Sample records for kepler candidate planet

  1. Planet Hunters: New Kepler Planet Candidates from Analysis of Quarter 2

    NASA Astrophysics Data System (ADS)

    Lintott, Chris J.; Schwamb, Megan E.; Barclay, Thomas; Sharzer, Charlie; Fischer, Debra A.; Brewer, John; Giguere, Matthew; Lynn, Stuart; Parrish, Michael; Batalha, Natalie; Bryson, Steve; Jenkins, Jon; Ragozzine, Darin; Rowe, Jason F.; Schwainski, Kevin; Gagliano, Robert; Gilardi, Joe; Jek, Kian J.; Pääkkönen, Jari-Pekka; Smits, Tjapko

    2013-06-01

    We present new planet candidates identified in NASA Kepler Quarter 2 public release data by volunteers engaged in the Planet Hunters citizen science project. The two candidates presented here survive checks for false positives, including examination of the pixel offset to constrain the possibility of a background eclipsing binary. The orbital periods of the planet candidates are 97.46 days (KIC 4552729) and 284.03 (KIC 10005758) days and the modeled planet radii are 5.3 and 3.8 R ⊕. The latter star has an additional known planet candidate with a radius of 5.05 R ⊕ and a period of 134.49 days, which was detected by the Kepler pipeline. The discovery of these candidates illustrates the value of massively distributed volunteer review of the Kepler database to recover candidates which were otherwise uncataloged. .

  2. PLANET HUNTERS: NEW KEPLER PLANET CANDIDATES FROM ANALYSIS OF QUARTER 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lintott, Chris J.; Schwamb, Megan E.; Schwainski, Kevin, E-mail: cjl@astro.ox.ac.uk

    2013-06-15

    We present new planet candidates identified in NASA Kepler Quarter 2 public release data by volunteers engaged in the Planet Hunters citizen science project. The two candidates presented here survive checks for false positives, including examination of the pixel offset to constrain the possibility of a background eclipsing binary. The orbital periods of the planet candidates are 97.46 days (KIC 4552729) and 284.03 (KIC 10005758) days and the modeled planet radii are 5.3 and 3.8 R{sub Circled-Plus }. The latter star has an additional known planet candidate with a radius of 5.05 R{sub Circled-Plus} and a period of 134.49 days,more » which was detected by the Kepler pipeline. The discovery of these candidates illustrates the value of massively distributed volunteer review of the Kepler database to recover candidates which were otherwise uncataloged.« less

  3. Size of Kepler Planet Candidates

    NASA Image and Video Library

    2013-01-07

    Kepler data has increased by 20 percent and now totals 2,740 potential planets orbiting 2,036 stars; dramatic increases are seen in the number of Earth-size and super Earth-size candidates discovered.

  4. Spectroscopy of Kepler Exo-planet Transit Candidate Stars

    NASA Astrophysics Data System (ADS)

    Howell, Steve B.; Everett, Mark; Silva, David; Rowe, Jason; Szkody, Paula; Mighell, Ken; Ciardi, David

    2012-02-01

    We propose a long term spectroscopic follow-up program in support of the NASA Kepler exo-planet mission. The Kepler project is now focusing on exo-planet candidates which are smaller in radius (down to Earth- size), have longer period orbits and many of which orbit fainter stars. Our program will spend 85% of the time on our primary goal, spectroscopy of the host stars of exoplanet candidates, and 15% of the time on investigation of other astrophysically interesting stars discovered by Kepler. Our prime goal is to obtain reconnaissance spectra of newly discovered exo-planet stars yielding model fits to T_eff and log g. Secondary goals are to obtain velocity information on EBs with a third component aimed toward discovery of circumbinary planets (such as Kepler 16b) and identification spectra of U-band selected targets in order to find more white dwarfs for Kepler focal plane calibration purposes. All of these tasks can be accomplished using the Kitt Peak 4-m telescope and RCspec as shown by our previous time allocations.

  5. Kepler Mission Discovers Trove of Extrasolar Planet Candidates

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-02-01

    NASA's Kepler discovery mission is collecting more than just pennies from heaven. Results from the first 4 months of science operations of the Kepler space telescope, announced on 2 February, include the discovery of 1235 candidate planets orbiting 997 stars in a small portion of the Milky Way galaxy examined by the telescope. Follow-up observations likely could confirm about 80% of the candidates as actual planets rather than false positives, according to researchers. This new trove of possible exoplanets could greatly expand the number of known planets outside of our solar system.

  6. Plans for Follow-Up Observations of Kepler Planet Candidates

    NASA Astrophysics Data System (ADS)

    Gautier, Thomas N., III

    2009-05-01

    Ground based follow-up observations of transiting planet candidates identified by Kepler are pursued to identify false positives and to search for non-transiting planets in the systems of true transiting planets. I will describe the observational protocols developed by the Kepler team and the web based infrastructure we are using to support the observations. The current state of the Kepler follow-up observations will be reported.

  7. New Constraints on the False Positive Rate for Short-Period Kepler Planet Candidates

    NASA Astrophysics Data System (ADS)

    Colón, Knicole D.; Morehead, Robert C.; Ford, Eric B.

    2015-01-01

    The Kepler space mission has discovered thousands of potential planets orbiting other stars, thereby setting the stage for in-depth studies of different populations of planets. We present new multi-wavelength transit photometry of small (Rp < 6 Earth radii), short-period (P < 6 days) Kepler planet candidates acquired with the Gran Telescopio Canarias. Multi-wavelength transit photometry allows us to search for wavelength-dependent transit depths and subsequently identify eclipsing binary false positives (which are especially prevalent at the shortest orbital periods). We combine these new observations of three candidates with previous results for five other candidates (Colón & Ford 2011 and Colón, Ford, & Morehead 2012) to provide new constraints on the false positive rate for small, close-in candidates. In our full sample, we identify four candidates as viable planets and four as eclipsing binary false positives. We therefore find a higher false positive rate for small, close-in candidates compared to the lower false positive rate of ~10% determined by other studies for the full sample of Kepler planet candidates (e.g. Fressin et al. 2013). We also discuss the dearth of known planets with periods less than ~2.5 days and radii between ~3 and 11 Earth radii (the so-called 'sub-Jovian desert'), since the majority of the candidates in our study are located in or around this 'desert.' The lack of planets with these orbital and physical properties is not expected to be due to observational bias, as short-period planets are generally easier to detect (especially if they are larger or more massive than Earth). We consider the implications of our results for the other ~20 Kepler planet candidates located in this desert. Characterizing these candidates will allow us to better understand the formation processes of this apparently rare class of planets.

  8. LGS-AO Imaging of Every Kepler Planet Candidate: the Robo-AO KOI Survey

    NASA Astrophysics Data System (ADS)

    Baranec, Christoph; Law, Nicholas; Morton, Timothy; Ziegler, Carl; Nofi, Larissa; Atkinson, Dani; Riddle, Reed

    2015-12-01

    The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star with laser adaptive optics imaging, to search for blended nearby stars which may be physically associated companions and/or responsible for transit false positives. We will present the results from searching for companions around over 3,000 Kepler planet hosts in 2012-2015. We will describe our first data release covering 715 planet candidate hosts, and give a preview of ongoing results including improved statistics on the likelihood of false positive planet detections in the Kepler dataset, many new planets in multiple star systems, and new exotic multiple star systems containing Kepler planets. We will also describe the automated Robo-AO survey data reduction methods, including a method of using the large ensemble of target observations as mutual point-spread-function references, along with a new automated companion-detection algorithm designed for extremely large adaptive optics surveys. Our first data release covered 715 objects, searching for companions from 0.15” to 2.5” separation with contrast up to 6 magnitudes. We measured the overall nearby-star-probability for Kepler planet candidates to be 7.4+/-1.0%, and we will detail the variations in this number with stellar host parameters. We will also discuss plans to extend the survey to other transiting planet missions such as K2 and TESS as Robo-AO is in the process of being re-deployed to the 2.1-m telescope at Kitt Peak for 3 years and a higher-contrast Robo-AO system is being developed for the 2.2-m UH telescope on Maunakea.

  9. The Final Kepler Planet Candidate Catalog (DR25)

    NASA Astrophysics Data System (ADS)

    Coughlin, Jeffrey; Thompson, Susan E.; Kepler Team

    2017-06-01

    We present Kepler's final planet candidate catalog, which is based on the Q1--Q17 DR25 data release and was created to allow for accurate calculations of planetary occurrence rates. We discuss improvements made to our fully automated candidate vetting procedure, which yields specific categories of false positives and a disposition score value to indicate decision confidence. We present the use of light curve inversion and scrambling, in addition to our continued use of pixel-level transit injection, to produce artificial planet candidates and false positives. Since these simulated data sets were subjected to the same automated vetting procedure as the real data set, we are able to measure both the completeness and reliability of the catalog. The DR25 catalog, source code, and a multitude of completeness and reliability data products are available at the Exoplanet Archive (http://exoplanetarchive.ipac.caltech.edu). The DR25 light curves and pixel-level data are available at MAST (http://archive.stsci.edu/kepler).

  10. VALFAST: Secure Probabilistic Validation of Hundreds of Kepler Planet Candidates

    NASA Astrophysics Data System (ADS)

    Morton, Tim; Petigura, E.; Johnson, J. A.; Howard, A.; Marcy, G. W.; Baranec, C.; Law, N. M.; Riddle, R. L.; Ciardi, D. R.; Robo-AO Team

    2014-01-01

    The scope, scale, and tremendous success of the Kepler mission has necessitated the rapid development of probabilistic validation as a new conceptual framework for analyzing transiting planet candidate signals. While several planet validation methods have been independently developed and presented in the literature, none has yet come close to addressing the entire Kepler survey. I present the results of applying VALFAST---a planet validation code based on the methodology described in Morton (2012)---to every Kepler Object of Interest. VALFAST is unique in its combination of detail, completeness, and speed. Using the transit light curve shape, realistic population simulations, and (optionally) diverse follow-up observations, it calculates the probability that a transit candidate signal is the result of a true transiting planet or any of a number of astrophysical false positive scenarios, all in just a few minutes on a laptop computer. In addition to efficiently validating the planetary nature of hundreds of new KOIs, this broad application of VALFAST also demonstrates its ability to reliably identify likely false positives. This extensive validation effort is also the first to incorporate data from all of the largest Kepler follow-up observing efforts: the CKS survey of ~1000 KOIs with Keck/HIRES, the Robo-AO survey of >1700 KOIs, and high-resolution images obtained through the Kepler Follow-up Observing Program. In addition to enabling the core science that the Kepler mission was designed for, this methodology will be critical to obtain statistical results from future surveys such as TESS and PLATO.

  11. Speckle Imaging and Spectroscopy of Kepler Exo-planet Transit Candidate Stars

    NASA Astrophysics Data System (ADS)

    Howell, Steve B.; Sherry, William; Horch, Elliott; Doyle, Laurance

    2010-02-01

    The NASA Kepler mission was successfully launched on 6 March 2009 and has begun science operations. Commissioning tests done early on in the mission have shown that for the bright sources, 10-15 ppm relative photometry can be achieved. This level assures we will detect Earth- like transits if they are present. ``Hot Jupiter" and similar large planet candidates have already been discovered and will be discussed at the Jan. AAS meeting as well as in a special issue of Science magazine to appear near years end. The plethora of variability observed is astounding and includes a number of eclipsing binaries which appear to have Jupiter and smaller size objects as an orbiting their body. Our proposal consists of three highly related objectives: 1) To continue our highly successful speckle imaging program which is a major component of defense to weed out false positive candidate transiting planets found by Kepler and move the rest to probable or certain exo-planet detections; 2) To obtain low resolution ``discovery" type spectra for planet candidate stars in order to provide spectral type and luminosity class indicators as well as a first look triage to eliminate binaries and rapid rotators; and 3) to obtain ~1Aresolution time ordered spectra of eclipsing binaries that are exo-planet candidates in order to obtain the velocity solution for the binary star, allowing its signal to be modeled and removed from the Keck or HET exo-planet velocity search. As of this writing, Kepler has produced a list of 227 exo-planet candidates which require false positive decision tree observations. Our proposed effort performs much of the first line of defense for the mission.

  12. Inferring Planet Occurrence Rates With a Q1-Q17 Kepler Planet Candidate Catalog Produced by a Machine Learning Classifier

    NASA Astrophysics Data System (ADS)

    Catanzarite, Joseph; Jenkins, Jon Michael; McCauliff, Sean D.; Burke, Christopher; Bryson, Steve; Batalha, Natalie; Coughlin, Jeffrey; Rowe, Jason; mullally, fergal; thompson, susan; Seader, Shawn; Twicken, Joseph; Li, Jie; morris, robert; smith, jeffrey; haas, michael; christiansen, jessie; Clarke, Bruce

    2015-08-01

    NASA’s Kepler Space Telescope monitored the photometric variations of over 170,000 stars, at half-hour cadence, over its four-year prime mission. The Kepler pipeline calibrates the pixels of the target apertures for each star, produces light curves with simple aperture photometry, corrects for systematic error, and detects threshold-crossing events (TCEs) that may be due to transiting planets. The pipeline estimates planet parameters for all TCEs and computes diagnostics used by the Threshold Crossing Event Review Team (TCERT) to produce a catalog of objects that are deemed either likely transiting planet candidates or false positives.We created a training set from the Q1-Q12 and Q1-Q16 TCERT catalogs and an ensemble of synthetic transiting planets that were injected at the pixel level into all 17 quarters of data, and used it to train a random forest classifier. The classifier uniformly and consistently applies diagnostics developed by the Transiting Planet Search and Data Validation pipeline components and by TCERT to produce a robust catalog of planet candidates.The characteristics of the planet candidates detected by Kepler (planet radius and period) do not reflect the intrinsic planet population. Detection efficiency is a function of SNR, so the set of detected planet candidates is incomplete. Transit detection preferentially finds close-in planets with nearly edge-on orbits and misses planets whose orbital geometry precludes transits. Reliability of the planet candidates must also be considered, as they may be false positives. Errors in detected planet radius and in assumed star properties can also bias inference of intrinsic planet population characteristics.In this work we infer the intrinsic planet population, starting with the catalog of detected planet candidates produced by our random forest classifier, and accounting for detection biases and reliabilities as well as for radius errors in the detected population.Kepler was selected as the 10th mission

  13. Kepler Data Validation I—Architecture, Diagnostic Tests, and Data Products for Vetting Transiting Planet Candidates

    NASA Astrophysics Data System (ADS)

    Twicken, Joseph D.; Catanzarite, Joseph H.; Clarke, Bruce D.; Girouard, Forrest; Jenkins, Jon M.; Klaus, Todd C.; Li, Jie; McCauliff, Sean D.; Seader, Shawn E.; Tenenbaum, Peter; Wohler, Bill; Bryson, Stephen T.; Burke, Christopher J.; Caldwell, Douglas A.; Haas, Michael R.; Henze, Christopher E.; Sanderfer, Dwight T.

    2018-06-01

    The Kepler Mission was designed to identify and characterize transiting planets in the Kepler Field of View and to determine their occurrence rates. Emphasis was placed on identification of Earth-size planets orbiting in the Habitable Zone of their host stars. Science data were acquired for a period of four years. Long-cadence data with 29.4 min sampling were obtained for ∼200,000 individual stellar targets in at least one observing quarter in the primary Kepler Mission. Light curves for target stars are extracted in the Kepler Science Data Processing Pipeline, and are searched for transiting planet signatures. A Threshold Crossing Event is generated in the transit search for targets where the transit detection threshold is exceeded and transit consistency checks are satisfied. These targets are subjected to further scrutiny in the Data Validation (DV) component of the Pipeline. Transiting planet candidates are characterized in DV, and light curves are searched for additional planets after transit signatures are modeled and removed. A suite of diagnostic tests is performed on all candidates to aid in discrimination between genuine transiting planets and instrumental or astrophysical false positives. Data products are generated per target and planet candidate to document and display transiting planet model fit and diagnostic test results. These products are exported to the Exoplanet Archive at the NASA Exoplanet Science Institute, and are available to the community. We describe the DV architecture and diagnostic tests, and provide a brief overview of the data products. Transiting planet modeling and the search for multiple planets on individual targets are described in a companion paper. The final revision of the Kepler Pipeline code base is available to the general public through GitHub. The Kepler Pipeline has also been modified to support the Transiting Exoplanet Survey Satellite (TESS) Mission which is expected to commence in 2018.

  14. Kepler Data Validation I: Architecture, Diagnostic Tests, and Data Products for Vetting Transiting Planet Candidates

    NASA Technical Reports Server (NTRS)

    Twicken, Joseph D.; Catanzarite, Joseph H.; Clarke, Bruce D.; Giroud, Forrest; Jenkins, Jon M.; Klaus, Todd C.; Li, Jie; McCauliff, Sean D.; Seader, Shawn E.; Tennenbaum, Peter; hide

    2018-01-01

    The Kepler Mission was designed to identify and characterize transiting planets in the Kepler Field of View and to determine their occurrence rates. Emphasis was placed on identification of Earth-size planets orbiting in the Habitable Zone of their host stars. Science data were acquired for a period of four years. Long-cadence data with 29.4 min sampling were obtained for approx. 200,000 individual stellar targets in at least one observing quarter in the primary Kepler Mission. Light curves for target stars are extracted in the Kepler Science Data Processing Pipeline, and are searched for transiting planet signatures. A Threshold Crossing Event is generated in the transit search for targets where the transit detection threshold is exceeded and transit consistency checks are satisfied. These targets are subjected to further scrutiny in the Data Validation (DV) component of the Pipeline. Transiting planet candidates are characterized in DV, and light curves are searched for additional planets after transit signatures are modeled and removed. A suite of diagnostic tests is performed on all candidates to aid in discrimination between genuine transiting planets and instrumental or astrophysical false positives. Data products are generated per target and planet candidate to document and display transiting planet model fit and diagnostic test results. These products are exported to the Exoplanet Archive at the NASA Exoplanet Science Institute, and are available to the community. We describe the DV architecture and diagnostic tests, and provide a brief overview of the data products. Transiting planet modeling and the search for multiple planets on individual targets are described in a companion paper. The final revision of the Kepler Pipeline code base is available to the general public through GitHub. The Kepler Pipeline has also been modified to support the Transiting Exoplanet Survey Satellite (TESS) Mission which is expected to commence in 2018.

  15. Inferring Planet Occurrence Rates With a Q1-Q16 Kepler Planet Candidate Catalog Produced by a Machine Learning Classifier

    NASA Astrophysics Data System (ADS)

    Catanzarite, Joseph; Jenkins, Jon Michael; Burke, Christopher J.; McCauliff, Sean D.; Kepler Science Operations Center

    2015-01-01

    NASA's Kepler Space Telescope monitored the photometric variations of over 170,000 stars within a ~100 square degree field in the constellation Cygnus, at half-hour cadence, over its four year prime mission. The Kepler SOC (Science Operations Center) pipeline calibrates the pixels of the target apertures for each star, corrects light curves for systematic error, and detects TCEs (threshold-crossing events) that may be due to transiting planets. Finally the pipeline estimates planet parameters for all TCEs and computes quantitative diagnostics that are used by the TCERT (Threshold Crossing Event Review Team) to produce a catalog containing KOIs (Kepler Objects of Interest). KOIs are TCEs that are determined to be either likely transiting planets or astrophysical false positives such as background eclipsing binary stars. Using examples from the Q1-Q16 TCERT KOI catalog as a training set, we created a machine-learning classifier that dispositions the TCEs into categories of PC (planet candidate), AFP (astrophysical false positive) and NTP (non-transiting phenomenon). The classifier uniformly and consistently applies heuristics developed by TCERT as well as other diagnostics to the Q1-Q16 TCEs to produce a more robust and reliable catalog of planet candidates than is possible with only human classification. In this work, we estimate planet occurrence rates, based on the machine-learning-produced catalog of Kepler planet candidates. Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA, Science Mission Directorate.

  16. THE DISTRIBUTION OF TRANSIT DURATIONS FOR KEPLER PLANET CANDIDATES AND IMPLICATIONS FOR THEIR ORBITAL ECCENTRICITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moorhead, Althea V.; Ford, Eric B.; Morehead, Robert C.

    Doppler planet searches have discovered that giant planets follow orbits with a wide range of orbital eccentricities, revolutionizing theories of planet formation. The discovery of hundreds of exoplanet candidates by NASA's Kepler mission enables astronomers to characterize the eccentricity distribution of small exoplanets. Measuring the eccentricity of individual planets is only practical in favorable cases that are amenable to complementary techniques (e.g., radial velocities, transit timing variations, occultation photometry). Yet even in the absence of individual eccentricities, it is possible to study the distribution of eccentricities based on the distribution of transit durations (relative to the maximum transit duration formore » a circular orbit). We analyze the transit duration distribution of Kepler planet candidates. We find that for host stars with T{sub eff} > 5100 K we cannot invert this to infer the eccentricity distribution at this time due to uncertainties and possible systematics in the host star densities. With this limitation in mind, we compare the observed transit duration distribution with models to rule out extreme distributions. If we assume a Rayleigh eccentricity distribution for Kepler planet candidates, then we find best fits with a mean eccentricity of 0.1-0.25 for host stars with T{sub eff} {<=} 5100 K. We compare the transit duration distribution for different subsets of Kepler planet candidates and discuss tentative trends with planetary radius and multiplicity. High-precision spectroscopic follow-up observations for a large sample of host stars will be required to confirm which trends are real and which are the results of systematic errors in stellar radii. Finally, we identify planet candidates that must be eccentric or have a significantly underestimated stellar radius.« less

  17. Robo-AO Kepler Planetary Candidate Survey. III. Adaptive Optics Imaging of 1629 Kepler Exoplanet Candidate Host Stars

    NASA Astrophysics Data System (ADS)

    Ziegler, Carl; Law, Nicholas M.; Morton, Tim; Baranec, Christoph; Riddle, Reed; Atkinson, Dani; Baker, Anna; Roberts, Sarah; Ciardi, David R.

    2017-02-01

    The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star with laser adaptive optics imaging to search for blended nearby stars, which may be physically associated companions and/or responsible for transit false positives. In this paper, we present the results of our search for stars nearby 1629 Kepler planet candidate hosts. With survey sensitivity to objects as close as ˜0.″15, and magnitude differences Δm ≤slant 6, we find 223 stars in the vicinity of 206 target KOIs; 209 of these nearby stars have not been previously imaged in high resolution. We measure an overall nearby-star probability for Kepler planet candidates of 12.6 % +/- 0.9 % at separations between 0.″15 and 4.″0. Particularly interesting KOI systems are discussed, including 26 stars with detected companions that host rocky, habitable zone candidates and five new candidate planet-hosting quadruple star systems. We explore the broad correlations between planetary systems and stellar binarity, using the combined data set of Baranec et al. and this paper. Our previous 2σ result of a low detected nearby star fraction of KOIs hosting close-in giant planets is less apparent in this larger data set. We also find a significant correlation between detected nearby star fraction and KOI number, suggesting possible variation between early and late Kepler data releases.

  18. Transiting Planets from Kepler, K2 & TESS

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack

    2018-01-01

    NASA's Kepler spacecraft, launched in 2009, has been a resounding success. More than 4000 planet candidates have been identified using data from Kepler primary mission, which ended in 2013, and greater than 2000 of these candidates have been verified as bona fide exoplanets. After the loss of two reaction wheels ended the primary mission, the Kepler spacecraft was repurposed in 2014 to observe many fields on the sky for short periods. This new mission, dubbed K2, has led to the discovery of greater than 600 planet candidates, approximately 200 of which have been verified to date; most of these exoplanets are closer to us than the majority of exoplanets discovered by the primary Kepler mission. TESS, launching in 2018, will survey most of the sky for exoplanets, with emphasis on those orbiting nearby and/or bright host stars, making these planets especially well-suited for follow-up observations with other observatories to characterize atmospheric compositions and other properties. More than one-third of the planet candidates found by NASA's are associated with target stars that have more than one planet candidate, and such 'multis' account for the majority of candidates that have been verified as true planets. The large number of multis tells us that flat multiplanet systems like our Solar System are common. Virtually all of the candidate planetary systems are stable, as tested by numerical integrations that assume a physically motivated mass-radius relationship. Statistical studies performed on these candidate systems reveal a great deal about the architecture of planetary systems, including the typical spacing of orbits and flatness. The characteristics of several of the most interesting confirmed Kepler & K2 multi-planet systems will also be discussed.

  19. PLANET HUNTERS. V. A CONFIRMED JUPITER-SIZE PLANET IN THE HABITABLE ZONE AND 42 PLANET CANDIDATES FROM THE KEPLER ARCHIVE DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ji; Fischer, Debra A.; Boyajian, Tabetha S.

    We report the latest Planet Hunter results, including PH2 b, a Jupiter-size (R{sub PL} = 10.12 ± 0.56 R{sub ⊕}) planet orbiting in the habitable zone of a solar-type star. PH2 b was elevated from candidate status when a series of false-positive tests yielded a 99.9% confidence level that transit events detected around the star KIC 12735740 had a planetary origin. Planet Hunter volunteers have also discovered 42 new planet candidates in the Kepler public archive data, of which 33 have at least 3 transits recorded. Most of these transit candidates have orbital periods longer than 100 days and 20more » are potentially located in the habitable zones of their host stars. Nine candidates were detected with only two transit events and the prospective periods are longer than 400 days. The photometric models suggest that these objects have radii that range between those of Neptune and Jupiter. These detections nearly double the number of gas-giant planet candidates orbiting at habitable-zone distances. We conducted spectroscopic observations for nine of the brighter targets to improve the stellar parameters and we obtained adaptive optics imaging for four of the stars to search for blended background or foreground stars that could confuse our photometric modeling. We present an iterative analysis method to derive the stellar and planet properties and uncertainties by combining the available spectroscopic parameters, stellar evolution models, and transiting light curve parameters, weighted by the measurement errors. Planet Hunters is a citizen science project that crowd sources the assessment of NASA Kepler light curves. The discovery of these 43 planet candidates demonstrates the success of citizen scientists at identifying planet candidates, even in longer period orbits with only two or three transit events.« less

  20. ARCHITECTURE AND DYNAMICS OF KEPLER'S CANDIDATE MULTIPLE TRANSITING PLANET SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lissauer, Jack J.; Jenkins, Jon M.; Borucki, William J.

    About one-third of the {approx}1200 transiting planet candidates detected in the first four months of Kepler data are members of multiple candidate systems. There are 115 target stars with two candidate transiting planets, 45 with three, 8 with four, and 1 each with five and six. We characterize the dynamical properties of these candidate multi-planet systems. The distribution of observed period ratios shows that the vast majority of candidate pairs are neither in nor near low-order mean-motion resonances. Nonetheless, there are small but statistically significant excesses of candidate pairs both in resonance and spaced slightly too far apart to bemore » in resonance, particularly near the 2:1 resonance. We find that virtually all candidate systems are stable, as tested by numerical integrations that assume a nominal mass-radius relationship. Several considerations strongly suggest that the vast majority of these multi-candidate systems are true planetary systems. Using the observed multiplicity frequencies, we find that a single population of planetary systems that matches the higher multiplicities underpredicts the number of singly transiting systems. We provide constraints on the true multiplicity and mutual inclination distribution of the multi-candidate systems, revealing a population of systems with multiple super-Earth-size and Neptune-size planets with low to moderate mutual inclinations.« less

  1. A New Way to Confirm Planet Candidates

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    What was the big deal behind the Kepler news conference yesterday? Its not just that the number of confirmed planets found by Kepler has more than doubled (though thats certainly exciting news!). Whats especially interesting is the way in which these new planets were confirmed.Number of planet discoveries by year since 1995, including previous non-Kepler discoveries (blue), previous Kepler discoveries (light blue) and the newly validated Kepler planets (orange). [NASA Ames/W. Stenzel; Princeton University/T. Morton]No Need for Follow-UpBefore Kepler, the way we confirmed planet candidates was with follow-up observations. The candidate could be validated either by directly imaging (which is rare) or obtaining a large number radial-velocity measurements of the wobble of the planets host star due to the planets orbit. But once Kepler started producing planet candidates, these approaches to validation became less feasible. A lot of Kepler candidates are small and orbit faint stars, making follow-up observations difficult or impossible.This problem is what inspired the development of whats known as probabilistic validation, an analysis technique that involves assessing the likelihood that the candidates signal is caused by various false-positive scenarios. Using this technique allows astronomers to estimate the likelihood of a candidate signal being a true planet detection; if that likelihood is high enough, the planet candidate can be confirmed without the need for follow-up observations.A breakdown of the catalog of Kepler Objects of Interest. Just over half had previously been identified as false positives or confirmed as candidates. 1284 are newly validated, and another 455 have FPP of1090%. [Morton et al. 2016]Probabilistic validation has been used in the past to confirm individual planet candidates in Kepler data, but now Timothy Morton (Princeton University) and collaborators have taken this to a new level: they developed the first code thats designed to do fully

  2. An independent planet search in the Kepler dataset. I. One hundred new candidates and revised Kepler objects of interest

    NASA Astrophysics Data System (ADS)

    Ofir, A.; Dreizler, S.

    2013-07-01

    Aims: We present first results of our efforts to re-analyze the Kepler photometric dataset, searching for planetary transits using an alternative processing pipeline to the one used by the Kepler mission Methods: The SARS pipeline was tried and tested extensively by processing all available CoRoT mission data. For this first paper of the series we used this pipeline to search for (additional) planetary transits only in a small subset of stars - the Kepler objects of interest (KOIs), which are already known to include at least one promising planet candidate. Results: Although less than 1% of the Kepler dataset are KOIs we are able to significantly update the overall statistics of planetary multiplicity: we find 84 new transit signals on 64 systems on these light curves (LCs) only, nearly doubling the number of transit signals in these systems. Forty-one of the systems were singly-transiting systems that are now multiply-transiting. This significantly reduces the chances of false positive in them. Notable among the new discoveries are KOI 435 as a new six-candidate system (of which kind only Kepler-11 was known before), KOI 277 (which includes two candidates in a 6:7 period commensurability that has anti-correlated transit timing variations) - all but validating the system, KOIs 719, 1574, and 1871 that have small planet candidates (1.15,2.05 and 1.71 R⊕) in the habitable zone of their host star, and KOI 1843 that exhibits the shortest period (4.25 h) and is among the smallest (0.63 R⊕) of all planet candidates. We are also able to reject 11 KOIs as eclipsing binaries based on photometry alone, update the ephemeris for five KOIs and otherwise discuss a number of other objects, which brings the total of new signals and revised KOIs in this study to more than one hundred. Interestingly, a large fraction, about ~1/3, of the newly detected candidates participate in period commensurabilities. Finally, we discuss the possible overestimation of parameter errors in the

  3. An independent planet search in the Kepler dataset. II. An extremely low-density super-Earth mass planet around Kepler-87

    NASA Astrophysics Data System (ADS)

    Ofir, Aviv; Dreizler, Stefan; Zechmeister, Mathias; Husser, Tim-Oliver

    2014-01-01

    Context. The primary goal of the Kepler mission is the measurement of the frequency of Earth-like planets around Sun-like stars. However, the confirmation of the smallest of Kepler's candidates in long periods around FGK dwarfs is extremely difficult or even beyond the limit of current radial velocity technology. Transit timing variations (TTVs) may offer the possibility for these confirmations of near-resonant multiple systems by the mutual gravitational interaction of the planets. Aims: We previously detected the second planet candidate in the KOI 1574 system. The two candidates have relatively long periods (about 114 d and 191 d) and are in 5:3 resonance. We therefore searched for TTVs in this particularly promising system. Methods: The full Kepler data was detrended with the proven SARS pipeline. The entire data allowed one to search for TTVs of the above signals, and to search for additional transit-like signals. Results: We detected strong anti-correlated TTVs of the 114 d and 191 d signals, dynamically confirming them as members of the same system. Dynamical simulations reproducing the observed TTVs allowed us to also determine the masses of the planets. We found KOI 1574.01 (hereafter Kepler-87 b) to have a radius of 13.49 ± 0.55 R⊕ and a mass of 324.2 ± 8.8 M⊕, and KOI 1574.02 (Kepler-87 c) to have a radius of 6.14 ± 0.29 R⊕ and a mass of 6.4 ± 0.8 M⊕. Both planets have low densities of 0.729 and 0.152 g cm-3, respectively, which is non-trivial for such cold and old (7-8 Gyr) planets. Specifically, Kepler-87 c is the lowest-density planet in the super-Earth mass range. Both planets are thus particularly amenable to modeling and planetary structure studies, and also present an interesting case where ground-based photometric follow-up of Kepler planets is very desirable. Finally, we also detected two more short-period super-Earth sized (<2 R⊕) planetary candidates in the system, making the relatively high multiplicity of this system notable

  4. Identifying Exoplanets with Deep Learning: A Five-planet Resonant Chain around Kepler-80 and an Eighth Planet around Kepler-90

    NASA Astrophysics Data System (ADS)

    Shallue, Christopher J.; Vanderburg, Andrew

    2018-02-01

    NASA’s Kepler Space Telescope was designed to determine the frequency of Earth-sized planets orbiting Sun-like stars, but these planets are on the very edge of the mission’s detection sensitivity. Accurately determining the occurrence rate of these planets will require automatically and accurately assessing the likelihood that individual candidates are indeed planets, even at low signal-to-noise ratios. We present a method for classifying potential planet signals using deep learning, a class of machine learning algorithms that have recently become state-of-the-art in a wide variety of tasks. We train a deep convolutional neural network to predict whether a given signal is a transiting exoplanet or a false positive caused by astrophysical or instrumental phenomena. Our model is highly effective at ranking individual candidates by the likelihood that they are indeed planets: 98.8% of the time it ranks plausible planet signals higher than false-positive signals in our test set. We apply our model to a new set of candidate signals that we identified in a search of known Kepler multi-planet systems. We statistically validate two new planets that are identified with high confidence by our model. One of these planets is part of a five-planet resonant chain around Kepler-80, with an orbital period closely matching the prediction by three-body Laplace relations. The other planet orbits Kepler-90, a star that was previously known to host seven transiting planets. Our discovery of an eighth planet brings Kepler-90 into a tie with our Sun as the star known to host the most planets.

  5. Planet Hunters, Undergraduate Research, and Detection of Extrasolar Planet Kepler-818 b

    NASA Astrophysics Data System (ADS)

    Baker, David; Crannell, Graham; Duncan, James; Hays, Aryn; Hendrix, Landon

    2017-01-01

    Detection of extrasolar planets provides an excellent research opportunity for undergraduate students. In Spring 2012, we searched for transiting extrasolar planets using Kepler spacecraft data in our Research Experience in Physics course at Austin College. Offered during the regular academic year, these Research Experience courses engage students in the scientific process, including proposal writing, paper submission, peer review, and oral presentations. Since 2004, over 190 undergraduate students have conducted authentic scientific research through Research Experience courses at Austin College.Zooniverse’s citizen science Planet Hunters web site offered an efficient method for rapid analysis of Kepler data. Light curves from over 5000 stars were analyzed, of which 2.3% showed planetary candidates already tagged by the Kepler team. Another 1.5% of the light curves suggested eclipsing binary stars, and 1.6% of the light curves had simulated planets for training purposes.One of the stars with possible planetary transits had not yet been listed as a planetary candidate. We reported possible transits for Kepler ID 4282872, which later was promoted to planetary candidate KOI-1325 in 2012 and confirmed to host extrasolar planet Kepler-818 b in 2016 (Morton et al. 2016). Kepler-818 b is a “hot Neptune” with period 10.04 days, flux decrease during transit ~0.4%, planetary radius 4.69 Earth radii, and semi-major axis 0.089 au.

  6. Kepler False Positive Rate & Occurrence of Earth-size and Larger Planets

    NASA Astrophysics Data System (ADS)

    Fressin, Francois; Torres, G.; Charbonneau, D.; Kepler Team

    2013-01-01

    We model the Kepler exoplanet survey targets and their background stars to estimate the occurrence of astrophysical configurations which could mimic an exoplanetary transit. Using real noise level estimates, we compute the number and the characteristics of detectable eclipsing pairs involving stars or planets. We select the fraction of those that would pass the Kepler candidate vetting procedure, including the modeling of the centroid shift of their position on the Kepler camera. By comparing their distribution with that of the Kepler Object Interests from the first 6 quarters of Kepler data, we quantify the false positive rate of Kepler, as a function of candidate planet size and period. Most importantly, this approach allows quantifying and characterizing the distribution of planets, with no assumption of any prior, as the remaining population of the Kepler candidate list minus the simulated population of alternate astrophysical causes. We study the actual detection recovery rate for Kepler that allows reproducing both the KOI size and period distribution as well as their SNR distribution. We estimate the occurrence of planets down to Earth-size, and study if their frequency is correlated with their host star spectral type. This work is supported by the Spitzer General Observer Proposal #80117 - Validating the First Habitable-Zone Planet Candidates Identified by the NASA Kepler Mission, and by the Kepler Participating Scientist Contract led by David Charbonneau, to confirm the planetary nature of candidates identified by the Kepler mission

  7. PLANET HUNTERS. VIII. CHARACTERIZATION OF 41 LONG-PERIOD EXOPLANET CANDIDATES FROM KEPLER ARCHIVAL DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ji; Fischer, Debra A.; Picard, Alyssa

    2015-12-20

    The census of exoplanets is incomplete for orbital distances larger than 1 AU. Here, we present 41 long-period planet candidates in 38 systems identified by Planet Hunters based on Kepler archival data (Q0–Q17). Among them, 17 exhibit only one transit, 14 have two visible transits, and 10 have more than three visible transits. For planet candidates with only one visible transit, we estimate their orbital periods based on transit duration and host star properties. The majority of the planet candidates in this work (75%) have orbital periods that correspond to distances of 1–3 AU from their host stars. We conduct follow-up imaging and spectroscopic observationsmore » to validate and characterize planet host stars. In total, we obtain adaptive optics images for 33 stars to search for possible blending sources. Six stars have stellar companions within 4″. We obtain high-resolution spectra for 6 stars to determine their physical properties. Stellar properties for other stars are obtained from the NASA Exoplanet Archive and the Kepler Stellar Catalog by Huber et al. We validate 7 planet candidates that have planet confidence over 0.997 (3σ level). These validated planets include 3 single-transit planets (KIC-3558849b, KIC-5951458b, and KIC-8540376c), 3 planets with double transits (KIC-8540376b, KIC-9663113b, and KIC-10525077b), and 1 planet with four transits (KIC-5437945b). This work provides assessment regarding the existence of planets at wide separations and the associated false positive rate for transiting observation (17%–33%). More than half of the long-period planets with at least three transits in this paper exhibit transit timing variations up to 41 hr, which suggest additional components that dynamically interact with the transiting planet candidates. The nature of these components can be determined by follow-up radial velocity and transit observations.« less

  8. A Planet Hunters Search of the Kepler TCE Inventory

    NASA Astrophysics Data System (ADS)

    Schwamb, Meg; Lintott, Chris; Fischer, Debra; Smith, Arfon; Boyajian, Tabetha; Brewer, John; Giguere, Matt; Lynn, Stuart; Schawinski, Kevin; Simpson, Rob; Wang, Ji

    2013-07-01

    NASA's Kepler spacecraft has spent the past 4 years monitoring ~160,000 stars for the signatures of transiting exoplanets. Planet Hunters (http://www.planethunters.org), part of the Zooniverse (http://www.zooniverse.org) collection of citizen science projects, uses the power of human pattern recognition via the World Wide Web to identify transits in the Kepler public data. We have demonstrated the success of a citizen science approach with the project's discoveries including PH1 b, a transiting circumbinary planet in a four star system., and over 20 previously unknown planet candidates. The Kepler team has released the list of 18,406 potential transit signals or threshold-crossing events (TCEs) identified in Quarters 1-12 (~1000 days) by their automated Transit Planet Search (TPS) algorithm. The majority of these detections found by TPS are triggered by transient events and are not valid planet candidates. To identify planetary candidates from the detected TCEs, a human review of the validation reports, generated by the Kepler pipeline for each TCE, is performed by several Kepler team members. We have undertaken an independent crowd-sourced effort to perform a systematic search of the Kepler Q1-12 TCE list. With the Internet we can obtain multiple assessments of each TCE's data validation report. Planet Hunters volunteers evaluate whether a transit is visible in the Kepler light curve folded on the expected period identified by TPS. We present the first results of this analysis.

  9. Advances in the Kepler Transit Search Engine and Automated Approaches to Identifying Likely Planet Candidates in Transit Surveys

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon Michael

    2015-08-01

    Twenty years ago, no planets were known outside our own solar system. Since then, the discoveries of ~1500 exoplanets have radically altered our views of planets and planetary systems. This revolution is due in no small part to the Kepler Mission, which has discovered >1000 of these planets and >4000 planet candidates. While Kepler has shown that small rocky planets and planetary systems are quite common, the quest to find Earth’s closest cousins and characterize their atmospheres presses forward with missions such as NASA Explorer Program’s Transiting Exoplanet Survey Satellite (TESS) slated for launch in 2017 and ESA’s PLATO mission scheduled for launch in 2024.These future missions pose daunting data processing challenges in terms of the number of stars, the amount of data, and the difficulties in detecting weak signatures of transiting small planets against a roaring background. These complications include instrument noise and systematic effects as well as the intrinsic stellar variability of the subjects under scrutiny. In this paper we review recent developments in the Kepler transit search pipeline improving both the yield and reliability of detected transit signatures.Many of the phenomena in light curves that represent noise can also trigger transit detection algorithms. The Kepler Mission has expended great effort in suppressing false positives from its planetary candidate catalogs. While over 18,000 transit-like signatures can be identified for a search across 4 years of data, most of these signatures are artifacts, not planets. Vetting all such signatures historically takes several months’ effort by many individuals. We describe the application of machine learning approaches for the automated vetting and production of planet candidate catalogs. These algorithms can improve the efficiency of the human vetting effort as well as quantifying the likelihood that each candidate is truly a planet. This information is crucial for obtaining valid planet

  10. SETI Searches for Radio Transients from Kepler Field Planets and Astropulse Candidates

    NASA Astrophysics Data System (ADS)

    Gautam, Abhimat Krishna; Siemion, Andrew; Korpela, Eric J.; Cobb, Jeff; Lebofsky, Matt; Werthimer, Dan

    2014-06-01

    We present a search for fast radio transients in targeted observations of planet candidates in the Kepler Field and candidate Astropulse sources.Kepler Field observations were conducted in the band 1.1 and 1.9 GHz using the Green Bank Telescope in Green Bank, West Virginia and are centered on 86 stars hosting candidate planets identified by the Kepler spacecraft. These stars were chosen based on the properties of their putative planetary system thought to be conducive to the development of advanced life, including all systems known (as of May 2011) hosting a Kepler Object of Interest (KOI) with a calculated equilibrium temperature between 230 and 380 K, at least 4 KOIs or a KOI with an inferred radius < 3.0 r_earth and a period > 50 d. The Kepler Field is centered at an intermediate galactic latitude, b = 13.5°, which presents an additional opportunity to detect signals from the older population of millisecond and recycled pulsars located above the galactic plane.The Astropulse radio survey searches for brief wide-band pulses in a 2.5 MHz band centered at 1420 MHz using commensal data recorded from the Arecibo ALFA receiver. In early Astropulse analysis, 108 candidate sources were identified that passed a series of tests designed to eliminate potential sources of radio frequency interference (RFI). We have performed targeted re-observations of these sources at Arecibo over the full (1214-1536 MHz) ALFA band.We have developed a software pipeline to locate fast dispersed transients in these observations, leveraging components of the PRESTO software library. This pipeline consists of finding and removing RFI, conducting de-dispersion to remove the effects of dispersion from the interstellar medium (ISM) on the signal and identifying over- threshold events. We also perform de-dispersion at negative dispersion measures, proposed to be a potential technique for intelligent civilizations to distinguish their emission from natural sources. We carry out both a periodicity

  11. THE HUNT FOR EXOMOONS WITH KEPLER (HEK). II. ANALYSIS OF SEVEN VIABLE SATELLITE-HOSTING PLANET CANDIDATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kipping, D. M.; Hartman, J.; Bakos, G. A.

    2013-06-20

    From the list of 2321 transiting planet candidates announced by the Kepler Mission, we select seven targets with favorable properties for the capacity to dynamically maintain an exomoon and present a detectable signal. These seven candidates were identified through our automatic target selection (TSA) algorithm and target selection prioritization (TSP) filtering, whereby we excluded systems exhibiting significant time-correlated noise and focused on those with a single transiting planet candidate of radius less than 6 R{sub Circled-Plus }. We find no compelling evidence for an exomoon around any of the seven Kepler Objects of Interest (KOIs) but constrain the satellite-to-planet massmore » ratios for each. For four of the seven KOIs, we estimate a 95% upper quantile of M{sub S} /M{sub P} < 0.04, which given the radii of the candidates, likely probes down to sub-Earth masses. We also derive precise transit times and durations for each candidate and find no evidence for dynamical variations in any of the KOIs. With just a few systems analyzed thus far in the ongoing ''Hunt for Exomoons with Kepler'' (HEK) project, projections on eta-moon would be premature, but a high frequency of large moons around Super-Earths/Mini-Neptunes would be premature, but a high frequency of large moons around Super-Earths/Mini-Neptunes would appear to be incommensurable with our results so far.« less

  12. 100-year DASCH Light Curves of Kepler Planet-Candidate Host Stars

    NASA Astrophysics Data System (ADS)

    Tang, Sumin; Sasselov, Dimitar; Grindlay, Jonathan; Los, Edward; Servillat, Mathieu

    2013-07-01

    We present 100 year light curves of Kepler planet-candidate host stars from the Digital Access to a Sky Century at Harvard (DASCH) project. 261 out of 997 host stars have at least 10 good measurements on DASCH scans of the Harvard plates. 109 of them have at least 100 good measurements, including 70% (73 out of 104) of all host stars with g ≤ 13 mag, and 44% (100 out of 228) of all host stars with g ≤ 14 mag. Our typical photometric uncertainty is ˜0.1-0.15 mag. No variation is found at 3σ level for these host stars, including 21 confirmed or candidate hot Jupiter systems which might be expected to show enhanced flares from magnetic interactions between dwarf primaries and their close and relatively massive planet companions.

  13. NASA KEPLER OPENS THE STUDY OF THE GALAXY’S PLANET POPULATION

    NASA Image and Video Library

    2017-06-20

    NASA's Kepler mission released its eighth Kepler Candidate Catalog, which contains the best measured and most reliable planet candidates from the space telescope's final survey of the Cygnus Field. In the data are 219 new planet candidates, of which 10 are less than twice the size of the Earth and orbit in the habitable zone.

  14. Validation of Small Kepler Transiting Planet Candidates in or near the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Torres, Guillermo; Kane, Stephen R.; Rowe, Jason F.; Batalha, Natalie M.; Henze, Christopher E.; Ciardi, David R.; Barclay, Thomas; Borucki, William J.; Buchhave, Lars A.; Crepp, Justin R.; Everett, Mark E.; Horch, Elliott P.; Howard, Andrew W.; Howell, Steve B.; Isaacson, Howard T.; Jenkins, Jon M.; Latham, David W.; Petigura, Erik A.; Quintana, Elisa V.

    2017-12-01

    A main goal of NASA’s Kepler Mission is to establish the frequency of potentially habitable Earth-size planets ({η }\\oplus ). Relatively few such candidates identified by the mission can be confirmed to be rocky via dynamical measurement of their mass. Here we report an effort to validate 18 of them statistically using the BLENDER technique, by showing that the likelihood they are true planets is far greater than that of a false positive. Our analysis incorporates follow-up observations including high-resolution optical and near-infrared spectroscopy, high-resolution imaging, and information from the analysis of the flux centroids of the Kepler observations themselves. Although many of these candidates have been previously validated by others, the confidence levels reported typically ignore the possibility that the planet may transit a star different from the target along the same line of sight. If that were the case, a planet that appears small enough to be rocky may actually be considerably larger and therefore less interesting from the point of view of habitability. We take this into consideration here and are able to validate 15 of our candidates at a 99.73% (3σ) significance level or higher, and the other three at a slightly lower confidence. We characterize the GKM host stars using available ground-based observations and provide updated parameters for the planets, with sizes between 0.8 and 2.9 R ⊕. Seven of them (KOI-0438.02, 0463.01, 2418.01, 2626.01, 3282.01, 4036.01, and 5856.01) have a better than 50% chance of being smaller than 2 R ⊕ and being in the habitable zone of their host stars.

  15. Kepler AutoRegressive Planet Search

    NASA Astrophysics Data System (ADS)

    Feigelson, Eric

    NASA's Kepler mission is the source of more exoplanets than any other instrument, but the discovery depends on complex statistical analysis procedures embedded in the Kepler pipeline. A particular challenge is mitigating irregular stellar variability without loss of sensitivity to faint periodic planetary transits. This proposal presents a two-stage alternative analysis procedure. First, parametric autoregressive ARFIMA models, commonly used in econometrics, remove most of the stellar variations. Second, a novel matched filter is used to create a periodogram from which transit-like periodicities are identified. This analysis procedure, the Kepler AutoRegressive Planet Search (KARPS), is confirming most of the Kepler Objects of Interest and is expected to identify additional planetary candidates. The proposed research will complete application of the KARPS methodology to the prime Kepler mission light curves of 200,000: stars, and compare the results with Kepler Objects of Interest obtained with the Kepler pipeline. We will then conduct a variety of astronomical studies based on the KARPS results. Important subsamples will be extracted including Habitable Zone planets, hot super-Earths, grazing-transit hot Jupiters, and multi-planet systems. Groundbased spectroscopy of poorly studied candidates will be performed to better characterize the host stars. Studies of stellar variability will then be pursued based on KARPS analysis. The autocorrelation function and nonstationarity measures will be used to identify spotted stars at different stages of autoregressive modeling. Periodic variables with folded light curves inconsistent with planetary transits will be identified; they may be eclipsing or mutually-illuminating binary star systems. Classification of stellar variables with KARPS-derived statistical properties will be attempted. KARPS procedures will then be applied to archived K2 data to identify planetary transits and characterize stellar variability.

  16. Kepler AutoRegressive Planet Search (KARPS)

    NASA Astrophysics Data System (ADS)

    Caceres, Gabriel

    2018-01-01

    One of the main obstacles in detecting faint planetary transits is the intrinsic stellar variability of the host star. The Kepler AutoRegressive Planet Search (KARPS) project implements statistical methodology associated with autoregressive processes (in particular, ARIMA and ARFIMA) to model stellar lightcurves in order to improve exoplanet transit detection. We also develop a novel Transit Comb Filter (TCF) applied to the AR residuals which provides a periodogram analogous to the standard Box-fitting Least Squares (BLS) periodogram. We train a random forest classifier on known Kepler Objects of Interest (KOIs) using select features from different stages of this analysis, and then use ROC curves to define and calibrate the criteria to recover the KOI planet candidates with high fidelity. These statistical methods are detailed in a contributed poster (Feigelson et al., this meeting).These procedures are applied to the full DR25 dataset of NASA’s Kepler mission. Using the classification criteria, a vast majority of known KOIs are recovered and dozens of new KARPS Candidate Planets (KCPs) discovered, including ultra-short period exoplanets. The KCPs will be briefly presented and discussed.

  17. A Catalog of Transit Timing Posterior Distributions for all Kepler Planet Candidate Events

    NASA Astrophysics Data System (ADS)

    Montet, Benjamin Tyler; Becker, Juliette C.; Johnson, John

    2015-08-01

    Kepler has ushered in a new era of planetary dynamics, enabling the detection of interactions between multiple planets in transiting systems for hundreds of systems. These interactions, observed as transit timing variations (TTVs), have been used to find non-transiting companions to transiting systems and to measure masses, eccentricities, and inclinations of transiting planets. Often, physical parameters are inferred by comparing the observed light curve to the result of a photodynamical model, a time-intensive process that often ignores the effects of correlated noise in the light curve. Catalogs of transit timing observations have previously neglected non-Gaussian uncertainties in the times of transit, uncertainties in the transit shape, and short cadence data. Here, we present a catalog of not only times of transit centers, but also posterior distributions on the time of transit for every planet candidate transit event in the Kepler data, developed through importance sampling of each transit. This catalog allows us to marginalize over uncertainties in the transit shape and incorporate short cadence data, the effects of correlated noise, and non-Gaussian posteriors. Our catalog will enable dynamical studies that reflect accurately the precision of Kepler and its limitations without requiring the computational power to model the light curve completely with every integration.

  18. Characterization of Exoplanet Atmospheres and Kepler Planet Candidates with Multi-Color Photometry from the Gran Telescopio Canarias

    NASA Astrophysics Data System (ADS)

    Colon, Knicole; Ford, E. B.

    2012-01-01

    With over 180 confirmed transiting exoplanets and NASA's Kepler mission's recent discovery of over 1200 transiting exoplanet candidates, we can conduct detailed investigations into the (i) properties of exoplanet atmospheres and (ii) false positive rates for planet search surveys. To aid these investigations, we developed a novel technique of using the Optical System for Imaging and low Resolution Integrated Spectroscopy (OSIRIS) installed on the 10.4-meter Gran Telescopio Canarias (GTC) to acquire near-simultaneous multi-color photometry of (i) HD 80606b in bandpasses around the potassium (K I) absorption feature, (ii) GJ 1214b in bandpasses around a possible methane absorption feature and (iii) several Kepler planet candidates. For HD 80606b, we measure a significant color change during transit between wavelengths that probe the K I line core and the K I wing, equivalent to a 4.2% change in the apparent planetary radius. We hypothesize that the excess absorption may be due to K I in a high-speed wind being driven from the exoplanet's exosphere. This is one of the first detections of K I in an exoplanet atmosphere. For GJ 1214b, we compare the transit depths measured "on” and "off” a possible methane absorption feature and use our results to help resolve conflicting results from other studies regarding the composition of this super-Earth-size planet's atmosphere. For Kepler candidates, we use the color change during transit to reject candidates that are false positives (e.g., a blend with an eclipsing binary either in the background/foreground or bound to the target star). We target small planets (<6 Earth radii) with short orbital periods (<6 days), since eclipsing binaries can mimic planets in this regime. Our results include identification of two false positives and test recent predictions of the false positive rates for the Kepler sample. This research demonstrates the value of the GTC for exoplanet follow-up.

  19. Influence of stellar multiplicity on planet formation. I. Evidence of suppressed planet formation due to stellar companions within 20 au and validation of four planets from the Kepler multiple planet candidates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ji; Fischer, Debra A.; Xie, Ji-Wei

    2014-03-01

    The planet occurrence rate for multiple stars is important in two aspects. First, almost half of stellar systems in the solar neighborhood are multiple systems. Second, the comparison of the planet occurrence rate for multiple stars to that for single stars sheds light on the influence of stellar multiplicity on planet formation and evolution. We developed a method of distinguishing planet occurrence rates for single and multiple stars. From a sample of 138 bright (K{sub P} < 13.5) Kepler multi-planet candidate systems, we compared the stellar multiplicity rate of these planet host stars to that of field stars. Using dynamicalmore » stability analyses and archival Doppler measurements, we find that the stellar multiplicity rate of planet host stars is significantly lower than field stars for semimajor axes less than 20 AU, suggesting that planet formation and evolution are suppressed by the presence of a close-in companion star at these separations. The influence of stellar multiplicity at larger separations is uncertain because of search incompleteness due to a limited Doppler observation time baseline and a lack of high-resolution imaging observation. We calculated the planet confidence for the sample of multi-planet candidates and find that the planet confidences for KOI 82.01, KOI 115.01, KOI 282.01, and KOI 1781.02 are higher than 99.7% and thus validate the planetary nature of these four planet candidates. This sample of bright Kepler multi-planet candidates with refined stellar and orbital parameters, planet confidence estimation, and nearby stellar companion identification offers a well-characterized sample for future theoretical and observational study.« less

  20. A Statistical Characterization of Reflection and Refraction in the Atmospheres of sub-Saturn Kepler Planet Candidates

    NASA Astrophysics Data System (ADS)

    Sheets, Holly A.; Deming, Drake; Arney, Giada; Meadows, Victoria

    2016-01-01

    We present the results of our method to detect small atmospheric signals in Kepler's close-in, sub-Saturn planet candidate light curves. We detect an average secondary eclipse for groups of super-Earth, Neptune-like, and other sub-Saturn-sized candidates by scaling and combining photometric data of the groups of candidates such that the eclipses add constructively. This greatly increases the signal-to-noise compared to combining eclipses for individual planets. We have modified our method for averaging short cadence light curves of multiple planet candidates (2014, ApJ, 794, 133), and have applied it to long cadence data, accounting for the broadening of the eclipse due to the 30 minute cadence. We then use the secondary eclipse depth to determine the average albedo for the group. In the short cadence data, we found that a group of close-in sub-Saturn candidates (1 to 6 Earth radii) was more reflective (geometric A ~ 0.22) than typical hot Jupiters (geometric A ~ 0.06 to 0.11: Demory 2014, ApJL, 789, L20). With the larger number of candidates available in long cadence, we improve the resolution in radius and consider groups of candidates with radii between 1 and 2, 2 and 4, and 4 and 6 Earth radii. We also modify our averaging technique to search for refracted light just before and after transit in the Kepler candidate light curves, as modelled by Misra and Meadows (2014, ApJL, 795, L14).

  1. High-resolution multi-band imaging for validation and characterization of small Kepler planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Everett, Mark E.; Silva, David R.; Barclay, Thomas

    2015-02-01

    High-resolution ground-based optical speckle and near-infrared adaptive optics images are taken to search for stars in close angular proximity to host stars of candidate planets identified by the NASA Kepler Mission. Neighboring stars are a potential source of false positive signals. These stars also blend into Kepler light curves, affecting estimated planet properties, and are important for an understanding of planets in multiple star systems. Deep images with high angular resolution help to validate candidate planets by excluding potential background eclipsing binaries as the source of the transit signals. A study of 18 Kepler Object of Interest stars hosting amore » total of 28 candidate and validated planets is presented. Validation levels are determined for 18 planets against the likelihood of a false positive from a background eclipsing binary. Most of these are validated at the 99% level or higher, including five newly validated planets in two systems: Kepler-430 and Kepler-431. The stellar properties of the candidate host stars are determined by supplementing existing literature values with new spectroscopic characterizations. Close neighbors of seven of these stars are examined using multi-wavelength photometry to determine their nature and influence on the candidate planet properties. Most of the close neighbors appear to be gravitationally bound secondaries, while a few are best explained as closely co-aligned field stars. Revised planet properties are derived for each candidate and validated planet, including cases where the close neighbors are the potential host stars.« less

  2. Potential Habitable Zone Exomoon Candidates and Radial Velocity Estimates for Giant Kepler HZ Candidates.

    NASA Astrophysics Data System (ADS)

    Hill, M.; Kane, S.; Kopparapu, R.; Seperuelo Duarte, E.; Gelino, D.; Whittenmyer, R.

    2017-12-01

    The NASA Kepler mission has discovered thousands of new planetary candidates, many of which have been confirmed through follow-up observations. A primary goal of the mission is to determine the occurrence rate of terrestrial-size planets within the Habitable Zone (HZ) of their host stars. A major product of the Habitable Zone Working Group (HZWG) is a list of HZ exoplanet candidates from the Kepler Data Release 24 Q1- Q17 data vetting process [1]. We used a variety of criteria regarding HZ boundaries and planetary sizes to produce complete lists of HZ candidates, including a catalog of 104 candidates within the optimistic HZ. We cross-matched our HZ candidates with the Data Release 25 stellar properties and confirmed planet properties to provide robust stellar parameters and candidate dispositions. We also performed dynamical analysis simulations for multi-planet systems that contain candidates with radii less than two Earth radii as a step toward validation of those systems. From this list we found 39 planet candidates greater than 3 earth radii residing in the Optimistic Habitable Zone of their host star. While giant planets are not favored in the search for eta Earth, they do indicate a potential for large, potentially rocky moons residing in the habitable zone. These giant planets can also provide a potential for a wider range of "habitable" incident flux due to additional energy sources from tidal energy, etc. Thus we analyzed each giant planet, estimating their mass and then calculating the estimated Radial Velocity Semi Amplitudes of each planet for use in follow up observations. We then calculated the planets Hill radius and determined the maximum angular separation of potential moons. This presentation will describe the highlights of the HZ catalog giant planets and the plans for further validation of HZ candidates and follow-up studies. Fig. 1 - Plots both the unconfirmed and confirmed Giant (>3⊕R) Kepler candidates expected Radial Velocity signatures

  3. KEPLER PLANETS: A TALE OF EVAPORATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, James E.; Wu, Yanqin, E-mail: jowen@cita.utoronto.ca, E-mail: wu@astro.utoronto.ca

    2013-10-01

    Inspired by the Kepler mission's planet discoveries, we consider the thermal contraction of planets close to their parent star, under the influence of evaporation. The mass-loss rates are based on hydrodynamic models of evaporation that include both X-ray and EUV irradiation. We find that only low mass planets with hydrogen envelopes are significantly affected by evaporation, with evaporation being able to remove massive hydrogen envelopes inward of ∼0.1 AU for Neptune-mass objects, while evaporation is negligible for Jupiter-mass objects. Moreover, most of the evaporation occurs in the first 100 Myr of stars' lives when they are more chromospherically active. Wemore » construct a theoretical population of planets with varying core masses, envelope masses, orbital separations, and stellar spectral types, and compare this population with the sizes and densities measured for low-mass planets, both in the Kepler mission and from radial velocity surveys. This exercise leads us to conclude that evaporation is the driving force of evolution for close-in Kepler planets. In fact, some 50% of the Kepler planet candidates may have been significantly eroded. Evaporation explains two striking correlations observed in these objects: a lack of large radius/low density planets close to the stars and a possible bimodal distribution in planet sizes with a deficit of planets around 2 R{sub ⊕}. Planets that have experienced high X-ray exposures are generally smaller than this size, and those with lower X-ray exposures are typically larger. A bimodal planet size distribution is naturally predicted by the evaporation model, where, depending on their X-ray exposure, close-in planets can either hold on to hydrogen envelopes ∼0.5%-1% in mass or be stripped entirely. To quantitatively reproduce the observed features, we argue that not only do low-mass Kepler planets need to be made of rocky cores surrounded with hydrogen envelopes, but few of them should have initial masses above

  4. Kepler AutoRegressive Planet Search

    NASA Astrophysics Data System (ADS)

    Caceres, Gabriel Antonio; Feigelson, Eric

    2016-01-01

    The Kepler AutoRegressive Planet Search (KARPS) project uses statistical methodology associated with autoregressive (AR) processes to model Kepler lightcurves in order to improve exoplanet transit detection in systems with high stellar variability. We also introduce a planet-search algorithm to detect transits in time-series residuals after application of the AR models. One of the main obstacles in detecting faint planetary transits is the intrinsic stellar variability of the host star. The variability displayed by many stars may have autoregressive properties, wherein later flux values are correlated with previous ones in some manner. Our analysis procedure consisting of three steps: pre-processing of the data to remove discontinuities, gaps and outliers; AR-type model selection and fitting; and transit signal search of the residuals using a new Transit Comb Filter (TCF) that replaces traditional box-finding algorithms. The analysis procedures of the project are applied to a portion of the publicly available Kepler light curve data for the full 4-year mission duration. Tests of the methods have been made on a subset of Kepler Objects of Interest (KOI) systems, classified both as planetary `candidates' and `false positives' by the Kepler Team, as well as a random sample of unclassified systems. We find that the ARMA-type modeling successfully reduces the stellar variability, by a factor of 10 or more in active stars and by smaller factors in more quiescent stars. A typical quiescent Kepler star has an interquartile range (IQR) of ~10 e-/sec, which may improve slightly after modeling, while those with IQR ranging from 20 to 50 e-/sec, have improvements from 20% up to 70%. High activity stars (IQR exceeding 100) markedly improve. A periodogram based on the TCF is constructed to concentrate the signal of these periodic spikes. When a periodic transit is found, the model is displayed on a standard period-folded averaged light curve. Our findings to date on real

  5. Kepler-47: A Three-Planet Circumbinary System

    NASA Astrophysics Data System (ADS)

    Welsh, William; Orosz, Jerome; Quarles, Billy; Haghighipour, Nader

    2015-12-01

    Kepler-47 is the most interesting of the known circumbinary planets. In the discovery paper by Orosz et al. (2012) two planets were detected, with periods of 49.5 and 303 days around the 7.5-day binary. In addition, a single "orphan" transit of a possible third planet was noticed. Since then, five additional transits by this planet candidate have been uncovered, leading to the unambiguous confirmation of a third transiting planet in the system. The planet has a period of 187 days, and orbits in between the previously detected planets. It lies on the inner edge of the optimistic habitable zone, while its outer sibling falls within the conservative habitable zone. The orbit of this new planet is precessing, causing its transits to become significantly deeper over the span of the Kepler observations. Although the planets are not massive enough to measurably perturb the binary, they are sufficiently massive to interact with each other and cause mild transit timing variations (TTVs). This enables our photodynamical model to estimate their masses. We find that all three planets have very low-density and are on remarkably co-planar orbits: all 4 orbits (the binary and three planets) are within ~2 degrees of one another. Thus the Kepler-47 system puts interesting constraints on circumbinary planet formation and migration scenarios.

  6. Robotic laser adaptive optics imaging of 715 Kepler exoplanet candidates using Robo-AO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, Nicholas M.; Ziegler, Carl; Morton, Tim

    2014-08-10

    The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star with laser adaptive optics imaging to search for blended nearby stars, which may be physically associated companions and/or responsible for transit false positives. In this paper, we present the results from the 2012 observing season, searching for stars close to 715 Kepler planet candidate hosts. We find 53 companions, 43 of which are new discoveries. We detail the Robo-AO survey data reduction methods including a method of using the large ensemble of target observations as mutual point-spread-function references, along with a new automated companion-detection algorithm designedmore » for large adaptive optics surveys. Our survey is sensitive to objects from ≈0.''15 to 2.''5 separation, with magnitude differences up to Δm ≈ 6. We measure an overall nearby-star probability for Kepler planet candidates of 7.4% ± 1.0%, and calculate the effects of each detected nearby star on the Kepler-measured planetary radius. We discuss several Kepler Objects of Interest (KOIs) of particular interest, including KOI-191 and KOI-1151, which are both multi-planet systems with detected stellar companions whose unusual planetary system architecture might be best explained if they are 'coincident multiple' systems, with several transiting planets shared between the two stars. Finally, we find 98% confidence evidence that short-period giant planets are two to three times more likely than longer-period planets to be found in wide stellar binaries.« less

  7. A Catalog of Transit Timing Posterior Distributions for all Kepler Planet Candidate Transit Events

    NASA Astrophysics Data System (ADS)

    Montet, Benjamin Tyler; Becker, Juliette C.; Johnson, John Asher

    2015-12-01

    Kepler has ushered in a new era of planetary dynamics, enabling the detection of interactions between multiple planets in transiting systems for hundreds of systems. These interactions, observed as transit timing variations (TTVs), have been used to find non-transiting companions to transiting systems and to measure masses, eccentricities, and inclinations of transiting planets. Often, physical parameters are inferred by comparing the observed light curve to the result of a photodynamical model, a time-intensive process that often ignores the effects of correlated noise in the light curve. Catalogs of transit timing observations have previously neglected non-Gaussian uncertainties in the times of transit, uncertainties in the transit shape, and short cadence data. Here, I present a catalog of not only times of transit centers, but also posterior distributions on the time of transit for every planet candidate transit event in the Kepler data, developed through importance sampling of each transit. This catalog allows one to marginalize over uncertainties in the transit shape and incorporate short cadence data, the effects of correlated noise, and non-Gaussian posteriors. Our catalog will enable dynamical studies that reflect accurately the precision of Kepler and its limitations without requiring the computational power to model the light curve completely with every integration. I will also present our open-source N-body photodynamical modeling code, which integrates planetary and stellar orbits accounting for the effects of GR, tidal effects, and Doppler beaming.

  8. Transiting circumbinary planets Kepler-34 b and Kepler-35 b.

    PubMed

    Welsh, William F; Orosz, Jerome A; Carter, Joshua A; Fabrycky, Daniel C; Ford, Eric B; Lissauer, Jack J; Prša, Andrej; Quinn, Samuel N; Ragozzine, Darin; Short, Donald R; Torres, Guillermo; Winn, Joshua N; Doyle, Laurance R; Barclay, Thomas; Batalha, Natalie; Bloemen, Steven; Brugamyer, Erik; Buchhave, Lars A; Caldwell, Caroline; Caldwell, Douglas A; Christiansen, Jessie L; Ciardi, David R; Cochran, William D; Endl, Michael; Fortney, Jonathan J; Gautier, Thomas N; Gilliland, Ronald L; Haas, Michael R; Hall, Jennifer R; Holman, Matthew J; Howard, Andrew W; Howell, Steve B; Isaacson, Howard; Jenkins, Jon M; Klaus, Todd C; Latham, David W; Li, Jie; Marcy, Geoffrey W; Mazeh, Tsevi; Quintana, Elisa V; Robertson, Paul; Shporer, Avi; Steffen, Jason H; Windmiller, Gur; Koch, David G; Borucki, William J

    2012-01-11

    Most Sun-like stars in the Galaxy reside in gravitationally bound pairs of stars (binaries). Although long anticipated, the existence of a 'circumbinary planet' orbiting such a pair of normal stars was not definitively established until the discovery of the planet transiting (that is, passing in front of) Kepler-16. Questions remained, however, about the prevalence of circumbinary planets and their range of orbital and physical properties. Here we report two additional transiting circumbinary planets: Kepler-34 (AB)b and Kepler-35 (AB)b, referred to here as Kepler-34 b and Kepler-35 b, respectively. Each is a low-density gas-giant planet on an orbit closely aligned with that of its parent stars. Kepler-34 b orbits two Sun-like stars every 289 days, whereas Kepler-35 b orbits a pair of smaller stars (89% and 81% of the Sun's mass) every 131 days. The planets experience large multi-periodic variations in incident stellar radiation arising from the orbital motion of the stars. The observed rate of circumbinary planets in our sample implies that more than ∼1% of close binary stars have giant planets in nearly coplanar orbits, yielding a Galactic population of at least several million.

  9. TESTING IN SITU ASSEMBLY WITH THE KEPLER PLANET CANDIDATE SAMPLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Brad M. S.; Murray, Norm, E-mail: hansen@astro.ucla.edu, E-mail: murray@cita.utoronto.ca

    2013-09-20

    We present a Monte Carlo model for the structure of low-mass (total mass <25 M{sub ⊕}) planetary systems that form by the in situ gravitational assembly of planetary embryos into final planets. Our model includes distributions of mass, eccentricity, inclination, and period spacing that are based on the simulation of a disk of 20 M{sub ⊕}, forming planets around a solar-mass star, and assuming a power-law surface density distribution that drops with distance a as ∝ a {sup –1.5}. The output of the Monte Carlo model is then subjected to the selection effects that mimic the observations of a transitingmore » planet search such as that performed by the Kepler satellite. The resulting comparison of the output to the properties of the observed sample yields an encouraging agreement in terms of the relative frequencies of multiple-planet systems and the distribution of the mutual inclinations when moderate tidal circularization is taken into account. The broad features of the period distribution and radius distribution can also be matched within this framework, although the model underpredicts the distribution of small period ratios. This likely indicates that some dissipation is still required in the formation process. The most striking deviation between the model and observations is in the ratio of single to multiple systems in that there are roughly 50% more single-planet candidates observed than are produced in any model population. This suggests that some systems must suffer additional attrition to reduce the number of planets or increase the range of inclinations.« less

  10. Limits On Undetected Planets in the Six Transiting Planets Kepler-11 System

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack

    2017-01-01

    The Kepler-11 has five inner planets ranging from approx. 2 - 1 times as massive Earth in a tightly-packed configuration, with orbital periods between 10 and 47 days. A sixth planet, Kepler-11 g, with a period of118 days, is also observed. The spacing between planets Kepler-11 f and Kepler-11 g is wide enough to allow room for a planet to orbit stably between them. We compare six and seven planet fits to measured transit timing variations (TTVs) of the six known planets. We find that in most cases an additional planet between Kepler-11 f and Kepler-11 g degrades rather than enhances the fit to the TTV data, and where the fit is improved, the improvement provides no significant evidence of a planet between Kepler-11 f and Kepler-11 g. This implies that any planet in this region must be low in mass. We also provide constraints on undiscovered planets orbiting exterior to Kepler-11 g. representations will be described.

  11. Characterization and Validation of Transiting Planets in the Kepler and TESS Pipelines

    NASA Astrophysics Data System (ADS)

    Twicken, Joseph; Brownston, Lee; Catanzarite, Joseph; Clarke, Bruce; Cote, Miles; Girouard, Forrest; Li, Jie; McCauliff, Sean; Seader, Shawn; Tenenbaum, Peter; Wohler, Bill; Jenkins, Jon Michael; Batalha, Natalie; Bryson, Steve; Burke, Christopher; Caldwell, Douglas

    2015-08-01

    Light curves for Kepler targets are searched for transiting planet signatures in the Transiting Planet Search (TPS) component of the Science Operations Center (SOC) Processing Pipeline. Targets for which the detection threshold is exceeded are subsequently processed in the Data Validation (DV) Pipeline component. The primary functions of DV are to (1) characterize planets identified in the transiting planet search, (2) search for additional transiting planet signatures in light curves after modeled transit signatures have been removed, and (3) perform a comprehensive suite of diagnostic tests to aid in discrimination between true transiting planets and false positive detections. DV output products include extensive reports by target, one-page report summaries by planet candidate, and tabulated planet model fit and diagnostic test results. The DV products are employed by humans and automated systems to vet planet candidates identified in the pipeline. The final revision of the Kepler SOC codebase (9.3) was released in March 2015. It will be utilized to reprocess the complete Q1-Q17 data set later this year. At the same time, the SOC Pipeline codebase is being ported to support the Transiting Exoplanet Survey Satellite (TESS) Mission. TESS is expected to launch in 2017 and survey the entire sky for transiting exoplanets over a period of two years. We describe the final revision of the Kepler Data Validation component with emphasis on the diagnostic tests and reports. This revision also serves as the DV baseline for TESS. The diagnostic tests exploit the flux (i.e., light curve), centroid and pixel time series associated with each target to facilitate the determination of the true origin of each purported transiting planet signature. Candidate planet detections and DV products for Kepler are delivered to the Exoplanet Archive at the NASA Exoplanet Science Institute (NExScI). The Exoplanet Archive is located at exoplanetarchive.ipac.caltech.edu. Funding for the Kepler

  12. Kepler Planet Detection Metrics: Automatic Detection of Background Objects Using the Centroid Robovetter

    NASA Technical Reports Server (NTRS)

    Mullally, Fergal

    2017-01-01

    We present an automated method of identifying background eclipsing binaries masquerading as planet candidates in the Kepler planet candidate catalogs. We codify the manual vetting process for Kepler Objects of Interest (KOIs) described in Bryson et al. (2013) with a series of measurements and tests that can be performed algorithmically. We compare our automated results with a sample of manually vetted KOIs from the catalog of Burke et al. (2014) and find excellent agreement. We test the performance on a set of simulated transits and find our algorithm correctly identifies simulated false positives approximately 50 of the time, and correctly identifies 99 of simulated planet candidates.

  13. The Scattering Outcomes of Kepler Circumbinary Planets: Planet Mass Ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Yan-Xiang; Ji, Jianghui, E-mail: yxgong@pmo.ac.cn, E-mail: jijh@pmo.ac.cn

    Recent studies reveal that the free eccentricities of Kepler-34b and Kepler-413b are much larger than their forced eccentricities, implying that scattering events may take place in their formation. The observed orbital configuration of Kepler-34b cannot be well reproduced in disk-driven migration models, whereas a two-planet scattering scenario can play a significant role of shaping the planetary configuration. These studies indicate that circumbinary planets discovered by Kepler may have experienced scattering process. In this work, we extensively investigate the scattering outcomes of circumbinary planets focusing on the effects of planet mass ratio . We find that the planetary mass ratio andmore » the the initial relative locations of planets act as two important parameters that affect the eccentricity distribution of the surviving planets. As an application of our model, we discuss the observed orbital configurations of Kepler-34b and Kepler-413b. We first adopt the results from the disk-driven models as the initial conditions, then simulate the scattering process that occurs in the late evolution stage of circumbinary planets. We show that the present orbital configurations of Kepler-34b and Kepler-413b can be well reproduced when considering a two unequal-mass planet ejection model. Our work further suggests that some of the currently discovered circumbinary single-planet systems may be survivors of original multiple-planet systems. The disk-driven migration and scattering events occurring in the late stage both play an irreplaceable role in sculpting the final systems.« less

  14. Transiting circumbinary planets Kepler-34 b and Kepler-35 b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welsh, William F.; Orosz, Jerome A.; Carter, Joshua A.

    Most Sun-like stars in the Galaxy reside in gravitationally-bound pairs of stars called 'binary stars'. While long anticipated, the existence of a 'circumbinary planet' orbiting such a pair of normal stars was not definitively established until the discovery of Kepler-16. Incontrovertible evidence was provided by the miniature eclipses ('transits') of the stars by the planet. However, questions remain about the prevalence of circumbinary planets and their range of orbital and physical properties. Here we present two additional transiting circumbinary planets, Kepler-34 and Kepler-35. Each is a low-density gas giant planet on an orbit closely aligned with that of its parentmore » stars. Kepler-34 orbits two Sun-like stars every 289 days, while Kepler-35 orbits a pair of smaller stars (89% and 81% of the Sun's mass) every 131 days. Due to the orbital motion of the stars, the planets experience large multi-periodic variations in incident stellar radiation. The observed rate of circumbinary planets implies > ~1% of close binary stars have giant planets in nearly coplanar orbits, yielding a Galactic population of at least several million.« less

  15. The California- Kepler Survey. II. Precise Physical Properties of 2025 Kepler Planets and Their Host Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, John Asher; Cargile, Phillip A.; Sinukoff, Evan

    We present stellar and planetary properties for 1305 Kepler Objects of Interest hosting 2025 planet candidates observed as part of the California- Kepler Survey. We combine spectroscopic constraints, presented in Paper I, with stellar interior modeling to estimate stellar masses, radii, and ages. Stellar radii are typically constrained to 11%, compared to 40% when only photometric constraints are used. Stellar masses are constrained to 4%, and ages are constrained to 30%. We verify the integrity of the stellar parameters through comparisons with asteroseismic studies and Gaia parallaxes. We also recompute planetary radii for 2025 planet candidates. Because knowledge of planetarymore » radii is often limited by uncertainties in stellar size, we improve the uncertainties in planet radii from typically 42% to 12%. We also leverage improved knowledge of stellar effective temperature to recompute incident stellar fluxes for the planets, now precise to 21%, compared to a factor of two when derived from photometry.« less

  16. A Search for Lost Planets in the Kepler Multi-planet Systems and the Discovery of the Long-period, Neptune-sized Exoplanet Kepler-150 f

    NASA Astrophysics Data System (ADS)

    Schmitt, Joseph R.; Jenkins, Jon M.; Fischer, Debra A.

    2017-04-01

    The vast majority of the 4700 confirmed planets (CPs) and planet candidates discovered by the Kepler mission were first found by the Kepler pipeline. In the pipeline, after a transit signal is found, all data points associated with those transits are removed, creating a “Swiss cheese”-like light curve full of holes, which is then used for subsequent transit searches. These holes could render an additional planet undetectable (or “lost”). We examine a sample of 114 stars with 3+ CPs to evaluate the effect of this “Swiss cheesing.” A simulation determines that the probability that a transiting planet is lost due to the transit masking is low, but non-negligible, reaching a plateau at ˜3.3% lost in the period range of P = 400-500 days. We then model all planet transits and subtract out the transit signals for each star, restoring the in-transit data points, and use the Kepler pipeline to search the transit-subtracted (I.e., transit-cleaned) light curves. However, the pipeline did not discover any credible new transit signals. This demonstrates the validity and robustness of the Kepler pipeline’s choice to use transit masking over transit subtraction. However, a follow-up visual search through all the transit-subtracted data, which allows for easier visual identification of new transits, revealed the existence of a new, Neptune-sized exoplanet (Kepler-150 f) and a potential single transit of a likely false positive (FP) (Kepler-208). Kepler-150 f (P = 637.2 days, {R}{{P}}={3.64}-0.39+0.52 R⊕) is confirmed with >99.998% confidence using a combination of the planet multiplicity argument, an FP probability analysis, and a transit duration analysis.

  17. Chaos in Kepler's Multiple Planet Systems and K2s Observations of the Atmospheres of Uranus Neptune

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2016-01-01

    More than one-third of the 4700 planet candidates found by NASA's Kepler spacecraft during its prime mission are associated with target stars that have more than one planet candidate, and such "multis" account for the vast majority of candidates that have been verified as true planets. The large number of multis tells us that flat multiplanet systems like our Solar System are common. Virtually all of the candidate planetary systems are stable, as tested by numerical integrations that assume a physically motivated mass-radius relationship, but some of the systems lie in chaotic regions close to instability. The characteristics of some of the most interesting confirmed Kepler multi-planet systems will be discussed. The Kepler spacecraft's 'second life' in theK2 mission has allowed it to obtain long time-series observations of Solar System targets, including the giant planets Uranus & Neptune. These observations show variability caused by the chaotic weather patterns on Uranus & Neptune.

  18. Kepler Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2015-01-01

    Kepler has vastly increased our knowledge of planets and planetary systems located close to stars. The new data shows surprising results for planetary abundances, planetary spacings and the distribution of planets on a mass-radius diagram. The implications of these results for theories of planet formation will be discussed.

  19. Characterizing the Habitable Zone Planets of Kepler Stars

    NASA Astrophysics Data System (ADS)

    Fischer, Debra

    than 100 days or they use extrapolation to estimate planet occurrence rates beyond 100 days. The new detections of transit candidates at wider separations and the incompleteness analysis will be used to carry out an analysis of the architecture of exoplanetary systems from 1 5 AU. We are synthesizing a statistical description with information from short-period Kepler transits, the longer period Kepler transit candidates from this proposal, a completeness analysis of radial velocity data, and statistical information from microlensing. While our architecture analysis will only sketch out the bare bones of planetary systems (massive or large planets), this is still a novel analysis that may point to the location of rocky planets if packed planetary systems prevail. Finally, we will expand our guest scientist program for serendipitous discoveries. We have already partnered with scientists who are searching for cataclysmic variables, heartbeat stars, and exomoons. Our undergrad students have already carried out summer research as guest scientists to characterize inflated jupiters, search for Trojan planets, and to search for microlensing events.

  20. A Search for Lost Planets in the Kepler Multi-Planet Systems and the Discovery of the Long-Period, Neptune-Sized Exoplanet Kepler-150 f

    NASA Technical Reports Server (NTRS)

    Schmitt, Joseph R.; Jenkins, Jon M.; Fischer, Debra A.

    2017-01-01

    The vast majority of the 4700 confirmed planets and planet candidates discovered by the Kepler space telescope were first found by the Kepler pipeline. In the pipeline, after a transit signal is found, all data points associated with those transits are removed, creating a Swiss cheese-like light curve full of holes, which is then used for subsequent transit searches. These holes could render an additional planet undetectable (or lost). We examine a sample of 114 stars with 3+ confirmed planets to see the effect that this Swiss cheesing may have. A simulation determined that the probability that a transiting planet is lost due to the transit masking is low, but non-neglible, reaching a plateau at approximately 3.3% lost in the period range of P = 400 - 500 days. We then model the transits in all quarters of each star and subtract out the transit signals, restoring the in-transit data points, and use the Kepler pipeline to search the transit-subtracted (i.e., transit-cleaned) light curves. However, the pipeline did not discover any credible new transit signals. This demonstrates the validity and robustness of the Kepler pipelines choice to use transit masking over transit subtraction. However, a follow-up visual search through all the transit-subtracted data, which allows for easier visual identification of new transits, revealed the existence of a new, Neptune-sized exoplanet. Kepler-150 f (P = 637.2 days, RP = 3.86 R earth) is confirmed using a combination of false positive probability analysis, transit duration analysis, and the planet multiplicity argument.

  1. A SEARCH FOR LOST PLANETS IN THE KEPLER MULTI-PLANET SYSTEMS AND THE DISCOVERY OF A LONG PERIOD, NEPTUNE-SIZED EXOPLANET KEPLER-150 F.

    PubMed

    Schmitt, Joseph R; Jenkins, Jon M; Fischer, Debra A

    2017-04-01

    The vast majority of the 4700 confirmed planets and planet candidates discovered by the Kepler space telescope were first found by the Kepler pipeline. In the pipeline, after a transit signal is found, all data points associated with those transits are removed, creating a "Swiss cheese"-like light curve full of holes, which is then used for subsequent transit searches. These holes could render an additional planet undetectable (or "lost"). We examine a sample of 114 stars with 3+ confirmed planets to see the effect that this "Swiss cheesing" may have. A simulation determined that the probability that a transiting planet is lost due to the transit masking is low, but non-neglible, reaching a plateau at ~3.3% lost in the period range of P = 400 - 500 days. We then model the transits in all quarters of each star and subtract out the transit signals, restoring the in-transit data points, and use the Kepler pipeline to search the transit-subtracted (i.e., transit-cleaned) light curves. However, the pipeline did not discover any credible new transit signals. This demonstrates the validity and robustness of the Kepler pipeline's choice to use transit masking over transit subtraction. However, a follow-up visual search through all the transit-subtracted data, which allows for easier visual identification of new transits, revealed the existence of a new, Neptune-sized exoplanet. Kepler-150 f ( P = 637.2 days, R P = 3.86 R ⊕ ) is confirmed using a combination of false positive probability analysis, transit duration analysis, and the planet multiplicity argument.

  2. A SEARCH FOR LOST PLANETS IN THE KEPLER MULTI-PLANET SYSTEMS AND THE DISCOVERY OF A LONG PERIOD, NEPTUNE-SIZED EXOPLANET KEPLER-150 F

    PubMed Central

    Schmitt, Joseph R.; Jenkins, Jon M.; Fischer, Debra A.

    2018-01-01

    The vast majority of the 4700 confirmed planets and planet candidates discovered by the Kepler space telescope were first found by the Kepler pipeline. In the pipeline, after a transit signal is found, all data points associated with those transits are removed, creating a “Swiss cheese”-like light curve full of holes, which is then used for subsequent transit searches. These holes could render an additional planet undetectable (or “lost”). We examine a sample of 114 stars with 3+ confirmed planets to see the effect that this “Swiss cheesing” may have. A simulation determined that the probability that a transiting planet is lost due to the transit masking is low, but non-neglible, reaching a plateau at ~3.3% lost in the period range of P = 400 – 500 days. We then model the transits in all quarters of each star and subtract out the transit signals, restoring the in-transit data points, and use the Kepler pipeline to search the transit-subtracted (i.e., transit-cleaned) light curves. However, the pipeline did not discover any credible new transit signals. This demonstrates the validity and robustness of the Kepler pipeline’s choice to use transit masking over transit subtraction. However, a follow-up visual search through all the transit-subtracted data, which allows for easier visual identification of new transits, revealed the existence of a new, Neptune-sized exoplanet. Kepler-150 f (P = 637.2 days, RP = 3.86 R⊕) is confirmed using a combination of false positive probability analysis, transit duration analysis, and the planet multiplicity argument. PMID:29375142

  3. Herschel/PACS photometry of transiting-planet host stars with candidate warm debris disks

    NASA Astrophysics Data System (ADS)

    Ardila, David R.; Merin, Bruno; Ribas, Alvaro; Bouy, Herve; Bryden, Geoffrey; Stapelfeldt, Karl R.; Padgett, Deborah

    2015-01-01

    Dust in debris disks is produced by colliding or evaporating planetesimals, which are remnants of the planet formation process. Warm dust disks, known by their emission at ≤24 μm, are rare (4% of FGK main sequence stars) and especially interesting because they trace material in the region likely to host terrestrial planets, where the dust has a very short dynamical lifetime. Statistical analyses of the source counts of excesses as found with the mid-IR Wide Field Infrared Survey Explorer (WISE) suggest that warm-dust candidates found for the Kepler transiting-planet host-star candidates can be explained by extragalactic or galactic background emission aligned by chance with the target stars. These statistical analyses do not exclude the possibility that a given WISE excess could be due to a transient dust population associated with the target. Here we report Herschel/PACS 100 and 160 micron follow-up observations of a sample of Kepler and non-Kepler transiting-planet candidates' host stars, with candidate WISE warm debris disks, aimed at detecting a possible cold debris disk in any one of them. No clear detections were found in any one of the objects at either wavelength. Our upper limits confirm that most objects in the sample do not have a massive debris disk like that in beta Pic. We also show that the planet-hosting star WASP-33 does not have a debris disk comparable to the one around eta Crv. Although the data cannot be used to rule out rare warm disks around the Kepler planet-hosting candidates, the lack of detections and the characteristics of neighboring emission found at far-IR wavelengths support an earlier result suggesting that most of the WISE-selected IR excesses around Kepler candidate host stars are likely due to either chance alignment with background IR-bright galaxies and/or to interstellar emission.

  4. LOW FALSE POSITIVE RATE OF KEPLER CANDIDATES ESTIMATED FROM A COMBINATION OF SPITZER AND FOLLOW-UP OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Désert, Jean-Michel; Brown, Timothy M.; Charbonneau, David

    NASA’s Kepler mission has provided several thousand transiting planet candidates during the 4 yr of its nominal mission, yet only a small subset of these candidates have been confirmed as true planets. Therefore, the most fundamental question about these candidates is the fraction of bona fide planets. Estimating the rate of false positives of the overall Kepler sample is necessary to derive the planet occurrence rate. We present the results from two large observational campaigns that were conducted with the Spitzer Space Telescope during the the Kepler mission. These observations are dedicated to estimating the false positive rate (FPR) amongmore » the Kepler candidates. We select a sub-sample of 51 candidates, spanning wide ranges in stellar, orbital, and planetary parameter space, and we observe their transits with Spitzer at 4.5 μm. We use these observations to measures the candidate’s transit depths and infrared magnitudes. An authentic planet produces an achromatic transit depth (neglecting the modest effect of limb darkening). Conversely a bandpass-dependent depth alerts us to the potential presence of a blending star that could be the source of the observed eclipse: a false positive scenario. For most of the candidates (85%), the transit depths measured with Kepler are consistent with the transit depths measured with Spitzer as expected for planetary objects, while we find that the most discrepant measurements are due to the presence of unresolved stars that dilute the photometry. The Spitzer constraints on their own yield FPRs between 5% and depending on the Kepler Objects of Interest. By considering the population of the Kepler field stars, and by combining follow-up observations (imaging) when available, we find that the overall FPR of our sample is low. The measured upper limit on the FPR of our sample is 8.8% at a confidence level of 3σ. This observational result, which uses the achromatic property of planetary transit signals that is not

  5. Kepler Mission to Detect Earth-like Planets

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji

    2003-01-01

    Kepler Mission to detect Earth-like planets in our Milky Way galaxy was approved by NASA in December 2001 for a 4-5 year mission. The launch is planned in about 5 years. The Kepler observatory will be placed in an Earth-trailing orbit. The unique feature of the Kepler Mission is its ability to detect Earth-like planets orbiting around solar-type stars at a distance similar to that of Earth (from our Sun); such an orbit could provide an environment suitable for supporting life as we know it. The Kepler observatory accomplishes this feat by looking for the transits of planetary object in front of their suns; Kepler has a photometric precision of 10E-5 (0.00001) to achieve such detections. Other ongoing planetary detection programs (based mostly on a technique that looks for the shifting of spectral lines of the primary star due to its planetary companions' motions around it) have detected massive planets (with masses in the range of Jupiter); such massive planets are not considered suitable for supporting life. If our current theories for the formation of planetary systems are valid, we expect to detect about 50 Earth-like planets during Kepler's 4-year mission (assuming a random distribution of the planetary orbital inclinations with respect to the line of sight from Kepler). The number of detection will increase about 640 planets if the planets to be detected are Jupiter-sized.

  6. Kepler Mission to Detect Earth-like Planets

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji

    2002-01-01

    Kepler Mission to detect Earth-like planets in our Milky Way galaxy was approved by NASA in December 2001 for a 4-5 year mission. The launch is planned in about 5 years. The Kepler observatory will be placed in an Earth-trailing orbit. The unique feature of the Kepler Mission is its ability to detect Earth-like planets orbiting around solar-type stars at a distance similar to that of Earth (from our Sun); such an orbit could provide an environment suitable for supporting life as we know it. The Kepler observatory accomplishes this feat by looking for the transits of planetary object in front of their suns; Kepler has a photometric precision of 10E-5 (0.00001) to achieve such detections. Other ongoing planetary detection programs (based mostly on a technique that looks for the shifting of spectral lines of the primary star due to its planetary companions' motions around it) have detected massive planets (with masses in the range of Jupiter); such massive planets are not considered suitable for supporting life. If our current theories for the formation of planetary systems are valid, we expect to detect about 50 Earth-like planets during Kepler's 4-year mission (assuming a random distribution of the planetary orbital inclinations with respect to the line of sight from Kepler). The number of detection will increase about 640 planets if the planets to be detected are Jupiter-sized.

  7. Detecting planets in Kepler lightcurves using methods developed for CoRoT.

    NASA Astrophysics Data System (ADS)

    Grziwa, S.; Korth, J.; Pätzold, M.

    2011-10-01

    Launched in March 2009, Kepler is the second space telescope dedicated to the search for extrasolar planets. NASA released 150.000 lightcurves to the public in 2010 and announced that Kepler has found 1.235 candidates. The Rhenish Institute for Environmental Research (RIU-PF) is one of the detection groups from the CoRoT space mission. RIU-PF developed the software package EXOTRANS for the detection of transits in stellar lightcurves. EXOTRANS is designed for the fast automated processing of huge amounts of data and was easily adapted to the analysis of Kepler lightcurves. The use of different techniques and philosophies helps to find more candidates and to rule out others. We present the analysis of the Kepler lightcurves with EXOTRANS. Results of our filter (trend, harmonic) and detection (dcBLS) techniques are compared with the techniques used by Kepler (PDC, TPS). The different approaches to rule out false positives are discussed and additional candidates found by EXOTRANS are presented.

  8. Kepler-1647b: The Largest and Longest-period Kepler Transiting Circumbinary Planet

    NASA Astrophysics Data System (ADS)

    Kostov, Veselin B.; Orosz, Jerome A.; Welsh, William F.; Doyle, Laurance R.; Fabrycky, Daniel C.; Haghighipour, Nader; Quarles, Billy; Short, Donald R.; Cochran, William D.; Endl, Michael; Ford, Eric B.; Gregorio, Joao; Hinse, Tobias C.; Isaacson, Howard; Jenkins, Jon M.; Jensen, Eric L. N.; Kane, Stephen; Kull, Ilya; Latham, David W.; Lissauer, Jack J.; Marcy, Geoffrey W.; Mazeh, Tsevi; Müller, Tobias W. A.; Pepper, Joshua; Quinn, Samuel N.; Ragozzine, Darin; Shporer, Avi; Steffen, Jason H.; Torres, Guillermo; Windmiller, Gur; Borucki, William J.

    2016-08-01

    We report the discovery of a new Kepler transiting circumbinary planet (CBP). This latest addition to the still-small family of CBPs defies the current trend of known short-period planets orbiting near the stability limit of binary stars. Unlike the previous discoveries, the planet revolving around the eclipsing binary system Kepler-1647 has a very long orbital period (˜1100 days) and was at conjunction only twice during the Kepler mission lifetime. Due to the singular configuration of the system, Kepler-1647b is not only the longest-period transiting CBP at the time of writing, but also one of the longest-period transiting planets. With a radius of 1.06 ± 0.01 R Jup, it is also the largest CBP to date. The planet produced three transits in the light curve of Kepler-1647 (one of them during an eclipse, creating a syzygy) and measurably perturbed the times of the stellar eclipses, allowing us to measure its mass, 1.52 ± 0.65 M Jup. The planet revolves around an 11-day period eclipsing binary consisting of two solar-mass stars on a slightly inclined, mildly eccentric (e bin = 0.16), spin-synchronized orbit. Despite having an orbital period three times longer than Earth’s, Kepler-1647b is in the conservative habitable zone of the binary star throughout its orbit.

  9. Planet Detection: The Kepler Mission

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon M.; Smith, Jeffrey C.; Tenenbaum, Peter; Twicken, Joseph D.; Van Cleve, Jeffrey

    2012-03-01

    The search for exoplanets is one of the hottest topics in astronomy and astrophysics in the twenty-first century, capturing the public's attention as well as that of the astronomical community. This nascent field was conceived in 1989 with the discovery of a candidate planetary companion to HD114762 [35] and was born in 1995 with the discovery of the first extrasolar planet 51 Peg-b [37] orbiting a main sequence star. As of March, 2011, over 500 exoplanets have been discovered* and 106 are known to transit or cross their host star, as viewed from Earth. Of these transiting planets, 15 have been announced by the Kepler Mission, which was launched into an Earth-trailing, heliocentric orbit in March, 2009 [1,4,6,15,18,20,22,31,32,34,36,43]. In addition, over 1200 candidate transiting planets have already been detected by Kepler [5], and vigorous follow-up observations are being conducted to vet these candidates. As the false-positive rate for Kepler is expected to be quite low [39], Kepler has effectively tripled the number of known exoplanets. Moreover, Kepler will provide an unprecedented data set in terms of photometric precision, duration, contiguity, and number of stars. Kepler's primary science objective is to determine the frequency of Earth-size planets transiting their Sun-like host stars in the habitable zone, that range of orbital distances for which liquid water would pool on the surface of a terrestrial planet such as Earth, Mars, or Venus. This daunting task demands an instrument capable of measuring the light output from each of over 100,000 stars simultaneously with an unprecedented photometric precision of 20 parts per million (ppm) at 6.5-h intervals. The large number of stars is required because the probability of the geometrical alignment of planetary orbits that permit observation of transits is the ratio of the size of the star to the size of the planetary orbit. For Earth-like planets in 1-astronomical unit (AU) orbits† about sun-like stars

  10. Kepler Confirms First Earth-Sized Planet Outside Our Solar System (Kepler-20) (Reporter Package)

    NASA Image and Video Library

    2011-12-19

    NASA's Kepler mission has confirmed the discovery of the first Earth-size planets outside our solar system orbiting a sun-like star. Located about 1,000 light years from Earth, the Kepler-20 solar system has five planets orbiting a star similar to the Sun. Kepler-20f, the 4th planet in the system, is about 90 percent the size of Earth. Kepler-20f is slightly larger than Earth,with a radius that is 3 percent larger.

  11. Kepler planet-detection mission: introduction and first results.

    PubMed

    Borucki, William J; Koch, David; Basri, Gibor; Batalha, Natalie; Brown, Timothy; Caldwell, Douglas; Caldwell, John; Christensen-Dalsgaard, Jørgen; Cochran, William D; DeVore, Edna; Dunham, Edward W; Dupree, Andrea K; Gautier, Thomas N; Geary, John C; Gilliland, Ronald; Gould, Alan; Howell, Steve B; Jenkins, Jon M; Kondo, Yoji; Latham, David W; Marcy, Geoffrey W; Meibom, Søren; Kjeldsen, Hans; Lissauer, Jack J; Monet, David G; Morrison, David; Sasselov, Dimitar; Tarter, Jill; Boss, Alan; Brownlee, Don; Owen, Toby; Buzasi, Derek; Charbonneau, David; Doyle, Laurance; Fortney, Jonathan; Ford, Eric B; Holman, Matthew J; Seager, Sara; Steffen, Jason H; Welsh, William F; Rowe, Jason; Anderson, Howard; Buchhave, Lars; Ciardi, David; Walkowicz, Lucianne; Sherry, William; Horch, Elliott; Isaacson, Howard; Everett, Mark E; Fischer, Debra; Torres, Guillermo; Johnson, John Asher; Endl, Michael; MacQueen, Phillip; Bryson, Stephen T; Dotson, Jessie; Haas, Michael; Kolodziejczak, Jeffrey; Van Cleve, Jeffrey; Chandrasekaran, Hema; Twicken, Joseph D; Quintana, Elisa V; Clarke, Bruce D; Allen, Christopher; Li, Jie; Wu, Haley; Tenenbaum, Peter; Verner, Ekaterina; Bruhweiler, Frederick; Barnes, Jason; Prsa, Andrej

    2010-02-19

    The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet's surface. During the first 6 weeks of observations, Kepler monitored 156,000 stars, and five new exoplanets with sizes between 0.37 and 1.6 Jupiter radii and orbital periods from 3.2 to 4.9 days were discovered. The density of the Neptune-sized Kepler-4b is similar to that of Neptune and GJ 436b, even though the irradiation level is 800,000 times higher. Kepler-7b is one of the lowest-density planets (approximately 0.17 gram per cubic centimeter) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets with densities lower than those predicted for gas giant planets.

  12. Herschel/PACS photometry of transiting-planet host stars with candidate warm debris disks

    NASA Astrophysics Data System (ADS)

    Merín, Bruno; Ardila, David R.; Ribas, Álvaro; Bouy, Hervé; Bryden, Geoffrey; Stapelfeldt, Karl; Padgett, Deborah

    2014-09-01

    Dust in debris disks is produced by colliding or evaporating planetesimals, which are remnants of the planet formation process. Warm dust disks, known by their emission at ≤24 μm, are rare (4% of FGK main sequence stars) and especially interesting because they trace material in the region likely to host terrestrial planets, where the dust has a very short dynamical lifetime. Statistical analyses of the source counts of excesses as found with the mid-IR Wide Field Infrared Survey Explorer (WISE) suggest that warm-dust candidates found for the Kepler transiting-planet host-star candidates can be explained by extragalactic or galactic background emission aligned by chance with the target stars. These statistical analyses do not exclude the possibility that a given WISE excess could be due to a transient dust population associated with the target. Here we report Herschel/PACS 100 and 160 micron follow-up observations of a sample of Kepler and non-Kepler transiting-planet candidates' host stars, with candidate WISE warm debris disks, aimed at detecting a possible cold debris disk in any one of them. No clear detections were found in any one of the objects at either wavelength. Our upper limits confirm that most objects in the sample do not have a massive debris disk like that in β Pic. We also show that the planet-hosting star WASP-33 does not have a debris disk comparable to the one around η Crv. Although the data cannot be used to rule out rare warm disks around the Kepler planet-hosting candidates, the lack of detections and the characteristics of neighboring emission found at far-IR wavelengths support an earlier result suggesting that most of the WISE-selected IR excesses around Kepler candidate host stars are likely due to either chance alignment with background IR-bright galaxies and/or to interstellar emission. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important

  13. On the Nature of Small Planets around the Coolest Kepler Stars

    NASA Astrophysics Data System (ADS)

    Gaidos, Eric; Fischer, Debra A.; Mann, Andrew W.; Lépine, Sébastien

    2012-02-01

    We constrain the densities of Earth- to Neptune-size planets around very cool (Te = 3660-4660 K) Kepler stars by comparing 1202 Keck/HIRES radial velocity measurements of 150 nearby stars to a model based on Kepler candidate planet radii and a power-law mass-radius relation. Our analysis is based on the presumption that the planet populations around the two sets of stars are the same. The model can reproduce the observed distribution of radial velocity variation over a range of parameter values, but, for the expected level of Doppler systematic error, the highest Kolmogorov-Smirnov probabilities occur for a power-law index α ≈ 4, indicating that rocky-metal planets dominate the planet population in this size range. A single population of gas-rich, low-density planets with α = 2 is ruled out unless our Doppler errors are >=5 m s-1, i.e., much larger than expected based on observations and stellar chromospheric emission. If small planets are a mix of γ rocky planets (α = 3.85) and 1 - γ gas-rich planets (α = 2), then γ > 0.5 unless Doppler errors are >=4 m s-1. Our comparison also suggests that Kepler's detection efficiency relative to ideal calculations is less than unity. One possible source of incompleteness is target stars that are misclassified subgiants or giants, for which the transits of small planets would be impossible to detect. Our results are robust to systematic effects, and plausible errors in the estimated radii of Kepler stars have only moderate impact. Some data were obtained at the W. M. Keck Observatory, which is operated by the California Institute of Technology, the University of California, and NASA, and made possible by the financial support of the W. M. Keck Foundation.

  14. Stellar variability and its implications for photometric planet detection with Kepler

    NASA Astrophysics Data System (ADS)

    Batalha, N. M.; Jenkins, J.; Basri, G. S.; Borucki, W. J.; Koch, D. G.

    2002-01-01

    Kepler is one of three candidates for the next NASA Discovery Mission and will survey the extended solar neighborhood to detect and characterize hundreds of terrestrial (and larger) planets in or near the habitable zone. Its strength lies in its ability to detect large numbers of Earth-sized planets - planets which produced a 10-4 change in relative stellar brightness during a transit across the disk of a sun-like parent star. Such a detection requires high instrumental relative precision and is facilitated by observing stars which are photometrically quiet on hourly timescales. Probing stellar variability across the HR diagram, one finds that many of the photometrically quietest stars are the F and G dwarfs. The Hipparcos photometric database shows the lowest photometric variances among stars of this spectral class. Our own Sun is a prime example with RMS variations over a few rotational cycles of typically (3 - 4)×10-4 (computed from VIRGO/DIARAD data taken Jan-Mar 2001). And variability on the hourly time scales crucial for planet detection is significantly smaller: just (2 - 5)×10-5. This bodes well for planet detection programs such as Kepler and Eddington. With significant numbers of photometrically quiet solar-type stars, Earth-sized planets should be readily identified provided they are abundant in the solar neighborhood. In support of the Kepler science objectives, we have initiated a study of stellar variability and its implications for planet detection. Herein, we summarize existing observational and theoretrical work with the objective of determining the percentage of stars in the Kepler field of view expected to be photometrically stable at a level which allows for Earth-sized planet detection.

  15. The Robo-AO KOI survey: laser adaptive optics imaging of every Kepler exoplanet candidate

    NASA Astrophysics Data System (ADS)

    Ziegler, Carl; Law, Nicholas M.; Baranec, Christoph; Morton, Tim; Riddle, Reed; Atkinson, Dani; Nofi, Larissa

    2016-07-01

    The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star (KOI) with laser adaptive optics imaging to hunt for blended nearby stars which may be physically associated companions. With the unparalleled efficiency provided by the first fully robotic adaptive optics system, we perform the critical search for nearby stars (0.15" to 4.0" separation with contrasts up to 6 magnitudes) that dilute the observed planetary transit signal, contributing to inaccurate planetary characteristics or astrophysical false positives. We present 3313 high resolution observations of Kepler planetary hosts from 2012-2015, discovering 479 nearby stars. We measure an overall nearby star probability rate of 14.5+/-0.8%. With this large data set, we are uniquely able to explore broad correlations between multiple star systems and the properties of the planets which they host, providing insight into the formation and evolution of planetary systems in our galaxy. Several KOIs of particular interest will be discussed, including possible quadruple star systems hosting planets and updated properties for possible rocky planets orbiting with in their star's habitable zone.

  16. The Robo-AO KOI Survey: Laser Adaptive Optics Imaging of Every Kepler Exoplanet Candidate

    NASA Astrophysics Data System (ADS)

    Ziegler, Carl; Law, Nicholas M.; Baranec, Christoph; Morton, Tim; Riddle, Reed L.

    2016-01-01

    The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star (KOI) with laser adaptive optics imaging to hunt for blended nearby stars which may be physically associated companions. With the unparalleled efficiency provided by the first fully robotic adaptive optics system, we perform the critical search for nearby stars (0.15" to 4.0" separation with contrasts up to 6 magnitudes) that pollute the observed planetary transit signal, contributing to inaccurate planetary characteristics or astrophysical false positives. We present approximately 3300 high resolution observations of Kepler planetary hosts from 2012-2015, with ~500 observed nearby stars. We measure an overall nearby star probability rate of 16.2±0.8%. With this large dataset, we are uniquely able to explore broad correlations between multiple star systems and the properties of the planets which they host. We then use these clues for insight into the formation and evolution of these exotic systems. Several KOIs of particular interest will be discussed, including possible quadruple star systems hosting planets and updated properties for possible rocky planets orbiting in the habitable zone.

  17. Architecture of Kepler's multi-transiting systems. II. New investigations with twice as many candidates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabrycky, Daniel C.; Lissauer, Jack J.; Rowe, Jason F.

    We report on the orbital architectures of Kepler systems having multiple-planet candidates identified in the analysis of data from the first six quarters of Kepler data and reported by Batalha et al. (2013). These data show 899 transiting planet candidates in 365 multiple-planet systems and provide a powerful means to study the statistical properties of planetary systems. Using a generic mass-radius relationship, we find that only two pairs of planets in these candidate systems (out of 761 pairs total) appear to be on Hill-unstable orbits, indicating ∼96% of the candidate planetary systems are correctly interpreted as true systems. We findmore » that planet pairs show little statistical preference to be near mean-motion resonances. We identify an asymmetry in the distribution of period ratios near first-order resonances (e.g., 2:1, 3:2), with an excess of planet pairs lying wide of resonance and relatively few lying narrow of resonance. Finally, based upon the transit duration ratios of adjacent planets in each system, we find that the interior planet tends to have a smaller transit impact parameter than the exterior planet does. This finding suggests that the mode of the mutual inclinations of planetary orbital planes is in the range 1.°0-2.°2, for the packed systems of small planets probed by these observations.« less

  18. Systematic Search for Rings around Kepler Planet Candidates: Constraints on Ring Size and Occurrence Rate

    NASA Astrophysics Data System (ADS)

    Aizawa, Masataka; Masuda, Kento; Kawahara, Hajime; Suto, Yasushi

    2018-05-01

    We perform a systematic search for rings around 168 Kepler planet candidates with sufficient signal-to-noise ratios that are selected from all of the short-cadence data. We fit ringed and ringless models to their light curves and compare the fitting results to search for the signatures of planetary rings. First, we identify 29 tentative systems, for which the ringed models exhibit statistically significant improvement over the ringless models. The light curves of those systems are individually examined, but we are not able to identify any candidate that indicates evidence for rings. In turn, we find several mechanisms of false positives that would produce ringlike signals, and the null detection enables us to place upper limits on the size of the rings. Furthermore, assuming the tidal alignment between axes of the planetary rings and orbits, we conclude that the occurrence rate of rings larger than twice the planetary radius is less than 15%. Even though the majority of our targets are short-period planets, our null detection provides statistical and quantitative constraints on largely uncertain theoretical models of the origin, formation, and evolution of planetary rings.

  19. Exploring Kepler Giant Planets in the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Hill, Michelle L.; Kane, Stephen R.; Seperuelo Duarte, Eduardo; Kopparapu, Ravi K.; Gelino, Dawn M.; Wittenmyer, Robert A.

    2018-06-01

    The Kepler mission found hundreds of planet candidates within the Habitable Zones (HZ) of their host star, including over 70 candidates with radii larger than three Earth radii (R ⊕) within the optimistic HZ (OHZ). These giant planets are potential hosts to large terrestrial satellites (or exomoons) which would also exist in the HZ. We calculate the occurrence rates of giant planets (R p = 3.0–25 R ⊕) in the OHZ, and find a frequency of (6.5 ± 1.9)% for G stars, (11.5 ± 3.1)% for K stars, and (6 ± 6)% for M stars. We compare this with previously estimated occurrence rates of terrestrial planets in the HZ of G, K, and M stars and find that if each giant planet has one large terrestrial moon then these moons are less likely to exist in the HZ than terrestrial planets. However, if each giant planet holds more than one moon, then the occurrence rates of moons in the HZ would be comparable to that of terrestrial planets, and could potentially exceed them. We estimate the mass of each planet candidate using the mass–radius relationship developed by Chen & Kipping. We calculate the Hill radius of each planet to determine the area of influence of the planet in which any attached moon may reside, then calculate the estimated angular separation of the moon and planet for future imaging missions. Finally, we estimate the radial velocity semi-amplitudes of each planet for use in follow-up observations.

  20. Kepler Detects Planet Orbiting Two Stars (Kepler-16b) Reporter Package for TWAN

    NASA Image and Video Library

    2011-09-19

    NASA's Kepler Mission has made the first detection of a planet orbiting two stars. About 200 light years away from our solar system, the planet Kepler-16b is cold, gaseous and about the size of Saturn. Its stars are both smaller than the Sun and about 2 billion years younger than our Solar System. They orbit around each other, so from our vantage point they take turns eclipsing each other about every 41 days. The planet Kepler-16b orbits around both stars every 229 days.

  1. VizieR Online Data Catalog: New Kepler planetary candidates (Ofir+, 2013)

    NASA Astrophysics Data System (ADS)

    Ofir, A.; Dreizler, S.

    2013-10-01

    We present first results of our efforts to re-analyze the Kepler photometric dataset, searching for planetary transits using an alternative processing pipeline to the one used by the Kepler mission The SARS pipeline was tried and tested extensively by processing all available CoRoT mission data. For this first paper of the series we used this pipeline to search for (additional) planetary transits only in a small subset of stars - the Kepler objects of interest (KOIs), which are already known to include at least one promising planet candidate. (2 data files).

  2. Validation and Initial Characterization of the Long-period Planet Kepler-1654 b

    NASA Astrophysics Data System (ADS)

    Beichman, C. A.; Giles, H. A. C.; Akeson, R.; Ciardi, D.; Christiansen, J.; Isaacson, H.; Marcy, G. M.; Sinukoff, E.; Greene, T.; Fortney, J. J.; Crossfield, I.; Hu, R.; Howard, A. W.; Petigura, E. A.; Knutson, H. A.

    2018-04-01

    Fewer than 20 transiting Kepler planets have periods longer than one year. Our early search of the Kepler light curves revealed one such system, Kepler-1654b (originally KIC 8410697b), which shows exactly two transit events and whose second transit occurred only five days before the failure of the second of two reaction wheels brought the primary Kepler mission to an end. A number of authors have also examined light curves from the Kepler mission searching for long-period planets and identified this candidate. Starting in 2014 September, we began an observational program of imaging, reconnaissance spectroscopy, and precision radial velocity (RV) measurements that confirm with a high degree of confidence that Kepler-1654b is a bona fide transiting planet orbiting a mature G5V star (T eff = 5580 K, [Fe/H] = ‑0.08) with a semimajor axis of 2.03 au, a period of 1047.84 days, and a radius of 0.82 ± 0.02 R Jup. RV measurements using Keck’s HIRES spectrometer obtained over 2.5 years set a limit to the planet’s mass of <0.5 (3σ) M Jup. The bulk density of the planet is similar to that of Saturn or possibly lower. We assess the suitability of temperate gas giants like Kepler-1654b for transit spectroscopy with the James Webb Space Telescope, as their relatively cold equilibrium temperatures (T pl ∼ 200 K) make them interesting from the standpoint of exoplanet atmospheric physics. Unfortunately, these low temperatures also make the atmospheric scale heights small and thus transmission spectroscopy challenging. Finally, the long time between transits can make scheduling JWST observations difficult—as is the case with Kepler-1654b.

  3. Passing NASA's Planet Quest Baton from Kepler to TESS

    NASA Astrophysics Data System (ADS)

    Jenkins, J.

    Kepler vaulted into the heavens on March 7, 2009, initiating NASAs search for Earth- size planets orbiting Sun-like stars in the habitable zone, where liquid water could exist on a rocky planetary surface. In the 4 years since Kepler began science operations, a flood of photometric data on upwards of 190,000 stars of unprecedented precision and continuity has provoked a watershed of 134+ confirmed or validated planets, 3200+ planetary candidates (most sub-Neptune in size and many compara- ble to or smaller than Earth), and a resounding revolution in asteroseismology and astrophysics. The most recent discoveries include Kepler-62 with 5 planets total of which 2 are in the habitable zone with radii of 1.4 and 1.7 Re. The focus of the mission is shifting towards how to rapidly vet the 18,000+ threshold crossing events produced with each transiting planet search, and towards those studies that will allow us to understand what the data are saying about the prevalence of planets in the solar neighborhood and throughout the galaxy. This talk will provide an overview of the science results from the Kepler Mission and the work ahead to derive the frequency of Earth-size planets in the habitable zone of solar-like stars from the treasure trove of Kepler data. NASAs quest for exoplanets continues with the Transiting Exoplanet Survey Satel- lite (TESS) mission, slated for launch in May 2017 by NASAs Explorer Program. TESS will conduct an all-sky transit survey to identify the 1000 best small exoplanets in the solar neighborhood for follow up observations and characterization. TESSs targets will include all F, G, K dwarfs from +4 to +12 magnitude and all M dwarfs known within ˜200 light-years. 500,000 target stars will be observed over two years with ˜500 square degrees observed continuously for a year in each hemisphere in the James Webb Space Telescopes continuously viewable zones. Since the typical TESS target star is 5 magnitudes brighter than Kepler’s and 10 times

  4. Kepler

    NASA Technical Reports Server (NTRS)

    Howell, Steve B.

    2011-01-01

    The NASA Kepler mission recently announced over 1200 exoplanet candidates. While some are common Hot Jupiters, a large number are Neptune size and smaller, transit depths suggest sizes down to the radius of Earth. The Kepler project has a fairly high confidence that most of these candidates are real exoplanets. Many analysis steps and lessons learned from Kepler light curves are used during the vetting process. This talk will cover some new results in the areas of stellar variability, solar systems with multiple planets, and how transit-like signatures are vetted for false positives, especially those indicative of small planets.

  5. Kepler Mission: A Search for Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Koch, D.; Borucki, W.; Jenkens, J.; Dunham, E.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    The Kepler Mission is a search for terrestrial planets by monitoring a large ensemble of stars for the periodic transits of planets. The mission consists of a 95-cm aperture photometer with 105 square deg field of view that monitors 100,000 dwarf stars for four years. The mission is unique in its ability to detect Earth-size planets in the habitable zone of other stars in the extended solar neighborhood. An Earth-size transit of a solar-like star causes a change in brightness of about 100 ppm. Laboratory testing has demonstrated that a total system noise level of 20 ppm is readily achievable on the timescale of transits. Earth-like transits have been created and reliably measured in an end-to-end system test that has all known sources of noise including, spacecraft jitter. To detect Earth-size planets, the photometer must be spaceborne; this also eliminates the day-night and seasonal cycle interruptions of ground-based observing. The photometer will stare at a single field of stars for four years, with an option to continue for two more years. This allows for detection of four transits of planets in Mars-like orbits and detection of planets even smaller than Earth especially for short period orbits, since the signal to noise improves as the square root of the number of transits observed. In addition to detection of planets, Kepler data are also useful for understanding the activity cycles and rotation rates of the stars observed. For the 3,000 stars brighter than mv= 11.4 p-mode oscillations are measured. The mission has been selected as one of three candidates for NASA's next Discovery mission.

  6. Kepler's Final Survey Catalog

    NASA Astrophysics Data System (ADS)

    Mullally, S. E.

    2017-12-01

    The Kepler mission was designed to detect transiting exoplanets and has succeeded in finding over 4000 candidates. These candidates include approximately 50 terrestrial-sized worlds near to the habitable zone of their GKM dwarf stars (shown in figure against the stellar temperature). However not all transit detections are created equal. False positives, such as background eclipsing binaries, can mimic the signal of a transiting planet. Additionally, at Kepler's detection limit noise, either from the star or from the detector, can create signals that also mimic a transiting planet. For the data release 25 Kepler catalog we simulated these false alarms and determined how often known false alarms are called candidates. When this reliability information is combined with our studies of catalog completeness, this catalog can be used to understand the occurrence rate of exoplanets, even for the small, temperate planet candidates found by Kepler. I will discuss the automated methods we used to create and characterize this latest catalog, highlighting how we balanced the completeness and reliability of the long period candidates. While Kepler has been very successful at detecting transiting terrestrial-sized exoplanets, many of these detections are around stars that are too dim for successful follow-up work. Future missions will pick up where Kepler left off and find small planets around some of the brightest and smallest stars.

  7. VizieR Online Data Catalog: Kepler multiple transiting planet systems (Wang+, 2015)

    NASA Astrophysics Data System (ADS)

    Wang, J.; Fischer, D. A.; Xie, J.-W.; Ciardi, D. R.

    2017-10-01

    The sample of MTPSs remains the same as that in Wang et al. (2014, J/ApJ/783/4). From the NASA Exoplanet Archive (http://exoplanetarchive.ipac.caltech.edu), we select Kepler objects of interest (KOIs) that satisfy the following criteria: (1) disposition of either Candidate or Confirmed; (2) with at least two planet candidates; (3) Kepler magnitude (KP) brighter than 13.5. The above selection criteria resulted in 138 MTPSs in Wang et al. (2014, J/ApJ/783/4). With the updated Exoplanet Archive, the selection criteria resulted in 208 MTPSs. In this paper, we focus on the 138 MTPSs to be consistent with previous work. (4 data files).

  8. VizieR Online Data Catalog: Detection of 715 Kepler planet candidates host stars (Law+, 2014)

    NASA Astrophysics Data System (ADS)

    Law, N. M.; Morton, T.; Baranec, C.; Riddle, R.; Ravichandran, G.; Ziegler, C.; Johnson, J. A.; Tendulkar, S. P.; Bui, K.; Burse, M. P.; Das, H. K.; Dekany, R. G.; Kulkarni, S.; Punnadi, S.; Ramaprakash, A. N.

    2017-03-01

    We selected targets from the KOIs catalog based on a Q1-Q6 Kepler data search (Batalha et al. 2013, J/ApJS/204/24). Our initial targets were selected randomly from the Q1-Q6 KOIs, requiring only that the targets are brighter than mi = 16.0, a restriction which removed only 2% of the KOIs. While it is our intent to observe every KOI with Robo-AO, this initial target selection provides a wide coverage of the range of KOI properties. Given Robo-AO's low time overheads, we took the time to re-observe KOIs which already had detected companions, to produce a complete and homogenous survey. We obtained high-angular-resolution images of the 715 Kepler targeted planet candidate host stars in summer 2012. We performed all the observations in a queue-scheduled mode with the Robo-AO laser adaptive optics system (Baranec et al. 2012SPIE.8447E..04B; 2013, J. Visualized Exp., 72, e50021; Riddle et al. 2012SPIE.8447E..2OR) mounted on the robotic Palomar 60 inch telescope (Cenko et al. 2006PASP..118.1396C). (4 data files).

  9. Kepler’s DR25 Most Earth-like Planet Candidates: What To Know Before You Go

    NASA Astrophysics Data System (ADS)

    Thompson, Susan E.; Kepler Team

    2018-01-01

    The Kepler mission’s latest catalog of planet candidates (data release 25 KOI catalog at the NASA exoplanet archive) was released in June of 2017. The catalog contains 4034 candidates including a significant population of terrestrial-size planets in the habitable zone of FGK dwarf stars. I will highlight what we know about these planet candidates in the DR25 catalog and discuss some of the caveats when working with these detections. Specifically, I will discuss how the noise in the Kepler light curves (from both the instrument and the stars) is known to occasionally produce weak, transit-like signals. We use simulations of this noise to measure how often these signals sneak into the catalog. I will also demonstrate ways to select a high-reliability sample using information available in the catalog. Such considerations may prove useful for anyone planning to use these planet candidates for occurrence rate calculations, choosing targets for follow-up, or deciding which planet to visit on his/her next holiday.

  10. DENSITY AND ECCENTRICITY OF KEPLER PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Yanqin; Lithwick, Yoram

    2013-07-20

    We analyze the transit timing variations (TTV) obtained by the Kepler mission for 22 sub-Jovian planet pairs (19 published, 3 new) that lie close to mean motion resonances. We find that the TTV phases for most of these pairs lie close to zero, consistent with an eccentricity distribution that has a very low root-mean-squared value of e {approx} 0.01; but about a quarter of the pairs possess much higher eccentricities, up to e {approx} 0.1-0.4. For the low-eccentricity pairs, we are able to statistically remove the effect of eccentricity to obtain planet masses from TTV data. These masses, together withmore » those measured by radial velocity, yield a best-fit mass-radius relation M {approx} 3 M{sub Circled-Plus }(R/R{sub Circled-Plus }). This corresponds to a constant surface escape velocity of {approx}20 km s{sup -1}. We separate the planets into two distinct groups: ''mid-sized'' (those greater than 3 R{sub Circled-Plus }) and 'compact' (those smaller). All mid-sized planets are found to be less dense than water and therefore must contain extensive H/He envelopes that are comparable in mass to that of their cores. We argue that these planets have been significantly sculpted by photoevaporation. Surprisingly, mid-sized planets, a minority among Kepler candidates, are discovered exclusively around stars more massive than 0.8 M{sub Sun }. The compact planets, on the other hand, are often denser than water. Combining our density measurements with those from radial velocity studies, we find that hotter compact planets tend to be denser, with the hottest ones reaching rock density. Moreover, hotter planets tend to be smaller in size. These results can be explained if the compact planets are made of rocky cores overlaid with a small amount of hydrogen, {<=}1% in mass, with water contributing little to their masses or sizes. Photoevaporation has exposed bare rocky cores in cases of the hottest planets. Our conclusion that these planets are likely not water worlds

  11. A study of the shortest-period planets found with Kepler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchis-Ojeda, Roberto; Rappaport, Saul; Winn, Joshua N.

    2014-05-20

    We present the results of a survey aimed at discovering and studying transiting planets with orbital periods shorter than one day (ultra-short-period, or USP, planets), using data from the Kepler spacecraft. We computed Fourier transforms of the photometric time series for all 200,000 target stars, and detected transit signals based on the presence of regularly spaced sharp peaks in the Fourier spectrum. We present a list of 106 USP candidates, of which 18 have not previously been described in the literature. This list of candidates increases the number of planet candidates with orbital periods shorter than about six hours frommore » two to seven. In addition, among the objects we studied, there are 26 USP candidates that had been previously reported in the literature which do not pass our various tests. All 106 of our candidates have passed several standard tests to rule out false positives due to eclipsing stellar systems. A low false positive rate is also implied by the relatively high fraction of candidates for which more than one transiting planet signal was detected. By assuming these multi-transit candidates represent coplanar multi-planet systems, we are able to infer that the USP planets are typically accompanied by other planets with periods in the range 1-50 days, in contrast with hot Jupiters which very rarely have companions in that same period range. Another clear pattern is that almost all USP planets are smaller than 2 R {sub ⊕}, possibly because gas giants in very tight orbits would lose their atmospheres by photoevaporation when subject to extremely strong stellar irradiation. Based on our survey statistics, USP planets exist around approximately (0.51 ± 0.07)% of G-dwarf stars, and (0.83 ± 0.18)% of K-dwarf stars.« less

  12. Revised Masses and Densities of the Planets around Kepler-10

    NASA Astrophysics Data System (ADS)

    Weiss, Lauren M.; Rogers, Leslie A.; Isaacson, Howard T.; Agol, Eric; Marcy, Geoffrey W.; Rowe, Jason F.; Kipping, David; Fulton, Benjamin J.; Lissauer, Jack J.; Howard, Andrew W.; Fabrycky, Daniel

    2016-03-01

    Determining which small exoplanets have stony-iron compositions is necessary for quantifying the occurrence of such planets and for understanding the physics of planet formation. Kepler-10 hosts the stony-iron world Kepler-10b, and also contains what has been reported to be the largest solid silicate-ice planet, Kepler-10c. Using 220 radial velocities (RVs), including 72 precise RVs from Keck-HIRES of which 20 are new from 2014 to 2015, and 17 quarters of Kepler photometry, we obtain the most complete picture of the Kepler-10 system to date. We find that Kepler-10b ({R}{{p}}=1.47 {R}\\oplus ) has mass 3.72\\quad +/- \\quad 0.42\\quad {M}\\oplus and density 6.46\\quad +/- \\quad 0.73\\quad {{g}} {{cm}}-3. Modeling the interior of Kepler-10b as an iron core overlaid with a silicate mantle, we find that the iron core constitutes 0.17 ± 0.11 of the planet mass. For Kepler-10c ({R}{{p}}=2.35 {R}\\oplus ) we measure mass 13.98\\quad +/- \\quad 1.79\\quad {M}\\oplus and density 5.94\\quad +/- \\quad 0.76\\quad {{g}} {{cm}}-3, significantly lower than the mass computed in Dumusque et al. (17.2+/- 1.9 {M}\\oplus ). Our mass measurement of Kepler-10c rules out a pure stony-iron composition. Internal compositional modeling reveals that at least 10% of the radius of Kepler-10c is a volatile envelope composed of hydrogen-helium (0.2% of the mass, 16% of the radius) or super-ionic water (28% of the mass, 29% of the radius). However, we note that analysis of only HIRES data yields a higher mass for planet b and a lower mass for planet c than does analysis of the HARPS-N data alone, with the mass estimates for Kepler-10 c being formally inconsistent at the 3σ level. Moreover, dividing the data for each instrument into two parts also leads to somewhat inconsistent measurements for the mass of planet c derived from each observatory. Together, this suggests that time-correlated noise is present and that the uncertainties in the masses of the planets (especially planet c) likely

  13. Modeling Kepler Transit Light Curves as False Positives: Rejection of Blend Scenarios for Kepler-9, and Validation of Kepler-9 d, a Super-Earth-Size Planet in a Multiple System

    NASA Technical Reports Server (NTRS)

    Torres, Guillermo; Fressin, Francois; Batalha, Natalie M.; Borucki, William J.; Brown, Timothy M.; Bryson, Stephen T.; Buchhave, Lars A.; Charbonneau, David; Ciardi, David R.; Dunham, Edward W.; hide

    2011-01-01

    Light curves from the Kepler Mission contain valuable information on the nature of the phenomena producing the transit-like signals. To assist in exploring the possibility that they are due to an astrophysical false positive we describe a procedure (BLENDER) to model the photometry in terms of a blend rather than a planet orbiting a star. A blend may consist of a background or foreground eclipsing binary (or star-planet pair) whose eclipses are attenuated by the light of the candidate and possibly other stars within the photometric aperture. We apply BLENDER to the case of Kepler-9 (KIC 3323887), a target harboring two previously confirmed Saturn-size planets (Kepler-9 b and Kepler-9 c) showing transit timing variations, and an additional shallower signal with a 1.59 day period suggesting the presence of a super-Earth-size planet. Using BLENDER together with constraints from other follow-up observations we are able to rule out all blends for the two deeper signals and provide independent validation of their planetary nature. For the shallower signal, we rule out a large fraction of the false positives that might mimic the transits. The false alarm rate for remaining blends depends in part (and inversely) on the unknown frequency of small-size planets. Based on several realistic estimates of this frequency, we conclude with very high confidence that this small signal is due to a super-Earth-size planet (Kepler-9 d) in a multiple system, rather than a false positive. The radius is determined to be 1.64(exp)(sub-14),R, and current spectroscopic observations are as yet insufficient to establish its mass.

  14. Kepler Discovers First Confirmed Planet in the Habitable Zone (Kepler-22); Celebrates 1000 Days

    NASA Image and Video Library

    2011-12-07

    At a press conference held at NASA Ames Research Center,the Kepler team announced the discovery of its first confirmed planet in the 'habitable zone' or the region around a star where liquid water could exist on a planet's surface. Named Kepler-22b, the planet is about 2.4 times the radius of the Earth and orbits a sun-like star about 600 light years away between the constellations of Cygnus and Lyra.

  15. Kepler Planet Detection Metrics: Robovetter Completeness and Effectiveness for Data Release 25

    NASA Technical Reports Server (NTRS)

    Coughlin, Jeffrey L.

    2017-01-01

    In general, the Kepler pipeline identifies a list of Threshold Crossing Events (TCEs), which are periodic flux decrements meeting certain criteria (Jenkins, 2017). These TCEs are reviewed and those that appear consistent with astrophysically transiting or eclipsing systems are classified as Kepler Objects of Interest (KOIs). Further review is given to KOIs, which are then dispositioned as Planet Candidates (PCs) or False Positive (FPs). FPs are further denoted by four major flags that indicate if the signal is Not Transit-Like (NTL), due to a Stellar Eclipse (SS; previously referred to as Significant Secondary), and/or due to contamination from a source other than the target as evidenced by a Centroid Offset (CO) oran Ephemeris Match (EM) with another object. This entire TCE review process is known as dispositioning or vetting.In the first five Kepler mission planet candidate catalogs (Borucki et al., 2011a,b; Batalha et al., 2013; Burke et al., 2014; Rowe et al., 2015), TCEs were manually examined on an individual basis and dispositioned using various plots and quantitative diagnostic tests (see e.g., Coughlin, 2017). In the sixth catalog, Mullally et al. (2015a) employed partial automation via simple parameter cuts to automatically disposition a large fraction of TCEs as not transit-like. Mullally et al. (2015a) also used an automated technique known as the centroid Robovetter (Mullally, 2017) to automatically identify some FP KOIs due to centroid offsets - a telltale signature of light contamination from another target. The remaining targets were manually dispositioned. In the seventh catalog, Coughlin et al. (2016) automated theentire dispositioning process using what is collectively known simply as the Robovetter.In the eighth and final mission catalog, Thompson et al. (2017) use a revised Robovetter to automate the dispositioning of all TCEs with an emphasis on creating a catalog suitable for accurately determining planet occurrence rates. In order to

  16. Revised Masses and Densities of the Planets around Kepler-10

    NASA Astrophysics Data System (ADS)

    Weiss, Lauren M.; Rogers, Leslie A.; Isaacson, Howard T.; Agol, Eric; Marcy, Geoffrey W.; Rowe, Jason F.; Kipping, David; Fulton, Benjamin; Lissauer, Jack; Howard, Andrew; Clark Fabrycky, Daniel

    2015-12-01

    Determining which small exoplanets have stony-iron compositions is necessary for quantifying the occurrence of such planets and for understanding the physics of planet formation. Kepler-10 hosts the stony-iron world Kepler-10b, and also contains what has been reported to be the largest solid silicate-ice planet, Kepler-10c. Using 220 radial velocities (RVs), including 72 new precise RVs from Keck-HIRES, and 17 quarters of Kepler photometry, we obtain the most complete picture of the Kepler-10 system to date. We find that Kepler-10b (Rp = 1.47 R⊕) has mass 3.70 ± 0.43 M⊕ and density 6.44 ± 0.73 g cm-3. Modeling the interior of Kepler-10b as an iron core overlaid with a silicate mantle, we find that the core constitutes 0.17 ± 0.11 of the planet mass. For Kepler-10c (Rp = 2.35 R⊕) we measure mass 13.32 ± 1.65 M⊕and density 5.67 ± 0.70 g cm-3, significantly lower than the mass in Dumusque et al. (2014, 17.2±1.9 M⊕). Kepler-10c is not sufficiently dense to have a pure stony-iron composition. Internal compositional modeling reveals that at least 10% of the radius of Kepler-10c is a volatile envelope composed of either hydrogen-helium (0.0027 ± 0.0015 of the mass, 0.172±0.037 of the radius) or super-ionic water (0.309±0.11 of the mass, 0.305±0.075 of the radius). Transit timing variations (TTVs) of Kepler-10c indicate the likely presence of a third planet in the system, KOI-72.X. The TTVs and RVs are consistent with KOI-72.X having an orbital period of 24, 71, 82, or 101 days, and a mass from 1-7 M⊕.

  17. Planet Hunters: Kepler by Eye

    NASA Astrophysics Data System (ADS)

    Schwamb, Megan E.; Lintott, C.; Fischer, D.; Smith, A. M.; Boyajian, T. S.; Brewer, J. M.; Giguere, M. J.; Lynn, S.; Parrish, M.; Schawinski, K.; Schmitt, J.; Simpson, R.; Wang, J.

    2014-01-01

    Planet Hunters (http://www.planethunters.org), part of the Zooniverse's (http://www.zooniverse.org) collection of online citizen science projects, uses the World Wide Web to enlist the general public to identify transits in the pubic Kepler light curves. Planet Hunters utilizes human pattern recognition to identify planet transits that may be missed by automated detection algorithms looking for periodic events. Referred to as ‘crowdsourcing’ or ‘citizen science’, the combined assessment of many non-expert human classifiers with minimal training can often equal or best that of a trained expert and in many cases outperform the best machine-learning algorithm. Visitors to the Planet Hunters' website are presented with a randomly selected ~30-day light curve segment from one of Kepler’s ~160,000 target stars and are asked to draw boxes to mark the locations of visible transits in the web interface. 5-10 classifiers review each 30-day light curve segment. Since December 2010, more than 260,000 volunteers world wide have participated, contributing over 20 million classifications. We have demonstrated the success of a citizen science approach with the project’s more than 20 planet candidates, the discovery of PH1b, a transiting circumbinary planet in a quadruple star system, and the discovery of PH2-b, a confirmed Jupiter-sized planet in the habitable zone of a Sun-like star. I will provide an overview of Planet Hunters, highlighting several of project's most recent exoplanet and astrophysical discoveries. Acknowledgements: MES was supported in part by a NSF AAPF under award AST-1003258 and a American Philosophical Society Franklin Grant. We acknowledge support from NASA ADAP12-0172 grant to PI Fischer.

  18. 275 Candidates and 149 Validated Planets Orbiting Bright Stars in K2 Campaigns 0–10

    NASA Astrophysics Data System (ADS)

    Mayo, Andrew W.; Vanderburg, Andrew; Latham, David W.; Bieryla, Allyson; Morton, Timothy D.; Buchhave, Lars A.; Dressing, Courtney D.; Beichman, Charles; Berlind, Perry; Calkins, Michael L.; Ciardi, David R.; Crossfield, Ian J. M.; Esquerdo, Gilbert A.; Everett, Mark E.; Gonzales, Erica J.; Hirsch, Lea A.; Horch, Elliott P.; Howard, Andrew W.; Howell, Steve B.; Livingston, John; Patel, Rahul; Petigura, Erik A.; Schlieder, Joshua E.; Scott, Nicholas J.; Schumer, Clea F.; Sinukoff, Evan; Teske, Johanna; Winters, Jennifer G.

    2018-03-01

    Since 2014, NASA’s K2 mission has observed large portions of the ecliptic plane in search of transiting planets and has detected hundreds of planet candidates. With observations planned until at least early 2018, K2 will continue to identify more planet candidates. We present here 275 planet candidates observed during Campaigns 0–10 of the K2 mission that are orbiting stars brighter than 13 mag (in Kepler band) and for which we have obtained high-resolution spectra (R = 44,000). These candidates are analyzed using the vespa package in order to calculate their false-positive probabilities (FPP). We find that 149 candidates are validated with an FPP lower than 0.1%, 39 of which were previously only candidates and 56 of which were previously undetected. The processes of data reduction, candidate identification, and statistical validation are described, and the demographics of the candidates and newly validated planets are explored. We show tentative evidence of a gap in the planet radius distribution of our candidate sample. Comparing our sample to the Kepler candidate sample investigated by Fulton et al., we conclude that more planets are required to quantitatively confirm the gap with K2 candidates or validated planets. This work, in addition to increasing the population of validated K2 planets by nearly 50% and providing new targets for follow-up observations, will also serve as a framework for validating candidates from upcoming K2 campaigns and the Transiting Exoplanet Survey Satellite, expected to launch in 2018.

  19. Forming Circumbinary Planets: N-body Simulations of Kepler-34

    NASA Astrophysics Data System (ADS)

    Lines, S.; Leinhardt, Z. M.; Paardekooper, S.; Baruteau, C.; Thebault, P.

    2014-02-01

    Observations of circumbinary planets orbiting very close to the central stars have shown that planet formation may occur in a very hostile environment, where the gravitational pull from the binary should be very strong on the primordial protoplanetary disk. Elevated impact velocities and orbit crossings from eccentricity oscillations are the primary contributors to high energy, potentially destructive collisions that inhibit the growth of aspiring planets. In this work, we conduct high-resolution, inter-particle gravity enabled N-body simulations to investigate the feasibility of planetesimal growth in the Kepler-34 system. We improve upon previous work by including planetesimal disk self-gravity and an extensive collision model to accurately handle inter-planetesimal interactions. We find that super-catastrophic erosion events are the dominant mechanism up to and including the orbital radius of Kepler-34(AB)b, making in situ growth unlikely. It is more plausible that Kepler-34(AB)b migrated from a region beyond 1.5 AU. Based on the conclusions that we have made for Kepler-34, it seems likely that all of the currently known circumbinary planets have also migrated significantly from their formation location with the possible exception of Kepler-47(AB)c.

  20. Kepler constraints on planets near hot Jupiters

    PubMed Central

    Steffen, Jason H.; Ragozzine, Darin; Fabrycky, Daniel C.; Carter, Joshua A.; Ford, Eric B.; Holman, Matthew J.; Rowe, Jason F.; Welsh, William F.; Borucki, William J.; Boss, Alan P.; Ciardi, David R.; Quinn, Samuel N.

    2012-01-01

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2∶1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history. PMID:22566651

  1. Kepler constraints on planets near hot Jupiters.

    PubMed

    Steffen, Jason H; Ragozzine, Darin; Fabrycky, Daniel C; Carter, Joshua A; Ford, Eric B; Holman, Matthew J; Rowe, Jason F; Welsh, William F; Borucki, William J; Boss, Alan P; Ciardi, David R; Quinn, Samuel N

    2012-05-22

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 21 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.

  2. Leveraging the power of a planet population: Mass-radius relation, host star multiplicity, and composition distribution of Kepler's sub-Neptunes

    NASA Astrophysics Data System (ADS)

    Wolfgang, Angie K.

    With the advent of large, dedicated planet hunting surveys, the search for extrasolar planets has evolved into an effort to understand the properties and formation of a planet population whose characteristics continue to surprise the provincial perspective we've derived from our own Solar System. The Kepler Mission in particular has enabled a large number of these studies, as it was designed to stare simultaneously at thousands of stars for several years and its automated transit search pipeline enables fairly uniform detection criteria and characterizable completeness and false positive rates. With the detection of nearly 5000 planet candidates, 80% of which are smaller than 4 REarth, Kepler has especially illuminated the unexpectedly vast sub-Neptune population. Such a rich dataset provides an unprecedented opportunity for rigorous statistical study of the physics of these planets that have no analogs in our Solar System. Contributing to this endeavor, I present the statistical characterization of several aspects of this population, including the comparison between Kepler's planet candidates and low-mass occurrence rates inferred from radial velocity detections, the relationship between a sub-Neptune's mass and its radius, the frequency of Kepler planet candidate host stars which have nearby visual companions as revealed by follow-up high resolution imaging, and the distribution of gaseous mass fractions that these sub-Neptunes could possess given a rock-plus-hydrogen composition. To do so, I have used sophisticated statistical analyses such as Monte Carlo simulations and hierarchical Bayesian modeling to tie theory more closely to observations and have acquired near infrared laser guide star adaptive optics imaging of 196 Kepler Objects of Interest. I find that even within this sub-Neptune population these planets are very diverse in nature: there is intrinsic scatter in masses at a given radius, the planet host stars have visual companions at a wide range of

  3. The Kepler Mission: A Photometric Search for Earthlike Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Borucki, William; Koch, David; Young, Richard E. (Technical Monitor)

    1998-01-01

    If Earth lies in or near the orbital plane of an extrasolar planet, that planet passes in front of the disk of its star once each orbit as viewed from Earth. Precise photometry can reveal such transits, which can be distinguished from rotationally-modulated starspots and intrinsic stellar variability by their periodicity, square-well shapes and relative spectral neutrality. Transit observations would provide the size and orbital period of the detected planet. Although geometrical considerations limit the fraction of planets detectable by this technique, many stars can be surveyed within the field of view of one telescope, so transit photometry is quite efficient. Scintillation in and variability of Earth's atmosphere limit photometric precision to roughly one-thousandth of a magnitude, allowing detection of transits by Jupiter-sized planets but not by Earth-sized planets from the ground. The COROT spacecraft will be able to detect Uranus-sized planets orbiting near stars. The Kepler Mission, which is being proposed to NASA's Discovery Program this year, will have a photometer with a larger aperture (1 meter) than will COROT, so it will be able to detect transits by planets as small as Earth. Moreover, the Kepler mission will examine the same star field for four years, allowing confirmation of planets with orbital periods of a year. If the Sun's planetary system is typical for single stars, Kepler should detect approximately 480 terrestrial planets. Assuming the statistics from radial velocity surveys are typical, Kepler should also detect transits of 150 inner giant planets and reflected light variations of 1400 giant planets with orbital periods of less than one week.

  4. VALIDATION OF 12 SMALL KEPLER TRANSITING PLANETS IN THE HABITABLE ZONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torres, Guillermo; Kipping, David M.; Fressin, Francois

    We present an investigation of 12 candidate transiting planets from Kepler with orbital periods ranging from 34 to 207 days, selected from initial indications that they are small and potentially in the habitable zone (HZ) of their parent stars. Few of these objects are known. The expected Doppler signals are too small to confirm them by demonstrating that their masses are in the planetary regime. Here we verify their planetary nature by validating them statistically using the BLENDER technique, which simulates large numbers of false positives and compares the resulting light curves with the Kepler photometry. This analysis was supplemented withmore » new follow-up observations (high-resolution optical and near-infrared spectroscopy, adaptive optics imaging, and speckle interferometry), as well as an analysis of the flux centroids. For 11 of them (KOI-0571.05, 1422.04, 1422.05, 2529.02, 3255.01, 3284.01, 4005.01, 4087.01, 4622.01, 4742.01, and 4745.01) we show that the likelihood they are true planets is far greater than that of a false positive, to a confidence level of 99.73% (3σ) or higher. For KOI-4427.01 the confidence level is about 99.2% (2.6σ). With our accurate characterization of the GKM host stars, the derived planetary radii range from 1.1 to 2.7 R {sub ⊕}. All 12 objects are confirmed to be in the HZ, and nine are small enough to be rocky. Excluding three of them that have been previously validated by others, our study doubles the number of known rocky planets in the HZ. KOI-3284.01 (Kepler-438b) and KOI-4742.01 (Kepler-442b) are the planets most similar to the Earth discovered to date when considering their size and incident flux jointly.« less

  5. The Kepler Dichotomy in Planetary Disks: Linking Kepler Observables to Simulations of Late-stage Planet Formation

    NASA Astrophysics Data System (ADS)

    Moriarty, John; Ballard, Sarah

    2016-11-01

    NASA’s Kepler Mission uncovered a wealth of planetary systems, many with planets on short-period orbits. These short-period systems reside around 50% of Sun-like stars and are similarly prevalent around M dwarfs. Their formation and subsequent evolution is the subject of active debate. In this paper, we simulate late-stage, in situ planet formation across a grid of planetesimal disks with varying surface density profiles and total mass. We compare simulation results with observable characteristics of the Kepler sample. We identify mixture models with different primordial planetesimal disk properties that self-consistently recover the multiplicity, radius, period and period ratio, and duration ratio distributions of the Kepler planets. We draw three main conclusions. (1) We favor a “frozen-in” narrative for systems of short-period planets, in which they are stable over long timescales, as opposed to metastable. (2) The “Kepler dichotomy,” an observed phenomenon of the Kepler sample wherein the architectures of planetary systems appear to either vary significantly or have multiple modes, can naturally be explained by formation within planetesimal disks with varying surface density profiles. Finally, (3) we quantify the nature of the “Kepler dichotomy” for both GK stars and M dwarfs, and find that it varies with stellar type. While the mode of planet formation that accounts for high multiplicity systems occurs in 24% ± 7% of planetary systems orbiting GK stars, it occurs in 63% ± 16% of planetary systems orbiting M dwarfs.

  6. Finding False Positives Planet Candidates Due To Background Eclipsing Binaries in K2

    NASA Astrophysics Data System (ADS)

    Mullally, Fergal; Thompson, Susan E.; Coughlin, Jeffrey; DAVE Team

    2016-06-01

    We adapt the difference image centroid approach, used for finding background eclipsing binaries, to vet K2 planet candidates. Difference image centroids were used with great success to vet planet candidates in the original Kepler mission, where the source of a transit could be identified by subtracting images of out-of-transit cadences from in-transit cadences. To account for K2's roll pattern, we reconstruct out-of-transit images from cadences that are nearby in both time and spacecraft roll angle. We describe the method and discuss some K2 planet candidates which this method suggests are false positives.

  7. Kepler’s Earth-like Planets Should Not Be Confirmed without Independent Detection: The Case of Kepler-452b

    NASA Astrophysics Data System (ADS)

    Mullally, Fergal; Thompson, Susan E.; Coughlin, Jeffrey L.; Burke, Christopher J.; Rowe, Jason F.

    2018-05-01

    We show that the claimed confirmed planet Kepler-452b (a.k.a., K07016.01, KIC 8311864) cannot be confirmed using a purely statistical validation approach. Kepler detects many more periodic signals from instrumental effects than it does from transits, and it is likely impossible to confidently distinguish the two types of events at low signal-to-noise. As a result, the scenario that the observed signal is due to an instrumental artifact cannot be ruled out with 99% confidence, and the system must still be considered a candidate planet. We discuss the implications for other confirmed planets in or near the habitable zone.

  8. Kepler Planet Detection Mission: Introduction and First Results

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Basri, Gibor; Batalha, Natalie; Brown, Timothy; Lissauer, Jack J.; Morrison, David; Rowe, Jason; Bryson, Stephen T.; Dotson, Jessie; hide

    2010-01-01

    The Kepler Mission is designed to determine the frequency of Earth-size and rocky planets in and near the habitable zone (HZ) of solar-like stars. The HZ is defined to be the region of space where a rocky planet could maintain liquid water on its surface. Kepler is the 10th competitively-selected Discovery Mission and was launched on March 6, 2009. Since completing its commissioning, Kepler has observed over 156,000 stars simultaneously and near continuously to search for planets that periodically pass in front of their host star (transit). The photometric precision is approximately 23 ppm for 50% of the 12th magnitude dwarf stars for an integration period of 6.5 hours. During the first 3 months of operation the photometer detected transit-like signatures from more than 200 stars. Careful examination shows that many of these events are false-positives such as small stars orbiting large stars or blends of target stars with eclipsing binary stars. Ground-based follow-up observations confirm the discovery of five new exoplanets with sizes between 0.37 andl.6 Jupiter radii (R(sub J)) and orbital periods ranging from 3.2 to 4.9 days. Ground-based observations with the Keck 1, Hobby-Ebberly, Hale, WIYN, MMT, Tillinghast, Shane, and Nordic Optical Telescopes are used to vet the planetary candidates and measure the masses of the putative planets. Observations of occultations and phase variations of hot, short-period planets such as HT-P-7b provide a probe of atmospheric properties. Asteroseismic analysis already shows the presence of p-mode oscillations in several stars. Such observations will be used to measure the mean stellar density and infer the stellar size and age. For stars too dim to permit asteroseismology, observations of the centroid motion of target stars will be used to measure the parallax and be combined with photometric measurements to estimate stellar sizes. Four open clusters are being observed to determine stellar rotation rates as a function of age and

  9. The Evaporation Valley in the Kepler Planets

    NASA Astrophysics Data System (ADS)

    Owen, James E.; Wu, Yanqin

    2017-09-01

    A new piece of evidence supporting the photoevaporation-driven evolution model for low-mass, close-in exoplanets was recently presented by the California-Kepler Survey. The radius distribution of the Kepler planets is shown to be bimodal, with a “valley” separating two peaks at 1.3 and 2.6 R ⊕. Such an “evaporation valley” had been predicted by numerical models previously. Here, we develop a minimal model to demonstrate that this valley results from the following fact: the timescale for envelope erosion is the longest for those planets with hydrogen/helium-rich envelopes that, while only a few percent in weight, double its radius. The timescale falls for envelopes lighter than this because the planet’s radius remains largely constant for tenuous envelopes. The timescale also drops for heavier envelopes because the planet swells up faster than the addition of envelope mass. Photoevaporation therefore herds planets into either bare cores (˜1.3 R ⊕), or those with double the core’s radius (˜2.6 R ⊕). This process mostly occurs during the first 100 Myr when the stars’ high-energy fluxes are high and nearly constant. The observed radius distribution further requires the Kepler planets to be clustered around 3 M ⊕ in mass, born with H/He envelopes more than a few percent in mass, and that their cores are similar to the Earth in composition. Such envelopes must have been accreted before the dispersal of the gas disks, while the core composition indicates formation inside the ice line. Lastly, the photoevaporation model fails to account for bare planets beyond ˜30-60 days; if these planets are abundant, they may point to a significant second channel for planet formation, resembling the solar system terrestrial planets.

  10. Architecture of Kepler's Multi-transiting Systems: II. New investigations with twice as many candidates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabrycky, Daniel C.; Lissauer, Jack J.; Ragozzine, Darin

    Having discovered 885 planet candidates in 361 multiple-planet systems, Kepler has made transits a powerful method for studying the statistics of planetary systems. The orbits of only two pairs of planets in these candidate systems are apparently unstable. This indicates that a high percentage of the candidate systems are truly planets orbiting the same star, motivating physical investigations of the population. Pairs of planets in this sample are typically not in orbital resonances. However, pairs with orbital period ratios within a few percent of a first-order resonance (e.g. 2:1, 3:2) prefer orbital spacings just wide of the resonance and avoidmore » spacings just narrow of the resonance. Finally, we investigate mutual inclinations based on transit duration ratios. We infer that the inner planets of pairs tend to have a smaller impact parameter than their outer companions, suggesting these planetary systems are typically coplanar to within a few degrees.« less

  11. CHROMOSPHERIC EMISSION OF PLANET CANDIDATE HOST STARS: A WAY TO IDENTIFY FALSE POSITIVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karoff, Christoffer; Knudsen, Mads Faurschou; Albrecht, Simon

    2016-10-10

    It has been hypothesized that the presence of closely orbiting giant planets is associated with enhanced chromospheric emission of their host stars. The main cause for such a relation would likely be enhanced dynamo action induced by the planet. We present measurements of chromospheric emission in 234 planet candidate systems from the Kepler mission. This ensemble includes 37 systems with giant-planet candidates, which show a clear emission enhancement. The enhancement, however, disappears when systems that are also identified as eclipsing binary candidates are removed from the ensemble. This suggests that a large fraction of the giant-planet candidate systems with chromosphericmore » emission stronger than the Sun are not giant-planet systems, but false positives. Such false-positive systems could be tidally interacting binaries with strong chromospheric emission. This hypothesis is supported by an analysis of 188 eclipsing binary candidates that show increasing chromospheric emission as function of decreasing orbital period.« less

  12. Improving the Accuracy of Planet Occurrence Rates from Kepler Using Approximate Bayesian Computation

    NASA Astrophysics Data System (ADS)

    Hsu, Danley C.; Ford, Eric B.; Ragozzine, Darin; Morehead, Robert C.

    2018-05-01

    We present a new framework to characterize the occurrence rates of planet candidates identified by Kepler based on hierarchical Bayesian modeling, approximate Bayesian computing (ABC), and sequential importance sampling. For this study, we adopt a simple 2D grid in planet radius and orbital period as our model and apply our algorithm to estimate occurrence rates for Q1–Q16 planet candidates orbiting solar-type stars. We arrive at significantly increased planet occurrence rates for small planet candidates (R p < 1.25 R ⊕) at larger orbital periods (P > 80 day) compared to the rates estimated by the more common inverse detection efficiency method (IDEM). Our improved methodology estimates that the occurrence rate density of small planet candidates in the habitable zone of solar-type stars is {1.6}-0.5+1.2 per factor of 2 in planet radius and orbital period. Additionally, we observe a local minimum in the occurrence rate for strong planet candidates marginalized over orbital period between 1.5 and 2 R ⊕ that is consistent with previous studies. For future improvements, the forward modeling approach of ABC is ideally suited to incorporating multiple populations, such as planets, astrophysical false positives, and pipeline false alarms, to provide accurate planet occurrence rates and uncertainties. Furthermore, ABC provides a practical statistical framework for answering complex questions (e.g., frequency of different planetary architectures) and providing sound uncertainties, even in the face of complex selection effects, observational biases, and follow-up strategies. In summary, ABC offers a powerful tool for accurately characterizing a wide variety of astrophysical populations.

  13. HEK. VI. On the Dearth of Galilean Analogs in Kepler, and the Exomoon Candidate Kepler-1625b I

    NASA Astrophysics Data System (ADS)

    Teachey, A.; Kipping, D. M.; Schmitt, A. R.

    2018-01-01

    Exomoons represent an outstanding challenge in modern astronomy, with the potential to provide rich insights into planet formation theory and habitability. In this work, we stack the phase-folded transits of 284 viable moon hosting Kepler planetary candidates, in order to search for satellites. These planets range from Earth- to Jupiter-sized and from ∼0.1 to 1.0 au in separation—so-called “warm” planets. Our data processing includes two-pass harmonic detrending, transit timing variations, model selection, and careful data quality vetting to produce a grand light curve with an rms of 5.1 ppm. We find that the occurrence rate of Galilean analog moon systems for planets orbiting between ∼0.1 and 1.0 au can be constrained to be η < 0.38 to 95% confidence for the 284 KOIs considered, with a 68.3% confidence interval of η ={0.16}-0.10+0.13. A single-moon model of variable size and separation locates a slight preference for a population of short-period moons with radii ∼0.5 R ⊕ orbiting at 5–10 planetary radii. However, we stress that the low Bayes factor of just 2 in this region means it should be treated as no more than a hint at this time. Splitting our data into various physically motivated subsets reveals no strong signal. The dearth of Galilean analogs around warm planets places the first strong constraint on exomoon formation models to date. Finally, we report evidence for an exomoon candidate Kepler-1625b I, which we briefly describe ahead of scheduled observations of the target with the Hubble Space Telescope.

  14. Spacing of Kepler Planets: Sculpting by Dynamical Instability

    NASA Astrophysics Data System (ADS)

    Pu, Bonan; Wu, Yanqin

    2015-07-01

    We study the orbital architecture of multi-planet systems detected by the Kepler transit mission using N-body simulations, focusing on the orbital spacing between adjacent planets in systems showing four or more transiting planets. We find that the observed spacings are tightly clustered around 12 mutual Hill radii, when transit geometry and sensitivity limits are accounted for. In comparison, dynamical integrations reveal that the minimum spacing required for systems of similar masses to survive dynamical instability for as long as 1 billion yr is ∼10 if all orbits are circular and coplanar and ∼12 if planetary orbits have eccentricities of ∼0.02 (a value suggested by studies of planet transit-time variations). This apparent coincidence, between the observed spacing and the theoretical stability threshold, leads us to propose that typical planetary systems were formed with even tighter spacing, but most, except for the widest ones, have undergone dynamical instability, and are pared down to a more anemic version of their former selves, with fewer planets and larger spacings. So while the high-multiple systems (five or more transiting planets) are primordial systems that remain stable, the single or double planetary systems, abundantly discovered by the Kepler mission, may be the descendants of more closely packed high-multiple systems. If this hypothesis is correct, we infer that the formation environment of Kepler systems should be more dissipative than that of the terrestrial planets.

  15. Robo-AO KOI Survey: LGS-AO imaging of every Kepler planetary candidate host star

    NASA Astrophysics Data System (ADS)

    Ziegler, Carl; Law, Nicholas; Baranec, Christoph; Riddle, Reed

    2018-01-01

    Robo-AO is observing every Kepler planetary candidate host star (KOI) in high resolution, made possible using the unprecedented efficiency provided by automation of LGS adaptive optics. Nearby contaminating stars may be the source of false positive transit signals or, if a bona fide planet is in the system, dilute the observed transit signal, resulting in underestimated planet radii. In 3857 observations, we find 632 stars within 4" (approximately the Kepler pixel scale) of KOIs. In particular, we find 26 rocky, habitable zone planets with contaminating nearby stars, 8 of which are now more likely to have large gaseous envelopes. We present evidence that the majority of these nearby stars are unbound, and use the likely bound stars to test theories of planetary formation and evolution within multiple star systems. Finally, we discuss future all-sky, kilo-target surveys made possible by the construction of a Southern Robo-AO analog.

  16. The nature of the giant exomoon candidate Kepler-1625 b-i

    NASA Astrophysics Data System (ADS)

    Heller, René

    2018-02-01

    The recent announcement of a Neptune-sized exomoon candidate around the transiting Jupiter-sized object Kepler-1625 b could indicate the presence of a hitherto unknown kind of gas giant moon, if confirmed. Three transits of Kepler-1625 b have been observed, allowing estimates of the radii of both objects. Mass estimates, however, have not been backed up by radial velocity measurements of the host star. Here we investigate possible mass regimes of the transiting system that could produce the observed signatures and study them in the context of moon formation in the solar system, i.e., via impacts, capture, or in-situ accretion. The radius of Kepler-1625 b suggests it could be anything from a gas giant planet somewhat more massive than Saturn (0.4 MJup) to a brown dwarf (BD; up to 75 MJup) or even a very-low-mass star (VLMS; MJup ≈ 0.11 M⊙). The proposed companion would certainly have a planetary mass. Possible extreme scenarios range from a highly inflated Earth-mass gas satellite to an atmosphere-free water-rock companion of about 180 M⊕. Furthermore, the planet-moon dynamics during the transits suggest a total system mass of 17.6-12.6+19.2 MJup. A Neptune-mass exomoon around a giant planet or low-mass BD would not be compatible with the common mass scaling relation of the solar system moons about gas giants. The case of a mini-Neptune around a high-mass BD or a VLMS, however, would be located in a similar region of the satellite-to-host mass ratio diagram as Proxima b, the TRAPPIST-1 system, and LHS 1140 b. The capture of a Neptune-mass object around a 10 MJup planet during a close binary encounter is possible in principle. The ejected object, however, would have had to be a super-Earth object, raising further questions of how such a system could have formed. In summary, this exomoon candidate is barely compatible with established moon formation theories. If it can be validated as orbiting a super-Jovian planet, then it would pose an exquisite riddle for

  17. The California-Kepler Survey. I. High-resolution Spectroscopy of 1305 Stars Hosting Kepler Transiting Planets

    NASA Astrophysics Data System (ADS)

    Petigura, Erik A.; Howard, Andrew W.; Marcy, Geoffrey W.; Johnson, John Asher; Isaacson, Howard; Cargile, Phillip A.; Hebb, Leslie; Fulton, Benjamin J.; Weiss, Lauren M.; Morton, Timothy D.; Winn, Joshua N.; Rogers, Leslie A.; Sinukoff, Evan; Hirsch, Lea A.; Crossfield, Ian J. M.

    2017-09-01

    The California-Kepler Survey (CKS) is an observational program developed to improve our knowledge of the properties of stars found to host transiting planets by NASA’s Kepler Mission. The improvement stems from new high-resolution optical spectra obtained using HIRES at the W. M. Keck Observatory. The CKS stellar sample comprises 1305 stars classified as Kepler objects of interest, hosting a total of 2075 transiting planets. The primary sample is magnitude-limited ({Kp}< 14.2) and contains 960 stars with 1385 planets. The sample was extended to include some fainter stars that host multiple planets, ultra-short period planets, or habitable zone planets. The spectroscopic parameters were determined with two different codes, one based on template matching and the other on direct spectral synthesis using radiative transfer. We demonstrate a precision of 60 K in {T}{eff}, 0.10 dex in {log}g, 0.04 dex in [{Fe}/{{H}}], and 1.0 {km} {{{s}}}-1 in V\\sin I. In this paper, we describe the CKS project and present a uniform catalog of spectroscopic parameters. Subsequent papers in this series present catalogs of derived stellar properties such as mass, radius, and age; revised planet properties; and statistical explorations of the ensemble. CKS is the largest survey to determine the properties of Kepler stars using a uniform set of high-resolution, high signal-to-noise ratio spectra. The HIRES spectra are available to the community for independent analyses. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time was granted for this project by the University of California, and California Institute of Technology, the University of Hawaii, and NASA.

  18. Tatooines Future: The Eccentric Response of Keplers Circumbinary Planets to Common-Envelope Evolution of their Host Stars

    NASA Technical Reports Server (NTRS)

    Kostov, Veselin B.; Moore, Keavin; Tamayo, Daniel; Jayawardhana, Ray; Rinehart, Stephen A.

    2016-01-01

    Inspired by the recent Kepler discoveries of circumbinary planets orbiting nine close binary stars, we explore the fate of the former as the latter evolve off the main sequence. We combine binary star evolution models with dynamical simulations to study the orbital evolution of these planets as their hosts undergo common-envelope stages, losing in the process a tremendous amount of mass on dynamical timescales. Five of the systems experience at least one Roche-lobe overflow and common-envelope stages (Kepler-1647 experiences three), and the binary stars either shrink to very short orbits or coalesce; two systems trigger a double-degenerate supernova explosion. Kepler's circumbinary planets predominantly remain gravitationally bound at the end of the common-envelope phase, migrate to larger orbits, and may gain significant eccentricity; their orbital expansion can be more than an order of magnitude and can occur over the course of a single planetary orbit. The orbits these planets can reach are qualitatively consistent with those of the currently known post-common-envelope, eclipse-time variations circumbinary candidates. Our results also show that circumbinary planets can experience both modes of orbital expansion (adiabatic and non-adiabatic) if their host binaries undergo more than one common-envelope stage; multiplanet circumbinary systems like Kepler-47 can experience both modes during the same common-envelope stage. Additionally, unlike Mercury orbiting the Sun, a circumbinary planet with the same semi-major axis can survive the common envelope evolution of a close binary star with a total mass of 1 Solar Mass.

  19. Transit shapes and self-organizing maps as a tool for ranking planetary candidates: application to Kepler and K2

    NASA Astrophysics Data System (ADS)

    Armstrong, D. J.; Pollacco, D.; Santerne, A.

    2017-03-01

    A crucial step in planet hunting surveys is to select the best candidates for follow-up observations, given limited telescope resources. This is often performed by human 'eyeballing', a time consuming and statistically awkward process. Here, we present a new, fast machine learning technique to separate true planet signals from astrophysical false positives. We use self-organizing maps (SOMs) to study the transit shapes of Kepler and K2 known and candidate planets. We find that SOMs are capable of distinguishing known planets from known false positives with a success rate of 87.0 per cent, using the transit shape alone. Furthermore, they do not require any candidate to be dispositioned prior to use, meaning that they can be used early in a mission's lifetime. A method for classifying candidates using a SOM is developed, and applied to previously unclassified members of the Kepler Objects of Interest (KOI) list as well as candidates from the K2 mission. The method is extremely fast, taking minutes to run the entire KOI list on a typical laptop. We make PYTHON code for performing classifications publicly available, using either new SOMs or those created in this work. The SOM technique represents a novel method for ranking planetary candidate lists, and can be used both alone or as part of a larger autovetting code.

  20. Confirmation of an exoplanet using the transit color signature: Kepler-418b, a blended giant planet in a multiplanet system

    NASA Astrophysics Data System (ADS)

    Tingley, B.; Parviainen, H.; Gandolfi, D.; Deeg, H. J.; Palle, E.; Montañés Rodriguez, P.; Murgas, F.; Alonso, R.; Bruntt, H.; Fridlund, M.

    2014-07-01

    Aims: We announce confirmation of Kepler-418b, one of two proposed planets in this system. This is the first confirmation of an exoplanet based primarily on the transit color signature technique. Methods: We used the Kepler public data archive combined with multicolor photometry from the Gran Telescopio de Canarias and radial velocity follow-up using FIES at the Nordic Optical Telescope for confirmation. Results: We report a confident detection of a transit color signature that can only be explained by a compact occulting body, entirely ruling out a contaminating eclipsing binary, a hierarchical triple, or a grazing eclipsing binary. Those findings are corroborated by our radial velocity measurements, which put an upper limit of ~1 MJup on the mass of Kepler-418b. We also report that the host star is significantly blended, confirming the ~10% light contamination suspected from the crowding metric in the Kepler light curve measured by the Kepler team. We report detection of an unresolved light source that contributes an additional ~30% to the target star, which would not have been detected without multicolor photometric analysis. The resulting planet-star radius ratio is 0.110 ± 0.0025, more than 25% more than the 0.087 measured by Kepler leading to a radius of 1.20 ± 0.16 RJup instead of the 0.94 RJup measured by the Kepler team. Conclusions: This is the first confirmation of an exoplanet candidate based primarily on the transit color signature, demonstrating that this technique is viable from ground for giant planets. It is particularly useful for planets with long periods such as Kepler-418b, which tend to have long transit durations. While this technique is limited to candidates with deep transits from the ground, it may be possible to confirm earth-like exoplanet candidates with a few hours of observing time with an instrument like the James Webb Space Telescope. Additionally, multicolor photometric analysis of transits can reveal unknown stellar neighbors

  1. TRANSIT TIMING OBSERVATIONS FROM KEPLER. I. STATISTICAL ANALYSIS OF THE FIRST FOUR MONTHS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, Eric B.; Rowe, Jason F.; Caldwell, Douglas A.

    The architectures of multiple planet systems can provide valuable constraints on models of planet formation, including orbital migration, and excitation of orbital eccentricities and inclinations. NASA's Kepler mission has identified 1235 transiting planet candidates. The method of transit timing variations (TTVs) has already confirmed seven planets in two planetary systems. We perform a transit timing analysis of the Kepler planet candidates. We find that at least {approx}11% of planet candidates currently suitable for TTV analysis show evidence suggestive of TTVs, representing at least {approx}65 TTV candidates. In all cases, the time span of observations must increase for TTVs to providemore » strong constraints on planet masses and/or orbits, as expected based on N-body integrations of multiple transiting planet candidate systems (assuming circular and coplanar orbits). We find the fraction of planet candidates showing TTVs in this data set does not vary significantly with the number of transiting planet candidates per star, suggesting significant mutual inclinations and that many stars with a single transiting planet should host additional non-transiting planets. We anticipate that Kepler could confirm (or reject) at least {approx}12 systems with multiple transiting planet candidates via TTVs. Thus, TTVs will provide a powerful tool for confirming transiting planets and characterizing the orbital dynamics of low-mass planets. If Kepler observations were extended to at least seven years, then TTVs would provide much more precise constraints on the dynamics of systems with multiple transiting planets and would become sensitive to planets with orbital periods extending into the habitable zone of solar-type stars.« less

  2. Kepler-22b: A 2.4 EARTH-RADIUS PLANET IN THE HABITABLE ZONE OF A SUN-LIKE STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borucki, William J.; Koch, David G.; Bryson, Stephen T.

    A search of the time-series photometry from NASA's Kepler spacecraft reveals a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626 with a period of 290 days. The characteristics of the host star are well constrained by high-resolution spectroscopy combined with an asteroseismic analysis of the Kepler photometry, leading to an estimated mass and radius of 0.970 {+-} 0.060 M{sub Sun} and 0.979 {+-} 0.020 R{sub Sun }. The depth of 492 {+-} 10 ppm for the three observed transits yields a radius of 2.38 {+-} 0.13 Re for the planet. The system passes a battery of testsmore » for false positives, including reconnaissance spectroscopy, high-resolution imaging, and centroid motion. A full BLENDER analysis provides further validation of the planet interpretation by showing that contamination of the target by an eclipsing system would rarely mimic the observed shape of the transits. The final validation of the planet is provided by 16 radial velocities (RVs) obtained with the High Resolution Echelle Spectrometer on Keck I over a one-year span. Although the velocities do not lead to a reliable orbit and mass determination, they are able to constrain the mass to a 3{sigma} upper limit of 124 M{sub Circled-Plus }, safely in the regime of planetary masses, thus earning the designation Kepler-22b. The radiative equilibrium temperature is 262 K for a planet in Kepler-22b's orbit. Although there is no evidence that Kepler-22b is a rocky planet, it is the first confirmed planet with a measured radius to orbit in the habitable zone of any star other than the Sun.« less

  3. CHANGING PHASES OF ALIEN WORLDS: PROBING ATMOSPHERES OF KEPLER PLANETS WITH HIGH-PRECISION PHOTOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esteves, Lisa J.; Mooij, Ernst J. W. De; Jayawardhana, Ray, E-mail: esteves@astro.utoronto.ca, E-mail: demooij@astro.utoronto.ca, E-mail: rayjay@yorku.ca

    We present a comprehensive analysis of planetary phase variations, including possible planetary light offsets, using eighteen quarters of data from the Kepler space telescope. Our analysis found fourteen systems with significant detections in each of the phase curve components: planet’s phase function, secondary eclipse, Doppler boosting, and ellipsoidal variations. We model the full phase curve simultaneously, including primary and secondary transits, and derive albedos, day- and night-side temperatures and planet masses. Most planets manifest low optical geometric albedos (< 0.25), with the exception of Kepler-10b, Kepler-91b, and KOI-13b. We find that KOI-13b, with a small eccentricity of 0.0006 ± 0.0001,more » is the only planet for which an eccentric orbit is favored. We detect a third harmonic for HAT-P-7b for the first time, and confirm the third harmonic for KOI-13b reported in Esteves et al.: both could be due to their spin–orbit misalignments. For six planets, we report a planetary brightness peak offset from the substellar point: of those, the hottest two (Kepler-76b and HAT-P-7b) exhibit pre-eclipse shifts or on the evening-side, while the cooler four (Kepler-7b, Kepler-8b, Kepler-12b, and Kepler-41b) peak post-eclipse or on the morning-side. Our findings dramatically increase the number of Kepler planets with detected planetary light offsets, and provide the first evidence in the Kepler data for a correlation between the peak offset direction and the planet’s temperature. Such a correlation could arise if thermal emission dominates light from hotter planets that harbor hot spots shifted toward the evening-side, as theoretically predicted, while reflected light dominates cooler planets with clouds on the planet’s morning-side.« less

  4. Rotational Synchronization May Enhance Habitability for Circumbinary Planets: Kepler Binary Case Studies

    NASA Astrophysics Data System (ADS)

    Mason, Paul A.; Zuluaga, Jorge I.; Clark, Joni M.; Cuartas-Restrepo, Pablo A.

    2013-09-01

    We report a mechanism capable of reducing (or increasing) stellar activity in binary stars, thereby potentially enhancing (or destroying) circumbinary habitability. In single stars, stellar aggression toward planetary atmospheres causes mass-loss, which is especially detrimental for late-type stars, because habitable zones are very close and activity is long lasting. In binaries, tidal rotational breaking reduces magnetic activity, thus reducing harmful levels of X-ray and ultraviolet (XUV) radiation and stellar mass-loss that are able to erode planetary atmospheres. We study this mechanism for all confirmed circumbinary (p-type) planets. We find that main sequence twins provide minimal flux variation and in some cases improved environments if the stars rotationally synchronize within the first Gyr. Solar-like twins, like Kepler 34 and Kepler 35, provide low habitable zone XUV fluxes and stellar wind pressures. These wide, moist, habitable zones may potentially support multiple habitable planets. Solar-type stars with lower mass companions, like Kepler 47, allow for protected planets over a wide range of secondary masses and binary periods. Kepler 38 and related binaries are marginal cases. Kepler 64 and analogs have dramatically reduced stellar aggression due to synchronization of the primary, but are limited by the short lifetime. Kepler 16 appears to be inhospitable to planets due to extreme XUV flux. These results have important implications for estimates of the number of stellar systems containing habitable planets in the Galaxy and allow for the selection of binaries suitable for follow-up searches for habitable planets.

  5. ROTATIONAL SYNCHRONIZATION MAY ENHANCE HABITABILITY FOR CIRCUMBINARY PLANETS: KEPLER BINARY CASE STUDIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, Paul A.; Zuluaga, Jorge I.; Cuartas-Restrepo, Pablo A.

    2013-09-10

    We report a mechanism capable of reducing (or increasing) stellar activity in binary stars, thereby potentially enhancing (or destroying) circumbinary habitability. In single stars, stellar aggression toward planetary atmospheres causes mass-loss, which is especially detrimental for late-type stars, because habitable zones are very close and activity is long lasting. In binaries, tidal rotational breaking reduces magnetic activity, thus reducing harmful levels of X-ray and ultraviolet (XUV) radiation and stellar mass-loss that are able to erode planetary atmospheres. We study this mechanism for all confirmed circumbinary (p-type) planets. We find that main sequence twins provide minimal flux variation and in somemore » cases improved environments if the stars rotationally synchronize within the first Gyr. Solar-like twins, like Kepler 34 and Kepler 35, provide low habitable zone XUV fluxes and stellar wind pressures. These wide, moist, habitable zones may potentially support multiple habitable planets. Solar-type stars with lower mass companions, like Kepler 47, allow for protected planets over a wide range of secondary masses and binary periods. Kepler 38 and related binaries are marginal cases. Kepler 64 and analogs have dramatically reduced stellar aggression due to synchronization of the primary, but are limited by the short lifetime. Kepler 16 appears to be inhospitable to planets due to extreme XUV flux. These results have important implications for estimates of the number of stellar systems containing habitable planets in the Galaxy and allow for the selection of binaries suitable for follow-up searches for habitable planets.« less

  6. Modeling circumbinary planets: The case of Kepler-38

    NASA Astrophysics Data System (ADS)

    Kley, Wilhelm; Haghighipour, Nader

    2014-04-01

    Context. Recently, a number of planets orbiting binary stars have been discovered by the Kepler space telescope. In a few systems the planets reside close to the dynamical stability limit. Owing to the difficulty of forming planets in such close orbits, it is believed that they have formed farther out in the disk and migrated to their present locations. Aims: Our goal is to construct more realistic models of planet migration in circumbinary disks and to determine the final position of these planets more accurately. In our work, we focus on the system Kepler-38 where the planet is close to the stability limit. Methods: The evolution of the circumbinary disk is studied using two-dimensional hydrodynamical simulations. We study locally isothermal disks as well as more realistic models that include full viscous heating, radiative cooling from the disk surfaces, and radiative diffusion in the disk midplane. After the disk has been brought into a quasi-equilibrium state, a 115 Earth-mass planet is embedded and its evolution is followed. Results: In all cases the planets stop inward migration near the inner edge of the disk. In isothermal disks with a typical disk scale height of H/r = 0.05, the final outcome agrees very well with the observed location of planet Kepler-38b. For the radiative models, the disk thickness and location of the inner edge is determined by the mass in the system. For surface densities on the order of 3000 g/cm2 at 1 AU, the inner gap lies close to the binary and planets stop in the region between the 5:1 and 4:1 mean-motion resonances with the binary. A model with a disk with approximately a quarter of the mass yields a final position very close to the observed one. Conclusions: For planets migrating in circumbinary disks, the final position is dictated by the structure of the disk. Knowing the observed orbits of circumbinary planets, radiative disk simulations with embedded planets can provide important information on the physical state of the

  7. Constraining the Radiation and Plasma Environment of the Kepler Circumbinary Habitable-zone Planets

    NASA Astrophysics Data System (ADS)

    Zuluaga, Jorge I.; Mason, Paul A.; Cuartas-Restrepo, Pablo A.

    2016-02-01

    The discovery of many planets using the Kepler telescope includes 10 planets orbiting eight binary stars. Three binaries, Kepler-16, Kepler-47, and Kepler-453, have at least one planet in the circumbinary habitable zone (BHZ). We constrain the level of high-energy radiation and the plasma environment in the BHZ of these systems. With this aim, BHZ limits in these Kepler binaries are calculated as a function of time, and the habitability lifetimes are estimated for hypothetical terrestrial planets and/or moons within the BHZ. With the time-dependent BHZ limits established, a self-consistent model is developed describing the evolution of stellar activity and radiation properties as proxies for stellar aggression toward planetary atmospheres. Modeling binary stellar rotation evolution, including the effect of tidal interaction between stars in binaries, is key to establishing the environment around these systems. We find that Kepler-16 and its binary analogs provide a plasma environment favorable for the survival of atmospheres of putative Mars-sized planets and exomoons. Tides have modified the rotation of the stars in Kepler-47, making its radiation environment less harsh in comparison to the solar system. This is a good example of the mechanism first proposed by Mason et al. Kepler-453 has an environment similar to that of the solar system with slightly better than Earth radiation conditions at the inner edge of the BHZ. These results can be reproduced and even reparameterized as stellar evolution and binary tidal models progress, using our online tool http://bhmcalc.net.

  8. CONSTRAINING THE RADIATION AND PLASMA ENVIRONMENT OF THE KEPLER CIRCUMBINARY HABITABLE-ZONE PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuluaga, Jorge I.; Mason, Paul A.; Cuartas-Restrepo, Pablo A.

    The discovery of many planets using the Kepler telescope includes 10 planets orbiting eight binary stars. Three binaries, Kepler-16, Kepler-47, and Kepler-453, have at least one planet in the circumbinary habitable zone (BHZ). We constrain the level of high-energy radiation and the plasma environment in the BHZ of these systems. With this aim, BHZ limits in these Kepler binaries are calculated as a function of time, and the habitability lifetimes are estimated for hypothetical terrestrial planets and/or moons within the BHZ. With the time-dependent BHZ limits established, a self-consistent model is developed describing the evolution of stellar activity and radiation propertiesmore » as proxies for stellar aggression toward planetary atmospheres. Modeling binary stellar rotation evolution, including the effect of tidal interaction between stars in binaries, is key to establishing the environment around these systems. We find that Kepler-16 and its binary analogs provide a plasma environment favorable for the survival of atmospheres of putative Mars-sized planets and exomoons. Tides have modified the rotation of the stars in Kepler-47, making its radiation environment less harsh in comparison to the solar system. This is a good example of the mechanism first proposed by Mason et al. Kepler-453 has an environment similar to that of the solar system with slightly better than Earth radiation conditions at the inner edge of the BHZ. These results can be reproduced and even reparameterized as stellar evolution and binary tidal models progress, using our online tool http://bhmcalc.net.« less

  9. NASA's Kepler Mission Discovers Its Smallest Habitable Zone Planets (Reporter Pkg)

    NASA Image and Video Library

    2013-04-18

    NASA's Kepler mission has discovered two new planetary systems that include three super-Earth-size planets in the 'habitable zone,' the range of distance from a star where the surface temperature of an orbiting planet might be suitable for liquid water. Scientists do not know whether life could exist on the newfound planets, but their discovery signals we are another step closer to finding a world similar to Earth around a star like our sun. Kepler-62 and -69 systems

  10. Kepler-16: a transiting circumbinary planet.

    PubMed

    Doyle, Laurance R; Carter, Joshua A; Fabrycky, Daniel C; Slawson, Robert W; Howell, Steve B; Winn, Joshua N; Orosz, Jerome A; Prša, Andrej; Welsh, William F; Quinn, Samuel N; Latham, David; Torres, Guillermo; Buchhave, Lars A; Marcy, Geoffrey W; Fortney, Jonathan J; Shporer, Avi; Ford, Eric B; Lissauer, Jack J; Ragozzine, Darin; Rucker, Michael; Batalha, Natalie; Jenkins, Jon M; Borucki, William J; Koch, David; Middour, Christopher K; Hall, Jennifer R; McCauliff, Sean; Fanelli, Michael N; Quintana, Elisa V; Holman, Matthew J; Caldwell, Douglas A; Still, Martin; Stefanik, Robert P; Brown, Warren R; Esquerdo, Gilbert A; Tang, Sumin; Furesz, Gabor; Geary, John C; Berlind, Perry; Calkins, Michael L; Short, Donald R; Steffen, Jason H; Sasselov, Dimitar; Dunham, Edward W; Cochran, William D; Boss, Alan; Haas, Michael R; Buzasi, Derek; Fischer, Debra

    2011-09-16

    We report the detection of a planet whose orbit surrounds a pair of low-mass stars. Data from the Kepler spacecraft reveal transits of the planet across both stars, in addition to the mutual eclipses of the stars, giving precise constraints on the absolute dimensions of all three bodies. The planet is comparable to Saturn in mass and size and is on a nearly circular 229-day orbit around its two parent stars. The eclipsing stars are 20 and 69% as massive as the Sun and have an eccentric 41-day orbit. The motions of all three bodies are confined to within 0.5° of a single plane, suggesting that the planet formed within a circumbinary disk.

  11. PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, Andrew W.; Marcy, Geoffrey W.; Bryson, Stephen T.

    We report the distribution of planets as a function of planet radius, orbital period, and stellar effective temperature for orbital periods less than 50 days around solar-type (GK) stars. These results are based on the 1235 planets (formally 'planet candidates') from the Kepler mission that include a nearly complete set of detected planets as small as 2 R{sub Circled-Plus }. For each of the 156,000 target stars, we assess the detectability of planets as a function of planet radius, R{sub p}, and orbital period, P, using a measure of the detection efficiency for each star. We also correct for themore » geometric probability of transit, R{sub *}/a. We consider first Kepler target stars within the 'solar subset' having T{sub eff} = 4100-6100 K, log g 4.0-4.9, and Kepler magnitude Kp < 15 mag, i.e., bright, main-sequence GK stars. We include only those stars having photometric noise low enough to permit detection of planets down to 2 R{sub Circled-Plus }. We count planets in small domains of R{sub p} and P and divide by the included target stars to calculate planet occurrence in each domain. The resulting occurrence of planets varies by more than three orders of magnitude in the radius-orbital period plane and increases substantially down to the smallest radius (2 R{sub Circled-Plus }) and out to the longest orbital period (50 days, {approx}0.25 AU) in our study. For P < 50 days, the distribution of planet radii is given by a power law, df/dlog R = k{sub R}R{sup {alpha}} with k{sub R} = 2.9{sup +0.5}{sub -0.4}, {alpha} = -1.92 {+-} 0.11, and R {identical_to} R{sub p}/R{sub Circled-Plus }. This rapid increase in planet occurrence with decreasing planet size agrees with the prediction of core-accretion formation but disagrees with population synthesis models that predict a desert at super-Earth and Neptune sizes for close-in orbits. Planets with orbital periods shorter than 2 days are extremely rare; for R{sub p} > 2 R{sub Circled-Plus} we measure an occurrence of less

  12. VizieR Online Data Catalog: Kepler planetary candidates. V. 3yr Q1-Q12 (Rowe+, 2015)

    NASA Astrophysics Data System (ADS)

    Rowe, J. F.; Coughlin, J. L.; Antoci, V.; Barclay, T.; Batalha, N. M.; Borucki, W. J.; Burke, C. J.; Bryson, S. T.; Caldwell, D. A.; Campbell, J. R.; Catanzarite, J. H.; Christiansen, J. L.; Cochran, W.; Gilliland, R. L.; Girouard, F. R.; Haas, M. R.; Helminiak, K. G.; Henze, C. E.; Hoffman, K. L.; Howell, S. B.; Huber, D.; Hunter, R. C.; Jang-Condell, H.; Jenkins, J. M.; Klaus, T. C.; Latham, D. W.; Li, J.; Lissauer, J. J.; McCauliff, S. D.; Morris, R. L.; Mullally, F.; Ofir, A.; Quarles, B.; Quintana, E.; Sabale, A.; Seader, S.; Shporer, A.; Smith, J. C.; Steffen, J. H.; Still, M.; Tenenbaum, P.; Thompson, S. E.; Twicken, J. D.; van Laerhoven, C.; Wolfgang, A.; Zamudio, K. A.

    2015-04-01

    We began with the transit-event candidate list from Tenenbaum et al. (2013ApJS..206....5T) based on a wavelet, adaptive matched filter to search 192313 Kepler targets for periodic drops in flux indicative of a transiting planet. Detections are known as Threshold Crossing Events (TCEs). Tenenbaum et al. utilized three years of Kepler photometric observations (Q1-Q12) -the same data span employed by this study based on SOC 8.3 as part of Data Release 21 (Thompson S. E., Christiansen J. L., Jenkins J. M. et al. Kepler (KSCI-19061-001)). (3 data files).

  13. Kepler Planet Detection Metrics: Per-Target Detection Contours for Data Release 25

    NASA Technical Reports Server (NTRS)

    Burke, Christopher J.; Catanzarite, Joseph

    2017-01-01

    A necessary input to planet occurrence calculations is an accurate model for the pipeline completeness (Burke et al., 2015). This document describes the use of the Kepler planet occurrence rate products in order to calculate a per-target detection contour for the measured Data Release 25 (DR25) pipeline performance. A per-target detection contour measures for a given combination of orbital period, Porb, and planet radius, Rp, what fraction of transit signals are recoverable by the Kepler pipeline (Twicken et al., 2016; Jenkins et al., 2017). The steps for calculating a detection contour follow the procedure outlined in Burke et al. (2015), but have been updated to provide improved accuracy enabled by the substantially larger database of transit injection and recovery tests that were performed on the final version (i.e., SOC 9.3) of the Kepler pipeline (Christiansen, 2017; Burke Catanzarite, 2017a). In the following sections, we describe the main inputs to the per-target detection contour and provide a worked example of the python software released with this document (Kepler Planet Occurrence Rate Tools KeplerPORTs)1 that illustrates the generation of a detection contour in practice. As background material for this document and its nomenclature, we recommend the reader be familiar with the previous method of calculating a detection contour (Section 2 of Burke et al.,2015), input parameters relevant for describing the data quantity and quality of Kepler targets (Burke Catanzarite, 2017b), and the extensive new transit injection and recovery tests of the Kepler pipeline (Christiansen et al., 2016; Burke Catanzarite, 2017a; Christiansen, 2017).

  14. PREDICTING A THIRD PLANET IN THE KEPLER-47 CIRCUMBINARY SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinse, Tobias C.; Haghighipour, Nader; Kostov, Veselin B.

    2015-01-20

    We have studied the possibility that a third circumbinary planet in the Kepler-47 planetary system is the source of the single unexplained transiting event reported during the discovery of these planets. We applied the MEGNO technique to identify regions in the phase space where a third planet can maintain quasi-periodic orbits, and assessed the long-term stability of the three-planet system by integrating the entire five bodies (binary + planets) for 10 Myr. We identified several stable regions between the two known planets as well as a region beyond the orbit of Kepler-47c where the orbit of the third planet could bemore » stable. To constrain the orbit of this planet, we used the measured duration of the unexplained transit event (∼4.15 hr) and compared that with the transit duration of the third planet in an ensemble of stable orbits. To remove the degeneracy among the orbits with similar transit durations, we considered the planet to be in a circular orbit and calculated its period analytically. The latter places an upper limit of 424 days on the orbital period of the third planet. Our analysis suggests that if the unexplained transit event detected during the discovery of the Kepler-47 circumbinary system is due to a planetary object, this planet will be in a low eccentricity orbit with a semi-major axis smaller than 1.24 AU. Further constraining of the mass and orbital elements of this planet requires a re-analysis of the entire currently available data, including those obtained post-announcement of the discovery of this system. We present details of our methodology and discuss the implication of the results.« less

  15. Kepler Mission: A Search for Habitable Planets

    NASA Technical Reports Server (NTRS)

    Koch, David; Fonda, Mark (Technical Monitor)

    2002-01-01

    The Kepler Mission was selected by NASA as one of the next two Discovery Missions. The mission design is based on the search for Earth-size planets in the habitable zone of solar-like stars, but does not preclude the discovery of larger or smaller planets in other orbits of non-solar-like stars. An overview of the mission, the scientific goals and the anticipated results will be presented.

  16. Kepler: NASA's First Mission Capable of Finding Earth-Size Planets

    NASA Technical Reports Server (NTRS)

    Borucki, William J.

    2009-01-01

    Kepler, a NASA Discovery mission, is a spaceborne telescope designed to search a nearby region of our galaxy for Earth-size planets orbiting in the habitable zone of stars like our sun. The habitable zone is that region around a start where the temperature permits water to be liquid on the surface of a planet. Liquid water is considered essential forth existence of life. Mission Phases: Six mission phases have been defined to describe the different periods of activity during Kepler's mission. These are: launch; commissioning; early science operations, science operations: and decommissioning

  17. Kepler-62: a five-planet system with planets of 1.4 and 1.6 Earth radii in the habitable zone.

    PubMed

    Borucki, William J; Agol, Eric; Fressin, Francois; Kaltenegger, Lisa; Rowe, Jason; Isaacson, Howard; Fischer, Debra; Batalha, Natalie; Lissauer, Jack J; Marcy, Geoffrey W; Fabrycky, Daniel; Désert, Jean-Michel; Bryson, Stephen T; Barclay, Thomas; Bastien, Fabienne; Boss, Alan; Brugamyer, Erik; Buchhave, Lars A; Burke, Chris; Caldwell, Douglas A; Carter, Josh; Charbonneau, David; Crepp, Justin R; Christensen-Dalsgaard, Jørgen; Christiansen, Jessie L; Ciardi, David; Cochran, William D; DeVore, Edna; Doyle, Laurance; Dupree, Andrea K; Endl, Michael; Everett, Mark E; Ford, Eric B; Fortney, Jonathan; Gautier, Thomas N; Geary, John C; Gould, Alan; Haas, Michael; Henze, Christopher; Howard, Andrew W; Howell, Steve B; Huber, Daniel; Jenkins, Jon M; Kjeldsen, Hans; Kolbl, Rea; Kolodziejczak, Jeffery; Latham, David W; Lee, Brian L; Lopez, Eric; Mullally, Fergal; Orosz, Jerome A; Prsa, Andrej; Quintana, Elisa V; Sanchis-Ojeda, Roberto; Sasselov, Dimitar; Seader, Shawn; Shporer, Avi; Steffen, Jason H; Still, Martin; Tenenbaum, Peter; Thompson, Susan E; Torres, Guillermo; Twicken, Joseph D; Welsh, William F; Winn, Joshua N

    2013-05-03

    We present the detection of five planets--Kepler-62b, c, d, e, and f--of size 1.31, 0.54, 1.95, 1.61 and 1.41 Earth radii (R⊕), orbiting a K2V star at periods of 5.7, 12.4, 18.2, 122.4, and 267.3 days, respectively. The outermost planets, Kepler-62e and -62f, are super-Earth-size (1.25 R⊕ < planet radius ≤ 2.0 R⊕) planets in the habitable zone of their host star, respectively receiving 1.2 ± 0.2 times and 0.41 ± 0.05 times the solar flux at Earth's orbit. Theoretical models of Kepler-62e and -62f for a stellar age of ~7 billion years suggest that both planets could be solid, either with a rocky composition or composed of mostly solid water in their bulk.

  18. One Hundred Thousand Eyes: Analysis of Kepler Archival Data

    NASA Astrophysics Data System (ADS)

    Fischer, Debra

    We are using a powerful resource, more than 100,000 eyes of users on the successful Planet Hunters Web project, who will identify the best follow-up science targets for this ADAP proposal among the Kepler public archive light curves. Planet Hunters is a Citizen Science program with a user base of more than 50,000 individuals who have already contributed the 24/7 cumulative equivalent of 200 human years assessing Kepler data. They independently identified most of the Kepler candidates with radii greater than 3-4 REARTH and they detected ten transiting planet candidates that were missed by the Kepler pipeline algorithms, including two circumbinary transiting planet candidates. These detections have provided important feedback for the Kepler algorithms about possible leaks where candidates might be lost. Our scientific follow up program will use Planet Hunter classifications of archival data from the Kepler Mission to: "Detect and model new transiting planets: for radii greater than 3 4 REARTH and orbital periods longer than one year, the Planet Hunters should be quite competitive with automated pipelines that require at least 3 transits for a detection and fill in the parameter space for Neptune-size planets over a wide range of orbital periods. For stars where a single transit can be modeled as a long period planet, we will establish a watch list for future transits. We will carry out checks for false positives (pixel centroiding analysis, AO observations, Doppler measurements where appropriate). "Analyze the completeness statistics for Kepler transits and independently determine a corrected planet occurrence rate as a function of planet radius and orbital period. This will be done by injecting synthetic transits into real Kepler light curves and calculating the efficiency with which the transits are detected by Planet Hunters. "Model the full spectroscopic and photometric orbital solutions for a set of ~60 detached eclipsing binary systems with low mass K and M

  19. Advances in the Kepler Transit Search Engine

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon M.

    2016-10-01

    Twenty years ago, no planets were known outside our own solar system. Since then, the discoveries of ~1500 exoplanets have radically altered our views of planets and planetary systems. This revolution is due in no small part to the Kepler Mission, which has discovered >1000 of these planets and >4000 planet candidates. While Kepler has shown that small rocky planets and planetary systems are quite common, the quest to find Earth's closest cousins and characterize their atmospheres presses forward with missions such as NASA Explorer Program's Transiting Exoplanet Survey Satellite (TESS) slated for launch in 2017 and ESA's PLATO mission scheduled for launch in 2024. These future missions pose daunting data processing challenges in terms of the number of stars, the amount of data, and the difficulties in detecting weak signatures of transiting small planets against a roaring background. These complications include instrument noise and systematic effects as well as the intrinsic stellar variability of the subjects under scrutiny. In this paper we review recent developments in the Kepler transit search pipeline improving both the yield and reliability of detected transit signatures. Many of the phenomena in light curves that represent noise can also trigger transit detection algorithms. The Kepler Mission has expended great effort in suppressing false positives from its planetary candidate catalogs. Over 18,000 transit-like signatures can be identified for a search across 4 years of data. Most of these signatures are artifacts, not planets. Vetting all such signatures historically takes several months' effort by many individuals. We describe the application of machine learning approaches for the automated vetting and production of planet candidate catalogs. These algorithms can improve the efficiency of the human vetting effort as well as quantifying the likelihood that each candidate is truly a planet. This information is crucial for obtaining valid planet occurrence

  20. Prevalence and Properties of Planets from Kepler and K2

    NASA Astrophysics Data System (ADS)

    Petigura, Erik; Marcy, Geoffrey W.; Howard, Andrew; Crossfield, Ian; Beichman, Charles; Sinukoff, Evan

    2015-12-01

    Discoveries from the prime Kepler mission demonstrated that small planets (< 3 Earth-radii) are common outcomes of planet formation around G, K, and M stars. While Kepler detected many such planets, all but a handful orbit faint, distant stars, which are not amenable to precise follow up measurements. NASA's K2 mission has the potential to increase the number of known small, transiting planets around bright stars by an order of magnitude. I will present the latest results from my team's efforts to detect, confirm, and characterize planets using the K2 mission. I will highlight some of the progress and remaining challenges involved with generating denoised K2 photometry and with detecting planets in the presence of severe instrument systematics. Among our recent discoveries are the K2-3 and K2-21 planetary systems: M dwarfs hosting multiple transiting Earth-size planets with low equilibrium temperatures. These systems offer a convenient laboratory for studying the bulk composition and atmospheric properties of small planets receiving low levels of stellar irradiation, where processes such as mass loss by photo-evaporation could play a weaker role.

  1. The Dynamics of Tightly-packed Planetary Systems in the Presence of an Outer Planet: Case Studies Using Kepler-11 and Kepler-90

    NASA Astrophysics Data System (ADS)

    Granados Contreras, A. P.; Boley, A. C.

    2018-03-01

    We explore the effects of an undetected outer giant planet on the dynamics, observability, and stability of Systems with Tightly-packed Inner Planets (STIPs). We use direct numerical simulations along with secular theory and synthetic secular frequency spectra to analyze how analogues of Kepler-11 and Kepler-90 behave in the presence of a nearly co-planar, Jupiter-like outer perturber with semimajor axes between 1 and 5.2 au. Most locations of the outer perturber do not affect the evolution of the inner planetary systems, apart from altering precession frequencies. However, there are locations at which an outer planet causes system instability due to, in part, secular eccentricity resonances. In Kepler-90, there is a range of orbital distances for which the outer perturber drives planets b and c, through secular interactions, onto orbits with inclinations that are ∼16° away from the rest of the planets. Kepler-90 is stable in this configuration. Such secular resonances can thus affect the observed multiplicity of transiting systems. We also compare the synthetic apsidal and nodal precession frequencies with the secular theory and find some misalignment between principal frequencies, indicative of strong interactions between the planets (consistent with the system showing TTVs). First-order libration angles are calculated to identify MMRs in the systems, for which two near-MMRs are shown in Kepler-90, with a 5:4 between b and c, as well as a 3:2 between g and h.

  2. ARE THE KEPLER NEAR-RESONANCE PLANET PAIRS DUE TO TIDAL DISSIPATION?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Man Hoi; Fabrycky, D.; Lin, D. N. C., E-mail: mhlee@hku.hk, E-mail: daniel.fabrycky@gmail.com, E-mail: lin@ucolick.org

    The multiple-planet systems discovered by the Kepler mission show an excess of planet pairs with period ratios just wide of exact commensurability for first-order resonances like 2:1 and 3:2. In principle, these planet pairs could have both resonance angles associated with the resonance librating if the orbital eccentricities are sufficiently small, because the width of first-order resonances diverges in the limit of vanishingly small eccentricity. We consider a widely held scenario in which pairs of planets were captured into first-order resonances by migration due to planet-disk interactions, and subsequently became detached from the resonances, due to tidal dissipation in themore » planets. In the context of this scenario, we find a constraint on the ratio of the planet's tidal dissipation function and Love number that implies that some of the Kepler planets are likely solid. However, tides are not strong enough to move many of the planet pairs to the observed separations, suggesting that additional dissipative processes are at play.« less

  3. Motions of Kepler circumbinary planets in restricted three-body problem under radiating primaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dermawan, B., E-mail: budider@as.itb.ac.id; Hidayat, T., E-mail: taufiq@as.itb.ac.id; Huda, I. N., E-mail: ibnu.nurul@students.itb.ac.id

    2015-09-30

    By observing continuously a single field of view in the sky, Kepler mission reveals outstanding results on discoveries of exoplanets. One of its recent progress is the discoveries of circumbinary planets. A circumbinary planet is an exoplanet that moves around a binary system. In this study we investigate motions of Kepler circumbinary planets belong to six binary systems, namely Kepler-16, -34, -35, -38, -47, and -413. The motions are considered to follow the Restricted Three-Body Problem (RTBP). Because the primaries (central massive objects) are stars, they are both radiatives, while the planet is an infinitesimal object. The primaries move inmore » nearly circular and elliptic orbits with respect to their center of masses. We describe, in general, motions of the circumbinary planets in RTBP under radiating primaries. With respect to the averaged zero velocity curves, we show that motions of the exoplanets are stable, in accordance with their Hill stabilities.« less

  4. A 1.9 Earth Radius Rocky Planet and the Discovery of a Non-transiting Planet in the Kepler-20 System

    NASA Astrophysics Data System (ADS)

    Buchhave, Lars A.; Dressing, Courtney D.; Dumusque, Xavier; Rice, Ken; Vanderburg, Andrew; Mortier, Annelies; Lopez-Morales, Mercedes; Lopez, Eric; Lundkvist, Mia S.; Kjeldsen, Hans; Affer, Laura; Bonomo, Aldo S.; Charbonneau, David; Collier Cameron, Andrew; Cosentino, Rosario; Figueira, Pedro; Fiorenzano, Aldo F. M.; Harutyunyan, Avet; Haywood, Raphaëlle D.; Johnson, John Asher; Latham, David W.; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Molinari, Emilio; Motalebi, Fatemeh; Nascimbeni, Valerio; Pepe, Francesco; Phillips, David F.; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Udry, Stéphane; Watson, Chris

    2016-12-01

    Kepler-20 is a solar-type star (V = 12.5) hosting a compact system of five transiting planets, all packed within the orbital distance of Mercury in our own solar system. A transition from rocky to gaseous planets with a planetary transition radius of ˜1.6 {R}\\oplus has recently been proposed by several articles in the literature. Kepler-20b ({R}p ˜ 1.9 {R}\\oplus ) has a size beyond this transition radius; however, previous mass measurements were not sufficiently precise to allow definite conclusions to be drawn regarding its composition. We present new mass measurements of three of the planets in the Kepler-20 system that are facilitated by 104 radial velocity measurements from the HARPS-N spectrograph and 30 archival Keck/HIRES observations, as well as an updated photometric analysis of the Kepler data and an asteroseismic analysis of the host star ({M}\\star = 0.948+/- 0.051 {M}⊙ and {R}\\star = 0.964+/- 0.018 {R}⊙ ). Kepler-20b is a {1.868}-0.034+0.066 {R}\\oplus planet in a 3.7 day period with a mass of {9.70}-1.44+1.41 {M}\\oplus , resulting in a mean density of {8.2}-1.3+1.5 {{g}} {{cm}}-3, indicating a rocky composition with an iron-to-silicate ratio consistent with that of the Earth. This makes Kepler-20b the most massive planet with a rocky composition found to date. Furthermore, we report the discovery of an additional non-transiting planet with a minimum mass of {19.96}-3.61+3.08 {M}\\oplus and an orbital period of ˜34 days in the gap between Kepler-20f (P ˜ 11 days) and Kepler-20d (P ˜ 78 days). Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofísica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  5. DISCOVERY AND ATMOSPHERIC CHARACTERIZATION OF GIANT PLANET KEPLER-12b: AN INFLATED RADIUS OUTLIER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortney, Jonathan J.; Nutzman, Philip; Demory, Brice-Olivier

    We report the discovery of planet Kepler-12b (KOI-20), which at 1.695 {+-} 0.030 R{sub J} is among the handful of planets with super-inflated radii above 1.65 R{sub J}. Orbiting its slightly evolved G0 host with a 4.438 day period, this 0.431 {+-} 0.041 M{sub J} planet is the least irradiated within this largest-planet-radius group, which has important implications for planetary physics. The planet's inflated radius and low mass lead to a very low density of 0.111 {+-} 0.010 g cm{sup -3}. We detect the occultation of the planet at a significance of 3.7{sigma} in the Kepler bandpass. This yields amore » geometric albedo of 0.14 {+-} 0.04; the planetary flux is due to a combination of scattered light and emitted thermal flux. We use multiple observations with Warm Spitzer to detect the occultation at 7{sigma} and 4{sigma} in the 3.6 and 4.5 {mu}m bandpasses, respectively. The occultation photometry timing is consistent with a circular orbit at e < 0.01 (1{sigma}) and e < 0.09 (3{sigma}). The occultation detections across the three bands favor an atmospheric model with no dayside temperature inversion. The Kepler occultation detection provides significant leverage, but conclusions regarding temperature structure are preliminary, given our ignorance of opacity sources at optical wavelengths in hot Jupiter atmospheres. If Kepler-12b and HD 209458b, which intercept similar incident stellar fluxes, have the same heavy-element masses, the interior energy source needed to explain the large radius of Kepler-12b is three times larger than that of HD 209458b. This may suggest that more than one radius-inflation mechanism is at work for Kepler-12b or that it is less heavy-element rich than other transiting planets.« less

  6. Know the Planet, Know the Star: Precise Stellar Parameters with Kepler

    NASA Astrophysics Data System (ADS)

    Sandford, Emily; Kipping, David M.

    2017-01-01

    The Kepler space telescope has revolutionized exoplanetary science with unprecedentedly precise photometric measurements of the light curves of transiting planets. In addition to information about the planet and its orbit, encoded in each Kepler transiting planet light curve are certain properties of the host star, including the stellar density and the limb darkening profile. For planets with strong prior constraints on orbital eccentricity (planets to which we refer as “stellar anchors”), we may measure these stellar properties directly from the light curve. This method promises to aid greatly in the characterization of transiting planet host stars targeted by the upcoming NASA TESS mission and any long-period, singly-transiting planets discovered in the same systems. Using Bayesian inference, we fit a transit model, including a nonlinear limb darkening law, to a large sample of transiting planet hosts to measure their stellar properties. We present the results of our analysis, including posterior stellar density distributions for each stellar host, and show how the method yields superior precision to literature stellar properties in the majority of cases studied.

  7. Kepler Small Habitable Zone Planets

    NASA Image and Video Library

    2015-07-23

    Of the 1,030 confirmed planets from Kepler, a dozen are less than twice the size of Earth and reside in the habitable zone of their host stars. In this diagram, the sizes of the exoplanets are represented by the size of each sphere. These are arranged by size from left to right, and by the type of star they orbit, from the M stars that are significantly cooler and smaller than the sun, to the K stars that are somewhat cooler and smaller than the sun, to the G stars that include the sun. The sizes of the planets are enlarged by 25 times compared to the stars. The Earth is shown for reference. http://photojournal.jpl.nasa.gov/catalog/PIA19827

  8. Detecting Close-In Extrasolar Giant Planets with the Kepler Photometer via Scattered Light

    NASA Astrophysics Data System (ADS)

    Jenkins, J. M.; Doyle, L. R.; Kepler Discovery Mission Team

    2003-05-01

    NASA's Kepler Mission will be launched in 2007 primarily to search for transiting Earth-sized planets in the habitable zones of solar-like stars. In addition, it will be poised to detect the reflected light component from close-in extrasolar giant planets (CEGPs) similar to 51 Peg b. Here we use the DIARAD/SOHO time series along with models for the reflected light signatures of CEGPs to evaluate Kepler's ability to detect such planets. We examine the detectability as a function of stellar brightness, stellar rotation period, planetary orbital inclination angle, and planetary orbital period, and then estimate the total number of CEGPs that Kepler will detect over its four year mission. The analysis shows that intrinsic stellar variability of solar-like stars is a major obstacle to detecting the reflected light from CEGPs. Monte Carlo trials are used to estimate the detection threshold required to limit the total number of expected false alarms to no more than one for a survey of 100,000 stellar light curves. Kepler will likely detect 100-760 51 Peg b-like planets by reflected light with orbital periods up to 7 days. LRD was supported by the Carl Sagan Chair at the Center for the Study of Life in the Universe, a division of the SETI Institute. JMJ received support from the Kepler Mission Photometer and Science Office at NASA Ames Research Center.

  9. Transiting Planet Search in the Kepler Pipeline

    NASA Technical Reports Server (NTRS)

    Jenkins, Jon M.; Chandrasekaran, Hema; McCauliff, Sean D.; Caldwell, Douglas A.; Tenebaum, Peter; Li, Jie; Klaus, Todd C.; Cote, Mile T.; Middour, Christopher

    2010-01-01

    The Kepler Mission simultaneously measures the brightness of more than 160,000 stars every 29.4 minutes over a 3.5-year mission to search for transiting planets. Detecting transits is a signal-detection problem where the signal of interest is a periodic pulse train and the predominant noise source is non-white, non-stationary (1/f) type process of stellar variability. Many stars also exhibit coherent or quasi-coherent oscillations. The detection algorithm first identifies and removes strong oscillations followed by an adaptive, wavelet-based matched filter. We discuss how we obtain super-resolution detection statistics and the effectiveness of the algorithm for Kepler flight data.

  10. Warm debris disks candidates in transiting planets systems

    NASA Astrophysics Data System (ADS)

    Ribas, Á.; Merín, B.; Ardila, D. R.; Bouy, H.

    2012-09-01

    We have bandmerged candidate transiting planetary systems (fromthe Kepler satellite) and confirmed transiting planetary systems (from the literature) with the recent Wide-field Infrared Survey Explorer (WISE) preliminary release catalog. We have found 13 stars showing infrared excesses at either 12 μm and/or 22 μm. Without longer wavelength observations it is not possible to conclusively determine the nature of the excesses, although we argue that they are likely due to debris disks around the stars. The ratios between themeasured fluxes and the stellar photospheres are generally larger than expected for Gyr-old stars, such as these planetary hosts. Assuming temperature limits for the dust and emission from large dust particles, we derive estimates for the disk radii. These values are comparable to the planet's semi-major axis, suggesting that the planets may be stirring the planetesimals in the system.

  11. What's the Kepler Spacecraft Been Up To?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    Remember back in May 2013 when the second of Keplers reaction wheels failed, rendering it unable to control its precision pointing? As a result of a clever backup plan by intrepid scientists, Kepler is still going strong! This January, a paper was published describing some of the results from the first year of the extended Kepler mission, known as K2.K2: A Second ChanceHistograms of the K2 planet candidate sample (solid yellow) compared with planet candidates from the first four months of Kepler observations (blue diagonal lines). The histograms compare planet radius, orbital period, and brightness. [Vanderburg et al. 2016]After an incredibly successful five years discovering transiting exoplanets, the failure of two of Keplers reaction wheels (which allow it to maintain its orientation) looked like it would shut down the mission. Luckily, the scientific community came up with the ingenious plan of stabilizing the telescope using the radiation pressure exerted by the Sun. Though this solution limits Kepler to observing within the ecliptic plane, it has provided a new life lease for the project.Despite the significantly worsened pointing precision in the K2 mission, new analysis techniques have been developed that decouple the motion of the spacecraft from its observations, resulting in an observational precision for K2 thats within 35% of the original precision achieved by Kepler.Using these techniques, a team of scientists led by Andrew Vanderburg (HarvardSmithsonian Center for Astrophysics) analyzed the publicly released data from the first year of the K2 mission. In a new study, they describe the results from the 59,174 targets that Kepler has observed in that time.Planetary CandidatesVanderburg and collaborators report that K2 has detected 234 planetary candidates around 208 stars in its first year. These candidates span a range of sizes from gas-giant to smaller than the Earth, and have orbital periods that range from hours to more than a month. The list

  12. NASA's Kepler Mission Discovers Multiple Planets Orbiting Twin Suns (Reporter Pkg)

    NASA Image and Video Library

    2012-08-28

    NASA's Kepler mission has discovered the first transiting circumbinary system -- multiple planets orbiting two suns -- 4,900 light-years from Earth, in the constellation Cygnus, proving that more than one planets can form and survive in orbit around a binary star.

  13. Lifting Transit Signals from the Kepler Noise Floor. I. Discovery of a Warm Neptune

    NASA Astrophysics Data System (ADS)

    Kunimoto, Michelle; Matthews, Jaymie M.; Rowe, Jason F.; Hoffman, Kelsey

    2018-01-01

    Light curves from the 4-year Kepler exoplanet hunting mission have been searched for transits by NASA’s Kepler team and others, but there are still important discoveries to be made. We have searched the light curves of 400 Kepler Objects of Interest (KOIs) to find transit signals down to signal-to-noise ratio (S/N) ∼ 6, which is under the limit of S/N ∼ 7.1 that has been commonly adopted as a strict threshold to distinguish between a transit candidate and false alarm. We detect four new and convincing planet candidates ranging in radius from near-Mercury-size to slightly larger than Neptune. We highlight the discovery of KOI-408.05 (period = 637 days; radius = 4.9 R ⊕ incident flux = 0.6 S ⊕), a planet candidate within its host star’s Habitable Zone. We dub this planet a “warm Neptune,” a likely volatile-rich world that deserves closer inspection. KOI-408.05 joins 21 other confirmed and candidate planets in the current Kepler sample with semimajor axes a > 1.4 au. These discoveries are significant as a demonstration that the S/N threshold for detection used by the Kepler project is open to debate.

  14. NASA's Kepler Mission Discovers First Earth-size Planet in Habitable Zone of Another Star (Reporter Package)

    NASA Image and Video Library

    2014-04-17

    NASA's Kepler mission has discovered the first Earth-size planet orbiting in the habitable zone of a star outside our solar system. The newly discovered planet is called Kepler-186f and is about 10 percent larger than Earth.

  15. Constraints on the Obliquities of Kepler Planet-hosting Stars

    NASA Astrophysics Data System (ADS)

    Winn, Joshua N.; Petigura, Erik A.; Morton, Timothy D.; Weiss, Lauren M.; Dai, Fei; Schlaufman, Kevin C.; Howard, Andrew W.; Isaacson, Howard; Marcy, Geoffrey W.; Justesen, Anders Bo; Albrecht, Simon

    2017-12-01

    Stars with hot Jupiters have obliquities ranging from 0° to 180°, but relatively little is known about the obliquities of stars with smaller planets. Using data from the California-Kepler Survey, we investigate the obliquities of stars with planets spanning a wide range of sizes, most of which are smaller than Neptune. First, we identify 156 planet hosts for which measurements of the projected rotation velocity (v\\sin i) and rotation period are both available. By combining estimates of v and v\\sin i, we find nearly all the stars to be compatible with high inclination, and hence, low obliquity (≲20°). Second, we focus on a sample of 159 hot stars ({T}{eff}> 6000 K) for which v\\sin i is available but not necessarily the rotation period. We find six stars for which v\\sin i is anomalously low, an indicator of high obliquity. Half of these have hot Jupiters, even though only 3% of the stars that were searched have hot Jupiters. We also compare the v\\sin i distribution of the hot stars with planets to that of 83 control stars selected without prior knowledge of planets. The mean v\\sin i of the control stars is lower than that of the planet hosts by a factor of approximately π /4, as one would expect if the planet hosts have low obliquities. All these findings suggest that the Kepler planet-hosting stars generally have low obliquities, with the exception of hot stars with hot Jupiters.

  16. Kepler Planets Tend to Have Siblings of the Same Size

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-11-01

    After 8.5 years of observations with the Kepler space observatory, weve discovered a large number of close-in, tightly-spaced, multiple-planet systems orbiting distant stars. In the process, weve learned a lot about the properties about these systems and discovered some unexpected behavior. A new study explores one of the properties that has surprised us: planets of the same size tend to live together.Orbital architectures for 25 of the authors multiplanet systems. The dots are sized according to the planets relative radii and colored according to mass. Planets of similar sizes and masses tend to live together in the same system. [Millholland et al. 2017]Ordering of SystemsFrom Keplers observations of extrasolar multiplanet systems, we have seen that the sizes of planets in a given system arent completely random. Systems that contain a large planet, for example, are more likely to contain additional large planets rather than additional planets of random size. So though there is a large spread in the radii weve observed for transiting exoplanets, the spread within any given multiplanet system tends to be much smaller.This odd behavior has led us to ask whether this clustering occurs not just for radius, but also for mass. Since the multiplanet systems discovered by Kepler most often contain super-Earths and mini-Neptunes, which have an extremely large spread in densities, the fact that two such planets have similar radii does not guarantee that they have similar masses.If planets dont cluster in mass within a system, this would raise the question of why planets coordinate only their radii within a given system. If they do cluster in mass, it implies that planets within the same system tend to have similar densities, potentially allowing us to predict the sizes and masses of planets we might find in a given system.Insight into MassesLed by NSF graduate research fellow Sarah Millholland, a team of scientists at Yale University used recently determined masses for

  17. Influence of Stellar Multiplicity On Planet Formation. III. Adaptive Optics Imaging of Kepler Stars With Gas Giant Planets

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Fischer, Debra A.; Horch, Elliott P.; Xie, Ji-Wei

    2015-06-01

    As hundreds of gas giant planets have been discovered, we study how these planets form and evolve in different stellar environments, specifically in multiple stellar systems. In such systems, stellar companions may have a profound influence on gas giant planet formation and evolution via several dynamical effects such as truncation and perturbation. We select 84 Kepler Objects of Interest (KOIs) with gas giant planet candidates. We obtain high-angular resolution images using telescopes with adaptive optics (AO) systems. Together with the AO data, we use archival radial velocity data and dynamical analysis to constrain the presence of stellar companions. We detect 59 stellar companions around 40 KOIs for which we develop methods of testing their physical association. These methods are based on color information and galactic stellar population statistics. We find evidence of suppressive planet formation within 20 AU by comparing stellar multiplicity. The stellar multiplicity rate (MR) for planet host stars is {0}-0+5% within 20 AU. In comparison, the stellar MR is 18% ± 2% for the control sample, i.e., field stars in the solar neighborhood. The stellar MR for planet host stars is 34% ± 8% for separations between 20 and 200 AU, which is higher than the control sample at 12% ± 2%. Beyond 200 AU, stellar MRs are comparable between planet host stars and the control sample. We discuss the implications of the results on gas giant planet formation and evolution.

  18. Kepler Mission: Detecting Earth-sized Planets in Habitable Zones

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    The Kepler Mission, which is presently in Phase A, is being proposed for launch in 5 years for a 4-year mission to determine the frequency of Earth-sized or larger planets in habitable zones in our galaxy. Kepler will be placed in an Earth-trailing orbit to provide stable physical environments for the sensitive scientific instruments. The satellite is equipped with a photometric system with the precision of 10E-5, which should be sufficient for detecting the transits of Earth-sized or larger planets in front of dwarf stars similar to the Sun. Approximately 100,000 or more sun-like stars brighter than the 14th apparently magnitude will be monitored continuously for 4 years in a preselected region of the sky, which is about 100 square degrees in size. In addition, Kepler will have a participating scientist program that will enable research in intrinsic variable stars, interacting binaries including cataclysmic stars and X-ray binaries, and a large number of solar analogs in our galaxy. Several ten thousand additional stars may be investigated in the guest observer program open to the whole world.

  19. HABITABILITY OF EARTH-MASS PLANETS AND MOONS IN THE KEPLER-16 SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quarles, B.; Musielak, Z. E.; Cuntz, M., E-mail: billyq@uta.edu, E-mail: zmusielak@uta.edu, E-mail: cuntz@uta.edu

    2012-05-01

    We demonstrate that habitable Earth-mass planets and moons can exist in the Kepler-16 system, known to host a Saturn-mass planet around a stellar binary, by investigating their orbital stability in the standard and extended habitable zone (HZ). We find that Earth-mass planets in satellite-like (S-type) orbits are possible within the standard HZ in direct vicinity of Kepler-16b, thus constituting habitable exomoons. However, Earth-mass planets cannot exist in planetary-like (P-type) orbits around the two stellar components within the standard HZ. Yet, P-type Earth-mass planets can exist superior to the Saturnian planet in the extended HZ pertaining to considerably enhanced back-warming inmore » the planetary atmosphere if facilitated. We briefly discuss the potential detectability of such habitable Earth-mass moons and planets positioned in satellite and planetary orbits, respectively. The range of inferior and superior P-type orbits in the HZ is between 0.657-0.71 AU and 0.95-1.02 AU, respectively.« less

  20. Comparing HARPS and Kepler surveys. The alignment of multiple-planet systems

    NASA Astrophysics Data System (ADS)

    Figueira, P.; Marmier, M.; Boué, G.; Lovis, C.; Santos, N. C.; Montalto, M.; Udry, S.; Pepe, F.; Mayor, M.

    2012-05-01

    Context. The recent results of the HARPS and Kepler surveys provided us with a bounty of extrasolar systems. While the two teams extensively analyzed each of their data-sets, little work has been done comparing the two. Aims: We study a subset of the planetary population whose characterization is simultaneously within reach of both instruments. We compare the statistical properties of planets in systems with msini > 5-10 M⊕ and R > 2 R⊕, as inferred from the HARPS and Kepler surveys, respectively. If we assume that the underlying population has the same characteristics, the different detection sensitivity to the orbital inclination relative to the line of sight allows us to probe the planets' mutual inclination. Methods: We considered the frequency of systems with one, two, and three planets as dictated by HARPS data. We used Kepler's planetary period and host mass and radius distributions (corrected from detection bias) to model planetary systems in a simple, yet physically plausible way. We then varied the mutual inclination between planets in a system according to different prescriptions (completely aligned, Rayleigh distributions, and isotropic) and compared the transit frequencies with one, two, or three planets with those measured by Kepler. Results: The results show that the two datasets are compatible, a remarkable result especially because there are no tunable knobs other than the assumed inclination distribution. For msini cutoffs of 7-10 M⊕, which are those expected to correspond to the radius cutoff of 2 R⊕, we conclude that the results are better described by a Rayleigh distribution with a mode of 1° or smaller. We show that the best-fit scenario only becomes a Rayleigh distribution with a mode of 5° if we assume a quite extreme mass-radius relationship for the planetary population. Conclusions: These results have important consequences for our understanding of the role of several proposed formation and evolution mechanisms. They confirm that

  1. KEPLER EXOPLANET CANDIDATE HOST STARS ARE PREFERENTIALLY METAL RICH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlaufman, Kevin C.; Laughlin, Gregory, E-mail: kcs@ucolick.org, E-mail: laughlin@ucolick.org

    We find that Kepler exoplanet candidate (EC) host stars are preferentially metal rich, including the low-mass stellar hosts of small-radius ECs. The last observation confirms a tentative hint that there is a correlation between the metallicity of low-mass stars and the presence of low-mass and small-radius exoplanets. In particular, we compare the J-H-g-r color-color distribution of Kepler EC host stars with a control sample of dwarf stars selected from the {approx}150, 000 stars observed during Q1 and Q2 of the Kepler mission but with no detected planets. We find that at J - H = 0.30 characteristic of solar-type stars,more » the average g-r color of stars that host giant ECs is 4{sigma} redder than the average color of the stars in the control sample. At the same J - H color, the average g-r color of solar-type stars that host small-radius ECs is indistinguishable from the average color of the stars in the control sample. In addition, we find that at J - H = 0.62 indicative of late K dwarfs, the average g-r color of stars that host small-radius ECs is 4{sigma} redder than the average color of the stars in the control sample. These offsets are unlikely to be caused by differential reddening, age differences between the two populations, or the presence of giant stars in the control sample. Stellar models suggest that the first color offset is due to a 0.2 dex enhancement in [Fe/H] of the giant EC host population at M{sub *} {approx} 1 M{sub sun}, while Sloan photometry of M 67 and NGC 6791 suggests that the second color offset is due to a similar [Fe/H] enhancement of the small-radius EC host population at M{sub *} {approx} 0.7 M{sub sun}. These correlations are a natural consequence of the core-accretion model of planet formation.« less

  2. The Kepler-454 System: A Small, Not-rocky Inner Planet, a Jovian World, and a Distant Companion

    NASA Astrophysics Data System (ADS)

    Gettel, Sara; Charbonneau, David; Dressing, Courtney D.; Buchhave, Lars A.; Dumusque, Xavier; Vanderburg, Andrew; Bonomo, Aldo S.; Malavolta, Luca; Pepe, Francesco; Collier Cameron, Andrew; Latham, David W.; Udry, Stéphane; Marcy, Geoffrey W.; Isaacson, Howard; Howard, Andrew W.; Davies, Guy R.; Silva Aguirre, Victor; Kjeldsen, Hans; Bedding, Timothy R.; Lopez, Eric; Affer, Laura; Cosentino, Rosario; Figueira, Pedro; Fiorenzano, Aldo F. M.; Harutyunyan, Avet; Johnson, John Asher; Lopez-Morales, Mercedes; Lovis, Christophe; Mayor, Michel; Micela, Giusi; Molinari, Emilio; Motalebi, Fatemeh; Phillips, David F.; Piotto, Giampaolo; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Watson, Chris; Basu, Sarbani; Campante, Tiago L.; Christensen-Dalsgaard, Jørgen; Kawaler, Steven D.; Metcalfe, Travis S.; Handberg, Rasmus; Lund, Mikkel N.; Lundkvist, Mia S.; Huber, Daniel; Chaplin, William J.

    2016-01-01

    Kepler-454 (KOI-273) is a relatively bright (V = 11.69 mag), Sun-like star that hosts a transiting planet candidate in a 10.6 day orbit. From spectroscopy, we estimate the stellar temperature to be 5687 ± 50 K, its metallicity to be [m/H] = 0.32 ± 0.08, and the projected rotational velocity to be v sin I < 2.4 km s-1. We combine these values with a study of the asteroseismic frequencies from short cadence Kepler data to estimate the stellar mass to be {1.028}-0.03+0.04{M}⊙ , the radius to be 1.066 ± 0.012 R⊙, and the age to be {5.25}-1.39+1.41 Gyr. We estimate the radius of the 10.6 day planet as 2.37 ± 0.13 R⊕. Using 63 radial velocity observations obtained with the HARPS-N spectrograph on the Telescopio Nazionale Galileo and 36 observations made with the HIRES spectrograph at the Keck Observatory, we measure the mass of this planet to be 6.8 ± 1.4 M⊕. We also detect two additional non-transiting companions, a planet with a minimum mass of 4.46 ± 0.12 MJ in a nearly circular 524 day orbit and a massive companion with a period >10 years and mass >12.1 MJ. The 12 exoplanets with radii <2.7 R⊕ and precise mass measurements appear to fall into two populations, with those <1.6 R⊕ following an Earth-like composition curve and larger planets requiring a significant fraction of volatiles. With a density of 2.76 ± 0.73 g cm-3, Kepler-454b lies near the mass transition between these two populations and requires the presence of volatiles and/or H/He gas.

  3. BIRTH LOCATIONS OF THE KEPLER CIRCUMBINARY PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silsbee, Kedron; Rafikov, Roman R., E-mail: ksilsbee@astro.princeton.edu

    2015-07-20

    The Kepler mission has discovered about a dozen circumbinary planetary systems, all containing planets on ∼1 AU orbits. We place bounds on the locations in the circumbinary protoplanetary disk, where these planets could have formed through collisional agglomeration starting from small (kilometer-sized or less) planetesimals. We first present a model of secular planetesimal dynamics that accounts for the (1) perturbation due to the eccentric precessing binary, as well as the (2) gravity and (3) gas drag from a precessing eccentric disk. Their simultaneous action leads to rich dynamics, with (multiple) secular resonances emerging in the disk. We derive analytic resultsmore » for size-dependent planetesimal eccentricity and demonstrate the key role of the disk gravity for circumbinary dynamics. We then combine these results with a simple model for collisional outcomes and find that in systems like Kepler-16, planetesimal growth starting with 10–100 m planetesimals is possible outside a few AU. The exact location exterior to which this happens is sensitive to disk eccentricity, density, and precession rate, as well as to the size of the first generation of planetesimals. Strong perturbations from the binary in the inner part of the disk, combined with a secular resonance at a few AU, inhibit the growth of kilometer-sized planetesimals within 2–4 AU of the binary. In situ planetesimal growth in the Kepler circumbinary systems is possible only starting from large initial planetesimals (few-kilometer-sized even assuming favorable disk properties, i.e., low surface density)« less

  4. THE MASS OF Kepler-93b AND THE COMPOSITION OF TERRESTRIAL PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dressing, Courtney D.; Charbonneau, David; Dumusque, Xavier

    Kepler-93b is a 1.478 ± 0.019 R {sub ⊕} planet with a 4.7 day period around a bright (V = 10.2), astroseismically characterized host star with a mass of 0.911 ± 0.033 M {sub ☉} and a radius of 0.919 ± 0.011 R {sub ☉}. Based on 86 radial velocity observations obtained with the HARPS-N spectrograph on the Telescopio Nazionale Galileo and 32 archival Keck/HIRES observations, we present a precise mass estimate of 4.02 ± 0.68 M {sub ⊕}. The corresponding high density of 6.88 ± 1.18 g cm{sup –3} is consistent with a rocky composition of primarily iron andmore » magnesium silicate. We compare Kepler-93b to other dense planets with well-constrained parameters and find that between 1 and 6 M {sub ⊕}, all dense planets including the Earth and Venus are well-described by the same fixed ratio of iron to magnesium silicate. There are as of yet no examples of such planets with masses >6 M {sub ⊕}. All known planets in this mass regime have lower densities requiring significant fractions of volatiles or H/He gas. We also constrain the mass and period of the outer companion in the Kepler-93 system from the long-term radial velocity trend and archival adaptive optics images. As the sample of dense planets with well-constrained masses and radii continues to grow, we will be able to test whether the fixed compositional model found for the seven dense planets considered in this paper extends to the full population of 1-6 M {sub ⊕} planets.« less

  5. Kepler AutoRegressive Planet Search: Motivation & Methodology

    NASA Astrophysics Data System (ADS)

    Caceres, Gabriel; Feigelson, Eric; Jogesh Babu, G.; Bahamonde, Natalia; Bertin, Karine; Christen, Alejandra; Curé, Michel; Meza, Cristian

    2015-08-01

    The Kepler AutoRegressive Planet Search (KARPS) project uses statistical methodology associated with autoregressive (AR) processes to model Kepler lightcurves in order to improve exoplanet transit detection in systems with high stellar variability. We also introduce a planet-search algorithm to detect transits in time-series residuals after application of the AR models. One of the main obstacles in detecting faint planetary transits is the intrinsic stellar variability of the host star. The variability displayed by many stars may have autoregressive properties, wherein later flux values are correlated with previous ones in some manner. Auto-Regressive Moving-Average (ARMA) models, Generalized Auto-Regressive Conditional Heteroskedasticity (GARCH), and related models are flexible, phenomenological methods used with great success to model stochastic temporal behaviors in many fields of study, particularly econometrics. Powerful statistical methods are implemented in the public statistical software environment R and its many packages. Modeling involves maximum likelihood fitting, model selection, and residual analysis. These techniques provide a useful framework to model stellar variability and are used in KARPS with the objective of reducing stellar noise to enhance opportunities to find as-yet-undiscovered planets. Our analysis procedure consisting of three steps: pre-processing of the data to remove discontinuities, gaps and outliers; ARMA-type model selection and fitting; and transit signal search of the residuals using a new Transit Comb Filter (TCF) that replaces traditional box-finding algorithms. We apply the procedures to simulated Kepler-like time series with known stellar and planetary signals to evaluate the effectiveness of the KARPS procedures. The ARMA-type modeling is effective at reducing stellar noise, but also reduces and transforms the transit signal into ingress/egress spikes. A periodogram based on the TCF is constructed to concentrate the signal

  6. Search for light curve modulations among Kepler candidates. Three very low-mass transiting companions

    NASA Astrophysics Data System (ADS)

    Lillo-Box, J.; Ribas, A.; Barrado, D.; Merín, B.; Bouy, H.

    2016-07-01

    Context. Light curve modulations in the sample of Kepler planet candidates allows the disentangling of the nature of the transiting object by photometrically measuring its mass. This is possible by detecting the effects of the gravitational pull of the companion (ellipsoidal modulations) and in some cases, the photometric imprints of the Doppler effect when observing in a broad band (Doppler beaming). Aims: We aim to photometrically unveil the nature of some transiting objects showing clear light curve modulations in the phase-folded Kepler light curve. Methods: We selected a subsample among the large crop of Kepler objects of interest (KOIs) based on their chances to show detectable light curve modulations, I.e., close (a< 12 R⋆) and large (in terms of radius, according to their transit signal) candidates. We modeled their phase-folded light curves with consistent equations for the three effects, namely, reflection, ellipsoidal and beaming (known as REB modulations). Results: We provide detailed general equations for the fit of the REB modulations for the case of eccentric orbits. These equations are accurate to the photometric precisions achievable by current and forthcoming instruments and space missions. By using this mathematical apparatus, we find three close-in very low-mass companions (two of them in the brown dwarf mass domain) orbiting main-sequence stars (KOI-554, KOI-1074, and KOI-3728), and reject the planetary nature of the transiting objects (thus classifying them as false positives). In contrast, the detection of the REB modulations and transit/eclipse signal allows the measurement of their mass and radius that can provide important constraints for modeling their interiors since just a few cases of low-mass eclipsing binaries are known. Additionally, these new systems can help to constrain the similarities in the formation process of the more massive and close-in planets (hot Jupiters), brown dwarfs, and very low-mass companions.

  7. 2014 Summer Series - Jon Jenkins - Chasing Shadow Worlds: Exoplanets from Kepler and Beyond

    NASA Image and Video Library

    2014-08-14

    Twenty years ago, there were no planets known outside our own solar system. Since then, the discoveries of about 1500 planets orbiting other stars have radically altered our views of planets and planetary systems. This revolution in knowledge is due in no small part to the Kepler Mission, which has discovered over 950 of these planets and over 3000 planet candidates. This talk will review the greatest hits of Kepler and peek into the future of exoplanets.

  8. Warm debris disks candidates in transiting planets systems

    NASA Astrophysics Data System (ADS)

    Ribas, Á.; Merín, B.; Ardila, D. R.; Bouy, H.

    2012-05-01

    We have bandmerged candidate transiting planetary systems (from the Kepler satellite) and confirmed transiting planetary systems (from the literature) with the recent Wide-field Infrared Survey Explorer (WISE) preliminary release catalog. We have found 13 stars showing infrared excesses at either 12 μm and/or 22 μm. Without longer wavelength observations it is not possible to conclusively determine the nature of the excesses, although we argue that they are likely due to debris disks around the stars. If confirmed, our sample ~doubles the number of currently known warm excess disks around old main sequence stars. The ratios between the measured fluxes and the stellar photospheres are generally larger than expected for Gyr-old stars, such as these planetary hosts. Assuming temperature limits for the dust and emission from large dust particles, we derive estimates for the disk radii. These values are comparable to the planet's semi-major axis, suggesting that the planets may be stirring the planetesimals in the system.

  9. KEPLER Mission: development and overview

    NASA Astrophysics Data System (ADS)

    Borucki, William J.

    2016-03-01

    The Kepler Mission is a space observatory launched in 2009 by NASA to monitor 170 000 stars over a period of four years to determine the frequency of Earth-size and larger planets in and near the habitable zone of Sun-like stars, the size and orbital distributions of these planets, and the types of stars they orbit. Kepler is the tenth in the series of NASA Discovery Program missions that are competitively-selected, PI-directed, medium-cost missions. The Mission concept and various instrument prototypes were developed at the Ames Research Center over a period of 18 years starting in 1983. The development of techniques to do the 10 ppm photometry required for Mission success took years of experimentation, several workshops, and the exploration of many ‘blind alleys’ before the construction of the flight instrument. Beginning in 1992 at the start of the NASA Discovery Program, the Kepler Mission concept was proposed five times before its acceptance for mission development in 2001. During that period, the concept evolved from a photometer in an L2 orbit that monitored 6000 stars in a 50 sq deg field-of-view (FOV) to one that was in a heliocentric orbit that simultaneously monitored 170 000 stars with a 105 sq deg FOV. Analysis of the data to date has detected over 4600 planetary candidates which include several hundred Earth-size planetary candidates, over a thousand confirmed planets, and Earth-size planets in the habitable zone (HZ). These discoveries provide the information required for estimates of the frequency of planets in our galaxy. The Mission results show that most stars have planets, many of these planets are similar in size to the Earth, and that systems with several planets are common. Although planets in the HZ are common, many are substantially larger than Earth.

  10. KEPLER Mission: development and overview.

    PubMed

    Borucki, William J

    2016-03-01

    The Kepler Mission is a space observatory launched in 2009 by NASA to monitor 170,000 stars over a period of four years to determine the frequency of Earth-size and larger planets in and near the habitable zone of Sun-like stars, the size and orbital distributions of these planets, and the types of stars they orbit. Kepler is the tenth in the series of NASA Discovery Program missions that are competitively-selected, PI-directed, medium-cost missions. The Mission concept and various instrument prototypes were developed at the Ames Research Center over a period of 18 years starting in 1983. The development of techniques to do the 10 ppm photometry required for Mission success took years of experimentation, several workshops, and the exploration of many 'blind alleys' before the construction of the flight instrument. Beginning in 1992 at the start of the NASA Discovery Program, the Kepler Mission concept was proposed five times before its acceptance for mission development in 2001. During that period, the concept evolved from a photometer in an L2 orbit that monitored 6000 stars in a 50 sq deg field-of-view (FOV) to one that was in a heliocentric orbit that simultaneously monitored 170,000 stars with a 105 sq deg FOV. Analysis of the data to date has detected over 4600 planetary candidates which include several hundred Earth-size planetary candidates, over a thousand confirmed planets, and Earth-size planets in the habitable zone (HZ). These discoveries provide the information required for estimates of the frequency of planets in our galaxy. The Mission results show that most stars have planets, many of these planets are similar in size to the Earth, and that systems with several planets are common. Although planets in the HZ are common, many are substantially larger than Earth.

  11. The mass of the super-Earth orbiting the brightest Kepler planet hosting star

    NASA Astrophysics Data System (ADS)

    Lopez-Morales, Mercedes; HARPS-N Team

    2016-01-01

    HD 179070, aka Kepler-21, is a V = 8.25 oscillating F6IV star and the brightest exoplanet host discovered by Kepler. An early analysis of the Q0 - Q5 Kepler light curves by Howell et al. (2012) revealed transits of a planetary companion, Kepler-21b, with a radius of 1.6 R_Earth and an orbital period of 2.7857 days. However, they could not determine the mass of the planet from the initial radial velocity observations with Keck-HIRES, and were only able to impose a 2s upper limit of about 10 M_Earth. Here we present 82 new radial velocity observations of this system obtained with the HARPS-N spectrograph. We detect the Doppler shift signal of Kepler-21b at the 3.6s level, and measure a planetary mass of 5.9 ± 1.6 M_Earth. We also update the radius of the planet to 1.65 ± 0.08 R_Earth, using the now available Kepler Q0 - Q17 photometry for this target. The mass of Kepler-21b appears to fall on the apparent dividing line between super-Earths that have lost all the material in their outer layers and those that have retained a significant amount of volatiles. Based on our results Kepler-21b belongs to the first group. Acknowledgement: This work was supported by funding from the NASA XRP Program and the John Templeton Foundation.

  12. A Dynamical Analysis of the Kepler-80 System of Five Transiting Planets

    NASA Astrophysics Data System (ADS)

    MacDonald, Mariah G.; Ragozzine, Darin; Fabrycky, Daniel C.; Ford, Eric B.; Holman, Matthew J.; Isaacson, Howard T.; Lissauer, Jack J.; Lopez, Eric D.; Mazeh, Tsevi; Rogers, Leslie; Rowe, Jason F.; Steffen, Jason H.; Torres, Guillermo

    2016-10-01

    Kepler has discovered hundreds of systems with multiple transiting exoplanets which hold tremendous potential both individually and collectively for understanding the formation and evolution of planetary systems. Many of these systems consist of multiple small planets with periods less than ∼50 days known as Systems with Tightly spaced Inner Planets, or STIPs. One especially intriguing STIP, Kepler-80 (KOI-500), contains five transiting planets: f, d, e, b, and c with periods of 1.0, 3.1, 4.6, 7.1, and 9.5 days, respectively. We provide measurements of transit times and a transit timing variation (TTV) dynamical analysis. We find that TTVs cannot reliably detect eccentricities for this system, though mass estimates are not affected. Restricting the eccentricity to a reasonable range, we infer masses for the outer four planets (d, e, b, and c) to be {6.75}-0.51+0.69, {4.13}-0.95+0.81, {6.93}-0.70+1.05, and {6.74}-0.86+1.23 Earth masses, respectively. The similar masses but different radii are consistent with terrestrial compositions for d and e and ∼2% H/He envelopes for b and c. We confirm that the outer four planets are in a rare dynamical configuration with four interconnected three-body resonances that are librating with few degree amplitudes. We present a formation model that can reproduce the observed configuration by starting with a multi-resonant chain and introducing dissipation. Overall, the information-rich Kepler-80 planets provide an important perspective into exoplanetary systems.

  13. Towards a Comprehensive Understanding of Planet Occurrence Rates: Extending the Kepler Legacy Across a Wide Stellar Parameter Space with K2

    NASA Astrophysics Data System (ADS)

    Akeson, Rachel

    Praesepe clusters (600My old). One goal of this proposal is to pinpoint when and if the planet occurrence rate converges with that of the Kepler field, whose stars have a median age of 4Gy. This will inform the timescales of the dominant formation and migration mechanisms, and improve our ability to discriminate between competing proposed theories. The proposed work encompasses the following tasks: (1) Generating and publishing a uniform, repeatable, robust catalogue of planet candidates using the publicly available K2 data comprising the first 33 months of observations; (2) Measuring the completeness (false negative rate) and reliability (false positive rate) of the resulting candidate catalogue; (3) Systematically and accurately characterizing the properties of the stellar sample (both exoplanet hosts and non-hosts); (4) Calculating the distribution of the underlying planet population across a wide range of stellar host parameters. The proposed work is relevant to several of NASA s strategic goals, including ascertaining the content, origin, and evolution of the solar system and the potential for life elsewhere , and discovering how the universe works, exploring how it began and evolved, and searching for life on planets around other stars . With respect to the Astrophysics Data Analysis Program call, the proposed work builds on the legacy of Kepler occurrence rate calculations by placing them in the wider context afforded by the publicly available K2 data.

  14. Photometric Follow-up of Eclipsing Binary Candidates from KELT and Kepler

    NASA Astrophysics Data System (ADS)

    Garcia Soto, Aylin; Rodriguez, Joseph E.; Bieryla, Allyson; KELT survey

    2018-01-01

    Eclipsing binaries (EBs) are incredibly valuable, as they provide the opportunity to precisely measure fundamental stellar parameters without the need for stellar models. Therefore, we can use EBs to directly test stellar evolution models. Constraining the stellar properties of stars is important since they directly influence our understanding of any planets orbiting them. Using the Harvard University's Clay 0.4m telescope and Fred Lawrence Whipple Observatory’s 1.2m telescope on Mount Hopkins, Arizona, we conducted follow-up multi-band photometric observations of EB candidates from the Kilodegree Extremely Little Telescope (KELT) survey and the Kepler mission. We will present our follow-up observations and AstroImageJ analysis on these 5 EB systems.

  15. Planetary Candidates Observed by Kepler. VIII. A Fully Automated Catalog with Measured Completeness and Reliability Based on Data Release 25

    NASA Astrophysics Data System (ADS)

    Thompson, Susan E.; Coughlin, Jeffrey L.; Hoffman, Kelsey; Mullally, Fergal; Christiansen, Jessie L.; Burke, Christopher J.; Bryson, Steve; Batalha, Natalie; Haas, Michael R.; Catanzarite, Joseph; Rowe, Jason F.; Barentsen, Geert; Caldwell, Douglas A.; Clarke, Bruce D.; Jenkins, Jon M.; Li, Jie; Latham, David W.; Lissauer, Jack J.; Mathur, Savita; Morris, Robert L.; Seader, Shawn E.; Smith, Jeffrey C.; Klaus, Todd C.; Twicken, Joseph D.; Van Cleve, Jeffrey E.; Wohler, Bill; Akeson, Rachel; Ciardi, David R.; Cochran, William D.; Henze, Christopher E.; Howell, Steve B.; Huber, Daniel; Prša, Andrej; Ramírez, Solange V.; Morton, Timothy D.; Barclay, Thomas; Campbell, Jennifer R.; Chaplin, William J.; Charbonneau, David; Christensen-Dalsgaard, Jørgen; Dotson, Jessie L.; Doyle, Laurance; Dunham, Edward W.; Dupree, Andrea K.; Ford, Eric B.; Geary, John C.; Girouard, Forrest R.; Isaacson, Howard; Kjeldsen, Hans; Quintana, Elisa V.; Ragozzine, Darin; Shabram, Megan; Shporer, Avi; Silva Aguirre, Victor; Steffen, Jason H.; Still, Martin; Tenenbaum, Peter; Welsh, William F.; Wolfgang, Angie; Zamudio, Khadeejah A.; Koch, David G.; Borucki, William J.

    2018-04-01

    We present the Kepler Object of Interest (KOI) catalog of transiting exoplanets based on searching 4 yr of Kepler time series photometry (Data Release 25, Q1–Q17). The catalog contains 8054 KOIs, of which 4034 are planet candidates with periods between 0.25 and 632 days. Of these candidates, 219 are new, including two in multiplanet systems (KOI-82.06 and KOI-2926.05) and 10 high-reliability, terrestrial-size, habitable zone candidates. This catalog was created using a tool called the Robovetter, which automatically vets the DR25 threshold crossing events (TCEs). The Robovetter also vetted simulated data sets and measured how well it was able to separate TCEs caused by noise from those caused by low signal-to-noise transits. We discuss the Robovetter and the metrics it uses to sort TCEs. For orbital periods less than 100 days the Robovetter completeness (the fraction of simulated transits that are determined to be planet candidates) across all observed stars is greater than 85%. For the same period range, the catalog reliability (the fraction of candidates that are not due to instrumental or stellar noise) is greater than 98%. However, for low signal-to-noise candidates between 200 and 500 days around FGK-dwarf stars, the Robovetter is 76.7% complete and the catalog is 50.5% reliable. The KOI catalog, the transit fits, and all of the simulated data used to characterize this catalog are available at the NASA Exoplanet Archive.

  16. A Universal Break in the Planet-to-star Mass-ratio Function of Kepler MKG Stars

    NASA Astrophysics Data System (ADS)

    Pascucci, Ilaria; Mulders, Gijs D.; Gould, Andrew; Fernandes, Rachel

    2018-04-01

    We follow the microlensing approach and quantify the occurrence of Kepler exoplanets as a function of planet-to-star mass ratio, q, rather than planet radius or mass. For planets with radii ∼1–6 R ⊕ and periods <100 days, we find that, except for a normalization factor, the occurrence rate versus q can be described by the same broken power law with a break at ∼3 × 10‑5 independent of host type for hosts below 1 M ⊙. These findings indicate that the planet-to-star mass ratio is a more fundamental quantity in planet formation than planet mass. We then compare our results to those from microlensing for which the overwhelming majority satisfies the M host < 1 M ⊙ criterion. The break in q for the microlensing planet population, which mostly probes the region outside the snowline, is ∼3–10 times higher than that inferred from Kepler. Thus, the most common planet inside the snowline is ∼3–10 times less massive than the one outside. With rocky planets interior to gaseous planets, the solar system broadly follows the combined mass-ratio function inferred from Kepler and microlensing. However, the exoplanet population has a less extreme radial distribution of planetary masses than the solar system. Establishing whether the mass-ratio function beyond the snowline is also host type independent will be crucial to build a comprehensive theory of planet formation.

  17. Obliquity Variations of Habitable Zone Planets Kepler-62f and Kepler-186f

    NASA Astrophysics Data System (ADS)

    Shan, Yutong; Li, Gongjie

    2018-06-01

    Obliquity variability could play an important role in the climate and habitability of a planet. Orbital modulations caused by planetary companions and the planet’s spin axis precession due to the torque from the host star may lead to resonant interactions and cause large-amplitude obliquity variability. Here we consider the spin axis dynamics of Kepler-62f and Kepler-186f, both of which reside in the habitable zone around their host stars. Using N-body simulations and secular numerical integrations, we describe their obliquity evolution for particular realizations of the planetary systems. We then use a generalized analytic framework to characterize regions in parameter space where the obliquity is variable with large amplitude. We find that the locations of variability are fine-tuned over the planetary properties and system architecture in the lower-obliquity regimes (≲40°). As an example, assuming a rotation period of 24 hr, the obliquities of both Kepler-62f and Kepler-186f are stable below ∼40°, whereas the high-obliquity regions (60°–90°) allow moderate variabilities. However, for some other rotation periods of Kepler-62f or Kepler-186f, the lower-obliquity regions could become more variable owing to resonant interactions. Even small deviations from coplanarity (e.g., mutual inclinations ∼3°) could stir peak-to-peak obliquity variations up to ∼20°. Undetected planetary companions and/or the existence of a satellite could also destabilize the low-obliquity regions. In all cases, the high-obliquity region allows for moderate variations, and all obliquities corresponding to retrograde motion (i.e., >90°) are stable.

  18. Investigating the Orbital Period Valley of Giant Planets in Kepler Data

    NASA Astrophysics Data System (ADS)

    Thomas, Brianna P.; Birkby, Jayne L.

    2016-01-01

    Transit light curves contain a wealth of information about the basic properties of a planet, such as its radius, semi-major axis, and orbital period. For the latter property, there is a distinct lack of planets with periods between 10 to 100 days. This gap could be caused by something as simple as observational bias, or as prominent as planetary formation or migration. Here, we report an investigation into the atmosphere of planets within this orbital period valley, to search for differences that may indicate a different formation mechanism or migration path to those outside of it. We do this by searching for the secondary eclipse of planets in the valley in order to measure their albedos. We determined an optimal target for this: KOI-366 b (P ~ 75 days). However, we find that despite the exquisite precision of Kepler data, it cannot constrain the albedo for this long-orbit planet candidate. We measure a 1σ upper limit on the geometric albedo of Ag,1σ ≤ 2.0. We highlight that additional scatter in the light curve is likely caused by a ~ 2-day pulsation of the giant host star, and that further data is required to measure the secondary eclipse. KOI-366 is one of the best suited of all host stars with long period exoplanet candidates for follow-up due to its relatively bright magnitude (Kp = 11.7 mag), but the full investigation of the reflective properties of long period planets may require space-based observations from future instruments, such as WFIRST, that will be more sensitive to objects further away from their host stars. This work was supported in part by the NSF REU and DoD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution. This work was performed in part under contract with the Jet Propulsion Laboratory (JPL) funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute.

  19. K2's First Five-Planet System

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-08-01

    Whats the latest from the Kepler K2 mission? K2 has found its first planetary system containing more than three planets an exciting five-planet system located ~380 light-years from Earth!Opportunities From K2Raw K2 light curve (blue, top) and systematic corrected light curve (orange, bottom) for HIP 41378. The three deepest transits are single transits from the three outermost planet candidates. [Vanderburg et al. 2016]The original Kepler mission was enormously successful, discovering thousands of planet candidates. But one side effect of Keplers original observing technique, in which it studied the same field for four years, is that it was very good at detecting extremely faint systems systems that were often too faint to be followed up with other techniques.After Keplers mechanical failure in 2013, the K2 mission was launched, in which the spacecraft uses solar pressure to stabilize it long enough to perform an 80-day searches of each region it examines. Over the course of the K2 mission, Kepler could potentially survey up to 20 times the sky area of the original mission, providing ample opportunity to find planetary systems around bright stars. These stars may be bright enough to be followed up with other techniques.Multi-Planet SystemsTheres a catch to the 80-day observing program: the K2 mission is less likely to detect multiple planets orbiting the same star, due to the short time spent observing the system. While the original Kepler mission detected systems with up to seven planets, K2 had yet to detect systems with more than three candidates until now.Led by Andrew Vanderburg (NSF Graduate Research Fellow at the Harvard-Smithsonian Center for Astrophysics), a team of scientists recentlyanalyzed K2 observations ofthe bright star HIP 41378. Theteamfound that this F-type star hosts five potential planetary candidates!Phase-folded light curve for each of the five transiting planets in the HIP 41378 system. The outermost planet (bottom panel) may provide an

  20. The Kepler-10 planetary system revisited by HARPS-N: A hot rocky world and a solid Neptune-mass planet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumusque, Xavier; Buchhave, Lars A.; Latham, David W.

    Kepler-10b was the first rocky planet detected by the Kepler satellite and confirmed with radial velocity follow-up observations from Keck-HIRES. The mass of the planet was measured with a precision of around 30%, which was insufficient to constrain models of its internal structure and composition in detail. In addition to Kepler-10b, a second planet transiting the same star with a period of 45 days was statistically validated, but the radial velocities were only good enough to set an upper limit of 20 M{sub ⊕} for the mass of Kepler-10c. To improve the precision on the mass for planet b, themore » HARPS-N Collaboration decided to observe Kepler-10 intensively with the HARPS-N spectrograph on the Telescopio Nazionale Galileo on La Palma. In total, 148 high-quality radial-velocity measurements were obtained over two observing seasons. These new data allow us to improve the precision of the mass determination for Kepler-10b to 15%. With a mass of 3.33 ± 0.49 M{sub ⊕} and an updated radius of 1.47{sub −0.02}{sup +0.03} R{sub ⊕}, Kepler-10b has a density of 5.8 ± 0.8 g cm{sup –3}, very close to the value predicted by models with the same internal structure and composition as the Earth. We were also able to determine a mass for the 45-day period planet Kepler-10c, with an even better precision of 11%. With a mass of 17.2 ± 1.9 M{sub ⊕} and radius of 2.35{sub −0.04}{sup +0.09} R{sub ⊕}, Kepler-10c has a density of 7.1 ± 1.0 g cm{sup –3}. Kepler-10c appears to be the first strong evidence of a class of more massive solid planets with longer orbital periods.« less

  1. A Revised Estimate of the Occurrence Rate of Terrestrial Planets in the Habitable Zones around Kepler M-dwarfs

    NASA Astrophysics Data System (ADS)

    Kopparapu, Ravi Kumar

    2013-04-01

    Because of their large numbers, low-mass stars may be the most abundant planet hosts in our Galaxy. Furthermore, terrestrial planets in the habitable zones (HZs) around M-dwarfs can potentially be characterized in the near future and hence may be the first such planets to be studied. Recently, Dressing & Charbonneau used Kepler data and calculated the frequency of terrestrial planets in the HZ of cool stars to be 0.15^{+0.13}_{-0.06} per star for Earth-size planets (0.5-1.4 R ⊕). However, this estimate was derived using the Kasting et al. HZ limits, which were not valid for stars with effective temperatures lower than 3700 K. Here we update their result using new HZ limits from Kopparapu et al. for stars with effective temperatures between 2600 K and 7200 K, which includes the cool M stars in the Kepler target list. The new HZ boundaries increase the number of planet candidates in the HZ. Assuming Earth-size planets as 0.5-1.4 R ⊕, when we reanalyze their results, we obtain a terrestrial planet frequency of 0.48^{+0.12}_{-0.24} and 0.53^{+0.08}_{-0.17} planets per M-dwarf star for conservative and optimistic limits of the HZ boundaries, respectively. Assuming Earth-size planets as 0.5-2 R ⊕, the frequency increases to 0.51^{+0.10}_{-0.20} per star for the conservative estimate and to 0.61^{+0.07}_{-0.15} per star for the optimistic estimate. Within uncertainties, our optimistic estimates are in agreement with a similar optimistic estimate from the radial velocity survey of M-dwarfs (0.41^{+0.54}_{-0.13}). So, the potential for finding Earth-like planets around M stars may be higher than previously reported.

  2. Kepler-432: A Red Giant Interacting with One of its Two Long-period Giant Planets

    NASA Astrophysics Data System (ADS)

    Quinn, Samuel N.; White, Timothy. R.; Latham, David W.; Chaplin, William J.; Handberg, Rasmus; Huber, Daniel; Kipping, David M.; Payne, Matthew J.; Jiang, Chen; Silva Aguirre, Victor; Stello, Dennis; Sliski, David H.; Ciardi, David R.; Buchhave, Lars A.; Bedding, Timothy R.; Davies, Guy R.; Hekker, Saskia; Kjeldsen, Hans; Kuszlewicz, James S.; Everett, Mark E.; Howell, Steve B.; Basu, Sarbani; Campante, Tiago L.; Christensen-Dalsgaard, Jørgen; Elsworth, Yvonne P.; Karoff, Christoffer; Kawaler, Steven D.; Lund, Mikkel N.; Lundkvist, Mia; Esquerdo, Gilbert A.; Calkins, Michael L.; Berlind, Perry

    2015-04-01

    We report the discovery of Kepler-432b, a giant planet ({{M}b}=5.41-0.18+0.32 {{M}Jup}, {{R}b}=1.145-0.039+0.036 {{R}Jup}) transiting an evolved star ({{M}\\star }=1.32-0.07+0.10 {{M}⊙ },{{R}\\star }=4.06-0.08+0.12 {{R}⊙ }) with an orbital period of {{P}b}=52.501129-0.000053+0.000067 days. Radial velocities (RVs) reveal that Kepler-432b orbits its parent star with an eccentricity of e=0.5134-0.0089+0.0098, which we also measure independently with asterodensity profiling (AP; e=0.507-0.114+0.039), thereby confirming the validity of AP on this particular evolved star. The well-determined planetary properties and unusually large mass also make this planet an important benchmark for theoretical models of super-Jupiter formation. Long-term RV monitoring detected the presence of a non-transiting outer planet (Kepler-432c; {{M}c}sin {{i}c}=2.43-0.24+0.22 {{M}Jup}, {{P}c}=406.2-2.5+3.9 days), and adaptive optics imaging revealed a nearby (0\\buildrel{\\prime\\prime}\\over{.} 87), faint companion (Kepler-432B) that is a physically bound M dwarf. The host star exhibits high signal-to-noise ratio asteroseismic oscillations, which enable precise measurements of the stellar mass, radius, and age. Analysis of the rotational splitting of the oscillation modes additionally reveals the stellar spin axis to be nearly edge-on, which suggests that the stellar spin is likely well aligned with the orbit of the transiting planet. Despite its long period, the obliquity of the 52.5 day orbit may have been shaped by star-planet interaction in a manner similar to hot Jupiter systems, and we present observational and theoretical evidence to support this scenario. Finally, as a short-period outlier among giant planets orbiting giant stars, study of Kepler-432b may help explain the distribution of massive planets orbiting giant stars interior to 1 AU.

  3. THE OCCURRENCE RATE OF SMALL PLANETS AROUND SMALL STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dressing, Courtney D.; Charbonneau, David, E-mail: cdressing@cfa.harvard.edu

    We use the optical and near-infrared photometry from the Kepler Input Catalog to provide improved estimates of the stellar characteristics of the smallest stars in the Kepler target list. We find 3897 dwarfs with temperatures below 4000 K, including 64 planet candidate host stars orbited by 95 transiting planet candidates. We refit the transit events in the Kepler light curves for these planet candidates and combine the revised planet/star radius ratios with our improved stellar radii to revise the radii of the planet candidates orbiting the cool target stars. We then compare the number of observed planet candidates to themore » number of stars around which such planets could have been detected in order to estimate the planet occurrence rate around cool stars. We find that the occurrence rate of 0.5-4 R{sub Circled-Plus} planets with orbital periods shorter than 50 days is 0.90{sup +0.04}{sub -0.03} planets per star. The occurrence rate of Earth-size (0.5-1.4 R{sub Circled-Plus }) planets is constant across the temperature range of our sample at 0.51{sub -0.05}{sup +0.06} Earth-size planets per star, but the occurrence of 1.4-4 R{sub Circled-Plus} planets decreases significantly at cooler temperatures. Our sample includes two Earth-size planet candidates in the habitable zone, allowing us to estimate that the mean number of Earth-size planets in the habitable zone is 0.15{sup +0.13}{sub -0.06} planets per cool star. Our 95% confidence lower limit on the occurrence rate of Earth-size planets in the habitable zones of cool stars is 0.04 planets per star. With 95% confidence, the nearest transiting Earth-size planet in the habitable zone of a cool star is within 21 pc. Moreover, the nearest non-transiting planet in the habitable zone is within 5 pc with 95% confidence.« less

  4. Average Albedos of Close-in Super-Earths and Super-Neptunes from Statistical Analysis of Long-cadence Kepler Secondary Eclipse Data

    NASA Astrophysics Data System (ADS)

    Sheets, Holly A.; Deming, Drake

    2017-10-01

    We present the results of our work to determine the average albedo for small, close-in planets in the Kepler candidate catalog. We have adapted our method of averaging short-cadence light curves of multiple Kepler planet candidates to long-cadence data, in order to detect an average albedo for the group of candidates. Long-cadence data exist for many more candidates than the short-cadence data, and so we separate the candidates into smaller radius bins than in our previous work: 1-2 {R}\\oplus , 2-4 {R}\\oplus , and 4-6 {R}\\oplus . We find that, on average, all three groups appear darker than suggested by the short-cadence results, but not as dark as many hot Jupiters. The average geometric albedos for the three groups are 0.11 ± 0.06, 0.05 ± 0.04, and 0.23 ± 0.11, respectively, for the case where heat is uniformly distributed about the planet. If heat redistribution is inefficient, the albedos are even lower, since there will be a greater thermal contribution to the total light from the planet. We confirm that newly identified false-positive Kepler Object of Interest (KOI) 1662.01 is indeed an eclipsing binary at twice the period listed in the planet candidate catalog. We also newly identify planet candidate KOI 4351.01 as an eclipsing binary, and we report a secondary eclipse measurement for Kepler-4b (KOI 7.01) of ˜7.50 ppm at a phase of ˜0.7, indicating that the planet is on an eccentric orbit.

  5. Had the Planet Mars Not Existed: Kepler's Equant Model and Its Physical Consequences

    ERIC Educational Resources Information Center

    Bracco, C.; Provost, J.P.

    2009-01-01

    We examine the equant model for the motion of planets, which was the starting point of Kepler's investigations before he modified it because of Mars observations. We show that, up to first order in eccentricity, this model implies for each orbit a velocity, which satisfies Kepler's second law and Hamilton's hodograph, and a centripetal…

  6. Asymmetric orbital distribution near mean motion resonance: Application to planets observed by Kepler and radial velocities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Ji-Wei, E-mail: jwxie@nju.edu.cn, E-mail: jwxie@astro.utoronto.ca

    2014-05-10

    Many multiple-planet systems have been found by the Kepler transit survey and various radial velocity (RV) surveys. Kepler planets show an asymmetric feature, namely, there are small but significant deficits/excesses of planet pairs with orbital period spacing slightly narrow/wide of the exact resonance, particularly near the first order mean motion resonance (MMR), such as 2:1 and 3:2 MMR. Similarly, if not exactly the same, an asymmetric feature (pileup wide of 2:1 MMR) is also seen in RV planets, but only for massive ones. We analytically and numerically study planets' orbital evolutions near and in the MMR. We find that theirmore » orbital period ratios could be asymmetrically distributed around the MMR center regardless of dissipation. In the case of no dissipation, Kepler planets' asymmetric orbital distribution could be partly reproduced for 3:2 MMR but not for 2:1 MMR, implying that dissipation might be more important to the latter. The pileup of massive RV planets just wide of 2:1 MMR is found to be consistent with the scenario that planets formed separately then migrated toward the MMR. The location of the pileup infers a K value of 1-100 on the order of magnitude for massive planets, where K is the damping rate ratio between orbital eccentricity and semimajor axis during planet migration.« less

  7. Two Earth-sized planets orbiting Kepler-20.

    PubMed

    Fressin, Francois; Torres, Guillermo; Rowe, Jason F; Charbonneau, David; Rogers, Leslie A; Ballard, Sarah; Batalha, Natalie M; Borucki, William J; Bryson, Stephen T; Buchhave, Lars A; Ciardi, David R; Désert, Jean-Michel; Dressing, Courtney D; Fabrycky, Daniel C; Ford, Eric B; Gautier, Thomas N; Henze, Christopher E; Holman, Matthew J; Howard, Andrew; Howell, Steve B; Jenkins, Jon M; Koch, David G; Latham, David W; Lissauer, Jack J; Marcy, Geoffrey W; Quinn, Samuel N; Ragozzine, Darin; Sasselov, Dimitar D; Seager, Sara; Barclay, Thomas; Mullally, Fergal; Seader, Shawn E; Still, Martin; Twicken, Joseph D; Thompson, Susan E; Uddin, Kamal

    2011-12-20

    Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically passes in front of (transits) its parent star, causing a decrease in starlight proportional to its radius. The smallest exoplanet hitherto discovered has a radius 1.42 times that of the Earth's radius (R(⊕)), and hence has 2.9 times its volume. Here we report the discovery of two planets, one Earth-sized (1.03R(⊕)) and the other smaller than the Earth (0.87R(⊕)), orbiting the star Kepler-20, which is already known to host three other, larger, transiting planets. The gravitational pull of the new planets on the parent star is too small to measure with current instrumentation. We apply a statistical method to show that the likelihood of the planetary interpretation of the transit signals is more than three orders of magnitude larger than that of the alternative hypothesis that the signals result from an eclipsing binary star. Theoretical considerations imply that these planets are rocky, with a composition of iron and silicate. The outer planet could have developed a thick water vapour atmosphere.

  8. A Search for Refraction in the Kepler Gas Giant Data Set

    NASA Astrophysics Data System (ADS)

    Sheets, Holly; Jacob, Laurent; Cowan, Nicolas; Deming, Drake

    2018-01-01

    I will present the results of the first systematic search for refraction in the atmospheres of giant planets in the Kepler data set. We used the approximations of Sidis and Sari (ApJ, 2010, 720, 904S) to select the best candidates from the Kepler planet catalog for the search. We set limits on the strength of the effect, and I will relate these limits to other, more recent modeling methods.

  9. Orbital alignment of circumbinary planets that form in misaligned circumbinary discs: the case of Kepler-413b

    NASA Astrophysics Data System (ADS)

    Pierens, A.; Nelson, R. P.

    2018-06-01

    Although most of the circumbinary planets detected by the Kepler spacecraft are on orbits that are closely aligned with the binary orbital plane, the systems Kepler-413 and Kepler-453 exhibit small misalignments of ˜2.5°. One possibility is that these planets formed in a circumbinary disc whose midplane was inclined relative to the binary orbital plane. Such a configuration is expected to lead to a warped and twisted disc, and our aim is to examine the inclination evolution of planets embedded in these discs. We employed 3D hydrodynamical simulations that examine the disc response to the presence of a modestly inclined binary with parameters that match the Kepler-413 system, as a function of disc parameters and binary inclinations. The discs all develop slowly varying warps, and generally display very small amounts of twist. Very slow solid body precession occurs because a large outer disc radius is adopted. Simulations of planets embedded in these discs resulted in the planet aligning with the binary orbit plane for disc masses close to the minimum mass solar nebular, such that nodal precession of the planet was controlled by the binary. For higher disc masses, the planet maintains near coplanarity with the local disc midplane. Our results suggest that circumbinary planets born in tilted circumbinary discs should align with the binary orbit plane as the disc ages and loses mass, even if the circumbinary disc remains misaligned from the binary orbit. This result has important implications for understanding the origins of the known circumbinary planets.

  10. Kepler-539: A young extrasolar system with two giant planets on wide orbits and in gravitational interaction

    NASA Astrophysics Data System (ADS)

    Mancini, L.; Lillo-Box, J.; Southworth, J.; Borsato, L.; Gandolfi, D.; Ciceri, S.; Barrado, D.; Brahm, R.; Henning, Th.

    2016-05-01

    We confirm the planetary nature of Kepler-539 b (aka Kepler object of interest K00372.01), a giant transiting exoplanet orbiting a solar-analogue G2 V star. The mass of Kepler-539 b was accurately derived thanks to a series of precise radial velocity measurements obtained with the CAFE spectrograph mounted on the CAHA 2.2-m telescope. A simultaneous fit of the radial-velocity data and Kepler photometry revealed that Kepler-539 b is a dense Jupiter-like planet with a mass of Mp = 0.97 ± 0.29 MJup and a radius of Rp = 0.747 ± 0.018 RJup, making a complete circular revolution around its parent star in 125.6 days. The semi-major axis of the orbit is roughly 0.5 au, implying that the planet is at ≈0.45 au from the habitable zone. By analysing the mid-transit times of the 12 transit events of Kepler-539 b recorded by the Kepler spacecraft, we found a clear modulated transit time variation (TTV), which is attributable to the presence of a planet c in a wider orbit. The few timings available do not allow us to precisely estimate the properties of Kepler-539 c and our analysis suggests that it has a mass between 1.2 and 3.6 MJup, revolving on a very eccentric orbit (0.4 planet c is the probable cause of the TTV modulation of planet b. The analysis of the CAFE spectra revealed a relatively high photospheric lithium content, A(Li) = 2.48 ± 0.12 dex, which, together with both a gyrochronological and isochronal analysis, suggests that the parent star is relatively young. RV/BVS measurements are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A112

  11. The Mass of Kepler-93b and The Composition of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Dressing, Courtney D.; Charbonneau, David; Dumusque, Xavier; Gettel, Sara; Pepe, Francesco; Collier Cameron, Andrew; Latham, David W.; Molinari, Emilio; Udry, Stéphane; Affer, Laura; Bonomo, Aldo S.; Buchhave, Lars A.; Cosentino, Rosario; Figueira, Pedro; Fiorenzano, Aldo F. M.; Harutyunyan, Avet; Haywood, Raphaëlle D.; Johnson, John Asher; Lopez-Morales, Mercedes; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Motalebi, Fatemeh; Nascimbeni, Valerio; Phillips, David F.; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Szentgyorgyi, Andrew; Watson, Chris

    2015-02-01

    Kepler-93b is a 1.478 ± 0.019 R ⊕ planet with a 4.7 day period around a bright (V = 10.2), astroseismically characterized host star with a mass of 0.911 ± 0.033 M ⊙ and a radius of 0.919 ± 0.011 R ⊙. Based on 86 radial velocity observations obtained with the HARPS-N spectrograph on the Telescopio Nazionale Galileo and 32 archival Keck/HIRES observations, we present a precise mass estimate of 4.02 ± 0.68 M ⊕. The corresponding high density of 6.88 ± 1.18 g cm-3 is consistent with a rocky composition of primarily iron and magnesium silicate. We compare Kepler-93b to other dense planets with well-constrained parameters and find that between 1 and 6 M ⊕, all dense planets including the Earth and Venus are well-described by the same fixed ratio of iron to magnesium silicate. There are as of yet no examples of such planets with masses >6 M ⊕. All known planets in this mass regime have lower densities requiring significant fractions of volatiles or H/He gas. We also constrain the mass and period of the outer companion in the Kepler-93 system from the long-term radial velocity trend and archival adaptive optics images. As the sample of dense planets with well-constrained masses and radii continues to grow, we will be able to test whether the fixed compositional model found for the seven dense planets considered in this paper extends to the full population of 1-6 M ⊕ planets. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.

  12. Kepler-423b: a half-Jupiter mass planet transiting a very old solar-like star

    NASA Astrophysics Data System (ADS)

    Gandolfi, D.; Parviainen, H.; Deeg, H. J.; Lanza, A. F.; Fridlund, M.; Prada Moroni, P. G.; Alonso, R.; Augusteijn, T.; Cabrera, J.; Evans, T.; Geier, S.; Hatzes, A. P.; Holczer, T.; Hoyer, S.; Kangas, T.; Mazeh, T.; Pagano, I.; Tal-Or, L.; Tingley, B.

    2015-04-01

    We report the spectroscopic confirmation of the Kepler object of interest KOI-183.01 (Kepler-423b), a half-Jupiter mass planet transiting an old solar-like star every 2.7 days. Our analysis is the first to combine the full Kepler photometry (quarters 1-17) with high-precision radial velocity measurements taken with the FIES spectrograph at the Nordic Optical Telescope. We simultaneously modelled the photometric and spectroscopic data-sets using Bayesian approach coupled with Markov chain Monte Carlo sampling. We found that the Kepler pre-search data conditioned light curve of Kepler-423 exhibits quarter-to-quarter systematic variations of the transit depth, with a peak-to-peak amplitude of ~4.3% and seasonal trends reoccurring every four quarters. We attributed these systematics to an incorrect assessment of the quarterly variation of the crowding metric. The host star Kepler-423 is a G4 dwarf with M⋆ = 0.85 ± 0.04 M⊙, R⋆ = 0.95 ± 0.04 R⊙, Teff= 5560 ± 80 K, [M/H] = - 0.10 ± 0.05 dex, and with an age of 11 ± 2 Gyr. The planet Kepler-423b has a mass of Mp= 0.595 ± 0.081MJup and a radius of Rp= 1.192 ± 0.052RJup, yielding a planetary bulk density of ρp = 0.459 ± 0.083 g cm-3. The radius of Kepler-423b is consistent with both theoretical models for irradiated coreless giant planets and expectations based on empirical laws. The inclination of the stellar spin axis suggests that the system is aligned along the line of sight. We detected a tentative secondary eclipse of the planet at a 2σ confidence level (ΔFec = 14.2 ± 6.6 ppm) and found that the orbit might have asmall non-zero eccentricity of 0.019+0.028-0.014. With a Bond albedo of AB = 0.037 ± 0.019, Kepler-423b is one of the gas-giant planets with the lowest albedo known so far. Based on observations obtained with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of

  13. Hubble Observations of the Exomoon Candidate Kepler-1625b I

    NASA Astrophysics Data System (ADS)

    Teachey, Alexander; Kipping, David; Torres, Guillermo; Bakos, Gaspar A.; Nesvorný, David; Buchhave, Lars; Huang, Chelsea Xu; Hartman, Joel D.

    2018-01-01

    The exomoon candidate Kepler-1625b I was identified by the Hunt for Exomoons with Kepler (HEK) collaboration in August 2016 following an extensive program to characterize the occurrence rate of exomoons. Follow-up observations of the candidate for the purpose of validating the existence of the moon and constraining its properties were carried out on the Hubble Space Telescope on October 28th-29th 2017, using slitless spectroscopy on Wide Field Camera 3. We report preliminary results of that observation.

  14. Kepler-186f, the First Earth-size Planet in the Habitable Zone Artist Concept

    NASA Image and Video Library

    2014-04-17

    This artist concept depicts Kepler-186f, the first validated Earth-size planet to orbit a distant star in the habitable zone, a range of distance from a star where liquid water might pool on the planet surface.

  15. Kepler-91b: a planet at the end of its life. Planet and giant host star properties via light-curve variations

    NASA Astrophysics Data System (ADS)

    Lillo-Box, J.; Barrado, D.; Moya, A.; Montesinos, B.; Montalbán, J.; Bayo, A.; Barbieri, M.; Régulo, C.; Mancini, L.; Bouy, H.; Henning, T.

    2014-02-01

    Context. The evolution of planetary systems is intimately linked to the evolution of their host stars. Our understanding of the whole planetary evolution process is based on the wide planet diversity observed so far. Only a few tens of planets have been discovered orbiting stars ascending the red giant branch. Although several theories have been proposed, the question of how planets die remains open owing to the small number statistics, making it clear that the sample of planets around post-main sequence stars needs to be enlarged. Aims: In this work we study the giant star Kepler-91 (KOI-2133) in order to determine the nature of a transiting companion. This system was detected by the Kepler Space Telescope, which identified small dims in its light curve with a period of 6.246580 ± 0.000082 days. However, its planetary confirmation is needed due to the large pixel size of the Kepler camera, which can hide other stellar configurations able to mimic planet-like transit events. Methods: We analysed Kepler photometry to 1) re-calculate transit parameters; 2) study the light-curve modulations; and 3) to perform an asteroseismic analysis (accurate stellar parameter determination) by identifying solar-like oscillations on the periodogram. We also used a high-resolution and high signal-to-noise ratio spectrum obtained with the Calar Alto Fiber-fed Échelle spectrograph (CAFE) to measure stellar properties. Additionally, false-positive scenarios were rejected by obtaining high-resolution images with the AstraLux lucky imaging camera on the 2.2 m telescope at the Calar Alto Observatory. Results: We confirm the planetary nature of the object transiting the star Kepler-91 by deriving a mass of Mp=0.88+0.17-0.33 MJup and a planetary radius of Rp=1.384+0.011-0.054 RJup. Asteroseismic analysis produces a stellar radius of R⋆ = 6.30 ± 0.16 R⊙ and a mass of M⋆ = 1.31 ± 0.10 M⊙. We find that its eccentric orbit (e=0.066+0.013-0.017) is just 1.32+0.07-0.22 R⋆ away from

  16. NASA's Kepler Reveals Potential New Worlds - Raw Video New File

    NASA Image and Video Library

    2017-06-19

    This is a video file, or a collection of unedited video clips for media usage, in support of the Kepler mission's latest discovery announcement. Launched in 2009, the Kepler space telescope is our first mission capable of identifying Earth-size planets around other stars. On Monday, June 19, 2017, scientists announced the results from the latest Kepler candidate catalog of the mission at a press conference at NASA's Ames Research Center.

  17. The dynamics of the multi-planet system orbiting Kepler-56

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Gongjie; Naoz, Smadar; Johnson, John Asher

    2014-10-20

    Kepler-56 is a multi-planet system containing two coplanar inner planets that are in orbits misaligned with respect to the spin axis of the host star, and an outer planet. Various mechanisms have been proposed to explain the broad distribution of spin-orbit angles among exoplanets, and these theories fall under two broad categories. The first is based on dynamical interactions in a multi-body system, while the other assumes that disk migration is the driving mechanism in planetary configuration and that the star (or disk) is titled with respect to the planetary plane. Here we show that the large observed obliquity ofmore » Kepler 56 system is consistent with a dynamical origin. In addition, we use observations by Huber et al. to derive the obliquity's probability distribution function, thus improving the constrained lower limit. The outer planet may be the cause of the inner planets' large obliquities, and we give the probability distribution function of its inclination, which depends on the initial orbital configuration of the planetary system. We show that even in the presence of precise measurement of the true obliquity, one cannot distinguish the initial configurations. Finally we consider the fate of the system as the star continues to evolve beyond the main sequence, and we find that the obliquity of the system will not undergo major variations as the star climbs the red giant branch. We follow the evolution of the system and find that the innermost planet will be engulfed in ∼129 Myr. Furthermore we put an upper limit of ∼155 Myr for the engulfment of the second planet. This corresponds to ∼3% of the current age of the star.« less

  18. Stability Limits of Circumbinary Planets: Is There a Pile-up in the Kepler CBPs?

    NASA Astrophysics Data System (ADS)

    Quarles, B.; Satyal, S.; Kostov, V.; Kaib, N.; Haghighipour, N.

    2018-04-01

    The stability limit for circumbinary planets (CBPs) is not well defined and can depend on initial parameters defining either the planetary orbit and/or the inner binary orbit. We expand on the work of Holman & Wiegert (1999) to develop numerical tools for quick, easy, and accurate determination of the stability limit. The results of our simulations, as well as our numerical tools, are available to the community through Zenodo and GitHub, respectively. We employ a grid interpolation method based on ∼150 million full N-body simulations of initially circular, coplanar systems and compare to the nine known Kepler CBP systems. Using a formalism from planet packing studies, we find that 55% of the Kepler CBP systems allow for an additional equal-mass planet to potentially exist on an interior orbit relative to the observed planet. Therefore, we do not find strong evidence for a pile-up in the Kepler CBP systems and more detections are needed to adequately characterize the formation mechanisms for the CBP population. Observations from the Transiting Exoplanet Survey Satellite are expected to substantially increase the number of detections using the unique geometry of CBP systems, where multiple transits can occur during a single conjunction.

  19. Kepler-454b: Rocky or Not?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-02-01

    Small exoplanets tend to fall into two categories: the smallest ones are predominantly rocky, like Earth, and the larger ones have a lower-density, more gaseous composition, similar to Neptune. The planet Kepler-454b was initially estimated to fall between these two groups in radius. So what is its composition?Small-Planet DichotomyThough Kepler has detected thousands of planet candidates with radii between 1 and 2.7 Earth radii, we have only obtained precise mass measurements for 12 of these planets.Mass-radius diagram (click for a closer look!) for planets with radius 2.7 Earth radii and well-measured masses. The six smallest planets (and Venus and Earth) fall along a single mass-radius curve of Earth-like composition. The six larger planets (including Kepler-454b) have lower-density compositions. [Gettel et al. 2016]These measurements, however, show an interesting dichotomy: planets with radii less than 1.6 Earth radii have rocky, Earth-like compositions, following a single relation between their mass and radius. Planets between 2 and 2.7 Earth radii, however, have lower densities and dont follow a single mass-radius relation. Their low densities suggest they contain a significant fraction of volatiles, likely in the form of a thick gas envelope of water, hydrogen, and/or helium.The planet Kepler-454b, discovered transiting a Sun-like star, was initially estimated to have a radius of 1.86 Earth radii placing it in between these two categories. A team of astronomers led by Sara Gettel (Harvard-Smithsonian Center for Astrophysics) have since followed up on the initial Kepler detection, hoping to determine the planets composition.Low-Density OutcomeGettel and collaborators obtained 63 observations of the host stars radial velocity with the HARPS-N spectrograph on the Telescopio Nazionale Galileo, and another 36 observations with the HIRES spectrograph at Keck Observatory. These observations allowed them to do several things:Obtain a more accurate radius estimate

  20. VizieR Online Data Catalog: Final Kepler transiting planet search (DR25) (Twicken+, 2016)

    NASA Astrophysics Data System (ADS)

    Twicken, J. D.; Jenkins, J. M.; Seader, S. E.; Tenenbaum, P.; Smith, J. C.; Brownston, L. S.; Burke, C. J.; Catanzarite, J. H.; Clarke, B. D.; Cote, M. T.; Girouard, F. R.; Klaus, T. C.; Li, J.; McCauliff, S. D.; Morris, R. L.; Wohler, B.; Campbell, J. R.; Uddin, A. K.; Zamudio, K. A.; Sabale, A.; Bryson, S. T.; Caldwell, D. A.; Christiansen, J. L.; Coughlin, J. L.; Haas, M. R.; Henze, C. E.; Sanderfer, D. T.; Thompson, S. E.

    2017-01-01

    The Kepler spacecraft is in an Earth-trailing heliocentric orbit and maintained a boresight pointing centered on α=19h22m40s, δ=+44.5° during the primary mission. The Kepler photometer acquired data on a 115-square-degree region of the sky. The data were acquired on 29.4-minute intervals, colloquially known as "long cadences". Long-cadence pixel values were obtained by accumulating 270 consecutive 6.02s exposures. Science acquisition of Q1 data began at 2009-05-13 00:01:07Z, and acquisition of Q17 data concluded at 2013-05-11 12:16:22Z. This time period contains 71427 long-cadence intervals. A total of 198709 targets observed by Kepler were searched for evidence of transiting planets in the final Q1-Q17 pipeline run (see Table1). The results of past Kepler Mission transiting planet searches have been presented in Tenenbaum et al. 2012 (Cat. J/ApJS/199/24) for Quarter 1 through Quarter 3 (i.e., Q1-Q3), Tenenbaum et al. 2013ApJS..206....5T for Q1-Q12, Tenenbaum et al. 2014ApJS..211....6T for Q1-Q16, and Seader et al. 2015 (Cat. J/ApJS/217/18) for Q1-Q17. We now present results of the final Kepler transiting planet search encompassing the complete 17-quarter primary mission. The data release for the final Q1-Q17 pipeline processing is referred to as Data Release 25 (DR25). (3 data files).

  1. Systems engingeering for the Kepler Mission : a search for terrestrial planets

    NASA Technical Reports Server (NTRS)

    Duren, Riley M.; Dragon, Karen; Gunter, Steve Z.; Gautier, Nick; Koch, Dave; Harvey, Adam; Enos, Alan; Borucki, Bill; Sobeck, Charlie; Mayer, Dave; hide

    2004-01-01

    The Kepler mission will launch in 2007 and determine the distribution of earth-size planets (0.5 to 10 earth masses) in the habitable zones (HZs) of solar-like stars. The mission will monitor > 100,000 dwarf stars simultaneously for at least 4 years. Precision differential photometry will be used to detect the periodic signals of transiting planets. Kepler will also support asteroseismology by measuring the pressure-mode (p-mode) oscillations of selected stars. Key mission elements include a spacecraft bus and 0.95 meter, wide-field, CCD-based photometer injected into an earth-trailing heliocentric orbit by a 3-stage Delta II launch vehicle as well as a distributed Ground Segment and Follow-up Observing Program. The project is currently preparing for Preliminary Design Review (October 2004) and is proceeding with detailed design and procurement of long-lead components. In order to meet the unprecedented photometric precision requirement and to ensure a statistically significant result, the Kepler mission involves technical challenges in the areas of photometric noise and systematic error reduction, stability, and false-positive rejection. Programmatic and logistical challenges include the collaborative design, modeling, integration, test, and operation of a geographically and functionally distributed project. A very rigorous systems engineering program has evolved to address these challenges. This paper provides an overview of the Kepler systems engineering program, including some examples of our processes and techniques in areas such as requirements synthesis, validation & verification, system robustness design, and end-to-end performance modeling.

  2. A REVISED ESTIMATE OF THE OCCURRENCE RATE OF TERRESTRIAL PLANETS IN THE HABITABLE ZONES AROUND KEPLER M-DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopparapu, Ravi Kumar

    Because of their large numbers, low-mass stars may be the most abundant planet hosts in our Galaxy. Furthermore, terrestrial planets in the habitable zones (HZs) around M-dwarfs can potentially be characterized in the near future and hence may be the first such planets to be studied. Recently, Dressing and Charbonneau used Kepler data and calculated the frequency of terrestrial planets in the HZ of cool stars to be 0.15{sup +0.13}{sub -0.06} per star for Earth-size planets (0.5-1.4 R{sub Circled-Plus }). However, this estimate was derived using the Kasting et al. HZ limits, which were not valid for stars with effectivemore » temperatures lower than 3700 K. Here we update their result using new HZ limits from Kopparapu et al. for stars with effective temperatures between 2600 K and 7200 K, which includes the cool M stars in the Kepler target list. The new HZ boundaries increase the number of planet candidates in the HZ. Assuming Earth-size planets as 0.5-1.4 R{sub Circled-Plus }, when we reanalyze their results, we obtain a terrestrial planet frequency of 0.48{sup +0.12}{sub -0.24} and 0.53{sup +0.08}{sub -0.17} planets per M-dwarf star for conservative and optimistic limits of the HZ boundaries, respectively. Assuming Earth-size planets as 0.5-2 R{sub Circled-Plus }, the frequency increases to 0.51{sup +0.10}{sub -0.20} per star for the conservative estimate and to 0.61{sup +0.07}{sub -0.15} per star for the optimistic estimate. Within uncertainties, our optimistic estimates are in agreement with a similar optimistic estimate from the radial velocity survey of M-dwarfs (0.41{sup +0.54}{sub -0.13}). So, the potential for finding Earth-like planets around M stars may be higher than previously reported.« less

  3. Planet hunters. VII. Discovery of a new low-mass, low-density planet (PH3 C) orbiting Kepler-289 with mass measurements of two additional planets (PH3 B and D)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, Joseph R.; Fischer, Debra A.; Wang, Ji

    2014-11-10

    We report the discovery of one newly confirmed planet (P = 66.06 days, R {sub P} = 2.68 ± 0.17 R {sub ⊕}) and mass determinations of two previously validated Kepler planets, Kepler-289 b (P = 34.55 days, R {sub P} = 2.15 ± 0.10 R {sub ⊕}) and Kepler-289-c (P = 125.85 days, R {sub P} = 11.59 ± 0.10 R {sub ⊕}), through their transit timing variations (TTVs). We also exclude the possibility that these three planets reside in a 1:2:4 Laplace resonance. The outer planet has very deep (∼1.3%), high signal-to-noise transits, which puts extremely tight constraintsmore » on its host star's stellar properties via Kepler's Third Law. The star PH3 is a young (∼1 Gyr as determined by isochrones and gyrochronology), Sun-like star with M {sub *} = 1.08 ± 0.02 M {sub ☉}, R {sub *} = 1.00 ± 0.02 R {sub ☉}, and T {sub eff} = 5990 ± 38 K. The middle planet's large TTV amplitude (∼5 hr) resulted either in non-detections or inaccurate detections in previous searches. A strong chopping signal, a shorter period sinusoid in the TTVs, allows us to break the mass-eccentricity degeneracy and uniquely determine the masses of the inner, middle, and outer planets to be M = 7.3 ± 6.8 M {sub ⊕}, 4.0 ± 0.9M {sub ⊕}, and M = 132 ± 17 M {sub ⊕}, which we designate PH3 b, c, and d, respectively. Furthermore, the middle planet, PH3 c, has a relatively low density, ρ = 1.2 ± 0.3 g cm{sup –3} for a planet of its mass, requiring a substantial H/He atmosphere of 2.1{sub −0.3}{sup +0.8}% by mass, and joins a growing population of low-mass, low-density planets.« less

  4. Planet Hunters 2 in the K2 Era

    NASA Astrophysics Data System (ADS)

    Schwamb, Megan E.; Fischer, Debra; Boyajian, Tabetha S.; Giguere, Matthew J.; Ishikawa, Sascha; Lintott, Chris; Lynn, Stuart; Schmitt, Joseph; Snyder, Chris; Wang, Ji; Barclay, Thomas

    2015-01-01

    Planet Hunters (http://www.planethunters.org) is an online citizen science project enlisting hundreds of thousands of people to search for planet transits in the publicly released Kepler data. Volunteers mark the locations of visible transits in a web interface, with multiple independent classifiers reviewing a randomly selected ~30-day light curve segment. In September 2014, Planet Hunters entered a new phase. The project was relaunched with a brand new online classification interface and discussion tool built using the Zooniverse's (http://www.zooniverse.org) latest technology and web platform. The website has been optimized for the rapid discovery and identification of planet candidates in the light curves from K2, the two-wheeled ecliptic plane Kepler mission. We will give an overview of the new Planet Hunters classification interface and Round 2 review system in context of the K2 data. We will present the first results from the Planet Hunters 2 search of K2 Campaigns 0 and 1 including a summary of new planet candidates.

  5. Kepler Diamond Mine of Stars

    NASA Image and Video Library

    2009-04-16

    This image from NASA Kepler mission shows the telescope full field of view an expansive star-rich patch of sky in the constellations Cygnus and Lyra stretching across 100 square degrees, or the equivalent of two side-by-side dips of the Big Dipper. A cluster of stars, called NGC 6791, and a star with a known planet, called TrES-2, are outlined. The cluster is eight billion years old, and located 13,000 light-years from Earth. It is called an open cluster because its stars are loosely bound and have started to spread out. TrES-2 is a hot Jupiter-like planet known to cross in front of, or transit, its star every 2.5 days. Kepler will hunt for transiting planets that are as small as Earth. Kepler was designed to hunt for planets like Earth. Of the approximately 4.5 million stars in the region pictured here, more than 100,000 were selected as candidates for Kepler's search. The mission will spend the next three-and-a-half years staring at these target stars, looking for periodic dips in brightness. Such dips occur when planets cross in front of their stars from our point of view in the galaxy, partially blocking the starlight. The area in the lower right of the image is brighter because it is closer to the plane of our galaxy and is jam-packed with stars. The area in upper left is farther from the galactic plane and contains fewer stars. The image has been color-coded so that brighter stars appear white, and fainter stars, red. It is a 60-second exposure, taken on April 8, 2009, one day after the spacecraft's dust cover was jettisoned. To achieve the level of precision needed to spot planets as small as Earth, Kepler's images are intentionally blurred slightly. This minimizes the number of saturated stars. Saturation, or "blooming," occurs when the brightest stars overload the individual pixels in the detectors, causing the signal to spill out into nearby pixels. These spills can be seen in the image as fine white lines extending above and below some of the brightest

  6. The Prevalence of Earth-size Planets Orbiting Sun-like Stars

    NASA Astrophysics Data System (ADS)

    Petigura, Erik; Marcy, Geoffrey W.; Howard, Andrew

    2015-01-01

    In less than two decades since the discovery of the first planet orbiting another Sun-like star, the study of extrasolar planets has matured beyond individual discoveries to detailed characterization of the planet population as a whole. No mission has played more of a role in this paradigm shift than NASA's Kepler mission. Kepler photometry has shown that planets like Earth are common throughout the Milky Way Galaxy. Our group performed an independent search of Kepler photometry using our custom transit-finding pipeline, TERRA, and produced our own catalog of planet candidates. We conducted spectroscopic follow-up of their host stars in order to rule out false positive scenarios and to better constrain host star properties. We measured TERRA's sensitivity to planets of different sizes and orbital periods by injecting synthetic planets into raw Kepler photometry and measuring the recovery rate. Correcting for orbital tilt and survey completeness, we found that ~80% of GK stars harbor one or more planets within 1 AU and that ~22% of Sun-like stars harbor an Earth-size planet that receives similar levels of stellar radiation as Earth. I will present the latest results from our efforts to characterize the demographics of small planets revealed by Kepler.

  7. Kepler Planet-Detection Mission: Introduction and First Results

    DTIC Science & Technology

    2010-02-19

    those predicted for gas giant planets. Since the first discoveries of planetarycompanions around pulsars (1, 2) andnormal stars (3), more than 400...0.5 0 0.5 1 1.5 Orbital distance, AU lo g( P la ne t m as s (M J) ) 5b 6b,8b 7b 4b Fig. 2. Comparison of stars associated with the Kepler exoplanets...4 Kepler−6 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 −1.5 −1 −0.5 0 0.5 1 1.5 log(Planet mass (MJ)) lo g( P la ne t d en si ty ( cg s) ) E N U 4b S J 5b

  8. Kepler Planet Detection Metrics: Window and One-Sigma Depth Functions for Data Release 25

    NASA Technical Reports Server (NTRS)

    Burke, Christopher J.; Catanzarite, Joseph

    2017-01-01

    This document describes the window and one-sigma depth functions relevant to the Transiting Planet Search (TPS) algorithm in the Kepler pipeline (Jenkins 2002; Jenkins et al. 2017). The window function specifies the fraction of unique orbital ephemeris epochs over which three transits are observable as a function of orbital period. In this context, the epoch and orbital period, together, comprise the ephemeris of an orbiting companion, and ephemerides with the same period are considered equivalent if their epochs differ by an integer multiple of the period. The one-sigma depth function specifies the depth of a signal (in ppm) for a given light curve that results in a one-sigma detection of a transit signature as a function of orbital period when averaged over all unique orbital ephemerides. These planet detection metrics quantify the ability of TPS to detect a transiting planet signature on a star-by-star basis. They are uniquely applicable to a specific Kepler data release, since they are dependent on the details of the light curves searched and the functionality of the TPS algorithm used to perform the search. This document describes the window and one-sigma depth functions relevant to Kepler Data Release 25 (DR25), where the data were processed (Thompson et al. 2016) and searched (Twicken et al. 2016) with the SOC 9.3 pipeline. In Section 4, we describe significant differences from those reported in Kepler Data Release 24 (Burke Seader 2016) and document our verification method.

  9. Robo-AO Kepler Survey. IV. The Effect of Nearby Stars on 3857 Planetary Candidate Systems

    NASA Astrophysics Data System (ADS)

    Ziegler, Carl; Law, Nicholas M.; Baranec, Christoph; Riddle, Reed; Duev, Dmitry A.; Howard, Ward; Jensen-Clem, Rebecca; Kulkarni, S. R.; Morton, Tim; Salama, Maïssa

    2018-04-01

    We present the overall statistical results from the Robo-AO Kepler planetary candidate survey, comprising of 3857 high-angular resolution observations of planetary candidate systems with Robo-AO, an automated laser adaptive optics system. These observations reveal previously unknown nearby stars blended with the planetary candidate host stars that alter the derived planetary radii or may be the source of an astrophysical false positive transit signal. In the first three papers in the survey, we detected 440 nearby stars around 3313 planetary candidate host stars. In this paper, we present observations of 532 planetary candidate host stars, detecting 94 companions around 88 stars; 84 of these companions have not previously been observed in high resolution. We also report 50 more-widely separated companions near 715 targets previously observed by Robo-AO. We derive corrected planetary radius estimates for the 814 planetary candidates in systems with a detected nearby star. If planetary candidates are equally likely to orbit the primary or secondary star, the radius estimates for planetary candidates in systems with likely bound nearby stars increase by a factor of 1.54, on average. We find that 35 previously believed rocky planet candidates are likely not rocky due to the presence of nearby stars. From the combined data sets from the complete Robo-AO KOI survey, we find that 14.5 ± 0.5% of planetary candidate hosts have a nearby star with 4″, while 1.2% have two nearby stars, and 0.08% have three. We find that 16% of Earth-sized, 13% of Neptune-sized, 14% of Saturn-sized, and 19% of Jupiter-sized planet candidates have detected nearby stars.

  10. Identifying Young Kepler Planet Host Stars from Keck–HIRES Spectra of Lithium

    NASA Astrophysics Data System (ADS)

    Berger, Travis A.; Howard, Andrew W.; Boesgaard, Ann Merchant

    2018-03-01

    The lithium doublet at 6708 Å provides an age diagnostic for main sequence FGK dwarfs. We measured the abundance of lithium in 1305 stars with detected transiting planets from the Kepler mission using high-resolution spectroscopy. Our catalog of lithium measurements from this sample has a range of abundance from A(Li) = 3.11 ± 0.07 to an upper limit of ‑0.84 dex. For a magnitude-limited sample that comprises 960 of the 1305 stars, our Keck–HIRES spectra have a median signal-to-noise ratio of 45 per pixel at ∼6700 Å with spectral resolution \\tfrac{λ }{{{Δ }}λ } = R = 55,000. We identify 80 young stars that have A(Li) values greater than the Hyades at their respective effective temperatures; these stars are younger than ∼650 Myr, the approximate age of the Hyades. We then compare the distribution of A(Li) with planet size, multiplicity, orbital period, and insolation flux. We find larger planets preferentially in younger systems, with an A–D two-sided test p-value = 0.002, a > 3σ confidence that the older and younger planet samples do not come from the same parent distribution. This is consistent with planet inflation/photoevaporation at early ages. The other planet parameters (Kepler planet multiplicity, orbital period, and insolation flux) are uncorrelated with age. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time has been granted by the University of Hawaii, the University of California, and Caltech.

  11. The Kepler End-to-End Data Pipeline: From Photons to Far Away Worlds

    NASA Technical Reports Server (NTRS)

    Cooke, Brian; Thompson, Richard; Standley, Shaun

    2012-01-01

    Launched by NASA on 6 March 2009, the Kepler Mission has been observing more than 100,000 targets in a single patch of sky between the constellations Cygnus and Lyra almost continuously for the last two years looking for planetary systems using the transit method. As of October 2011, the Kepler spacecraft has collected and returned to Earth just over 290 GB of data, identifying 1235 planet candidates with 25 of these candidates confirmed as planets via ground observation. Extracting the telltale signature of a planetary system from stellar photometry where valid signal transients can be small as a 40 ppm is a difficult and exacting task. The end-to end processing of determining planetary candidates from noisy, raw photometric measurements is discussed.

  12. Kepler Planet Detection Metrics: Per-Target Flux-Level Transit Injection Tests of TPS for Data Release 25

    NASA Technical Reports Server (NTRS)

    Burke, Christopher J.; Catanzarite, Joseph

    2017-01-01

    the recovered signals can be further classified as planet candidates or false positives in the exact same manner as detections from the nominal (i.e., observed) pipeline run (Twicken et al., 2016, Thompson et al., in preparation). To date, the PLTI test has been the standard means of measuring pipeline completeness averaged over large samples of targets (Christiansen et al., 2015, 2016; Christiansen, 2017). However, since the PLTI test uses only one injection per target, it does not elucidate individual-target variations in pipeline completeness due to differences in stellar properties or astrophysical variability. Thus, we developed the FLTI test to provide a numerically efficient way to fully map individual targets and explore the performance of the pipeline in greater detail. The FLTI tests thereby allow a thorough validation of the pipeline completeness models (such as window function (Burke and Catanzarite, 2017a), detection efficiency (Burke Catanzarite, 2017b), etc.) across the spectrum of Kepler targets (i.e., various astrophysical phenomena and differences in instrumental noise). Tests during development of the FLTI capability revealed that there are significant target-to-target variations in the detection efficiency.

  13. The California-Kepler Survey. V. Peas in a Pod: Planets in a Kepler Multi-planet System Are Similar in Size and Regularly Spaced

    NASA Astrophysics Data System (ADS)

    Weiss, Lauren M.; Marcy, Geoffrey W.; Petigura, Erik A.; Fulton, Benjamin J.; Howard, Andrew W.; Winn, Joshua N.; Isaacson, Howard T.; Morton, Timothy D.; Hirsch, Lea A.; Sinukoff, Evan J.; Cumming, Andrew; Hebb, Leslie; Cargile, Phillip A.

    2018-01-01

    We have established precise planet radii, semimajor axes, incident stellar fluxes, and stellar masses for 909 planets in 355 multi-planet systems discovered by Kepler. In this sample, we find that planets within a single multi-planet system have correlated sizes: each planet is more likely to be the size of its neighbor than a size drawn at random from the distribution of observed planet sizes. In systems with three or more planets, the planets tend to have a regular spacing: the orbital period ratios of adjacent pairs of planets are correlated. Furthermore, the orbital period ratios are smaller in systems with smaller planets, suggesting that the patterns in planet sizes and spacing are linked through formation and/or subsequent orbital dynamics. Yet, we find that essentially no planets have orbital period ratios smaller than 1.2, regardless of planet size. Using empirical mass–radius relationships, we estimate the mutual Hill separations of planet pairs. We find that 93% of the planet pairs are at least 10 mutual Hill radii apart, and that a spacing of ∼20 mutual Hill radii is most common. We also find that when comparing planet sizes, the outer planet is larger in 65% ± 0.4% of cases, and the typical ratio of the outer to inner planet size is positively correlated with the temperature difference between the planets. This could be the result of photo-evaporation. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time has been granted by the University of California, and California Institute of Technology, and the University of Hawaii.

  14. Data Validation in the Kepler Science Operations Center Pipeline

    NASA Technical Reports Server (NTRS)

    Wu, Hayley; Twicken, Joseph D.; Tenenbaum, Peter; Clarke, Bruce D.; Li, Jie; Quintana, Elisa V.; Allen, Christopher; Chandrasekaran, Hema; Jenkins, Jon M.; Caldwell, Douglas A.; hide

    2010-01-01

    We present an overview of the Data Validation (DV) software component and its context within the Kepler Science Operations Center (SOC) pipeline and overall Kepler Science mission. The SOC pipeline performs a transiting planet search on the corrected light curves for over 150,000 targets across the focal plane array. We discuss the DV strategy for automated validation of Threshold Crossing Events (TCEs) generated in the transiting planet search. For each TCE, a transiting planet model is fitted to the target light curve. A multiple planet search is conducted by repeating the transiting planet search on the residual light curve after the model flux has been removed; if an additional detection occurs, a planet model is fitted to the new TCE. A suite of automated tests are performed after all planet candidates have been identified. We describe a centroid motion test to determine the significance of the motion of the target photocenter during transit and to estimate the coordinates of the transit source within the photometric aperture; a series of eclipsing binary discrimination tests on the parameters of the planet model fits to all transits and the sequences of odd and even transits; and a statistical bootstrap to assess the likelihood that the TCE would have been generated purely by chance given the target light curve with all transits removed. Keywords: photometry, data validation, Kepler, Earth-size planets

  15. What asteroseismology can do for exoplanets: Kepler-410A b is a small Neptune around a bright star, in an eccentric orbit consistent with low obliquity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Eylen, V.; Lund, M. N.; Aguirre, V. Silva

    2014-02-10

    We confirm the Kepler planet candidate Kepler-410A b (KOI-42b) as a Neptune-sized exoplanet on a 17.8 day, eccentric orbit around the bright (K {sub p} = 9.4) star Kepler-410A (KOI-42A). This is the third brightest confirmed planet host star in the Kepler field and one of the brightest hosts of all currently known transiting exoplanets. Kepler-410 consists of a blend between the fast rotating planet host star (Kepler-410A) and a fainter star (Kepler-410B), which has complicated the confirmation of the planetary candidate. Employing asteroseismology, using constraints from the transit light curve, adaptive optics and speckle images, and Spitzer transit observations,more » we demonstrate that the candidate can only be an exoplanet orbiting Kepler-410A. We determine via asteroseismology the following stellar and planetary parameters with high precision; M {sub *} = 1.214 ± 0.033 M {sub ☉}, R {sub *} = 1.352 ± 0.010 R {sub ☉}, age =2.76 ± 0.54 Gyr, planetary radius (2.838 ± 0.054 R {sub ⊕}), and orbital eccentricity (0.17{sub −0.06}{sup +0.07}). In addition, rotational splitting of the pulsation modes allows for a measurement of Kepler-410A's inclination and rotation rate. Our measurement of an inclination of 82.5{sub −2.5}{sup +7.5} [°] indicates a low obliquity in this system. Transit timing variations indicate the presence of at least one additional (non-transiting) planet (Kepler-410A c) in the system.« less

  16. Kepler Reliability and Occurrence Rates

    NASA Astrophysics Data System (ADS)

    Bryson, Steve

    2016-10-01

    The Kepler mission has produced tables of exoplanet candidates (``KOI table''), as well as tables of transit detections (``TCE table''), hosted at the Exoplanet Archive (http://exoplanetarchive.ipac.caltech.edu). Transit detections in the TCE table that are plausibly due to a transiting object are selected for inclusion in the KOI table. KOI table entries that have not been identified as false positives (FPs) or false alarms (FAs) are classified as planet candidates (PCs, Mullally et al. 2015). A subset of PCs have been confirmed as planetary transits with greater than 99% probability, but most PCs have <99% probability of being true planets. The fraction of PCs that are true transiting planets is the PC reliability rate. The overall PC population is believed to have a reliability rate >90% (Morton & Johnson 2011).

  17. Homogeneous Photodynamical Analysis of Kepler's Multiply-Transiting Systems

    NASA Astrophysics Data System (ADS)

    Ragozzine, Darin

    To search for planets more like our own, NASA s Kepler Space Telescope ( Kepler ) discovered thousands of exoplanet candidates that cross in front of ( transit ) their parent stars (e.g., Twicken et al. 2016). The Kepler exoplanet data represent an incredible observational leap forward as evidenced by hundreds of papers with thousands of citations. In particular, systems with multiple transiting planets combine the determination of physical properties of exoplanets (e.g., radii), the context provided by the system architecture, and insights from orbital dynamics. Such systems are the most information-rich exoplanetary systems (Ragozzine & Holman 2010). Thanks to Kepler s revolutionary dataset, understanding these Multi-Transiting Systems (MTSs) enables a wide variety of major science questions. In conclusion, existing analyses of MTSs are incomplete and suboptimal and our efficient and timely proposal will provide significant scientific gains ( 100 new mass measurements and 100 updated mass measurements). Furthermore, our homogeneous analysis enables future statistical analyses, including those necessary to characterize the small planet mass-radius relation with implications for understanding the formation, evolution, and habitability of planets. The overarching goal of this proposal is a complete homogeneous investigation of Kepler MTSs to provide detailed measurements (or constraints) on exoplanetary physical and orbital properties. Current investigations do not exploit the full power of the Kepler data; here we propose to use better data (Short Cadence observations), better methods (photodynamical modeling), and a better statistical method (Bayesian Differential Evolution Markov Chain Monte Carlo) in a homogenous analysis of all 700 Kepler MTSs. These techniques are particularly valuable for understanding small terrestrial planets. We propose to extract the near-maximum amount of information from these systems through a series of three research objectives

  18. The Kepler Follow-up Observation Program. I. A Catalog of Companions to Kepler Stars from High-Resolution Imaging

    NASA Astrophysics Data System (ADS)

    Furlan, E.; Ciardi, D. R.; Everett, M. E.; Saylors, M.; Teske, J. K.; Horch, E. P.; Howell, S. B.; van Belle, G. T.; Hirsch, L. A.; Gautier, T. N., III; Adams, E. R.; Barrado, D.; Cartier, K. M. S.; Dressing, C. D.; Dupree, A. K.; Gilliland, R. L.; Lillo-Box, J.; Lucas, P. W.; Wang, J.

    2017-02-01

    We present results from high-resolution, optical to near-IR imaging of host stars of Kepler Objects of Interest (KOIs), identified in the original Kepler field. Part of the data were obtained under the Kepler imaging follow-up observation program over six years (2009-2015). Almost 90% of stars that are hosts to planet candidates or confirmed planets were observed. We combine measurements of companions to KOI host stars from different bands to create a comprehensive catalog of projected separations, position angles, and magnitude differences for all detected companion stars (some of which may not be bound). Our compilation includes 2297 companions around 1903 primary stars. From high-resolution imaging, we find that ˜10% (˜30%) of the observed stars have at least one companion detected within 1″ (4″). The true fraction of systems with close (≲4″) companions is larger than the observed one due to the limited sensitivities of the imaging data. We derive correction factors for planet radii caused by the dilution of the transit depth: assuming that planets orbit the primary stars or the brightest companion stars, the average correction factors are 1.06 and 3.09, respectively. The true effect of transit dilution lies in between these two cases and varies with each system. Applying these factors to planet radii decreases the number of KOI planets with radii smaller than 2 {R}\\oplus by ˜2%-23% and thus affects planet occurrence rates. This effect will also be important for the yield of small planets from future transit missions such as TESS.

  19. Kepler-90 system (Artist's Concept)

    NASA Image and Video Library

    2017-12-14

    Our solar system now is tied for most number of planets around a single star, with the recent discovery of an eighth planet circling Kepler-90, a Sun-like star 2,545 light years from Earth. The planet was discovered in data from NASA's Kepler Space Telescope. The newly-discovered Kepler-90i -- a sizzling hot, rocky planet that orbits its star once every 14.4 days -- was found using machine learning from Google. Machine learning is an approach to artificial intelligence in which computers "learn." In this case, computers learned to identify planets by finding in Kepler data instances where the telescope recorded changes in starlight caused by planets beyond our solar system, known as exoplanets. https://photojournal.jpl.nasa.gov/catalog/PIA22192

  20. Search for Close-in Planets around Evolved Stars with Phase-curve variations and Radial Velocity Measurements

    NASA Astrophysics Data System (ADS)

    Hirano, Teruyuki; Sato, Bun'ei; Masuda, Kento; Benomar, Othman Michel; Takeda, Yoichi; Omiya, Masashi; Harakawa, Hiroki

    2016-10-01

    Tidal interactions are a key process to understand the evolution history of close-in exoplanets. But tidals still have a large uncertainty in their prediction for the damping timescales of stellar obliquity and semi-major axis. We have worked on a search for transiting giant planets around evolved stars, for which few close-in planets were discovered. It has been reported that evolved stars lack close-in planets, which is often attributed to the tidal evolution and/or engulfment of close-in planets by the hosts. Meanwhile, Kepler has detected a certain fraction of transiting planet candidates around evolved stars. Confirming the planetary nature for these candidates is especially important since the comparison between the occurrence rates of close-in planets around main sequence stars and evolved stars provides a unique opportunity to discuss the final stage of close-in planets. With the aim of confirming KOI planet candidates around evolved stars, we measured precision radial velocities (RVs) for evolved stars with transiting planet candidates using Subaru/HDS. We also developed a new code which simultaneously models and fits the observed RVs and phase-curve variations in the Kepler data (e.g., transits, stellar ellipsoidal variations, and planet emission/reflected light). As a result of applying the global fit to KOI giants/subgiants, we confirmed two giant planets around evolved stars (Kepler-91 and KOI-1894), as well as revealed that KOI-977 is more likely a false positive.

  1. Kepler Planet Detection Metrics: Pixel-Level Transit Injection Tests of Pipeline Detection Efficiency for Data Release 25

    NASA Technical Reports Server (NTRS)

    Christiansen, Jessie L.

    2017-01-01

    This document describes the results of the fourth pixel-level transit injection experiment, which was designed to measure the detection efficiency of both the Kepler pipeline (Jenkins 2002, 2010; Jenkins et al. 2017) and the Robovetter (Coughlin 2017). Previous transit injection experiments are described in Christiansen et al. (2013, 2015a,b, 2016).In order to calculate planet occurrence rates using a given Kepler planet catalogue, produced with a given version of the Kepler pipeline, we need to know the detection efficiency of that pipeline. This can be empirically determined by injecting a suite of simulated transit signals into the Kepler data, processing the data through the pipeline, and examining the distribution of successfully recovered transits. This document describes the results for the pixel-level transit injection experiment performed to accompany the final Q1-Q17 Data Release 25 (DR25) catalogue (Thompson et al. 2017)of the Kepler Objects of Interest. The catalogue was generated using the SOC pipeline version 9.3 and the DR25 Robovetter acting on the uniformly processed Q1-Q17 DR25 light curves (Thompson et al. 2016a) and assuming the Q1-Q17 DR25 Kepler stellar properties (Mathur et al. 2017).

  2. Validating the Presence of a Moon Orbiting Kepler-1625b

    NASA Astrophysics Data System (ADS)

    Teachey, Alex

    2017-08-01

    The Hunt for Exomoons with Kepler (HEK) project has been engaged in the search for exomoons for the past several years, but so far no reliable exomoon detection can be found in the literature. After our largest survey to date, we have recently detected a strong candidate moon signal in the light curve of Kepler-1625b. The planet exhibits three transits in the Kepler data (P 287 days), in which we detect out-of-transit flux dips consistent with the presence of a large moon to greater than 4 sigma confidence. We propose to observe the next transit of the planet, which will occur October 29th, 2017 (Cycle-25), in the near-infrared using the Wide Field Camera 3 instrument on HST. We request 26 orbits of the telescope, which will allow us to capture the full planet-moon transit event and provide an opportunity to measure the transmission spectra of both the planet and the moon. We anticipate that the proposed measurements would be sufficient to confirm the first unambiguous detection of a moon beyond our Solar System.

  3. Possible Disintegrating Planet Artist Concept

    NASA Image and Video Library

    2012-05-21

    This artist concept depicts a comet-like tail of a possible disintegrating super Mercury-size planet candidate as it transits, or crosses, its parent star, named KIC 12557548. The results are based on data from NASA Kepler mission.

  4. Near Mean-motion Resonances in the System Observed by Kepler: Affected by Mass Accretion and Type I Migration

    NASA Astrophysics Data System (ADS)

    Wang, Su; Ji, Jianghui

    2017-12-01

    The Kepler mission has released over 4496 planetary candidates, among which 3483 planets have been confirmed as of 2017 April. The statistical results of the planets show that there are two peaks around 1.5 and 2.0 in the distribution of orbital period ratios. The observations indicate that plenty of planet pairs could have first been captured into mean-motion resonances (MMRs) in planetary formation. Subsequently, these planets depart from exact resonant locations to be near-MMR configurations. Through type I migration, two low-mass planets have a tendency to be trapped in first-order MMRs (2:1 or 3:2 MMRs); however, two scenarios of mass accretion of planets and potential outward migration play important roles in reshaping their final orbital configurations. Under the scenario of mass accretion, the planet pairs can cross 2:1 MMRs and then enter into 3:2 MMRs, especially for the inner pairs. With such a formation scenario, the possibility that two planets are locked into 3:2 MMRs can increase if they are formed in a flat disk. Moreover, the outward migration can make planets have a high likelihood to be trapped into 3:2 MMRs. We perform additional runs to investigate the mass relationship for those planets in three-planet systems, and we show that two peaks near 1.5 and 2.0 for the period ratios of two planets can be easily reproduced through our formation scenario. We further show that the systems in chain resonances (e.g., 4:2:1, 3:2:1, 6:3:2, and 9:6:4 MMRs), have been observed in our simulations. This mechanism can be applicable to understand the formation of systems of Kepler-48, Kepler-53, Kepler-100, Kepler-192, Kepler-297, Kepler-399, and Kepler-450.

  5. Had the planet Mars not existed: Kepler's equant model and its physical consequences

    NASA Astrophysics Data System (ADS)

    Bracco, C.; Provost, J.-P.

    2009-09-01

    We examine the equant model for the motion of planets, which was the starting point of Kepler's investigations before he modified it because of Mars observations. We show that, up to first order in eccentricity, this model implies for each orbit a velocity, which satisfies Kepler's second law and Hamilton's hodograph, and a centripetal acceleration with an r-2 dependence on the distance to the Sun. If this dependence is assumed to be universal, Kepler's third law follows immediately. This elementary exercise in kinematics for undergraduates emphasizes the proximity of the equant model coming from ancient Greece with our present knowledge. It adds to its historical interest a didactical relevance concerning, in particular, the discussion of the Aristotelian or Newtonian conception of motion.

  6. Know the Planet, Know the Star: Precise Stellar Densities from Kepler Transit Light Curves

    NASA Astrophysics Data System (ADS)

    Sandford, Emily; Kipping, David

    2017-12-01

    The properties of a transiting planet’s host star are written in its transit light curve. The light curve can reveal the stellar density ({ρ }* ) and the limb-darkening profile in addition to the characteristics of the planet and its orbit. For planets with strong prior constraints on orbital eccentricity, we may measure these stellar properties directly from the light curve; this method promises to aid greatly in the characterization of transiting planet host stars targeted by the upcoming NASA Transiting Exoplanet Survey Satellite mission and any long-period, singly transiting planets discovered in the same systems. Using Bayesian inference, we fit a transit model, including a nonlinear limb-darkening law, to 66 Kepler transiting planet hosts to measure their stellar properties. We present posterior distributions of ρ *, limb-darkening coefficients, and other system parameters for these stars. We measure densities to within 5% for the majority of our target stars, with the dominant precision-limiting factor being the signal-to-noise ratio of the transits. Of our measured stellar densities, 95% are in 3σ or better agreement with previously published literature values. We make posterior distributions for all of our target Kepler objects of interest available online at 10.5281/zenodo.1028515.

  7. False Positive Probabilities for all Kepler Objects of Interest: 1284 Newly Validated Planets and 428 Likely False Positives

    NASA Astrophysics Data System (ADS)

    Morton, Timothy D.; Bryson, Stephen T.; Coughlin, Jeffrey L.; Rowe, Jason F.; Ravichandran, Ganesh; Petigura, Erik A.; Haas, Michael R.; Batalha, Natalie M.

    2016-05-01

    We present astrophysical false positive probability calculations for every Kepler Object of Interest (KOI)—the first large-scale demonstration of a fully automated transiting planet validation procedure. Out of 7056 KOIs, we determine that 1935 have probabilities <1% of being astrophysical false positives, and thus may be considered validated planets. Of these, 1284 have not yet been validated or confirmed by other methods. In addition, we identify 428 KOIs that are likely to be false positives, but have not yet been identified as such, though some of these may be a result of unidentified transit timing variations. A side product of these calculations is full stellar property posterior samplings for every host star, modeled as single, binary, and triple systems. These calculations use vespa, a publicly available Python package that is able to be easily applied to any transiting exoplanet candidate.

  8. KOI-2700b—A Planet Candidate with Dusty Effluents on a 22 hr Orbit

    NASA Astrophysics Data System (ADS)

    Rappaport, Saul; Barclay, Thomas; DeVore, John; Rowe, Jason; Sanchis-Ojeda, Roberto; Still, Martin

    2014-03-01

    Kepler planet candidate KOI-2700b (KIC 8639908b), with an orbital period of 21.84 hr, exhibits a distinctly asymmetric transit profile, likely indicative of the emission of dusty effluents, and reminiscent of KIC 1255b. The host star has T eff = 4435 K, M ~= 0.63 M ⊙, and R ~= 0.57 R ⊙, comparable to the parameters ascribed to KIC 12557548. The transit egress can be followed for ~25% of the orbital period and, if interpreted as extinction from a dusty comet-like tail, indicates a long lifetime for the dust grains of more than a day. We present a semiphysical model for the dust tail attenuation and fit for the physical parameters contained in that expression. The transit is not sufficiently deep to allow for a study of the transit-to-transit variations, as is the case for KIC 1255b however, it is clear that the transit depth is slowly monotonically decreasing by a factor of ~2 over the duration of the Kepler mission. We infer a mass-loss rate in dust from the planet of ~2 lunar masses per Gyr. The existence of a second star hosting a planet with a dusty comet-like tail would help to show that such objects may be more common and less exotic than originally thought. According to current models, only quite small planets with Mp <~ 0.03 M ⊕ are likely to release a detectable quantity of dust. Thus, any "normal-looking" transit that is inferred to arise from a rocky planet of radius greater than ~1/2 R ⊕ should not exhibit any hint of a dusty tail. Conversely, if one detects an asymmetric transit due to a dusty tail, then it will be very difficult to detect the hard body of the planet within the transit because, by necessity, the planet must be quite small (i.e., <~ 0.3 R ⊕).

  9. Measurements of Kepler Planet Masses and Eccentricities from Transit Timing Variations: Analytic and N-body Results

    NASA Astrophysics Data System (ADS)

    Hadden, Sam; Lithwick, Yoram

    2015-12-01

    Several Kepler planets reside in multi-planet systems where gravitational interactions result in transit timing variations (TTVs) that provide exquisitely sensitive probes of their masses of and orbits. Measuring these planets' masses and orbits constrains their bulk compositions and can provide clues about their formation. However, inverting TTV measurements in order to infer planet properties can be challenging: it involves fitting a nonlinear model with a large number of parameters to noisy data, often with significant degeneracies between parameters. I present results from two complementary approaches to TTV inversion: Markov chain Monte Carlo simulations that use N-body integrations to compute transit times and a simplified analytic model for computing the TTVs of planets near mean motion resonances. The analytic model allows for straightforward interpretations of N-body results and provides an independent estimate of parameter uncertainties that can be compared to MCMC results which may be sensitive to factors such as priors. We have conducted extensive MCMC simulations along with analytic fits to model the TTVs of dozens of Kepler multi-planet systems. We find that the bulk of these sub-Jovian planets have low densities that necessitate significant gaseous envelopes. We also find that the planets' eccentricities are generally small but often definitively non-zero.

  10. Processing and Managing the Kepler Mission's Treasure Trove of Stellar and Exoplanet Data

    NASA Technical Reports Server (NTRS)

    Jenkins, Jon M.

    2016-01-01

    The Kepler telescope launched into orbit in March 2009, initiating NASAs first mission to discover Earth-size planets orbiting Sun-like stars. Kepler simultaneously collected data for 160,000 target stars at a time over its four-year mission, identifying over 4700 planet candidates, 2300 confirmed or validated planets, and over 2100 eclipsing binaries. While Kepler was designed to discover exoplanets, the long term, ultra- high photometric precision measurements it achieved made it a premier observational facility for stellar astrophysics, especially in the field of asteroseismology, and for variable stars, such as RR Lyraes. The Kepler Science Operations Center (SOC) was developed at NASA Ames Research Center to process the data acquired by Kepler from pixel-level calibrations all the way to identifying transiting planet signatures and subjecting them to a suite of diagnostic tests to establish or break confidence in their planetary nature. Detecting small, rocky planets transiting Sun-like stars presents a variety of daunting challenges, from achieving an unprecedented photometric precision of 20 parts per million (ppm) on 6.5-hour timescales, supporting the science operations, management, processing, and repeated reprocessing of the accumulating data stream. This paper describes how the design of the SOC meets these varied challenges, discusses the architecture of the SOC and how the SOC pipeline is operated and is run on the NAS Pleiades supercomputer, and summarizes the most important pipeline features addressing the multiple computational, image and signal processing challenges posed by Kepler.

  11. The Kepler Data Processing Handbook: A Field Guide to Prospecting for Habitable Worlds

    NASA Technical Reports Server (NTRS)

    Jenkins, Jon M.

    2017-01-01

    The Kepler telescope hurtled into orbit in March 2009, initiating NASA's first mission to discover Earth-size planets orbiting Sun-like stars. Kepler simultaneously collected data for approximately 165,000 target stars at a time over its four-year mission, identifying over 4700 planet candidates, over 2300 confirmed or validated planets, and over 2100 eclipsing binaries. While Kepler was designed to discover exoplanets, the long-term, ultrahigh photometric precision measurements it achieved made it a premier observational facility for stellar astrophysics, especially in the field of asteroseismology, and for variable stars, such as RR Lyrae. The Kepler Science Operations Center (SOC) was developed at NASA Ames Research Center to process the data acquired by Kepler from pixel-level calibrations all the way to identifying transiting planet signatures and subjecting them to a suite of diagnostic tests to establish or break confidence in their planetary nature. Detecting small, rocky planets transiting Sun-like stars presents a variety of daunting challenges, including achieving an unprecedented photometric precision of 20 ppm on 6.5-hour timescales, and supporting the science operations, management, processing, and repeated reprocessing of the accumulating data stream. A newly revised and expanded version of the Kepler Data Processing Handbook (KDPH) has been released to support the legacy archival products. The KDPH details the theory, design and performance of the algorithms supporting each data processing step. This paper presents an overview of the KDPH and features illustrations of several key algorithms in the Kepler Science Data Processing Pipeline. Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA, Science Mission Directorate.

  12. Assessing the Effect of Stellar Companions to Kepler Objects of Interest

    NASA Astrophysics Data System (ADS)

    Hirsch, Lea; Ciardi, David R.; Howard, Andrew

    2017-01-01

    Unknown stellar companions to Kepler planet host stars dilute the transit signal, causing the planetary radii to be underestimated. We report on the analysis of 165 stellar companions detected with high-resolution imaging to be within 2" of 159 KOI host stars. The majority of the planets and planet candidates in these systems have nominal radii smaller than 6 REarth. Using multi-filter photometry on each companion, we assess the likelihood that the companion is bound and estimate its stellar properties, including stellar radius and flux. We then recalculate the planet radii in these systems, determining how much each planet's size is underestimated if it is assumed to 1) orbit the primary star, 2) orbit the companion star, or 3) be equally likely to orbit either star in the system. We demonstrate the overall effect of unknown stellar companions on our understanding of Kepler planet sizes.

  13. Kepler: A Search for Terrestrial Planets - Kepler Data Characterization Handbook

    NASA Technical Reports Server (NTRS)

    Van Cleve, Jeffrey; Christiansen, J. L.; Jenkins, J. M.; Caldwell, D. A.; Barclay, T.; Bryson, S. T.; Burke, C. J.; Campbell, J.; Catanzarite, J.; Clarke, B. D.; hide

    2016-01-01

    The Kepler Data Characteristics Handbook (KDCH) provides a description of all phenomena identified in the Kepler data throughout the mission, and an explanation for how these characteristics are handled by the final version of the Kepler Data Processing Pipeline (SOC 9.3).The KDCH complements the Kepler Data Release Notes (KDRNs), which document phenomena and processing unique to a data release. The original motivation for this separation into static, explanatory text and a more journalistic set of figures and tables in the KDRN was for the user to become familiar with the Data Characteristics Handbook, then peruse the short Notes for a new quarter, referring back to the Handbook when necessary. With the completion of the Kepler mission and the final Data Release 25, both the KDCH and the DRN encompass the entire Kepler mission, so the distinction between them is in the level of exposition, not the extent of the time interval discussed.

  14. PASTIS: Bayesian extrasolar planet validation - I. General framework, models, and performance

    NASA Astrophysics Data System (ADS)

    Díaz, R. F.; Almenara, J. M.; Santerne, A.; Moutou, C.; Lethuillier, A.; Deleuil, M.

    2014-06-01

    A large fraction of the smallest transiting planet candidates discovered by the Kepler and CoRoT space missions cannot be confirmed by a dynamical measurement of the mass using currently available observing facilities. To establish their planetary nature, the concept of planet validation has been advanced. This technique compares the probability of the planetary hypothesis against that of all reasonably conceivable alternative false positive (FP) hypotheses. The candidate is considered as validated if the posterior probability of the planetary hypothesis is sufficiently larger than the sum of the probabilities of all FP scenarios. In this paper, we present PASTIS, the Planet Analysis and Small Transit Investigation Software, a tool designed to perform a rigorous model comparison of the hypotheses involved in the problem of planet validation, and to fully exploit the information available in the candidate light curves. PASTIS self-consistently models the transit light curves and follow-up observations. Its object-oriented structure offers a large flexibility for defining the scenarios to be compared. The performance is explored using artificial transit light curves of planets and FPs with a realistic error distribution obtained from a Kepler light curve. We find that data support the correct hypothesis strongly only when the signal is high enough (transit signal-to-noise ratio above 50 for the planet case) and remain inconclusive otherwise. PLAnetary Transits and Oscillations of stars (PLATO) shall provide transits with high enough signal-to-noise ratio, but to establish the true nature of the vast majority of Kepler and CoRoT transit candidates additional data or strong reliance on hypotheses priors is needed.

  15. Planetary Candidates Observed by Kepler. VII. The First Fully Uniform Catalog Based on the Entire 48-month Data Set (Q1-Q17 DR24)

    NASA Astrophysics Data System (ADS)

    Coughlin, Jeffrey L.; Mullally, F.; Thompson, Susan E.; Rowe, Jason F.; Burke, Christopher J.; Latham, David W.; Batalha, Natalie M.; Ofir, Aviv; Quarles, Billy L.; Henze, Christopher E.; Wolfgang, Angie; Caldwell, Douglas A.; Bryson, Stephen T.; Shporer, Avi; Catanzarite, Joseph; Akeson, Rachel; Barclay, Thomas; Borucki, William J.; Boyajian, Tabetha S.; Campbell, Jennifer R.; Christiansen, Jessie L.; Girouard, Forrest R.; Haas, Michael R.; Howell, Steve B.; Huber, Daniel; Jenkins, Jon M.; Li, Jie; Patil-Sabale, Anima; Quintana, Elisa V.; Ramirez, Solange; Seader, Shawn; Smith, Jeffrey C.; Tenenbaum, Peter; Twicken, Joseph D.; Zamudio, Khadeejah A.

    2016-05-01

    We present the seventh Kepler planet candidate (PC) catalog, which is the first catalog to be based on the entire, uniformly processed 48-month Kepler data set. This is the first fully automated catalog, employing robotic vetting procedures to uniformly evaluate every periodic signal detected by the Q1-Q17 Data Release 24 (DR24) Kepler pipeline. While we prioritize uniform vetting over the absolute correctness of individual objects, we find that our robotic vetting is overall comparable to, and in most cases superior to, the human vetting procedures employed by past catalogs. This catalog is the first to utilize artificial transit injection to evaluate the performance of our vetting procedures and to quantify potential biases, which are essential for accurate computation of planetary occurrence rates. With respect to the cumulative Kepler Object of Interest (KOI) catalog, we designate 1478 new KOIs, of which 402 are dispositioned as PCs. Also, 237 KOIs dispositioned as false positives (FPs) in previous Kepler catalogs have their disposition changed to PC and 118 PCs have their disposition changed to FPs. This brings the total number of known KOIs to 8826 and PCs to 4696. We compare the Q1-Q17 DR24 KOI catalog to previous KOI catalogs, as well as ancillary Kepler catalogs, finding good agreement between them. We highlight new PCs that are both potentially rocky and potentially in the habitable zone of their host stars, many of which orbit solar-type stars. This work represents significant progress in accurately determining the fraction of Earth-size planets in the habitable zone of Sun-like stars. The full catalog is publicly available at the NASA Exoplanet Archive.

  16. Performance of Transit Model Fitting in Processing Four Years of Kepler Science Data

    NASA Astrophysics Data System (ADS)

    Li, Jie; Burke, Christopher J.; Jenkins, Jon Michael; Quintana, Elisa V.; Rowe, Jason; Seader, Shawn; Tenenbaum, Peter; Twicken, Joseph D.

    2014-06-01

    We present transit model fitting performance of the Kepler Science Operations Center (SOC) Pipeline in processing four years of science data, which were collected by the Kepler spacecraft from May 13, 2009 to May 12, 2013. Threshold Crossing Events (TCEs), which represent transiting planet detections, are generated by the Transiting Planet Search (TPS) component of the pipeline and subsequently processed in the Data Validation (DV) component. The transit model is used in DV to fit TCEs and derive parameters that are used in various diagnostic tests to validate planetary candidates. The standard transit model includes five fit parameters: transit epoch time (i.e. central time of first transit), orbital period, impact parameter, ratio of planet radius to star radius and ratio of semi-major axis to star radius. In the latest Kepler SOC pipeline codebase, the light curve of the target for which a TCE is generated is initially fitted by a trapezoidal model with four parameters: transit epoch time, depth, duration and ingress time. The trapezoidal model fit, implemented with repeated Levenberg-Marquardt minimization, provides a quick and high fidelity assessment of the transit signal. The fit parameters of the trapezoidal model with the minimum chi-square metric are converted to set initial values of the fit parameters of the standard transit model. Additional parameters, such as the equilibrium temperature and effective stellar flux of the planet candidate, are derived from the fit parameters of the standard transit model to characterize pipeline candidates for the search of Earth-size planets in the Habitable Zone. The uncertainties of all derived parameters are updated in the latest codebase to take into account for the propagated errors of the fit parameters as well as the uncertainties in stellar parameters. The results of the transit model fitting of the TCEs identified by the Kepler SOC Pipeline, including fitted and derived parameters, fit goodness metrics and

  17. Densities and eccentricities of 139 Kepler planets from transit time variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadden, Sam; Lithwick, Yoram

    2014-05-20

    We extract densities and eccentricities of 139 sub-Jovian planets by analyzing transit time variations (TTVs) obtained by the Kepler mission through Quarter 12. We partially circumvent the degeneracies that plague TTV inversion with the help of an analytical formula for the TTV. From the observed TTV phases, we find that most of these planets have eccentricities of the order of a few percent. More precisely, the rms eccentricity is 0.018{sub −0.004}{sup +0.005}, and planets smaller than 2.5 R {sub ⊕} are around twice as eccentric as those bigger than 2.5 R {sub ⊕}. We also find a best-fit density-radius relationshipmore » ρ ≈ 3 g cm{sup –3} × (R/3 R {sub ⊕}){sup –2.3} for the 56 planets that likely have small eccentricity and hence small statistical correction to their masses. Many planets larger than 2.5 R {sub ⊕} are less dense than water, implying that their radii are largely set by a massive hydrogen atmosphere.« less

  18. Kepler Planet Reliability Metrics: Astrophysical Positional Probabilities for Data Release 25

    NASA Technical Reports Server (NTRS)

    Bryson, Stephen T.; Morton, Timothy D.

    2017-01-01

    This document is very similar to KSCI-19092-003, Planet Reliability Metrics: Astrophysical Positional Probabilities, which describes the previous release of the astrophysical positional probabilities for Data Release 24. The important changes for Data Release 25 are:1. The computation of the astrophysical positional probabilities uses the Data Release 25 processed pixel data for all Kepler Objects of Interest.2. Computed probabilities now have associated uncertainties, whose computation is described in x4.1.3.3. The scene modeling described in x4.1.2 uses background stars detected via ground-based high-resolution imaging, described in x5.1, that are not in the Kepler Input Catalog or UKIRT catalog. These newly detected stars are presented in Appendix B. Otherwise the text describing the algorithms and examples is largely unchanged from KSCI-19092-003.

  19. Kepler Discovery

    NASA Image and Video Library

    2011-02-02

    Jack Lissauer, a planetary scientist and a Kepler science team member at NASA's Ames Research Center, speaks during a news conference, Wednesday, Feb. 2, 2010, at NASA Headquarters in Washington. Scientists using NASA's Kepler, a space telescope, recently discovered six planets made of a mix of rock and gases orbiting a single sun-like star, known as Kepler-11, which is located approximately 2,000 light years from Earth. "It’s amazingly compact, it’s amazingly flat, there’s an amazingly large number of big planets orbiting close to their star - we didn’t know such systems could even exist," he said. Photo Credit: (NASA/Paul E. Alers)

  20. Kepler Discovery

    NASA Image and Video Library

    2011-02-02

    Jack Lissauer, a planetary scientist and a Kepler science team member at NASA's Ames Research Center, speaks during a news conference, Wednesday, Feb. 2, 2010, at NASA Headquarters in Washington. Scientists using NASA's Kepler, a space telescope, recently discovered six planets made of a mix of rock and gases orbiting a single sun-like star, known as Kepler-11, which is located approximately 2,000 light years from Earth."It’s amazingly compact, it’s amazingly flat, there’s an amazingly large number of big planets orbiting close to their star - we didn’t know such systems could even exist." Photo Credit: (NASA/Paul E. Alers)

  1. ATMOSPHERE AND SPECTRAL MODELS OF THE KEPLER-FIELD PLANETS HAT-P-7b AND TrES-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spiegel, David S.; Burrows, Adam, E-mail: dsp@astro.princeton.ed, E-mail: burrows@astro.princeton.ed

    2010-10-10

    We develop atmosphere models of two of the three Kepler-field planets that were known prior to the start of the Kepler mission (HAT-P-7b and TrES-2). We find that published Kepler and Spitzer data for HAT-P-7b appear to require an extremely hot upper atmosphere on the dayside, with a strong thermal inversion and little day-night redistribution. The Spitzer data for TrES-2 suggest a mild thermal inversion with moderate day-night redistribution. We examine the effect of nonequilibrium chemistry on TrES-2 model atmospheres and find that methane levels must be adjusted by extreme amounts in order to cause even mild changes in atmosphericmore » structure and emergent spectra. Our best-fit models to the Spitzer data for TrES-2 lead us to predict a low secondary eclipse planet-star flux ratio ({approx}<2 x 10{sup -5}) in the Kepler bandpass, which is consistent with what very recent observations have found. Finally, we consider how the Kepler-band optical flux from a hot exoplanet depends on the strength of a possible extra optical absorber in the upper atmosphere. We find that the optical flux is not monotonic in optical opacity, and the non-monotonicity is greater for brighter, hotter stars.« less

  2. Kepler-432 b: a massive planet in a highly eccentric orbit transiting a red giant

    NASA Astrophysics Data System (ADS)

    Ciceri, S.; Lillo-Box, J.; Southworth, J.; Mancini, L.; Henning, Th.; Barrado, D.

    2015-01-01

    We report the first disclosure of the planetary nature of Kepler-432 b (aka Kepler object of interest KOI-1299.01). We accurately constrained its mass and eccentricity by high-precision radial velocity measurements obtained with the CAFE spectrograph at the CAHA 2.2-m telescope. By simultaneously fitting these new data and Kepler photometry, we found that Kepler-432 b is a dense transiting exoplanet with a mass of Mp = 4.87 ± 0.48MJup and radius of Rp = 1.120 ± 0.036RJup. The planet revolves every 52.5 d around a K giant star that ascends the red giant branch, and it moves on a highly eccentric orbit with e = 0.535 ± 0.030. By analysing two near-IR high-resolution images, we found that a star is located at 1.1'' from Kepler-432, but it is too faint to cause significant effects on the transit depth. Together with Kepler-56 and Kepler-91, Kepler-432 occupies an almost-desert region of parameter space, which is important for constraining the evolutionary processes of planetary systems. RV data (Table A.1) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/573/L5

  3. Atmospheres of Two Super-Puffs: Transmission Spectra of Kepler 51b and Kepler 51d

    NASA Astrophysics Data System (ADS)

    Roberts, Jessica; Berta-Thompson, Zachory K.; Desert, Jean-Michel; Deck, Katherine; Fabrycky, Daniel; Fortney, Jonathan J.; Line, Michael R.; Lopez, Eric; Masuda, Kento; Morley, Caroline; Sanchis Ojeda, Roberto; Winn, Joshua N.

    2018-06-01

    The Kepler 51 system hosts three transiting, extremely low-mass, low-density exoplanets. These planets orbit a young G type star at periods of 45, 85 and 130 days, placing them outside of the regime for the inflated hot-Jupiters. Instead, the Kepler 51 planets are part of a rare class of exoplanets: the super-puffs. Models suggest these H/He-rich planets formed outside of the snow-line and migrated inwards, which might imply abundant water in their atmospheres. Because Kepler 51b and 51d have low surface gravities, they also have scale heights 10x larger than a typical hot-Jupiter, making them prime targets for atmospheric investigation. Kepler 51c, while also possessing a large scale height, only grazes its star during transit. We are also presented with a unique opportunity to study two super-puffs in very different temperature regimes around the same star. Therefore, we observed two transits each of both Kepler 51b and 51d with the Hubble Space Telescope’s Wide Field Camera 3 G141 grism spectroscopy. Using these data we created spectroscopic light curves that allow us to compute a transmission spectrum for each planet. We conclude that both planets have a flat transmission spectrum with a precision better than 0.6 scale heights between 1.1 and 1.7 microns. We also analyzed the transit timing variations of each planet by combining re-fitted Kepler mid-transit times with our measured HST times. From these additional timing points, we are able to better constrain the planetary masses and the dynamics of the system. With these updated masses and revisited stellar parameters, we determine precise measurements on the densities of these planets. We will present these results as well as discuss the implications for high altitude aerosols in both Kepler 51b and 51d.

  4. The detection and characterization of a nontransiting planet by transit timing variations.

    PubMed

    Nesvorný, David; Kipping, David M; Buchhave, Lars A; Bakos, Gáspár Á; Hartman, Joel; Schmitt, Allan R

    2012-06-01

    The Kepler mission is monitoring the brightness of ~150,000 stars, searching for evidence of planetary transits. As part of the Hunt for Exomoons with Kepler (HEK) project, we report a planetary system with two confirmed planets and one candidate planet discovered with the publicly available data for KOI-872. Planet b transits the host star with a period P(b) = 33.6 days and exhibits large transit timing variations indicative of a perturber. Dynamical modeling uniquely detects an outer nontransiting planet c near the 5:3 resonance (P(c) = 57.0 days) with a mass 0.37 times that of Jupiter. Transits of a third planetary candidate are also found: a 1.7-Earth radius super-Earth with a 6.8-day period. Our analysis indicates a system with nearly coplanar and circular orbits, reminiscent of the orderly arrangement within the solar system.

  5. Earth-class Planets Line Up

    NASA Image and Video Library

    2011-12-20

    This chart compares the first Earth-size planets found around a sun-like star to planets in our own solar system, Earth and Venus. NASA Kepler mission discovered the newfound planets, called Kepler-20e and Kepler-20f.

  6. A Bewildering and Dynamic Picture of Exoplanetary Systems Identified by the Kepler Mission (Invited)

    NASA Astrophysics Data System (ADS)

    Jenkins, J. M.

    2013-12-01

    Kepler vaulted into the heavens on March 7, 2009, initiating NASA's search for Earth-size planets orbiting Sun-like stars in the habitable zone, where liquid water could exist on a rocky planetary surface. In the 4 years since, a flood of photometric data of unprecedented precision and continuity on more than 190,000 stars has provoked a watershed of 134+ confirmed or validated planets, 3200+ planetary candidates (most sub-Neptune in size and many comparable to or smaller than Earth), and a revolution in asteroseismology and astrophysics. Recent discoveries include Kepler-62 with 5 planets total, of which 2 are in the habitable zone with radii of 1.4 and 1.7 Re. Approximately 500 of the stars in the Kepler survey with planets host multiple transiting planets: 43% of planet candidates have transiting siblings. Many of these multiple transiting planet systems are dynamically packed and are unlikely, therefore, to have formed in situ. These systems experienced strong migration and evolution to arrive at the configurations we observe today, with important implications for the time-variable habitability of these planets over their histories. The half dozen circumbinary transiting planet systems discovered by Kepler to date highlight the dynamic nature of the habitable zone in systems with multiple host stars where the habitable zone may change significantly on timescales commensurate with the orbital period of the binary. While the catalog of circumbinary planets is small at this point, it already possesses at least one example of an exoplanet in the habitable zone. This implies that the majority of habitable zone planets may be circumbinary planets given the high frequency of multiple star systems and the early detection of Kepler-47b. KIC-12557548 is most likely a disintegrating sub-Mercury-sized planet. While it was probably never habitable, it represents a unique example of the dynamic nature of planetary systems. These amazing discoveries challenge our conventional

  7. Kepler Discovery

    NASA Image and Video Library

    2011-02-02

    Douglas Hudgins, a Kepler Program Scientist, speaks during a news conference, Wednesday, Feb. 2, 2010, at NASA Headquarters in Washington. Scientists using NASA's Kepler, a space telescope, recently discovered six planets made of a mix of rock and gases orbiting a single sun-like star, known as Kepler-11, which is located approximately 2,000 light years from Earth. Photo Credit: (NASA/Paul E. Alers)

  8. Are we alone? Stories from the frontline of Kepler's search for Earth's twin (Presentation Video)

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon

    2013-10-01

    Kepler vaulted into the heavens on March 7, 2009, initiating NASA's search for Earth-size planets orbiting Sun-like stars in the habitable zone, where liquid water could exist on the planetary surface and support alien biology. Never before has there been a photometer capable of reaching a precision near 20 ppm in 6.5 hours while conducting nearly continuous and uninterrupted observations for several years. The flood of exquisite photometric data over the last 4 years on 190,000+ stars has provoked a watershed of results. Over 2,700+ candidate planets have been identified of which an astounding 1171 orbit 467 stars. Over 120+ planets have confirmed or validated and the data have also led to a resounding revolution in asteroseismology. Recent discoveries include Kepler-62 with 5 planets total of which 2 are in the habitable zone, and are 1.4 and 1.7 times the radius of the Earth. Designing and building the Kepler photometer and the software systems that process and analyze the resulting data presented a daunting set of challenges, including how to manage the large data volume, how to detect miniscule transit signatures against stellar variability and instrumental effects, and how to review hundreds of diagnostics produced for each of ~20,000 candidate transit signatures. The challenges continue into flight operations, as the photometer and spacecraft have experienced aging and changes in hardware performance over the course of time. The success of Kepler sets the stage for TESS, NASA's next mission to detect Earth's closest cousins.

  9. Kepler-1649b: An Exo-Venus in the Solar Neighborhood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angelo, Isabel; Rowe, Jason F.; Huber, Daniel

    The Kepler mission has revealed that Earth-sized planets are common, and dozens have been discovered to orbit in or near their host star’s habitable zone. A major focus in astronomy is to determine which of these exoplanets are likely to have Earth-like properties that are amenable to follow-up with both ground- and future space-based surveys, with an ultimate goal of probing their atmospheres to look for signs of life. Venus-like atmospheres will be of particular interest in these surveys. While Earth and Venus evolved to have similar sizes and densities, it remains unclear what factors led to the dramatic divergencemore » of their atmospheres. Studying analogs to both Earth and Venus can thus shed light on the limits of habitability and the potential for life on known exoplanets. Here, we present the discovery and confirmation of Kepler-1649b, an Earth-sized planet orbiting a nearby M5V star that receives incident flux at a level similar to that of Venus. We present our methods for characterizing the star, using a combination of point-spread function photometry, ground-based spectroscopy, and imaging, to confirm the planetary nature of Kepler-1649b. Planets like Kepler-1649b will be prime candidates for atmospheric and habitability studies in the next generation of space missions.« less

  10. Kepler Discovery

    NASA Image and Video Library

    2011-02-02

    A scale model of the Kepler space telescope is seen at a news conference, Wednesday, Feb. 2, 2010, at NASA Headquarters in Washington. Scientists using NASA's Kepler, a space telescope, recently discovered six planets made of a mix of rock and gases orbiting a single sun-like star, known as Kepler-11, which is located approximately 2,000 light years from Earth. Photo Credit: (NASA/Paul E. Alers)

  11. Kepler-77b: a very low albedo, Saturn-mass transiting planet around a metal-rich solar-like star

    NASA Astrophysics Data System (ADS)

    Gandolfi, D.; Parviainen, H.; Fridlund, M.; Hatzes, A. P.; Deeg, H. J.; Frasca, A.; Lanza, A. F.; Prada Moroni, P. G.; Tognelli, E.; McQuillan, A.; Aigrain, S.; Alonso, R.; Antoci, V.; Cabrera, J.; Carone, L.; Csizmadia, Sz.; Djupvik, A. A.; Guenther, E. W.; Jessen-Hansen, J.; Ofir, A.; Telting, J.

    2013-09-01

    We report the discovery of Kepler-77b (alias KOI-127.01), a Saturn-mass transiting planet in a 3.6-day orbit around a metal-rich solar-like star. We combined the publicly available Kepler photometry (quarters 1-13) with high-resolution spectroscopy from the Sandiford at McDonald and FIES at NOT spectrographs. We derived the system parameters via a simultaneous joint fit to the photometric and radial velocity measurements. Our analysis is based on the Bayesian approach and is carried out by sampling the parameter posterior distributions using a Markov chain Monte Carlo simulation. Kepler-77b is a moderately inflated planet with a mass of Mp = 0.430 ± 0.032 MJup, a radius of Rp = 0.960 ± 0.016 RJup, and a bulk density of ρp = 0.603 ± 0.055 g cm-3. It orbits a slowly rotating (Prot = 36 ± 6 days) G5 V star with M⋆ = 0.95 ± 0.04 M⊙, R⋆ = 0.99 ± 0.02 R⊙, Teff = 5520 ± 60 K, [M/H] = 0.20 ± 0.05 dex, that has an age of 7.5 ± 2.0 Gyr. The lack of detectable planetary occultation with a depth higher than ~10 ppm implies a planet geometric and Bond albedo of Ag ≤ 0.087 ± 0.008 and AB ≤ 0.058 ± 0.006, respectively, placing Kepler-77b among the gas-giant planets with the lowest albedo known so far. We found neither additional planetary transit signals nor transit-timing variations at a level of ~0.5 min, in accordance with the trend that close-in gas giant planets seem to belong to single-planet systems. The 106 transitsobserved in short-cadence mode by Kepler for nearly 1.2 years show no detectable signatures of the planet's passage in front of starspots. We explored the implications of the absence of detectable spot-crossing events for the inclination of the stellar spin-axis, the sky-projected spin-orbit obliquity, and the latitude of magnetically active regions. Based on observations obtained with the 2.1-m Otto Struve telescope at McDonald Observatory, Texas, USA.Based on observations obtained with the Nordic Optical Telescope, operated on the

  12. No Metallicity Correlation Associated with the Kepler Dichotomy

    NASA Astrophysics Data System (ADS)

    Munoz Romero, Carlos Eduardo; Kempton, Eliza

    2018-01-01

    NASA’s Kepler mission has discovered thousands of planetary systems, ∼ 20% of which are found to host multiple transiting planets. This relative paucity (compared to the high fraction of single transiting systems) is postulated to result from a distinction in the architecture between multi-transiting systems and those hosting a single transiting planet: a phenomenon usually referred to as the Kepler dichotomy. We investigate the hypothesis that external giant planets are the main cause behind the over-abundance of single- relative to multi-transiting systems, which would be signaled by higher metallicities in the former sample. To this end, we perform a statistical analysis on the stellar metallicity distribution with respect to planet multiplicity in the Kepler data. We perform our analysis on a variety of samples taken from a population of 1062 Kepler main sequence planetary hosts, using precisely determined metallicities from the California-Kepler survey. Contrary to some predictions, we do not find a significant difference between the stellar metallicities of the single- and multiple-transiting planet systems. However, we do find a 43% upper bound for systems with a single non-giant planet that could also host a hidden giant planet, based on metallicity considerations. While the presence of external giant planets might be one factor behind the Kepler dichotomy, our results also favor alternative explanations. We suggest that additional radial velocity and direct imaging measurements are necessary to constrain the presence of gas giants in systems with a single transiting planet.

  13. A STATISTICAL RECONSTRUCTION OF THE PLANET POPULATION AROUND KEPLER SOLAR-TYPE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silburt, Ari; Wu, Yanqin; Gaidos, Eric

    2015-02-01

    Using the cumulative catalog of planets detected by the NASA Kepler mission, we reconstruct the intrinsic occurrence of Earth- to Neptune-size (1-4 R {sub ⊕}) planets and their distributions with radius and orbital period. We analyze 76,711 solar-type (0.8 < R {sub *}/R {sub ☉} < 1.2) stars with 430 planets on 20-200 day orbits, excluding close-in planets that may have been affected by the proximity to the host star. Our analysis considers errors in planet radii and includes an ''iterative simulation'' technique that does not bin the data. We find a radius distribution that peaks at 2-2.8 Earth radii, with lowermore » numbers of smaller and larger planets. These planets are uniformly distributed with logarithmic period, and the mean number of such planets per star is 0.46 ± 0.03. The occurrence is ∼0.66 if planets interior to 20 days are included. We estimate the occurrence of Earth-size planets in the ''habitable zone'' (defined as 1-2 R {sub ⊕}, 0.99-1.7 AU for solar-twin stars) as 6.4{sub −1.1}{sup +3.4}%. Our results largely agree with those of Petigura et al., although we find a higher occurrence of 2.8-4 Earth-radii planets. The reasons for this excess are the inclusion of errors in planet radius, updated Huber et al. stellar parameters, and also the exclusion of planets that may have been affected by proximity to the host star.« less

  14. A Population of planetary systems characterized by short-period, Earth-sized planets.

    PubMed

    Steffen, Jason H; Coughlin, Jeffrey L

    2016-10-25

    We analyze data from the Quarter 1-17 Data Release 24 (Q1-Q17 DR24) planet candidate catalog from NASA's Kepler mission, specifically comparing systems with single transiting planets to systems with multiple transiting planets, and identify a population of exoplanets with a necessarily distinct system architecture. Such an architecture likely indicates a different branch in their evolutionary past relative to the typical Kepler system. The key feature of these planetary systems is an isolated, Earth-sized planet with a roughly 1-d orbital period. We estimate that at least 24 of the 144 systems we examined ([Formula: see text]17%) are members of this population. Accounting for detection efficiency, such planetary systems occur with a frequency similar to the hot Jupiters.

  15. A Population of planetary systems characterized by short-period, Earth-sized planets

    PubMed Central

    Steffen, Jason H.; Coughlin, Jeffrey L.

    2016-01-01

    We analyze data from the Quarter 1–17 Data Release 24 (Q1–Q17 DR24) planet candidate catalog from NASA’s Kepler mission, specifically comparing systems with single transiting planets to systems with multiple transiting planets, and identify a population of exoplanets with a necessarily distinct system architecture. Such an architecture likely indicates a different branch in their evolutionary past relative to the typical Kepler system. The key feature of these planetary systems is an isolated, Earth-sized planet with a roughly 1-d orbital period. We estimate that at least 24 of the 144 systems we examined (≳17%) are members of this population. Accounting for detection efficiency, such planetary systems occur with a frequency similar to the hot Jupiters. PMID:27790984

  16. Kepler Media Briefing

    NASA Image and Video Library

    2009-02-19

    Jim Fanson, Kepler project manager, at NASA's Jet Propulsion Laboratory in Pasadena, Calif. holds a model of the Kepler spacecraft as he talks about the Kepler mission during a media briefing, Thursday, Feb. 19, 2008, at NASA Headquarters in Washington. Kepler, the first mission with the ability to find planets like earth, is scheduled to launch on March 5, 2009 from Cape Canaveral Air Force Station, Fla. aboard a Delta II rocket. Photo Credit: (NASA/Paul. E. Alers)

  17. Kepler-90 System Compared to Our Solar System (Artist's Concept)

    NASA Image and Video Library

    2017-12-14

    Our solar system now is tied for most number of planets around a single star, with the recent discovery of an eighth planet circling Kepler-90, a Sun-like star 2,545 light years from Earth. The planet was discovered in data from NASA's Kepler Space Telescope. This artist's concept depicts the Kepler-90 system compared with our own solar system. The newly-discovered Kepler-90i -- a sizzling hot, rocky planet that orbits its star once every 14.4 days -- was found using machine learning from Google. Machine learning is an approach to artificial intelligence in which computers "learn." In this case, computers learned to identify planets by finding in Kepler data instances where the telescope recorded changes in starlight caused by planets beyond our solar system, known as exoplanets. https://photojournal.jpl.nasa.gov/catalog/PIA22193

  18. Compositional Constraints on the Best Characterized Rocky Exoplanet, Kepler-36 b

    NASA Astrophysics Data System (ADS)

    Rogers, Leslie; Deck, Katherine; Lissauer, Jack J.; Carter, Joshua A.

    2015-01-01

    Kepler-36 is an extreme planetary system, consisting of two transiting sub-Neptune-size planets that revolve around a sub-giant star with orbital periods of 13.84 and 16.24 days. Mutual gravitational interactions between the two planets perturb the planets' transit times, allowing the planets' masses to be measured. Despite the similarity of their masses and orbital radii, the planets show a stark contrast in their mean densities; the inner planet (Kepler-36 b) is more than eight times as dense as its outer companion planet (Kepler-36 c). We perform a photo-dynamical analysis of the Kepler-36 system based on more than three years of Kepler photometry. With N-body integrations of initial conditions sampled from the photo-dynamical fits, we further refine the properties of the system by ruling out solutions that show large-scale instability within 5 Giga-days. Ultimately, we measure the planets' masses within 4.2% precision, and the planets' radii with 1.8% precision. Kepler-36 b is currently the rocky exoplanet with the most precisely measured mass and radius. Kepler-36 b's mass and radius are consistent with an Earth-like composition, and an iron-enhanced Mercury-like composition is ruled out.

  19. Compositional Constraints on the Best Characterized Rocky Exoplanet, Kepler-36 b

    NASA Astrophysics Data System (ADS)

    Rogers, Leslie Anne; Deck, Katherine; Lissauer, Jack; Carter, Joshua

    2015-08-01

    Kepler-36 is an extreme planetary system, consisting of two transiting sub-Neptune-size planets that revolve around a sub-giant star with orbital periods of 13.84 and 16.24 days. Mutual gravitational interactions between the two planets perturb the planets' transit times, allowing the planets' masses to be measured. Despite the similarity of their masses and orbital radii, the planets show a stark contrast in their mean densities; the inner planet (Kepler-36 b) is more than eight times as dense as its outer companion planet (Kepler-36 c). We perform a photo-dynamical analysis of the Kepler-36 system based on more than three years of Kepler photometry. With N-body integrations of initial conditions sampled from the photo-dynamical fits, we further refine the properties of the system by ruling out solutions that show large scale instability within 5 Giga-days. Ultimately, we measure the planets' masses within 4.2% precision, and the planets' radii with 1.8% precision. Kepler-36 b is currently the rocky exoplanet with the most precisely measured mass and radius. Kepler-36 b’s mass and radius are consistent with a Earth-like composition, and an iron-enhanced Mercury-like composition is ruled out.

  20. Compositional Constraints on the Best Characterized Rocky Exoplanet, Kepler-36 b

    NASA Astrophysics Data System (ADS)

    Rogers, L.; Deck, K.; Lissauer, J. J.; Carter, J.

    2014-12-01

    Kepler-36 is an extreme planetary system, consisting of two transiting sub-Neptune-size planets that revolve around a sub-giant star with orbital periods of 13.84 and 16.24 days. Mutual gravitational interactions between the two planets perturb the planets' transit times, allowing the planets' masses to be measured. Despite the similarity of their masses and orbital radii, the planets show a stark contrast in their mean densities; the inner planet (Kepler-36 b) is more than eight times as dense as its outer companion planet (Kepler-36 c). We perform a photo-dynamical analysis of the Kepler-36 system based on more than three years of Kepler photometry. With N-body integrations of initial conditions sampled from the photo-dynamical fits, we further refine the properties of the system by ruling out solutions that show large scale instability within 5 Giga-days. Ultimately, we measure the planets' masses within 4.2% precision, and the planets' radii with 1.8% precision. Kepler-36 b is currently the rocky exoplanet with the most precisely measured mass and radius. Kepler-36 b's mass and radius are consistent with a Earth-like composition, and an iron-enhanced Mercury-like composition is ruled out.

  1. Exoplanet studies. Spectral confirmation of photometric exoplanet candidates discovered by the "Kepler" mission

    NASA Astrophysics Data System (ADS)

    Gadelshin, D. R.; Valyavin, G. G.; Yushkin, M. V.; Semenko, E. A.; Galazutdinov, G. A.; Maryeva, O. V.; Valeev, A. F.; Lee, Byeong-Cheol

    2017-07-01

    We present the results of spectroscopic confirmation of exoplanet candidates from the "Kepler" space mission catalog. We used the NES spectrometer of the 6-m Russian BTA telescope to investigate the Doppler variability of the radial velocities of the host stars of KOI-974.01, KOI-2687.01/02, and KOI-2706.01. According to the derived upper limits, KOI-2706.01 has a mass significantly smaller than 12 Jupiter masses, which directly indicates its planetary nature. We show that KOI-2687.01 and KOI-2687.02, which have Earth-size or white dwarf-size radii according to photometric data, cannot be white dwarfs, and are therefore exoplanets. Radial velocity analysis for KOI-974, an F-type star, has shown noticeable variations with a half-amplitude of 400 ms-1, which correlate poorly with the phase of its orbital rotation. This can indicate a presence of other massive planets in the system, with orbits closer or farther from the host star than the orbit of KOI-974.01, or a low mass star in a distant outer orbit. Using the method of synthetic spectra, we obtained more accurate atmospheric parameter and radius estimates for all the program host stars, which, in turn, allowed us to refine the radii of the studied exoplanet candidates.

  2. Kepler-447b: a hot-Jupiter with an extremely grazing transit

    NASA Astrophysics Data System (ADS)

    Lillo-Box, J.; Barrado, D.; Santos, N. C.; Mancini, L.; Figueira, P.; Ciceri, S.; Henning, Th.

    2015-05-01

    We present the radial velocity confirmation of the extrasolar planet Kepler-447b, initially detected as a candidate by the Kepler mission. In this work, we analyzeits transit signal and the radial velocity data obtained with the Calar Alto Fiber-fed Echelle spectrograph (CAFE). By simultaneously modeling both datasets, we obtain the orbital and physical properties of the system. According to our results, Kepler-447b is a Jupiter-mass planet (Mp = 1.37+0.48-0.46 MJup), with an estimated radius of Rp = 1.65+0.59-0.56 RJup (uncertainties provided in this work are 3σ unless specified). This translates into a sub-Jupiter density. The planet revolves every ~7.8 days in a slightly eccentric orbit (e = 0.123+0.037-0.036) around a G8V star with detected activity in the Kepler light curve. Kepler-447b transits its host with a large impact parameter (b = 1.076+0.112-0.086), which is one of the few planetary grazing transits confirmed so far and the first in the Kepler large crop of exoplanets. We estimate that only around 20% of the projected planet disk occults the stellar disk. The relatively large uncertainties in the planet radius are due to the large impact parameter and short duration of the transit. Planetary transits with large impact parameters (and in particular grazing transits) can be used to detect and analyze interesting configurations, such as additional perturbing bodies, stellar pulsations, rotation of a non-spherical planet, or polar spot-crossing events. All these scenarios will periodically modify the transit properties (depth, duration, and time of mid-transit), which could be detectable with sufficiently accurate photometry. Short-cadence photometric data (at the 1-min level) would help in the search for these exotic configurations in grazing planetary transits like that of Kepler-447b. This system could then be an excellent target for the forthcoming missions TESS and CHEOPS, which will provide the required photometric precision and cadence to study

  3. Kepler Media Briefing

    NASA Image and Video Library

    2009-02-19

    Jim Fanson, Kepler project manager, right, talks about the Kepler mission as William Borucki, left, listens during a media briefing, Thursday, Feb. 19, 2008, at NASA Headquarters in Washington. Kepler, the first mission with the ability to find planets like earth, is scheduled to launch on March 5, 2009 from Cape Canaveral Air Force Station, Fla. aboard a Delta II rocket. Photo Credit: (NASA/Paul. E. Alers)

  4. The architecture and formation of the Kepler-30 planetary system

    NASA Astrophysics Data System (ADS)

    Panichi, F.; Goździewski, K.; Migaszewski, C.; Szuszkiewicz, E.

    2018-04-01

    We study the orbital architecture, physical characteristics of planets, formation and long-term evolution of the Kepler-30 planetary system, detected and announced in 2012 by the KEPLER team. We show that the Kepler-30 system belongs to a particular class of very compact and quasi-resonant, yet long-term stable planetary systems. We re-analyse the light curves of the host star spanning Q1-Q17 quarters of the KEPLER mission. A huge variability of the Transit Timing Variations (TTV) exceeding 2 days is induced by a massive Jovian planet located between two Neptune-like companions. The innermost pair is near to the 2:1 mean motion resonance (MMR), and the outermost pair is close to higher order MMRs, such as 17:7 and 7:3. Our re-analysis of photometric data allows us to constrain, better than before, the orbital elements, planets' radii and masses, which are 9.2 ± 0.1, 536 ± 5, and 23.7 ± 1.3 Earth masses for Kepler-30b, Kepler-30c and Kepler-30d, respectively. The masses of the inner planets are determined within ˜1% uncertainty. We infer the internal structures of the Kepler-30 planets and their bulk densities in a wide range from (0.19 ± 0.01) g.cm-3 for Kepler-30d, (0.96 ± 0.15) g.cm-3 for Kepler-30b, to (1.71 ± 0.13) g.cm-3 for the Jovian planet Kepler-30c. We attempt to explain the origin of this unique planetary system and a deviation of the orbits from exact MMRs through the planetary migration scenario. We anticipate that the Jupiter-like planet plays an important role in determining the present dynamical state of this system.

  5. PEPSI deep spectra. III. Chemical analysis of the ancient planet-host star Kepler-444

    NASA Astrophysics Data System (ADS)

    Mack, C. E.; Strassmeier, K. G.; Ilyin, I.; Schuler, S. C.; Spada, F.; Barnes, S. A.

    2018-04-01

    Context. With the Large Binocular Telescope (LBT), we obtained a spectrum with PEPSI, its new optical high-resolution échelle spectrograph. The spectrum has very high resolution and a high signal-to-noise (S/N) and is of the K0V host Kepler-444, which is known to host five sub-Earth-sized rocky planets. The spectrum has a resolution of R ≈ 250 000, a continuous wavelength coverage from 4230 Å to 9120 Å, and an S/N between 150-550:1 (blue to red). Aim. We performed a detailed chemical analysis to determine the photospheric abundances of 18 chemical elements. These were used to place constraints on the bulk composition of the five rocky planets. Methods: Our spectral analysis employs the equivalent-width method for most of our spectral lines, but we used spectral synthesis to fit a small number of lines that required special care. In both cases, we derived our abundances using the MOOG spectral analysis package and Kurucz model atmospheres. Results: We find no correlation between elemental abundance and condensation temperature among the refractory elements (TC > 950 K). In addition, using our spectroscopic stellar parameters and isochrone fitting, we find an age of 10 ± 1.5 Gyr, which is consistent with the asteroseismic age of 11 ± 1 Gyr. Finally, from the photospheric abundances of Mg, Si, and Fe, we estimate that the typical Fe-core mass fraction for the rocky planets in the Kepler-444 system is approximately 24%. Conclusions: If our estimate of the Fe-core mass fraction is confirmed by more detailed modeling of the disk chemistry and simulations of planet formation and evolution in the Kepler-444 system, then this would suggest that rocky planets in more metal-poor and α-enhanced systems may tend to be less dense than their counterparts of comparable size in more metal-rich systems. Based on data acquired with PEPSI using the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in the United States, Italy, and

  6. Kepler Media Briefing

    NASA Image and Video Library

    2009-02-19

    Jim Fanson, Kepler project manager, at NASA's Jet Propulsion Laboratory in Pasadena, Calif. talks about the Kepler mission during a media briefing, Thursday, Feb. 19, 2008, at NASA Headquarters in Washington. Kepler, the first mission with the ability to find planets like earth, is scheduled to launch on March 5, 2009 from Cape Canaveral Air Force Station, Fla. aboard a Delta II rocket. Photo Credit: (NASA/Paul. E. Alers)

  7. Kepler Media Briefing

    NASA Image and Video Library

    2009-02-19

    William Borucki, principal investigator for Kepler Science at Ames Research Center, Moffett Field, Calif., talks about the Kepler mission during a media briefing, Thursday, Feb. 19, 2008, at NASA Headquarters in Washington. Kepler, the first mission with the ability to find planets like earth, is scheduled to launch on March 5, 2009 from Cape Canaveral Air Force Station, Fla. aboard a Delta II rocket. Photo Credit: (NASA/Paul. E. Alers)

  8. Kepler Media Briefing

    NASA Image and Video Library

    2009-02-19

    Jim Fanson, Kepler project manager, center, talks about the Kepler mission as William Borucki, left, and Debra Fischer, right, listen during a media briefing, Thursday, Feb. 19, 2008, at NASA Headquarters in Washington. Kepler, the first mission with the ability to find planets like earth, is scheduled to launch on March 5, 2009 from Cape Canaveral Air Force Station, Fla. aboard a Delta II rocket. Photo Credit: (NASA/Paul. E. Alers)

  9. Kepler Press Conference

    NASA Image and Video Library

    2009-08-05

    William Bo-Ricki, Kepler principal investigator at NASA's Ames Research Center, speaks during a press conference, Thursday, Aug. 6, 2009, at NASA Headquarters in Washington about the scientific observations coming from the Kepler spacecraft that was launched this past March. Kepler is NASA's first mission that is capable of discovering earth-sized planets in the habitable zones of stars like our Sun. Photo Credit: (NASA/Paul E. Alers)

  10. Potential Habitable Zone Exomoon Candidates and Radial Velocity Estimates for Giant Kepler HZ Candidates

    NASA Astrophysics Data System (ADS)

    Hill, M. L.; Kane, S. R.; Duarte, E. S.; Kopparapu, R. K.; Gelino, D. M.; Whittenmyer, R. A.

    2017-11-01

    We found 39 planet candidates greater than 3 earth radii residing in the Optimistic Habitable Zone of their host star. While giant planets aren't favored in the search for eta Earth, they indicate potential for moons residing in the habitable zone.

  11. On the Detection of Non-transiting Hot Jupiters in Multiple-planet Systems

    NASA Astrophysics Data System (ADS)

    Millholland, Sarah; Wang, Songhu; Laughlin, Gregory

    2016-05-01

    We outline a photometric method for detecting the presence of a non-transiting short-period giant planet in a planetary system harboring one or more longer-period transiting planets. Within a prospective system of the type that we consider, a hot Jupiter on an interior orbit inclined to the line of sight signals its presence through approximately sinusoidal full-phase photometric variations in the stellar light curve, correlated with astrometrically induced transit timing variations for exterior transiting planets. Systems containing a hot Jupiter along with a low-mass outer planet or planets on inclined orbits are a predicted hallmark of in situ accretion for hot Jupiters, and their presence can thus be used to test planetary formation theories. We outline the prospects for detecting non-transiting hot Jupiters using photometric data from typical Kepler objects of interest (KOIs). As a demonstration of the technique, we perform a brief assessment of Kepler candidates and identify a potential non-transiting hot Jupiter in the KOI-1822 system. Candidate non-transiting hot Jupiters can be readily confirmed with a small number of Doppler velocity observations, even for stars with V ≳ 14.

  12. THE HUNT FOR EXOMOONS WITH KEPLER (HEK). I. DESCRIPTION OF A NEW OBSERVATIONAL PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kipping, D. M.; Bakos, G. A.; Buchhave, L.

    2012-05-10

    Two decades ago, empirical evidence concerning the existence and frequency of planets around stars, other than our own, was absent. Since that time, the detection of extrasolar planets from Jupiter-sized to, most recently, Earth-sized worlds has blossomed and we are finally able to shed light on the plurality of Earth-like, habitable planets in the cosmos. Extrasolar moons may also be frequently habitable worlds, but their detection or even systematic pursuit remains lacking in the current literature. Here, we present a description of the first systematic search for extrasolar moons as part of a new observational project called 'The Hunt formore » Exomoons with Kepler' (HEK). The HEK project distills the entire list of known transiting planet candidates found by Kepler (2326 at the time of writing) down to the most promising candidates for hosting a moon. Selected targets are fitted using a multimodal nested sampling algorithm coupled with a planet-with-moon light curve modeling routine. By comparing the Bayesian evidence of a planet-only model to that of a planet-with-moon, the detection process is handled in a Bayesian framework. In the case of null detections, upper limits derived from posteriors marginalized over the entire prior volume will be provided to inform the frequency of large moons around viable planetary hosts, {eta} leftmoon. After discussing our methodologies for target selection, modeling, fitting, and vetting, we provide two example analyses.« less

  13. Kepler Discovery

    NASA Image and Video Library

    2011-02-02

    William Borucki, Kepler Science Principal Investigator from NASA's Ames Research Center, second from left, speaks during a news conference, Wednesday, Feb. 2, 2010, at NASA Headquarters in Washington as Douglas Hudgins, left, Jack Lissauer and Debra Fischer, far right, look on. Scientists using NASA's Kepler, a space telescope, recently discovered six planets made of a mix of rock and gases orbiting a single sun-like star, known as Kepler-11, which is located approximately 2,000 light years from Earth. Photo Credit: (NASA/Paul E. Alers)

  14. THE ROLE OF CORE MASS IN CONTROLLING EVAPORATION: THE KEPLER RADIUS DISTRIBUTION AND THE KEPLER-36 DENSITY DICHOTOMY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Eric D.; Fortney, Jonathan J.

    2013-10-10

    We use models of coupled thermal evolution and photo-evaporative mass loss to understand the formation and evolution of the Kepler-36 system. We show that the large contrast in mean planetary density observed by Carter et al. can be explained as a natural consequence of photo-evaporation from planets that formed with similar initial compositions. However, rather than being due to differences in XUV irradiation between the planets, we find that this contrast is due to the difference in the masses of the planets' rock/iron cores and the impact that this has on mass-loss evolution. We explore in detail how our coupledmore » models depend on irradiation, mass, age, composition, and the efficiency of mass loss. Based on fits to large numbers of coupled evolution and mass-loss runs, we provide analytic fits to understand threshold XUV fluxes for significant atmospheric loss, as a function of core mass and mass-loss efficiency. Finally we discuss these results in the context of recent studies of the radius distribution of Kepler candidates. Using our parameter study, we make testable predictions for the frequency of sub-Neptune-sized planets. We show that 1.8-4.0 R{sub ⊕} planets should become significantly less common on orbits within 10 days and discuss the possibility of a narrow 'occurrence valley' in the radius-flux distribution. Moreover, we describe how photo-evaporation provides a natural explanation for the recent observations of Ciardi et al. that inner planets are preferentially smaller within the systems.« less

  15. Masses of Kepler-46b, c from Transit Timing Variations

    NASA Astrophysics Data System (ADS)

    Saad-Olivera, Ximena; Nesvorný, David; Kipping, David M.; Roig, Fernando

    2017-04-01

    We use 16 quarters of the Kepler mission data to analyze the transit timing variations (TTVs) of the extrasolar planet Kepler-46b (KOI-872). Our dynamical fits confirm that the TTVs of this planet (period P={33.648}-0.005+0.004 days) are produced by a non-transiting planet Kepler-46c (P={57.325}-0.098+0.116 days). The Bayesian inference tool MultiNest is used to infer the dynamical parameters of Kepler-46b and Kepler-46c. We find that the two planets have nearly coplanar and circular orbits, with eccentricities ≃ 0.03 somewhat higher than previously estimated. The masses of the two planets are found to be {M}b={0.885}-0.343+0.374 and {M}c={0.362}-0.016+0.016 Jupiter masses, with M b being determined here from TTVs for the first time. Due to the precession of its orbital plane, Kepler-46c should start transiting its host star a few decades from now.

  16. Measuring the Masses of K2 Planets with HARPS-N to Determine the Conditions Under Which Planets Retain, or Lose, their Primordial Envelopes

    NASA Astrophysics Data System (ADS)

    Lopez-Morales, Mercedes

    One of the main findings of NASA's Kepler Mission has been an abundance of planets with radii between that of Neptune and Earth around solar type stars, the so-called miniNeptunes and super-Earths. There is no equivalent of those planets in our Solar System, but about 80 percent of the candidates in the Kepler catalog are in this size range. Therefore, they appear to be the most common type of planets around solar type stars. In spite of their large numbers, we still know very little about the masses of mini-Neptunes and super-Earths, and their densities. There has been some recent progress on this topic, for e.g. as part of an ongoing XRP proposal (14-XRP14_20071; P.I. Charbonneau), our team has measured precise masses for 8 planets with radii between 1 and 2.5 Earths with HARPS-N, and found that all planets smaller than 1.6 Earth radii have core masses consistent with Earth's, while all planets larger than 1.6 Earth radii have H/He envelopes. The current hypothesis is that this is an insolation effect, since all the rocky planets with precise mass measurements are in very short orbits. However, that hypothesis has not been fully tested, and many other questions about the formation and evolution of these small planets remain unsolved, i.e. what is the rocky/non-rocky ratio of these planets? Are the observed rocky planets evaporated cores of sub-Neptunes, or did they form as bare cores? Can very short period planets retain a significant envelope? Is the currently hypothesized non-rocky/rocky transition at 1.5-1.7 Earth radii real? Precision radial velocity mass measurements so far suffer from an observational bias, in which larger radius planets with small radial velocity signals have been overlooked. These cases would form a population of very low-mass, gaseous planets, which 1) disagree with the current conclusion that all low mass planets below 6 Earth masses are rocky, 2) serve to test current formation/gas accretion and evaporation models, and 3) have large

  17. THE ALBEDOS OF KEPLER'S CLOSE-IN SUPER-EARTHS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demory, Brice-Olivier, E-mail: bod21@cam.ac.uk

    Exoplanet research focusing on the characterization of super-Earths is currently limited to the handful of targets orbiting bright stars that are amenable to detailed study. This Letter proposes to look at alternative avenues to probe the surface and atmospheric properties of this category of planets, known to be ubiquitous in our galaxy. I conduct Markov Chain Monte Carlo light-curves analyses for 97 Kepler close-in R{sub P} ≲ 2.0 R {sub ⊕} super-Earth candidates with the aim of detecting their occultations at visible wavelengths. Brightness temperatures and geometric albedos in the Kepler bandpass are constrained for 27 super-Earth candidates. A hierarchicalmore » Bayesian modeling approach is then employed to characterize the population-level reflective properties of these close-in super-Earths. I find median geometric albedos A{sub g} in the Kepler bandpass ranging between 0.16 and 0.30, once decontaminated from thermal emission. These super-Earth geometric albedos are statistically larger than for hot Jupiters, which have medians A{sub g} ranging between 0.06 and 0.11. A subset of objects, including Kepler-10b, exhibit significantly larger albedos (A{sub g} ≳ 0.4). I argue that a better understanding of the incidence of stellar irradation on planetary surface and atmospheric processes is key to explain the diversity in albedos observed for close-in super-Earths.« less

  18. Reduced Activity and Large Particles from the Disintegrating Planet Candidate KIC 12557548b

    NASA Astrophysics Data System (ADS)

    Schlawin, E.; Herter, T.; Zhao, M.; Teske, J. K.; Chen, H.

    2016-08-01

    The intriguing exoplanet candidate KIC 12557548b is believed to have a comet-like tail of dusty debris trailing a small rocky planet. The tail of debris scatters up to 1.3% of the stellar light in the Kepler observatory’s bandpass (0.42-0.9 μm). Observing the tail’s transit depth at multiple wavelengths can reveal the composition and particle size of the debris, constraining the makeup and lifetime of the sub-Mercury planet. Early dust particle size predictions from the scattering of the comet-like tail pointed toward a dust size of ˜0.1 μm for silicate compositions. These small particles would produce a much deeper optical transit depth than near-infrared transit depth. We measure a transmission spectrum for KIC 12557548b using the SpeX spectrograph (covering 0.8-2.4 μm) simultaneously with the MORIS imager taking r‧ (0.63 μm) photometry on the Infrared Telescope Facility for eight nights and one night in H band (1.63 μm) using the Wide-field IR Camera at the Palomar 200 inch telescope. The infrared spectra are plagued by systematic errors, but we argue that sufficient precision is obtained when using differential spectroscopic calibration when combining multiple nights. The average differential transmission spectrum is flat, supporting findings that KIC 12557548b’s debris is likely composed of larger particles ≳0.5 μm for pyroxene and olivine and ≳0.2 μm for iron and corundum. The r‧ photometric transit depths are all below the average Kepler value, suggesting that the observations occurred during a weak period or that the mechanisms producing optical broadband transit depths are suppressed.

  19. Kepler Press Conference

    NASA Image and Video Library

    2009-08-05

    Jon Morse, NASA's Astrophysics Division Director, left, speaks during a press conference, Thursday, Aug. 6, 2009, at NASA Headquarters in Washington about the scientific observations coming from the Kepler spacecraft that was launched this past March asWilliam Bo-Ricki, Kepler principal investigator at NASA's Ames Research Center, looks on. Kepler is NASA's first mission that is capable of discovering earth-sized planets in the habitable zones of stars like our Sun. Photo Credit: (NASA/Paul E. Alers)

  20. The Kepler Mission: From Concept to Operations

    NASA Astrophysics Data System (ADS)

    Koch, David G.

    2011-01-01

    From concept to launch and operations, what became the Kepler mission took a quarter of a century to create. We will review some of the steps along the way, the challenges, opportunities, strategic decisions and choices that had to be made that resulted in a mission that has the capability to detect and determine the frequencies of Earth-size planets in or near the habitable zone of solar-like stars. The process of going from starlight focused onto individual pixels to declaration of a planet detection is long and complex. Data for each star are recorded on the spacecraft and telemetered to the ground once per month. The raw pixel data are processed to produce light curves for each star. The light curves are processed to search for sequences of transits. A team of scientists examines the output to decide which meet the many validation criteria and qualify as candidates. Next an extensive series of ground-based follow-up observations are performed on the candidates now numbering in excess of 700. The objective is to eliminate false positive cases, while simultaneously improving our knowledge of the parent stars. Extensive analysis and modeling is performed on both the original photometric data and the newly acquired ground-based data to ascertain the true nature of each candidate. On the order of one-quarter to one-half of the candidates are rejected, mostly as some form of eclipsing binary. Of the remaining, some meet all the criteria and are submitted by the science team for peer-reviewed publications. Others may just require more data or may be left as undecided candidates for future research. An extended mission beyond 3.5 years will significantly improve the results from the Kepler mission, especially by covering the outer portion of the habitable zone for solar-like stars.

  1. Characterization and Validation of Transiting Planets in the TESS SPOC Pipeline

    NASA Astrophysics Data System (ADS)

    Twicken, Joseph D.; Caldwell, Douglas A.; Davies, Misty; Jenkins, Jon Michael; Li, Jie; Morris, Robert L.; Rose, Mark; Smith, Jeffrey C.; Tenenbaum, Peter; Ting, Eric; Wohler, Bill

    2018-06-01

    Light curves for Transiting Exoplanet Survey Satellite (TESS) target stars will be extracted and searched for transiting planet signatures in the Science Processing Operations Center (SPOC) Science Pipeline at NASA Ames Research Center. Targets for which the transiting planet detection threshold is exceeded will be processed in the Data Validation (DV) component of the Pipeline. The primary functions of DV are to (1) characterize planets identified in the transiting planet search, (2) search for additional transiting planet signatures in light curves after modeled transit signatures have been removed, and (3) perform a comprehensive suite of diagnostic tests to aid in discrimination between true transiting planets and false positive detections. DV data products include extensive reports by target, one-page summaries by planet candidate, and tabulated transit model fit and diagnostic test results. DV products may be employed by humans and automated systems to vet planet candidates identified in the Pipeline. TESS will launch in 2018 and survey the full sky for transiting exoplanets over a period of two years. The SPOC pipeline was ported from the Kepler Science Operations Center (SOC) codebase and extended for TESS after the mission was selected for flight in the NASA Astrophysics Explorer program. We describe the Data Validation component of the SPOC Pipeline. The diagnostic tests exploit the flux (i.e., light curve) and pixel time series associated with each target to support the determination of the origin of each purported transiting planet signature. We also highlight the differences between the DV components for Kepler and TESS. Candidate planet detections and data products will be delivered to the Mikulski Archive for Space Telescopes (MAST); the MAST URL is archive.stsci.edu/tess. Funding for the TESS Mission has been provided by the NASA Science Mission Directorate.

  2. Reborn Kepler Discovers First K2 Exoplanet Artist Concept

    NASA Image and Video Library

    2014-12-18

    This artist concept shows NASA planet-hunting Kepler spacecraft operating in a new mission profile called K2. Using publicly available data, astronomers have confirmed K2 first exoplanet discovery proving Kepler can still find planets.

  3. Kepler Press Conference

    NASA Image and Video Library

    2009-08-05

    William Bo-Ricki, Kepler principal investigator at NASA's Ames Research Center, second from left, speaks during a press conference, Thursday, Aug. 6, 2009, at NASA Headquarters in Washington about the scientific observations coming from the Kepler spacecraft that was launched this past March as Jon Morse, NASA's Astrophysics Division Director, left, looks on. Kepler is NASA's first mission that is capable of discovering earth-sized planets in the habitable zones of stars like our Sun. Photo Credit: (NASA/Paul E. Alers)

  4. Kepler Press Conference

    NASA Image and Video Library

    2009-08-05

    William Bo-Ricki, Kepler principal investigator at NASA's Ames Research Center, second from left, is joined by Jon Morse, left, Sara Seager, and Alan Boss while speaking at a press conference, Thursday, Aug. 6, 2009, at NASA Headquarters in Washington about the scientific observations coming from the Kepler spacecraft that was launched this past March. Kepler is NASA's first mission that is capable of discovering earth-sized planets in the habitable zones of stars like our Sun. Photo Credit: (NASA/Paul E. Alers)

  5. Kepler Media Briefing

    NASA Image and Video Library

    2009-02-19

    William Borucki, principal investigator for Kepler Science at Ames Research Center, Moffett Field, Calif., second from left, is seen through a television camer monitor as he talks about the Kepler mission during a media briefing, Thursday, Feb. 19, 2008, at NASA Headquarters in Washington. Kepler, the first mission with the ability to find planets like earth, is scheduled to launch on March 5, 2009 from Cape Canaveral Air Force Station, Fla. aboard a Delta II rocket. Photo Credit: (NASA/Paul. E. Alers)

  6. VizieR Online Data Catalog: AO imaging of KOIs with gas giant planets (Wang+, 2015)

    NASA Astrophysics Data System (ADS)

    Wang, J.; Fischer, D. A.; Horch, E. P.; Xie, J.-W.

    2017-09-01

    From the NASA Exoplanet Archive (http://exoplanetarchive.ipac.caltech.edu), we select Kepler Objects of Interest (KOIs) that satisfy the following criteria: (1) disposition of either Candidate or Confirmed, (2) stellar effective temperature (Teff) lower than 6500 K, (3) stellar surface gravity (log g) higher than 4.0, (4) Kepler magnitude (KP) brighter than 14th mag, (5) with at least one gas giant planet (3.8 R{earth}=planets. Stellar and orbital parameters for these KOIs are given in Table 1. The median distance of these KOIs is 580 pc. There are 27 multi-planet systems among 84 KOIs. (2 data files).

  7. VizieR Online Data Catalog: Robo-AO Kepler planetary candidate survey. II. (Baranec+, 2016)

    NASA Astrophysics Data System (ADS)

    Baranec, C.; Ziegler, C.; Law, N. M.; Morton, T.; Riddle, R.; Atkinson, D.; Schonhut, J.; Crepp, J.

    2016-10-01

    We selected targets that we had not previously observed from the KOI Catalog based on the Q1-Q12 Kepler data (Rowe et al. 2015, Cat. J/ApJS/217/16). These targets were added to the Robo-AO intelligent observing queue and observed during the summer of 2013. We obtained high angular resolution images of 956 Kepler planet candidate host stars with the Robo-AO robotic laser AOs system over the course of 19 nights between 2013 July 21 and 2013 October 25, detailed in Table5. We also include 13 images from 2012 (2012 July 16-September 13) that required additional confirmation of the KOI position in the Robo-AO field of view. All the observations were performed in a queue-scheduled mode in combination with other science programs using the Robo-AO autonomous laser AO system mounted on the robotic 1.5m telescope at Palomar Observatory (exposure time: 90s; observation wavelengths: 600-950nm; FWHM resolution: 0.12''-0.15''; field of view: 44''*44''; pixel scale: 43.1mas/pix; detector format: 10242 pixels; targets observed/hour: 20). We obtained images of 50 KOIs with the NIRC2 instrument behind the Keck II AO system that were previously observed with Robo-AO and had evidence of a companion. Observations were conducted on 2013 June 25, 2013 August 24 and 25, 2014 August 17, and 2015 July 25 in the K, Ks, or Kp filters, and in the narrow mode of NIRC2 (9.952mas/pixel). (4 data files).

  8. The Kepler Mission and the International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    Harman, Pamela; DeVore, E.; Gould, A.; Koch, D.

    2008-05-01

    Johannes Kepler was one of Galileo's contemporaries, publishing New Astronomy defining his first two laws, nearly 400 years ago, in 1609. It is a fitting tribute that the Kepler Mission launches in 2009. Kepler continued his studies of motion and made observations of satellites of Jupiter, and published his third law. We now recognize Kepler's laws as 1. Planets move in elliptical; 2. The planets move such that the line between the Sun and the Planet sweeps out equal areas in equal time no matter where in the orbit; and 3. The square of the period of the orbit of a planet is proportional to the mean distance from the Sun cubed. Kepler's laws were deduced empirically from the motions of the planet Mars in the early 17th century, before Newton deduced the law of gravity and his laws of motion. The Kepler Mission, a NASA Discovery mission, is specifically designed to survey our region of the Milky Way galaxy to detect and characterize hundreds of Earth-size and smaller planets in or near the habitable zone. The habitable zone encompasses the distances from a star where liquid water can exist on a planet's surface. Results from this mission will allow us to place our solar system within the continuum of planetary systems in the Galaxy. The Mission Education and Public Outreach (EPO) Program has developed a Night Sky Network (NSN) outreach kit, Shadows and Silhouettes. This NSN kit is used by amateur astronomers at school and public observing events to illustrate a transit, and explain eclipses.

  9. VizieR Online Data Catalog: Transit times of Kepler-448b and Kepler-693b (Masuda, 2017)

    NASA Astrophysics Data System (ADS)

    Masuda, K.

    2017-11-01

    I analyzed Transit Timing Variations (TTVs) of 23 confirmed, singly transiting warm Jupiters (WJs; Section 2.1) with an orbital period of 7days8R{Earth} in the DR24 of the KOI catalog (Coughlin et al. 2016, Cat. J/ApJS/224/12). Systems with multiple KOIs are all excluded, even though they consist of only one confirmed planet and false positives. I found clearly non-sinusoidal TTVs for Kepler-448/KOI-12b, Kepler-693/KOI-824b, and Kepler-419/KOI-1474b. The result is consistent with the TTV search by Holczer et al. 2016 (Cat. J/ApJS/225/9), who reported significant long-term TTVs for the same three KOIs in our sample. Of these planets, the TTVs of Kepler-419b have previously been analyzed by Dawson et al. (2014ApJ...791...89D). Therefore, I focus on Kepler-448b and Kepler-693b. (3 data files).

  10. Kepler: A Search for Terrestrial Planets. K2 Handbook

    NASA Technical Reports Server (NTRS)

    Van Cleve, Jeffrey; Bryson, Steve

    2017-01-01

    The Kepler spacecraft was repurposed for the K2 mission a year after the failure of the second of Kepler's four reaction wheels in 2013 May. The purpose of this document, the K2 Handbook (K2H), is to describe features of K2 operations, performance, data analysis, and archive products which are common to most K2 campaigns, but different in degree or kind from the corresponding features of the Kepler mission.The K2 Handbook is meant to be read with the following companion documents, which are all publicly available:1. Kepler Instrument Handbook (KSCI-19033) provides information about the design, performance and operational constraints of the instrument and an overview of the types of pixel data that are available.2. Kepler Data Processing Handbook (KSCI-19081) describes how pixels downloaded from the spacecraft are converted by the Kepler Data Processing Pipeline into the data products available at the MAST archive3. Kepler Archive Manual (KDMC-100008) describes the format and content of the data products and how to search for them.4. Kepler Data Characteristics Handbook (KSCI-19040) describes recurring non-astrophysical features of the Kepler data due to instrument signatures, spacecraft events or solar activity and explains how these characteristics are handled by the Kepler pipeline.5. The Ecliptic Plane Input Catalog describes the provenance of the positions and Kepler magnitudes used for target management and aperature photometry.6. K2 Data Release Notes (DRN) are on-line documents available on the K2 science website which describe the data inventory, instrumental signatures and events peculiar to individual observing campaigns.

  11. Kepler Discovery

    NASA Image and Video Library

    2011-02-02

    Debra Fischer, a professor of Astronomy at Yale University, speaks during a news conference, Wednesday, Feb. 2, 2010, at NASA Headquarters in Washington. Scientists using NASA's Kepler, a space telescope, recently discovered six planets made of a mix of rock and gases orbiting a single sun-like star, known as Kepler-11, which is located approximately 2,000 light years from Earth. Photo Credit: (NASA/Paul E. Alers)

  12. The Kepler and K2 Near-Infrared Transit Survey (KNITS)

    NASA Astrophysics Data System (ADS)

    Colon, Knicole; Rodriguez, Joseph E.; Barentsen, Geert; Cardoso, Jose Vinicius de Miranda; Vanderburg, Andrew

    2018-01-01

    NASA's Kepler mission discovered a plethora of transiting exoplanets after observing a single region of the Galaxy for four years. After a second reaction wheel failed, NASA's Kepler spacecraft was repurposed as K2 to observe different fields along the ecliptic in ~80 day campaigns. To date, K2 has discovered ~130 exoplanets along with another ~400 candidates. The exoplanets that have been confirmed or validated from Kepler and K2 have been primarily subject to spectroscopic observations, high-resolution imaging, or statistical methods. However, most of these, along with all the remaining candidate exoplanets, have had no follow-up transit photometry. In addition, recent studies have shown that for single-planet systems, statistical validation alone can be unreliable and additional follow-up observations are required to reveal the true nature of the system. I will present the latest results from an ongoing program to use the 3.5-meter WIYN telescope at Kitt Peak National Observatory for near-infrared transit photometry of Kepler and K2 exoplanets and candidates. Our program of high-precision, high-cadence, high-spatial-resolution near-infrared transit photometry is providing new measurements of the transit ephemerides and planetary radii as well as weeding out false positives lurking within the candidate lists. To date, 25 K2 and 5 Kepler targets have been observed with WIYN. I will also describe upcoming observations with WIYN that will take place in January 2018 as part of a campaign to observe exoplanet transits in the near-infrared simultaneously with the Kepler spacecraft during K2 Campaign 16. Our program ultimately provides a vetted sample of exoplanets that could be targeted in the future by NASA’s James Webb Space Telescope (JWST) and also demonstrates WIYN’s capabilities for observations of exoplanets to be discovered by NASA's all-sky Transiting Exoplanet Survey Satellite (TESS).Data presented herein were obtained at the WIYN Observatory from

  13. An Introduction to Exoplanets and the Kepler Mission

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack

    2014-01-01

    A quarter century ago, the only planets known to humanity were the familiar objects that orbit our Sun. But improved observational techniques allowed astronomers to begin detecting planets around other stars in the 1990s. The first extrasolar planets (often referred to as exoplanets) to be discovered were quite exotic and unfamiliar objects. Most were giant objects that are hundreds of times as massive as the Earth and orbit so close to their star that they are hotter than pizza ovens. But as observational capabilities improved, smaller and cooler planets were found. The most capable planet-hunting tool developed to date is NASA's Kepler telescope, which was launched in 2009. Kepler has found that planets similar in size to our Earth are quite abundant within our galaxy. Results of Kepler's research will be summarized and placed into context within the new and growing discipline of exoplanet studies.

  14. Exoplanet orbital eccentricities derived from LAMOST-Kepler analysis.

    PubMed

    Xie, Ji-Wei; Dong, Subo; Zhu, Zhaohuan; Huber, Daniel; Zheng, Zheng; De Cat, Peter; Fu, Jianning; Liu, Hui-Gen; Luo, Ali; Wu, Yue; Zhang, Haotong; Zhang, Hui; Zhou, Ji-Lin; Cao, Zihuang; Hou, Yonghui; Wang, Yuefei; Zhang, Yong

    2016-10-11

    The nearly circular (mean eccentricity [Formula: see text]) and coplanar (mean mutual inclination [Formula: see text]) orbits of the solar system planets motivated Kant and Laplace to hypothesize that planets are formed in disks, which has developed into the widely accepted theory of planet formation. The first several hundred extrasolar planets (mostly Jovian) discovered using the radial velocity (RV) technique are commonly on eccentric orbits ([Formula: see text]). This raises a fundamental question: Are the solar system and its formation special? The Kepler mission has found thousands of transiting planets dominated by sub-Neptunes, but most of their orbital eccentricities remain unknown. By using the precise spectroscopic host star parameters from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) observations, we measure the eccentricity distributions for a large (698) and homogeneous Kepler planet sample with transit duration statistics. Nearly half of the planets are in systems with single transiting planets (singles), whereas the other half are multiple transiting planets (multiples). We find an eccentricity dichotomy: on average, Kepler singles are on eccentric orbits with [Formula: see text] 0.3, whereas the multiples are on nearly circular [Formula: see text] and coplanar [Formula: see text] degree) orbits similar to those of the solar system planets. Our results are consistent with previous studies of smaller samples and individual systems. We also show that Kepler multiples and solar system objects follow a common relation [[Formula: see text](1-2)[Formula: see text

  15. Conducting Research from Small University Observatories: Investigating Exoplanet Candidates

    NASA Astrophysics Data System (ADS)

    Moreland, Kimberly D.

    2018-01-01

    Kepler has to date discovered 4,496 exoplanet candidates, but only half are confirmed, and only a handful are thought to be Earth sized and in the habitable zone. Planet verification often involves extensive follow-up observations, which are both time and resource intensive. The data set collected by Kepler is massive and will be studied for decades. University/small observatories, such as the one at Texas State University, are in a good position to assist with the exoplanet candidate verification process. By preforming extended monitoring campaigns, which are otherwise cost ineffective for larger observatories, students gain valuable research experience and contribute valuable data and results to the scientific community.

  16. Kepler Media Briefing

    NASA Image and Video Library

    2009-02-19

    William Borucki, principal investigator for Kepler Science at Ames Research Center, Moffett Field, Calif.,, second from left, talks about the Kepler mission during a media briefing, Thursday, Feb. 19, 2008, at NASA Headquarters in Washington. Kepler, the first mission with the ability to find planets like earth, is scheduled to launch on March 5, 2009 from Cape Canaveral Air Force Station, Fla. aboard a Delta II rocket. Joining Borucki at the briefing were Jon Morse, director, Astrophysics Division, NASA Headquarters, Jim Fanson, Kepler project manager at the Jet Propulsion Laboratory and Debra Fischer, a professor of Astronomy at San Francisco State University. Photo Credit: (NASA/Paul. E. Alers)

  17. A search for refraction in the Kepler gas giant data set

    NASA Astrophysics Data System (ADS)

    Sheets, Holly A.; Jacob, Laurent; Cowan, Nicolas; Deming, Drake

    2018-06-01

    I present the results of our systematic search for refraction in the atmospheres of giant planets in the Kepler data set. We chose our candidates using the approximations of Sidis and Sari (ApJ, 2010, 720, 904S), selecting those that had an expected signal greater than 10 parts per million. We model the refraction shoulders as simple exponentials outside of transit and fit a transit+shoulder model to individual candidates. We find that the effect is not present to the extent predicted from the approximations.

  18. SDSS-III MARVELS Planet Candidate RV Follow-up

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Thomas, Neil; Ma, Bo; Li, Rui; SIthajan, Sirinrat

    2014-02-01

    Planetary systems, discovered by the radial velocity (RV) surveys, reveal strong correlations between the planet frequency and stellar properties, such as metallicity and mass, and a greater diversity in planets than found in the solar system. However, due to the sample sizes of extant surveys (~100 to a few hundreds of stars) and their heterogeneity, many key questions remained to be addressed: Do metal poor stars obey the same trends for planet occurrence as metal rich stars? What is the distribution of giant planets around intermediate- mass stars and binaries? Is the ``planet desert'' within 0.6 AU in the planet orbital distribution of intermediate-mass stars real? The MARVELS survey has produced the largest homogeneous RV measurements of 3300 V=7.6-12 FGK stars. The latest data pipeline effort at UF has been able to remove long term systematic errors suffered in the earlier data pipeline. 18 high confident giant planet candidates have been identified among newly processed data. We propose to follow up these giant planet candidates with the KPNO EXPERT instrument to confirm the detection and also characterize their orbits. The confirmed planets will be used to measure occurrence rates, distributions and multiplicity of giants planets around F,G,K stars with a broad range of mass (~0.6-2.5 M_⊙) and metallicity ([Fe/H]~-1.5-0.5). The well defined MARVELS survey cadence allows robust determinations of completeness limits for rigorously testing giant planet formation theories and constraining models.

  19. Kepler-424 b: A 'lonely' hot Jupiter that found A companion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endl, Michael; Caldwell, Douglas A.; Barclay, Thomas

    Hot Jupiter systems provide unique observational constraints for migration models in multiple systems and binaries. We report on the discovery of the Kepler-424 (KOI-214) two-planet system, which consists of a transiting hot Jupiter (Kepler-424b) in a 3.31 day orbit accompanied by a more massive outer companion in an eccentric (e = 0.3) 223 day orbit. The outer giant planet, Kepler-424c, is not detected transiting the host star. The masses of both planets and the orbital parameters for the second planet were determined using precise radial velocity (RV) measurements from the Hobby-Eberly Telescope (HET) and its High Resolution Spectrograph (HRS). Inmore » stark contrast to smaller planets, hot Jupiters are predominantly found to be lacking any nearby additional planets; they appear to be {sup l}onely{sup .} This might be a consequence of these systems having a highly dynamical past. The Kepler-424 planetary system has a hot Jupiter in a multiple system, similar to υ Andromedae. We also present our results for Kepler-422 (KOI-22), Kepler-77 (KOI-127), Kepler-43 (KOI-135), and Kepler-423 (KOI-183). These results are based on spectroscopic data collected with the Nordic Optical Telescope (NOT), the Keck 1 telescope, and HET. For all systems, we rule out false positives based on various follow-up observations, confirming the planetary nature of these companions. We performed a comparison with planetary evolutionary models which indicate that these five hot Jupiters have heavy element contents between 20 and 120 M {sub ⊕}.« less

  20. Discovery and Characterization of Small Planets from the K2 Mission

    NASA Astrophysics Data System (ADS)

    Howard, Andrew

    The K2 mission offers a unique opportunity to find substantial numbers of new transiting planets with host stars much brighter than those found by Kepler -- ideal targets for measurements of planetary atmospheres (with HST and JWST) and planetary masses and densities (with Doppler spectroscopy). The K2 data present unique challenges compared to the Kepler mission. We propose to build on our team's demonstrated successes with the Kepler photometry and in finding exciting new planetary systems in K2 data. We will search for transiting planets in photometry of all stellar K2 targets in each of the first three K2 Campaigns (Fields C0, C1, and C2). We will adapt and enhance our TERRA transit search tool to detect transits in the K2 photometry, and we will assess candidate transiting planets with a suite of K2-specific vetting tools including pixel-level inspection for transit localization, centroid motion tests, and secondary eclipse searches. We will publicly release TERRA and our pixel-level diagnostics for use by other teams in future analyses of K2 and TESS photometry. We will also develop FreeBLEND, a free and open source tool to robustly quantify the probability of false positive detections for individual planet candidates given reduced photometry, constraints from the K2 pixel-level data, adaptive optics imaging, high-resolution stellar spectroscopy, and radial velocity measurements. This tool will be similar to BLENDER for Kepler, but (a) more computationally efficient and useable on the wide range of galactic latitudes that K2 samples and (b) available for use by the entire community. With these tools we will publicly release high-quality (low-noise) reduced photometry of the K2 target stars as well as catalogs of the transiting planets. Host stars in our planet catalogs will be characterized by medium and high-resolution spectroscopy (as appropriate) to yield accurate planet parameters. For a handful of planets in the sample, we will measure masses using Keck

  1. SOPHIE velocimetry of Kepler transit candidates. XII. KOI-1257 b: a highly eccentric three-month period transiting exoplanet

    NASA Astrophysics Data System (ADS)

    Santerne, A.; Hébrard, G.; Deleuil, M.; Havel, M.; Correia, A. C. M.; Almenara, J.-M.; Alonso, R.; Arnold, L.; Barros, S. C. C.; Behrend, R.; Bernasconi, L.; Boisse, I.; Bonomo, A. S.; Bouchy, F.; Bruno, G.; Damiani, C.; Díaz, R. F.; Gravallon, D.; Guillot, T.; Labrevoir, O.; Montagnier, G.; Moutou, C.; Rinner, C.; Santos, N. C.; Abe, L.; Audejean, M.; Bendjoya, P.; Gillier, C.; Gregorio, J.; Martinez, P.; Michelet, J.; Montaigut, R.; Poncy, R.; Rivet, J.-P.; Rousseau, G.; Roy, R.; Suarez, O.; Vanhuysse, M.; Verilhac, D.

    2014-11-01

    In this paper we report a new transiting warm giant planet: KOI-1257 b. It was first detected in photometry as a planet-candidate by the Kepler space telescope and then validated thanks to a radial velocity follow-up with the SOPHIE spectrograph. It orbits its host star with a period of 86.647661 d ± 3 s and a high eccentricity of 0.772 ± 0.045. The planet transits the main star of a metal-rich, relatively old binary system with stars of mass of 0.99 ± 0.05 M⊙ and 0.70 ± 0.07 M⊙ for the primary and secondary, respectively. This binary system is constrained thanks to a self-consistent modelling of the Kepler transit light curve, the SOPHIE radial velocities, line bisector and full-width half maximum (FWHM) variations, and the spectral energy distribution. However, future observations are needed to confirm it. The PASTIS fully-Bayesian software was used to validate the nature of the planet and to determine which star of the binary system is the transit host. By accounting for the dilution from the binary both in photometry and in radial velocity, we find that the planet has a mass of 1.45 ± 0.35 M⊙ , and a radius of 0.94 ± 0.12 R⊙ , and thus a bulk density of 2.1 ± 1.2 g cm-3. The planet has an equilibrium temperature of 511 ± 50 K, making it one of the few known members of the warm-Jupiter population. The HARPS-N spectrograph was also used to observe a transit of KOI-1257 b, simultaneously with a joint amateur and professional photometric follow-up, with the aim of constraining the orbital obliquity of the planet. However, the Rossiter-McLaughlin effect was not clearly detected, resulting in poor constraints on the orbital obliquity of the planet. Based on observations made with SOPHIE on the 1.93 m telescope at Observatoire de Haute-Provence (CNRS), France, and with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish

  2. Giant Planet Candidates, Brown Dwarfs, and Binaries from the SDSS-III MARVELS Planet Survey.

    NASA Astrophysics Data System (ADS)

    Thomas, Neil; Ge, Jian; Li, Rui; de Lee, Nathan M.; Heslar, Michael; Ma, Bo; SDSS-Iii Marvels Team

    2015-01-01

    We report the discoveries of giant planet candidates, brown dwarfs, and binaries from the SDSS-III MARVELS survey. The finalized 1D pipeline has provided 18 giant planet candidates, 16 brown dwarfs, and over 500 binaries. An additional 96 targets having RV variability indicative of a giant planet companion are also reported for future investigation. These candidates are found using the advanced MARVELS 1D data pipeline developed at UF from scratch over the past three years. This pipeline carefully corrects most of the instrument effects (such as trace, slant, distortion, drifts and dispersion) and observation condition effects (such as illumination profile, fiber degradation, and tracking variations). The result is long-term RV precisions that approach the photon limits in many cases for the ~89,000 individual stellar observations. A 2D version of the pipeline that uses interferometric information is nearing completion and is demonstrating a reduction of errors to half the current levels. The 2D processing will be used to increase the robustness of the detections presented here and to find new candidates in RV regions not confidently detectable with the 1D pipeline. The MARVELS survey has produced the largest homogeneous RV measurements of 3300 V=7.6-12 FGK stars with a well defined cadence of 27 RV measurements over 2 years. The MARVELS RV data and other follow-up data (photometry, high contrast imaging, high resolution spectroscopy and RV measurements) will explore the diversity of giant planet companion formation and evolution around stars with a broad range in metallicity (Fe/H -1.5-0.5), mass ( 0.6-2.5M(sun)), and environment (thin disk and thick disk), and will help to address the key scientific questions identified for the MARVELS survey including, but not limited to: Do metal poor stars obey the same trends for planet occurrence as metal rich stars? What is the distribution of giant planets around intermediate-mass stars and binaries? Is the 'planet desert

  3. Characterizing K2 Planet Discoveries

    NASA Astrophysics Data System (ADS)

    Vanderburg, Andrew; Montet, Benjamin; Johnson, John; Buchhave, Lars A.; Zeng, Li; Bieryla, Allyson; Latham, David W.; Charbonneau, David; Harps-N Collaboration, The Robo-Ao Team

    2015-01-01

    We present an effort to confirm the first planet discovered by the two-wheeled Kepler mission. We analyzed K2 photometry, correcting for nonuniform detector response as a function of the spacecraft's pointing, and detected a transiting planet candidate. We describe our multi-telescope followup observing campaign, consisting of photometric, spectroscopic, and high resolution imaging observations, including over 40 HARPS-N radial velocity measurements. The new planet is a super-Earth orbiting a bright star amenable to followup observations. HARPS-N was funded by the Swiss Space Office, the Harvard Origin of Life Initiative, the Scottish Universities Physics Alliance, the University of Geneva, the Smithsonian Astrophysical Observatory, the Italian National Astrophysical Institute, the University of St. Andrews, Queens University Belfast, and the University of Edinburgh.

  4. DETAILED ABUNDANCES OF STARS WITH SMALL PLANETS DISCOVERED BY KEPLER. I. THE FIRST SAMPLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuler, Simon C.; Vaz, Zachary A.; Santrich, Orlando J. Katime

    2015-12-10

    We present newly derived stellar parameters and the detailed abundances of 19 elements of seven stars with small planets discovered by NASA's Kepler Mission. Each star, save one, has at least one planet with a radius ≤1.6 R{sub ⊕}, suggesting a primarily rocky composition. The stellar parameters and abundances are derived from high signal-to-noise ratio, high-resolution echelle spectroscopy obtained with the 10 m Keck I telescope and High Resolution Echelle Spectrometer using standard spectroscopic techniques. The metallicities of the seven stars range from −0.32 to +0.13 dex, with an average metallicity that is subsolar, supporting previous suggestions that, unlike Jupiter-typemore » giant planets, small planets do not form preferentially around metal-rich stars. The abundances of elements other than iron are in line with a population of Galactic disk stars, and despite our modest sample size, we find hints that the compositions of stars with small planets are similar to stars without known planets and with Neptune-size planets, but not to those of stars with giant planets. This suggests that the formation of small planets does not require exceptional host-star compositions and that small planets may be ubiquitous in the Galaxy. We compare our derived abundances (which have typical uncertainties of ≲0.04 dex) to the condensation temperature of the elements; a correlation between the two has been suggested as a possible signature of rocky planet formation. None of the stars demonstrate the putative rocky planet signature, despite at least three of the stars having rocky planets estimated to contain enough refractory material to produce the signature, if real. More detailed abundance analyses of stars known to host small planets are needed to verify our results and place ever more stringent constraints on planet formation models.« less

  5. NASA's Kepler Spacecraft Discovers Its First Rocky Planet

    NASA Image and Video Library

    2011-01-10

    Animation narrated by Natalie Batalha, describing the location of Kepler-10b and the possible molten landscape. New Field-of-View animation by Marco Librero and new Kepler-10b animation by Dana Berry.

  6. Kepler Media Briefing

    NASA Image and Video Library

    2009-02-19

    Jon Morse, director, Astrophysics Division at NASA Headquarters talks about the Kepler mission during a media briefing, Thursday, Feb. 19, 2008, at NASA Headquarters in Washington. Kepler, the first mission with the ability to find planets like earth, is scheduled to launch on March 5, 2009 from Cape Canaveral Air Force Station, Fla. aboard a Delta II rocket. Photo Credit: (NASA/Paul. E. Alers)

  7. Kepler Media Briefing

    NASA Image and Video Library

    2009-02-19

    Debra Fischer, a professor of Astronomy at San Francisco State University, talks about the Kepler mission during a media briefing, Thursday, Feb. 19, 2008, at NASA Headquarters in Washington. Kepler, the first mission with the ability to find planets like earth, is scheduled to launch on March 5, 2009 from Cape Canaveral Air Force Station, Fla. aboard a Delta II rocket. Photo Credit: (NASA/Paul. E. Alers)

  8. From Pixels to Planets

    NASA Technical Reports Server (NTRS)

    Brownston, Lee; Jenkins, Jon M.

    2015-01-01

    The Kepler Mission was launched in 2009 as NASAs first mission capable of finding Earth-size planets in the habitable zone of Sun-like stars. Its telescope consists of a 1.5-m primary mirror and a 0.95-m aperture. The 42 charge-coupled devices in its focal plane are read out every half hour, compressed, and then downlinked monthly. After four years, the second of four reaction wheels failed, ending the original mission. Back on earth, the Science Operations Center developed the Science Pipeline to analyze about 200,000 target stars in Keplers field of view, looking for evidence of periodic dimming suggesting that one or more planets had crossed the face of its host star. The Pipeline comprises several steps, from pixel-level calibration, through noise and artifact removal, to detection of transit-like signals and the construction of a suite of diagnostic tests to guard against false positives. The Kepler Science Pipeline consists of a pipeline infrastructure written in the Java programming language, which marshals data input to and output from MATLAB applications that are executed as external processes. The pipeline modules, which underwent continuous development and refinement even after data started arriving, employ several analytic techniques, many developed for the Kepler Project. Because of the large number of targets, the large amount of data per target and the complexity of the pipeline algorithms, the processing demands are daunting. Some pipeline modules require days to weeks to process all of their targets, even when run on NASA's 128-node Pleiades supercomputer. The software developers are still seeking ways to increase the throughput. To date, the Kepler project has discovered more than 4000 planetary candidates, of which more than 1000 have been independently confirmed or validated to be exoplanets. Funding for this mission is provided by NASAs Science Mission Directorate.

  9. Kepler Planetary Systems in Motion Artist Concept

    NASA Image and Video Library

    2012-01-26

    This artist concept shows an overhead view of the orbital position of the planets in systems with multiple transiting planets discovered by NASA Kepler mission. All the colored planets have been verified.

  10. Kepler Press Conference

    NASA Image and Video Library

    2009-08-05

    Alan Boss, an astrophyscist at the Carnegie Institution at the Department of Terrestrial Magnetism speaks during a press conference, Thursday, Aug. 6, 2009, at NASA Headquarters in Washington about the scientific observations coming from the Kepler spacecraft that was launched this past March. Kepler is NASA's first mission that is capable of discovering earth-sized planets in the habitable zones of stars like our Sun. Photo Credit: (NASA/Paul E. Alers)

  11. Kepler Press Conference

    NASA Image and Video Library

    2009-08-05

    Sara Seager, Professor of Planetary Science at the Massachusetts Institute of Technology, speaks during a press conference, Thursday, Aug. 6, 2009, at NASA Headquarters in Washington about the scientific observations coming from the Kepler spacecraft that was launched this past March. Kepler is NASA's first mission that is capable of discovering earth-sized planets in the habitable zones of stars like our Sun. Photo Credit: (NASA/Paul E. Alers)

  12. Kepler-424 b: A "Lonely" Hot Jupiter that Found a Companion

    NASA Astrophysics Data System (ADS)

    Endl, Michael; Caldwell, Douglas A.; Barclay, Thomas; Huber, Daniel; Isaacson, Howard; Buchhave, Lars A.; Brugamyer, Erik; Robertson, Paul; Cochran, William D.; MacQueen, Phillip J.; Havel, Mathieu; Lucas, Phillip; Howell, Steve B.; Fischer, Debra; Quintana, Elisa; Ciardi, David R.

    2014-11-01

    Hot Jupiter systems provide unique observational constraints for migration models in multiple systems and binaries. We report on the discovery of the Kepler-424 (KOI-214) two-planet system, which consists of a transiting hot Jupiter (Kepler-424b) in a 3.31 day orbit accompanied by a more massive outer companion in an eccentric (e = 0.3) 223 day orbit. The outer giant planet, Kepler-424c, is not detected transiting the host star. The masses of both planets and the orbital parameters for the second planet were determined using precise radial velocity (RV) measurements from the Hobby-Eberly Telescope (HET) and its High Resolution Spectrograph (HRS). In stark contrast to smaller planets, hot Jupiters are predominantly found to be lacking any nearby additional planets; they appear to be "lonely". This might be a consequence of these systems having a highly dynamical past. The Kepler-424 planetary system has a hot Jupiter in a multiple system, similar to \\upsilon Andromedae. We also present our results for Kepler-422 (KOI-22), Kepler-77 (KOI-127), Kepler-43 (KOI-135), and Kepler-423 (KOI-183). These results are based on spectroscopic data collected with the Nordic Optical Telescope (NOT), the Keck 1 telescope, and HET. For all systems, we rule out false positives based on various follow-up observations, confirming the planetary nature of these companions. We performed a comparison with planetary evolutionary models which indicate that these five hot Jupiters have heavy element contents between 20 and 120 M ⊕. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  13. Kepler Mission: A Mission to Find Earth-size Planets in the Habitable Zone

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.

    2003-01-01

    The Kepler Mission is a Discovery-class mission designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. It is a wide field of view photometer Schmidt-type telescope with an array of 42 CCDs. It has a 0.95 m aperture and 1.4 m primary and is designed to attain a photometric precision of 2 parts in 10(exp 5) for 12th magnitude solar-like stars for a 6 hr transit duration. It will continuously observe 100,000 main-sequence stars from 9th to 14th magnitude in the Cygnus constellation for a period of four years with a cadence of 4/hour. An additional 250 stars can be monitored at a cadence of l/minute to do astro-seismology of stars brighter than 11.5 mv. The photometer is scheduled to be launched into heliocentric orbit in 2007. When combined with ground-based spectrometric observations of these stars, the positions of the planets relative to the habitable zone can be found. The spectra of the stars are also used to determine the relationships between the characteristics of terrestrial planets and the characteristics of the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. Based on the results of the current Doppler-velocity discoveries, over a thousand giant planets will also be found. Information on the albedos and densities of those giants showing transits will be obtained. At the end of the four year mission, hundreds of Earth-size planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ are very rare and that life might also be quite rare.

  14. Exoplanet orbital eccentricities derived from LAMOST-Kepler analysis

    NASA Astrophysics Data System (ADS)

    Xie, Ji-Wei; Dong, Subo; Zhu, Zhaohuan; Huber, Daniel; Zheng, Zheng; De Cat, Peter; Fu, Jianning; Liu, Hui-Gen; Luo, Ali; Wu, Yue; Zhang, Haotong; Zhang, Hui; Zhou, Ji-Lin; Cao, Zihuang; Hou, Yonghui; Wang, Yuefei; Zhang, Yong

    2016-10-01

    The nearly circular (mean eccentricity e¯≈0.06) and coplanar (mean mutual inclination i¯≈3°) orbits of the solar system planets motivated Kant and Laplace to hypothesize that planets are formed in disks, which has developed into the widely accepted theory of planet formation. The first several hundred extrasolar planets (mostly Jovian) discovered using the radial velocity (RV) technique are commonly on eccentric orbits (e¯≈0.3). This raises a fundamental question: Are the solar system and its formation special? The Kepler mission has found thousands of transiting planets dominated by sub-Neptunes, but most of their orbital eccentricities remain unknown. By using the precise spectroscopic host star parameters from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) observations, we measure the eccentricity distributions for a large (698) and homogeneous Kepler planet sample with transit duration statistics. Nearly half of the planets are in systems with single transiting planets (singles), whereas the other half are multiple transiting planets (multiples). We find an eccentricity dichotomy: on average, Kepler singles are on eccentric orbits with e¯≈0.3, whereas the multiples are on nearly circular (e¯=0.04-0.04+0.03) and coplanar (i¯=1.4-1.1+0.8 degree) orbits similar to those of the solar system planets. Our results are consistent with previous studies of smaller samples and individual systems. We also show that Kepler multiples and solar system objects follow a common relation [×i¯] between mean eccentricities and mutual inclinations. The prevalence of circular orbits and the common relation may imply that the solar system is not so atypical in the galaxy after all.

  15. Exoplanet orbital eccentricities derived from LAMOST–Kepler analysis

    PubMed Central

    Xie, Ji-Wei; Dong, Subo; Zhu, Zhaohuan; Huber, Daniel; Zheng, Zheng; De Cat, Peter; Fu, Jianning; Liu, Hui-Gen; Luo, Ali; Wu, Yue; Zhang, Haotong; Zhang, Hui; Zhou, Ji-Lin; Cao, Zihuang; Hou, Yonghui; Wang, Yuefei; Zhang, Yong

    2016-01-01

    The nearly circular (mean eccentricity e¯≈0.06) and coplanar (mean mutual inclination i¯≈3°) orbits of the solar system planets motivated Kant and Laplace to hypothesize that planets are formed in disks, which has developed into the widely accepted theory of planet formation. The first several hundred extrasolar planets (mostly Jovian) discovered using the radial velocity (RV) technique are commonly on eccentric orbits (e¯≈0.3). This raises a fundamental question: Are the solar system and its formation special? The Kepler mission has found thousands of transiting planets dominated by sub-Neptunes, but most of their orbital eccentricities remain unknown. By using the precise spectroscopic host star parameters from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) observations, we measure the eccentricity distributions for a large (698) and homogeneous Kepler planet sample with transit duration statistics. Nearly half of the planets are in systems with single transiting planets (singles), whereas the other half are multiple transiting planets (multiples). We find an eccentricity dichotomy: on average, Kepler singles are on eccentric orbits with e¯≈ 0.3, whereas the multiples are on nearly circular (e¯=0.04−0.04+0.03) and coplanar (i¯=1.4−1.1+0.8 degree) orbits similar to those of the solar system planets. Our results are consistent with previous studies of smaller samples and individual systems. We also show that Kepler multiples and solar system objects follow a common relation [e¯≈(1–2)×i¯] between mean eccentricities and mutual inclinations. The prevalence of circular orbits and the common relation may imply that the solar system is not so atypical in the galaxy after all. PMID:27671635

  16. Kepler Press Conference

    NASA Image and Video Library

    2009-08-05

    William Bo-Ricki, Kepler principal investigator at NASA's Ames Research Center, second from left, speaks during a press conference, Thursday, Aug. 6, 2009, at NASA Headquarters in Washington about the scientific observations coming from the Kepler spacecraft that was launched this past March. Others seated include Jon Morse, NASA's Astrophysics Director, Sara Seager, Professor of Planetary Science and Physics at MIT, and Alan Boss, an Astrophysicist at the Carnegie Institution at the Department of Terrestrial Magnetism in Washington, right. Kepler is NASA's first mission that is capable of discovering earth-sized planets in the habitable zones of stars like our Sun. Photo Credit: (NASA/Paul E. Alers)

  17. BEER ANALYSIS OF KEPLER AND CoRoT LIGHT CURVES. I. DISCOVERY OF KEPLER-76b: A HOT JUPITER WITH EVIDENCE FOR SUPERROTATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faigler, S.; Tal-Or, L.; Mazeh, T.

    We present the first case in which the BEER algorithm identified a hot Jupiter in the Kepler light curve, and its reality was confirmed by orbital solutions based on follow-up spectroscopy. The companion Kepler-76b was identified by the BEER algorithm, which detected the BEaming (sometimes called Doppler boosting) effect together with the Ellipsoidal and Reflection/emission modulations (BEER), at an orbital period of 1.54 days, suggesting a planetary companion orbiting the 13.3 mag F star. Further investigation revealed that this star appeared in the Kepler eclipsing binary catalog with estimated primary and secondary eclipse depths of 5 Multiplication-Sign 10{sup -3} andmore » 1 Multiplication-Sign 10{sup -4}, respectively. Spectroscopic radial velocity follow-up observations with Tillinghast Reflector Echelle Spectrograph and SOPHIE confirmed Kepler-76b as a transiting 2.0 {+-} 0.26 M{sub Jup} hot Jupiter. The mass of a transiting planet can be estimated from either the beaming or the ellipsoidal amplitude. The ellipsoidal-based mass estimate of Kepler-76b is consistent with the spectroscopically measured mass while the beaming-based estimate is significantly inflated. We explain this apparent discrepancy as evidence for the superrotation phenomenon, which involves eastward displacement of the hottest atmospheric spot of a tidally locked planet by an equatorial superrotating jet stream. This phenomenon was previously observed only for HD 189733b in the infrared. We show that a phase shift of 10. Degree-Sign 3 {+-} 2. Degree-Sign 0 of the planet reflection/emission modulation, due to superrotation, explains the apparently inflated beaming modulation, resolving the ellipsoidal/beaming amplitude discrepancy. Kepler-76b is one of very few confirmed planets in the Kepler light curves that show BEER modulations and the first to show superrotation evidence in the Kepler band. Its discovery illustrates for the first time the ability of the BEER algorithm to detect

  18. The Kepler End-to-End Model: Creating High-Fidelity Simulations to Test Kepler Ground Processing

    NASA Technical Reports Server (NTRS)

    Bryson, Stephen T.; Jenkins, Jon M.; Peters, Dan J.; Tenenbaum, Peter P.; Klaus, Todd C.; Gunter, Jay P.; Cote, Miles T.; Caldwell, Douglas A.

    2010-01-01

    The Kepler mission is designed to detect the transit of Earth-like planets around Sun-like stars by observing 100,000 stellar targets. Developing and testing the Kepler ground-segment processing system, in particular the data analysis pipeline, requires high-fidelity simulated data. This simulated data is provided by the Kepler End-to-End Model (ETEM). ETEM simulates the astrophysics of planetary transits and other phenomena, properties of the Kepler spacecraft and the format of the downlinked data. Major challenges addressed by ETEM include the rapid production of large amounts of simulated data, extensibility and maintainability.

  19. About 30% of Sun-like Stars Have Kepler-like Planetary Systems: A Study of Their Intrinsic Architecture

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Petrovich, Cristobal; Wu, Yanqin; Dong, Subo; Xie, Jiwei

    2018-06-01

    We constrain the intrinsic architecture of Kepler planetary systems by modeling the observed multiplicities of the transiting planets (tranets) and their transit timing variations (TTVs). We robustly determine that the fraction of Sun-like stars with Kepler-like planets, η Kepler, is 30 ± 3%. Here, Kepler-like planets are planets that have radii R p ≳ R ⊕ and orbital periods P < 400 days. Our result thus significantly revises previous claims that more than 50% of Sun-like stars have such planets. Combined with the average number of Kepler planets per star (∼0.9), we obtain that on average each planetary system has 3.0 ± 0.3 planets within 400 days. We also find that the dispersion in orbital inclinations of planets within a given planetary system, σ i,k , is a steep function of its number of planets, k. This can be parameterized as {σ }i,k\\propto {k}α and we find that ‑4 < α < ‑2 at the 2σ level. Such a distribution well describes the observed multiplicities of both transits and TTVs with no excess of single-tranet systems. Therefore we do not find evidence supporting the so-called “Kepler dichotomy.” Together with a previous study on orbital eccentricities, we now have a consistent picture: the fewer planets in a system, the hotter it is dynamically. We discuss briefly possible scenarios that lead to such a trend. Despite our solar system not belonging to the Kepler club, it is interesting to notice that the solar system also has three planets within 400 days and that the inclination dispersion is similar to Kepler systems of the same multiplicity.

  20. Transit Timing Variation analysis with Kepler light curves of KOI 227 and Kepler 93b

    NASA Astrophysics Data System (ADS)

    Dulz, Shannon; Reed, Mike

    2017-01-01

    By searching for transit signals in approximately 150,000 stars, NASA’s Kepler Space telescope found thousands of exoplanets over its primary mission from 2009 to 2013 (Tenenbaum et al. 2014, ApJS, 211, 6). Yet, a detailed follow-up examination of Kepler light curves may contribute more evidence on system dynamics and planetary atmospheres of these objects. Kepler’s continuous observing of these systems over the mission duration produced light curves of sufficient duration to allow for the search for transit timing variations. Transit timing variations over the course of many orbits may indicate a precessing orbit or the existence of a non-transiting third body such as another exoplanet. Flux contributions of the planet just prior to secondary eclipse may provide a measurement of bond albedo from the day-side of the transiting planet. Any asymmetries of the transit shape may indicate thermal asymmetries which can measure upper atmosphere motion of the planet. These two factors can constrain atmospheric models of close orbiting exoplanets. We first establish our procedure with the well-documented TTV system, KOI 227 (Nesvorny et al. 2014, ApJ, 790, 31). Using the test case of KOI 227, we analyze Kepler-93b for TTVs and day-side flux contributions. Kepler-93b is likely a rocky planet with R = 1.50 ± 0.03 Earth Radii and M = 2.59 ± 2.0 Earth Masses (Marcy et al. 2014, ApJS, 210, 20). This research is funded by a NASA EPSCoR grant.

  1. Kepler's Cosmos And The Lathe Of Heaven

    NASA Astrophysics Data System (ADS)

    Brecher, Kenneth

    2011-01-01

    Johannes Kepler's Mysterium Cosmographicum, published in 1596, presented his vision of the geometrical structure of the solar system. Kepler sought to account for the number of planets, thought to be six, as well as their orbital radii. He assigned orbits to the planets in three-dimensional space. Kepler proposed that the planets move on six spheres inscribed within and circumscribed around the five platonic solids. How did he arrive at his model? By his own account reported in the book, the central idea occurred to him while giving a lecture about planetary conjunctions. But was this revelation the origin of the model? In this presentation, we discuss the artistic, scientific and mathematical environment in which Kepler was immersed in late 16th century Europe. Examples will be shown of some of the readily available inscribed polyhedra that he may have seen - printed in widely circulated books, included in well-known paintings and engravings, and displayed as three dimensional ornamentally turned sculptures. It is highly likely that he saw such physical models five years later while in the employ of Rudolf II who was an avid ornamental turner. Layered polyhedral ivory turnings were made by the nobility with what were then fairly common lathes. Kepler himself wanted to have his own celestial model made into a punch bowl! Therefore, it seems plausible that Kepler had seen models of inscribed platonic solids well before 1596. Later in life Kepler reprinted the Mysterium Cosmographicum with very little fundamental change in its outlook, even after having found what we now call Kepler's three laws of planetary motion. His interest in nested polyhedra may well have preceded any astronomical evidence or geometrical reasoning, arising from artistic and aesthetic encounters that occurred early in his life. Project LITE is supported by the NSF through DUE Grant # 0715975.

  2. Kepler Mission: Current Status

    NASA Astrophysics Data System (ADS)

    Borucki, William J.; Koch, D. G.; Lissauer, J. J.; Bryson, S.; Natalie, B.; Caldwell, D. A.; DeVore, E.; Jenkins, J. M.; Christensen-Dalsgaard, J.; Cochran, W. D.; Dunham, E. W.; Gautier, T. N.; Geary, J. C.; Latham, D. W.; Sasselov, D.; Gilliland, R. L.; Gould, A.; Howell, S. B.; Monet, D. G.

    2007-12-01

    Kepler is a Discovery-class mission designed to determine the frequency of Earth-size planets in and near the habitable zone of solar-like stars. The instrument consists of a high precision photometer with Schmidt-type optics and a focal plane containing 95 million pixels to monitor over 100,000 stars to search for patterns of transits generated by planets as small as Mars. The recent reduction in the mission duration is discussed with regard to the impact on the expected science product and null statistics. Both terrestrial and giant planets discoveries will be followed up with ground-based Doppler-velocity observations to determine mass and density. The first meeting of Kepler Asteroseismic Science Consortium was held in Paris to organize an international team to analyze the Kepler data to determine the characteristics of the brighter target stars including their size and age. Stellar size determinations accurate to a few percent are expected. These will allow very accurate planet sizes to be determined from the depth of the transit signals. NASA HQ received thirty six proposals for the Participating Scientist Program and chose several new members to join the Science Team. Both the 0.95 m Schmidt corrector and 1.4 m aperture primary mirror have been completed and delivered for integration into the photometer. The focal plane with forty-two science CCD detectors and their processing electronics has been assembled and tested. The spacecraft assembly has begun with the mounting of the reaction control system, reaction wheels, attitude determination & control system, and power systems. Both the photometer and spacecraft are nearing final assembly with all subsystems having passed their environmental and performance testing. The photometer to spacecraft integration will begin this spring. The Mission is on schedule for a launch in February 2009. The Kepler Mission is funded by the NASA Astrophysics Division, Science Mission Directorate.

  3. OT2_dardila_2: PACS Photometry of Transiting-Planet Systems with Warm Debris Disks

    NASA Astrophysics Data System (ADS)

    Ardila, D.

    2011-09-01

    Dust in debris disks is produced by colliding or evaporating planetesimals, the remnant of the planet formation process. Warm dust disks, known by their emission at =<24 mic, are rare (4% of FGK main-sequence stars), and specially interesting because they trace material in the region likely to host terrestrial planets, where the dust has very short dynamical lifetimes. Dust in this region comes from very recent asteroidal collisions, migrating Kuiper Belt planetesimals, or migrating dust. NASA's Kepler mission has just released a list of 1235 candidate transiting planets, and in parallel, the Wide-Field Infrared Survey Explorer (WISE) has just completed a sensitive all-sky mapping in the 3.4, 4.6, 12, and 22 micron bands. By cross-identifying the WISE sources with Kepler candidates as well as with other transiting planetary systems we have identified 21 transiting planet hosts with previously unknown warm debris disks. We propose Herschel/PACS 100 and 160 micron photometry of this sample, to determine whether the warm dust in these systems represents stochastic outbursts of local dust production, or simply the Wien side of emission from a cold outer dust belt. These data will allow us to put constraints in the dust temperature and infrared luminosity of these systems, allowing them to be understood in the context of other debris disks and disk evolution theory. This program represents a unique opportunity to exploit the synergy between three great space facilities: Herschel, Kepler, and WISE. The transiting planet sample hosts will remain among the most studied group of stars for the years to come, and our knowledge of their planetary architecture will remain incomplete if we do not understand the characteristics of their debris disks.

  4. Kepler-4b: A Hot Neptune-like Planet of a G0 Star Near Main-sequence Turnoff

    NASA Astrophysics Data System (ADS)

    Borucki, William J.; Koch, David G.; Brown, Timothy M.; Basri, Gibor; Batalha, Natalie M.; Caldwell, Douglas A.; Cochran, William D.; Dunham, Edward W.; Gautier, Thomas N., III; Geary, John C.; Gilliland, Ronald L.; Howell, Steve B.; Jenkins, Jon M.; Latham, David W.; Lissauer, Jack J.; Marcy, Geoffrey W.; Monet, David; Rowe, Jason F.; Sasselov, Dimitar

    2010-04-01

    Early time-series photometry from NASA's Kepler spacecraft has revealed a planet transiting the star we term Kepler-4, at R.A. = 19h02m27.s68, δ = +50°08'08farcs7. The planet has an orbital period of 3.213 days and shows transits with a relative depth of 0.87 × 10-3 and a duration of about 3.95 hr. Radial velocity (RV) measurements from the Keck High Resolution Echelle Spectrometer show a reflex Doppler signal of 9.3+1.1 -1.9 m s-1, consistent with a low-eccentricity orbit with the phase expected from the transits. Various tests show no evidence for any companion star near enough to affect the light curve or the RVs for this system. From a transit-based estimate of the host star's mean density, combined with analysis of high-resolution spectra, we infer that the host star is near turnoff from the main sequence, with estimated mass and radius of 1.223+0.053 -0.091 M sun and 1.487+0.071 -0.084 R sun. We estimate the planet mass and radius to be {M P, R P} = {24.5 ± 3.8 M ⊕, 3.99 ± 0.21 R ⊕}. The planet's density is near 1.9 g cm-3 it is thus slightly denser and more massive than Neptune, but about the same size. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  5. Detailed Abundances of Stars with Small Planets Discovered by Kepler. I. The First Sample

    NASA Astrophysics Data System (ADS)

    Schuler, Simon C.; Vaz, Zachary A.; Katime Santrich, Orlando J.; Cunha, Katia; Smith, Verne V.; King, Jeremy R.; Teske, Johanna K.; Ghezzi, Luan; Howell, Steve B.; Isaacson, Howard

    2015-12-01

    We present newly derived stellar parameters and the detailed abundances of 19 elements of seven stars with small planets discovered by NASA's Kepler Mission. Each star, save one, has at least one planet with a radius ≤1.6 R⊕, suggesting a primarily rocky composition. The stellar parameters and abundances are derived from high signal-to-noise ratio, high-resolution echelle spectroscopy obtained with the 10 m Keck I telescope and High Resolution Echelle Spectrometer using standard spectroscopic techniques. The metallicities of the seven stars range from -0.32 to +0.13 dex, with an average metallicity that is subsolar, supporting previous suggestions that, unlike Jupiter-type giant planets, small planets do not form preferentially around metal-rich stars. The abundances of elements other than iron are in line with a population of Galactic disk stars, and despite our modest sample size, we find hints that the compositions of stars with small planets are similar to stars without known planets and with Neptune-size planets, but not to those of stars with giant planets. This suggests that the formation of small planets does not require exceptional host-star compositions and that small planets may be ubiquitous in the Galaxy. We compare our derived abundances (which have typical uncertainties of ≲0.04 dex) to the condensation temperature of the elements; a correlation between the two has been suggested as a possible signature of rocky planet formation. None of the stars demonstrate the putative rocky planet signature, despite at least three of the stars having rocky planets estimated to contain enough refractory material to produce the signature, if real. More detailed abundance analyses of stars known to host small planets are needed to verify our results and place ever more stringent constraints on planet formation models. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California

  6. Kepler-62 and the Solar System

    NASA Image and Video Library

    2013-04-18

    This diagram compares the planets of the inner solar system to Kepler-62, a five-planet system about 1,200 light-years from Earth in the constellation Lyra. At seven billion years old, the star is somewhat older than the sun.

  7. Kepler-444 Planetary System Artist Concept

    NASA Image and Video Library

    2015-01-28

    The tightly packed system, named Kepler-444, is home to five small planets in very compact orbits. The planets were detected from the dimming that occurs when they transit the disk of their parent star, as shown in this artist conception.

  8. Constraining the Properties of Small Stars and Small Planets Observed by K2

    NASA Astrophysics Data System (ADS)

    Dressing, Courtney D.; Newton, Elisabeth R.; Charbonneau, David; Schlieder, Josh; Hawaii/California/Arizona/Indiana K2 Follow-up Consortium, HARPS-N Consortium

    2016-01-01

    We are using the results of the NASA K2 mission (the second career of the Kepler spacecraft) to study how the frequency and architectures of planetary systems orbiting M dwarfs throughout the ecliptic plane compare to those of the early M dwarf planetary systems observed by Kepler. In a previous analysis of the Kepler data set, we found that planets orbiting early M dwarfs are common: we measured a cumulative planet occurrence rate of 2.45 +/- 0.22 planets per M dwarf with periods of 0.5-200 days and planet radii of 1-4 Earth radii. Within a conservative habitable zone based on the moist greenhouse inner limit and maximum greenhouse outer limit, we estimated an occurrence rate of 0.15 (+0.18/-0.06) Earth-size planets and 0.09 (+0.10/-0.04) super-Earths per M dwarf HZ. Applying these occurrence rates to the population of nearby stars and assuming that mid- and late-M dwarfs host planets at the same rate as early M dwarfs, we predicted that the nearest potentially habitable Earth-size planet likely orbits an M dwarf a mere 2.6 ± 0.4 pc away. We are now testing the assumption of equal planet occurrence rates for M dwarfs of all types by inspecting the population of planets detected by K2 and conducting follow-up observations of planet candidate host stars to identify false positives and better constrain system parameters. I will present the results of recent observing runs with SpeX on the IRTF to obtain near-infrared spectra of low-mass stars targeted by K2 and determine the radii, temperatures, and metallicities of our target stars using empirical relations. We gratefully acknowledge funding from the NASA XRP Program, the John Templeton Foundation, and the NASA Sagan Fellowship Program.

  9. Discourse following award of Kepler Gold Medal. [Kepler Laws, planetary astronomy and physics, and Jupiter studies

    NASA Technical Reports Server (NTRS)

    Kuiper, G. P.

    1973-01-01

    Kuiper briefly reviews Kepler's contributions to the field of planetary astronomy and physics, along with references to his own background in the study of stars, planets, and the solar system. He mentions his participation in NASA programs related to planetary astronomy. He concludes his remarks with thanks for being honored by the award of the Kepler Gold Medal.

  10. An Earth-sized planet with an Earth-like density.

    PubMed

    Pepe, Francesco; Cameron, Andrew Collier; Latham, David W; Molinari, Emilio; Udry, Stéphane; Bonomo, Aldo S; Buchhave, Lars A; Charbonneau, David; Cosentino, Rosario; Dressing, Courtney D; Dumusque, Xavier; Figueira, Pedro; Fiorenzano, Aldo F M; Gettel, Sara; Harutyunyan, Avet; Haywood, Raphaëlle D; Horne, Keith; Lopez-Morales, Mercedes; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Motalebi, Fatemeh; Nascimbeni, Valerio; Phillips, David; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Szentgyorgyi, Andrew; Watson, Christopher A

    2013-11-21

    Recent analyses of data from the NASA Kepler spacecraft have established that planets with radii within 25 per cent of the Earth's (R Earth symbol) are commonplace throughout the Galaxy, orbiting at least 16.5 per cent of Sun-like stars. Because these studies were sensitive to the sizes of the planets but not their masses, the question remains whether these Earth-sized planets are indeed similar to the Earth in bulk composition. The smallest planets for which masses have been accurately determined are Kepler-10b (1.42 R Earth symbol) and Kepler-36b (1.49 R Earth symbol), which are both significantly larger than the Earth. Recently, the planet Kepler-78b was discovered and found to have a radius of only 1.16 R Earth symbol. Here we report that the mass of this planet is 1.86 Earth masses. The resulting mean density of the planet is 5.57 g cm(-3), which is similar to that of the Earth and implies a composition of iron and rock.

  11. Exploring the diversity of Jupiter-class planets

    PubMed Central

    Fletcher, Leigh N.; Irwin, Patrick G. J.; Barstow, Joanna K.; de Kok, Remco J.; Lee, Jae-Min; Aigrain, Suzanne

    2014-01-01

    Of the 900+ confirmed exoplanets discovered since 1995 for which we have constraints on their mass (i.e. not including Kepler candidates), 75% have masses larger than Saturn (0.3 MJ), 53% are more massive than Jupiter and 67% are within 1 AU of their host stars. When Kepler candidates are included, Neptune-sized giant planets could form the majority of the planetary population. And yet the term ‘hot Jupiter’ fails to account for the incredible diversity of this class of astrophysical object, which exists on a continuum of giant planets from the cool jovians of our own Solar System to the highly irradiated, tidally locked hot roasters. We review theoretical expectations for the temperatures, molecular composition and cloud properties of hydrogen-dominated Jupiter-class objects under a variety of different conditions. We discuss the classification schemes for these Jupiter-class planets proposed to date, including the implications for our own Solar System giant planets and the pitfalls associated with compositional classification at this early stage of exoplanetary spectroscopy. We discuss the range of planetary types described by previous authors, accounting for (i) thermochemical equilibrium expectations for cloud condensation and favoured chemical stability fields; (ii) the metallicity and formation mechanism for these giant planets; (iii) the importance of optical absorbers for energy partitioning and the generation of a temperature inversion; (iv) the favoured photochemical pathways and expectations for minor species (e.g. saturated hydrocarbons and nitriles); (v) the unexpected presence of molecules owing to vertical mixing of species above their quench levels; and (vi) methods for energy and material redistribution throughout the atmosphere (e.g. away from the highly irradiated daysides of close-in giants). Finally, we discuss the benefits and potential flaws of retrieval techniques for establishing a family of atmospheric solutions that reproduce the

  12. Exploring the diversity of Jupiter-class planets.

    PubMed

    Fletcher, Leigh N; Irwin, Patrick G J; Barstow, Joanna K; de Kok, Remco J; Lee, Jae-Min; Aigrain, Suzanne

    2014-04-28

    Of the 900+ confirmed exoplanets discovered since 1995 for which we have constraints on their mass (i.e. not including Kepler candidates), 75% have masses larger than Saturn (0.3 MJ), 53% are more massive than Jupiter and 67% are within 1 AU of their host stars. When Kepler candidates are included, Neptune-sized giant planets could form the majority of the planetary population. And yet the term 'hot Jupiter' fails to account for the incredible diversity of this class of astrophysical object, which exists on a continuum of giant planets from the cool jovians of our own Solar System to the highly irradiated, tidally locked hot roasters. We review theoretical expectations for the temperatures, molecular composition and cloud properties of hydrogen-dominated Jupiter-class objects under a variety of different conditions. We discuss the classification schemes for these Jupiter-class planets proposed to date, including the implications for our own Solar System giant planets and the pitfalls associated with compositional classification at this early stage of exoplanetary spectroscopy. We discuss the range of planetary types described by previous authors, accounting for (i) thermochemical equilibrium expectations for cloud condensation and favoured chemical stability fields; (ii) the metallicity and formation mechanism for these giant planets; (iii) the importance of optical absorbers for energy partitioning and the generation of a temperature inversion; (iv) the favoured photochemical pathways and expectations for minor species (e.g. saturated hydrocarbons and nitriles); (v) the unexpected presence of molecules owing to vertical mixing of species above their quench levels; and (vi) methods for energy and material redistribution throughout the atmosphere (e.g. away from the highly irradiated daysides of close-in giants). Finally, we discuss the benefits and potential flaws of retrieval techniques for establishing a family of atmospheric solutions that reproduce the

  13. A SEMI-ANALYTICAL MODEL OF VISIBLE-WAVELENGTH PHASE CURVES OF EXOPLANETS AND APPLICATIONS TO KEPLER- 7 B AND KEPLER- 10 B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Renyu; Demory, Brice-Olivier; Seager, Sara

    2015-03-20

    Kepler has detected numerous exoplanet transits by measuring stellar light in a single visible-wavelength band. In addition to detection, the precise photometry provides phase curves of exoplanets, which can be used to study the dynamic processes on these planets. However, the interpretation of these observations can be complicated by the fact that visible-wavelength phase curves can represent both thermal emission and scattering from the planets. Here we present a semi-analytical model framework that can be applied to study Kepler and future visible-wavelength phase curve observations of exoplanets. The model efficiently computes reflection and thermal emission components for both rocky andmore » gaseous planets, considering both homogeneous and inhomogeneous surfaces or atmospheres. We analyze the phase curves of the gaseous planet Kepler- 7 b and the rocky planet Kepler- 10 b using the model. In general, we find that a hot exoplanet’s visible-wavelength phase curve having a significant phase offset can usually be explained by two classes of solutions: one class requires a thermal hot spot shifted to one side of the substellar point, and the other class requires reflective clouds concentrated on the same side of the substellar point. Particularly for Kepler- 7 b, reflective clouds located on the west side of the substellar point can best explain its phase curve. The reflectivity of the clear part of the atmosphere should be less than 7% and that of the cloudy part should be greater than 80%, and the cloud boundary should be located at 11° ± 3° to the west of the substellar point. We suggest single-band photometry surveys could yield valuable information on exoplanet atmospheres and surfaces.« less

  14. More Planets in the Hyades Cluster

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    A few weeks ago, Astrobites reported on a Neptune-sized planet discovered orbiting a star in the Hyades cluster. A separate study submitted at the same time, however, reveals that there may be even more planets lurking in this system.Thanks, KeplerArtists impression of the Kepler spacecraft and the mapping of the fields of the current K2 mission. [NASA]As we learn about the formation and evolution of planets outside of our own solar system, its important that we search for planets throughout different types of star clusters; observing both old and young clusters, for instance, can tell us about planets in different stages of their evolutionary histories. Luckily for us, we have a tool that has been doing exactly this: the Kepler mission.In true holiday spirit, Kepler is the gift that just keeps on giving. Though two of its reaction wheels have failed, Kepler now as its reincarnation, K2 just keeps detecting more planet transits. Whats more, detailed analysis of past Kepler/K2 data with ever more powerful techniques as well as the addition of high-precision parallaxes for stars from Gaia in the near future ensures that the Kepler data set will continue to reveal new exoplanet transits for many years to come.Image of the Hyades cluster, a star cluster that is only 800 million years old. [NASA/ESA/STScI]Hunting in the Young HyadesTwo studies using K2 data were recently submitted on exoplanet discoveries around EPIC 247589423 in the Hyades cluster, a nearby star cluster that is only 800 million years old. Astrobites reported on the first study in October and discussed details about the newly discovered mini-Neptune presented in that study.The second study, led by Andrew Mann (University of Texas at Austin and NASA Hubble Fellow at Columbia University), was published this week. This study presented a slightly different outcome: the authors detect the presence of not just the one, but three exoplanets orbiting EPIC 247589423.New DiscoveriesMann and collaborators searched

  15. Accurate parameters of the oldest known rocky-exoplanet hosting system: Kepler-10 revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogtmann-Schulz, Alexandra; Hinrup, Brian; Van Eylen, Vincent

    2014-02-01

    Since the discovery of Kepler-10, the system has received considerable interest because it contains a small, rocky planet which orbits the star in less than a day. The system's parameters, announced by the Kepler team and subsequently used in further research, were based on only five months of data. We have reanalyzed this system using the full span of 29 months of Kepler photometric data, and obtained improved information about its star and the planets. A detailed asteroseismic analysis of the extended time series provides a significant improvement on the stellar parameters: not only can we state that Kepler-10 ismore » the oldest known rocky-planet-harboring system at 10.41 ± 1.36 Gyr, but these parameters combined with improved planetary parameters from new transit fits gives us the radius of Kepler-10b to within just 125 km. A new analysis of the full planetary phase curve leads to new estimates on the planetary temperature and albedo, which remain degenerate in the Kepler band. Our modeling suggests that the flux level during the occultation is slightly lower than at the transit wings, which would imply that the nightside of this planet has a non-negligible temperature.« less

  16. The Constraint of Coplanarity: Compact multi-planet system outer architectures and formation.-UP

    NASA Astrophysics Data System (ADS)

    Jontof-Hutter, Daniel

    The Kepler mission discovered 92 systems with 4 or more transiting exoplanets. Systems like Kepler-11 with six "mini-Neptunes" on orbital periods well inside that of Venus pose a challenge to planet formation theory which is broadly split into two competing paradigms. One theory invokes the formation of Neptunes beyond the "snow line", followed by inward migration and assembly into compact configurations near the star. The alternative is that low density planets form in situ at all distances in the protoplanetary nebula. The two paradigms disagree on the occurrence of Jovian planets at longer orbital periods than the transiting exoplanets since such massive planets would impede the inward migration of multiple volatile-rich planets to within a fraction of 1 AU. The likelihood of all the known planets at systems like Kepler-11 to be transiting is very sensitive to presence of outer Jovian planets for a wide range in orbital distance and relative inclination of the Jovian planet. This can put upper limits on the occurrence of Jovian planets by the condition that the six known planets have to have low mutual inclinations most of the time in order for their current cotransiting state to be plausible. Most of these systems have little or no RV data. Hence, our upper limits may be the best constraints on the occurrence of Jovian planets in compact co-planar systems for years to come, and may help distinguish the two leading paradigms of planet formation theory. Methodology. We propose to use an established n-body code (MERCURY) to perform long-term simulations of systems like Kepler-11 with the addition of a putative Jovian planet considering a range of orbital distances. These simulations will test for which initial conditions a Jovian planet would prevent the known planets from all transiting at the same time. We will 1) determine at what orbital distances and inclinations an outer Jovian planet would make the observed configuration of Kepler-11 very unlikely. 2) Test

  17. A Census of Habitable Planets around Nearby stars?

    NASA Astrophysics Data System (ADS)

    Leger, Alain M.

    2015-12-01

    One day or another, a spectroscopic mission will be launched searching for biosignatures in the atmospheres of Earth-like planets, i.e. planets located in the Habitable Zone (HZ) of their stars and hopefully rocky. This could be done blindly, the expensive spectroscopic mission searching for the candidates before performing their spectroscopy. According to a clear tendency in the Kepler data, the mean number of Earth-like planets, ηEarth, around the Kepler stars is rather low (10% - 20%). It makes this approach pretty inefficient, most of the stars studied (90% - 80%) having no such planets, and the corresponding mission time being essentially lost. This is more severe when the random position of planets on their orbits is taken into account. An exhaustive census of these planets around the nearby stars, the only ones accessible to the mission, appears desirable priorly to its launch.Up to now, the detection of low mas planets in the HZ of their stars by the Radial Velocity technique is limited to stars with very low activity (~ 2% of F,G,K stars). The detection by transits is limited by the low probability the randomly oriented orbits, few of them leading to a transit (0.5% for solar-type stars). On the other hand, ultra accurate astrometry is less sensitive to stellar activity and could detect Earth-like planets around most of the nearby solar-type stars.We present the project of a space mission, Theia+, that could do the job and measure the masses and orbits of these planets, a key piece of information to derive a possible statement about the likelihood of the actual presence of life on a planet. Other capabilities of the mission regarding Dark Matter, Very Compact Object, Cosmology, and Stellar Formation is also rapidly mentioned.

  18. Chandra Pilot Survey of Extrasolar Planet Candidates

    NASA Astrophysics Data System (ADS)

    Tsuboi, Yohko

    2012-09-01

    We propose to detect planetary-mass companion around young nearby stars by X-ray direct imaging observations with Chandra. Our goals are to determine I. if the X-ray band can be a new probe to the exo-planet search, and II. if a planet emit detectable X-rays with a magnetic origin at a young age. This should be a challenging observation but a brand-new discovery space unique to Chandra. The abundant population of YSOs in the same field of view will enable us to obtain complete X-ray catalogues of YSOs with all categories of masses. We will also execute simultaneous deep NIR observations with IRSF/SIRIUS and Nishiharima 2m telescope to search for the other X-ray-emitting very low-mass objects near our aiming planet candidates.

  19. Synergies Between the Kepler, K2 and TESS Missions with the PLATO Mission (Revised)

    NASA Technical Reports Server (NTRS)

    Jenkins, Jon M.

    2017-01-01

    Two transit survey missions will have been flown by NASA prior to the launch of ESA's PLATO Mission in 2026, laying the groundwork for exoplanet discovery via the transit method. The Kepler Mission, which launched in 2009, collected data on its 100+ square degree field of view for four years before failure of a reaction wheel ended its primary mission. The results from Kepler include 2300+ confirmed or validated exoplanets, 2200+ planetary candidates, 2100+ eclipsing binaries. Kepler also revolutionized the field of asteroseismology by measuring the pressure mode oscillations of over 15000 solar-like stars spanning the lifecycle of such stars from hydrogen-burning dwarfs to helium-burning red giants. The re-purposed Kepler Mission, dubbed K2, continues to observe fields of view in and near the ecliptic plane for 80 days each, significantly broadening the scope of the astrophysical investigations as well as discovering an additional 156 exoplanets to date. The TESS mission will launch in 2017 to conduct an all-sky survey for small exoplanets orbiting stars 10X closer and 100X brighter than Kepler exoplanet host stars, allowing for far greater follow-up and characterization of their masses as well as their sizes for at least 50 small planets. Future assets such as James Webb Space Telescope, and ground-based assets such as ESOs Very Large Telescope (VLT) array, the Exremely Large Telescope (ELT), and the Thirty Meter Telescope (TMT) will be able to characterize the atmospheric composition and properties of these small planets. TESS will observe each 24 X 96 field of view for 30 days and thereby cover first the southern and then the northern hemisphere over 13 pointings during each year of the primary mission. The pole-most camera will observe the James Webb continuous viewing zone for one year in each hemisphere, permitting much longer period planets to be detected in this region. The PLATO mission will seek to detect habitable Earth-like planets with an instrument

  20. Stability of the Kepler-11 system and its origin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahajan, Nikhil; Wu, Yanqin

    2014-11-01

    A significant fraction of Kepler systems are closely packed, largely coplanar, and circular. We study the stability of a six-planet system, Kepler-11, to gain insights on the dynamics and formation history of such systems. Using a technique called 'frequency maps' as fast indicators of long-term stability, we explore the stability of the Kepler-11 system by analyzing the neighborhood space around its orbital parameters. Frequency maps provide a visual representation of chaos and stability, and their dependence on orbital parameters. We find that the current system is stable, but lies within a few percent of several dynamically dangerous two-body mean-motion resonances.more » Planet eccentricities are restricted below a small value, ∼0.04, for long-term stability, but planet masses can be more than twice their reported values (thus allowing for the possibility of mass loss by past photoevaporation). Based on our frequency maps, we speculate on the origin of instability in closely packed systems. We then proceed to investigate how the system could have been assembled. The stability constraints on Kepler-11 (mainly eccentricity constraints) suggest that if the system were assembled in situ, a dissipation mechanism must have been at work to neutralize the eccentricity excitation. On the other hand, if migration was responsible for assembling the planets, there has to be little differential migration among the planets to avoid them either getting trapped into mean motion resonances, or crashing into each other.« less

  1. EXTRACTING PLANET MASS AND ECCENTRICITY FROM TTV DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lithwick, Yoram; Xie Jiwei; Wu Yanqin

    2012-12-20

    Most planet pairs in the Kepler data that have measured transit time variations (TTVs) are near first-order mean-motion resonances. We derive analytical formulae for their TTV signals. We separate planet eccentricity into free and forced parts, where the forced part is purely due to the planets' proximity to resonance. This separation yields simple analytical formulae. The phase of the TTV depends sensitively on the presence of free eccentricity: if the free eccentricity vanishes, the TTV will be in phase with the longitude of conjunctions. This effect is easily detectable in current TTV data. The amplitude of the TTV depends onmore » planet mass and free eccentricity, and it determines planet mass uniquely only when the free eccentricity is sufficiently small. We analyze the TTV signals of six short-period Kepler pairs. We find that three of these pairs (Kepler 18, 24, 25) have a TTV phase consistent with zero. The other three (Kepler 23, 28, 32) have small TTV phases, but ones that are distinctly non-zero. We deduce that the free eccentricities of the planets are small, {approx}< 0.01, but not always vanishing. Furthermore, as a consequence of this, we deduce that the true masses of the planets are fairly accurately determined by the TTV amplitudes, within a factor of {approx}< 2. The smallness of the free eccentricities suggests that the planets have experienced substantial dissipation. This is consistent with the hypothesis that the observed pile-up of Kepler pairs near mean-motion resonances is caused by resonant repulsion. But the fact that some of the planets have non-vanishing free eccentricity suggests that after resonant repulsion occurred there was a subsequent phase in the planets' evolution when their eccentricities were modestly excited, perhaps by interplanetary interactions.« less

  2. Johannes Kepler and his contribution to Applied Mathematics

    NASA Astrophysics Data System (ADS)

    Pichler, Franz

    The worldwide renown of Johannes Kepler is based above all on his contribution to astronomy. The 3 Kepler's Laws relating to the planets are well known and will ensure that his name is remembered by future generations. Besides his astronomical work, Kepler also made important contributions in the fields of theology, physics, phylosophy and mathematics. The actual paper discusses the advances by Kepler in the application of mathematics to the solution of "real life problems". The author made a concise account of some of the disciples by Kepler: Klug, Wieleitner, Caspar, Hammer, paying particular attention to works published by Kepler while he was living in Linz (1612-1628). The Kepler's contribution to applied mathematics is an example supremely worthy of emulation, the author concludes.

  3. Management and systems engineering of the Kepler mission

    NASA Astrophysics Data System (ADS)

    Fanson, James; Livesay, Leslie; Frerking, Margaret; Cooke, Brian

    2010-07-01

    Kepler is the National Aeronautics and Space Administration's (NASA's) first mission capable of detecting Earth-size planets orbiting in the habitable zones around stars other than the sun. Selected for implementation in 2001 and launched in 2009, Kepler seeks to determine whether Earth-like planets are common or rare in the galaxy. The investigation requires a large, space-based photometer capable of simultaneously measuring the brightnesses of 100,000 stars at partper- million level of precision. This paper traces the development of the mission from the perspective of project management and systems engineering and describes various methodologies and tools that were found to be effective. The experience of the Kepler development is used to illuminate lessons that can be applied to future missions.

  4. Management and Systems Engineering of the Kepler Mission

    NASA Technical Reports Server (NTRS)

    Fanson, James; Livesay, Leslie; Frerking, Margaret; Cooke, Brian

    2010-01-01

    Kepler is the National Aeronautics and Space Administration's (NASA's) first mission capable of detecting Earth-size planets orbiting in the habitable zones around stars other than the sun. Selected for implementation in 2001 and launched in 2009, Kepler seeks to determine whether Earth-like planets are common or rare in the galaxy. The investigation requires a large, space-based photometer capable of simultaneously measuring the brightnesses of 100,000 stars at part-per-million level of precision. This paper traces the development of the mission from the perspective of project management and systems engineering and describes various methodologies and tools that were found to be effective. The experience of the Kepler development is used to illuminate lessons that can be applied to future missions.

  5. Absolute densities in exoplanetary systems. Photodynamical modelling of Kepler-138.

    NASA Astrophysics Data System (ADS)

    Almenara, J. M.; Díaz, R. F.; Dorn, C.; Bonfils, X.; Udry, S.

    2018-04-01

    In favourable conditions, the density of transiting planets in multiple systems can be determined from photometry data alone. Dynamical information can be extracted from light curves, providing modelling is done self-consistently, i.e. using a photodynamical model, which simulates the individual photometric observations instead of the more generally used transit times. We apply this methodology to the Kepler-138 planetary system. The derived planetary bulk densities are a factor of two more precise than previous determinations, and we find a discrepancy in the stellar bulk density with respect to a previous study. This leads, in turn, to a discrepancy in the determination of masses and radii of the star and the planets. In particular, we find that interior planet, Kepler-138 b, has a size in between Mars and the Earth. Given our mass and density estimates, we characterize the planetary interiors using a generalized Bayesian inference model. This model allows us to quantify for interior degeneracy and calculate confidence regions of interior parameters such as thicknesses of the core, the mantle, and ocean and gas layers. We find that Kepler-138 b and Kepler-138 d have significantly thick volatile layers, and that the gas layer of Kepler-138 b is likely enriched. On the other hand, Kepler-138 c can be purely rocky.

  6. Absolute densities in exoplanetary systems: photodynamical modelling of Kepler-138

    NASA Astrophysics Data System (ADS)

    Almenara, J. M.; Díaz, R. F.; Dorn, C.; Bonfils, X.; Udry, S.

    2018-07-01

    In favourable conditions, the density of transiting planets in multiple systems can be determined from photometry data alone. Dynamical information can be extracted from light curves, providing modelling is done self-consistently, i.e. using a photodynamical model, which simulates the individual photometric observations instead of the more generally used transit times. We apply this methodology to the Kepler-138 planetary system. The derived planetary bulk densities are a factor of 2 more precise than previous determinations, and we find a discrepancy in the stellar bulk density with respect to a previous study. This leads, in turn, to a discrepancy in the determination of masses and radii of the star and the planets. In particular, we find that interior planet, Kepler-138b, has a size in between Mars and the Earth. Given our mass and density estimates, we characterize the planetary interiors using a generalized Bayesian inference model. This model allows us to quantify for interior degeneracy and calculate confidence regions of interior parameters such as thicknesses of the core, the mantle, and ocean and gas layers. We find that Kepler-138b and Kepler-138 d have significantly thick volatile layers and that the gas layer of Kepler-138b is likely enriched. On the other hand, Kepler-138c can be purely rocky.

  7. Circumbinary planet formation in the Kepler-16 system. II. A toy model for in situ planet formation within a debris belt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meschiari, Stefano, E-mail: stefano@astro.as.utexas.edu

    2014-07-20

    Recent simulations have shown that the formation of planets in circumbinary configurations (such as those recently discovered by Kepler) is dramatically hindered at the planetesimal accretion stage. The combined action of the binary and the protoplanetary disk acts to raise impact velocities between kilometer-sized planetesimals beyond their destruction threshold, halting planet formation within at least 10 AU from the binary. It has been proposed that a primordial population of 'large' planetesimals (100 km or more in size), as produced by turbulent concentration mechanisms, would be able to bypass this bottleneck; however, it is not clear whether these processes are viablemore » in the highly perturbed circumbinary environments. We perform two-dimensional hydrodynamical and N-body simulations to show that kilometer-sized planetesimals and collisional debris can drift and be trapped in a belt close to the central binary. Within this belt, planetesimals could initially grow by accreting debris, ultimately becoming 'indestructible' seeds that can accrete other planetesimals in situ despite the large impact speeds. We find that large, indestructible planetesimals can be formed close to the central binary within 10{sup 5} yr, therefore showing that even a primordial population of 'small' planetesimals can feasibly form a planet.« less

  8. VizieR Online Data Catalog: Four new transiting planets (Hebrard+, 2014)

    NASA Astrophysics Data System (ADS)

    Hebrard, G.; Santerne, A.; Montagnier, G.; Bruno, G.; Deleuil, M.; Havel, M.; Almenara, J.-M.; Damiani, C.; Barros, S. C. C.; Bonomo, A. S.; Bouchy, F.; Diaz, R. F.; Moutou, C.

    2014-10-01

    The characterization of four new transiting extrasolar planets is presented here. KOI-188b and KOI-195b are bloated hot Saturns, with orbital periods of 3.8 and 3.2-days, and masses of 0.25 and 0.34MJup, respectively. They are located in the low-mass range of known transiting, giant planets. KOI-192b has a similar mass (0.29MJup) but a longer orbital period of 10.3 days. This places it in a domain where only few planets are known. KOI-830b, finally, with a mass of 1.27MJup and a period of 3.5-days, is a typical hot Jupiter. The four planets have radii of 0.98, 1.09, 1.2, and 1.08RJup, respectively. We detected no significant eccentricity in any of the systems, while the accuracy of our data does not rule out possible moderate eccentricities. The four objects were first identified by the Kepler Team as promising candidates from photometry of the Kepler satellite. We establish here their planetary nature thanks to the radial velocity follow-up we secured with the HARPS-N spectrograph at the Telescopio Nazionale Galileo. The combined analyses of the whole datasets allow us to fully characterize the four planetary systems. These new objects increase the number of well-characterized exoplanets for statistics, and provide new targets for individual follow-up studies. The pre-screening we performed with the SOPHIE spectrograph at the Observatoire de Haute-Provence as part of that study also allowed us to conclude that a fifth candidate, KOI-219.01, is not a planet but is a false positive. (2 data files).

  9. Kepler-20e -- The Smallest Exoplanet Artist Concept

    NASA Image and Video Library

    2011-12-20

    Kepler-20e is the first planet smaller than the Earth discovered to orbit a star other than the sun. A year on Kepler-20e only lasts 6 days, as it is much closer to its host star than the Earth is to the sun.

  10. Direct Imaging discovery of a second planet candidate around the possibly transiting planet host CVSO 30

    NASA Astrophysics Data System (ADS)

    Schmidt, T. O. B.; Neuhäuser, R.; Briceño, C.; Vogt, N.; Raetz, St.; Seifahrt, A.; Ginski, C.; Mugrauer, M.; Buder, S.; Adam, C.; Hauschildt, P.; Witte, S.; Helling, Ch.; Schmitt, J. H. M. M.

    2016-09-01

    Context. Direct imaging has developed into a very successful technique for the detection of exoplanets in wide orbits, especially around young stars. Directly imaged planets can be both followed astrometrically on their orbits and observed spectroscopically and thus provide an essential tool for our understanding of the early solar system. Aims: We surveyed the 25 Ori association for direct-imaging companions. This association has an age of only few million years. Among other targets, we observed CVSO 30, which has recently been identified as the first T Tauri star found to host a transiting planet candidate. Methods: We report on photometric and spectroscopic high-contrast observations with the Very Large Telescope, the Keck telescopes, and the Calar Alto observatory. They reveal a directly imaged planet candidate close to the young M3 star CVSO 30. Results: The JHK-band photometry of the newly identified candidate is at better than 1σ consistent with late-type giants, early-T and early-M dwarfs, and free-floating planets. Other hypotheses such as galaxies can be excluded at more than 3.5σ. A lucky imaging z' photometric detection limit z' = 20.5 mag excludes early-M dwarfs and results in less than 10 MJup for CVSO 30 c if bound. We present spectroscopic observations of the wide companion that imply that the only remaining explanation for the object is that it is the first very young (<10 Myr) L - T-type planet bound to a star, meaning that it appears bluer than expected as a result of a decreasing cloud opacity at low effective temperatures. Only a planetary spectral model is consistent with the spectroscopy, and we deduce a best-fit mass of 4-5 Jupiter masses (total range 0.6-10.2 Jupiter masses). Conclusions: This means that CVSO 30 is the first system in which both a close-in and a wide planet candidate are found to have a common host star. The orbits of the two possible planets could not be more different: they have orbital periods of 10.76 h and about 27

  11. Artificial Intelligence and NASA Data Used to Discover Eighth Planet Circling Distant Star

    NASA Image and Video Library

    2017-12-12

    Our solar system now is tied for most number of planets around a single star, with the recent discovery of an eighth planet circling Kepler-90, a Sun-like star 2,545 light years from Earth. The planet was discovered in data from NASA’s Kepler space telescope. The newly-discovered Kepler-90i -- a sizzling hot, rocky planet that orbits its star once every 14.4 days -- was found by researchers from Google and The University of Texas at Austin using machine learning. Machine learning is an approach to artificial intelligence in which computers “learn.” In this case, computers learned to identify planets by finding in Kepler data instances where the telescope recorded signals from planets beyond our solar system, known as exoplanets. Video Credit: NASA Ames Research Center / Google

  12. Rediscovering Kepler's laws using Newton's gravitation law and NASA data

    NASA Astrophysics Data System (ADS)

    Springsteen, Paul; Keith, Jason

    2010-03-01

    Kepler's three laws of planetary motion were originally discovered by using data acquired from Tycho Brache's naked eye observations of the planets. We show how Kepler's third law can be reproduced using planetary data from NASA. We will also be using Newton's Gravitational law to explain why Kepler's three laws exist as they do.

  13. TRANSIT TIMING OBSERVATIONS FROM KEPLER. VI. POTENTIALLY INTERESTING CANDIDATE SYSTEMS FROM FOURIER-BASED STATISTICAL TESTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steffen, Jason H.; Ford, Eric B.; Rowe, Jason F.

    2012-09-10

    We analyze the deviations of transit times from a linear ephemeris for the Kepler Objects of Interest (KOI) through quarter six of science data. We conduct two statistical tests for all KOIs and a related statistical test for all pairs of KOIs in multi-transiting systems. These tests identify several systems which show potentially interesting transit timing variations (TTVs). Strong TTV systems have been valuable for the confirmation of planets and their mass measurements. Many of the systems identified in this study should prove fruitful for detailed TTV studies.

  14. Transit Timing Observations from Kepler: VII. Potentially interesting candidate systems from Fourier-based statistical tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steffen, Jason H.; /Fermilab; Ford, Eric B.

    2012-01-01

    We analyze the deviations of transit times from a linear ephemeris for the Kepler Objects of Interest (KOI) through Quarter six (Q6) of science data. We conduct two statistical tests for all KOIs and a related statistical test for all pairs of KOIs in multi-transiting systems. These tests identify several systems which show potentially interesting transit timing variations (TTVs). Strong TTV systems have been valuable for the confirmation of planets and their mass measurements. Many of the systems identified in this study should prove fruitful for detailed TTV studies.

  15. THE POSSIBLE MOON OF KEPLER-90g IS A FALSE POSITIVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kipping, D. M.; Torres, G.; Buchhave, L. A.

    2015-01-20

    The discovery of an exomoon would provide deep insights into planet formation and the habitability of planetary systems, with transiting examples being particularly sought after. Of the hundreds of Kepler planets now discovered, the seven-planet system Kepler-90 is unusual for exhibiting an unidentified transit-like signal in close proximity to one of the transits of the long-period gas-giant Kepler-90g, as noted by Cabrera et al. As part of the ''Hunt for Exomoons with Kepler'' project, we investigate this possible exomoon signal and find it passes all conventional photometric, dynamical, and centroid diagnostic tests. However, pixel-level light curves indicate that the moon-like signalmore » occurs on nearly all of the target's pixels, which we confirm using a novel way of examining pixel-level data which we dub the ''transit centroid''. This test reveals that the possible exomoon to Kepler-90g is likely a false positive, perhaps due to a cosmic ray induced sudden pixel sensitivity dropout. This work highlights the extreme care required for seeking non-periodic low-amplitude transit signals, such as exomoons.« less

  16. Creating Kepler's Final KOI Catalog while Balancing Completeness and Reliability

    NASA Astrophysics Data System (ADS)

    Thompson, Susan E.; Coughlin, Jeffrey L.; Mullally, Fergal R.; Christiansen, Jessie; Burke, Christopher J.; Kepler Team

    2016-06-01

    We report on the Kepler Mission's plan to create the final planetary candidate catalog (Data Release 25 KOI catalog), which will be fully automated and uniformly vetted. This catalog is based on evaluating the periodic events reported in the DR25 TCE table (Twicken et al. 2016) available at the NASA exoplanet archive. As with the previous KOI catalog (DR24) the intent is to prioritize uniformity and completeness over obtaining 100% accuracy. In this way, the completeness and the reliability of the KOI table can be measured so that exoplanet occurrence rates can easily be calculated. We use, and improve upon, the DR24 rule-based vetter (Robovetter, Coughlin et al. 2016) to create the final dispositions in the catalog. As done before, the Robovetter's decisions will be tested against injected transits to show that true transit-like signatures are retained. Additionally, the Robovetter will be tested against TCEs found in inverted light curves as a way of showing that the Robovetter is effectively removing false alarms. We will discuss our current methods, any obstacles in our path, and the timeline for delvering Kepler's final planet candidate catalog.

  17. A Three-Body Simulation of Kepler-91: A Potential Trojan System

    NASA Astrophysics Data System (ADS)

    D'Angelo, Bryan Daniel

    This paper presents a three-body simulation of Kepler-91 (KIC 8219268) using parameters generated by the EXONEST software package. EXONEST uses Bayesian model testing and Bayesian parameter estimation to model photometric variations and three-body motion. A close examination of the Kepler-91 light curve reveals what appears to be a third dimming event that occurs 60° out of phase with the primary transit of the conrmed planet Kepler-91b, which makes a Trojan planet in the L4 or L5 Lagrange point an enticing explanation. EXONEST is also used to model the radial velocity of Kepler-91 based on the three-body motion. The three-body analysis by EXONEST predicts a Jovian planet with mass 2:54 +/- 0:27MJ and radius 2:37 +/- 0:25RJ , and Trojan planet with mass 0:44 +/- 0:26MJ and radius 0:86 +/- 0:14R J that orbits an average of 60:39 +/- 3:74° out of phase with the Jovian, with a maximum separation angle of 68:4 +/- 43:74° and minimum separation angle of 52:33 +/- 3:74°. Both planets are predicted to have an inclination angle of 67:76 +/- 2:26° and eccentricity 0:073 +/- 0:004. The three-body motion predicts Kepler-91 to have a radial velocity semi-amplitude of 66:75 +/- 38:22 m/s and reduced mass times the sine of the inclination angle (mu sin i) of 0:732 +/- 0:385MJ.

  18. Kepler-22b -- Comfortably Circling within the Habitable Zone

    NASA Image and Video Library

    2011-12-05

    This diagram compares our own solar system to Kepler-22, a star system containing the first habitable zone planet -- the sweet spot around a star where temperatures are right for water to exist in its liquid form, discovered by NASA Kepler mission.

  19. CONFIRMATION OF HOT JUPITER KEPLER-41b VIA PHASE CURVE ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quintana, Elisa V.; Rowe, Jason F.; Caldwell, Douglas A.

    We present high precision photometry of Kepler-41, a giant planet in a 1.86 day orbit around a G6V star that was recently confirmed through radial velocity measurements. We have developed a new method to confirm giant planets solely from the photometric light curve, and we apply this method herein to Kepler-41 to establish the validity of this technique. We generate a full phase photometric model by including the primary and secondary transits, ellipsoidal variations, Doppler beaming, and reflected/emitted light from the planet. Third light contamination scenarios that can mimic a planetary transit signal are simulated by injecting a full rangemore » of dilution values into the model, and we re-fit each diluted light curve model to the light curve. The resulting constraints on the maximum occultation depth and stellar density combined with stellar evolution models rules out stellar blends and provides a measurement of the planet's mass, size, and temperature. We expect about two dozen Kepler giant planets can be confirmed via this method.« less

  20. Pantheon of Planets Similar to Earth Artist Concept

    NASA Image and Video Library

    2015-07-23

    A newly discovered exoplanet, Kepler-452b, comes the closest of any found so far to matching our Earth-sun system. This artist's conception of a planetary lineup shows habitable-zone planets with similarities to Earth: from left, Kepler-22b, Kepler-69c, the just announced Kepler-452b, Kepler-62f and Kepler-186f. Last in line is Earth itself. http://photojournal.jpl.nasa.gov/catalog/PIA19830

  1. Giant Planets around FGK Stars Probably Form through Core Accretion

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Wang, Liang; Li, Xiang; Chen, Yuqin; Zhao, Gang

    2018-06-01

    We present a statistical study of the planet–metallicity (P–M) correlation by comparing the 744 stars with candidate planets (SWPs) in the Kepler field that have been observed with LAMOST, and a sample of distance-independent, fake “twin” stars in the Kepler field with no planet reported (CKSNPs) yet. With well-defined and carefully selected large samples, we find for the first time a turnoff P–M correlation of Δ[Fe/H]SWPs–SNPs, which on average increases from ∼0.00 ± 0.03 dex to 0.06 ± 0.03 dex, and to 0.12 ± 0.03 for stars with Earth-, Neptune-, and Jupiter-sized planets successively, and then declines to ∼‑0.01 ± 0.03 dex for more massive planets or brown dwarfs. Moreover, the percentage of those systems with positive Δ[Fe/H] has the same turnoff pattern. We also find that FG-type stars follow this general trend, but K-type stars are different. Moderate metal enhancement (∼0.1–0.2 dex) for K-type stars with planets of radii between 2 and 4 R ⊕, compared to CKSNPs is observed, which indicates much higher metallicities are required for Super-Earths and Neptune-sized planets to form around K-type stars. We point out that the P–M correlation is actually metallicity-dependent, i.e., the correlation is positive at solar and supersolar metallicities, and negative at subsolar metallicities. No steady increase of Δ[Fe/H] against planet sizes is observed for rocky planets, excluding the pollution scenario as a major mechanism for the P–M correlation. All these clues suggest that giant planets probably form differently from rocky planets or more massive planets/brown dwarfs, and the core accretion scenario is highly favored, and high metallicity is a prerequisite for massive planets to form.

  2. Kepler Mission Website: Portal to the International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    Harman, Pamela; DeVore, E.; Gould, A.; Koch, D.

    2008-05-01

    The 400th anniversary of Galileo's telescope is an opportunity to turn the public's eyes skyward and to the universe beyond the solar system. The Kepler Mission, launching in 2009, the International Year of Astronomy (IYA) will is specifically designed to survey our region of the Milky Way galaxy to detect and characterize hundreds of Earth-size and smaller planets in or near the habitable zone, using the transit method of detection. The habitable zone encompasses the distances from a star where liquid water can exist on a planet's surface. Results from this mission will allow us to place our solar system within the continuum of planetary systems in the Galaxy. The Kepler Mission is a NASA Discovery Program Mission. The Kepler Mission website http://www.kepler.arc.nasa.gov/ offers classroom activity lesson plans Detecting Planet Transits, The Human Orrery, and Morning Star and Evening Star. The activities are suitable for the informal science education realm. The spacecraft paper model and LEGO model orrerey can be used in the classroom by teachers or at home by families. The mission simulation and animation, as well as lessons and models highlight the science concepts critical to employing the transit method of detection, Kepler's Laws. The Send Your Name to Space on Kepler Spacecraft provides a certificate of participation for all individuals that submit there name to be listed on a DVD placed on the spacecraft. This poster will provide details on each of the items described.

  3. Assessing the Effect of Stellar Companions from High-resolution Imaging of Kepler Objects of Interest

    NASA Astrophysics Data System (ADS)

    Hirsch, Lea A.; Ciardi, David R.; Howard, Andrew W.; Everett, Mark E.; Furlan, Elise; Saylors, Mindy; Horch, Elliott P.; Howell, Steve B.; Teske, Johanna; Marcy, Geoffrey W.

    2017-03-01

    We report on 176 close (<2″) stellar companions detected with high-resolution imaging near 170 hosts of Kepler Objects of Interest (KOIs). These Kepler targets were prioritized for imaging follow-up based on the presence of small planets, so most of the KOIs in these systems (176 out of 204) have nominal radii <6 {R}\\oplus . Each KOI in our sample was observed in at least two filters with adaptive optics, speckle imaging, lucky imaging, or the Hubble Space Telescope. Multi-filter photometry provides color information on the companions, allowing us to constrain their stellar properties and assess the probability that the companions are physically bound. We find that 60%-80% of companions within 1″ are bound, and the bound fraction is >90% for companions within 0.″5 the bound fraction decreases with increasing angular separation. This picture is consistent with simulations of the binary and background stellar populations in the Kepler field. We also reassess the planet radii in these systems, converting the observed differential magnitudes to a contamination in the Kepler bandpass and calculating the planet radius correction factor, X R = R p (true)/R p (single). Under the assumption that planets in bound binaries are equally likely to orbit the primary or secondary, we find a mean radius correction factor for planets in stellar multiples of X R = 1.65. If stellar multiplicity in the Kepler field is similar to the solar neighborhood, then nearly half of all Kepler planets may have radii underestimated by an average of 65%, unless vetted using high-resolution imaging or spectroscopy.

  4. Cluster of Stars in Kepler Sight

    NASA Image and Video Library

    2009-04-16

    This image zooms into a small portion of NASA Kepler full field of view, an expansive, 100-square-degree patch of sky in our Milky Way galaxy. An eight-billion-year-old cluster of stars 13,000 light-years from Earth, called NGC 6791, can be seen in the image. Clusters are families of stars that form together out of the same gas cloud. This particular cluster is called an open cluster, because the stars are loosely bound and have started to spread out from each other. The area pictured is 0.2 percent of Kepler's full field of view, and shows hundreds of stars in the constellation Lyra. The image has been color-coded so that brighter stars appear white, and fainter stars, red. It is a 60-second exposure, taken on April 8, 2009, one day after the spacecraft's dust cover was jettisoned. Kepler was designed to hunt for planets like Earth. The mission will spend the next three-and-a-half years staring at the same stars, looking for periodic dips in brightness. Such dips occur when planets cross in front of their stars from our point of view in the galaxy, partially blocking the starlight. To achieve the level of precision needed to spot planets as small as Earth, Kepler's images are intentionally blurred slightly. This minimizes the number of saturated stars. Saturation, or "blooming," occurs when the brightest stars overload the individual pixels in the detectors, causing the signal to spill out into nearby pixels. http://photojournal.jpl.nasa.gov/catalog/PIA11986

  5. Prevalence of Earth-size planets orbiting Sun-like stars.

    PubMed

    Petigura, Erik A; Howard, Andrew W; Marcy, Geoffrey W

    2013-11-26

    Determining whether Earth-like planets are common or rare looms as a touchstone in the question of life in the universe. We searched for Earth-size planets that cross in front of their host stars by examining the brightness measurements of 42,000 stars from National Aeronautics and Space Administration's Kepler mission. We found 603 planets, including 10 that are Earth size ( ) and receive comparable levels of stellar energy to that of Earth (1 - 2 R[Symbol: see text] ). We account for Kepler's imperfect detectability of such planets by injecting synthetic planet-caused dimmings into the Kepler brightness measurements and recording the fraction detected. We find that 11 ± 4% of Sun-like stars harbor an Earth-size planet receiving between one and four times the stellar intensity as Earth. We also find that the occurrence of Earth-size planets is constant with increasing orbital period (P), within equal intervals of logP up to ~200 d. Extrapolating, one finds 5.7(-2.2)(+1.7)% of Sun-like stars harbor an Earth-size planet with orbital periods of 200-400 d.

  6. Exploring exoplanet populations with NASA's Kepler Mission

    NASA Astrophysics Data System (ADS)

    Batalha, Natalie M.

    2014-09-01

    The Kepler Mission is exploring the diversity of planets and planetary systems. Its legacy will be a catalog of discoveries sufficient for computing planet occurrence rates as a function of size, orbital period, star type, and insolation flux. The mission has made significant progress toward achieving that goal. Over 3,500 transiting exoplanets have been identified from the analysis of the first 3 y of data, 100 planets of which are in the habitable zone. The catalog has a high reliability rate (85-90% averaged over the period/radius plane), which is improving as follow-up observations continue. Dynamical (e.g., velocimetry and transit timing) and statistical methods have confirmed and characterized hundreds of planets over a large range of sizes and compositions for both single- and multiple-star systems. Population studies suggest that planets abound in our galaxy and that small planets are particularly frequent. Here, I report on the progress Kepler has made measuring the prevalence of exoplanets orbiting within one astronomical unit of their host stars in support of the National Aeronautics and Space Administration's long-term goal of finding habitable environments beyond the solar system.

  7. Exploring exoplanet populations with NASA's Kepler Mission.

    PubMed

    Batalha, Natalie M

    2014-09-02

    The Kepler Mission is exploring the diversity of planets and planetary systems. Its legacy will be a catalog of discoveries sufficient for computing planet occurrence rates as a function of size, orbital period, star type, and insolation flux. The mission has made significant progress toward achieving that goal. Over 3,500 transiting exoplanets have been identified from the analysis of the first 3 y of data, 100 planets of which are in the habitable zone. The catalog has a high reliability rate (85-90% averaged over the period/radius plane), which is improving as follow-up observations continue. Dynamical (e.g., velocimetry and transit timing) and statistical methods have confirmed and characterized hundreds of planets over a large range of sizes and compositions for both single- and multiple-star systems. Population studies suggest that planets abound in our galaxy and that small planets are particularly frequent. Here, I report on the progress Kepler has made measuring the prevalence of exoplanets orbiting within one astronomical unit of their host stars in support of the National Aeronautics and Space Administration's long-term goal of finding habitable environments beyond the solar system.

  8. The hunt for exomoons with Kepler (HEK). IV. A search for moons around eight M dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kipping, D. M., E-mail: dkipping@cfa.harvard.edu; Nesvorný, D.; Buchhave, L. A.

    2014-03-20

    With their smaller radii and high cosmic abundance, transiting planets around cool stars hold a unique appeal. As part of our ongoing project to measure the occurrence rate of extrasolar moons, in this work we present results from a survey focusing on eight Kepler planetary candidates associated with M dwarfs. Using photodynamical modeling and Bayesian multimodal nested sampling, we find no compelling evidence for an exomoon in these eight systems. Upper limits on the presence of such bodies probe down to masses of ∼0.4 M {sub ⊕} in the best case. For KOI-314, we are able to confirm the planetarymore » nature of two out of the three known transiting candidates using transit timing variations. Of particular interest is KOI-314c, which is found to have a mass of 1.0{sub −0.3}{sup +0.4} M {sub ⊕}, making it the lowest mass transiting planet discovered to date. With a radius of 1.61{sub −0.15}{sup +0.16} R {sub ⊕}, this Earth-mass world is likely enveloped by a significant gaseous envelope comprising ≥17{sub −13}{sup +12}% of the planet by radius. We also find evidence to support the planetary nature of KOI-784 via transit timing, but we advocate further observations to verify the signals. In both systems, we infer that the inner planet has a higher density than the outer world, which may be indicative of photo-evaporation. These results highlight both the ability of Kepler to search for sub-Earth-mass moons and the exciting ancillary science that often results from such efforts.« less

  9. Secure Mass Measurements from Transit Timing: 10 Kepler Exoplanets between 3 and 8 M⊕ with Diverse Densities and Incident Fluxes

    NASA Astrophysics Data System (ADS)

    Jontof-Hutter, Daniel; Ford, Eric B.; Rowe, Jason F.; Lissauer, Jack J.; Fabrycky, Daniel C.; Van Laerhoven, Christa; Agol, Eric; Deck, Katherine M.; Holczer, Tomer; Mazeh, Tsevi

    2016-03-01

    We infer dynamical masses in eight multiplanet systems using transit times measured from Kepler's complete data set, including short-cadence data where available. Of the 18 dynamical masses that we infer, 10 pass multiple tests for robustness. These are in systems Kepler-26 (KOI-250), Kepler-29 (KOI-738), Kepler-60 (KOI-2086), Kepler-105 (KOI-115), and Kepler-307 (KOI-1576). Kepler-105 c has a radius of 1.3 R⊕ and a density consistent with an Earth-like composition. Strong transit timing variation (TTV) signals were detected from additional planets, but their inferred masses were sensitive to outliers or consistent solutions could not be found with independently measured transit times, including planets orbiting Kepler-49 (KOI-248), Kepler-57 (KOI-1270), Kepler-105 (KOI-115), and Kepler-177 (KOI-523). Nonetheless, strong upper limits on the mass of Kepler-177 c imply an extremely low density of ˜0.1 g cm-3. In most cases, individual orbital eccentricities were poorly constrained owing to degeneracies in TTV inversion. For five planet pairs in our sample, strong secular interactions imply a moderate to high likelihood of apsidal alignment over a wide range of possible eccentricities. We also find solutions for the three planets known to orbit Kepler-60 in a Laplace-like resonance chain. However, nonlibrating solutions also match the transit timing data. For six systems, we calculate more precise stellar parameters than previously known, enabling useful constraints on planetary densities where we have secure mass measurements. Placing these exoplanets on the mass-radius diagram, we find that a wide range of densities is observed among sub-Neptune-mass planets and that the range in observed densities is anticorrelated with incident flux.

  10. A Resolved Debris Disk Around the Candidate Planet-hosting Star HD 95086

    NASA Technical Reports Server (NTRS)

    Moor, A.; Abraham, P.; Kospal, A.; Szabo, Gy. M.; Apai, D.; Balog, Z.; Csengeri, T.; Grady, C.; Henning, Th.; Juhasz, J.; hide

    2013-01-01

    Recently, a new planet candidate was discovered on direct images around the young (10-17 Myr) A-type star HD 95086. The strong infrared excess of the system indicates that, similar to HR8799, Beta Pic, and Fomalhaut, the star harbors a circumstellar disk. Aiming to study the structure and gas content of the HD 95086 disk, and to investigate its possible interaction with the newly discovered planet, here we present new optical, infrared, and millimeter observations. We detected no CO emission, excluding the possibility of an evolved gaseous primordial disk. Simple blackbody modeling of the spectral energy distribution suggests the presence of two spatially separate dust belts at radial distances of 6 and 64 AU. Our resolved images obtained with the Herschel Space Observatory reveal a characteristic disk size of approx. 6.0 × 5.4 (540 × 490 AU) and disk inclination of approx 25 deg. Assuming the same inclination for the planet candidate's orbit, its reprojected radial distance from the star is 62 AU, very close to the blackbody radius of the outer cold dust ring. The structure of the planetary system at HD 95086 resembles the one around HR8799. Both systems harbor a warm inner dust belt and a broad colder outer disk and giant planet(s) between the two dusty regions. Modeling implies that the candidate planet can dynamically excite the motion of planetesimals even out to 270 AU via their secular perturbation if its orbital eccentricity is larger than about 0.4. Our analysis adds a new example to the three known systems where directly imaged planet(s) and debris disks coexist.

  11. The host stars of Kepler's habitable exoplanets: superflares, rotation and activity

    NASA Astrophysics Data System (ADS)

    Armstrong, D. J.; Pugh, C. E.; Broomhall, A.-M.; Brown, D. J. A.; Lund, M. N.; Osborn, H. P.; Pollacco, D. L.

    2016-01-01

    We embark on a detailed study of the light curves of Kepler's most Earth-like exoplanet host stars using the full length of Kepler data. We derive rotation periods, photometric activity indices, flaring energies, mass-loss rates, gyrochronological ages, X-ray luminosities and consider implications for the planetary magnetospheres and habitability. Furthermore, we present the detection of superflares in the light curve of Kepler-438, the exoplanet with the highest Earth Similarity Index to date. Kepler-438b orbits at a distance of 0.166 au to its host star, and hence may be susceptible to atmospheric stripping. Our sample is taken from the Habitable Exoplanet Catalogue, and consists of the stars Kepler-22, Kepler-61, Kepler-62, Kepler-174, Kepler-186, Kepler-283, Kepler-296, Kepler-298, Kepler-438, Kepler-440, Kepler-442, Kepler-443 and KOI-4427, between them hosting 15 of the most habitable transiting planets known to date from Kepler.

  12. The Effect of Orbital Configuration on the Possible Climates and Habitability of Kepler-62f.

    PubMed

    Shields, Aomawa L; Barnes, Rory; Agol, Eric; Charnay, Benjamin; Bitz, Cecilia; Meadows, Victoria S

    2016-06-01

    As lower-mass stars often host multiple rocky planets, gravitational interactions among planets can have significant effects on climate and habitability over long timescales. Here we explore a specific case, Kepler-62f (Borucki et al., 2013 ), a potentially habitable planet in a five-planet system with a K2V host star. N-body integrations reveal the stable range of initial eccentricities for Kepler-62f is 0.00 ≤ e ≤ 0.32, absent the effect of additional, undetected planets. We simulate the tidal evolution of Kepler-62f in this range and find that, for certain assumptions, the planet can be locked in a synchronous rotation state. Simulations using the 3-D Laboratoire de Météorologie Dynamique (LMD) Generic global climate model (GCM) indicate that the surface habitability of this planet is sensitive to orbital configuration. With 3 bar of CO2 in its atmosphere, we find that Kepler-62f would only be warm enough for surface liquid water at the upper limit of this eccentricity range, providing it has a high planetary obliquity (between 60° and 90°). A climate similar to that of modern-day Earth is possible for the entire range of stable eccentricities if atmospheric CO2 is increased to 5 bar levels. In a low-CO2 case (Earth-like levels), simulations with version 4 of the Community Climate System Model (CCSM4) GCM and LMD Generic GCM indicate that increases in planetary obliquity and orbital eccentricity coupled with an orbital configuration that places the summer solstice at or near pericenter permit regions of the planet with above-freezing surface temperatures. This may melt ice sheets formed during colder seasons. If Kepler-62f is synchronously rotating and has an ocean, CO2 levels above 3 bar would be required to distribute enough heat to the nightside of the planet to avoid atmospheric freeze-out and permit a large enough region of open water at the planet's substellar point to remain stable. Overall, we find multiple plausible combinations of

  13. BEER ANALYSIS OF KEPLER AND CoRoT LIGHT CURVES. II. EVIDENCE FOR SUPERROTATION IN THE PHASE CURVES OF THREE KEPLER HOT JUPITERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faigler, S.; Mazeh, T.

    We analyzed the Kepler light curves of four transiting hot Jupiter systems—KOI-13, HAT-P-7, TrES-2, and Kepler-76, which show BEaming, Ellipsoidal, and Reflection (BEER) phase modulations. The mass of the four planets can be estimated from either the beaming or the ellipsoidal amplitude, given the mass and radius of their parent stars. For KOI-13, HAT-P-7, and Kepler-76 we find that the beaming-based planetary mass estimate is larger than the mass estimated from the ellipsoidal amplitude, consistent with previous studies. This apparent discrepancy may be explained by equatorial superrotation of the planet atmosphere, which induces an angle shift of the planet reflection/emissionmore » phase modulation, as was suggested for Kepler-76 in the first paper of this series. We propose a modified BEER model that supports superrotation, assuming either a Lambertian or geometric reflection/emission phase function, and provides a photometry-consistent estimate of the planetary mass. Our analysis shows that for Kepler-76 and HAT-P-7, the Lambertian superrotation BEER model is highly preferable over an unshifted null model, while for KOI-13 it is preferable only at a 1.4σ level. For TrES-2 we do not find such preference. For all four systems the Lambertian superrotation model mass estimates are in excellent agreement with the planetary masses derived from, or constrained by, radial velocity measurements. This makes the Lambertian superrotation BEER model a viable tool for estimating the masses of hot Jupiters from photometry alone. We conclude that hot Jupiter superrotation may be a common phenomenon that can be detected in the visual light curves of Kepler.« less

  14. Improved parameters of seven Kepler giant companions characterized with SOPHIE and HARPS-N

    NASA Astrophysics Data System (ADS)

    Bonomo, A. S.; Sozzetti, A.; Santerne, A.; Deleuil, M.; Almenara, J.-M.; Bruno, G.; Díaz, R. F.; Hébrard, G.; Moutou, C.

    2015-03-01

    Radial-velocity observations of Kepler candidates obtained with the SOPHIE and HARPS-N spectrographs have permitted unveiling the nature of the five giant planets Kepler-41b, Kepler-43b, Kepler-44b, Kepler-74b, and Kepler-75b, the massive companion Kepler-39b, and the brown dwarf KOI-205b. These companions were previously characterized with long-cadence (LC) Kepler data. Here we aim at refining the parameters of these transiting systems by i) modelling the published radial velocities and Kepler short-cadence (SC) data that provide a much better sampling of the transits; ii) performing new spectral analyses of the SOPHIE and ESPaDOnS spectra, after improving our procedure for selecting and co-adding the SOPHIE spectra of faint stars (Kp ≳ 14); and iii) improving stellar rotation periods hence stellar age estimates through gyrochronology, when possible, by using all the available LC data up to quarter Q17. Posterior distributions of the system parameters were derived with a differential evolution Markov chain Monte Carlo approach. Our main results are as follows: a) Kepler-41b is significantly larger and less dense than previously found because a lower orbital inclination is favoured by SC data. This also affects the determination of the geometric albedo that is lower than previously derived: Ag< 0.135; b) Kepler-44b is moderately smaller and denser than reported in the discovery paper, as a consequence of the slightly shorter transit duration found with SC data; c) good agreement was achieved with published Kepler-43, Kepler-75, and KOI-205 system parameters, although the host stars Kepler-75 and KOI-205 were found to be slightly richer in metals and hotter, respectively; d) the previously reported non-zero eccentricities of Kepler-39b and Kepler-74b might be spurious. If their orbits were circular, the two companions would be smaller and denser than in the eccentric case. The radius of Kepler-39b is still larger than predicted by theoretical isochrones. Its

  15. Flow of Planets, Not Weak Tidal Evolution, Produces the Short-Period Planet Distribution with More Planets than Expected

    NASA Astrophysics Data System (ADS)

    Taylor, Stuart F.

    2013-01-01

    The most unexpected planet finding is arguably the number of those with shorter periods than theorists had expected, because most such close planets had been expected to migrate into the star in shorter timescales than the ages of the stars. Subsequent effort has been made to show how tidal dissipation in stars due to planets could be weaker than expected, but we show how the occurrence distribution of differently-sized planets is more consistent with the explanation that these planets have more recently arrived as a flow of inwardly migrating planets, with giant planets more likely to be found while gradually going through a short period stage. This continual ``flow'' of new planets arriving from further out is presumably supplied by the flow likely responsible for the short period pileup of giant planets (Socrates+ 2011). We have previously shown that the shortest period region of the exoplanet occurrence distribution has a fall-off shaped by inward tidal migration due to stellar tides, that is, tides on the star caused by the planets (Taylor 2011, 2012). The power index of the fall-off of giant and intermediate radius planet candidates found from Kepler data (Howard+ 2011) is close to the index of 13/3 which is expected for planets in circular orbits undergoing tidal migration. However, there is a discrepancy of the strength of the tidal migration determined using fits to the giant and medium planets distributions. This discrepancy is best resolved by the explanation that more giant than medium radii planets migrate through these short period orbits. We also present a correlation between higher eccentricity of planetary orbits with higher Fe/H of host stars, which could be explained by high eccentricity planets being associated with recent episodes of other planets into stars. By the time these planets migrate to become hot Jupiters, the pollution may be mixed into the star. The clearing of other planets by migrating hot giant planets may result in hot Jupiters

  16. Kepler-Astronomer in Astrology and Astrologer in Astronomy

    NASA Astrophysics Data System (ADS)

    Fempl-Madjarevic, Jasna

    The author is discussing a very complicated subject: the astrological aspects in the scientific activity of Johannes Kepler. Sometimes Kepler is considered the last astronomer which confused astrology with astronomy. In fact he composed horoscopes, but he was conscious finally that the astrology was a confusion. The author is discussing also the mistic aspects of the scientifc creation by Kepler. Particularly she emphasized that the "Mysterium Cosmographicum" is one of such works. Meanwhile, that work led to discovery of famous third laws of planets motion.

  17. Take off with NASA's Kepler Mission!: The Search for Other "Earths"

    ERIC Educational Resources Information Center

    Koch, David; DeVore, Edna K.; Gould, Alan; Harman, Pamela

    2009-01-01

    Humans have long wondered about life in the universe. Are we alone? Is Earth unique? What is it that makes our planet a habitable one, and are there others like Earth? NASA's Kepler Mission seeks the answers to these questions. Kepler is a space-based, specially designed 0.95 m aperture telescope. Launching in 2009, Kepler is NASA's first mission…

  18. Where Kepler Sees

    NASA Image and Video Library

    2009-04-16

    This star chart illustrates the large patch of sky that NASA Kepler mission will stare at for the duration of its three-and-a-half-year lifetime. The planet hunter's full field of view occupies 100 square degrees of our Milky Way galaxy, in the constellations Cygnus and Lyra. Kepler's focal plane, or the area where starlight is focused, is depicted on the star chart as a series of 42 vertical and horizontal rectangles. These rectangles represent the 95-megapixel camera's 42 charge-coupled devices, or CCDs. Scientists selected the orientation of the focal plane's field of view to avoid the region's brightest stars, which are shown as the largest black dots. Some of these bright stars can be seen falling in between the CCD modules, in areas that are not imaged. This was done so that the brightest stars will not saturate large portions of the detectors. Saturation causes signals from the bright stars to spill, or "bloom," into nearby planet-hunting territory. http://photojournal.jpl.nasa.gov/catalog/PIA11983

  19. The Effect of Orbital Configuration on the Possible Climates and Habitability of Kepler-62f

    PubMed Central

    Barnes, Rory; Agol, Eric; Charnay, Benjamin; Bitz, Cecilia; Meadows, Victoria S.

    2016-01-01

    Abstract As lower-mass stars often host multiple rocky planets, gravitational interactions among planets can have significant effects on climate and habitability over long timescales. Here we explore a specific case, Kepler-62f (Borucki et al., 2013), a potentially habitable planet in a five-planet system with a K2V host star. N-body integrations reveal the stable range of initial eccentricities for Kepler-62f is 0.00 ≤ e ≤ 0.32, absent the effect of additional, undetected planets. We simulate the tidal evolution of Kepler-62f in this range and find that, for certain assumptions, the planet can be locked in a synchronous rotation state. Simulations using the 3-D Laboratoire de Météorologie Dynamique (LMD) Generic global climate model (GCM) indicate that the surface habitability of this planet is sensitive to orbital configuration. With 3 bar of CO2 in its atmosphere, we find that Kepler-62f would only be warm enough for surface liquid water at the upper limit of this eccentricity range, providing it has a high planetary obliquity (between 60° and 90°). A climate similar to that of modern-day Earth is possible for the entire range of stable eccentricities if atmospheric CO2 is increased to 5 bar levels. In a low-CO2 case (Earth-like levels), simulations with version 4 of the Community Climate System Model (CCSM4) GCM and LMD Generic GCM indicate that increases in planetary obliquity and orbital eccentricity coupled with an orbital configuration that places the summer solstice at or near pericenter permit regions of the planet with above-freezing surface temperatures. This may melt ice sheets formed during colder seasons. If Kepler-62f is synchronously rotating and has an ocean, CO2 levels above 3 bar would be required to distribute enough heat to the nightside of the planet to avoid atmospheric freeze-out and permit a large enough region of open water at the planet's substellar point to remain stable. Overall, we find multiple plausible combinations

  20. STARS DO NOT EAT THEIR YOUNG MIGRATING PLANETS: EMPIRICAL CONSTRAINTS ON PLANET MIGRATION HALTING MECHANISMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plavchan, Peter; Bilinski, Christopher

    The discovery of ''hot Jupiters'' very close to their parent stars confirmed that Jovian planets migrate inward via several potential mechanisms. We present empirical constraints on planet migration halting mechanisms. We compute model density functions of close-in exoplanets in the orbital semi-major axis-stellar mass plane to represent planet migration that is halted via several mechanisms, including the interior 1:2 resonance with the magnetospheric disk truncation radius, the interior 1:2 resonance with the dust sublimation radius, and several scenarios for tidal halting. The models differ in the predicted power-law dependence of the exoplanet orbital semi-major axis as a function of stellarmore » mass, and thus we also include a power-law model with the exponent as a free parameter. We use a Bayesian analysis to assess the model success in reproducing empirical distributions of confirmed exoplanets and Kepler candidates that orbit interior to 0.1 AU. Our results confirm a correlation of the halting distance with stellar mass. Tidal halting provides the best fit to the empirical distribution of confirmed Jovian exoplanets at a statistically robust level, consistent with the Kozai mechanism and the spin-orbit misalignment of a substantial fraction of hot Jupiters. We can rule out migration halting at the interior 1:2 resonances with the magnetospheric disk truncation radius and the interior 1:2 resonance with the dust disk sublimation radius, a uniform random distribution, and a distribution with no dependence on stellar mass. Note that our results do not rule out Type-II migration, but rather eliminate the role of a circumstellar disk in stopping exoplanet migration. For Kepler candidates, which have a more restricted range in stellar mass compared to confirmed planets, we are unable to discern between the tidal dissipation and magnetospheric disk truncation braking mechanisms at a statistically significant level. The power-law model favors exponents in the

  1. Kepler, the Ultimate Aristotelian

    NASA Astrophysics Data System (ADS)

    Davis, A. E. L.

    A comparison is made between Aristotelian and Newtonian versions of Laws of Motion. Kepler was successful in proving the 2 laws of motion of a single planet - to the extent that agreement with a framework of theory constitutes a proof. Of course he invented his framework of causes after the event, to fit the motions that had been already been quantified - but it may seem to you that Kepler's mainly mechanistic way explanation could have been considered by his contemporaries just as reasonable as Newton's action at a distance. It could be now apprecated that there was a window of less than 50 years before Newton's total synthesis. No-one previously had had the motivation to create a system of "celestial physics" based on a judicious use of Aristotelian principles. Yet this is what Kepler achieved.

  2. Exploring exoplanet populations with NASA’s Kepler Mission

    PubMed Central

    Batalha, Natalie M.

    2014-01-01

    The Kepler Mission is exploring the diversity of planets and planetary systems. Its legacy will be a catalog of discoveries sufficient for computing planet occurrence rates as a function of size, orbital period, star type, and insolation flux. The mission has made significant progress toward achieving that goal. Over 3,500 transiting exoplanets have been identified from the analysis of the first 3 y of data, 100 planets of which are in the habitable zone. The catalog has a high reliability rate (85–90% averaged over the period/radius plane), which is improving as follow-up observations continue. Dynamical (e.g., velocimetry and transit timing) and statistical methods have confirmed and characterized hundreds of planets over a large range of sizes and compositions for both single- and multiple-star systems. Population studies suggest that planets abound in our galaxy and that small planets are particularly frequent. Here, I report on the progress Kepler has made measuring the prevalence of exoplanets orbiting within one astronomical unit of their host stars in support of the National Aeronautics and Space Administration’s long-term goal of finding habitable environments beyond the solar system. PMID:25049406

  3. Inside-out Planet Formation. III. Planet-Disk Interaction at the Dead Zone Inner Boundary

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Zhu, Zhaohuan; Tan, Jonathan C.; Chatterjee, Sourav

    2016-01-01

    The Kepler mission has discovered more than 4000 exoplanet candidates. Many of them are in systems with tightly packed inner planets. Inside-out planet formation (IOPF) has been proposed as a scenario to explain these systems. It involves sequential in situ planet formation at the local pressure maximum of a retreating dead zone inner boundary (DZIB). Pebbles accumulate at this pressure trap, which builds up a pebble ring and then a planet. The planet is expected to grow in mass until it opens a gap, which helps to both truncate pebble accretion and also induce DZIB retreat that sets the location of formation of the next planet. This simple scenario may be modified if the planet undergoes significant migration from its formation location. Thus, planet-disk interactions play a crucial role in the IOPF scenario. Here we present numerical simulations that first assess the degree of migration for planets of various masses that are forming at the DZIB of an active accretion disk, where the effective viscosity is undergoing a rapid increase in the radially inward direction. We find that torques exerted on the planet by the disk tend to trap the planet at a location very close to the initial pressure maximum where it formed. We then study gap opening by these planets to assess at what mass a significant gap is created. Finally, we present a simple model for DZIB retreat due to penetration of X-rays from the star to the disk midplane. Overall, these simulations help to quantify both the mass scale of first (“Vulcan”) planet formation and the orbital separation to the location of second planet formation.

  4. Follow-Up Photometry of Kelt Transiting Planet Candidates

    NASA Astrophysics Data System (ADS)

    Stephens, Denise C.; Joner, Michael D.; Hintz, Eric G.; Martin, Trevor; Spencer, Alex; Kelt Follow-Up Network (FUN) Team

    2017-10-01

    We have three telescopes at BYU that we use to follow-up possible transiting planet canidates for the KELT team. These telescopes were used to collect data on Kelt-16b and Kelt-9b, which is the hottest known exoplanet. More recently we used the newest of these telescopes, a robotic 8-inch telescope on the roof of our building, to confirm the most recent Kelt planet that will be published soon. This research has been ideal for the teaching and training of undergraduate students in the art of photometric observing and data reduction. In this presentation I will highlight how we are using our membership in the Kelt team to further the educational objective of our undergraduate astronomy program, while contributing meaningful science to the ever growing field of exoplanet discovery. I will also highlight a few of the more interesting Kelt planets and the minimum telescope requirements for detecting these planets. I will then discuss the sensitivities required to follow-up future TESS candidates, which may be of interest to others interested in joining the TESS follow-up teams.

  5. Probability of the Physical Association of 104 Blended Companions to Kepler Objects of Interest Using Visible and Near-infrared Adaptive Optics Photometry

    NASA Astrophysics Data System (ADS)

    Atkinson, Dani; Baranec, Christoph; Ziegler, Carl; Law, Nicholas; Riddle, Reed; Morton, Tim

    2017-01-01

    We determine probabilities of physical association for stars in blended Kepler Objects of Interest (KOIs), and find that 14.5{ % }-3.4 % +3.8 % of companions within ˜4″ are consistent with being physically unassociated with their primary. This produces a better understanding of potential false positives in the Kepler catalog and will guide models of planet formation in binary systems. Physical association is determined through two methods of calculating multi-band photometric parallax using visible and near-infrared adaptive optics observations of 84 KOI systems with 104 contaminating companions within ˜4″. We find no evidence that KOI companions with separations of less than 1″ are more likely to be physically associated than KOI companions generally. We also reinterpret transit depths for 94 planet candidates, and calculate that 2.6% ± 0.4% of transits have R> 15{R}\\oplus , which is consistent with prior modeling work.

  6. Wobbly Planet Orbital Schematic Illustration

    NASA Image and Video Library

    2014-02-04

    This illustration shows the unusual orbit of planet Kepler-413b around a close pair of orange and red dwarf stars. The planet 66-day orbit is tilted 2.5 degrees with respect to the plane of the binary stars orbit.

  7. Kepler Data Validation Time Series File: Description of File Format and Content

    NASA Technical Reports Server (NTRS)

    Mullally, Susan E.

    2016-01-01

    The Kepler space mission searches its time series data for periodic, transit-like signatures. The ephemerides of these events, called Threshold Crossing Events (TCEs), are reported in the TCE tables at the NASA Exoplanet Archive (NExScI). Those TCEs are then further evaluated to create planet candidates and populate the Kepler Objects of Interest (KOI) table, also hosted at the Exoplanet Archive. The search, evaluation and export of TCEs is performed by two pipeline modules, TPS (Transit Planet Search) and DV (Data Validation). TPS searches for the strongest, believable signal and then sends that information to DV to fit a transit model, compute various statistics, and remove the transit events so that the light curve can be searched for other TCEs. More on how this search is done and on the creation of the TCE table can be found in Tenenbaum et al. (2012), Seader et al. (2015), Jenkins (2002). For each star with at least one TCE, the pipeline exports a file that contains the light curves used by TPS and DV to find and evaluate the TCE(s). This document describes the content of these DV time series files, and this introduction provides a bit of context for how the data in these files are used by the pipeline.

  8. ScienceCast 136: A Sudden Multiplication of Planets

    NASA Image and Video Library

    2014-02-26

    Today, NASA announced a breakthrough addition to the catalog of new planets. Researchers using Kepler have confirmed 715 new worlds, almost quadrupling the number of planets previously confirmed by the planet-hunting spacecraft.

  9. Optimizing the TESS Planet Finding Pipeline

    NASA Astrophysics Data System (ADS)

    Chitamitara, Aerbwong; Smith, Jeffrey C.; Tenenbaum, Peter; TESS Science Processing Operations Center

    2017-10-01

    The Transiting Exoplanet Survey Satellite (TESS) is a new NASA planet finding all-sky survey that will observe stars within 200 light years and 10-100 times brighter than that of the highly successful Kepler mission. TESS is expected to detect ~1000 planets smaller than Neptune and dozens of Earth size planets. As in the Kepler mission, the Science Processing Operations Center (SPOC) processing pipeline at NASA Ames Research center is tasked with calibrating the raw pixel data, generating systematic error corrected light curves and then detecting and validating transit signals. The Transiting Planet Search (TPS) component of the pipeline must be modified and tuned for the new data characteristics in TESS. For example, due to each sector being viewed for as little as 28 days, the pipeline will be identifying transiting planets based on a minimum of two transit signals rather than three, as in the Kepler mission. This may result in a significantly higher false positive rate. The study presented here is to measure the detection efficiency of the TESS pipeline using simulated data. Transiting planets identified by TPS are compared to transiting planets from the simulated transit model using the measured epochs, periods, transit durations and the expected detection statistic of injected transit signals (expected MES). From the comparisons, the recovery and false positive rates of TPS is measured. Measurements of recovery in TPS are then used to adjust TPS configuration parameters to maximize the planet recovery rate and minimize false detections. The improvements in recovery rate between initial TPS conditions and after various adjustments will be presented and discussed.

  10. An Earth-sized planet in the habitable zone of a cool star.

    PubMed

    Quintana, Elisa V; Barclay, Thomas; Raymond, Sean N; Rowe, Jason F; Bolmont, Emeline; Caldwell, Douglas A; Howell, Steve B; Kane, Stephen R; Huber, Daniel; Crepp, Justin R; Lissauer, Jack J; Ciardi, David R; Coughlin, Jeffrey L; Everett, Mark E; Henze, Christopher E; Horch, Elliott; Isaacson, Howard; Ford, Eric B; Adams, Fred C; Still, Martin; Hunter, Roger C; Quarles, Billy; Selsis, Franck

    2014-04-18

    The quest for Earth-like planets is a major focus of current exoplanet research. Although planets that are Earth-sized and smaller have been detected, these planets reside in orbits that are too close to their host star to allow liquid water on their surfaces. We present the detection of Kepler-186f, a 1.11 ± 0.14 Earth-radius planet that is the outermost of five planets, all roughly Earth-sized, that transit a 0.47 ± 0.05 solar-radius star. The intensity and spectrum of the star's radiation place Kepler-186f in the stellar habitable zone, implying that if Kepler-186f has an Earth-like atmosphere and water at its surface, then some of this water is likely to be in liquid form.

  11. AN ANCIENT EXTRASOLAR SYSTEM WITH FIVE SUB-EARTH-SIZE PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campante, T. L.; Davies, G. R.; Chaplin, W. J.

    The chemical composition of stars hosting small exoplanets (with radii less than four Earth radii) appears to be more diverse than that of gas-giant hosts, which tend to be metal-rich. This implies that small, including Earth-size, planets may have readily formed at earlier epochs in the universe's history when metals were more scarce. We report Kepler spacecraft observations of Kepler-444, a metal-poor Sun-like star from the old population of the Galactic thick disk and the host to a compact system of five transiting planets with sizes between those of Mercury and Venus. We validate this system as a true five-planetmore » system orbiting the target star and provide a detailed characterization of its planetary and orbital parameters based on an analysis of the transit photometry. Kepler-444 is the densest star with detected solar-like oscillations. We use asteroseismology to directly measure a precise age of 11.2 ± 1.0 Gyr for the host star, indicating that Kepler-444 formed when the universe was less than 20% of its current age and making it the oldest known system of terrestrial-size planets. We thus show that Earth-size planets have formed throughout most of the universe's 13.8 billion year history, leaving open the possibility for the existence of ancient life in the Galaxy. The age of Kepler-444 not only suggests that thick-disk stars were among the hosts to the first Galactic planets, but may also help to pinpoint the beginning of the era of planet formation.« less

  12. Revealing a universal planet-metallicity correlation for planets of different solar-type stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ji; Fischer, Debra A., E-mail: ji.wang@yale.edu

    2015-01-01

    The metallicity of exoplanet systems serves as a critical diagnostic of planet formation mechanisms. Previous studies have demonstrated the planet–metallicity correlation for large planets (R{sub P} ⩾ 4 R{sub E}); however, a correlation has not been found for smaller planets. With a sample of 406 Kepler objects of interest whose stellar properties are determined spectroscopically, we reveal a universal planet–metallicity correlation: not only gas-giant planets (3.9 R{sub E}

  13. SPIN–ORBIT MISALIGNMENT AS A DRIVER OF THE KEPLER DICHOTOMY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spalding, Christopher; Batygin, Konstantin

    2016-10-10

    During its five-year mission, the Kepler spacecraft has uncovered a diverse population of planetary systems with orbital configurations ranging from single-transiting planets to systems of multiple planets co-transiting the parent star. By comparing the relative occurrences of multiple to single-transiting systems, recent analyses have revealed a significant over-abundance of singles. Dubbed the “ Kepler Dichotomy,” this feature has been interpreted as evidence for two separate populations of planetary systems: one where all orbits are confined to a single plane, and a second where the constituent planetary orbits possess significant mutual inclinations, allowing only a single member to be observed inmore » transit at a given epoch. In this work, we demonstrate that stellar obliquity, excited within the disk-hosting stage, can explain this dichotomy. Young stars rotate rapidly, generating a significant quadrupole moment, which torques the planetary orbits, with inner planets influenced more strongly. Given nominal parameters, this torque is sufficiently strong to excite significant mutual inclinations between planets, enhancing the number of single-transiting planets, sometimes through a dynamical instability. Furthermore, as hot stars appear to possess systematically higher obliquities, we predict that single-transiting systems should be relatively more prevalent around more massive stars. We analyze the Kepler data and confirm this signal to be present.« less

  14. Origin scenarios for the Kepler 36 planetary system

    NASA Astrophysics Data System (ADS)

    Quillen, Alice C.; Bodman, Eva; Moore, Alexander

    2013-11-01

    We explore scenarios for the origin of two different density planets in the Kepler 36 system in adjacent orbits near the 7:6 mean motion resonance. We find that fine tuning is required in the stochastic forcing amplitude, the migration rate and planet eccentricities to allow two convergently migrating planets to bypass mean motion resonances such as the 4:3, 5:4 and 6:5, and yet allow capture into the 7:6 resonance. Stochastic forcing can eject the system from resonance causing a collision between the planets, unless the disc causing migration and stochastic forcing is depleted soon after resonance capture. We explore a scenario with approximately Mars mass embryos originating exterior to the two planets and migrating inwards towards two planets. We find that gravitational interactions with embryos can nudge the system out of resonances. Numerical integrations with about a half dozen embryos can leave the two planets in the 7:6 resonance. Collisions between planets and embryos have a wide distribution of impact angles and velocities ranging from accretionary to disruptive. We find that impacts can occur at sufficiently high impact angle and velocity that the envelope of a planet could have been stripped, leaving behind a dense core. Some of our integrations show the two planets exchanging locations, allowing the outer planet that had experienced multiple collisions with embryos to become the innermost planet. A scenario involving gravitational interactions and collisions with embryos may account for both the proximity of the Kepler 36 planets and their large density contrast.

  15. Modeling Kepler Transit Light Curves as False Positives: Rejection of Blend Scenarios for Kepler-9, and Validation of Kepler-9 d, a Super-Earth-Size Planet in a Multiple System

    DTIC Science & Technology

    2011-01-20

    of 2009, was de- signed to address the important question of the frequency of Earth -size planets around Sun -like stars, and to characterize ex...physically associated with the candidate (hierarchical triple systems) and in a long-period orbit around their common center of mass would often be spatially...positive scenar- ios that is complementary to other diagnostics, and should play an important role in the discovery of Earth -size planets around other

  16. Do planets remember how they formed?

    NASA Astrophysics Data System (ADS)

    Kipping, David

    2018-01-01

    One of the most directly observable features of a transiting multiplanet system is their size-ordering when ranked in orbital separation. Kepler has revealed a rich diversity of outcomes, from perfectly ordered systems, like Kepler-80, to ostensibly disordered systems, like Kepler-20. Under the hypothesis that systems are born via preferred formation pathways, one might reasonably expect non-random size-orderings reflecting these processes. However, subsequent dynamical evolution, often chaotic and turbulent in nature, may erode this information and so here we ask - do systems remember how they formed? To address this, we devise a model to define the entropy of a planetary system's size-ordering, by first comparing differences between neighbouring planets and then extending to accommodate differences across the chain. We derive closed-form solutions for many of the microstate occupancies and provide public code with look-up tables to compute entropy for up to 10-planet systems. All three proposed entropy definitions exhibit the expected property that their credible interval increases with respect to a proxy for time. We find that the observed Kepler multis display a highly significant deficit in entropy compared to a randomly generated population. Incorporating a filter for systems deemed likely to be dynamically packed, we show that this result is robust against the possibility of missing planets too. Put together, our work establishes that Kepler systems do indeed remember something of their younger years and highlights the value of information theory for exoplanetary science.

  17. The Kepler-19 System: A Thick-envelope Super-Earth with Two Neptune-mass Companions Characterized Using Radial Velocities and Transit Timing Variations

    NASA Astrophysics Data System (ADS)

    Malavolta, Luca; Borsato, Luca; Granata, Valentina; Piotto, Giampaolo; Lopez, Eric; Vanderburg, Andrew; Figueira, Pedro; Mortier, Annelies; Nascimbeni, Valerio; Affer, Laura; Bonomo, Aldo S.; Bouchy, Francois; Buchhave, Lars A.; Charbonneau, David; Collier Cameron, Andrew; Cosentino, Rosario; Dressing, Courtney D.; Dumusque, Xavier; Fiorenzano, Aldo F. M.; Harutyunyan, Avet; Haywood, Raphaëlle D.; Johnson, John Asher; Latham, David W.; Lopez-Morales, Mercedes; Lovis, Christophe; Mayor, Michel; Micela, Giusi; Molinari, Emilio; Motalebi, Fatemeh; Pepe, Francesco; Phillips, David F.; Pollacco, Don; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Udry, Stéphane; Watson, Chris

    2017-05-01

    We report a detailed characterization of the Kepler-19 system. This star was previously known to host a transiting planet with a period of 9.29 days, a radius of 2.2 R ⊕, and an upper limit on the mass of 20 M ⊕. The presence of a second, non-transiting planet was inferred from the transit time variations (TTVs) of Kepler-19b over eight quarters of Kepler photometry, although neither the mass nor period could be determined. By combining new TTVs measurements from all the Kepler quarters and 91 high-precision radial velocities obtained with the HARPS-N spectrograph, using dynamical simulations we obtained a mass of 8.4 ± 1.6 M ⊕ for Kepler-19b. From the same data, assuming system coplanarity, we determined an orbital period of 28.7 days and a mass of 13.1 ± 2.7 M ⊕ for Kepler-19c and discovered a Neptune-like planet with a mass of 20.3 ± 3.4 M ⊕ on a 63-day orbit. By comparing dynamical simulations with non-interacting Keplerian orbits, we concluded that neglecting interactions between planets may lead to systematic errors that can hamper the precision in the orbital parameters when the data set spans several years. With a density of 4.32 ± 0.87 g cm-3 (0.78 ± 0.16 ρ ⊕) Kepler-19b belongs to the group of planets with a rocky core and a significant fraction of volatiles, in opposition to low-density planets characterized only by transit time variations and an increasing number of rocky planets with Earth-like density. Kepler-19 joins the small number of systems that reconcile transit timing variation and radial velocity measurements.

  18. Obliquity Variability of a Rapidly Rotating Early Venus and of the Potentially Habitable Exoplanets Kepler-62e and Kepler-62f

    NASA Astrophysics Data System (ADS)

    Lissauer, J. J.; Barnes, J. W.; Quarles, B.; Chambers, J.

    2017-12-01

    Venus currently rotates slowly, with its spin controlled by solid-body and atmospheric thermal tides. However, conditions may have been far different and more amenable to life 4 billion years ago, when the Sun was fainter and most of the carbon within Venus could have been in solid form, allowing for a low-mass atmosphere. Among the best candidates for habitability among known exoplanets are two planets within the optimistic habitable zone of their host star, Kepler-62 that are about 1.5 times the radius of Earth. We use numerical integrations to investigate how the obliquity would have varied on timescales as large as 1 Gyr for a hypothetical rapidly rotating Early Venus and for these two super-Earth size exoplanets.

  19. The role of disc self-gravity in circumbinary planet systems - II. Planet evolution

    NASA Astrophysics Data System (ADS)

    Mutter, Matthew M.; Pierens, Arnaud; Nelson, Richard P.

    2017-08-01

    We present the results of hydrodynamic simulations examining migration and growth of planets embedded in self-gravitating circumbinary discs. The binary star parameters are chosen to mimic those of the Kepler-16, -34 and -35 systems; the aim of this study is to examine the role of disc mass in determining the stopping locations of migrating planets at the edge of the cavity created by the central binary. Disc self-gravity can cause significant shrinkage of the cavity for disc masses in excess of 5-10 × the minimum mass solar nebula model. Planets forming early in the disc lifetime can migrate through the disc and stall at locations closer to the central star than is normally the case for lower mass discs, resulting in closer agreement between simulated and observed orbital architecture. The presence of a planet orbiting in the cavity of a massive disc can prevent the cavity size from expanding to the size of a lower mass disc. As the disc mass reduces over long time-scales, this indicates that circumbinary planet systems retain memory of their initial conditions. Our simulations produce planetary orbits in good agreement with Keper-16b without the need for self-gravity; Kepler-34 analogue systems produce wide and highly eccentric cavities, and self-gravity improves the agreement between simulations and data. Kepler-35b is more difficult to explain in detail due to its relatively low mass, which results in the simulated stopping location being at a larger radius than that observed.

  20. A SUPER-EARTH-SIZED PLANET ORBITING IN OR NEAR THE HABITABLE ZONE AROUND A SUN-LIKE STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barclay, Thomas; Burke, Christopher J.; Howell, Steve B.

    We present the discovery of a super-Earth-sized planet in or near the habitable zone of a Sun-like star. The host is Kepler-69, a 13.7 mag G4V-type star. We detect two periodic sets of transit signals in the 3-year flux time series of Kepler-69, obtained with the Kepler spacecraft. Using the very high precision Kepler photometry, and follow-up observations, our confidence that these signals represent planetary transits is >99.3%. The inner planet, Kepler-69b, has a radius of 2.24{sup +0.44}{sub -0.29} R{sub Circled-Plus} and orbits the host star every 13.7 days. The outer planet, Kepler-69c, is a super-Earth-sized object with a radiusmore » of 1.7{sup +0.34}{sub -0.23} R{sub Circled-Plus} and an orbital period of 242.5 days. Assuming an Earth-like Bond albedo, Kepler-69c has an equilibrium temperature of 299 {+-} 19 K, which places the planet close to the habitable zone around the host star. This is the smallest planet found by Kepler to be orbiting in or near the habitable zone of a Sun-like star and represents an important step on the path to finding the first true Earth analog.« less

  1. Discovery and Rossiter-Mclaughlin Effect of Exoplanet Kepler-8b

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon M.; Borucki, William J.; Koch, David G.; Marcy, Geoffrey W.; Cochran, William D.; Welsh, William F.; Basri, Gibor; Batalha, Natalie M.; Buchhave, Lars A.; Brown, Timothy M.; Caldwell, Douglas A.; Dunham, Edward W.; Endl, Michael; Fischer, Debra A.; Gautier, Thomas N., III; Geary, John C.; Gilliland, Ronald L.; Howell, Steve B.; Isaacson, Howard; Johnson, John Asher; Latham, David W.; Lissauer, Jack J.; Monet, David G.; Rowe, Jason F.; Sasselov, Dimitar D.; Howard, Andrew W.; MacQueen, Phillip; Orosz, Jerome A.; Chandrasekaran, Hema; Twicken, Joseph D.; Bryson, Stephen T.; Quintana, Elisa V.; Clarke, Bruce D.; Li, Jie; Allen, Christopher; Tenenbaum, Peter; Wu, Hayley; Meibom, Søren; Klaus, Todd C.; Middour, Christopher K.; Cote, Miles T.; McCauliff, Sean; Girouard, Forrest R.; Gunter, Jay P.; Wohler, Bill; Hall, Jennifer R.; Ibrahim, Khadeejah; Kamal Uddin, AKM; Wu, Michael S.; Bhavsar, Paresh A.; Van Cleve, Jeffrey; Pletcher, David L.; Dotson, Jessie L.; Haas, Michael R.

    2010-12-01

    We report on the discovery and the Rossiter-McLaughlin (R-M) effect of Kepler-8b, a transiting planet identified by the NASA Kepler Mission. Kepler photometry and Keck-HIRES radial velocities yield the radius and mass of the planet around this F8IV subgiant host star. The planet has a radius R P = 1.419 R J and a mass M P = 0.60 M J, yielding a density of 0.26 g cm-3, one of the lowest planetary densities known. The orbital period is P = 3.523 days and the orbital semimajor axis is 0.0483+0.0006 -0.0012 AU. The star has a large rotational vsin i of 10.5 ± 0.7 km s-1 and is relatively faint (V ≈ 13.89 mag); both properties are deleterious to precise Doppler measurements. The velocities are indeed noisy, with scatter of 30 m s-1, but exhibit a period and phase that are consistent with those implied by transit photometry. We securely detect the R-M effect, confirming the planet's existence and establishing its orbit as prograde. We measure an inclination between the projected planetary orbital axis and the projected stellar rotation axis of λ = -26fdg4 ± 10fdg1, indicating a significant inclination of the planetary orbit. R-M measurements of a large sample of transiting planets from Kepler will provide a statistically robust measure of the true distribution of spin-orbit orientations for hot Jupiters around F and early G stars. Based in part on observations obtained at the W. M. Keck Observatory, which is operated as a scientific partnership between the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  2. VizieR Online Data Catalog: 106 Kepler ultra-short-period planets (Sanchis-Ojeda+, 2014)

    NASA Astrophysics Data System (ADS)

    Sanchis-Ojeda, R.; Rappaport, S.; Winn, J. N.; Kotson, M. C.; Levine, A.; El Mellah, I.

    2017-06-01

    To carry out an independent search for the shortest-period planets, we used the Kepler long-cadence time-series photometric data (30 minute samples) obtained between quarters 0 and 16. A list was prepared of all ~200000 target stars for which photometry is available for at least one quarter, and the version 5.0 FITS files, which were available for all quarters, were downloaded from the STScI MAST Web site. For estimates of basic stellar properties including not only radii, but also masses and effective temperatures, we relied on the catalog of Huber et al. (2014, J/ApJS/211/2). This catalog is based on a compilation of photospheric properties derived from many different sources. Although it is not a homogeneous catalog, it likely provides the most accurate stellar parameters that are currently available. (1 data file).

  3. Kepler Team Marks Five Years in Space

    NASA Image and Video Library

    2014-03-07

    On March 6, 2009, NASA Kepler Space Telescope rocketed into the night skies above Cape Canaveral Air Force Station in Florida to find planets around other stars, called exoplanets, in search of potentially habitable worlds.

  4. Earth-based planet finders power up

    NASA Astrophysics Data System (ADS)

    Clery, Daniel

    2018-01-01

    NASA's Kepler spacecraft has racked up thousands of exoplanet discoveries since its launch in 2009, but before Kepler, the workhorses of exoplanet identification were ground-based instruments that measure tiny stellar wobbles caused by the gravity of an orbiting planet. They are now undergoing a quiet renaissance. The new generation of these devices may be precise enough to find a true Earth twin: a planet with the same mass as ours, orbiting a sunlike star once a year. That's something Kepler—sensitive to planet size, but not mass—can't do. Over the past few months, two new third-generation instruments have opened their eyes to the sky and nearly two dozen others are either under construction or have recently begun service.

  5. Multiwavelength Observations of the Candidate Disintegrating Sub-Mercury KIC 12557548b

    NASA Astrophysics Data System (ADS)

    Croll, Bryce; Rappaport, Saul; DeVore, John; Gilliland, Ronald L.; Crepp, Justin R.; Howard, Andrew W.; Star, Kimberly M.; Chiang, Eugene; Levine, Alan M.; Jenkins, Jon M.; Albert, Loic; Bonomo, Aldo S.; Fortney, Jonathan J.; Isaacson, Howard

    2014-05-01

    We present multiwavelength photometry, high angular resolution imaging, and radial velocities of the unique and confounding disintegrating low-mass planet candidate KIC 12557548b. Our high angular resolution imaging, which includes space-based Hubble Space Telescope Wide Field Camera 3 (HST/WFC3) observations in the optical (~0.53 μm and ~0.77 μm), and ground-based Keck/NIRC2 observations in K' band (~2.12 μm), allow us to rule out background and foreground candidates at angular separations greater than 0.''2 that are bright enough to be responsible for the transits we associate with KIC 12557548. Our radial velocity limit from Keck/HIRES allows us to rule out bound, low-mass stellar companions (~0.2 M ⊙) to KIC 12557548 on orbits less than 10 yr, as well as placing an upper limit on the mass of the candidate planet of 1.2 Jupiter masses; therefore, the combination of our radial velocities, high angular resolution imaging, and photometry are able to rule out most false positive interpretations of the transits. Our precise multiwavelength photometry includes two simultaneous detections of the transit of KIC 12557548b using Canada-France-Hawaii Telescope/Wide-field InfraRed Camera (CFHT/WIRCam) at 2.15 μm and the Kepler space telescope at 0.6 μm, as well as simultaneous null-detections of the transit by Kepler and HST/WFC3 at 1.4 μm. Our simultaneous HST/WFC3 and Kepler null-detections provide no evidence for radically different transit depths at these wavelengths. Our simultaneous CFHT/WIRCam detections in the near-infrared and with Kepler in the optical reveal very similar transit depths (the average ratio of the transit depths at ~2.15 μm compared with ~0.6 μm is: 1.02 ± 0.20). This suggests that if the transits we observe are due to scattering from single-size particles streaming from the planet in a comet-like tail, then the particles must be ~0.5 μm in radius or larger, which would favor that KIC 12557548b is a sub-Mercury rather than super

  6. THE INTERSTELLAR MEDIUM IN THE KEPLER SEARCH VOLUME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Marshall C.; Redfield, Seth; Jensen, Adam G., E-mail: mjohnson@astro.as.utexas.edu

    2015-07-10

    The properties of the interstellar medium (ISM) surrounding a planetary system can impact planetary climate through a number of mechanisms, including changing the size of the astrosphere (one of the major shields for cosmic rays) as well as direct deposition of material into planetary atmospheres. In order to constrain the ambient ISM conditions for exoplanetary systems, we present observations of interstellar Na i and K i absorption toward seventeen early type stars in the Kepler prime mission field of view (FOV). We identify 39 Na i and 8 K i velocity components, and attribute these to 11 ISM clouds. Sixmore » of these are detected toward more than one star, and for these clouds we put limits on the cloud properties, including distance and hydrogen number density. We identify one cloud with significant (≳1.5 cm{sup −3}) hydrogen number density located within the nominal ∼100 pc boundary of the Local Bubble. We identify systems with confirmed planets within the Kepler FOV that could lie within these ISM clouds, and estimate upper limits on the astrosphere sizes of these systems under the assumption that they do lie within these clouds. Under this condition, the Kepler-20, 42, and 445 multiplanet systems could have compressed astrospheres much smaller than the present-day heliosphere. Among the known habitable zone planet hosts, Kepler-186 could have an astrosphere somewhat smaller than the heliosphere, while Kepler-437 and KOI-4427 could have astrospheres much larger than the heliosphere. The thick disk star Kepler-444 may have an astrosphere just a few AU in radius.« less

  7. Kepler Mission: A Wide-FOV Photometer Designed to Determine the Frequency of Earth-Size and Larger Planets Around Solar-like stars

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Lissauer, Jack; Basri, Gibor; Caldwell, John; Cochran, William; Dunham, Edward W.; Gilliland, Ronald; Jenkins, Jon M.; Caldwell, Douglas; hide

    2002-01-01

    The first step in discovering the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is designed around a 0.95 m aperture Schmidt-type telescope with an array of 42 CCDs designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The photometer is scheduled to be launched into heliocentric orbit in 2007. Measurements of the depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the position relative to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare. Based on the results of the current doppler-velocity discoveries, detection of a thousand giant planets is expected. Information on their albedos and densities of those giants showing transits will be obtained.

  8. Transiting exoplanet candidates from K2 Campaigns 5 and 6

    NASA Astrophysics Data System (ADS)

    Pope, Benjamin J. S.; Parviainen, Hannu; Aigrain, Suzanne

    2016-10-01

    We introduce a new transit search and vetting pipeline for observations from the K2 mission, and present the candidate transiting planets identified by this pipeline out of the targets in Campaigns 5 and 6. Our pipeline uses the Gaussian process-based K2SC code to correct for the K2 pointing systematics and simultaneously model stellar variability. The systematics-corrected, variability-detrended light curves are searched for transits with the box-least-squares method, and a period-dependent detection threshold is used to generate a preliminary candidate list. Two or three individuals vet each candidate manually to produce the final candidate list, using a set of automatically generated transit fits and assorted diagnostic tests to inform the vetting. We detect 145 single-planet system candidates and 5 multi-planet systems, independently recovering the previously published hot Jupiters EPIC 212110888b, WASP-55b (EPIC 212300977b) and Qatar-2b (EPIC 212756297b). We also report the outcome of reconnaissance spectroscopy carried out for all candidates with Kepler magnitude Kp ≤ 13, identifying 12 targets as likely false positives. We compare our results to those of other K2 transit search pipelines, noting that ours performs particularly well for variable and/or active stars, but that the results are very similar overall. All the light curves and code used in the transit search and vetting process are publicly available, as are the follow-up spectra.

  9. Very high-density planets: a possible remnant of gas giants.

    PubMed

    Mocquet, A; Grasset, O; Sotin, C

    2014-04-28

    Data extracted from the Extrasolar Planets Encyclopaedia (see http://exoplanet.eu) show the existence of planets that are more massive than iron cores that would have the same size. After meticulous verification of the data, we conclude that the mass of the smallest of these planets is actually not known. However, the three largest planets, Kepler-52b, Kepler-52c and Kepler-57b, which are between 30 and 100 times the mass of the Earth, have indeed density larger than an iron planet of the same size. This observation triggers this study that investigates under which conditions these planets could represent the naked cores of gas giants that would have lost their atmospheres during their migration towards the star. This study shows that for moderate viscosity values (10(25) Pa s or lower), large values of escape rate and associated unloading stress rate during the atmospheric loss process lead to the explosion of extremely massive planets. However, for moderate escape rate, the bulk viscosity and finite-strain incompressibility of the cores of giant planets can be large enough to retain a very high density during geological time scales. This would make those a new kind of planet, which would help in understanding the interior structure of the gas giants. However, this new family of exoplanets adds some degeneracy for characterizing terrestrial exoplanets.

  10. A resonant chain of four transiting, sub-Neptune planets.

    PubMed

    Mills, Sean M; Fabrycky, Daniel C; Migaszewski, Cezary; Ford, Eric B; Petigura, Erik; Isaacson, Howard

    2016-05-26

    Surveys have revealed many multi-planet systems containing super-Earths and Neptunes in orbits of a few days to a few months. There is debate whether in situ assembly or inward migration is the dominant mechanism of the formation of such planetary systems. Simulations suggest that migration creates tightly packed systems with planets whose orbital periods may be expressed as ratios of small integers (resonances), often in a many-planet series (chain). In the hundreds of multi-planet systems of sub-Neptunes, more planet pairs are observed near resonances than would generally be expected, but no individual system has hitherto been identified that must have been formed by migration. Proximity to resonance enables the detection of planets perturbing each other. Here we report transit timing variations of the four planets in the Kepler-223 system, model these variations as resonant-angle librations, and compute the long-term stability of the resonant chain. The architecture of Kepler-223 is too finely tuned to have been formed by scattering, and our numerical simulations demonstrate that its properties are natural outcomes of the migration hypothesis. Similar systems could be destabilized by any of several mechanisms, contributing to the observed orbital-period distribution, where many planets are not in resonances. Planetesimal interactions in particular are thought to be responsible for establishing the current orbits of the four giant planets in the Solar System by disrupting a theoretical initial resonant chain similar to that observed in Kepler-223.

  11. CONSTRAINTS ON PLANET OCCURRENCE AROUND NEARBY MID-TO-LATE M DWARFS FROM THE MEARTH PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berta, Zachory K.; Irwin, Jonathan; Charbonneau, David, E-mail: zberta@cfa.harvard.edu

    The MEarth Project is a ground-based photometric survey intended to find planets transiting the closest and smallest main-sequence stars. In its first four years, MEarth discovered one transiting exoplanet, the 2.7 R{sub ⊕} planet GJ1214b. Here, we answer an outstanding question: in light of the bounty of small planets transiting small stars uncovered by the Kepler mission, should MEarth have found more than just one planet so far? We estimate MEarth's ensemble sensitivity to exoplanets by performing end-to-end simulations of 1.25 × 10{sup 6} observations of 988 nearby mid-to-late M dwarfs, gathered by MEarth between 2008 October and 2012 June.more » For 2-4 R{sub ⊕} planets, we compare this sensitivity to results from Kepler and find that MEarth should have found planets at a rate of 0.05-0.36 planets yr{sup –1} in its first four years. As part of this analysis, we provide new analytic fits to the Kepler early M dwarf planet occurrence distribution. When extrapolating between Kepler's early M dwarfs and MEarth's mid-to-late M dwarfs, we find that assuming the planet occurrence distribution stays fixed with respect to planetary equilibrium temperature provides a good match to our detection of a planet with GJ1214b's observed properties. For larger planets, we find that the warm (600-700 K), Neptune-sized (4 R{sub ⊕}) exoplanets that transit early M dwarfs like Gl436 and GJ3470 occur at a rate of <0.15 star{sup –1} (at 95% confidence) around MEarth's later M dwarf targets. We describe a strategy with which MEarth can increase its expected planet yield by 2.5 × without new telescopes by shifting its sensitivity toward the smaller and cooler exoplanets that Kepler has demonstrated to be abundant.« less

  12. Characterization of the planetary system Kepler-101 with HARPS-N. A hot super-Neptune with an Earth-sized low-mass companion

    NASA Astrophysics Data System (ADS)

    Bonomo, A. S.; Sozzetti, A.; Lovis, C.; Malavolta, L.; Rice, K.; Buchhave, L. A.; Sasselov, D.; Cameron, A. C.; Latham, D. W.; Molinari, E.; Pepe, F.; Udry, S.; Affer, L.; Charbonneau, D.; Cosentino, R.; Dressing, C. D.; Dumusque, X.; Figueira, P.; Fiorenzano, A. F. M.; Gettel, S.; Harutyunyan, A.; Haywood, R. D.; Horne, K.; Lopez-Morales, M.; Mayor, M.; Micela, G.; Motalebi, F.; Nascimbeni, V.; Phillips, D. F.; Piotto, G.; Pollacco, D.; Queloz, D.; Ségransan, D.; Szentgyorgyi, A.; Watson, C.

    2014-12-01

    We characterize the planetary system Kepler-101 by performing a combined differential evolution Markov chain Monte Carlo analysis of Kepler data and forty radial velocities obtained with the HARPS-N spectrograph. This system was previously validated and is composed of a hot super-Neptune, Kepler-101b, and an Earth-sized planet, Kepler-101c. These two planets orbit the slightly evolved and metal-rich G-type star in 3.49 and 6.03 days, respectively. With mass Mp = 51.1-4.7+ 5.1 M⊕, radius Rp = 5.77-0.79+ 0.85 R⊕, and density ρp = 1.45-0.48+ 0.83 g cm-3, Kepler-101b is the first fully characterized super-Neptune, and its density suggests that heavy elements make up a significant fraction of its interior; more than 60% of its total mass. Kepler-101c has a radius of 1.25-0.17+ 0.19 R⊕, which implies the absence of any H/He envelope, but its mass could not be determined because of the relative faintness of the parent star for highly precise radial-velocity measurements (Kp = 13.8) and the limited number of radial velocities. The 1σ upper limit, Mp< 3.8 M⊕, excludes a pure iron composition with a probability of 68.3%. The architecture of the planetary system Kepler-101 - containing a close-in giant planet and an outer Earth-sized planet with a period ratio slightly larger than the 3:2 resonance - is certainly of interest for scenarios of planet formation and evolution. This system does not follow thepreviously reported trend that the larger planet has the longer period in the majority of Kepler systems of planet pairs with at least one Neptune-sized or larger planet. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.Table 2 is available in electronic form at http://www.aanda.org

  13. The Kepler-19 System: A Thick-envelope Super-Earth with Two Neptune-mass Companions Characterized Using Radial Velocities and Transit Timing Variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malavolta, Luca; Borsato, Luca; Granata, Valentina

    We report a detailed characterization of the Kepler-19 system. This star was previously known to host a transiting planet with a period of 9.29 days, a radius of 2.2 R {sub ⊕}, and an upper limit on the mass of 20 M {sub ⊕}. The presence of a second, non-transiting planet was inferred from the transit time variations (TTVs) of Kepler-19b over eight quarters of Kepler photometry, although neither the mass nor period could be determined. By combining new TTVs measurements from all the Kepler quarters and 91 high-precision radial velocities obtained with the HARPS-N spectrograph, using dynamical simulations wemore » obtained a mass of 8.4 ± 1.6 M {sub ⊕} for Kepler-19b. From the same data, assuming system coplanarity, we determined an orbital period of 28.7 days and a mass of 13.1 ± 2.7 M {sub ⊕} for Kepler-19c and discovered a Neptune-like planet with a mass of 20.3 ± 3.4 M {sub ⊕} on a 63-day orbit. By comparing dynamical simulations with non-interacting Keplerian orbits, we concluded that neglecting interactions between planets may lead to systematic errors that can hamper the precision in the orbital parameters when the data set spans several years. With a density of 4.32 ± 0.87 g cm{sup −3} (0.78 ± 0.16 ρ {sub ⊕}) Kepler-19b belongs to the group of planets with a rocky core and a significant fraction of volatiles, in opposition to low-density planets characterized only by transit time variations and an increasing number of rocky planets with Earth-like density. Kepler-19 joins the small number of systems that reconcile transit timing variation and radial velocity measurements.« less

  14. ``Planetário e Teatro Digital Johannes Kepler'' and its Institutional Pedagogical Project

    NASA Astrophysics Data System (ADS)

    Faria, R. Z.; Calil, M. R.; Perez, E. R.; Kanashiro, M.; Silva, L. C. P.; Calipo, F.

    2014-10-01

    This work relates the reception of schools, started on August 2012, in the astronomic laboratory of the "Planetário e Teatro Digital Johannes Kepler", located in the "Sabina - Escola Parque do Conhecimento" in Santo André, São Paulo. The idealization of this project, authorship of Marcos Calil, PhD, consists in four apprenticeship environments disposed around the planetary dome. They make reference to the System Sun - Earth - Moon (Tellurium), Solar System, Astronautic and Stars. On Tuesdays and Wednesdays the astronomic laboratory is used by Santo André municipal schools for focused lessons, being possible on Thursdays scheduling for private and public schools. On weekends and holidays is opened for the visitors. Since the inauguration to the beginning of activities with students, the monitor team was guided and trained on contents of Astronomy and Aeronautic to execute the schools service. This is done in four stages, which are: reception, course trough the astronomic laboratory, dome session and activities closure. During the reception the acquaintance rules are passed on for a better visit. Before starting the course the monitors do a survey about the previous knowledge of the students. On the astronomic laboratory resources of the environment are used to explain the contents of Astronomy and Astronautic, always considering the age group and the curriculum developed in classroom. After the course the students watch a planetary session supporting the contents seen on the astronomic laboratory. At the end a feedback is done with the students about the subject discussed. During the visit the teachers fulfill an evaluation about the place and the service. From August 2012 to November 2012 were attended between municipal, public and private schools. From the 4932 students attended, 92% belonged to the municipal network, 5% to the private network and 3% to the public network. From the 189 evaluations done by the teachers, 97.8% were satisfied, 2.1% partially

  15. PHOTOMETRIC ORBITS OF EXTRASOLAR PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Robert A.

    We define and analyze the photometric orbit (PhO) of an extrasolar planet observed in reflected light. In our definition, the PhO is a Keplerian entity with six parameters: semimajor axis, eccentricity, mean anomaly at some particular time, argument of periastron, inclination angle, and effective radius, which is the square root of the geometric albedo times the planetary radius. Preliminarily, we assume a Lambertian phase function. We study in detail the case of short-period giant planets (SPGPs) and observational parameters relevant to the Kepler mission: 20 ppm photometry with normal errors, 6.5 hr cadence, and three-year duration. We define a relevantmore » 'planetary population of interest' in terms of probability distributions of the PhO parameters. We perform Monte Carlo experiments to estimate the ability to detect planets and to recover PhO parameters from light curves. We calibrate the completeness of a periodogram search technique, and find structure caused by degeneracy. We recover full orbital solutions from synthetic Kepler data sets and estimate the median errors in recovered PhO parameters. We treat in depth a case of a Jupiter body-double. For the stated assumptions, we find that Kepler should obtain orbital solutions for many of the 100-760 SPGP that Jenkins and Doyle estimate Kepler will discover. Because most or all of these discoveries will be followed up by ground-based radial velocity observations, the estimates of inclination angle from the PhO may enable the calculation of true companion masses: Kepler photometry may break the 'msin i' degeneracy. PhO observations may be difficult. There is uncertainty about how low the albedos of SPGPs actually are, about their phase functions, and about a possible noise floor due to systematic errors from instrumental and stellar sources. Nevertheless, simple detection of SPGPs in reflected light should be robust in the regime of Kepler photometry, and estimates of all six orbital parameters may be

  16. Finding Optimal Apertures in Kepler Data

    NASA Astrophysics Data System (ADS)

    Smith, Jeffrey C.; Morris, Robert L.; Jenkins, Jon M.; Bryson, Stephen T.; Caldwell, Douglas A.; Girouard, Forrest R.

    2016-12-01

    With the loss of two spacecraft reaction wheels precluding further data collection for the Kepler primary mission, even greater pressure is placed on the processing pipeline to eke out every last transit signal in the data. To that end, we have developed a new method to optimize the Kepler Simple Aperture Photometry (SAP) photometric apertures for both planet detection and minimization of systematic effects. The approach uses a per cadence modeling of the raw pixel data and then performs an aperture optimization based on signal-to-noise ratio and the Kepler Combined Differential Photometric Precision (CDPP), which is a measure of the noise over the duration of a reference transit signal. We have found the new apertures to be superior to the previous Kepler apertures. We can now also find a per cadence flux fraction in aperture and crowding metric. The new approach has also been proven to be robust at finding apertures in K2 data that help mitigate the larger motion-induced systematics in the photometry. The method further allows us to identify errors in the Kepler and K2 input catalogs.

  17. Follow-up of K2 planet candiates with the LCOGT network

    NASA Astrophysics Data System (ADS)

    Dragomir, Diana; Bayliss, Daniel; Colón, Knicole; Cochran, William; Zhou, George; Brown, Timothy; Shporer, Avi; Espinoza, Nestor; Fulton, Benjamin

    2015-12-01

    K2 has proven to be an outstanding successor to the Kepler mission. It has already revealed dozens of new planet candidates, and unlike those found by the primary mission, many of these systems’ host stars are sufficiently bright to allow extensive follow-up observations. This is especially important since each of the K2 observing campaigns are only ~80 days long, leaving the community with the discovery of exciting new systems but often not enough time coverage to enable a thorough characterization of these systems.We are leading a large effort to observe K2 transiting planet candidates with the LCOGT telescope network. LCOGT’s longitudinal coverage, multiple identical telescopes per site and automated queue observing make it an ideal facility for fast, high-precision and multi-color follow-up. Our program focuses on specific aspects of K2 follow-up for which the network is especially powerful: period determination for candidates with fewer than three K2 transits; transit timing variation monitoring to measure planetary masses, orbital parameters and to search for additional planets in multiple systems; and multi-color photometry to vet planet candidates and carry-out preliminary atmospheric spectroscopy.We will present new results for a selection of systems observed so far through this program. These include K2-19, a multi-planet system extremely close to 3:2 resonance and experiencing transit timing variations with amplitudes as large as one hour; EPIC201702477, a long-period planet with only two K2 transits; WASP-47, a system hosting a hot Jupiter and two K2-discovered small planets; and EPIC201637175b, a disintegrating rocky planet.Our program demonstrates that LCOGT is uniquely positioned to be the primary ground-based photometric follow-up resource for K2 exoplanet discoveries, but also for the numerous bright systems that will result from the TESS mission. LCOGT photometry complements ongoing radial velocity and atmospheric spectroscopy efforts to

  18. Kepler Mission: a Discovery-Class Mission Designed to Determine the Frequency of Earth-Size and Larger Planets Around Solar-Like Stars

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Lissauer, Jack; Basri, Gibor; Caldwell, John; Cochran, William; Dunham, Edward W.; Gilliland, Ronald; Caldwell, Douglas; Kondo, Yoji; hide

    2002-01-01

    The first step in discovering the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is designed around a 0.95 in aperture Schmidt-type telescope with an array of 42 CCDs designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The photometer is scheduled to be launched into heliocentric orbit in 2007. Measurements of the depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the position relative to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. Extending the mission to six years doubles the expected number of Earth-size planets in the HZ. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare. Based on the results of the current Doppler-velocity discoveries, detection of a thousand giant planets is expected. Information on their albedos and densities of those giants showing transits will be obtained.

  19. The Kepler Project: Mission Update

    NASA Technical Reports Server (NTRS)

    Borucki, William J.; Koch, David G.

    2009-01-01

    Kepler is a Discovery-class mission designed to determine the frequency of Earth-size planets in and near the habitable zone of solar-like stars. The instrument consists of a 0.95 m aperture photometer designed to obtain high precision photometric measurement of > 100,000 stars to search for patterns of transits. The focal plane of the Schmidt-telescope contains 42 CCDs with at total of 95 mega pixels that cover 116 square degrees of sky. The photometer was launched into an Earth-trailing heliocentric orbit on March 6, 2009, finished its commissioning on May 12, and is now in the science operations mode. During the commissioning of the Kepler photometer, data were obtained at a 30 minute cadence for 53,000 stars for 9.7 days. Although the data have not yet been corrected for the presence of systematic errors and artifacts, the data show the presence of hundreds of eclipsing binary stars and variable stars of amazing variety. To provide some estimate of the capability of the photometer, a quick analysis of the photometric precision was made. Analysis of the commissioning data also show transits, occultations and light emitted from the known exoplanet HAT-P7b. The data show a smooth rise and fall of light: from the planet as it orbits its star, punctuated by a drop of 130 +/- 11 ppm in flux when the planet passes behind its star. We interpret this as the phase variation of the dayside thermal emission plus reflected light from the planet as it orbits its star and is occulted. The depth of the occultation is similar in amplitude to that expected from a transiting Earth-size planet and demonstrates that the Mission has the precision necessary to detect such planets.

  20. Dynamics of Circumbinary Planets Near the Stability Limit

    NASA Astrophysics Data System (ADS)

    Quarles, Billy; Satyal, Suman; Kostov, Veselin; Kaib, Nathan; Haghighipour, Nader

    2018-04-01

    The stability limit for circumbinary planets (CBPs) is not well defined and carries uncertainty that depends on the orbital parameters of the stellar binary and possible planets. Previous work by Holman & Wiegert (1999, AJ 117, 621) developed a two parameter fitting formula for CBPs. We update the coefficients for this formula and introduce a grid interpolation method that is based on ∼150 million full N-body simulations of systems with Jupiter-mass planets on initially circular, coplanar orbits. We find an improvement in the accuracy in estimating the inner boundary of stability and use planet packing to identify the relative proximity of the Kepler CBPs to their respective stability limits. As a result, 55% of the Kepler CBPs could host a planet at the stability limit in addition to the innermost observed planet. The results of our simulations and python tools to determine the stability limit are available to the CBP community on Zenodo and GitHub, respectively.

  1. VizieR Online Data Catalog: Kepler planetary candidates. VII. 48-month (Coughlin+, 2016)

    NASA Astrophysics Data System (ADS)

    Coughlin, J. L.; Mullally, F.; Thompson, S. E.; Rowe, J. F.; Burke, C. J.; Latham, D. W.; Batalha, N. M.; Ofir, A.; Quarles, B. L.; Henze, C. E.; Wolfgang, A.; Caldwell, D. A.; Bryson, S. T.; Shporer, A.; Catanzarite, J.; Akeson, R.; Barclay, T.; Borucki, W. J.; Boyajian, T. S.; Campbell, J. R.; Christiansen, J. L.; Girouard, F. R.; Haas, M. R.; Howell, S. B.; Huber, D.; Jenkins, J. M.; Li, J.; Patil-Sabale, A.; Quintana, E. V.; Ramirez, S.; Seader, S.; Smith, J. C.; Tenenbaum, P.; Twicken, J. D.; Zamudio, K. A.

    2016-07-01

    This catalog is based on Kepler's 24th data release (DR24), which includes the processing of all data utilizing version 9.2 of the Kepler pipeline (Jenkins et al. 2010ApJ...724.1108J). This marks the first time that all of the Kepler mission data have been processed consistently with the same version of the Kepler pipeline. Over a period of 48 months (2009 May 13 to 2013 May 11), subdivided into 17 quarters (Q1-Q17), a total of 198646 targets were observed. (7 data files).

  2. ScienceCast 54: Getting to Know the Goldilocks Planet

    NASA Image and Video Library

    2012-03-29

    NASA's Kepler spacecraft is discovering a veritable avalanche of alien worlds. It seems to be just a matter of time before Kepler finds what astronomers are really looking for: an Earth-like planet orbiting its star in the "Goldilocks zone".

  3. THE HUNT FOR EXOMOONS WITH KEPLER (HEK). V. A SURVEY OF 41 PLANETARY CANDIDATES FOR EXOMOONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kipping, D. M.; Huang, X.; Hartman, J.

    We present a survey of 41 Kepler Objects of Interest (KOIs) for exomoons using Bayesian photodynamics, more than tripling the number of KOIs surveyed with this technique. We find no compelling evidence for exomoons although 13 KOIs yield spurious detections driven by instrumental artifacts, stellar activity, and/or perturbations from unseen bodies. Regarding the latter, we find seven KOIs exhibiting >5 σ evidence of transit timing variations, including the “mega-Earth” Kepler-10c, likely indicating an additional planet in that system. We exploit the moderately large sample of 57 unique KOIs surveyed to date to infer several useful statistics. For example, although theremore » is a diverse range in sensitivities, we find that we are sensitive to Pluto–Charon mass-ratio systems for ≃40% of KOIs studied and Earth–Moon mass-ratios for 1 in 8 cases. In terms of absolute mass, our limits probe down to 1.7 Ganymede masses, with a sensitivity to Earth-mass moons for 1 in 3 cases studied and to the smallest moons capable of sustaining an Earth-like atmosphere (0.3 M{sub ⨁}) for 1 in 4. Despite the lack of positive detections to date, we caution against drawing conclusions yet, since our most interesting objects remain under analysis. Finally, we point out that had we searched for the photometric transit signals of exomoons alone, rather than using photodynamics, we estimate that 1 in 4 KOIs would have erroneously been concluded to harbor exomoons due to residual time correlated noise in the Kepler data, posing a serious problem for alternative methods.« less

  4. The Kepler Mission: A Mission to Determine the Frequency of Inner Planets Near the Habitable Zone of a Wide Range of Stars

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Koch, D. G.; Dunham, E. W.; Jenkins, J. M.

    1997-01-01

    The surprising discovery of giant planets in inner orbits around solar-like stars has brought into question our understanding of the development and evolution of planetary systems, including our solar system. To make further progress, it is critical to detect and obtain data on the frequency and characteristics of Earth-class planets. The Kepler Mission is designed to be a quick, low-cost approach to accomplish that objective. Transits by Earth-class planets produce a fractional change. in stellar brightness of 5 x 10(exp -5) to 40 x 10(exp -5) lasting for 4 to 16 hours. From the period and depth of the transits, the orbit and size of the planets can be calculated. The proposed instrument is a one-meter aperture photometer with a 12 deg. field-of-view (FOV). To obtain the required precision and to avoid interruptions caused by day-night and seasonal cycles, the photometer will be launched into a heliocentric orbit. It will continuously and simultaneously monitor the flux from 80,000 dwarf stars brighter than 14th magnitude in the Cygnus constellation. The mission tests the hypothesis that the formation of most stars produces Earth-class planets in inner orbits. Based on this assumption and the recent observations that 2% of the stars have giant planets in inner orbits, several types of results are expected from the mission: 1. From transits of Earth-class planets, about 480 planet detections and 60 cases where two or more planets are found in the same system. 2. From transits of giant planets, about 160 detections of inner-orbit planets and 24 detections of outer-orbit planets. 3. From the phase modulation of the reflected light from giant planets, about 1400 planet detections with periods less than a week, albedos for 160 of these giant planets, and densities for seven planets.

  5. The Kepler Mission: A Mission to Determine the Frequency of Inner Planets Neat the Habitable Zone of a Wide Range of Stars

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Koch, D. G.; Dunham, E. W.; Jenkins, J. M.; Young, Richard E. (Technical Monitor)

    1997-01-01

    The surprising discovery of giant planets in inner orbits around solar-like stars has brought into question our understanding of the development and evolution of planetary systems, including our solar system. To make further progress, it is critical to detect and obtain data on the frequency and characteristics of Earth-class planets. The Kepler Mission is designed to be a quick, low-cost approach to accomplish that objective. Transits by Earth-class planets produce a fractional change in stellar brightness of 5 x 10(exp -5) to 40 x 10(exp -5) lasting for 4 to 16 hours, From the period and depth of the transits, the orbit and size of the planets can be calculated. The proposed instrument is a one-meter aperture photometer with a 12 deg field-of-view (FOV). To obtain the required precision and to avoid interruptions caused by day-night and seasonal cycles, the photometer will be launched into a heliocentric orbit. It will continuously and simultaneously monitor the flux from 80,000 dwarf stars brighter than 14th magnitude in the Cygnus constellation. The mission tests the hypothesis that the formation of most stars produces Earth-class planets in inner orbits. Based on this assumption and the recent observations that 2% of the stars have giant planets in inner orbits, several types of results are expected from the mission: 1. From transits of Earth-class planets, about 480 planet detections and 60 cases where two or more planets are found in the same system. 2. From transits of giant planets, about 160 detections of inner-orbit planets and 24 detections of outer-orbit planets. 3. From the phase modulation of the reflected light from giant planets, about 1400 planet detections with periods less than a week, albedos for 160 of these giant planets, and densities for seven planets.

  6. Discovery of a transiting planet near the snow-line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kipping, D. M.; Torres, G.; Buchhave, L. A.

    2014-11-01

    In most theories of planet formation, the snow-line represents a boundary between the emergence of the interior rocky planets and the exterior ice giants. The wide separation of the snow-line makes the discovery of transiting worlds challenging, yet transits would allow for detailed subsequent characterization. We present the discovery of Kepler-421b, a Uranus-sized exoplanet transiting a G9/K0 dwarf once every 704.2 days in a near-circular orbit. Using public Kepler photometry, we demonstrate that the two observed transits can be uniquely attributed to the 704.2 day period. Detailed light curve analysis with BLENDER validates the planetary nature of Kepler-421b to >4σmore » confidence. Kepler-421b receives the same insolation as a body at ∼2 AU in the solar system, as well as a Uranian albedo, which would have an effective temperature of ∼180 K. Using a time-dependent model for the protoplanetary disk, we estimate that Kepler-421b's present semi-major axis was beyond the snow-line after ∼3 Myr, indicating that Kepler-421b may have formed at its observed location.« less

  7. Eccentric Companions to Kepler-448b and Kepler-693b: Clues to the Formation of Warm Jupiters

    NASA Astrophysics Data System (ADS)

    Masuda, Kento

    2017-08-01

    I report the discovery of non-transiting close companions to two transiting warm Jupiters (WJs), Kepler-448/KOI-12b (orbital period P=17.9 {days}, radius {R}{{p}}={1.23}-0.05+0.06 {R}{Jup}) and Kepler-693/KOI-824b (P=15.4 {days}, {R}{{p}}=0.91+/- 0.05 {R}{Jup}), via dynamical modeling of their transit timing and duration variations (TTVs and TDVs). The companions have masses of {22}-5+7 {M}{Jup} (Kepler-448c) and {150}-40+60 {M}{Jup} (Kepler-693c), and both are on eccentric orbits (e={0.65}-0.09+0.13 for Kepler-448c and e={0.47}-0.06+0.11 for Kepler-693c) with periastron distances of 1.5 {au}. Moderate eccentricities are detected for the inner orbits as well (e={0.34}-0.07+0.08 for Kepler-448b and e={0.2}-0.1+0.2 for Kepler-693b). In the Kepler-693 system, a large mutual inclination between the inner and outer orbits ({53}-9+7 \\deg or {134}-10+11 \\deg ) is also revealed by the TDVs. This is likely to induce a secular oscillation in the eccentricity of the inner WJ that brings its periastron close enough to the host star for tidal star-planet interactions to be significant. In the Kepler-448 system, the mutual inclination is weakly constrained, and such an eccentricity oscillation is possible for a fraction of the solutions. Thus these WJs may be undergoing tidal migration to become hot Jupiters (HJs), although the migration via this process from beyond the snow line is disfavored by the close-in and massive nature of the companions. This may indicate that WJs can be formed in situ and could even evolve into HJs via high-eccentricity migration inside the snow line.

  8. Fossil Cores In The Kepler Data

    NASA Astrophysics Data System (ADS)

    Jackson, Brian

    Most gas giant exoplanets with orbital periods < few days are unstable against tidal decay and may be tidally disrupted before their host stars leave the main sequence. These gas giants probably contain rocky/icy cores, and so their cores will be stranded near their progenitor's Roche limit (few hours orbital period). These fossil cores will evade the Kepler mission's transit search because it is focused on periods > 0.5 days, but finding these fossil cores would provide unprecedented insights into planetary interiors and formation ? e.g., they would be a smoking gun favoring formation of gas giants via core accretion. We propose to search for and characterize fossil cores in the Kepler dataset. We will vet candidates using the Kepler photometry and auxiliary data, collect ground-based spectra of the host stars and radial-velocity (RV) and adaptive optics (AO) data to corroborate candidates. We will also constrain stellar tidal dissipation efficiencies (parameterized by Q) by determining our survey's completeness, elucidating dynamical origins and evolution of exoplanets even if we find no fossil cores. Our preliminary search has already found several dozen candidates, so the proposed survey has a high likelihood of success.

  9. Seismology of Giant Planets: General Overview and Results from the Kepler K2 Observations of Neptune

    NASA Astrophysics Data System (ADS)

    Gaulme, Patrick

    2017-10-01

    For this invited contribution, I was asked to give an overview about the application of helio and aster-oseismic techniques to study the interior of giant planets, and to specifically present the recent observations of Neptune by Kepler K2. Seismology applied to giant planets could drastically change our understanding of their deep interiors, as it has happened with the Earth, the Sun, and many main-sequence and evolved stars. The study of giant planets' composition is important for understanding both the mechanisms enabling their formation and the origins of planetary systems, in particular our own. Unfortunately, its determination is complicated by the fact that their interior is thought not to be homogeneous, so that spectroscopic determinations of atmospheric abundances are probably not representative of the planet as a whole. Instead, the determination of their composition and structure must rely on indirect measurements and interior models. Giant planets are mostly fluid and convective, which makes their seismology much closer to that of solar-like stars than that of terrestrial planets. Hence, helioseismology techniques naturally transfer to giant planets. In addition, two alternative methods can be used: photometry of the solar light reflected by planetary atmospheres, and ring seismology in the specific case of Saturn. The current decade has been promising thanks to the detection of Jupiter's acoustic oscillations with the ground-based imaging-spectrometer SYMPA and indirect detection of Saturn's f-modes in its rings by the NASA Cassini orbiter. This has motivated new projects of ground-based and space-borne instruments that are under development. The K2 observations represented the first opportunity to search for planetary oscillations with visible photometry. Despite the excellent quality of K2 data, the noise level of the power spectrum of the light curve was not low enough to detect Neptune's oscillations. The main results from the K2 observations are

  10. Spin dynamics of close-in planets exhibiting large transit timing variations

    NASA Astrophysics Data System (ADS)

    Delisle, J.-B.; Correia, A. C. M.; Leleu, A.; Robutel, P.

    2017-09-01

    We study the spin evolution of close-in planets in compact multi-planetary systems. The rotation period of these planets is often assumed to be synchronous with the orbital period due to tidal dissipation. Here we show that planet-planet perturbations can drive the spin of these planets into non-synchronous or even chaotic states. In particular, we show that the transit timing variation (TTV) is a very good probe to study the spin dynamics, since both are dominated by the perturbations of the mean longitude of the planet. We apply our model to KOI-227 b and Kepler-88 b, which are both observed undergoing strong TTVs. We also perform numerical simulations of the spin evolution of these two planets. We show that for KOI-227 b non-synchronous rotation is possible, while for Kepler-88 b the rotation can be chaotic.

  11. Chemical Abundances of M-Dwarfs from the Apogee Survey. I. The Exoplanet Hosting Stars Kepler-138 and Kepler-186

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souto, D.; Cunha, K.; García-Hernández, D. A.

    2017-02-01

    We report the first detailed chemical abundance analysis of the exoplanet-hosting M-dwarf stars Kepler-138 and Kepler-186 from the analysis of high-resolution ( R ∼ 22,500) H -band spectra from the SDSS-IV–APOGEE survey. Chemical abundances of 13 elements—C, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, and Fe—are extracted from the APOGEE spectra of these early M-dwarfs via spectrum syntheses computed with an improved line list that takes into account H{sub 2}O and FeH lines. This paper demonstrates that APOGEE spectra can be analyzed to determine detailed chemical compositions of M-dwarfs. Both exoplanet-hosting M-dwarfs display modest sub-solar metallicities:more » [Fe/H]{sub Kepler-138} = −0.09 ± 0.09 dex and [Fe/H]{sub Kepler-186} = −0.08 ± 0.10 dex. The measured metallicities resulting from this high-resolution analysis are found to be higher by ∼0.1–0.2 dex than previous estimates from lower-resolution spectra. The C/O ratios obtained for the two planet-hosting stars are near-solar, with values of 0.55±0.10 for Kepler-138 and 0.52±0.12 for Kepler-186. Kepler-186 exhibits a marginally enhanced [Si/Fe] ratio.« less

  12. Understanding exoplanet populations with simulation-based methods

    NASA Astrophysics Data System (ADS)

    Morehead, Robert Charles

    The Kepler candidate catalog represents an unprecedented sample of exoplanet host stars. This dataset is ideal for probing the populations of exoplanet systems and exploring their architectures. Confirming transiting exoplanets candidates through traditional follow-up methods is challenging, especially for faint host stars. Most of Kepler's validated planets relied on statistical methods to separate true planets from false-positives. Multiple transiting planet systems (MTPS) have been previously shown to have low false-positive rates and over 850 planets in MTPSs have been statistically validated so far. We show that the period-normalized transit duration ratio (xi) offers additional information that can be used to establish the planetary nature of these systems. We briefly discuss the observed distribution of xi for the Q1-Q17 Kepler Candidate Search. We also use xi to develop a Bayesian statistical framework combined with Monte Carlo methods to determine which pairs of planet candidates in an MTPS are consistent with the planet hypothesis for a sample of 862 MTPSs that include candidate planets, confirmed planets, and known false-positives. This analysis proves to be efficient and advantageous in that it only requires catalog-level bulk candidate properties and galactic population modeling to compute the probabilities of a myriad of feasible scenarios composed of background and companion stellar blends in the photometric aperture, without needing additional observational follow-up. Our results agree with the previous results of a low false-positive rate in the Kepler MTPSs. This implies, independently of any other estimates, that most of the MTPSs detected by Kepler are planetary in nature, but that a substantial fraction could be orbiting stars other than then the putative target star, and therefore may be subject to significant error in the inferred planet parameters resulting from unknown or mismeasured stellar host attributes. We also apply approximate

  13. The Resilience of Kepler Multi-systems to Stellar Obliquity

    NASA Astrophysics Data System (ADS)

    Spalding, Christopher; Marx, Noah W.; Batygin, Konstantin

    2018-04-01

    The Kepler mission and its successor K2 have brought forth a cascade of transiting planets. Many of these planetary systems exhibit multiple transiting members. However, a large fraction possesses only a single transiting planet. This high abundance of singles, dubbed the "Kepler Dichotomy," has been hypothesized to arise from significant mutual inclinations between orbits in multi-planet systems. Alternatively, the single-transiting population truly possesses no other planets in the system, but the true origin of the overabundance of single systems remains unresolved. In this work, we propose that planetary systems typically form with a coplanar, multiple-planetary architecture, but that quadrupolar gravitational perturbations from their rapidly-rotating host star subsequently disrupt this primordial coplanarity. We demonstrate that, given sufficient stellar obliquity, even systems beginning with 2 planetary constituents are susceptible to dynamical instability soon after planet formation, as a result of the stellar quadrupole moment. This mechanism stands as a widespread, yet poorly explored pathway toward planetary system instability. Moreover, by requiring that observed multi-systems remain coplanar on Gyr timescales, we are able to place upper limits on the stellar obliquity in systems such as K2-38 (obliquity < 20 degrees), where other methods of measuring spin-orbit misalignment are not currently available.

  14. Comet 67P Seen by Kepler

    NASA Image and Video Library

    2016-10-07

    The European Space Agency's Rosetta mission concluded its study of comet 67P/Churyumov-Gerasimenko on Sept. 30, 2016. NASA's planet-hunting Kepler spacecraft observed the comet during the final month of the Rosetta mission, while the comet was not visible from Earth. This animation is composed of images from Kepler of the comet. From Sept. 7 through Sept. 20, the Kepler spacecraft, operating in its K2 mission, fixed its gaze on comet 67P. From the distant vantage point of Kepler, the comet's nucleus and tail could be observed. The long-range view from Kepler complements the closeup view of the Rosetta spacecraft, providing context for the high-resolution investigation Rosetta performed as it descended closer and closer to the comet. During the two-week period of study, Kepler took a picture of the comet every 30 minutes. The animation shows a period of 29.5 hours of observation from Sept. 17 thru Sept. 18. The comet is seen passing through Kepler's field of view from top right to bottom left, as outlined by the diagonal strip. The white dots represent stars and other regions in space studied during K2's tenth observing campaign. As a comet travels through space it sheds a tail of gas and dust. The more material that is shed, the more surface area there is to reflect sunlight. A comet's activity level can be obtained by measuring the reflected sunlight. Analyzing the Kepler data, scientists will be able to determine the amount of mass lost each day as comet 67P travels through the solar system. An animation is available at http://photojournal.jpl.nasa.gov/catalog/PIA21072

  15. Elemental Abundances of Kepler Objects of Interest in APOGEE. I. Two Distinct Orbital Period Regimes Inferred from Host Star Iron Abundances

    NASA Astrophysics Data System (ADS)

    Wilson, Robert F.; Teske, Johanna; Majewski, Steven R.; Cunha, Katia; Smith, Verne; Souto, Diogo; Bender, Chad; Mahadevan, Suvrath; Troup, Nicholas; Allende Prieto, Carlos; Stassun, Keivan G.; Skrutskie, Michael F.; Almeida, Andrés; García-Hernández, D. A.; Zamora, Olga; Brinkmann, Jonathan

    2018-02-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has observed ∼600 transiting exoplanets and exoplanet candidates from Kepler (Kepler Objects of Interest, KOIs), most with ≥18 epochs. The combined multi-epoch spectra are of high signal-to-noise ratio (typically ≥100) and yield precise stellar parameters and chemical abundances. We first confirm the ability of the APOGEE abundance pipeline, ASPCAP, to derive reliable [Fe/H] and effective temperatures for FGK dwarf stars—the primary Kepler host stellar type—by comparing the ASPCAP-derived stellar parameters with those from independent high-resolution spectroscopic characterizations for 221 dwarf stars in the literature. With a sample of 282 close-in (P< 100 days) KOIs observed in the APOGEE KOI goal program, we find a correlation between orbital period and host star [Fe/H] characterized by a critical period, {P}{crit}={8.3}-4.1+0.1 days, below which small exoplanets orbit statistically more metal-enriched host stars. This effect may trace a metallicity dependence of the protoplanetary disk inner radius at the time of planet formation or may be a result of rocky planet ingestion driven by inward planetary migration. We also consider that this may trace a metallicity dependence of the dust sublimation radius, but we find no statistically significant correlation with host {T}{eff} and orbital period to support such a claim.

  16. Ensemble Atmospheric Properties of Small Planets around M Dwarfs

    NASA Astrophysics Data System (ADS)

    Guo, Xueying; Ballard, Sarah; Dragomir, Diana

    2018-01-01

    With the growing number of planets discovered by the Kepler mission and ground-base surveys, people start to try to understand the atmospheric features of those uncovered new worlds. While it has been found that hot Jupiters exhibit diverse atmosphere composition with both clear and cloudy/hazy atmosphere possible, similar studies on ensembles of smaller planets (Earth analogs) have been held up due to the faintness of most of their host stars. In this work, a sample of 20 Earth analogs of similar periods around M dwarfs with existing Kepler transit information and Spitzer observations is composed, complemented with previously studies GJ1214b and GJ1132b, as well as the recently announced 7 small planets in the TRAPPIST-1 system. We evaluate their transit depths with uncertainties on the Spitzer 4.5 micron band using the “pixel-level decorrelation” method, and together with their well analyzed Kepler data and Hubble data, we put constraints on their atmosphere haze slopes and cloud levels. Aside from improving the understanding of ensemble properties of small planets, this study will also provide clues of potential targets for detailed atmospheric studies using the upcoming James Webb Telescope.

  17. RED GIANTS IN ECLIPSING BINARY AND MULTIPLE-STAR SYSTEMS: MODELING AND ASTEROSEISMIC ANALYSIS OF 70 CANDIDATES FROM KEPLER DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaulme, P.; McKeever, J.; Rawls, M. L.

    2013-04-10

    Red giant stars are proving to be an incredible source of information for testing models of stellar evolution, as asteroseismology has opened up a window into their interiors. Such insights are a direct result of the unprecedented data from space missions CoRoT and Kepler as well as recent theoretical advances. Eclipsing binaries are also fundamental astrophysical objects, and when coupled with asteroseismology, binaries provide two independent methods to obtain masses and radii and exciting opportunities to develop highly constrained stellar models. The possibility of discovering pulsating red giants in eclipsing binary systems is therefore an important goal that could potentiallymore » offer very robust characterization of these systems. Until recently, only one case has been discovered with Kepler. We cross-correlate the detected red giant and eclipsing-binary catalogs from Kepler data to find possible candidate systems. Light-curve modeling and mean properties measured from asteroseismology are combined to yield specific measurements of periods, masses, radii, temperatures, eclipse timing variations, core rotation rates, and red giant evolutionary state. After using three different techniques to eliminate false positives, out of the 70 systems common to the red giant and eclipsing-binary catalogs we find 13 strong candidates (12 previously unknown) to be eclipsing binaries, one to be a non-eclipsing binary with tidally induced oscillations, and 10 more to be hierarchical triple systems, all of which include a pulsating red giant. The systems span a range of orbital eccentricities, periods, and spectral types F, G, K, and M for the companion of the red giant. One case even suggests an eclipsing binary composed of two red giant stars and another of a red giant with a {delta}-Scuti star. The discovery of multiple pulsating red giants in eclipsing binaries provides an exciting test bed for precise astrophysical modeling, and follow-up spectroscopic observations

  18. The effects of external planets on inner systems: multiplicities, inclinations and pathways to eccentric warm Jupiters

    NASA Astrophysics Data System (ADS)

    Mustill, Alexander J.; Davies, Melvyn B.; Johansen, Anders

    2017-07-01

    We study how close-in systems such as those detected by Kepler are affected by the dynamics of bodies in the outer system. We consider two scenarios: outer systems of giant planets potentially unstable to planet-planet scattering and wide binaries that may be capable of driving Kozai or other secular variations of outer planets' eccentricities. Dynamical excitation of planets in the outer system reduces the multiplicity of Kepler-detectable planets in the inner system in ˜20-25 per cent of our systems. Accounting for the occurrence rates of wide-orbit planets and binary stars, ≈18 per cent of close-in systems could be destabilized by their outer companions in this way. This provides some contribution to the apparent excess of systems with a single transiting planet compared to multiple; however, it only contributes at most 25 per cent of the excess. The effects of the outer dynamics can generate systems similar to Kepler-56 (two coplanar planets significantly misaligned with the host star) and Kepler-108 (two significantly non-coplanar planets in a binary). We also identify three pathways to the formation of eccentric warm Jupiters resulting from the interaction between outer and inner systems: direct inelastic collision between an eccentric outer and an inner planet; secular eccentricity oscillations that may 'freeze out' when scattering resolves in the outer system; and scattering in the inner system followed by 'uplift', where inner planets are removed by interaction with the outer planets. In these scenarios, the formation of eccentric warm Jupiters is a signature of a past history of violent dynamics among massive planets beyond ˜1 au.

  19. High Resolution Active Optics Observations from the Kepler Follow-up Observation Program

    NASA Astrophysics Data System (ADS)

    Gautier, Thomas N.; Ciardi, D. R.; Marcy, G. W.; Hirsch, L.

    2014-01-01

    The ground based follow-up observation program for candidate exoplanets discovered with the Kepler observatory has supported a major effort for high resolution imaging of candidate host stars using adaptive optics wave-front correction (AO), speckle imaging and lucky imaging. These images allow examination of the sky as close as a few tenths of an arcsecond from the host stars to detect background objects that might be the source of the Kepler transit signal instead of the host star. This poster reports on the imaging done with AO cameras on the Keck, Palomar 5m and Shane 3m (Lick Observatory) which have been used to obtain high resolution images of over 500 Kepler Object of Interest (KOI) exoplanet candidate host stars. All observations were made at near infrared wavelengths in the J, H and K bands, mostly using the host target star as the AO guide star. Details of the sensitivity to background objects actually attained by these observations and the number of background objects discovered are presented. Implications to the false positive rate of the Kepler candidates are discussed.

  20. An Accurate Mass Determination for Kepler-1655b, a Moderately Irradiated World with a Significant Volatile Envelope

    NASA Astrophysics Data System (ADS)

    Haywood, Raphaëlle D.; Vanderburg, Andrew; Mortier, Annelies; Giles, Helen A. C.; López-Morales, Mercedes; Lopez, Eric D.; Malavolta, Luca; Charbonneau, David; Collier Cameron, Andrew; Coughlin, Jeffrey L.; Dressing, Courtney D.; Nava, Chantanelle; Latham, David W.; Dumusque, Xavier; Lovis, Christophe; Molinari, Emilio; Pepe, Francesco; Sozzetti, Alessandro; Udry, Stéphane; Bouchy, François; Johnson, John A.; Mayor, Michel; Micela, Giusi; Phillips, David; Piotto, Giampaolo; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Watson, Chris; Affer, Laura; Bonomo, Aldo S.; Buchhave, Lars A.; Ciardi, David R.; Fiorenzano, Aldo F.; Harutyunyan, Avet

    2018-05-01

    We present the confirmation of a small, moderately irradiated (F = 155 ± 7 F ⊕) Neptune with a substantial gas envelope in a P = 11.8728787 ± 0.0000085 day orbit about a quiet, Sun-like G0V star Kepler-1655. Based on our analysis of the Kepler light curve, we determined Kepler-1655b’s radius to be 2.213 ± 0.082 R ⊕. We acquired 95 high-resolution spectra with Telescopio Nazionale Galileo/HARPS-N, enabling us to characterize the host star and determine an accurate mass for Kepler-1655b of 5.0{+/- }2.83.1 {M}\\oplus via Gaussian-process regression. Our mass determination excludes an Earth-like composition with 98% confidence. Kepler-1655b falls on the upper edge of the evaporation valley, in the relatively sparsely occupied transition region between rocky and gas-rich planets. It is therefore part of a population of planets that we should actively seek to characterize further.

  1. Mid-Type M Dwarf Planet Occurrence Rates

    NASA Astrophysics Data System (ADS)

    Hardegree-Ullman, Kevin; Cushing, Michael; Muirhead, Philip Steven

    2018-01-01

    Planet occurrence rates increase toward later spectral types; therefore, M dwarf systems are our most promising targets in the search for exoplanets. Stars in the original Kepler field were primarily characterized from photometry alone, resulting in large uncertainties (~30%) for properties of late-type stars like M dwarfs. Planet occurrence rate calculations require precise measurements of stellar radii, which can be constrained to ~10% using temperatures and metallicities derived from spectra. These measurements need to be performed on a statistically significant population of stars, including systems with and without planets. Using WIYN, the Discovery Channel Telescope, and IRTF, we have gathered spectra of about half of the ~550 probable mid-type M dwarfs in the Kepler field. Our observations have led to better constraints on stellar parameters and new planet occurrence rates for mid-type M dwarfs. We gratefully acknowledge support from the NASA-NSF Exoplanet Observational Research partnership, the National Optical Astronomy Observatory, and the NASA Exoplanet Science Institute.

  2. Multi-Planetary Systems: Observations and Models of Dynamical Interactions

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2018-01-01

    More than 600 multi-planet systems are known. The vast majority of these systems have been discovered by NASA's Kepler spacecraft, but dozens were found using the Doppler technique, the first multi-exoplanet system was identified through pulsar timing, and the most massive system has been found using imaging. More than one-third of the 4000+ planet candidates found by NASA's Kepler spacecraft are associated with target stars that have more than one planet candidate, and the large number of such Kepler "multis" tells us that flat multiplanet systems like our Solar System are common. Virtually all of Kepler candidate multis are stable, as tested by numerical integrations that assume a physically motivated mass-radius relationship. Statistical studies performed on these candidate systems reveal a great deal about the architecture of planetary systems, including the typical spacing of orbits and flatness. The characteristics of several of the most interesting confirmed multi-exoplanet systems will also be discussed.HR 8799's four massive planets orbit tens of AU from their host star and travel on nearly circular orbits. PSR B1257+12 has three much smaller planets orbiting close to a neutron star. Both represent extremes and show that planet formation is a robust process that produces a diversity of outcomes. Although both exomoons and Trojan (triangle Lagrange point) planets have been searched for, neither has yet been found.

  3. Robo-AO Kepler Asteroseismic Survey. I. Adaptive Optics Imaging of 99 Asteroseismic Kepler Dwarfs and Subgiants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schonhut-Stasik, Jessica S.; Baranec, Christoph; Huber, Daniel

    We used the Robo-AO laser adaptive optics (AOs) system to image 99 main sequence and subgiant stars that have Kepler -detected asteroseismic signals. Robo-AO allows us to resolve blended secondary sources at separations as close as ∼0.″15 that may contribute to the measured Kepler light curves and affect asteroseismic analysis and interpretation. We report eight new secondary sources within 4.″0 of these Kepler asteroseismic stars. We used Subaru and Keck AOs to measure differential infrared photometry for these candidate companion systems. Two of the secondary sources are likely foreground objects, while the remaining six are background sources; however, we cannotmore » exclude the possibility that three of the objects may be physically associated. We measured a range of i ′-band amplitude dilutions for the candidate companion systems from 0.43% to 15.4%. We find that the measured amplitude dilutions are insufficient to explain the previously identified excess scatter in the relationship between asteroseismic oscillation amplitude and the frequency of maximum power.« less

  4. Survival of planets around shrinking stellar binaries

    PubMed Central

    Muñoz, Diego J.; Lai, Dong

    2015-01-01

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov–Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like. PMID:26159412

  5. Survival of planets around shrinking stellar binaries.

    PubMed

    Muñoz, Diego J; Lai, Dong

    2015-07-28

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like.

  6. Prevalence of Earth-size planets orbiting Sun-like stars

    PubMed Central

    Petigura, Erik A.; Howard, Andrew W.; Marcy, Geoffrey W.

    2013-01-01

    Determining whether Earth-like planets are common or rare looms as a touchstone in the question of life in the universe. We searched for Earth-size planets that cross in front of their host stars by examining the brightness measurements of 42,000 stars from National Aeronautics and Space Administration’s Kepler mission. We found 603 planets, including 10 that are Earth size () and receive comparable levels of stellar energy to that of Earth (). We account for Kepler’s imperfect detectability of such planets by injecting synthetic planet–caused dimmings into the Kepler brightness measurements and recording the fraction detected. We find that 11 ± 4% of Sun-like stars harbor an Earth-size planet receiving between one and four times the stellar intensity as Earth. We also find that the occurrence of Earth-size planets is constant with increasing orbital period (P), within equal intervals of logP up to ∼200 d. Extrapolating, one finds % of Sun-like stars harbor an Earth-size planet with orbital periods of 200–400 d. PMID:24191033

  7. A Six-planet System around the Star HD 34445

    NASA Astrophysics Data System (ADS)

    Vogt, Steven S.; Butler, R. Paul; Burt, Jennifer; Tuomi, Mikko; Laughlin, Gregory; Holden, Brad; Teske, Johanna K.; Shectman, Stephen A.; Crane, Jeffrey D.; Díaz, Matías; Thompson, Ian B.; Arriagada, Pamela; Keiser, Sandy

    2017-11-01

    We present a new precision radial velocity (RV) data set that reveals a multi-planet system orbiting the G0V star HD 34445. Our 18-year span consists of 333 precision RV observations, 56 of which were previously published and 277 of which are new data from the Keck Observatory, Magellan at Las Campanas Observatory, and the Automated Planet Finder at Lick Observatory. These data indicate the presence of six planet candidates in Keplerian motion about the host star with periods of 1057, 215, 118, 49, 677, and 5700 days, and minimum masses of 0.63, 0.17, 0.1, 0.05, 0.12, and 0.38 M J, respectively. The HD 34445 planetary system, with its high degree of multiplicity, its long orbital periods, and its induced stellar RV half-amplitudes in the range 2 m s-1 ≲ K ≲ 5 m s-1 is fundamentally unlike either our own solar system (in which only Jupiter and Saturn induce significant reflex velocities for the Sun), or the Kepler multiple-transiting systems (which tend to have much more compact orbital configurations).

  8. A Discovery of a Candidate Companion to a Transiting System KOI-94: A Direct Imaging Study for a Possibility of a False Positive

    NASA Technical Reports Server (NTRS)

    Takahashi, Yasuhiro; Narita, Norio; Hirano, Teruyuki; Kuzuhara, Masayuki; Tamura, Motohide; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Sato, Bun'ei; Abe, Lyu; hide

    2013-01-01

    We report a discovery of a companion candidate around one of Kepler Objects of Interest (KOIs), KOI-94, and results of our quantitative investigation of the possibility that planetary candidates around KOI-94 are false positives. KOI-94 has a planetary system in which four planetary detections have been reported by Kepler, suggesting that this system is intriguing to study the dynamical evolutions of planets. However, while two of those detections (KOI-94.01 and 03) have been made robust by previous observations, the others (KOI-94.02 and 04) are marginal detections, for which future confirmations with various techniques are required. We have conducted high-contrast direct imaging observations with Subaru/HiCIAO in H band and detected a faint object located at a separation of approximately 0.6 sec from KOI-94. The object has a contrast of approximately 1 × 10(exp -3) in H band, and corresponds to an M type star on the assumption that the object is at the same distance of KOI-94. Based on our analysis, KOI-94.02 is likely to be a real planet because of its transit depth, while KOI-94.04 can be a false positive due to the companion candidate. The success in detecting the companion candidate suggests that high-contrast direct imaging observations are important keys to examine false positives of KOIs. On the other hand, our transit light curve reanalyses lead to a better period estimate of KOI-94.04 than that on the KOI catalogue and show that the planetary candidate has the same limb darkening parameter value as the other planetary candidates in the KOI-94 system, suggesting that KOI-94.04 is also a real planet in the system.

  9. Analysis of Science Attitudes for K2 Planet Hunter Mission

    DTIC Science & Technology

    2015-03-01

    15 1. International Astronomical Union ...................................................15 2. IAU Planet Definition ...16 3. Planet Definition Relevant to Kepler Mission .................................16 B. STAR...73 a. Definition Based on Direction Cosine Matrix .......................73 b. Definition Based

  10. Destination Innovation: Episode 1 Kepler: Discovering New Worlds

    NASA Image and Video Library

    2012-01-06

    Destination Innovation is a new series that explores the research, science and other projects underway at the NASA Ames Research Center. Episode 1 focuses on the Kepler Mission, a space telescope that is revolutionizing our knowledge of planets outside our Solar System.

  11. The Initial Physical Conditions of Kepler-36 b and c

    NASA Astrophysics Data System (ADS)

    Owen, James E.; Morton, Timothy. D.

    2016-03-01

    The Kepler-36 planetary system consists of two exoplanets at similar separations (0.115 and 0.128 au), which have dramatically different densities. The inner planet has a density consistent with an Earth-like composition, while the outer planet is extremely low density, such that it must contain a voluminous H/He envelope. Such a density difference would pose a problem for any formation mechanism if their current densities were representative of their composition at formation. However, both planets are at close enough separations to have undergone significant evaporation in the past. We constrain the core mass, core composition, initial envelope mass, and initial cooling time of each planet using evaporation models conditioned on their present-day masses and radii, as inferred from Kepler photometry and transit timing analysis. The inner planet is consistent with being an evaporatively stripped core, while the outer planet has retained some of its initial envelope due to its higher core mass. Therefore, both planets could have had a similar formation pathway, with the inner planet having an initial envelope-mass fraction of ≲10% and core mass of ˜4.4 M⊕, while the outer had an initial envelope-mass fraction of the order of 15%-30% and core mass ˜7.3 M⊕. Finally, our results indicate that the outer planet had a long (≳30 Myr) initial cooling time, much longer than would naively be predicted from simple timescale arguments. The long initial cooling time could be evidence for a dramatic early cooling episode such as the recently proposed “boil-off” process.

  12. Characteristics of Planetary Candidates Observed by Kepler. II. Analysis of the First Four Months of Data

    NASA Astrophysics Data System (ADS)

    Borucki, William J.; Koch, David G.; Basri, Gibor; Batalha, Natalie; Brown, Timothy M.; Bryson, Stephen T.; Caldwell, Douglas; Christensen-Dalsgaard, Jørgen; Cochran, William D.; DeVore, Edna; Dunham, Edward W.; Gautier, Thomas N., III; Geary, John C.; Gilliland, Ronald; Gould, Alan; Howell, Steve B.; Jenkins, Jon M.; Latham, David W.; Lissauer, Jack J.; Marcy, Geoffrey W.; Rowe, Jason; Sasselov, Dimitar; Boss, Alan; Charbonneau, David; Ciardi, David; Doyle, Laurance; Dupree, Andrea K.; Ford, Eric B.; Fortney, Jonathan; Holman, Matthew J.; Seager, Sara; Steffen, Jason H.; Tarter, Jill; Welsh, William F.; Allen, Christopher; Buchhave, Lars A.; Christiansen, Jessie L.; Clarke, Bruce D.; Das, Santanu; Désert, Jean-Michel; Endl, Michael; Fabrycky, Daniel; Fressin, Francois; Haas, Michael; Horch, Elliott; Howard, Andrew; Isaacson, Howard; Kjeldsen, Hans; Kolodziejczak, Jeffery; Kulesa, Craig; Li, Jie; Lucas, Philip W.; Machalek, Pavel; McCarthy, Donald; MacQueen, Phillip; Meibom, Søren; Miquel, Thibaut; Prsa, Andrej; Quinn, Samuel N.; Quintana, Elisa V.; Ragozzine, Darin; Sherry, William; Shporer, Avi; Tenenbaum, Peter; Torres, Guillermo; Twicken, Joseph D.; Van Cleve, Jeffrey; Walkowicz, Lucianne; Witteborn, Fred C.; Still, Martin

    2011-07-01

    On 2011 February 1 the Kepler mission released data for 156,453 stars observed from the beginning of the science observations on 2009 May 2 through September 16. There are 1235 planetary candidates with transit-like signatures detected in this period. These are associated with 997 host stars. Distributions of the characteristics of the planetary candidates are separated into five class sizes: 68 candidates of approximately Earth-size (R p < 1.25 R ⊕), 288 super-Earth-size (1.25 R ⊕ <= R p < 2 R ⊕), 662 Neptune-size (2 R ⊕ <= R p < 6 R ⊕), 165 Jupiter-size (6 R ⊕ <= R p < 15 R ⊕), and 19 up to twice the size of Jupiter (15 R ⊕ <= R p < 22 R ⊕). In the temperature range appropriate for the habitable zone, 54 candidates are found with sizes ranging from Earth-size to larger than that of Jupiter. Six are less than twice the size of the Earth. Over 74% of the planetary candidates are smaller than Neptune. The observed number versus size distribution of planetary candidates increases to a peak at two to three times the Earth-size and then declines inversely proportional to the area of the candidate. Our current best estimates of the intrinsic frequencies of planetary candidates, after correcting for geometric and sensitivity biases, are 5% for Earth-size candidates, 8% for super-Earth-size candidates, 18% for Neptune-size candidates, 2% for Jupiter-size candidates, and 0.1% for very large candidates; a total of 0.34 candidates per star. Multi-candidate, transiting systems are frequent; 17% of the host stars have multi-candidate systems, and 34% of all the candidates are part of multi-candidate systems.

  13. EXTRASOLAR BINARY PLANETS. II. DETECTABILITY BY TRANSIT OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, K. M.; Ida, S.; Ochiai, H.

    2015-05-20

    We discuss the detectability of gravitationally bound pairs of gas-giant planets (which we call “binary planets”) in extrasolar planetary systems that are formed through orbital instability followed by planet–planet dynamical tides during their close encounters, based on the results of N-body simulations by Ochiai et al. (Paper I). Paper I showed that the formation probability of a binary is as much as ∼10% for three giant planet systems that undergo orbital instability, and after post-capture long-term tidal evolution, the typical binary separation is three to five times the sum of the physical radii of the planets. The binary planets aremore » stable during the main-sequence lifetime of solar-type stars, if the stellarcentric semimajor axis of the binary is larger than 0.3 AU. We show that detecting modulations of transit light curves is the most promising observational method to detect binary planets. Since the likely binary separations are comparable to the stellar diameter, the shape of the transit light curve is different from transit to transit, depending on the phase of the binary’s orbit. The transit durations and depth for binary planet transits are generally longer and deeper than those for the single planet case. We point out that binary planets could exist among the known inflated gas-giant planets or objects classified as false positive detections at orbital radii ≳0.3 AU, propose a binary planet explanation for the CoRoT candidate SRc01 E2 1066, and show that binary planets are likely to be present in, and could be detected using, Kepler-quality data.« less

  14. Toward Detection of Exoplanetary Rings via Transit Photometry: Methodology and a Possible Candidate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aizawa, Masataka; Masuda, Kento; Suto, Yasushi

    The detection of a planetary ring of exoplanets remains one of the most attractive, but challenging, goals in the field of exoplanetary science. We present a methodology that implements a systematic search for exoplanetary rings via transit photometry of long-period planets. This methodology relies on a precise integration scheme that we develop to compute a transit light curve of a ringed planet. We apply the methodology to 89 long-period planet candidates from the Kepler data so as to estimate, and/or set upper limits on, the parameters of possible rings. While the majority of our samples do not have sufficient signal-to-noise ratios (S/Ns) to place meaningfulmore » constraints on ring parameters, we find that six systems with higher S/Ns are inconsistent with the presence of a ring larger than 1.5 times the planetary radius, assuming a grazing orbit and a tilted ring. Furthermore, we identify five preliminary candidate systems whose light curves exhibit ring-like features. After removing four false positives due to the contamination from nearby stars, we identify KIC 10403228 as a reasonable candidate for a ringed planet. A systematic parameter fit of its light curve with a ringed planet model indicates two possible solutions corresponding to a Saturn-like planet with a tilted ring. There also remain two other possible scenarios accounting for the data; a circumstellar disk and a hierarchical triple. Due to large uncertain factors, we cannot choose one specific model among the three.« less

  15. Host Star Dependence of Small Planet Mass–Radius Distributions

    NASA Astrophysics Data System (ADS)

    Neil, Andrew R.; Rogers, Leslie A.

    2018-05-01

    The planet formation environment around M dwarf stars is different than around G dwarf stars. The longer hot protostellar phase, activity levels and lower protoplanetary disk mass of M dwarfs all may leave imprints on the composition distribution of planets. We use hierarchical Bayesian modeling conditioned on the sample of transiting planets with radial velocity mass measurements to explore small planet mass–radius distributions that depend on host star mass. We find that the current mass–radius data set is consistent with no host star mass dependence. These models are then applied to the Kepler planet radius distribution to calculate the mass distribution of close-orbiting planets and how it varies with host star mass. We find that the average heavy element mass per star at short orbits is higher for M dwarfs compared to FGK dwarfs, in agreement with previous studies. This work will facilitate comparisons between microlensing planet surveys and Kepler, and will provide an analysis framework that can readily be updated as more M dwarf planets are discovered by ongoing and future surveys such as K2 and the Transiting Exoplanet Survey Satellite.

  16. Using a generalized version of the Titius-Bode relation to extrapolate the patterns seen in Kepler multi-exoplanet systems, and estimate the average number of planets in circumstellar habitable zones

    NASA Astrophysics Data System (ADS)

    Lineweaver, Charles H.

    2015-08-01

    The Titius-Bode (TB) relation’s successful prediction of the period of Uranus was the main motivation that led to the search for another planet between Mars and Jupiter. This search led to the discovery of the asteroid Ceres and the rest of the asteroid belt. The TB relation can also provide useful hints about the periods of as-yet-undetected planets around other stars. In Bovaird & Lineweaver (2013) [1], we used a generalized TB relation to analyze 68 multi-planet systems with four or more detected exoplanets. We found that the majority of exoplanet systems in our sample adhered to the TB relation to a greater extent than the Solar System does. Thus, the TB relation can make useful predictions about the existence of as-yet-undetected planets in Kepler multi-planet systems. These predictions are one way to correct for the main obstacle preventing us from estimating the number of Earth-like planets in the universe. That obstacle is the incomplete sampling of planets of Earth-mass and smaller [2-5]. In [6], we use a generalized Titius-Bode relation to predict the periods of 228 additional planets in 151 of these Kepler multiples. These Titius-Bode-based predictions suggest that there are, on average, 2±1 planets in the habitable zone of each star. We also estimate the inclination of the invariable plane for each system and prioritize our planet predictions by their geometric probability to transit. We highlight a short list of 77 predicted planets in 40 systems with a high geometric probability to transit, resulting in an expected detection rate of ~15 per cent, ~3 times higher than the detection rate of our previous Titius-Bode-based predictions.References: [1] Bovaird, T. & Lineweaver, C.H (2013) MNRAS, 435, 1126-1138. [2] Dong S. & Zhu Z. (2013) ApJ, 778, 53 [3] Fressin F. et al. (2013) ApJ, 766, 81 [4] Petigura E. A. et al. (2013) PNAS, 110, 19273 [5] Silburt A. et al. (2014), ApJ (arXiv:1406.6048v2) [6] Bovaird, T., Lineweaver, C.H. & Jacobsen, S.K. (2015, in

  17. Differential rotation of stars with multiple transiting planets

    NASA Astrophysics Data System (ADS)

    Netto, Yuri; Valio, Adriana

    2017-10-01

    If a star hosts a planet in an orbit such that it eclipses the star periodically, can be estimated the rotation profile of this star. If planets in multiplanetary system occult different stellar areas, spots in more than one latitude of the stellar disc can be detected. The monitored study of theses starspots in different latitudes allow us to infer the rotation profile of the star. We use the model described in Silva (2003) to characterize the starspots of Kepler-210, an active star with two planets. Kepler-210 is a late K star with an estimated age of 350 +/- 50 Myrs, average rotation period of 12.33 days, mass of 0.63 M⊙ and radius of 0.69 R⊙. The planets that eclipses this star have radii of 0.0498 R s and 0.0635 R s with orbital periods of 2.4532 +/- 0.0007 days and 7.9725 +/- 0.0014 days, respectively, where R s is the star radius.

  18. The Kepler Mission and Eclipsing Binaries

    NASA Technical Reports Server (NTRS)

    Koch, David; Borucki, William; Lissauer, J.; Basri, Gibor; Brown, Timothy; Caldwell, Douglas; Cochran, William; Jenkins, Jon; Dunham, Edward; Gautier, Nick

    2006-01-01

    The Kepler Mission is a photometric mission with a precision of 14 ppm (at R=12) that is designed to continuously observe a single field of view (FOV) of greater 100 sq deg in the Cygnus-Lyra region for four or more years. The primary goal of the mission is to monitor greater than 100,000 stars for transits of Earth-size and smaller planets in the habitable zone of solar-like stars. In the process, many eclipsing binaries (EB) will also be detected and light curves produced. To enhance and optimize the mission results, the stellar characteristics for all the stars in the FOV with R less than 16 will have been determined prior to launch. As part of the verification process, stars with transit candidates will have radial velocity follow-up observations performed to determine the component masses and thereby separate eclipses caused by stellar companions from transits caused by planets. The result will be a rich database on EBs. The community will have access to the archive for further analysis, such as, for EB modeling of the high-precision light curves. A guest observer program is also planned to allow for photometric observations of objects not on the target list but within the FOV, since only the pixels of interest from those stars monitored will be transmitted to the ground.

  19. ScienceCast 77: Weird Planets

    NASA Image and Video Library

    2012-09-06

    Once, astronomers thought planets couldn't form around binary stars. Now Kepler has found a whole system of planers orbiting a double star. This finding shows that planetary systems are weirder and more abundant than previously thought.

  20. Spectroscopic monitoring of bright A-F type candidate hybrid stars discovered by the Kepler mission

    NASA Astrophysics Data System (ADS)

    Lampens, Patricia; Frémat, Y.; Vermeylen, Lore; De Cat, Peter; Dumortier, Louis; Sódor, Ádám; Sharka, Marek; Bognár, Zsófia

    2018-04-01

    We report on a study of 250 optical spectra for 50 bright A/F-type candidate hybrid pulsating stars from the Kepler field. Most of the spectra have been collected with the high-resolution spectrograph HERMES attached to the Mercator telescope, La Palma. We determined the radial velocities (RVs), projected rotational velocities, fundamental atmospheric parameters and provide a classification based on the appearance of the cross-correlation profiles and the behaviour of the RVs with time in order to find true hybrid pulsators. Additionally, we also detected new spectroscopic binary and multiple systems in our sample and determined the fraction of spectroscopic systems. In order to be able to extend this investigation to the fainter A-F type candidate hybrid stars, various high-quality spectra collected with 3-4 m sized telescopes suitably equipped with a high-resolution spectrograph and furthermore located in the Northern hemisphere would be ideal. This programme could be done using the new instruments installed at the Devasthal Observatory.

  1. The mathematics of the Area Law: Kepler's successful proof in Epitome Astronomiae Copernicanae (1621)

    NASA Astrophysics Data System (ADS)

    Davis, A. E. L.

    2003-07-01

    After the discovery of his three laws, Kepler invented a way of proving the Area Law when applied to the path of a primary planet (the ellipse with one focus at the Sun). The law states that the area swept out by the line joining the planet to the Sun measures the time taken: Kepler was therefore dealing with a restricted version of Newton's general area-proposition. Kepler's demonstration was set out in Epitome V (1621), and consisted of matching an element of area to an element of time, where each was mathematically determined. His treatment of the area depended solely on the geometry of Euclid's Elements, involving only straight-line and circle propositions - so we have to account for his deliberate avoidance of the sophisticated conic-geometry associated with Apollonius. We show also how his proof could have been made watertight according to modern standards, using methods that lay entirely within his power. The greatest innovation, however, occurred in Kepler's fresh formulation of the measure of time. We trace this concept in relation to early astronomy and conclude that Kepler's treatment unexpectedly entailed the assumption that time varied nonuniformly; meanwhile, a geometrical measure provided the independent variable. Even more surprisingly, this approach turns out to be entirely sound when assessed in present-day terms. Kepler himself attributed the cause of the motion of a single planet around the Sun to a set of 'physical' suppositions which represented his religious as well as his Copernican convictions; and we have pared to a minimum - down to four - the number he actually required to achieve this. In the Appendix we use modern mathematics to emphasize the simplicity, both geometrical and kinematical, that objectively characterizes the Sun-focused ellipse as an orbit. Meanwhile we highlight the subjective simplicity of Kepler's own techniques (most of them extremely traditional, some newly created). These two approaches complement each other to

  2. A CONTINUUM OF PLANET FORMATION BETWEEN 1 AND 4 EARTH RADII

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlaufman, Kevin C., E-mail: kschlauf@mit.edu

    2015-02-01

    It has long been known that stars with high metallicity are more likely to host giant planets than stars with low metallicity. Yet the connection between host star metallicity and the properties of small planets is only just beginning to be investigated. It has recently been argued that the metallicity distribution of stars with exoplanet candidates identified by Kepler provides evidence for three distinct clusters of exoplanets, distinguished by planet radius boundaries at 1.7 R{sub ⨁} and 3.9 R{sub ⨁}. This would suggest that there are three distinct planet formation pathways for super-Earths, mini-Neptunes, and giant planets. However, as Imore » show through three independent analyses, there is actually no evidence for the proposed radius boundary at 1.7 R{sub ⨁}. On the other hand, a more rigorous calculation demonstrates that a single, continuous relationship between planet radius and metallicity is a better fit to the data. The planet radius and metallicity data therefore provides no evidence for distinct categories of small planets. This suggests that the planet formation process in a typical protoplanetary disk produces a continuum of planet sizes between 1 R{sub ⨁} and 4 R{sub ⨁}. As a result, the currently available planet radius and metallicity data for solar-metallicity F and G stars give no reason to expect that the amount of solid material in a protoplanetary disk determines whether super-Earths or mini-Neptunes are formed.« less

  3. The Kepler Mission: Search for Habitable Planets

    NASA Technical Reports Server (NTRS)

    Borucki, William; Likins, B.; DeVincenzi, Donald L. (Technical Monitor)

    1998-01-01

    Detecting extrasolar terrestrial planets orbiting main-sequence stars is of great interest and importance. Current ground-based methods are only capable of detecting objects about the size or mass of Jupiter or larger. The difficulties encountered with direct imaging of Earth-size planets from space are expected to be resolved in the next twenty years. Spacebased photometry of planetary transits is currently the only viable method for detection of terrestrial planets (30-600 times less massive than Jupiter). This method searches the extended solar neighborhood, providing a statistically large sample and the detailed characteristics of each individual case. A robust concept has been developed and proposed as a Discovery-class mission. Its capabilities and strengths are presented.

  4. The TESS Transiting Planet Search Predicted Recovery and Reliability Rates

    NASA Astrophysics Data System (ADS)

    Smith, Jeffrey C.; Caldwell, Douglas A.; Davies, Misty; Jenkins, Jon Michael; Li, Jie; Morris, Robert L.; Rose, Mark; Tenenbaum, Peter; Ting, Eric; Twicken, Joseph D.; Wohler, Bill

    2018-06-01

    The Transiting Exoplanet Survey Satellite (TESS) will search for transiting planet signatures via the Science Processing Operations Center (SPOC) Science Pipeline at NASA Ames Research Center. We report on predicted transit recovery and reliability rates for planetary signatures. These estimates are based on simulated runs of the pipeline using realistic stellar models and transiting planet populations along with best estimates for instrumental noise, thermal induced focus changes, instrumental drift and stochastic artifacts in the light curve data. Key sources of false positives are identified and summarized. TESS will launch in 2018 and survey the full sky for transiting exoplanets over a period of two years. The SPOC pipeline was ported from the Kepler Science Operations Center (SOC) codebase and extended for TESS after the mission was selected for flight in the NASA Astrophysics Explorer program. Candidate planet detections and data products will be delivered to the Mikulski Archive for Space Telescopes (MAST); the MAST URL is archive.stsci.edu/tess. Funding for the TESS Mission has been provided by the NASA Science Mission Directorate.

  5. THE HOT-JUPITER KEPLER-17b: DISCOVERY, OBLIQUITY FROM STROBOSCOPIC STARSPOTS, AND ATMOSPHERIC CHARACTERIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desert, Jean-Michel; Charbonneau, David; Ballard, Sarah

    2011-11-01

    This paper reports the discovery and characterization of the transiting hot giant exoplanet Kepler-17b. The planet has an orbital period of 1.486 days, and radial velocity measurements from the Hobby-Eberly Telescope show a Doppler signal of 419.5{sup +13.3}{sub -15.6} m s{sup -1}. From a transit-based estimate of the host star's mean density, combined with an estimate of the stellar effective temperature T{sub eff} = 5630 {+-} 100 from high-resolution spectra, we infer a stellar host mass of 1.06 {+-} 0.07 M{sub Sun} and a stellar radius of 1.02 {+-} 0.03 R{sub Sun }. We estimate the planet mass and radiusmore » to be M{sub P} = 2.45 {+-} 0.11 M{sub J} and R{sub P} = 1.31 {+-} 0.02 R{sub J}. The host star is active, with dark spots that are frequently occulted by the planet. The continuous monitoring of the star reveals a stellar rotation period of 11.89 days, eight times the planet's orbital period; this period ratio produces stroboscopic effects on the occulted starspots. The temporal pattern of these spot-crossing events shows that the planet's orbit is prograde and the star's obliquity is smaller than 15 Degree-Sign . We detected planetary occultations of Kepler-17b with both the Kepler and Spitzer Space Telescopes. We use these observations to constrain the eccentricity, e, and find that it is consistent with a circular orbit (e < 0.011). The brightness temperatures of the planet's infrared bandpasses are T{sub 3.6{mu}m} = 1880 {+-} 100 K and T{sub 4.5{mu}m} = 1770 {+-} 150 K. We measure the optical geometric albedo A{sub g} in the Kepler bandpass and find A{sub g} = 0.10 {+-} 0.02. The observations are best described by atmospheric models for which most of the incident energy is re-radiated away from the day side.« less

  6. A STELLAR-MASS-DEPENDENT DROP IN PLANET OCCURRENCE RATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulders, Gijs D.; Pascucci, Ilaria; Apai, Dániel

    2015-01-10

    The Kepler spacecraft has discovered a large number of planets with up to one-year periods and down to terrestrial sizes. While the majority of the target stars are main-sequence dwarfs of spectral type F, G, and K, Kepler covers stars with effective temperatures as low as 2500 K, which corresponds to M stars. These cooler stars allow characterization of small planets near the habitable zone, yet it is not clear if this population is representative of that around FGK stars. In this paper, we calculate the occurrence of planets around stars of different spectral types as a function of planetmore » radius and distance from the star and show that they are significantly different from each other. We further identify two trends. First, the occurrence of Earth- to Neptune-sized planets (1-4 R {sub ⊕}) is successively higher toward later spectral types at all orbital periods probed by Kepler; planets around M stars occur twice as frequently as around G stars, and thrice as frequently as around F stars. Second, a drop in planet occurrence is evident at all spectral types inward of a ∼10 day orbital period, with a plateau further out. By assigning to each spectral type a median stellar mass, we show that the distance from the star where this drop occurs is stellar mass dependent, and scales with semi-major axis as the cube root of stellar mass. By comparing different mechanisms of planet formation, trapping, and destruction, we find that this scaling best matches the location of the pre-main-sequence co-rotation radius, indicating efficient trapping of migrating planets or planetary building blocks close to the star. These results demonstrate the stellar-mass dependence of the planet population, both in terms of occurrence rate and of orbital distribution. The prominent stellar-mass dependence of the inner boundary of the planet population shows that the formation or migration of planets is sensitive to the stellar parameters.« less

  7. VizieR Online Data Catalog: The hot Jupiter Kepler-13Ab planet's occultation (Shporer+, 2014)

    NASA Astrophysics Data System (ADS)

    Shporer, A.; O'Rourke, J. G.; Knutson, H. A.; Szabo, G. M.; Zhao, M.; Burrows, A.; Fortney, J.; Agol, E.; Cowan, N. B.; Desert, J.-M.; Howard, A. W.; Isaacson, H.; Lewis, N. K.; Showman, A. P.; Todorov, K. O.

    2017-07-01

    Here we carry out an atmospheric characterization of Kepler-13Ab by measuring its occultation in four different wavelength bands, from the infrared (IR; Spitzer/Infrared array camera (IRAC) 4.5 um and 3.6 um), through the near-IR (NIR; Ks band), to the optical (Kepler). We also analyze the Kepler phase curve and obtain Keck/high-resolution echelle spectrometer (HIRES) spectra that result in revised parameters for the objects in the system. (4 data files).

  8. The K2-HERMES Survey. I. Planet-candidate Properties from K2 Campaigns 1–3

    NASA Astrophysics Data System (ADS)

    Wittenmyer, Robert A.; Sharma, Sanjib; Stello, Dennis; Buder, Sven; Kos, Janez; Asplund, Martin; Duong, Ly; Lin, Jane; Lind, Karin; Ness, Melissa; Zwitter, Tomaz; Horner, Jonathan; Clark, Jake; Kane, Stephen R.; Huber, Daniel; Bland-Hawthorn, Joss; Casey, Andrew R.; De Silva, Gayandhi M.; D’Orazi, Valentina; Freeman, Ken; Martell, Sarah; Simpson, Jeffrey D.; Zucker, Daniel B.; Anguiano, Borja; Casagrande, Luca; Esdaile, James; Hon, Marc; Ireland, Michael; Kafle, Prajwal R.; Khanna, Shourya; Marshall, J. P.; Saddon, Mohd Hafiz Mohd; Traven, Gregor; Wright, Duncan

    2018-02-01

    Accurate and precise radius estimates of transiting exoplanets are critical for understanding their compositions and formation mechanisms. To know the planet, we must know the host star in as much detail as possible. We present first results from the K2-HERMES project, which uses the HERMES multi-object spectrograph on the Anglo-Australian Telescope to obtain R ∼ 28000 spectra of up to 360 stars in one exposure. This ongoing project aims to derive self-consistent spectroscopic parameters for about half of K2 target stars. We present complete stellar parameters and isochrone-derived masses and radii for 46 stars hosting 57 K2 candidate planets in Campaigns 1–3. Our revised host-star radii cast severe doubt on three candidate planets: EPIC 201407812.01, EPIC 203070421.01, and EPIC 202843107.01, all of which now have inferred radii well in excess of the largest known inflated Jovian planets.

  9. The mass of the Mars-sized exoplanet Kepler-138 b from transit timing.

    PubMed

    Jontof-Hutter, Daniel; Rowe, Jason F; Lissauer, Jack J; Fabrycky, Daniel C; Ford, Eric B

    2015-06-18

    Extrasolar planets that pass in front of their host star (transit) cause a temporary decrease in the apparent brightness of the star, providing a direct measure of the planet's size and orbital period. In some systems with multiple transiting planets, the times of the transits are measurably affected by the gravitational interactions between neighbouring planets. In favourable cases, the departures from Keplerian orbits (that is, unaffected by gravitational effects) implied by the observed transit times permit the planetary masses to be measured, which is key to determining their bulk densities. Characterizing rocky planets is particularly difficult, because they are generally smaller and less massive than gaseous planets. Therefore, few exoplanets near the size of Earth have had their masses measured. Here we report the sizes and masses of three planets orbiting Kepler-138, a star much fainter and cooler than the Sun. We determine that the mass of the Mars-sized inner planet, Kepler-138 b, is 0.066(+0.059)(-0.037) Earth masses. Its density is 2.6(+2.4)(-1.5) grams per cubic centimetre. The middle and outer planets are both slightly larger than Earth. The middle planet's density (6.2(+5.8)(-3.4) grams per cubic centimetre) is similar to that of Earth, and the outer planet is less than half as dense at 2.1(+2.2)(-1.2) grams per cubic centimetre, implying that it contains a greater portion of low-density components such as water and hydrogen.

  10. Model Atmospheres and Transit Spectra for Hot Rocky Planets

    NASA Astrophysics Data System (ADS)

    Lupu, Roxana

    We propose to build a versatile set of self-consistent atmospheric models for hot rocky exoplanets and use them to predict their transit and eclipse spectra. Hot rocky exoplanets will form the majority of small planets in close-in orbits to be discovered by the TESS and Kepler K2 missions, and offer the best opportunity for characterization with current and future instruments. We will use fully non-grey radiative-convective atmospheric structure codes with cloud formation and vertical mixing, combined with a self-consistent treatment of gas chemistry above the magma ocean. Being in equilibrium with the surface, the vaporized rock material can be a good tracer of the bulk composition of the planet. We will derive the atmospheric structure and escape rates considering both volatile-free and volatile bearing compositions, which reflect the diversity of hot rocky planet atmospheres. Our models will inform follow- up observations with JWST and ground-based instruments, aid the interpretation of transit and eclipse spectra, and provide a better understanding of volatile loss in these atmospheres. Such results will help refine our picture of rocky planet formation and evolution. Planets in ultra-short period (USP) orbits are a special class of hot rocky exoplanets. As shown by Kepler, these planets are generally smaller than 2 Earth radii, suggesting that they are likely to be rocky and could have lost their volatiles through photo-evaporation. Being close to their host stars, these planets are ultra-hot, with estimated temperatures of 1000-3000 K. A number of USP planets have been already discovered (e.g. Kepler-78 b, CoRoT-7 b, Kepler-10 b), and this number is expected to grow by confirming additional planet candidates. The characterization of planets on ultra-short orbits is advantageous due to the larger number of observable transits, and the larger transit signal in the case of an evaporating atmosphere. Much advance has been made in understanding and characterizing

  11. Three small transiting planets around the M-dwarf host star LP 358-499

    NASA Astrophysics Data System (ADS)

    Wells, R.; Poppenhaeger, K.; Watson, C. A.

    2018-01-01

    We report on the detection of three transiting small planets around the low-mass star LP 358-499 (K2-133), using photometric data from the Kepler-K2 mission. Using multiband photometry, we determine the host star to be an early M dwarf with an age likely older than a gigayear. The three detected planets K2-133 b, c and d have orbital periods of ca. 3, 4.9 and 11 d and transit depths of ca. 700, 1000 and 2000 ppm, respectively. We also report a planetary candidate EPIC 247887989.01 with a period of 26.6 d and a depth of ca. 1000 ppm, which may be at the inner edge of the stellar habitable zone, depending on the specific host star properties. Using the transit parameters and the stellar properties, we estimate that the innermost planet may be rocky. The system is suited for follow-up observations to measure planetary masses and JWST transmission spectra of planetary atmospheres.

  12. A PSF-based approach to Kepler/K2 data - II. Exoplanet candidates in Praesepe (M 44)

    NASA Astrophysics Data System (ADS)

    Libralato, M.; Nardiello, D.; Bedin, L. R.; Borsato, L.; Granata, V.; Malavolta, L.; Piotto, G.; Ochner, P.; Cunial, A.; Nascimbeni, V.

    2016-12-01

    In this work, we keep pushing K2 data to a high photometric precision, close to that of the Kepler main mission, using a point-spread function (PSF)-based, neighbour-subtraction technique, which also overcome the dilution effects in crowded environments. We analyse the open cluster M 44 (NGC 2632), observed during the K2 Campaign 5, and extract light curves of stars imaged on module 14, where most of the cluster lies. We present two candidate exoplanets hosted by cluster members and five by field stars. As a by-product of our investigation, we find 1680 eclipsing binaries and variable stars, 1071 of which are new discoveries. Among them, we report the presence of a heartbeat binary star. Together with this work, we release to the community a catalogue with the variable stars and the candidate exoplanets found, as well as all our raw and detrended light curves.

  13. STUDYING ATMOSPHERE-DOMINATED HOT JUPITER KEPLER PHASE CURVES: EVIDENCE THAT INHOMOGENEOUS ATMOSPHERIC REFLECTION IS COMMON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shporer, Avi; Hu, Renyu

    2015-10-15

    We identify three Kepler transiting planets, Kepler-7b, Kepler-12b, and Kepler-41b, whose orbital phase-folded light curves are dominated by planetary atmospheric processes including thermal emission and reflected light, while the impact of non-atmospheric (i.e., gravitational) processes, including beaming (Doppler boosting) and tidal ellipsoidal distortion, is negligible. Therefore, those systems allow a direct view of their atmospheres without being hampered by the approximations used in the inclusion of both atmospheric and non-atmospheric processes when modeling the phase-curve shape. We present here the analysis of Kepler-12b and Kepler-41b atmosphere based on their Kepler phase curve, while the analysis of Kepler-7b was already presentedmore » elsewhere. The model we used efficiently computes reflection and thermal emission contributions to the phase curve, including inhomogeneous atmospheric reflection due to longitudinally varying cloud coverage. We confirm Kepler-12b and Kepler-41b show a westward phase shift between the brightest region on the planetary surface and the substellar point, similar to Kepler-7b. We find that reflective clouds located on the west side of the substellar point can explain the phase shift. The existence of inhomogeneous atmospheric reflection in all three of our targets, selected due to their atmosphere-dominated Kepler phase curve, suggests this phenomenon is common. Therefore, it is also likely to be present in planetary phase curves that do not allow a direct view of the planetary atmosphere as they contain additional orbital processes. We discuss the implications of a bright-spot shift on the analysis of phase curves where both atmospheric and gravitational processes appear, including the mass discrepancy seen in some cases between the companion’s mass derived from the beaming and ellipsoidal photometric amplitudes. Finally, we discuss the potential detection of non-transiting but otherwise similar planets, whose mass is

  14. Large eccentricity, low mutual inclination: the three-dimensional architecture of a hierarchical system of giant planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, Rebekah I.; Clubb, Kelsey I.; Johnson, John Asher

    2014-08-20

    We establish the three-dimensional architecture of the Kepler-419 (previously KOI-1474) system to be eccentric yet with a low mutual inclination. Kepler-419b is a warm Jupiter at semi-major axis a=0.370{sub −0.006}{sup +0.007} AU with a large eccentricity (e = 0.85{sub −0.07}{sup +0.08}) measured via the 'photoeccentric effect'. It exhibits transit timing variations (TTVs) induced by the non-transiting Kepler-419c, which we uniquely constrain to be a moderately eccentric (e = 0.184 ± 0.002), hierarchically separated (a = 1.68 ± 0.03 AU) giant planet (7.3 ± 0.4 M {sub Jup}). We combine 16 quarters of Kepler photometry, radial-velocity (RV) measurements from the HIghmore » Resolution Echelle Spectrometer on Keck, and improved stellar parameters that we derive from spectroscopy and asteroseismology. From the RVs, we measure the mass of the inner planet to be 2.5 ± 0.3 M {sub Jup} and confirm its photometrically measured eccentricity, refining the value to e = 0.83 ± 0.01. The RV acceleration is consistent with the properties of the outer planet derived from TTVs. We find that despite their sizable eccentricities, the planets are coplanar to within 9{sub −6}{sup +8} degrees, and therefore the inner planet's large eccentricity and close-in orbit are unlikely to be the result of Kozai migration. Moreover, even over many secular cycles, the inner planet's periapse is most likely never small enough for tidal circularization. Finally, we present and measure a transit time and impact parameter from four simultaneous ground-based light curves from 1 m class telescopes, demonstrating the feasibility of ground-based follow-up of Kepler giant planets exhibiting large TTVs.« less

  15. Kepler and Ground-Based Transits of the exo-Neptune HAT-P-11b

    NASA Technical Reports Server (NTRS)

    Deming, Drake; Sada, Pedro V.; Jackson, Brian; Peterson, Steven W.; Agol, Eric; Knutson, Heather A.; Jennings, Donald E.; Haase, Plynn; Bays, Kevin

    2011-01-01

    We analyze 26 archival Kepler transits of the exo-Neptune HAT-P-11b, supplemented by ground-based transits observed in the blue (B band) and near-IR (J band). Both the planet and host star are smaller than previously believed; our analysis yields Rp = 4.31 R xor 0.06 R xor and Rs = 0.683 R solar mass 0.009 R solar mass, both about 3 sigma smaller than the discovery values. Our ground-based transit data at wavelengths bracketing the Kepler bandpass serve to check the wavelength dependence of stellar limb darkening, and the J-band transit provides a precise and independent constraint on the transit duration. Both the limb darkening and transit duration from our ground-based data are consistent with the new Kepler values for the system parameters. Our smaller radius for the planet implies that its gaseous envelope can be less extensive than previously believed, being very similar to the H-He envelope of GJ 436b and Kepler-4b. HAT-P-11 is an active star, and signatures of star spot crossings are ubiquitous in the Kepler transit data. We develop and apply a methodology to correct the planetary radius for the presence of both crossed and uncrossed star spots. Star spot crossings are concentrated at phases 0.002 and +0.006. This is consistent with inferences from Rossiter-McLaughlin measurements that the planet transits nearly perpendicular to the stellar equator. We identify the dominant phases of star spot crossings with active latitudes on the star, and infer that the stellar rotational pole is inclined at about 12 deg 5 deg to the plane of the sky. We point out that precise transit measurements over long durations could in principle allow us to construct a stellar Butterfly diagram to probe the cyclic evolution of magnetic activity on this active K-dwarf star.

  16. Formation and Internal Structure of Terrestrial Planets, and Atmospheric Escape

    NASA Astrophysics Data System (ADS)

    Jin, S.

    2014-11-01

    As of 2014 April 21, over 1490 confirmed exoplanets and 3705 Kepler candidates have been detected. This implies that exoplanets may be ubiquitous in the universe. In this paper, we focus on the formation, evolution, and internal structure of terrestrial planets, and the atmospheric escape of close-in planets. In chapter 2, we investigate the dynamical evolution of planetary system after the protoplanetary disk has dissipated. We find that in the final assembly stage, the occurrence of terrestrial planets is quite common and in 40% of our simulations finally at least one planet is formed in the habitable zone. We also find that if there is a highly-inclined giant planet in the system, a great many bodies will be either driven out of the system, or collide with the giant planet or the central star. This will lead to the difficulty in planetary accretion. Moreover, our results show that planetary migration can lead to the formation of close-in planets. Besides migration, close-in terrestrial planets can also be formed by a collision-merger mechanism, which means that planetary embryos can kick terrestrial planets directly into orbits that are extremely close to their parent stars. In chapter 3, we construct numerically an internal structure model for terrestrial planets, and provide three kinds of possible internal structures of Europa (Jupiter's moon) based on this model. Then, we calculate the radii of low-mass exoplanets for various mass combinations of core and mantle, and find that some of them are inconsistent with the observed radius of rocky planets. This phenomenon can be explained only if there exists a large amount of water in the core, or they own gaseous envelopes. In chapter 4, we improve our planetary evolution codes using the semi-gray model of Guillot (2010), which includes the incident flux from the host star as a heating source in planetary atmosphere. The updated codes can solve the structure of the top radiative zone of intensely irradiated

  17. On the abundance of planetary water and exo-life after Kepler

    NASA Astrophysics Data System (ADS)

    Wandel, Amri

    2015-08-01

    Combining the recent results of the Kepler mission on the abundance of small planets within the Habitable Zone with a Drake-equation formalism I derive the space density of planets with surface water and biotic planets as a function of the yet unknown probabilities for the evolution of an Earthlike atmosphere and biosphere, respectively. I describe how these probabilities may be estimated by future spectral observations of exoplanet biomarkers such as atmospheric oxygen and water. I find that planets with surface liquid water may be expected within 10 light years and biotic planets within 10 -- 100 light years from Earth. ArXiv 1412.1302.

  18. An artificial Kepler dichotomy? Implications for the coplanarity of planetary systems

    NASA Astrophysics Data System (ADS)

    Bovaird, Timothy; Lineweaver, Charles H.

    2016-10-01

    We challenge the assumptions present in previous efforts to model the ensemble of detected Kepler systems, which require a dichotomous stellar population of `fertile' and `sterile' planet producing stars. We remove the assumption of Rayleigh distributed mutual inclinations between planets and show that the need for two distinct stellar populations disappears when the inner part of planetary disks are assumed to be flat, rather than flared.

  19. A Neptune-mass Free-floating Planet Candidate Discovered by Microlensing Surveys

    NASA Astrophysics Data System (ADS)

    Mróz, Przemek; Ryu, Y.-H.; Skowron, J.; Udalski, A.; Gould, A.; Szymański, M. K.; Soszyński, I.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Pawlak, M.; Ulaczyk, K.; OGLE Collaboration; Albrow, M. D.; Chung, S.-J.; Jung, Y. K.; Han, C.; Hwang, K.-H.; Shin, I.-G.; Yee, J. C.; Zhu, W.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; KMTNet Collaboration

    2018-03-01

    Current microlensing surveys are sensitive to free-floating planets down to Earth-mass objects. All published microlensing events attributed to unbound planets were identified based on their short timescale (below two days), but lacked an angular Einstein radius measurement (and hence lacked a significant constraint on the lens mass). Here, we present the discovery of a Neptune-mass free-floating planet candidate in the ultrashort (t E = 0.320 ± 0.003 days) microlensing event OGLE-2016-BLG-1540. The event exhibited strong finite-source effects, which allowed us to measure its angular Einstein radius of θ E = 9.2 ± 0.5 μas. There remains, however, a degeneracy between the lens mass and distance. The combination of the source proper motion and source-lens relative proper motion measurements favors a Neptune-mass lens located in the Galactic disk. However, we cannot rule out that the lens is a Saturn-mass object belonging to the bulge population. We exclude stellar companions up to ∼15 au.

  20. Convection in Cool Stars, as Seen Through Kepler's Eyes

    NASA Astrophysics Data System (ADS)

    Bastien, Fabienne A.

    2015-01-01

    Stellar surface processes represent a fundamental limit to the detection of extrasolar planets with the currently most heavily-used techniques. As such, considerable effort has gone into trying to mitigate the impact of these processes on planet detection, with most studies focusing on magnetic spots. Meanwhile, high-precision photometric planet surveys like CoRoT and Kepler have unveiled a wide variety of stellar variability at previously inaccessible levels. We demonstrate that these newly revealed variations are not solely magnetically driven but also trace surface convection through light curve ``flicker.'' We show that ``flicker'' not only yields a simple measurement of surface gravity with a precision of ˜0.1 dex, but it may also improve our knowledge of planet properties, enhance radial velocity planet detection and discovery, and provide new insights into stellar evolution.

  1. Kepler Certified False Positive Table

    NASA Technical Reports Server (NTRS)

    Bryson, Stephen T.; Batalha, Natalie Marie; Colon, Knicole Dawn; Coughlin, Jeffrey Langer; Haas, Michael R.; Henze, Chris; Huber, Daniel; Morton, Tim; Rowe, Jason Frank; Mullally, Susan Elizabeth; hide

    2017-01-01

    This document describes the Kepler Certied False Positive table hosted at the Exoplanet Archive1, herein referred to as the CFP table. This table is the result of detailed examination by the Kepler False Positive Working Group (FPWG) of declared false positives in the Kepler Object of Interest (KOI) tables (see, for example, Batalha et al. (2012); Burke et al.(2014); Rowe et al. (2015); Mullally et al. (2015); Coughlin et al. (2015b)) at the Exoplanet Archive. A KOI is considered a false positive if it is not due to a planet orbiting the KOI's target star. The CFP table contains all KOIs in the Exoplanet Archive cumulative KOI table. The purpose of the CFP table is to provide a list of certified false positive KOIs. A KOI is certified as a false positive when, in the judgement of the FPWG, there is no plausible planetary interpretation of the observational evidence, which we summarize by saying that the evidence for a false positive is compelling. This certification process involves detailed examination using all available data for each KOI, establishing a high-reliability ground truth set. The CFP table can be used to estimate the reliability of, for example, the KOI tables which are created using only Kepler photometric data, so the disposition of individual KOIs may differ in the KOI and CFP tables. Follow-up observers may find the CFP table useful to avoid observing false positives.

  2. Ensemble asteroseismology of solar-type stars with the NASA Kepler mission.

    PubMed

    Chaplin, W J; Kjeldsen, H; Christensen-Dalsgaard, J; Basu, S; Miglio, A; Appourchaux, T; Bedding, T R; Elsworth, Y; García, R A; Gilliland, R L; Girardi, L; Houdek, G; Karoff, C; Kawaler, S D; Metcalfe, T S; Molenda-Żakowicz, J; Monteiro, M J P F G; Thompson, M J; Verner, G A; Ballot, J; Bonanno, A; Brandão, I M; Broomhall, A-M; Bruntt, H; Campante, T L; Corsaro, E; Creevey, O L; Doğan, G; Esch, L; Gai, N; Gaulme, P; Hale, S J; Handberg, R; Hekker, S; Huber, D; Jiménez, A; Mathur, S; Mazumdar, A; Mosser, B; New, R; Pinsonneault, M H; Pricopi, D; Quirion, P-O; Régulo, C; Salabert, D; Serenelli, A M; Silva Aguirre, V; Sousa, S G; Stello, D; Stevens, I R; Suran, M D; Uytterhoeven, K; White, T R; Borucki, W J; Brown, T M; Jenkins, J M; Kinemuchi, K; Van Cleve, J; Klaus, T C

    2011-04-08

    In addition to its search for extrasolar planets, the NASA Kepler mission provides exquisite data on stellar oscillations. We report the detections of oscillations in 500 solar-type stars in the Kepler field of view, an ensemble that is large enough to allow statistical studies of intrinsic stellar properties (such as mass, radius, and age) and to test theories of stellar evolution. We find that the distribution of observed masses of these stars shows intriguing differences to predictions from models of synthetic stellar populations in the Galaxy.

  3. A Photometric Study of 1134 Kepler

    NASA Astrophysics Data System (ADS)

    Pilcher, Frederick; Benishek, Vladimir

    2018-04-01

    Minor planet 1134 Kepler has a synodic rotation period 2.7545 hours and amplitude increasing from 0.12 to 0.18 magnitudes in the interval 2017 Aug. 26 – Nov. 22. Superimposed upon the short rotation period is a 0.45 magnitude fading that we attribute to its movement in the sky from a more polar to a more equatorial line of sight, suggesting a somewhat flat shape for this object.

  4. From Extrasolar Planets to Exo-Earths

    NASA Astrophysics Data System (ADS)

    Fischer, Debra

    2018-06-01

    The ancient Greeks debated whether the Earth was unique, or innumerable worlds existed around other Suns. Twenty five years ago, technology and human ingenuity enabled the discovery of the first extrasolar planet candidates. The architectures of these first systems, with gas giant planets in star-skirting orbits, were unexpected and again raised an echo of that ancient question: is the Earth typical or unique? We are interested in this seemingly anthropocentric question because with all of our searching and discoveries, Earth is the only place where life has been found. It is the question of whether life exists elsewhere that energizes the search for exoplanets. The trajectory of this field has been stunning. After a steady stream of detections with the radial velocity method, a burst of discovery was made possible with the NASA Kepler mission. While thousands of smaller planets have now been found, true Earth analogs have eluded robust detection. However, we are sharpening the knives of our technology and without a doubt we now stand at the threshold of detecting hundreds of Earth analogs. Using Gaia, TESS, WFIRST, JWST and new ground-based spectrographs, we will learn the names and addresses of the worlds that orbit nearby stars and we will be ready to probe their atmospheres. We will finally resolve the ancient question of whether life is unique or common.

  5. Eclipsing binaries and fast rotators in the Kepler sample. Characterization via radial velocity analysis from Calar Alto

    NASA Astrophysics Data System (ADS)

    Lillo-Box, J.; Barrado, D.; Mancini, L.; Henning, Th.; Figueira, P.; Ciceri, S.; Santos, N.

    2015-04-01

    Context. The Kepler mission has searched for planetary transits in more than two hundred thousand stars by obtaining very accurate photometric data over a long period of time. Among the thousands of detected candidates, the planetary nature of around 15% has been established or validated by different techniques. But additional data are needed to characterize the rest of the candidates and reject other possible configurations. Aims: We started a follow-up program to validate, confirm, and characterize some of the planet candidates. In this paper we present the radial velocity analysis of those that present large variations, which are compatible with being eclipsing binaries. We also study those showing high rotational velocities, which prevents us from reaching the necessary precision to detect planetary-like objects. Methods: We present new radial velocity results for 13 Kepler objects of interest (KOIs) obtained with the CAFE spectrograph at the Calar Alto Observatory and analyze their high-spatial resolution (lucky) images obtained with AstraLux and the Kepler light curves of some interesting cases. Results: We have found five spectroscopic and eclipsing binaries (group A). Among them, the case of KOI-3853 is of particular interest. This system is a new example of the so-called heartbeat stars, showing dynamic tidal distortions in the Kepler light curve. We have also detected duration and depth variations of the eclipse. We suggest possible scenarios to explain such an effect, including the presence of a third substellar body possibly detected in our radial velocity analysis. We also provide upper mass limits to the transiting companions of six other KOIs with high rotational velocities (group B). This property prevents the radial velocity method from achieving the necessary precision to detect planetary-like masses. Finally, we analyze the large radial velocity variations of two other KOIs, which are incompatible with the presence of planetary-mass objects

  6. Initial Data Release of the Kepler-INT Survey

    NASA Astrophysics Data System (ADS)

    Greiss, S.; Steeghs, D.; Gänsicke, B. T.; Martín, E. L.; Groot, P. J.; Irwin, M. J.; González-Solares, E.; Greimel, R.; Knigge, C.; Østensen, R. H.; Verbeek, K.; Drew, J. E.; Drake, J.; Jonker, P. G.; Ripepi, V.; Scaringi, S.; Southworth, J.; Still, M.; Wright, N. J.; Farnhill, H.; van Haaften, L. M.; Shah, S.

    2012-07-01

    This paper describes the first data release of the Kepler-INT Survey (KIS) that covers a 116 deg2 region of the Cygnus and Lyra constellations. The Kepler field is the target of the most intensive search for transiting planets to date. Despite the fact that the Kepler mission provides superior time-series photometry, with an enormous impact on all areas of stellar variability, its field lacks optical photometry complete to the confusion limit of the Kepler instrument necessary for selecting various classes of targets. For this reason, we follow the observing strategy and data reduction method used in the IPHAS and UVEX galactic plane surveys in order to produce a deep optical survey of the Kepler field. This initial release concerns data taken between 2011 May and August, using the Isaac Newton Telescope on the island of La Palma. Four broadband filters were used, U, g, r, i, as well as one narrowband one, Hα, reaching down to a 10σ limit of ~20th mag in the Vega system. Observations covering ~50 deg2, thus about half of the field, passed our quality control thresholds and constitute this first data release. We derive a global photometric calibration by placing the KIS magnitudes as close as possible to the Kepler Input Catalog (KIC) photometry. The initial data release catalog containing around 6 million sources from all the good photometric fields is available for download from the KIS Web site (www.astro.warwick.ac.uk/research/kis/) as well as via MAST (KIS magnitudes can be retrieved using the MAST enhanced target search page http://archive.stsci.edu/kepler/kepler_fov/search.php and also via Casjobs at MAST Web site http://mastweb.stsci.edu/kplrcasjobs/).

  7. INITIAL DATA RELEASE OF THE KEPLER-INT SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greiss, S.; Steeghs, D.; Gaensicke, B. T.

    2012-07-15

    This paper describes the first data release of the Kepler-INT Survey (KIS) that covers a 116 deg{sup 2} region of the Cygnus and Lyra constellations. The Kepler field is the target of the most intensive search for transiting planets to date. Despite the fact that the Kepler mission provides superior time-series photometry, with an enormous impact on all areas of stellar variability, its field lacks optical photometry complete to the confusion limit of the Kepler instrument necessary for selecting various classes of targets. For this reason, we follow the observing strategy and data reduction method used in the IPHAS andmore » UVEX galactic plane surveys in order to produce a deep optical survey of the Kepler field. This initial release concerns data taken between 2011 May and August, using the Isaac Newton Telescope on the island of La Palma. Four broadband filters were used, U, g, r, i, as well as one narrowband one, H{alpha}, reaching down to a 10{sigma} limit of {approx}20th mag in the Vega system. Observations covering {approx}50 deg{sup 2}, thus about half of the field, passed our quality control thresholds and constitute this first data release. We derive a global photometric calibration by placing the KIS magnitudes as close as possible to the Kepler Input Catalog (KIC) photometry. The initial data release catalog containing around 6 million sources from all the good photometric fields is available for download from the KIS Web site (www.astro.warwick.ac.uk/research/kis/) as well as via MAST (KIS magnitudes can be retrieved using the MAST enhanced target search page http://archive.stsci.edu/kepler/kepler{sub f}ov/search.php and also via Casjobs at MAST Web site http://mastweb.stsci.edu/kplrcasjobs/).« less

  8. Chasing Exoplanets

    NASA Technical Reports Server (NTRS)

    Jenkins, Jon M.

    2017-01-01

    NASA's Kepler Mission was launched in March 2009 as NASA's first mission capable of finding Earth-size planets orbiting in the habitable zone of Sun-like stars, that range of distances for which liquid water would pool on the surface of a rocky planet. Kepler has discovered over 1000 planets and over 4600 candidates, many of them as small as the Earth. Today, Kepler's amazing success seems to be a fait accompli to those unfamiliar with her history. But twenty years ago, there were no planets known outside our solar system, and few people believed it was possible to detect tiny Earth-size planets orbiting other stars. Motivating NASA to select Kepler for launch required a confluence of the right detector technology, advances in signal processing and algorithms, and the power of supercomputing.

  9. Supercomputing in the Age of Discovering Superearths, Earths and Exoplanet Systems

    NASA Technical Reports Server (NTRS)

    Jenkins, Jon M.

    2015-01-01

    NASA's Kepler Mission was launched in March 2009 as NASA's first mission capable of finding Earth-size planets orbiting in the habitable zone of Sun-like stars, that range of distances for which liquid water would pool on the surface of a rocky planet. Kepler has discovered over 1000 planets and over 4600 candidates, many of them as small as the Earth. Today, Kepler's amazing success seems to be a fait accompli to those unfamiliar with her history. But twenty years ago, there were no planets known outside our solar system, and few people believed it was possible to detect tiny Earth-size planets orbiting other stars. Motivating NASA to select Kepler for launch required a confluence of the right detector technology, advances in signal processing and algorithms, and the power of supercomputing.

  10. A Search for Technosignatures from 14 Planetary Systems in the Kepler Field with the Green Bank Telescope at 1.15–1.73 GHz

    NASA Astrophysics Data System (ADS)

    Margot, Jean-Luc; Greenberg, Adam H.; Pinchuk, Pavlo; Shinde, Akshay; Alladi, Yashaswi; Prasad MN, Srinivas; Bowman, M. Oliver; Fisher, Callum; Gyalay, Szilard; McKibbin, Willow; Miles, Brittany; Nguyen, Donald; Power, Conor; Ramani, Namrata; Raviprasad, Rashmi; Santana, Jesse; Lynch, Ryan S.

    2018-05-01

    Analysis of Kepler mission data suggests that the Milky Way includes billions of Earth-sized planets in the habitable zone of their host stars. Current technology enables the detection of technosignatures emitted from a large fraction of the Galaxy. We describe a search for technosignatures that is sensitive to Arecibo-class transmitters located within ∼420 ly of Earth and transmitters that are 1000 times more effective than Arecibo within ∼13000 ly of Earth. Our observations focused on 14 planetary systems in the Kepler field and used the L-band receiver (1.15–1.73 GHz) of the 100 m diameter Green Bank Telescope. Each source was observed for a total integration time of 5 minutes. We obtained power spectra at a frequency resolution of 3 Hz and examined narrowband signals with Doppler drift rates between ±9 Hz s‑1. We flagged any detection with a signal-to-noise ratio in excess of 10 as a candidate signal and identified approximately 850,000 candidates. Most (99%) of these candidate signals were automatically classified as human-generated radio-frequency interference (RFI). A large fraction (>99%) of the remaining candidate signals were also flagged as anthropogenic RFI because they have frequencies that overlap those used by global navigation satellite systems, satellite downlinks, or other interferers detected in heavily polluted regions of the spectrum. All 19 remaining candidate signals were scrutinized and none were attributable to an extraterrestrial source.

  11. Characterization of the four new transiting planets KOI-188b, KOI-195b, KOI-192b, and KOI-830b

    NASA Astrophysics Data System (ADS)

    Hébrard, G.; Santerne, A.; Montagnier, G.; Bruno, G.; Deleuil, M.; Havel, M.; Almenara, J.-M.; Damiani, C.; Barros, S. C. C.; Bonomo, A. S.; Bouchy, F.; Díaz, R. F.; Moutou, C.

    2014-12-01

    The characterization of four new transiting extrasolar planets is presented here. KOI-188b and KOI-195b are bloated hot Saturns, with orbital periods of 3.8 and 3.2 days, and masses of 0.25 and 0.34 MJup. They are located in the low-mass range of known transiting, giant planets. KOI-192b has a similar mass (0.29 MJup) but a longer orbital period of 10.3 days. This places it in a domain where only a few planets are known. KOI-830b, finally, with a mass of 1.27 MJup and a period of 3.5 days, is a typical hot Jupiter. The four planets have radii of 0.98, 1.09, 1.2, and 1.08 RJup, respectively. We detected no significant eccentricity in any of the systems, while the accuracy of our data does not rule out possible moderate eccentricities. The four objects were first identified by the Kepler team as promising candidates from the photometry of the Kepler satellite. We establish here their planetary nature thanks to the radial velocity follow-up we secured with the HARPS-N spectrograph at the Telescopio Nazionale Galileo. The combined analyses of the datasets allow us to fully characterize the four planetary systems. These new objects increase the number of well-characterized exoplanets for statistics, and provide new targets for individual follow-up studies. The pre-screening we performed with the SOPHIE spectrograph at the Observatoire de Haute-Provence as part of that study also allowed us to conclude that a fifth candidate, KOI-219.01, is not a planet but is instead a false positive. Table 6 is available in electronic form at http://www.aanda.orgRadial velocities given in Tables 2 and 3 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A93

  12. Kepler Stellar Properties Catalog Update for Q1-Q17 DR25 Transit Search

    NASA Technical Reports Server (NTRS)

    Mathur, Savita; Huber, Daniel

    2016-01-01

    Huber et al. (2014) presented revised stellar properties for 196,468 Kepler targets, which were used for the Q1-Q16 TPSDV planet search (Tenenbaum et al. 2014). The catalog was based on atmospheric properties (i.e., temperature (Teff), surface gravity (log(g)), and metallicity ([FeH])) published in the literature using a variety of methods (e.g., asteroseismology, spectroscopy, exoplanet transits, photometry), which were then homogeneously fitted to a grid of Dartmouth (DSEP) isochrones (Dotter et al. 2008). The catalog was updated in early 2015 for the Q1-Q17 Data Release (DR) 24 transit search (Seader et al. 2015) based on the latest classifications of Kepler targets in the literature at that time. The methodology followed Huber et al. (2014). Here we provide updated stellar properties of 197,096 Kepler targets. Like the previous catalog, this update is based on atmospheric properties that were either published in the literature or provided by the Kepler community follow-up program (CFOP). The input values again come from different methods: asteroseismology, spectroscopy, flicker, and photometry. This catalog update was developed to support the SOC 9.3 TPSDV planet search (Twicken et al. 2016), which is expected to be the final search and data release by the Kepler project.In this document, we describe the method and the inputs that were used to build the catalog. The methodology follows Huber et al. (2014) with a few improvements as described in Section 2.

  13. XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part I: atmospheric expansion and thermal escape.

    PubMed

    Erkaev, Nikolai V; Lammer, Helmut; Odert, Petra; Kulikov, Yuri N; Kislyakova, Kristina G; Khodachenko, Maxim L; Güdel, Manuel; Hanslmeier, Arnold; Biernat, Helfried

    2013-11-01

    The recently discovered low-density "super-Earths" Kepler-11b, Kepler-11f, Kepler-11d, Kepler-11e, and planets such as GJ 1214b represent the most likely known planets that are surrounded by dense H/He envelopes or contain deep H₂O oceans also surrounded by dense hydrogen envelopes. Although these super-Earths are orbiting relatively close to their host stars, they have not lost their captured nebula-based hydrogen-rich or degassed volatile-rich steam protoatmospheres. Thus, it is interesting to estimate the maximum possible amount of atmospheric hydrogen loss from a terrestrial planet orbiting within the habitable zone of late main sequence host stars. For studying the thermosphere structure and escape, we apply a 1-D hydrodynamic upper atmosphere model that solves the equations of mass, momentum, and energy conservation for a planet with the mass and size of Earth and for a super-Earth with a size of 2 R(Earth) and a mass of 10 M(Earth). We calculate volume heating rates by the stellar soft X-ray and extreme ultraviolet radiation (XUV) and expansion of the upper atmosphere, its temperature, density, and velocity structure and related thermal escape rates during the planet's lifetime. Moreover, we investigate under which conditions both planets enter the blow-off escape regime and may therefore experience loss rates that are close to the energy-limited escape. Finally, we discuss the results in the context of atmospheric evolution and implications for habitability of terrestrial planets in general.

  14. Overview and Status of the Kepler Mission

    NASA Technical Reports Server (NTRS)

    Koch, D.; Borucki, W.; Dunham, E.; Geary, J.; Gilliland, R.; Jenkins, J.; Latham, D.; Mayer, D.; Sobeck, C.; Duren, R.

    2003-01-01

    The Kepler Mission is a search for terrestrial planets with the design optimized for detecting Earth-size planets in the habitable zone (HZ) of solar-like stars. In addition, the mission has a broad detection capability for a wide range of planetary sizes, planetary orbits and spectral types of stars. The mission is in the midst of the development phase with good progress leading to the preliminary design review later this year. Long lead procurements are well under way. An overview in all areas is presented including both the flight system (photometer and spacecraft) and the ground system. Launch is on target for 2007 on a Delta II.

  15. Dysonian SETI as a "Shortcut" to Detecting Habitable Planets

    NASA Astrophysics Data System (ADS)

    Wright, J. T.

    2016-12-01

    The search for habitable planets is ultimately motivated by the search for inhabited planets. On Earth, the most telling signature of life is that of humanity's technology. The Search for Extraterrestrial Intelligence (SETI) is thus the "ultimate" search for habitable planets.In 1960 two seminal papers in SETI were published, providing two visions for SETI. Giuseppe Cocconi and Philip Morrison's proposed detecting deliberate radio signals ("communication SETI"), while Freeman Dyson ("artifact SETI"), proposed detecting the inevitable effects of massive energy supplies and artifacts on their surroundings. While communication SETI has now had many career-long practitioners and major efforts, artifact SETI has, until recently, not been a vibrant field of study. The launch of the Kepler and WISE satellites have greatly renewed interest in the field, however, and the recent Breakthrough Listen Initiative has provided new motivation for finding good targets for communication SETI. I will discuss the progress of the Ĝ Search for Extraterrestrial Civilizations with Large Energy Supplies, including its justification and motivation, waste heat search strategy and first results, and the framework for a search for megastructures via transit light curves. The last of these led to the identification of KIC 8462852 (a.k.a. "Tabby's Star") as a candidate ETI host. This star, discovered by Boyajian and the Zooniverse Planet Hunters, exhibits several apparently unique and so-far unexplained photometric properties, and continues to confound natural explanation.

  16. Atmospheric mass-loss of extrasolar planets orbiting magnetically active host stars

    NASA Astrophysics Data System (ADS)

    Lalitha, Sairam; Schmitt, J. H. M. M.; Dash, Spandan

    2018-06-01

    Magnetic stellar activity of exoplanet hosts can lead to the production of large amounts of high-energy emission, which irradiates extrasolar planets, located in the immediate vicinity of such stars. This radiation is absorbed in the planets' upper atmospheres, which consequently heat up and evaporate, possibly leading to an irradiation-induced mass-loss. We present a study of the high-energy emission in the four magnetically active planet-bearing host stars, Kepler-63, Kepler-210, WASP-19, and HAT-P-11, based on new XMM-Newton observations. We find that the X-ray luminosities of these stars are rather high with orders of magnitude above the level of the active Sun. The total XUV irradiation of these planets is expected to be stronger than that of well-studied hot Jupiters. Using the estimated XUV luminosities as the energy input to the planetary atmospheres, we obtain upper limits for the total mass- loss in these hot Jupiters.

  17. Probabilistic Assessment of Planet Habitability and Biosignatures

    NASA Astrophysics Data System (ADS)

    Bixel, A.; Apai, D.

    2017-11-01

    We have computed probabilistic constraints on the bulk properties of Proxima Cen b informed by priors from Kepler and RV follow-up. We will extend this approach into a Bayesian framework to assess the habitability of directly imaged planets.

  18. Kepler-4b: A Hot Neptune-Like Planet of a G0 Star Near Main-Sequence Turnoff

    DTIC Science & Technology

    2010-04-20

    events using the procedures described by Jenkins et al. (2010) and by Batalha et al. (2010). One of the transiting planet candidates identified by the...Tillinghast Reflector at the Whipple Obser- vatory showed a velocity variation of less than 150 m s−1 over 5 days. Accordingly, we obtained RV measurements with

  19. Finding Kepler's Exoearths

    NASA Astrophysics Data System (ADS)

    Petigura, Erik; Marcy, G.

    2012-05-01

    With its unprecedented photometric precision and duty cycle, the Kepler mission offers the first opportunity to detect Earth analog planets. Detecting transits with depths of 0.01%, periods of 1 year, and durations of 10 hours pose a novel challenge, prompting an optimization of both the detrending of the photometry and of the transit search algorithm. We present TERRA, the Transiting Exoearth Robust Reduction Algorithm, designed specifically to find earth analogs. TERRA carefully treats systematic effects with timescales comparable to an exoearth transit and removes features that are not important from the perspective of transit detection. We demonstrate TERRA's detection power through an extensive transit injection and recovery experiment.

  20. Extragalactic Science With Kepler

    NASA Astrophysics Data System (ADS)

    Fanelli, Michael N.; Marcum, P.

    2012-01-01

    Although designed as an exoplanet and stellar astrophysics experiment, the Kepler mission provides a unique capability to explore the essentially unknown photometric stability of galactic systems at millimag levels using Kepler's blend of high precision and continuous monitoring. Time series observations of galaxies are sensitive to both quasi-continuous variability, driven by accretion activity from embedded active nuclei, and random, episodic events, such as supernovae. In general, galaxies lacking active nuclei are not expected to be variable with the timescales and amplitudes observed in stellar sources and are free of source motions that affect stars (e.g., parallax). These sources can serve as a population of quiescent, non-variable sources, which may be used to quantify the photometric stability and noise characteristics of the Kepler photometer. A factor limiting galaxy monitoring in the Kepler FOV is the overall lack of detailed quantitative information for the galaxy population. Despite these limitations, a significant number of galaxies are being observed, forming the Kepler Galaxy Archive. Observed sources total approximately 100, 250, and 700 in Cycles 1-3 (Cycle 3 began in June 2011). In this poster we interpret the properties of a set of 20 galaxies monitored during quarters 4 through 8, their associated light curves, photometric and astrometric precision and potential variability. We describe data analysis issues relevant to extended sources and available software tools. In addition, we detail ongoing surveys that are providing new photometric and morphological information for galaxies over the entire field. These new datasets will both aid the interpretation of the time series, and improve source selection, e.g., help identify candidate AGNs and starburst systems, for further monitoring.