Sample records for kenai fjords alaska

  1. Ecological overview of Kenai Fjords National Park

    USGS Publications Warehouse

    Spencer, Page; Irvine, Gail V.

    2004-01-01

    The major drivers of Kenai Fjords ecosystems are tectonics and climate. In this overview, we describe how these forces have contributed to the shaping of the lands and ecosystems of Kenai Fjords.Physically, the park is comprised of several distinct components, set within a broader ecophysical framework that includes the Kenai Peninsula and coastal marine waters and islands. Squeezed between the Gulf of Alaska and the Kenai Mountains, the coastal zone of the park is a narrow band of exposed headlands and deep fjords. The Harding Icefield caps the Kenai Mountains above the fjords with ice estimated to be 3,000 feet (1,000 m) thick (Figure 1). Although not included in the National Park Service jurisdiction, the park is ecologically linked to the offshore marine ecosystem, and the embedded offshore islands, most of which are part of the Alaska Maritime National Wildlife Refuge, managed by the U.S. Fish and Wildlife Service.

  2. Status and distribution of the Kittlitz's murrelet Brachyramphus brevirostris in Kenai Fjords, Alaska

    USGS Publications Warehouse

    Arimitsu, Mayumi L.; Piatt, John F.; Romano, Marc D.; van Pelt, Thomas I.

    2011-01-01

    The Kittlitz's Murrelet Brachyramphus brevirostris is a candidate species for listing under the US Endangered Species Act because of its apparent declines within core population areas of coastal Alaska. During the summers of 2006-2008, we conducted surveys in marine waters adjacent to Kenai Fjords National Park, Alaska, to estimate the current population size of Kittlitz's and Marbled murrelets B. marmoratus and examine seasonal variability in distribution within coastal fjords. We also evaluated historical data to estimate trend. Based on an average of point estimates, we find the recent population (95% CI) of Kittlitz's Murrelet to be 716 (353-1080) individuals, that of Marbled Murrelet to be 6690 (5427-7953) individuals, and all Brachyramphus murrelets combined to number 8186 (6978-9393) birds. Within-season density estimates showed Kittlitz's Murrelets generally increased between June and July, but dispersed rapidly by August, while Marbled Murrelets generally increased throughout the summer. Trends in Kittlitz's and Marbled murrelet populations were difficult to assess with confidence. Methods for counting or sampling murrelets varied in early decades of study, while in later years there is uncertainty due to highly variable counts among years, which may be due in part to timing of surveys relative to the spring bloom in coastal waters of the Gulf of Alaska.

  3. Summer inventory of landbirds in Kenai Fjords National Park

    USGS Publications Warehouse

    2006-01-01

    As part of the National Park Service Inventory and Monitoring Program, we conducted a summer inventory of landbirds within Kenai Fjords National Park. Using a stratified random sampling design of areas accessible by boat or on foot, we selected sites that encompassed the breadth of habitat types within the Park. We detected 101 species across 52 transects, including 62 species of landbirds, which confirmed presence of 87% of landbird species expected to occur in the Park during the summer breeding season. We found evidence of breeding for three Partners in Flight Watch List species, Rufous Hummingbird (Selasphorus rufus), Olive-sided Flycatcher (Contopus cooperi), and Rusty Blackbird (Euphagus carolinus), which are of particular conservation concern due to recent population declines. Kenai Fjords National Park supports extremely high densities of Hermit Thrush, Orange-crowned Warbler, and Wilson’s Warbler (Wilsonia pusilla) compared with other regions of Alaska. Other commonly observed species included Fox Sparrow (Passerella iliaca), Varied Thrush (Ixoreus naevius), Rubycrowned Kinglet (Regulus calendula), and Yellow Warbler (Dendroica petechia). More than half of the landbird species we observed occurred in needleleaf forests, and several of these species were strongly associated with the coastforest interface. Tall shrub habitats, which occurred across all elevations and in recently deglaciated areas, supported high densities and a diverse array of passerines. Two major riparian corridors, with their broadleaf forests, wetlands, and connectivity to interior Alaska, provided unique and important landbird habitats within the region.

  4. 33 CFR 162.245 - Kenai River, Kenai, Alaska; use, administration, and navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Kenai River, Kenai, Alaska; use... § 162.245 Kenai River, Kenai, Alaska; use, administration, and navigation. (a) The area. The main channel area of the river, having a width of 150 feet, beginning at a point directly offshore from the...

  5. Vegetative Succession in Recently Deglaciated Land in Kenai Fjords National Park

    NASA Astrophysics Data System (ADS)

    Green, C.; Klein, A. G.; Cairns, D. M.

    2017-12-01

    Poleward vegetation expansion has affected Alaska for decades and due to recently increased rates of warming, the expansion will accelerate. Glacial recession in Kenai Fjords National Park has exposed previously ice-covered land with vegetation succession occurring just a few years following glacial retreat. Land cover changes in recently deglaciated areas are affected by surface-air interactions, temperature gradients, and ecosystem development. Using satellite images from Landsat 5, 7, and 8 and the previous extents of four retreating glaciers from 1985 to 2015 within Kenai Fjords National Park, this study examines the relationship between deglaciation rates and vegetation greening. The glaciers, Exit (-15.04 m/yr), Petrof (-31.12 m/yr), Lowell (-33.14 m/yr), and Yalik (-51.32 m/yr) were selected based on their location, whether they were land or lake terminating, and their average retreat rate measured between 1985 and 2015. These glaciers have also been extensively studied. Combining historic glacier extents with 371 summer (JJA) Landsat images gathered from Google's Earth Engine platform we identified annual summer changes in NDVI of locations that were deglaciated between 1985, 1995, 2005, and 2015. Summer temperature maximums were determined to be more correlated with deglaciation, as measured using NDSI, than mean summer temperatures. Using NDVI, heightened deglaciation rates were found to be reasonably correlated with vegetation succession. The faster retreating glaciers, Lowell and Yalik, exhibited higher mean and maximum rates of increase of NDVI in their terminus areas than Exit and Petrof, the two slower retreating glaciers.

  6. Kittlitz’s and Marbled Murrelets in Kenai Fjords National Park, south-central Alaska: At-sea distribution, abundance, and foraging habitat, 2006–08

    USGS Publications Warehouse

    Arimitsu, Mayumi L.; Piatt, John F.; Romano, Marc D.; Madison, E.N.; Conaway, Jeffrey S.

    2010-01-01

    Kittlitz’s murrelets (Brachyramphus brevirostris) and marbled murrelets (B. marmoratus) are small diving seabirds and are of management concern because of population declines in coastal Alaska. In 2006–08, we conducted a study in Kenai Fjords National Park, south-central Alaska, to estimate the recent population size of Brachyramphus murrelets, to evaluate productivity based on juvenile to adult ratios during the fledgling season, and to describe and compare their use of marine habitat. We also attempted a telemetry study to examine Kittlitz’s murrelet nesting habitat requirements and at-sea movements. We estimated that the Kittlitz’s murrelet population was 671 ± 144 birds, and the marbled murrelet population was 5,855 ± 1,163 birds. Kittlitz’s murrelets were limited to the heads of three fjords with tidewater glaciers, whereas marbled murrelets were more widely distributed. Population estimates for both species were lower in 2007 than in 2006 and 2008, possibly because of anomalous oceanographic conditions that may have delayed breeding phenology. During late season surveys, we observed few hatch-year marbled murrelets and only a single hatch-year Kittlitz’s murrelet over the course of the study. Using radio telemetry, we found a likely Kittlitz’s murrelet breeding site on a mountainside bordering one of the fjords. We never observed radio-tagged Kittlitz’s murrelets greater than 10 kilometer from their capture sites, suggesting that their foraging range during breeding is narrow. We observed differences in oceanography between fjords, reflecting differences in sill characteristics and orientation relative to oceanic influence. Acoustic biomass, a proxy for zooplankton and small schooling fish, generally decreased with distance from glaciers in Northwestern Lagoon, but was more variable in Aialik Bay where dense forage fish schools moved into glacial areas late in the summer. Pacific herring (Clupea pallasii), capelin (Mallotus villosus) and

  7. Kenai Fjords National Park Over-the-Snow Transportation Feasibility Study.

    DOT National Transportation Integrated Search

    2012-01-31

    Kenai Fjords National Park seeks to expand winter access to the Exit Glacier Area. Year-round access would better enable the park to accomplish its mission related to visitor experience, education, and research. The road to the area is inaccessible t...

  8. Alaska: Glaciers of Kenai Fjords National Park and Katmai National Park and Preserve (Chapter 12)

    NASA Technical Reports Server (NTRS)

    Giffen, Bruce A.; Hall, Dorothy K.; Chien, Janet Y.L.

    2007-01-01

    Much recent research points to the shrinkage of the Earth's small glaciers, however, few studies have been performed to quantify the amount of change over time. We measured glacier-extent changes in two national parks in southeastern Alaska. There are hundreds of glaciers in Kenai Fjords National Park (KEFJ) and Katmai National Park and Preserve (KATM) covering over 2373 sq km of parkland. There are two primary areas of glaciation in KEFJ - the Harding Icefield and the Grewingk-Yalik Glacier Complex, and three primary areas of glaciation in KATM - the Mt. Douglas area, the Kukak Volcano to Mt. Katmai area and the Mt. Martin area. We performed glacier mapping using satellite imagery, from the 1970s, 1980s, and from 2000. Results of the analysis show that there has been a reduction in the amount of glacier ice cover in the two parks over the study period, of approximately 22 sq km of ice, approximately - 1.6% from 1986 to 2000 (for KEFJ), and of approximately 76 sq km of glacier ice, or about -7.7% from 1986187 to 2000 (for KATM). In the future, measurements of surface elevation changes of these ice masses should be acquired; together with our extent-change measurements, the volume change of the ice masses can then be determined to estimate their contribution to sea-level rise. The work is a continuation of work done in KEFJ, but in KATM, our measurements represent the first comprehensive study of the glaciers in this remote, little-studied area.

  9. Periglacial Landforms and Processes in the Southern Kenai Mountains, Alaska.

    DTIC Science & Technology

    1985-04-01

    RD-RI57 459 PERIGLACIAL LANDFOR;S AND PROCESSES IN THE SOUTHERN i/i KENAI MOUNTAINS ALASKA(U) COLD REGIONS RESEARCH AND ENGINEERING LAB HANOVER NH P...PERIOD COVERED PERIGLACIAL LANDFORMS AND PROCESSES IN THE SOUTHERN KE’AI MOUNTAINS, ALASKA S. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(a) S. CONTRACT OR...Gelifluction Patterned ground Geomorphology Periglacial Kenai Mountains Permafrost Nunatak 2&, ABST’RAC (T Ve nf, en revee n esee~7miy and idmy b block numabet

  10. 76 FR 58263 - Kenai Pipe Line Company; Tesoro Alaska Company; Tesoro Logistics Operations, LLC; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. OR11-21-000] Kenai Pipe Line Company; Tesoro Alaska Company; Tesoro Logistics Operations, LLC; Notice of Request for Jurisdictional..., 2011, Kenai Pipe Line Company (KPL), Tesoro Alaska Company (Tesoro Alaska), and Tesoro Logistics, LLC...

  11. Genetic characterization of Kenai brown bears (Ursus arctos): Microsatellite and mitochondrial DNA control region variation in brown bears of the Kenai Peninsula, south central Alaska

    USGS Publications Warehouse

    Jackson, J.V.; Talbot, S.L.; Farley, S.

    2008-01-01

    We collected data from 20 biparentally inherited microsatellite loci, and nucleotide sequence from the maternally inherited mitochondrial DNA (mtDNA) control region, to determine levels of genetic variation of the brown bears (Ursus arctos L., 1758) of the Kenai Peninsula, south central Alaska. Nuclear genetic variation was similar to that observed in other Alaskan peninsular populations. We detected no significant inbreeding and found no evidence of population substructuring on the Kenai Peninsula. We observed a genetic signature of a bottleneck under the infinite alleles model (IAM), but not under the stepwise mutation model (SMM) or the two-phase model (TPM) of microsatellite mutation. Kenai brown bears have lower levels of mtDNA haplotypic diversity relative to most other brown bear populations in Alaska. ?? 2008 NRC.

  12. Spruce reproduction dynamics on Alaska's Kenai Peninsula, 1987-2000.

    Treesearch

    Willem W.S. van Hees

    2005-01-01

    During the past 30 years, spruce forests of Alaska’s Kenai Peninsula have undergone dramatic changes resulting from widespread spruce bark beetle(Dendroctonus rufipennis (Kirby)) infestation. In 1987 and again in 2000, the Pacific Northwest Research Station's Forest Inventory and Analysis Program conducted initial and remeasurement inventories...

  13. Quaternary geology of the Kenai Lowland and glacial history of the Cook Inlet region, Alaska

    USGS Publications Warehouse

    Karlstrom, Thor N.V.

    1964-01-01

    The Kenai Lowland is part of the Cook Inlet Lowland physiographic subprovince that borders Cook Inlet, a major marine reentrant along the Pacific Ocean coastline of south-central Alaska. The Cook Inlet Lowland occupies a structural trough underlain by rocks of Tertiary age and mantled by Quaternary deposits of varying thicknesses. The bordering high alpine mountains—the Aleutian and Alaska Ranges to the northwest and north and the Talkeetna, Chugach, and Kenai Mountains to the northeast and southeast—are underlain by rocks of Mesozoic and older ages.

  14. Preliminary classification of forest vegetation of the Kenai Peninsula, Alaska.

    Treesearch

    K.M. Reynolds

    1990-01-01

    A total of 5,597 photo points was systematically located on 1:60,000-scale high altitude photographs of the Kenai Peninsula, Alaska; photo interpretation was used to classify the vegetation at each grid position. Of the total grid points, 12.3 percent were classified as timberland; 129 photo points within the timberland class were randomly selected for field survey....

  15. Changes in downed and dead woody material following a spruce beetle outbreak on the Kenai Peninsula, Alaska.

    Treesearch

    Bethany Schulz

    2003-01-01

    The forests of the Kenai Peninsula, Alaska, underwent a major spruce beetle(Dendroctonus rufipennis (Kirby)) outbreak in the 1990s. A repeated inventory of forest resources was designed to assess the effects of the resulting widespread mortality of spruce trees, the dominant component of the Kenai forests. Downed woody materials, fuel heights, and...

  16. Chapter 15: Inland Habitat Suitability for the Marbled Murrelet in Southcentral Alaska

    Treesearch

    Katherine J. Kuletz; Dennis K. Marks; Nancy L. Naslund; Nike J. Goodson; Mary B. Cody

    1995-01-01

    The majority of Marbled Murrelets (Brachyramphus marmoratus) nest in Alaska, where they sometimes nest on the ground, and their nesting habitat requirements are not well understood. The inland activity of murrelets was surveyed, and habitat features measured, between 1991 and 1993, in Prince William Sound, Kenai Fjords National Park and Afognak...

  17. An overview of University of Alaska Anchorage, ENRI research on the spruce bark beetle infestation, Kenai Peninsula, Alaska, 1997-2002

    Treesearch

    Vernon J. LaBau

    2006-01-01

    In the mid 1990s, one of the largest bark beetle infestations seen anywhere in the world occurred on the Kenai Peninsula of Alaska. In one year, the infestation affected over one million acres of spruce in Alaska. This paper presents a coalescence of several aspects of study on the problem, including tree inventory and mortality, regeneration, understory response, a...

  18. Feasibility of using wood wastes to meet local heating requirements of communities in the Kenai Peninsula in Alaska.

    Treesearch

    David L. Nicholls; Peter M. Crimp

    2002-01-01

    Wood energy can be important in meeting the energy needs of Alaska communities that have access to abundant biomass resources. In the Kenai Peninsula, a continuing spruce bark beetle (Dendroctonus rufipennis (Kirby)) infestation has created large volumes of standing dead spruce trees (Picea spp.). For this evaluation, a site in the Kenai-Soldotna...

  19. 36 CFR 13.1302 - Subsistence.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 13.1302 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General Provisions § 13... shall not apply to, Kenai Fjords National Park. ...

  20. Geology of the Prince William Sound and Kenai Peninsula region, Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Hults, Chad P.

    2012-01-01

    The Prince William Sound and Kenai Peninsula region includes a significant part of one of the world’s largest accretionary complexes and a small part of the classic magmatic arc geology of the Alaska Peninsula. Physiographically, the map area ranges from the high glaciated mountains of the Alaska and Aleutian Ranges and the Chugach Mountains to the coastal lowlands of Cook Inlet and the Copper River delta. Structurally, the map area is cut by a number of major faults and postulated faults, the most important of which are the Border Ranges, Contact, and Bruin Bay Fault systems. The rocks of the map area belong to the Southern Margin composite terrane, a Tertiary and Cretaceous or older subduction-related accretionary complex, and the Alaska Peninsula terrane. Mesozoic rocks between these two terranes have been variously assigned to the Peninsular or the Hidden terranes. The oldest rocks in the map area are blocks of Paleozoic age within the mélange of the McHugh Complex; however, the protolith age of the greenschist and blueschist within the Border Ranges Fault zone is not known. Extensive glacial deposits mantle the Kenai Peninsula and the lowlands on the west side of Cook Inlet and are locally found elsewhere in the map area. This map was compiled from existing mapping, without generalization, and new or revised data was added where available.

  1. Alaska: Glaciers of Kenai Fjords National Park and Katmai National Park and Preserve

    NASA Technical Reports Server (NTRS)

    Giffens, Bruce A.; Hall, Dorothy K.; Chien, Janet Y. L.

    2014-01-01

    There are hundreds of glaciers in Kenai Fjords National Park (KEFJ) and Katmai National Park and Preserve (KATM) covering over 2,276 sq km of park land (ca. 2000). There are two primary glacierized areas in KEFJ (the Harding Icefield and the Grewingk-Yalik Glacier Complex) and three primary glacierized areas in KATM (the Mt. Douglas area, the Kukak Volcano to Mt. Katmai area, and the Mt. Martin area). Most glaciers in these parks terminate on land, though a few terminate in lakes. Only KEFJ has tidewater glaciers, which terminate in the ocean. Glacier mapping and analysis of the change in glacier extent has been accomplished on a decadal scale using satellite imagery, primarily Landsat data from the 1970s, 1980s, and from2000. Landsat Multispectral Scanner (MSS),Thematic Mapper (TM), and Enhanced Thematic Mapper Plus (ETM) imagery was used to map glacier extent on a park-wide basis. Classification of glacier ice using image-processing software, along with extensive manual editing, was employed to create Geographic Information System (GIS)outlines of the glacier extent for each park. Many glaciers that originate in KEFJ but terminate outside the park boundaries were also mapped. Results of the analysis show that there has been a reduction in the amount of glacier ice cover in the two parks over the study period. Our measurements show a reduction of approximately 21 sq km, or 1.5(from 1986 to 2000), and 76 sq km, or 7.7 (from19861987 to 2000), in KEFJ and KATM, respectively. This work represents the first comprehensive study of glaciers of KATM. Issues that complicate the mapping of glacier extent include debris cover(moraine and volcanic ash), shadows, clouds, fresh snow, lingering snow from the previous season, and differences in spatial resolution between the MSS,TM, or ETM sensors. Similar glacier mapping efforts in western Canada estimate mapping errors of 34. Measurements were also collected from a suite of glaciers in KEFJ and KATM detailing terminus positions

  2. Glacier fluctuations in the Kenai Fjords, Alaska, U.S.A.: An evaluation of controls on Iceberg-calving glaciers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiles, G.C.; Calkin, P.E.; Post, A.

    The histories of four iceberg-calving outlet-glacier systems in the Kenai Fjords National Park underscore the importance of fiord depth, sediment supply, and fiord geometry on glacier stability. These parameters, in turn, limit the reliability of calving glacier chronologies as records of climatic change. Tree-ring analysis together with radiocarbon dating show that the Northwestern and McCarty glaciers, with large drainage basins, were advancing in concert with nearby land-terminating glaciers about A.D. 600. After an interval of retreat and possible nonclimatically induced extension during the Medieval Warm Period, these ice margins advanced again through the Little Ice Age and then retreated synchronouslymore » with the surrounding land-terminating glaciers about A.D. 1900. In contrast, Holgate and Aialik glaciers, with deeper fiords and smaller basins, retreated about 300 yr earlier. Reconstructions of Little Ice Age glaciers suggest that equilibrium-line altitudes of Northwestern and McCarty glaciers were, respectively, 270 and 500 m lower than now. Furthermore, the reconstructions show that these two glaciers were climatically sensitive when at their terminal moranies. However, with ice margins at their present recessional positions and accumulation area ratios between 0.8 and 0.9, only McCarty Glacier shows evidence of advance. Aialik and Holgate glaciers were climatically insensitive during the Little Ice Age maxima and remain insensitive to climate. 40 refs., 7 figs., 2 tabs.« less

  3. Permian Tethyan Fusulinina from the Kenai Peninsula, Alaska

    USGS Publications Warehouse

    Stevens, C.H.; Davydov, V.I.; Bradley, D.

    1997-01-01

    Two samples from a large, allochthonous limestone block in the McHugh Complex of the Chugach terrane on the Kenai Peninsula, Alaska, contain species of 12 genera of Permian Fusulinina including Abadehella, Kahlerina, Pseudokahlerina?, Nankinella, Codonofusiella, Dunbarula, Parafusulina?, Chusenella, Verbeekina, Pseudodoliolina, Metadoliolina?, Sumatrina?, and Yabeina, as well as several other foraminiferans and one alga. The assemblage of fusulinids is characteristically Tethyan, belonging to the Yabeina archaica zone of early Midian (late Wordian) age. Similar faunas are known from the Pamirs, Transcaucasia, and Japan, as well as from allochthonous terranes in British Columbia, northwestern Washington, and Koryakia in eastern Siberia.

  4. Glacial runoff strongly influences food webs in Gulf of Alaska fjords

    NASA Astrophysics Data System (ADS)

    Arimitsu, M.; Piatt, J. F.; Mueter, F. J.

    2015-12-01

    Melting glaciers contribute large volumes of freshwater to the Gulf of Alaska coast. Rates of glacier volume loss have increased markedly in recent decades, raising concern about the eventual loss of glaciers as a source of freshwater in coastal waters. To better understand the influence of glacier melt water on fjord ecosystems, we sampled oceanography, nutrients, zooplankton, forage fish, and seabirds within four fjords in the coastal Gulf of Alaska. We used generalized additive models and geostatistics to identify the range of influence of glacier runoff in fjords of varying estuarine and topographic complexity. We also modeled the responses of chlorophyll a concentration, copepod biomass, fish and seabird abundance to physical, nutrient and biotic predictor variables. Physical and nutrient signatures of glacial runoff extended 10-20 km into coastal fjords. Glacially modified physical gradients and among-fjord differences explained 66% of the variation in phytoplankton abundance, which drives ecosystem structure at higher trophic levels. Copepod, euphausiid, fish and seabird distribution and abundance were also related to environmental gradients that could be traced to glacial freshwater input. Seabird density was predicted by prey availability and silica concentrations, which may indicate upwelling areas where this nutrient is in excess. Similarities in ecosystem structure among fjords were due to influx of cold, fresh, sediment and nutrient laden water, while differences were due to fjord topography and the relative importance of estuarine vs. ocean influences. We anticipate continued changes in the volume and magnitude of glacial runoff will affect coastal marine food webs in the future.

  5. Beach ridges as paleoseismic indicators of abrupt coastal subsidence during subduction zone earthquakes, and implications for Alaska-Aleutian subduction zone paleoseismology, southeast coast of the Kenai Peninsula, Alaska

    USGS Publications Warehouse

    Kelsey, Harvey M.; Witter, Robert C.; Engelhart, Simon E.; Briggs, Richard; Nelson, Alan R.; Haeussler, Peter J.; Corbett, D. Reide

    2015-01-01

    The Kenai section of the eastern Alaska-Aleutian subduction zone straddles two areas of high slip in the 1964 great Alaska earthquake and is the least studied of the three megathrust segments (Kodiak, Kenai, Prince William Sound) that ruptured in 1964. Investigation of two coastal sites in the eastern part of the Kenai segment, on the southeast coast of the Kenai Peninsula, identified evidence for two subduction zone earthquakes that predate the 1964 earthquake. Both coastal sites provide paleoseismic data through inferred coseismic subsidence of wetlands and associated subsidence-induced erosion of beach ridges. At Verdant Cove, paleo-beach ridges record the paleoseismic history; whereas at Quicksand Cove, buried soils in drowned coastal wetlands are the primary indicators of paleoearthquake occurrence and age. The timing of submergence and death of trees mark the oldest earthquake at Verdant Cove that is consistent with the age of a well documented ∼900-year-ago subduction zone earthquake that ruptured the Prince William Sound segment of the megathrust to the east and the Kodiak segment to the west. Soils buried within the last 400–450 years mark the penultimate earthquake on the southeast coast of the Kenai Peninsula. The penultimate earthquake probably occurred before AD 1840 from its absence in Russian historical accounts. The penultimate subduction zone earthquake on the Kenai segment did not rupture in conjunction with the Prince William Sound to the northeast. Therefore the Kenai segment, which is presently creeping, can rupture independently of the adjacent Prince William Sound segment that is presently locked.

  6. Physical, chemical, and biological data for two sites on the upper Kenai River, Alaska, 1998

    USGS Publications Warehouse

    Dorava, Joseph M.; Ness, Lee

    1999-01-01

    Water-quality data were collected and stream characteristics were documented from two sites along the upper Kenai River in the Kenai National Wildlife Refuge, Alaska. These data were collected to describe the current status of the sites and to provide baseline information from which changes in the future could be evaluated. Physical characteristics included channel geometry surveys, and measurements of channel widths and water discharge at each site. Chemical data included stream water temperature, dissolved-oxygen concentration, pH, specific conductance, E. coli and fecal coliform counts, and nutrient concentration. Data on concentrations of trace elements and various organic compounds in bed sediments and the tissue of slimy sculpin were also collected. Biological characteristics were evaluated using measurements of the bacteria, benthic macroinvertebrate, and fish communities.

  7. Alaska: Glaciers of Kenai Fjords National Park and Katmai and Lake Clark National Parks and Preserve

    NASA Technical Reports Server (NTRS)

    Giffen, bruce A.; Hall, Dorothy K.; Chien, Janet Y. L.

    2011-01-01

    There are hundreds of glaciers in Kenai Fjords National Park (KEFJ) and Katmai National Park and Preserve (KATM) covering over 2276 sq km of park land (circa 2000). There are two primary glacierized areas in KEFJ -- the Harding Icefield and the Grewingk-Yalik Glacier Complex, and three primary glacierized areas in KATM - the Mt. Douglas area, the Kukak Volcano to Mt. Katmai area and the Mt. Martin area. Most glaciers in these parks terminate on land, though a few terminate in lakes. Only KEFJ has tidewater glaciers, which terminate in the ocean. Glacier mapping and analysis of the change in glacier extent has been accomplished on a decadal scale using satellite imagery, primarily Landsat data from the 1970s, 1980s, and from 2000. Landsat Multispectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) imagery was used to map glacier extent on a park-wide basis. Classification of glacier ice using image processing software, along with extensive manual editing, was employed to create Geographic Information System (GIS) outlines of the glacier extent for each park. Many glaciers that originate in KEFJ but terminate outside the park boundaries were also mapped. Results of the analysis show that there has been a reduction in the amount of glacier ice cover in the two parks over the study period. Our measurements show a reduction of approximately 21 sq km, or -1.5% (from 1986 to 2000), and 76 sq km, or -7.7% (from 1986/87 to 2000), in KEFJ and KATM, respectively. This work represents the first comprehensive study of glaciers of KATM. Issues that complicate the mapping of glacier extent include: debris-cover (moraine and volcanic ash), shadows, clouds, fresh snow, lingering snow from the previous season, and differences in spatial resolution between the MSS and TM or ETM+ sensors. Similar glacier mapping efforts in western Canada estimate mapping errors of 3-4%. Measurements were also collected from a suite of glaciers in KEFJ and KATM detailing

  8. Population status of Kittlitz's and Marbled Murrelets and surveys for other marine bird and mammal species in the Kenai Fjords area, Alaska

    USGS Publications Warehouse

    van Pelt, Thomas I.; Piatt, John F.

    2003-01-01

    The Kittlitz's murrelet (Brachyramphus brevirostris) is a rare seabird that nests in alpine terrain and generally forages near tidewater glaciers during the breeding season. More than 95% of the global population breeds in Alaska, with the remainder occurring in the Russian Far East. A global population estimate using best-available data in the early 1990s was 20,000 individuals. However, survey data from two core areas (Prince William Sound and Glacier Bay) suggest that populations have declined by 80-90% during the past 10-20 years. In response to these declines, a coalition of environmental groups petitioned the USFWS in May of 2001 to list the Kittlitz’s murrelet under the Endangered Species Act. In 2002, we began a three-year project to examine population status and trend of Kittlitz’s Murrelets in areas where distribution and abundance are poorly known. Here we report on the first field season, focused on the south coast of the Kenai Peninsula. We re-surveyed selected historical transects to evaluate trends, and surveyed new transects for improved population estimation during early July 2002. From a total of 66 Kittlitz’s Murrelets seen on transects, we estimate a total population of 509 Kittlitz’s Murrelets along the south coast of the Kenai Peninsula. Comparisons with past surveys suggest a decline of 83% since 1976, with an average rate of decline calculated as–6.9 % per annum. This decline is in agreement with population declines observed elsewhere in the species’ core glaciated range, indicating that steep population declines observed to date are likely to be a range-wide phenomenon. While the focus of the study was Kittlitz’s Murrelets, other species of marine birds and mammals were also surveyed. Populations of the closely related Marbled Murrelet appear to have increased during the same time period. The abundance and distribution of other species are presented in appendices.

  9. Influence of glacier runoff on ecosystem structure in Gulf of Alaska fjords

    USGS Publications Warehouse

    Arimitsu, Mayumi L.; Piatt, John F.; Mueter, Franz J.

    2016-01-01

    To better understand the influence of glacier runoff on fjord ecosystems, we sampled oceanographic conditions, nutrients, zooplankton, forage fish and seabirds within 4 fjords in coastal areas of the Gulf Alaska. We used generalized additive models and geostatistics to identify the range of glacier runoff influence into coastal waters within fjords of varying estuarine influence and topographic complexity. We also modeled the response of depth-integrated chlorophyll a concentration, copepod biomass, fish and seabird abundance to physical, nutrient and biotic predictor variables. The effects of glacial runoff were traced at least 10 km into coastal fjords by cold, turbid, stratified and generally nutrient-rich near-surface conditions. Glacially modified physical gradients, nutrient availability and among-fjord differences explained 67% of the variation in phytoplankton abundance, which is a driver of ecosystem structure at higher trophic levels. Copepod, euphausiid, fish and seabird distribution and abundance were related to environmental gradients that could be traced to glacial freshwater input, particularly turbidity and temperature. Seabird density was predicted by prey availability and silicate concentrations, which may be a proxy for upwelling areas where this nutrient is in excess. Similarities in ecosystem structure among fjords were attributable to an influx of cold, fresh and sediment-laden water, whereas differences were likely related to fjord topography and local differences in estuarine vs. ocean influence. We anticipate that continued changes in the timing and volume of glacial runoff will ultimately alter coastal ecosystems in the future.

  10. Hydraulic characteristics near streamside structures along the Kenai River, Alaska

    USGS Publications Warehouse

    Dorava, Joseph M.

    1995-01-01

    Hydraulic characteristics, water velocity, depth, and flow direction were measured near eight sites along the Kenai River in southcentral Alaska. Each of the eight sites contained a different type of structure: a road-type boat launch, a canal-type boat launch, a floating dock, a rock retaining wall, a pile-supported dock, a jetty, a concrete retaining wall, and a bank stabilization project near the city of Soldotna. Measurements of hydraulic characteristics were made to determine to what extent the structures affected natural or ambient stream hydraulic characteristics. The results will be used by the Alaska Department of Fish and Game to evaluate assumptions used in their Habitat Evaluation Procedure assessment of juvenile chinook salmon habitat along the river and to improve their understanding of stream hydraulics for use in permitting potential projects. The study included structures along the Kenai River from about 12 to 42 miles upstream from the mouth. Hydraulic characteristics were measured during medium-, high-, and low-flow conditions, as measured at the Kenai River at Soldotna: (1) discharge ranged from 6,310 to 6,480 cubic feet per second during medium flow conditions that were near mean annual flow on June 9-10, 1994; (2) discharge ranged from 14,000 to 14,400 cubic feet per second during high flow conditions that were near peak annual flow conditions on August 2-3, 1994; and (3) discharge ranged from 3,470 to 3,660 cubic feet per second during open-water low-flow conditions on May 8-9, 1995. Measurements made at the structures were compared with measurements made at nearby unaffected natural sites. The floating dock, pile-supported dock, road-type boat launch, and concrete retaining wall did not significantly alter the stream channel area. These structures contributed only hydraulic-roughness type changes. The structures occupied a much smaller area than that of the wetted perimeter of the channel and thus typically had little effect on velocity

  11. 46 CFR 7.165 - Kenai Peninsula, AK to Kodiak Island, AK.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Kenai Peninsula, AK to Kodiak Island, AK. 7.165 Section 7.165 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Alaska § 7.165 Kenai Peninsula, AK to Kodiak Island, AK. (a) A line drawn from the...

  12. 46 CFR 7.165 - Kenai Peninsula, AK to Kodiak Island, AK.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Kenai Peninsula, AK to Kodiak Island, AK. 7.165 Section 7.165 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Alaska § 7.165 Kenai Peninsula, AK to Kodiak Island, AK. (a) A line drawn from the...

  13. 46 CFR 7.165 - Kenai Peninsula, AK to Kodiak Island, AK.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Kenai Peninsula, AK to Kodiak Island, AK. 7.165 Section 7.165 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Alaska § 7.165 Kenai Peninsula, AK to Kodiak Island, AK. (a) A line drawn from the...

  14. 46 CFR 7.165 - Kenai Peninsula, AK to Kodiak Island, AK.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Kenai Peninsula, AK to Kodiak Island, AK. 7.165 Section 7.165 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Alaska § 7.165 Kenai Peninsula, AK to Kodiak Island, AK. (a) A line drawn from the...

  15. 46 CFR 7.165 - Kenai Peninsula, AK to Kodiak Island, AK.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Kenai Peninsula, AK to Kodiak Island, AK. 7.165 Section 7.165 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Alaska § 7.165 Kenai Peninsula, AK to Kodiak Island, AK. (a) A line drawn from the...

  16. Effectiveness of streambank-stabilization techniques along the Kenai River, Alaska

    USGS Publications Warehouse

    Dorava, Joseph M.

    1999-01-01

    The Kenai River in southcentral Alaska is the State's most popular sport fishery and an economically important salmon river that generates as much as $70 million annually. Boatwake-induced streambank erosion and the associated damage to riparian and riverine habitat present a potential threat to this fishery. Bank-stabilization techniques commonly in use along the Kenai River were selected for evaluation of their effectiveness at attenuating boatwakes and retarding streambank erosion. Spruce trees cabled to the bank and biodegradable man-made logs (called 'bio-logs') pinned to the bank were tested because they are commonly used techniques along the river. These two techniques were compared for their ability to reduce wake heights that strike the bank and to reduce erosion of bank material, as well as for the amount and quality of habitat they provide for juvenile chinook salmon. Additionally, an engineered bank-stabilization project was evaluated because this method of bank protection is being encouraged by managers of the river. During a test that included 20 controlled boat passes, the spruce trees and the bio-log provided a similar reduction in boatwake height and bank erosion; however, the spruce trees provided a greater amount of protective habitat than the bio-log. The engineered bank-stabilization project eroded less during nine boat passes and provided more protective cover than the adjacent unprotected natural bank. Features of the bank-stabilization techniques, such as tree limbs and willow plantings that extended into the water from the bank, attenuated the boatwakes, which helped reduce erosion. These features also provided protective cover to juvenile salmon.

  17. Comparisons of spawning areas and times for two runs of chinook salmon (Oncorhynchus tshawytscha) in the Kenai River, Alaska

    USGS Publications Warehouse

    Burger, C.V.; Wilmot, R.L.; Wangaard, D.B.

    1985-01-01

    From 1979 to 1982,188 chinook salmon (Oncorhynchus tshawytscha) were tagged with radio transmitters to locate spawning areas in the glacial Kenai River, southcentral Alaska. Results confirmed that an early run entered the river in May and June and spawned in tributaries, and a late run entered the river from late June through August and spawned in the main stem. Spawning peaked during August in tributaries influenced by lakes, but during July in other tributaries. Lakes may have increased fall and winter temperatures of downstream waters, enabling successful reproduction for later spawning fish within these tributaries. This hypothesis assumes that hatching and emergence can be completed in a shorter time in lake-influenced waters. The time of upstream migration and spawning (mid- to late August) of the late run is unique among chinook stocks in Cook Inlet. This behavior may have developed only because two large lakes (Kenai and Skilak) directly influence the main-stem Kenai River. If run timing is genetically controlled, and if the various components of the two runs are isolated stocks that have adapted to predictable stream temperatures, there are implications for stock transplantation programs and for any activities of man that alter stream temperatures.

  18. 36 CFR 13.1326 - Snowmachines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park Exit Glacier Developed...) On Exit Glacier Road; (b) In parking areas; (c) On a designated route through the Exit Glacier...

  19. 36 CFR 13.1326 - Snowmachines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park Exit Glacier Developed...) On Exit Glacier Road; (b) In parking areas; (c) On a designated route through the Exit Glacier...

  20. 36 CFR 13.1326 - Snowmachines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park Exit Glacier Developed...) On Exit Glacier Road; (b) In parking areas; (c) On a designated route through the Exit Glacier...

  1. 36 CFR 13.1326 - Snowmachines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park Exit Glacier Developed...) On Exit Glacier Road; (b) In parking areas; (c) On a designated route through the Exit Glacier...

  2. Oceanographic gradients and seabird prey community dynamics in glacial fjords

    USGS Publications Warehouse

    Arimitsu, Mayumi L.; Piatt, John F.; Madison, Erica N.; Conaway, Jeffrey S.; Hillgruber, N.

    2012-01-01

    Glacial fjord habitats are undergoing rapid change as a result of contemporary global warming, yet little is known about how glaciers influence marine ecosystems. These ecosystems provide important feeding, breeding and rearing grounds for a wide variety of marine organisms, including seabirds of management concern. To characterize ocean conditions and marine food webs near tidewater glaciers, we conducted monthly surveys of oceanographic variables, plankton, fish and seabirds in Kenai Fjords, Alaska, from June to August of 2007 and 2008. We also measured tidal current velocities near glacial features. We found high sediment load from glacial river runoff played a major role in structuring the fjord marine ecosystem. Submerged moraines (sills) isolated cool, fresh, stratified and silt-laden inner fjord habitats from oceanic influence. Near tidewater glaciers, surface layers of turbid glacial runoff limited availability of light to phytoplankton, but macrozooplankton were abundant in surface waters, perhaps due to the absence of a photic cue for diel migration. Fish and zooplankton community structure varied along an increasing temperature gradient throughout the summer. Acoustic measurements indicated that low density patches of fish and zooplankton were available in the surface waters near glacial river outflows. This is the foraging habitat occupied most by Kittlitz's murrelet (Brachyramphus brevirostris), a rare seabird that appears to be specialized for life in glacially influenced environments. Kittlitz's murrelets were associated with floating glacial ice, and they were more likely to occur near glaciers, in deeper water, and in areas with high acoustic backscatter. Kittlitz's murrelet at-sea distribution was limited to areas influenced by turbid glacial outflows, and where prey was concentrated near the surface in waters with low light penetration. Tidewater glaciers impart unique hydrographic characteristics that influence marine plankton and fish

  3. The Kenai experience: communities and forest health.

    Treesearch

    Valerie. Rapp

    2005-01-01

    Over the last 15 years, spruce bark beetles have killed huge numbers of spruce trees, the dominant conifer across south-central Alaska. From 80 to 90 percent of the trees are dead in large areas on the Kenai Peninsula. The consequences of the spruce bark beetle outbreak will continue for years.

  4. College Fjord, Prince Williams Sound

    NASA Image and Video Library

    2001-07-21

    The College Fjord with its glaciers was imaged by ASTER on June 24, 2000. This image covers an area 20 kilometers (13 miles) wide and 24 kilometers (15 miles) long in three bands of the reflected visible and infrared wavelength region. College Fjord is located in Prince Williams Sound, east of Seward, Alaska. Vegetation is in red, and snow and ice are white and blue. Ice bergs calved off of the glaciers can be seen as white dots in the water. At the head of the fjord, Harvard Glacier (left) is one of the few advancing glaciers in the area; dark streaks on the glacier are medial moraines: rock and dirt that indicate the incorporated margins of merging glaciers. Yale Glacier to the right is retreating, exposing (now vegetated) bedrock where once there was ice. On the west edge of the fjord, several small glaciers enter the water. This fjord is a favorite stop for cruise ships plying Alaska's inland passage. This image is located at 61.2 degrees north latitude and 147.7 degrees west longitude. http://photojournal.jpl.nasa.gov/catalog/PIA02664

  5. Holocene glacier fluctuations inferred from lacustrine sediment, Emerald Lake, Kenai Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    LaBrecque, Taylor S.; Kaufman, Darrell S.

    2016-01-01

    Physical and biological characteristics of lacustrine sediment from Emerald Lake were used to reconstruct the Holocene glacier history of Grewingk Glacier, southern Alaska. Emerald Lake is an ice-marginal threshold lake, receiving glaciofluvial sediment when Grewingk Glacier overtops the topographic divide that separates it from the lake. Sub-bottom acoustical profiles were used to locate core sites to maximize both the length and resolution of the sedimentary sequence recovered in the 4-m-long cores. The age model for the composite sequence is based on 13 14C ages and a 210Pb profile. A sharp transition from the basal inorganic mud to organic-rich mud at 11.4 ± 0.2 ka marks the initial retreat of Grewingk Glacier below the divide of Emerald Lake. The overlaying organic-rich mud is interrupted by stony mud that records a re-advance between 10.7 ± 0.2 and 9.8 ± 0.2 ka. The glacier did not spill meltwater into the lake again until the Little Ice Age, consistent with previously documented Little Ice Ages advances on the Kenai Peninsula. The retreat of Grewingk Glacier at 11.4 ka took place as temperature increased following the Younger Dryas, and the subsequent re-advance corresponds with a climate reversal beginning around 11 ka across southern Alaska.

  6. Ground-water conditions and quality in the western part of Kenai Peninsula, southcentral Alaska

    USGS Publications Warehouse

    Glass, R.L.

    1996-01-01

    The western part of Kenai Peninsula in southcentral Alaska is bounded by Cook Inlet and the Kenai Mountains. Ground water is the predominant source of water for commercial, industrial, and domestic uses on the peninsula. Mean daily water use in an oil, gas, and chemical processing area north of Kenai is more than 3.5 million gallons. Unconsolidated sediments of glacial and fluvial origin are the most productive aquifers. In the upper (northwestern) peninsula, almost all water used is withdrawn from unconsolidated sediments, which may be as thick as 750 feet. In the lower peninsula, unconsolidated sediments are thinner and are absent on many hills. Water supplies in the lower peninsula are obtained from unconsolidated sediments and bedrock, and a public-water supply in parts of Homer is obtained from Bridge Creek. Throughout the peninsula, ground-water flow occurs primarily as localized flow controlled by permeability of aquifer materials and surface topography. The concentration of constituents analyzed in water from 312 wells indicated that the chemical quality of ground water for human consumption varies from marginal to excellent. Even though the median concentration of dissolved solids is low (152 milligrams per liter), much of the ground water on the peninsula does not meet water-quality regulations for public drinking water established by the U.S. Environmental Protection Agency (USEPA). About 8 percent of wells sampled yielded water having concentrations of dissolved arsenic that exceeded the USEPA primary maximum contaminant level of 50 micrograms per liter. Concentrations of dissolved arsenic were as great as 94 micrograms per liter. Forty-six percent of wells sampled yielded water having concentrations of dissolved iron greater than the USEPA secondary maximum contaminant level of 300 micrograms per liter. Unconsolidated sediments generally yield water having calcium, magnesium, and bicarbonate as its predominant ions. In some areas, ground water at

  7. Neoglacial fluctuations of terrestrial, tidewater, and calving lacustrine glaciers, Blackstone-Spencer Ice Complex, Kenai Mountains, Alaska

    NASA Astrophysics Data System (ADS)

    Crossen, Kristine June

    1997-12-01

    The glaciers surrounding the Blackstone-Spencer Ice Complex display a variety of termini types: Tebenkov, Spencer, Bartlett, Skookum, Trail, Burns, Shakespeare, Marquette, Lawrence, and Ripon glaciers end in terrestrial margins; Blackstone and Beloit glaciers have tidewater termini; and Portage Glacier has a calving lacustrine margin. In addition, steep temperature and precipitation gradients exist across the ice complex from the maritime environment of Prince William Sound to the colder, drier interior. The Neoglacial history of Tebenkov Glacier, as based on overrun trees near the terminus, shows advances ca. 250- 430 AD (calibrated date), ca. 1215-1275 AD (calibrated date), and ca. 1320-1430 AD (tree ring evidence), all intervals of glacier advance around the Gulf of Alaska. However, two tidewater glaciers in Blackstone Bay retreated from their outermost moraines by 1350 AD, apparently asynchronously with respect to the regional climate signal. The most extensive Kenai Mountain glacier expansions during Neoglaciation occurred in the late Little Ice Age. The outermost moraines are adjacent to mature forest stands and bog peats that yield dates as old as 5,600 BP. Prince William Sound glaciers advanced during two Little Ice Age cold periods, 1380-1680 and 1830-1900 AD. The terrestrial glaciers around the Blackstone-Spencer Ice Complex all built moraines during the 19th century and began retreating between 1875 and 1900 AD. Portage and Burns glaciers began retreating between 1790 and 1810 AD, but their margins remained close to the outermost moraines during the 19th century. Regional glacier fluctuations are broadly synchronous in the Gulf of Alaska region. With the exception of the two tidewater glaciers in Blackstone Bay, all glaciers in the Kenai Mountains, no matter their sizes, altitudes, orientations, or types of margins, retreated at the end of the Little Ice Age. The climate signal, especially temperature, appears to be the strongest control on glacier

  8. Timberland resources of the Kenai Peninsula, Alaska, 1987.

    Treesearch

    Willem W.S. van Hees; Frederic R. Larson

    1991-01-01

    The 1987 inventory of the forest resources of the Kenai Peninsula was designed to assess the impact of the spruce beetle (Dendroctonus rufipennis (Kirby)) on the timberland component of the forest resource. Estimates of timberland area, volumes of timber, and growth and mortality of timber were developed. These estimates of timber resource...

  9. Uplift of the Kenai Peninsula, Alaska, since the 1964 Prince William Sound earthquake

    NASA Technical Reports Server (NTRS)

    Cohen, Steven; Holdahl, Sandford; Caprette, Douglas; Hilla, Stephen; Safford, Robert; Schultz, Donald

    1995-01-01

    Using Global Positioning System (GPS) receivers, we reoccupied several leveling benchmarks on the Kenai Peninsula of Alaska which had been surveyed by conventional leveling immediately following the March 27, 1964, Prince William Sound earthquake (M(sub w) = 9.3). By combining the two sets of measurements with a new, high-resolution model of the geoid in the region, we were able to determine the cumulative 1993-1964 postseismic vertical displacement. We find uplift at all of our benchmarks, relative to Seward, Alaska, a point that is stable according to tide gauge data. The maximum uplift of about 1 m occurs near the middle of the peninsula. The region of maximum uplift appears to be shifted northwest relative to the point of maximum coseismic subsidence. If we use tide gauge data at Nikishka and Seward to constrain the vertical motion, then the observed uplift has a trenchward tilt (down to the southeast) as well as an arching component. To explain the observations, we use creep-at-depth models. Most acceptable models require a fault slip of about 2.75 m, although this result is not unique. If the slip has been continuous since the 1964 earthquake, then the average slip rate is nearly 100 mm/yr, twice the plate convergence rate. Comparing the net uplift achieved in 29 years with that observed over 11 years in an adjacent region southeast of Anchorage, Alaska, we conclude that the rate of uplift is decreasing. A further decrease in the uplift rate is expected as the 29-year averaged displacement rate is about twice the plate convergence rate and therefore cannot be sustained over the entire earthquake cycle.

  10. Managing brown bears and wilderness recreation on the Kenai Peninsula, Alaska, USA

    NASA Astrophysics Data System (ADS)

    Jacobs, Michael J.; Schloeder, Catherine A.

    1992-03-01

    The Russian River-Cooper Lake-Resurrection River trail system, on the Kenai Peninsula, Alaska, traverses essential brown bear habitat. To set management guidelines for this area, the trail system was monitored using questionnaire cards and electronic trail counters from 1984 through 1987. This helped to determine the extent and type of human use and human-bear encounters in the area. Management recommendations were intended to reduce the potential displacement of brown bears by hikers and to inform wilderness users of the proper camping techniques to avoid attracting bears to the campsite. An average of 5800 visitors hiked or camped along the trail system each year. Encounters between hikers and brown bears averaged 7/yr while encounters with black bears averaged 35/yr. Minor problems occurred with both the electronic trail counters and the questionnaire. Modilications to these methods are discussed. A Limits of Acceptable Change format should be considered for the trail system to determine the character and future direction of recreational activities and monitoring of the trail system should continue in the future.

  11. 36 CFR 13.1308 - Harding Icefield Trail.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Harding Icefield Trail. 13.1308 Section 13.1308 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General...

  12. 36 CFR 13.1326 - Snowmachines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Snowmachines. 13.1326 Section 13.1326 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park Exit Glacier Developed...

  13. 36 CFR 13.1316 - Commercial transport of passengers by motor vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... passengers by motor vehicles. 13.1316 Section 13.1316 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General Provisions § 13.1316 Commercial transport of passengers by motor vehicles. Commercial...

  14. Late Holocene Permafrost Aggradation in the Western Kenai Lowlands, Alaska: Implications for Climate Reconstruction and Carbon Cycling.

    NASA Astrophysics Data System (ADS)

    Hoefke, K.; Jones, M.; Jones, B. M.

    2017-12-01

    Rapid permafrost thaw is occurring throughout the permafrost zone, particularly at the southern margins, where mean annual air temperatures are above 0°C. As the Kenai lowlands experience ecosystem shifts due to human disturbance and climate change, understanding permafrost history is of particular interest given the direct impacts on hydrology, vegetation, and carbon cycling. Across the northern high latitudes, permafrost peatlands within the sporadic and isolated permafrost zone store 95 Pg of C and permafrost formation processes (i.e., syngenetic versus epigenetic) are thought to influence the degree of carbon loss following thaw. This study uses plant macrofossils and radiocarbon dating to determine the timing of permafrost aggradation of a recently-thawed (since 1950 CE) peatland located directly adjacent to a 5-meter thick permafrost plateau landform in the Kenai Peninsula lowlands in south-central Alaska. The coring site was selected using remote sensing imagery to identify areas where permafrost plateaus have been thawing since 1950 CE. Preliminary results show dominance of brown moss (Paludella squarrosa, Drepanocladus spp., Tomenthypnum nitens) and sedge (Carex spp.) from peat inception 11,700 cal yr BP to 3,000 cal yr BP indicative of a permafrost-free rich fen. A transition to silvic peat (Betula nana, Vaccinium oxycoccus, Ledum groenlandicum, ericaceous shrub macrofossils) 3,000 cal yr BP (indicates that permafrost aggradation coincided with neoglacial cooling. Since permafrost aggraded 9000 years after peat accumulation began and permafrost deepened to 5 m into unfrozen peat, this suggests mean annual air temperatures decreased significantly below 0ºC for several millennia in the late Holocene on the Kenai lowlands. This study will also examine impacts of permafrost aggradation and degradation on rates of carbon accumulation and loss.

  15. Hydrologic Modeling in the Kenai River Watershed using Event Based Calibration

    NASA Astrophysics Data System (ADS)

    Wells, B.; Toniolo, H. A.; Stuefer, S. L.

    2015-12-01

    Understanding hydrologic changes is key for preparing for possible future scenarios. On the Kenai Peninsula in Alaska the yearly salmon runs provide a valuable stimulus to the economy. It is the focus of a large commercial fishing fleet, but also a prime tourist attraction. Modeling of anadromous waters provides a tool that assists in the prediction of future salmon run size. Beaver Creek, in Kenai, Alaska, is a lowlands stream that has been modeled using the Army Corps of Engineers event based modeling package HEC-HMS. With the use of historic precipitation and discharge data, the model was calibrated to observed discharge values. The hydrologic parameters were measured in the field or calculated, while soil parameters were estimated and adjusted during the calibration. With the calibrated parameter for HEC-HMS, discharge estimates can be used by other researches studying the area and help guide communities and officials to make better-educated decisions regarding the changing hydrology in the area and the tied economic drivers.

  16. 36 CFR 13.1312 - Climbing and walking on Exit Glacier.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Climbing and walking on Exit Glacier. 13.1312 Section 13.1312 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park...

  17. 36 CFR 13.1324 - Bicycles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Bicycles. 13.1324 Section 13.1324 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park Exit Glacier Developed Area...

  18. 36 CFR 13.1328 - EGDA closures and restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false EGDA closures and restrictions. 13.1328 Section 13.1328 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park Exit...

  19. 36 CFR 13.1304 - Ice fall hazard zones.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Ice fall hazard zones. 13.1304 Section 13.1304 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General...

  20. 36 CFR 13.1320 - Camping.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Camping. 13.1320 Section 13.1320 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park Exit Glacier Developed Area...

  1. New imaging of submarine landslides from the 1964 earthquake near Whittier, Alaska, and a comparison to failures in other Alaskan fjords

    USGS Publications Warehouse

    Haeussler, Peter J.; Parsons, Thomas E.; Finlayson, David P.; Hart, Patrick J.; Chaytor, Jason D.; Ryan, Holly F; Lee, Homa J.; Labay, Keith A.; Peterson, Andrew; Liberty, Lee

    2014-01-01

    The 1964 Alaska M w 9.2 earthquake triggered numerous submarine slope failures in fjords of southern Alaska. These failures generated local tsunamis, such as at Whittier, where they inundated the town within 4 min of the beginning of shaking. Run-up was up to 32 m, with 13 casualties. We collected new multibeam bathymetry and high-resolution sparker seismic data in Passage Canal, and we examined bathymetry changes before and after the earthquake. The data reveal the debris flow deposit from the 1964 landslides, which covers the western 5 km of the fjord bottom. Individual blocks in the flow are up to 145-m wide and 25-m tall. Bathymetry changes show the mass transfer deposits originated from the fjord head and Whittier Creek deltas and had a volume of about 42 million m3. The 1964 deposit has an average thickness of ∼5.4 m. Beyond the debris flow, the failures likely deposited a ∼4.6-m thick megaturbidite in a distal basin. We have studied the 1964 submarine landslides in three fjords. All involved failure of the fjord-head delta. All failures eroded basin-floor sediments and incorporated them as they travelled. All the failures deposited blocks, but their size and travel distances varied greatly. We find a correlation between maximum block size and maximum tsunami run-up regardless of the volume of the slides. Lastly, the fjord’s margins were influenced by increased supply of glacial sediments during the little ice age, which along with a long interseismic interval (∼900 years) may have caused the 1964 earthquake to produce particularly numerous and large submarine landslides.

  2. Distribution and density of marine birds and mammals along the Kenai Fjords National Park coastline - March 2010

    USGS Publications Warehouse

    Coletti, Heather A.; Bodkin, James L.; Esslinger, George G.

    2011-01-01

    From March 21, 2010 to March 24, 2010, a winter marine bird and mammal skiff-based survey along the coast of Kenai Fjords National Park (KEFJ) was completed. This was the second winter survey completed for KEFJ since 2008. The primary objectives of the SWAN winter surveys are to characterize the species composition, density and distribution of the overwintering marine ducks prior to their migration to breeding grounds. Seasonal differences in species composition, distribution and density of other marine birds and mammals are also documented. The overall design calls for the sampling of the same transects during both the winter and summer surveys if safe and appropriate conditions allow. The 2010 survey took approximately four days to complete with a crew of six. The most common birds observed on the nearshore transects were the Barrow’s goldeneye (29.35/km2 , SE=9.24) and harlequin duck (29.30/km2 , SE=4.72). Harlequin ducks tended to be more evenly distributed along the coastline while Barrow’s goldeneye tended to be observed in less exposed areas along the coast and in larger groups. In contrast, the most abundant marine bird in KEFJ summer surveys is the Glaucous-winged gull, while Barrow’s goldeneye are nearly absent along the KEFJ coast. The most common marine mammal was the harbor seal (6.75/km2 , se=2.93) followed by the sea otter (3.59/km2 , se=0.90, adults and pups). Densities of harbor seals and sea otters in the summer were similar to the winter estimates.

  3. Cooperative Alaska Forest Inventory

    Treesearch

    Thomas Malone; Jingjing Liang; Edmond C. Packee

    2009-01-01

    The Cooperative Alaska Forest Inventory (CAFI) is a comprehensive database of boreal forest conditions and dynamics in Alaska. The CAFI consists of field-gathered information from numerous permanent sample plots distributed across interior and south-central Alaska including the Kenai Peninsula. The CAFI currently has 570 permanent sample plots on 190 sites...

  4. 36 CFR 13.1318 - Location of the EGDA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park Exit Glacier Developed... boundary to Exit Glacier Campground Entrance Road, all park areas within 350 meters (383 yards) of the centerline of the Exit Glacier Road; (2) From Exit Glacier Campground Entrance Road to the end of the main...

  5. 36 CFR 13.1318 - Location of the EGDA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park Exit Glacier Developed... boundary to Exit Glacier Campground Entrance Road, all park areas within 350 meters (383 yards) of the centerline of the Exit Glacier Road; (2) From Exit Glacier Campground Entrance Road to the end of the main...

  6. 36 CFR 13.1318 - Location of the EGDA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park Exit Glacier Developed... boundary to Exit Glacier Campground Entrance Road, all park areas within 350 meters (383 yards) of the centerline of the Exit Glacier Road; (2) From Exit Glacier Campground Entrance Road to the end of the main...

  7. 36 CFR 13.1306 - Public use cabins.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Public use cabins. 13.1306 Section 13.1306 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General Provisions § 13...

  8. 36 CFR 13.1318 - Location of the EGDA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Location of the EGDA. 13.1318 Section 13.1318 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park Exit Glacier Developed...

  9. 36 CFR 13.1310 - Pets.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Pets. 13.1310 Section 13.1310 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General Provisions § 13.1310 Pets...

  10. Juvenile Steller sea lion (Eumetopias jubatus) utilization distributions in the Gulf of Alaska.

    PubMed

    Bishop, Amanda; Brown, Casey; Rehberg, Michael; Torres, Leigh; Horning, Markus

    2018-01-01

    A utilization distribution quantifies the temporal and spatial probability of space use for individuals or populations. These patterns in movement arise from individuals' internal state and from their response to the external environment, and thus can provide insights for assessing factors associated with the management of threatened populations. The Western Distinct Population Segment of the Steller sea lion ( Eumetopias jubatus ) has declined to approximately 20% of levels encountered 40 years ago. At the height of the decline, juvenile survival appeared to be depressed and currently there is evidence that juvenile mortality due to predation may be constraining recovery in some regions. Therefore, our objectives were to identify what spaces are biologically important to juvenile Steller sea lions in the Kenai Fjords and Prince William Sound regions of the Gulf of Alaska. We examined geospatial location data from juvenile sea lions tagged between 2000 and 2014 ( n  = 84) and derived individual and pooled-population utilization distributions (UDs) from their movements. Core areas were defined from the UDs using an individual-based approach; this quantitatively confirmed that all individuals in our sample exhibited concentrated use within their home range (95% UD). Finally, we explored if variation in UD characteristics were associated with sex, season, age, or region. We found evidence that individual juvenile home ranges were region and sex-specific, with males having larger home ranges on average. Core space characteristics were also sex-specific, and exhibited seasonal patterns of reduced size, increased proximity to haulouts, and increased intensity of use in the summer, but only in the Kenai Fjords-Gulf of Alaska region. This study highlights the areas of biological importance during this vulnerable life history stage, and the demographic, seasonal, and spatial factors associated with variation in movement patterns for a marine mesopredator. This can be

  11. Oceanography of Glacier Bay, Alaska: Implications for biological patterns in a glacial fjord estuary

    USGS Publications Warehouse

    Etherington, L.L.; Hooge, P.N.; Hooge, Elizabeth Ross; Hill, D.F.

    2007-01-01

    Alaska, U.S.A, is one of the few remaining locations in the world that has fjords that contain temperate idewater glaciers. Studying such estuarine systems provides vital information on how deglaciation affects oceanographic onditions of fjords and surrounding coastal waters. The oceanographic system of Glacier Bay, Alaska, is of particular interest ue to the rapid deglaciation of the Bay and the resulting changes in the estuarine environment, the relatively high oncentrations of marine mammals, seabirds, fishes, and invertebrates, and the Bay’s status as a national park, where ommercial fisheries are being phased out. We describe the first comprehensive broad-scale analysis of physical and iological oceanographic conditions within Glacier Bay based on CTD measurements at 24 stations from 1993 to 2002. easonal patterns of near-surface salinity, temperature, stratification, turbidity, and euphotic depth suggest that freshwater nput was highest in summer, emphasizing the critical role of glacier and snowmelt to this system. Strong and persistent tratification of surface waters driven by freshwater input occurred from spring through fall. After accounting for seasonal nd spatial variation, several of the external physical factors (i.e., air temperature, precipitation, day length) explained a large mount of variation in the physical properties of the surface waters. Spatial patterns of phytoplankton biomass varied hroughout the year and were related to stratification levels, euphotic depth, and day length. We observed hydrographic atterns indicative of strong competing forces influencing water column stability within Glacier Bay: high levels of freshwater ischarge promoted stratification in the upper fjord, while strong tidal currents over the Bay’s shallow entrance sill enhanced ertical mixing. Where these two processes met in the central deep basins there were optimal conditions of intermediate tratification, higher light levels, and potential nutrient renewal

  12. Unusually loud ambient noise in tidewater glacier fjords: a signal of ice melt

    USGS Publications Warehouse

    Pettit, Erin C.; Lee, Kevin M.; Brann, Joel P.; Nystuen, Jeffrey A.; Wilson, Preston S.; O'Neel, Shad

    2015-01-01

    In glacierized fjords, the ice-ocean boundary is a physically and biologically dynamic environment that is sensitive to both glacier flow and ocean circulation. Ocean ambient noise offers insight into processes and change at the ice-ocean boundary. Here we characterize fjord ambient noise and show that the average noise levels are louder than nearly all measured natural oceanic environments (significantly louder than sea ice and non-glacierized fjords). Icy Bay, Alaska has an annual average sound pressure level of 120 dB (re 1 μPa) with a broad peak between 1000 and 3000 Hz. Bubble formation in the water column as glacier ice melts is the noise source, with variability driven by fjord circulation patterns. Measurements from two additional fjords, in Alaska and Antarctica, support that this unusually loud ambient noise in Icy Bay is representative of glacierized fjords. These high noise levels likely alter the behavior of marine mammals.

  13. Studying onshore-offshore fault linkages and landslides in Icy Bay and Taan Fjord to assess geohazards in Southeast Alaska

    NASA Astrophysics Data System (ADS)

    McCall, N.; Walton, M. A. L.; Gulick, S. P. S.; Haeussler, P. J.; Reece, R.; Saustrup, S.

    2016-12-01

    In southeast Alaska, the plate boundary where the Yakutat microplate collides with North America has produced large historical earthquakes (i.e., the Mw 8+ 1899 sequence). Despite the seismic potential, the possible source fault systems for these earthquakes have not been imaged with modern methods in Icy Bay. The offshore Pamplona Zone and its eastward onshore extension, the Malaspina Fault, may have played a role in the September 1899 earthquakes. Onshore and offshore mapping indicates that these structures likely connect offshore in Icy Bay. In August 2016 we collected high-resolution (300-1200 Hz) seismic reflection and multibeam bathymetry data to search for evidence of such faults beneath Icy Bay and Taan Fiord. If the Malaspina Fault is found to link with the Pamplona Zone, a rupture could trigger a tsunami impacting the populated regions in southeast Alaska. More recently, on October 17th 2015, nearby Taan Fjord experienced one of the largest non-volcanic landslides recorded in North America. Approximately 200 million metric tons spilled into Taan Fjord creating a tsunami with waves reaching 150m onshore. Using the new data, we are capable of imaging landslide and tsunami deposits in high-resolution. These data give new constraints for onshore-offshore fault systems, giving us new insights into the earthquake and tsunami hazard in southeast Alaska.

  14. 36 CFR 13.1310 - Pets.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Pets. 13.1310 Section 13.1310... SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General Provisions § 13.1310 Pets. (a) Pets are prohibited— (1) In the Exit Glacier Developed Area except in the parking lot, on the...

  15. 36 CFR 13.1310 - Pets.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Pets. 13.1310 Section 13.1310... SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General Provisions § 13.1310 Pets. (a) Pets are prohibited— (1) In the Exit Glacier Developed Area except in the parking lot, on the...

  16. 36 CFR 13.1310 - Pets.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Pets. 13.1310 Section 13.1310... SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General Provisions § 13.1310 Pets. (a) Pets are prohibited— (1) In the Exit Glacier Developed Area except in the parking lot, on the...

  17. Vegetation response to prescribed fire in the Kenai Mountains, Alaska.

    Treesearch

    Tina V. Boucher

    2003-01-01

    Between 1977 and 1997, 4000 ha were burned to promote regeneration of tree and shrub species used for browse by moose (Alces alces) in the Kenai Mountains. Species composition was documented along burned and unburned transects at 17 prescribed burn sites. Relationships among initial vegetation composition, physical site characteristics, browse...

  18. Late Quaternary distal tephra-fall deposits in lacustrine sediments, Kenai Peninsula, Alaska

    USGS Publications Warehouse

    de Fontaine, C.S.; Kaufman, D.S.; Scott, Anderson R.; Werner, A.; Waythomas, C.F.; Brown, T.A.

    2007-01-01

    Tephra-fall deposits from Cook Inlet volcanoes were detected in sediment cores from Tustumena and Paradox Lakes, Kenai Peninsula, Alaska, using magnetic susceptibility and petrography. The ages of tephra layers were estimated using 21 14C ages on macrofossils. Tephras layers are typically fine, gray ash, 1-5??mm thick, and composed of varying proportions of glass shards, pumice, and glass-coated phenocrysts. Of the two lakes, Paradox Lake contained a higher frequency of tephra (0.8 tephra/100 yr; 109 over the 13,200-yr record). The unusually large number of tephra in this lake relative to others previously studied in the area is attributed to the lake's physiography, sedimentology, and limnology. The frequency of ash fall was not constant through the Holocene. In Paradox Lake, tephra layers are absent between ca. 800-2200, 3800-4800, and 9000-10,300??cal yr BP, despite continuously layered lacustrine sediment. In contrast, between 5000 and 9000??cal yr BP, an average of 1.7 tephra layers are present per 100 yr. The peak period of tephra fall (7000-9000??cal yr BP; 2.6 tephra/100 yr) in Paradox Lake is consistent with the increase in volcanism between 7000 and 9000 yr ago recorded in the Greenland ice cores. ?? 2007 Elsevier Inc. All rights reserved.

  19. 77 FR 29358 - Kenai National Wildlife Refuge, Soldotna, AK; Environmental Impact Statement for the Shadura...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-17

    ... right-of-way within the Kenai National Wildlife Refuge (Refuge) under the Alaska National Interest Lands... comments or requests for information by any of the following methods to: Email: [email protected] prepare an environmental impact statement (EIS) for, a proposed right-of-way within the Refuge. The right...

  20. Object-Based Image Classification of Floating Ice Used as Habitat for Harbor Seals in a Tidewater Glacier Fjord in Alaska

    NASA Astrophysics Data System (ADS)

    McNabb, R. W.; Womble, J. N.; Prakash, A.; Gens, R.; Ver Hoef, J.

    2014-12-01

    Tidewater glaciers play an important role in many landscape and ecosystem processes in fjords, terminating in the sea and calving icebergs and discharging meltwater directly into the ocean. Tidewater glaciers provide floating ice for use as habitat for harbor seals (Phoca vitulina richardii) for resting, pupping, nursing, molting, and avoiding predators. Tidewater glaciers are found in high concentrations in Southeast and Southcentral Alaska; currently, many of these glaciers are retreating or have stabilized in a retracted state, raising questions about the future availability of ice in these fjords as habitat for seals. Our primary objective is to investigate the relationship between harbor seal distribution and ice availability at an advancing tidewater glacier in Johns Hopkins Inlet, Glacier Bay National Park, Alaska. To this end, we use a combination of visible and infrared aerial photographs, object-based image analysis (OBIA), and statistical modeling techniques. We have developed a workflow to automate the processing of the imagery and the classification of the fjordscape (e.g., individual icebergs, brash ice, and open water), providing quantitative information on ice coverage as well as properties not typically found in traditional pixel-based classification techniques, such as block angularity and seal density across the fjord. Reflectance variation in the red channel of the optical images has proven to be the most important first-level criterion to separate open water from floating ice. This first-level criterion works well in areas without dense brash ice, but tends to misclassify dense brash ice as single icebergs. Isolating these large misclassified regions and applying a higher reflectance threshold as a second-level criterion helps to isolate individual ice blocks surrounded by dense brash ice. We present classification results from surveys taken during June and August, 2007-2013, as well as preliminary results from statistical modeling of the

  1. Geologic map of the Seldovia quadrangle, south-central Alaska

    USGS Publications Warehouse

    Bradley, Dwight C.; Kusky, Timothy M.; Haeussler, Peter J.; Karl, Susan M.; Donley, D. Thomas

    1999-01-01

    This is a 1:250,000-scale map of the bedrock geology of the Seldovia quadrangle, south-central Alaska. The map area covers the southwestern end of the Kenai Peninsula, including the Kenai Lowlands and Kenai Mountains, on either side of Kachemak Bay. The waters of Cook Inlet cover roughly half of the map area, and a part of the Alaska Peninsula near Iliamna Volcano lies in the extreme northwest corner of the map. The bedrock geology is based on new reconnaissance field work by the U.S. Geological Survey during parts of the 1988-1993 field seasons, and on previous mapping from a number of sources. The new mapping focused on the previously little-known Chugach accretionary complex in the Kenai Mountains. Important new findings include the recognition of mappable subdivisions of the McHugh Complex (a subduction melange of mostly Mesozoic protoliths), more accurate placement of the thrust contact between the McHugh Complex and Valdez Group (Upper Cretaceous trench turbidites), and the recognition of several new near-trench plutons of early Tertiary age.

  2. Late Holocene climate change at Goat Lake, Kenai Mountains, south-central Alaska

    NASA Astrophysics Data System (ADS)

    Daigle, T. A.; Kaufman, D. S.

    2006-12-01

    Lake sediments, glacier extents, and tree rings were used to reconstruct late Holocene climate changes from Goat Lake in the Kenai Mountains, south-central Alaska (60° 14' N/149° 54' W). Two sediment cores (3.7 and 5.6 m long) were dated with 16 AMS 14C ages and record changes in watershed (organic- matter content) and within-lake (biogenic silica) productivity since ~9500 cal yr BP. Sediment analyses focused on the last 1000 yr; this interval includes a sharp transition from gyttja to inorganic mud at ~1660 AD, which marks the fist time since Pleistocene deglaciation that the north goat outlet glacier (NGO) of the Harding Icefield overtopped the drainage divide at 590 m asl to spill meltwater into Goat Lake. One 14C age of ~1535 AD from a subfossil log in the NGO valley requires ~125 yr for the NGO to thicken 150 m to the elevation of the drainage divide where it remained until ~1930. Since ~1930, the NGO has thinned 150 m and retreated 1.4 km. Equilibrium-line altitudes (ELA) were reconstructed for 12 cirque glaciers nearby Goat Lake based on the accumulation-area ratio (AAR) method following field mapping of ice-marginal features formed during the maximum Little Ice Age (LIA) in the 19th century. Maximum LIA ELA data (AAR = 0.58) were compared with 1950 ELA and yield an average lowering of 50 ± 20 m. Application of the local lapse rate of 0.47°C/100 m indicates an average ablation-season temperature reduction of 0.3°C during the maximum LIA compared to 1950, assuming no change in winter precipitation. A new tree-ring chronology from 27 hemlock trees in the Goat Lake watershed correlates with mean March through August temperature from Kenai airport (r = 0.35) and a 207 yr reconstruction indicates an average temperature reduction of 1.0°C from 1800-1900 compared with 1930-1950. Assuming no change in winter precipitation, then a 1°C cooling should have been associated with an ELA lowering by 200 m. This did not occur, and we suggest that some degree of

  3. Climate change vulnerability assessment for the Chugach National Forest and the Kenai Peninsula

    Treesearch

    Gregory H. Hayward; Steve Colt; Monica L. McTeague; Teresa N. Hollingsworth

    2017-01-01

    This assessment evaluates the effects of future climate change on a select set of ecological systems and ecosystem services in Alaska’s Kenai Peninsula and Chugach National Forest regions. The focus of the assessment was established during a multi-agency/organization workshop that established the goal to conduct a rigorous evaluation of a limited range of topics rather...

  4. 75 FR 20391 - Agrium U.S., Inc., Kenai Nitrogen Operation, Including On-Site Leased Workers From NMS (Nana...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-19

    ... anhydrous ammonia and urea. New information shows that workers leased workers from Heat & Frost Insulation... Department is amending this revised determination to include workers leased from Heat & Frost Insulation, Inc...) and Heat & Frost Insulation, Inc., Kenai, Alaska, who became totally or partially separated from...

  5. Glacimarine sedimentary processes, facies and morphology of the south-southeast Alaska shelf and fjords

    USGS Publications Warehouse

    Powell, R.D.; Molnia, B.F.

    1989-01-01

    High precipitation from Gulf of Alaska air masses can locally reach up to 800 cm a-1. This precipitation on tectonically active mountains creates cool-temperate glaciation with extremely active erosion and continuously renewed resources. High basal debris loads up to 1.5 m thick of pure debris and rapid glacial flow, which can be more than 3000 m a-1, combine to produce large volumes of siliciclastic glacimarine sediment at some of the highest sediment accumulation rates on record. At tidewater fronts of valley glaciers, sediment accumulation rates can be over 13 m a-1 and deltas commonly grow at about 106 m3 a-1. Major processes influencing glacimarine sedimentation are glacial transport and glacier-contact deposition, meltwater (subaerial and submarine) and runoff transport and deposition, iceberg rafting and gouging, sea-ice transport, wave action and storm reworking, tidal transport and deposition, alongshelf transport, sliding and slumping and gravity flows, eolian transport, and biogenic production and reworking. Processes are similar in both shelf and fjord settings; however, different intensities of some processes create different facies associations and geometries. The tectonoclimatic regime also controls morphology because bedrock structure is modified by glacial action. Major glacimarine depositional systems are all siliciclastic. They are subglacial, marginal-morainal bank and submarine outwash, and proglacial/paraglacial-fluvial/deltaic, beach, tidal flat/estuary, glacial fjord, marine outwash fjord and continental shelf. Future research should include study of long cores with extensive dating and more seismic surveys to evaluate areal and temporal extent of glacial facies and glaciation; time-series oceanographic data, sidescan sonar surveys and submersible dives to evaluate modern processes; biogenic diversity and production to evaluate paleoecological, paleobiogeographic and biofacies analysis; and detailed comparisons of exposed older rock of the

  6. Landsat-faciliated vegetation classification of the Kenai National Wildlife Refuge and adjacent areas, Alaska

    USGS Publications Warehouse

    Talbot, S. S.; Shasby, M.B.; Bailey, T.N.

    1985-01-01

    A Landsat-based vegetation map was prepared for Kenai National Wildlife Refuge and adjacent lands, 2 million and 2.5 million acres respectively. The refuge lies within the middle boreal sub zone of south central Alaska. Seven major classes and sixteen subclasses were recognized: forest (closed needleleaf, needleleaf woodland, mixed); deciduous scrub (lowland and montane, subalpine); dwarf scrub (dwarf shrub tundra, lichen tundra, dwarf shrub and lichen tundra, dwarf shrub peatland, string bog/wetlands); herbaceous (graminoid meadows and marshes); scarcely vegetated areas ; water (clear, moderately turbid, highly turbid); and glaciers. The methodology employed a cluster-block technique. Sample areas were described based on a combination of helicopter-ground survey, aerial photo interpretation, and digital Landsat data. Major steps in the Landsat analysis involved: preprocessing (geometric connection), spectral class labeling of sample areas, derivation of statistical parameters for spectral classes, preliminary classification of the entree study area using a maximum-likelihood algorithm, and final classification through ancillary information such as digital elevation data. The vegetation map (scale 1:250,000) was a pioneering effort since there were no intermediate-sclae maps of the area. Representative of distinctive regional patterns, the map was suitable for use in comprehensive conservation planning and wildlife management.

  7. Publications - RDF 2012-1 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska content DGGS RDF 2012-1 Publication Details Title: Palynological analysis of 228 outcrop samples from the ., 2012, Palynological analysis of 228 outcrop samples from the Kenai, Seldovia, and Tyonek quadrangles

  8. Alaska Department of Labor and Workforce Development

    Science.gov Websites

    ; Workforce Development > Alaska Maritime Workforce Development Plan FIND A MARITIME JOB SIGN UP TO RECEIVE MARITIME JOB UPDATES REQUEST A PRESENTATION OF THE PLAN TO YOUR ORGANIZATION CONTACT US Homer Marine Trades Association Resolution in Support of the Alaska Maritime Workforce Development Plan Kenai Peninsula Borough

  9. The western Kenai Peninsula: An opportunity to study fire and its effects on soils and trees

    Treesearch

    Theresa Jain; Tara M. Barrett

    2011-01-01

    Most of the coastal Alaska inventory unit is part of the temperate rain-forest biome, and fire is an extremely rare event. However, for the western side of the Kenai Peninsula and the Cook Inlet region, fire is a common source of natural disturbance (fig. 50). Although wildfires are a normal part of the disturbance regime for this region, urban growth and associated...

  10. College Fjord, Prince Williams Sound

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The College Fjord with its glaciers was imaged by ASTER on June 24, 2000.

    This image covers an area 20 kilometers (13 miles) wide and 24 kilometers (15 miles) long in three bands of the reflected visible and infrared wavelength region. College Fjord is located in Prince Williams Sound, east of Seward, Alaska. Vegetation is in red, and snow and ice are white and blue. Ice bergs calved off of the glaciers can be seen as white dots in the water. At the head of the fjord, Harvard Glacier (left) is one of the few advancing glaciers in the area; dark streaks on the glacier are medial moraines: rock and dirt that indicate the incorporated margins of merging glaciers. Yale Glacier to the right is retreating, exposing (now vegetated) bedrock where once there was ice. On the west edge of the fjord, several small glaciers enter the water. This fjord is a favorite stop for cruise ships plying Alaska's inland passage.

    This image is located at 61.2 degrees north latitude and 147.7 degrees west longitude.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in

  11. Kinematic analysis of melange fabrics: Examples and applications from the McHugh Complex, Kenai Peninsula, Alaska

    USGS Publications Warehouse

    Kusky, T.M.; Bradley, D.C.

    1999-01-01

    Permian to Cretaceous melange of the McHugh Complex on the Kenai Peninsula, south-central Alaska includes blocks and belts of graywacke, argillite, limestone, chert, basalt, gabbro, and ultramafic rocks, intruded by a variety of igneous rocks. An oceanic plate stratigraphy is repeated hundreds of times across the map area, but most structures at the outcrop scale extend lithological layering. Strong rheological units occur as blocks within a matrix that flowed around the competent blocks during deformation, forming broken formation and melange. Deformation was noncoaxial, and disruption of primary layering was a consequence of general strain driven by plate convergence in a relatively narrow zone between the overriding accretionary wedge and the downgoing, generally thinly sedimented oceanic plate. Soft-sediment deformation processes do not appear to have played a major role in the formation of the melange. A model for deformation at the toe of the wedge is proposed in which layers oriented at low angles to ??1 are contracted in both the brittle and ductile regimes, layers at 30-45??to ??1 are extended in the brittle regime and contracted in the ductile regime, and layers at angles greater than 45??to ??1 are extended in both the brittle and ductile regimes. Imbrication in thrust duplexes occurs at deeper levels within the wedge. Many structures within melange of the McHugh Complex are asymmetric and record kinematic information consistent with the inferred structural setting in an accretionary wedge. A displacement field for the McHugh Complex on the lower Kenai Peninsula includes three belts: an inboard belt of Late Triassic rocks records west-to-east-directed slip of hanging walls, a central belt of predominantly Early Jurassic rocks records north-south directed displacements, and Early Cretaceous rocks in an outboard belt preserve southwest-northeast directed slip vectors. Although precise ages of accretion are unknown, slip directions are compatible with

  12. Studies in the wilderness areas of the Kenai National Wildlife Refuge: fire, bark beetles, human development, and climate change

    Treesearch

    Edward E. Berg

    2000-01-01

    Wilderness areas comprise 65% of the 1.92 million acre Kenai National Wildlife Refuge, Alaska. Fire history studies indicate that fire frequency increased substantially in both white and black spruce forests after European settlement. Dendrochronolgy studies indicate that regional-scale spruce bark beetle outbreaks occurred in the 1820s, 1880s, and 1970s. None of these...

  13. Reconnaissance bedrock geology of the southeastern part of the Kenai quadrangle, Alaska: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1998

    USGS Publications Warehouse

    Bradley, Dwight C.; Wilson, Frederic H.

    2000-01-01

    We present a new reconnaissance geologic map of the southeastern part of the Kenai quadrangle that improves on previously published maps. Melange of the McHugh Complex is now known to form a continuous strike belt that can be traced from the Seldovia to the Valdez quadrangle; a problematic 75-km-long gap in the McHugh Complex in the Kenai and Seldovia quadrangles does not exist. An Eocene near-trench pluton underlies a range of nunataks in Harding Icefield.

  14. Slide-induced waves, seiching and ground fracturing caused by the earthquake of March 27, 1964 at Kenai Lake, Alaska: Chapter A in The Alaska earthquake, March 27, 1964: regional effects

    USGS Publications Warehouse

    McCulloch, David S.

    1966-01-01

    The March 27, 1964, earthquake dislodged slides from nine deltas in Kenai Lake, south-central Alaska. Sliding removed protruding parts of deltas-often the youngest parts-and steepened delta fronts, increasing the chances of further sliding. Fathograms show that debris from large slides spread widely over the lake floor, some reaching the toe of the opposite shore; at one place debris traveled 5,000 feet over the horizontal lake floor. Slides generated two kinds of local waves: a backfill and far-shore wave. Backfill waves were formed by water that rushed toward the delta to fill the void left by the sinking slide mass, overtopped the slide scrap, and came ashore over the delta. Some backfill waves had runup heights of 30 feet and ran inland more than 300 feet, uprooting and breaking off large trees. Far-shore waves hit the shore opposite the slides. They were formed by slide debris that crossed the lake floor and forced water ahead of it, which then ran up the opposite slope, burst above the lake surface, and struck the shore. One far-shore wave had a runup height of 72 feet. Kenai Lake was tilted and seiched; a power spectrum analysis of a limnogram shows a wave having the period of the calculated uninodal seiche (36 minutes) and several shorter period waves. In constricted and shallow reaches, waves caused by seiching had 20- and 30-foot runup heights. Deep lateral spreading of sediments toward delta margins displaced deeply driven railroad-bridge piles, and set up stress fields in the surface sediments which resulted in the formation of many shear and some tension fractures on the surface of two deltas.

  15. A bayesian hierarchical model for spatio-temporal prediction and uncertainty assessment using repeat LiDAR acquisitions for the Kenai Peninsula, AK, USA

    Treesearch

    Chad Babcock; Hans Andersen; Andrew O. Finley; Bruce D. Cook

    2015-01-01

    Models leveraging repeat LiDAR and field collection campaigns may be one possible mechanism to monitor carbon flux in remote forested regions. Here, we look to the spatio-temporally data-rich Kenai Peninsula in Alaska, USA to examine the potential for Bayesian spatio-temporal mapping of terrestrial forest carbon storage and uncertainty.

  16. 78 FR 65208 - Modification of Class D and E Airspace; Kenai, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ...-1174; Airspace Docket No. 12-AAL-12] Modification of Class D and E Airspace; Kenai, AK AGENCY: Federal... airspace at Kenai Municipal Airport, Kenai, AK. Controlled airspace is necessary to accommodate aircraft... (NPRM) to modify controlled airspace at Kenai Municipal Airport, Kenai, AK (78 FR 34609). Interested...

  17. 76 FR 6117 - Kenai Peninsula-Anchorage Borough Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-03

    ... DEPARTMENT OF AGRICULTURE Forest Service Kenai Peninsula-Anchorage Borough Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Kenai Peninsula-Anchorage... comments to Kenai Peninsula-Anchorage Borough Resource Advisory Committee, c/o USDA Forest Service, P.O...

  18. Population genetic structure of moose (Alces alces) of South-central Alaska

    USGS Publications Warehouse

    Wilson, Robert E.; McDonough, John T.; Barboza, Perry S.; Talbot, Sandra L.; Farley, Sean D.

    2015-01-01

    The location of a population can influence its genetic structure and diversity by impacting the degree of isolation and connectivity to other populations. Populations at range margins are often thought to have less genetic variation and increased genetic structure, and a reduction in genetic diversity can have negative impacts on the health of a population. We explored the genetic diversity and connectivity between 3 peripheral populations of moose (Alces alces) with differing potential for connectivity to other areas within interior Alaska. Populations on the Kenai Peninsula and from the Anchorage region were found to be significantly differentiated (FST= 0.071, P < 0.0001) with lower levels of genetic diversity observed within the Kenai population. Bayesian analyses employing assignment methodologies uncovered little evidence of contemporary gene flow between Anchorage and Kenai, suggesting regional isolation. Although gene flow outside the peninsula is restricted, high levels of gene flow were detected within the Kenai that is explained by male-biased dispersal. Furthermore, gene flow estimates differed across time scales on the Kenai Peninsula which may have been influenced by demographic fluctuations correlated, at least in part, with habitat change.

  19. The Effects of Glacial and Oceanic Advection on Spatial Patterns of Freshwater Contents and Temperatures of Small Fjords and Major Basins in Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Gay, S. M., III

    2016-02-01

    Using spatial principal component (PC) analysis, the variation in freshwater contents and temperatures in the upper 100m are quantified for small fjords and primary basins within Prince William Sound, Alaska. Two EOF modes explain over 90% of the variance in the freshwater content anomalies (FWCA) giving the total magnitude and vertical structure of the FWCAs respectively. Large, positive PC amplitudes (PCAs) of modes 1 and 2 indicate stratification from surface freshening, shown also by negative surface salinity anomalies, whereas positive FWCA PCAs in conjunction with negative mode 2 amplitudes infer higher subsurface freshening due to either vertical mixing or advection. In contrast, basins with negative mode 1 amplitudes are typically salty to slightly brackish, but the mode 2 PCAs determine if the FWC is concentrated near the surface or mixed deeper in the water column. The vertical structure of the temperature anomalies (TA) is more complicated, and at least three EOF modes are required to explain over 90% of the variance. The reasons for this include differences in solar heating (i.e. local climates) modulated by cold alpine runoff and advection of cold, brackish surface and subsurface glacial water. Fjords and major basins influenced by the latter exhibit large, positive mode 1 amplitudes of FWCA and negative mode 1 and 2 PCAs of TA and FWCA respectively. In certain fjords, however, advection of glacial water into the outer basins enhances the total FWC, whereas other fjords exhibit atypically low FWC due to unusual topographic features of the watersheds and inner basins. This combination of factors leads to generally poor correlations between average FWC and watershed to fjord surface area ratios or hydrology. With exception of a few sites, gradients in FWC between the small fjords and major basins are relatively weak. Thus the main driver of baroclinic flow in northern and western PWS is cold, brackish surface and subsurface water propagating from large

  20. Variation in abundance of Pacific Blue Mussel (Mytilus trossulus) in the Northern Gulf of Alaska, 2006-2015

    NASA Astrophysics Data System (ADS)

    Bodkin, James L.; Coletti, Heather A.; Ballachey, Brenda E.; Monson, Daniel H.; Esler, Daniel; Dean, Thomas A.

    2018-01-01

    Mussels are conspicuous and ecologically important components of nearshore marine communities around the globe. Pacific blue mussels (Mytilus trossulus) are common residents of intertidal habitats in protected waters of the North Pacific, serving as a conduit of primary production to a wide range of nearshore consumers including predatory invertebrates, sea ducks, shorebirds, sea otters, humans, and other terrestrial mammals. We monitored seven metrics of intertidal Pacific blue mussel abundance at five sites in each of three regions across the northern Gulf of Alaska: Katmai National Park and Preserve (Katmai) (2006-2015), Kenai Fjords National Park (Kenai Fjords) (2008-2015) and western Prince William Sound (WPWS) (2007-2015). Metrics included estimates of: % cover at two tide heights in randomly selected rocky intertidal habitat; and in selected mussel beds estimates of: the density of large mussels (≥ 20 mm); density of all mussels > 2 mm estimated from cores extracted from those mussel beds; bed size; and total abundance of large and all mussels, i.e. the product of density and bed size. We evaluated whether these measures of mussel abundance differed among sites or regions, whether mussel abundance varied over time, and whether temporal patterns in abundance were site specific, or synchronous at regional or Gulf-wide spatial scales. We found that, for all metrics, mussel abundance varied on a site-by-site basis. After accounting for site differences, we found similar temporal patterns in several measures of abundance (both % cover metrics, large mussel density, large mussel abundance, and mussel abundance estimated from cores), in which abundance was initially high, declined significantly over several years, and subsequently recovered. Averaged across all sites, we documented declines of 84% in large mussel abundance through 2013 with recovery to 41% of initial abundance by 2015. These findings suggest that factors operating across the northern Gulf of

  1. An analytical method to assess spruce beetle impacts on white spruce resources, Kenai Peninsula, Alaska.

    Treesearch

    Willem W.S. van Hees

    1992-01-01

    Forest inventory data collected in 1987 fTom sample plots established on the Kenai Peninsula were analyzed to provide point-in-time estimates of the trend and current status of a spruce beetle infestation. Ground plots were categorized by stage of infestation. Estimates of numbers of live and dead white spruce trees, cubic-foot volume in those trees, and areal extent...

  2. Variation in abundance of Pacific Blue Mussel (Mytilus trossulus) in the Northern Gulf of Alaska, 2006–2015

    USGS Publications Warehouse

    Bodkin, James L.; Coletti, Heather A.; Ballachey, Brenda E.; Monson, Daniel; Esler, Daniel N.; Dean, Thomas A.

    2017-01-01

    Mussels are conspicuous and ecologically important components of nearshore marine communities around the globe. Pacific blue mussels (Mytilus trossulus) are common residents of intertidal habitats in protected waters of the North Pacific, serving as a conduit of primary production to a wide range of nearshore consumers including predatory invertebrates, sea ducks, shorebirds, sea otters, humans, and other terrestrial mammals. We monitored seven metrics of intertidal Pacific blue mussel abundance at five sites in each of three regions across the northern Gulf of Alaska: Katmai National Park and Preserve (Katmai) (2006–2015), Kenai Fjords National Park (Kenai Fjords) (2008–2015) and western Prince William Sound (WPWS) (2007–2015). Metrics included estimates of: % cover at two tide heights in randomly selected rocky intertidal habitat; and in selected mussel beds estimates of: the density of large mussels (≥ 20 mm); density of all mussels > 2 mm estimated from cores extracted from those mussel beds; bed size; and total abundance of large and all mussels, i.e. the product of density and bed size. We evaluated whether these measures of mussel abundance differed among sites or regions, whether mussel abundance varied over time, and whether temporal patterns in abundance were site specific, or synchronous at regional or Gulf-wide spatial scales. We found that, for all metrics, mussel abundance varied on a site-by-site basis. After accounting for site differences, we found similar temporal patterns in several measures of abundance (both % cover metrics, large mussel density, large mussel abundance, and mussel abundance estimated from cores), in which abundance was initially high, declined significantly over several years, and subsequently recovered. Averaged across all sites, we documented declines of 84% in large mussel abundance through 2013 with recovery to 41% of initial abundance by 2015. These findings suggest that factors operating across the northern Gulf

  3. Long Term Ecological Monitoring Program on the Kenai National Wildlife Refuge, Alaska: An FIA adjunct inventory

    Treesearch

    Bowser John M. Morton; Edward Berg; Dawn Magness; Todd Eskelin

    2009-01-01

    Kenai National Wildlife Refuge (KENWR) has a legislative mandate "to conserve fish and wildlife populations and habitats in their natural diversity". To improve our understanding of spatial and temporal variation at the landscape level, we are developing the Long Term Ecological Monitoring Program (LTEMP) to assess change in biota on the sample frame used by...

  4. Highbush and Half-high Blueberry Trials on Alaska's Kenai Peninsula

    USDA-ARS?s Scientific Manuscript database

    While cultivation of domestic small fruits and harvesting of wild, native small fruits are popular in Alaska, little research has been published on the adaptability of highbush and half-high blueberries in southcentral Alaska. Although the area is subject to harsh winters and a short growing season,...

  5. 78 FR 34609 - Proposed Modification of Class D and E Airspace; Kenai, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ...-1174; Airspace Docket No. 12-AAL-12] Proposed Modification of Class D and E Airspace; Kenai, AK AGENCY... action proposes to modify Class D and E airspace at Kenai, AK, to accommodate aircraft departing and..., at Kenai Municipal Airport, Kenai, AK. Also, the geographic coordinates of the airport would be...

  6. Kinematic analysis of mélange fabrics: examples and applications from the McHugh Complex, Kenai Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Kusky, Timothy M.; Bradley, Dwight C.

    1999-12-01

    Permian to Cretaceous mélange of the McHugh Complex on the Kenai Peninsula, south-central Alaska includes blocks and belts of graywacke, argillite, limestone, chert, basalt, gabbro, and ultramafic rocks, intruded by a variety of igneous rocks. An oceanic plate stratigraphy is repeated hundreds of times across the map area, but most structures at the outcrop scale extend lithological layering. Strong rheological units occur as blocks within a matrix that flowed around the competent blocks during deformation, forming broken formation and mélange. Deformation was noncoaxial, and disruption of primary layering was a consequence of general strain driven by plate convergence in a relatively narrow zone between the overriding accretionary wedge and the downgoing, generally thinly sedimented oceanic plate. Soft-sediment deformation processes do not appear to have played a major role in the formation of the mélange. A model for deformation at the toe of the wedge is proposed in which layers oriented at low angles to σ1 are contracted in both the brittle and ductile regimes, layers at 30-45° to σ1 are extended in the brittle regime and contracted in the ductile regime, and layers at angles greater than 45° to σ1 are extended in both the brittle and ductile regimes. Imbrication in thrust duplexes occurs at deeper levels within the wedge. Many structures within mélange of the McHugh Complex are asymmetric and record kinematic information consistent with the inferred structural setting in an accretionary wedge. A displacement field for the McHugh Complex on the lower Kenai Peninsula includes three belts: an inboard belt of Late Triassic rocks records west-to-east-directed slip of hanging walls, a central belt of predominantly Early Jurassic rocks records north-south directed displacements, and Early Cretaceous rocks in an outboard belt preserve southwest-northeast directed slip vectors. Although precise ages of accretion are unknown, slip directions are compatible with

  7. Earthshots: Satellite images of environmental change – Hubbard Glacier, Alaska, USA

    USGS Publications Warehouse

    Adamson, Thomas

    2015-01-01

    These Landsat images illustrate an unusual event that was observed twice at the terminus of Hubbard Glacier. Hubbard temporarily blocked Russell Fjord (a long, narrow inlet of the sea) from the rest of Disenchantment Bay and the Gulf of Alaska. It’s even possible that the glacier could one day permanently block the fjord.

  8. Holocene evolution of diatom and silicoflagellate paleoceanography in Slocum Arm, a fjord in southeastern Alaska

    USGS Publications Warehouse

    Barron, John A.; Bukry, David; Addison, Jason A.; Ager, Thomas A.

    2016-01-01

    Diatom and silicoflagellate assemblages in cores EW0408-47JC, -47TC, -46MC (57° 34.5278′ N, 136° 3.7764′ W, 114 m water depth) taken from the outer portion of Slocum Arm, a post-glacial fjord in southeastern Alaska, reveal the paleoclimatic and paleoceanographic evolution of the eastern margin of the Gulf of Alaska (GoA) during the past 10,000 years. Between ~ 10 and 6.8 cal ka, periods of low salinity and cool water conditions alternated with brief intervals marked by the increased influx of oceanic, more saline and likely warmer waters. Increased surface water stability characterized by a middle Holocene interval between ~ 6.8 and 3.2 cal ka is typified by increased abundances of northeastern Pacific Thalassiosira spp. that are indicative of spring coastal blooms and decreased abundances of warm and higher salinity oceanic diatoms. At ~ 3.2 cal ka, an abrupt increase in both the relative contribution of oceanic diatoms and silicoflagellates suggestive of cooler upwelling conditions occurred in the -47JC record. A stepwise increase in alkenone sea surface temperature in northern GoA core EW0408-85JC and increase in southern sourced precipitation in the carbonate δ18O record of Jellybean Lake (Yukon) present evidence that this ~ 3.2 cal ka event coincided with the onset of enhanced positive Pacific Decadal Oscillation-like (PDO) conditions in the GoA. These positive PDO-like conditions persisted until ~ 1.0 cal ka and were followed by high amplitude fluctuations in the relative abundance of diatom and silicoflagellate assemblages.

  9. Spatio-temporal Variation in Glacier Ice as Habitat for Harbor Seals in an Alaskan Tidewater Glacier Fjord

    NASA Astrophysics Data System (ADS)

    Womble, J. N.; McNabb, R. W.; Gens, R.; Prakash, A.

    2015-12-01

    Some of the largest aggregations of harbor seals (Phoca vitulina richardii) in Alaska occur in tidewater glacier fjords where seals rest upon icebergs that are calved from tidewater glaciers into the marine environment. The distribution, amount, and size of floating ice in fjords are likely important factors influencing the spatial distribution and abundance of harbor seals; however, fine-scale characteristics of ice habitat that are used by seals have not been quantified using automated methods. We quantified the seasonal changes in ice habitat for harbor seals in Johns Hopkins Inlet, a tidewater glacier fjord in Glacier Bay National Park, Alaska, using aerial photography, object-based image analysis, and spatial models. Aerial photographic surveys (n = 53) were conducted of seals and ice during the whelping (June) and molting (August) seasons from 2007-2014. Surveys were flown along a grid of 12 transects and high-resolution digital photos were taken directly under the plane using a vertically aimed camera. Seal abundance and spatial distribution was consistently higher during June (range: 1,672-4,340) than August (range: 1,075-2,582) and corresponded to the spatial distribution and amount of ice. Preliminary analyses from 2007 suggest that the average percent of icebergs (ice ≥ than 1.6m2) and brash ice (ice < 1.6m2) per scene were greater in June (icebergs: 1.8% ± 1.6%; brash ice: 43.8% ± 38.9%) than August (icebergs: 0.2% ± 0.7%; brash ice; 15.8% ± 26.4%). Iceberg angularity (an index of iceberg shape) was also greater in June (1.7 ± 0.9) than August (0.9 ± 0.9). Potential factors that may influence the spatio-temporal variation in ice habitat for harbor seals in tidewater glacier fjords include frontal ablation rates of glaciers, fjord circulation, and local winds. Harbor seals exhibit high seasonal fidelity to tidewater glacier fjords, thus understanding the relationships between glacier dynamics and harbor seal distribution will be critical for

  10. 7 CFR 272.7 - Procedures for program administration in Alaska.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Borough with the exception of Kodiak; in all places in the Kenai Peninsula Borough that are west of Cook... for Cold Bay and Adak. (3) Urban Alaska TFP refers to a TFP that is the higher of the TFP that was in...: Cold Bay and Adak in the Aleutian Islands; Kodiak in Kodiak Island Borough; Valdez and Dayville in the...

  11. 7 CFR 272.7 - Procedures for program administration in Alaska.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Borough with the exception of Kodiak; in all places in the Kenai Peninsula Borough that are west of Cook... for Cold Bay and Adak. (3) Urban Alaska TFP refers to a TFP that is the higher of the TFP that was in...: Cold Bay and Adak in the Aleutian Islands; Kodiak in Kodiak Island Borough; Valdez and Dayville in the...

  12. 7 CFR 272.7 - Procedures for program administration in Alaska.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Borough with the exception of Kodiak; in all places in the Kenai Peninsula Borough that are west of Cook... for Cold Bay and Adak. (3) Urban Alaska TFP refers to a TFP that is the higher of the TFP that was in...: Cold Bay and Adak in the Aleutian Islands; Kodiak in Kodiak Island Borough; Valdez and Dayville in the...

  13. Predicting abundance and productivity of blueberry plants under insect defoliation in Alaska

    Treesearch

    Robin Reich; Nathan Lojewski; John Lundquist; Vanessa Bravo

    2018-01-01

    Unprecedented outbreaks of defoliating insects severely damaged blueberry crops near Port Graham on the Kenai Peninsula in Alaska from 2008-2012. The Native people in this region rely heavily on gathered blueberries and other foods for sustenance and nourishment. Influences of topography and stand structure on blueberry abundance and fruiting were examined and used to...

  14. Columbia Bay, Alaska: an 'upside down' estuary

    USGS Publications Warehouse

    Walters, R.A.; Josberger, E.G.; Driedger, C.L.

    1988-01-01

    Circulation and water properties within Columbia Bay, Alaska, are dominated by the effects of Columbia Glacier at the head of the Bay. The basin between the glacier terminus and the terminal moraine (sill depth of about 22 m) responds as an 'upside down' estuary with the subglacial discharge of freshwater entering at the bottom of the basin. The intense vertical mixing caused by the bouyant plume of freshwater creates a homogeneous water mass that exchanges with the far-field water through either a two- or a three-layer flow. In general, the glacier acts as a large heat sink and creates a water mass which is cooler than that in fjords without tidewater glaciers. The predicted retreat of Columbia Glacier would create a 40 km long fjord that has characteristics in common with other fjords in Prince William Sound. ?? 1988.

  15. Carbon Dynamics Along a Temperate Fjord-Head Delta: Linkages With Carbon Burial in Fjords

    NASA Astrophysics Data System (ADS)

    Cui, Xingqian; Bianchi, Thomas S.; Kenney, William F.; Wang, Jiaze; Curtis, Jason H.; Xu, Kehui; Savage, Candida

    2017-12-01

    We used seven 210Pb-dated sediment cores from the Gaer Arm in the Doubtful Sound fjord complex, Fiordland, New Zealand to evaluate organic carbon (OC) dynamics in a temperate fjord-head delta. The highly dynamic spatial features of this delta were clearly evident in the observed sediment properties such as mass accumulation rates that varied by a factor of 14, sediment grain size by a factor 5, and sedimentary OC content by a factor 6. Low lignin concentrations (e.g., 2.95 mg (100 mg OC)-1) and syringic/vanillic ratios of lignin phenols (S/V; e.g., 0.44) at the upper deltaic stations were representative of substantial autochthonous OC contributions to delta sediments. Significantly higher acid/aldehyde ratios of vanillic phenols [(Ad/Al)v] at the deltaic stations (0.45-0.82) than the surface grabs (0.26-0.30) indicated rapid degradation of OC within the delta. Despite being a "hot spot" for OC oxidation, the delta likely improves OC preservation in the adjacent fjord by filtering out coarse-grained particles and exporting fine-grained particles to fjord sediments. Our results showed that fjord-head deltas can influence sedimentation and OC dynamics in select regions of fjords and thus warrant more examination of fjord-head processes, particularly in areas where they are expanding. In particular, as Earth warms and glaciers retreat, the newly exposed fjord-head platforms in high-latitude environments may evolve into similar "hot spots" of OC oxidation, thereby altering the dynamics of OC burial in these systems.

  16. New geochronological evidence for the timing of early Tertiary ridge subduction in southern Alaska: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1998

    USGS Publications Warehouse

    Bradley, Dwight C.; Parrish, Randall; Clendenen, William; Lux, Daniel R.; Layer, Paul W.; Heizler, Matthew; Donley, D. Thomas

    2000-01-01

    We present new U/Pb (monazite, zircon) and 40Ar/39Ar (biotite, amphibole) ages for 10 Tertiary plutons and dikes that intrude the Chugach–Prince William accretionary complex of southern Alaska. The Sanak pluton of Sanak Island yielded ages of 61.1±0.5 Ma (zircon) and 62.7±0.35 (biotite). The Shumagin pluton of Big Koniuji Island yielded a U/Pb zircon age of 61.1±0.3 Ma. Two biotite ages from the Kodiak batholith of Kodiak Island are nearly identical at 58.3±0.2 and 57.3±2.5 Ma. Amphibole from a dike at Malina Bay, Afognak Island, is 59.3±2.2 Ma; amphibole from a dike in Seldovia Bay, Kenai Peninsula, is 57.0±0.2 Ma. The Nuka pluton, Kenai Peninsula, yielded ages of 56.0±0.5 Ma (monazite) and 54.2±0.1 (biotite). Biotite plateau ages are reported for the Aialik (52.2±0.9 Ma), Tustumena (53.2±1.1 Ma), Chernof (54.2±1.1 Ma), and Hive Island (53.4±0.4 Ma) plutons of the Kenai Peninsula. Together, these new results confirm, but refine, the previously documented along-strike diachronous age trend of near-trench magmatism during the early Tertiary. We suggest that this event began at 61 Ma at Sanak Island, 2-4 m.y. later than previously supposed. An intermediate dike near Tutka Bay, Kenai Peninsula, yielded a hornblende age of 115±2 Ma. This represents a near-trench magmatic event that had heretofore gone unrecognized on the Kenai Peninsula; correlative Early Cretaceous near-trench plutons are known from the western Chugach Mountains near Palmer.

  17. Glacimarine Sedimentary Processes and Deposits at Fjord-Terminating Tidewater Glacier Margins

    NASA Astrophysics Data System (ADS)

    Streuff, K.; O'Cofaigh, C.; Lloyd, J. M.; Noormets, R.; Nielsen, T.; Kuijpers, A.

    2016-12-01

    Many fjords along Arctic coasts are influenced by tidewater glaciers, some of them fast-flowing ice sheet outlets. Such glaciers provide important links between terrestrial and marine environments, and, due to their susceptibility to climatic and oceanographic changes, have undergone a complex history of advance and retreat since the last glacial maximum (LGM). Although a growing body of evidence has led to a better understanding of the deglacial dynamics of individual glaciers since the LGM, their overall Holocene glacimarine processes and associated sedimentary and geomorphological products often remain poorly understood. This study addresses this through a detailed analysis of sediment cores, swath bathymetric and sub-bottom profiler data collected from seven fjords in Spitsbergen and west Greenland. The sediment cores preserve a complex set of lithofacies, which include laminated and massive muds in ice-proximal, and bioturbated mud in more ice-distal settings, diamicton in iceberg-dominated areas and massive sand occurring as lenses, laminae and thick beds. These facies record the interplay of three main glacimarine processes, suspension settling, iceberg rafting and sediment gravity flows, and collectively emphasise the dominance of glacial meltwater delivery to sedimentation in high Arctic fjords. The seafloor geomorphology in the fjords shows a range of landforms that include glacial lineations associated with fast ice-flow, terminal moraines and debris lobes marking former maximum glacier extents, and small transverse moraines formed during deglaciation by glaciotectonic deformation at the grounding line and crevasse-squeezing. Additional landforms such as iceberg ploughmarks, submarine channels, pockmarks, and debris lobes formed during or after deglaciation by iceberg calving, erosion by meltwater, and sediment reworking. We present here a new model for sedimentary and geomorphological processes in front of contemporary tidewater glaciers, which

  18. Arthropod and oligochaete assemblages from grasslands of the southern Kenai Peninsula, Alaska

    PubMed Central

    Bowser, Matthew L.; Morton, John M.; Hanson, John Delton; Magness, Dawn R.; Okuly, Mallory

    2017-01-01

    Abstract Background By the end of this century, the potential climate-biome of the southern Kenai Peninsula is forecasted to change from transitional boreal forest to prairie and grasslands, a scenario that may already be playing out in the Caribou Hills region. Here, spruce (Picea × lutzii Little [glauca × sitchensis]) forests were heavily thinned by an outbreak of the spruce bark beetle (Dendroctonus rufipennis (Kirby, 1837)) and replaced by the native but invasive grass species, Calamagrostis canadensis (Michx.) P. Beauv. As part of a project designed to delimit and characterize potentially expanding grasslands in this region, we sought to characterize the arthropod and earthworm communities of these grasslands. We also used this sampling effort as a trial of applying high-throughput sequencing metabarcoding methods to a real-world inventory of terrestrial arthropods. New information We documented 131 occurrences of 67 native arthropod species at ten sites, characterizing the arthropod fauna of these grasslands as being dominated by Hemiptera (60% of total reads) and Diptera (38% of total reads). We found a single exotic earthworm species, Dendrobaena octaedra (Savigny, 1826), at 30% of sites and one unidentified enchytraeid at a single site. The utility of high-throughput sequencing metabarcoding as a tool for bioassessment of terrestrial arthropod assemblages was confirmed. PMID:28325976

  19. The trans-Alaska pipeline controversy: Technology, conservation, and the frontier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coates, P.A.

    1991-01-01

    The Trans-Alaska Pipeline was the object of perhaps the most passionately fought conservation battle in the U.S. Although numerous authors documented the pipeline construction during its construction, there is, surprisingly, no previous scholarly treatment of this event written by an historian. Coates is an environmental historian who views the most interesting aspect of the controversy to be [open quote]its relationship to earlier engineering projects and technological innovations in Alaska and the debates that accompanied them.[close quotes] Thus, he describes how the conservationist and environmental ideas arose during numerous earlier major Alaskan projects and controversies, including the Alaska Highway (1938-41), Canolmore » Pipeline (1943-45), exploration of Naval Petroleum Reserve Number Four (Pet 4, 1944-1953), DEWline (1953-57), oil development in the Kenai National Moose Range (1957-58), statehood (1958), the creation of the Arctic Wildlife Refuge (1960), Project Chariot (1958-63), and Rampart Dam (1959-67). The history starts with the acquisition of Alaska in 1867 and finishes about the time of the Valdez oil spill in 1989.« less

  20. On the impact of fjord geometry on grounding line stability

    NASA Astrophysics Data System (ADS)

    Åkesson, H.; Nick, F. M.; Morlighem, M.; Nisancioglu, K. H.

    2016-12-01

    Observations and reconstructions of Antarctic and Greenland marine-terminating glaciers and their grounding lines show that their response to external forcings is highly dependent on the geometry of individual glaciers, such as fjord geometry. While recent retreat of these glaciers is broadly consistent with warmer atmospheric and oceanic conditions, we observe considerable spatial and temporal variability, with diverse glacier behavior within the same regions. The relatively short observational record of marine-terminating glaciers also needs to be placed in a long-term context. Reconstructions of marine-terminating glaciers, however, indicate highly asynchronous retreat histories despite being subject to similar climatic forcings. These lines of evidence suggest that regional climate forcing alone cannot explain marine-terminating glacier behavior, and that these glaciers cannot be used uncritically as indicators of past climates because of their heterogeneous response to climate change. Here we use a dynamic flowline model with a physical treatment of iceberg calving to assess the effect of fjord geometry on grounding line stability on decadal and longer time scales. The model includes driving and resistive stresses of ice flow and is applied to idealized fjord geometries representing different real-world glaciers. We find that the geometry can override the signal from the ambient forcing over multiple centuries, resulting in non-linear, rapid grounding line migration. In particular we highlight the importance of fjord width, which has received relatively little attention in terms of marine ice sheet instability. Our findings provide new insights into grounding line behavior and may explain some of the documented heterogeneous, asynchronous patterns of marine-terminating glaciers in Greenland, Antarctica, Alaska and elsewhere. Further, we investigate the geometric influence on the reversibility and hysteresis of grounding line migration, relevant for oscillatory

  1. Ground breakage and associated effects in the Cook Inlet area, Alaska, resulting from the March 27, 1964 earthquake: Chapter F in The Alaska earthquake, March 27, 1964: regional effects

    USGS Publications Warehouse

    Foster, Helen L.; Karlstrom, Thor N.V.

    1967-01-01

    The great 1964 Alaska earthquake caused considerable ground breakage in the Cook Inlet area of south-central Alaska. The breakage occurred largely in thick deposits of unconsolidated sediments. The most important types of ground breakage were (1) fracturing or cracking and the extrusion of sand and gravel with ground water along fractures in various types of landforms, and (2) slumping and lateral extension of unconfined faces, particularly along delta fronts. The principal concentration of ground breakage within the area covered by this report was in a northeast-trending zone about 60 miles long and 6 miles wide in the northern part of the Kenai Lowland. The zone cut across diverse topography and stratigraphy. Cracks were as much as 30 feet across and 25 feet deep. Sand, gravel, and pieces of coal and lignite were extruded along many fissures. It is suggested that the disruption in this zone may be due to movement along a fault in the underlying Tertiary rocks. The outwash deltas of Tustumena and Skilak Lakes in the Kenai Lowland, of Eklutna Lake and Lake George in the Chugach Mountains, of Bradley Lake in the Kenai Mountains, and at the outlet of upper Beluga Lake at the base of the Alaska Range showed much slumping, as did the delta of the Susitna River. Parts of the flood plains of the Skilak River, Fox River, and Eagle River were extensively cracked. A few avalanches and slumps occurred along the coast of Cook Inlet in scattered localities. Some tidal flats were cracked. However, in view of the many thick sections of unconsolidated sediments and the abundance of steep slopes, the cracking was perhaps less than might have been expected. Observations along the coasts indicated changes in sea level which, although caused partly by compaction of unconsolidated sediments, may largely be attributed to crus1tal deformation accompanying the earthquake. Most of the Cook Inlet area was downwarped, although the northwest side of Cook Inlet may have been slightly unwarped

  2. Observations and modeling of fjord sedimentation during the 30 year retreat of Columbia Glacier, AK

    USGS Publications Warehouse

    Love, Katherine B; Hallet, Bernard; Pratt, Thomas L.; O'Neel, Shad

    2016-01-01

    To explore links between glacier dynamics, sediment yields and the accumulation of glacial sediments in a temperate setting, we use extensive glaciological observations for Columbia Glacier, Alaska, and new oceanographic data from the fjord exposed during its retreat. High-resolution seismic data indicate that 3.2 × 108 m3 of sediment has accumulated in Columbia Fjord over the past three decades, which corresponds to ~5 mm a−1 of erosion averaged over the glaciated area. We develop a general model to infer the sediment-flux history from the glacier that is compatible with the observed retreat history, and the thickness and architecture of the fjord sediment deposits. Results reveal a fivefold increase in sediment flux from 1997 to 2000, which is not correlated with concurrent changes in ice flux or retreat rate. We suggest the flux increase resulted from an increase in the sediment transport capacity of the subglacial hydraulic system due to the retreat-related steepening of the glacier surface over a known subglacial deep basin. Because variations in subglacial sediment storage can impact glacial sediment flux, in addition to changes in climate, erosion rate and glacier dynamics, the interpretation of climatic changes based on the sediment record is more complex than generally assumed.

  3. Subglacial discharge-driven renewal of tidewater glacier fjords

    NASA Astrophysics Data System (ADS)

    Carroll, Dustin; Sutherland, David A.; Shroyer, Emily L.; Nash, Jonathan D.; Catania, Ginny A.; Stearns, Leigh A.

    2017-08-01

    The classic model of fjord renewal is complicated by tidewater glacier fjords, where submarine melt and subglacial discharge provide substantial buoyancy forcing at depth. Here we use a suite of idealized, high-resolution numerical ocean simulations to investigate how fjord circulation driven by subglacial plumes, tides, and wind stress depends on fjord width, grounding line depth, and sill height. We find that the depth of the grounding line compared to the sill is a primary control on plume-driven renewal of basin waters. In wide fjords the plume exhibits strong lateral recirculation, increasing the dilution and residence time of glacially-modified waters. Rapid drawdown of basin waters by the subglacial plume in narrow fjords allows for shelf waters to cascade deep into the basin; wide fjords result in a thin, boundary current of shelf waters that flow toward the terminus slightly below sill depth. Wind forcing amplifies the plume-driven exchange flow; however, wind-induced vertical mixing is limited to near-surface waters. Tidal mixing over the sill increases in-fjord transport of deep shelf waters and erodes basin stratification above the sill depth. These results underscore the first-order importances of fjord-glacier geometry in controlling circulation in tidewater glacier fjords and, thus, ocean heat transport to the ice.

  4. Genetic diversity of sockeye salmon (`oncorhynchus nerka`) of Cook Inlet, Alaska, and its application to restoration of injured populations of the Kenai River. Exxon Valdez Oil Spill Restoration Project 93012 and 94255-2. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seeb, L.W.; Habicht, C.; Templin, W.D.

    1995-11-01

    Genetic data from sockeye salmon (Oncorhynchus nerka) were collected from all significant spawning populations contributing to mixed-stock harvests in Cook Inlet. A total of 68 allozyme loci were resolved from 37 populations. Mitochondrial DNA data from the NADH subunits 5 and 6 were collected from 19 of the populations. Mixed-stock analyses using maximum likelihood methods with 27 loci were evaluated to estimate the proportion of Kenai River populations in Central District drift fisheries. Simulations indicate that Kenai River populations can be identified in mixtures at a level of precision and accuracy useful for restoration and fishery management. Mixed-stock samples frommore » Cook Inlet drift net fisheries were analyzed both inseason (48 hr) and post-season. Samples from fish wheels from the Kenai, Kasilof, Yentna, and Susitna River systems were also analyzed. Inclusion of mtDNA data in the analysis is being investigated to determine if it improves precision and accuracy. Results from this study are currently being used in the management and restoration of Kenai River sockeye salmon injured in the 1989 Exxon Valdex oil spill.« less

  5. Late Holocene paleoseismology of Shuyak Island, Kodiak Archipelago, Alaska - surface deformation and plate segmentation within the 1964 Alaska M 9.2 earthquake rupture zone

    NASA Astrophysics Data System (ADS)

    Brader, Martin; Shennan, Ian; Barlow, Natasha; Davies, Frank; Longley, Chris; Tunstall, Neil

    2017-04-01

    Recent paleoseismological studies question whether segment boundaries identified for 20th and 21st century great, >M 8, earthquakes persist through multiple earthquake cycles, or whether smaller segments with different boundaries rupture and cause significant hazards. The smaller segments may include some that are currently slipping rather than locked. The 1964 Alaska M 9.2 earthquake was the largest of five earthquakes of >M 7.9 between 1938 and 1965 along the Aleutian chain and coast of southcentral Alaska that helped define models of rupture segments along the Alaska-Aleutian megathrust. The 1964 M 9.2 earthquake ruptured ˜950 km of the megathrust, involving two main asperities focussed on Kodiak Island and Prince William Sound and crossed the Kenai segment, which is currently creeping. Paleoseismic studies of coastal sediments currently provide a long record of previous large earthquakes for the Prince William Sound segment, with widespread evidence of seven great earthquakes in the last 4000 years and more restricted evidence for three earlier ones. Shorter and more fragmentary records from the Kenai Peninsula, Yakataga and Kodiak Archipelago raise the hypothesis of different patterns of surface deformation during past great earthquakes. We present new evidence from coastal wetlands on Shuyak Island, towards the hypothesised north-eastern boundary of the Kodiak segment, to illustrate different detection limits of paleoseismic indicators and how these influence the identification of segment boundaries in late Holocene earthquakes. We compare predictions of co-seismic uplift and subsidence derived from geophysical models of earthquakes with different rupture modes. The spatial patterns of agreement and misfit between model predictions and quantitative reconstructions of co-seismic submergence and emergence suggest that no earthquake within the last 4000 years had the same rupture pattern as the 1964 M 9.2 earthquake.

  6. Imaging megathrust zone and Yakutat/Pacific plate interface in Alaska subduction zone

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Abers, G. A.; Li, J.; Christensen, D. H.; Calkins, J. A.

    2013-05-01

    We image the subducted slab underneath a 450 km long transect of the Alaska subduction zone. Dense stations in southern Alaska are set up to investigate (1) the geometry and velocity structure of the downgoing plate and their relation to slab seismicity, and (2) the interplate coupled zone where the great 1964 (magnitude 9.3) had greatest rupture. The joint teleseismic migration of two array datasets (MOOS, Multidisciplinary Observations of Onshore Subduction, and BEAAR, Broadband Experiment Across the Alaska Range) based on teleseismic receiver functions (RFs) using the MOOS data reveal a shallow-dipping prominent low-velocity layer at ~25-30 km depth in southern Alaska. Modeling of these RF amplitudes shows a thin (<6.5 km) low-velocity layer (shear wave velocity of ~3 km/s), which is ~20-30% slower than normal oceanic crustal velocities, between the subducted slab and the overriding North American plate. The observed low-velocity megathrust layer (with P-to-S velocity ratio (Vp/Vs) exceeding 2.0) may be due to a thick sediment input from the trench in combination of elevated pore fluid pressure in the channel. The subducted crust below the low-velocity channel has gabbroic velocities with a thickness of 11-12 km. Both velocities and thickness of the low-velocity channel abruptly increase as the slab bends in central Alaska, which agrees with previously published RF results. Our image also includes an unusually thick low-velocity crust subducting with a ~20 degree dip down to 130 km depth at approximately 200 km inland beneath central Alaska. The unusual nature of this subducted segment has been suggested to be due to the subduction of the Yakutat terrane. We also show a clear image of the Yakutat and Pacific plate subduction beneath the Kenai Peninsula, and the along-strike boundary between them at megathrust depths. Our imaged western edge of the Yakutat terrane, at 25-30 km depth in the central Kenai along the megathrust, aligns with the western end of the

  7. Fifty-Year Record of Glacier Change Reveals Shifting Climate in the Pacific Northwest and Alaska, USA

    USGS Publications Warehouse

    ,

    2009-01-01

    Fifty years of U.S. Geological Survey (USGS) research on glacier change shows recent dramatic shrinkage of glaciers in three climatic regions of the United States. These long periods of record provide clues to the climate shifts that may be driving glacier change. The USGS Benchmark Glacier Program began in 1957 as a result of research efforts during the International Geophysical Year (Meier and others, 1971). Annual data collection occurs at three glaciers that represent three climatic regions in the United States: South Cascade Glacier in the Cascade Mountains of Washington State; Wolverine Glacier on the Kenai Peninsula near Anchorage, Alaska; and Gulkana Glacier in the interior of Alaska (fig. 1).

  8. Influence of life-history parameters on organochlorine concentrations in free-ranging killer whales (Orcinus orca) from Prince William Sound, AK.

    PubMed

    Ylitalo, G M; Matkin, C O; Buzitis, J; Krahn, M M; Jones, L L; Rowles, T; Stein, J E

    2001-12-17

    Certain populations of killer whales (Orcinus orca) have been extensively studied over the past 30 years, including populations that use Puget Sound, WA, the inside waters of British Columbia, Southeastern Alaska and Kenai Fjords/Prince William Sound, Alaska. Two eco-types of killer whales, 'transient' and 'resident', occur in all of these regions. These eco-types are genetically distinct and differ in various aspects of morphology, vocalization patterns, diet and habitat use. Various genetic and photo-identification studies of eastern North Pacific killer whales have provided information on the male-female composition of most of these resident pods and transient groups, as well as the approximate ages, reproductive status and putative recruitment order (birth order) of the individual whales. Biopsy blubber samples of free-ranging resident and transient killer whales from the Kenai Fjords/Prince William Sound, AK region were acquired during the 1994-1999 field seasons and analyzed for selected organochlorines (OCs), including dioxin-like CB congeners and DDTs. Concentrations of OCs in transient killer whales (marine mammal-eating) were much higher than those found in resident animals (fish-eating) apparently due to differences in diets of these two killer whale eco-types. Certain life-history parameters such as sex, age and reproductive status also influenced the concentrations of OCs in the Alaskan killer whales. Reproductive female whales contained much lower levels of OCs than sexually immature whales or mature male animals in the same age class likely due to transfer of OCs from the female to her offspring during gestation and lactation. Recruitment order also influenced the concentrations of OCs in the Alaskan killer whales. In adult male residents, first-recruited whales contained much higher OC concentrations than those measured in non-first-recruited (e.g. second recruited, third recruited) resident animals in the same age group. This study provides

  9. Imaging megathrust zone and Yakutat/Pacific plate interface in Alaska subduction zone

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Abers, G. A.; Li, J.; Christensen, D. H.; Calkins, J. A.

    2012-12-01

    We image the subducted slab underneath a 450 km long transect of the Alaska subduction zone. Dense stations in southern Alaska are set up to investigate (1) the geometry and velocity structure of the downgoing plate and their relation to slab seismicity, and (2) the interplate coupled zone where the great 1964 (magnitude 9.3) had greatest rupture. The joint teleseismic migration of two array datasets (MOOS, Multidisciplinary Observations of Onshore Subduction, and BEAAR, Broadband Experiment Across the Alaska Range) based on teleseismic receiver functions (RFs) using the MOOS data reveal a shallow-dipping prominent low-velocity layer at ~25-30 km depth in southern Alaska. Modeling of these RF amplitudes shows a thin (3-6.5 km) low-velocity layer (shear wave velocity less than 3 km/s), which is ~20-30% slower than normal oceanic crustal velocities, between the subducted slab and the overriding North America plate. The observed low-velocity megathrust layer (with Vp/Vs ratio exceeding 2.0) may be due to a thick sediment input from the trench in combination of elevated pore fluid pressure in the channel. The subducted crust below the low-velocity channel has gabbroic velocities with a thickness of 11-15 km. Both velocities and thickness of the low-velocity channel abruptly increase as the slab bends in central Alaska, which agrees with previously published RF results. Our image also includes an unusually thick low-velocity crust subducting with a ~20 degree dip down to 130 km depth at approximately 200 km inland beneath central Alaska. The unusual nature of this subducted segment has been suggested to be due to the subduction of the Yakutat terrane. Subduction of this buoyant crust could explain the shallow dip of the thrust zone beneath southern Alaska. We also show a clear image of the Yakutat and Pacific plate subduction beneath the Kenai Peninsula, and the along-strike boundary between them at megathrust depths. Our imaged western edge of the Yakutat terrane, at

  10. Ocean circulation and properties in Petermann Fjord, Greenland

    NASA Astrophysics Data System (ADS)

    Johnson, H. L.; Münchow, A.; Falkner, K. K.; Melling, H.

    2011-01-01

    The floating ice shelf of Petermann glacier interacts directly with the ocean and is thought to lose at least 80% of its mass through basal melting. Based on three opportunistic ocean surveys in Petermann Fjord we describe the basic oceanography: the circulation at the fjord mouth, the hydrographic structure beneath the ice shelf, the oceanic heat delivered to the under-ice cavity, and the fate of the resulting melt water. The 1100 m deep fjord is separated from neighboring Hall Basin by a sill between 350 and 450 m deep. Fjord bottom waters are renewed by episodic spillover at the sill of Atlantic water from the Arctic. Glacial melt water appears on the northeast side of the fjord at depths between 200 m and that of the glacier's grounding line (about 500 m). The fjord circulation is fundamentally three-dimensional; satellite imagery and geostrophic calculations suggest a cyclonic gyre within the fjord mouth, with outflow on the northeast side. Tidal flows are similar in magnitude to the geostrophic flow. The oceanic heat flux into the fjord appears more than sufficient to account for the observed rate of basal melting. Cold, low-salinity water originating in the surface layer of Nares Strait in winter intrudes far under the ice. This may limit basal melting to the inland half of the shelf. The melt rate and long-term stability of Petermann ice shelf may depend on regional sea ice cover and fjord geometry, in addition to the supply of oceanic heat entering the fjord.

  11. 76 FR 24457 - Kenai Peninsula-Anchorage Borough Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... Peninsula--Anchorage Borough Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Kenai Peninsula--Anchorage Borough Resource Advisory Committee will meet in Portage...

  12. Modeling the Impact of Fjord-glacier Geometry on Subglacial Plume, Wind, and Tidally-forced Circulation in Outlet Glacier Fjords

    NASA Astrophysics Data System (ADS)

    Carroll, D.; Sutherland, D.; Nash, J. D.; Shroyer, E.; de Steur, L.; Catania, G. A.; Stearns, L. A.

    2016-12-01

    The acceleration, retreat, and thinning of Greenland's outlet glaciers coincided with a warming of Atlantic waters, suggesting that marine-terminating glaciers are sensitive to ocean forcing. However, we still lack a precise understanding of what factors control the variability of ocean heat transport toward the glacier terminus. Here we use an idealized ocean general circulation model (3D MITgcm) to systematically evaluate how fjord circulation driven by subglacial plumes, wind stress (along-fjord and along-shelf), and tides depends on grounding line depth, fjord width, sill height, and latitude. Our results indicate that while subglacial plumes in deeply grounded systems can draw shelf waters over a sill and toward the glacier, shallowly grounded systems require external forcing to renew basin waters. We use a coupled sea ice model to explore the competing influence of tidal mixing and surface buoyancy forcing on fjord stratification. Passive tracers injected in the plume, fjord basin, and shelf waters are used to quantify turnover timescales. Finally, we compare our model results with a two-year mooring record to explain fundamental differences in observed circulation and hydrography in Rink Isbræ and Kangerlussuup Sermia fjords in west Greenland. Our results underscore the first-order effect that geometry has in controlling fjord circulation and, thus, ocean heat flux to the ice.

  13. Seismic imaging along a 600 km transect of the Alaska Subduction zone (Invited)

    NASA Astrophysics Data System (ADS)

    Calkins, J. A.; Abers, G. A.; Freymueller, J. T.; Rondenay, S.; Christensen, D. H.

    2010-12-01

    We present earthquake locations, scattered wavefield migration images, and phase velocity maps from preliminary analysis of combined seismic data from the Broadband Experiment Across the Alaska Range (BEAAR) and Multidisciplinary Observations of Onshore Subduction (MOOS) projects. Together, these PASSCAL broadband arrays sampled a 500+ km transect across a portion of the subduction zone characterized by the Yakutat terrane/Pacific plate boundary in the downgoing plate, and the Denali volcanic gap in the overriding plate. These are the first results from the MOOS experiment, a 34-station array that was deployed from 2006-2008 to fill in the gap between the TACT offshore refraction profile (south and east of the coastline of the Kenai Peninsula), and the BEAAR array (spanning the Alaska Range between Talkeetna and Fairbanks). 2-D images of the upper 150 km of the subduction zone were produced by migrating forward- and back-scattered arrivals in the coda of P waves from large teleseismic earthquakes, highlighting S-velocity perturbations from a smoothly-varying background model. The migration images reveal a shallowly north-dipping low velocity zone that is contiguous near 20 km depth on its updip end with previously obtained images of the subducting plate offshore. The low velocity zone steepens further to the north, and terminates near 120 km beneath the Alaska Range. We interpret this low velocity zone to be the crust of the downgoing plate, and the reduced seismic velocities to be indicative of hydrated gabbroic compositions. Earthquakes located using the temporary arrays and nearby stations of the Alaska Regional Seismic Network correlate spatially with the inferred subducting crust. Cross-sections taken along nearly orthogonal strike lines through the MOOS array reveal that both the dip angle and the thickness of the subducting low velocity zone change abruptly across a roughly NNW-SSE striking line drawn through the eastern Kenai Peninsula, coincident with a

  14. Role of lake regulation on glacier fed rivers in enhancing salmon productivity: The Cook Inlet watershed south central Alaska, USA

    USGS Publications Warehouse

    Hupp, C.R.

    2000-01-01

    Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet. This paper examines the ways in which the regulation of glacier-fed rivers by proglacial lakes affects salmon productivity, with particular reference to the Kenai River. Salmon escapement per unit channel length on the Kenai River is between two and ten times that found for rain-and-snowmelt dominated rivers and glacier-fed rivers lacking lake regulation. Lakes are shown to influence biological processes in glacier-fed rivers by attenuating peak flows, sustaining high flows throughout the summer, supplementing winter low flows, settling suspended sediment, and increasing river temperatures. Downstream from large lakes, glacier-fed rivers are less disturbed, channels are relatively stable and have well-developed salmonid habitats. The positive influences are indicated by the high diversity and abundances of benthic macroinvertebrates, which are important food resources for juvenile salmonids. High summer flows allow access for up-river salmon runs and lakes also provide both overwintering and rearing habitat. Copyright ?? 2000 John Wiley & Sons, Ltd.Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet

  15. Quantifying the Availability of Tidewater Glacial Ice as Habitat for Harbor Seals in a Tidewater Glacial Fjord in Alaska Using Object-Based Image Analysis of Airborne Visible Imagery

    NASA Astrophysics Data System (ADS)

    Prakash, A.; Haselwimmer, C. E.; Gens, R.; Womble, J. N.; Ver Hoef, J.

    2013-12-01

    Tidewater glaciers are prominent landscape features that play a significant role in landscape and ecosystem processes along the southeastern and southcentral coasts of Alaska. Tidewater glaciers calve large icebergs that serve as an important substrate for harbor seals (Phoca vitulina richardii) for resting, pupping, nursing young, molting, and avoiding predators. Many of the tidewater glaciers in Alaska are retreating, which may influence harbor seal populations. Our objectives are to investigate the relationship between ice conditions and harbor seal distributions, which are poorly understood, in John's Hopkins Inlet, Glacier Bay National Park, Alaska, using a combination of airborne remote sensing and statistical modeling techniques. We present an overview of some results from Object-Based Image Analysis (OBIA) for classification of a time series of very high spatial resolution (4 cm pixels) airborne imagery acquired over John's Hopkins Inlet during the harbor seal pupping season in June and during the molting season in August from 2007 - 2012. Using OBIA we have developed a workflow to automate processing of the large volumes (~1250 images/survey) of airborne visible imagery for 1) classification of ice products (e.g. percent ice cover, percent brash ice, percent ice bergs) at a range of scales, and 2) quantitative determination of ice morphological properties such as iceberg size, roundness, and texture that are not found in traditional per-pixel classification approaches. These ice classifications and morphological variables are then used in statistical models to assess relationships with harbor seal abundance and distribution. Ultimately, understanding these relationships may provide novel perspectives on the spatial and temporal variation of harbor seals in tidewater glacial fjords.

  16. Distribution and relative abundance of sea otters in south-central and south-western Alaska before or at the time of the T/V Exxon Valdez oil spill

    USGS Publications Warehouse

    DeGange, Anthony R.; Monson, Daniel H.; Irons, David B.; Robbins, C.M.; Douglas, David C.; Bayha, Keith; Kormendy, Jennifer

    1990-01-01

    Surveys of sea otters (Enhydra lutris) conducted before, immediately after, or at the time of the TA^ Exxon Valdez oil spill were used to guide otter capture efforts and assess the immediate effects of the spill. Shoreline counts (by boat) of sea otters in Prince William Sound in 1984 suggested that a minimum of 4,500 sea otters inhabited nearshore waters of Prince William Sound. Areas of highest density within the western portion of Prince William Sound included the Bainbridge Island area, Montague Island, Green Island, and Port Wells. About 1,330 sea otters were counted from helicopters along the coast of the Kenai Peninsula. Highest densities of sea otters were found along the western end of the Kenai Peninsula. At Kodiak Island, about 3,500 sea otters were counted in coastal surveys from helicopters. Highest densities of sea otters were found in Perenosa Bay in northern Afognak Island, and in waters between Afogneik, Kodiak, and Raspberry Islands. Along the Alaska Peninsula, about 6,500 sea otters were counted between Kamishak Bay and Unimak Pass. Areas of concentration included the Izembek Lagoon airea. False Pass, the Pavlof Islands, Hallo Bay, and Kujulik Bay. Line transect surveys conducted offshore of the coastal strips indicate that at the time of the surveys relatively high densities of sea otters existed offshore at Kodiak Island and along the Alaska Peninsula, but not on the Kenai Peninsula.

  17. A fjord-glacier coupled system model

    NASA Astrophysics Data System (ADS)

    de Andrés, Eva; Otero, Jaime; Navarro, Francisco; Prominska, Agnieszka; Lapazaran, Javier; Walczowski, Waldemar

    2017-04-01

    With the aim of studying the processes occurring at the front of marine-terminating glaciers, we couple a fjord circulation model with a flowline glacier dynamics model, with subglacial discharge and calving, which allows the calculation of submarine melt and its influence on calving processes. For ocean modelling, we use a general circulation model, MITgcm, to simulate water circulation driven by both fjord conditions and subglacial discharge, and for calculating submarine melt rates at the glacier front. To constrain freshwater input to the fjord, we use estimations from European Arctic Reanalysis (EAR). To determine the optimal values for each run period, we perform a sensitivity analysis of the model to subglacial discharge variability, aimed to get the best fit of model results to observed temperature and salinity profiles in the fjord for each of these periods. Then, we establish initial and boundary fjord conditions, which we vary weekly-fortnightly, and calculate the submarine melt rate as a function of depth at the calving front. These data are entered into the glacier-flow model, Elmer/Ice, which has been added a crevasse-depth calving model, to estimate the glacier terminus position at a weekly time resolution. We focus our study on the Hansbreen Glacier-Hansbukta Fjord system, in Southern Spitsbergen, Svalbard, where a large set of data are available for both glacier and fjord. The bathymetry of the entire system has been determined from ground penetrating radar and sonar data. In the fjord we have got temperature and salinity data from CTDs (May to September, 2010-2014) and from a mooring (September to May, 2011-2012). For Hansbreen, we use glacier surface topography data from the SPIRIT DEM, surface mass balance from EAR, centre line glacier velocities from stake measurements (May 2005-April 2011), weekly terminus positions from time-lapse photos (Sept. 2009-Sept. 2011), and sea-ice concentrations from time-lapse photos and Nimbus-7 SMMR and DMSP SSM

  18. Teleseismic P and S wave attenuation constraints on temperature and melt of the upper mantle in the Alaska Subduction Zone.

    NASA Astrophysics Data System (ADS)

    Soto Castaneda, R. A.; Abers, G. A.; Eilon, Z.; Christensen, D. H.

    2017-12-01

    Recent broadband deployments in Alaska provide an excellent opportunity to advance our understanding of the Alaska-Aleutians subduction system, with implications for subduction processes worldwide. Seismic attenuation, measured from teleseismic body waves, provides a strong constraint on thermal structure as well as an indirect indication of ground shaking expected from large intermediate-depth earthquakes. We measure P and S wave attenuation from pairwise amplitude and phase spectral ratios for teleseisms recorded at 204 Transportable Array, Alaska Regional, and Alaska Volcano Observatory, SALMON (Southern Alaska Lithosphere & Mantle Observation Network) and WVLF (Wrangell Volcanics & subducting Lithosphere Fate) stations in central Alaska. The spectral ratios are inverted in a least squares sense for differential t* (path-averaged attenuation operator) and travel time anomalies at every station. Our preliminary results indicate a zone of low attenuation across the forearc and strong attenuation beneath arc and backarc in the Cook Inlet-Kenai region where the Aleutian-Yakutat slab subducts, similar to other subduction zones. This attenuation differential is observed in both the volcanic Cook Inlet segment and amagmatic Denali segments of the Aleutian subduction zone. By comparison, preliminary results for the Wrangell-St. Elias region past the eastern edge of the Aleutian slab show strong attenuation beneath the Wrangell Volcanic Field, as well as much further south than in the Cook Inlet-Kenai region. This pattern of attenuation seems to indicate a short slab fragment in the east of the subduction zone, though the picture is complex. Results also suggest the slab may focus or transmit energy with minimal attenuation, adding to the complexity. To image the critical transition between the Alaska-Aleutian slab and the region to its east, we plan to incorporate new broadband data from the WVLF array, an ongoing deployment of 37 PASSCAL instruments installed in 2016

  19. Multibeam Mapping of Remote Fjords in Southeast-Greenland

    NASA Astrophysics Data System (ADS)

    Weinrebe, W.; Kjaer, K. H.; Kjeldsen, K. K.; Bjork, A. A.

    2015-12-01

    The fjords of Southeast-Greenland are among the most remote areas of the Northern Hemisphere. Access to this area is hampered by a broad belt of sea ice floating along the East-Greenland coast from North to South. Consequently, the majority of those fjords have never been surveyed in detail until now. During an expedition by the Center of GeoGenetics of the University of Copenhagen in summer of 2014 we were able to map the Skjoldungen Fjord system with multibeam bathymetry. The topsail schooner ACTIV, built 1951 as a cargo ship to supply remote settlements in Greenland was chosen for the expedition. Though a vintage vessel, the ACTIV was well suited to cross the belt of sea ice and to cruise the ice covered fjords. A portable ELAC-Seabeam 1050 multibeam system was temporarily installed on the vessel. The two transducer of the system were mounted at the lower end of a 6 m long pole attached outboard at port side to the hull of the vessel. Though the installation was quite demanding without any winches or cranes, the construction was sufficiently stable and easy to manage throughout the entire cruise. Nearly the entire fjord system, leaving only a small gap of 5 km at the innermost part and small stripes close to the shorelines could be surveyed during the cruise. For the first time, a comprehensive map of Skjoldungen Fjord is now available. The map displays water depths from close to zero up to 800 m, the deepest part along a stretch of about 10 km in the Southwest. The bathymetry of the northern fjord is remarkably different from the southern fjord: the southern fjord features an outer deep part showing water depths between 500 m and 800 m and a shallow inner part with depths less than 300 m and a prominent sill in between. The northern fjord shows a more gradual increase of water depths from 200 m in the inner part to 600 m at the entrance.

  20. Environmental and human influences on trumpeter swan habitat occupancy in Alaska

    USGS Publications Warehouse

    Schmidt, J.H.; Lindberg, M.S.; Johnson, D.S.; Schmultz, J.A.

    2009-01-01

    Approximately 70-80% of the entire population of the Trumpeter Swan (Cygnus huccinator) depends for reproduction on wetlands in Alaska. This makes the identification of important habitat features and the effects of human interactions important for the species' long-term management. We analyzed the swan's habitat preferences in five areas throughout the state and found that swan broods occupied some wetland types, especially larger closed-basin wetlands such as lakes and ponds, at rates much higher than they occupied other wetland types, such as shrubby or forested wetlands. We also found a negative effect of transportation infrastructure on occupancy by broods in and around the Minto Flats State Game Refuge, Kenai National Wildlife Refuge, and Tetlin National Wildlife Refuge. This finding is of particular interest because much of the Minto Flats refuge has recently been licensed for oil and gas exploration and parts of the Kenai refuge have been developed in the past. We also investigated the potential effects of the shrinkage of closed-basin ponds on habitat occupancy by nesting Trumpeter Swans. We compared nesting swans' use of ponds with changes in the ponds' size and other characteristics from 1982 to 1996 and found no relationships between occupancy and changes in pond size. However, we believe that the recent and rapid growth of Trumpeter Swan populations in Alaska may become limited by available breeding habitat, and anthropogenic and climate-induced changes to the swan's breeding habitats have the potential to limit future production. ?? 2009 by The Cooper Ornithological Society. All rights reserved.

  1. Stock structure of sea otters (Enhydra lutris kenyoni) in Alaska

    USGS Publications Warehouse

    Gorbics, C.S.; Bodkin, James L.

    2001-01-01

    Sea otters in Alaska are recognized as a single subspecies (Enhydra lutris kenyoni) and currently managed as a single, interbreeding population. However, geographic and behavioral mechanisms undoubtably constrain sea otter movements on much smaller scales. This paper applies the phylogeographic method (Dizon et al. 1992) and considers distribution, population response, phenotype and genotype data to identify stocks of sea otters within Alaska. The evidence for separate stock identity is genotypic (all stocks), phenotypic (Southcentral and Southwest stocks), and geographic distribution (Southeast stock), whereas population response data are equivocal (all stocks). Differences in genotype frequencies and the presence of unique genotypes among areas indicate restricted gene flow. Genetic exchange may be limited by little or no movement across proposed stock boundaries and discontinuities in distribution at proposed stock boundaries. Skull size differences (phenotypic) between Southwest and Southcentral Alaska populations further support stock separation. Population response information was equivocal in either supporting or refuting stock identity. On the basis of this review, we suggest the following: (1) a Southeast stock extending from Dixon Entrance to Cape Yakataga; (2) a Southcentral stock extending from Cape Yakataga to Cape Douglas including Prince William Sound and Kenai peninsula coast; and (3) a Southwest stock including Alaska Peninsula coast, the Aleutians to Attu Island, Barren, Kodiak, Pribilof Islands, and Bristol Bay.

  2. Increased prevalence of antibiotic-resistant E. coli in gulls sampled in southcentral Alaska is associated with urban environments

    USGS Publications Warehouse

    Atterby, Clara; Ramey, Andrew M.; Gustafsson Hall, Gabriel; Jarhult, Josef; Borjesson, Stefan; Bonnedahl, Jonas

    2016-01-01

    BackgroundAntibiotic-resistant bacteria pose challenges to healthcare delivery systems globally; however, limited information is available regarding the prevalence and spread of such bacteria in the environment. The aim of this study was to compare the prevalence of antibiotic-resistant bacteria in large-bodied gulls (Larus spp.) at urban and remote locations in Southcentral Alaska to gain inference into the association between antibiotic resistance in wildlife and anthropogenically influenced habitats.MethodsEscherichia coli was cultured (n=115 isolates) from fecal samples of gulls (n=160) collected from a remote location, Middleton Island, and a more urban setting on the Kenai Peninsula.ResultsScreening of E. coli from fecal samples collected from glaucous-winged gulls (Larus glaucescens) at Middleton Island revealed 8% of isolates were resistant to one or more antibiotics and 2% of the isolates were resistant to three or more antibiotics. In contrast, 55% of E. coli isolates derived from fecal samples collected from large-bodied gulls (i.e. glaucous, herring [Larus argentatus], and potentially hybrid gulls) on the Kenai Peninsula were resistant to one or more antibiotics and 22% were resistant to three or more antibiotics. In addition, total of 16% of the gull samples from locations on the Kenai Peninsula harbored extended-spectrum cephalosporin-resistant E. coli isolates (extended-spectrum beta-lactamases [ESBL] and plasmid-encoded AmpC [pAmpC]), in contrast to Middleton Island where no ESBL- or pAmpC-producing isolates were detected.ConclusionOur findings indicate that increased prevalence of antibiotic resistance is associated with urban environments in Southcentral Alaska and presumably influenced by anthropogenic impacts. Further investigation is warranted to assess how migratory birds may maintain and spread antimicrobial-resistant bacteria of relevance to human and animal health.

  3. Determining baselines and variability of elements in plants and soils near the Kenai National Wildlife Refuge, Alaska

    USGS Publications Warehouse

    Crock, J.G.; Severson, R.C.; Gough, L.P.

    1992-01-01

    Recent investigations on the Kenai Peninsula had two major objectives: (1) to establish elemental baseline concentrations ranges for native vegetation and soils; and, (2) to determine the sampling density required for preparing stable regional geochemical maps for various elements in native plants and soils. These objectives were accomplished using an unbalanced, nested analysis-of-variance (ANOVA) barbell sampling design. Hylocomium splendens (Hedw.) BSG (feather moss, whole plant), Picea glauca (Moench) Voss (white spruce, twigs and needles), and soil horizons (02 and C) were collected and analyzed for major and trace total element concentrations. Using geometric means and geometric deviations, expected baseline ranges for elements were calculated. Results of the ANOVA show that intensive soil or plant sampling is needed to reliably map the geochemistry of the area, due to large local variability. For example, producing reliable element maps of feather moss using a 50 km cell (at 95% probability) would require sampling densities of from 4 samples per cell for Al, Co, Fe, La, Li, and V, to more than 15 samples per cell for Cu, Pb, Se, and Zn.Recent investigations on the Kenai Peninsula had two major objectives: (1) to establish elemental baseline concentrations ranges for native vegetation and soils; and, (2) to determine the sampling density required for preparing stable regional geochemical maps for various elements in native plants and soils. These objectives were accomplished using an unbalanced, nested analysis-of-variance (ANOVA) barbell sampling design. Hylocomium splendens (Hedw.) BSG (feather moss, whole plant), Picea glauca (Moench) Voss (white spruce, twigs and needles), and soil horizons (02 and C) were collected and analyzed for major and trace total element concentrations. Using geometric means and geometric deviations, expected baseline ranges for elements were calculated. Results of the ANOVA show that intensive soil or plant sampling is needed to

  4. Quantification and Analysis of Icebergs in a Tidewater Glacier Fjord Using an Object-Based Approach.

    PubMed

    McNabb, Robert W; Womble, Jamie N; Prakash, Anupma; Gens, Rudiger; Haselwimmer, Christian E

    2016-01-01

    Tidewater glaciers are glaciers that terminate in, and calve icebergs into, the ocean. In addition to the influence that tidewater glaciers have on physical and chemical oceanography, floating icebergs serve as habitat for marine animals such as harbor seals (Phoca vitulina richardii). The availability and spatial distribution of glacier ice in the fjords is likely a key environmental variable that influences the abundance and distribution of selected marine mammals; however, the amount of ice and the fine-scale characteristics of ice in fjords have not been systematically quantified. Given the predicted changes in glacier habitat, there is a need for the development of methods that could be broadly applied to quantify changes in available ice habitat in tidewater glacier fjords. We present a case study to describe a novel method that uses object-based image analysis (OBIA) to classify floating glacier ice in a tidewater glacier fjord from high-resolution aerial digital imagery. Our objectives were to (i) develop workflows and rule sets to classify high spatial resolution airborne imagery of floating glacier ice; (ii) quantify the amount and fine-scale characteristics of floating glacier ice; (iii) and develop processes for automating the object-based analysis of floating glacier ice for large number of images from a representative survey day during June 2007 in Johns Hopkins Inlet (JHI), a tidewater glacier fjord in Glacier Bay National Park, southeastern Alaska. On 18 June 2007, JHI was comprised of brash ice ([Formula: see text] = 45.2%, SD = 41.5%), water ([Formula: see text] = 52.7%, SD = 42.3%), and icebergs ([Formula: see text] = 2.1%, SD = 1.4%). Average iceberg size per scene was 5.7 m2 (SD = 2.6 m2). We estimate the total area (± uncertainty) of iceberg habitat in the fjord to be 455,400 ± 123,000 m2. The method works well for classifying icebergs across scenes (classification accuracy of 75.6%); the largest classification errors occur in areas with

  5. Quantification and Analysis of Icebergs in a Tidewater Glacier Fjord Using an Object-Based Approach

    PubMed Central

    McNabb, Robert W.; Womble, Jamie N.; Prakash, Anupma; Gens, Rudiger; Haselwimmer, Christian E.

    2016-01-01

    Tidewater glaciers are glaciers that terminate in, and calve icebergs into, the ocean. In addition to the influence that tidewater glaciers have on physical and chemical oceanography, floating icebergs serve as habitat for marine animals such as harbor seals (Phoca vitulina richardii). The availability and spatial distribution of glacier ice in the fjords is likely a key environmental variable that influences the abundance and distribution of selected marine mammals; however, the amount of ice and the fine-scale characteristics of ice in fjords have not been systematically quantified. Given the predicted changes in glacier habitat, there is a need for the development of methods that could be broadly applied to quantify changes in available ice habitat in tidewater glacier fjords. We present a case study to describe a novel method that uses object-based image analysis (OBIA) to classify floating glacier ice in a tidewater glacier fjord from high-resolution aerial digital imagery. Our objectives were to (i) develop workflows and rule sets to classify high spatial resolution airborne imagery of floating glacier ice; (ii) quantify the amount and fine-scale characteristics of floating glacier ice; (iii) and develop processes for automating the object-based analysis of floating glacier ice for large number of images from a representative survey day during June 2007 in Johns Hopkins Inlet (JHI), a tidewater glacier fjord in Glacier Bay National Park, southeastern Alaska. On 18 June 2007, JHI was comprised of brash ice (x¯ = 45.2%, SD = 41.5%), water (x¯ = 52.7%, SD = 42.3%), and icebergs (x¯ = 2.1%, SD = 1.4%). Average iceberg size per scene was 5.7 m2 (SD = 2.6 m2). We estimate the total area (± uncertainty) of iceberg habitat in the fjord to be 455,400 ± 123,000 m2. The method works well for classifying icebergs across scenes (classification accuracy of 75.6%); the largest classification errors occur in areas with densely-packed ice, low contrast between

  6. 75 FR 1404 - Kenai National Wildlife Refuge, Soldotna, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ... DEPARTMENT OF THE INTERIOR Fish and Wildlife Service [FWS-R7-R-2009-N250; 70133-1265-0000-S3] Kenai National Wildlife Refuge, Soldotna, AK AGENCY: U.S. Fish and Wildlife Service, Interior. ACTION: Notice of availability: record of decision. SUMMARY: We, the U.S. Fish and Wildlife Service (Service...

  7. Modeling of water masses exchange between Brepolen and the main fjord in the Western Svalbard fjord - Hornsund

    NASA Astrophysics Data System (ADS)

    Jakacki, Jaromir; Przyborska, Anna; Sunfjord, Arild; Albertsen, Jon; Białoskórski, Michał; Pliszka, Bartosz

    2016-04-01

    Hornsund is the southernmost fjord of the Svalbard archipelago island - Spitsbergen. It is under the influence of two main currents - the coastal Sørkapp Current (SC) carrying fresher and colder water masses from the Barents Sea and the West Spitsbergen Current (WSC), which is the branch of the Norwegian Atlantic Current (NwAC) and carries warm and salty waters from the North Atlantic. The main local forcing, which is tidal motion, brings shelf waters into the central fjord basin and then the transformed masses are carried into the easternmost part of the fjord, Brepolen. For the purpose of studying circulation and water exchange in this area a three-dimensional hydrodynamic model has been implemented and validated. The model is based on MIKE by DHI product and covers the Hornsund fjord with the shelf area, which is the fjord foreground. It is sigma a coordinate model (in our case 35 vertical levels) with variable horizontal resolution (mesh grid). The smallest cell has a horizontal dimension less than one hundred meters and the largest cells about 5 km. In spite of model limitations, the model reproduces the main circulation and water pathways in the Brepolen area. Seasonal and annual volume, heat and salt exchanges have been also estimated. The influence of freshwater discharge on shelf-fjord exchange will be also analyzed. The model results allow to study full horizontal and vertical fields of physical parameters (temperature, salinity, sea level variations and currents). The model integration covers only years 2005-2010 and the presented results will be based on this simulation. The project has been financed from the funds of the Leading National Research Centre (KNOW) received by the Centre for Polar Studies for the period 2014-2018

  8. Palynofacies assemblages reflect sources of organic matter in New Zealand fjords

    NASA Astrophysics Data System (ADS)

    Prebble, Joseph G.; Hinojosa, Jessica L.; Moy, Christopher M.

    2018-02-01

    Understanding sources and transport pathways of organic carbon in fjord systems is important to quantify carbon cycling in coastal settings. Provenance of surficial sediment organic carbon in Fiordland National Park (southwestern New Zealand) has previously been estimated using a range of techniques, including mixing models derived from stable isotopes and lipid biomarker distributions. Here, we present the first application of palynofacies to explore the sources of particulate organic carbon to five fjords along the SW margin of New Zealand, to further discriminate the provenance of organic carbon in the fjords. We find good correlation between isotopic-and biomarker-derived proxies for organic carbon provenance and our new palynofacies observations. We observe strong down-fjord gradients of decreasing terrestrially derived organic carbon further from the river inflow at fjord heads. Fjords with small catchments and minor fresh water inflow exhibit reversed gradients, indicating that volume of freshwater entering at the fjord head is a primary mechanism to transport particulates down fjord rather than local transport from fjord sides. The palynofacies data also confirmed previously recorded latitudinal trends (i.e. between fjords), of less frequent and more weathered terrestrially derived organic carbon in the southern fjords, consistent with enhanced marine inflow and longer transport times in the southern catchments. Dinocyst assemblages also exhibit a strong latitudinal gradient, with assemblages dominated by heterotrophic forms in the north. In addition to providing support for previous studies, this approach allows finer discrimination of terrestrial organic carbon than previously, for example variation of leaf material. This study demonstrates that visual palynofacies analysis is a valuable tool to pinpoint origins of organic carbon in fjord systems, providing different but complementary information to other proxies.

  9. Methane seeps along boundaries of receding glaciers in Alaska and Greenland

    NASA Astrophysics Data System (ADS)

    Walter Anthony, K. M.; Anthony, P. M.; Grosse, G.; Chanton, J.

    2012-12-01

    Glaciers, ice sheets, and permafrost form a 'cryosphere cap' that traps methane formed in the subsurface, restricting its flow to the Earth's surface and atmosphere. Despite model predictions that glacier melt and degradation of permafrost open conduits for methane's escape, there has been a paucity of field evidence for 'subcap' methane seepage to the atmosphere as a direct result of cryosphere disintegration in the terrestrial Arctic. Here, we document for the first time the release of sub-cryosphere methane to lakes, rivers, shallow marine fjords and the atmosphere from abundant gas seeps concentrated along boundaries of receding glaciers and permafrost thaw in Alaska and Greenland. Through aerial and ground surveys of 6,700 lakes and fjords in Alaska we mapped >150,000 gas seeps identified as bubbling-induced open holes in seasonal ice. Using gas flow rates, stable isotopes, and radiocarbon dating, we distinguished recent ecological methane from subcap, geologic methane. Subcap seeps had anomalously high bubbling rates, 14C-depletion, and stable isotope values matching microbial sources associated with sedimentary deposits and coal beds as well as thermogenic methane accumulations in Alaska. Since differential ice loading can overpressurize fluid reservoirs and cause sediment fracturing beneath ice sheets, and since the loss of glacial ice reduces normal stress on ground, opens joints, and activates faults and fissures, thereby increasing permeability of the crust to fluid flow, we hypothesized that in the previously glaciated region of Southcentral Alaska, where glacial wastage continues presently, subcap seeps should be disproportionately associated with neotectonic faults. Geospatial analysis confirmed that subcap seep sites were associated with faults within a 7 km belt from the modern glacial extent. The majority of seeps were located in areas affected by seismicity from isostatic rebound associated with deglaciation following the Little Ice Age (LIA; ca

  10. A simple approach to adjust tidal forcing in fjord models

    NASA Astrophysics Data System (ADS)

    Hjelmervik, Karina; Kristensen, Nils Melsom; Staalstrøm, André; Røed, Lars Petter

    2017-07-01

    To model currents in a fjord accurate tidal forcing is of extreme importance. Due to complex topography with narrow and shallow straits, the tides in the innermost parts of a fjord are both shifted in phase and altered in amplitude compared to the tides in the open water outside the fjord. Commonly, coastal tide information extracted from global or regional models is used on the boundary of the fjord model. Since tides vary over short distances in shallower waters close to the coast, the global and regional tidal forcings are usually too coarse to achieve sufficiently accurate tides in fjords. We present a straightforward method to remedy this problem by simply adjusting the tides to fit the observed tides at the entrance of the fjord. To evaluate the method, we present results from the Oslofjord, Norway. A model for the fjord is first run using raw tidal forcing on its open boundary. By comparing modelled and observed time series of water level at a tidal gauge station close to the open boundary of the model, a factor for the amplitude and a shift in phase are computed. The amplitude factor and the phase shift are then applied to produce adjusted tidal forcing at the open boundary. Next, we rerun the fjord model using the adjusted tidal forcing. The results from the two runs are then compared to independent observations inside the fjord in terms of amplitude and phases of the various tidal components, the total tidal water level, and the depth integrated tidal currents. The results show improvements in the modelled tides in both the outer, and more importantly, the inner parts of the fjord.

  11. First report of Armillaria sinapina, a cause of armillaria root disease, associated with a variety of forest tree hosts on sites with diverse climates in Alaska

    Treesearch

    N. B. Klopfenstein; J. E. Lundquist; J. W. Hanna; M.-S. Kim; G. I. McDonald

    2009-01-01

    In August of 2007, a preliminary survey was conducted in Alaska to evaluate potential impacts of climate change on forest trees. Armillaria sinapina, a root-disease pathogen, was isolated from conifer and hardwood hosts on climatically diverse sites spanning 675 km from the Kenai Peninsula to the Arctic Circle. Seven isolates (NKAK1, NKAK2, NKAK5, NKAK6, NKAK9F, NKAK13...

  12. Combined High-Resolution LIDAR Topography and Multibeam Bathymetry for Northern Resurrection Bay, Seward, Alaska

    USGS Publications Warehouse

    Labay, Keith A.; Haeussler, Peter J.

    2008-01-01

    A new Digital Elevation Model was created using the best available high-resolution topography and multibeam bathymetry surrounding the area of Seward, Alaska. Datasets of (1) LIDAR topography collected for the Kenai Watershed Forum, (2) Seward harbor soundings from the U.S. Army Corp of Engineers, and (3) multibeam bathymetry from the National Oceanic and Atmospheric Administration contributed to the final combined product. These datasets were placed into a common coordinate system, horizontal datum, vertical datum, and data format prior to being combined. The projected coordinate system of Universal Transverse Mercator Zone 6 North American Datum of 1927 was used for the horizontal coordinates. Z-values in meters were referenced to the tidal datum of Mean High Water. Gaps between the datasets were interpolated to create the final seamless 5-meter grid covering the area of interest around Seward, Alaska.

  13. Marine benthic habitat mapping of the West Arm, Glacier Bay National Park and Preserve, Alaska

    USGS Publications Warehouse

    Hodson, Timothy O.; Cochrane, Guy R.; Powell, Ross D.

    2013-01-01

    Seafloor geology and potential benthic habitats were mapped in West Arm, Glacier Bay National Park and Preserve, Alaska, using multibeam sonar, groundtruthed observations, and geological interpretations. The West Arm of Glacier Bay is a recently deglaciated fjord system under the influence of glacial and paraglacial marine processes. High glacially derived sediment and meltwater fluxes, slope instabilities, and variable bathymetry result in a highly dynamic estuarine environment and benthic ecosystem. We characterize the fjord seafloor and potential benthic habitats using the recently developed Coastal and Marine Ecological Classification Standard (CMECS) by the National Oceanic and Atmospheric Administration (NOAA) and NatureServe. Due to the high flux of glacially sourced fines, mud is the dominant substrate within the West Arm. Water-column characteristics are addressed using a combination of CTD and circulation model results. We also present sediment accumulation data derived from differential bathymetry. These data show the West Arm is divided into two contrasting environments: a dynamic upper fjord and a relatively static lower fjord. The results of these analyses serve as a test of the CMECS classification scheme and as a baseline for ongoing and future mapping efforts and correlations between seafloor substrate, benthic habitats, and glacimarine processes.

  14. Multibeam bathymetry and CTD measurements in two fjord systems in southeastern Greenland

    NASA Astrophysics Data System (ADS)

    Kjellerup Kjeldsen, Kristian; Weinrebe, Reimer Wilhelm; Bendtsen, Jørgen; Anker Bjørk, Anders; Kjær, Kurt Henrik

    2017-08-01

    We present bathymetry and hydrological observations collected in the summer of 2014 from two fjord systems in southeastern Greenland with a multibeam sonar system. Our results provide a detailed bathymetric map of the fjord complex around the island of Skjoldungen in Skjoldungen Fjord and the outer part of Timmiarmiut Fjord and show far greater depths compared to the International Bathymetric Chart of the Arctic Ocean. The hydrography collected shows different properties in the fjords with the bottom water masses below 240 m in Timmiarmiut Fjord being 1-2 °C warmer than in the two fjords around Skjoldungen, but data also illustrate the influence of sills on the exchange of deeper water masses within fjords. Moreover, evidence of subglacial discharge in Timmiarmiut Fjord, which is consistent with satellite observations of ice mélange set into motion, adds to our increasing understanding of the distribution of subglacial meltwater. Data are available through the PANGAEA website at https://doi.pangaea.de/10.1594/PANGAEA.860627.

  15. Climate science informs participatory scenario development and applications to decision making in Alaska

    NASA Astrophysics Data System (ADS)

    Welling, L. A.; Winfree, R.; Mow, J.

    2012-12-01

    climate and social drivers of change to ecological processes and decision making. Components included review and synthesis of climate observations and projections, effects and impacts, and information on other relevant factors (e.g., subsistence activities, land cover, fire activity, land use change, sea level shifts). Although workshops focused primarily on park lands and waters, nearby communities and other land management units also participated. Results include a framework through which managers are beginning to analyze uncertainties associated with climate change and ecosystem responses and evaluate appropriate and effective actions. For example, at Kenai Fjords National Park, melting from the Harding Icefield and Exit Glacier is changing how managers respond to local flooding issues. The Exit Glacier is one of the park's iconic visitor experiences and in the last four years, the road to the glacier has been subject to mid-summer/fair weather flooding which are outside the historic norms. Rather than seek a traditional solution to the issue, park management has been working with highway engineers to evolve interim solutions as this dynamic system continues to rapidly change. Climate change scenarios established a set of possible plausible futures for the park and are also being used to "wind tunnel" potential responses.

  16. Seasonal changes in Fe along a glaciated Greenlandic fjord.

    NASA Astrophysics Data System (ADS)

    Hopwood, Mark; Connelly, Douglas; Arendt, Kristine; Juul-Pedersen, Thomas; Stinchcombe, Mark; Meire, Lorenz; Esposito, Mario; Krishna, Ram

    2016-03-01

    Greenland's ice sheet is the second largest on Earth, and is under threat from a warming Arctic climate. An increase in freshwater discharge from Greenland has the potential to strongly influence the composition of adjacent water masses with the largest impact on marine ecosystems likely to be found within the glaciated fjords. Here we demonstrate that physical and chemical estuarine processes within a large Greenlandic fjord are critical factors in determining the fate of meltwater derived nutrients and particles, especially for non-conservative elements such as Fe. Concentrations of Fe and macronutrients in surface waters along Godthåbsfjord, a southwest Greenlandic fjord with freshwater input from 6 glaciers, changed markedly between the onset and peak of the meltwater season due to the development of a thin (<10 m), outflowing, low-salinity surface layer. Dissolved (<0.2 µm) Fe concentrations in meltwater entering Godthåbsfjord (200 nM), in freshly melted glacial ice (mean 38 nM) and in surface waters close to a land terminating glacial system (80 nM) all indicated high Fe inputs into the fjord in summer. Total dissolvable (unfiltered at pH <2.0) Fe was similarly high with concentrations always in excess of 100 nM throughout the fjord and reaching up to 5.0 µM close to glacial outflows in summer. Yet, despite the large seasonal freshwater influx into the fjord, Fe concentrations near the fjord mouth in the out-flowing surface layer were similar in summer to those measured before the meltwater season. Furthermore, turbidity profiles indicated that sub-glacial particulate Fe inputs may not actually mix into the outflowing surface layer of this fjord. Emphasis has previously been placed on the possibility of increased Fe export from Greenland as meltwater fluxes increase. Here we suggest that in-fjord processes may be effective at removing Fe from surface waters before it can be exported to coastal seas.

  17. Role of lake regulation on glacier-fed rivers in enhancing salmon productivity: the Cook Inlet watershed, south-central Alaska, USA

    NASA Astrophysics Data System (ADS)

    Dorava, Joseph M.; Milner, Alexander M.

    2000-10-01

    Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet. This paper examines the ways in which the regulation of glacier-fed rivers by proglacial lakes affects salmon productivity, with particular reference to the Kenai River. Salmon escapement per unit channel length on the Kenai River is between two and ten times that found for rain-and-snowmelt dominated rivers and glacier-fed rivers lacking lake regulation.Lakes are shown to influence biological processes in glacier-fed rivers by attenuating peak flows, sustaining high flows throughout the summer, supplementing winter low flows, settling suspended sediment, and increasing river temperatures. Downstream from large lakes, glacier-fed rivers are less disturbed, channels are relatively stable and have well-developed salmonid habitats. The positive influences are indicated by the high diversity and abundances of benthic macroinvertebrates, which are important food resources for juvenile salmonids. High summer flows allow access for up-river salmon runs and lakes also provide both overwintering and rearing habitat.

  18. Greenland's glacial fjords and their role in regional biogeochemical dynamics.

    NASA Astrophysics Data System (ADS)

    Crosby, J.; Arndt, S.

    2017-12-01

    Greenland's coastal fjords serve as important pathways that connect the Greenland Ice Sheet (GrIS) and the surrounding oceans. They export seasonal glacial meltwater whilst being significant sites of primary production. These fjords are home to some of the most productive ecosystems in the world and possess high socio-economic value via fisheries. A growing number of studies have proposed the GrIS as an underappreciated yet significant source of nutrients to surrounding oceans. Acting as both transfer routes and sinks for glacial nutrient export, fjords have the potential to act as significant biogeochemical processors, yet remain underexplored. Critically, an understanding of the quantitative contribution of fjords to carbon and nutrient budgets is lacking, with large uncertainties associated with limited availability of field data and the lack of robust upscaling approaches. To close this knowledge gap we developed a coupled 2D physical-biogeochemical model of the Godthåbsfjord system, a sub-Arctic sill fjord in southwest Greenland, to quantitatively assess the impact of nutrients exported from the GrIS on fjord primary productivity and biogeochemical dynamics. Glacial meltwater is found to be a key driver of fjord-scale circulation patterns, whilst tracer simulations reveal the relative nutrient contributions from meltwater-driven upwelling and meltwater export from the GrIS. Hydrodynamic circulation patterns and freshwater transit times are explored to provide a first understanding of the glacier-fjord-ocean continuum, demonstrating the complex pattern of carbon and nutrient cycling at this critical land-ocean interface.

  19. Organic carbon burial in fjords: Terrestrial versus marine inputs

    NASA Astrophysics Data System (ADS)

    Cui, Xingqian; Bianchi, Thomas S.; Savage, Candida; Smith, Richard W.

    2016-10-01

    Fjords have been identified as sites of enhanced organic carbon (OC) burial and may play an important role in regulating climate change on glacial-interglacial timescales. Understanding sediment processes and sources of sedimentary OC are necessary to better constrain OC burial in fjords. In this study, we use Fiordland, New Zealand, as a case study and present data on surface sediments, sediment down-cores and terrestrial end-members to examine dynamics of sediments and the sources of OC in fjord sediments. Sediment cores showed evidence of multiple particle sources, frequent bioturbation and mass-wasting events. A multi-proxy approach (stable isotopes, lignin-phenols and fatty acids) allowed for separation of marine, soil and vascular plant OC in surface sediments. The relationship between mass accumulation rate (MAR) and OC contents in fjord surface sediments suggested that mineral dilution is important in controlling OC content on a global scale, but is less important for specific regions (e.g., New Zealand). The inconsistency of OC budgets calculated by using MAR weighted %OC and OC accumulation rates (AR; 6 vs 21-31 Tg OC yr-1) suggested that sediment flux in fjords was likely underestimated. By using end-member models, we propose that 55% to 62% of total OC buried in fjords is terrestrially derived, and accounts for 17 ± 12% of the OCterr buried in all marine sediments. The strong correlation between MAR and OC AR indicated that OC flux will likely decrease in fjords in the future with global warming due to decrease in sediment flux caused by glacier denudation.

  20. Variation in mitochondrial DNA and allozymes discriminates early and late forms of Chinook salmon Oncorhynchus tshawytscha in the Kenai and Kasilof Rivers, AK

    USGS Publications Warehouse

    Adams, Noah S.; Spearman, William J.; Burger, Carl V.; Currens, Kenneth P.; Schreck, Carl B.; Li, Hiram W.

    1994-01-01

    Genetic differences between early and late forms of Alaskan chinook salmon (Oncorhynchus tshawytscha) were identified using two genetic approaches: mitochondrial DNA (mtDNA) analysis, and protein electrophoresis. Study populations consisted of early and late runs in each of the Kenai and Kasilof rivers in Alaska, and a population from the Minam River, Oregon. Two segments of mtDNA were amplified using the polymerase chain reaction (PCR) and digested with 14–16 restriction enzymes. Results showed that early runs were genetically similar to each other but different from the late runs. The late runs were different from each other based on the frequency of the common haplotypes. Frequency differences in shared haplotypes together with the presence of a unique haplotype separated the Minam River stock from those in Alaska. In the protein analysis, each population was examined at 30 allozyme loci. Based on 14 polymorphic loci, Minam River salmon were genetically distinct from the Alaskan populations. Within the Alaskan populations, early runs were most similar to each other but different from the late runs; the late runs were also genetically most similar to each other. Both mtDNA and allozyme analysis suggest that chinook salmon may segregate into genetically different early and late forms within a drainage.

  1. A genetic discontinuity in moose (Alces alces) in Alaska corresponds with fenced transportation infrastructure

    USGS Publications Warehouse

    Wilson, Robert E.; Farley, Sean D.; McDonough, Thomas J.; Talbot, Sandra L.; Barboza, Perry S.

    2015-01-01

    The strength and arrangement of movement barriers can impact the connectivity among habitat patches. Anthropogenic barriers (e.g. roads) are a source of habitat fragmentation that can disrupt these resource networks and can have an influence on the spatial genetic structure of populations. Using microsatellite data, we evaluated whether observed genetic structure of moose (Alces alces) populations were associated with human activities (e.g. roads) in the urban habitat of Anchorage and rural habitat on the Kenai Peninsula, Alaska. We found evidence of a recent genetic subdivision among moose in Anchorage that corresponds to a major highway and associated infrastructure. This subdivision is most likely due to restrictions in gene flow due to alterations to the highway (e.g. moose-resistant fencing with one-way gates) and a significant increase in traffic volume over the past 30 years; genetic subdivision was not detected on the Kenai Peninsula in an area not bisected by a major highway. This study illustrates that anthropogenic barriers can substructure wildlife populations within a few generations and highlights the value of genetic assessments to determine the effects on connectivity among habitat patches in conjunction with behavioral and ecological data..

  2. Magnetic susceptibilities measured on rocks of the upper Cook Inlet, Alaska

    USGS Publications Warehouse

    Alstatt, A.A.; Saltus, R.W.; Bruhn, R.L.; Haeussler, Peter J.

    2002-01-01

    We have measured magnetic susceptibility in the field on most of the geologic rock formations exposed in the upper Cook Inlet near Anchorage and Kenai, Alaska. Measured susceptibilities range from less than our detection limit of 0.01 x 10-3 (SI) to greater than 100 x 10-3 (SI). As expected, mafic igneous rocks have the highest susceptibilities and some sedimentary rocks the lowest. Rocks of the Tertiary Sterling Formation yielded some moderate to high susceptibility values. Although we do not have detailed information on the magnetic mineralogy of the rocks measured here, the higher susceptibilities are sufficient to explain the magnitudes of some short-wavelength aeromagnetic anomalies observed on recent surveys of the upper Cook Inlet.

  3. Resolving bathymetry from airborne gravity along Greenland fjords

    USGS Publications Warehouse

    Boghosian, Alexandra; Tinto, Kirsty; Cochran, James R.; Porter, David; Elieff, Stefan; Burton, Bethany L.; Bell, Robin E.

    2015-01-01

    Recent glacier mass loss in Greenland has been attributed to encroaching warming waters, but knowledge of fjord bathymetry is required to investigate this mechanism. The bathymetry in many Greenland fjords is unmapped and difficult to measure. From 2010 to 2012, National Aeronautics and Space Administration's Operation IceBridge collected a unique set of airborne gravity, magnetic, radar, and lidar data along the major outlet glaciers and fjords in Greenland. We applied a consistent technique using the IceBridge gravity data to create 90 bathymetric profiles along 54 Greenland fjords. We also used this technique to recover subice topography where warm or crevassed ice prevents the radar system from imaging the bed. Here we discuss our methodology, basic assumptions and error analysis. We present the new bathymetry data and discuss observations in six major regions of Greenland covered by IceBridge. The gravity models provide a total of 1950 line kilometers of bathymetry, 875 line kilometers of subice topography, and 12 new grounding line depths.

  4. Will Alaska's fisheries regime prove resilient? Kenai River fishery management as a model for adaptive governance

    USGS Publications Warehouse

    Powell, James E.; Wipfli, Mark S.; Criddle, Keith R.; Schoen, Erik R.

    2018-01-01

    Alaska’s sheries regulatory regime, one of the strongest, most science- based sheries management systems in the world, is often held up as an example of sheries management “done right” (Worm etal. 2011). Faced with a barrage of oncoming threats, ranging from budget cuts to climate change, will this system prove to be truly resilient? To answer this question, we examined the results of the research pertaining to governance from a larger 5- year social- ecological study of the Alaska Experimental Program to Stimulate Competitive Research’s (AK-EPSCoR) Alaska Adapting to Changing Environments series (see Schoen etal. 2017).

  5. Bathymetry and geology of Greenlandic fjords from Operation IceBridge airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Tinto, K. J.; Cochran, J. R.; Bell, R. E.; Charles, K.; Dube, J.; McLeish, M.; Burton, B. L.

    2011-12-01

    The Greenland Ice Sheet is drained by outlet glaciers that commonly flow into long, deep fjords. Glacier flow is controlled in part by the topography and geology of the glacier bed, and is also affected by the interaction between ice and sea water in the fjords. This interaction depends on the bathymetry of the fjords, and particularly on the presence of bathymetric sills, which can control the influx of warm, saline water towards the grounding zone. The bathymetry and geology of these fjords provide boundary conditions for models of the behaviour of the glaciers and ice sheet. Greenlandic fjords can be over 100 km long and up to 1000 m deep, with sills a few hundred metres above the bottom of the fjord. Where bathymetry is not well known, the scale of these features makes them appropriate targets for aerogravity surveys. Where bathymetry is known, aerogravity can provide information on the geology of the fjord, but the sometimes narrow, sinuous fjords present challenges for both data acquisition and interpretation. In 2010 and 2011 Operation IceBridge flew the Sander Geophysics AIRGrav system along the axes of more than 40 outlet glaciers distributed around the coast of Greenland. The AIRGrav system has high precision, fast recovery from turns and the capacity for draped flights, all of which improve the quality of data acquisition along fjord axes. Operation IceBridge survey flights are conducted at or lower than 500 m above ground surface, at speeds of ~140 m/s, allowing full amplitude resolution of features larger than ~5 km, and detection of smaller scale features. Fjord axis data are commonly of lower quality than data from grid-based gravity surveys. Interpretation of these data is improved by combining repeated survey lines from both seasons as well as incorporating other datasets, such as radar, and magnetic data from Operation IceBridge, digital elevation models and geological maps. While most fjords were surveyed by a single axial track, surveys of

  6. Spatial distribution of juvenile and adult female Tanner crabs (Chionoecetes bairdi) in a glacial fjord ecosystem: Implications for recruitment processes

    USGS Publications Warehouse

    Nielsen, J.K.; Taggart, S. James; Shirley, Thomas C.; Mondragon, Jennifer

    2007-01-01

    A systematic pot survey in Glacier Bay, Alaska, was conducted to characterize the spatial distribution of juvenile and adult female Tanner crabs, and their association with depth and temperature. The information was used to infer important recruitment processes for Tanner crabs in glaciated ecosystems. High-catch areas for juvenile and adult female Tanner crabs were identified using local autocorrelation statistics. Spatial segregation by size class corresponded to features in the glacial landscape: high-catch areas for juveniles were located at the distal ends of two narrow glacial fjords, and high-catch areas for adults were located in the open waters of the central Bay. Juvenile female Tanner crabs were found at nearly all sampled depths (15–439 m) and temperatures (4–8°C), but the biggest catches were at depths <150 m where adults were scarce. Because adults may prey on or compete with juveniles, the distribution of juveniles could be influenced by the distribution of adults. Areas where adults or predators are scarce, such as glacially influenced fjords, could serve as refuges for juvenile Tanner crabs.

  7. Deep ventilation process in Patagonian fjord, Chile

    NASA Astrophysics Data System (ADS)

    Pérez-Santos, Iván; Silvan, Nelson; Castillo, Manuel; Mayorga, Nicolas; Schneider, Wolfgang; Montero, Paulina; Daneri, Giovanni; Valle-Levinson, Arnoldo; Pizarro, Oscar; Ramirez, Nadín; Igor, Gabriela; Navarro, Eduardo

    2017-04-01

    The Puyuhuapi Fjord (44.6° S) has previously been reported as one of the hypoxic fjords in Chilean Patagonia (dissolved oxygen -DO below 2 mL L-1). Hydrographic sampling between 1995-2016 confirmed hypoxia below 100 m depth, down to the bottom (250 m). A line of sensors at an oceanographic mooring in Puyuhuapi were deployed to continuously record the temporal-vertical behaviour of water column temperature and salinity from the surface down to 120 m, from February to July 2015. A multi-Parameter water quality sonde was deployed at the bottom of the line, with a DO optical sensor. From February to mid-May, hypoxia was sustained (1.4-1.6 mL L-1). However, from May until the end of June, DO values increased (2.8 mL L-1), exceeding the hypoxia threshold. This was the first event of deep ventilation reported in a Chilean Patagonian Fjord. During this time period, deep water temperatures increased by 1.3 °C, coinciding with the decreased in salinity from 33.6 to 32.8. The main cause of this event was attributed to the arrival of a new volume of mixed oceanic water into the fjord, transported by Modified Subantartic Water, with warm temperatures, lower salinities and slightly higher DO values, given its origin in the surface layer of the outer oceanic region. A new experiment was carried out during January-November, 2016 in order to corroborate the ventilation process and its connection with the adjacent ocean. Temperature, salinity and DO sensors were deployed in the outside fjords region close to the ocean (Melinka Channel) and in Puyuhuapi Fjord, to record the data at very high temporal resolution. The distance between both stations was 150 km. In the oceanic mooring the DO time series collected at 150 m depth showed hypoxia in summer related to the position of the Equatorial Sub-surface water, but from fall DO started to increase registering high values in August and September (4-5 mL/L) when the Subantartic Water arrive. The DO records in Puyuhuapi at 120 m showed a

  8. A submarine landslide source for the devastating 1964 Chenega tsunami, southern Alaska

    USGS Publications Warehouse

    Brothers, Daniel; Haeussler, Peter J.; Lee Liberty,; David Finlayson,; Geist, Eric L.; Labay, Keith A.; Michael Byerly,

    2016-01-01

    During the 1964 Great Alaska earthquake (Mw 9.2), several fjords, straits, and bays throughout southern Alaska experienced significant tsunami runup of localized, but unexplained origin. Dangerous Passage is a glacimarine fjord in western Prince William Sound, which experienced a tsunami that devastated the village of Chenega where 23 of 75 inhabitants were lost – the highest relative loss of any community during the earthquake. Previous studies suggested the source of the devastating tsunami was either from a local submarine landslide of unknown origin or from coseismic tectonic displacement. Here we present new observations from high-resolution multibeam bathymetry and seismic reflection surveys conducted in the waters adjacent to the village of Chenega. The seabed morphology and substrate architecture reveal a large submarine landslide complex in water depths of 120–360 m. Analysis of bathymetric change between 1957 and 2014 indicates the upper 20–50 m (∼0.7 km3) of glacimarine sediment was destabilized and evacuated from the steep face of a submerged moraine and an adjacent ∼21 km2 perched sedimentary basin. Once mobilized, landslide debris poured over the steep, 130 m-high face of a deeper moraine and then blanketed the terminal basin (∼465 m water depth) in 11 ± 5 m of sediment. These results, combined with inverse tsunami travel-time modeling, suggest that earthquake- triggered submarine landslides generated the tsunami that struck the village of Chenega roughly 4 min after shaking began. Unlike other tsunamigenic landslides observed in and around Prince William Sound in 1964, the failures in Dangerous Passage are not linked to an active submarine delta. The requisite environmental conditions needed to generate large submarine landslides in glacimarine fjords around the world may be more common than previously thought. 

  9. The lively Aysén fjord, Chile: Records of multiple geological processes

    NASA Astrophysics Data System (ADS)

    Lastras, Galderic; Amblas, David; Calafat, Antoni; Canals, Miquel; Frigola, Jaime; Hermanns, Reginald L.; Lafuerza, Sara; Longva, Oddvar; Micallef, Aaron; Sepúlveda, Sergio A.; Vargas, Gabriel; Azpiroz, María; Bascuñán, Ignacio; Duhart, Paul; Iglesias, Olaia; Kempf, Philipp; Rayo, Xavier

    2014-05-01

    The Aysén fjord is a 65 km long, east-west oriented fjord in Chilean Patagonia, located approximately at 45.4ºS and 73.2ºW, with a maximum water depth of 345 m. The fjord receives at present the riverine input of Aysén, Pescado, Condor and Cuervo rivers, which drain the surrounding up to 2000 m high Patagonian Andes. The fjord is crossed by a number of faults associated to the seismically active Liquiñe-Ofqui Fault Zone, a major trench parallel intra-arc fault system. After a four-month period of moderate seismicity, an Mw 6.2 earthquake on 21 April 2007 triggered dozens of subaerial landslides along the fjord flanks. Some of the landslides reached the fjord water mass, generating a series of tsunami-like displacement waves that impacted the adjacent coastlines with 3-12 m, locally over 50 m high run-ups, causing ten fatalities and severe damage to salmon farms. The research cruise DETSUFA on board BIO Hespérides in March 2013 mapped the submerged morphology of the fjord and gathered air-gun seismic profiles and sediment gravity cores in order to characterise the footprint of the landslides in the fjord floor. Very-high resolution multibeam bathymetry (4 m cell size) clearly shows the deformation structures created by the landslides in the inner fjord. The landslides descended and accelerated down the submerged fjord flanks, and reached the fjord floor at approx. 200 m water depth generating large, 1 to 10 m deep impact depressions. Sediment removed from these depressions moved radially and piled up in deformation rings formed by compressional ridges 10-15 m in height, block fields and a narrow frontal depression. Up to six >1.5 square km of these structures can be identified in the fjord. In addition, the DETSUFA survey extended beyond the SE-NW-oriented inner fjord past the Cuervo Ridge, located in front of the Cuervo river delta. The ridge, previously interpreted as a volcanic transverse structure, has most probably acted as a limit for grounding ice in

  10. Marine Debris Composition on Remote Alaskan National Park Shores

    NASA Astrophysics Data System (ADS)

    Pister, B.; Kunisch, E.; Polasek, L.; Bering, J.; Kim, S.; Neitlich, P.; Nicolato, K.

    2016-02-01

    Marine debris is a pervasive problem along coastlines around the world. The National Park Service manages approximately 3500 miles of shoreline in Alaska's national park units combined. Most of these shores are remote, difficult and expensive to access. In 2011 the Tohoku earthquake hit Japan and generated a devastating tsunami that washed an estimated 150 million tons of debris out to sea. Much of the debris washed ashore in Alaska. The tsunami brought new attention to the long standing problem of marine debris. In 2015 the National Park Service mounted a two pronged effort to remove as much debris as possible from the shores of five park units in Alaska, and initiate education programs about the issue. Almost 11,000 kg of debris were removed from the shores of: Wrangell-St. Elias National Park, Kenai Fjords National Park, Katmai National Park, Bering Land Bridge National Preserve and Cape Krusenstern National Monument. Approximately 58% of the debris was plastic. Although much of the debris resembled items expected as a result of the tsunami, a great percentage of the debris was clearly from other sources, such as fishing and shipping. Preliminary analysis suggests that debris composition varied significantly between parks, possibly from locally-derived sources. This can influence how the National Park Service creates educational outreach programs that focus on marine debris prevention exercises.

  11. A Deglacial and Holocene Record of Climate Variability in South-Central Alaska from Stable Oxygen Isotopes and Plant Macrofossils in Peat

    NASA Technical Reports Server (NTRS)

    Jones, Miriam C.; Wooller, Matthew; Peteet, Dorothy M.

    2014-01-01

    We used stable oxygen isotopes derived from bulk peat (delta-O-18(sub TOM) in conjunction with plant macrofossils and previously published carbon accumulation records, in a approximately14,500 cal yr BP peat core (HT Fen) from the Kenai lowlands in south-central Alaska to reconstruct the climate history of the area. We find that patterns are broadly consistent with those from lacustrine records across the region, and agree with the interpretation that major shifts in delta-O-18(sub TOM) values indicate changes in strength and position of the Aleutian Low (AL), a semi-permanent low-pressure cell that delivers winter moisture to the region. We find decreased strength or a more westerly position of the AL (relatively higher delta-O-18(sub TOM) values) during the Bolling-Allerod, Holocene Thermal Maximum (HTM), and late Holocene, which also correspond to warmer climate regimes. These intervals coincide with greater peat preservation and enhanced carbon (C) accumulation rates at the HT Fen and with peatland expansion across Alaska. The HTM in particular may have experienced greater summer precipitation as a result of an enhanced Pacific subtropical high, a pattern consistent with modern delta-O-18 values for summer precipitation. The combined warm summer temperatures and greater summer precipitation helped promote the observed rapid peat accumulation. A strengthened AL (relatively lower delta-O-18(sub TOM) values) is most evident during the Younger Dryas, Neoglaciation, and the Little Ice Age, consistent with lower peat preservation and C accumulation at the HT Fen, suggesting less precipitation reaches the leeward side of the Kenai Mountains during periods of enhanced AL strength. The peatlands on the Kenai Peninsula thrive when the AL is weak and the contribution of summer precipitation is higher, highlighting the importance of precipitation seasonality in promoting peat accumulation. This study demonstrates that delta-O-18(sub TOM) values in peat can be applied

  12. A deglacial and Holocene record of climate variability in south-central Alaska from stable oxygen isotopes and plant macrofossils in peat

    USGS Publications Warehouse

    Jones, Miriam C.; Wooller, Matthew J.; Peteet, Dorothy M.

    2014-01-01

    We used stable oxygen isotopes derived from bulk peat (δ18OTOM), in conjunction with plant macrofossils and previously published carbon accumulation records, in a ∼14,500 cal yr BP peat core (HT Fen) from the Kenai lowlands in south-central Alaska to reconstruct the climate history of the area. We find that patterns are broadly consistent with those from lacustrine records across the region, and agree with the interpretation that major shifts in δ18OTOM values indicate changes in strength and position of the Aleutian Low (AL), a semi-permanent low-pressure cell that delivers winter moisture to the region. We find decreased strength or a more westerly position of the AL (relatively higher δ18OTOM values) during the Bølling-Allerød, Holocene Thermal Maximum (HTM), and late Holocene, which also correspond to warmer climate regimes. These intervals coincide with greater peat preservation and enhanced carbon (C) accumulation rates at the HT Fen and with peatland expansion across Alaska. The HTM in particular may have experienced greater summer precipitation as a result of an enhanced Pacific subtropical high, a pattern consistent with modern δ18O values for summer precipitation. The combined warm summer temperatures and greater summer precipitation helped promote the observed rapid peat accumulation. A strengthened AL (relatively lower δ18OTOM values) is most evident during the Younger Dryas, Neoglaciation, and the Little Ice Age, consistent with lower peat preservation and C accumulation at the HT Fen, suggesting less precipitation reaches the leeward side of the Kenai Mountains during periods of enhanced AL strength. The peatlands on the Kenai Peninsula thrive when the AL is weak and the contribution of summer precipitation is higher, highlighting the importance of precipitation seasonality in promoting peat accumulation. This study demonstrates that δ18OTOM values in peat can be applied toward understand large-scale shifts in atmospheric circulation

  13. A deglacial and Holocene record of climate variability in south-central Alaska from stable oxygen isotopes and plant macrofossils in peat

    NASA Astrophysics Data System (ADS)

    Jones, Miriam C.; Wooller, Matthew; Peteet, Dorothy M.

    2014-03-01

    We used stable oxygen isotopes derived from bulk peat (δ18OTOM), in conjunction with plant macrofossils and previously published carbon accumulation records, in a ˜14,500 cal yr BP peat core (HT Fen) from the Kenai lowlands in south-central Alaska to reconstruct the climate history of the area. We find that patterns are broadly consistent with those from lacustrine records across the region, and agree with the interpretation that major shifts in δ18OTOM values indicate changes in strength and position of the Aleutian Low (AL), a semi-permanent low-pressure cell that delivers winter moisture to the region. We find decreased strength or a more westerly position of the AL (relatively higher δ18OTOM values) during the Bølling-Allerød, Holocene Thermal Maximum (HTM), and late Holocene, which also correspond to warmer climate regimes. These intervals coincide with greater peat preservation and enhanced carbon (C) accumulation rates at the HT Fen and with peatland expansion across Alaska. The HTM in particular may have experienced greater summer precipitation as a result of an enhanced Pacific subtropical high, a pattern consistent with modern δ18O values for summer precipitation. The combined warm summer temperatures and greater summer precipitation helped promote the observed rapid peat accumulation. A strengthened AL (relatively lower δ18OTOM values) is most evident during the Younger Dryas, Neoglaciation, and the Little Ice Age, consistent with lower peat preservation and C accumulation at the HT Fen, suggesting less precipitation reaches the leeward side of the Kenai Mountains during periods of enhanced AL strength. The peatlands on the Kenai Peninsula thrive when the AL is weak and the contribution of summer precipitation is higher, highlighting the importance of precipitation seasonality in promoting peat accumulation. This study demonstrates that δ18OTOM values in peat can be applied toward understand large-scale shifts in atmospheric circulation over

  14. Ocean-Glaciers Interactions in the Southern Svalbard Fjord, Hornsund.

    NASA Astrophysics Data System (ADS)

    Walczowski, W.; Beszczynska-Moeller, A.; Prominska, A.; Kruss, A.

    2017-12-01

    The Arctic fjords constitute a link between the ocean and land, therefore there are highly vulnerable to warming and are expected to exhibit the earliest environmental changes resulting from anthropogenic impacts on climate. In the Arctic, the inshore boundary of a fjord system is usually dominated by tidewater glaciers while its offshore boundary is strongly influenced by warm oceanic waters. Improved understanding of the fjord-ocean exchange and processes within Arctic fjords is of a highest importance because their response to atmospheric, oceanic and glacial variability provides a key to understand the past and to forecast the future of the high latitude glaciers and Arctic climate. The results of field measurements in the Hornsund fjord (southern Svalbard), collected under the Polish-Norwegian projects GLAERE and AWAKE-2, will be presented. Interannual variability of warm Atlantic water entering the fjord, seasonal changes of ocean properties in the glacier bays and the structure of the water column in the vicinity of the glacier termination will be addressed. Direct contact of warm oceanic water with a glacier's wall causes submarine melting, undercutting and glacier calving. Turbulent plumes of subglacial meltwater constitute an important mechanism of heat transfer and also influence a glacier retreat. However our understanding of these processes is limited due to problems with obtaining in situ data close to the glacier wall. Therefore special attention will be paid to observations of the underwater parts of Hornsund glaciers and new measurements of water column fine structure and mixing in the turbulent meltwater plumes.

  15. Using Icebergs to Constrain Fjord Circulation and Link to Glacier Dynamics

    NASA Astrophysics Data System (ADS)

    Sutherland, D.; Straneo, F.; Hamilton, G. S.; Stearns, L. A.; Roth, G.

    2014-12-01

    The importance of icebergs is increasingly being recognized in the ocean-glacier interactions community. Icebergs are ubiquitous in Greenland's outlet glacial fjords and provide a physical link between the glacier and the ocean into which they melt. The iceberg shape is influenced by glacier size and calving mechanics, while the amount of melt produced depends on ambient water properties and the residence time of the iceberg in the fjord. Here, we use hourly positions of icebergs tracked with helicopter deployed GPS sensors to calculate velocities in the Sermilik Fjord/Helheim Glacier system. Data comes from three summertime deployments in 2012-2014, where icebergs were tagged in the ice mélange and moved through the fjord and onto the continental shelf. The iceberg-derived velocities provide information on ice mélange movement, fjord variability, and coastal currents on the shelf. Using simple melt rate parameterizations, we estimate the total freshwater input due to iceberg melt in Sermilik Fjord based on the observed residence times and satellite-derived iceberg distributions. These observations complement conventional oceanographic and glaciological data, and can quickly, and relatively inexpensively, characterize circulation throughout any given glacier-ocean system.

  16. Crustal uplift in the south central Alaska subduction zone: New analysis and interpretation of tide gauge observations

    NASA Astrophysics Data System (ADS)

    Cohen, Steven C.; Freymueller, Jeffrey T.

    2001-06-01

    We have examined tide gauge measurements of apparent sea level height in south central Alaska to determine the history of crustal uplift subsequent to the 1964 Prince William Sound earthquake. There are spatial and temporal variations in the uplift rate since the 1994 earthquake that depend on the location of the tide gauge relative to the coseismic rupture features. At Seward, on the eastern side of the Kenai Peninsula, we find slow uplift that is consistent with elastic strain accumulation at the locked North American-Pacific Plate boundary. Conversely, at Seldovia and Nikiski, on the western side of the Kenai Peninsula, we find persistent rapid uplift of ˜10 mm yr-1 that may be longterm transient response to the earthquake but that cannot be sustained over the entire several hundred year recurrence interval for a great earthquake. Farther to the southwest, at Kodiak, the rate of uplift is several millimeters per year but has slowed significantly over the past three and a half decades. To the east of the Kenai Peninsula we find subsidence at Cordova and an uncertain behavior at Valdez. At Cordova, and to a lesser extent Valdez, there is a mathematically significant time dependence, although the evidence for the time dependence is less compelling than at Kodiak. At Anchorage, there is little evidence of vertical motion since the earthquake. The along-strike spatial variability in the relaxation time of the rates of vertical motion since the 1964 earthquake may be related to variations in the updip coseismic slip during the megathrust event.

  17. Gravity and Magnetic Anomaly Interpretations and 2.5D Cross-Section Models over the Border Ranges Fault System and Aleutian Subduction Zone, Alaska

    NASA Astrophysics Data System (ADS)

    Mankhemthong, N.; Doser, D. I.; Baker, M. R.; Kaip, G.; Jones, S.; Eslick, B. E.; Budhathoki, P.

    2011-12-01

    Quaternary glacial covers and lack of dense geophysical data on the Kenai Peninsula cause a location and geometry of the Border Ranges fault system (BRFS) within a recent forearc-accretionary boundary of Aleutian subduction zone in southern Alaska are unclear. Using new ~1,300 gravity collections within the Anchorage and Kenai Peninsula regions complied with prior 1997 gravity and aeromagnetic data help us better imaging these fault and the subduction structures. Cook Inlet forearc basin is corresponded by deep gravity anomaly lows; basin boundaries are characterized by a strong gravity gradient, where are considered to be traces of Border Ranges fault system on the east and Castle Mountain and Bruin Bay fault system on the west and northwest of the forearc basin respectively. Gravity anomaly highs over accreted rocks generally increase southeastward to the Aleutian trench, but show a gravity depression over the Kenai Mountains region. The lineament between gravity high and low in the same terrenes over the Kenai Peninsula is may be another evidence to determine the Southern Edge of the Yakutat Microplate (SEY) as inferred by Eberhart-Phillips et al. (2006). Our 2.5-D models illustrate the main fault of the BRFS dips steeply toward the west with a downslip displacement. Gravity and Magnetic anomaly highs, on the east of the BRFS, probably present a slice of the ultramafic complex emplaced by faults along the boundary of the forearc basin and accretionary wedge terranes. Another magnetic high beneath the basin in the southern forearc basin support a serpentiznied body inferred by Saltus et al. (2001), with a decreasing size toward the north. Regional density-gravity models show the Pacific subducting slab beneath the foreacre-arc teranes with a gentle and flatted dip where the subducting plate is located in north of SEY and dips more steeply where it is located on the south of SEY. The gravity depression over the accreted terrene can be explained by a density low

  18. Pyroclastic Eruption Boosts Organic Carbon Fluxes Into Patagonian Fjords

    NASA Astrophysics Data System (ADS)

    Mohr, Christian H.; Korup, Oliver; Ulloa, Héctor; Iroumé, Andrés.

    2017-11-01

    Fjords and old-growth forests store large amounts of organic carbon. Yet the role of episodic disturbances, particularly volcanic eruptions, in mobilizing organic carbon in fjord landscapes covered by temperate rainforests remains poorly quantified. To this end, we estimated how much wood and soils were flushed to nearby fjords following the 2008 eruption of Chaitén volcano in south-central Chile, where pyroclastic sediments covered >12 km2 of pristine temperate rainforest. Field-based surveys of forest biomass, soil organic content, and dead wood transport reveal that the reworking of pyroclastic sediments delivered 66,500 + 14,600/-14,500 tC of large wood to two rivers entering the nearby Patagonian fjords in less than a decade. A similar volume of wood remains in dead tree stands and buried beneath pyroclastic deposits ( 79,900 + 21,100/-16,900 tC) or stored in active river channels (5,900-10,600 tC). We estimate that bank erosion mobilized 132,300+21,700/-30,600 tC of floodplain forest soil. Eroded and reworked forest soils have been accreting on coastal river deltas at >5 mm yr-1 since the eruption. While much of the large wood is transported out of the fjord by long-shore drift, the finer fraction from eroded forest soils is likely to be buried in the fjords. We conclude that the organic carbon fluxes boosted by rivers adjusting to high pyroclastic sediment loads may remain elevated for up to a decade and that Patagonian temperate rainforests disturbed by excessive loads of pyroclastic debris can be episodic short-lived carbon sources.

  19. Monitoring and modeling terrestrial arthropod diversity on the Kenai National Wildlife Refuge

    Treesearch

    Matthew L. Bowser; John M. Morton

    2009-01-01

    The primary purpose of the Kenai National Wildlife Refuge (KENWR) is to "conserve fish and wildlife populations in their natural diversity," where "fish and wildlife" explicitly includes arthropods. To this end, we developed a Long Term Ecological Monitoring Program (LTEMP), a collaborative effort with the USDA Forest Inventory and Analysis (FIA)...

  20. Seasonality of vertical flux and sinking particle characteristics in an ice-free high arctic fjord-Different from subarctic fjords?

    NASA Astrophysics Data System (ADS)

    Wiedmann, Ingrid; Reigstad, Marit; Marquardt, Miriam; Vader, Anna; Gabrielsen, Tove M.

    2016-02-01

    The arctic Adventfjorden (78°N, 15°E, Svalbard) used to be seasonally ice-covered but has mostly been ice-free since 2007. We used this ice-free arctic fjord as a model area to investigate (1) how the vertical flux of biomass (chlorophyll a and particulate organic carbon, POC) follows the seasonality of suspended material, (2) how sinking particle characteristics change seasonally and affect the vertical flux, and (3) if the vertical flux in the ice-free arctic fjord with glacial runoff resembles the flux in subarctic ice-free fjords. During seven field investigations (December 2011-September 2012), suspended biomass was determined (5, 15, 25, and 60 m), and short-term sediment traps were deployed (20, 30, 40, and 60 m), partly modified with gel-filled jars to study the size and frequency distribution of sinking particles. During winter, resuspension from the seafloor resulted in large, detrital sinking particles. Intense sedimentation of fresh biomass occurred during the spring bloom. The highest POC flux was found during autumn (770-1530 mg POC m- 2 d- 1), associated with sediment-loaded glacial runoff and high pteropod abundances. The vertical biomass flux in the ice-free arctic Adventfjorden thus resembled that in subarctic fjords during winter and spring, but a higher POC sedimentation was observed during autumn.

  1. Crustal Deformation in Southcentral Alaska: The 1964 Prince William Sound Earthquake Subduction Zone

    NASA Technical Reports Server (NTRS)

    Cohen, Steven C.; Freymueller, Jeffrey T.

    2003-01-01

    This article, for Advances in Geophysics, is a summary of crustal deformation studies in southcentral Alaska. In 1964, southcentral Alaska was struck by the largest earthquake (moment magnitude 9.2) occurring in historical times in North America and the second largest earthquake occurring in the world during the past century. Conventional and space-based geodetic measurements have revealed a complex temporal-spatial pattern of crustal movement. Numerical models suggest that ongoing convergence between the North America and Pacific Plates, viscoelastic rebound, aseismic creep along the tectonic plate interface, and variable plate coupling all play important roles in controlling both the surface and subsurface movements. The geodetic data sets include tide-gauge observations that in some cases provide records back to the decades preceding the earthquake, leveling data that span a few decades around the earthquake, VLBI data from the late 1980s, and GPS data since the mid-1990s. Geologic data provide additional estimates of vertical movements and a chronology of large seismic events. Some of the important features that are revealed by the ensemble of studies that are reviewed in this paper include: (1) Crustal uplift in the region that subsided by up 2 m at the time of the earthquake is as much as 1 m since the earthquake. In the Turnagain Arm and Kenai Peninsula regions of southcentral Alaska, uplift rates in the immediate aftermath of the earthquake reached 150 mm/yr , but this rapid uplift decayed rapidly after the first few years following the earthquake. (2) At some other locales, notably those away the middle of the coseismic rupture zone, postseismic uplift rates were initially slower but the rates decay over a longer time interval. At Kodiak Island, for example, the uplift rates have been decreasing at a rate of about 7mm/yr per decade. At yet other locations, the uplift rates have shown little time dependence so far, but are thought not to be sustainable

  2. The Climatology and Impacts of Atmospheric Rivers near the Coast of Southern Alaska

    NASA Astrophysics Data System (ADS)

    Nardi, K.; Barnes, E. A.; Mundhenk, B. D.

    2015-12-01

    Atmospheric rivers, narrow plumes of anomalously high tropospheric water vapor transport, frequently appear over the Pacific Ocean. Popularized by colloquialisms such as the "Pineapple Express," atmospheric rivers often interact with synoptic-scale disturbances to produce significant precipitation events over land masses. Previous research has focused extensively on the impacts of this phenomenon with respect to high-precipitation storms, namely during boreal winter, on the western coast of the contiguous United States. These events generate great scientific, political, and economic concerns for nearby cities, farms, and tourist destinations. Recently, researchers have investigated similar high-precipitation events along the southern coast of Alaska. Specifically, previous work has discussed several major events occurring during the September-November timeframe. One particular event, in October 2006, produced an all-time record for water levels at several river observation sites. This study examines the climatology of atmospheric rivers in the vicinity of southern Alaska. Data (1979-2014) from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) is used to detect atmospheric rivers approaching, and making landfall on, the southern Alaskan coast from the Kenai Peninsula to the Gulf of Alaska region. A seasonal cycle in the strength and frequency of atmospheric rivers over Alaska is shown. Furthermore, the study assesses the synoptic conditions coincident with atmospheric rivers and examines several instances of particularly strong precipitation events. For example, wintertime atmospheric river events tend to occur when a blocking high exists over southeastern Alaska. These results have the potential to help forecasters and emergency managers predict high-precipitation events and lessen potential negative impacts.

  3. Zooplankton Distribution in Four Western Norwegian Fjords

    NASA Astrophysics Data System (ADS)

    Gorsky, G.; Flood, P. R.; Youngbluth, M.; Picheral, M.; Grisoni, J.-M.

    2000-01-01

    A multi-instrumental array constructed in the Laboratoire d'Ecologie du Plancton Marin in Villefranche sur mer, France, named the Underwater Video Profiler (UVP), was used to investigate the vertical distribution of zooplankton in four western Norwegian fjords in the summer 1996. Six distinct zoological groups were monitored. The fauna included: (a) small crustaceans (mainly copepods), (b) ctenophores (mainly lobates), (c) siphonophores (mainly physonects), (d) a scyphomedusa Periphylla periphylla, (e) chaetognaths and (f) appendicularians. The use of the non-disturbing video technique demonstrated that the distribution of large zooplankton is heterogeneous vertically and geographically. Furthermore, the abundance of non-migrating filter feeders in the deep basins of the fjords indicates that there is enough food (living and non-living particulate organic matter) to support their dietary needs. This adaptation may be considered as a strategy for survival in fjords. Specifically, living in dark, deep water reduces visual predation and population loss encountered in the upper layer due to advective processes.

  4. Synoptic events force biological productivity in Patagonian fjord ecosystems

    NASA Astrophysics Data System (ADS)

    Daneri, Giovanni

    2016-04-01

    The annual cycle of primary productivity of the Patagonian fjords has, to date, been described as a two phase system consisting of a short non productive winter phase (during June and July) and a productive phase extending from late winter (August) to autumn (May). Low levels of primary production, phytoplankton biomass and high concentrations of surface nutrients have been described as characterizing winter conditions while pulsed productivity events typifies the productivity pattern during the extended productive season. Pulsed productivity events characterize coastal waters where inorganic nutrients in surface layers are replenished following periods of intensive utilization by autotrophs. Freshwater input in Patagonian fjords in southern Chile (41-55°S) results in one of the largest estuarine regions worldwide. Here strong haline water column stratification prevents nutrient mixing to the surface layers thus potentially shutting off algal production. Our working hypothesis considered that in order to reconcile the observed pulsed productivity pattern, periodic breaking (associated to surface nutrient replenishment) and re-establishment of estuarine conditions (associated to water column stratification) would be required. Up to now however our understanding of the physical processes that control water column conditions in the Patagonian fjord area has been extremely limited. Here we present evidence linking the passage of synoptic low pressure fronts to pulsed productivity events in the Patagonian fjord area. These front controls and influence local processes of interaction between the fjord and the atmosphere generating a rapid water column response. In the specific case of the Puyuhuapi fjord we have been able to show that such synoptic fronts induce surface flow reversal and water column mixing. Phytoplankton blooming occurs after the passage of the synoptic front once calmer conditions prevail and estuarine conditions are re established. The occurrence of

  5. Sedimentology and geomorphology of a large tsunamigenic landslide, Taan Fiord, Alaska

    NASA Astrophysics Data System (ADS)

    Dufresne, A.; Geertsema, M.; Shugar, D. H.; Koppes, M.; Higman, B.; Haeussler, P. J.; Stark, C.; Venditti, J. G.; Bonno, D.; Larsen, C.; Gulick, S. P. S.; McCall, N.; Walton, M.; Loso, M. G.; Willis, M. J.

    2018-02-01

    On 17 October 2015, a landslide of roughly 60 × 106 m3 occurred at the terminus of Tyndall Glacier in Taan Fiord, southeastern Alaska. It caused a tsunami that inundated an area over 20 km2, whereas the landslide debris itself deposited within a much smaller area of approximately 2 km2. It is a unique event in that the landslide debris was deposited into three very different environments: on the glacier surface, on land, and in the marine waters of the fjord. Part of the debris traversed the width of the fjord and re-emerged onto land, depositing coherent hummocks with preserved source stratigraphy on an alluvial fan and adjacent moraines on the far side of the fjord. Imagery from before the landslide shows that the catastrophic slope failure was preceded by deformation and sliding for at least the two decades since the glacier retreated to its current terminus location, exposing steep and extensively faulted slopes. A small volume of the total slide mass remains within the source area and is topped by striated blocks (> 10 m across) and standing trees that were transported down the slope in intact positions during the landslide. Field work was carried out in the summer of 2016, and by the time this paper was written, almost all of the supraglacial debris was advected into the fjord and half the subaerial hummocks were buried by glacial advance; this rapid change illustrates how highly active sedimentary processes in high-altitude glacial settings can skew any landslide-frequency analyses, and emphasizes the need for timely field investigations of these natural hazards.

  6. Novel Measurements and Techniques for Outlet Glacier Fjord Ice/Ocean Interactions

    NASA Astrophysics Data System (ADS)

    Behar, A.; Howat, I. M.; Holland, D. M.; Ahlstrom, A. P.; Larsen, S. H.

    2014-12-01

    Glacier fjord bathymetry and conditions indicate that they play fundamental roles for outlet glacier dynamics and thus knowledge of these parameters is extremely beneficial to upcoming models that predict changes. In particular, the bathymetry of a fjord gives important information about the exchange between fjord waters close to marine-terminating glaciers and the shelf and ocean. Currently, only sparse bathymetric data near the ice fronts are available for the majority of fjords in Greenland. The challenge in obtaining these measurements is that the fjord melange environment is a terrible one for mechanical gear, or ship or any other kind of access. There is hope however, and this work focuses on novel ways of obtaining this data using a multitude of upcoming technologies and techniques that are now being tested and planned. The span of the techniques described include but are not limited to: 1) manned helicopter-based live-reading instruments and deployable/retriavable sensor packages http://www.motionterra.com/fjord/ 2) remote or autonomous unmanned miniature boats (Depth/CTD), and 3) UAV's that either read live data or deploy small sensors that can telemeter their data (ice-flow trackers, image acquisition, etc.). A review of current results obtained at Jakobshavn and Upernavik Glaciers will be given as well as a description of the techniques and hardware used.

  7. Megafaunal communities in rapidly warming fjords along the West Antarctic Peninsula: hotspots of abundance and beta diversity.

    PubMed

    Grange, Laura J; Smith, Craig R

    2013-01-01

    Glacio-marine fjords occur widely at high latitudes and have been extensively studied in the Arctic, where heavy meltwater inputs and sedimentation yield low benthic faunal abundance and biodiversity in inner-middle fjords. Fjord benthic ecosystems remain poorly studied in the subpolar Antarctic, including those in extensive fjords along the West Antarctic Peninsula (WAP). Here we test ecosystem predictions from Arctic fjords on three subpolar, glacio-marine fjords along the WAP. With seafloor photographic surveys we evaluate benthic megafaunal abundance, community structure, and species diversity, as well as the abundance of demersal nekton and macroalgal detritus, in soft-sediment basins of Andvord, Flandres and Barilari Bays at depths of 436-725 m. We then contrast these fjord sites with three open shelf stations of similar depths. Contrary to Arctic predictions, WAP fjord basins exhibited 3 to 38-fold greater benthic megafaunal abundance than the open shelf, and local species diversity and trophic complexity remained high from outer to inner fjord basins. Furthermore, WAP fjords contained distinct species composition, substantially contributing to beta and gamma diversity at 400-700 m depths along the WAP. The abundance of demersal nekton and macroalgal detritus was also substantially higher in WAP fjords compared to the open shelf. We conclude that WAP fjords are important hotspots of benthic abundance and biodiversity as a consequence of weak meltwater influences, low sedimentation disturbance, and high, varied food inputs. We postulate that WAP fjords differ markedly from their Arctic counterparts because they are in earlier stages of climate warming, and that rapid warming along the WAP will increase meltwater and sediment inputs, deleteriously impacting these biodiversity hotspots. Because WAP fjords also provide important habitat and foraging areas for Antarctic krill and baleen whales, there is an urgent need to develop better understanding of the

  8. Megafaunal Communities in Rapidly Warming Fjords along the West Antarctic Peninsula: Hotspots of Abundance and Beta Diversity

    PubMed Central

    Grange, Laura J.; Smith, Craig R.

    2013-01-01

    Glacio-marine fjords occur widely at high latitudes and have been extensively studied in the Arctic, where heavy meltwater inputs and sedimentation yield low benthic faunal abundance and biodiversity in inner-middle fjords. Fjord benthic ecosystems remain poorly studied in the subpolar Antarctic, including those in extensive fjords along the West Antarctic Peninsula (WAP). Here we test ecosystem predictions from Arctic fjords on three subpolar, glacio-marine fjords along the WAP. With seafloor photographic surveys we evaluate benthic megafaunal abundance, community structure, and species diversity, as well as the abundance of demersal nekton and macroalgal detritus, in soft-sediment basins of Andvord, Flandres and Barilari Bays at depths of 436–725 m. We then contrast these fjord sites with three open shelf stations of similar depths. Contrary to Arctic predictions, WAP fjord basins exhibited 3 to 38-fold greater benthic megafaunal abundance than the open shelf, and local species diversity and trophic complexity remained high from outer to inner fjord basins. Furthermore, WAP fjords contained distinct species composition, substantially contributing to beta and gamma diversity at 400–700 m depths along the WAP. The abundance of demersal nekton and macroalgal detritus was also substantially higher in WAP fjords compared to the open shelf. We conclude that WAP fjords are important hotspots of benthic abundance and biodiversity as a consequence of weak meltwater influences, low sedimentation disturbance, and high, varied food inputs. We postulate that WAP fjords differ markedly from their Arctic counterparts because they are in earlier stages of climate warming, and that rapid warming along the WAP will increase meltwater and sediment inputs, deleteriously impacting these biodiversity hotspots. Because WAP fjords also provide important habitat and foraging areas for Antarctic krill and baleen whales, there is an urgent need to develop better understanding of the

  9. Reassessment of seismically induced, tsunamigenic submarine slope failures in Port Valdez, Alaska, USA

    USGS Publications Warehouse

    Lee, H.J.; Haeussler, P.J.; Kayen, R.E.; Hampton, M.A.; Locat, Jacques; Suleimani, E.; Alexander, C.R.

    2007-01-01

    The M9.2 Alaska earthquake of 1964 caused major damage to the port facilities and town of Valdez, most of it the result of submarine landslide and the consequent tsunamis. Recent bathymetric multibeam surveys, high-resolution subbottom profiles, and dated sediment cores in Port Valdez supply new information about the morphology and character of the landslide deposits. A comparison of pre- and post-earthquake bathymetry provides an estimate of the net volume of landslide debris deposited in the basin and the volume of sediment removed from the source region. Landslide features include (1) large blocks (up to 40-m high) near the location of the greatest tsunamiwave runup (~50 m), (2) two debris lobes associated with the blocks, (3) a series of gullies, channels and talus, near the fjord-head delta and badly damaged old town of Valdez, and (4) the front of a debris lobe that flowed half-way down the fjord from the east end.

  10. Building a DNA barcode library of Alaska's non-marine arthropods.

    PubMed

    Sikes, Derek S; Bowser, Matthew; Morton, John M; Bickford, Casey; Meierotto, Sarah; Hildebrandt, Kyndall

    2017-03-01

    Climate change may result in ecological futures with novel species assemblages, trophic mismatch, and mass extinction. Alaska has a limited taxonomic workforce to address these changes. We are building a DNA barcode library to facilitate a metabarcoding approach to monitoring non-marine arthropods. Working with the Canadian Centre for DNA Barcoding, we obtained DNA barcodes from recently collected and authoritatively identified specimens in the University of Alaska Museum (UAM) Insect Collection and the Kenai National Wildlife Refuge collection. We submitted tissues from 4776 specimens, of which 81% yielded DNA barcodes representing 1662 species and 1788 Barcode Index Numbers (BINs), of primarily terrestrial, large-bodied arthropods. This represents 84% of the species available for DNA barcoding in the UAM Insect Collection. There are now 4020 Alaskan arthropod species represented by DNA barcodes, after including all records in Barcode of Life Data Systems (BOLD) of species that occur in Alaska - i.e., 48.5% of the 8277 Alaskan, non-marine-arthropod, named species have associated DNA barcodes. An assessment of the identification power of the library in its current state yielded fewer species-level identifications than expected, but the results were not discouraging. We believe we are the first to deliberately begin development of a DNA barcode library of the entire arthropod fauna for a North American state or province. Although far from complete, this library will become increasingly valuable as more species are added and costs to obtain DNA sequences fall.

  11. Crustal Uplift in the Southcentral Alaska Subduction Zones: A New Analysis and Interpretation of Tide Gauge Observations

    NASA Technical Reports Server (NTRS)

    Cohen, Steven C.; Freymueller, Jeffrey T.

    1999-01-01

    We have examined the sea level height tide records at seven tide gauge sites in the region of southcentral Alaska that were affected by the 1964 Prince William Sound earthquake to determine the history of crustal uplift subsequent to the earthquake. There is considerable variation in the behavior depending on the location of the site relative to the 1964 rupture. At Seward, on the eastern side of the Kenai Peninsula we find a slow uplift that is consistent with elastic strain accumulation while at Seldovia and Nikiski on the western side of the Kenai we find a persistent rapid uplift of about 1 cm/yr that most likely represents a long term transient response to the earthquake, but which cannot be sustained over the expected recurrence interval for a great earthquake of several hundred years. Further to the southwest, at Kodiak, we find evidence that the rate of uplift, which is still several mm/yr, has slowed significantly over the past three and a half decades. To the east of the Kenai Peninsula we find subsidence at Cordova and an uncertain behavior at Valdez. At both of these sites there is a mathematically significant time-dependence to the uplift behavior, but the data confirming this time dependence are not as convincing as at Kodiak. At Anchorage, to the north there is little evidence of vertical motion since the earthquake. We compare these long term tide gauge records to recent GPS observations. In general there is reasonable consistency except at Anchorage and Cordova where the GPS measurement indicate somewhat more rapid uplift and subsidence, respectively.

  12. Only skin deep?: Evaluating the utility of remotely sensed sea surface temperatures in Greenland fjords

    NASA Astrophysics Data System (ADS)

    Snow, T.; Shepherd, B.; Skinner, S.; Abdalati, W.; Scambos, T. A.

    2017-12-01

    The Greenland ice sheet (GIS) contributes one-quarter of the globe's total sea level rise each year and one-third of its mass loss occurs at outlet glaciers. One mechanism for this loss is through melting at the ice-ocean boundary through interactions with relatively warm ocean water. In situ ocean measurements serve as the predominant method for studying these harsh and remote fjord environments, but have often only been acquired within the last decade in most Greenland fjords. Since many outlet glaciers began to accelerate and retreat before that period, the lack of earlier measurements requires us to rely on an understanding of contemporary fjord processes and inference of past conditions to evaluate the ocean's role in observed glacier change. Remotely sensed sea surface temperature (SST) have been widely unused in studies of glacial fjords and may hold clues to fjord circulation and ice-ocean interactions spanning before rapid change began at the turn of the century. However, the utility of this method in studying glacial fjords has not been thoroughly explored. In this study, we compare remotely sensed SSTs to previously published in situ ocean temperature measurements taken from 2009 to present at the Sermilik Fjord and 2015-2016 at the Petermann, in order to determine the utility of SSTs in studying polar fjord waters. SSTs were derived from Landsat 7 and 8 thermal infrared imagery to produce a time series of the fjord surface. The time series was correlated with coincident mooring and shipboard ocean temperature measurements using various lags and spatial offsets. Sermilik Fjord SSTs frequently gave temperatures 2C warmer than adjacent surface in situ measurements, while Petermann temperatures show much closer relationships. These trends are likely driven by variability in wind velocities and density gradients that influence mixing within the surface layer of the ocean. However, variability in the offsets between SSTs and in situ measurements also provides

  13. Assessing net community production in a glaciated Alaskan fjord

    NASA Astrophysics Data System (ADS)

    Reisdorph, S. C.; Mathis, J. T.

    2015-09-01

    The impact of deglaciation in Glacier Bay has been observed to seasonally influence the biogeochemistry of this marine system. The influence from surrounding glaciers, particularly tidewater glaciers, has the potential to affect the efficiency and structure of the marine food web within Glacier Bay. To assess the magnitude and the spatial and temporal variability in net community production in a glaciated fjord, we measured dissolved inorganic carbon, inorganic macronutrients, dissolved oxygen, and particulate organic carbon between July 2011 and July 2012 in Glacier Bay, Alaska. High net community production rates were observed across the bay (~ 54 to ~ 81 mmol C m-2 d-1) between the summer and fall of 2011. However, between the fall and winter, as well as between the winter and spring of 2012, air-sea fluxes of carbon dioxide and organic matter respiration made net community production rates negative across most of the bay as inorganic carbon and macronutrient concentrations returned to pre-bloom levels. The highest organic carbon production occurred within the west arm between the summer and fall of 2011 with ~ 4.5 × 105 kg C d-1. Bay-wide, there was carbon production of ~ 9.2 × 105 g C d-1 between the summer and fall. Respiration and air-sea gas exchange were the dominant drivers of carbon chemistry between the fall and winter of 2012. The substantial spatial and temporal variability in our net community production estimates may reflect glacial influences within the bay, as meltwater is depleted in macronutrients relative to marine waters entering from the Gulf of Alaska in the middle and lower parts of the bay. Further glacial retreat will likely lead to additional modifications in the carbon biogeochemistry of Glacier Bay, with unknown consequences for the local marine food web, which includes many species of marine mammals.

  14. Earthquakes, Subaerial and Submarine Landslides, Tsunamis and Volcanoes in Aysén Fjord, Chile

    NASA Astrophysics Data System (ADS)

    Lastras, G.; Amblas, D.; Calafat-Frau, A. M.; Canals, M.; Frigola, J.; Hermanns, R. L.; Lafuerza, S.; Longva, O.; Micallef, A.; Sepulveda, S. A.; Vargas Easton, G.; Azpiroz, M.; Bascuñán, I.; Duhart, P.; Iglesias, O.; Kempf, P.; Rayo, X.

    2014-12-01

    The Aysén fjord, 65 km long and east-west oriented, is located at 45.4ºS and 73.2ºW in Chilean Patagonia. It has a maximum water depth of 345 m. It collects the inputs of Aysén, Pescado, Condor and Cuervo rivers, which drain the surrounding Patagonian Andes. The fjord is crossed by the Liquiñe-Ofqui Fault Zone, a seismically active trench parallel intra-arc fault system. On 21 April 2007, an Mw 6.2 earthquake triggered numerous subaerial and submarine landslides along the fjord flanks. Some of the subaerial landslides reached the water mass, generating tsunami-like displacement waves that flooded the adjacent coastlines, withlocal >50 m high run-ups, causing ten fatalities and damage to salmon farms. The research cruise DETSUFA on board BIO Hespérides in March 2013, aiming to characterise the landslides and their effects, mapped with great detail the submerged morphology of the fjord. Multibeam data display deformation structures created by the impact of the landslides in the inner fjord floor. Landslide material descended and accelerated down the highly sloping fjord flanks, and reached the fjord floor at 200 m water depth generating large, 10-m-deep impact depressions. Fjord floor sediment was pushed and piled up in arcuate deformation areas formed by 15-m-high compressional ridges, block fields and a narrow frontal depression. Up to six >1.5 km2 of these structures have been identified. In addition, the cruise mapped the outer fjord floor beyond the Cuervo ridge. This ridge, previously interpreted as a volcanic transverse structure, most probably acted as a limit for grounding ice in the past, as suggested by the presence of a melt-water channel. The fjord smoothens and deepens to more than 330 m forming an enclosed basin, before turning SW across a field of streamlined hills of glacial origin. Three volcanic cones, one of them forming Isla Colorada and the other two totally submerged and previously unknown, have been mapped in the outer fjord. The largest

  15. Holocene earthquake-triggered turbidites from the Saguenay (Eastern Canada) and Reloncavi (Chilean margin) fjords

    NASA Astrophysics Data System (ADS)

    St-Onge, Guillaume; Chapron, Emmanuel; Mulsow, Sandor; Salas, Marcos; Debret, Maxime; Foucher, Anthony; Mulder, Thierry; Desmet, Marc; Costa, Pedro; Ghaleb, Bassam; Locat, Jacques

    2013-04-01

    Fjords are unique archives of climatic and environmental changes, but also of natural hazards. They can preserve thick sedimentary sequences deposited under very high sediment accumulation rates, making them ideally suited to record historical and pre-historical sedimentological events such as major landslides, floods or earthquakes. In fact, by carefully characterizing and dating the sediments and by comparing the basin fill seismic stratigraphy and sedimentary records with historical events, it is possible to "calibrate" recent rapidly deposited layers such as turbidites with a trigger mechanism and extend these observations further back in time by using seismic reflection profiles and longer sediment cores. Here, we will compare earthquake-triggered turbidites in fjords from the Southern and Northern Hemispheres: the Saguenay (Eastern Canada) and Reloncavi fjords (southern Chilean margin). In both settings, we will first look at basin fill geometries and at the sedimentological properties of historical events before extending the records further back in time. In both fjords, several turbidites were associated with large magnitude historic and pre-historic earthquakes including the 1663 AD (M>7) earthquake in the Saguenay Fjord, and the 1960 (M 9.5), 1837 (M~8) and 1575 AD major Chilean subduction earthquakes in the Reloncavi Fjord. In addition, a sand layer with sea urchin fragments and the exoscopic characteristics typical of a tsunami deposit was observed immediately above the turbidite associated with the 1575 AD earthquake in the Reloncavi Fjord and supports both the chronology and the large magnitude of that historic earthquake. In both fjords, as well as in other recently recognized earthquake-triggered turbidites, the decimeter-to meter-thick normally-graded turbidites are characterized by a homogeneous, but slightly fining upward tail. Finally, new radiocarbon results will be presented and indicate that at least 19 earthquake-triggered turbidites were

  16. Biogeochemistry of Framvaren, A permanently Anoxic Fjord

    NASA Astrophysics Data System (ADS)

    Millero, Frank J.

    Recently (May 28-30, 1986), a workshop was held in Farsund, Norway, to discuss the biogeochemistry of an anoxic fjord called Framvaren. In the last 7 years a group of marine scientists from Norway, Sweden, Canada, and the United States has been studying this fjord. The workshop was held to discuss the recent findings of this international effort. A new expedition is planned in February 1987 (provided that the ice is thick enough) and in June 1988. Marine chemists, microbiologists, or geologists interested in participating in this study should contact Jens Skei (Norwegian Institute of Water Research, PB Box 333, Blindern, Oslo 3, Norway), who is coordinating the investigations.

  17. Oceanic response to buoyancy, wind and tidal forcing in a Greenlandic glacial fjord

    NASA Astrophysics Data System (ADS)

    Carroll, D.; Sutherland, D.; Shroyer, E.; Nash, J. D.

    2013-12-01

    The Greenland Ice Sheet is losing mass at an accelerating rate. This acceleration may in part be due to changes in oceanic heat transport to marine-terminating outlet glaciers. Ocean heat transport to glaciers depends upon fjord dynamics, which include buoyancy-driven estuarine exchange flow, tides, internal waves, turbulent mixing, and connections to the continental shelf. A 3D model of Rink Isbrae fjord in West Greenland is used to investigate the role of ocean forcing on heat transport to the glacier face. Initial conditions are prescribed from oceanographic field data collected in Summer 2013; wind and tidal forcing, along with meltwater flux, are varied in individual model runs. Subglacial meltwater flux values range from 25-500 m3 s-1. For low discharge values, a subsurface plume drives circulation in the fjord. Our simulations indicate that offshore wind forcing is the dominant mechanism for exchange flow between the fjord and the continental shelf. These results show that glacial fjord circulation is a complex, 3D process with multi-cell estuarine circulation and large velocity shears due to coastal winds. Our results are a first step towards a realistic 3D representation of a high-latitude glacial fjord in a numerical model, and will provide insight to future observational studies.

  18. Presence of rapidly degrading permafrost plateaus in south-central Alaska

    USGS Publications Warehouse

    Jones, Benjamin M.; Baughman, Carson; Romanovsky, Vladimir E.; Parsekian, Andrew D.; Babcock, Esther; Stephani, Eva; Jones, Miriam C.; Grosse, Guido; Berg, Edward E

    2016-01-01

    Permafrost presence is determined by a complex interaction of climatic, topographic, and ecological conditions operating over long time scales. In particular, vegetation and organic layer characteristics may act to protect permafrost in regions with a mean annual air temperature (MAAT) above 0 °C. In this study, we document the presence of residual permafrost plateaus in the western Kenai Peninsula lowlands of south-central Alaska, a region with a MAAT of 1.5 ± 1 °C (1981–2010). Continuous ground temperature measurements between 16 September 2012 and 15 September 2015, using calibrated thermistor strings, documented the presence of warm permafrost (−0.04 to −0.08 °C). Field measurements (probing) on several plateau features during the fall of 2015 showed that the depth to the permafrost table averaged 1.48 m but at some locations was as shallow as 0.53 m. Late winter surveys (augering, coring, and GPR) in 2016 showed that the average seasonally frozen ground thickness was 0.45 m, overlying a talik above the permafrost table. Measured permafrost thickness ranged from 0.33 to  >  6.90 m. Manual interpretation of historic aerial photography acquired in 1950 indicates that residual permafrost plateaus covered 920 ha as mapped across portions of four wetland complexes encompassing 4810 ha. However, between 1950 and ca. 2010, permafrost plateau extent decreased by 60.0 %, with lateral feature degradation accounting for 85.0 % of the reduction in area. Permafrost loss on the Kenai Peninsula is likely associated with a warming climate, wildfires that remove the protective forest and organic layer cover, groundwater flow at depth, and lateral heat transfer from wetland surface waters in the summer. Better understanding the resilience and vulnerability of ecosystem-protected permafrost is critical for mapping and predicting future permafrost extent and degradation across all permafrost regions that are currently warming

  19. Scotland's forgotten carbon: a national assessment of mid-latitude fjord sedimentary carbon stocks

    NASA Astrophysics Data System (ADS)

    Smeaton, Craig; Austin, William E. N.; Davies, Althea L.; Baltzer, Agnes; Howe, John A.; Baxter, John M.

    2017-12-01

    Fjords are recognised as hotspots for the burial and long-term storage of carbon (C) and potentially provide a significant climate regulation service over multiple timescales. Understanding the magnitude of marine sedimentary C stores and the processes which govern their development is fundamental to understanding the role of the coastal ocean in the global C cycle. In this study, we use the mid-latitude fjords of Scotland as a natural laboratory to further develop methods to quantify these marine sedimentary C stores on both the individual fjord and national scale. Targeted geophysical and geochemical analysis has allowed the quantification of sedimentary C stocks for a number of mid-latitude fjords and, coupled with upscaling techniques based on fjord classification, has generated the first full national sedimentary C inventory for a fjordic system. The sediments within these mid-latitude fjords hold 640.7 ± 46 Mt of C split between 295.6 ± 52 and 345.1 ± 39 Mt of organic and inorganic C, respectively. When compared, these marine mid-latitude sedimentary C stores are of similar magnitude to their terrestrial equivalents, with the exception of the Scottish peatlands, which hold significantly more C. However, when area-normalised comparisons are made, these mid-latitude fjords are significantly more effective as C stores than their terrestrial counterparts, including Scottish peatlands. The C held within Scotland's coastal marine sediments has been largely overlooked as a significant component of the nation's natural capital; such coastal C stores are likely to be key to understanding and constraining improved global C budgets.

  20. Integrating satellite observations and modern climate measurements with the recent sedimentary record: An example from Southeast Alaska

    USGS Publications Warehouse

    Addison, Jason A.; Finney, Bruce P.; Jaeger, John M.; Stoner, Joseph S.; Norris, Richard D.; Hangsterfer, Alexandra

    2013-01-01

    Assessments of climate change over time scales that exceed the last 100 years require robust integration of high-quality instrument records with high-resolution paleoclimate proxy data. In this study, we show that the recent biogenic sediments accumulating in two temperate ice-free fjords in Southeast Alaska preserve evidence of North Pacific Ocean climate variability as recorded by both instrument networks and satellite observations. Multicore samples EW0408-32MC and EW0408-43MC were investigated with 137Cs and excess 210Pb geochronometry, three-dimensional computed tomography, high-resolution scanning XRF geochemistry, and organic stable isotope analyses. EW0408-32MC (57.162°N, 135.357°W, 146 m depth) is a moderately bioturbated continuous record that spans AD ∼1930–2004. EW0408-43MC (56.965°N, 135.268°W, 91 m depth) is composed of laminated diatom oozes, a turbidite, and a hypopycnal plume (river flood) deposit. A discontinuous event-based varve chronology indicates 43MC spans AD ∼1940–1981. Decadal-scale fluctuations in sedimentary Br/Cl ratios accurately reflect changes in marine organic matter accumulation that display the same temporal pattern as that of the Pacific Decadal Oscillation. An estimated Sitka summer productivity parameter calibrated using SeaWiFS satellite observations support these relationships. The correlation of North Pacific climate regime states, primary productivity, and sediment geochemistry indicate the accumulation of biogenic sediment in Southeast Alaska temperate fjords can be used as a sensitive recorder of past productivity variability, and by inference, past climate conditions in the high-latitude Gulf of Alaska.

  1. Ocean Warming of Petermann Fjord and Glacier, North Greenland

    NASA Astrophysics Data System (ADS)

    Muenchow, A.; Washam, P.; Padman, L.; Nicholls, K. W.

    2016-02-01

    Petermann Fjord connects one of the largest floating ice shelves of Greenland to Nares Strait between northern Canada and Greenland. First ocean temperatures under the ice shelf and in the fjord were recorded in 2002 and 2003, respectively. Last observations were taken in August of 2015 as part of an interdisciplinary experiment of US, Swedish, and British scientists. The new ocean data include hydrographic sections along and across the 450-m deep sill at the entrance of the fjord, sections along and across the 200-m thick terminus of the glacier, and time series from three ocean-weather stations that collect ocean temperature, salinity, and pressure data from under the ice shelf of Petermann Gletscher in near real time. Our ocean data cover the entire 2002-2015 time period when we find statistically significant changes of ocean properties in space and time. The ocean under the ice shelf connects to ambient Nares Strait and to the grounding zone of the glacier at daily to weekly time scales via temperature and salinity correlation. More specifically, we find 1. substantial and significant ocean warming of deep fjord waters at Interannual time scales, 2. intense and rapid renewal of bottom waters inside the 1000-m deep fjord, and 3. large fluctuations of temperature and salinity within about 30-m of the glacier ice-ocean interface at daily to weekly time scales. Figure: Map of the study area with 2015 locations of CTD casts (blue and green dots), ocean-weather stations (green dots), and differential GPS (red triangles). Red contours are bottom depths at 500 and 1000-m while thick black line indicates the grounding zone where the glacier connects to the bed rock below.

  2. Mass-mortality of guillemots (Uria aalge) in the Gulf of Alaska in 1993

    USGS Publications Warehouse

    Piatt, John F.; van Pelt, Thomas I.

    1997-01-01

    During the first six months of 1993, about 3500 dead and moribund guillemots (Uria aalge) were observed throughout the northern Gulf of Alaska coast (ca 1800 km range). Mortality peaked during March. Highest numbers were observed in western Prince William Sound and along the south coast of the Kenai Peninsula. Large flocks of live guillemots gathered in nearshore waters, in contrast to most winters when guillemots reside offshore. Most guillemots recovered were extremely emaciated (ca 60% of normal weight) and sub-adult (80%). Based on carcass deposition and persistence experiments, we calculate that about 10 900 birds eventually came ashore on beaches that were surveyed. Even if most birds killed made it to shore, only a fraction of beaches in the Gulf of Alaska were surveyed and we estimate that a minimum total of 120 000 guillemots died. Results of other investigations on potential causes of mortality (biotoxins, pathogens, parasites, metals, etc.) were either negative or inconclusive, and necropsies lead us to believe that starvation was the proximate cause of death. Reduced food availability could have been related to anomalous sea conditions found during the prolonged 1990–1995 El Niño-Southern Oscillation event.

  3. Glacier Change and Biologic Succession: a new Alaska Summer Research Academy (ASRA) Science Camp Module for Grades 8-12 in Glacier Bay National Park, Alaska

    NASA Astrophysics Data System (ADS)

    Connor, C. L.; Drake, J.; Good, C.; Fatland, R.; Hakala, M.; Woodford, R.; Donohoe, R.; Brenner, R.; Moriarty, T.

    2008-12-01

    During the summer of 2008, university faculty and instructors from southeast Alaska joined the University Alaska Fairbanks(UAF)Alaska Summer Research Academy(ASRA)to initiate a 12-day module on glacier change and biologic succession in Glacier Bay National Park. Nine students from Alaska, Colorado, Massachusetts, and Texas, made field observations and collected data while learning about tidewater glacier dynamics, plant succession, post-glacial uplift, and habitat use of terrestrial and marine vertebrates and invertebrates in this dynamic landscape that was covered by 6,000 km2 of ice just 250 years ago. ASRA students located their study sites using GPS and created maps in GIS and GOOGLE Earth. They deployed salinometers and temperature sensors to collect vertical profiles of seawater characteristics up-bay near active tidewater glacier termini and down-bay in completely deglaciated coves. ASRA student data was then compared with data collected during the same time period by Juneau undergraduates working on the SEAMONSTER project in Mendenhall Lake. ASRA students traversed actively forming, up-bay recessional moraines devoid of vegetation, and the fully reforested Little Ice Age terminal moraine near Park Headquarters in the lower bay region. Students surveyed marine organisms living between supratidal and subtidal zones near glaciers and far from glaciers, and compared up-bay and down-bay communities. Students made observations and logged sightings of bird populations and terrestrial mammals in a linear traverse from the bay's northwestern most fjord near Mt. Fairweather for 120 km to the bay's entrance, south of Park Headquarters at Bartlett Cove. One student constructed an ROV and was able to deploy a video camera and capture changing silt concentrations in the water column as well as marine life on the fjord bottom. Students also observed exhumed Neoglacial spruce forests and visited outcrops of Silurian reef faunas, now fossilized in Alexander terrane

  4. Effects of the March 1964 Alaska earthquake on glaciers: Chapter D in The Alaska earthquake, March 27, 1964: effects on hydrologic regimen

    USGS Publications Warehouse

    Post, Austin

    1967-01-01

    The 1964 Alaska earthquake occurred in a region where there are many hundreds of glaciers, large and small. Aerial photographic investigations indicate that no snow and ice avalanches of large size occurred on glaciers despite the violent shaking. Rockslide avalanches extended onto the glaciers in many localities, seven very large ones occurring in the Copper River region 160 kilometers east of the epicenter. Some of these avalanches traveled several kilometers at low gradients; compressed air may have provided a lubricating layer. If long-term changes in glaciers due to tectonic changes in altitude and slope occur, they will probably be very small. No evidence of large-scale dynamic response of any glacier to earthquake shaking or avalanche loading was found in either the Chugach or Kenai Mountains 16 months after the 1964 earthquake, nor was there any evidence of surges (rapid advances) as postulated by the Earthquake-Advance Theory of Tarr and Martin.

  5. Erosion of modern terrestrial organic matter as a major component of sediments in fjords

    NASA Astrophysics Data System (ADS)

    Cui, Xingqian; Bianchi, Thomas S.; Savage, Candida

    2017-02-01

    Fjords have recently been recognized as "hot spots" of carbon burial. In this study, we investigated organic carbon (OC) and biomarker radiocarbon values in fjord sediments from New Zealand. Our results showed that OC was mostly modern with the most aged OC in middle reaches of fjords, likely related to hydrodynamic sorting and inputs along adjacent slopes. Radiocarbon ages of sedimentary OC increased from north-to-south, consistent with the Fiordland regional gradients of lower fjord slopes and less rainfall. Our biomarker results suggested that lignin and long-chain fatty acids were preferentially linked with fresh terrestrial debris and degraded soil, respectively, likely due to their chemical and physical properties. Finally, we propose that fjords are a significant sink of modern OC, in contrast to large lowland coastal systems as a major sink of preaged OC. Overall, this study indicated that radiocarbon techniques are critical in investigating carbon dynamics in coastal systems.

  6. Paleoseismic potential of sublacustrine landslide records in a high-seismicity setting (south-central Alaska)

    USGS Publications Warehouse

    Praet, Nore; Moernaut, Jasper; Van Daele, Maarten; Boes, Evelien; Haeussler, Peter J.; Strupler, Michael; Schmidt, Sabine; Loso, Michael G.; De Batist, Marc

    2017-01-01

    Sublacustrine landslide stratigraphy is considered useful for quantitative paleoseismology in low-seismicity settings. However, as the recharging of underwater slopes with sediments is one of the factors that governs the recurrence of slope failures, it is not clear if landslide deposits can provide continuous paleoseismic records in settings of frequent strong shaking. To test this, we selected three lakes in south-central Alaska that experienced a strong historical megathrust earthquake (the 1964 Mw9.2 Great Alaska Earthquake) and exhibit high sedimentation rates in their main basins (0.2 cm yr-1 -1.0 cm yr-1). We present high-resolution reflection seismic data (3.5 kHz) and radionuclide data from sediment cores in order to investigate factors that control the establishment of a reliable landslide record. Seismic stratigraphy analysis reveals the presence of several landslide deposits in the lacustrine sedimentary infill. Most of these landslide deposits can be attributed to specific landslide events, as multiple landslide deposits sourced from different lacustrine slopes occur on a single stratigraphic horizon. We identify numerous events in the lakes: Eklutna Lake proximal basin (14 events), Eklutna Lake distal basin (8 events), Skilak Lake (7 events) and Kenai Lake (7 events). The most recent event in each basin corresponds to the historic 1964 megathrust earthquake. All events are characterized by multiple landslide deposits, which hints at a regional trigger mechanism, such as an earthquake (the synchronicity criterion). This means that the landslide record in each basin represents a record of past seismic events. Based on extrapolation of sedimentation rates derived from radionuclide dating, we roughly estimate a mean recurrence interval in the Eklutna Lake proximal basin, Eklutna Lake distal basin, Skilak Lake and Kenai Lake, at ~ 250 yrs, ~ 450 yrs, ~ 900 yrs and ~ 450 yrs, respectively. This distinct difference in recording can be explained by variations

  7. Insights into ice-ocean interactions and fjord circulation from fjord sea surface temperatures at the Petermann Glacier, Greenland

    NASA Astrophysics Data System (ADS)

    Snow, T.; Shepherd, B.; Abdalati, W.; Scambos, T. A.

    2016-12-01

    Dynamic processes at marine-terminating outlet glaciers are responsible for over one-third of Greenland Ice Sheet (GIS) mass loss. Enhanced intrusion of warm ocean waters at the termini of these glaciers has contributed to elevated rates of ice thinning and terminus retreat over the last two decades. In situ oceanographic measurements and modeling studies show that basal melting of glaciers and subglacial discharge can cause buoyant plumes of water to rise to the fjord surface and influence fjord circulation characteristics. The temperature of these surface waters holds clues about ice-ocean interactions and small-scale circulation features along the glacier terminus that could contribute to outlet glacier mass loss, but the magnitude and duration of temperature variability remains uncertain. Satellite remote sensing has proven very effectiver for acquiring sea surface temperatuer (SST) data from these remote regions on a long-term, consistent basis and shows promise for identifying temperature anomalies at the ice front. However, these data sets have not been widely utilized to date. Here, we use satellite-derived sea surface temperatures to identify fjord surface outflow characteristics from 2000 to present at the Petermann Glacier, which drains 4% of the GIS and is experiencing 80% of its mass loss from basal melt. We find a general SST warming trend that coincides with early sea ice breakup and precedes two major calving events and ice speedup that began in 2010. Persistent SST anomalies along the terminus provide evidence of warm outflow that is consistent with buoyant plume model predictions. However, the anomalies are not evident early in the time series, suggesting that ocean inflow and ice-ocean interactions have experienced a regime shift since 2000. Our results provide valuable insight into fjord circulation patterns and the forcing mechanisms that contribute to terminus retreat. Comparing our results to ongoing modeling experiments, time series from

  8. Preliminary validation of WRF model in two Arctic fjords, Hornsund and Porsanger

    NASA Astrophysics Data System (ADS)

    Aniskiewicz, Paulina; Stramska, Małgorzata

    2017-04-01

    Our research is focused on development of efficient modeling system for arctic fjords. This tool should include high-resolution meteorological data derived using downscaling approach. In this presentation we have focused on modeling, with high spatial resolution, of the meteorological conditions in two Arctic fjords: Hornsund (H), located in the western part of Svalbard archipelago and Porsanger (P) located in the coastal waters of the Barents Sea. The atmospheric downscaling is based on The Weather Research and Forecasting Model (WRF, www.wrf-model.org) with polar stereographic projection. We have created two parent domains with grid point distances of about 3.2 km (P) and 3.0 km (H) and with nested domains (almost 5 times higher resolution than parent domains). We tested what is the impact of the spatial resolution of the model on derived meteorological quantities. For both fjords the input topography data resolution is 30 sec. To validate the results we have used meteorological data from the Norwegian Meteorological Institute for stations Lakselv (L) and Honningsvåg (Ho) located in the inner and outer parts of the Porsanger fjord as well as from station in the outer part of the Hornsund fjord. We have estimated coefficients of determination (r2), statistical errors (St) and systematic errors (Sy) between measured and modelled air temperature and wind speed at each station. This approach will allow us to create high resolution spatially variable meteorological fields that will serve as forcing for numerical models of the fjords. We will investigate the role of different meteorological quantities (e. g. wind, solar insolation, precipitation) on hydrohraphic processes in fjords. The project has been financed from the funds of the Leading National Research Centre (KNOW) received by the Centre for Polar Studies for the period 2014-2018. This work was also funded by the Norway Grants (NCBR contract No. 201985, project NORDFLUX). Partial support comes from the

  9. Sedimentary Carbon Stocks: A National Assessment of Scotland's Fjords.

    NASA Astrophysics Data System (ADS)

    Smeaton, Craig; Austin, William; Davies, Althea; Howe, John

    2017-04-01

    Coastal sediments have been shown to be globally significant repositories for carbon (C) with an estimated 126.2 Tg of C being buried annually (Duarte et al. 2005). Though it is clear these areas are important for the long-term storage of C the actual quantity of C held within coastal sediment remains largely unaccounted for. The first step to understanding the role the coastal ocean plays in the global C cycle is to quantify the C held within these coastal sediments. Of the different coastal environment fjords have been shown to be hotspots for C burial with approximately 11 % of the annual global marine carbon sequestration occurring within fjordic environments (Smith et al. 2015). Through the development of a joint geophysical and geochemical methodology we estimated that the sediment in a mid-latitude fjord holds 26.9 ± 0.5 Mt of C (Smeaton et al., 2016), with these results suggesting that Scottish mid-latitude fjords could be a significant unaccounted store of C equivalent to their terrestrial counterparts (i.e. peatlands). Through the application of the joint geophysical and geochemical methodology developed by Smeaton et al (2016) to a number of other mid-latitude fjords, we will create detailed estimations of the sedimentary C stored at these individual sites. Using these detailed C stock estimations in conjunction with upscaling techniques we will establish the first national estimation of fjordic sedimentary C stocks. The data produced will allow for the sedimentary C stocks to be compared to other national C stocks, such as the Scottish peatlands (Chapman et al. 2009) and forestry (Forestry Commission, 2016). Alongside quantifying this large unaccounted for store of C in the coastal ocean this work also lays foundations for future work to understand the role of the coastal ocean in the global C cycle. Duarte, C. M., Middelburg, J. J., and Caraco, N.: Major role of marine vegetation on the oceanic carbon cycle, Biogeosciences, 2, 1-8, doi:10.5194/bg-2

  10. Marine benthic habitat mapping of Muir Inlet, Glacier Bay National Park and Preserve, Alaska, with an evaluation of the Coastal and Marine Ecological Classification Standard III

    USGS Publications Warehouse

    Trusel, Luke D.; Cochrane, Guy R.; Etherington, Lisa L.; Powell, Ross D.; Mayer, Larry A.

    2010-01-01

    Seafloor geology and potential benthic habitats were mapped in Muir Inlet, Glacier Bay National Park and Preserve, Alaska, using multibeam sonar, ground-truth information, and geological interpretations. Muir Inlet is a recently deglaciated fjord that is under the influence of glacial and paraglacial marine processes. High glacially derived sediment and meltwater fluxes, slope instabilities, and variable bathymetry result in a highly dynamic estuarine environment and benthic ecosystem. We characterize the fjord seafloor and potential benthic habitats using the Coastal and Marine Ecological Classification Standard (CMECS) recently developed by the National Oceanic and Atmospheric Administration (NOAA) and NatureServe. Substrates within Muir Inlet are dominated by mud, derived from the high glacial debris flux. Water-column characteristics are derived from a combination of conductivity temperature depth (CTD) measurements and circulation-model results. We also present modern glaciomarine sediment accumulation data from quantitative differential bathymetry. These data show Muir Inlet is divided into two contrasting environments: a dynamic upper fjord and a relatively static lower fjord. The accompanying maps represent the first publicly available high-resolution bathymetric surveys of Muir Inlet. The results of these analyses serve as a test of the CMECS and as a baseline for continued mapping and correlations among seafloor substrate, benthic habitats, and glaciomarine processes.

  11. Field Survey of the 17 June 2017 Landslide and Tsunami in Karrat Fjord, Greenland

    NASA Astrophysics Data System (ADS)

    Fritz, H. M.; Giachetti, T.; Anderson, S.; Gauthier, D.

    2017-12-01

    On 17 June 2017 a massive landslide generated tsunami impacted Karrat Fjord and the Uummannaq fjord system located some 280 km north of Ilulissat in western Greenland. The eastern of two easily recognized landslides detached completely and fell approximately 1 km to sea level, before plunging into the Karrat Fjord and generating a tsunami within the fjord system. The landslide generated tsunami washed 4 victims and several houses into the fjord at Nuugaatsiaq, about 30 km west of the landslide. Eyewitnesses at Nuugaatsiaq and Illorsuit recorded the tsunami inundation on videos. The active western landslide features a back scarp and large cracks, and therefore remains a threat in Karrat Fjord. The villages of Nuugaatsiaq and Illorsuit remain evacuated. The Geotechnical Extreme Events Reconnaissance (GEER) survey team deployed to Greenland from July 6 to 9, 2017. The reconnaissance on July 8 involved approximately 800 km of helicopter flight and landings in several key locations. The survey focused on the landslides and coastlines within 30 km of the landslide in either fjord direction. The aerial reconnaissance collected high quality oblique aerial photogrammetry (OAP) of the landslide, scarp, and debris avalanche track. The 3D model of the landslide provides the ability to study the morphology of the slope on July 8, it provides a baseline model for future surveys, and it can be used to compare to earlier imagery to estimate what happened on June 17. Change detection using prior satellite imagery indicates an approximate 55 million m3 total landslide volume of which 45 million m3 plunged into the fjord from elevations up to 1200 m above the water surface. The ground based tsunami survey documented flow depths, runup heights, inundation distances, sediment deposition, damage patterns at various scales, performance of the man-made infrastructure, and impact on the natural and glacial environment. Perishable high-water marks include changes in vegetation and damage to

  12. Climate related trends and meteorological conditions in European Arctic region - Porsanger fjord, Norway

    NASA Astrophysics Data System (ADS)

    Cieszyńska, Agata; Stramska, Małgorzata

    2017-04-01

    Climate change has significant effect on the Arctic environment, where global trends are amplified. In this study, we have focused on the Porsanger fjord, located in European Arctic in the coastal region of the Barents Sea. We have analyzed climate related trends and meteorological condititions in the area of interest. Meteorological data included wind speed and direction, air temperature (AT) and precipitation from Era-Interim reanalysis (1986-2015) and local observations (1996-2015) from Lakselv (L, fjord's head area) and Honningsvaag (H - fjord's exit area). Our results confirm that this region is undergoing climate change related warming, which is indicated by rising air temperatures. Based on long-term reanalysis data, estimated trends for air temperature (AT) in Porsanger fjord are: 0.0536 °C year-1 at fjord's exit and 0.0428 °C year-1 at fjord's head. The results show that climate change does not seem to have a significant effect on long-term changes of wind speed and precipitation in the Porsanger fjord. Statistical analysis underlined significant spatial variability of meteorological conditions inside the fjord. For example, there are large differences in the annual cycle of AT with monthly mean January and July values of -8.4 and 12.6 °C in L and -2.5 and 10.1 °C in H. Dominant wind directions in Lakselv are S and SSE, while in Honningsvaag S and SSW directions prevail. Strong wind events (above 12 m s-1) are more frequent in H than in L. Annual cycle is characterized by stronger winds in winter and seasonality of wind direction. Precipitation for a given location can change by about 50% between years and varies spatially. Synoptic scale and within day variability are extremely intense in the area of interest. Air temperature and wind speed and direction can change dramatically in hours. In addition, regular patterns of the daily cycle of AT have different intensity in L and H. It is interesting to note that in spring/summer season, the daily cycle of

  13. Ground-Water Age and its Water-Management Implications, Cook Inlet Basin, Alaska

    USGS Publications Warehouse

    Glass, Roy L.

    2002-01-01

    The Cook Inlet Basin encompasses 39,325 square miles in south-central Alaska. Approximately 350,000 people, more than half of Alaska?s population, reside in the basin, mostly in the Anchorage area. However, rapid growth is occurring in the Matanuska?Susitna and Kenai Peninsula Boroughs to the north and south of Anchorage. Ground-water resources provide about one-third of the water used for domestic, commercial and industrial purposes in the Anchorage metropolitan area and are the sole sources of water for industries and residents outside Anchorage. In 1997, a study of the Cook Inlet Basin was begun as part of the U.S. Geological Survey?s National Water-Quality Assessment Program. Samples of ground water were collected from 35 existing wells in unconsolidated glacial and alluvial aquifers during 1999 to determine the regional quality of ground water beneath about 790 mi2 of developed land and to gain a better understanding of the natural and human factors that affect the water quality (Glass, 2001). Of the 35 wells sampled, 31 had water analyzed for atmospherically derived substances to determine the ground water?s travel time from its point of recharge to its point of use or discharge?also known as ground-water age. Ground water moves slowly from its point of recharge to its point of use or discharge. This water starts as rain and melting snow that soak into the ground as recharge. In the Matanuska?Susitna, Anchorage, and Kenai Peninsula areas, ground water generally moves from near the mountain fronts toward Cook Inlet or the major rivers. Much of the water pumped by domestic and public-supply wells may have traveled less than 10 miles, and the trip may have taken as short a time as a few days or as long as several decades. This ground water is vulnerable to contamination from the land surface, and many contaminants in the water would follow the same paths and have similar travel times from recharge areas to points of use as the chemical substances analyzed in

  14. Biodiversity and abundance patterns of rock encrusting fauna in a temperate fjord.

    PubMed

    Kuklinski, Piotr

    2013-01-01

    Fjords are semi-enclosed systems often with usually strong physical and chemical gradients. These gradients provide the opportunity to test the influence of various physical and chemical factors on biodiversity. However study area of this investigation, Trondheimsfjord, is a large water body where especially salinity gradient along the fjord is not well pronounced. The goal of this study was to establish within a temperate fjord a baseline identifying encrusting fauna on rocks and determine the factors driving changes along the length of the fjord and changing depths. There was no trend in species composition change and increase or decrease in number of species, diversity and number of individuals along the fjord. This was likely due to the relative homogeneity of both substrate (rocks) and environmental parameters. Nevertheless, the influence of fresh water inflow in the vicinity of the river mouth was apparent by the presence of characteristic brackish-water species at these locations. Multidimensional scaling analysis revealed three separate assemblages: intertidal, shallow and deep subtidal (below 50 m). Intertidal assemblages were species poor (one to 11 species) but relatively abundant (six to 2374 indiv./m(2) of rocks). Number of individuals and biomass was highest in the shallow subtidal (2059-13,587 indiv./m(2) of rocks). Overall the highest species number (45) was recorded at 50 m depth which is probably result of low competition pressure yet still relatively high nutrient concentration in comparison to shallower locations. Environmental parameters (i.e., tidal currents, wave action, salinity) change more drastically with depth than along the fjord and these changes are the major driving forces in shaping encrusting assemblages in Trondheimsfjord. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Landslides Cause Tsunami Waves: Insights From Aysén Fjord, Chile

    NASA Astrophysics Data System (ADS)

    Lastras, Galderic; Amblas, David; Calafat, Antoni M.; Canals, Miquel; Frigola, Jaime; Hermanns, Reginald L.; Lafuerza, Sara; Longva, Oddvar; Micallef, Aaron; Sepúlveda, Sergio A.; Vargas, Gabriel; Batist, Marc De; Daele, Maarten Van; Azpiroz, María.; Bascuñán, Ignacio; Duhart, Paul; Iglesias, Olaia; Kempf, Philipp; Rayo, Xavier

    2013-08-01

    On 21 April 2007, an Mw 6.2 earthquake produced an unforeseen chain of events in the Aysén fjord (Chilean Patagonia, 45.5°S). The earthquake triggered hundreds of subaerial landslides along the fjord flanks. Some of the landslides eventually involved a subaqueous component that, in turn, generated a series of displacement waves—tsunami-like waves produced by the fast entry of a subaerial landmass into a water body—within the fjord [Naranjo et al., 2009; Sepúlveda and Serey, 2009; Hermanns et al., 2013]. These waves, with run-ups several meters high along the shoreline, caused 10 fatalities. In addition, they severely damaged salmon farms, which constitute the main economic activity in the region, setting free millions of cultivated salmon with still unknown ecological consequences.

  16. Multidisciplinary Observations of Subduction (MOOS) Experiment in South-Central Alaska

    NASA Astrophysics Data System (ADS)

    Christensen, D.; Abers, G.; Freymueller, J.

    2008-12-01

    Seismic and geodetic data are being collected in the Kenai Peninsula and surrounding area of south central Alaska as part of the PASSCAL experiment MOOS. A total of 34 broadband seismic stations were deployed between the summers of 2007 and 2008. Seventeen of these stations continue to operate for an additional year and are scheduled to be removed in the summer of 2009. Numerous GPS campaign sites have and will be visited during the same time period. The MOOS seismic deployment provides coverage across the interplate coupled zone and adjacent transition zone in the shallow parts of the Alaskan subduction zone. It is a southern extension of an earlier broadband deployment BEAAR (Broadband Experiment Across the Alaska Range) to the north. When integrated with the previous BEAAR experiment, these data will allow high-resolution broadband imaging along a 600 km long transect over the Alaska subduction zone, at 10-15 km station spacing. The MOOS deployment allows us to test several hypotheses relating to the postulated subduction of the Yakutat Block and the nature of the coupled zone which ruptured in the great 1964 earthquake. The seismic and geodetic stations cover an area that includes part of the 1964 main asperity and the adjacent, less coupled, region to the southwest. Data gathered from this experiment will shed light on the nature of this boundary from both a geodetic and seismic (or earth structure) perspective. Shallow seismicity recorded by this network greatly improves the catalog of events in this area and helps to delineate active features in the subduction complex. Preliminary results from this project will be presented.

  17. Status and distribution of the Kittlitz's Murrelet Brachyramphus brevirostris along the Alaska Peninsula and Kodiak and Aleutian Islands, Alaska

    USGS Publications Warehouse

    Madison, Erica N.; Piatt, John F.; Arimitsu, Mayumi L.; Romano, Marc D.; van Pelt, Thomas I.; Nelson, S. Kim; Williams, Jeffrey C.; DeGange, Anthony R.

    2011-01-01

    The Kittlitz's Murrelet Brachyramphus brevirostris is adapted for life in glacial-marine ecosystems, being concentrated in the belt of glaciated fjords in the northern Gulf of Alaska from Glacier Bay to Cook Inlet. Most of the remaining birds are scattered along coasts of the Alaska Peninsula and Aleutian Islands, where they reside in protected bays and inlets, often in proximity to remnant glaciers or recently deglaciated landscapes. We summarize existing information on Kittlitz's Murrelet in this mainly unglaciated region, extending from Kodiak Island in the east to the Near Islands in the west. From recent surveys, we estimated that ~2400 Kittlitz's Murrelets were found in several large embayments along the Alaska Peninsula, where adjacent ice fields feed silt-laden water into the bays. On Kodiak Island, where only remnants of ice remain today, observations of Kittlitz's Murrelets at sea were uncommon. The species has been observed historically around the entire Kodiak Archipelago, however, and dozens of nest sites were found in recent years. We found Kittlitz's Murrelets at only a few islands in the Aleutian chain, notably those with long complex shorelines, high mountains and remnant glaciers. The largest population (~1600 birds) of Kittlitz's Murrelet outside the Gulf of Alaska was found at Unalaska Island, which also supports the greatest concentration of glacial ice in the Aleutian Islands. Significant populations were found at Atka (~1100 birds), Attu (~800) and Adak (~200) islands. Smaller numbers have been reported from Unimak, Umnak, Amlia, Kanaga, Tanaga, Kiska islands, and Agattu Island, where dozens of nest sites have been located in recent years. Most of those islands have not been thoroughly surveyed, and significant pockets of Kittlitz's Murrelets may yet be discovered. Our estimate of ~6000 Kittlitz's Murrelets along the Alaska Peninsula and Aleutian Islands is also likely to be conservative because of the survey protocols we employed (i.e. early

  18. Postglacial vegetation history of the Kachemak Bay area, Cook Inlet, south-central Alaska: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1998

    USGS Publications Warehouse

    Ager, Thomas A.

    2000-01-01

    Pollen records from two sites on the north shore of Kachemak Bay, south-central Alaska, provide the first radiocarbon-dated histories of postglacial vegetation development for southern Cook Inlet. During the late Wisconsin glacial interval, glaciers covered most of Cook Inlet. Deglaciation of Kachemak Bay began prior to 13,000 yr B.P. Pollen evidence indicates that a pioneering herbaceous tundra began to develop by 12,800 yr B.P., but was soon replaced by a shrub tundra of dwarf birch (Betula), Ericales (Ericaceae and Empetrum) and willows (Salix).By 9,500 yr B.P., a shrub-dominated vegetation of alders (Alnus) and willows, with some deciduous trees (Populus spp.) quickly developed and persisted until late Holocene time. By about 4,000–3,800 yr B.P., spruce trees (Picea glauca and (or) P. mariana) from the interior boreal forests reached the northern Kachemak Bay area from upper Cook Inlet and began to displace the alder-dominated vegetation. A coastal forest of Sitka spruce (Picea sitchensis) began to colonize Kachemak Bay more recently, about 1,650 yr B.P. (minimum age), apparently from sources in Prince William Sound to the east. Where Sitka spruce came into proximity with boreal white spruce (Picea glauca), hybridization occurred, ultimately influencing the spruce forests over a large area of the Kenai Lowland. Some key findings of this study are: (1) the Kachemak Bay-area pollen records do not display persuasive evidence for a “Younger Dryas” cold, dry interval ca. 11,000–10,000 yr B.P. that has been reported from pollen records on Kodiak Island (Gulf of Alaska) and Pleasant Island (southeastern Alaska); (2) at least one species of alder may have survived in refugia in south-central Alaska during the last glacial interval; (3) coastal forests appear to be still migrating west along the coast of south-central Alaska, but their spread northward is being limited by drier, colder winter climates; (4) the mountainous topography of south-central Alaska

  19. Relatively high antibiotic resistance among heterotrophic bacteria from arctic fjord sediments than water - Evidence towards better selection pressure in the fjord sediments

    NASA Astrophysics Data System (ADS)

    Hatha, A. A. Mohamed; Neethu, C. S.; Nikhil, S. M.; Rahiman, K. M. Mujeeb; Krishnan, K. P.; Saramma, A. V.

    2015-12-01

    The objective of this study was to determine the prevalence of antibiotic resistance among aerobic heterotrophic bacteria and coliform bacteria from water and sediment of Kongsfjord. The study was based on the assumption that arctic fjord environments are relatively pristine and offer very little selection pressure for drug resistant mutants. In order to test the hypothesis, 200 isolates belonging to aerobic heterotrophic bacteria and 114 isolates belonging to coliforms were tested against 15 antibiotics belonging to 5 different classes such as beta lactams, aminoglycosides, quinolones, sulpha drugs and tetracyclines. Resistance to beta lactam and extended spectrum beta lactam (ESBL) antibiotics was considerably high and they found to vary significantly (p < 0.05) between heterotrophic and coliform bacteria. Though the coliforms showed significantly high level of antibiotic resistance against ESBL's extent and diversity of antibiotic resistance (as revealed by multiple antibiotic resistance index and resistance patterns), was high in the aerobic heterotrophic bacteria. Most striking observation was that isolates from fjord sediments (both heterotrophic bacteria and coliforms) in general showed relatively high prevalence of antibiotic resistance against most of the antibiotics tested, indicating to better selection pressure for drug resistance mutants in the fjord sediments.

  20. Public Health Nursing: Public Health Centers

    Science.gov Websites

    Locations Anchorage-based Itinerants Bethel Craig Delta Junction Dillingham Fairbanks Homer Juneau Kenai agencies with state grant assistance Frontier Region Delta Junction Dillingham Fairbanks Kodiak Nome Tok [back to top] Delta Junction Public Health Center 2857 Alaska Hwy, Room 210 Delta Junction, Alaska 99737

  1. Movement of pulsed resource subsidies from kelp forests to deep fjords.

    PubMed

    Filbee-Dexter, Karen; Wernberg, Thomas; Norderhaug, Kjell Magnus; Ramirez-Llodra, Eva; Pedersen, Morten Foldager

    2018-05-01

    Resource subsidies in the form of allochthonous primary production drive secondary production in many ecosystems, often sustaining diversity and overall productivity. Despite their importance in structuring marine communities, there is little understanding of how subsidies move through juxtaposed habitats and into recipient communities. We investigated the transport of detritus from kelp forests to a deep Arctic fjord (northern Norway). We quantified the seasonal abundance and size structure of kelp detritus in shallow subtidal (0‒12 m), deep subtidal (12‒85 m), and deep fjord (400‒450 m) habitats using a combination of camera surveys, dive observations, and detritus collections over 1 year. Detritus formed dense accumulations in habitats adjacent to kelp forests, and the timing of depositions coincided with the discrete loss of whole kelp blades during spring. We tracked these blades through the deep subtidal and into the deep fjord, and showed they act as a short-term resource pulse transported over several weeks. In deep subtidal regions, detritus consisted mostly of fragments and its depth distribution was similar across seasons (50% of total observations). Tagged pieces of detritus moved slowly out of kelp forests (displaced 4‒50 m (mean 11.8 m ± 8.5 SD) in 11‒17 days, based on minimum estimates from recovered pieces), and most (75%) variability in the rate of export was related to wave exposure and substrate. Tight resource coupling between kelp forests and deep fjords indicate that changes in kelp abundance would propagate through to deep fjord ecosystems, with likely consequences for the ecosystem functioning and services they provide.

  2. Recent oxygen depletion and benthic faunal change in shallow areas of Sannäs Fjord, Swedish west coast

    NASA Astrophysics Data System (ADS)

    Nordberg, Kjell; Polovodova Asteman, Irina; Gallagher, Timothy M.; Robijn, Ardo

    2017-09-01

    Sannäs Fjord is a shallow fjord (< 32 m w.d.) with a sill depth of 8 m, located at the Swedish west coast of the Skagerrak (North Sea). The anthropogenic impact on the fjord represents combination of sewage from the local village of Sannäs and land run-off from agricultural areas. Sewage impact has been reduced since 1991 and today the fjord is included into several nature conservation programs administrated by the European Union. Yet, observations during the summers of 2008-2011 show that the shallow inner fjord inlet experiences severe oxygen depletion at 5-12 m water depth. To explore if the oxygen depletion is only a recent phenomenon and to evaluate the potential of fjord sediments to archive such environmental changes, in 2008 and 2009 seven sediment cores were taken along a transect oriented lengthwise in the fjord. The cores were analysed for organic carbon, C/N, benthic foraminifera and lead pollution records (as relative age marker). Carbon content increases in most of the cores since the 1970-80s, while C/N ratio decreases from the core base upward since 1995. Foraminiferal assemblages in most core stratigraphies are dominated by agglutinated species. Calcareous species (mainly elphidiids) have become dominant in the upper part of the records since the late 1990s or 2000 (the inner fjord and the deepest basin) and since the 1950-70s (the outer fjord). In the inner Sannäs Fjord, an increase of agglutinated foraminiferal species (e.g. Eggerelloides scaber) and organic inner linings occurred since the 1970s, suggesting an intensification of taphonomic processes affecting postmortem calcareous shell preservation. A study of living vs. dead foraminiferal assemblages undertaken during June-August 2013 demonstrates that in the shallow inner fjord, strong carbonate dissolution occurs within 1-3 months following the foraminiferal growth. The dissolution is linked to corrosive conditions present within the sediment - bottom water interface, and is likely caused

  3. Benthic foraminiferal biogeography in NW European fjords: A baseline for assessing future change

    NASA Astrophysics Data System (ADS)

    Murray, John W.; Alve, Elisabeth

    2016-11-01

    The seaboard extending from northern Svalbard to Scotland is the only region of the world where fjords have been comprehensively studied for their live (stained) benthic foraminiferal faunas. These modern faunas provide essential baseline data for the interpretation of the postglacial and continuing environmental changes in those fjords and this is the first biogeographic synthesis. The data come from the surface sediment assemblages (mainly sampled in the 1990's) from all the available literature. Due to limited information of shallow water assemblages in the north, only the species occurrences in deeper water from below the halocline are considered. Amongst these, only "common species" species occurring in more than one fjord are included. There is a clear pattern of distribution with five groups of taxa: 5 widespread species found throughout the region; 53 species reaching their northern limit; 13 species reaching their southern limit; 11 deep-sea species; 1 recently introduced species. Although there is an abrupt change in temperature from Tanafjorden in northern Norway to Hornsund in southern Svalbard, the faunal change from N to S is progressive throughout the investigated region. The area of overlap of the northern and southern species corresponds with the previously recognised boundary between the Barents Sea Province and the Norwegian Coast Province based on shelf and upper slope invertebrate macrofaunal benthos and plankton. Temperature is the main abiotic control on the distributions. For the fjords which have shallow sills separating them from the open shelf it is likely that most of the foraminiferal colonisers of the deeper fjord basins are sourced from the shelf or slope via propagules. One species has recently been introduced from further south into the southern region probably through the discharge of ballast water from ships. The biodiversity of the pristine Svalbard fjords extends below what is considered to reflect acceptable ecological status

  4. Bathymetry of Torssukatak fjord and one century of glacier stability

    NASA Astrophysics Data System (ADS)

    An, L.; Rignot, E. J.; Morlighem, M.

    2017-12-01

    Marine-terminating glaciers dominate the evolution of the Greenland Ice Sheet(GrIS) mass balance as they control 90% of the ice discharge into the ocean. Warm air temperatures thin the glaciers from the top to unground ice fronts from the bed. Warm oceans erode the submerged grounded ice, causing the grounding line to retreat. To interpret the recent and future evolution of two outlet glaciers, Sermeq Avangnardleq (AVA) and Sermeq Kujatdleq (KUJ) in central West Greenland, flowing into the ice-choked Torssukatak fjord (TOR), we need to know their ice thickness and bed topography and the fjord bathymetry. Here, we present a novel mapping of the glacier bed topography, ice thickness and sea floor bathymetry near the grounding line using high resolution airborne gravity data from AIRGrav collected in August 2012 with a helicopter platform, at 500 m spacing grid, 50 knots ground speed, 80 m ground clearance, with submilligal accuracy, i.e. higher than NASA Operation IceBridge (OIB)'s 5.2 km resolution, 290 knots, and 450 m clearance. We also employ MultiBeam Echo Sounding data (MBES) collected in the fjord since 2009. We had to wait until the summer of 2016, during Ocean Melting Greenland (OMG), to map the fjord bathymetry near the ice fronts for the first time. We constrain the 3D inversion of the gravity data with MBES in the fjord and a reconstruction of the glacier bed topography using mass conservation (MC) on land ice. The seamless topography obtained across the grounding line reveal the presence of a 300-m sill for AVA, which explains why this glacier has been stable for a century, despite changes in surface melt and ocean-induced melt and the presence of a deep fjord (800 m) in front of the glacier. For KUJ, we also reveal the presence of a wide sill (300 m depth) near the current ice front which explains its stability and the stranding of iceberg debris in front of the glacier. The results shed new light on the evolution of these glaciers and explain their

  5. Bathymetry in Petermann fjord from Operation IceBridge aerogravity

    NASA Astrophysics Data System (ADS)

    Tinto, Kirsty J.; Bell, Robin E.; Cochran, James R.; Münchow, Andreas

    2015-07-01

    Petermann Glacier is a major glacier in northern Greenland, maintaining one of the few remaining floating ice tongues in Greenland. Monitoring programs, such as NASA's Operation IceBridge have surveyed Petermann Glacier over several decades and have found it to be stable in terms of mass balance, velocity and grounding-line position. The future vulnerability of this large glacier to changing ocean temperatures and climate depends on the ocean-ice interactions beneath its floating tongue. These cannot currently be predicted due to a lack of knowledge of the bathymetry underneath the ice tongue. Here we use aerogravity data from Operation IceBridge, together with airborne radar and laser data and shipborne bathymetry-soundings to model the bathymetry beneath the Petermann ice tongue. We find a basement-cored inner sill at 540-610 m depth that results in a water cavity with minimum thickness of 400 m about 25 km from the grounding line. The sill is coincident with the location of the melt rate minimum. Seaward of the sill the fjord is strongly asymmetric. The deepest point occurs on the eastern side of the fjord at 1150 m, 600 m deeper than on the western side. This asymmetry is due to a sedimentary deposit on the western side of the fjord. A 350-410 m-deep outer sill, also mapped by marine surveys, marks the seaward end of the fjord. This outer sill is aligned with the proposed Last Glacial Maximum (LGM) grounding-line position for Petermann Glacier. The inner sill likely provided a stable pinning point for the grounding line in the past, punctuating the retreat of Petermann Glacier since the LGM.

  6. Characterization of stormwater runoff in Sioux Falls, South Dakota, 1995-96

    USGS Publications Warehouse

    Niehus, C.A.

    1997-01-01

    The Kenai River in southcentral Alaska is an economically important salmon river generating as much as $78 million annually in direct benefits. Resource-management agencies are concerned that increased sedimentation and loss of streamside cover associated with accelerated erosion rates caused by boat activity may threaten salmon returns to the river. Bank loss and boat activity were characterized during 1996 along 67 miles of the Kenai River, including a segment of the river several miles long where boat activity is restricted to non-motorized uses. Bank loss in the non-motorized segment of the river was about 75 percent less than that observed in the highest boat-use area of the river and 33 per cent less than that observed in the lowest boat-use area of the river. Dates of peak boat activity coincided closely with chinook salmon returns to the Kenai River and with peaks in measured bank erosion. The boat activity period began in late May, peaked on weekend days in mid-July, and declined in early August. Observed boat traffic on the Kenai River included boats from 10 to 26 feet in length that transported 1 to 8 passengers. The most commonly observed boats were between 16 and 20 feet long and carried 4 or 5 passengers. The number of boats operated by commercial fishing guides represented 40 percent of the boats counted by the Alaska Department of Natural Resources, 55 percent of the boats counted by the Alaska Department of Fish and Game, and 57 percent of those recorded by observers during this study. The maximum boat activity and the maximum bank loss were measured at the RW's Campground study site about 16 river miles upstream from the mouth of the Kenai River. Between July 12 and September 10, 1996, more than 20,100 boats traveled by this site and the streambank along the inside of the meander bend was undercut to a depth of 45 inches at one measuring point. Boat activity and bank loss were greatest in areas of the river between about river miles 9 and 18 and

  7. Glacimarine sedimentation in Petermann Fjord and Nares Strait, NW Greenland

    NASA Astrophysics Data System (ADS)

    Hogan, Kelly; Jakobsson, Martin; Mayer, Larry; Mix, Alan; Nielsen, Tove; Kamla, Elina; Reilly, Brendan; Heirman, Katrina An; Stranne, Christian; Mohammed, Rezwan; Eriksson, Bjorn; Jerram, Kevin

    2017-04-01

    Here we build on preliminary results from 6500 line-km of high-resolution chirp sub-bottom profiles (2-7 kHz) acquired in Petermann Fjord and Nares Strait during the Petermann 2015 Expedition of the Swedish icebreaker Oden. We map the unlithified sediment cover in Peterman Fjord, which consists of up to 3 conformable "drape" units and calculate volumes of this assumed "post-glacial" fill. In Nares Strait we have mapped sediment volumes in local basins just beyond the sill at the Petermann Fjord-mouth: do these sediments represent material flushed out from the grounding zone of Petermann Glacier when it was grounded at the sill? In this vein, and interestingly, some of the thickest sediments that we observe are found close to a grounding-zone wedge (GZW) in Nares Strait that represents a former grounding zone of ice retreating southwards through the strait. We also map conformable units across Nares Strait and consider the similarities between these and the sediment units in the fjord. Do the strong reflections between the units represent the same climatic, oceanographic or process-shift both inside and outside the fjord? We also aim to tie our new acoustic stratigraphy to sediment-core data (lithofacies, dates) and, therefore, to comment on the age of the mapped sediment units and present ideas on the glacimarine flux of material to the Petermann-Nares system. Primary sediment delivery to the seafloor in this environment is thought to be predominantly through sedimentation from meltwater plumes but also of iceberg-rafted debris (IRD). However, sediment redeposition by slope failures on a variety of scales also occurs and has focussed sediments into discrete basins where the seafloor is rugged. This work - which aims to relate past sediment, meltwater and iceberg fluxes to changes in climate - will help us to identify how the system has responded to a past global warming event, namely the last deglaciation. This is particularly relevant in light of the recent

  8. Postseismic Deformation after the 1964 Great Alaskan Earthquake: Collaborative Research with Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Freymueller, Jeffrey T.

    1999-01-01

    The purpose of this project was to carry out GPS observations on the Kenai Peninsula, southern Alaska, in order to study the postseismic and contemporary deformation following the 1964 Alaska earthquake. All of the research supported in this grant was carried out in collaboration with Dr. Steven Cohen of Goddard Space Flight Center. The research funding from this grant primarily supported GPS fieldwork, along with the acquisition of computer equipment to allow analysis and modeling of the GPS data. A minor amount of salary support was provided by the PI, but the great majority of the salary support was provided by the Geophysical Institute. After the expiration of this grant, additional funding was obtained from the National Science Foundation to continue the work. This grant supported GPS field campaigns in August 1995, June 1996, May-June and September 1997, and May-June 1998. We initially began the work by surveying leveling benchmarks on the Kenai peninsula that had been surveyed after the 1964 earthquake. Changes in height from the 1964 leveling data to the 1995+ GPS data, corrected for the geoid-ellipsoid separation, give the total elevation change since the earthquake. Beginning in 1995, we also identified or established sites that were suitable for long-term surveying using GPS. In the subsequent annual GPS campaigns, we made regular measurements at these GPS marks, and steadily enhanced our set of points for which cumulative postseismic uplift data were available. From 4 years of Global Positioning System (GPS) measurements, we find significant spatial variations in present-day deformation between the eastern and western Kenai peninsula, Alaska. Sites in the eastern Kenai peninsula and Prince William Sound move to the NNW relative to North America, in the direction of Pacific-North America relative plate motion. Velocities decrease in magnitude from nearly the full plate rate in southern Prince William Sound to about 30 mm/yr at Seward and to about 5 mm

  9. Jamming of granular ice mélange in tidewater glacial fjords

    NASA Astrophysics Data System (ADS)

    Burton, J. C.; Cassotto, R.; Amundson, J. M.; Kuo, C. C.; Dennin, M.

    2016-12-01

    In tidewater glacial fjords, the open water in front of the glacier terminus is often filled with a collection of calved iceberg fragments and sea ice. For glaciers with large calving rates, this "mélange" of ice can be jam-packed, so that the flow is mostly determined by granular interactions, in addition to underlying fjord currents. As the glacier pushes the ice mélange through the fjord, the mélange will become jammed and may potentially influence calving rates if the back-stress applied to the glacier terminus is large enough. However, the stress applied by a granular ice mélange will depend on its rheology, i.e. iceberg-iceberg contact forces, geometry, friction, etc. Here we report 2D, discrete particle simulations to model the granular mechanics of ice mélange. A polydisperse collection of particles is packed into a long channel and pushed downfjord at a constant speed, the latter derived from terrestrial radar interferometry (TRI). Each individual particle experiences viscoelastic contact forces and tangential frictional forces upon collision with another particle or channel walls. We find the two most important factors that govern the total force applied to the glacier are the geometry of the channel, and the shape of the particles. In addition, our simulated velocity fields reveal shearing margins near the fjord walls with more uniform flow in the middle of the mélange, consistent with TRI observations. Finally, we find that the magnitude of the back-stress applied to the glacier terminus can influence calving, however, the maximum back-stress is limited by the buckling of icebergs into the fjord waters, so that the stress in the quasi-2D mélange is partially determined by the thickness of the mélange layer.

  10. Comparison of climate related changes in two Arctic fjords, Hornsund and Porsanger

    NASA Astrophysics Data System (ADS)

    Aniskiewicz, Paulina; Stramska, Małgorzata

    2017-04-01

    In the Arctic zone the climate change is amplified in comparison to globally averaged trends, and the observed trends are variable spatially. Our research is focused on two Artic fjords: Porsanger and Horsund. Porsanger fjord is located in the coastal waters of the Barents Sea. Hornsund is one of fjords located in the western part of Svalbard archipelago. In this presentation we have used data provided by the Norwegian Meteorological Institute for three meteorological stations. Two of them are located in the Porsanger fjord (Lakselv - in the inner part, Honningsvåg - in the outer zone). The third station provides data from the Hornsund fjord. Using these data we have estimated the 33-year trends (1983-2015) of air temperature and relative humidity in each station using linear regression analysis (statistically significant at 95In the inner part of the Porsanger fjord (Lakselv) the multiyear trend of increasing annual mean air temperature has been estimated at 0.006°C per year. The monthly trends were statistically significant in May, September and November. The strongest seasonal warming has been observed in spring and autumn. The trends of increasing annual mean humidity was about 0.2In Hornsund the air temperature trend (0.2°C per year) is significantly larger than in Porsanger. The trends of air temperature were statistically significant for eight months (except March, April, June and July) and three seasons (besides spring). The trends of relative humidity were not statistically significant. Thanks to this research we can discuss how atmospheric conditions and climate related trends change in time and seasons of the year in two different Arctic regions. The project has been financed from the funds of the Leading National Research Centre (KNOW) received by the Centre for Polar Studies for the period 2014-2018. This work was also funded by the Norway Grants (NCBR contract No. 201985, project NORDFLUX). Partial support comes from the Institute of Oceanology (IO

  11. Effect of fjord geometry on tidewater glacier stability

    NASA Astrophysics Data System (ADS)

    Åkesson, Henning; Nisancioglu, Kerim H.; Nick, Faezeh M.

    2016-04-01

    Many marine-terminating glaciers have thinned, accelerated and retreated during the last two decades, broadly consistent with warmer atmospheric and oceanic conditions. However, these patterns involve considerable spatial and temporal variability, with diverse glacier behavior within the same regions. Similarly, reconstructions of marine-terminating glaciers indicate highly asynchronous retreat histories. While it is well known that retrograde slopes can cause marine ice sheet instabilities, the effect of lateral drag and fjord width has received less attention. Here, we test the hypothesis that marine outlet glacier stability is largely controlled by fjord width, and to a less extent by regional climate forcing. We employ a dynamic flowline model on idealized glacier geometries (representative of different outlet glaciers) to investigate geometric controls on decadal and longer times scales. The model accounts for driving and resistive stresses of glacier flow as well as along-flow stress transfer. It has a physical treatment of iceberg calving and a time-adaptive grid allowing for continuous tracking of grounding-line migration. We apply changes in atmospheric and oceanic forcing and show how wide and narrow fjord sections foster glacier (in)stabilities. We also evaluate the effect of including a surface mass balance - elevation feedback in such a setting. Finally, the relevance of these results to past and future marine-terminating glacier stability is discussed.

  12. Predation on an Upper Trophic Marine Predator, the Steller Sea Lion: Evaluating High Juvenile Mortality in a Density Dependent Conceptual Framework

    PubMed Central

    Horning, Markus; Mellish, Jo-Ann E.

    2012-01-01

    The endangered western stock of the Steller sea lion (Eumetopias jubatus) – the largest of the eared seals – has declined by 80% from population levels encountered four decades ago. Current overall trends from the Gulf of Alaska to the Aleutian Islands appear neutral with strong regional heterogeneities. A published inferential model has been used to hypothesize a continuous decline in natality and depressed juvenile survival during the height of the decline in the mid-late 1980's, followed by the recent recovery of juvenile survival to pre-decline rates. However, these hypotheses have not been tested by direct means, and causes underlying past and present population trajectories remain unresolved and controversial. We determined post-weaning juvenile survival and causes of mortality using data received post-mortem via satellite from telemetry transmitters implanted into 36 juvenile Steller sea lions from 2005 through 2011. Data show high post-weaning mortality by predation in the eastern Gulf of Alaska region. To evaluate the impact of such high levels of predation, we developed a conceptual framework to integrate density dependent with density independent effects on vital rates and population trajectories. Our data and model do not support the hypothesized recent recovery of juvenile survival rates and reduced natality. Instead, our data demonstrate continued low juvenile survival in the Prince William Sound and Kenai Fjords region of the Gulf of Alaska. Our results on contemporary predation rates combined with the density dependent conceptual framework suggest predation on juvenile sea lions as the largest impediment to recovery of the species in the eastern Gulf of Alaska region. The framework also highlights the necessity for demographic models based on age-structured census data to incorporate the differential impact of predation on multiple vital rates. PMID:22272296

  13. Inundation Mapping and Hazard Assessment of Tectonic and Landslide Tsunamis in Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Suleimani, E.; Nicolsky, D.; Koehler, R. D., III

    2014-12-01

    The Alaska Earthquake Center conducts tsunami inundation mapping for coastal communities in Alaska, and is currently focused on the southeastern region and communities of Yakutat, Elfin Cove, Gustavus and Hoonah. This activity provides local emergency officials with tsunami hazard assessment, planning, and mitigation tools. At-risk communities are distributed along several segments of the Alaska coastline, each having a unique seismic history and potential tsunami hazard. Thus, a critical component of our project is accurate identification and characterization of potential tectonic and landslide tsunami sources. The primary tectonic element of Southeast Alaska is the Fairweather - Queen Charlotte fault system, which has ruptured in 5 large strike-slip earthquakes in the past 100 years. The 1958 "Lituya Bay" earthquake triggered a large landslide into Lituya Bay that generated a 540-m-high wave. The M7.7 Haida Gwaii earthquake of October 28, 2012 occurred along the same fault, but was associated with dominantly vertical motion, generating a local tsunami. Communities in Southeast Alaska are also vulnerable to hazards related to locally generated waves, due to proximity of communities to landslide-prone fjords and frequent earthquakes. The primary mechanisms for local tsunami generation are failure of steep rock slopes due to relaxation of internal stresses after deglaciation, and failure of thick unconsolidated sediments accumulated on underwater delta fronts at river mouths. We numerically model potential tsunami waves and inundation extent that may result from future hypothetical far- and near-field earthquakes and landslides. We perform simulations for each source scenario using the Alaska Tsunami Model, which is validated through a set of analytical benchmarks and tested against laboratory and field data. Results of numerical modeling combined with historical observations are compiled on inundation maps and used for site-specific tsunami hazard assessment by

  14. The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords

    NASA Astrophysics Data System (ADS)

    Carroll, D.; Sutherland, D. A.; Hudson, B.; Moon, T.; Catania, G. A.; Shroyer, E. L.; Nash, J. D.; Bartholomaus, T. C.; Felikson, D.; Stearns, L. A.; Noël, B. P. Y.; Broeke, M. R.

    2016-09-01

    Meltwater from the Greenland Ice Sheet often drains subglacially into fjords, driving upwelling plumes at glacier termini. Ocean models and observations of submarine termini suggest that plumes enhance melt and undercutting, leading to calving and potential glacier destabilization. Here we systematically evaluate how simulated plume structure and submarine melt during summer months depends on realistic ranges of subglacial discharge, glacier depth, and ocean stratification from 12 Greenland fjords. Our results show that grounding line depth is a strong control on plume-induced submarine melt: deep glaciers produce warm, salty subsurface plumes that undercut termini, and shallow glaciers produce cold, fresh surface-trapped plumes that can overcut termini. Due to sustained upwelling velocities, plumes in cold, shallow fjords can induce equivalent depth-averaged melt rates compared to warm, deep fjords. These results detail a direct ocean-ice feedback that can affect the Greenland Ice Sheet.

  15. Productivity of Black Oystercatchers: Effects of recreational disturbance in a National Park

    USGS Publications Warehouse

    Morse, J.A.; Powell, A.N.; Tetreau, M.D.

    2006-01-01

    National parks in Alaska are generally assumed to be high-quality, undisturbed wildlife habitats. However, these parks attract recreational users, whose presence may reduce the suitability of key habitats for nesting shorebirds. In Kenai Fjords National Park, Black Oystercatchers (Haematopus bachmani) often breed on gravel beaches that are also popular campsites. In this study, we examined the effects of recreational activities in coastal Alaska on reproductive performance of Black Oystercatchers. We monitored survival of nests and chicks on 35 to 39 breeding territories annually during four breeding seasons (2001-2004). Most recreational disturbance on these territories occurred after the peak hatching date of first clutches. Annual productivity was low (average of 0.35 chicks per pair), but was not strongly affected by recreational disturbance. Daily survival of nests varied annually and declined over the season. Our results suggest that nest survival was lower during periods of extreme high tides. Daily survival rate of broods increased over the season and was higher on island than mainland territories, likely due to differences in predator communities. Territory occupancy rate and site fidelity were high; 95% of color-banded oystercatchers returned to the same breeding territory in the subsequent year. We conclude that Black Oystercatchers are resilient to low levels of recreational disturbance. However, in light of projected increases in recreation, we suggest managers move campsites away from the traditional nest sites identified in this study to minimize future disturbances. ?? The Cooper Ornithological Society 2006.

  16. Response of the Alaska Volcano Observatory to Public Inquiry Concerning the 2006 Eruption of Augustine Volcano, Cook Inlet, Alaska

    NASA Astrophysics Data System (ADS)

    Adleman, J. N.

    2006-12-01

    The 2006 eruption of Augustine Volcano provided the Alaska Volcano Observatory (AVO) with an opportunity to test its newly renovated Operations Center (Ops) at the Alaska Science Center in Anchorage. Because of the demand for interagency operations and public communication, Ops became the hub of Augustine monitoring activity, twenty-four hours a day, seven days a week, from January 10 through May 19, 2006. During this time, Ops was staffed by 17 USGS AVO staff, and over two dozen Fairbanks-based AVO staff from the Alaska Department of Geological and Geophysical Surveys and the University of Alaska Fairbanks Geophysical Institute and USGS Volcano Hazards Program staff from outside Alaska. This group engaged in communicating with the public, media, and other responding agencies throughout the eruption. Before and during the eruption, reference sheets - ;including daily talking - were created, vetted, and distributed to prepare staff for questions about the volcano. These resources were compiled into a binder stationed at each Ops phone and available through the AVO computer network. In this way, AVO was able to provide a comprehensive, uniform, and timely response to callers and emails at all three of its cooperative organizations statewide. AVO was proactive in scheduling an Information Scientist for interviews on-site with Anchorage television stations and newspapers several times a week. Scientists available, willing, and able to speak clearly about the current activity were crucial to AVO's response. On January 19, 2006, two public meetings were held in Homer, 120 kilometers northeast of Augustine Volcano. AVO, the West Coast Alaska Tsunami Warning Center, and the Kenai Peninsula Borough Office of Emergency Management gave brief presentations explaining their roles in eruption response. Representatives from several local, state, and federal agencies were also available. In addition to communicating with the public by daily media interviews and phone calls to Ops

  17. Seasonal sea surface and sea ice signal in the fjords of Eastern Greenland from CryoSat-2 SARin altimetry

    NASA Astrophysics Data System (ADS)

    Abulaitijiang, Adili; Baltazar Andersen, Ole; Stenseng, Lars

    2014-05-01

    Cryosat-2 offers the first ever possibility to perform coastal altimetric studies using SAR-Interferometry. This enabled qualified measurements of sea surface height (SST) in the fjords in Greenland. Scoresbysund fjord on the east coast of Greenland is the largest fjord in the world which is also covered by CryoSat-2 SAR-In mask making it a good test region. Also, the tide gauge operated by DTU Space is sitting in Scoresbysund bay, which provides solid ground-based sea level variation records throughout the year. We perform an investigation into sea surface height variation since the start of the Cryosat-2 mission using SAR-In L1B data processed with baseline B processing. We have employed a new develop method for projecting all SAR-In observations in the Fjord onto a centerline up the Fjord. Hereby we can make solid estimates of the annual and (semi-) annual signal in sea level/sea ice freeboard within the Fjord. These seasonal height variations enable us to derive sea ice freeboard changes in the fjord from satellite altimetry. Derived sea level and sea-ice freeboard can be validated by comparison with the tide gauge observations for sea level and output from the Microwave Radiometer derived observations of sea ice freeboard developed at the Danish Meteorological Institute.

  18. Comparison of earthquake-triggered turbidites from the Saguenay (Eastern Canada) and Reloncavi (Chilean margin) Fjords: Implications for paleoseismicity and sedimentology

    NASA Astrophysics Data System (ADS)

    St-Onge, Guillaume; Chapron, Emmanuel; Mulsow, Sandor; Salas, Marcos; Viel, Matias; Debret, Maxime; Foucher, Anthony; Mulder, Thierry; Winiarski, Thierry; Desmet, Marc; Costa, Pedro J. M.; Ghaleb, Bassam; Jaouen, Alain; Locat, Jacques

    2012-01-01

    High-resolution seismic profiles along with physical and sedimentological properties of sediment cores from the Saguenay (Eastern Canada) and Reloncavi (Chile) Fjords allowed the identification of several decimeter to meter-thick turbidites. In both fjords, the turbidites were associated with large magnitude historic and pre-historic earthquakes including the 1663 AD (M > 7) earthquake in the Saguenay Fjord, and the 1960 (M 9.5), 1837 (M ~ 8) and 1575 AD major Chilean subduction earthquakes in the Reloncavi Fjord. In addition, a sand layer with exoscopic characteristics typical of a tsunami deposit was observed immediately above the turbidite associated with the 1575 AD earthquake in the Reloncavi Fjord and supports both the chronology and the large magnitude of that historic earthquake. In the Saguenay Fjord, the earthquake-triggered turbidites are sometimes underlying a hyperpycnite associated with the rapid breaching and draining of a natural dam formed by earthquake-triggered landslides. Similar hyperpycnal floods were also recorded in historical and continental geological archives for the 1960 and 1575 AD Chilean subduction earthquakes, highlighting the risk of such flood events several weeks or months after main earthquake. In both fjords, as well as in other recently recognized earthquake-triggered turbidites, the decimeter-to meter-thick normally-graded turbidites are characterized by a homogeneous, but slightly fining upward tail. Finally, this paper also emphasizes the sensitivity of fjords to record historic and pre-historic seismicity.

  19. Preliminary volcano-hazard assessment for Augustine Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Waitt, Richard B.

    1998-01-01

    Augustine Volcano is a 1250-meter high stratovolcano in southwestern Cook Inlet about 280 kilometers southwest of Anchorage and within about 300 kilometers of more than half of the population of Alaska. Explosive eruptions have occurred six times since the early 1800s (1812, 1883, 1935, 1964-65, 1976, and 1986). The 1976 and 1986 eruptions began with an initial series of vent-clearing explosions and high vertical plumes of volcanic ash followed by pyroclastic flows, surges, and lahars on the volcano flanks. Unlike some prehistoric eruptions, a summit edifice collapse and debris avalanche did not occur in 1812, 1935, 1964-65, 1976, or 1986. However, early in the 1883 eruption, a portion of the volcano summit broke loose forming a debris avalanche that flowed to the sea. The avalanche initiated a small tsunami reported on the Kenai Peninsula at English Bay, 90 kilometers east of the volcano. Plumes of volcanic ash are a major hazard to jet aircraft using Anchorage International and other local airports. Ashfall from future eruptions could disrupt oil and gas operations and shipping activities in Cook Inlet. Eruptions similar to the historical and prehistoric eruptions are likely in Augustine's future.

  20. Tectonics of the March 27, 1964, Alaska earthquake: Chapter I in The Alaska earthquake, March 27, 1964: regional effects

    USGS Publications Warehouse

    Plafker, George

    1969-01-01

    The March 27, 1964, earthquake was accomp anied by crustal deformation-including warping, horizontal distortion, and faulting-over probably more than 110,000 square miles of land and sea bottom in south-central Alaska. Regional uplift and subsidence occurred mainly in two nearly parallel elongate zones, together about 600 miles long and as much as 250 miles wide, that lie along the continental margin. From the earthquake epicenter in northern Prince William Sound, the deformation extends eastward 190 miles almost to long 142° and southwestward slightly more than 400 miles to about long 155°. It extends across the two zones from the chain of active volcanoes in the Aleutian Range and Wrangell Mountains probably to the Aleutian Trench axis. Uplift that averages 6 feet over broad areas occurred mainly along the coast of the Gulf of Alaska, on the adjacent Continental Shelf, and probably on the continental slope. This uplift attained a measured maximum on land of 38 feet in a northwest-trending narrow belt less than 10 miles wide that is exposed on Montague Island in southwestern Prince William Sound. Two earthquake faults exposed on Montague Island are subsidiary northwest-dipping reverse faults along which the northwest blocks were relatively displaced a maximum of 26 feet, and both blocks were upthrown relative to sea level. From Montague Island, the faults and related belt of maximum uplift may extend southwestward on the Continental Shelf to the vicinity of the Kodiak group of islands. To the north and northwest of the zone of uplift, subsidence forms a broad asymmetrical downwarp centered over the Kodiak-Kenai-Chugach Mountains that averages 2½ feet and attains a measured maximum of 7½ feet along the southwest coast of the Kenai Peninsula. Maximum indicated uplift in the Alaska and Aleutian Ranges to the north of the zone of subsidence was l½ feet. Retriangulation over roughly 25,000 square miles of the deformed region in and around Prince William Sound

  1. Observed Spatial and Temporal Variability of Subglacial Discharge-Driven Plumes in Greenland's Outlet Glacial Fjords

    NASA Astrophysics Data System (ADS)

    Sutherland, D.; Carroll, D.; Nash, J. D.; Shroyer, E.; Mickett, J.; Stearns, L. A.; Fried, M.; Bartholomaus, T.; Catania, G. A.

    2015-12-01

    Hydrographic and velocity observations in Greenland's outlet glacier fjords have revealed, unsurprisingly, a rich set of dynamics over a range of spatial and temporal scales. Through teasing apart the distinct processes that control circulation within these fjords, we are likely to better understand the impact of fjord circulation on modulating outlet glacier dynamics, and thus, changes in Greenland Ice Sheet mass balance. Here, we report on data from the summers of 2013-2015 in two neighboring fjords in the Uummannaq Bay region of west Greenland: Kangerlussuup Sermia (KS) and Rink Isbræ (RI). We find strong subglacial discharge driven plumes in both systems that evolve on synoptic and seasonal time scales, without the complicating presence of other circulation processes. The plumes both modify fjord water properties and respond to differences in ambient water properties, supporting the notion that a feedback exists between subglacial discharge plume circulation and water mass properties. This feedback between subglacial discharge and water properties potentially influences submarine melt rates at the glacier termini. Observed plume properties, including the vertical structure of velocity, and temperature and salinity anomalies, are compared favorably to model estimates. In KS, we find a near-surface intensified plume with high sediment content that slows and widens as it evolves downstream. In contrast, the plume in RI is entirely subsurface, ranging from 100-300 m depth at its core during summer, although it shows similar temperature, salinity, and optical backscatter signals to the KS plume. Importantly, the distinct vertical plume structures imprint on the overall water mass properties found in each fjord, raising the minimum temperatures by up to 1-2°C in the case of RI.

  2. Glacial conditioning of stream position and flooding in the braid plain of the Exit Glacier foreland, Alaska

    NASA Astrophysics Data System (ADS)

    Curran, Janet H.; Loso, Michael G.; Williams, Haley B.

    2017-09-01

    Flow spilling out of an active braid plain often signals the onset of channel migration or avulsion to previously occupied areas. In a recently deglaciated environment, distinguishing between shifts in active braid plain location, considered reversible by fluvial processes at short timescales, and more permanent glacier-conditioned changes in stream position can be critical to understanding flood hazards. Between 2009 and 2014, increased spilling from the Exit Creek braid plain in Kenai Fjords National Park, Alaska, repeatedly overtopped the only access road to the popular Exit Glacier visitor facilities and trails. To understand the likely cause of road flooding, we consider recent processes and the interplay between glacier and fluvial system dynamics since the maximum advance of the Little Ice Age, around 1815. Patterns of temperature and precipitation, the variables that drive high streamflow via snowmelt, glacier meltwater runoff, and rainfall, could not fully explain the timing of road floods. Comparison of high-resolution topographic data between 2008 and 2012 showed a strong pattern of braid plain aggradation along 3 km of glacier foreland, not unexpected at the base of mountainous glaciers and likely an impetus for channel migration. Historically, a dynamic zone follows the retreating glacier in which channel positions shift rapidly in response to changes in the glacier margin and fresh morainal deposits. This period of paraglacial adjustment lasts one to several decades at Exit Glacier. Subsequently, as moraine breaches consolidate and lock the channel into position, and as the stream regains the lower-elevation valley center, upper-elevation surfaces are abandoned as terraces inaccessible by fluvial processes for timescales of decades to centuries. Where not constrained by these terraces and moraines, the channel is free to migrate, which in this aggradational setting generates an alluvial fan at the breach of the final prominent moraine. The position of

  3. Annual changes in Arctic fjord environment and modern benthic foraminiferal fauna: Evidence from Kongsfjorden, Svalbard

    NASA Astrophysics Data System (ADS)

    Jernas, Patrycja; Klitgaard-Kristensen, Dorthe; Husum, Katrine; Koç, Nalan; Tverberg, Vigdis; Loubere, Paul; Prins, Maarten; Dijkstra, Noortje; Gluchowska, Marta

    2018-04-01

    The relationships between modern Arctic benthic foraminifera and their ecological controls, along with their sensitivity to rapid environmental changes, is still poorly understood. This study examines how modern benthic foraminifera respond to annual environmental changes in the glaciated Arctic fjord Kongsfjorden, western Svalbard. Large environmental gradients due to the inflow of warm and saline Atlantic Water and the influence of tidewater glaciers characterise the fjord hydrography. A transect of six multi-corer stations, from the inner to the outer fjord, was sampled in the late summers of 2005 to 2008 to study the distribution of living (rose Bengal stained) benthic foraminifera. Physical properties of the water masses were measured concurrently. In general, nearly the entire Kongsfjorden region was dominated by ubiquitous N. labradorica foraminiferal assemblage that successfully exploited the local food resources and thrived particularly well in the presence of Atlantic-derived Transformed Atlantic Water (TAW). Further, the annual investigation revealed that Kongsfjorden underwent large interannual hydrological changes during the studied years related to variable inflow of warm and saline Atlantic Water. This led to a strong fauna variability particularly at the two marginal sites: the glacially influenced inner fjord and marine influenced shelf region. We also observed significant species shift from the 'cold' to 'warm' years and an expansion of widespread and sub-arctic to boreal species into the fjord.

  4. Compared sub-bottom profile interpretation in fjords of King George Island and Danco Coast, Antarctica

    NASA Astrophysics Data System (ADS)

    Rodrigo, C.; Vilches, L.; Vallejos, C.; Fernandez, R.; Molares, R.

    2015-12-01

    The fjords of the South Shetland Islands (Antarctica) and Danco Coast (Antarctic Peninsula) represent climatic transitional areas (subpolar to polar). The analysis of the distribution of sub-bottom facies helps to understand the prevailing sedimentary and climatic processes. This work seeks to characterize and compare the fjord seismic facies, of the indicated areas, to determine the main sedimentary processes in these regions. Compressed High-Intensity Radiated Pulse (CHIRP) records from 3.5 kHz sub-bottom profiler were obtained from the cruise: NBP0703 (2007); and pinger 3.5 kHz sub-bottom profiler records from the cruises: ECA-50 INACH (2014), and First Colombian Expedition (2015). Several seismic facies were recognized in all studied areas with some variability on their thickness and extent, and indicate the occurrence of similar sedimentary processes. These are: SSD facies (strong to weak intensity, stratified, draped sheet external shape), is interpreted as sedimentary deposits originated from suspended sediments from glaciar plumes and/or ice-rafting. This facies, in general, is thicker in the fjords of King George Island than in the larger fjords of the Danco Coast; on the other hand, within the Danco Coast area, this facies is thinner and more scarce in the smaller fjords and bays. MCM facies (moderate intensity, chaotic and with mounds) is associated with moraine deposits and/or basement. This is present in all areas, being most abundant in the Danco Coast area. WIC facies (weak intensity and chaotic) is interpreted as debris flows, which are present in both regions, but is most common in small fjords or bays in the Danco Coast, perhaps due to higher slopes of the seabed. In this work we discuss the influence of local climate, sediment plumes from the glaciers and other sedimentary processes on the distribution and geometry of the identified seismic facies.

  5. Sediment thicknesses and holocene glacial marine sedimentation rates in three east Greenland fjords (ca. 68°N)

    USGS Publications Warehouse

    Andrews, J.T.; Milliman, John D.; Jennings, A.E.; Rynes, N.; Dwyer, J.

    1994-01-01

    We compared measured and estimated sediment budgets in heavily glaciated fjords in East Greenland. Mass balance calculations and regional glacio-climatic conditions suggest that the sediment flux to the seafloor in Kangerdlugssuaq and Nansen fjords should be dominated by iceberg rafting and not by the rain-out of suspended particulates in meltwater, as the glacier calving flux is estimated at 15 and $2 km^{3}/yr$, compared to meltwater volumes of 4.4 and $1.7 km^{3}/yr$, respectively. Gravity cores in the three fjords indicate that the uppermost 1-2.5 m of sediment consists of diamictons or fine-grained laminated muds. AMS radiocarbon dates on calcareous foramininfera or shells (16 total) indicate sedimentation rates of 110 to 340 cm/ka within the fjords over the last 1 ka, and 10-20 cm/ka during the Holecene on the inner and middle shelf. Annual sediment discharge is around $0.67 \\times 10^{6}$ tonnes/yr within the Kangerdlugssuaq Fjord and Trough system, which translates into an average basin-wide rate of denudation of 0.01 mm/yr (0.01 m/ka). Air gun and deep-towed (Huntec) seismic profiling was carried out in Kangerdlugssuaq and Nansen fjords, East Greenland, and showed that sediment fills averaged 500 and 350 m respectively; they consist primarily of acoustically stratified sediments. If the sediment fills are entirely Holocene in age then the required average sediment accumulation rates of 35-50 m/ka are an order of magnitude larger than the $^{14}C $controlled rates of the last 1-2 ka. This raises the possibility that fjord sediments may be by-passed and not always recycled during glacial advances; this will affect sedimentation rates on adjacent shelves and deep-sea areas during successive glaciations

  6. Long Wave Runup in Asymmetric Bays and in Fjords With Two Separate Heads

    NASA Astrophysics Data System (ADS)

    Raz, Amir; Nicolsky, Dmitry; Rybkin, Alexei; Pelinovsky, Efim

    2018-03-01

    Modeling of tsunamis in glacial fjords prompts us to evaluate applicability of the cross-sectionally averaged nonlinear shallow water equations to model propagation and runup of long waves in asymmetrical bays and also in fjords with two heads. We utilize the Tuck-Hwang transformation, initially introduced for the plane beaches and currently generalized for bays with arbitrary cross section, to transform the nonlinear governing equations into a linear equation. The solution of the linearized equation describing the runup at the shore line is computed by taking into account the incident wave at the toe of the last sloping segment. We verify our predictions against direct numerical simulation of the 2-D shallow water equations and show that our solution is valid both for bays with an asymmetric L-shaped cross section, and for fjords with two heads—bays with a W-shaped cross section.

  7. Early Diagenesis of Trace Elements in Modern Fjord Sediments of the High Arctic

    NASA Astrophysics Data System (ADS)

    Herbert, L.; Riedinger, N.; Aller, R. C.; Jørgensen, B. B.; Wehrmann, L.

    2017-12-01

    Marine sediments are critical repositories for elements that are only available at trace concentrations in seawater, such as Fe, Mn, Co, Ni, As, Mo, and U. The behavior of these trace elements in the sediment is governed by a dynamic interplay of diagenetic reactions involving organic carbon, Fe and Mn oxides, and sulfur phases. In the Arctic fjords of Svalbard, glacial meltwater delivers large amounts of reactive Fe and Mn oxides to the sediment, while organic carbon is deposited episodically and diluted by lithogenic material. These conditions result in pronounced Fe and Mn cycling, which in turn drives other diagenetic processes such as rapid sulfide oxidation. These conditions make the Svalbard fjords ideal sites for investigating trace element diagenesis because they allow resolution of the interconnections between Fe and Mn dynamics and trace element cycling. In August 2016, we collected sediment cores from three Svalbard fjords and analyzed trace elements in the pore water and solid sediment over the top meter. Initial results reveal the dynamic nature of these fjords, which are dominated by non-steady state processes and episodic events such as meltwater pulses and phytoplankton blooms. Within this system, the distribution of As appears to be strongly linked to the Fe cycle, while Co and Ni follow Mn; thus, these three elements may be released from the sediment through diffusion and bioturbation along with Fe and Mn. The pore water profiles of U and Mo indicate removal processes that are independent from Fe or Mn, and which are rather unexpected given the apparent diagenetic conditions. Our results will help elucidate the processes controlling trace element cycling in a dynamic, glacially impacted environment and will ultimately contribute to our understanding of the role of fjords in the biogeochemical cycling of trace elements in a rapidly changing Arctic Ocean.

  8. The Influence of Subglacial Hydrology on Arctic Tidewater Glaciers and Fjords

    NASA Astrophysics Data System (ADS)

    Schild, Kristin M.

    Mass loss from the Greenland Ice Sheet has accelerated throughout the last decade, predominantly due to a quadrupling of ice discharge by iceberg calving, submarine melting, and meltwater runoff at marine-terminating outlet glaciers. The recent acceleration has been linked to the transport of increasing amounts of meltwater, fuelled by warming temperatures. These processes include enhanced basal sliding, inefficient subglacial drainage networks, and a warming of ocean waters in contact with the glacier terminus. Understanding the impact of meltwater on tidewater glacier dynamics, both subglacially and proglacially, is a key component in predicting glacier health and future sea level rise. However, the spatial and temporal magnitude of this meltwater impact is poorly understood. The goals of this dissertation are to identify how meltwater travels subglacially through a tidewater glacier system, establish a method to monitor tidewater glacier discharge remotely, and calculate the impact of subglacial discharge on terminus stability.. The inaccessibility of subglacial and terminus environments prohibits direct hydrological observations. We use combinations of remote sensing, reanalysis models, and in situ fjord data to accomplish these research goals by measuring indicators of subglacial meltwater discharge and fjord circulation (sediment plumes exiting the terminus and the movement of small icebergs in the fjord). By monitoring the timing and duration of plumes exiting a fast-flowing Greenland tidewater glacier, we found short-term variability in meltwater discharge, persistent subglacial pathways, and evidence of over-winter subglacial storage. Using glaciers in Svalbard, we established a new method to determine sediment concentration from Landsat-8 spectral reflectance, and used this sediment concentration to quantify relative seasonal meltwater discharge at tidewater glaciers. Finally, we used the movement of icebergs and ocean temperatures to establish a terminus

  9. Fjord dynamics and glacio-marine interactions on Northern Ellesmere Island, Canada

    NASA Astrophysics Data System (ADS)

    Hamilton, A.; Mueller, D.; Laval, B.

    2012-12-01

    Despite the existence of ice shelves and glacier tongues along the northern coast of Ellesmere Island, Canada, for the majority of the past 4000 years (Evans and England, 1992; Antoniades et al., 2011) recent atmospheric warming has contributed to collapse of the remaining ice shelves and the loss of rare ice-shelf dammed lakes (epishelf lakes) (Mueller et al., 2003, 2008; Copland et al., 2007). These studies have primarily addressed surface processes as the causal factors for ice shelf breakup, but changes in ocean stratification and heat flux, meltwater input, and subglacial thermodynamics may strongly influence the integrity and fate of these systems. Despite the growing evidence of the importance of oceanic processes on tidewater glacier mass balance in Greenlandic fjords (Holland et al., 2008; Johnson et al., 2011; Straneo et al., 2011) these processes remain poorly studied on related systems in the Canadian Arctic Archipelago (CAA). In addition, the recent sharp increase in mass loss from the glaciers and ice caps of the CAA, primarily in the form of meltwater runoff (Gardner et al., 2011) suggest understanding the aquatic and oceanic factors contributing to ice shelf and glacier tongue integrity and epishelf lake formation is critical. We will present observations from the Milne Fjord ice shelf, epishelf lake, and glacier tongue system on the northern coast of Ellesmere Island, Canada (Fig. 1). Two years of field observations include a 15-month under-ice ocean mooring deployment, through-ice oceanographic CTD and current velocity profiles, and ice mass balance estimates from ablation stake and GPR surveys. We will present the first ever observations of the seasonal and episodic oceanographic variations of Milne Fjord, with particular focus on ocean-epishelf lake-ice shelf dynamics. We aim to understand how all ice and ocean components interact to determine the evolution and stability of the system, with the goal of understanding and perhaps predicting large

  10. 50 CFR Figure 5 to Subpart E of... - Anchorage, Matanuska-Susitna, and Kenai Rural and Non-Rural Areas

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 11 2013-10-01 2013-10-01 false Anchorage, Matanuska-Susitna, and Kenai Rural and Non-Rural Areas 5 Figure 5 to Subpart E of Part 300 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL FISHERIES REGULATIONS Pacific Halibut Fisheries Pt. 300, Subpt. E, Fig. 5 Figure 5 to Subpart E of Part 30...

  11. 50 CFR Figure 5 to Subpart E of... - Anchorage, Matanuska-Susitna, and Kenai Rural and Non-Rural Areas

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 11 2014-10-01 2014-10-01 false Anchorage, Matanuska-Susitna, and Kenai Rural and Non-Rural Areas 5 Figure 5 to Subpart E of Part 300 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL FISHERIES REGULATIONS Pacific Halibut Fisheries Pt. 300, Subpt. E, Fig. 5 Figure 5 to Subpart E of Part 30...

  12. 50 CFR Figure 5 to Subpart E of... - Anchorage, Matanuska-Susitna, and Kenai Rural and Non-Rural Areas

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 11 2012-10-01 2012-10-01 false Anchorage, Matanuska-Susitna, and Kenai Rural and Non-Rural Areas 5 Figure 5 to Subpart E of Part 300 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL FISHERIES REGULATIONS Pacific Halibut Fisheries Pt. 300, Subpt. E, Fig. 5 Figure 5 to Subpart E of Part 30...

  13. 50 CFR Figure 5 to Subpart E of... - Anchorage, Matanuska-Susitna, and Kenai Rural and Non-Rural Areas

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Anchorage, Matanuska-Susitna, and Kenai Rural and Non-Rural Areas 5 Figure 5 to Subpart E of Part 300 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL FISHERIES REGULATIONS Pacific Halibut Fisheries Pt. 300, Subpt. E, Fig. 5 Figure 5 to Subpart E of Part 300...

  14. 50 CFR Figure 5 to Subpart E of... - Anchorage, Matanuska-Susitna, and Kenai Rural and Non-Rural Areas

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Anchorage, Matanuska-Susitna, and Kenai Rural and Non-Rural Areas 5 Figure 5 to Subpart E of Part 300 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL FISHERIES REGULATIONS Pacific Halibut Fisheries Pt. 300, Subpt. E, Fig. 5 Figure 5 to Subpart E of Part 300...

  15. A Sensitivity Analysis of Triggers and Mechanisms of Mass Movements in Fjords

    NASA Astrophysics Data System (ADS)

    Overeem, I.; Lintern, G.; Hill, P.

    2016-12-01

    Fjords are characterized by rapid sedimentation as they typically drain glaciated river catchments with high seasonal discharges and large sediment evacuation rates. For this reason, fjords commonly experience submarine mass movements; failures of the steep delta front that trigger tsunamis, and turbidity currents or debris flows. Repeat high-resolution bathymetric surveys, and in-situ process measurements collected in fjords in British Columbia, Canada, indicate that mass movements occur many times per year in some fjords and are more rare and of larger magnitude in other fjords. We ask whether these differences can be attributed to river discharge characteristics or to grainsize characteristics of the delivered sediment. To test our ideas, we couple a climate-driven river sediment transport model, HydroTrend, and a marine sedimentation model, Sedflux2D, to explore the triggers of submarine failures and mechanisms of subsequent turbidity and debris flows. HydroTrend calculates water and suspended sediment transport on a daily basis based on catchment characteristics, glaciated area, lakes and temperature and precipitation regime. Sedflux uses the generated river time-series to simulate delta plumes, failures and mass movements with separate process models. Model uncertainty and parameter sensitivity are assessed using Dakota Tools, which allows for a systematic exploration of the effects of river basin characteristics and climate scenarios on occurrence of hyperpycnal events, delta front sedimentation rate, submarine pore pressure, failure frequency and size, and run-out distances. Preliminary simulation results point to the importance of proglacial lakes and lakes abundance in the river basin, which has profound implications for event-based sediment delivery to the delta apex. Discharge-sediment rating curves can be highly variable based on these parameters. Distinction of turbidity currents and debris flows was found to be most sensitive to both earthquake

  16. Tidal analysis of surface currents in the Porsanger fjord in northern Norway

    NASA Astrophysics Data System (ADS)

    Stramska, Malgorzata; Jankowski, Andrzej; Cieszyńska, Agata

    2016-04-01

    In this presentation we describe surface currents in the Porsanger fjord (Porsangerfjorden) located in the European Arctic in the vicinity of the Barents Sea. Our analysis is based on data collected in the summer of 2014 using High Frequency radar system. Our interest in this fjord comes from the fact that this is a region of high climatic sensitivity. One of our long-term goals is to develop an improved understanding of the undergoing changes and interactions between this fjord and the large-scale atmospheric and oceanic conditions. In order to derive a better understanding of the ongoing changes one must first improve the knowledge about the physical processes that create the environment of the fjord. The present study is the first step in this direction. Our main objective in this presentation is to evaluate the importance of tidal forcing. Tides in the Porsanger fjord are substantial, with tidal range on the order of about 3 meters. Tidal analysis attributes to tides about 99% of variance in sea level time series recorded in Honningsvåg. The most important tidal component based on sea level data is the M2 component (amplitude of ~90 cm). The S2 and N2 components (amplitude of ~ 20 cm) also play a significant role in the semidiurnal sea level oscillations. The most important diurnal component is K1 with amplitude of about 8 cm. Tidal analysis lead us to the conclusion that the most important tidal component in observed surface currents is also the M2 component. The second most important component is the S2 component. Our results indicate that in contrast to sea level, only about 10 - 20% of variance in surface currents can be attributed to tidal currents. This means that about 80-90% of variance can be credited to wind-induced and geostrophic currents. This work was funded by the Norway Grants (NCBR contract No. 201985, project NORDFLUX). Partial support for MS comes from the Institute of Oceanology (IO PAN).

  17. Linking bacterial community structure to advection and environmental impact along a coast-fjord gradient of the Sognefjord, western Norway

    NASA Astrophysics Data System (ADS)

    Storesund, Julia E.; Sandaa, Ruth-Anne; Thingstad, T. Frede; Asplin, Lars; Albretsen, Jon; Erga, Svein Rune

    2017-12-01

    Here we present novel data on bacterial assemblages along a coast-fjord gradient in the Sognefjord, the deepest (1308 m) and longest (205 km) ice-free fjord in the world. Data were collected on two cruises, one in November 2012, and one in May 2013. Special focus was on the impact of advective processes and how these are reflected in the autochthonous and allochthonous fractions of the bacterial communities. Both in November and May bacterial community composition, determined by Automated Ribosomal Intergenic Spacer Analyses (ARISA), in the surface and intermediate water appeared to be highly related to bacterial communities originating from freshwater runoff and coastal water, whereas the sources in the basin water were mostly unknown. Additionally, the inner part of the Sognefjord was more influenced by side-fjords than the outer part, and changes in bacterial community structure along the coast-fjord gradient generally showed higher correlation with environmental variables than with geographic distances. High resolution model simulations indicated a surprisingly high degree of temporal and spatial variation in both current speed and direction. This led to a more episodic/discontinuous horizontal current pattern, with several vortices (10-20 km wide) being formed from time to time along the fjord. We conclude that during periods of strong wind forcing, advection led to allochthonous species being introduced to the surface and intermediate layers of the fjord, and also appeared to homogenize community composition in the basin water. We also expect vortices to be active mixing zones where inflowing bacterial populations on the southern side of the fjord are mixed with the outflowing populations on the northern side. On average, retention time of the fjord water was sufficient for bacterial communities to be established.

  18. Phylogeography of mitochondrial DNA variation in brown bears and polar bears.

    PubMed

    Shields, G F; Adams, D; Garner, G; Labelle, M; Pietsch, J; Ramsay, M; Schwartz, C; Titus, K; Williamson, S

    2000-05-01

    We analyzed 286 nucleotides of the middle portion of the mitochondrial cytochrome b gene of 61 brown bears from three locations in Alaska and 55 polar bears from Arctic Canada and Arctic Siberia to test our earlier observations of paraphyly between polar bears and brown bears as well as to test the extreme uniqueness of mitochondrial DNA types of brown bears on Admiralty, Baranof, and Chichagof (ABC) islands of southeastern Alaska. We also investigated the phylogeography of brown bears of Alaska's Kenai Peninsula in relation to other Alaskan brown bears because the former are being threatened by increased human development. We predicted that: (1) mtDNA paraphyly between brown bears and polar bears would be upheld, (2) the mtDNA uniqueness of brown bears of the ABC islands would be upheld, and (3) brown bears of the Kenai Peninsula would belong to either clade II or clade III of brown bears of our earlier studies of mtDNA. All of our predictions were upheld through the analysis of these additional samples. Copyright 2000 Academic Press.

  19. Phylogeography of mitochondrial DNA variation in brown bears and polar bears

    USGS Publications Warehouse

    Shields, Gerald F.; Adams, Deborah; Garner, Gerald W.; Labelle, Martine; Pietsch, Jacy; Ramsay, Malcolm; Schwartz, Charles; Titus, Kimberly; Williamson, Scott

    2000-01-01

    We analyzed 286 nucleotides of the middle portion of the mitochondrial cytochrome b gene of 61 brown bears from three locations in Alaska and 55 polar bears from Arctic Canada and Arctic Siberia to test our earlier observations of paraphyly between polar bears and brown bears as well as to test the extreme uniqueness of mitochondrial DNA types of brown bears on Admiralty, Baranof, and Chichagof (ABC) islands of southeastern Alaska. We also investigated the phylogeography of brown bears of Alaska's Kenai Peninsula in relation to other Alaskan brown bears because the former are being threatened by increased human development. We predicted that: (1) mtDNA paraphyly between brown bears and polar bears would be upheld, (2) the mtDNA uniqueness of brown bears of the ABC islands would be upheld, and (3) brown bears of the Kenai Peninsula would belong to either clade II or clade III of brown bears of our earlier studies of mtDNA. All of our predictions were upheld through the analysis of these additional samples.

  20. On the response of the horizontal mean vertical density distribution in a fjord to low-frequency density fluctuations in the coastal water

    NASA Astrophysics Data System (ADS)

    Stigebrandt, Anders

    1990-10-01

    Baroclinic water exchange through a fjord mouth, driven by a slowly varying density field outside the mouth, is modelled by a simple quasi-steady frictionless model. It is assumed that a certain fraction of the horizontal pressure difference between the coastal water and the fjord is used to accelerate the fluid into the mouth. The continuous vertical density distribution in the fjord, which changes in response to the water exchange, is modelled using a time-dependent, one-dimensional advective-diffusive 'filling-box' type of model. The model has been tested against an almost one-year-long time series of salinity and temperature from the Ørsta fjord (horizontal surface area about 15km2) on the Norwegian west coast. It is found that for this particular fjord, the mean externally forced baroclinic water exchange is one order of magnitude greater than the mean water exchange driven by the estuarine circulation (600 and 60m3 s-1 respectively). Such a vigorous water exchange between a fjord and the external area implies that the time-averaged concentrations of many biological and chemical species above the sill level in the fjord are approximately equal to those in the coastal water outside the fjords.

  1. Numerical study of tsunami generated by multiple submarine slope failures in Resurrection Bay, Alaska, during the MW 9.2 1964 earthquake

    USGS Publications Warehouse

    Suleimani, E.; Hansen, R.; Haeussler, Peter J.

    2009-01-01

    We use a viscous slide model of Jiang and LeBlond (1994) coupled with nonlinear shallow water equations to study tsunami waves in Resurrection Bay, in south-central Alaska. The town of Seward, located at the head of Resurrection Bay, was hit hard by both tectonic and local landslide-generated tsunami waves during the MW 9.2 1964 earthquake with an epicenter located about 150 km northeast of Seward. Recent studies have estimated the total volume of underwater slide material that moved in Resurrection Bay during the earthquake to be about 211 million m3. Resurrection Bay is a glacial fjord with large tidal ranges and sediments accumulating on steep underwater slopes at a high rate. Also, it is located in a seismically active region above the Aleutian megathrust. All these factors make the town vulnerable to locally generated waves produced by underwater slope failures. Therefore it is crucial to assess the tsunami hazard related to local landslide-generated tsunamis in Resurrection Bay in order to conduct comprehensive tsunami inundation mapping at Seward. We use numerical modeling to recreate the landslides and tsunami waves of the 1964 earthquake to test the hypothesis that the local tsunami in Resurrection Bay has been produced by a number of different slope failures. We find that numerical results are in good agreement with the observational data, and the model could be employed to evaluate landslide tsunami hazard in Alaska fjords for the purposes of tsunami hazard mitigation. ?? Birkh??user Verlag, Basel 2009.

  2. Evidence of Anomalously Low δ13C of Marine Organic Matter in an Arctic Fjord.

    PubMed

    Kumar, Vikash; Tiwari, Manish; Nagoji, Siddhesh; Tripathi, Shubham

    2016-11-09

    Accurate estimation of relative carbon deposition (marine vs. terrestrial) is required for understanding the global carbon budget, particularly in the Arctic region, which holds disproportionate importance with respect to global carbon cycling. Although the sedimentary organic matter (SOM) concentration and its isotopic composition are important tools for such calculations, uncertainties loom over estimates provided by organic-geochemical bulk parameters. We report carbon and nitrogen concentrations and isotopes (δ 13 C and δ 15 N) of SOM at an Arctic fjord namely Kongsfjorden. We find that the bound inorganic nitrogen (ammonium attached to the clay minerals) forms a significant proportion of total nitrogen concentration (~77% in the inner fjord to ~24% in the outer part). On removing the bound nitrogen, the C/N ratio shows that the SOM in the inner fjord is made up of terrestrial carbon while the outer fjord shows mixed marine-terrestrial signal. We further show that the marine organic matter is unusually more depleted in 13 C (~-24‰) than the terrestrial organic matter (~-22.5‰). This particular finding also helps explain high δ 13 C values of SOM as noted by earlier studies in central Arctic sediments despite a high terrestrial contribution.

  3. Reactive Iron Delivery to the Central Gulf of Alaska via Two Mesoscale Eddies (Invited)

    NASA Astrophysics Data System (ADS)

    Lippiatt, S. M.; Brown, M. T.; Lohan, M. C.; Bruland, K. W.

    2010-12-01

    Coastal waters in the northern Gulf of Alaska (GoA) are considered Fe-rich and nitrate-poor, in contrast to the Fe-poor, high-nitrate, low chlorophyll (HNLC) waters of the central GoA. Mixing between these two regimes can lead to enhanced primary productivity. Mesoscale anticyclonic eddies are an important mechanism for cross-shelf exchange of coastal and HNLC waters. This presentation will discuss findings from a cruise in the GoA during late summer 2007, namely dissolved Fe, leachable particulate Fe (defined as the portion of the particulate Fe that is solubilized with a two hour, 25% acetic acid leach with a short heating step and a reducing agent), and nitrate. Leachable particulate Fe concentrations in coastal surface waters between Yakutat, AK and the Kenai Peninsula ranged from over 1 uM in the Alsek River plume to less than 5 nM at the base of Cook Inlet, and were more variable and at least an order of magnitude higher than dissolved Fe concentrations. Relatively low and consistent dissolved Fe (~2 nM) suggests that the system’s ability to solubilize this large concentration of leachable particulate Fe is overwhelmed by the massive input of glacial-derived particulate Fe. Suspended leachable particulate Fe is available for exchange to the dissolved phase and is suggested to maintain a relatively constant 2 nM concentration of dissolved Fe in the coastal GoA. Glacial meltwaters were not a significant source of nitrate compared to central GoA HNLC or upwelled waters. The work completed in the coastal GoA set the stage for assessing the delivery of this glacial-derived coastal Fe to HNLC waters via mesoscale eddies. Two mesoscale eddies were sampled during this study: a Sitka eddy located off Yakutat, Alaska and a Kenai eddy sampled off the shelf break near Kodiak Island. The temperature and salinity structures of the eddies reflected their coastal origin; core waters were warmer and fresher than surrounding basin waters, coincident with elevated dissolved

  4. Lake-sediment evidence for the date of deglaciation of the Hidden Lake area, Kenai Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Rymer, Michael J.; Sims, John D.

    1982-06-01

    An abrupt environmental change is reflected in a core from Hidden Lake, Alaska, by differences in sediment type, chlorite crystallinity, and content of organic carbon and water of the sediments. This abrupt change in the sedimentary record occurred about 14,500 14C yr ago and probably marks the time of recession of the glacier from the Hidden Lake drainage basin. Deglaciation of the area was then underway, and rock flour was being deposited in the lake. After recession of the glacier from the Hidden Lake drainage basin, rock flour was no longer introduced, and organic-matter content of the sediment increased. By the dating of these changes in sediment type, we show that retreat of glaciers in this area took place significantly earlier than previously estimated; this agrees with the timing of retreat of alpine glaciers elsewhere in western North America.

  5. Bathymetry data reveal glaciers vulnerable to ice-ocean interaction in Uummannaq and Vaigat glacial fjords, west Greenland

    NASA Astrophysics Data System (ADS)

    Rignot, E.; Fenty, I.; Xu, Y.; Cai, C.; Velicogna, I.; Cofaigh, C. Ó.; Dowdeswell, J. A.; Weinrebe, W.; Catania, G.; Duncan, D.

    2016-03-01

    Marine-terminating glaciers play a critical role in controlling Greenland's ice sheet mass balance. Their frontal margins interact vigorously with the ocean, but our understanding of this interaction is limited, in part, by a lack of bathymetry data. Here we present a multibeam echo sounding survey of 14 glacial fjords in the Uummannaq and Vaigat fjords, west Greenland, which extends from the continental shelf to the glacier fronts. The data reveal valleys with shallow sills, overdeepenings (>1300 m) from glacial erosion, and seafloor depths 100-1000 m deeper than in existing charts. Where fjords are deep enough, we detect the pervasive presence of warm, salty Atlantic Water (AW) (>2.5°C) with high melt potential, but we also find numerous glaciers grounded on shallow (<200 m) sills, standing in cold (<1°C) waters in otherwise deep fjords, i.e., with reduced melt potential. Bathymetric observations extending to the glacier fronts are critical to understand the glacier evolution.

  6. Sediment delivery to the Gulf of Alaska: source mechanisms along a glaciated transform margin

    USGS Publications Warehouse

    Dobson, M.R.; O'Leary, D.; Veart, M.

    1998-01-01

    Sediment delivery to the Gulf of Alaska occurs via four areally extensive deep-water fans, sourced from grounded tidewater glaciers. During periods of climatic cooling, glaciers cross a narrow shelf and discharge sediment down the continental slope. Because the coastal terrain is dominated by fjords and a narrow, high-relief Pacific watershed, deposition is dominated by channellized point-source fan accumulations, the volumes of which are primarily a function of climate. The sediment distribution is modified by a long-term tectonic translation of the Pacific plate to the north along the transform margin. As a result, the deep-water fans are gradually moved away from the climatically controlled point sources. Sets of abandoned channels record the effect of translation during the Plio-Pleistocene.

  7. A new satellite-derived glacier inventory for Western Alaska

    NASA Astrophysics Data System (ADS)

    Le Bris, Raymond; Frey, Holger; Paul, Frank; Bolch, Tobias

    2010-05-01

    Glaciers and ice caps are essential components of studies related to climate change impact assessment. Glacier inventories provide the required baseline data to perform the related analysis in a consistent and spatially representative manner. In particular, the calculation of the current and future contribution to global sea-level rise from heavily glacierized regions is a major demand. One of the regions, where strong mass losses and geometric changes of glaciers have been observed recently is Alaska. Unfortunately, the digitally available data base of glacier extent is quite rough and based on rather old maps from the 1960s. Accordingly, the related calculations and extrapolations are imprecise and an updated glacier inventory is urgently required. Here we present first results of a new glacier inventory for Western Alaska that is prepared in the framework of the ESA project GlobGlacier and is based on freely available orthorectified Landsat TM and ETM+ scenes from USGS. The analysed region covers the Tordrillo, Chigmit and Chugach Mts. as well as the Kenai Peninsula. In total, 8 scenes acquired between 2002 and 2009 were used covering c. 20.420 km2 of glaciers. All glacier types are present in this region, incl. outlet glaciers from icefields, glacier clad volcanoes, and calving glaciers. While well established automated glacier mapping techniques (band rationing) are applied to map clean and slightly dirty glacier ice, many glaciers are covered by debris or volcanic ash and outlines need manual corrections during post-processing. Prior to the calculation of drainage divides from DEM-based watershed analysis, we performed a cross-comparative analysis of DEMs from USGS, ASTER (GDEM) and SRTM 1 for Kenai Peninsula. This resulted in the decision to use the USGS DEM for calculating the drainage divides and most of the topographic inventory parameters, and the more recent GDEM to derive minimum elevation for each glacier. A first statistical analysis of the results

  8. An earthquake in Japan caused large waves in Norwegian fjords

    NASA Astrophysics Data System (ADS)

    Schult, Colin

    2013-08-01

    Early on a winter morning a few years ago, many residents of western Norway who lived or worked along the shores of the nation's fjords were startled to see the calm morning waters suddenly begin to rise and fall. Starting at around 7:15 A.M. local time and continuing for nearly 3 hours, waves up to 1.5 meters high coursed through the previously still fjord waters. The scene was captured by security cameras and by people with cell phones, reported to local media, and investigated by a local newspaper. Drawing on this footage, and using a computational model and observations from a nearby seismic station, Bondevik et al. identified the cause of the waves—the powerful magnitude 9.0 Tohoku earthquake that hit off the coast of Japan half an hour earlier.

  9. Sub-tidal Circulation in a deep-silled fjord: Douglas Channel, British Columbia (Canada)

    NASA Astrophysics Data System (ADS)

    Wan, Di; Hannah, Charles; Foreman, Mike

    2016-04-01

    Douglas Channel, a deep fjord on the west coast of British Columbia, Canada, is the main waterway in Kitimat fjord system that opens to Queen Charlotte Sound and Hecate Strait. The fjord is separated from the open shelf by a broad sill that is about 150 m deep, and there is another sill (200 m) that separates the fjord into an outer and an inner basin. This study examines the low-frequency (from seasonal to meteorological bands) circulation in Douglas Channel from data collected from three moorings deployed during 2013-2015, and the water property observations collected during six cruises (2014 and 2015). Estuarine flow dominates the circulation above the sill-depth. The deep flows are dominated by a yearly renewal that takes place from early June to September, and this dense water renews both basins in the form of gravity currents at 0.1 - 0.2 m/s with a thickness of 100 m. At other times of the year, the deep flow structures and water properties suggest horizontal and vertical processes and support the re-circulation idea in the inner and the outer basins. The near surface current velocity fluctuations are dominated by the along-channel wind. Overall, the circulation in the meteorological band is a mix of the estuarine flow, direct wind driven flow, and the baroclinic response to changes to the surface pressure gradient caused by the wind driven currents.

  10. Circulation and fjord-shelf exchange during the ice-covered period in Young Sound-Tyrolerfjord, Northeast Greenland (74°N)

    NASA Astrophysics Data System (ADS)

    Boone, W.; Rysgaard, S.; Kirillov, S.; Dmitrenko, I.; Bendtsen, J.; Mortensen, J.; Meire, L.; Petrusevich, V.; Barber, D. G.

    2017-07-01

    Fjords around Greenland connect the Greenland Ice Sheet to the ocean and their hydrography and circulation are determined by the interplay between atmospheric forcing, runoff, topography, fjord-shelf exchange, tides, waves, and seasonal growth and melt of sea ice. Limited knowledge exists on circulation in high-Arctic fjords, particularly those not impacted by tidewater glaciers, and especially during winter, when they are covered with sea-ice and freshwater input is low. Here, we present and analyze seasonal observations of circulation, hydrography and cross-sill exchange of the Young Sound-Tyrolerfjord system (74°N) in Northeast Greenland. Distinct seasonal circulation phases are identified and related to polynya activity, meltwater and inflow of coastal water masses. Renewal of basin water in the fjord is a relatively slow process that modifies the fjord water masses on a seasonal timescale. By the end of winter, there is two-layer circulation, with outflow in the upper 45 m and inflow extending down to approximately 150 m. Tidal analysis showed that tidal currents above the sill were almost barotropic and dominated by the M2 tidal constituent (0.26 m s-1), and that residual currents (∼0.02 m s-1) were relatively small during the ice-covered period. Tidal pumping, a tidally driven fjord-shelf exchange mechanism, drives a salt flux that is estimated to range between 145 kg s-1 and 603 kg s-1. Extrapolation of these values over the ice-covered period indicates that tidal pumping is likely a major source of dense water and driver of fjord circulation during the ice-covered period.

  11. Volcanic tsunamis and prehistoric cultural transitions in Cook Inlet, Alaska

    USGS Publications Warehouse

    Beget, J.; Gardner, C.; Davis, K.

    2008-01-01

    The 1883 eruption of Augustine Volcano produced a tsunami when a debris avalanche traveled into the waters of Cook Inlet. Older debris avalanches and coeval paleotsunami deposits from sites around Cook Inlet record several older volcanic tsunamis. A debris avalanche into the sea on the west side of Augustine Island ca. 450??years ago produced a wave that affected areas 17??m above high tide on Augustine Island. A large volcanic tsunami was generated by a debris avalanche on the east side of Augustine Island ca. 1600??yr BP, and affected areas more than 7??m above high tide at distances of 80??km from the volcano on the Kenai Peninsula. A tsunami deposit dated to ca. 3600??yr BP is tentatively correlated with a southward directed collapse of the summit of Redoubt Volcano, although little is known about the magnitude of the tsunami. The 1600??yr BP tsunami from Augustine Volcano occurred about the same time as the collapse of the well-developed Kachemak culture in the southern Cook Inlet area, suggesting a link between volcanic tsunamis and prehistoric cultural changes in this region of Alaska. ?? 2008 Elsevier B.V.

  12. Facts About Alaska, Alaska Kids' Corner, State of Alaska

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees State of Alaska Search Home Quick Links Departments Commissioners Employee Whitepages State Government Jobs Federal Jobs Starting a Small Business Living Get a Driver License Get a Hunting

  13. Seasonal plankton variability in Chilean Patagonia fjords: Carbon flow through the pelagic food web of Aysen Fjord and plankton dynamics in the Moraleda Channel basin

    NASA Astrophysics Data System (ADS)

    González, H. E.; Castro, L.; Daneri, G.; Iriarte, J. L.; Silva, N.; Vargas, C. A.; Giesecke, R.; Sánchez, N.

    2011-03-01

    Two research cruises ( CIMAR 13 Fiordos) were conducted in the N-S oriented macrobasin of the Moraleda Channel (42-47°S), which includes the E-W oriented Puyuhuapi Channel and Aysen Fjord, during two contrasting productive seasons: austral winter (27 July-7 August 2007) and spring (2-12 November 2007). These campaigns set out to assess the spatio-temporal variability, defined by the local topography along Moraleda Channel, in the biological, physical, and chemical oceanographic characteristics of different microbasins and to quantify the carbon budget of the pelagic trophic webs of Aysen Fjord. Seasonal carbon fluxes and fjord-system functioning vary widely in our study area. In terms of spatial topography, two constriction sills (Meninea and Elefantes) define three microbasins along Moraleda Channel, herein the (1) north (Guafo-Meninea), (2) central (Meninea-Elefantes), and (3) south (Elefantes-San Rafael Lagoon) microbasins. In winter, nutrient concentrations were high (i.e. nitrate range: 21-14 μM) and primary production was low (153-310 mgC m -2 d -1), suggesting that reduced light radiation depressed the plankton dynamics throughout Moraleda Channel. In spring, primary production followed a conspicuous N-S gradient, which was the highest (5167 mgC m -2 d -1) in the north microbasin and the lowest (742 mgC m -2 d -1) in the south microbasin. The seasonal pattern of the semi-enclosed Puyuhuapi Channel and Aysen Fjord, however, revealed no significant differences in primary production (˜800 mgC m -2 d -1), and vertical fluxes of particulate organic carbon were nearly twice as high in spring as in winter (266 vs. 168 mgC m -2 d -1). At the time-series station (St. 79), the lithogenic fraction dominated the total sedimented matter (seston). The role of euphausiids in the biological carbon pump of the Patagonian fjords was evident, given the predominance of zooplankton fecal material, mostly euphausiid fecal strings (46% of all fecal material), among the

  14. Evidence of Anomalously Low δ13C of Marine Organic Matter in an Arctic Fjord

    PubMed Central

    Kumar, Vikash; Tiwari, Manish; Nagoji, Siddhesh; Tripathi, Shubham

    2016-01-01

    Accurate estimation of relative carbon deposition (marine vs. terrestrial) is required for understanding the global carbon budget, particularly in the Arctic region, which holds disproportionate importance with respect to global carbon cycling. Although the sedimentary organic matter (SOM) concentration and its isotopic composition are important tools for such calculations, uncertainties loom over estimates provided by organic-geochemical bulk parameters. We report carbon and nitrogen concentrations and isotopes (δ13C and δ15N) of SOM at an Arctic fjord namely Kongsfjorden. We find that the bound inorganic nitrogen (ammonium attached to the clay minerals) forms a significant proportion of total nitrogen concentration (~77% in the inner fjord to ~24% in the outer part). On removing the bound nitrogen, the C/N ratio shows that the SOM in the inner fjord is made up of terrestrial carbon while the outer fjord shows mixed marine-terrestrial signal. We further show that the marine organic matter is unusually more depleted in 13C (~−24‰) than the terrestrial organic matter (~−22.5‰). This particular finding also helps explain high δ13C values of SOM as noted by earlier studies in central Arctic sediments despite a high terrestrial contribution. PMID:27827457

  15. Seasonal surface layer dynamics and sensitivity to runoff in a high Arctic fjord (Young Sound/Tyrolerfjord, 74°N)

    NASA Astrophysics Data System (ADS)

    Bendtsen, Jørgen; Mortensen, John; Rysgaard, Søren

    2014-09-01

    Runoff from the Greenland Ice Sheet, local glaciers, and snowmelt along the northeastern Greenland coastline has a significant impact on coastal water masses flowing south toward Denmark Strait. Very few direct measurements of runoff currently exist in this large area, and the water masses near the coast are also difficult to measure due to the presence of icebergs and sea ice. Measurements from the Zackenberg Research station, located in Young Sound/Tyrolerfjord in northeast Greenland (74°N), provide some of the few observations of hydrographic, hydrologic, and atmospheric parameters from this remote area. Here we analyze measurements from the fjord and also measurements in the ambient water masses, which are found in the outer fjord and between the fjord and the East Greenland Current and validate and apply a numerical model of the fjord. A model sensitivity study allows us to constrain runoff estimates for the area. We also show that a total runoff between 0.9 and 1.4 km3 in 2006 is in accordance with observed surface salinities and calculated freshwater content in the fjord. This indicates that earlier reported runoff to the area is significantly underestimated and that melt from glaciers and the Greenland Ice Sheet in this region may be up to 50% larger than the current estimate. Model simulations indicate the presence of a cold low-saline coastal water mass formed by runoff from fjords north of the Young Sound/Tyrolerfjord system. Simulations of passive and age tracers show that residence time of river water during the summer period is about 1 month in the inner part of the fjord. This article was corrected on 10 OCT 2014. See the end of the full text for details.

  16. Retarded deglaciation of north-Spitsbergen fjords during the last glacial - an example of bathymetric controls on the dynamics of retreating glaciers

    NASA Astrophysics Data System (ADS)

    Forwick, M.; Vorren, T. O.; Hass, H.; Vogt, C. M.

    2012-12-01

    North and west Spitsbergen fjords acted as pathways for fast-flowing ice streams during the last glacial (e.g. Ottesen et al., 2005). The deglaciation of west Spitsbergen fjords occurred stepwise and the ice retreat terminated around 11,200 cal. years BP (calendar years before the present; e.g. Forwick & Vorren, 2009, 2011, and references therein; Baeten et al., 2010). However, the deglaciation dynamics and chronology of north Spitsbergen fjords still remain poorly understood. We present swath-bathymetry, high-resolution seismic data and two sediment cores from the approx. 110 km long, N-S oriented Wijdefjorden-Austfjorden fjord system, the largest fjord system on northern Spitsbergen. The data indicate that - as in the fjords on west Spitsbergen - multiple halts and/or readvances interrupted the retreat of the ice front during the final phase of the last glacial. However, even though the study area and several west Spitsbergen fjords are fed by the same glacier source (the ice field Lomonosovfonna), the final deglaciation of Wijdefjorden-Austfjorden took place after 9300 cal. years BP, i.e. at least approx. 2000 years later than in the west. We assume that the retarded deglaciation in the north is mainly related to the fjord bathymetry, i.e. a more than 35 km wide and up to 60 m high area in the central parts of the study area (approx. 45 km beyond the present fjord head) that acted as pinning point for the grounded glacier. Multiple, relatively large and partly stacked moraine ridges and sediment wedges are suggested to reflected that the ice front retreated slowly across this shallow area and that repeated readvances interrupted this retreat. The absence of larger sediment wedges in the deeper parts between the shallow area and the fjord head may indicate that the final retreat occurred relatively rapid. References: Baeten, N.J., Forwick, M., Vogt, C. & Vorren, T.O., 2010. Late Weichselian and Holocene sedimentary environments and glacial activity in

  17. A New Ice-sheet / Ocean Interaction Model for Greenland Fjords using High-Order Discontinuous Galerkin Methods

    NASA Astrophysics Data System (ADS)

    Kopera, M. A.; Maslowski, W.; Giraldo, F.

    2015-12-01

    One of the key outstanding challenges in modeling of climate change and sea-level rise is the ice-sheet/ocean interaction in narrow, elongated and geometrically complicated fjords around Greenland. To address this challenge we propose a new approach, a separate fjord model using discontinuous Galerkin (DG) methods, or FDG. The goal of this project is to build a separate, high-resolution module for use in Earth System Models (ESMs) to realistically represent the fjord bathymetry, coastlines, exchanges with the outside ocean, circulation and fine-scale processes occurring within the fjord and interactions at the ice shelf interface. FDG is currently at the first stage of development. The DG method provides FDG with high-order accuracy as well as geometrical flexibility, including the capacity to handle non-conforming adaptive mesh refinement to resolve the processes occurring near the ice-sheet/ocean interface without introducing prohibitive computational costs. Another benefit of this method is its excellent performance on multi- and many-core architectures, which allows for utilizing modern high performance computing systems for high-resolution simulations. The non-hydrostatic model of the incompressible Navier-Stokes equation will account for the stationary ice-shelf with sub-shelf ocean interaction, basal melting and subglacial meltwater influx and with boundary conditions at the surface to account for floating sea ice. The boundary conditions will be provided to FDG via a flux coupler to emulate the integration with an ESM. Initially, FDG will be tested for the Sermilik Fjord settings, using real bathymetry, boundary and initial conditions, and evaluated against available observations and other model results for this fjord. The overarching goal of the project is to be able to resolve the ice-sheet/ocean interactions around the entire coast of Greenland and two-way coupling with regional and global climate models such as the Regional Arctic System Model (RASM

  18. Oxygen intrusion into anoxic fjords leads to increased methylmercury availability

    NASA Astrophysics Data System (ADS)

    Veiteberg Braaten, Hans Fredrik; Pakhomova, Svetlana; Yakushev, Evgeniy

    2013-04-01

    Mercury (Hg) appears in the oxic surface waters of the oceans at low levels (sub ng/L). Because inorganic Hg can be methylated into the toxic and bioaccumulative specie methylmercury (MeHg) levels can be high at the top of the marine food chain. Even though marine sea food is considered the main risk driver for MeHg exposure to people most research up to date has focused on Hg methylation processes in freshwater systems. This study identifies the mechanisms driving formation of MeHg during oxygen depletion in fjords, and shows how MeHg is made available in the surface water during oxygen intrusion. Studies of the biogeochemical structure in the water column of the Norwegian fjord Hunnbunn were performed in 2009, 2011 and 2012. In autumn of 2011 mixing flushing events were observed and lead to both positive and negative effects on the ecosystem state in the fjord. The oxygenated water intrusions lead to a decrease of the deep layer concentrations of hydrogen sulfide (H2S), ammonia and phosphate. On the other hand the intrusion also raised the H2S boundary from 8 m to a shallower depth of just 4 m. Following the intrusion was also observed an increase at shallower depths of nutrients combined with a decrease of pH. Before flushing events were observed concentrations of total Hg (TotHg) increased from 1.3 - 1.7 ng/L in the surface layer of the fjord to concentrations ranging from 5.2 ng/L to 6.4 ng/L in the anoxic zone. MeHg increased regularly from 0.04 ng/L in the surface water to a maximum concentration of 5.2 ng/L in the deeper layers. This corresponds to an amount of TotHg present as MeHg ranging from 2.1 % to 99 %. The higher concentrations of MeHg in the deeper layer corresponds to an area where no oxygen is present and concentrations of H2S exceeds 500 µM, suggesting a production of MeHg in the anoxic area as a result of sulphate reducing bacteria activity. After flushing the concentrations of TotHg showed a similar pattern ranging from 0.6 ng/L in the

  19. Long-term Postseismic Deformation Following the 1964 Alaska Earthquake

    NASA Astrophysics Data System (ADS)

    Freymueller, J. T.; Cohen, S. C.; Hreinsdöttir, S.; Suito, H.

    2003-12-01

    Geodetic data provide a rich data set describing the postseismic deformation that followed the 1964 Alaska earthquake (Mw 9.2). This is particularly true for vertical deformation, since tide gauges and leveling surveys provide extensive spatial coverage. Leveling was carried out over all of the major roads of Alaska in 1964-65, and over the last several years we have resurveyed an extensive data set using GPS. Along Turnagain Arm of Cook Inlet, south of Anchorage, a trench-normal profile was surveyed repeatedly over the first decade after the earthquake, and many of these sites have been surveyed with GPS. After using a geoid model to correct for the difference between geometric and orthometric heights, the leveling+GPS surveys reveal up to 1.25 meters of uplift since 1964. The largest uplifts are concentrated in the northern part of the Kenai Peninsula, SW of Turnagain Arm. In some places, steep gradients in the cumulative uplift measurements point to a very shallow source for the deformation. The average 1964-late 1990s uplift rates were substantially higher than the present-day uplift rates, which rarely exceed 10 mm/yr. Both leveling and tide gauge data document a decay in uplift rate over time as the postseismic signal decreases. However, even today the postseismic deformation represents a substantial portion of the total observe deformation signal, illustrating that very long-lived postseismic deformation is an important element of the subduction zone earthquake cycle for the very largest earthquakes. This is in contrast to much smaller events, such as M~8 earthquakes, for which postseismic deformation in many cases decays within a few years. This suggests that the very largest earthquakes may excite different processes than smaller events.

  20. Geochemistry of surface sediments from the fjords of Northern Chilean Patagonia (44-47°S): Spatial variability and implications for paleoclimate reconstructions

    NASA Astrophysics Data System (ADS)

    Bertrand, Sébastien; Hughen, Konrad A.; Sepúlveda, Julio; Pantoja, Silvio

    2012-01-01

    The Patagonian fjords have a clear potential to provide high-resolution sedimentary and geochemical records of past climate and environmental change in the Southern Andes. To improve our ability to interpret these proxy records, we investigated the processes that control fjord sediment inorganic geochemistry through a geochemical, mineralogical and sedimentological analysis of surface sediment samples from the fjords of Northern Chilean Patagonia. A simple Terrestrial Index based on measurements of salinity and Fraction of Terrestrial Carbon was used to estimate the terrestrial input/river discharge at each site. Our results demonstrate that, under the cold climate conditions of Patagonia, chemical weathering is weak and the inorganic geochemical composition of the fjord sediments is primarily controlled by hydrodynamic mineralogical sorting, i.e., the intensity of river discharge. Our results suggest that the distribution of Fe, Ti and Zr in surface sediments is controlled by their association with heavy and/or coarse minerals, whereas Al is independent of hydrodynamic processes. The elemental ratios Fe/Al, Ti/Al and Zr/Al are therefore well suited for estimating changes in the energy of terrestrial sediment supply into the fjords through time. Zr/Al is particularly sensitive in proximal environments, while Fe/Al is most useful in the outer fjords and on the continental margin. In the most proximal environments, however, Fe/Al is inversely related to hydrodynamic conditions. Caution should therefore be exercised when interpreting Fe/Al ratios in terms of past river discharge. The application of these proxies to long sediment cores from Quitralco fjord and Golfo Elefantes validates our interpretations. Our results also emphasize the need to measure Al-based elemental ratios at high precision, which can be achieved using simultaneous acquisition ICP-AES technology. This study therefore constitutes a strong basis for the interpretation of sedimentary records from the

  1. Role of brown bears (Ursus arctos) in the flow of marine nitrogen into a terrestrial ecosystem.

    Treesearch

    Grant V. Hilderbrand; Thomas A. Hanley; Charles T. Robbins; Charles C. Schwartz

    1999-01-01

    We quantified the amount, spatial distribution, and importance of salmon (Oncorhynchus spp.)-derived nitrogen (N) by brown bears (Ursus arctos) on the Kenai Peninsula, Alaska. We tested and confirmed the hypothesis that the stable isotope signature (δ15N) of N in foliage of white spruce (

  2. Organic carbon in glacial fjords of Chilean Patagonia

    NASA Astrophysics Data System (ADS)

    Pantoja, Silvio; Gutiérrez, Marcelo; Tapia, Fabián; Abarzúa, Leslie; Daneri, Giovanni; Reid, Brian; Díez, Beatriz

    2016-04-01

    The Southern Ice Field in Chilean Patagonia is the largest (13,000 km2) temperate ice mass in the Southern hemisphere, yearly transporting ca. 40 km3 of freshwater to fjords. This volume of fresh and cold water likely affects adjacent marine ecosystems by changing circulation, productivity, food web dynamics, and the abundance and distribution of planktonic and benthic organisms. We hypothesize that freshwater-driven availability of inorganic nutrient and transport of organic and inorganic suspended matter, as well as microbes, become a controlling factor for productivity in the fjord associated with the Baker river and Jorge Montt glacier. Both appear to be sources of silicic acid, but not of nitrate and particulate organic carbon, especially during summer, when surface PAR and glacier thawing are maximal. In contrast to Baker River, the Jorge Montt glacier is also a source of dissolved organic carbon towards a proglacial fjord and the Baker Channel, indicating that a thorough chemical description of sources (tidewater glacier and glacial river) is needed. Nitrate in fiord waters reaches ca. 15 μM at 25 m depth with no evidence of mixing up during summer. Stable isotope composition of particulate organic nitrogen reaches values as low as 3 per mil in low-salinity waters near both glacier and river. Nitrogen fixation could be depleting δ15N in organic matter, as suggested by the detection at surface waters of nif H genes belonging to diazotrophs near the Montt glacier. As diazotrophs have also been detected in other cold marine waters (e.g. Baltic Sea, Arctic Ocean) as well as glaciers and polar terrestrial waters, there is certainly a potential for both marine and freshwater microbes to contribute and have a significant impact on the Patagonian N and C budgets. Assessing the impact of freshwater on C and N fluxes and the microbial community structure in Patagonian waters will allow understanding future scenarios of rapid glacier melting. This research was funded

  3. Salinity and temperature structure of a freezing Arctic fjord-monitored by white whales (Delphinapterus leucas)

    NASA Astrophysics Data System (ADS)

    Lydersen, Christian; Nøst, Ole Anders; Lovell, Phil; McConnell, Bernie J.; Gammelsrød, Tor; Hunter, Colin; Fedak, Michael A.; Kovacs, Kit M.

    2002-12-01

    In this study we report results from satellite-linked conductivity-temperature-depth (CTD) loggers that were deployed on wild, free-ranging white whales to study the oceanographic structure of an Arctic fjord, Storfjorden, Svalbard. The whales dove to the bottom of the fjord routinely during the study and occupied areas with up to 90% ice-cover, where performance of conventional ship-based CTD-casts would have been difficult. During the initial period of freezing in the fjord, over a period of approximately 2 weeks, 540 CTD profiles were successfully transmitted. The data indicate that Storfjorden has a substantial inflow of warm North Atlantic Water; this is contrary to conventional wisdom that has suggested that it contains only cold Arctic water. This study confirms that marine-mammal-based CTDs have enormous potential for cost-effective, future oceanographic studies; many different marine mammal species target oceanographic discontinuities for foraging and thus may be good `adaptive samplers' that naturally seek areas of high oceanographic interest.

  4. Contamination of arctic Fjord sediments by Pb-Zn mining at Maarmorilik in central West Greenland.

    PubMed

    Perner, K; Leipe, Th; Dellwig, O; Kuijpers, A; Mikkelsen, N; Andersen, T J; Harff, J

    2010-07-01

    This study focuses on heavy metal contamination of arctic sediments from a small Fjord system adjacent to the Pb-Zn "Black Angel" mine (West Greenland) to investigate the temporal and spatial development of contamination and to provide baseline levels before the mines re-opening in January 2009. For this purpose we collected multi-cores along a transect from Affarlikassaa Fjord, which received high amounts of tailings from 1973 to 1990, to the mouth of Qaumarujuk Fjord. Along with radiochemical dating by (210)Pb and (137)Cs, geochemical analyses of heavy metals (e.g. As, Cd, Hg, Pb, and Zn) were carried out. Maximum contents were found at 12 cm depth in Affarlikassaa. After 17 years the mine last closed, specific local hydrographic conditions continue to disperse heavy metal enriched material derived from the Affarlikassaa into Qaumarujuk. Total Hg profiles from multi-cores along the transect clearly illustrate this transport and spatial distribution pattern of the contaminated material. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Archean metamorphic sequence and surfaces, Kangerdlugssuaq Fjord, East Greenland

    NASA Technical Reports Server (NTRS)

    Kays, M. A.

    1986-01-01

    The characteristics of Archean metamorphic surfaces and fabrics of a mapped sequence of rocks older than about 3000 Ma provide information basic to an understanding of the structural evolution and metamorphic history in Kangerdlugssuaq Fjord, east Greenland. This information and the additional results of petrologic and geochemical studies have culminated in an extended chronology of Archean plutonic, metamorphic, and tectonic events. The basis for the chronology is considered, especially the nature of the metamorphic fabrics and surfaces in the Archean sequence. The surfaces, which are planar mineral parageneses, may prove to be mappable outside Kangerdlugssuaq Fjord, and if so, will be helpful in extending the events that they represent to other Archean sequences in east Greenland. The surfaces will become especially important reference planes if the absolute ages of their metamorphic assemblages can be determined in at least one location where strain was low subsequent to their recrystallization. Once an isochron is obtained, the dynamothermal age of the regionally identifiable metamorphic surface is determined everywhere it can be mapped.

  6. Accretion in the wake of terrane collision: The Neogene accretionary wedge off Kenai Peninsula, Alaska

    USGS Publications Warehouse

    Fruehn, J.; von Huene, Roland E.; Fisher, M.A.

    1999-01-01

    Subduction accretion and repeated terrane collision shaped the Alaskan convergent margin. The Yakutat Terrane is currently colliding with the continental margin below the central Gulf of Alaska. During the Neogene the terrane's western part was subducted after which a sediment wedge accreted along the northeast Aleutian Trench. This wedge incorporates sediment eroded from the continental margin and marine sediments carried into the subduction zone on the Pacific plate. Prestack depth migration was performed on six seismic reflection lines to resolve the structure within this accretionary wedge and its backstop. The lateral extent of the structures is constrained by high-resolution swath bathymetry and seismic lines collected along strike. Accretionary structure consists of variably sized thrust slices that were deformed against a backstop during frontal accretion and underplating. Toward the northeast the lower slope steepens, the wedge narrows, and the accreted volume decreases notwith-standing a doubling of sediments thickness in the trench. In the northeasternmost transect, near the area where the terrane's trailing edge subducts, no frontal accretion is observed and the slope is eroded. The structures imaged along the seismic lines discussed here most likely result from progressive evolution from erosion to accretion, as the trailing edge of the Yakutat Terrane is subducting.

  7. Exploring the Diversity and Antimicrobial Potential of Marine Actinobacteria from the Comau Fjord in Northern Patagonia, Chile

    PubMed Central

    Undabarrena, Agustina; Beltrametti, Fabrizio; Claverías, Fernanda P.; González, Myriam; Moore, Edward R. B.; Seeger, Michael; Cámara, Beatriz

    2016-01-01

    Bioprospecting natural products in marine bacteria from fjord environments are attractive due to their unique geographical features. Although, Actinobacteria are well known for producing a myriad of bioactive compounds, investigations regarding fjord-derived marine Actinobacteria are scarce. In this study, the diversity and biotechnological potential of Actinobacteria isolated from marine sediments within the Comau fjord, in Northern Chilean Patagonia, were assessed by culture-based approaches. The 16S rRNA gene sequences revealed that members phylogenetically related to the Micrococcaceae, Dermabacteraceae, Brevibacteriaceae, Corynebacteriaceae, Microbacteriaceae, Dietziaceae, Nocardiaceae, and Streptomycetaceae families were present at the Comau fjord. A high diversity of cultivable Actinobacteria (10 genera) was retrieved by using only five different isolation media. Four isolates belonging to Arthrobacter, Brevibacterium, Corynebacterium and Kocuria genera showed 16S rRNA gene identity <98.7% suggesting that they are novel species. Physiological features such as salt tolerance, artificial sea water requirement, growth temperature, pigmentation and antimicrobial activity were evaluated. Arthrobacter, Brachybacterium, Curtobacterium, Rhodococcus, and Streptomyces isolates showed strong inhibition against both Gram-negative Pseudomonas aeruginosa, Escherichia coli and Salmonella enterica and Gram-positive Staphylococcus aureus, Listeria monocytogenes. Antimicrobial activities in Brachybacterium, Curtobacterium, and Rhodococcus have been scarcely reported, suggesting that non-mycelial strains are a suitable source of bioactive compounds. In addition, all strains bear at least one of the biosynthetic genes coding for NRPS (91%), PKS I (18%), and PKS II (73%). Our results indicate that the Comau fjord is a promising source of novel Actinobacteria with biotechnological potential for producing biologically active compounds. PMID:27486455

  8. Reconnaissance geology, mineral occurrences, and geochemical anomalies of the Yentna district, Alaska

    USGS Publications Warehouse

    Clark, Allen L.; Hawley, C.C.

    1968-01-01

    The Yentna district, in south-central Alaska, is underlain by slightly metamorphosed Mesozoic sedimentary rocks, and by sandstones, conglomerates and coaly minerals of the Tertiary Kenai Formation. The bedrock is locally covered by extensive surficial deposits of Quaternary and Recent (Holocene) age. The Mesozoic strata are cut by a quartz monzonite batholith in the Tokositna Mountains and by alaskitic dikes and plugs in the Peters and Dutch Hills. A silica-carbonate dike, which formed by alteration of a mafic or ultramafic dike, was noted in the Peters Hills. The major ore deposits are gold placer deposits of several types, including stream and bench deposits of Recent (Holocene) age, glacial-fluviatile deposits of Quaternary age, and conglomerates of Tertiary age. Quartz-rich conglomerates and breccias have also been productive and are interesting and controversial genetically. The present study indicates that they are closely related to shear zones containing quartz veins and highly altered rocks; previously the origin of the associated altered rocks had been ascribed to deep weathering. The report also contains descriptions of a few gold lode prospects and of geochemically anomalous areas such as those at Bunco Creek and near Mount Goldie.

  9. A Conceptual Model of Natural and Anthropogenic Drivers and Their Influence on the Prince William Sound, Alaska, Ecosystem.

    PubMed

    Harwell, Mark A; Gentile, John H; Cummins, Kenneth W; Highsmith, Raymond C; Hilborn, Ray; McRoy, C Peter; Parrish, Julia; Weingartner, Thomas

    2010-07-01

    Prince William Sound (PWS) is a semi-enclosed fjord estuary on the coast of Alaska adjoining the northern Gulf of Alaska (GOA). PWS is highly productive and diverse, with primary productivity strongly coupled to nutrient dynamics driven by variability in the climate and oceanography of the GOA and North Pacific Ocean. The pelagic and nearshore primary productivity supports a complex and diverse trophic structure, including large populations of forage and large fish that support many species of marine birds and mammals. High intra-annual, inter-annual, and interdecadal variability in climatic and oceanographic processes as drives high variability in the biological populations. A risk-based conceptual ecosystem model (CEM) is presented describing the natural processes, anthropogenic drivers, and resultant stressors that affect PWS, including stressors caused by the Great Alaska Earthquake of 1964 and the Exxon Valdez oil spill of 1989. A trophodynamic model incorporating PWS valued ecosystem components is integrated into the CEM. By representing the relative strengths of driver/stressors/effects, the CEM graphically demonstrates the fundamental dynamics of the PWS ecosystem, the natural forces that control the ecological condition of the Sound, and the relative contribution of natural processes and human activities to the health of the ecosystem. The CEM illustrates the dominance of natural processes in shaping the structure and functioning of the GOA and PWS ecosystems.

  10. A Conceptual Model of Natural and Anthropogenic Drivers and Their Influence on the Prince William Sound, Alaska, Ecosystem

    PubMed Central

    Harwell, Mark A.; Gentile, John H.; Cummins, Kenneth W.; Highsmith, Raymond C.; Hilborn, Ray; McRoy, C. Peter; Parrish, Julia; Weingartner, Thomas

    2010-01-01

    Prince William Sound (PWS) is a semi-enclosed fjord estuary on the coast of Alaska adjoining the northern Gulf of Alaska (GOA). PWS is highly productive and diverse, with primary productivity strongly coupled to nutrient dynamics driven by variability in the climate and oceanography of the GOA and North Pacific Ocean. The pelagic and nearshore primary productivity supports a complex and diverse trophic structure, including large populations of forage and large fish that support many species of marine birds and mammals. High intra-annual, inter-annual, and interdecadal variability in climatic and oceanographic processes as drives high variability in the biological populations. A risk-based conceptual ecosystem model (CEM) is presented describing the natural processes, anthropogenic drivers, and resultant stressors that affect PWS, including stressors caused by the Great Alaska Earthquake of 1964 and the Exxon Valdez oil spill of 1989. A trophodynamic model incorporating PWS valued ecosystem components is integrated into the CEM. By representing the relative strengths of driver/stressors/effects, the CEM graphically demonstrates the fundamental dynamics of the PWS ecosystem, the natural forces that control the ecological condition of the Sound, and the relative contribution of natural processes and human activities to the health of the ecosystem. The CEM illustrates the dominance of natural processes in shaping the structure and functioning of the GOA and PWS ecosystems. PMID:20862192

  11. The glacimarine sediment budget of the Nares Strait-Petermann Fjord area since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Jakobsson, M.; Hogan, K.; Mayer, L. A.; Mix, A. C.; Nielsen, T.; Kamla, E.; Stranne, C.; Eriksson, B.; Jerram, K.

    2016-12-01

    During the Petermann 2015 Expedition of the Swedish icebreaker Oden more than 6500 line-km of high-resolution chirp sub-bottom profiles (2-7 kHz) were acquired in Petermann Fjord and Nares Strait in the area immediately outside of the fjord. The sub-bottom profiles reveal a highly-variable distribution of post-glacial sediment that appears to be largely controlled by the rugged relief of the underlying bedrock. Sediment thicknesses are between 0-60 m above bedrock and comprise predominantly acoustically-stratified, homogeneous to transparent acoustic facies. In Petermann Fjord itself unlithified sediment cover typically comprises two units: an underlying acoustically-transparent unit overlain by an acoustically-stratified unit. Both of these units are conformable over scoured and fairly flat bedrock terrain; small basins are present only locally. Outside of the fjord are a few local sedimentary basins containing up to 40 m of stratified basin-fill deposits, and several areas of stacked mass-flow deposits. Glacial lineations both in the fjord and Nares Strait are formed in an acoustically-homogenous unit that underlies stratified and transparent units. In addition to the sub-bottom profiles, approximately 780 line-km of 2D seismic reflection profiles were acquired using an airgun (210 cu in.) and a 300-m long streamer. These profiles have allowed us to map full unlithified sediment thicknesses down to basement in the area. Here we present the results of this mapping and we calculate the volumes of a prominent grounding-zone wedge at the mouth of Petermann Fjord, and smaller GZWs in Kennedy Channel. These features demarcate former still-stand positions of grounded ice retreating through this system, both towards the present-day grounding line of Petermann Glacier and southwards through Nares Strait. Post-glacial sediment volumes are also calculated and the sedimentary processes responsible for their distribution examined. These data, when combined with chronological

  12. Seasonal and Latitudinal Variations in Dissolved Methane from 42 Lakes along a North-South Transect in Alaska

    NASA Astrophysics Data System (ADS)

    Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Martinez-Cruz, K. C.; Anthony, P.; Thalasso, F.

    2013-12-01

    Armando Sepulveda-Jauregui,* Katey M. Walter Anthony,* Karla Martinez-Cruz,* ** Peter Anthony,* and Frederic Thalasso**. * Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska. ** Biotechnology and Bioengineering Department, Cinvestav, Mexico city, D. F., Mexico. Northern lakes are important reservoirs and sources to the atmosphere of methane (CH4), a potent greenhouse gas. It is estimated that northern lakes (> 55 °N) contribute about 20% of the total global lake methane emissions, and that emissions from these lakes will increase with climate warming. Temperature rise enhances methane production directly by providing the kinetic energy to methanogenesis, and indirectly by supplying organic matter from thawing permafrost. Warmer lakes also store less methane since methane's solubility is inversely related to temperature. Alaskan lakes are located in three well-differentiated permafrost classes: yedoma permafrost with high labile carbon stocks, non-yedoma permafrost with lower carbon stocks, and areas without permafrost, also with generally lower carbon stocks. We sampled dissolved methane from 42 Alaskan lakes located in these permafrost cover classes along a north-south Alaska transect from Prudhoe Bay to the Kenai Peninsula during open-water conditions in summer 2011. We sampled 26 of these lakes in April, toward the end of the winter ice-covered period. Our results indicated that the largest dissolved methane concentrations occurred in interior Alaska thermokarst lakes formed in yedoma-type permafrost during winter and summer, with maximal concentrations of 17.19 and 12.76 mg L-1 respectively. In these lakes, emission of dissolved gases as diffusion during summer and storage release in spring were 18.4% and 17.4% of the annual emission budget, while ebullition (64.2 %) comprised the rest. Dissolved oxygen was inversely correlated with dissolved methane concentrations in both seasons; the

  13. Benthic biodiversity and ecological gradients in the Seno Magdalena (Puyuhuapi Fjord, Chile)

    NASA Astrophysics Data System (ADS)

    Betti, F.; Bavestrello, G.; Bo, M.; Enrichetti, F.; Loi, A.; Wanderlingh, A.; Pérez-Santos, I.; Daneri, G.

    2017-11-01

    Due to its complex hydrological, geomorphological and climatic features, the Chilean fjords region is considered among the most productive areas of the world. The benthic fauna of this region accounts for more than 1600 species showing marked latitudinal biogeographic differences characterizing this as one of the most important hotspot of biodiversity of cold-temperate environments. Despite numerous studies have been conducted to depict the biological characteristics of the fjords, the present situation is strongly unbalanced towards specific taxa. Hence, this study takes into consideration a community approach, highlighting the distribution of six benthic assemblages thriving on vertical walls along the Seno Magdalena fjord (Aysen region). Underwater pictures were used to characterize the trends in abundance and diversity of the main taxa showing distinct responses to salinity and turbidity. Among the less tolerant taxa to high fresh water inputs there are encrusting algae, mainly found in the most external sites lashed by outer currents, far from the estuarine plume. The bathymetric zonation of the assemblages, instead, is characterized by a dense mussel belt in the first 10 m, within a thick layer of low-salinity, nutrient-enriched waters. Rich assemblages of sponges, brachiopods, gorgonians and scleractinians thrive in deeper, marine, clear waters. The evaluation of the ecological role of benthic species leads both to the definition of potential bioindicator taxa responding to anthropic disturbances and to the promotion of protected areas.

  14. Publications - GMC 419 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 419 Publication Details Title: X-Ray diffraction analysis of cuttings samples from the Trading for more information. Quadrangle(s): Kenai Bibliographic Reference TIORCO Inc., 2013, X-Ray

  15. Glacial meltwater influences on plankton community structure and the importance of top-down control (of primary production) in a NE Greenland fjord

    NASA Astrophysics Data System (ADS)

    Arendt, Kristine Engel; Agersted, Mette Dalgaard; Sejr, Mikael Kristian; Juul-Pedersen, Thomas

    2016-12-01

    Freshwater runoff from the Greenland Ice Sheet (GIS) can be an important driver influencing plankton community structure in Greenland fjords. In the present study, we describe physical, taxonomic and functional differences in the plankton community in Young Sound, a NE Greenland fjord, from the inner fjord close to the GIS towards the coastal region in late summer. The fjord is influenced by runoff from land-terminating glaciers that separated the surface layer from cold underlying waters. The highest chlorophyll a concentration (<2.5 μg l-1) was found in the coastal region at 20-50 m depth. The most profound difference in the mesozooplankton community structure along the section was seen in the abundance of the copepods Microcalanus spp., which were present in the coastal region in the upper 100 m, and Pseudocalanus spp., which only occurred in the surface layers and mainly in the inner part of the fjord. In addition to this, both species have been observed to change in abundance within the last decade. Calanus spp. copepods made up > 74.9% of the total copepod biomass at all stations, and their grazing impact was the highest among the copepod groups. Copepod grazing impact on the phytoplankton standing stock, however, was exceeded by microzooplankton grazing, investigated by dilution experiments, with the highest grazing impact on the phytoplankton standing stock of 63% d-1 in the inner part of the fjord. In spite of high phytoplankton instantaneous growth rates at the innermost fjord station, proto-zooplankton was capable of controlling the phytoplankton production. The study showed functional differences within the system and provides indications of how dynamic the coastal ecosystem of Greenland can be.

  16. Shrinking ponds in subarctic Alaska based on 1950-2002 remotely sensed images

    USGS Publications Warehouse

    Riordan, B.; Verbyla, D.; McGuire, A.D.

    2006-01-01

    Over the past 50 years, Alaska has experienced a warming climate with longer growing seasons, increased potential evapotranspiration, and permafrost warming. Research from the Seward Peninsula and Kenai Peninsula has demonstrated a substantial landscape-level trend in the reduction of surface water and number of closed-basin ponds. We investigated whether this drying trend occurred at nine other regions throughout Alaska. One study region was from the Arctic Coastal Plain where depp permafrost occurs continuously across the landscape. The other eight study regions were from the boreal forest regions where discontinuous permafrost occurs. Mean annual precipitation across the study regions ranged from 100 to over 700 min yr-1. We used remotely sensed imagery from the 1950s to 2002 to inventory over 10,000 closed-basin ponds from at least three periods from this time span. We found a reduction in the area and number of shallow, closed-basin ponds for all boreal regions. In contrast, the Arctic Coastal Plain region had negligible change in the area of closed-basin ponds. Since the 1950s, surface water area of closed-basin ponds included in this analysis decreased by 31 to 4 percent, and the total number of closed-basin ponds surveyed within each study region decreased from 54 to 5 percent. There was a significant increasing trend in annual mean temperature and potential evapotranspiration since the 1950s for all study regions. There was no significant trend in annual precipitation during the same period. The regional trend of shrinking ponds may be due to increased drainage as permafrost warms, or increased evapotranspiration during a warmer and extended growing season. Copyright 2006 by the American Geophysical Union.

  17. Organic carbon sources across salinity gradients in Chilean Fjords: Reloncaví Fjord ( 41°S) and Southern Patagonian ice fields area ( 48°S)

    NASA Astrophysics Data System (ADS)

    Placencia, Juan; Llanos, Gustavo; Contreras, Sergio

    2017-04-01

    The organic matter preserved in marine sediments contains contributions of allochthonous and autochthonous and variable source inputs. Allochthonous sources are terrestrial erosion (including anthropogenic material) of relatively labile and refractory material, while autochthonous sources including marine phytoplankton. In order to establish the sources of the organic matter (allochthonous/autochthonous) and how organic carbon is distributed along a salinity gradient, on this study we examined of organic Carbon/Nitrogen molar ratios (C:N), isotopic composition (δ13C) and n-alkanes (n-C24 to n-C34) in surface sediments from two continuous systems: river-fjord-ocean in Northern Patagonia (41°S-43°S), and glacier-fjord-ocean in central Patagonia (47°S-50°S). The continental inner fjord areas are characterized with sediment enriched in allochthonous organic carbon and high C:N (8-12) and low δ13C values (-23‰ to -26‰). Towards the Pacific Ocean, low C:N (6-7) and high δ13C values (-20‰ to -22‰) suggest prevalent autochthonous marine sources. Estuarine waters with salinity between 2 psu and 30 psu were associated with high C:N and low δ13C values together with odd over even long-chain n-alkane predominance (n-C31, n-C29 and n-C27) in surface sediments. All geochemical proxies suggest a great contribution of terrigenous input by glacier origin rivers, mainly from terrestrial plants in both areas. Our study provides a framework to guide future researches on environmental and climate change on these systems. This study was supported by the Chilean Navy's Hydrographic and Oceanographic Service, the Chilean National Oceanographic Committee through the Grants CONA C19F1308 and C20F1404, and the Research Office at Universidad Católica de la Ssma. Concepción.

  18. Export of Strongly Diluted Greenland Meltwater From a Major Glacial Fjord

    NASA Astrophysics Data System (ADS)

    Beaird, Nicholas L.; Straneo, Fiammetta; Jenkins, William

    2018-05-01

    The Greenland Ice Sheet has been, and will continue, losing mass at an accelerating rate. The influence of this anomalous meltwater discharge on the regional and large-scale ocean could be considerable but remains poorly understood. This uncertainty is in part a consequence of challenges in observing water mass transformation and meltwater spreading in coastal Greenland. Here we use tracer observations that enable unprecedented quantification of the export, mixing, and vertical distribution of meltwaters leaving one of Greenland's major glacial fjords. We find that the primarily subsurface meltwater input results in the upwelling of the deep fjord waters and an export of a meltwater/deepwater mixture that is 30 times larger than the initial meltwater release. Using these tracer data, the vertical structure of Greenland's summer meltwater export is defined for the first time showing that half the meltwater export occurs below 65 m.

  19. Alaska Department of Revenue - Alaska Film Office

    Science.gov Websites

    State Employees Alaska Film Office Alaska Film Office State of Alaska HOME CREDIT PROGRAM PUBLIC REPORTING CPA ECONOMIC DEVELOPMENT CONTACT US State of Alaska > Department of Revenue > Alaska Film Office > Text Size: A+ | A- | A Text Only Effective July 1, 2015, the film production incentive

  20. Heavy metal contamination of a Greenland Fjord system by mine wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loring, D.H.; Asmund, G.

    Since 1973, about 500,000 tons/yr of metal-rich particulate tailings from a lead/zinc flotation mill have been discharged through a submarine outfall into a two-fjord system on the west coast of Greenland. Differential solubilization of particulate metals by seawater, seasonal water mixing, and sill exchange tailings dispersal processes have resulted in high, but seasonally variable, Zn, Cd, and Pb contamination of the water and suspended particulate matter (SPM). Chemical partition of the SPM shows that most of the Pb, but relatively low proportions of Zn and Cd are weakly bound to the SPM. Such particulate metal characteristics allow the real timemore » effects of tailings discharges and dispersal on the system to be traced even in the sediments where tailings accumulation is very slow. Fjord seaweeds and blue mussels also contain varying amounts of Zn, Pb, and Cd, depending on the metal and their location relative to the tailings outfall. They apparently responded almost instantly to the metal contamination as did the water and SPM. High Pb concentrations in the fjord mussels most likely derive from the preferential uptake of available particulate Pb, whereas the seaweeds appear to derive most of their heavy metal concentrations from the dissolved phase. The evidence from this and other sites, and from experimental work, indicates that any discharge of Pb-particles into the marine environment, either directly as mine wastes or indirectly from natural runoff from current and former lead mining sites, results in immediate lead contamination of the in situ mussel population. 20 refs., 4 figs., 5 tab.« less

  1. Precursory Seismicity Associated With Landslides, Including the 2017 Tsunamigenic Landslide in the Karrat Fjord, Greenland

    NASA Astrophysics Data System (ADS)

    Caplan-Auerbach, J.

    2017-12-01

    On the evening of June 17 2017, a massive landslide fell from the wall of the Karrat Fjord, Greenland, generating a tsunami that caused the deaths of four residents in the nearby village of Nuugaatsiaq. The slide took place at a bluff 30 km from the village, where a broadband seismometer (DK.NUUG) is permanently deployed. The landslide generated a seismic signal initially interpreted as a magnitude 4.1 earthquake, as well as a tsunami that initially reached heights exceeding 100 m. Prior to the large seismic signal, however, station NUUG detected a series of several dozen small pulses, most of which were highly similar in time series. The pulses occur more frequently with time, until they effectively merge with the seismic signal of the landslide. The pulses were not detected on any other seismic stations, so their source locations cannot be calculated, but particle motions suggest that they were coming from an azimuth of 30o, consistent with the location of the landslide relative to Nuugaatsiaq. This particular sequence, in which small, repeating earthquakes occur with increasing frequency prior to a landslide, has been observed in at least four other locations: (1) on Mt. Baker (Washington) during an ice avalanche in 1976 (Weaver and Malone, 1979), (2) repeatedly on Iliamna volcano (Alaska) in association with glacial avalanches (Caplan-Auerbach and Huggel, 2007), (3) on Mt. Stellar (Alaska) prior to a 2006 rockfall (Huggel et al., 2010), and (4) as part of the Kausu landslide (Japan), in 2015 (Yamada et al., 2016). In all cases the precursory events exhibited waveform similarity, indicative of a repeating point of failure. These events represent stick-slip behavior at the landslide base. The precursory sequences last several hours, suggesting that detection of these events could provide a means of warning prior to failure. This may be useful in areas where instabilities or incipient failures are evident.

  2. Chlorophyll-a thin layers in the Magellan fjord system: The role of the water column stratification

    NASA Astrophysics Data System (ADS)

    Ríos, Francisco; Kilian, Rolf; Mutschke, Erika

    2016-08-01

    Fjord systems represent hotspots of primary productivity and organic carbon burial. However, the factors which control the primary production in mid-latitude fjords are poorly understood. In this context, results from the first fine-scale measurements of bio-oceanographic features in the water column of fjords associated with the Strait of Magellan are presented. A submersible fluorescence probe (FP) was used to measure the Chlorophyll-a (Chl-a) concentration in situ, along with conductivity, temperature, hydrostatic pressure (depth) and dissolved oxygen (CTD-O2) of the water column. The Austral spring results of 14 FP-CTD-O2 profiles were used to define the vertical and horizontal patches of the fluorescent pigment distribution and their spatial relations with respect to the observed hydrographic features. Three zones with distinct water structures were defined. In all zones, the 'brown' spectral group (diatoms and dinoflagellates) predominated accounting for >80 wt% of the phytoplankton community. Thin layers with high Chl-a concentration were detected in 50% of the profiles. These layers harbored a substantial amount (30-65 wt%) of the phytoplankton biomass. Stratification was positively correlated to the occurrence of Chl-a thin layers. In stable and highly stratified water columns the integrated Chl-a concentration was higher and frequently located within thin layers whereas well mixed water columns displayed lower values and more homogeneous vertical distribution of Chl-a. These results indicate that mixing/stability processes are important factors accounting to the vertical distribution of Chl-a in Magellan fjords.

  3. Restricted evaluation of Trichodectes canis (Phthiraptera: Trichodectidae) detection methods in Alaska gray wolves.

    PubMed

    Woldstad, Theresa M; Dullen, Kimberly N; Hundertmark, Kris J; Beckmen, Kimberlee B

    2014-12-01

    Trichodectes canis (Phthiraptera: Trichodectidae) was first documented on Alaska (USA) gray wolves (Canis lupus) on the Kenai Peninsula in 1981. In subsequent years, numerous wolves exhibited visually apparent, moderate to severe infestations. Currently, the Alaska Department of Fish and Game utilizes visual inspection, histopathology, and potassium hydroxide (KOH) hide digestion for T. canis detection. Our objective was to determine optimal sampling locations for T. canis detection. Wolf hides were subjected to lice enumeration using KOH hide digestion. Thirty nine of the 120 wolves examined had lice. Of these 39, total louse burdens ranged from 14 to an extrapolated 80,000. The hides of 12 infested animals were divided into 10 cm by 10 cm subsections and the lice enumerated on a subsection from each of four regions: neck; shoulder; groin; and rump. Combining the data from these 12 wolves, the highest mean proportions of the total louse burdens on individual wolves were found on the rump and differed significantly from the lowest mean proportion on the neck. However, examination of the four subsections failed to detect all infested wolves. Hides from 16 of the 39 infested animals were cut into left and right sides, and each side then cut into four, approximately equal sections: neck and shoulder; chest; abdomen; and rump. Half hides were totally digested from 11 wolves, and whole hides from 5. For these 21 half hides, the highest mean proportions of total louse burdens were found on the rump, and this section had the highest sensitivity for louse detection, regardless of burden. However, removal of this large section from a hide would likely be opposed by hunters and trappers.

  4. Restricted evaluation of Trichodectes canis (Phthiraptera: Trichodectidae) detection methods in Alaska gray wolves

    PubMed Central

    Woldstad, Theresa M.; Dullen, Kimberly N.; Hundertmark, Kris J.; Beckmen, Kimberlee B.

    2014-01-01

    Trichodectes canis (Phthiraptera: Trichodectidae) was first documented on Alaska (USA) gray wolves (Canis lupus) on the Kenai Peninsula in 1981. In subsequent years, numerous wolves exhibited visually apparent, moderate to severe infestations. Currently, the Alaska Department of Fish and Game utilizes visual inspection, histopathology, and potassium hydroxide (KOH) hide digestion for T. canis detection. Our objective was to determine optimal sampling locations for T. canis detection. Wolf hides were subjected to lice enumeration using KOH hide digestion. Thirty nine of the 120 wolves examined had lice. Of these 39, total louse burdens ranged from 14 to an extrapolated 80,000. The hides of 12 infested animals were divided into 10 cm by 10 cm subsections and the lice enumerated on a subsection from each of four regions: neck; shoulder; groin; and rump. Combining the data from these 12 wolves, the highest mean proportions of the total louse burdens on individual wolves were found on the rump and differed significantly from the lowest mean proportion on the neck. However, examination of the four subsections failed to detect all infested wolves. Hides from 16 of the 39 infested animals were cut into left and right sides, and each side then cut into four, approximately equal sections: neck and shoulder; chest; abdomen; and rump. Half hides were totally digested from 11 wolves, and whole hides from 5. For these 21 half hides, the highest mean proportions of total louse burdens were found on the rump, and this section had the highest sensitivity for louse detection, regardless of burden. However, removal of this large section from a hide would likely be opposed by hunters and trappers. PMID:25426419

  5. The slow advance of a calving glacier: Hubbard Glacier, Alaska, U.S.A

    USGS Publications Warehouse

    Trabant, D.C.; Krimmel, R.M.; Echelmeyer, K.A.; Zirnheld, S.L.; Elsberg, D.H.

    2003-01-01

    Hubbard Glacier is the largest tidewater glacier in North America. In contrast to most glaciers in Alaska and northwestern Canada, Hubbard Glacier thickened and advanced during the 20th century. This atypical behavior is an important example of how insensitive to climate a glacier can become during parts of the calving glacier cycle. As this glacier continues to advance, it will close the seaward entrance to 50 km long Russell Fjord and create a glacier-dammed, brackish-water lake. This paper describes measured changes in ice thickness, ice speed, terminus advance and fjord bathymetry of Hubbard Glacier, as determined from airborne laser altimetry, aerial photogrammetry, satellite imagery and bathymetric measurements. The data show that the lower regions of the glacier have thickened by as much as 83 m in the last 41 years, while the entire glacier increased in volume by 14.1 km3. Ice speeds are generally decreasing near the calving face from a high of 16.5 m d-1 in 1948 to 11.5 m d-1 in 2001. The calving terminus advanced at an average rate of about 16 m a-1 between 1895 and 1948 and accelerated to 32 m a-1 since 1948. However, since 1986, the advance of the part of the terminus in Disenchantment Bay has slowed to 28 m a-1. Bathymetric data from the lee slope of the submarine terminal moraine show that between 1978 and 1999 the moraine advanced at an average rate of 32 m a-1, which is the same as that of the calving face.

  6. Sources and turnover of organic carbon and methane in fjord and shelf sediments off northern Norway

    NASA Astrophysics Data System (ADS)

    Sauer, Simone; Hong, Wei-Li; Knies, Jochen; Lepland, Aivo; Forwick, Matthias; Klug, Martin; Eichinger, Florian; Baranwal, Soma; Crémière, Antoine; Chand, Shyam; Schubert, Carsten J.

    2016-10-01

    To better understand the present and past carbon cycling and transformation processes in methane-influenced fjord and shelf areas of northern Norway, we compared two sediment cores from the Hola trough and from Ullsfjorden. We investigated (1) the organic matter composition and sedimentological characteristics to study the sources of organic carbon (Corg) and the factors influencing Corg burial, (2) pore water geochemistry to determine the contribution of organoclastic sulfate reduction and methanogenesis to total organic carbon turnover, and (3) the carbon isotopic signature of hydrocarbons to identify the carbon transformation processes and gas sources. High sedimentation and Corg accumulation rates in Ullsfjorden support the notion that fjords are important Corg sinks. The depth of the sulfate-methane-transition (SMT) in the fjord is controlled by the supply of predominantly marine organic matter to the sediment. Organoclastic sulfate reduction accounts for 60% of the total depth-integrated sulfate reduction in the fjord. In spite of the presence of ethane, propane, and butane, we suggest a purely microbial origin of light hydrocarbons in the sediments based on their low δ13C values. In the Hola trough, sedimentation and Corg accumulation rates changed during the deglacial-to-post-glacial transition from approximately 80 cm ka-1 to erosion at present. Thus, Corg burial in this part of the shelf is presently absent. Low organic matter content in the sediment and low rates of organoclastic sulfate reduction (only 3% of total depth-integrated sulfate reduction) entail that the shallow depth of the SMT is controlled mostly by ascending thermogenic methane from deeper sources.

  7. Genetic Structure in a Small Pelagic Fish Coincides with a Marine Protected Area: Seascape Genetics in Patagonian Fjords.

    PubMed

    Canales-Aguirre, Cristian B; Ferrada-Fuentes, Sandra; Galleguillos, Ricardo; Hernández, Cristián E

    2016-01-01

    Marine environmental variables can play an important role in promoting population genetic differentiation in marine organisms. Although fjord ecosystems have attracted much attention due to the great oscillation of environmental variables that produce heterogeneous habitats, species inhabiting this kind of ecosystem have received less attention. In this study, we used Sprattus fuegensis, a small pelagic species that populates the inner waters of the continental shelf, channels and fjords of Chilean Patagonia and Argentina, as a model species to test whether environmental variables of fjords relate to population genetic structure. A total of 282 individuals were analyzed from Chilean Patagonia with eight microsatellite loci. Bayesian and non-Bayesian analyses were conducted to describe the genetic variability of S. fuegensis and whether it shows spatial genetic structure. Results showed two well-differentiated genetic clusters along the Chilean Patagonia distribution (i.e. inside the embayment area called TicToc, and the rest of the fjords), but no spatial isolation by distance (IBD) pattern was found with a Mantel test analysis. Temperature and nitrate were correlated to the expected heterozygosities and explained the allelic frequency variation of data in the redundancy analyses. These results suggest that the singular genetic differences found in S. fuegensis from inside TicToc Bay (East of the Corcovado Gulf) are the result of larvae retention bya combination of oceanographic mesoscale processes (i.e. the west wind drift current reaches the continental shelf exactly in this zone), and the local geographical configuration (i.e. embayment area, islands, archipelagos). We propose that these features generated an isolated area in the Patagonian fjords that promoted genetic differentiation by drift and a singular biodiversity, adding support to the existence of the largest marine protected area (MPA) of continental Chile, which is the Tic-Toc MPA.

  8. Genetic Structure in a Small Pelagic Fish Coincides with a Marine Protected Area: Seascape Genetics in Patagonian Fjords

    PubMed Central

    Ferrada-Fuentes, Sandra; Galleguillos, Ricardo; Hernández, Cristián E.

    2016-01-01

    Marine environmental variables can play an important role in promoting population genetic differentiation in marine organisms. Although fjord ecosystems have attracted much attention due to the great oscillation of environmental variables that produce heterogeneous habitats, species inhabiting this kind of ecosystem have received less attention. In this study, we used Sprattus fuegensis, a small pelagic species that populates the inner waters of the continental shelf, channels and fjords of Chilean Patagonia and Argentina, as a model species to test whether environmental variables of fjords relate to population genetic structure. A total of 282 individuals were analyzed from Chilean Patagonia with eight microsatellite loci. Bayesian and non-Bayesian analyses were conducted to describe the genetic variability of S. fuegensis and whether it shows spatial genetic structure. Results showed two well-differentiated genetic clusters along the Chilean Patagonia distribution (i.e. inside the embayment area called TicToc, and the rest of the fjords), but no spatial isolation by distance (IBD) pattern was found with a Mantel test analysis. Temperature and nitrate were correlated to the expected heterozygosities and explained the allelic frequency variation of data in the redundancy analyses. These results suggest that the singular genetic differences found in S. fuegensis from inside TicToc Bay (East of the Corcovado Gulf) are the result of larvae retention bya combination of oceanographic mesoscale processes (i.e. the west wind drift current reaches the continental shelf exactly in this zone), and the local geographical configuration (i.e. embayment area, islands, archipelagos). We propose that these features generated an isolated area in the Patagonian fjords that promoted genetic differentiation by drift and a singular biodiversity, adding support to the existence of the largest marine protected area (MPA) of continental Chile, which is the Tic-Toc MPA. PMID:27505009

  9. Controlled artificial upwelling in a fjord to combat toxic algae

    NASA Astrophysics Data System (ADS)

    McClimans, T. A.; Hansen, A. H.; Fredheim, A.; Lien, E.; Reitan, K. I.

    2003-04-01

    During the summer, primary production in the surface layers of some fjords depletes the nutrients to the degree that some arts of toxic algae dominate the flora. We describe an experiment employing a bubble curtain to lift significant amounts of nutrient-rich seawater to the light zone and provide an environment in which useful algae can survive. The motivation for the experiment is to provide a local region in which mussels can be cleansed from the effects of toxic algae. Three 100-m long, perforated pipes were suspended at 40 m depth in the Arnafjord, a side arm of the Sognefjord. Large amounts of compressed air were supplied during a period of three weeks. The deeper water mixed with the surface water and flowed from the mixing region at 5 to 15 m depth. Within a few days, the mixture of nutrient-rich water covered most of the inner portion of Arnafjord. Within 10 days, the plankton samples showed that the artificial upwelling produced the desired type of algae and excluded the toxic blooms that were occurring outside the manipulated fjord arm. The project (DETOX) is supported by the Norwegian ministries of Fisheries, Agriculture and Public Administration.

  10. Coastal Freshening Prevents Fjord Bottom Water Renewal in Northeast Greenland: A Mooring Study From 2003 to 2015

    NASA Astrophysics Data System (ADS)

    Boone, Wieter; Rysgaard, Søren; Carlson, Daniel F.; Meire, Lorenz; Kirillov, Sergei; Mortensen, John; Dmitrenko, Igor; Vergeynst, Leendert; Sejr, Mikael K.

    2018-03-01

    The freshwater content of the Arctic Ocean and its bordering seas has recently increased. Observing freshening events is an important step toward identifying the drivers and understanding the effects of freshening on ocean circulation and marine ecosystems. Here we present a 13 year (2003-2015) record of temperature and salinity in Young Sound-Tyrolerfjord (74°N) in Northeast Greenland. Our observations show that strong freshening occurred from August 2005 to August 2007 (-0.92 psu or -0.46 psu yr-1) and from August 2009 to August 2013 (-0.66 psu or -0.17 psu yr-1). Furthermore, temperature-salinity analysis from 2004 to 2014 shows that freshening of the coastal water ( range at sill depth: 33.3 psu in 2005 to 31.4 psu in 2007) prevented renewal of the fjord's bottom water. These data provide critical observations of interannual freshening rates in a remote fjord in Greenland and in the adjacent coastal waters and show that coastal freshening impacts the fjord hydrography, which may impact the ecosystem dynamics in the long term.

  11. IceBridge Survey Flight Over Saunders Island and Wolstenholme Fjord

    NASA Image and Video Library

    2017-12-08

    This image of Saunders Island and Wolstenholme Fjord with Kap Atholl in the background was taken during an Operation IceBridge survey flight in April, 2013. Sea ice coverage in the fjord ranges from thicker, white ice seen in the background, to thinner grease ice and leads showing open ocean water in the foreground. In March 2013, NASA's Operation IceBridge scientists began another season of research activity over Arctic ice sheets and sea ice. IceBridge, a six-year NASA mission, is the largest airborne survey of Earth's polar ice ever flown. It will yield an unprecedented three-dimensional view of Arctic and Antarctic ice sheets, ice shelves and sea ice. These flights will provide a yearly, multi-instrument look at the behavior of the rapidly changing features of the Greenland and Antarctic ice. Image Credit: NASA / Michael Studinger Read more about the mission here: www.nasa.gov/mission_pages/icebridge/index.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. 77 FR 2519 - Sunshine Act Meeting Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    .... and EL10-50-003, New England Power Pool EL10-57-003 Participants Committee. ER10-787-006, New England... Somerset Power LLC v. ISO New England Inc. E-2 ER11-4105-000 Southwest Power Pool, Inc. E-3 ER11-4336-000... Interstate and Intrastate Natural Gas Companies. G-2 OR11-21-000 Kenai Pipe Line Company; Tesoro Alaska...

  13. Old lower stem bark lesions apparently caused by unsuccessful spruce beetle attacks still evident on live spruce trees years later

    Treesearch

    John S. Hard; Ken P. Zogas

    2010-01-01

    We examined old bark lesions on Lutz spruce in young stands on the Kenai Peninsula, Alaska, to determine their cause. Distribution of these lesions along lower stems was similar to the distribution of spruce beetle attacks during epidemics. These lesions apparently resulted from unsuccessful attacks by spruce beetles during the late 1980s and early 1990s and appear to...

  14. Calculating Freshwater Input from Iceberg Melt in Greenlandic Fjords by Combining In Situ Observations of Iceberg Movement with High Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Sulak, D. J.; Sutherland, D.; Stearns, L. A.; Hamilton, G. S.

    2015-12-01

    Understanding fjord circulation in Greenland's outlet glacial fjords is crucial to explaining recent temporal and spatial variability in glacier dynamics, as well as freshwater transport on the continental shelf. The fjords are commonly assumed to exhibit a plume driven circulation that draws in warmer and saltier Atlantic-origin water toward the glacier at depth. Freshwater input at glacier termini directly drives this circulation and significantly influences water column stratification, which indirectly feeds back on the plume driven circulation. Previous work has focused on freshwater inputs from surface runoff and submarine melting, but the contribution from iceberg melt, a potentially important freshwater source, has not been quantified. Here, we develop a new technique combining in situ observations of movement from iceberg-mounted GPS units with multispectral satellite imagery from Landsat 8. The combination of datasets allows us to examine the details of iceberg movement and quantify mean residence times in a given fjord. We then use common melt rate parameterizations to estimate freshwater input for a given iceberg, utilizing novel satellite-derived iceberg distributions to scale up to a fjord-wide freshwater contribution. We apply this technique to Rink Isbræ and Kangerlussuup Sermia in west Greenland, and Helheim Glacier in southeast Greenland. The analysis can be rapidly expanded to look at other systems as well as seasonal and interannual changes in how icebergs affect the circulation and stratification of Greenland's outlet glacial fjords. Ultimately, this work will lead to a more complete understanding of the wide range of factors that control the observed regional variability in Greenland's glaciers.

  15. Alaska Air National Guard

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska Symbol Visit 168th Wing Website State of Alaska myAlaska My Government Resident Business in Alaska

  16. Distribution and spawning dynamics of capelin (Mallotus villosus) in Glacier Bay, Alaska: A cold water refugium

    USGS Publications Warehouse

    Arimitsu, Mayumi L.; Piatt, John F.; Litzow, Michael A.; Abookire, Alisa A.; Romano, Marc D.; Robards, Martin D.

    2008-01-01

    Pacific capelin (Mallotus villosus) populations declined dramatically in the Northeastern Pacific following ocean warming after the regime shift of 1977, but little is known about the cause of the decline or the functional relationships between capelin and their environment. We assessed the distribution and abundance of spawning, non-spawning adult and larval capelin in Glacier Bay, an estuarine fjord system in southeastern Alaska. We used principal components analysis to analyze midwater trawl and beach seine data collected between 1999 and 2004 with respect to oceanographic data and other measures of physical habitat including proximity to tidewater glaciers and potential spawning habitat. Both spawning and non-spawning adult Pacific capelin were more likely to occur in areas closest to tidewater glaciers, and those areas were distinguished by lower temperature, higher turbidity, higher dissolved oxygen and lower chlorophyll a levels when compared with other areas of the bay. The distribution of larval Pacific capelin was not sensitive to glacial influence. Pre-spawning females collected farther from tidewater glaciers were at a lower maturity state than those sampled closer to tidewater glaciers, and the geographic variation in the onset of spawning is likely the result of differences in the marine habitat among sub-areas of Glacier Bay. Proximity to cold water in Glacier Bay may have provided a refuge for capelin during the recent warm years in the Gulf of Alaska.

  17. Dynamics of dissolved organic matter in fjord ecosystems: Contributions of terrestrial dissolved organic matter in the deep layer

    NASA Astrophysics Data System (ADS)

    Yamashita, Youhei; McCallister, S. Leigh; Koch, Boris P.; Gonsior, Michael; Jaffé, Rudolf

    2015-06-01

    Annually, rivers and inland water systems deliver a significant amount of terrestrial organic matter (OM) to the adjacent coastal ocean in both particulate and dissolved forms; however, the metabolic and biogeochemical transformations of OM during its seaward transport remains one of the least understood components of the global carbon cycle. This transfer of terrestrial carbon to marine ecosystems is crucial in maintaining trophic dynamics in coastal areas and critical in global carbon cycling. Although coastal regions have been proposed as important sinks for exported terrestrial materials, most of the global carbon cycling data, have not included fjords in their budgets. Here we present distributional patterns on the quantity and quality of dissolved OM in Fiordland National Park, New Zealand. Specifically, we describe carbon dynamics under diverse environmental settings based on dissolved organic carbon (DOC) depth profiles, oxygen concentrations, optical properties (fluorescence) and stable carbon isotopes. We illustrate a distinct change in the character of DOC in deep waters compared to surface and mid-depth waters. Our results suggest that, both, microbial reworking of terrestrially derived plant detritus and subsequent desorption of DOC from its particulate counterpart (as verified in a desorption experiment) are the main sources of the humic-like enriched DOC in the deep basins of the studied fjords. While it has been suggested that short transit times and protection of OM by mineral sorption may ultimately result in significant terrestrial carbon burial and preservation in fjords, our data suggests the existence of an additional source of terrestrial OM in the form of DOC generated in deep, fjord water.

  18. Dynamic response to strike-slip tectonic control on the deposition and evolution of the Baranof Fan, Gulf of Alaska

    USGS Publications Warehouse

    Walton, Maureen A. L.; Gulick, Sean P. S.; Reece, Robert S.; Barth, Ginger A.; Christeson, Gail L.; VanAvendonk, Harm J.

    2014-01-01

    The Baranof Fan is one of three large deep-sea fans in the Gulf of Alaska, and is a key component in understanding large-scale erosion and sedimentation patterns for southeast Alaska and western Canada. We integrate new and existing seismic reflection profiles to provide new constraints on the Baranof Fan area, geometry, volume, and channel development. We estimate the fan’s area and total sediment volume to be ∼323,000 km2 and ∼301,000 km3, respectively, making it among the largest deep-sea fans in the world. We show that the Baranof Fan consists of channel-levee deposits from at least three distinct aggradational channel systems: the currently active Horizon and Mukluk channels, and the waning system we call the Baranof channel. The oldest sedimentary deposits are in the northern fan, and the youngest deposits at the fan’s southern extent; in addition, the channels seem to avulse southward consistently through time. We suggest that Baranof Fan sediment is sourced from the Coast Mountains in southeastern Alaska, transported offshore most recently via fjord to glacial sea valley conduits. Because of the translation of the Pacific plate northwest past sediment sources on the North American plate along the Queen Charlotte strike-slip fault, we suggest that new channel formation, channel beheadings, and southward-migrating channel avulsions have been influenced by regional tectonics. Using a simplified tectonic reconstruction assuming a constant Pacific plate motion of 4.4 cm/yr, we estimate that Baranof Fan deposition initiated ca. 7 Ma.

  19. Sedimentary organic matter sources, benthic consumption and burial in west Spitsbergen fjords - Signs of maturing of Arctic fjordic systems?

    NASA Astrophysics Data System (ADS)

    Zaborska, Agata; Włodarska-Kowalczuk, Maria; Legeżyńska, Joanna; Jankowska, Emilia; Winogradow, Aleksandra; Deja, Kajetan

    2018-04-01

    Mature ecosystems sequester little organic carbon (Corg) in sediments, as the complex and effective food webs consume most available organic matter within the water column and sediment, in contrast to young systems, where a large proportion of Corg is buried in deeper sediment layers. In this paper we hypothesize that "warmer" Atlantic water influenced fjord exhibits the 'mature' system features as compared to "cooler" Arctic water influenced fjord. Corg concentrations, sources and burial rates, as well as macrobenthic community standing stocks, taxonomic and functional composition and carbon demand, were compared in two west Spitsbergen fjords that are to different extents influenced by Atlantic water and can be treated as representing a cold one (Hornsund) and a warm one (Kongsfjorden). Water, sediments and macrofauna were collected at three stations in the central basin of each fjord. Corg, Ntot, δ13Corg and δ15N were measured in suspended matter, sediment cores and possible organic matter sources. The composition of sources of sedimentary organic matter was modeled by Mix-SIAR Bayesian stable isotope mixing models. The 210Pb method was used to calculate sediment accumulation rates, Corg accumulation and burial rates. The sedimentary Corg concentration and accumulation rate were larger in Hornsund than in Kongsfjorden. The contributions of pelagic sources to the Corg in sediments were similar in both fjords, macroalgal detritus had a higher importance in Kongsfjorden, while terrestrial sources were more important in Hornsund. Similar density and species richness were noted in both fjords, but higher biomass, individual biomass, production and carbon demand of benthic communities were noted in Kongsfjorden despite the lower amounts of Corg in sediments, indicating that macrobenthos responds to quality rather than quantity of available food. Subsurface tube-building conveyer belt detritus feeders (maldanids and oweniids) were responsible for higher standing

  20. Organic carbon storage and benthic consumption in sediments of northern fjords (60-80°N)

    NASA Astrophysics Data System (ADS)

    Włodarska-Kowalczuk, Maria; Zaborska, Agata; Jankowska, Emilia; Mazurkiewicz, Mikołaj

    2017-04-01

    Fjords have been recently recognized as hotspots of organic carbon storage, with organic carbon burial rates one hundred times larger than the global ocean average, accounting for 11% of global annual marine carbon burial (Smith et al. (2015) Nature Geoscience 8: 450-453). The organic carbon production and processing in coastal waters and sediments are controlled by environmental settings that are likely to be reshaped in the course of the global warming. The fastest and strongest changes are to occur in polar regions. In the present study we compare organic carbon stocks, accumulation and burial in temperate (Raunefjorden, Ullsfjorden, Balsfjorden) and Arctic (Hornsund, Kongsfjorden, Rijpfjorden) fjords located along the latitudinal/thermal gradient from the southern Norway (60 °N) to North of Svalbard (80 °N). The sediment cores were collected at 3 to 5 stations within the central basin at 150-300 m in each fjord during r/v Helmer Hansen and r/v Oceania cruises in 2014 and 2015. Vertical patterns of grain size and organic matter content and sources (Corg concentration, stable isotope δ13C signature, photosynthetic pigments concentration) have been analyzed. Sediment accumulation rates have been estimated with use of 210Pb dating method. Fresh carbon accumulation rate was estimated based on organic carbon concentration is surface sediments and mass sediment accumulation rate. The variability in metazoan productivity and carbon consumption (calculated based on the macro- and meiobenthic species biomass spectra in samples collected at the same stations) was also assessed to explore the patterns of biological controls of carbon storage in sediments. Carbon burial was estimated by multiplying organic carbon concentration in deepest sampled sediments and mass sediment accumulation rate. The effects of contrasting hydrological regimes and biological activity on the carbon storage in the studied fjords are discussed from the perspective of possible effects of climate

  1. State of Alaska

    Science.gov Websites

    Alaska Railroad Alaska Maps Alaska Travel Safety Information Alaska Fish and Game Alaska Facts & Month Services How Do I? Education Health Jobs Safety How Do I? Apply for a Permanent Fund Dividend File Information More Dept. of Commerce, Comm... More Dept. of Labor & Workforce Dev. Safety 511 - Traveler

  2. Main results of the 2012 joint Norwegian-Russian expedition to the dumping sites of the nuclear submarine K-27 and solid radioactive waste in Stepovogo Fjord, Novaya Zemlya.

    PubMed

    Gwynn, Justin P; Nikitin, Aleksander; Shershakov, Viacheslav; Heldal, Hilde Elise; Lind, Bjørn; Teien, Hans-Christian; Lind, Ole Christian; Sidhu, Rajdeep Singh; Bakke, Gunnar; Kazennov, Alexey; Grishin, Denis; Fedorova, Anastasia; Blinova, Oxana; Sværen, Ingrid; Lee Liebig, Penny; Salbu, Brit; Wendell, Cato Christian; Strålberg, Elisabeth; Valetova, Nailja; Petrenko, Galina; Katrich, Ivan; Logoyda, Igor; Osvath, Iolanda; Levy, Isabelle; Bartocci, Jean; Pham, Mai Khanh; Sam, Adam; Nies, Hartmut; Rudjord, Anne Liv

    2016-01-01

    This paper reports the main results of the 2012 joint Norwegian-Russian expedition to investigate the radioecological situation of the Stepovogo Fjord on the eastern coast of Novaya Zemlya, where the nuclear submarine K-27 and solid radioactive waste was dumped. Based on in situ gamma measurements and the analysis of seawater and sediment samples taken around the submarine, there was no indication of any leakage from the reactor units of K-27. With regard to the radioecological status of Stepovogo Fjord, activity concentrations of all radionuclides in seawater, sediment and biota in 2012 were in general lower than reported from the previous investigations in the 1990s. However in 2012, the activity concentrations of (137)Cs and, to a lesser extent, those of (90)Sr remained elevated in bottom water from the inner part of Stepovogo Fjord compared with surface water and the outer part of Stepovogo Fjord. Deviations from expected (238)Pu/(239,240)Pu activity ratios and (240)Pu/(239)Pu atom ratios in some sediment samples from the inner part of Stepovogo Fjord observed in this study and earlier studies may indicate the possibility of leakages from dumped waste from different nuclear sources. Although the current environmental levels of radionuclides in Stepovogo Fjord are not of immediate cause for concern, further monitoring of the situation is warranted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Importance of mixotrophic nanoplankton in Aysén Fjord (Southern Chile) during austral winter

    NASA Astrophysics Data System (ADS)

    Czypionka, Till; Vargas, Cristian A.; Silva, Nelson; Daneri, Giovanni; González, Humberto E.; Iriarte, José Luis

    2011-03-01

    Mixotrophy, the combination of autotrophic and heterotrophic nutrition in the same organism, is widespread in planktonic algae. Several reports from temperate and high-latitude fjords in Scandinavia suggest the occurrence of a niche in late summer and autumn during post-bloom conditions in which mixotrophic algae can become important grazers in pelagic ecosystems, accessing the nutrients bound in their prey to overcome nutrient limitation. Here, we experimentally determined the trophic modes and bacterivory rates for the nanoplankton community (2-20 μm) in Aysén Fjord located in the Chilean Northern Patagonia during two contrasting seasons: winter and spring. While mixotrophic nanoplankton was virtually absent from the system in spring, in winter at occasions it even constituted the dominant trophic group of the nanoplankton with abundances of >900 cells mL -1. This indicates a second niche for mixotrophs in winter, when mixotrophy allows overcoming light limitation.

  4. GeoFORCE Alaska, A Successful Summer Exploring Alaska's Geology

    NASA Astrophysics Data System (ADS)

    Wartes, D.

    2012-12-01

    Thirty years old this summer, RAHI, the Rural Alaska Honors Institute is a statewide, six-week, summer college-preparatory bridge program at the University of Alaska Fairbanks for Alaska Native and rural high school juniors and seniors. This summer, in collaboration with the University of Texas Austin, the Rural Alaska Honors Institute launched a new program, GeoFORCE Alaska. This outreach initiative is designed to increase the number and diversity of students pursuing STEM degree programs and entering the future high-tech workforce. It uses Earth science to entice kids to get excited about dinosaurs, volcanoes and earthquakes, and includes physics, chemistry, math, biology and other sciences. Students were recruited from the Alaska's Arctic North Slope schools, in 8th grade to begin the annual program of approximately 8 days, the summer before their 9th grade year and then remain in the program for all four years of high school. They must maintain a B or better grade average and participate in all GeoFORCE events. The culmination is an exciting field event each summer. Over the four-year period, events will include trips to Fairbanks and Anchorage, Arizona, Oregon and the Appalachians. All trips focus on Earth science and include a 100+ page guidebook, with tests every night culminating with a final exam. GeoFORCE Alaska was begun by the University of Alaska Fairbanks in partnership with the University of Texas at Austin, which has had tremendous success with GeoFORCE Texas. GeoFORCE Alaska is managed by UAF's long-standing Rural Alaska Honors Institute, that has been successfully providing intense STEM educational opportunities for Alaskan high school students for over 30 years. The program will add a new cohort of 9th graders each year for the next four years. By the summer of 2015, GeoFORCE Alaska is targeting a capacity of 160 students in grades 9th through 12th. Join us to find out more about this exciting new initiative, which is enticing young Alaska Native

  5. A multiproxy fjord sediment record of Holocene climate change from the subantarctic Auckland Islands

    NASA Astrophysics Data System (ADS)

    Browne, I. M.; Moy, C. M.; Wilson, G. S.; Neil, H.; Riesselman, C. R.

    2014-12-01

    The Southern Hemisphere Westerly Winds (SHWW) and the associated oceanic fronts have a major influence on atmospheric and oceanic circulation in the Southern Hemisphere. Sediment cores recovered from fjords along the eastern margin of the sub-Antarctic Auckland Islands (51°S, 166°E) are ideally located to sensitively record changes in the strength and position of the SHWW throughout the Holocene. A 5.75m core from Hanfield Inlet preserves both marine and terrestrial environmental components, which we use to develop a multiproxy record of past climatic conditions. This core, composed entirely of brown marine mud and silt, was recovered from a depth of 44m. Based on the entrance sill depth of the fjord (10mbsl) and our knowledge of regional sea level rise, we infer that the base of the core will be early Holocene in age, which will be confirmed using radiocarbon age dating. Benthic foraminiferal assemblages (125-500μm fraction) in surface and downcore samples are dominated by three taxa, Nonionellina flemingi, Cassidulina carinata and Quinqueloculina seminula. These species are either shallow infaunal or infaunal. We will use stable carbon (δ¹³C) and oxygen (δ¹⁸O) isotope geochemistry of the benthic foraminifera Nonionellina flemingi, Bolivina cf. earlandi, Trifarina angulosa, Bulimina marginata f. marginata and Cibicides species (all identified from Rose Bengal stained box-core samples) to reconstruct water column fluctuations associated with frontal migration. These results will compliment bulk sediment C and N concentration and isotope reconstructions of terrestrial organic matter delivery to fjord sub-basins over the past 12,000 years.

  6. Geologic framework of lower Cook Inlet, Alaska

    USGS Publications Warehouse

    Fisher, M.A.; Magoon, L.B.

    1978-01-01

    Three seismic reflectors are present throughout the lower Cook Inlet basin and can be correlated with onshore geologic features. The reflections come from unconformities at the base of the Tertiary sequence, at the base of Upper Cretaceous rocks, and near the base of Upper Jurassic strata. A contour map of the deepest horizon shows that Mesozoic rocks are formed into a northeast-trending syncline. Along the southeast flank of the basin, the northwest-dipping Mesozoic rocks are truncated at the base of Tertiary rocks. The Augustine-Seldovia arch trends across the basin axis between Augustine Island and Seldovia. Tertiary rocks thin onto the arch from the north and south. Numerous anticlines, smaller in structural relief and breadth than the Augustine-Seldovia arch, trend northeast parallel with the basin, and intersect the arch at oblique angles. The stratigraphic record shows four cycles of sedimentation and tectonism that are bounded by three regional unconformities in lower Cook Inlet and by four thrust faults and the modern Benioff zone in flysch rocks of the Kenai Peninsula and the Gulf of Alaska. The four cycles of sedimentation are, from oldest to youngest, the early Mesozoic, late Mesozoic, early Cenozoic, and late Cenozoic. Data on organic geochemistry of the rocks from one well suggest that Middle Jurassic strata may be a source of hydrocarbons. Seismic data show that structural traps are formed by northeast-trending anticlines and by structures formed at the intersections of these anticlines with the transbasin arch. Stratigraphic traps may be formed beneath the unconformity at the base of Tertiary strata and beneath unconformities within Mesozoic strata.

  7. Late Holocene glacial history of Petermann Fjord, Northwest Greenland: Non-destructive CT, XRF, and magnetic results from OD1507 sediment cores

    NASA Astrophysics Data System (ADS)

    Reilly, B. T.; Stoner, J. S.; Mix, A. C.; Jakobsson, M.; Jennings, A. E.; Walczak, M.; Dyke, L. M.; Cheseby, M.; Albert, S. W.; Wiest, J.

    2016-12-01

    An international and interdisciplinary expedition to Nares Strait and Petermann Fjord, Northwest Greenland, onboard the Swedish Icebreaker Oden July-September 2015 (OD1507) sought to understand the Holocene history of the Petermann glacial system among other research objectives. Petermann Glacier, which terminates as a floating ice-tongue in Petermann Fjord, is thought to be especially sensitive to ice-ocean interactions. While limited historical observations dating back to 1876 suggest the Petermann Ice Tongue extends about 70-90 km from the grounding-line, large calving events in 2010 and 2012 reduced the ice-tongue extent to about 45 km from the grounding-line. A suite of 14 marine sediment cores recovered a range of glacio-marine facies that form an along fjord (15-80 km from the grounding-line) and an across fjord depth (473-1041 meters water depth) transect. CT scans clearly identify four primary fjord facies, including bioturbated, IRD-rich, laminated and mud with stratified graded sand layers. The latter of these occurs near the modern grounding-line. Additionally, a new MATLAB routine is used to quantify clasts >2 mm in size from the CT scans. XRF sediment geochemical changes mirror magnetic mineral concentrations and are driven by varying contribution of Ca-rich and Ca-poor sources, which we interpret as a reflection of the mixing of the local carbonate rocks and crystalline basement excavated by the ice sheet. Initial paleomagnetic results isolate a strong and stable characteristic remanent magnetization which show remarkable similarity to paleosecular variation (PSV) recorded in nearby mid-late Holocene varved lakes on Ellesmere Island. This non-destructive dataset provides robust correlations, indicating a coherent and dynamic record of changes in the Petermann glacial system during the late Holocene, including evidence for a significant grounding-line retreat followed by the growth and relative paleo-extent of the modern Petermann Ice Tongue.

  8. Glaciological and marine geological controls on terminus dynamics of Hubbard Glacier, southeast Alaska

    USGS Publications Warehouse

    Stearns, Leigh A.; Hamilton, Gordon S.; van der Veen, C. J.; Finnegan, D. C.; O'Neel, Shad; Scheick, J. B.; Lawson, D. E.

    2015-01-01

    Hubbard Glacier, located in southeast Alaska, is the world's largest non-polar tidewater glacier. It has been steadily advancing since it was first mapped in 1895; occasionally, the advance creates an ice or sediment dam that blocks a tributary fjord (Russell Fiord). The sustained advance raises the probability of long-term closure in the near-future, which will strongly impact the ecosystem of Russell Fiord and the nearby community of Yakutat. Here, we examine a 43-year record of flow speeds and terminus position to understand the large-scale dynamics of Hubbard Glacier. Our long-term record shows that the rate of terminus advance has increased slightly since 1895, with the exception of a slowed advance between approximately 1972 and 1984. The short-lived closure events in 1986 and 2002 were not initiated by perturbations in ice velocity or environmental forcings, but were likely due to fluctuations in sedimentation patterns at the terminus. This study points to the significance of a coupled system where short-term velocity fluctuations and morainal shoal development control tidewater glacier terminus position.

  9. Radar observations of the 2009 eruption of Redoubt Volcano, Alaska: Initial deployment of a transportable Doppler radar system for volcano-monitoring

    NASA Astrophysics Data System (ADS)

    Hoblitt, R. P.; Schneider, D. J.

    2009-12-01

    The rapid detection of explosive volcanic eruptions and accurate determination of eruption-column altitude and ash-cloud movement are critical factors in the mitigation of volcanic risks to aviation and in the forecasting of ash fall on nearby communities. The U.S. Geological Survey (USGS) deployed a transportable Doppler radar during the precursory stage of the 2009 eruption of Redoubt Volcano, Alaska, and it provided valuable information during subsequent explosive events. We describe the capabilities of this new monitoring tool and present data that it captured during the Redoubt eruption. The volcano-monitoring Doppler radar operates in the C-band (5.36 cm) and has a 2.4-m parabolic antenna with a beam width of 1.6 degrees, a transmitter power of 330 watts, and a maximum effective range of 240 km. The entire disassembled system, including a radome, fits inside a 6-m-long steel shipping container that has been modified to serve as base for the antenna/radome, and as a field station for observers and other monitoring equipment. The radar was installed at the Kenai Municipal Airport, 82 km east of Redoubt and about 100 km southwest of Anchorage. In addition to an unobstructed view of the volcano, this secure site offered the support of the airport staff and the City of Kenai. A further advantage was the proximity of a NEXRAD Doppler radar operated by the Federal Aviation Administration. This permitted comparisons with an established weather-monitoring radar system. The new radar system first became functional on March 20, roughly a day before the first of nineteen explosive ash-producing events of Redoubt between March 21 and April 4. Despite inevitable start-up problems, nearly all of the events were observed by the radar, which was remotely operated from the Alaska Volcano Observatory office in Anchorage. The USGS and NEXRAD radars both detected the eruption columns and tracked the directions of drifting ash clouds. The USGS radar scanned a 45-degree sector

  10. Home - Gold mining in Alaska - Libraries, Archives, & Museums at Alaska

    Science.gov Websites

    State Library Skip to main content State of Alaska myAlaska Departments State Employees Statewide Links × Upcoming Holiday Closure for Memorial Day The Alaska State Libraries, Archives, & Tuesday, May 29. Department of Education and Early Development Alaska State Libraries, Archives, and

  11. A coupled physical-biological pelagic model of a shallow sill fjord

    NASA Astrophysics Data System (ADS)

    Aksnes, Dag L.; Lie, Ulf

    1990-10-01

    A vertically resolved model for the land-locked fjord Lindåspollene, western Norway is presented. Salinity, temperature, oxygen, nitrogen-nutrients, silicate, and two groups of phytoplankton and herbivores are represented as dynamic variables. From 'below' the model is driven by solar radiation, precipitation, wind and tidal exchange and from 'above' by herbivore mortality. Simulation results are presented and discussed together with actual observations from Lindåspollene. The main seasonal and vertical characteristics of the phytoplankton and herbivore dynamics seem to be well reflected by the model, and realistic seasonal patterns may be produced for several successive years. The most characteristic vertical features are the formation of a summer surface production maximum and a deep chlorophyll maximum. Furthermore, a herbivore biomass which develops in the surface layer divides into a shallow and a deep component during summer and becomes concentrated in the surface layer again in the autumn. The nutricline and the pycnocline develop independently of one another, with consequences for the supply of nutrients to the upper euphotic zone. The bottom-up control exerted by the meteorological forcing, especially the freshwater runoff, seems to be of paramount significance for the observed vertical structure and seasonality of the present fjord system.

  12. Alaska Tidal Datum Portal - Alaska Tidal Datum Calculator | Alaska Division

    Science.gov Websites

    Coastal Hazards Program Guide to Geologic Hazards in Alaska MAPTEACH Tsunami Inundation Mapping Energy Portal main content Alaska Tidal Datum Portal Unambiguous vertical datums in the coastal environment are projects to ensure protection of human life, property, and the coastal environment. January 2017 - Update

  13. Dynamics of a vertical turbulent plume in a stratification typical of Greenland fjords: an idealized model of subglacial discharge

    NASA Astrophysics Data System (ADS)

    Stenberg, Erik; Ezhova, Ekaterina; Cenedese, Claudia; Brandt, Luca

    2017-04-01

    We the report results of large eddy simulations of a turbulent buoyant plume in a configuration providing an idealized model of subglacial discharge from a submarine glacier in stratifications typical of Greenland Fjords. We neglect a horizontal momentum of the plume and assume that its influence on the plume dynamics is small and important only close to the source. Moreover, idealized models have considered the plume adjacent to the glacier as a half-conical plume (e.g., [1]). Thus, to compare the results for such plume with the classical plume theory, developed for free plumes entraining ambient fluid from all directions, it is convenient to add the second half-conical part and consider a free plume with double the total discharge as a model. Given the estimate of the total subglacial discharge for Helheim Glacier in Sermilik Fjord [2], we perform simulations with double the total discharge in order to investigate the dynamics of the flow in typical winter and summer stratifications in Greenland fjords [3]. The plume is discharged from a round source of various diameters. In winter, when the stratification is similar to an idealised two-layers case, turbulent entrainment and generation of internal waves by the plume top are in agreement with the theoretical and numerical results obtained for turbulent jets in a two-layer stratification. In summer, instead, the stratification is more complex and turbulent entrainment is significantly reduced. The subsurface layer in summer is characterized by a strong density gradient and the oscillating plume generates non-linear internal waves which are able to mix this layer even if the plume does not penetrate to the surface. The classical theory for the integral parameters of a turbulent plume in a homogeneous fluid gives accurate predictions of the plume parameters in the weakly stratified lower layer up to the pycnocline. [1] Mankoff, K. D., F. Straneo, C. Cenedese, S. B. Das, C. D. Richards, and H. Singh, 2016: Structure

  14. The Role of Silicon Limitation in Phytoplankton Phenology in a Sub-Arctic Fjord System

    NASA Astrophysics Data System (ADS)

    Dobbins, W.; Krause, J. W.; Agustí, S.; Duarte, C. M.; Schulz, I. K.; Winding, M.; Rowe, K. A.; Sejr, M.

    2017-12-01

    Bacillariophyceae (diatoms) are a significant driver of the biological pump and thus various chemical cycles in high latitude ecosystems. Diatoms have an obligate silicon requirement that has been established as a growth-limiting factor in a variety of ecosystems, and silicon availability likely plays an important role in the temporal evolution of high latitude phytoplankton blooms. However, no previous work has been done to assess the progression of this limitation across a full bloom cycle in the West Greenlandic Nuup Kangerlua fjord or equivalent systems with rapidly evolving land-sea-ice interfaces. Here we provide experimental evidence that the Nuup Kangerlua spring bloom is both diatom driven and strongly silicon constrained. Chlorophyll concentration and growth rates derived from biogenic silica measurements peaked contemporaneously; indicating diatoms were primary members of the phytoplankton assemblage. Moreover, incubation experiments revealed strong biomass increases in response to silicon additions during the bloom period. This work shows silicon availability may play a significant role in bloom phenology in the Nuup Kangerlua fjord.

  15. Home, Alaska Oil and Gas Conservation Commission, State of Alaska

    Science.gov Websites

    State logo Alaska Department of Administration Alaska Oil and Gas Conservation Commission Administration AOGCC Alaska Oil and Gas Conservation Commission Javascript is required to run this webpage

  16. Earthquakes in Alaska

    USGS Publications Warehouse

    Haeussler, Peter J.; Plafker, George

    1995-01-01

    Earthquake risk is high in much of the southern half of Alaska, but it is not the same everywhere. This map shows the overall geologic setting in Alaska that produces earthquakes. The Pacific plate (darker blue) is sliding northwestward past southeastern Alaska and then dives beneath the North American plate (light blue, green, and brown) in southern Alaska, the Alaska Peninsula, and the Aleutian Islands. Most earthquakes are produced where these two plates come into contact and slide past each other. Major earthquakes also occur throughout much of interior Alaska as a result of collision of a piece of crust with the southern margin.

  17. High-resolution, multi-proxy characterization of the event deposit generated by the catastrophic events associated with the Mw 6.2 earthquake of 21 April 2007 in Aysén fjord (Chile)

    NASA Astrophysics Data System (ADS)

    De Batist, M. A.; Van Daele, M. E.; Cnudde, V.; Duyck, P.; Tjallingii, R. H.; Pino, M.; Urrutia, R.

    2012-12-01

    In 2007, a seismic swarm with more than 7000 recorded earthquakes affected the region around Aysén fjord, Chile (45°25'S). The series of seismic events reached a maximum on 21 April 2007, with an Mw 6.2 earthquake. Intensities as high as VIII to IX on the Modified Mercalli scale were reported around the epicenter. Multiple debris flows, rock slides and rock avalanches were triggered along the fjord's coastline, and several of these caused impact waves or tsunamis with wave heights of up to 6 m, which inundated the fjord shorelines and caused heavy damage and 10 casualties. In order to characterize in detail the imprint left by this series of catastrophic events in the sedimentary record of the fjord, we conducted a multi-disciplinary survey of the inner fjord region in December 2009. Multibeam bathymetry and high-resolution reflection seismic data reveal that large parts of the fjord basin floor, mostly at the foot of the fjord's steep underwater slopes, are covered by recent mass-wasting deposits or consist of mass-wasting-induced deformed basin-plain sediments. A series of short sediment cores collected throughout the inner fjord contain also the more distal deposits of this significant basin-wide mass-wasting event. By combining classical sedimentological techniques (i.e. grain-size analysis, LOI and magnetic susceptibility measurements, all at high resolution) with X-ray CT scanning and XRF scanning we were able to demonstrate that the event deposits encountered in the cores have a very complex signature and actually consist of a succession of several sub-deposits, comprising distal mass-flow deposits from different source areas (as evidenced by XRF-derived geochemical provenance indications) and with a different flow direction (as evidenced by CT-derived 3D flow-direction indications, such as imbricated rip-up mud clasts, cross and convolute laminations) and tsunami- or seiche-generated deposits. This allowed us to reconstruct the succession of sedimentary

  18. Effects of the earthquake of March 27, 1964, on air and water transport, communications, and utilities systems in south-central Alaska: Chapter B in The Alaska earthquake, March 27, 1964: effects on transportation, communications, and utilities

    USGS Publications Warehouse

    Eckel, Edwin B.

    1967-01-01

    The earthquake of March 27, 1964, wrecked or severely hampered all forms of transportation, all utilities, and all communications systems over a very large part of south-central Alaska. Effects on air transportation were minor as compared to those on the water, highway, and railroad transport systems. A few planes were damaged or wrecked by seismic vibration or by flooding. Numerous airport facilities were damaged by vibration or by secondary effects of the earthquake, notably seismic sea and landslide-generated waves, tectonic subsidence, and compaction. Nearly all air facilities were partly or wholly operational within a few hours after the earthquake. The earthquake inflicted enormous damage on the shipping industry, which is indispensable to a State that imports fully 90 percent of its requirements—mostly by water—and whose largest single industry is fishing. Except for those of Anchorage, all port facilities in the earthquake-affected area were destroyed or made inoperable by submarine slides, waves, tectonic uplift, and fire. No large vessels were lost, but more than 200 smaller ones (mostly crab or salmon boats) were lost or severely damaged. Navigation aids were destroyed, and hitherto well-known waterways were greatly altered by uplift or subsidence. All these effects wrought far-reaching changes in the shipping economy of Alaska, many of them to its betterment. Virtually all utilities and communications in south-central Alaska were damaged or wrecked by the earthquake, but temporary repairs were effected in remarkably short times. Communications systems were silenced almost everywhere by loss of power or by downed lines; their place was quickly taken by a patchwork of self-powered radio transmitters. A complex power-generating system that served much of the stricken area from steam, diesel, and hydrogenerating plants was disrupted in many places by vibration damage to equipment and by broken transmission lines. Landslides in Anchorage broke gas

  19. Geology of Unga Island and the northwestern part of Popof Island: Chapter 2 in A geological and geophysical study of the gold-silver vein system of Unga Island, Southwestern Alaska

    USGS Publications Warehouse

    Riehle, James R.; Wilson, Frederic H.; Shew, Nora B.; White, Willis H.

    1999-01-01

    The first geologic map of Unga Island was published by Atwood (1911; scale 1:250,000), who correctly inferred the middle Tertiary age of the volcanic rocks and made the important distinction between the lava flows and the intrusive domes. Although Burk's (1964) reconnaissance map of the Alaska Peninsula (scale 1:250,000) has been modified in some respects, it does correct Atwood's map by replacing the Kenai Formation on northwestern Unga Island with the Unga Conglomerate and by recognizing the older Stepovak Formation elsewhere on Unga and Popof Islands.U.S. Geological Survey (USGS) field studies that were focused on the mineral-resource potential of the Alaska Peninsula began in the late 1970's. These studies led to a geologic map of the Port Moller quadrangle--including Unga Island--at 1:250,000 scale (Wilson and others, 1995), as well as summaries of mineral occurrences and geochronological studies (Wilson and others, 1988, 1994) and a formal revision of the stratigraphic units of the Alaska Peninsula (Detterman and others, 1996). As follow-up to the regional studies, a detailed study of the vein systems on Unga Island was undertaken as a collaborative effort between USGS and private industry (White and Queen, 1989). The fieldwork leading to the present report and geologic map was started in 1978 (Riehle and others, 1982) and was completed as part of the vein study. The objective was a better understanding of the geologic setting of the vein systems: the geologic history of the host rocks, the structural controls on the veins, and the types of processes that likely caused the mineralization.

  20. Alaska and the Alaska Federal Health Care Partnership

    DTIC Science & Technology

    2002-08-01

    SUPPLEMENTARY NOTES The original document contains color images. 14. ABSTRACT The intent of the Alaska Federal Healthcare Partnership is to expand clinical and... intent of the Alaska Federal Healthcare Partnership is to expand clinical and support capabilities of the Alaska Native Medical Center (ANMC), Third...the formation of the Partnership. Although lengthy, the information is essential to appreciate the magnitude of the Partnership and the intent behind

  1. The Saguenay Fjord, Quebec, Canada: Integrating marine geotechnical and geophysical data for spatial seismic slope stability and hazard assessment

    USGS Publications Warehouse

    Urgeles, R.; Locat, J.; Lee, H.J.; Martin, F.

    2002-01-01

    In 1996 a major flood occurred in the Saguenay region, Quebec, Canada, delivering several km3 of sediment to the Saguenay Fjord. Such sediments covered large areas of the, until then, largely contaminated fjord bottom, thus providing a natural capping layer. Recent swath bathymetry data have also shown that sediment landslides are widely present in the upper section of the Saguenay Fjord, and therefore, should a new event occur, it would probably expose the old contaminated sediments. Landslides in the Upper Saguenay Fjord are most probably due to earthquakes given its proximity to the Charlevoix seismic region and to that of the 1988 Saguenay earthquake. In consequence, this study tries to characterize the permanent ground deformations induced by different earthquake scenarios from which shallow sediment landslides could be triggered. The study follows a Newmark analysis in which, firstly, the seismic slope performance is assessed, secondly, the seismic hazard analyzed, and finally an evaluation of the seismic landslide hazard is made. The study is based on slope gradients obtained from EM1000 multibeam bathymetry data as well as water content and undrained shear strength measurements made in box and gravity cores. Ground motions integrating local site conditions were simulated using synthetic time histories. The study assumes the region of the 1988 Saguenay earthquake as the most likely source area for earthquakes capable of inducing large ground motions in the Upper Saguenay region. Accordingly, we have analyzed several shaking intensities to deduce that generalized sediment displacements will begin to occur when moment magnitudes exceed 6. Major displacements, failure, and subsequent landslides could occur only from earthquake moment magnitudes exceeding 6.75. ?? 2002 Elsevier Science B.V. All rights reserved.

  2. Watershed influences on the structure and function of riparian wetlands associated with headwater streams - Kenai Peninsula, Alaska.

    PubMed

    Whigham, D F; Walker, C M; Maurer, J; King, R S; Hauser, W; Baird, S; Keuskamp, J A; Neale, P J

    2017-12-01

    Riparian wetlands are dynamic components of landscapes. Located between uplands and aquatic environments, riparian habitats intercept sediments and nutrients before they enter aquatic environments. They are a source of organic matter and nutrients to aquatic systems, and they provide important habitat for animals, often serving as corridors for the movement of animals between habitats in fragmented landscapes. In this project, we focused on the structure and function of riparian wetlands associated with headwater streams in Alaska that serve as nursery habitats for juvenile salmonids. We asked whether or not the structure and function of headwater wetlands differed between watersheds with and without nitrogen-fixing Alder (Alnus spp.). We found that the aboveground biomass of riparian vegetation was higher in the watershed with Alder, but the largest differences were in the litter layer and belowground where vegetation in the watershed with no Alder had significantly higher root biomass. Interstitial water chemistry also differed between the study sites with significantly higher inorganic N and significantly different characteristics of colored dissolved organic matter at the site with Alder on the watershed. The biomass of litter that hung over the creek bank was less at the site with Alder on the watershed and an in situ decomposition experiment showed significant differences between the two systems. Results of the research demonstrates that watershed characteristics can impact the ecology of headwater streams in ways that had not been previously recognized. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  3. Simultaneous observations of ice motion, calving and seismicity on the Yahtse Glacier, Alaska. (Invited)

    NASA Astrophysics Data System (ADS)

    Larsen, C. F.; Bartholomaus, T. C.; O'Neel, S.; West, M. E.

    2010-12-01

    We observe ice motion, calving and seismicity simultaneously and with high-resolution on an advancing tidewater glacier in Icy Bay, Alaska. Icy Bay’s tidewater glaciers dominate regional glacier-generated seismicity in Alaska. Yahtse emanates from the St. Elias Range near the Bering-Bagley-Seward-Malaspina Icefield system, the most extensive glacier cover outside the polar regions. Rapid rates of change and fast flow (>16 m/d near the terminus) at Yahtse Glacier provide a direct analog to the disintegrating outlet systems in Greenland. Our field experiment co-locates GPS and seismometers on the surface of the glacier, with a greater network of bedrock seismometers surrounding the glacier. Time-lapse photogrammetry, fjord wave height sensors, and optical survey methods monitor iceberg calving and ice velocity near the terminus. This suite of geophysical instrumentation enables us to characterize glacier motion and geometry changes while concurrently listening for seismic energy release. We are performing a close examination of calving as a seismic source, and the associated mechanisms of energy transfer to seismic waves. Detailed observations of ice motion (GPS and optical surveying), glacier geometry and iceberg calving (direct observations and timelapse photogrammetry) have been made in concert with a passive seismic network. Combined, the observations form the basis of a rigorous analysis exploring the relationship between glacier-generated seismic events and motion, glacier-fiord interactions, calving and hydraulics. Our work is designed to demonstrate the applicability and utility of seismology to study the impact of climate forcing on calving glaciers.

  4. The Contribution of Coseismic Displacements due to Splay Faults Into the Local Wavefield of the 1964 Alaska Tsunami

    NASA Astrophysics Data System (ADS)

    Suleimani, E.; Ruppert, N.; Fisher, M.; West, D.; Hansen, R.

    2008-12-01

    The Alaska Earthquake Information Center conducts tsunami inundation mapping for coastal communities in Alaska. For many locations in the Gulf of Alaska, the 1964 tsunami generated by the Mw9.2 Great Alaska earthquake may be the worst-case tsunami scenario. We use the 1964 tsunami observations to verify our numerical model of tsunami propagation and runup, therefore it is essential to use an adequate source function of the 1964 earthquake to reduce the level of uncertainty in the modeling results. It was shown that the 1964 co-seismic slip occurred both on the megathrust and crustal splay faults (Plafker, 1969). Plafker (2006) suggested that crustal faults were a major contributor to vertical displacements that generated local tsunami waves. Using eyewitness arrival times of the highest observed waves, he suggested that the initial tsunami wave was higher and closer to the shore, than if it was generated by slip on the megathrust. We conduct a numerical study of two different source functions of the 1964 tsunami to test whether the crustal splay faults had significant effects on local tsunami runup heights and arrival times. The first source function was developed by Johnson et al. (1996) through joint inversion of the far-field tsunami waveforms and geodetic data. The authors did not include crustal faults in the inversion, because the contribution of these faults to the far-field tsunami was negligible. The second is the new coseismic displacement model developed by Suito and Freymueller (2008, submitted). This model extends the Montague Island fault farther along the Kenai Peninsula coast and thus reduces slip on the megathrust in that region. We also use an improved geometry of the Patton Bay fault based on the deep crustal seismic reflection and earthquake data. We propagate tsunami waves generated by both source models across the Pacific Ocean and record wave amplitudes at the locations of the tide gages that recorded the 1964 tsunami. As expected, the two

  5. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  6. An analysis of mortality inventory tally using large plots compared to tally using small plot clusters

    Treesearch

    Vernon J. LaBau; John W. Hazard

    2000-01-01

    During an inventory to assess spruce bark beetle impact on the Kenai Peninsula in south-central Alaska, 5-year mortality estimates were made for all growing-stock trees on 0.6 ha areas, on 0.4 ha areas, and on a cluster of four 1/60-ha subplots. The analysis of the results of the comparison between cluster data and the larger plot data highlighted some of the problems...

  7. Effects of the earthquake of March 27, 1964, on various communities: Chapter G in The Alaska earthquake, March 27, 1964: effects on communities

    USGS Publications Warehouse

    Plafker, George; Kachadoorian, Reuben; Eckel, Edwin B.; Mayo, Lawrence R.

    1969-01-01

    The 1964 earthquake caused wide-spread damage to inhabited places throughout more than 60,000 square miles of south-central Alaska. This report describes damage to all communities in the area except Anchorage, Whittier, Homer, Valdez, Seward, the communities of the Kodiak group of islands, and communities in the Copper River Basin; these were discussed in previous chapters of the Geological Survey's series of reports on the earthquake. At the communities discussed herein, damage resulted primarily from sea waves of diverse origins, displacements of the land relative to sea level, and seismic shaking. Waves took all of the 31 lives lost at those communities; physical damage was primarily from the waves and vertical displacements of the land relative to sea level. Destructive waves of local origin struck during or immediately after the earthquake throughout much of Prince William Sound, the southern Kenai Peninsula, and the shores of Kenai Lake. In Prince William Sound, waves demolished all but one home at the native village of Chenega, destroyed homesites at Point Nowell and Anderson Bay, and caused varying amounts of damage to waterfront facilities at Sawmill Bay, Latouche, Port Oceanic, Port Nellie Juan, Perry Island, and western Port Valdez. The local waves, which ran up as high as 70 feet above tide level at Chenega and more than 170 feet in several uninhabited parts of the Sound, took nearly all of the lives lost by drowning at these communities. Destructive local waves that devastated shores of Anderson Bay and adjacent parts of western Port Valdez probably were generated primarily by massive submarine slides of glacial and fluvioglacial deposits ; the origin of the waves that caused damage at most of the other communities and at extensive uninhabited segments of shoreline is not known. At these places the most probable generative mechanisms are: unidentified submarine slides of unconsolidated deposits, and (or) the horizontal tectonic displacements, of 20 to

  8. Resident, State of Alaska

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees State of Alaska Search Home Quick Links Departments Commissioners Employee Whitepages State Government Jobs Federal Jobs Starting a Small Business Living Get a Driver License Get a Hunting

  9. Visitor, State of Alaska

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees State of Alaska Search Home Quick Links Departments Commissioners Employee Whitepages State Government Jobs Federal Jobs Starting a Small Business Living Get a Driver License Get a Hunting

  10. Broad-band seismic analysis and modeling of the 2015 Taan Fjord, Alaska landslide using Instaseis

    NASA Astrophysics Data System (ADS)

    Gualtieri, Lucia; Ekström, Göran

    2018-06-01

    We carry out a broad-band analysis of the seismic signals generated by a massive landslide that occurred near Icy Bay (Alaska) on 2015 October 17. The event generated seismic signals recorded globally. Using Instaseis, a recently developed tool for rapid computation of complete broad-band synthetic seismograms, we simulate the seismic wave propagation between the event and five seismic stations located around the landslide. By modeling the broad-band seismograms in the period band 5-200 s, we reconstruct by inversion a time-varying point force to characterize the landslide time history. We compute the broad-band spectrum of the landslide force history and find that it has a corner period of about 100 s, corresponding to the duration of sliding. In contrast with standard earthquakes, the landslide force spectrum below the corner frequency decays as ω, while the spectral amplitudes at higher frequencies is proportional to ω-2, similar to the rate of spectral decay seen in earthquakes. From the inverted force history and an estimate of the final run-out distance, we deduce the mass, the trajectory and characteristics of the landslide dynamics associated with the centre of mass, such as acceleration, velocity, displacement and friction. Inferring an effective run-out distance of ˜900 m from a satellite image, we estimate a landslide mass of ˜150 million metric tons.

  11. Deformation driven by subduction and microplate collision: Geodynamics of Cook Inlet basin, Alaska

    USGS Publications Warehouse

    Bruhn, R.L.; Haeussler, Peter J.

    2006-01-01

    Late Neogene and younger deformation in Cook Inlet basin is caused by dextral transpression in the plate margin of south-central Alaska. Collision and subduction of the Yakutat microplate at the northeastern end of the Aleutian subduction zone is driving the accretionary complex of the Chugach and Kenai Mountains toward the Alaska Range on the opposite side of the basin. This deformation creates belts of fault-cored anticlines that are prolific traps of hydrocarbons and are also potential sources for damaging earthquakes. The faults dip steeply, extend into the Mesozoic basement beneath the Tertiary basin fill, and form conjugate flower structures at some localities. Comparing the geometry of the natural faults and folds with analog models created in a sandbox deformation apparatus suggests that some of the faults accommodate significant dextral as well as reverse-slip motion. We develop a tectonic model in which dextral shearing and horizontal shortening of the basin is driven by microplate collision with an additional component of thrust-type strain caused by plate subduction. This model predicts temporally fluctuating stress fields that are coupled to the recurrence intervals of large-magnitude subduction zone earthquakes. The maximum principal compressive stress is oriented east-southeast to east-northeast with nearly vertical least compressive stress when the basin's lithosphere is mostly decoupled from the underlying subduction megathrust. This stress tensor is compatible with principal stresses inferred from focal mechanisms of earthquakes that occur within the crust beneath Cook Inlet basin. Locking of the megathrust between great magnitude earthquakes may cause the maximum principal compressive stress to rotate toward the northwest. Moderate dipping faults that strike north to northeast may be optimally oriented for rupture in the ambient stress field, but steeply dipping faults within the cores of some anticlines are unfavorably oriented with respect to

  12. Evidence and implications of recent and projected climate change in Alaska's forest ecosystems

    USGS Publications Warehouse

    Wolken, Jane M.; Hollingsworth, Teresa N.; Rupp, T. Scott; Chapin, Stuart III; Trainor, Sarah F.; Barrett, Tara M.; Sullivan, Patrick F.; McGuire, A. David; Euskirchen, Eugénie S.; Hennon, Paul E.; Beever, Erik A.; Conn, Jeff S.; Crone, Lisa K.; D'Amore, David V.; Fresco, Nancy; Hanley, Thomas A.; Kielland, Knut; Kruse, James J.; Patterson, Trista; Schuur, Edward A.G.; Verbyla, David L.; Yarie, John

    2011-01-01

    The structure and function of Alaska's forests have changed significantly in response to a changing climate, including alterations in species composition and climate feedbacks (e.g., carbon, radiation budgets) that have important regional societal consequences and human feedbacks to forest ecosystems. In this paper we present the first comprehensive synthesis of climate-change impacts on all forested ecosystems of Alaska, highlighting changes in the most critical biophysical factors of each region. We developed a conceptual framework describing climate drivers, biophysical factors and types of change to illustrate how the biophysical and social subsystems of Alaskan forests interact and respond directly and indirectly to a changing climate. We then identify the regional and global implications to the climate system and associated socio-economic impacts, as presented in the current literature. Projections of temperature and precipitation suggest wildfire will continue to be the dominant biophysical factor in the Interior-boreal forest, leading to shifts from conifer- to deciduous-dominated forests. Based on existing research, projected increases in temperature in the Southcentral- and Kenai-boreal forests will likely increase the frequency and severity of insect outbreaks and associated wildfires, and increase the probability of establishment by invasive plant species. In the Coastal-temperate forest region snow and ice is regarded as the dominant biophysical factor. With continued warming, hydrologic changes related to more rapidly melting glaciers and rising elevation of the winter snowline will alter discharge in many rivers, which will have important consequences for terrestrial and marine ecosystem productivity. These climate-related changes will affect plant species distribution and wildlife habitat, which have regional societal consequences, and trace-gas emissions and radiation budgets, which are globally important. Our conceptual framework facilitates

  13. Quantifying ocean and ice sheet contributions to nutrient fluxes in Sermilik Fjord, Southeast Greenland

    NASA Astrophysics Data System (ADS)

    Cape, M. R.; Straneo, F.; Beaird, N.; Bundy, R.; Charette, M. A.

    2016-12-01

    Meltwater discharged at the margins of the Greenland Ice Sheet (GrIS) represents a potential source of nutrients to biological communities downstream. In Greenland's glacial fjords, this discharge occurs at depth below and along the face of deeply grounded marine-terminating glaciers. This process drives vigorous circulation and mixing between melt and ambient waters at the ice-ocean margins, giving rise to a new glacially modified water mass (GMW) which constitutes the primary vehicle for transport of meltwater in the marine environment. While previous field studies have noted nutrient enrichment in GMW with respect to unmodified waters along the shelf, the source of this enrichment, whether due to entrainment of deep ambient waters or input by meltwater, remains poorly understood. This knowledge is however critical in order to evaluate the current and future contributions of the GrIS to marine biogeochemical cycling. Here we shed light on the distribution, composition, and properties of GMW along the GrIS margin by analyzing integrated physical and chemical measurements collected in August 2015 in Sermilik Fjord, a major glacial freshwater export pathway. Our results document up to a doubling of nutrient concentrations (nitrate, silicate, phosphate, and iron) in GMW, which is distributed in the top 300 m of the water column throughout the fjord. Partitioning of ocean and ice sheet contributions to GMW nutrient load demonstrates that upwelled waters are the primary source of macro-nutrients to GMW. We expand on these results to discuss the magnitude of fluxes in context of previous observations along the GrIS margins, export pathways of GMW to the shelf, and knowledge gaps needed to be addressed to better constrain ice sheet contributions to marine ecosystem processes.

  14. Alaska Seismic Hazards Safety Commission

    Science.gov Websites

    State Employees ASHSC State of Alaska search Alaska Seismic Hazards Safety Commission View of Anchorage and Commissions Alaska Seismic Hazards Safety Commission (ASHSC) main contant Alaska Seismic Hazards Safety Commission logo Alaska Seismic Hazards Safety Commission (ASHSC) - Mission The Alaska Seismic

  15. Large bedrock slope failures in a British Columbia, Canada fjord: first documented submarine sackungen

    NASA Astrophysics Data System (ADS)

    Conway, Kim W.; Vaughn Barrie, J.

    2018-01-01

    Very large (>60×106 m3) sackungen or deep-seated gravitational slope deformations occur below sea level along a steep fjord wall in central Douglas Channel, British Columbia. The massive bedrock blocks were mobile between 13 and 11.5 thousand radiocarbon years BP (15,800 and 13,400 BP) immediately following deglaciation. Deformation of fjord sediments is apparent in sedimentary units overlying and adjacent to the blocks. Faults bound the edges of each block, cutting the glacial section but not the Holocene sediments. Retrogressive slides, small inset landslides as well as incipient and older slides are found on and around the large failure blocks. Lineations, fractures and faults parallel the coastline of Douglas Channel along the shoreline of the study area. Topographic data onshore indicate that faults and joints demarcate discrete rhomboid-shaped blocks which controlled the form, size and location of the sackungen. The described submarine sackungen share characteristic geomorphic features with many montane occurrences, such as uphill-facing scarps, foliated bedrock composition, largely vertical dislocation and a deglacial timing of development.

  16. Large bedrock slope failures in a British Columbia, Canada fjord: first documented submarine sackungen

    NASA Astrophysics Data System (ADS)

    Conway, Kim W.; Vaughn Barrie, J.

    2018-06-01

    Very large (>60×106 m3) sackungen or deep-seated gravitational slope deformations occur below sea level along a steep fjord wall in central Douglas Channel, British Columbia. The massive bedrock blocks were mobile between 13 and 11.5 thousand radiocarbon years BP (15,800 and 13,400 BP) immediately following deglaciation. Deformation of fjord sediments is apparent in sedimentary units overlying and adjacent to the blocks. Faults bound the edges of each block, cutting the glacial section but not the Holocene sediments. Retrogressive slides, small inset landslides as well as incipient and older slides are found on and around the large failure blocks. Lineations, fractures and faults parallel the coastline of Douglas Channel along the shoreline of the study area. Topographic data onshore indicate that faults and joints demarcate discrete rhomboid-shaped blocks which controlled the form, size and location of the sackungen. The described submarine sackungen share characteristic geomorphic features with many montane occurrences, such as uphill-facing scarps, foliated bedrock composition, largely vertical dislocation and a deglacial timing of development.

  17. What sediment plumes at tide water glaciers can tell us about fjord circulation and subglacial hydrology

    NASA Astrophysics Data System (ADS)

    Schild, K. M.; Hawley, R. L.

    2013-12-01

    variable fjord circulation (only allowing subglacial sediment plumes to appear at the surface under specific fjord and plume conditions), or a combination. A clearer understanding of sediment plumes are important for understanding the subglacial hydrological system of tidewater glaciers, as well as gauging the impact of rapid fresh water delivery to melange/sea ice extent in the fjord, terminus stability, submarine melting and fjord circulation.

  18. Assessing the Response of Alaska's Glaciers to Post-Little Ice Age Climate Change

    NASA Astrophysics Data System (ADS)

    Molnia, B. F.

    2001-12-01

    A comprehensive survey of the eleven mountain ranges and three island areas in Alaska that presently support glaciers was conducted to determine how glaciers in each area have responded to post-Little Ice Age (LIA) climate change. Today, glaciers cover 5 percent of Alaska, about 75,000 sq. km., range in elevation from 6,000 m to below sea level, and span latitudes from south of 55 degrees N to north of 69 degrees N. During the LIA, Alaskan glaciers expanded significantly, covering 10 percent more area than today. Many different types of data were used to construct baselines and determine glacier change. These include: published descriptions of glaciers (1794 - 2000), historic and modern maps (1794 - 2000), aerial photography (1926 - 2001), ground photography (1884 - 2001), airborne radar (1981 - 1991), satellite radar (1978 - 1998), space photography (1984 - 1994), multi-spectral satellite imagery (1972 - 2001), aerial reconnaissance and field observations by the author (1968 - 2001), and various types of proxy data. Data available varied for each region and glacier. Every mountain range and island group investigated is characterized by significant glacier retreat, thinning, and/or stagnation, especially at lower elevations. At some locations, glaciers have completely disappeared during the twentieth century. In other areas, retreat that started as early as the early eighteenth century, has continued into the twenty-first century. Ironically, in several areas, retreat is resulting in the number of glaciers is actually increasing, but the volume and area of ice is decreasing. The key survey findings are: ALEXANDER ARCHIPELAGO, KODIAK ISLAND, ALEUTIAN ISLANDS: every glacier examined showed evidence of thinning and retreat. Some have disappeared since last being mapped in the mid-twentieth century; COAST MOUNTAINS, ST. ELIAS MOUNTAINS, CHUGACH MOUNTAINS, KENAI MOUNTAINS, WRANGELL MOUNTAINS, ALASKA RANGE, AND THE ALEUTIAN RANGE: more than 95 percent of glaciers ending

  19. Geochemical evidence of past earthquakes in sediments of the Reloncaví fjord (Chilean Patagonia) during the last ˜ 1000 years

    NASA Astrophysics Data System (ADS)

    Rebolledo, Lorena; Lange, Carina; Muñoz, Práxedes; Salamanca, Marco

    2014-05-01

    The Chilean fjords are excellent archives of paleoearthquakes, tsunamis and landslides (St-Onge et al., 2012 in Sedimentary Geology 243-244: 89-107). Here we report on new sedimentological and geochemical evidence of past earthquakes in sediments of the Reloncavi fjord, Northern Patagonia (41° S, 72° W), during the last ~1000 years. We recovered four sediment cores from the Reloncaví fjord (RH-5B, RH-5C, RH-6B, RH7B, water depth range = 90-260 m; core length range = 45-75 cm). Age models were based on 210Pb, AMS-14C and the first appearance of the diatom Rhizosolenia setigera cf. pungens in the fossil record as statigraphic marker. The cores span the last ~122 to 800 years of sedimentation with sedimentation rates ranging between 0.1 and 0.24 cm yr-1. The cores revealed evidence of turbidites associated with the historical earthquakes of 1960, 1837, 1737 and 1575 AD, and an earlier period for which there is no historical information, 1200-1400 AD. The turbidites exhibit a grading-up pattern with sand layers, and are characterized by a decrease in organic carbon and biogenic opal, an increase in the C/N molar ratio, negative values of δ13Corg(average -27),and an increase in the relative abundance of Paralia sulcata, a diatom associated with sandy environments, being the turbite layers mainly freshwater in origen. We suggest that these turbidite layers were triggered by past earthquakes that produced movement of land from the cliff areas that surround the Reloncaví fjord. Funding: Project FONDECYT # 11110103 and COPAS Sur-Austral project PFB-31.

  20. A winter dinoflagellate bloom drives high rates of primary production in a Patagonian fjord ecosystem

    NASA Astrophysics Data System (ADS)

    Montero, P.; Pérez-Santos, I.; Daneri, G.; Gutiérrez, M. H.; Igor, G.; Seguel, R.; Purdie, D.; Crawford, D. W.

    2017-12-01

    A dense winter bloom of the dinoflagellate Heterocapsa triquetra was observed at a fixed station (44°35.3‧S; 72°43.6‧W) in the Puyuhuapi Fjord in Chilean Patagonia during July 2015. H. triquetra dominated the phytoplankton community in the surface waters between 2 and 15 m (13-58 × 109 cell m-2), with abundances some 3 to 15 times higher than the total abundance of the diatom assemblage, which was dominated by Skeletonema spp. The high abundance of dinoflagellates was reflected in high rates of gross primary production (GPP; 0.6-1.6 g C m-2 d-1) and chlorophyll-a concentration (Chl-a; 70-199.2 mg m-2) that are comparable to levels reported in spring diatom blooms in similar Patagonian fjords. We identify the main forcing factors behind a pulse of organic matter production during the non-productive winter season, and test the hypothesis that low irradiance levels are a key factor limiting phytoplankton blooms and subsequent productivity during winter. Principal Component Analysis (PCA) indicated that GPP rates were significantly correlated (r = -0.8, p < 0.05) with a decrease in salinity/temperature and the presence of the Heterocapsa bloom. The bloom occurred under low surface irradiance levels characteristic of austral winter and was accompanied by strong northern winds, associated with the passage of a low-pressure system, and a water column dominated by double diffusive layering. To our knowledge, this is the first report of a dense dinoflagellate bloom during deep austral winter in a Patagonian fjord, and our data challenge the paradigm of light limitation as a factor controlling phytoplankton blooms in this region in winter.

  1. Vertical and horizontal distribution of Desmophyllum dianthus in Comau Fjord, Chile: a cold-water coral thriving at low pH

    PubMed Central

    Richter, Claudio

    2013-01-01

    Cold-water corals provide an important habitat for a rich fauna along the continental margins and slopes. Although these azooxanthellate corals are considered particularly sensitive to ocean acidification, their responses to natural variations in pH and aragonite saturation are largely unknown due to the difficulty of studying their ecology in deep waters. Previous SCUBA investigations have shown an exceptionally shallow population of the cold-water coral Desmophyllum dianthus in near-surface waters of Comau Fjord, a stratified 480 m deep basin in northern Chilean Patagonia with suboxic deep waters. Here, we use a remotely operated vehicle to quantitatively investigate the distribution of D. dianthus and its physico-chemical drivers in so far uncharted naturally acidified waters. Remarkably, D. dianthus was ubiquitous throughout the fjord, but particularly abundant between 20 and 280 m depth in a pH range of 8.4 to 7.4. The persistence of individuals in aragonite-undersaturated waters suggests that present-day D. dianthus in Comau Fjord may show pre-acclimation or pre-adaptation to conditions of ocean acidification predicted to reach over 70% of the known deep-sea coral locations by the end of the century. PMID:24255810

  2. Vertical and horizontal distribution of Desmophyllum dianthus in Comau Fjord, Chile: a cold-water coral thriving at low pH.

    PubMed

    Fillinger, Laura; Richter, Claudio

    2013-01-01

    Cold-water corals provide an important habitat for a rich fauna along the continental margins and slopes. Although these azooxanthellate corals are considered particularly sensitive to ocean acidification, their responses to natural variations in pH and aragonite saturation are largely unknown due to the difficulty of studying their ecology in deep waters. Previous SCUBA investigations have shown an exceptionally shallow population of the cold-water coral Desmophyllum dianthus in near-surface waters of Comau Fjord, a stratified 480 m deep basin in northern Chilean Patagonia with suboxic deep waters. Here, we use a remotely operated vehicle to quantitatively investigate the distribution of D. dianthus and its physico-chemical drivers in so far uncharted naturally acidified waters. Remarkably, D. dianthus was ubiquitous throughout the fjord, but particularly abundant between 20 and 280 m depth in a pH range of 8.4 to 7.4. The persistence of individuals in aragonite-undersaturated waters suggests that present-day D. dianthus in Comau Fjord may show pre-acclimation or pre-adaptation to conditions of ocean acidification predicted to reach over 70% of the known deep-sea coral locations by the end of the century.

  3. Alaska exceptionality hypothesis: Is Alaska wilderness really different?

    Treesearch

    Gregory Brown

    2002-01-01

    The common idiom of Alaska as “The Last Frontier” suggests that the relative remoteness and unsettled character of Alaska create a unique Alaskan identity, one that is both a “frontier” and the “last” of its kind. The frontier idiom portrays the place and people of Alaska as exceptional or different from the places and people who reside in the Lower Forty- Eight States...

  4. Land-ocean gradient in haline stratification and its effects on plankton dynamics and trophic carbon fluxes in Chilean Patagonian fjords (47-50°S)

    NASA Astrophysics Data System (ADS)

    González, H. E.; Castro, L. R.; Daneri, G.; Iriarte, J. L.; Silva, N.; Tapia, F.; Teca, E.; Vargas, C. A.

    2013-12-01

    Patagonian fjord systems, and in particular the fjords and channels associated with the Baker/Pascua Rivers, are currently under conspicuous natural and anthropogenic perturbations. These systems display very high variability, where limnetic and oceanic features overlap generating strong vertical and horizontal physicochemical gradients. The CIMAR 14-Fiordos cruise was conducted in the Chilean fjords located between 47° and 50°S during the spring (October-November) of 2008. The main objectives were to study vertical and horizontal gradients in physical, chemical and biological characteristics of the water column, and to assess plankton dynamics and trophic carbon fluxes in the fjords and channels of central-south Patagonia. The water column was strongly stratified, with a pycnocline at ca. 20 m depth separating a surface layer of silicic acid-rich freshwater discharged by rivers, from the underlying nitrate- and orthophosphate-rich Subantarctic waters. The outflows from the Baker and Pascua Rivers, which range annually between 500 and 1500 m3 s-1, generate the strong land-ocean gradient in salinity (1-32 psu) and inorganic nutrient concentrations (2-8 and 2-24 μM in nitrate and silicic-acid, respectively) we observed along the Baker Fjord. The POC:chl-a ratio fluctuated from 1087 near the fjord’s head to 175 at its oceanic end in the Penas Gulf. This change was mainly due to an increase in diatom dominance and a concurrent decrease in allochthonous POC towards the ocean. Depth-integrated net primary production (NPP) and bacterial secondary production (BSP) fluctuated between 49 and 1215 and 36 and 150 mg C m-2 d-1, respectively, with higher rates in oceanic waters. At a time series station located close to the Baker River mouth, the average NPP was lower (average 360 mg C m-2 d-1) than at more oceanic stations (average 1063 mg C m-2 d-1), and numerically dominated (45%) by the picoplankton (<2 μm) and nanoplankton (2-20 μm) size fractions. The high average

  5. Alaska telemedicine: growth through collaboration.

    PubMed

    Patricoski, Chris

    2004-12-01

    The last thirty years have brought the introduction and expansion of telecommunications to rural and remote Alaska. The intellectual and financial investment of earlier projects, the more recent AFHCAN Project and the Universal Service Administrative Company Rural Health Care Division (RHCD) has sparked a new era in telemedicine and telecommunication across Alaska. This spark has been flamed by the dedication and collaboration of leaders at he highest levels of organizations such as: AFHCAN member organizations, AFHCAN Office, Alaska Clinical Engineering Services, Alaska Federal Health Care Partnership, Alaska Federal Health Care Partnership Office, Alaska Native health Board, Alaska Native Tribal health Consortium, Alaska Telehealth Advisory Council, AT&T Alascom, GCI Inc., Health care providers throughout the state of Alaska, Indian Health Service, U.S. Department of Health and Human Services, Office of U.S. Senator Ted Steens, State of Alaska, U.S. Department of Homeland Security--United States Coast Guard, United States Department of Agriculture, United States Department of Defense--Air Force and Army, United States Department of Veterans Affairs, University of Alaska, and University of Alaska Anchorage. Alaska now has one of the largest telemedicine programs in the world. As Alaska moves system now in place become self-sustaining, and 2) collaborating with all stakeholders in promoting the growth of an integrated, state-wide telemedicine network.

  6. Effects of the Alaska earthquake of March 27, 1964, on shore processes and beach morphology: Chapter J in The Alaska earthquake, March 27, 1964: regional effects

    USGS Publications Warehouse

    Stanley, Kirk W.

    1968-01-01

    Some 10,000 miles of shoreline in south-central Alaska was affected by the subsidence or uplift associated with the great Alaska earthquake of March 27, 1964. The changes in shoreline processes and beach morphology that were suddenly initiated by the earthquake were similar to those ordinarily caused by gradual changes in sea level operating over hundreds of years, while other more readily visible changes were similar to some of the effects of great but short-lived storms. Phenomena became available for observation within a few hours which would otherwise not have been available for many years. In the subsided areas—including the shorelines of the Kenai Peninsula, Kodiak Island, and Cook Inlet—beaches tended to flatten in gradient and to recede shoreward. Minor beach features were altered or destroyed on submergence but began to reappear and to stabilize in their normal shapes within a few months after the earthquake. Frontal beach ridges migrated shoreward and grew higher and wider than they were before. Along narrow beaches backed by bluffs, the relatively higher sea level led to vigorous erosion of the bluff toes. Stream mouths were drowned and some were altered by seismic sea waves, but they adjusted within a few months to the new conditions. In the uplifted areas, generally around Prince William Sound, virtually all beaches were stranded out of reach of the sea. New beaches are gradually developing to fit new sea levels, but the processes are slow, in part because the material on the lower parts of the old beaches is predominantly fine grained. Streams were lengthened in the emergent areas, and down cutting and bank erosion have increased. Except at Homer and a few small villages, where groins, bulkheads, and cobble-filled baskets were installed, there has been little attempt to protect the postearthquake shorelines. The few structures that were built have been only partially successful because there was too little time to study the habits of the new shore

  7. Pulpability of beetle-killed spruce. Forest Service research paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, G.M.; Bormett, D.W.; Sutherland, N.R.

    1996-08-01

    Infestation of the Dendroctonus rufipennis beetle has resulted in large stands of dead and dying timber on the Kenai Peninsula in Alaska. Tests were conducted to evaluate the value of beetle-killed spruce as pulpwood. The results showed that live and dead spruce wood can be pulped effectively. The two least deteriorated classes and the most deteriorated class of logs had similar characteristics when pulped; the remaining class had somewhat poorer pulpability.

  8. 78 FR 53137 - Flint Hills Resources Alaska, LLC, BP Pipelines (Alaska) Inc., ConocoPhillips Transportation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. OR13-31-000] Flint Hills Resources Alaska, LLC, BP Pipelines (Alaska) Inc., ConocoPhillips Transportation Alaska, Inc., ExxonMobil... (Alaska) Inc., ConocoPhillips Transportation Alaska, Inc., and ExxonMobil Pipeline Company (collectively...

  9. Alaska Energy Inventory Project: Consolidating Alaska's Energy Resources

    NASA Astrophysics Data System (ADS)

    Papp, K.; Clough, J.; Swenson, R.; Crimp, P.; Hanson, D.; Parker, P.

    2007-12-01

    Alaska has considerable energy resources distributed throughout the state including conventional oil, gas, and coal, and unconventional coalbed and shalebed methane, gas hydrates, geothermal, wind, hydro, and biomass. While much of the known large oil and gas resources are concentrated on the North Slope and in the Cook Inlet regions, the other potential sources of energy are dispersed across a varied landscape from frozen tundra to coastal settings. Despite the presence of these potential energy sources, rural Alaska is mostly dependent upon diesel fuel for both electrical power generation and space heating needs. At considerable cost, large quantities of diesel fuel are transported to more than 150 roadless communities by barge or airplane and stored in large bulk fuel tank farms for winter months when electricity and heat are at peak demands. Recent increases in the price of oil have severely impacted the price of energy throughout Alaska, and especially hard hit are rural communities and remote mines that are off the road system and isolated from integrated electrical power grids. Even though the state has significant conventional gas resources in restricted areas, few communities are located near enough to these resources to directly use natural gas to meet their energy needs. To address this problem, the Alaska Energy Inventory project will (1) inventory and compile all available Alaska energy resource data suitable for electrical power generation and space heating needs including natural gas, coal, coalbed and shalebed methane, gas hydrates, geothermal, wind, hydro, and biomass and (2) identify locations or regions where the most economic energy resource or combination of energy resources can be developed to meet local needs. This data will be accessible through a user-friendly web-based interactive map, based on the Alaska Department of Natural Resources, Land Records Information Section's (LRIS) Alaska Mapper, Google Earth, and Terrago Technologies' Geo

  10. Seasonal and pod-specific differences in core use areas by resident killer whales in the Northern Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Olsen, Daniel W.; Matkin, Craig O.; Andrews, Russel D.; Atkinson, Shannon

    2018-01-01

    The resident killer whale is a genetically and behaviorally distinct ecotype of killer whale (Orcinus orca) found in the North Pacific that feeds primarily on Pacific salmon (Oncorhynchus spp .). Details regarding core use areas have been inferred by boat surveys, but are subject to effort bias and weather limitations. To investigate core use areas, 37 satellite tags were deployed from 2006 to 2014 on resident killer whales representing 12 pods in the Northern Gulf of Alaska, and transmissions were received during the months of June to January. Core use areas were identified through utilization distributions using a biased Brownian Bridge movement model. Distinct differences in these core use areas were revealed, and were highly specific to season and pod. In June, July, and August, the waters of Hinchinbrook Entrance and west of Kayak Island were primary areas used, mainly by 3 separate pods. These same pods shifted their focus to Montague Strait in August, September, and October. Port Gravina was a focal area for 2 other pods in June, July, and August, but this was not the case in later months. These pods were responsible for seven of eight documented trips into the deeper fjords of Prince William Sound, yet these fjords were not a focus for most groups of killer whales. The seasonal differences in core use may be a response to the seasonal returns of salmon, though details on specific migration routes and timing for the salmon are limited. We found strong seasonal and pod-specific shifts in patterns between core use areas. Future research should investigate pod differences in diet composition and relationships between core area use and bathymetry.

  11. Digital Data for the reconnaissance geologic map for Prince William Sound and the Kenai Peninsula, Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Hults, Chad P.; Labay, Keith A.; Shew, Nora B.

    2007-01-01

    The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. The files named __geol contain geologic polygons and line (contact) attributes; files named __fold contain fold axes; files named __lin contain lineaments; and files named __dike contain dikes as lines. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make

  12. Geologic framework of the Alaska Peninsula, southwest Alaska, and the Alaska Peninsula terrane

    USGS Publications Warehouse

    Wilson, Frederic H.; Detterman, Robert L.; DuBois, Gregory D.

    2015-01-01

    The boundaries separating the Alaska Peninsula terrane from other terranes are commonly indistinct or poorly defined. A few boundaries have been defined at major faults, although the extensions of these faults are speculative through some areas. The west side of the Alaska Peninsula terrane is overlapped by Tertiary sedimentary and volcanic rocks and Quaternary deposits.

  13. Population status of Kittlitz's Murrelet Brachyramphus brevirostris along the southern coast of the Alaska Peninsula

    USGS Publications Warehouse

    van Pelt, Thomas I.; Piatt, John F.

    2005-01-01

    The Kittlitz's murrelet (Brachyramphus brevirostris) is a rare seabird that nests in alpine terrain and generally forages near tidewater glaciers during the breeding season. An estimated 95% of the global population breeds in Alaska, with some unknown proportion breeding in the Russian Far East. A global population estimate using bestavailable data in the early 1990s was 20,000 individuals. However, recent survey data from two core areas (Prince William Sound and Glacier Bay) suggest that populations have declined by 75-90% during the past 10-20 years. In response to these declines, a coalition of environmental groups petitioned the USFWS in May 2001 to list the Kittlitz’s murrelet under the Endangered Species Act (ESA), and in 2004 Kittlitz’s Murrelet was declared a candidate species under the ESA. In 2005, BirdLife International classified the species as “critically endangered”. In 2002, we began a three-year project to examine population status and trend of Kittlitz’s Murrelets in areas where distribution and abundance were poorly known. Results from the 2002 field season, focused on the south coast of the Kenai Peninsula, suggested that the local population of Kittlitz’s Murrelets has declined by ca. 74% since 1986, with a current population of ca. 500 individuals. Here we present results from the 2003 field season when we surveyed Kittlitz’s Murrelets along the southern coast of the Alaska Peninsula. This is a large region that encompasses a substantial portion of the known range of the Kittlitz’s Murrelet, yet has never been surveyed rigorously for murrelets or any other non-colonial marine birds. During four weeks of surveys, we established a set of nearshore and offshore transects (over 825 linear kilometers in total) with a stratified sample design, combining random and systematically selected transects. From a total of 123 individuals seen on transects, we estimate a total population of 2265 (95% CI 1165-4405) Kittlitz’s Murrelets along

  14. Impact of freshwater runoff on physical oceanography and plankton distribution in a Western Norwegian fjord: an experiment with a controlled discharge from a hydroelectric power plant

    NASA Astrophysics Data System (ADS)

    Kaartvedt, Stein; Svendsen, Harald

    1990-10-01

    Investigations were carried out in a 20-km long fjord branch prior to, during, and partly after a 51-h controlled discharge from a hydroelectric power plant. The freshwater runoff (230 m 3 s -1) generated an estuarine circulation which was most prominent along the mid-axis of the fjord. High velocities were recorded both in the outgoing surface current, with a maximum of 1 m s -1 (10 km downstream of the power plant), and in a compensatory current (registration at 10-m depth) with a maximum of 0·6 m s -1 (3 km downstream). Velocities were low at 5-m depth. During discharge, salinity increased in the surface layer and decreased at a depth of several metres because of more extensive mixing. Phytoplankton was partly flushed out in the upper layers throughout the fjord branch, but abundance increased in deeper layers in an outer station, and the horizontal patchiness increased. The vertical centre of zooplankton biomass descended significantly during running of the plant. Biomass maxima in the ingoing compensation current indicate net zooplankton import during running of the power plant, but no change in total zooplankton biomass in the fjord branch was found during this experiment.

  15. Benthic foraminifera contribution to fjord modern carbon pools: A seasonal study in Adventfjorden, Spitsbergen.

    PubMed

    Pawłowska, J; Łącka, M; Kucharska, M; Szymańska, N; Koziorowska, K; Kuliński, K; Zajączkowski, M

    2017-09-01

    The aim of this study was to determine the amount of organic and inorganic carbon in foraminifera specimens and to provide quantitative data on the contribution of foraminifera to the sedimentary carbon pool in Adventfjorden. The investigation was based on three calcareous species that occur commonly in Svalbard fjords: Cassidulina reniforme, Elphidium excavatum and Nonionellina labradorica. Our results show that the species investigated did not contribute substantially to the organic carbon pool in Adventfjorden, because they represented only 0.37% of the organic carbon in the sediment. However, foraminiferal biomass could have been underestimated as it did not include arenaceous or monothalamous taxa. Foraminiferal carbonate constituted up to 38% of the inorganic carbon in the sediment, which supports the assumption that in fjords where non-calcifying organisms dominate the benthic fauna foraminifera are among the major producers of calcium carbonate and that they play crucial roles in the carbon burial process. The results presented in this study contribute to estimations of changes in foraminiferal carbon levels in contemporary environments and could be an important reference for palaeoceanographic studies. © 2017 John Wiley & Sons Ltd.

  16. Shrubline but not treeline advance matches climate velocity in montane ecosystems of south-central Alaska.

    PubMed

    Dial, Roman J; Smeltz, T Scott; Sullivan, Patrick F; Rinas, Christina L; Timm, Katriina; Geck, Jason E; Tobin, S Carl; Golden, Trevor S; Berg, Edward C

    2016-05-01

    Tall shrubs and trees are advancing into many tundra and wetland ecosystems but at a rate that often falls short of that predicted due to climate change. For forest, tall shrub, and tundra ecosystems in two pristine mountain ranges of Alaska, we apply a Bayesian, error-propagated calculation of expected elevational rise (climate velocity), observed rise (biotic velocity), and their difference (biotic inertia). We show a sensitive dependence of climate velocity on lapse rate and derive biotic velocity as a rigid elevational shift. Ecosystem presence identified from recent and historic orthophotos ~50 years apart was regressed on elevation. Biotic velocity was estimated as the difference between critical point elevations of recent and historic logistic fits divided by time between imagery. For both mountain ranges, the 95% highest posterior density of climate velocity enclosed the posterior distributions of all biotic velocities. In the Kenai Mountains, mean tall shrub and climate velocities were both 2.8 m y(-1). In the better sampled Chugach Mountains, mean tundra retreat was 1.2 m y(-1) and climate velocity 1.3 m y(-1). In each mountain range, the posterior mode of tall woody vegetation velocity (the complement of tundra) matched climate velocity better than either forest or tall shrub alone, suggesting competitive compensation can be important. Forest velocity was consistently low at 0.1-1.1 m y(-1), indicating treeline is advancing slowly. We hypothesize that the high biotic inertia of forest ecosystems in south-central Alaska may be due to competition with tall shrubs and/or more complex climate controls on the elevational limits of trees than tall shrubs. Among tall shrubs, those that disperse farthest had lowest inertia. Finally, the rapid upward advance of woody vegetation may be contributing to regional declines in Dall's sheep (Ovis dalli), a poorly dispersing alpine specialist herbivore with substantial biotic inertia due to dispersal reluctance. © 2015

  17. Alaska GeoFORCE, A New Geologic Adventure in Alaska

    NASA Astrophysics Data System (ADS)

    Wartes, D.

    2011-12-01

    RAHI, the Rural Alaska Honors Institute is a statewide, six-week, summer college-preparatory bridge program at the University of Alaska Fairbanks for Alaska Native and rural high school juniors and seniors. A program of rigorous academic activity combines with social, cultural, and recreational activities. Students are purposely stretched beyond their comfort levels academically and socially to prepare for the big step from home or village to a large culturally western urban campus. This summer RAHI is launching a new program, GeoFORCE Alaska. This outreach initiative is designed to increase the number and diversity of students pursuing STEM degree programs and entering the future high-tech workforce. It uses Earth science as the hook because most kids get excited about dinosaurs, volcanoes and earthquakes, but it includes physics, chemistry, math, biology and other sciences. Students will be recruited, initially from the Arctic North Slope schools, in the 8th grade to begin the annual program of approximately 8 days, the summer before their 9th grade year and then remain in the program for all four years of high school. They must maintain a B or better grade average and participate in all GeoFORCE events. The carrot on the end of the stick is an exciting field event each summer. Over the four-year period, events will include trips to Fairbanks, Arizona, Oregon and the Appalachians. All trips are focused on Earth science and include a 100+ page guidebook, with tests every night culminating with a final exam. GeoFORCE Alaska is being launched by UAF in partnership with the University of Texas at Austin, which has had tremendous success with GeoFORCE Texas. GeoFORCE Alaska will be managed by UAF's long-standing Rural Alaska Honors Insitute (RAHI) that has been successfully providing intense STEM educational opportunities for Alaskan high school students for almost 30 years. The Texas program, with adjustments for differences in culture and environment, will be

  18. Sediment profile imaging (SPI) and micro-electrode technologies in impact assessment studies: Example from two fjords in Southern Chile used for fish farming

    NASA Astrophysics Data System (ADS)

    Mulsow, S.; Krieger, Y.; Kennedy, R.

    2006-10-01

    Two state-of-the-art techniques were used to assess the impact of organic loading from fish farming in two fjords of Southern Chile, Pillan and Reñihue Fjords. A sediment profile imaging (SPI) camera was deployed and sediment microprofiles (oxygen, H 2S, redox and pH) were measured in undisturbed sediment cores collected using a HAPS corer. Four out of seven stations in Pillan Fjord were found to be severely disturbed: SPI images showed azoic conditions (no apparent Redox Potential Discontinuity layer, no evidence of aerobic life form, presence of an uneaten fish food layer, negative OSI scores). These findings were corroborated by very high oxygen consumption rates (700-1200 mmol m - 2 day - 1 ), H 2S concentrations increasing quickly within the sediment column and redox potential decreasing towards negative values within a few mm down core. Results for Reñihue Fjord were not so straightforward. SPI images indicated that most of the stations (R3 to R7) presented well-mixed conditions (high apparent RPD layers, presence of infauna, burrows, etc.), but oxygen profiles yielded consumption rates of 230 to 490 mmol m - 2 day - 1 and organic carbon mineralization of 2.16 to 4.53 g C m - 2 day - 1 . These latter values were close to the limit of aerobic degradation of organic matter although no visible changes were recorded within the sediment column. In view of our findings, the importance of integrating multidisciplinary methodologies in impact assessment studies was discussed.

  19. Subtidal circulation in a deep-silled fjord: Douglas Channel, British Columbia

    NASA Astrophysics Data System (ADS)

    Wan, Di; Hannah, Charles G.; Foreman, Michael G. G.; Dosso, Stan

    2017-05-01

    Douglas Channel, a deep fjord on the west coast of British Columbia, Canada, is the main waterway in the fjord system that connects the town of Kitimat to Queen Charlotte Sound and Hecate Strait. A 200 m depth sill divides Douglas Channel into an outer and an inner basin. This study examines the low-frequency (from seasonal to meteorological bands) circulation in Douglas Channel from data collected at three moorings deployed during 2013-2015. The deep flows are dominated by a yearly renewal that takes place from May/June to early September. A dense bottom layer with a thickness of 100 m that cascades through the system at the speed of 0.1-0.2 m s-1, which is consistent with gravity currents. Estuarine flow dominates the circulation above the sill depth, and the observed landward net volume flux suggests that it is necessary to include the entire complex channel network to fully understand the estuarine circulation in the system. The influence of the wind forcing on the subtidal circulation is not only at the surface, but also at middepth. The along-channel wind dominates the surface current velocity fluctuations and the sea level response to the wind produces a velocity signal at 100-120 m in the counter-wind direction. Overall, the circulation in the seasonal and the meteorological bands is a mix of estuarine flow, direct wind-driven flow, and the barotropic and baroclinic responses to changes to the surface pressure gradient caused by the wind stress.

  20. Coalbed methane, Cook Inlet, south-central Alaska: A potential giant gas resource

    USGS Publications Warehouse

    Montgomery, S.L.; Barker, C.E.

    2003-01-01

    Cook Inlet Basin of south-central Alaska is a forearc basin containing voluminous Tertiary coal deposits with sufficient methane content to suggest a major coalbed gas resource. Coals ranging in thickness from 2 to 50 ft (0.6 to 15 m) and in gas content from 50 to 250 scf/ton (1.6 to 7.8 cm2/g) occur in Miocene-Oligocene fluvial deposits of the Kenai Group. These coals have been identified as the probable source of more than 8 tcf gas that has been produced from conventional sandstone reservoirs in the basin. Cook Inlet coals can be divided into two main groups: (1) those of bituminous rank in the Tyonek Formation that contain mainly thermogenic methane and are confined to the northeastern part of the basin (Matanuska Valley) and to deep levels elsewhere; and (2) subbituminous coals at shallow depths (<5000 ft [1524 m]) in the Tyonek and overlying Beluga formations, which contain mainly biogenic methane and cover most of the central and southern basin. Based on core and corrected cuttings-desorption analyses, gas contents average 230 scf/ton (7.2 cm2/g) for bituminous coals and 80 scf/ton (2.5 cm2/g) for subbituminous coals. Isotherms constructed for samples of both coal ranks suggest that bituminous coals are saturated with respect to methane, whereas subbituminous coals at shallow depths along the eroded west-central basin margin are locally unsaturated. A preliminary estimate of 140 tcf gas in place is derived for the basin.

  1. Retaining Quality Teachers for Alaska.

    ERIC Educational Resources Information Center

    McDiarmid, G. Williamson; Larson, Eric; Hill, Alexandra

    This report examines the demand for teachers, teacher turnover, and teacher education in Alaska. Surveys were conducted with school district personnel directors, directors of Alaska teacher education programs, teachers who exited Alaska schools in 2001, and rural and urban instructional aides. Alaska is facing teacher shortages, but these are…

  2. Fisheries Education in Alaska. Conference Report. Alaska Sea Grant Report 82-4.

    ERIC Educational Resources Information Center

    Smoker, William W., Ed.

    This conference was an attempt to have the fishing industry join the state of Alaska in building fisheries education programs. Topics addressed in papers presented at the conference include: (1) fisheries as a part of life in Alaska, addressing participation of Alaska natives in commercial fisheries and national efforts; (2) the international…

  3. Holocene Mass Transport Deposits in Western Norwegian fjords and lakes revealing prehistoric earthquake history of Scandinavia

    NASA Astrophysics Data System (ADS)

    Bellwald, B.; Hjelstuen, B. O.; Sejrup, H. P.; Kuvås, J.; Stokowy, T.

    2016-12-01

    The sensitivity of fjord sediments to seismic shaking makes fjord systems appropriate study sites when extending regional earthquake catalogs back in time and when estimating recurrence rates of prehistoric earthquakes in intraplate settings. In this study we compiled evidence of 140 postglacial mass movement events and their associated mass transport deposits (MTDs) from previously analyzed and new sediment cores and high-resolution seismic profiles from 22 fjord systems and six lakes in Western Norway. Evaluation of trigger mechanisms make us infer that most of these mass movement events were initiated by regional earthquakes, and that both climate-related processes and tsunamis most likely can be excluded as trigger mechanism for most of the events. A total of 33 individual earthquakes has been identified, which most likely outbalance the historically recorded events in magnitude, thus indicating magnitudes >6. Frequency plots of MTDs suggest high seismic activity in the early Holocene (11000-9700 cal. yrs BP), followed by seismic quiescence in the mid-Holocene before a seismic reactivation took place at 4000 cal. yrs BP. Coevally-triggered MTDs at 8100 cal. yrs BP are identified in all the archives, and are correlating with the age of the offshore Storegga slide. We estimate earthquake recurrence rates of 1/80 years directly after the last deglaciation of Western Norway (12800-11600 ca. yrs BP), 1/200 years for the early Holocene and 1/300 years for the last 4000 years. Our compilation suggests that the mid-Holocene is characterized by low seismic activity, suggesting recurrence rates of 1/1300 years. Comparisons of the Western Norwegian dataset with paleoseimologic studies of other previously glaciated intraplate settings indicate that both Scandinavia and the Alps show similar trends as Western Norway, whereas Eastern Canada is not correlating with the paleoseismologic trend of this study, which could be explained by different deglaciation histories.

  4. Sedimentary organic matter in two Spitsbergen fjords: Terrestrial and marine contributions based on carbon and nitrogen contents and stable isotopes composition

    NASA Astrophysics Data System (ADS)

    Koziorowska, Katarzyna; Kuliński, Karol; Pempkowiak, Janusz

    2016-02-01

    The aim of this study was to estimate the spatial variability of organic carbon (Corg) and total nitrogen (Ntot) concentrations, Corg/Ntot ratios, stable isotopes of carbon and nitrogen (δ13Corg, δ15Ntot) and the proportions of autochthonous and allochtonous organic matter within recently deposited sediments of two Spitsbergen fjords: the Hornsund and the Adventfjord, which are affected to a different degree by the West Spitsbergen Current. Corg concentrations ranged from 1.38% to 1.98% in the Hornsund and from 1.73% to 3.85% in the Adventfjord. In both fjords the highest Corg concentrations were measured at the innermost stations and they decreased towards the mouths of the fjords. This suggests fresh water runoff to be an important source of organic matter (OM) for surface sediments. The results showed that both fjords differ significantly in terms of sedimentary organic matter characteristics. The samples from the Hornsund, except those from the innermost station in the Brepollen, had relatively low Corg/Ntot ratios, all within a narrow range (from 9.7 to 11.3). On the other hand significantly higher Corg/Ntot ratios, varying within a broad range (from 14.6 to 33.0), were measured in the Adventfjord. The samples from the Hornsund were characterized by higher δ13Corg (from -24.90‰ to -23.87‰) and δ15Ntot (from 3.02‰ to 4.93‰) than those from the Adventfjord (-25.94‰ to -24.69‰ and from 0.71‰ to 4.00‰, respectively). This is attributed to a larger proportion of marine organic matter. Using the two end-member approach proportions of terrestrial organic matter were evaluated. Terrestrial OM contribution for the Adventfjord was in the range of 82-83%, while in case of the Hornsund the results were in the range of 69-75%, with the exception of the innermost part of the fjord, where terrestrial organic matter contribution ranged from 80 to 82%. The strong positive correlation between δ13Corg and δ15Ntot was revealed. This was taken as an indicator

  5. Alaska Mental Health Board

    Science.gov Websites

    State Employees Alaska Mental Health Board DHSS State of Alaska Home Divisions and Agencies Alaska Pioneer Homes Behavioral Health Office of Children's Services Office of the Commissioner Office of Substance Misuse and Addiction Prevention Finance & Management Services Health Care Services Juvenile

  6. Publications - STATEMAP Project | Alaska Division of Geological &

    Science.gov Websites

    ., 2008, Surficial-geologic map of the Salcha River-Pogo area, Big Delta Quadrangle, Alaska: Alaska , Engineering - geologic map, Alaska Highway corridor, Delta Junction to Dot Lake, Alaska: Alaska Division of geologic map of the Salcha River-Pogo area, Big Delta Quadrangle, Alaska: Alaska Division of Geological

  7. Fine-scale distribution of zooplankton is linked to phytoplankton species composition and abundance in a North Norwegian fjord system

    NASA Astrophysics Data System (ADS)

    Norrbin, F.; Priou, P. D.; Varela, A. P.

    2016-02-01

    We studied the influence of dense layers of phytoplankton and aggregates on shaping the vertical distribution of zooplankton in a North Norwegian fjord using a Video Plankton Recorder (VPR). This instrument provided fine-scale vertical distribution (cm-m scale) of planktonic organisms as well as aggregates of marine snow in relation to environmental conditions. At the height - later stage of the spring phytoplankton bloom in May, the outer part of the fjord was dominated by Phaeocystis pouchetii, while diatoms (Chaetoceros spp.) were dominating in the innermost basin. Small copepods species like Pseudocalanus spp., Microsetella norvegica, and Oithona spp. prevailed over larger copepod species in the inner part of the fjord whereas the outer part was dominated by large copepods like Calanus finmarchicus. While the zooplankton where spread out over the water column during the early stage of the bloom, in May they were linked to the phytoplankton vertical distribution and in the winter situation they were found in deeper waters. Herbivorous zooplankton species were affected by phytoplankton species composition; C. finmarchicus and Pseudocalanus spp. avoided the dense layer of P. pouchetii while herbivorous zooplankton matched the distribution of the diatom-dominated bloom. Small, omnivorous copepod species like Microsetella sp., Oithona sp. and Pseudocalanus sp. were often associated with dense layers of snow aggregates. This distribution may provide a shelter from predators as well as a food source. Natural or anthropogenic-induced changes in phytoplankton composition and aggregate distribution may thus influence food-web interactions.

  8. Geomorphic and shallow-acoustic investigation of an Antarctic Peninsula fjord system using high-resolution ROV and shipboard geophysical observations: Ice dynamics and behaviour since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    García, Marga; Dowdeswell, J. A.; Noormets, R.; Hogan, K. A.; Evans, J.; Ó Cofaigh, C.; Larter, R. D.

    2016-12-01

    Detailed bathymetric and sub-bottom acoustic observations in Bourgeois Fjord (Marguerite Bay, Antarctic Peninsula) provide evidence on sedimentary processes and glacier dynamics during the last glacial cycle. Submarine landforms observed in the 50 km-long fjord, from the margins of modern tidewater glaciers to the now ice-distal Marguerite Bay, are described and interpreted. The landforms are grouped into four morpho-sedimentary systems: (i) glacial advance and full-glacial; (ii) subglacial and ice-marginal meltwater; (iii) glacial retreat and neoglaciation; and (iv) Holocene mass-wasting. These morpho-sedimentary systems have been integrated with morphological studies of the Marguerite Bay continental shelf and analysed in terms of the specific sedimentary processes and/or stages of the glacial cycle. They demonstrate the action of an ice-sheet outlet glacier that produced drumlins and crag-and-tail features in the main and outer fjord. Meltwater processes eroded bedrock channels and ponds infilled by fine-grained sediments. Following the last deglaciation of the fjord at about 9000 yr BP, subsequent Holocene neoglacial activity involved minor readvances of a tidewater glacier terminus in Blind Bay. Recent stillstands and/or minor readvances are inferred from the presence of a major transverse moraine that indicates grounded ice stabilization, probably during the Little Ice Age, and a series of smaller landforms that reveal intermittent minor readvances. Mass-wasting processes also affected the walls of the fjord and produced scars and fan-shaped deposits during the Holocene. Glacier-terminus changes during the last six decades, derived from satellite images and aerial photographs, reveal variable behaviour of adjacent tidewater glaciers. The smaller glaciers show the most marked recent retreat, influenced by regional physiography and catchment-area size.

  9. Effects of increase glacier discharge on phytoplankton bloom dynamics and pelagic geochemistry in a high Arctic fjord

    NASA Astrophysics Data System (ADS)

    Calleja, Maria Ll.; Kerhervé, P.; Bourgeois, S.; Kędra, M.; Leynaert, A.; Devred, E.; Babin, M.; Morata, N.

    2017-12-01

    Arctic fjords experience extremely pronounced seasonal variability and spatial heterogeneity associated with changes in ice cover, glacial retreat and the intrusion of continental shelf's adjacent water masses. Global warming intensifies natural environmental variability on these important systems, yet the regional and global effects of these processes are still poorly understood. In the present study, we examine seasonal and spatial variability in Kongsfjorden, on the western coast of Spitsbergen, Svalbard. We report hydrological, biological, and biogeochemical data collected during spring, summer, and fall 2012. Our results show a strong phytoplankton bloom with the highest chlorophyll a (Chla) levels ever reported in this area, peaking 15.5 μg/L during late May and completely dominated by large diatoms at the inner fjord, that may sustain both pelagic and benthic production under weakly stratified conditions at the glacier front. A progressively stronger stratification of the water column during summer and fall was shaped by the intrusion of warm Atlantic water (T > 3 °C and Sal > 34.65) into the fjord at around 100 m depth, and by turbid freshwater plumes (T < 1 °C and Sal < 34.65) at the surface due to glacier meltwater input. Biopolymeric carbon fractions and isotopic signatures of the particulate organic material (POM) revealed very fresh and labile material produced during the spring bloom (13C enriched, with values up to -22.7‰ at the highest Chl a peak, and high in carbohydrates and proteins content - up to 167 and 148 μg/L, respectively-), and a clear and strong continental signature of the POM present during late summer and fall (13C depleted, with values averaging -26.5‰, and high in lipid content - up to 92 μg/L-) when freshwater melting is accentuated. Our data evidence the importance of combining both physical (i.e. water mass dominance) and geochemical (i.e. characteristics of material released by glacier runoff) data in order to

  10. Alaska's Economy: What's Ahead?

    ERIC Educational Resources Information Center

    Alaska Review of Social and Economic Conditions, 1987

    1987-01-01

    This review describes Alaska's economic boom of the early 1980s, the current recession, and economic projections for the 1990s. Alaska's economy is largely influenced by oil prices, since petroleum revenues make up 80% of the state government's unrestricted general fund revenues. Expansive state spending was responsible for most of Alaska's…

  11. Appellate Courts - Alaska Court System

    Science.gov Websites

    Court Cases Appellate Case Management System Oral Argument Supreme Court Calendar, Court of Appeals , which contains the Alaska cases excerpted from P.2d and P.3d. The Pacific Reporter or the Alaska the Alaska cases excerpted from P.2d and P.3d. The Pacific Reporter or the Alaska Reporter is

  12. Alaska looks HOT!

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belcher, J.

    Production in Alaska has been sluggish in recent years, with activity in the Prudhoe Bay region in the North Slope on a steady decline. Alaska North Slope (ANS) production topped out in 1988 at 2.037 MMbo/d, with 1.6 MMbo/d from Prudhoe Bay. This year operators expect to produce 788 Mbo/d from Prudhoe Bay, falling to 739 Mbo/d next year. ANS production as a whole should reach 1.3 MMbo/d this year, sliding to 1.29 MMbo/d in 1998. These declining numbers had industry officials and politicians talking about the early death of the Trans-Alaskan Pipeline System-the vital link between ANS crude andmore » markets. But enhanced drilling technology coupled with a vastly improved relationship between the state government and industry have made development in Alaska more economical and attractive. Alaska`s Democratic Gov. Tommy Knowles is fond of telling industry {open_quotes}we`re open for business.{close_quotes} New discoveries on the North Slope and in the Cook Inlet are bringing a renewed sense of optimism to the Alaska exploration and production industry. Attempts by Congress to lift a moratorium on exploration and production activity in the Arctic National Wildlife Refuge (ANWR) have been thwarted thus far, but momentum appears to be with proponents of ANWR drilling.« less

  13. Alaska Tidal Datum Portal | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Engineering Geology Alaska Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Portal Unambiguous vertical datums in the coastal environment are critical to the evaluation of natural human life, property, and the coastal environment. January 2017 - Update Summary Alaska Tidal Datum

  14. Lithofacies and seismic-reflection interpretation of temperate glacimarine sedimentation in Tarr Inlet, Glacier Bay, Alaska

    USGS Publications Warehouse

    Cai, J.; Powell, R.D.; Cowan, E.A.; Carlson, P.R.

    1997-01-01

    High-resolution seismic-reflection profiles of sediment fill within Tart Inlet of Glacier Bay, Alaska, show seismic facies changes with increasing distance from the glacial termini. Five types of seismic facies are recognized from analysis of Huntec and minisparker records, and seven lithofacies are determined from detailed sedimentologic study of gravity-, vibro- and box-cores, and bottom grab samples. Lithofacies and seismic facies associations, and fjord-floor morphology allow us to divide the fjord into three sedimentary environments: ice-proximal, iceberg-zone and ice-distal. The ice-proximal environment, characterized by a morainal-bank depositional system, can be subdivided into bank-back, bank-core and bank-front subenvironments, each of which is characterized by a different depositional subsystem. A bank-back subsystem shows chaotic seismic facies with a mounded surface, which we infer consists mainly of unsorted diamicton and poorly sorted coarse-grained sediments. A bank-core depositional subsystem is a mixture of diamicton, rubble, gravel, sand and mud. Seismic-reflection records of this subsystem are characterized by chaotic seismic facies with abundant hyperbolic diffractions and a hummocky surface. A bank-front depositional subsystem consists of mainly stratified and massive sand, and is characterized by internal hummocky facies on seismic-reflection records with significant surface relief and sediment gravity flow channels. The depositional system formed in the iceberg-zone environment consists of rhythmically laminated mud interbedded with thin beds of weakly stratified diamicton and stratified or massive sand and silt. On seismic-reflection profiles, this depositional system is characterized by discontinuously stratified facies with multiple channels on the surface in the proximal zone and a single channel on the largely flat sediment surface in the distal zone. The depositional system formed in the ice-distal environment consists of interbedded

  15. Alaska Job Center Network

    Science.gov Websites

    Job Centers Toll-free in Alaska (877)724-2539 *Workshop Schedules are linked under participating Job : midtown.jobcenter@alaska.gov Employers: anchorage.employers@alaska.gov Toll free Anchorage Employer Phone: 1-888-830 -1149 Phone: 842-5579 Fax: 842-5679, Toll Free: 1-800-478-5579 Job Seekers & Employers

  16. Alaska Natives & the Land.

    ERIC Educational Resources Information Center

    Arnold, Robert D.; And Others

    Pursuant to the Native land claims within Alaska, this compilation of background data and interpretive materials relevant to a fair resolution of the Alaska Native problem seeks to record data and information on the Native peoples; the land and resources of Alaska and their uses by the people in the past and present; land ownership; and future…

  17. Alaska Women: A Databook.

    ERIC Educational Resources Information Center

    White, Karen; Baker, Barbara

    This data book uses survey and census information to record social and economic changes of the past three decades and their effects upon the role of Alaska women in society. Results show Alaska women comprise 47% of the state population, an increase of 9% since 1950. Marriage continues as the predominant living arrangement for Alaska women,…

  18. Alaska Board of Forestry

    Science.gov Websites

    Natural Resources / Division of Forestry Alaska Board of Forestry The nine-member Alaska Board of Forestry advises the state on forest practices issues and provides a forum for discussion and resolution of forest management issues on state land. The board also reviews all proposed changes to the Alaska Forest Resources

  19. Alaska Interagency Ecosystem Health Work Group

    USGS Publications Warehouse

    Shasby, Mark

    2009-01-01

    The Alaska Interagency Ecosystem Health Work Group is a community of practice that recognizes the interconnections between the health of ecosystems, wildlife, and humans and meets to facilitate the exchange of ideas, data, and research opportunities. Membership includes the Alaska Native Tribal Health Consortium, U.S. Geological Survey, Alaska Department of Environmental Conservation, Alaska Department of Health and Social Services, Centers for Disease Control and Prevention, U.S. Fish and Wildlife Service, Alaska Sea Life Center, U.S. Environmental Protection Agency, and Alaska Department of Fish and Game.

  20. UNIT, ALASKA.

    ERIC Educational Resources Information Center

    Louisiana Arts and Science Center, Baton Rouge.

    THE UNIT DESCRIBED IN THIS BOOKLET DEALS WITH THE GEOGRAPHY OF ALASKA. THE UNIT IS PRESENTED IN OUTLINE FORM. THE FIRST SECTION DEALS PRINCIPALLY WITH THE PHYSICAL GEOGRAPHY OF ALASKA. DISCUSSED ARE (1) THE SIZE, (2) THE MAJOR LAND REGIONS, (3) THE MOUNTAINS, VOLCANOES, GLACIERS, AND RIVERS, (4) THE NATURAL RESOURCES, AND (5) THE CLIMATE. THE…

  1. Alaska's renewable energy potential.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  2. Mesozooplankton community development at elevated CO2 concentrations: results from a mesocosm experiment in an Arctic fjord

    NASA Astrophysics Data System (ADS)

    Niehoff, B.; Schmithüsen, T.; Knüppel, N.; Daase, M.; Czerny, J.; Boxhammer, T.

    2013-03-01

    The increasing CO2 concentration in the atmosphere caused by burning fossil fuels leads to increasing pCO2 and decreasing pH in the world ocean. These changes may have severe consequences for marine biota, especially in cold-water ecosystems due to higher solubility of CO2. However, studies on the response of mesozooplankton communities to elevated CO2 are still lacking. In order to test whether abundance and taxonomic composition change with pCO2, we have sampled nine mesocosms, which were deployed in Kongsfjorden, an Arctic fjord at Svalbard, and were adjusted to eight CO2 concentrations, initially ranging from 185 μatm to 1420 μatm. Vertical net hauls were taken weekly over about one month with an Apstein net (55 μm mesh size) in all mesocosms and the surrounding fjord. In addition, sediment trap samples, taken every second day in the mesocosms, were analysed to account for losses due to vertical migration and mortality. The taxonomic analysis revealed that meroplanktonic larvae (Cirripedia, Polychaeta, Bivalvia, Gastropoda, and Decapoda) dominated in the mesocosms while copepods (Calanus spp., Oithona similis, Acartia longiremis and Microsetella norvegica) were found in lower abundances. In the fjord copepods prevailed for most of our study. With time, abundance and taxonomic composition developed similarly in all mesocosms and the pCO2 had no significant effect on the overall community structure. Also, we did not find significant relationships between the pCO2 level and the abundance of single taxa. Changes in heterogeneous communities are, however, difficult to detect, and the exposure to elevated pCO2 was relatively short. We therefore suggest that future mesocosm experiments should be run for longer periods.

  3. College Persistence of Alaska Native Students: An Assessment of the Rural Alaska Honors Institute, 1983-88.

    ERIC Educational Resources Information Center

    Gaylord, Thomas A.; Kaul, Gitanjali

    Despite efforts by educators, full participation by Alaska native students in the state's colleges and universities has not yet been achieved. Alaska Natives are the state's only racial group that is underrepresented in enrollments at the University of Alaska (UA). This report examines the contribution of the Rural Alaska Honors Institute (RAHI)…

  4. Geodetic Imaging and Tsunami Modeling of the 2017 Coupled Landslide-Tsunami Event in Karrat Fjord, West Greenland.

    NASA Astrophysics Data System (ADS)

    Barba, M.; Willis, M. J.; Tiampo, K. F.; Lynett, P. J.; Mätzler, E.; Thorsøe, K.; Higman, B. M.; Thompson, J. A.; Morin, P. J.

    2017-12-01

    We use a combination of geodetic imaging techniques and modelling efforts to examine the June 2017 Karrat Fjord, West Greenland, landslide and tsunami event. Our efforts include analysis of pre-cursor motions extracted from Sentinal SAR interferometry that we improved with high-resolution Digital Surface Models derived from commercial imagery and geo-coded Structure from Motion analyses. We produce well constrained estimates of landslide volume through DSM differencing by improving the ArcticDEM coverage of the region, and provide modeled tsunami run-up estimates at villages around the region, constrained with in-situ observations provided by the Greenlandic authorities. Estimates of run-up at unoccupied coasts are derived using a blend of high resolution imagery and elevation models. We further detail post-failure slope stability for areas of interest around the Karrat Fjord region. Warming trends in the region from model and satellite analysis are combined with optical imagery to ascertain whether the influence of melting permafrost and the formation of small springs on a slight bench on the mountainside that eventually failed can be used as indicators of future events.

  5. Trophic ecology of introduced populations of Alaska blackfish (Dallia pectoralis) in the Cook Inlet Basin, Alaska.

    PubMed

    Eidam, Dona M; von Hippel, Frank A; Carlson, Matthew L; Lassuy, Dennis R; López, J Andrés

    2016-07-01

    Introduced non-native fishes have the potential to substantially alter aquatic ecology in the introduced range through competition and predation. The Alaska blackfish ( Dallia pectoralis ) is a freshwater fish endemic to Chukotka and Alaska north of the Alaska Range (Beringia); the species was introduced outside of its native range to the Cook Inlet Basin of Alaska in the 1950s, where it has since become widespread. Here we characterize the diet of Alaska blackfish at three Cook Inlet Basin sites, including a lake, a stream, and a wetland. We analyze stomach plus esophageal contents to assess potential impacts on native species via competition or predation. Alaska blackfish in the Cook Inlet Basin consume a wide range of prey, with major prey consisting of epiphytic/benthic dipteran larvae, gastropods, and ostracods. Diets of the introduced populations of Alaska blackfish are similar in composition to those of native juvenile salmonids and stickleback. Thus, Alaska blackfish may affect native fish populations via competition. Fish ranked third in prey importance for both lake and stream blackfish diets but were of minor importance for wetland blackfish.

  6. Trophic ecology of introduced populations of Alaska blackfish (Dallia pectoralis) in the Cook Inlet Basin, Alaska

    PubMed Central

    Eidam, Dona M.; Carlson, Matthew L.; Lassuy, Dennis R.; López, J. Andrés

    2016-01-01

    Introduced non-native fishes have the potential to substantially alter aquatic ecology in the introduced range through competition and predation. The Alaska blackfish (Dallia pectoralis) is a freshwater fish endemic to Chukotka and Alaska north of the Alaska Range (Beringia); the species was introduced outside of its native range to the Cook Inlet Basin of Alaska in the 1950s, where it has since become widespread. Here we characterize the diet of Alaska blackfish at three Cook Inlet Basin sites, including a lake, a stream, and a wetland. We analyze stomach plus esophageal contents to assess potential impacts on native species via competition or predation. Alaska blackfish in the Cook Inlet Basin consume a wide range of prey, with major prey consisting of epiphytic/benthic dipteran larvae, gastropods, and ostracods. Diets of the introduced populations of Alaska blackfish are similar in composition to those of native juvenile salmonids and stickleback. Thus, Alaska blackfish may affect native fish populations via competition. Fish ranked third in prey importance for both lake and stream blackfish diets but were of minor importance for wetland blackfish. PMID:28082763

  7. Electrifying Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinemer, V.

    Alaska's diverse systems for electric power include only 4% by private utilities. Large distances and small markets make transmission impractical for the most part. Rates are variable, although the state average is low. Energy sources, except nuclear, are abundant: half the US coal reserves are in Alaska. In addition, it has geothermal, tidal, biomass, solar, wind, and hydroelectric power. Energy construction and study programs are centered in the Alaska Power Authority and include using waste heat from village diesel generators. Hydro potential is good, but access, distances, and environmental effects must be considered. The Terror Lake, Tyee Lake, Swan Lake,more » and Susitna projects are described and transmission construction, including the 345-kW Railbelt intertie, is discussed. 1 figure.« less

  8. Publications - GMC 193 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical materials: Alaska State F #1, washed cuttings (13,980' - 13,990'); West Mikkelsen State #1, Canning River

  9. Alaska's State Forests

    Science.gov Websites

    Conservation Education Timber Management Wildland Fire & Aviation Burn Permits Firewise Alaska Brochure (PDF) Fire Management Plans Fire Assignments Annual Fire Statistics Fire Terms Glossary Incident Business Management Grants Become an Alaska Firewise Community Community Wildland Fire Protection Plans

  10. 49 CFR 71.11 - Alaska zone.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Alaska zone. 71.11 Section 71.11 Transportation Office of the Secretary of Transportation STANDARD TIME ZONE BOUNDARIES § 71.11 Alaska zone. The sixth zone, the Alaska standard time zone, includes the entire State of Alaska, except as provided in § 71.12...

  11. 75 FR 38093 - ConocoPhillips Alaska Natural Gas Corporation and Marathon Oil Company; Application for Blanket...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... regasification terminal; and use of the existing terminal for exports to support the economic viability of a... LNG shipping at economic rates; and (3) strategic decisions regarding the future role of the Kenai LNG... Facility provides local economic benefits, including as an employer and as a source of royalties and taxes...

  12. Possible connection between two Alaskan catastrophes occurring 25 yr apart (1964 and 1989)

    USGS Publications Warehouse

    Kvenvolden, K.A.; Carlson, P.R.; Threlkeld, C.N.; Warden, A.

    1993-01-01

    On March 24, 1989, the Exxon Valdez supertanker grounded on Bligh Reef, spilling North Slope crude oil into Prince william Sound, Alaska. Tracking the geochemical fate of this spilled oil has revealed, in addition to weathered products from the spill, minor oil residues on beaches from a distinctly different source. This probably was the Great Alaska Earthquake of March 27, 1964. This quake and the subsequent tsunami destroyed asphalt storage facilities at the old Valdez town site, spilling asphalt into Port Valdez fjord. From there the asphalt apparently advanced south into the sound. -from Authors

  13. Publications - RDF 2015-5 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  14. Publications - RI 2009-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  15. Publications - RDF 2016-3 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  16. Publications - RDF 2016-5 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  17. Publications - RDF 2014-22 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  18. Publications - RDF 2015-8 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    from the Tonsina area, Valdez Quadrangle, Alaska: Alaska Division of Geological & Geophysical Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  19. Publications - RDF 2015-16 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    rocks collected in 2015 in the Wrangellia mineral assessment area, Alaska: Alaska Division of Geological Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  20. Publications - RDF 2015-9 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    samples from the Zane Hills, Hughes and Shungnak quadrangles, Alaska: Alaska Division of Geological & Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  1. Alaska geology revealed

    USGS Publications Warehouse

    Wilson, Frederic H.; Labay, Keith A.

    2016-11-09

    This map shows the generalized geology of Alaska, which helps us to understand where potential mineral deposits and energy resources might be found, define ecosystems, and ultimately, teach us about the earth history of the State. Rock units are grouped in very broad categories on the basis of age and general rock type. A much more detailed and fully referenced presentation of the geology of Alaska is available in the Geologic Map of Alaska (http://dx.doi.org/10.3133/sim3340). This product represents the simplification of thousands of individual rock units into just 39 broad groups. Even with this generalization, the sheer complexity of Alaskan geology remains evident.

  2. Publications - PDF 96-17 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska the Fairbanks Mining District, Alaska, scale 1:63,360 (15.0 M) Digital Geospatial Data Digital © 2010 Webmaster State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State

  3. Publications - MP 156 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska /29446 Publication Products Report Report Information mp156.pdf (126.0 K) Digital Geospatial Data Digital State of Alaska © 2010 Webmaster State of Alaska myAlaska My Government Resident Business in Alaska

  4. Alaska Administrative Manual

    Science.gov Websites

    Search the Division of Finance site DOF State of Alaska Finance Home Content Area Accounting Charge Cards Administrative Manual Table of Contents Contains State of Alaska accounting/payroll policies and information clarifying accounting and payroll procedures. Policies are carried out through standard statewide procedures

  5. Publications - GMC 410 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ) Keywords Geochemistry; Rare Earth Elements Top of Page Department of Natural Resources, Division of Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  6. Publications - GMC 409 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ) Keywords Geochemistry; Rare Earth Elements Top of Page Department of Natural Resources, Division of Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  7. Publications - GMC 183 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical materials: AK State C #1, Bush Federal #1, Echooka Unit #1, Fin Creek Unit #1, E. De K. Leffingwell #1, Nora

  8. Alaska Native Education: Issues in the Nineties. Alaska Native Policy Papers.

    ERIC Educational Resources Information Center

    Kleinfeld, Judith

    This booklet identifies several crucial problems in Alaska Native education, for example: (1) Fetal Alcohol Syndrome (FAS) and Fetal Alcohol Effects (FAE) occur in Alaska Native populations at relatively high rates and can produce mental retardation, hyperactivity, attention deficits, and learning disabilities; (2) while many Native rural school…

  9. Preliminary earthquake locations in the Kenai Peninsula recorded by the MOOS Array and their relationship to structure in the 1964 great earthquake zone

    NASA Astrophysics Data System (ADS)

    Li, J.; Abers, G. A.; Christensen, D. H.; Kim, Y.; Calkins, J. A.

    2011-12-01

    Earthquakes in subduction zones are mostly generated at the interface between the subducting and overlying plates. In 2006-2009, the MOOS (Multidisciplinary Observations Of Subduction) seismic array was deployed around the Kenai Peninsula, Alaska, consisting of 34 broadband seismometers recording for 1-3 years. This region spans the eastern end of the Aleutian megathrust that ruptured in the 1964 Mw 9.2 great earthquake, the second largest recorded earthquake, and ongoing seismicity is abundant. Here, we report an initial analysis of seismicity recorded by MOOS, in the context of preliminary imaging. There were 16,462 events detected in one year from initial STA/LTA signal detections and subsequent event associations from the MOOS Array. We manually reviewed them to eliminate distant earthquakes and noise, leaving 11,879 local earthquakes. To refine this catalog, an adaptive auto-regressive onset estimation algorithm was applied, doubling the original dataset and producing 20,659 P picks and 22,999 S picks for one month (September 2007). Inspection shows that this approach lead to almost negligible false alarms and many more events than hand picking. Within the well-sampled part of the array, roughly 200 km by 300 km, we locate 250% more earthquakes for one month than the permanent network catalog, or 10 earthquakes per day on this patch of the megathrust. Although the preliminary locations of earthquakes still show some scatter, we can see a concentration of events in a ~20-km-wide belt, part of which can be interpreted as seismogenic thrust zone. In conjunction with the seismicity study, we are imaging the plate interface with receiver functions. The main seismicity zone corresponds to the top of a low-velocity layer imaged in receiver functions, nominally attributed to the top of the downgoing plate. As we refine velocity models and apply relative relocation algorithms, we expect to improve the precision of the locations substantially. When combined with image

  10. Alaska Public Offices Commission, Department of Administration, State of

    Science.gov Websites

    Visiting Alaska State Employees State of Alaska Department of Administration Alaska Public Offices Commission Alaska Department of Administration, Alaska Public Offices Commission APOC Home Commission Filer ; AO's Contact Us Administration > Alaska Public Offices Commission Alaska Public Offices Commission

  11. Prehistoric Alaska: The land

    USGS Publications Warehouse

    Wilson, Frederic H.; Weber, Florence R.; Rennick, Penny

    1994-01-01

    Many Alaskans know the dynamic nature of Alaska’s landscape firsthand. The 1964 earthquake, the 1989 eruption of Mount Redoubt volcano, the frequent earthquakes in the Aleutians and the ever-shifting meanders of the Yukon and Kuskokwim rivers remind them of constant changes to the land. These changes are part of the continuing story of the geologic growth and development of Alaska during hundreds of millions of years. By geologic time, Alaska has only recently come into existence and the dynamic processes that formed it continue to affect it. The landscape we see today has been shaped by glacier and stream erosion or their indirect effects, and to a lesser extent by volcanoes. Most prominently, if less obviously, Alaska has been built by slow movements of the Earth’s crust we call tectonic or mountain-building.During 5 billion years of geologic time, the Earth’s crust has repeatedly broken apart into plates. These plates have recombined, and have shifted positions relative to each other, to the Earth’s rotational axis and to the equator. Large parts of the Earth’s crust, including Alaska, have been built and destroyed by tectonic forces. Alaska is a collage of transported and locally formed fragments of crusts As erosion and deposition reshape the land surface, climatic changes, brought on partly by changing ocean and atmospheric circulation patterns, alter the location and extent of tropical, temperate and arctic environments. We need to understand the results of these processes as they acted upon Alaska to understand the formation of Alaska. Rocks can provide hints of previous environments because they contain traces of ocean floor and lost lands, bits and pieces of ancient history.

  12. Publications - GMC 370 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    (249.0 K) Keywords Rare Earth Elements Top of Page Department of Natural Resources, Division of Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  13. Publications - GMC 159 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical State #1, Kuparuk Unit #1, Mikkelsen Bay State 13-09-19, Ravik State #1, Pt. Thomson Unit #2, West

  14. LearnAlaska Portal

    Science.gov Websites

    ESS (Employee Self Service) E-Travel Online Login IRIS FIN/PROC Login IRIS HRM Login LearnAlaska SFOA SharePoint Site TRIPS (Traveler Integrated Profile System) Vendor Self Service (VSS) Resources Alaska & Resources Manuals Payment Detail Report Salary Schedules SFOA SharePoint Site (SOA Only) Training

  15. The use of XRF core scanner technique to identify anthropogenic chronological markers for dating recent sediments and for mapping and estimating the quantity of contaminated sediments in different fjord settings in western Norway

    NASA Astrophysics Data System (ADS)

    Haflidason, H.; Thorsen, L.; Soldal, O. L.

    2016-12-01

    Following the initiation of the industrial revolution in Norway at the early 1900´s many of the heavy industrial factories established at that time were located in inner fjord systems of western Norway. The advantage was an easy access to cheap electricity, but the main disadvantage has been that the pollution from this industrial activity has been transported into fjord systems where the circulation of the water masses has been fairly limited leading to a high concentration of heavy metals in the fjord basin sediments. The recently developed non-destructive X-ray Fluorescence (XRF) core scanning technique offers new possibilities to obtain near-continuous records of bulk element composition in marine records. This new analytical geochemical method can measure the bulk element content directly from the surface sediment archives within a period of seconds and with a resolution up to 200 microns. By applying this method on rapidly deposited sediments one can reconstruct a continuous record of carbonate content on a sub-decadal to annual scale. This kind of high-resolution records can also be compared directly with historical and instrumental records from the same area. This offers new possibilities to identify in an effective way the geochemical anomalies in the sediment column and estimate the variability of the industrially produced elements as e.g. Cu, Zn and Pb and their distribution and thickness/quantity in fjord basin sediments. Examples will be presented demonstrating the close linkage between the industrial production history and the entrance of these elements in the fjord sediments. Identification of these elements offers an excellent opportunity to date the recent marine sediments using these elements as an event spike and also to reconstruct the history of pollution in these fjord basin sediments. As the precision of the XRF element detection is high the time of full recovery to natural conditions of the basin sediments, after close down of these

  16. Deep-seated gravitational slope deformations near the Trans-Alaska Pipeline, east-central Alaska Range, Alaska, USA

    NASA Astrophysics Data System (ADS)

    Newman, S. D.; Clague, J. J.; Rabus, B.; Stead, D.

    2013-12-01

    Multiple, active, deep-seated gravitational slope deformations (DSGSD) are present near the Trans-Alaska Pipeline and Richardson Highway in the east-central Alaska Range, Alaska, USA. We documented spatial and temporal variations in rates of surface movement of the DSGSDs between 2003 and 2011 using RADARSAT-1 and RADARSAT-2 D-InSAR images. Deformation rates exceed 10 cm/month over very large areas (>1 km2) of many rock slopes. Recent climatic change and strong seismic shaking, especially during the 2002 M 7.9 Denali Fault earthquake, appear to have exacerbated slope deformation. We also mapped DSGSD geological and morphological characteristics using field- and GIS-based methods, and constructed a conceptual 2D distinct-element numerical model of one of the DSGSDs. Preliminary results indicate that large-scale buckling or kink-band slumping may be occurring. The DSGSDs are capable of generating long-runout landslides that might impact the Trans-Alaska Pipeline and Richardson Highway. They could also block tributary valleys, thereby impounding lakes that might drain suddenly. Wrapped 24-day RADARSAT-2 descending spotlight interferogram showing deformation north of Fels Glacier. The interferogram is partially transparent and is overlaid on a 2009 WorldView-1 panchromatic image. Acquisition interval: August 2 - August 26, 2011. UTM Zone 6N.

  17. Landscape genetics of Schistocephalus solidus parasites in threespine stickleback (Gasterosteus aculeatus) from Alaska.

    PubMed

    Sprehn, C Grace; Blum, Michael J; Quinn, Thomas P; Heins, David C

    2015-01-01

    The nature of gene flow in parasites with complex life cycles is poorly understood, particularly when intermediate and definitive hosts have contrasting movement potential. We examined whether the fine-scale population genetic structure of the diphyllobothriidean cestode Schistocephalus solidus reflects the habits of intermediate threespine stickleback hosts or those of its definitive hosts, semi-aquatic piscivorous birds, to better understand complex host-parasite interactions. Seventeen lakes in the Cook Inlet region of south-central Alaska were sampled, including ten in the Matanuska-Susitna Valley, five on the Kenai Peninsula, and two in the Bristol Bay drainage. We analyzed sequence variation across a 759 bp region of the mitochondrial DNA (mtDNA) cytochrome oxidase I region for 1,026 S. solidus individuals sampled from 2009-2012. We also analyzed allelic variation at 8 microsatellite loci for 1,243 individuals. Analysis of mtDNA haplotype and microsatellite genotype variation recovered evidence of significant population genetic structure within S. solidus. Host, location, and year were factors in structuring observed genetic variation. Pairwise measures revealed significant differentiation among lakes, including a pattern of isolation-by-distance. Bayesian analysis identified three distinct genotypic clusters in the study region, little admixture within hosts and lakes, and a shift in genotype frequencies over time. Evidence of fine-scale population structure in S. solidus indicates that movement of its vagile, definitive avian hosts has less influence on gene flow than expected based solely on movement potential. Observed patterns of genetic variation may reflect genetic drift, behaviors of definitive hosts that constrain dispersal, life history of intermediate hosts, and adaptive specificity of S. solidus to intermediate host genotype.

  18. ISEA (International geodetic project in SouthEastern Alaska) for rapid uplifting caused by glacial retreat: (4) Gravity tide observation

    NASA Astrophysics Data System (ADS)

    Sato, T.; Miura, S.; Sun, W.; Kaufman, A. M.; Cross, R.; Freymueller, J. T.; Heavner, M.

    2006-12-01

    The southeastern Alaska shows a large uplift rate as 30 mm/yr at most, which is considered to be closely related to the glacial isostatic adjustment (GIA) including two effects of the past and present-day ice melting (Larsen et al., 2004). So, this area is important to improve our knowledge of the viscoelastic property of the earth and to consider the global changes. Combing the displacement and gravity observations is useful to constrain the model computation results for GIA (Sato et al., 2006). In order to progress the previous work by the group of Univ. Alaska, Fairbanks (UAF), an observation project by Japan and USA groups was started in 2005 (Miura et al., this meeting). Under this project, June 2006, the continuous GPS measurements started (M. Kufman et al., this meeting) and the absolute gravity (AG) measurements were conducted (W. Sun et al., this meeting). Precise correction for the effect of ocean tide loading is one of the key to increase the observation accuracy of the GPS and gravity observations, especially for the AG measurement. Thanks for the satellite sea surface altimeters such as TOPEX/Poseidon and Jason-1, the accuracy of global ocean tide models based on these data has been much improved, and its accuracy is estimated at a level better than 1.3 cm as a RMS error of the vector differences of the 8 main tidal waves (Matsumoto et al., 2006). However, on the other hand, it is known that the southeastern Alaska is a place that shows a large discrepancy among the proposed global ocean tide models mainly due to a complex topography and bathymetry of the fjord area. In order to improve the accuracy of the ocean tide correction, we started the gravity tide observation at Juneau from June 2006. Two kinds of gravimeters are used for the observation. Sampling interval of the data is at every 1 min. We analyzed the 1 month data from the beginning of the observation and compared the tidal analysis results with the model tide including both effects of the

  19. The Hornsund fjord - modeling of the general circulation, heat exchange and water masses transport.

    NASA Astrophysics Data System (ADS)

    Przyborska, Anna; Jakacki, Jaromir; Kosecki, Szymon; Sundfjord, Arild

    2015-04-01

    The MIKE3D hydrodynamic model has been implemented for diagnosis an ecosystem status in the most southern fjord of the Svalbard Archipelago. The model is based on MIKE 3 Flow Model FM that uses flexible mesh grid. The spatial discretization in solutions of equations is performed by the finite element method. The regional scale of the model implicated implementation of external data at the lateral boundary region. In our case Flather's boundary condition let us to force the model with combined information. At the same time tidal ordinate and barotropic component of velocity that reflects the West Spitsbergen Current are implemented. Also salinity and temperature were nested at the boundary area. The upper boundary conditions was also introduced. The data for the boundary were taken from Global Tide Model (all tidal components), an 800 m ROMS simulation of the Svalbard area made by the Norwegian Institute of Marine Research (bartoropic velocities, temperature and salinity), European Centre for Medium Weather Forecast (ECMWF) and also from Global Data Assimilation System (GDAS). Implemented model was validated and the mean circulation and its seasonal variability will be presented. Also influence of the shelf water masses on the fjord will be discussed. Fresh water transport from glaciers, run off and snow will be estimated. Results are based on 5 years simulation (2005-2010) This work was partially performed in the frame of the projects GAME (DEC-2012/04/A/NZ8/00661) and AWAKE2 (Pol-Nor/198675/17/2013)

  20. Publications - MP 142 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  1. Publications - SR 70 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  2. Publications - MP 38 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  3. Publications - SR 45 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  4. Publications - MP 43 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  5. Publications - MP 149 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  6. Presentations - Wypych, Alicja and others, 2015 | Alaska Division of

    Science.gov Websites

    Geological & Geophysical Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of (AVO) Mineral Resources Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem

  7. Sections | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    State Employees DGGS State of Alaska search Department of Natural Resources, Division of Geological & Communications Alaska Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates Sponsors' Proposals STATEMAP

  8. Late-Quaternary glacial to postglacial sedimentation in three adjacent fjord-lakes of the Québec North Shore (eastern Canadian Shield)

    NASA Astrophysics Data System (ADS)

    Poiré, Antoine G.; Lajeunesse, Patrick; Normandeau, Alexandre; Francus, Pierre; St-Onge, Guillaume; Nzekwe, Obinna P.

    2018-04-01

    High-resolution swath bathymetry imagery allowed mapping in great detail the sublacustrine geomorphology of lakes Pentecôte, Walker and Pasteur, three deep adjacent fjord-lakes of the Québec North Shore (eastern Canada). These sedimentary basins have been glacio-isostatically uplifted to form deep steep-sided elongated lakes. Their key geographical position and limnogeological characteristics typical of fjords suggest exceptional potential for long-term high-resolution paleoenvironmental reconstitutions. Acoustic subbottom profiles acquired using a bi-frequency Chirp echosounder (3.5 & 12 kHz), together with cm- and m-long sediment core data, reveal the presence of four acoustic stratigraphic units. The acoustic basement (Unit 1) represents the structural bedrock and/or the ice-contact sediments of the Laurentide Ice Sheet and reveals V-shaped bedrock valleys at the bottom of the lakes occupied by ice-loaded sediments in a basin-fill geometry (Unit 2). Moraines observed at the bottom of lakes and in their structural valleys indicate a deglaciation punctuated by short-term ice margin stabilizations. Following ice retreat and their isolation, the fjord-lakes were filled by a thick draping sequence of rhythmically laminated silts and clays (Unit 3) deposited during glaciomarine and/or glaciolacustrine settings. These sediments were episodically disturbed by mass-movements during deglaciation due to glacial-isostatic rebound. AMS 14C dating reveal that the transition between deglaciation of the lakes Pentecôte and Walker watersheds and the development of para- and post-glacial conditions occurred around 8000 cal BP. The development of the lake-head river delta plain during the Holocene provided a constant source of fluvial sediment supply to the lakes and the formation of turbidity current bedforms on the sublacustrine delta slopes. The upper sediment succession (i.e., ∼4-∼6.5 m) consists of a continuous para-to post-glacial sediment drape (Unit 4) that contains

  9. Metabolic syndrome: prevalence among American Indian and Alaska native people living in the southwestern United States and in Alaska.

    PubMed

    Schumacher, Catherine; Ferucci, Elizabeth D; Lanier, Anne P; Slattery, Martha L; Schraer, Cynthia D; Raymer, Terry W; Dillard, Denise; Murtaugh, Maureen A; Tom-Orme, Lillian

    2008-12-01

    Metabolic syndrome occurs commonly in the United States. The purpose of this study was to measure the prevalence of metabolic syndrome among American Indian and Alaska Native people. We measured the prevalence rates of metabolic syndrome, as defined by the National Cholesterol Education Program, among four groups of American Indian and Alaska Native people aged 20 years and older. One group was from the southwestern United States (Navajo Nation), and three groups resided within Alaska. Prevalence rates were age-adjusted to the U.S. adult 2000 population and compared to rates for U.S. whites (National Health and Nutrition Examination Survey [NHANES] 1988-1994). Among participants from the southwestern United States, metabolic syndrome was found among 43.2% of men and 47.3% of women. Among Alaska Native people, metabolic syndrome was found among 26.5% of men and 31.2% of women. In Alaska, the prevalence rate varied by region, ranging among men from 18.9% (western Alaska) to 35.1% (southeast), and among women from 22.0% (western Alaska) to 38.4 % (southeast). Compared to U.S. whites, American Indian/Alaska Native men and women from all regions except western Alaska were more likely to have metabolic syndrome; men in western Alaska were less likely to have metabolic syndrome than U.S. whites, and the prevalence among women in western Alaska was similar to that of U.S. whites. The prevalence rate of metabolic syndrome varies widely among different American Indian and Alaska Native populations. Differences paralleled differences in the prevalence rates of diabetes.

  10. Publications - RDF 2015-7 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    , Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the northeastern Alaska Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  11. Presentations - Twelker, Evan and others, 2014 | Alaska Division of

    Science.gov Websites

    magmatic Ni-Cu-Co-PGE system in the Talkeetna Mountains, central Alaska (poster): Society of Economic Geological & Geophysical Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of

  12. Bedrock geologic map of the northern Alaska Peninsula area, southwestern Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Blodgett, Robert B.; Blome, Charles D.; Mohadjer, Solmaz; Preller, Cindi C.; Klimasauskas, Edward P.; Gamble, Bruce M.; Coonrad, Warren L.

    2017-03-03

    The northern Alaska Peninsula is a region of transition from the classic magmatic arc geology of the Alaska Peninsula to a Proterozoic and early Paleozoic carbonate platform and then to the poorly understood, tectonically complex sedimentary basins of southwestern Alaska. Physiographically, the region ranges from the high glaciated mountains of the Alaska-Aleutian Range to the coastal lowlands of Cook Inlet on the east and Bristol Bay on the southwest. The lower Ahklun Mountains and finger lakes on the west side of the map area show strong effects from glaciation. Structurally, a number of major faults cut the map area. Most important of these are the Bruin Bay Fault that parallels the coast of Cook Inlet, the Lake Clark Fault that cuts diagonally northeast to southwest across the eastern part of the map area, and the presently active Holitna Fault to the northwest that cuts surficial deposits.Distinctive rock packages assigned to three provinces are overlain by younger sedimentary rocks and intruded by widely dispersed latest Cretaceous and (or) early Tertiary granitic rocks. Much of the east half of the map area lies in the Alaska-Aleutian Range province; the Jurassic to Tertiary Alaska-Aleutian Range batholith and derivative Jurassic sedimentary rocks form the core of this province, which is intruded and overlain by the Aleutian magmatic arc. The Lime Hills province, the carbonate platform, occurs in the north-central part of the map area. The Paleozoic and Mesozoic Ahklun Mountains province in the western part of the map area includes abundant chert, argillite, and graywacke and lesser limestone, basalt, and tectonic mélange. The Kuskokwim Group, an Upper Cretaceous turbidite sequence, is extensively exposed and bounds all three provinces in the west-central part of the map area.

  13. 76 FR 81247 - Fisheries of the Exclusive Economic Zone Off Alaska; Groundfish of the Gulf of Alaska; Amendment 88

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... Atmospheric Administration 50 CFR Part 679 Fisheries of the Exclusive Economic Zone Off Alaska; Groundfish of... Exclusive Economic Zone Off Alaska; Groundfish of the Gulf of Alaska; Amendment 88 AGENCY: National Marine... conservation, management, safety, and economic gains realized under the Central Gulf of Alaska Rockfish Pilot...

  14. 78 FR 11988 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ...-management process involving the Service, the Alaska Department of Fish and Game, and Alaska Native... developed under a co-management process involving the Service, the Alaska Department of Fish and Game, and... Fish and Game's request to expand the Fairbanks North Star Borough excluded area to include the Central...

  15. Wood and fish residuals composting in Alaska

    Treesearch

    David Nicholls; Thomas Richard; Jesse A. Micales

    2002-01-01

    The unique climates and industrial mix in southeast and south central Alaska are challenges being met by the region's organics recyclers. OMPOSTING wood residuals in Alaska has become increasingly important in recent years as wood processors and other industrial waste managers search for environmentally sound and profitable outlets. Traditionally, Alaska?s...

  16. Dental caries in rural Alaska Native children--Alaska, 2008.

    PubMed

    2011-09-23

    In April 2008, the Arctic Investigations Program (AIP) of CDC was informed by the Alaska Department of Health and Social Services (DHSS) of a large number of Alaska Native (AN) children living in a remote region of Alaska who required full mouth dental rehabilitations (FMDRs), including extractions and/or restorations of multiple carious teeth performed under general anesthesia. In this remote region, approximately 400 FMDRs were performed in AN children aged <6 years in 2007; the region has approximately 600 births per year. Dental caries can cause pain, which can affect children's normal growth and development. AIP and Alaska DHSS conducted an investigation of dental caries and associated risk factors among children in the remote region. A convenience sample of children aged 4-15 years in five villages (two with fluoridated water and three without) was examined to estimate dental caries prevalence and severity. Risk factor information was obtained by interviewing parents. Among children aged 4-5 years and 12-15 years who were evaluated, 87% and 91%, respectively, had dental caries, compared with 35% and 51% of U.S. children in those age groups. Among children from the Alaska villages, those aged 4-5 years had a mean of 7.3 dental caries, and those aged 12-15 years had a mean of 5.0, compared with 1.6 and 1.8 dental caries in same-aged U.S. children. Of the multiple factors assessed, lack of water fluoridation and soda pop consumption were significantly associated with dental caries severity. Collaborations between tribal, state, and federal agencies to provide effective preventive interventions, such as water fluoridation of villages with suitable water systems and provision of fluoride varnishes, should be encouraged.

  17. Publications - GMC 53C | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Paleozoic through Tertiary sandstones, North Slope, Alaska Authors: Alaska Research Associates Publication through Tertiary sandstones, North Slope, Alaska: Alaska Division of Geological & Geophysical Surveys

  18. Publications - MP 150 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska larger work. Please see DDS 3 for more information. Digital Geospatial Data Digital Geospatial Data Business in Alaska Visiting Alaska State Employees

  19. Publications - RI 2011-4 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska district, Circle Quadrangle, Alaska, scale 1:50,000 (16.0 M) Digital Geospatial Data Digital Geospatial Business in Alaska Visiting Alaska State Employees

  20. Publications - AR 2010 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical DGGS AR 2010 Publication Details Title: Alaska Division of Geological & Geophysical Surveys Annual Report Authors: DGGS Staff Publication Date: Jan 2011 Publisher: Alaska Division of Geological &

  1. Spatially Estimating Disturbance of Harbor Seals (Phoca vitulina)

    PubMed Central

    Jansen, John K.; Brady, Gavin M.; Ver Hoef, Jay M.; Boveng, Peter L.

    2015-01-01

    Tidewater glacial fjords in Alaska provide habitat for some of the largest aggregations of harbor seals (Phoca vitulina), with calved ice serving as platforms for birthing and nursing pups, molting, and resting. These fjords have also been popular destinations for tour ships for more than a century, with dramatic increases in vessel traffic since the 1980s. Seals on ice are known to flush into the water when approached by tour ships, but estimating the exposure to disturbance across populations is difficult. Using aerial transect sampling while simultaneously tracking vessel movements, we estimated the spatial overlap between seals on ice and cruise ships in Disenchantment Bay, Alaska, USA. By integrating previously estimated rates of disturbance as a function of distance with an ‘intensity surface’ modeled spatially from seal locations in the surveys, we calculated probabilities of seals flushing during three separate ship visits. By combining our estimate of seals flushed with a modeled estimate of the total fjord population, we predict that up to 14% of the seals (up to 11% of pups) hauled out would have flushed into the water, depending on the route taken by ships relative to seal aggregations. Such high potential for broad-scale disturbance by single vessels (when up to 4 ships visit per day) was unexpected and underscores the need to 1) better understand long-term effects of disturbance; 2) regularly monitor populations exposed to high vessel traffic; and 3) develop conservation measures to reduce seal-ship overlap. PMID:26132083

  2. Publications - RI 2009-3 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska , northeastern Brooks Range, Alaska, scale 1:63,360 (129.0 M) Digital Geospatial Data Digital Geospatial Data Resident Business in Alaska Visiting Alaska State Employees

  3. Alaska State Legislature

    Science.gov Websites

    The Alaska State Legislature search menu Home Senate Current Members Past Members By Session search Home Get Started About the Legislative Branch Legislative Branch The Legislative Branch is responsible for enacting the laws of the State of Alaska and appropriating the money necessary to operate the

  4. Alaska Workforce Investment Board

    Science.gov Websites

    ! Looking for a job? Click here. About Us Board Member Documents Phone: (907) 269-7485 Toll Free: (888) 412 : 907-269-7485 Toll Free: 888-412-4742 Fax: 907-269-7489 State of Alaska myAlaska My Government Resident

  5. The evolving Alaska mapping program.

    USGS Publications Warehouse

    Brooks, P.D.; O'Brien, T. J.

    1986-01-01

    This paper describes the development of mapping in Alaska, the current status of the National Mapping Program, and future plans for expanding and improving the mapping coverage. Research projects with Landsat Multispectral Scanner and Return Vidicon imagery and real- and synthetic-aperture radar; image mapping programs; digital mapping; remote sensing projects; the Alaska National Interest Lands Conservation Act; and the Alaska High-Altitude Aerial Photography Program are also discussed.-from Authors

  6. Publications - GMC 16 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska's Mineral and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a

  7. Publications - RDF 2010-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Prospect; Trace Elements; Trace Metals; Triassic; Wrangellia Terrane; geoscientificInformation Top of Page Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  8. Publications - RDF 2015-6 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Sediments; Trace Elements; Trace Geochemical; Trace Metals; geoscientificInformation Top of Page Department Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  9. Landscape genomic insights into the historic migration of mountain hemlock in response to Holocene climate change.

    PubMed

    Johnson, Jeremy S; Gaddis, Keith D; Cairns, David M; Konganti, Kranti; Krutovsky, Konstantin V

    2017-03-01

    Untangling alternative historic dispersal pathways in long-lived tree species is critical to better understand how temperate tree species may respond to climatic change. However, disentangling these alternative pathways is often difficult. Emerging genomic technologies and landscape genetics techniques improve our ability to assess these pathways in natural systems. We address the question to what degree have microrefugial patches and long-distance dispersal been responsible for the colonization of mountain hemlock ( Tsuga mertensiana ) on the Alaskan Kenai Peninsula. We used double-digest restriction-associated DNA sequencing (ddRADseq) to identify genetic variants across eight mountain hemlock sample sites on the Kenai Peninsula, Alaska. We assessed genetic diversity and linkage disequilibrium using landscape and population genetics approaches. Alternative historic dispersal pathways were assessed using discriminant analysis of principle components and electrical circuit theory. A combination of decreasing diversity, high gene flow, and landscape connectivity indicates that mountain hemlock colonization on the Kenai Peninsula is the result of long-distance dispersal. We found that contemporary climate best explained gene flow patterns and that isolation by resistance was a better model explaining genetic variation than isolation by distance. Our findings support the conclusion that mountain hemlock colonization is the result of several long-distance dispersal events following Pleistocene glaciation. The high dispersal capability suggests that mountain hemlock may be able to respond to future climate change and expand its range as new habitat opens along its northern distribution. © 2017 Botanical Society of America.

  10. Alaska Natives assessing the health of their environment.

    PubMed

    Garza, D

    2001-11-01

    The changes in Alaska's ecosystems caused by pollution, contaminants and global climate change are negatively impacting Alaska Natives and rural residents who rely on natural resources for food, culture and community identity. While Alaska commerce has contributed little to these global changes and impacts, Alaska and its resources are nonetheless affected by the changes. While Alaska Natives have historically relied on Alaska's land, water and animals for survival and cultural identity, today their faith in the safety and quality of these resources has decreased. Alaska Natives no longer believe that these wild resources are the best and many are turning to alternative store-bought foods. Such a change in diet and activity may be contributing to a decline in traditional activities and a decline in general health. Contaminants are showing up in the animals, fish and waters that Alaska Natives use. Efforts need to be expanded to empower Alaska Native Tribes to collect and analyze local wild foods for various contaminants. In addition existing information on contaminants and pollution should be made readily available to Alaska residents. Armed with this type of information Alaska Native residents will be better prepared to make informed decisions on using wild foods and materials.

  11. Publications - GMC 171 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Arco Alaska Inc. Delta State #2 well Authors: Pawlewicz, Mark Publication Date: 1990 Publisher: Alaska , Vitrinite reflectance data of cuttings (3270'-10760') from the Arco Alaska Inc. Delta State #2 well: Alaska

  12. Publications - RDF 2012-3 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Assessment Project; Trace Elements; geoscientificInformation Top of Page Department of Natural Resources Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  13. Publications - RDF 2005-4 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    District; Trace Elements; Trace Metals; Tungsten; Uranium; Vanadium; Yttrium; Zinc; Zirconium Top of Page Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  14. Publications - RDF 2016-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    , Major-oxide and trace-element geochemistry of mafic rocks in the Carboniferous Lisburne Group, Ivishak Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  15. Publications - RDF 2000-4 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Oxides; Palladium; Platinum; Rare Earth Elements; STATEMAP Project; Trace Metals Top of Page Department Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  16. Trends in Alaska's People and Economy.

    ERIC Educational Resources Information Center

    Leask, Linda; Killorin, Mary; Martin, Stephanie

    This booklet provides data on Alaska's population, economy, health, education, government, and natural resources, including specific information on Alaska Natives. Since 1960, Alaska's population has tripled and become more diverse, more stable, older, less likely to be male or married, and more concentrated. About 69 percent of the population…

  17. Alaska Native Participation in the Civilian Conservation Corps. Alaska Historical Commission Studies in History No. 206.

    ERIC Educational Resources Information Center

    Sorensen, Connor; And Others

    The report is a finding aid to the sources which document the 1937 federal policy decision mandating that 50% of the enrollees in the Civilian Conservation Corps (CCC) in Alaska must be Alaska Natives and provides a list of the Native CCC projects in Alaska. The finding aid section is organized according to the location of the collections and…

  18. 78 FR 4435 - BLM Director's Response to the Alaska Governor's Appeal of the BLM Alaska State Director's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... Bureau of Land Management (BLM) is publishing this notice to explain why the BLM Director is rejecting... Director's Response to the Alaska Governor's Appeal of the BLM Alaska State Director's Governor's... the BLM Alaska State Director. The State Director determined the Governor's Finding was outside the...

  19. 75 FR 66082 - ORPC Alaska 2, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-27

    ... to section 4(f) of the Federal Power Act (FPA), proposing to study the feasibility of the East Foreland Tidal Energy Project (East Foreland project) to be located in Cook Inlet in the vicinity of... from the module site to a shore station on the west coast of the Kenai Peninsula; (3) an approximately...

  20. Publications - SR 37 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska Section; Resource Assessment; Tyonek Formation; Type Section Top of Page Department of Natural Resources State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home

  1. Presentations - Twelker, Evan and others, 2014 | Alaska Division of

    Science.gov Websites

    Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Details Title: Preliminary results from 2014 geologic mapping in the Talkeetna Mountains, Alaska Lande, Lauren, 2014, Preliminary results from 2014 geologic mapping in the Talkeetna Mountains, Alaska

  2. Publications - RDF 2004-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ; Trace Elements; Trace Metals; Tungsten; Vanadium; Yttrium; Zinc; Zirconium Top of Page Department of Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  3. Publications - SR 32 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS SR 32 Publication Details Title: Oil and gas basins map of Alaska Authors: Ehm, Arlen Publication ): Alaska Statewide Bibliographic Reference Ehm, Arlen, 1983, Oil and gas basins map of Alaska: Alaska Sheets Sheet 1 Oil and gas basins map of Alaska, scale 1:2,500,000 (21.0 M) Keywords Alaska Statewide

  4. Publications - GMC 395 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    investigations of the diatom stratigraphy of Borehole TA8, Portage Alaska: Alaska Division of Geological & Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical DGGS GMC 395 Publication Details Title: Preliminary investigations of the diatom stratigraphy of

  5. 76 FR 45217 - Fisheries of the Exclusive Economic Zone Off Alaska; Central Gulf of Alaska Rockfish Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ..., management, safety, and economic gains realized under the Rockfish Pilot Program and viability of the Gulf of...-BA97 Fisheries of the Exclusive Economic Zone Off Alaska; Central Gulf of Alaska Rockfish Program... available for public review and comment. The groundfish fisheries in the exclusive economic zone of Alaska...

  6. Alaska Department of Labor and Workforce Development

    Science.gov Websites

    Market Information Alaska Job Centers Hot Topics Get Paid to Learn a Trade! Apprenticeship Alaska Career USAJOBS - Federal Gov. Jobs Apprenticeship Alaska Career Information System Veterans' Services Youth

  7. Tourism in rural Alaska

    Treesearch

    Katrina Church-Chmielowski

    2007-01-01

    Tourism in rural Alaska is an education curriculum with worldwide relevance. Students have started small businesses, obtained employment in the tourism industry and gotten in touch with their people. The Developing Alaska Rural Tourism collaborative project has resulted in student scholarships, workshops on website development, marketing, small...

  8. 76 FR 270 - Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ...] Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... approved Municipal Solid Waste Landfill (MSWLF) permit program. The approved modification allows the State..., EPA issued a final rule (69 FR 13242) amending the Municipal Solid Waste Landfill (MSWLF) criteria in...

  9. Presentations - Twelker, Evan and Lande, Lauren, 2015 | Alaska Division of

    Science.gov Websites

    Geological & Geophysical Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of (AVO) Mineral Resources Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem

  10. Norwegian fjord sediments reveal NAO related winter temperature and precipitation changes of the past 2800 years

    NASA Astrophysics Data System (ADS)

    Faust, Johan C.; Fabian, Karl; Milzer, Gesa; Giraudeau, Jacques; Knies, Jochen

    2016-02-01

    The North Atlantic Oscillation (NAO) is the leading mode of atmospheric circulation variability in the North Atlantic region. Associated shifts of storm tracks, precipitation and temperature patterns affect energy supply and demand, fisheries and agricultural, as well as marine and terrestrial ecological dynamics. Long-term NAO records are crucial to better understand its response to climate forcing factors, and assess predictability and shifts associated with ongoing climate change. A recent study of instrumental time series revealed NAO as main factor for a strong relation between winter temperature, precipitation and river discharge in central Norway over the past 50 years. Here we compare geochemical measurements with instrumental data and show that primary productivity recorded in central Norwegian fjord sediments is sensitive to NAO variability. This observation is used to calibrate paleoproductivity changes to a 500-year reconstruction of winter NAO (Luterbacher et al., 2001). Conditioned on a stationary relation between our climate proxy and the NAO we establish a first high resolution NAO proxy record (NAOTFJ) from marine sediments covering the past 2800 years. The NAOTFJ shows distinct co-variability with climate changes over Greenland, solar activity and Northern Hemisphere glacier dynamics as well as climatically associated paleo-demographic trends. The here presented climate record shows that fjord sediments provide crucial information for an improved understanding of the linkages between atmospheric circulation, solar and oceanic forcing factors.

  11. Boat-Wave-Induced Bank Erosion on the Kenai River, Alaska

    DTIC Science & Technology

    2008-03-01

    with coir log habitat restoration. .....................................................................75 Figure 51. Type 1 bank with willow...various types of streambank stabilization. Common stabilization techniques consist of root wads, spruce tree revetments, coir logs, and riprap...restoration. ERDC TR-08-5 75 Figure 50. Type 1 bank with coir log habitat restoration. Figure 51. Type 1 bank with willow plantings/ladder access habitat

  12. 76 FR 303 - Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ...] Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental... modification of its approved Municipal Solid Waste Landfill (MSWLF) permit program. On March 22, 2004, EPA..., Waste, and Toxics, U.S. EPA, Region 10, 1200 Sixth Avenue, Suite 900, Mailstop: AWT-122, Seattle, WA...

  13. Air temperature and humidity diversity in the Hornsund fjord area (Spitsbergen) in the period 1 July 2014 - 30 June 2015

    NASA Astrophysics Data System (ADS)

    Przybylak, Rajmund; Araźny, Andrzej; Wyszyński, Przemysław; Budzik, Tomasz; Wawrzyniak, Tomasz

    2016-04-01

    The article presents preliminary results of studies into the spatial diversity of air temperature and relative humidity (overground layer, 2 m a.g.l.) in the area of the Hornsund fjord (S Spitsbergen, approx. 77°N), based on data collected between 1 July 2014 and 30 June 2015. The Hornsund fjord runs latitudinal along approx. 40 km and its average width is about 10 km. Numerous glaciers flow into the fjord and the mountain ridges around it often exceed 700 m a.s.l. Data series obtained from 11 sites equipped with automatic weather stations (Vaisala, Campbell, Davis) or HOBO temperature and humidity sensors were used. Two sites (Hornsund HOR and the Hans Glacier HG4) have been operating for years, whereas 9 new ones (Bogstranda BOG, Fugleberget FUG, Gnålodden GNA, Gåshamnoyra GAS, Hyttevika HYT, Lisbetdalen LIS, Ostrogradskijfjella OST, Treskelodden TRE and Wilczekodden WIL) were established within the Polish-Norwegian AWAKE-2 project. Three of the sites (BOG, GAS and OST) were damaged by polar bears, hence their measurement series are shorter. A substantial spatial diversity was found in the air temperature and relative humidity in the area, mostly influenced by elevation, type of surface and distance from the Greenland Sea's open water. During the year (July 2014 - June 2015), the areas of HYT (-1.1°C) and WIL (-1.9°C) were the warmest. Both sites are located on the west coast of the fjord. The HYT demonstrates the most favourable temperature conditions, being orographically sheltered from the east and its cold and dry air masses. The coldest sites were the mountain-top site of FUG (-5.9°C) and the glacier-located HG4 (-4.3°C). The low temperature at FUG resulted from its elevation (568 m a.s.l.), whereas at HG4 (184 m a.s.l) the glaciated surface also added up to the result. In the analysed period, the annual course of air temperature in the area had a clear minimum in February, when the lowest mean monthly values ranged from -9.4°C at HYT to -15.1°C at

  14. Publications - Geospatial Data | Alaska Division of Geological &

    Science.gov Websites

    from rocks collected in the Richardson mining district, Big Delta Quadrangle, Alaska: Alaska Division , 40Ar/39Ar data, Alaska Highway corridor from Delta Junction to Canada border, parts of Mount Hayes

  15. Publications - DDS 7 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Alaska DGGS DDS 7 Publication Details Title: Alaska Coastal Profile Tool (ACPT) Authors: DGGS Staff ): Alaska Statewide Bibliographic Reference DGGS Staff, 2014, Alaska Coastal Profile Tool (ACPT): Alaska

  16. Harvesting morels after wildfire in Alaska.

    Treesearch

    Tricia L. Wurtz; Amy L. Wiita; Nancy S. Weber; David Pilz

    2005-01-01

    Morels are edible, choice wild mushrooms that sometimes fruit prolifically in the years immediately after an area has been burned by wildfire. Wildfires are common in interior Alaska; an average of 708,700 acres burned each year in interior Alaska between 1961 and 2000, and in major fire years, over 2 million acres burned. We discuss Alaska's boreal forest...

  17. The State of Alaska Agency Directory

    Science.gov Websites

    State Government Jobs Federal Jobs Starting a Small Business Living Get a Driver License Get a Hunting /Fishing License Get a Birth Certificate, Marriage License, etc. Alaska Permanent Fund Dividend Statewide Highway Conditions Take a University Class Look up Alaska Laws Recreation Find a Recreational Area Alaska

  18. Publications - AR 2006 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2006 main content DGGS AR 2006 Publication Details Title: Alaska Division of Geological & Geophysical Surveys Annual

  19. Publications - AR 2000 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2000 main content DGGS AR 2000 Publication Details Title: Alaska Division of Geological & Geophysical Surveys Annual

  20. Publications - AR 2003 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2003 main content DGGS AR 2003 Publication Details Title: Alaska Division of Geological & Geophysical Surveys Annual