Transition to Follow-On Contracting After Use of Other Transaction Authority 212.7002 Pilot program. ...

  12. 48 CFR 212.7002 - Pilot program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Pilot program. 212.7002... OF DEFENSE ACQUISITION PLANNING ACQUISITION OF COMMERCIAL ITEMS Pilot Program for Transition to Follow-On Contracting After Use of Other Transaction Authority 212.7002 Pilot program. ...

  13. 46 CFR 108.719 - Pilot boarding equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Pilot boarding equipment. 108.719 Section 108.719... AND EQUIPMENT Miscellaneous Equipment § 108.719 Pilot boarding equipment. (a) This section applies to each vessel that normally embarks or disembarks a pilot from a pilot boat or other vessel. (b) Each...

  14. 14 CFR 23.773 - Pilot compartment view.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Pilot compartment view. 23.773 Section 23... Personnel and Cargo Accommodations § 23.773 Pilot compartment view. (a) Each pilot compartment must be— (1) Arranged with sufficiently extensive, clear and undistorted view to enable the pilot to safely taxi...

  15. 46 CFR 108.719 - Pilot boarding equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Pilot boarding equipment. 108.719 Section 108.719... AND EQUIPMENT Miscellaneous Equipment § 108.719 Pilot boarding equipment. (a) This section applies to each vessel that normally embarks or disembarks a pilot from a pilot boat or other vessel. (b) Each...

  16. Pilot Weather Advisor System

    NASA Technical Reports Server (NTRS)

    Lindamood, Glenn; Martzaklis, Konstantinos Gus; Hoffler, Keith; Hill, Damon; Mehrotra, Sudhir C.; White, E. Richard; Fisher, Bruce D.; Crabill, Norman L.; Tucholski, Allen D.

    2006-01-01

    The Pilot Weather Advisor (PWA) system is an automated satellite radio-broadcasting system that provides nearly real-time weather data to pilots of aircraft in flight anywhere in the continental United States. The system was designed to enhance safety in two distinct ways: First, the automated receipt of information would relieve the pilot of the time-consuming and distracting task of obtaining weather information via voice communication with ground stations. Second, the presentation of the information would be centered around a map format, thereby making the spatial and temporal relationships in the surrounding weather situation much easier to understand

  17. Cosmic Radiation and Cataracts in Airline Pilots

    NASA Astrophysics Data System (ADS)

    Rafnsson, V.; Olafsdottir, E.; Hrafnkelsson, J.; de Angelis, G.; Sasaki, H.; Arnarson, A.; Jonasson, F.

    Nuclear cataracts have been associated with ionising radiation exposure in previous studies. A population based case-control study on airline pilots has been performed to investigate whether employment as a commercial pilot and consequent exposure to cosmic radiation were associated to lens opacification, when adjusted for known risk factors for cataracts. Cases of opacification of the ocular lens were found in surveys among pilots and a random sample of the Icelandic population. Altogether 445 male subjects underwent a detailed eye examination and answered a questionnaire. Information from the airline company on the 79 pilots employment time, annual hours flown per aircraft type, the timetables and the flight profiles made calculation of individual cumulated radiation dose (mSv) possible. Lens opacification were classified and graded according to WHO simplified cataracts grading system using slit lamp. The odds ratio from logistic regression of nuclear cataracts risk among cases and controls was 3.02 (95% CI 1.44 to 6.35) for pilots compared with non-pilots, adjusted for age, smoking and sunbathing habits, whereas that of cortical cataracts risk among cases and controls was lower than unity (non significant) for pilots compared with non-pilots in a logistic regression analysis adjusted for same factors. Length of employment as a pilot and cumulated radiation dose (mSv) were significantly related to the risk of nuclear cataracts. So the association between radiation exposure of pilots and the risk of nuclear cataracts, adjusted for age, smoking and sunbathing habits, indicates that cosmic radiation may be cause of nuclear cataract among commercial pilots.

  18. 28 CFR 11.2 - Pilot program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Pilot program. 11.2 Section 11.2 Judicial... Pilot program. The Assistant Attorney General for Administration, in consultation with the Executive Office for United States Attorneys, shall designate the districts that will participate in the pilot...

  19. 28 CFR 11.2 - Pilot program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Pilot program. 11.2 Section 11.2 Judicial... Pilot program. The Assistant Attorney General for Administration, in consultation with the Executive Office for United States Attorneys, shall designate the districts that will participate in the pilot...

  20. 46 CFR 96.40-1 - Pilot boarding equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Pilot boarding equipment. 96.40-1 Section 96.40-1... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Pilot Boarding Equipment § 96.40-1 Pilot boarding equipment. (a) This section applies to each vessel that normally embarks or disembarks a pilot from a pilot...

  1. 46 CFR 195.40-1 - Pilot boarding equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pilot boarding equipment. 195.40-1 Section 195.40-1... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Pilot Boarding Equipment § 195.40-1 Pilot boarding equipment. (a) This section applies to each vessel that normally embarks or disembarks a pilot from a pilot...

  2. 46 CFR 96.40-1 - Pilot boarding equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Pilot boarding equipment. 96.40-1 Section 96.40-1... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Pilot Boarding Equipment § 96.40-1 Pilot boarding equipment. (a) This section applies to each vessel that normally embarks or disembarks a pilot from a pilot...

  3. 46 CFR 195.40-1 - Pilot boarding equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Pilot boarding equipment. 195.40-1 Section 195.40-1... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Pilot Boarding Equipment § 195.40-1 Pilot boarding equipment. (a) This section applies to each vessel that normally embarks or disembarks a pilot from a pilot...

  4. 14 CFR 25.772 - Pilot compartment doors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Pilot compartment doors. 25.772 Section 25... § 25.772 Pilot compartment doors. For an airplane that has a lockable door installed between the pilot... pilot compartment if the cockpit door becomes jammed. (c) There must be an emergency means to enable a...

  5. 14 CFR 25.772 - Pilot compartment doors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pilot compartment doors. 25.772 Section 25... § 25.772 Pilot compartment doors. For an airplane that has a lockable door installed between the pilot... pilot compartment if the cockpit door becomes jammed. (c) There must be an emergency means to enable a...

  6. Conflict Resolution Automation and Pilot Situation Awareness

    NASA Technical Reports Server (NTRS)

    Dao, Arik-Quang V.; Brandt, Summer L.; Bacon, Paige; Kraut, Josh; Nguyen, Jimmy; Minakata, Katsumi; Raza, Hamzah; Rozovski, David; Johnson, Walter W.

    2010-01-01

    This study compared pilot situation awareness across three traffic management concepts. The Concepts varied in terms of the allocation of traffic avoidance responsibility between the pilot on the flight deck, the air traffic controllers, and a conflict resolution automation system. In Concept 1, the flight deck was equipped with conflict resolution tools that enable them to fully handle the responsibility of weather avoidance and maintaining separation between ownship and surrounding traffic. In Concept 2, pilots were not responsible for traffic separation, but were provided tools for weather and traffic avoidance. In Concept 3, flight deck tools allowed pilots to deviate for weather, but conflict detection tools were disabled. In this concept pilots were dependent on ground based automation for conflict detection and resolution. Situation awareness of the pilots was measured using online probes. Results showed that individual situation awareness was highest in Concept 1, where the pilots were most engaged, and lowest in Concept 3, where automation was heavily used. These findings suggest that for conflict resolution tasks, situation awareness is improved when pilots remain in the decision-making loop.

  7. Human factors in aviation crashes involving older pilots.

    PubMed

    Li, Guohua; Baker, Susan P; Lamb, Margaret W; Grabowski, Jurek G; Rebok, George W

    2002-02-01

    Pilot errors are recognized as a contributing factor in as many as 80% of aviation crashes. Experimental studies using flight simulators indicate that due to decreased working memory capacity, older pilots are outperformed by their younger counterparts in communication tasks and flight summary scores. This study examines age-related differences in crash circumstances and pilot errors in a sample of pilots who flew commuter aircraft or air taxis and who were involved in airplane or helicopter crashes. A historical cohort of 3306 pilots who in 1987 flew commuter aircraft or air taxis and were 45-54 yr of age was constructed using the Federal Aviation Administration's airmen information system. Crash records of the study subjects for the years 1983-1997 were obtained from the National Transportation Safety Board (NTSB) by matching name and date of birth. NTSB's investigation reports were reviewed to identify pilot errors and other contributing factors. Comparisons of crash circumstances and human factors were made between pilots aged 40-49 yr and pilots aged 50-63 yr. A total of 165 crash records were studied, with 52% of these crashes involving pilots aged 50-63 yr. Crash circumstances, such as time and location of crash, type and phase of flight, and weather conditions, were similar between the two age groups. Pilot error was a contributing factor in 73% of the crashes involving younger pilots and in 69% of the crashes involving older pilots (p = 0.50). Age-related differences in the pattern of pilot errors were statistically insignificant. Overall, 23% of pilot errors were attributable to inattentiveness, 20% to flawed decisions, 18% to mishandled aircraft kinetics, and 18% to mishandled wind/runway conditions. Neither crash circumstances nor the prevalence and patterns of pilot errors appear to change significantly as age increases from the 40s to the 50s and early 60s.

  8. 46 CFR 32.90-1 - Pilot boarding equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Pilot boarding equipment. 32.90-1 Section 32.90-1... REQUIREMENTS Pilot Boarding Equipment § 32.90-1 Pilot boarding equipment. (a) This section applies to each vessel that normally embarks or disembarks a pilot from a pilot boat or other vessel. (b) Each vessel...

  9. 46 CFR 32.90-1 - Pilot boarding equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Pilot boarding equipment. 32.90-1 Section 32.90-1... REQUIREMENTS Pilot Boarding Equipment § 32.90-1 Pilot boarding equipment. (a) This section applies to each vessel that normally embarks or disembarks a pilot from a pilot boat or other vessel. (b) Each vessel...

  10. 46 CFR 77.40-1 - Pilot boarding equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Pilot boarding equipment. 77.40-1 Section 77.40-1... MISCELLANEOUS SYSTEMS AND EQUIPMENT Pilot Boarding Equipment § 77.40-1 Pilot boarding equipment. (a) This section applies to each vessel that normally embarks or disembarks a pilot from a pilot boat or other...

  11. 33 CFR 385.12 - Pilot projects.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... management, and wastewater reuse. The purpose of the pilot projects is to develop information necessary to... Processes § 385.12 Pilot projects. (a) The Plan includes pilot projects to address uncertainties associated...-Federal sponsor shall develop a Project Management Plan as described in § 385.24. (c) Project...

  12. 27 CFR 19.31 - Pilot operations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Pilot operations. 19.31... Alternate Methods Or Procedures and Experimental Operations § 19.31 Pilot operations. Except for the filing... regulatory provision in this part for temporary pilot or experimental operations for the purpose of...

  13. Pilots using selective serotonin reuptake inhibitors compared to other fatally injured pilots.

    PubMed

    Rogers, Paul; Hileman, Christy; Salazar, Guillermo; Cliburn, Kacey; Paskoff, Lawrence; Hathaway, William; Gildea, Kevin; Tejera Villalaz, Victor Hugo

    2017-10-01

    Selective Serotonin Reuptake Inhibitors (SSRI) were a disqualifying medication for U.S. civil pilots before April 5, 2010. After this date, a Federal Aviation Administration policy was created that allowed airmen, on select SSRIs, a pathway to hold a valid medical certificate. The purpose of this study was to provide a detailed look at SSRIs in the U.S. pilot population since the inception of this new policy. We examined the toxicology results from fatally injured airmen in addition to outcomes concerning pilots who are participating in the program. This study examined data from the Civil Aerospace Medical Institute's Bioaeronautical Sciences Research Laboratory in conjunction with the Medical Analysis Tracking Registry and the Document Imaging and Workflow System. A count-based regression model quantified the relationships between positive SSRI findings with additional factors of interest. These factors included pilot rating, ethanol, and first generation antihistamines. There were 1484 fatally injured airmen over the six year study period, of which 44-tested positive for an SSRI. First-generation antihistamines were statistically associated with positive findings of SSRIs. Published by Elsevier Ltd.

  14. The psychophysiological assessment method for pilot's professional reliability.

    PubMed

    Zhang, L M; Yu, L S; Wang, K N; Jing, B S; Fang, C

    1997-05-01

    Previous research has shown that a pilot's professional reliability depends on two relative factors: the pilot's functional state and the demands of task workload. The Psychophysiological Reserve Capacity (PRC) is defined as a pilot's ability to accomplish additive tasks without reducing the performance of the primary task (flight task). We hypothesized that the PRC was a mirror of the pilot's functional state. The purpose of this study was to probe the psychophysiological method for evaluating a pilot's professional reliability on a simulator. The PRC Comprehensive Evaluating System (PRCCES) which was used in the experiment included four subsystems: a) quantitative evaluation system for pilot's performance on simulator; b) secondary task display and quantitative estimating system; c) multiphysiological data monitoring and statistical system; and d) comprehensive evaluation system for pilot PRC. Two studies were performed. In study one, 63 healthy and 13 hospitalized pilots participated. Each pilot performed a double 180 degrees circuit flight program with and without secondary task (three digit operation). The operator performance, score of secondary task and cost of physiological effort were measured and compared by PRCCES in the two conditions. Then, each pilot's flight skill in training was subjectively scored by instructor pilot ratings. In study two, 7 healthy pilots volunteered to take part in the experiment on the effects of sleep deprivation on pilot's PRC. Each participant had PRC tested pre- and post-8 h sleep deprivation. The results show that the PRC values of a healthy pilot was positively correlated with abilities of flexibility, operating and correcting deviation, attention distribution, and accuracy of instrument flight in the air (r = 0.27-0.40, p < 0.05), and negatively correlated with emotional anxiety in flight (r = -0.40, p < 0.05). The values of PRC in healthy pilots (0.61 +/- 0.17) were significantly higher than that of hospitalized pilots

  15. 46 CFR 196.95-1 - Pilot boarding operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Pilot boarding operations. 196.95-1 Section 196.95-1... Pilot Boarding Operations § 196.95-1 Pilot boarding operations. (a) The master shall ensure that pilot.... (2) Each damaged step or spreader step on a pilot ladder must be replaced in kind with an approved...

  16. 46 CFR 196.95-1 - Pilot boarding operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pilot boarding operations. 196.95-1 Section 196.95-1... Pilot Boarding Operations § 196.95-1 Pilot boarding operations. (a) The master shall ensure that pilot.... (2) Each damaged step or spreader step on a pilot ladder must be replaced in kind with an approved...

  17. 7 CFR 1955.132 - Pilot projects.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 14 2011-01-01 2011-01-01 false Pilot projects. 1955.132 Section 1955.132 Agriculture... REGULATIONS (CONTINUED) PROPERTY MANAGEMENT Disposal of Inventory Property General § 1955.132 Pilot projects. FmHA or its successor agency under Public Law 103-354 may conduct pilot projects to test policies and...

  18. 7 CFR 1955.132 - Pilot projects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Pilot projects. 1955.132 Section 1955.132 Agriculture... REGULATIONS (CONTINUED) PROPERTY MANAGEMENT Disposal of Inventory Property General § 1955.132 Pilot projects. FmHA or its successor agency under Public Law 103-354 may conduct pilot projects to test policies and...

  19. 7 CFR 1955.132 - Pilot projects.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 14 2014-01-01 2014-01-01 false Pilot projects. 1955.132 Section 1955.132 Agriculture... REGULATIONS (CONTINUED) PROPERTY MANAGEMENT Disposal of Inventory Property General § 1955.132 Pilot projects. FmHA or its successor agency under Public Law 103-354 may conduct pilot projects to test policies and...

  20. A simulator investigation of the use of digital data link for pilot/ATC communications in a single pilot operation

    NASA Technical Reports Server (NTRS)

    Hinton, David A.; Lohr, Gary W.

    1988-01-01

    Studies have shown that radio communications between pilots and air traffic control contribute to high pilot workload and are subject to various errors. These errors result from congestion on the voice radio channel, and missed and misunderstood messages. The use of digital data link has been proposed as a means of reducing this workload and error rate. A critical factor, however, in determining the potential benefit of data link will be the interface between future data link systems and the operator of those systems, both in the air and on the ground. The purpose of this effort was to evaluate the pilot interface with various levels of data link capability, in simulated general aviation, single-pilot instrument flight rule operations. Results show that the data link reduced demands on pilots' short-term memory, reduced the number of communication transmissions, and permitted the pilots to more easily allocate time to critical cockpit tasks while receiving air traffic control messages. The pilots who participated unanimously indicated a preference for data link communications over voice-only communications. There were, however, situations in which the pilot preferred the use of voice communications, and the ability for pilots to delay processing the data link messages, during high workload events, caused delays in the acknowledgement of messages to air traffic control.

  1. Medical Handbook for Pilots.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    This handbook provides information on an airline pilot's physical and mental status and related medical factors which may affect his/her performance. Contents include information on the physical examination for pilots, the flyer's environment, hypoxia, hyperventilation, gas in the body, the ears, alcohol, drugs and flying, carbon monoxide, vision,…

  2. Estimation of Time-Varying Pilot Model Parameters

    NASA Technical Reports Server (NTRS)

    Zaal, Peter M. T.; Sweet, Barbara T.

    2011-01-01

    Human control behavior is rarely completely stationary over time due to fatigue or loss of attention. In addition, there are many control tasks for which human operators need to adapt their control strategy to vehicle dynamics that vary in time. In previous studies on the identification of time-varying pilot control behavior wavelets were used to estimate the time-varying frequency response functions. However, the estimation of time-varying pilot model parameters was not considered. Estimating these parameters can be a valuable tool for the quantification of different aspects of human time-varying manual control. This paper presents two methods for the estimation of time-varying pilot model parameters, a two-step method using wavelets and a windowed maximum likelihood estimation method. The methods are evaluated using simulations of a closed-loop control task with time-varying pilot equalization and vehicle dynamics. Simulations are performed with and without remnant. Both methods give accurate results when no pilot remnant is present. The wavelet transform is very sensitive to measurement noise, resulting in inaccurate parameter estimates when considerable pilot remnant is present. Maximum likelihood estimation is less sensitive to pilot remnant, but cannot detect fast changes in pilot control behavior.

  3. Rand Symposium on Pilot Training and the Pilot Career; Recollections of the Chairman.

    ERIC Educational Resources Information Center

    Stewart, W. A.

    Topics discussed in this 1970 symposium included the economics of flight training, careers in flying, college versus high school graduates, defining the trained pilot, motivation and selection, innovation in pilot training, training goals, transfer of training, and the role of simulators. Conferees agreed that the present Air Force undergraduate…

  4. The impact of transition training on adapting to Technically Advanced Aircraft at regional airlines: Perceptions of pilots and instructor pilots

    NASA Astrophysics Data System (ADS)

    di Renzo, John Carl, Jr.

    Scope and method of study. The purpose of this study was to test a hypothesis about pilot and instructor pilot perceptions of how effectively pilots learn and use new technology, found in Technically Advanced Aircraft (TAA), given initial type of instrumentation training. New aviation technologies such as Glass Cockpits in technically advanced aircraft are complex and can be difficult to learn and use. The research questions focused on the type of initial instrumentation training to determine the differences among pilots trained using various types of instrumentation ranging from aircraft equipped with traditional analog instrumentation to aircraft equipped with glass cockpits. A convenience sample of Pilots in Training (PT) and Instructor Pilots (IP) was selected from a regional airline. The research design used a mixed methodology. Pilots in training completed a thirty-two question quantitative questionnaire and instructor pilots completed a five question qualitative questionnaire. Findings and conclusions. This investigation failed to disprove the null hypothesis. The type of instrumentation training has no significant effect on newly trained regional airline pilot perceived ability to adapt to advanced technology cockpits. Therefore, no evidence exists from this investigation to support the early introduction and training of TAA. While the results of this investigation were surprising, they are nonetheless, instructive. Even though it would seem that there would be a relationship between exposure to and use of technically advanced instrumentation, apparently there was no perceived relationship for this group of airline transport pilots. However, a point of interest is that these pilots were almost evenly divided in their opinion of whether or not their previous training had prepared them for transition to TAA. The majority also believed that the type of initial instrumentation training received does make a difference when transitioning to TAA. Pilots believed

  5. Shortcuts for Pilot Testing Instructional Materials.

    ERIC Educational Resources Information Center

    Howe, R. John; Pearlstein, Gloria

    1995-01-01

    A mini-pilot test was conducted by the Department of Labor's Employment Standards Administration to develop training on enforcing the Federal Family and Medical Leave Act. The situation that necessitated the test is presented; mini-pilot test examples are explained; and pros and cons of the mini-pilots are examined. A sidebar contains suggestions…

  6. 14 CFR 141.7 - Provisional pilot school certificate.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Provisional pilot school certificate. 141.7... (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES PILOT SCHOOLS General § 141.7 Provisional pilot school... provisional pilot school certificate with ratings. ...

  7. 14 CFR 141.7 - Provisional pilot school certificate.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Provisional pilot school certificate. 141.7... (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES PILOT SCHOOLS General § 141.7 Provisional pilot school... provisional pilot school certificate with ratings. ...

  8. 49 CFR 381.400 - What is a pilot program?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false What is a pilot program? 381.400 Section 381.400... PILOT PROGRAMS Initiation of Pilot Programs § 381.400 What is a pilot program? (a) A pilot program is a... that would be subject to the regulations. (b) During a pilot program, the participants would be given...

  9. 49 CFR 381.400 - What is a pilot program?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false What is a pilot program? 381.400 Section 381.400... PILOT PROGRAMS Initiation of Pilot Programs § 381.400 What is a pilot program? (a) A pilot program is a... that would be subject to the regulations. (b) During a pilot program, the participants would be given...

  10. 27 CFR 19.63 - Pilot operations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Pilot operations. 19.63... Activities Not Subject to This Part § 19.63 Pilot operations. The appropriate TTB officer may waive any regulatory provisions of 26 U.S.C. Chapter 51, and of the regulations in this part, for temporary pilot or...

  11. Pilot age and error in air taxi crashes.

    PubMed

    Rebok, George W; Qiang, Yandong; Baker, Susan P; Li, Guohua

    2009-07-01

    The associations of pilot error with the type of flight operations and basic weather conditions are well documented. The correlation between pilot characteristics and error is less clear. This study aims to examine whether pilot age is associated with the prevalence and patterns of pilot error in air taxi crashes. Investigation reports from the National Transportation Safety Board for crashes involving non-scheduled Part 135 operations (i.e., air taxis) in the United States between 1983 and 2002 were reviewed to identify pilot error and other contributing factors. Crash circumstances and the presence and type of pilot error were analyzed in relation to pilot age using Chi-square tests. Of the 1751 air taxi crashes studied, 28% resulted from mechanical failure, 25% from loss of control at landing or takeoff, 7% from visual flight rule conditions into instrument meteorological conditions, 7% from fuel starvation, 5% from taxiing, and 28% from other causes. Crashes among older pilots were more likely to occur during the daytime rather than at night and off airport than on airport. The patterns of pilot error in air taxi crashes were similar across age groups. Of the errors identified, 27% were flawed decisions, 26% were inattentiveness, 23% mishandled aircraft kinetics, 15% mishandled wind and/or runway conditions, and 11% were others. Pilot age is associated with crash circumstances but not with the prevalence and patterns of pilot error in air taxi crashes. Lack of age-related differences in pilot error may be attributable to the "safe worker effect."

  12. Pilot Age and Error in Air-Taxi Crashes

    PubMed Central

    Rebok, George W.; Qiang, Yandong; Baker, Susan P.; Li, Guohua

    2010-01-01

    Introduction The associations of pilot error with the type of flight operations and basic weather conditions are well documented. The correlation between pilot characteristics and error is less clear. This study aims to examine whether pilot age is associated with the prevalence and patterns of pilot error in air-taxi crashes. Methods Investigation reports from the National Transportation Safety Board for crashes involving non-scheduled Part 135 operations (i.e., air taxis) in the United States between 1983 and 2002 were reviewed to identify pilot error and other contributing factors. Crash circumstances and the presence and type of pilot error were analyzed in relation to pilot age using Chi-square tests. Results Of the 1751 air-taxi crashes studied, 28% resulted from mechanical failure, 25% from loss of control at landing or takeoff, 7% from visual flight rule conditions into instrument meteorological conditions, 7% from fuel starvation, 5% from taxiing, and 28% from other causes. Crashes among older pilots were more likely to occur during the daytime rather than at night and off airport than on airport. The patterns of pilot error in air-taxi crashes were similar across age groups. Of the errors identified, 27% were flawed decisions, 26% were inattentiveness, 23% mishandled aircraft kinetics, 15% mishandled wind and/or runway conditions, and 11% were others. Conclusions Pilot age is associated with crash circumstances but not with the prevalence and patterns of pilot error in air-taxi crashes. Lack of age-related differences in pilot error may be attributable to the “safe worker effect.” PMID:19601508

  13. Commercial Pilot Knowledge Test Guide

    DOT National Transportation Integrated Search

    1995-01-01

    The FAA has available hundreds of computer testing centers nationwide. These testing centers offer the full range of airman knowledge tests including military competence, instrument foreign pilot, and pilot examiner predesignated tests. Refer to appe...

  14. Avoiding a Pilot Retention Death Spiral: The Pilot Shortage and DOD’s Challenge to Maintain an Effective Fighting Force

    DTIC Science & Technology

    2018-04-09

    pilot retention, they must move beyond solely seeing retention as a money issue and instead address the entire pilot system from production to pay...Shortage is All About the Money ,” ALPA.org, February 27, 2014, http://www.alpa.org/news-and-events/news-room/2014-02-27-Pilot-Shortage-All-About... Money (accessed October 17, 2017). 15 Air Line Pilots Association, “The Landing,” Air Line Pilot Vol. 84, No. 6 (August 2015): 37, http://www3.alpa.org

  15. Analysis of empty ATLAS pilot jobs

    NASA Astrophysics Data System (ADS)

    Love, P. A.; Alef, M.; Dal Pra, S.; Di Girolamo, A.; Forti, A.; Templon, J.; Vamvakopoulos, E.; ATLAS Collaboration

    2017-10-01

    In this analysis we quantify the wallclock time used by short empty pilot jobs on a number of WLCG compute resources. Pilot factory logs and site batch logs are used to provide independent accounts of the usage. Results show a wide variation of wallclock time used by short jobs depending on the site and queue, and changing with time. For a reference dataset of all jobs in August 2016, the fraction of wallclock time used by empty jobs per studied site ranged from 0.1% to 0.8%. Aside from the wall time used by empty pilots, we also looked at how many pilots were empty as a fraction of all pilots sent. Binning the August dataset into days, empty fractions between 2% and 90% were observed. The higher fractions correlate well with periods of few actual payloads being sent to the site.

  16. Motion-Based Piloted Simulation Evaluation of a Control Allocation Technique to Recover from Pilot Induced Oscillations

    NASA Technical Reports Server (NTRS)

    Craun, Robert W.; Acosta, Diana M.; Beard, Steven D.; Leonard, Michael W.; Hardy, Gordon H.; Weinstein, Michael; Yildiz, Yildiray

    2013-01-01

    This paper describes the maturation of a control allocation technique designed to assist pilots in the recovery from pilot induced oscillations (PIOs). The Control Allocation technique to recover from Pilot Induced Oscillations (CAPIO) is designed to enable next generation high efficiency aircraft designs. Energy efficient next generation aircraft require feedback control strategies that will enable lowering the actuator rate limit requirements for optimal airframe design. One of the common issues flying with actuator rate limits is PIOs caused by the phase lag between the pilot inputs and control surface response. CAPIO utilizes real-time optimization for control allocation to eliminate phase lag in the system caused by control surface rate limiting. System impacts of the control allocator were assessed through a piloted simulation evaluation of a non-linear aircraft simulation in the NASA Ames Vertical Motion Simulator. Results indicate that CAPIO helps reduce oscillatory behavior, including the severity and duration of PIOs, introduced by control surface rate limiting.

  17. 14 CFR 61.83 - Eligibility requirements for student pilots.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Eligibility requirements for student pilots... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Student Pilots § 61.83 Eligibility requirements for student pilots. To be eligible for a student pilot...

  18. U-2 Pilot Post-Mission Fatigue Questionnaire

    DTIC Science & Technology

    2014-10-01

    conduct missions in a single- seat aircraft at altitudes above 70,000 feet, requiring the pilot to wear a full pressure suit and breathe 100% oxygen...2014 1.0 SUMMARY U-2 pilots routinely conduct missions in a single- seat aircraft at altitudes above 70,000 feet, requiring the pilot to wear a...pilots, the physical discomfort resulting from prolonged immobility in a single- seat aircraft may contribute to subjective pain and fatigue. Prolonged

  19. 44 CFR 59.30 - A pilot inspection procedure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false A pilot inspection procedure... PROVISIONS Pilot Inspection Program § 59.30 A pilot inspection procedure. (a) Purpose. This section sets forth the criteria for implementing a pilot inspection procedure in Monroe County and the Village of...

  20. 44 CFR 59.30 - A pilot inspection procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false A pilot inspection procedure... PROVISIONS Pilot Inspection Program § 59.30 A pilot inspection procedure. (a) Purpose. This section sets forth the criteria for implementing a pilot inspection procedure in Monroe County and the Village of...

  1. 46 CFR 78.90-1 - Pilot boarding operation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Pilot boarding operation. 78.90-1 Section 78.90-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Pilot Boarding Operations § 78.90-1 Pilot boarding operation. (a) The master shall ensure that pilot boarding...

  2. 46 CFR 78.90-1 - Pilot boarding operation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Pilot boarding operation. 78.90-1 Section 78.90-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Pilot Boarding Operations § 78.90-1 Pilot boarding operation. (a) The master shall ensure that pilot boarding...

  3. Pilot error in air carrier accidents: does age matter?

    PubMed

    Li, Guohua; Grabowski, Jurek G; Baker, Susan P; Rebok, George W

    2006-07-01

    The relationship between pilot age and safety performance has been the subject of research and controversy since the "Age 60 Rule" became effective in 1960. This study aimed to examine age-related differences in the prevalence and patterns of pilot error in air carrier accidents. Investigation reports from the National Transportation Safety Board for accidents involving Part 121 operations in the United States between 1983 and 2002 were reviewed to identify pilot error and other contributing factors. Accident circumstances and the presence and type of pilot error were analyzed in relation to pilot age using Chi-square tests. Of the 558 air carrier accidents studied, 25% resulted from turbulence, 21% from mechanical failure, 16% from taxiing events, 13% from loss of control at landing or takeoff, and 25% from other causes. Accidents involving older pilots were more likely to be caused by turbulence, whereas accidents involving younger pilots were more likely to be taxiing events. Pilot error was a contributing factor in 34%, 38%, 35%, and 34% of the accidents involving pilots ages 25-34 yr, 35-44 yr, 45-54 yr, and 55-59 yr, respectively (p = 0.87). The patterns of pilot error were similar across age groups. Overall, 26% of the pilot errors identified were inattentiveness, 22% flawed decisions, 22% mishandled aircraft kinetics, and 11% poor crew interactions. The prevalence and patterns of pilot error in air carrier accidents do not seem to change with pilot age. The lack of association between pilot age and error may be due to the "safe worker effect" resulting from the rigorous selection processes and certification standards for professional pilots.

  4. Modelling decision-making by pilots

    NASA Technical Reports Server (NTRS)

    Patrick, Nicholas J. M.

    1993-01-01

    Our scientific goal is to understand the process of human decision-making. Specifically, a model of human decision-making in piloting modern commercial aircraft which prescribes optimal behavior, and against which we can measure human sub-optimality is sought. This model should help us understand such diverse aspects of piloting as strategic decision-making, and the implicit decisions involved in attention allocation. Our engineering goal is to provide design specifications for (1) better computer-based decision-aids, and (2) better training programs for the human pilot (or human decision-maker, DM).

  5. 46 CFR 11.701 - Scope of pilot endorsements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Scope of pilot endorsements. 11.701 Section 11.701... OFFICER ENDORSEMENTS Professional Requirements for Pilots § 11.701 Scope of pilot endorsements. (a) An applicant for an endorsement as first-class pilot need not hold any other officer endorsement issued under...

  6. 46 CFR 11.701 - Scope of pilot endorsements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Scope of pilot endorsements. 11.701 Section 11.701... OFFICER ENDORSEMENTS Professional Requirements for Pilots § 11.701 Scope of pilot endorsements. (a) An applicant for an endorsement as first-class pilot need not hold any other officer endorsement issued under...

  7. 76 FR 56262 - Community Advantage Pilot Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ... SMALL BUSINESS ADMINISTRATION [Docket No. SBA 2011-0003] Community Advantage Pilot Program AGENCY: U.S. Small Business Administration (SBA). ACTION: Notice of change to Community Advantage Pilot... Community Advantage Pilot Program. In that notice, SBA modified or waived as appropriate certain regulations...

  8. 75 FR 80561 - Community Express Pilot Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ... SMALL BUSINESS ADMINISTRATION Community Express Pilot Program AGENCY: U.S. Small Business Administration (SBA). ACTION: Notice of short-term extension and termination of the Community Express Pilot Program. SUMMARY: This notice announces the termination of the Community Express Pilot Program following a...

  9. The Pilot Training Study: A Cost-Estimating Model for Advanced Pilot Training (APT).

    ERIC Educational Resources Information Center

    Knollmeyer, L. E.

    The Advanced Pilot Training Cost Model is a statement of relationships that may be used, given the necessary inputs, for estimating the resources required and the costs to train pilots in the Air Force formal flying training schools. Resources and costs are computed by weapon system on an annual basis for use in long-range planning or sensitivity…

  10. 46 CFR 401.510 - Operation without Registered Pilots.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Operation without Registered Pilots. 401.510 Section 401... REGULATIONS Penalties; Operations Without Registered Pilots § 401.510 Operation without Registered Pilots. (a... Registered Pilot when the vessel or its cargo is in distress or jeopardy. (b) A vessel may be navigated in...

  11. Preparing Pilots for Takeoff

    ERIC Educational Resources Information Center

    Ravage, Barbara

    2012-01-01

    Why would schools consider partnering with a vendor to operate a pilot? Why not just wait until the final product is released? For starters, pilots provide schools with a golden opportunity to get an early look at the software, take it for a test flight, and ask for changes tailored to their operating environment and business needs. In some cases,…

  12. IARC - Illinois Accelerator Research Center | Pilot Program

    Science.gov Websites

    Toggle navigation Pilot Program Agenda Directions Registration Illinois Accelerator Research Center National Laboratory present Accelerator Stewardship Test Facility Pilot Program Use accelerator technology , energy and environment. With this pilot program, the DOE Office of Science National Laboratories are

  13. 75 FR 473 - Community Express Pilot Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... SMALL BUSINESS ADMINISTRATION Community Express Pilot Program AGENCY: U.S. Small Business Administration (SBA). ACTION: Notice of extension of the Community Express Pilot Program. SUMMARY: This notice extends the Community Express Pilot Program in its current form through December 31, 2010. Based upon the...

  14. 46 CFR 77.40-1 - Pilot boarding equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Pilot boarding equipment. 77.40-1 Section 77.40-1... MISCELLANEOUS SYSTEMS AND EQUIPMENT Pilot Boarding Equipment § 77.40-1 Pilot boarding equipment. (a) This... vessel. (b) Each vessel must have suitable pilot boarding equipment available for use on each side of the...

  15. 46 CFR 97.90-1 - Pilot boarding operation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Pilot boarding operation. 97.90-1 Section 97.90-1... OPERATIONS Pilot Boarding Operations § 97.90-1 Pilot boarding operation. (a) The master shall ensure that pilot boarding equipment is maintained as follows: (1) The equipment must be kept clean and in good...

  16. 46 CFR 97.90-1 - Pilot boarding operation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Pilot boarding operation. 97.90-1 Section 97.90-1... OPERATIONS Pilot Boarding Operations § 97.90-1 Pilot boarding operation. (a) The master shall ensure that pilot boarding equipment is maintained as follows: (1) The equipment must be kept clean and in good...

  17. Alcohol rehabilitation of airline pilots.

    DOT National Transportation Integrated Search

    1985-10-01

    This study involves a survey of medical records for over 500 airline pilots who have been medically certified by the FAA after a diagnosis of alcoholism. The program demonstrates an 85% rate of success since 1976. If a pilot experiences a relapse, he...

  18. Prevalence of fatigue in a group of airline pilots.

    PubMed

    Reis, Cátia; Mestre, Catarina; Canhão, Helena

    2013-08-01

    Fatigue is a common phenomenon in airline pilots that can impair alertness and ability of crewmembers to safely operate an aircraft and perform safety related tasks. Fatigue can increase the risk of an incident or even an accident. This study provides the first prevalence values for clinically significant fatigue in Portuguese airline pilots. The hypothesis that medium/short-haul pilots may currently present different levels of fatigue than long-haul pilots was also tested. A survey was conducted by requesting Portuguese airline pilots to complete questionnaires placed in the pilots' personal lockers from 1 April until 15 May 2012. The questionnaire included the self-response Fatigue Severity Scale (FSS) to measure subjective fatigue and some additional questions concerning perception of fatigue by pilots. The prevalence values for total and mental fatigue achieved in the Portuguese airline pilots were: 89.3% (FSS > or = 4) and 94.1% (FSS > or = 4) when splitting the sample in two subsamples, long- and medium/short-haul pilots. Levels of total and mental fatigue were higher for medium/short-haul pilots. The analysis of fatigue levels in each type of aviator showed that medium/short-haul pilots presented the highest levels of total and mental fatigue. This study produced the first prevalence values of total and mental fatigue among Portuguese airline pilots, which represents a great step to understanding and addressing this critical phenomenon.

  19. 7 CFR 210.28 - Pilot project exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 4 2011-01-01 2011-01-01 false Pilot project exemptions. 210.28 Section 210.28... AGRICULTURE CHILD NUTRITION PROGRAMS NATIONAL SCHOOL LUNCH PROGRAM Additional Provisions § 210.28 Pilot project exemptions. Those State agencies or school food authorities selected for the pilot projects...

  20. 7 CFR 210.28 - Pilot project exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Pilot project exemptions. 210.28 Section 210.28... AGRICULTURE CHILD NUTRITION PROGRAMS NATIONAL SCHOOL LUNCH PROGRAM Additional Provisions § 210.28 Pilot project exemptions. Those State agencies or school food authorities selected for the pilot projects...

  1. 46 CFR 35.01-55 - Pilot boarding operation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Pilot boarding operation. 35.01-55 Section 35.01-55... Requirements § 35.01-55 Pilot boarding operation. (a) The master shall ensure that pilot boarding equipment is... or spreader step on a pilot ladder must be replaced in kind with an approved replacement step or...

  2. 46 CFR 35.01-55 - Pilot boarding operation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Pilot boarding operation. 35.01-55 Section 35.01-55... Requirements § 35.01-55 Pilot boarding operation. (a) The master shall ensure that pilot boarding equipment is... or spreader step on a pilot ladder must be replaced in kind with an approved replacement step or...

  3. Techniques for Improving Pilot Recovery from System Failures

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy R.

    2001-01-01

    This project examined the application of intelligent cockpit systems to aid air transport pilots at the tasks of reacting to in-flight system failures and of planning and then following a safe four dimensional trajectory to the runway threshold during emergencies. Two studies were conducted. The first examined pilot performance with a prototype awareness/alerting system in reacting to on-board system failures. In a full-motion, high-fidelity simulator, Army helicopter pilots were asked to fly a mission during which, without warning or briefing, 14 different failures were triggered at random times. Results suggest that the amount of information pilots require from such diagnostic systems is strongly dependent on their training; for failures they are commonly trained to react to with a procedural response, they needed only an indication of which failure to follow, while for 'un-trained' failures, they benefited from more intelligent and informative systems. Pilots were also found to over-rely on the system in conditions were it provided false or mis-leading information. In the second study, a proof-of-concept system was designed suitable for helping pilots replan their flights in emergency situations for quick, safe trajectory generation. This system is described in this report, including: the use of embedded fast-time simulation to predict the trajectory defined by a series of discrete actions; the models of aircraft and pilot dynamics required by the system; and the pilot interface. Then, results of a flight simulator evaluation with airline pilots are detailed. In 6 of 72 simulator runs, pilots were not able to establish a stable flight path on localizer and glideslope, suggesting a need for cockpit aids. However, results also suggest that, to be operationally feasible, such an aid must be capable of suggesting safe trajectories to the pilot; an aid that only verified plans entered by the pilot was found to have significantly detrimental effects on performance and

  4. Active Job Monitoring in Pilots

    NASA Astrophysics Data System (ADS)

    Kuehn, Eileen; Fischer, Max; Giffels, Manuel; Jung, Christopher; Petzold, Andreas

    2015-12-01

    Recent developments in high energy physics (HEP) including multi-core jobs and multi-core pilots require data centres to gain a deep understanding of the system to monitor, design, and upgrade computing clusters. Networking is a critical component. Especially the increased usage of data federations, for example in diskless computing centres or as a fallback solution, relies on WAN connectivity and availability. The specific demands of different experiments and communities, but also the need for identification of misbehaving batch jobs, requires an active monitoring. Existing monitoring tools are not capable of measuring fine-grained information at batch job level. This complicates network-aware scheduling and optimisations. In addition, pilots add another layer of abstraction. They behave like batch systems themselves by managing and executing payloads of jobs internally. The number of real jobs being executed is unknown, as the original batch system has no access to internal information about the scheduling process inside the pilots. Therefore, the comparability of jobs and pilots for predicting run-time behaviour or network performance cannot be ensured. Hence, identifying the actual payload is important. At the GridKa Tier 1 centre a specific tool is in use that allows the monitoring of network traffic information at batch job level. This contribution presents the current monitoring approach and discusses recent efforts and importance to identify pilots and their substructures inside the batch system. It will also show how to determine monitoring data of specific jobs from identified pilots. Finally, the approach is evaluated.

  5. 12 CFR 703.19 - Investment pilot program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Investment pilot program. 703.19 Section 703.19 Banks and Banking NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS AFFECTING CREDIT UNIONS INVESTMENT AND DEPOSIT ACTIVITIES § 703.19 Investment pilot program. (a) Under the investment pilot program, NCUA...

  6. 12 CFR 703.19 - Investment pilot program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 6 2011-01-01 2011-01-01 false Investment pilot program. 703.19 Section 703.19 Banks and Banking NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS AFFECTING CREDIT UNIONS INVESTMENT AND DEPOSIT ACTIVITIES § 703.19 Investment pilot program. (a) Under the investment pilot program, NCUA...

  7. 77 FR 67433 - Community Advantage Pilot Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-09

    ... comments. SUMMARY: The Community Advantage (``CA'') Pilot Program is a pilot program to increase SBA... small businesses and entrepreneurs in underserved markets, SBA is issuing this Notice to extend the term... Pilot Program was introduced to increase the number of SBA-guaranteed loans made to small businesses in...

  8. 46 CFR 401.450 - Pilot change points.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Pilot change points. 401.450 Section 401.450 Shipping COAST GUARD (GREAT LAKES PILOTAGE), DEPARTMENT OF HOMELAND SECURITY GREAT LAKES PILOTAGE REGULATIONS Rates, Charges, and Conditions for Pilotage Services § 401.450 Pilot change points. A Registered Pilot's...

  9. 46 CFR 401.450 - Pilot change points.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Pilot change points. 401.450 Section 401.450 Shipping COAST GUARD (GREAT LAKES PILOTAGE), DEPARTMENT OF HOMELAND SECURITY GREAT LAKES PILOTAGE REGULATIONS Rates, Charges, and Conditions for Pilotage Services § 401.450 Pilot change points. A Registered Pilot's...

  10. 75 FR 39090 - Airport Privatization Pilot Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... Privatization Pilot Program AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Receipt and... pilot program received under 49 U.S.C. Section 47134. The preliminary application is accepted for review... operator, negotiate an agreement and submit a final application to the FAA for exemption under the pilot...

  11. 75 FR 39091 - Airport Privatization Pilot Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... Privatization Pilot Program AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Receipt and... application for participation in the airport privatization pilot program received under 49 U.S.C. 47134. The... application to the FAA for exemption under the pilot program. 49 U.S.C. 47134 establishes an airport...

  12. 14 CFR 141.11 - Pilot school ratings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pilot school ratings. 141.11 Section 141.11 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES PILOT SCHOOLS General § 141.11 Pilot school ratings. (a) The ratings listed...

  13. 14 CFR 141.11 - Pilot school ratings.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Pilot school ratings. 141.11 Section 141.11 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES PILOT SCHOOLS General § 141.11 Pilot school ratings. (a) The ratings listed...

  14. KSC-08pd1172

    NASA Image and Video Library

    2008-05-07

    CAPE CANAVERAL, Fla. -- STS-124 Mission Specialist Karen Nyberg is ready to begin driving practice in the M113 armored personnel carrier, part of emergency training. Behind her is Pilot Ken Ham. She and other crew members are at NASA's Kennedy Space Center for a dress launch rehearsal called the terminal countdown demonstration test. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett

  15. KSC-08pd1176

    NASA Image and Video Library

    2008-05-07

    CAPE CANAVERAL, Fla. -- STS-124 Pilot Ken Ham stands ready to practice driving the M113 armored personnel carrier as part of emergency training. Behind him is Mission Specialist Karen Nyberg. Ham and other crew members are at NASA's Kennedy Space Center for a dress launch rehearsal called the terminal countdown demonstration test. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett

  16. KSC-08pd1169

    NASA Image and Video Library

    2008-05-07

    CAPE CANAVERAL, Fla. -- STS-124 Mission Specialist Ron Garan is ready to drive the M113 armored personnel carrier as part of emergency training. Behind him is Pilot Ken Ham. They and other crew members are at NASA's Kennedy Space Center for a dress launch rehearsal called the terminal countdown demonstration test. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett

  17. STS-113 TCDT emergency exit training at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - As part of Terminal Countdown Demonstration Test (TCDT) activities, the STS-113 and Expedition 6 crews receive training in emergency exit from the orbiter on Launch Pad 39A. Shown are (from left) Expedition 6 Commander Ken Bowersox; STS-113 Pilot Paul Lockhart; astronaut Donald Pettit; Mission Specialist Michael Lopez-Alegria, Commander James Wetherbee and Mission Specialist John Herrington; and cosmonaut Nikolai Budarin. The TCDT also includes a simulated launch countdown. The 16th assembly flight to the International Space Station, STS-113 will carry the Port 6 crew, who will replace Expedition 5 on the Station. Mission STS-113 is scheduled to launch Nov. 10, 2002.

  18. STS-124 Space Shuttle Discovery Landing

    NASA Image and Video Library

    2008-06-14

    The aft end of the space shuttle Discovery is seen shortly after landing on runway 15 of the NASA Kennedy Space Center Shuttle Landing Facility at 11:15 a.m., Saturday, June 14, 2008 in Cape Canaveral, Florida. Onboard Discovery were NASA astronauts Mark Kelly, commander; Ken Ham, pilot; Mike Fossum, Ron Garan, Karen Nyberg, Garrett Reisman and Japan Aerospace Exploration Agency astronaut Akihiko Hoshide, all mission specialists. During the STS-124 mission, Discovery's crew installed the Japan Aerospace Exploration Agency's large Kibo laboratory and its remote manipulator system leaving a larger space station and one with increased science capabilities. Photo Credit: (NASA/Bill Ingalls)

  19. PILOT STUDY: Report on the CCPR Pilot Comparison: Spectral Responsivity 10 nm to 20 nm

    NASA Astrophysics Data System (ADS)

    Scholze, Frank; Vest, Robert; Saito, Terubumi

    2010-01-01

    The CCPR Pilot Comparison on spectral responsivity in the 10 nm to 20 nm spectral range was carried out within the framework of the CIPM Mutual Recognition Arrangement by three laboratories: PTB (Germany), NIST (USA), and NMIJ/AIST (Japan) with PTB acting as the central and reporting laboratory. All participating laboratories used monochromatized synchrotron radiation. PTB and NIST used a cryogenic radiometer as the primary standard detector and NMIJ, an ionization chamber with extrapolation by a wavelength-independent detector. The aim of the pilot comparison was to check the accuracy of the radiometric scale of spectral responsivity in the short wavelength EUV spectral range which has recently gained in technological importance. The wavelengths of measurement were from 11.5 nm to 20 nm in 0.5 nm steps and additionally 12.2 nm. The comparison was carried out through the calibration of a group of transfer standard detectors. Two sets of three diodes of types AXUV and SXUV from International Radiation Detectors, Inc. were used for the comparison. The comparison had the form of a star comparison: Pilot-lab A-pilot-lab B-pilot, PTB acting as the pilot laboratory. All results were communicated directly to the pilot laboratory. The report describes in detail the measurements made at PTB and summarizes the reports submitted by the participants. Measurements carried out by the pilot laboratory before and after the circulation of the detectors proved that the stability of the detectors was sufficient for the comparison. For the type AXUV detectors, however, changes in their responsivity contributed to the uncertainty of the comparison. Measurement results from participants and their associated uncertainties were analyzed in this report according to the Guidelines for CCPR Comparison Report Preparation. The uncertainty contributions were separated, as to whether they are wavelength dependent or not. All bilateral DoE are well within the respective k = 2 expanded uncertainty

  20. Nicotine deprivation and pilot performance during simulated flight.

    PubMed

    Mumenthaler, Martin S; Benowitz, Neal L; Taylor, Joy L; Friedman, Leah; Noda, Art; Yesavage, Jerome A

    2010-07-01

    Most airlines enforce no-smoking policies, potentially causing flight performance decrements in pilots who are smokers. We tested the hypotheses that nicotine withdrawal affects aircraft pilot performance within 12 h of smoking cessation and that chewing nicotine gum leads to significant relief of these withdrawal effects. There were 29 pilots, regular smokers, who were tested in a Frasca 141 flight simulator on two 13-h test days, each including three 75-min flights (0 hr, 6 hr, 12 hr) in a randomized, controlled trial. On the first day (baseline), all pilots smoked one cigarette per hour. On the second day, pilots were randomly assigned to one of four groups: (1) nicotine cigarettes; (2) nicotine gum; (3) placebo gum; (4) no cigarettes/no gum. Flight Summary Scores (FSS) were compared between groups with repeated measures ANOVAs. No statistically significant differences in overall simulator flight performance were revealed between pilots who smoked cigarettes and pilots who were not allowed to smoke cigarettes or chew nicotine gum, but there was a trend for pilots who were not allowed to smoke to perform worse. However, pilots who chewed placebo gum performed significantly worse during the 6-h (FSS = -0.03) as well as during the 12-h flight (FSS = -0.08) than pilots who chewed nicotine gum (FSS = 0.15 / 0.30, respectively). Results suggest that nicotine withdrawal effects can impair aircraft pilot performance within 12 h of smoking cessation and that during smoking abstinence chewing one stick of 4-mg nicotine gum per hour may lead to significantly better overall flight performance compared to chewing placebo gum.

  1. Fatigue, pilot deviations and time of day

    NASA Technical Reports Server (NTRS)

    Baker, Susan P.

    1989-01-01

    The relationships between pilot fatigue, pilot deviations, reported incidents, and time of day are examined. A sample of 200 Aviation Safety Reporting System (ASRS) reports were analyzed from 1985 and 200 reports from 1987, plus 100 reports from late 1987 and early 1988 that were selected because of possible association with fatigue. The FAA pilot deviation data and incident data were analyzed in relation to denominator data that summarized the hourly operations (landings and takeoffs of scheduled flights) at major U.S. airports. Using as numerators FAA data on pilot deviations and incidents reported to the FAA, the rates by time of day were calculated. Pilot age was also analyzed in relation to the time of day, phase of flight, and type of incident.

  2. Automated Pilot Advisory System

    NASA Technical Reports Server (NTRS)

    Parks, J. L., Jr.; Haidt, J. G.

    1981-01-01

    An Automated Pilot Advisory System (APAS) was developed and operationally tested to demonstrate the concept that low cost automated systems can provide air traffic and aviation weather advisory information at high density uncontrolled airports. The system was designed to enhance the see and be seen rule of flight, and pilots who used the system preferred it over the self announcement system presently used at uncontrolled airports.

  3. 46 CFR 109.347 - Pilot boarding equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Pilot boarding equipment. 109.347 Section 109.347... OPERATIONS Operation and Stowage of Safety Equipment § 109.347 Pilot boarding equipment. (a) The master or person in charge shall ensure that pilot boarding equipment is maintained as follows: (1) The equipment...

  4. 9 CFR 149.9 - Pilot program sites.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Pilot program sites. 149.9 Section 149... LIVESTOCK IMPROVEMENT VOLUNTARY TRICHINAE CERTIFICATION PROGRAM § 149.9 Pilot program sites. Pork production sites participating in an APHIS-approved trichinae pilot program at the time of implementation of the...

  5. 9 CFR 149.9 - Pilot program sites.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Pilot program sites. 149.9 Section 149... LIVESTOCK IMPROVEMENT VOLUNTARY TRICHINAE CERTIFICATION PROGRAM § 149.9 Pilot program sites. Pork production sites participating in an APHIS-approved trichinae pilot program at the time of implementation of the...

  6. 46 CFR 109.347 - Pilot boarding equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Pilot boarding equipment. 109.347 Section 109.347... OPERATIONS Operation and Stowage of Safety Equipment § 109.347 Pilot boarding equipment. (a) The master or person in charge shall ensure that pilot boarding equipment is maintained as follows: (1) The equipment...

  7. 46 CFR 403.400 - Uniform pilot's source form.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ACCOUNTING SYSTEM Source Forms § 403.400 Uniform pilot's source form. (a) Each Association shall record... billing office for accounting record; (4) Third copy to pilot's own Association for pilot's personal...

  8. Beyond 'Inop': Logbook Communication Between Airline Mechanics and Pilots

    NASA Technical Reports Server (NTRS)

    Munro, Pamela A.; Kanki, Barbara G.; Jordan, Kevin

    2008-01-01

    When mechanical discrepancies occur on aircraft, effective communication between pilots and mechanics can facilitate identification of the problem. A survey of pilots and mechanics was conducted to determine how often they were able to discuss discrepancies directly and to identify factors that influenced the detail they provided about discrepancies in the aircraft logbook. Logistical factors such as short turn times between flights and crew schedules appeared to present barriers to face-to-face meetings between pilots and mechanics. Guidelines for pilot logbook entries. Pilots reported receiving significantly less training on writing logbook entries and spent significantly less time making individual entries than mechanics. Mechanics indicated greater concern about the Federal Aviation Administration reading their entries than pilots. Mechanics indicated they had little opportunity to follow up with pilots to clarify a logbook entry once pilots departed the aircraft.

  9. A flight test method for pilot/aircraft analysis

    NASA Technical Reports Server (NTRS)

    Koehler, R.; Buchacker, E.

    1986-01-01

    In high precision flight maneuvres a pilot is a part of a closed loop pilot/aircraft system. The assessment of the flying qualities is highly dependent on the closed loop characteristics related to precision maneuvres like approach, landing, air-to-air tracking, air-to-ground tracking, close formation flying and air-to air refueling of the receiver. The object of a research program at DFVLR is the final flight phase of an air to ground mission. In this flight phase the pilot has to align the aircraft with the target, correct small deviations from the target direction and keep the target in his sights for a specific time period. To investigate the dynamic behavior of the pilot-aircraft system a special ground attack flight test technique with a prolonged tracking maneuvres was developed. By changing the targets during the attack the pilot is forced to react continously on aiming errors in his sights. Thus the closed loop pilot/aircraft system is excited over a wide frequency range of interest, the pilot gets more information about mission oriented aircraft dynamics and suitable flight test data for a pilot/aircraft analysis can be generated.

  10. 46 CFR 401.451 - Pilot rest periods.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Pilot rest periods. 401.451 Section 401.451 Shipping... Rates, Charges, and Conditions for Pilotage Services § 401.451 Pilot rest periods. (a) Except as provided in paragraph (b) of this section: (1) Each Registered Pilot upon completing an assignment at a...

  11. 46 CFR 401.451 - Pilot rest periods.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Pilot rest periods. 401.451 Section 401.451 Shipping... Rates, Charges, and Conditions for Pilotage Services § 401.451 Pilot rest periods. (a) Except as provided in paragraph (b) of this section: (1) Each Registered Pilot upon completing an assignment at a...

  12. Pilot age and expertise predict flight simulator performance

    PubMed Central

    Kennedy, Quinn; Noda, Art; Yesavage, Jerome A.

    2010-01-01

    Background Expert knowledge may compensate for age-related declines in basic cognitive and sensory-motor abilities in some skill domains. We investigated the influence of age and aviation expertise (indexed by Federal Aviation Administration pilot ratings) on longitudinal flight simulator performance. Methods Over a 3-year period, 118 general aviation pilots aged 40 to 69 years were tested annually, in which their flight performance was scored in terms of 1) executing air-traffic controller communications; 2) traffic avoidance; 3) scanning cockpit instruments; 4) executing an approach to landing; and 5) a flight summary score. Results More expert pilots had better flight summary scores at baseline and showed less decline over time. Secondary analyses revealed that expertise effects were most evident in the accuracy of executing aviation communications, the measure on which performance declined most sharply over time. Regarding age, even though older pilots initially performed worse than younger pilots, over time older pilots showed less decline in flight summary scores than younger pilots. Secondary analyses revealed that the oldest pilots did well over time because their traffic avoidance performance improved more vs younger pilots. Conclusions These longitudinal findings support previous cross-sectional studies in aviation as well as non-aviation domains, which demonstrated the advantageous effect of prior experience and specialized expertise on older adults’ skilled cognitive performances. PMID:17325270

  13. 14 CFR 61.58 - Pilot-in-command proficiency check: Operation of an aircraft that requires more than one pilot...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Pilot-in-command proficiency check...-command proficiency check: Operation of an aircraft that requires more than one pilot flight crewmember or is turbojet-powered. (a) Except as otherwise provided in this section, to serve as pilot in command...

  14. Pilot interaction with cockpit automation 2: An experimental study of pilots' model and awareness of the Flight Management System

    NASA Technical Reports Server (NTRS)

    Sarter, Nadine B.; Woods, David D.

    1994-01-01

    Technological developments have made it possible to automate more and more functions on the commercial aviation flight deck and in other dynamic high-consequence domains. This increase in the degrees of freedom in design has shifted questions away from narrow technological feasibility. Many concerned groups, from designers and operators to regulators and researchers, have begun to ask questions about how we should use the possibilities afforded by technology skillfully to support and expand human performance. In this article, we report on an experimental study that addressed these questions by examining pilot interaction with the current generation of flight deck automation. Previous results on pilot-automation interaction derived from pilot surveys, incident reports, and training observations have produced a corpus of features and contexts in which human-machine coordination is likely to break down (e.g., automation surprises). We used these data to design a simulated flight scenario that contained a variety of probes designed to reveal pilots' mental model of one major component of flight deck automation: the Flight Management System (FMS). The events within the scenario were also designed to probe pilots' ability to apply their knowledge and understanding in specific flight contexts and to examine their ability to track the status and behavior of the automated system (mode awareness). Although pilots were able to 'make the system work' in standard situations, the results reveal a variety of latent problems in pilot-FMS interaction that can affect pilot performance in nonnormal time critical situations.

  15. 46 CFR 15.812 - Pilots.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Pilots. 15.812 Section 15.812 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE OFFICERS AND SEAMEN MANNING REQUIREMENTS Computations § 15.812 Pilots. (a) Except as specified in paragraph (f) of this section, the following vessels, not...

  16. 46 CFR 15.812 - Pilots.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Pilots. 15.812 Section 15.812 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE OFFICERS AND SEAMEN MANNING REQUIREMENTS Computations § 15.812 Pilots. (a) Except as specified in paragraph (f) of this section, the following vessels, not...

  17. 46 CFR 15.812 - Pilots.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Pilots. 15.812 Section 15.812 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE OFFICERS AND SEAMEN MANNING REQUIREMENTS Computations § 15.812 Pilots. (a) Except as specified in paragraph (f) of this section, the following vessels, not...

  18. 46 CFR 15.812 - Pilots.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Pilots. 15.812 Section 15.812 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE OFFICERS AND SEAMEN MANNING REQUIREMENTS Computations § 15.812 Pilots. (a) Except as specified in paragraph (f) of this section, the following vessels, not...

  19. 46 CFR 15.812 - Pilots.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Pilots. 15.812 Section 15.812 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE OFFICERS AND SEAMEN MANNING REQUIREMENTS Computations § 15.812 Pilots. (a) Except as specified in paragraph (f) of this section, the following vessels, not...

  20. 14 CFR 61.68 - Category III pilot authorization requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Category III pilot authorization... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Aircraft Ratings and Pilot Authorizations § 61.68 Category III pilot authorization requirements. (a) General. A...

  1. 14 CFR 61.101 - Recreational pilot privileges and limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Recreational pilot privileges and... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Recreational Pilots § 61.101 Recreational pilot privileges and limitations. (a) A person who holds a recreational...

  2. 14 CFR 61.67 - Category II pilot authorization requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Category II pilot authorization... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Aircraft Ratings and Pilot Authorizations § 61.67 Category II pilot authorization requirements. (a) General. A...

  3. 14 CFR 61.101 - Recreational pilot privileges and limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Recreational pilot privileges and... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Recreational Pilots § 61.101 Recreational pilot privileges and limitations. (a) A person who holds a recreational...

  4. F-18 HARV research pilot Dana Purifoy

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Dana D. Purifoy is an aerospace research pilot at NASA's Dryden Flight Research Center, Edwards, California. He joined NASA in August 1994. Purifoy is a former Air Force test pilot who served as a project pilot in the joint NASA/Air Force X-29 Forward Swept Wing research program conducted at Dryden from 1984 to 1991. His most recent assignment in the Air Force was flying U-2 aircraft as a test pilot at Air Force Plant 42, Palmdale, CA. In addition to flying the X-29 at Dryden as an Air Force pilot, Purifoy also served as project pilot and joint test force director with the AFTI F-16 (Advanced Fighter Technology Integration/F-16) program, also located at Dryden. Before his assignments as project pilot on the X-29 and AFTI/F-16 aircraft, Purifoy was chief of the Academics Systems Branch at the Air Force Test Pilot School at Edwards. Prior to becoming a test pilot, he flew F-111 and F-16 aircraft in Great Britain and Germany. He has accumulated 3800 hours of flying time in his career. The final flight for the F-18 High Alpha Research Vehicle (HARV) took place at NASA Dryden on May 29, 1996. The highly modified F-18 airplane flew 383 flights over a nine year period and demonstrated concepts that greatly increase fighter maneuverability. Among concepts proven in the aircraft is the use of paddles to direct jet engine exhaust in cases of extreme altitudes where conventional control surfaces lose effectiveness. Another concept, developed by NASA Langley Research Center, is a deployable wing-like surface installed on the nose of the aircraft for increased right and left (yaw) control on nose-high flight angles.

  5. 14 CFR 21.37 - Flight test pilot.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight test pilot. 21.37 Section 21.37... PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.37 Flight test pilot. Each applicant for a normal... holding an appropriate pilot certificate to make the flight tests required by this part. [Doc. No. 5085...

  6. 14 CFR 21.37 - Flight test pilot.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight test pilot. 21.37 Section 21.37... PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.37 Flight test pilot. Each applicant for a normal... holding an appropriate pilot certificate to make the flight tests required by this part. [Doc. No. 5085...

  7. 14 CFR 21.37 - Flight test pilot.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight test pilot. 21.37 Section 21.37... PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.37 Flight test pilot. Each applicant for a normal... holding an appropriate pilot certificate to make the flight tests required by this part. [Doc. No. 5085...

  8. Pilot-Induced Oscillations and Human Dynamic Behavior

    NASA Technical Reports Server (NTRS)

    McRuer, Duane T.

    1995-01-01

    This is an in-depth survey and study of pilot-induced oscillations (PIO's) as interactions between human pilot and vehicle dynamics; it includes a broad and comprehensive theory of PIO's. A historical perspective provides examples of the diversity of PIO's in terms of control axes and oscillation frequencies. The constituents involved in PIO phenomena, including effective aircraft dynamics, human pilot dynamic behavior patterns, and triggering precursor events, are examined in detail as the structural elements interacting to produce severe pilot-induced oscillations. The great diversity of human pilot response patterns, excessive lags and/or inappropriate gain in effective aircraft dynamics, and transitions in either the human or effective aircraft dynamics are among the key sources implicated as factors in severe PIO's. The great variety of interactions which may result in severe PIO's is illustrated by examples drawn from famous PIO's. These are generalized under a pilot-behavior-theory-based set of categories proposed as a classification scheme pertinent to a theory of PIO's. Finally, a series of interim prescriptions to avoid PIO is provided.

  9. [The prevalence of snoring in male pilots].

    PubMed

    Wang, Wan-er; Zhu, Guang-qing; Zhang, Ji-dong; Li, Rong; Wang, Yan-yan; Zhang, Yu-zhen; Liu, Ju-qin; He, Quan-ying

    2008-09-01

    To investigate and analysis the prevalence and risk factors of snoring and excessive daytime sleepiness among male pilots. 1108 subjects were derived from a random sample of pilots. They were asked to answer the questions from a questionnaire concerning their snoring and daytime sleepiness, etc. 1054 questionnaire were available for evaluation. The overall prevalence of snoring among male pilots was 51.04% (538/1054), while moderate and severe snorers accounted for 26.28% (227/1054). The prevalence of snoring among male pilots aged over 30 yr was 63.68% (426/669). The prevalence and severity of snoring increase with age and BMI. Age, overweight and obesity, alcohol ingestion and family history of snoring were associated with the prevalence and severity of snoring. There was significant difference in Epworth sleepiness scale scores among without snoring group and various severity of snoring groups (chi2 = 16.948, P < 0.05). The prevalence of snoring is high in male pilots. The Epworth sleepiness scale score increase with increasing degree of snoring. Doctors should pay more attention to snoring in male pilot.

  10. Entropy, instrument scan and pilot workload

    NASA Technical Reports Server (NTRS)

    Tole, J. R.; Stephens, A. T.; Vivaudou, M.; Harris, R. L., Jr.; Ephrath, A. R.

    1982-01-01

    Correlation and information theory which analyze the relationships between mental loading and visual scanpath of aircraft pilots are described. The relationship between skill, performance, mental workload, and visual scanning behavior are investigated. The experimental method required pilots to maintain a general aviation flight simulator on a straight and level, constant sensitivity, Instrument Landing System (ILS) course with a low level of turbulence. An additional periodic verbal task whose difficulty increased with frequency was used to increment the subject's mental workload. The subject's looppoint on the instrument panel during each ten minute run was computed via a TV oculometer and stored. Several pilots ranging in skill from novices to test pilots took part in the experiment. Analysis of the periodicity of the subject's instrument scan was accomplished by means of correlation techniques. For skilled pilots, the autocorrelation of instrument/dwell times sequences showed the same periodicity as the verbal task. The ability to multiplex simultaneous tasks increases with skill. Thus autocorrelation provides a way of evaluating the operator's skill level.

  11. 14 CFR 61.133 - Commercial pilot privileges and limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Commercial pilot privileges and limitations... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Commercial Pilots § 61.133 Commercial pilot privileges and limitations. (a) Privileges—(1) General. A person who...

  12. Motivational Engineering for Pilot Training.

    ERIC Educational Resources Information Center

    Herzberg, Frederick I.; And Others

    The study was an investigation of student pilot motivation for, and toward, the Air Training Command's undergraduate pilot training (UPT) program. The motivation hygiene approach was used to identify the motivational factors operating in the UPT program systematically. This approach has been used extensively in industry and with success in a…

  13. Ekofisk waterflood pilot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, L.K.; Dixon, T.N.; Evans, C.E.

    1987-02-01

    This paper describes the evaluation of a waterflood pilot in the highly fractured Maastrichtian reservoir of the Ekofisk field in the Norwegian sector of the North Sea. A four-well pilot consisting of one water injector and three producers was initiated in Spring 1981 and was concluded in mid-1984. A total of 21 x 10/sup 6/ bbl(3.3 x 10/sup 6/ m/sup 3/) of water was injected, and water breakthrough occurred in two of the production wells. Simulation of waterflood performance in the pilot was conducted with a three-dimensional (3D), three-phase dual-porosity model. Initial and boundary conditions were taken from a fullmore » 3D single-porosity model of the reservoir. The pilot was conducted to determine the following information for the Maastrichtian: water-cut performance vs. time, water imbibition characteristics, and anisotropy. Results from this work have been incorporated into a full-field waterflood study. Reservoir description included the determination of fractured areas, matrix block sizes, water/oil capillary imbibition, matrix permeability and porosity, and effective permeability. These data were derived from fracture core analysis, pressure transient tests, laboratory water/oil imbibition studies, repeat formation pressure test results, and open- and cased-hole logs. An excellent match of waterflood performance was obtained with the dual-porosity model. Of particular interest are the imbibition characteristics of the Maastrichtian in the Ekofisk field and the character of the water-cut performance of the producing wells following injector shutdowns and startups.« less

  14. Pilot Non-Conformance to Alerting System Commands

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy R.; Hansman, R. John

    1997-01-01

    Instances of pilot non-conformance to alerting system commands have been identified in previous studies. Pilot non-conformance changes the final behavior of the system, and therefore may reduce actual performance from that anticipated. A simulator study has examined pilot non-conformance, using the task of collision avoidance during closely spaced parallel approaches as a case study. Consonance between the display and the alerting system was found to significantly improve subject agreement with automatic alerts. Based on these results, a more general discussion of the factors involved in pilot conformance is given, and design guidelines for alerting systems are given.

  15. STS-98 crew takes part in Multi-Equipment Interface Test.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks over documents as part of a Multi-Equipment Interface Test (MEIT) on the U.S. Lab Destiny. Other crew members taking part in the MEIT are Commander Kenneth D. Cockrell and Pilot Mark Polansky. The remaining members of the crew (not present for the MEIT) are and Mission Specialists Robert L. Curbeam Jr. and Marsha S. Ivins. During the STS-98 mission, the crew will install the Lab on the International Space Station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.

  16. STS-98 crew takes part in Multi-Equipment Interface Test.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks up at the U.S. Lab Destiny with its debris shield blanket made of a material similar to that used in bullet-proof vests on Earth.. Along with Commander Kenneth D. Cockrell and Pilot Mark Polansky, Jones is taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.

  17. STS-98 crew takes part in Multi-Equipment Interface Test.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks at electrical connections on the U.S. Lab Destiny as part of a Multi-Equipment Interface Test (MEIT). Other crew members taking part in the MEIT are Commander Kenneth D. Cockrell and Pilot Mark Polansky. The remaining members of the crew (not present for the MEIT) are Mission Specialists Robert L. Curbeam Jr. and Marsha S. Ivins. During the STS-98 mission, the crew will install the Lab on the International Space Station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.

  18. STS-98 crew takes part in Multi-Equipment Interface Test.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) gets a closeup view of the cover on the window of the U.S. Lab Destiny. Along with Commander Kenneth D. Cockrell and Pilot Mark Polansky, Jones is taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.

  19. Workers in SSPF monitor Multi-Equipment Interface Test.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Workers in the Space Station Processing Facility control room check documentation during a Multi-Equipment Interface Test (MEIT) in the U.S. Lab Destiny. Members of the STS-98 crew are taking part in the MEIT checking out some of the equipment in the Lab. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The crew comprises five members: Commander Kenneth D. Cockrell, Pilot Mark L. Polansky, and Mission Specialists Robert L. Curbeam Jr., Thomas D. Jones (Ph.D.) and Marsha S. Ivins. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.

  20. Workers in SSPF monitor Multi-Equipment Interface Test.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Workers in the Space Station Processing Facility control room monitor computers during a Multi-Equipment Interface Test (MEIT) in the U.S. Lab Destiny. Members of the STS-98 crew are taking part in the MEIT checking out some of the equipment in the Lab. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The crew comprises five members: Commander Kenneth D. Cockrell, Pilot Mark L. Polansky, and Mission Specialists Robert L. Curbeam Jr., Thomas D. Jones (Ph.D.) and Marsha S. Ivins. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.

  1. STS-69 launch view across water and trees (landscape)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The tranquil beauty of a wildlife refuge serves as a lush backdrop to the drama of a Space Shuttle surging skyward atop a pillar of flame. The Shuttle Endeavour lifted off from Launch Pad 39A at 11:09:00.052 a.m. EDT, Sept. 7, 1995. Only a small portion of the 140,000 acres occupied by the Kennedy Space Center has been developed to support space operations; most of the land is pristine and untouched by man, and is managed by the U.S. Fish and Wildlife Service as a wildlife refuge. On board Endeavour are a crew of five and a payload complement that includes two deployable free-flyers, the Wake Shield Facility-2 and the Spartan-201. David M. Walker is the mission commander; Kenneth D. Cockrell is the pilot; James S. Voss is the payload commander; and the two mission specialists are Michael L. Gernhardt and James H. Newman. The 11-day flight also is scheduled to include an extravehicular activity by Gernhardt and Newman.

  2. STS-69 launch view thru trees

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The tranquil beauty of a wildlife refuge serves as a lush backdrop to the drama of a Space Shuttle surging skyward atop a pillar of flame. The Shuttle Endeavour lifted off from Launch Pad 39A at 11:09:00.052 a.m. EDT, Sept. 7, 1995. Only a small portion of the 140,000 acres occupied by the Kennedy Space Center has been developed to support space operations; most of the land is pristine and untouched by man, and is managed by the U.S. Fish and Wildlife Service as a wildlife refuge. On board Endeavour are a crew of five and a payload complement that includes two deployable free-flyers, the Wake Shield Facility-2 and the Spartan-201. David M. Walker is the mission commander; Kenneth D. Cockrell is the pilot; James S. Voss is the payload commander; and the two mission specialists are Michael L. Gernhardt and James H. Newman. The 11-day flight also is scheduled to include an extravehicular activity by Gernhardt and Newman.

  3. KSC-00pp0181

    NASA Image and Video Library

    2000-02-03

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks up at the U.S. Lab Destiny with its debris shield blanket made of a material similar to that used in bullet-proof vests on Earth. Along with Commander Kenneth D. Cockrell and Pilot Mark Polansky, Jones is taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. During the STS-98 mission, the crew will install the Lab on the Station during a series of three spacewalks. The mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion and life sciences reseach. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than August 19, 2000.

  4. KSC00pp0181

    NASA Image and Video Library

    2000-02-03

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks up at the U.S. Lab Destiny with its debris shield blanket made of a material similar to that used in bullet-proof vests on Earth. Along with Commander Kenneth D. Cockrell and Pilot Mark Polansky, Jones is taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. During the STS-98 mission, the crew will install the Lab on the Station during a series of three spacewalks. The mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion and life sciences reseach. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than August 19, 2000.

  5. STS-69 postflight presentation

    NASA Astrophysics Data System (ADS)

    1995-10-01

    A postflight conference of the STS-69 mission is presented. The flightcrew ('The Dog Team') consisted of Cmdr. David Walker, Pilot Kenneth Cockrell, Payload Cmdr. James Voss, and Mission Specialists James Newman and Michael Gernhardt. The mission's primary objective was the deployment and retrieval of the SPARTAN-201 satellite, which investigated the interaction between the Sun and it's solar wind. Other secondary experiments and shuttle payloads included the Wake Shield Facility (WSF), which grew several layers of semiconductor films, the International Extreme Ultraviolet Hitchhiker (IEH-1), the Capillary Pumped Loop-2/Gas Bridge Assembly (CAPL-2/GBA), several Get Away Specials (GAS) experiments, the Electrolysis Performance Improvement Concept Study (EPICS), the Thermal Energy Storage (TES-2) experiment, the Commercial Generic Bioprocessing Apparatus-7 (CGBA-7), the National Institutes of Health-Cells 4 (NIH-C4) experiment, and the Biological Research in Canister-6 (BRIC-6) experiment. Earth views consisted of Saudi Arabia water wells, uncommon vortices over Oman, the Amazon River, the Bahamas, Somalia, a sunset over the Earth's horizon, and two hurricanes, Luis and Marilyn.

  6. KSC-00pp0180

    NASA Image and Video Library

    2000-02-03

    In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks at electrical connections on the U.S. Lab Destiny as part of a Multi-Equipment Interface Test (MEIT). Other crew members taking part in the MEIT are Commander Kenneth D. Cockrell and Pilot Mark Polansky. The remaining members of the crew (not present for the MEIT) are Mission Specialists Robert L. Curbeam Jr. and Marsha S. Ivins. During the STS-98 mission, the crew will install the Lab on the International Space Station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000

  7. STS-69 launch view with trees and birds

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The tranquil beauty of a wildlife refuge serves as a lush backdrop to the drama of a Space Shuttle surging skyward atop a pillar of flame. The Shuttle Endeavour lifted off from Launch Pad 39A at 11:09:00.052 a.m. EDT, Sept. 7, 1995. Only a small portion of the 140,000 acres occupied by the Kennedy Space Center has been developed to support space operations; most of the land is pristine and untouched by man, and is managed by the U.S. Fish and Wildlife Service as a wildlife refuge. On board Endeavour are a crew of five and a payload complement that includes two deployable free-flyers, the Wake Shield Facility-2 and the Spartan-201. David M. Walker is the mission commander; Kenneth D. Cockrell is the pilot; James S. Voss is the payload commander; and the two mission specialists are Michael L. Gernhardt and James H. Newman. The 11-day flight also is scheduled to include an extravehicular activity by Gernhardt and Newman.

  8. KSC-00pp0188

    NASA Image and Video Library

    2000-02-03

    Workers in the Space Station Processing Facility control room monitor computers during a Multi-Equipment Interface Test (MEIT) in the U.S. Lab Destiny. Members of the STS-98 crew are taking part in the MEIT checking out some of the equipment in the Lab. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The crew comprises five members: Commander Kenneth D. Cockrell, Pilot Mark L. Polansky, and Mission Specialists Robert L. Curbeam Jr., Thomas D. Jones (Ph.D.) and Marsha S. Ivins. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000

  9. The effectiveness of airline pilot training for abnormal events.

    PubMed

    Casner, Stephen M; Geven, Richard W; Williams, Kent T

    2013-06-01

    To evaluate the effectiveness of airline pilot training for abnormal in-flight events. Numerous accident reports describe situations in which pilots responded to abnormal events in ways that were different from what they had practiced many times before. One explanation for these missteps is that training and testing for these skills have become a highly predictable routine for pilots who arrive to the training environment well aware of what to expect. Under these circumstances, pilots get plentiful practice in responding to abnormal events but may get little practice in recognizing them and deciding which responses to offer. We presented 18 airline pilots with three abnormal events that are required during periodic training and testing. Pilots were presented with each event under the familiar circumstances used during training and also under less predictable circumstances as they might occur during flight. When presented in the routine ways seen during training, pilots gave appropriate responses and showed little variability. However, when the abnormal events were presented unexpectedly, pilots' responses were less appropriate and showed great variability from pilot to pilot. The results suggest that the training and testing practices used in airline training may result in rote-memorized skills that are specific to the training situation and that offer modest generalizability to other situations. We recommend a more complete treatment of abnormal events that allows pilots to practice recognizing the event and choosing and recalling the appropriate response. The results will aid the improvement of existing airline training practices.

  10. Arab-American adolescent tobacco use: four pilot studies.

    PubMed

    Rice, Virginia Hill; Templin, Thomas; Kulwicki, Anahid

    2003-11-01

    Four pilot studies were conducted to determine the (1) current tobacco use patterns and predictors among 14- to 18-year-old Arab-American youths; (2) psychometric properties of study measures (English and Arabic); (3) cultural appropriateness of Project Toward No Tobacco (TNT) for intervention; (4) accessible population for a longitudinal study. Three studies were descriptive and one used a pretest-posttest design. From four Pilot Focus groups (N = 28 smokers) key tobacco use themes emerged along with information on study measures and the Project TNT intervention; Pilot Intervention tested the tailored Project TNT intervention with 9 Arab-American teens; Pilot Clinic (N = 44) determined the characteristics of the accessible teen health clinic population; and Pilot School (N = 119) obtained tobacco use data only. From Pilot Focus seven themes (being cool, "nshar ma'a al shabab" [hanging out with the guys], present [time] orientation, smoking feels and tastes good, keeps your mind off trouble, easy to get, and (many) "barriers to quitting") emerged from the data. In the Pilot Intervention a 37.5% cessation rate was found. In the Pilot Clinic study, 24% males and 17% females smoked. The current smoking rate in the Pilot School (N = 119) sample was 17%; 34% admitted to having ever smoked (even a puff). Significant predictors for current tobacco use included poor grades, stress, having many family members and peers who smoke, being exposed to many hours of smoking each day, receiving offers of tobacco products, advertising and mail, and believing that tobacco can help one to make friends. The four pilots contributed unique and essential knowledge for designing a longitudinal clinical trial on tobacco use by Arab-American adolescents.

  11. Pilot Examiner Program; Federal Aviation Administration

    DOT National Transportation Integrated Search

    1996-10-22

    The objective of this survey was to determine the effectiveness of the Federal Aviation Administration's (FAA) procedures and controls over (i) training and designating pilot examiners, (ii) tracking pilot examiner performance, (iii) maintaining inte...

  12. 14 CFR 61.19 - Duration of pilot and instructor certificates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... medical certificate. (2) For student pilots who have reached their 40th birthday, the student pilot... medical certificate. (3) For student pilots seeking a glider rating, balloon rating, or a sport pilot... expiration date may not, after that date, exercise the privileges of that certificate. (b) Student pilot...

  13. 14 CFR 91.1055 - Pilot operating limitations and pairing requirement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Pilot operating limitations and pairing... Ownership Operations Program Management § 91.1055 Pilot operating limitations and pairing requirement. (a... aircraft being flown, and the pilot in command is not an appropriately qualified check pilot, the pilot in...

  14. 14 CFR 91.1055 - Pilot operating limitations and pairing requirement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Pilot operating limitations and pairing... Ownership Operations Program Management § 91.1055 Pilot operating limitations and pairing requirement. (a... aircraft being flown, and the pilot in command is not an appropriately qualified check pilot, the pilot in...

  15. Nuclear electric propulsion options for piloted Mars missions

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.

    1993-01-01

    Three nuclear electric propulsion (NEP) systems are discussed. The three systems are as follows: a system based on current SP-100 technology; a potassium Rankine-cycle based power conversion system, and an argon ion thruster system. The system will be researched for implementation in several possible vehicle configurations. The following are among the possible Mars vehicle configurations: a piloted 15 MWe multi-reactor vehicle; a piloted 10 MWe vehicle with ECCV; a piloted 10 MWe modular vehicle; piloted 10 and 15 MWe vehicles with ECCV and MEV; a piloted 5 MWe vehicle with ECCV; a 5 MWe cargo vehicle with 2 MEV's; and a 2.5 MWe vehicle with MEV.

  16. Physiological Indices of Pilots' Abilities Under Varying Task Demands.

    PubMed

    Wang, Zhen; Zheng, Lingxiao; Lu, Yanyu; Fu, Shan

    2016-04-01

    This study investigated pilots' ability by examining the effects of flight experience and task demand on physiological reactions, and analyzing the diagnostic meanings underlying correlated parameters. A total of 12 experienced pilots and 12 less experienced pilots performed 4 simulated flight tasks, including normal and emergency situations. Fixation duration (FD), saccade rate (SR), blink rate (BR), heart rate (HR), respiration rate (RR), and respiration amplitude (RA) were measured during the tasks. More experienced pilots adapted their SR flexibly to changing task demands and had significantly lower SR than less experienced pilots during emergency tasks (29.6 ± 20.0 vs. 70.1 ± 67.1 saccades/min). BR, HR, and RR were affected by pilot experience but not by task demand. More experienced pilots had lower BR, HR, and RR than less experienced pilots during both normal tasks (BR: 14.3 ± 13.0 vs. 32.9 ± 25.8 blinks/min; HR: 72.7 ± 7.9 vs. 83.2 ± 7.2 bpm; RR: 15.4 ± 2.1 vs. 19.5 ± 5.2 breaths/min) and emergency tasks (BR: 10.2 ± 5.0 vs. 32.3 ± 20.8 blinks/min; HR: 73.3 ± 7.3 vs. 82.2 ± 11.6 bpm; RR: 15.6 ± 1.9 vs. 18.0 ± 3.2 breaths/min). FD and RA were not sensitive to either flight experience or task demand. Physiological reactions have the potential to reflect pilots' ability from different aspects. SR and BR could indicate pilots' differences in information access strategy. HR and RR could reflect a pilot's physical fitness. These findings are useful for understanding a pilot's ability.

  17. Forecast Demand for Pilots by the Airline Industry

    DTIC Science & Technology

    1984-04-01

    trace the exact number of pilots hired under this policy. Future Aviation Professionals of America ( FAPA ), an independent employment service for pilots...15:-). FAPA feels that while some pilots may bypass their recall once or twice, as allowed for in their contracts, very few would decline their final...Pilot Employment Guide, Decatur, GA. 1984. 5. Future Aviation Professionals of America. The FAPA Update, Decatur, GA. Jan 6, 1984. 6. "NIH Backs Age

  18. Air transport pilot involvement in general aviation accidents

    DOT National Transportation Integrated Search

    1986-01-01

    General aviation (GA) fatal accident records of airport transport pilots (ATPs) : were : compared to those of private pilots (PVTs). : ATPs are safer GA pilots than the PVTs. : They have comparable exposure in GA airplanes and account for 7.5% of all...

  19. KSC-97PC844

    NASA Image and Video Library

    1997-05-24

    Framed by the Vehicle Assembly Building in the distance, at left, and the Mate-Demate Device, the Space Shuttle Atlantis with its drag chute deployed touches down on KSC’s Runway 33 at the conclusion of the STS-84 mission. The Shuttle Training Aircraft with astronaut Kenneth D. Cockrell at the controls is flying in front of Atlantis. Cockrell is acting deputy chief of the Astronaut Office. Main gear touchdown was at 9:27:44 EDT on May 24, 1997. The first landing opportunity was waved off because of low cloud cover. It was the 37th landing at KSC since the Shuttle program began in 1981, and the eighth consecutive landing at KSC. STS-84 was the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced astronaut and Mir 23 crew member Jerry M. Linenger, who has been on the Russian space station since Jan. 15. Linenger returned to Earth on Atlantis with the rest of the STS-84 crew, Mission Commander Charles J. Precourt, Pilot Eileen Marie Collins, and Mission Specialists Carlos I. Noriega, Edward Tsang Lu, Elena V. Kondakova of the Russian Space Agency and Jean-Francois Clervoy of the European Space Agency. Foale is scheduled to remain on the Mir for approximately four months, until he is replaced by STS-86 crew member Wendy B. Lawrence in September. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale’s stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences

  20. Psychophysiological effects of aging : developing a functional age index for pilots. III., Measurement of pilot performance.

    DOT National Transportation Integrated Search

    1978-08-01

    If a functional age index for pilots is to be developed that can be used as a criterion for extending or terminating an aviator's career, means for the assessment of pilot proficiency must be available or devised. There are two major approaches used ...

  1. The effects of motion and g-seat cues on pilot simulator performance of three piloting tasks

    NASA Technical Reports Server (NTRS)

    Showalter, T. W.; Parris, B. L.

    1980-01-01

    Data are presented that show the effects of motion system cues, g-seat cues, and pilot experience on pilot performance during takeoffs with engine failures, during in-flight precision turns, and during landings with wind shear. Eight groups of USAF pilots flew a simulated KC-135 using four different cueing systems. The basic cueing system was a fixed-base type (no-motion cueing) with visual cueing. The other three systems were produced by the presence of either a motion system or a g-seat, or both. Extensive statistical analysis of the data was performed and representative performance means were examined. These data show that the addition of motion system cueing results in significant improvement in pilot performance for all three tasks; however, the use of g-seat cueing, either alone or in conjunction with the motion system, provides little if any performance improvement for these tasks and for this aircraft type.

  2. Brazil advances subsea technology in Marlim pilot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-03-29

    Petroleum Brasileiro SA has extended several water depth records for subsea technology during a pilot project in giant Marlim oil field in the Campos basin off Brazil. Petrobras finished the 10 well Marlim pilot last December. The field's pilot phase was intended to begin early production and enable Petrobras to gather more reservoir data. Ten satellite wells, including two prepilot wells, were completed during the Marlim pilot phase with guidelineless (GLL) wet christmas trees designed and fabricated by FMC Corp., Houston, and CBV Industrial Mechanic SA, Rio de Janeiro. The subsea wells are producing 52,000 b/d of oil and 21.19more » MMCfd of gas in water depths of 1,847-2,562 ft. Marlim pilot well flow is routed to a permanent semisubmersible floating production system (FPS). Oil moves from the FPS to a monobuoy that offloads to a shuttle tanker. In addition to marking the first successful uses of purpose-built GLL wet trees, FMC said the Marlim pilot project allowed GLL subsea technology to evolve from conceptual status into a proven deepwater completion method. The paper describes the project.« less

  3. Correlates of pilot fatality in general aviation crashes.

    PubMed

    Li, G; Baker, S P

    1999-04-01

    General aviation accounts for the majority of aviation crashes and casualties in the United States, and general aviation safety has not improved in the past decade. This study identifies factors associated with pilot fatality in general aviation crashes. We analyzed the National Transportation Safety Board's Factual Reports for all airplane and helicopter crashes of general aviation flights that occurred in North Carolina and Maryland during 1985 through 1994. Surviving pilots were compared with fatally injured pilots in relation to crash circumstances, and pilot and aircraft characteristics, at bivariate level and multivariate level. A total of 667 crashes resulted in 276 deaths and 368 injuries during the 10-yr period in the two states. Of the pilots-in-command involved in these crashes, 146 (22%) died. The case fatality rate for pilots was significantly higher in crashes that occurred between 6 p.m. and 5 a.m. (34%), away from airports (36%), with aircraft fire (69%), or in instrument meteorological weather conditions (IMC) (71%). Multivariate logistic regression revealed that the significant correlates of pilot fatality were aircraft fire [odds ratio (OR) 13.7, 95% confidence interval (CI) 6.9-27.2], off-airport location (OR 9.9, 95% CI 5.0-19.6), IMC (OR 9.1, 95% CI 4.3-19.6), nighttime (OR 2.2, 95% CI 1.3-3.7), and pilot age > or = 50 yr (OR 1.7, 95% CI 1.0-3.0). Pilot gender, flight experience, principal profession, and type of aircraft (airplane vs. helicopter) were not significantly associated with the likelihood of survival. The most important correlates of pilot fatality are variables likely related to increased impact forces. Better occupant protection equipment, such as air bag and crashworthy fuel system, are needed for general aviation aircraft.

  4. Adaptive Controller Effects on Pilot Behavior

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Gregory, Irene M.; Hempley, Lucas E.

    2014-01-01

    Adaptive control provides robustness and resilience for highly uncertain, and potentially unpredictable, flight dynamics characteristic. Some of the recent flight experiences of pilot-in-the-loop with an adaptive controller have exhibited unpredicted interactions. In retrospect, this is not surprising once it is realized that there are now two adaptive controllers interacting, the software adaptive control system and the pilot. An experiment was conducted to categorize these interactions on the pilot with an adaptive controller during control surface failures. One of the objectives of this experiment was to determine how the adaptation time of the controller affects pilots. The pitch and roll errors, and stick input increased for increasing adaptation time and during the segment when the adaptive controller was adapting. Not surprisingly, altitude, cross track and angle deviations, and vertical velocity also increase during the failure and then slowly return to pre-failure levels. Subjects may change their behavior even as an adaptive controller is adapting with additional stick inputs. Therefore, the adaptive controller should adapt as fast as possible to minimize flight track errors. This will minimize undesirable interactions between the pilot and the adaptive controller and maintain maneuvering precision.

  5. An analytical approach for predicting pilot induced oscillations

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1981-01-01

    The optimal control model (OCM) of the human pilot is applied to the study of aircraft handling qualities. Attention is focused primarily on longitudinal tasks. The modeling technique differs from previous applications of the OCM in that considerable effort is expended in simplifying the pilot/vehicle analysis. After briefly reviewing the OCM, a technique for modeling the pilot controlling higher order systems is introduced. Following this, a simple criterion or determining the susceptability of an aircraft to pilot induced oscillations (PIO) is formulated. Finally, a model-based metric for pilot rating prediction is discussed. The resulting modeling procedure provides a relatively simple, yet unified approach to the study of a variety of handling qualities problems.

  6. Intelligent Automation Approach for Improving Pilot Situational Awareness

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly

    2004-01-01

    Automation in the aviation domain has been increasing for the past two decades. Pilot reaction to automation varies from highly favorable to highly critical depending on both the pilot's background and how effectively the automation is implemented. We describe a user-centered approach for automation that considers the pilot's tasks and his needs related to accomplishing those tasks. Further, we augment rather than replace how the pilot currently fulfills his goals, relying on redundant displays that offer the pilot an opportunity to build trust in the automation. Our prototype system automates the interpretation of hydraulic system faults of the UH-60 helicopter. We describe the problem with the current system and our methodology for resolving it.

  7. Piloted Aircraft Environment Simulation Techniques

    DTIC Science & Technology

    1978-04-01

    raS’I.Al. lIIf~iiI~.1 labL. lot. Rolmotion -oft. skylicav - ow d Roll rMotion -oft Skylicape - Off Fig 6 a A Effect of roll motion and akyscape, an msatwntn...greater realism and pilot involvement than ground based simu- lation, it still lacks some of the pilot motivating factors of actual combat. Flight

  8. Meteorological Input to General Aviation Pilot Training

    NASA Technical Reports Server (NTRS)

    Colomy, J. R.

    1979-01-01

    The meteorological education of general aviation pilots is discussed in terms of the definitions and concepts of learning and good educational procedures. The effectiveness of the metoeorological program in the training of general aviations pilots is questioned. It is suggested that flight instructors provide real experience during low ceilings and visibilities, and that every pilot receiving an instrument rating should experience real instrument flight.

  9. 75 FR 77935 - Patriot Express Pilot Loan Initiative

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... SMALL BUSINESS ADMINISTRATION Patriot Express Pilot Loan Initiative AGENCY: U.S. Small Business Administration (SBA). ACTION: Notice of extension of the Patriot Express Pilot Loan Initiative. SUMMARY: This notice extends the Patriot Express Pilot Loan Initiative in its current form through December 31, 2013...

  10. 46 CFR 97.16-1 - Use of auto pilot.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Use of auto pilot. 97.16-1 Section 97.16-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Auto Pilot § 97.16-1 Use of auto pilot. Except as provided in 33 CFR 164.15, when the automatic pilot is used...

  11. 46 CFR 97.16-1 - Use of auto pilot.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Use of auto pilot. 97.16-1 Section 97.16-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Auto Pilot § 97.16-1 Use of auto pilot. Except as provided in 33 CFR 164.15, when the automatic pilot is used...

  12. 46 CFR 78.19-1 - Use of auto pilot.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Use of auto pilot. 78.19-1 Section 78.19-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Auto Pilot § 78.19-1 Use of auto pilot. Except as provided in 33 CFR 164.15, when the automatic pilot is used in— (a...

  13. 46 CFR 97.16-1 - Use of auto pilot.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Use of auto pilot. 97.16-1 Section 97.16-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Auto Pilot § 97.16-1 Use of auto pilot. Except as provided in 33 CFR 164.15, when the automatic pilot is used...

  14. 46 CFR 78.19-1 - Use of auto pilot.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Use of auto pilot. 78.19-1 Section 78.19-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Auto Pilot § 78.19-1 Use of auto pilot. Except as provided in 33 CFR 164.15, when the automatic pilot is used in— (a...

  15. 46 CFR 78.19-1 - Use of auto pilot.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Use of auto pilot. 78.19-1 Section 78.19-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Auto Pilot § 78.19-1 Use of auto pilot. Except as provided in 33 CFR 164.15, when the automatic pilot is used in— (a...

  16. 46 CFR 97.16-1 - Use of auto pilot.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Use of auto pilot. 97.16-1 Section 97.16-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Auto Pilot § 97.16-1 Use of auto pilot. Except as provided in 33 CFR 164.15, when the automatic pilot is used...

  17. 46 CFR 78.19-1 - Use of auto pilot.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Use of auto pilot. 78.19-1 Section 78.19-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Auto Pilot § 78.19-1 Use of auto pilot. Except as provided in 33 CFR 164.15, when the automatic pilot is used in— (a...

  18. 46 CFR 78.19-1 - Use of auto pilot.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Use of auto pilot. 78.19-1 Section 78.19-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Auto Pilot § 78.19-1 Use of auto pilot. Except as provided in 33 CFR 164.15, when the automatic pilot is used in— (a...

  19. 36 CFR 223.275 - Establishment of a pilot program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Establishment of a pilot... Establishment of a pilot program. This subpart governs the Forest Service's pilot program for the disposal of... of Title III of H.R. 3423)), as amended in 2004 by Section 335 of Public Law 108-108. The pilot...

  20. 46 CFR 97.16-1 - Use of auto pilot.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Use of auto pilot. 97.16-1 Section 97.16-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Auto Pilot § 97.16-1 Use of auto pilot. Except as provided in 33 CFR 164.15, when the automatic pilot is used...

  1. Perceived vs. measured effects of advanced cockpit systems on pilot workload and error: are pilots' beliefs misaligned with reality?

    PubMed

    Casner, Stephen M

    2009-05-01

    Four types of advanced cockpit systems were tested in an in-flight experiment for their effect on pilot workload and error. Twelve experienced pilots flew conventional cockpit and advanced cockpit versions of the same make and model airplane. In both airplanes, the experimenter dictated selected combinations of cockpit systems for each pilot to use while soliciting subjective workload measures and recording any errors that pilots made. The results indicate that the use of a GPS navigation computer helped reduce workload and errors during some phases of flight but raised them in others. Autopilots helped reduce some aspects of workload in the advanced cockpit airplane but did not appear to reduce workload in the conventional cockpit. Electronic flight and navigation instruments appeared to have no effect on workload or error. Despite this modest showing for advanced cockpit systems, pilots stated an overwhelming preference for using them during all phases of flight.

  2. Intelligent Pilot Aids for Flight Re-Planning in Emergencies

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy R.; Ockerman, Jennifer

    2005-01-01

    Effective and safe control of an aircraft may be difficult or nearly impossible for a pilot following an unexpected system failure. Without prior training, the pilot must ascertain on the fly those changes in both manual control technique and procedures that will lead to a safe landing of the aircraft. Sophisticated techniques for determining the required control techniques are now available. Likewise, a body of literature on pilot decision making provides formalisms for examining how pilots approach discrete decisions framed as the selection between options. However, other aspects of behavior, such as the task of route planning and guidance, are not as well studied. Not only is the pilot faced with possible performance changes to the aircraft dynamics, but he or she is also tasked to create a plan of actions that will effectively take the aircraft down to a safe landing. In this plan, the many actions that the pilot can perform are closely intertwined with the trajectory of the aircraft, making it difficult to accurately predict the final outcome. Coupled with the vast number of potential actions to be taken, this problem may seem intractable. This is reflected in the lack of a pre-specified procedure capable of giving pilots the ability to find a resolution for this task. This report summarizes a multi-year effort to examine methods to aid pilots in planning an approach and arrival to an airport following an aircraft systems failure. Ultimately, we hypothesize that automatic assistance to pilots can be provided in real-time in the form of improving pilot control of a damaged aircraft and providing pilots with procedural directives suitable for critical flight conditions; such systems may also benefit pilot training and procedure design. To achieve this result, a systematic, comprehensive research program was followed, building on prior research. This approach included a pencil-and-paper study with airline pilots examining methods of representing a flight route in

  3. 46 CFR 401.510 - Operation without Registered Pilots.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Operation without Registered Pilots. 401.510 Section 401.510 Shipping COAST GUARD (GREAT LAKES PILOTAGE), DEPARTMENT OF HOMELAND SECURITY GREAT LAKES PILOTAGE REGULATIONS Penalties; Operations Without Registered Pilots § 401.510 Operation without Registered Pilots. (a...

  4. 7 CFR 1412.48 - Planting Transferability Pilot Project.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Planting Transferability Pilot Project. 1412.48... and Peanuts 2008 through 2012 § 1412.48 Planting Transferability Pilot Project. (a) Notwithstanding § 1412.47, for each of the 2009 and subsequent crop years, the Planting Transferability Pilot Project...

  5. 14 CFR 135.247 - Pilot qualifications: Recent experience.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pilot qualifications: Recent experience... Flight Crewmember Requirements § 135.247 Pilot qualifications: Recent experience. (a) No certificate holder may use any person, nor may any person serve, as pilot in command of an aircraft carrying...

  6. 14 CFR 135.247 - Pilot qualifications: Recent experience.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Pilot qualifications: Recent experience... Flight Crewmember Requirements § 135.247 Pilot qualifications: Recent experience. (a) No certificate holder may use any person, nor may any person serve, as pilot in command of an aircraft carrying...

  7. 75 FR 70871 - Photo Requirements for Pilot Certificates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... Prevention Act (IRTPA). The FAA previously required all pilots to obtain a plastic certificate (excepting... pilots to obtain a plastic certificate with photo. Student pilot certificates would also have the same... certificates and began issuing plastic airman certificates in 2003. The plastic certificates are of high...

  8. 14 CFR 183.23 - Pilot examiners.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Pilot examiners. 183.23 Section 183.23 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ADMINISTRATIVE... Standards Inspector, issue temporary pilot certificates and ratings to qualified applicants. ...

  9. 14 CFR 183.23 - Pilot examiners.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Pilot examiners. 183.23 Section 183.23 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ADMINISTRATIVE... Standards Inspector, issue temporary pilot certificates and ratings to qualified applicants. ...

  10. 14 CFR 183.23 - Pilot examiners.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Pilot examiners. 183.23 Section 183.23 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ADMINISTRATIVE... Standards Inspector, issue temporary pilot certificates and ratings to qualified applicants. ...

  11. Airline pilot scan patterns during simulated ILS approaches

    NASA Technical Reports Server (NTRS)

    Spady, A. A., Jr.

    1978-01-01

    A series of instrument landing system approaches were conducted using seven airline-rated Boeing 737 pilots in a Federal Aviation Administration qualified simulator. The test matrix included both manual and coupled approaches with and without atmospheric turbulence in Category II visibility conditions. A nonintrusive oculometer system was used to track the pilot eye-point-of-regard throughout the approach. The results indicate that, in general, the pilots use different scan techniques for the manual and coupled conditions and that the introduction of atmospheric turbulence does not greatly affect the scan behavior in either case. The pilots consistently ranked the instruments in terms of most used to least used. The ranking obtained from the oculometer data agrees with the pilot ranking for the flight director and airspeed, the most important instruments. However, the pilots apparently ranked the other instruments in terms of their concern for information rather than according to their actual scanning behavior.

  12. The ATLAS PanDA Pilot in Operation

    NASA Astrophysics Data System (ADS)

    Nilsson, P.; Caballero, J.; De, K.; Maeno, T.; Stradling, A.; Wenaus, T.; ATLAS Collaboration

    2011-12-01

    The Production and Distributed Analysis system (PanDA) [1-2] was designed to meet ATLAS [3] requirements for a data-driven workload management system capable of operating at LHC data processing scale. Submitted jobs are executed on worker nodes by pilot jobs sent to the grid sites by pilot factories. This paper provides an overview of the PanDA pilot [4] system and presents major features added in light of recent operational experience, including multi-job processing, advanced job recovery for jobs with output storage failures, gLExec [5-6] based identity switching from the generic pilot to the actual user, and other security measures. The PanDA system serves all ATLAS distributed processing and is the primary system for distributed analysis; it is currently used at over 100 sites worldwide. We analyze the performance of the pilot system in processing real LHC data on the OSG [7], EGI [8] and Nordugrid [9-10] infrastructures used by ATLAS, and describe plans for its evolution.

  13. Use of fault striations and dislocation models to infer tectonic shear stress during the 1995 Hyogo-Ken Nanbu (Kobe) earthquake

    USGS Publications Warehouse

    Spudich, P.; Guatteri, Mariagiovanna; Otsuki, K.; Minagawa, J.

    1998-01-01

    Dislocation models of the 1995 Hyogo-ken Nanbu (Kobe) earthquake derived by Yoshida et al. (1996) show substantial changes in direction of slip with time at specific points on the Nojima and Rokko fault systems, as do striations we observed on exposures of the Nojima fault surface on Awaji Island. Spudich (1992) showed that the initial stress, that is, the shear traction on the fault before the earthquake origin time, can be derived at points on the fault where the slip rake rotates with time if slip velocity and stress change are known at these points. From Yoshida's slip model, we calculated dynamic stress changes on the ruptured fault surfaces. To estimate errors, we compared the slip velocities and dynamic stress changes of several published models of the earthquake. The differences between these models had an exponential distribution, not gaussian. We developed a Bayesian method to estimate the probability density function (PDF) of initial stress from the striations and from Yoshida's slip model. Striations near Toshima and Hirabayashi give initial stresses of about 13 and 7 MPa, respectively. We obtained initial stresses of about 7 to 17 MPa at depths of 2 to 10 km on a subset of points on the Nojima and Rokko fault systems. Our initial stresses and coseismic stress changes agree well with postearthquake stresses measured by hydrofracturing in deep boreholes near Hirabayashi and Ogura on Awaji Island. Our results indicate that the Nojima fault slipped at very low shear stress, and fractional stress drop was complete near the surface and about 32% below depths of 2 km. Our results at depth depend on the accuracy of the rake rotations in Yoshida's model, which are probably correct on the Nojima fault but debatable on the Rokko fault. Our results imply that curved or cross-cutting fault striations can be formed in a single earthquake, contradicting a common assumption of structural geology.

  14. Pilot selection and training

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.

    1982-01-01

    Personality and situational factors relevant to individual and group performance in highly demanding environments, such as those faced by astronauts or by jet transport crew, are discussed. It is emphasized that although technical competence and proficiency in pilot selection are prerequisites for safety, operating a modern jet transport is a group endeavor that requires the effective coordination of the entire crew. A self-report test battery for measuring positive and negative personality traits of pilot candidates, termed the Personal Characteristics Inventory, is described.

  15. 14 CFR 125.285 - Pilot qualifications: Recent experience.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pilot qualifications: Recent experience... Requirements § 125.285 Pilot qualifications: Recent experience. (a) No certificate holder may use any person, nor may any person serve, as a required pilot flight crewmember unless within the preceding 90...

  16. 14 CFR 125.285 - Pilot qualifications: Recent experience.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Pilot qualifications: Recent experience... Requirements § 125.285 Pilot qualifications: Recent experience. (a) No certificate holder may use any person, nor may any person serve, as a required pilot flight crewmember unless within the preceding 90...

  17. Intermittent Renewable Management Pilot Phase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiliccote, Sila; Homan, Gregory; Anderson, Robert

    The Intermittent Renewable Management Pilot - Phase 2 (IRM2) was designed to study the feasibility of demand-side resources to participate into the California Independent System Operator (CAISO) wholesale market as proxy demand resources (PDR). The pilot study focused on understanding the issues related with direct participation of third-parties and customers including customer acceptance; market transformation challenges (wholesale market, technology); technical and operational feasibility; and value to the rate payers, DR resource owners and the utility on providing an enabling mechanism for DR resources into the wholesale markets. The customer had the option of committing to either three contiguous hour blocksmore » for 24 days or six contiguous hours for 12 days a month with day-ahead notification that aligned with the CAISO integrated forward market. As a result of their being available, the customer was paid $10/ kilowatt (kW)-month for capacity in addition to CAISO energy settlements. The participants were limited to no more than a 2 megawatt (MW) capacity with a six-month commitment. Four participants successfully engaged in the pilot. In this report, we provide the description of the pilot, participant performance results, costs and value to participants as well as outline some of the issues encountered through the pilot. Results show that participants chose to participate with storage and the value of CAISO settlements were significantly lower than the capacity payments provided by the utility as incentive payments. In addition, this pilot revealed issues both on the participant side and system operations side. These issues are summarized in the report.The Intermittent Renewable Management Pilot - Phase 2 (IRM2) was designed to study the feasibility of demand-side resources to participate into the California Independent System Operator (CAISO) wholesale market as proxy demand resources (PDR). The pilot study focused on understanding the issues related

  18. Controlled pilot oxidizer for a gas turbine combustor

    DOEpatents

    Laster, Walter R.; Bandaru, Ramarao V.

    2010-07-13

    A combustor (22) for a gas turbine (10) includes a main burner oxidizer flow path (34) delivering a first portion (32) of an oxidizer flow (e.g., 16) to a main burner (28) of the combustor and a pilot oxidizer flow path (38) delivering a second portion (36) of the oxidizer flow to a pilot (30) of the combustor. The combustor also includes a flow controller (42) disposed in the pilot oxidizer flow path for controlling an amount of the second portion delivered to the pilot.

  19. The analysis of the pilot's cognitive and decision processes

    NASA Technical Reports Server (NTRS)

    Curry, R. E.

    1975-01-01

    Articles are presented on pilot performance in zero-visibility precision approach, failure detection by pilots during automatic landing, experiments in pilot decision-making during simulated low visibility approaches, a multinomial maximum likelihood program, and a random search algorithm for laboratory computers. Other topics discussed include detection of system failures in multi-axis tasks and changes in pilot workload during an instrument landing.

  20. NACA Pilots at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1945-07-21

    The Aircraft Engine Research Laboratory’s pilot corps during the final days of World War II: from left to right, Joseph Vensel, Howard Lilly, William Swann, and Joseph Walker. William “Eb” Gough joined the group months after this photograph. These men were responsible for flying the various National Advisory Committee for Aeronautics (NACA) aircraft to test new engine modifications, study ice buildup, and determine fuel performance. Vensel, a veteran pilot from Langley, was the Chief of Flight Operations and a voice of reason at the laboratory. In April 1947 Vensel was transferred to lead the new Muroc Flight Tests Unit in California until 1966. Lilly was a young pilot with recent Navy experience. Lilly also flew in the 1946 National Air Races. He followed Vensel to Muroc in July 1947 where he became the first NACA pilot to penetrate the sound barrier. On May 3, 1948, Lilly became the first NACA pilot to die in the line of duty. Swann was a young civilian pilot when he joined the NACA. He spent his entire career at the Cleveland laboratory, and led the flight operations group from the early 1960s until 1979. Two World War II veterans joined the crew after the war. Walker was a 24-year-old P–38 reconnaissance pilot. He joined the NACA as a physicist in early 1945 but soon worked his way into the cadre of pilots. Walker later gained fame as an X-plane pilot at Muroc and was killed in a June 1966 fatal crash. Gough survived being shot down twice during the war and was decorated for flying rescue missions in occupied areas.

  1. 46 CFR 185.360 - Use of auto pilot.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Use of auto pilot. 185.360 Section 185.360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) OPERATIONS Miscellaneous Operating Requirements § 185.360 Use of auto pilot. Whenever an automatic pilot is...

  2. 46 CFR 131.960 - Use of auto-pilot.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Use of auto-pilot. 131.960 Section 131.960 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Miscellaneous § 131.960 Use of auto-pilot. When the automatic pilot is used in areas of high traffic density...

  3. 46 CFR 185.360 - Use of auto pilot.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Use of auto pilot. 185.360 Section 185.360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) OPERATIONS Miscellaneous Operating Requirements § 185.360 Use of auto pilot. Whenever an automatic pilot is...

  4. 46 CFR 131.960 - Use of auto-pilot.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Use of auto-pilot. 131.960 Section 131.960 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Miscellaneous § 131.960 Use of auto-pilot. When the automatic pilot is used in areas of high traffic density...

  5. 46 CFR 131.960 - Use of auto-pilot.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Use of auto-pilot. 131.960 Section 131.960 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Miscellaneous § 131.960 Use of auto-pilot. When the automatic pilot is used in areas of high traffic density...

  6. 46 CFR 185.360 - Use of auto pilot.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Use of auto pilot. 185.360 Section 185.360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) OPERATIONS Miscellaneous Operating Requirements § 185.360 Use of auto pilot. Whenever an automatic pilot is...

  7. 46 CFR 131.960 - Use of auto-pilot.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Use of auto-pilot. 131.960 Section 131.960 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Miscellaneous § 131.960 Use of auto-pilot. When the automatic pilot is used in areas of high traffic density...

  8. 46 CFR 185.360 - Use of auto pilot.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Use of auto pilot. 185.360 Section 185.360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) OPERATIONS Miscellaneous Operating Requirements § 185.360 Use of auto pilot. Whenever an automatic pilot is...

  9. 46 CFR 185.360 - Use of auto pilot.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Use of auto pilot. 185.360 Section 185.360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) OPERATIONS Miscellaneous Operating Requirements § 185.360 Use of auto pilot. Whenever an automatic pilot is...

  10. 14 CFR 121.439 - Pilot qualification: Recent experience.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Pilot qualification: Recent experience. 121... Pilot qualification: Recent experience. (a) No certificate holder may use any person nor may any person serve as a required pilot flight crewmember, unless within the preceding 90 days, that person has made...

  11. 14 CFR 91.1051 - Pilot safety background check.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Pilot safety background check. 91.1051... Operations Program Management § 91.1051 Pilot safety background check. Within 90 days of an individual beginning service as a pilot, the program manager must request the following information: (a) FAA records...

  12. 46 CFR 131.960 - Use of auto-pilot.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Use of auto-pilot. 131.960 Section 131.960 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Miscellaneous § 131.960 Use of auto-pilot. When the automatic pilot is used in areas of high traffic density...

  13. 14 CFR 121.439 - Pilot qualification: Recent experience.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pilot qualification: Recent experience. 121... Pilot qualification: Recent experience. (a) No certificate holder may use any person nor may any person serve as a required pilot flight crewmember, unless within the preceding 90 days, that person has made...

  14. Structural Differences in Gray Matter between Glider Pilots and Non-Pilots. A Voxel-Based Morphometry Study

    PubMed Central

    Ahamed, Tosif; Kawanabe, Motoaki; Ishii, Shin; Callan, Daniel E.

    2014-01-01

    Glider flying is a unique skill that requires pilots to control an aircraft at high speeds in three dimensions and amidst frequent full-body rotations. In the present study, we investigated the neural correlates of flying a glider using voxel-based morphometry. The comparison between gray matter densities of 15 glider pilots and a control group of 15 non-pilots exhibited significant gray matter density increases in left ventral premotor cortex, anterior cingulate cortex, and the supplementary eye field. We posit that the identified regions might be associated with cognitive and motor processes related to flying, such as joystick control, visuo-vestibular interaction, and oculomotor control. PMID:25506339

  15. Structural Differences in Gray Matter between Glider Pilots and Non-Pilots. A Voxel-Based Morphometry Study.

    PubMed

    Ahamed, Tosif; Kawanabe, Motoaki; Ishii, Shin; Callan, Daniel E

    2014-01-01

    Glider flying is a unique skill that requires pilots to control an aircraft at high speeds in three dimensions and amidst frequent full-body rotations. In the present study, we investigated the neural correlates of flying a glider using voxel-based morphometry. The comparison between gray matter densities of 15 glider pilots and a control group of 15 non-pilots exhibited significant gray matter density increases in left ventral premotor cortex, anterior cingulate cortex, and the supplementary eye field. We posit that the identified regions might be associated with cognitive and motor processes related to flying, such as joystick control, visuo-vestibular interaction, and oculomotor control.

  16. Collaboration in Controller-Pilot Communication

    NASA Technical Reports Server (NTRS)

    Morrow, Daniel; Lebacqz, J. Victor (Technical Monitor)

    1994-01-01

    Like other forms of dialogue, air traffic control (ATC) communication is an act of collaboration between two or more people. Collaboration progresses more or less smoothly depending on speaker and listener strategies. For example, we have found that the way controllers organize and deliver messages influences how easily pilots understand these messages, which in turn determines how much time and effort is needed to successfully complete the transaction. In this talk, I will introduce a collaborative framework for investigating controller-pilot communication and then describe a set of studies that investigate ATC communication from two complementary directions. First, we focused on the impact of ATC message factors (e.g., length, speech rate) on the cognitive processes involved in ATC: communication. Second, we examined pilot factors that influence the amount of cognitive resources available for these communication processes. These studies also illustrate how the collaborate framework can help analyze the impact of proposed visual data link systems on ATC communication. Examining the joint effects of communication medium, message factors, and pilot/controller factors on performance should help improve air safety and communication efficiency. Increased efficiency is important for meeting the growing demands on the National Air System.

  17. Experimental investigation of piloted flameholders

    NASA Technical Reports Server (NTRS)

    Guo, C. F.; Zhang, Y. H.; Xie, Q. M.

    1986-01-01

    Four configurations of piloted flameholders were tested. The range of flame stabilization, flame propagation, pressure oscillation during ignition, and pressure drop of the configurations were determined. Some tests showed a very strong effect of inlet flow velocity profile and flameholder geometry on flame stabilization. These tests led to the following conclusions. (1) The use of a piloted flameholder in the turbofan augmentor may minimize the peak pressure rise during ignition. At the present experimental conditions, delta P/P asterisk over 2 is less than 10 percent; therefore, the use of a piloted flameholder is a good method to realize soft ignition. (2) The geometry of the piloted flameholder and the amount of fuel injected into the flameholder have a strong effect on the pressure oscillation during ignition of the fuel-air mixture in the secondary zone. (3) Compared with the V-gutter flameholder with holes in its wall, the V-gutter flameholder without holes not only has advantages such as simple structure and good rigidity but offers a wide combustion stability limit and a high capability of igniting the fuel-air mixture of the secondary zone.

  18. Single pilot IFR accident data analysis

    NASA Technical Reports Server (NTRS)

    Harris, D. F.

    1983-01-01

    The aircraft accident data recorded by the National Transportation and Safety Board (NTSR) for 1964-1979 were analyzed to determine what problems exist in the general aviation (GA) single pilot instrument flight rule (SPIFR) environment. A previous study conducted in 1978 for the years 1964-1975 provided a basis for comparison. This effort was generally limited to SPIFR pilot error landing phase accidents but includes some SPIFR takeoff and enroute accident analysis as well as some dual pilot IFR accident analysis for comparison. Analysis was performed for 554 accidents of which 39% (216) occurred during the years 1976-1979.

  19. The Influence of Loss of Visual Cues on Pilot Performance During the Final Approach and Landing Phase of a Remotely Piloted Vehicle Mission

    NASA Technical Reports Server (NTRS)

    Howard, James C.

    1976-01-01

    Remotely piloted research vehicles (RPRVS) are currently being flown from fixed-base control centers, and visual information is supplied to the remote pilot by a TV camera mounted in the vehicle. In these circumstances, the possibility of a TV failure or an interruption in the downlink to the pilot must be considered. To determine the influence of loss of TV information on pilot performance during the final approach and landing phase of a mission, an experiment was conducted in which pilots were asked to fly a fixed-base simulation of a Piper PA-30 aircraft with loss of TV information occurring at altitudes of 15.24, 30.48, and 45.72 m (50, 100, and 150 ft). For this experiment, a specially designed display configuration was presented to four pilots in accordance with a Latin square design. Initial results indicate that pilots could not ensure successful landings from altitudes exceeding 15.24 m (.50 ft) without the visual cues supplied by the TV picture.

  20. 14 CFR 135.243 - Pilot in command qualifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Pilot in command qualifications. 135.243... Crewmember Requirements § 135.243 Pilot in command qualifications. (a) No certificate holder may use a person, nor may any person serve, as pilot in command in passenger-carrying operations— (1) Of a turbojet...

  1. 14 CFR 135.243 - Pilot in command qualifications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Pilot in command qualifications. 135.243... Crewmember Requirements § 135.243 Pilot in command qualifications. (a) No certificate holder may use a person, nor may any person serve, as pilot in command in passenger-carrying operations— (1) Of a turbojet...

  2. 14 CFR 135.243 - Pilot in command qualifications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pilot in command qualifications. 135.243... Crewmember Requirements § 135.243 Pilot in command qualifications. (a) No certificate holder may use a person, nor may any person serve, as pilot in command in passenger-carrying operations— (1) Of a turbojet...

  3. 14 CFR 135.243 - Pilot in command qualifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Pilot in command qualifications. 135.243... Crewmember Requirements § 135.243 Pilot in command qualifications. (a) No certificate holder may use a person, nor may any person serve, as pilot in command in passenger-carrying operations— (1) Of a turbojet...

  4. 14 CFR 135.243 - Pilot in command qualifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Pilot in command qualifications. 135.243... Crewmember Requirements § 135.243 Pilot in command qualifications. (a) No certificate holder may use a person, nor may any person serve, as pilot in command in passenger-carrying operations— (1) Of a turbojet...

  5. 49 CFR 229.123 - Pilots, snowplows, end plates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Pilots, snowplows, end plates. 229.123 Section 229... Cab Equipment § 229.123 Pilots, snowplows, end plates. After January 1, 1981, each lead locomotive shall be equipped with an end plate that extends across both rails, a pilot, or a snowplow. The minimum...

  6. 49 CFR 229.123 - Pilots, snowplows, end plates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Pilots, snowplows, end plates. 229.123 Section 229... Cab Equipment § 229.123 Pilots, snowplows, end plates. After January 1, 1981, each lead locomotive shall be equipped with an end plate that extends across both rails, a pilot, or a snowplow. The minimum...

  7. 46 CFR 403.400 - Uniform pilot's source form.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Uniform pilot's source form. 403.400 Section 403.400... ACCOUNTING SYSTEM Source Forms § 403.400 Uniform pilot's source form. (a) Each Association shall record pilotage transactions on a form approved by the Director. The approved form shall be issued to pilots by...

  8. Training monitoring skills in helicopter pilots.

    PubMed

    Potter, Brian A; Blickensderfer, Elizabeth L; Boquet, Albert J

    2014-05-01

    Prior research has indicated that ineffective pilot monitoring has been associated with aircraft accidents. Despite this finding, empirical research concerning pilot monitoring skill training programs is nearly nonexistent. E-learning may prove to be an effective method to foster nontechnical flight skills, including monitoring. This study examined the effect of using e-learning to enhance helicopter aircrew monitoring skill performance. The design was a posttest only field study. Forty-four helicopter pilots completed either an e-learning training module or a control activity and then flew two scenarios in a high-fidelity flight simulator. Learner reactions and knowledge gained were assessed immediately following the e-learning module. Two observer raters assessed behaviors and performance outcomes using recordings of the simulation flights. Subjects who completed the e-learning training module scored almost twice as high as did the control group on the administered knowledge test (experimental group, mean = 92.8%; control group, mean = 47.7%) and demonstrated up to 150% more monitoring behaviors during the simulated flights than the control subjects. In addition, the participating pilots rated the course highly. The results supported the hypothesis that a relatively inexpensive and brief training course implemented through e-learning can foster monitoring skill development among helicopter pilots.

  9. Competency-Based Transfer Pilot Project--Final Report. Executive Summary [and] Competency-Based Transfer Pilot Project: Final Report on House Bill 1909

    ERIC Educational Resources Information Center

    Washington Higher Education Coordinating Board, 2006

    2006-01-01

    This publication contains the following: (1) Competency-Based Transfer Pilot Project--Final Report. Executive Summary (January 2006); and (2) Competency-Based Transfer Pilot Project: Final Report on House Bill 1909 (January 2005). In 2003, the legislature and governor enacted House Bill 1909 to create a pilot project on competency-based transfer…

  10. 78 FR 29117 - After Final Consideration Pilot Program 2.0

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ...] After Final Consideration Pilot Program 2.0 AGENCY: United States Patent and Trademark Office, Commerce... Final Consideration Pilot Program (AFCP) to create the After Final Consideration Pilot Program 2.0 (AFCP... without modifications) depending on feedback from the participants and the effectiveness of the pilot...

  11. Situation Awareness Information Requirements for Commercial Airline Pilots

    NASA Technical Reports Server (NTRS)

    Endsley, Mica R.; Farley, Todd C.; Jones, William M.; Midkiff, Alan H.; Hansman, R. John

    1998-01-01

    Situation awareness is presented as a fundamental requirement for good airmanship, forming the basis for pilot decision making and performance. To develop a better understanding of the role of situation awareness in flying, an analysis was performed to determine the specific situation awareness information requirements for commercial aircraft pilots. This was conducted as a goal-directed task analysis in which pilots' major goals, subgoals, decisions, and associated situation awareness information requirements were delineated based on elicitation from experienced commercial airline pilots. A determination of the major situation awareness information requirements for visual and instrument flight was developed from this analysis, providing a foundation for future system development which seeks to enhance pilot situation awareness and provide a basis for the development of situation awareness measures for commercial flight.

  12. An Investigation of Sensory Information, Levels of Automation, and Piloting Experience on Unmanned Aircraft Pilot Performance

    DTIC Science & Technology

    2012-03-01

    Development.of. NASA - TLX .(Task.Load.Index):.Results.of.empiri- cal.and.theoretical.research ..In.P .A ..Hancock.&.N .. Meshkati.(Eds .),.Human...8 Automated Manual Level of Automation Hi gh Z oo m M an ip ul at io n Pilot Non-pilot Figure 4. Number of participants with high levels of zoom

  13. Relationship between Recent Flight Experience and Pilot Error General Aviation Accidents

    NASA Astrophysics Data System (ADS)

    Nilsson, Sarah J.

    Aviation insurance agents and fixed-base operation (FBO) owners use recent flight experience, as implied by the 90-day rule, to measure pilot proficiency in physical airplane skills, and to assess the likelihood of a pilot error accident. The generally accepted premise is that more experience in a recent timeframe predicts less of a propensity for an accident, all other factors excluded. Some of these aviation industry stakeholders measure pilot proficiency solely by using time flown within the past 90, 60, or even 30 days, not accounting for extensive research showing aeronautical decision-making and situational awareness training decrease the likelihood of a pilot error accident. In an effort to reduce the pilot error accident rate, the Federal Aviation Administration (FAA) has seen the need to shift pilot training emphasis from proficiency in physical airplane skills to aeronautical decision-making and situational awareness skills. However, current pilot training standards still focus more on the former than on the latter. The relationship between pilot error accidents and recent flight experience implied by the FAA's 90-day rule has not been rigorously assessed using empirical data. The intent of this research was to relate recent flight experience, in terms of time flown in the past 90 days, to pilot error accidents. A quantitative ex post facto approach, focusing on private pilots of single-engine general aviation (GA) fixed-wing aircraft, was used to analyze National Transportation Safety Board (NTSB) accident investigation archival data. The data were analyzed using t-tests and binary logistic regression. T-tests between the mean number of hours of recent flight experience of tricycle gear pilots involved in pilot error accidents (TPE) and non-pilot error accidents (TNPE), t(202) = -.200, p = .842, and conventional gear pilots involved in pilot error accidents (CPE) and non-pilot error accidents (CNPE), t(111) = -.271, p = .787, indicate there is no

  14. Pilot Personality and Training Outcomes

    DTIC Science & Technology

    2012-08-31

    AFRL-SA-WP-TR-2012-0013 PILOT PERSONALITY AND TRAINING OUTCOMES Raymond E. King U.S. Air Force School of Aerospace Medicine...September 2011 – August 2012 4. TITLE AND SUBTITLE Pilot Personality and Training Outcomes 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...training outcomes . Two computerized tests were used, the NEO Personality Inventory-Revised and the Armstrong Laboratory Aviation Personality Survey. In

  15. 46 CFR 109.585 - Use of auto pilot.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Use of auto pilot. 109.585 Section 109.585 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.585 Use of auto pilot. Except as provided in 33 CFR 164.15, when the automatic pilot is used...

  16. 46 CFR 109.585 - Use of auto pilot.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Use of auto pilot. 109.585 Section 109.585 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.585 Use of auto pilot. Except as provided in 33 CFR 164.15, when the automatic pilot is used...

  17. 46 CFR 109.585 - Use of auto pilot.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Use of auto pilot. 109.585 Section 109.585 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.585 Use of auto pilot. Except as provided in 33 CFR 164.15, when the automatic pilot is used...

  18. 46 CFR 109.585 - Use of auto pilot.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Use of auto pilot. 109.585 Section 109.585 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.585 Use of auto pilot. Except as provided in 33 CFR 164.15, when the automatic pilot is used...

  19. 46 CFR 109.585 - Use of auto pilot.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Use of auto pilot. 109.585 Section 109.585 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.585 Use of auto pilot. Except as provided in 33 CFR 164.15, when the automatic pilot is used...

  20. The Necessity of ASEAN Community in Producing Pilots

    ERIC Educational Resources Information Center

    Saowaros, Thanoo; Puncreobutr, Vichian

    2016-01-01

    The main objectives of this study are to identify the reasons for the shortage of pilots; the necessity of producing Pilots and the obstacles and problems faced by ASEAN Community in producing pilots. The study is conducted by official documents, observations, in-depth interview from personnel who are working for Airports Authority of Thailand,…

  1. 46 CFR 122.360 - Use of auto pilot.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Use of auto pilot. 122.360 Section 122.360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150... Requirements § 122.360 Use of auto pilot. Whenever an automatic pilot is used the master shall ensure that: (a...

  2. 46 CFR 122.360 - Use of auto pilot.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Use of auto pilot. 122.360 Section 122.360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150... Requirements § 122.360 Use of auto pilot. Whenever an automatic pilot is used the master shall ensure that: (a...

  3. 46 CFR 122.360 - Use of auto pilot.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Use of auto pilot. 122.360 Section 122.360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150... Requirements § 122.360 Use of auto pilot. Whenever an automatic pilot is used the master shall ensure that: (a...

  4. 14 CFR 125.281 - Pilot-in-command qualifications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Pilot-in-command qualifications. 125.281... Requirements § 125.281 Pilot-in-command qualifications. No certificate holder may use any person, nor may any person serve, as pilot in command of an airplane unless that person— (a) Holds at least a commercial...

  5. 14 CFR 125.281 - Pilot-in-command qualifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Pilot-in-command qualifications. 125.281... Requirements § 125.281 Pilot-in-command qualifications. No certificate holder may use any person, nor may any person serve, as pilot in command of an airplane unless that person— (a) Holds at least a commercial...

  6. 14 CFR 125.281 - Pilot-in-command qualifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Pilot-in-command qualifications. 125.281... Requirements § 125.281 Pilot-in-command qualifications. No certificate holder may use any person, nor may any person serve, as pilot in command of an airplane unless that person— (a) Holds at least a commercial...

  7. 14 CFR 125.281 - Pilot-in-command qualifications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pilot-in-command qualifications. 125.281... Requirements § 125.281 Pilot-in-command qualifications. No certificate holder may use any person, nor may any person serve, as pilot in command of an airplane unless that person— (a) Holds at least a commercial...

  8. 14 CFR 125.281 - Pilot-in-command qualifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Pilot-in-command qualifications. 125.281... Requirements § 125.281 Pilot-in-command qualifications. No certificate holder may use any person, nor may any person serve, as pilot in command of an airplane unless that person— (a) Holds at least a commercial...

  9. 46 CFR 122.360 - Use of auto pilot.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Use of auto pilot. 122.360 Section 122.360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150... Requirements § 122.360 Use of auto pilot. Whenever an automatic pilot is used the master shall ensure that: (a...

  10. Pilot Personality Profile Using the NEO-PI-R

    NASA Technical Reports Server (NTRS)

    Fitzgibbons, Amy; Davis, Donald; Schutte, Paul C.

    2004-01-01

    This paper recounts the qualitative research conducted to determine if a general personality measure would provide a personality profile for commercial aviation pilots. The researchers investigated a widely used general personality inventory, the NEO-PI-R, with 93 pilots. The results indicate that a 'pilot personality' does exist. Future research and implications are discussed.

  11. Pilot Personality Profile Using the NEO-PI-R

    NASA Technical Reports Server (NTRS)

    Fitzgibbons, Amy; Davis, Don; Schutte, Paul C. (Technical Monitor)

    2000-01-01

    This paper recounts the qualitative research conducted to determine if a general personality measure would provide a personality profile for commercial aviation pilots. The researchers investigated a widely used general personality inventory, the NEO-PI-R, with 93 pilots. The results indicate that a "pilot personality" does exist. Future research and implications are discussed.

  12. 33 CFR 83.29 - Pilot vessels (Rule 29).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Pilot vessels (Rule 29). 83.29... NAVIGATION RULES RULES Lights and Shapes § 83.29 Pilot vessels (Rule 29). (a) Vessels engaged on pilotage... engaged on pilotage duty. A pilot vessel when not engaged on pilotage duty shall exhibit the lights or...

  13. 46 CFR 401.425 - Provision for additional pilot.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Provision for additional pilot. 401.425 Section 401.425... REGULATIONS Rates, Charges, and Conditions for Pilotage Services § 401.425 Provision for additional pilot. The... Authority, Ltd., Canada, may require the assignment of two pilots to a ship upon request of the ship or when...

  14. 46 CFR 401.425 - Provision for additional pilot.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Provision for additional pilot. 401.425 Section 401.425... REGULATIONS Rates, Charges, and Conditions for Pilotage Services § 401.425 Provision for additional pilot. The... Authority, Ltd., Canada, may require the assignment of two pilots to a ship upon request of the ship or when...

  15. 46 CFR 122.360 - Use of auto pilot.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Use of auto pilot. 122.360 Section 122.360 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150... Requirements § 122.360 Use of auto pilot. Whenever an automatic pilot is used the master shall ensure that: (a...

  16. 48 CFR 1819.7208 - Award Fee Pilot Program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Award Fee Pilot Program... Pilot Program. (a) Mentors will be eligible to earn a separate award fee associated with the provision... related to the mentor-protégé relationship. (d) The Award Fee Pilot Program is an addition to the credit...

  17. 33 CFR 83.29 - Pilot vessels (Rule 29).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pilot vessels (Rule 29). 83.29... NAVIGATION RULES RULES Lights and Shapes § 83.29 Pilot vessels (Rule 29). (a) Vessels engaged on pilotage... engaged on pilotage duty. A pilot vessel when not engaged on pilotage duty shall exhibit the lights or...

  18. 14 CFR 61.11 - Expired pilot certificates and re-issuance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Expired pilot certificates and re-issuance... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS General § 61.11 Expired pilot certificates and re-issuance. (a) No person who holds an expired pilot certificate...

  19. 14 CFR 61.11 - Expired pilot certificates and re-issuance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Expired pilot certificates and re-issuance... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS General § 61.11 Expired pilot certificates and re-issuance. (a) No person who holds an expired pilot certificate...

  20. KSC-08pd1170

    NASA Image and Video Library

    2008-05-07

    CAPE CANAVERAL, Fla. -- STS-124 Mission Specialist Ron Garan practices driving the M113 armored personnel carrier as part of emergency training. At center is the Battalion Chief George Hoggard, providing instruction. Behind Garan is Pilot Ken Ham. They and other crew members are at NASA's Kennedy Space Center for a dress launch rehearsal called the terminal countdown demonstration test. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett