Sample records for kepler eclipsing binary

  1. MARVELS Radial Velocity Solutions to Seven Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Heslar, Michael Francis; Thomas, Neil B.; Ge, Jian; Ma, Bo; Herczeg, Alec; Reyes, Alan; SDSS-III MARVELS Team

    2016-01-01

    Eclipsing binaries serve momentous purposes to improve the basis of understanding aspects of stellar astrophysics, such as the accurate calculation of the physical parameters of stars and the enigmatic mass-radius relationship of M and K dwarfs. We report the investigation results of 7 eclipsing binary candidates, initially identified by the Kepler mission, overlapped with the radial velocity observations from the SDSS-III Multi-Object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS). The RV extractions and spectroscopic solutions of these eclipsing binaries were generated by the University of Florida's 1D data pipeline with a median RV precision of ~60-100 m/s, which was utilized for the DR12 data release. We performed the cross-reference fitting of the MARVELS RV data and the Kepler photometric fluxes obtained from the Kepler Eclipsing Binary Catalog (V2) and modelled the 7 eclipsing binaries in the BinaryMaker3 and PHOEBE programs. This analysis accurately determined the absolute physical and orbital parameters of each binary. Most of the companion stars were determined to have masses of K and M dwarf stars (0.3-0.8 M⊙), and allowed for an investigation into the mass-radius relationship of M and K dwarfs. Among the cases are KIC 9163796, a 122.2 day period "heartbeat star", a recently-discovered class of eccentric binaries known for tidal distortions and pulsations, with a high eccentricity (e~0.75) and KIC 11244501, a 0.29 day period, contact binary with a double-lined spectrum and mass ratio (q~0.45). We also report on the possible reclassification of 2 Kepler eclipsing binary candidates as background eclipsing binaries based on the analysis of the flux measurements, flux ratios of the spectroscopic and photometric solutions, the differences in the FOVs, the image processing of Kepler, and RV and spectral analysis of MARVELS.

  2. KEPLER ECLIPSING BINARIES WITH STELLAR COMPANIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gies, D. R.; Matson, R. A.; Guo, Z.

    2015-12-15

    Many short-period binary stars have distant orbiting companions that have played a role in driving the binary components into close separation. Indirect detection of a tertiary star is possible by measuring apparent changes in eclipse times of eclipsing binaries as the binary orbits the common center of mass. Here we present an analysis of the eclipse timings of 41 eclipsing binaries observed throughout the NASA Kepler mission of long duration and precise photometry. This subset of binaries is characterized by relatively deep and frequent eclipses of both stellar components. We present preliminary orbital elements for seven probable triple stars amongmore » this sample, and we discuss apparent period changes in seven additional eclipsing binaries that may be related to motion about a tertiary in a long period orbit. The results will be used in ongoing investigations of the spectra and light curves of these binaries for further evidence of the presence of third stars.« less

  3. Kepler eclipsing binary stars. IV. Precise eclipse times for close binaries and identification of candidate three-body systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conroy, Kyle E.; Stassun, Keivan G.; Prša, Andrej

    2014-02-01

    We present a catalog of precise eclipse times and analysis of third-body signals among 1279 close binaries in the latest Kepler Eclipsing Binary Catalog. For these short-period binaries, Kepler's 30 minute exposure time causes significant smearing of light curves. In addition, common astrophysical phenomena such as chromospheric activity, as well as imperfections in the light curve detrending process, can create systematic artifacts that may produce fictitious signals in the eclipse timings. We present a method to measure precise eclipse times in the presence of distorted light curves, such as in contact and near-contact binaries which exhibit continuously changing light levelsmore » in and out of eclipse. We identify 236 systems for which we find a timing variation signal compatible with the presence of a third body. These are modeled for the light travel time effect and the basic properties of the third body are derived. This study complements J. A. Orosz et al. (in preparation), which focuses on eclipse timing variations of longer period binaries with flat out-of-eclipse regions. Together, these two papers provide comprehensive eclipse timings for all binaries in the Kepler Eclipsing Binary Catalog, as an ongoing resource freely accessible online to the community.« less

  4. Radial Velocities of 41 Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Matson, Rachel A.; Gies, Douglas R.; Guo, Zhao; Williams, Stephen J.

    2017-12-01

    Eclipsing binaries are vital for directly determining stellar parameters without reliance on models or scaling relations. Spectroscopically derived parameters of detached and semi-detached binaries allow us to determine component masses that can inform theories of stellar and binary evolution. Here we present moderate resolution ground-based spectra of stars in close binary systems with and without (detected) tertiary companions observed by NASA’s Kepler mission and analyzed for eclipse timing variations. We obtain radial velocities and spectroscopic orbits for five single-lined and 35 double-lined systems, and confirm one false positive eclipsing binary. For the double-lined spectroscopic binaries, we also determine individual component masses and examine the mass ratio {M}2/{M}1 distribution, which is dominated by binaries with like-mass pairs and semi-detached classical Algol systems that have undergone mass transfer. Finally, we constrain the mass of the tertiary component for five double-lined binaries with previously detected companions.

  5. Kepler Eclipsing Binary Stars. I. Catalog and Principal Characterization of 1879 Eclipsing Binaries in the First Data Release

    NASA Astrophysics Data System (ADS)

    Prša, Andrej; Batalha, Natalie; Slawson, Robert W.; Doyle, Laurance R.; Welsh, William F.; Orosz, Jerome A.; Seager, Sara; Rucker, Michael; Mjaseth, Kimberly; Engle, Scott G.; Conroy, Kyle; Jenkins, Jon; Caldwell, Douglas; Koch, David; Borucki, William

    2011-03-01

    The Kepler space mission is devoted to finding Earth-size planets orbiting other stars in their habitable zones. Its large, 105 deg2 field of view features over 156,000 stars that are observed continuously to detect and characterize planet transits. Yet, this high-precision instrument holds great promise for other types of objects as well. Here we present a comprehensive catalog of eclipsing binary stars observed by Kepler in the first 44 days of operation, the data being publicly available through MAST as of 2010 June 15. The catalog contains 1879 unique objects. For each object, we provide its Kepler ID (KID), ephemeris (BJD0, P 0), morphology type, physical parameters (T eff, log g, E(B - V)), the estimate of third light contamination (crowding), and principal parameters (T 2/T 1, q, fillout factor, and sin i for overcontacts, and T 2/T 1, (R 1 + R 2)/a, esin ω, ecos ω, and sin i for detached binaries). We present statistics based on the determined periods and measure the average occurrence rate of eclipsing binaries to be ~1.2% across the Kepler field. We further discuss the distribution of binaries as a function of galactic latitude and thoroughly explain the application of artificial intelligence to obtain principal parameters in a matter of seconds for the whole sample. The catalog was envisioned to serve as a bridge between the now public Kepler data and the scientific community interested in eclipsing binary stars.

  6. KEPLER ECLIPSING BINARY STARS. I. CATALOG AND PRINCIPAL CHARACTERIZATION OF 1879 ECLIPSING BINARIES IN THE FIRST DATA RELEASE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prsa, Andrej; Engle, Scott G.; Conroy, Kyle

    2011-03-15

    The Kepler space mission is devoted to finding Earth-size planets orbiting other stars in their habitable zones. Its large, 105 deg{sup 2} field of view features over 156,000 stars that are observed continuously to detect and characterize planet transits. Yet, this high-precision instrument holds great promise for other types of objects as well. Here we present a comprehensive catalog of eclipsing binary stars observed by Kepler in the first 44 days of operation, the data being publicly available through MAST as of 2010 June 15. The catalog contains 1879 unique objects. For each object, we provide its Kepler ID (KID),more » ephemeris (BJD{sub 0}, P{sub 0}), morphology type, physical parameters (T{sub eff}, log g, E(B - V)), the estimate of third light contamination (crowding), and principal parameters (T{sub 2}/T{sub 1}, q, fillout factor, and sin i for overcontacts, and T{sub 2}/T{sub 1}, (R{sub 1} + R{sub 2})/a, esin {omega}, ecos {omega}, and sin i for detached binaries). We present statistics based on the determined periods and measure the average occurrence rate of eclipsing binaries to be {approx}1.2% across the Kepler field. We further discuss the distribution of binaries as a function of galactic latitude and thoroughly explain the application of artificial intelligence to obtain principal parameters in a matter of seconds for the whole sample. The catalog was envisioned to serve as a bridge between the now public Kepler data and the scientific community interested in eclipsing binary stars.« less

  7. VizieR Online Data Catalog: Kepler Mission. VII. Eclipsing binaries in DR3 (Kirk+, 2016)

    NASA Astrophysics Data System (ADS)

    Kirk, B.; Conroy, K.; Prsa, A.; Abdul-Masih, M.; Kochoska, A.; Matijevic, G.; Hambleton, K.; Barclay, T.; Bloemen, S.; Boyajian, T.; Doyle, L. R.; Fulton, B. J.; Hoekstra, A. J.; Jek, K.; Kane, S. R.; Kostov, V.; Latham, D.; Mazeh, T.; Orosz, J. A.; Pepper, J.; Quarles, B.; Ragozzine, D.; Shporer, A.; Southworth, J.; Stassun, K.; Thompson, S. E.; Welsh, W. F.; Agol, E.; Derekas, A.; Devor, J.; Fischer, D.; Green, G.; Gropp, J.; Jacobs, T.; Johnston, C.; Lacourse, D. M.; Saetre, K.; Schwengeler, H.; Toczyski, J.; Werner, G.; Garrett, M.; Gore, J.; Martinez, A. O.; Spitzer, I.; Stevick, J.; Thomadis, P. C.; Vrijmoet, E. H.; Yenawine, M.; Batalha, N.; Borucki, W.

    2016-07-01

    The Kepler Eclipsing Binary Catalog lists the stellar parameters from the Kepler Input Catalog (KIC) augmented by: primary and secondary eclipse depth, eclipse width, separation of eclipse, ephemeris, morphological classification parameter, and principal parameters determined by geometric analysis of the phased light curve. The previous release of the Catalog (Paper II; Slawson et al. 2011, cat. J/AJ/142/160) contained 2165 objects, through the second Kepler data release (Q0-Q2). In this release, 2878 objects are identified and analyzed from the entire data set of the primary Kepler mission (Q0-Q17). The online version of the Catalog is currently maintained at http://keplerEBs.villanova.edu/. A static version of the online Catalog associated with this paper is maintained at MAST https://archive.stsci.edu/kepler/eclipsing_binaries.html. (10 data files).

  8. VizieR Online Data Catalog: Parameters of 529 Kepler eclipsing binaries (Kjurkchieva+, 2017)

    NASA Astrophysics Data System (ADS)

    Kjurkchieva, D.; Vasileva, D.; Atanasova, T.

    2017-11-01

    We reviewed the Kepler eclipsing binary catalog (Prsa et al. 2011, Cat. J/AJ/141/83; Slawson et al. 2011, Cat. J/AJ/142/160; Matijevic et al. 2012) to search for detached eclipsing binaries with eccentric orbits. (5 data files).

  9. Towards a Fundamental Understanding of Short Period Eclipsing Binary Systems Using Kepler Data

    NASA Astrophysics Data System (ADS)

    Prsa, Andrej

    Kepler's ultra-high precision photometry is revolutionizing stellar astrophysics. We are seeing intrinsic phenomena on an unprecedented scale, and interpreting them is both a challenge and an exciting privilege. Eclipsing binary stars are of particular significance for stellar astrophysics because precise modeling leads to fundamental parameters of the orbiting components: masses, radii, temperatures and luminosities to better than 1-2%. On top of that, eclipsing binaries are ideal physical laboratories for studying other physical phenomena, such as asteroseismic properties, chromospheric activity, proximity effects, mass transfer in close binaries, etc. Because of the eclipses, the basic geometry is well constrained, but a follow-up spectroscopy is required to get the dynamical masses and the absolute scale of the system. A conjunction of Kepler photometry and ground- based spectroscopy is a treasure trove for eclipsing binary star astrophysics. This proposal focuses on a carefully selected set of 100 short period eclipsing binary stars. The fundamental goal of the project is to study the intrinsic astrophysical effects typical of short period binaries in great detail, utilizing Kepler photometry and follow-up spectroscopy to devise a robust and consistent set of modeling results. The complementing spectroscopy is being secured from 3 approved and fully funded programs: the NOAO 4-m echelle spectroscopy at Kitt Peak (30 nights; PI Prsa), the 10- m Hobby-Eberly Telescope high-resolution spectroscopy (PI Mahadevan), and the 2.5-m Sloan Digital Sky Survey III spectroscopy (PI Mahadevan). The targets are prioritized by the projected scientific yield. Short period detached binaries host low-mass (K- and M- type) components for which the mass-radius relationship is sparsely populated and still poorly understood, as the radii appear up to 20% larger than predicted by the population models. We demonstrate the spectroscopic detection viability in the secondary

  10. Measuring the Number of M Dwarfs per M Dwarf Using Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Shan, Yutong; Johnson, John A.; Morton, Timothy D.

    2015-11-01

    We measure the binarity of detached M dwarfs in the Kepler field with orbital periods in the range of 1-90 days. Kepler’s photometric precision and nearly continuous monitoring of stellar targets over time baselines ranging from 3 months to 4 years make its detection efficiency for eclipsing binaries nearly complete over this period range and for all radius ratios. Our investigation employs a statistical framework akin to that used for inferring planetary occurrence rates from planetary transits. The obvious simplification is that eclipsing binaries have a vastly improved detection efficiency that is limited chiefly by their geometric probabilities to eclipse. For the M-dwarf sample observed by the Kepler Mission, the fractional incidence of eclipsing binaries implies that there are {0.11}-0.04+0.02 close stellar companions per apparently single M dwarf. Our measured binarity is higher than previous inferences of the occurrence rate of close binaries via radial velocity techniques, at roughly the 2σ level. This study represents the first use of eclipsing binary detections from a high quality transiting planet mission to infer binary statistics. Application of this statistical framework to the eclipsing binaries discovered by future transit surveys will establish better constraints on short-period M+M binary rate, as well as binarity measurements for stars of other spectral types.

  11. Orbital Circularization of Hot and Cool Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Van Eylen, Vincent; Winn, Joshua N.; Albrecht, Simon

    2016-06-01

    The rate of tidal circularization is predicted to be faster for relatively cool stars with convective outer layers, compared to hotter stars with radiative outer layers. Observing this effect is challenging because it requires large and well-characterized samples that include both hot and cool stars. Here we seek evidence of the predicted dependence of circularization upon stellar type, using a sample of 945 eclipsing binaries observed by Kepler. This sample complements earlier studies of this effect, which employed smaller samples of better-characterized stars. For each Kepler binary we measure e cos ω based on the relative timing of the primary and secondary eclipses. We examine the distribution of e cos ω as a function of period for binaries composed of hot stars, cool stars, and mixtures of the two types. At the shortest periods, hot-hot binaries are most likely to be eccentric; for periods shorter than four days, significant eccentricities occur frequently for hot-hot binaries, but not for hot-cool or cool-cool binaries. This is in qualitative agreement with theoretical expectations based on the slower dissipation rates of hot stars. However, the interpretation of our results is complicated by the largely unknown ages and evolutionary states of the stars in our sample.

  12. ORBITAL CIRCULARIZATION OF HOT AND COOL KEPLER ECLIPSING BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eylen, Vincent Van; Albrecht, Simon; Winn, Joshua N., E-mail: vincent@phys.au.dk

    The rate of tidal circularization is predicted to be faster for relatively cool stars with convective outer layers, compared to hotter stars with radiative outer layers. Observing this effect is challenging because it requires large and well-characterized samples that include both hot and cool stars. Here we seek evidence of the predicted dependence of circularization upon stellar type, using a sample of 945 eclipsing binaries observed by Kepler . This sample complements earlier studies of this effect, which employed smaller samples of better-characterized stars. For each Kepler binary we measure e cos ω based on the relative timing of themore » primary and secondary eclipses. We examine the distribution of e cos ω as a function of period for binaries composed of hot stars, cool stars, and mixtures of the two types. At the shortest periods, hot–hot binaries are most likely to be eccentric; for periods shorter than four days, significant eccentricities occur frequently for hot–hot binaries, but not for hot–cool or cool–cool binaries. This is in qualitative agreement with theoretical expectations based on the slower dissipation rates of hot stars. However, the interpretation of our results is complicated by the largely unknown ages and evolutionary states of the stars in our sample.« less

  13. Tidally Induced Pulsations in Kepler Eclipsing Binary KIC 3230227

    NASA Astrophysics Data System (ADS)

    Guo, Zhao; Gies, Douglas R.; Fuller, Jim

    2017-01-01

    KIC 3230227 is a short period (P ≈ 7.0 days) eclipsing binary with a very eccentric orbit (e = 0.6). From combined analysis of radial velocities and Kepler light curves, this system is found to be composed of two A-type stars, with masses of M1 = 1.84 ± 0.18 M⊙, M2 = 1.73 ± 0.17 M⊙ and radii of R1 = 2.01 ± 0.09 R⊙, R2 = 1.68 ± 0.08 R⊙ for the primary and secondary, respectively. In addition to an eclipse, the binary light curve shows a brightening and dimming near periastron, making this a somewhat rare eclipsing heartbeat star system. After removing the binary light curve model, more than 10 pulsational frequencies are present in the Fourier spectrum of the residuals, and most of them are integer multiples of the orbital frequency. These pulsations are tidally driven, and both the amplitudes and phases are in agreement with predictions from linear tidal theory for l = 2, m = -2 prograde modes.

  14. The fidelity of Kepler eclipsing binary parameters inferred by the neural network

    NASA Astrophysics Data System (ADS)

    Holanda, N.; da Silva, J. R. P.

    2018-04-01

    This work aims to test the fidelity and efficiency of obtaining automatic orbital elements of eclipsing binary systems, from light curves using neural network models. We selected a random sample with 78 systems, from over 1400 eclipsing binary detached obtained from the Kepler Eclipsing Binaries Catalog, processed using the neural network approach. The orbital parameters of the sample systems were measured applying the traditional method of light curve adjustment with uncertainties calculated by the bootstrap method, employing the JKTEBOP code. These estimated parameters were compared with those obtained by the neural network approach for the same systems. The results reveal a good agreement between techniques for the sum of the fractional radii and moderate agreement for e cos ω and e sin ω, but orbital inclination is clearly underestimated in neural network tests.

  15. The fidelity of Kepler eclipsing binary parameters inferred by the neural network

    NASA Astrophysics Data System (ADS)

    Holanda, N.; da Silva, J. R. P.

    2018-07-01

    This work aims to test the fidelity and efficiency of obtaining automatic orbital elements of eclipsing binary systems, from light curves using neural network models. We selected a random sample with 78 systems, from over 1400 detached eclipsing binaries obtained from the Kepler Eclipsing Binaries Catalog, processed using the neural network approach. The orbital parameters of the sample systems were measured applying the traditional method of light-curve adjustment with uncertainties calculated by the bootstrap method, employing the JKTEBOP code. These estimated parameters were compared with those obtained by the neural network approach for the same systems. The results reveal a good agreement between techniques for the sum of the fractional radii and moderate agreement for e cosω and e sinω, but orbital inclination is clearly underestimated in neural network tests.

  16. Tidal Synchronization and Differential Rotation of Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Lurie, John C.; Vyhmeister, Karl; Hawley, Suzanne L.; Adilia, Jamel; Chen, Andrea; Davenport, James R. A.; Jurić, Mario; Puig-Holzman, Michael; Weisenburger, Kolby L.

    2017-12-01

    Few observational constraints exist for the tidal synchronization rate of late-type stars, despite its fundamental role in binary evolution. We visually inspected the light curves of 2278 eclipsing binaries (EBs) from the Kepler Eclipsing Binary Catalog to identify those with starspot modulations, as well as other types of out-of-eclipse variability. We report rotation periods for 816 EBs with starspot modulations, and find that 79% of EBs with orbital periods of less than 10 days are synchronized. However, a population of short-period EBs exists, with rotation periods typically 13% slower than synchronous, which we attribute to the differential rotation of high-latitude starspots. At 10 days, there is a transition from predominantly circular, synchronized EBs to predominantly eccentric, pseudosynchronized EBs. This transition period is in good agreement with the predicted and observed circularization period for Milky Way field binaries. At orbital periods greater than about 30 days, the amount of tidal synchronization decreases. We also report 12 previously unidentified candidate δ Scuti and γ Doradus pulsators, as well as a candidate RS CVn system with an evolved primary that exhibits starspot occultations. For short-period contact binaries, we observe a period-color relation and compare it to previous studies. As a whole, these results represent the largest homogeneous study of tidal synchronization of late-type stars.

  17. RED GIANTS IN ECLIPSING BINARY AND MULTIPLE-STAR SYSTEMS: MODELING AND ASTEROSEISMIC ANALYSIS OF 70 CANDIDATES FROM KEPLER DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaulme, P.; McKeever, J.; Rawls, M. L.

    2013-04-10

    Red giant stars are proving to be an incredible source of information for testing models of stellar evolution, as asteroseismology has opened up a window into their interiors. Such insights are a direct result of the unprecedented data from space missions CoRoT and Kepler as well as recent theoretical advances. Eclipsing binaries are also fundamental astrophysical objects, and when coupled with asteroseismology, binaries provide two independent methods to obtain masses and radii and exciting opportunities to develop highly constrained stellar models. The possibility of discovering pulsating red giants in eclipsing binary systems is therefore an important goal that could potentiallymore » offer very robust characterization of these systems. Until recently, only one case has been discovered with Kepler. We cross-correlate the detected red giant and eclipsing-binary catalogs from Kepler data to find possible candidate systems. Light-curve modeling and mean properties measured from asteroseismology are combined to yield specific measurements of periods, masses, radii, temperatures, eclipse timing variations, core rotation rates, and red giant evolutionary state. After using three different techniques to eliminate false positives, out of the 70 systems common to the red giant and eclipsing-binary catalogs we find 13 strong candidates (12 previously unknown) to be eclipsing binaries, one to be a non-eclipsing binary with tidally induced oscillations, and 10 more to be hierarchical triple systems, all of which include a pulsating red giant. The systems span a range of orbital eccentricities, periods, and spectral types F, G, K, and M for the companion of the red giant. One case even suggests an eclipsing binary composed of two red giant stars and another of a red giant with a {delta}-Scuti star. The discovery of multiple pulsating red giants in eclipsing binaries provides an exciting test bed for precise astrophysical modeling, and follow-up spectroscopic observations

  18. Inferred Eccentricity and Period Distributions of Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Prsa, Andrej; Matijevic, G.

    2014-01-01

    Determining the underlying eccentricity and orbital period distributions from an observed sample of eclipsing binary stars is not a trivial task. Shen and Turner (2008) have shown that the commonly used maximum likelihood estimators are biased to larger eccentricities and they do not describe the underlying distribution correctly; orbital periods suffer from a similar bias. Hogg, Myers and Bovy (2010) proposed a hierarchical probabilistic method for inferring the true eccentricity distribution of exoplanet orbits that uses the likelihood functions for individual star eccentricities. The authors show that proper inference outperforms the simple histogramming of the best-fit eccentricity values. We apply this method to the complete sample of eclipsing binary stars observed by the Kepler mission (Prsa et al. 2011) to derive the unbiased underlying eccentricity and orbital period distributions. These distributions can be used for the studies of multiple star formation, dynamical evolution, and they can serve as a drop-in replacement to prior, ad-hoc distributions used in the exoplanet field for determining false positive occurrence rates.

  19. Low-mass Pre-He White Dwarf Stars in Kepler Eclipsing Binaries with Multi-periodic Pulsations

    NASA Astrophysics Data System (ADS)

    Zhang, X. B.; Fu, J. N.; Liu, N.; Luo, C. Q.; Ren, A. B.

    2017-12-01

    We report the discovery of two thermally bloated low-mass pre-He white dwarfs (WDs) in two eclipsing binaries, KIC 10989032 and KIC 8087799. Based on the Kepler long-cadence photometry, we determined comprehensive photometric solutions of the two binary systems. The light curve analysis reveals that KIC 10989032 is a partially eclipsed detached binary system containing a probable low-mass WD with the temperature of about 10,300 K. Having a WD with the temperature of about 13,300, KKIC 8087799 is typical of an EL CVn system. By utilizing radial velocity measurements available for the A-type primary star of KIC 10989032, the mass and radius of the WD component are determined to be 0.24+/- 0.02 {M}⊙ and 0.50+/- 0.01 {R}⊙ , respectively. The values of mass and radius of the WD in KIC 8087799 are estimated as 0.16 ± 0.02 M ⊙ and 0.21 ± 0.01 R ⊙, respectively, according to the effective temperature and mean density of the A-type star derived from the photometric solution. We therefore introduce KIC 10989032 and KIC 8087799 as the eleventh and twelfth dA+WD eclipsing binaries in the Kepler field. Moreover, both binaries display marked multi-periodic pulsations superimposed on binary effects. A preliminary frequency analysis is applied to the light residuals when subtracting the synthetic eclipsing light curves from the observations, revealing that the light pulsations of the two systems are both due to the δ Sct-type primaries. We hence classify KIC 10989032 and KIC 8087799 as two WD+δ Sct binaries.

  20. Vulcan Identification of Eclipsing Binaries in the Kepler Field of View

    NASA Astrophysics Data System (ADS)

    Mjaseth, Kimberly; Batalha, N.; Borucki, W.; Caldwell, D.; Latham, D.; Martin, K. R.; Rabbette, M.; Witteborn, F.

    2007-05-01

    We report the discovery of 236 new eclipsing binary stars located in and around the field of view of the Kepler Mission. The binaries were identified from photometric light curves from the Vulcan exoplanet transit survey. The Vulcan camera is comprised of a modest aperture (10cm) f/2.8 Canon lens focusing a 7° x 7° field of view onto a 4096 x 4096 Kodak CCD. The system yields an hour-to-hour relative precision of 0.003 on 12th magnitude stars and saturates at 9th magnitude. The binaries have magnitudes in the range of 9.5 < V < 13.5 and periods ranging from 0.5 to 13 days. The milli-magnitude photometric precision allows detection of transits as shallow as 1%. The catalog contains a total of 273 eclipsing binary stars, including detached systems (high and low mass ratio), contact binaries, and triple systems. We present the derived orbital/transit properties, light curves, and stellar properties for selected targets. In addition, we summarize the results of radial velocity follow-up work. Support for this work came from NASA's Discovery Program and NASA's Origins of the Solar System Program.

  1. The Kepler Mission and Eclipsing Binaries

    NASA Technical Reports Server (NTRS)

    Koch, David; Borucki, William; Lissauer, J.; Basri, Gibor; Brown, Timothy; Caldwell, Douglas; Cochran, William; Jenkins, Jon; Dunham, Edward; Gautier, Nick

    2006-01-01

    The Kepler Mission is a photometric mission with a precision of 14 ppm (at R=12) that is designed to continuously observe a single field of view (FOV) of greater 100 sq deg in the Cygnus-Lyra region for four or more years. The primary goal of the mission is to monitor greater than 100,000 stars for transits of Earth-size and smaller planets in the habitable zone of solar-like stars. In the process, many eclipsing binaries (EB) will also be detected and light curves produced. To enhance and optimize the mission results, the stellar characteristics for all the stars in the FOV with R less than 16 will have been determined prior to launch. As part of the verification process, stars with transit candidates will have radial velocity follow-up observations performed to determine the component masses and thereby separate eclipses caused by stellar companions from transits caused by planets. The result will be a rich database on EBs. The community will have access to the archive for further analysis, such as, for EB modeling of the high-precision light curves. A guest observer program is also planned to allow for photometric observations of objects not on the target list but within the FOV, since only the pixels of interest from those stars monitored will be transmitted to the ground.

  2. Eclipsing Binaries from the Kepler Mission

    NASA Technical Reports Server (NTRS)

    Koch, David; Borucki, William; Lissauer, J.; Basri, Gibor; Brown, Timothy; Caldwell, Douglas; Cochran, William; Jenkins, Jon; Dunham, Edward; Gautier, Nick

    2005-01-01

    The Kepler Mission is a photometric space mission that will continuously observe a single 100 sq deg field of view (FOV) of greater than 100,000 stars in the Cygnus-Lyra region for 4 or more years with a precision of 14 ppm (R=12). The primary goal of the mission is to detect Earth-size planets in the habitable zone of solar-like stars. In the process, many eclipsing binaries (EB) will also be detected. Prior to launch, the stellar characteristics will have been detennined for all the stars in the FOV with R<16. As part of the verification process, stars with transits <5% will need to have follow-up radial velocity observations performed to determine the component masses and thereby separate transits caused by stellar companions from those caused by planets. The result will be a rich database on EBs. The community will have access to the archive for uses such as for EB modeling of the high-precision light curves. A guest observer program is also planned for objects not already on the target list.

  3. Doubled-lined eclipsing binary system KIC~2306740 with pulsating component discovered from Kepler space photometry

    NASA Astrophysics Data System (ADS)

    Yakut, Kadri

    2015-08-01

    We present a detailed study of KIC 2306740, an eccentric double-lined eclipsing binary system with a pulsating component.Archive Kepler satellite data were combined with newly obtained spectroscopic data with 4.2\\,m William Herschel Telescope(WHT). This allowed us to determine rather precise orbital and physical parameters of this long period, slightly eccentric, pulsating binary system. Duplicity effects are extracted from the light curve in order to estimate pulsation frequencies from the residuals.We modelled the detached binary system assuming non-conservative evolution models with the Cambridge STARS(TWIN) code.

  4. KOI-1003: A New Spotted, Eclipsing RS CVn Binary in the Kepler Field

    NASA Astrophysics Data System (ADS)

    Roettenbacher, Rachael M.; Kane, Stephen R.; Monnier, John D.; Harmon, Robert O.

    2016-12-01

    Using the high-precision photometry from the Kepler space telescope, thousands of stars with stellar and planetary companions have been observed. The characterization of stars with companions is not always straightforward and can be contaminated by systematic and stellar influences on the light curves. Here, through a detailed analysis of starspots and eclipses, we identify KOI-1003 as a new, active RS CVn star—the first identified with data from Kepler. The Kepler light curve of this close binary system exhibits the system’s primary transit, secondary eclipse, and starspot evolution of two persistent active longitudes. The near equality of the system’s orbital and rotation periods indicates the orbit and primary star’s rotation are nearly synchronized ({P}{orb}=8.360613+/- 0.000003 {days}; {P}{rot}˜ 8.23 {days}). By assuming the secondary star is on the main sequence, we suggest the system consists of a {1.45}-0.19+0.11 {M}⊙ subgiant primary and a {0.59}-0.04+0.03 {M}⊙ main-sequence companion. Our work gives a distance of 4400 ± 600 pc and an age of t={3.0}+2.0-0.5 {Gyr}, parameters which are discrepant with previous studies that included the star as a member of the open cluster NGC 6791.

  5. Photometric Mapping of Two Kepler Eclipsing Binaries: KIC11560447 and KIC8868650

    NASA Astrophysics Data System (ADS)

    Senavci, Hakan Volkan; Özavci, I.; Isik, E.; Hussain, G. A. J.; O'Neal, D. O.; Yilmaz, M.; Selam, S. O.

    2018-04-01

    We present the surface maps of two eclipsing binary systems KIC11560447 and KIC8868650, using the Kepler light curves covering approximately 4 years. We use the code DoTS, which is based on maximum entropy method in order to reconstruct the surface maps. We also perform numerical tests of DoTS to check the ability of the code in terms of tracking phase migration of spot clusters. The resulting latitudinally averaged maps of KIC11560447 show that spots drift towards increasing orbital longitudes, while the overall behaviour of spots on KIC8868650 drifts towards decreasing latitudes.

  6. Photometric Follow-up of Eclipsing Binary Candidates from KELT and Kepler

    NASA Astrophysics Data System (ADS)

    Garcia Soto, Aylin; Rodriguez, Joseph E.; Bieryla, Allyson; KELT survey

    2018-01-01

    Eclipsing binaries (EBs) are incredibly valuable, as they provide the opportunity to precisely measure fundamental stellar parameters without the need for stellar models. Therefore, we can use EBs to directly test stellar evolution models. Constraining the stellar properties of stars is important since they directly influence our understanding of any planets orbiting them. Using the Harvard University's Clay 0.4m telescope and Fred Lawrence Whipple Observatory’s 1.2m telescope on Mount Hopkins, Arizona, we conducted follow-up multi-band photometric observations of EB candidates from the Kilodegree Extremely Little Telescope (KELT) survey and the Kepler mission. We will present our follow-up observations and AstroImageJ analysis on these 5 EB systems.

  7. Eclipsing binaries and fast rotators in the Kepler sample. Characterization via radial velocity analysis from Calar Alto

    NASA Astrophysics Data System (ADS)

    Lillo-Box, J.; Barrado, D.; Mancini, L.; Henning, Th.; Figueira, P.; Ciceri, S.; Santos, N.

    2015-04-01

    Context. The Kepler mission has searched for planetary transits in more than two hundred thousand stars by obtaining very accurate photometric data over a long period of time. Among the thousands of detected candidates, the planetary nature of around 15% has been established or validated by different techniques. But additional data are needed to characterize the rest of the candidates and reject other possible configurations. Aims: We started a follow-up program to validate, confirm, and characterize some of the planet candidates. In this paper we present the radial velocity analysis of those that present large variations, which are compatible with being eclipsing binaries. We also study those showing high rotational velocities, which prevents us from reaching the necessary precision to detect planetary-like objects. Methods: We present new radial velocity results for 13 Kepler objects of interest (KOIs) obtained with the CAFE spectrograph at the Calar Alto Observatory and analyze their high-spatial resolution (lucky) images obtained with AstraLux and the Kepler light curves of some interesting cases. Results: We have found five spectroscopic and eclipsing binaries (group A). Among them, the case of KOI-3853 is of particular interest. This system is a new example of the so-called heartbeat stars, showing dynamic tidal distortions in the Kepler light curve. We have also detected duration and depth variations of the eclipse. We suggest possible scenarios to explain such an effect, including the presence of a third substellar body possibly detected in our radial velocity analysis. We also provide upper mass limits to the transiting companions of six other KOIs with high rotational velocities (group B). This property prevents the radial velocity method from achieving the necessary precision to detect planetary-like masses. Finally, we analyze the large radial velocity variations of two other KOIs, which are incompatible with the presence of planetary-mass objects

  8. DISCOVERY OF A RED GIANT WITH SOLAR-LIKE OSCILLATIONS IN AN ECLIPSING BINARY SYSTEM FROM KEPLER SPACE-BASED PHOTOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hekker, S.; Debosscher, J.; De Ridder, J.

    2010-04-20

    Oscillating stars in binary systems are among the most interesting stellar laboratories, as these can provide information on the stellar parameters and stellar internal structures. Here we present a red giant with solar-like oscillations in an eclipsing binary observed with the NASA Kepler satellite. We compute stellar parameters of the red giant from spectra and the asteroseismic mass and radius from the oscillations. Although only one eclipse has been observed so far, we can already determine that the secondary is a main-sequence F star in an eccentric orbit with a semi-major axis larger than 0.5 AU and orbital period longermore » than 75 days.« less

  9. The extraneous eclipses on binary light curves: KIC 5255552, KIC 10091110, and KIC 11495766

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Qian, S. B.; Wang, S. M.; Sun, L. L.; Wu, Y.; Jiang, L. Q.

    2018-03-01

    Aims: We aim to find more eclipsing multiple systems and obtain their parameters, thus increasing our understanding of multiple systems. Methods: The extraneous eclipses on the Kepler binary light curves indicating extraneous bodies were searched. The binary light curves were analyzed using the binary model, and the extraneous eclipses were studied on their periodicity and shape changes. Results: Three binaries with extraneous eclipses on the binary light curves were found and studied based on the Kepler observations. The object KIC 5255552 is an eclipsing triple system with a fast changing inner binary and an outer companion uncovered by three groups of extraneous eclipses of 862.1(±0.1) d period. The KIC 10091110 is suggested to be a double eclipsing binary system with several possible extraordinary coincidences: the two binaries share similar extremely small mass ratios (0.060(13) and 0.0564(18)), similar mean primary densities (0.3264(42) ρ⊙ and 0.3019(28) ρ⊙), and, most notably, the ratio of the two binaries' periods is very close to integer 2 (8.5303353/4.2185174 = 2.022). The KIC 11495766 is a probable triple system with a 120.73 d period binary and (at least) one non-eclipse companion. Furthermore, very close to it in the celestial sphere, there is a blended background stellar binary of 8.3404432 d period. A first list of 25 eclipsing multiple candidates is presented, with the hope that it will be beneficial for study of eclipsing multiples.

  10. EXPLORING A 'FLOW' OF HIGHLY ECCENTRIC BINARIES WITH KEPLER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong Subo; Katz, Boaz; Socrates, Aristotle

    2013-01-20

    With 16-month of Kepler data, 15 long-period (40-265 days) eclipsing binaries on highly eccentric orbits (minimum e between 0.5 and 0.85) are identified from their closely separated primary and secondary eclipses ({Delta}t{sub I,II} = 3-10 days). These systems confirm the existence of a previously hinted binary population situated near a constant angular momentum track at P(1 - e {sup 2}){sup 3/2} {approx} 15 days, close to the tidal circularization period P{sub circ}. They may be presently migrating due to tidal dissipation and form a steady-state 'flow' ({approx}1% of stars) feeding the close-binary population (few % of stars). If so, futuremore » Kepler data releases will reveal a growing number (dozens) of systems at longer periods, following dN/dlgP {proportional_to} P {sup 1/3} with increasing eccentricities reaching e {yields} 0.98 for P {yields} 1000 days. Radial-velocity follow-up of long-period eclipsing binaries with no secondary eclipses could offer a significantly larger sample. Orders of magnitude more (hundreds) may reveal their presence from periodic 'eccentricity pulses', such as tidal ellipsoidal variations near pericenter passages. Several new few-day-long eccentricity-pulse candidates with long periods (P = 25-80 days) are reported.« less

  11. Probing the low-stellar-mass domain with Kepler and APOGEE observations of eclipsing binaries

    NASA Astrophysics Data System (ADS)

    Prsa, Andrej; Hambleton, Kelly

    2018-01-01

    Observations of low-mass stars (M < 0.5 Msun) have been shown to systematically disagree with the predictions of stellar evolutionary models, where observed radii can be inflated by as much as 5-15% as compared to model predictions. One of the proposed explanations for this discrepancy that is gaining traction are stellar magnetic fields impeding the onset of convection and the subsequent bloating of the star. Here we present modeling analysis results of two benchmark eclipsing binaries, KIC 3003991 and KIC 2445134, with low mass companions (M ~ 0.2 MSun and M ~ 0.5 MSun, respectively). The models are based on Kepler photometry and APOGEE spectroscopy. APOGEE is a part of the Sloan spectroscopic survey that observes in the near-infrared, providing greater sensitivity towards fainter, red companions. We combine the binary modeling software PHOEBE with emcee, an affine invariant Markov chain Monte Carlo sampler; celerite, a Gaussian process library; and our own codes to create a modeling suite capable of modeling correlated noise, shot noise, nuisance astrophysical signals (such as spots) and the full set of eclipsing binary parameters. The results are obtained within a probabilistic framework, with robust mass and radius uncertainties ~1-4%. We overplot the derived masses, radii and temperatures over evolutionary models and note stellar size bloating w.r.t. model predictions for both systems. This work has been funded by the NSF grant #1517460.

  12. The EB Factory: Fundamental Stellar Astrophysics with Eclipsing Binary Stars Discovered by Kepler

    NASA Astrophysics Data System (ADS)

    Stassun, Keivan

    Eclipsing binaries (EBs) are key laboratories for determining the fundamental properties of stars. EBs are therefore foundational objects for constraining stellar evolution models, which in turn are central to determinations of stellar mass functions, of exoplanet properties, and many other areas. The primary goal of this proposal is to mine the Kepler mission light curves for: (1) EBs that include a subgiant star, from which precise ages can be derived and which can thus serve as critically needed age benchmarks; and within these, (2) long-period EBs that include low-mass M stars or brown dwarfs, which are increa-singly becoming the focus of exoplanet searches, but for which there are the fewest available fundamental mass- radius-age benchmarks. A secondary goal of this proposal is to develop an end-to-end computational pipeline -- the Kepler EB Factory -- that allows automatic processing of Kepler light curves for EBs, from period finding, to object classification, to determination of EB physical properties for the most scientifically interesting EBs, and finally to accurate modeling of these EBs for detailed tests and benchmarking of theoretical stellar evolution models. We will integrate the most successful algorithms into a single, cohesive workflow environment, and apply this 'Kepler EB Factory' to the full public Kepler dataset to find and characterize new "benchmark grade" EBs, and will disseminate both the enhanced data products from this pipeline and the pipeline itself to the broader NASA science community. The proposed work responds directly to two of the defined Research Areas of the NASA Astrophysics Data Analysis Program (ADAP), specifically Research Area #2 (Stellar Astrophysics) and Research Area #9 (Astrophysical Databases). To be clear, our primary goal is the fundamental stellar astrophysics that will be enabled by the discovery and analysis of relatively rare, benchmark-grade EBs in the Kepler dataset. At the same time, to enable this goal will

  13. Kepler Observations of V447 Lyr: an Eclipsing U Gem Cataclysmic Variable

    NASA Technical Reports Server (NTRS)

    Ramsay, Gavin; Cannizzo, John K.; Howell, Steve B.; Wood, Matt A.; Still, Martin; Barclay, Thomas; Smale, Alan

    2012-01-01

    We present the results of an analysis of Kepler data covering 1.5 yr of the dwarf nova V447 Lyr. We detect eclipses of the accretion disc by the mass donating secondary star every 3.74 h which is the binary orbital period. V447 Lyr is therefore the first dwarf nova in the Kepler field to show eclipses.We also detect five long outbursts and six short outbursts showing V447 Lyr is a U Gem-type dwarf nova. We show that the orbital phase of the mid-eclipse occurs earlier during outbursts compared to quiescence and that the width of the eclipse is greater during outburst. This suggests that the bright spot is more prominent during quiescence and that the disc is larger during outburst than quiescence. This is consistent with an expansion of the outer disc radius due to the presence of high viscosity material associated with the outburst, followed by a contraction in quiescence due to the accretion of low angular momentum material. We note that the long outbursts appear to be triggered by a short outburst, which is also observed in the super-outbursts of SU UMa dwarf novae as observed using Kepler.

  14. KEPLER ECLIPSING BINARIES WITH DELTA SCUTI/GAMMA DORADUS PULSATING COMPONENTS. I. KIC 9851944

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Zhao; Gies, Douglas R.; Matson, Rachel A.

    2016-07-20

    KIC 9851944 is a short-period ( P = 2.16 days) eclipsing binary in the Kepler field of view. By combining the analysis of Kepler photometry and phase-resolved spectra from Kitt Peak National Observatory and Lowell Observatory, we determine the atmospheric and physical parameters of both stars. The two components have very different radii (2.27 R {sub ⊙}, 3.19 R {sub ⊙}) but close masses (1.76 M {sub ⊙}, 1.79 M {sub ⊙}) and effective temperatures (7026, 6902 K), indicating different evolutionary stages. The hotter primary is still on the main sequence (MS), while the cooler and larger secondary star hasmore » evolved to the post-MS, burning hydrogen in a shell. A comparison with coeval evolutionary models shows that it requires solar metallicity and a higher mass ratio to fit the radii and temperatures of both stars simultaneously. Both components show δ Scuti-type pulsations, which we interpret as p -modes and p and g mixed modes. After a close examination of the evolution of δ Scuti pulsational frequencies, we make a comparison of the observed frequencies with those calculated from MESA/GYRE.« less

  15. The architecture of the hierarchical triple star KOI 928 from eclipse timing variations seen in Kepler photometry

    DOE PAGES

    Steffen, J. H.; Quinn, S. N.; Borucki, W. J.; ...

    2011-10-01

    We present a hierarchical triple star system (KIC 9140402) where a low mass eclipsing binary orbits a more massive third star. The orbital period of the binary (4.98829 Days) is determined by the eclipse times seen in photometry from NASA's Kepler spacecraft. The periodically changing tidal field, due to the eccentric orbit of the binary about the tertiary, causes a change in the orbital period of the binary. The resulting eclipse timing variations provide insight into the dynamics and architecture of this system and allow the inference of the total mass of the binary (0.424±0.017M circle-dot) and the orbital parametersmore » of the binary about the central star.« less

  16. Candidates of eclipsing multiples based on extraneous eclipses on binary light curves: KIC 7622486, KIC 7668648, KIC 7670485 and KIC 8938628

    NASA Astrophysics Data System (ADS)

    Zhang, Jia; Qian, Sheng-Bang; He, Jian-Duo

    2017-02-01

    Four candidates of eclipsing multiples, based on new extraneous eclipses found on Kepler binary light curves, are presented and studied. KIC 7622486 is a double eclipsing binary candidate with orbital periods of 2.2799960 d and 40.246503 d. The two binary systems do not eclipse each other in the line of sight, but there is mutual gravitational influence between them which leads to the small but definite eccentricity of 0.0035(0.0022) associated with the short 2.2799960 d period orbit. KIC 7668648 is a hierarchical quadruple system candidate, with two sets of solid 203 ± 5 d period extraneous eclipses and another independent set of extraneous eclipses. A clear and credible extraneous eclipse is found on the binary light curve of KIC 7670485 which makes it a triple system candidate. Two sets of extraneous eclipses with periods of about 390 d and 220 d are found on KIC 8938628 binary curves, which not only confirm the previous conclusion of the 388.5 ± 0.3 triple system, but also indicate new additional objects that make KIC 8938628 a hierarchical quadruple system candidate. The results from these four candidates will contribute to the field of eclipsing multiples.

  17. Kepler-1647b: The Largest and Longest-period Kepler Transiting Circumbinary Planet

    NASA Astrophysics Data System (ADS)

    Kostov, Veselin B.; Orosz, Jerome A.; Welsh, William F.; Doyle, Laurance R.; Fabrycky, Daniel C.; Haghighipour, Nader; Quarles, Billy; Short, Donald R.; Cochran, William D.; Endl, Michael; Ford, Eric B.; Gregorio, Joao; Hinse, Tobias C.; Isaacson, Howard; Jenkins, Jon M.; Jensen, Eric L. N.; Kane, Stephen; Kull, Ilya; Latham, David W.; Lissauer, Jack J.; Marcy, Geoffrey W.; Mazeh, Tsevi; Müller, Tobias W. A.; Pepper, Joshua; Quinn, Samuel N.; Ragozzine, Darin; Shporer, Avi; Steffen, Jason H.; Torres, Guillermo; Windmiller, Gur; Borucki, William J.

    2016-08-01

    We report the discovery of a new Kepler transiting circumbinary planet (CBP). This latest addition to the still-small family of CBPs defies the current trend of known short-period planets orbiting near the stability limit of binary stars. Unlike the previous discoveries, the planet revolving around the eclipsing binary system Kepler-1647 has a very long orbital period (˜1100 days) and was at conjunction only twice during the Kepler mission lifetime. Due to the singular configuration of the system, Kepler-1647b is not only the longest-period transiting CBP at the time of writing, but also one of the longest-period transiting planets. With a radius of 1.06 ± 0.01 R Jup, it is also the largest CBP to date. The planet produced three transits in the light curve of Kepler-1647 (one of them during an eclipse, creating a syzygy) and measurably perturbed the times of the stellar eclipses, allowing us to measure its mass, 1.52 ± 0.65 M Jup. The planet revolves around an 11-day period eclipsing binary consisting of two solar-mass stars on a slightly inclined, mildly eccentric (e bin = 0.16), spin-synchronized orbit. Despite having an orbital period three times longer than Earth’s, Kepler-1647b is in the conservative habitable zone of the binary star throughout its orbit.

  18. Absolute Parameters for the F-type Eclipsing Binary BW Aquarii

    NASA Astrophysics Data System (ADS)

    Maxted, P. F. L.

    2018-05-01

    BW Aqr is a bright eclipsing binary star containing a pair of F7V stars. The absolute parameters of this binary (masses, radii, etc.) are known to good precision so they are often used to test stellar models, particularly in studies of convective overshooting. ... Maxted & Hutcheon (2018) analysed the Kepler K2 data for BW Aqr and noted that it shows variability between the eclipses that may be caused by tidally induced pulsations. ... Table 1 shows the absolute parameters for BW Aqr derived from an improved analysis of the Kepler K2 light curve plus the RV measurements from both Imbert (1979) and Lester & Gies (2018). ... The values in Table 1 with their robust error estimates from the standard deviation of the mean are consistent with the values and errors from Maxted & Hutcheon (2018) based on the PPD calculated using emcee for a fit to the entire K2 light curve.

  19. VizieR Online Data Catalog: Minima of 41 binaries from entire Kepler mission (Gies+, 2015)

    NASA Astrophysics Data System (ADS)

    Gies, D. R.; Matson, R. A.; Guo, Z.; Lester, K. V.; Orosz, J. A.; Peters, G. J.

    2016-06-01

    We embarked on a search for eclipse timing variations among a subset of 41 eclipsing binaries that were identified prior to the start of Kepler observations (see our first paper, Gies et al. 2012, cat. J/AJ/143/137). Our first paper documented the eclipse times in observations made over quarters Q0-Q9 (2009.3-2011.5). Now with the Kepler mission complete with observations through Q17 (ending 2013.4), we present here the eclipse timings for our sample of 41 binaries over the entire duration of the mission. The associated times given in our first paper were based upon UTC (Coordinated Universal Time) while the current set uses TDB (Barycentric Dynamical Time), and here we report the times in reduced Barycentric Julian Date (BJD-2400000 days). We used the Simple Aperture Photometry (SAP) flux except in the case of KIC04678873. The list of targets appears in Table1. The eclipse timing measurements were made in almost the same way as described in our first paper. Our measurements appear in Table2. (2 data files).

  20. Modelling Kepler red giants in eclipsing binaries: calibrating the mixing-length parameter with asteroseismology

    NASA Astrophysics Data System (ADS)

    Li, Tanda; Bedding, Timothy R.; Huber, Daniel; Ball, Warrick H.; Stello, Dennis; Murphy, Simon J.; Bland-Hawthorn, Joss

    2018-03-01

    Stellar models rely on a number of free parameters. High-quality observations of eclipsing binary stars observed by Kepler offer a great opportunity to calibrate model parameters for evolved stars. Our study focuses on six Kepler red giants with the goal of calibrating the mixing-length parameter of convection as well as the asteroseismic surface term in models. We introduce a new method to improve the identification of oscillation modes that exploits theoretical frequencies to guide the mode identification (`peak-bagging') stage of the data analysis. Our results indicate that the convective mixing-length parameter (α) is ≈14 per cent larger for red giants than for the Sun, in agreement with recent results from modelling the APOGEE stars. We found that the asteroseismic surface term (i.e. the frequency offset between the observed and predicted modes) correlates with stellar parameters (Teff, log g) and the mixing-length parameter. This frequency offset generally decreases as giants evolve. The two coefficients a-1 and a3 for the inverse and cubic terms that have been used to describe the surface term correction are found to correlate linearly. The effect of the surface term is also seen in the p-g mixed modes; however, established methods for correcting the effect are not able to properly correct the g-dominated modes in late evolved stars.

  1. WHITE-LIGHT FLARES ON CLOSE BINARIES OBSERVED WITH KEPLER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Qing; Xin, Yu; Liu, Ji-Feng

    2016-06-01

    Based on Kepler data, we present the results of a search for white light flares on 1049 close binaries. We identify 234 flare binaries, of which 6818 flares are detected. We compare the flare-binary fraction in different binary morphologies (“detachedness”). The result shows that the fractions in over-contact and ellipsoidal binaries are approximately 10%–20% lower than those in detached and semi-detached systems. We calculate the binary flare activity level (AL) of all the flare binaries, and discuss its variations along the orbital period ( P {sub orb}) and rotation period ( P {sub rot}, calculated for only detached binaries). Wemore » find that the AL increases with decreasing P {sub orb} or P {sub rot}, up to the critical values at P {sub orb} ∼ 3 days or P {sub rot} ∼ 1.5 days, and thereafter the AL starts decreasing no matter how fast the stars rotate. We examine the flaring rate as a function of orbital phase in two eclipsing binaries on which a large number of flares are detected. It appears that there is no correlation between flaring rate and orbital phase in these two binaries. In contrast, when we examine the function with 203 flares on 20 non-eclipse ellipsoidal binaries, bimodal distribution of amplitude-weighted flare numbers shows up at orbital phases 0.25 and 0.75. Such variation could be larger than what is expected from the cross section modification.« less

  2. Analysis of 45-years of Eclipse Timings of the Hyades (K2 V+ DA) Eclipsing Binary V471 Tauri

    NASA Astrophysics Data System (ADS)

    Marchioni, Lucas; Guinan, Edward; Engle, Scott

    2018-01-01

    V471 Tau is an important detached 0.521-day eclipsing binary composed of a K2 V and a hot DA white dwarf star. This system resides in the Hyades star cluster located approximately 153 Ly from us. V471 Tau is considered to be the end-product of common-envelope binary star evolution and is currently a pre-CV system. V471 Tau serves as a valuable astrophysical laboratory for studying stellar evolution, white dwarfs, stellar magnetic dynamos, and possible detection of low mass companions using the Light Travel Time (LTT) Effects. Since its discovery as an eclipsing binary in 1970, photometry has been carried out and many eclipse timings have been determined. We have performed an analysis of the available photometric data available on V471 Tauri. The binary system has been the subject of analyses regarding the orbital period. From this analysis several have postulated the existence of a third body in the form of a brown dwarf that is causing periodic variations in the system’s apparent period. In this study we combine ground based data with photometry secured recently from the Kepler K2 mission. After detrending and phasing the available data, we are able to compare the changing period of the eclipsing binary system against predictions on the existence of this third body. The results of the analysis will be presented. This research is sponsored by grants from NASA and NSF for which we are very grateful.

  3. Average Albedos of Close-in Super-Earths and Super-Neptunes from Statistical Analysis of Long-cadence Kepler Secondary Eclipse Data

    NASA Astrophysics Data System (ADS)

    Sheets, Holly A.; Deming, Drake

    2017-10-01

    We present the results of our work to determine the average albedo for small, close-in planets in the Kepler candidate catalog. We have adapted our method of averaging short-cadence light curves of multiple Kepler planet candidates to long-cadence data, in order to detect an average albedo for the group of candidates. Long-cadence data exist for many more candidates than the short-cadence data, and so we separate the candidates into smaller radius bins than in our previous work: 1-2 {R}\\oplus , 2-4 {R}\\oplus , and 4-6 {R}\\oplus . We find that, on average, all three groups appear darker than suggested by the short-cadence results, but not as dark as many hot Jupiters. The average geometric albedos for the three groups are 0.11 ± 0.06, 0.05 ± 0.04, and 0.23 ± 0.11, respectively, for the case where heat is uniformly distributed about the planet. If heat redistribution is inefficient, the albedos are even lower, since there will be a greater thermal contribution to the total light from the planet. We confirm that newly identified false-positive Kepler Object of Interest (KOI) 1662.01 is indeed an eclipsing binary at twice the period listed in the planet candidate catalog. We also newly identify planet candidate KOI 4351.01 as an eclipsing binary, and we report a secondary eclipse measurement for Kepler-4b (KOI 7.01) of ˜7.50 ppm at a phase of ˜0.7, indicating that the planet is on an eccentric orbit.

  4. Kepler-Daten von BR Cyg

    NASA Astrophysics Data System (ADS)

    Pagel, Lienhard

    2015-01-01

    In the Kepler field is the eclipsing binary BR Cyg. He is a BAV program star. In the KIC (Kepler Input Catalogue) he is associated with the identifier kplr009899416 [1]. There have been determined 1084 minima and as many secondary minima. Acknowledgement: This paper makes use of data from the Kepler exoplanetarchive.

  5. Light curve solutions of the eclipsing eccentric binaries KIC 8111622, KIC 10518735, KIC 8196180 and their out-of-eclipse variability

    NASA Astrophysics Data System (ADS)

    Kjurkchieva, Diana P.; Vasileva, Doroteya L.

    2018-02-01

    We determined the orbits and stellar parameters of three eccentric eclipsing binaries by light curve solutions of their Kepler data. KIC 8111622 and KIC 10518735 undergo total eclipses while KIC 8196180 reveals partial eclipses. The target components are G and K stars, excluding the primary of KIC 8196180 which is early F star. KIC 8196180 reveals well-visible tidally-induced feature at periastron, i.e. it is an eclipsing heartbeat star. The characteristics of the observed periastron feature (shape, width and amplitude) confirm the theoretical predictions. There are additional out-of-eclipse variations of KIC 8196180 with the orbital period which may be explained by spot activity of synchronously rotating component. Besides worse visible periastron feature KIC 811162 exhibits small-amplitude light variations whose period is around 2.3 times shorter than the orbital one. These oscillations were attributed to spot(s) on asynchronously rotating component.

  6. HII 2407: AN ECLIPSING BINARY REVEALED BY K2 OBSERVATIONS OF THE PLEIADES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, Trevor J.; Hillenbrand, Lynne A.; Zhang, Celia

    2015-11-20

    The star HII 2407 is a member of the relatively young Pleiades star cluster and was previously discovered to be a single-lined spectroscopic binary. It is newly identified here within Kepler/K2 photometric time series data as an eclipsing binary system. Mutual fitting of the radial velocity and photometric data leads to an orbital solution and constraints on fundamental stellar parameters. While the primary has arrived on the main sequence, the secondary is still pre-main sequence and we compare our results for the M/M{sub ⊙} and R/R{sub ⊙} values with stellar evolutionary models. We also demonstrate that the system is likelymore » to be tidally synchronized. Follow-up infrared spectroscopy is likely to reveal the lines of the secondary, allowing for dynamically measured masses and elevating the system to benchmark eclipsing binary status.« less

  7. Surface activity and oscillation amplitudes of red giants in eclipsing binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaulme, P.; Jackiewicz, J.; Appourchaux, T.

    2014-04-10

    Among the 19 red-giant stars belonging to eclipsing binary systems that have been identified in Kepler data, 15 display solar-like oscillations. We study whether the absence of mode detection in the remaining 4 is an observational bias or possibly evidence of mode damping that originates from tidal interactions. A careful analysis of the corresponding Kepler light curves shows that modes with amplitudes that are usually observed in red giants would have been detected if they were present. We observe that mode depletion is strongly associated with short-period systems, in which stellar radii account for 16%-24% of the semi-major axis, andmore » where red-giant surface activity is detected. We suggest that when the rotational and orbital periods synchronize in close binaries, the red-giant component is spun up, so that a dynamo mechanism starts and generates a magnetic field, leading to observable stellar activity. Pressure modes would then be damped as acoustic waves dissipate in these fields.« less

  8. Learning a Novel Detection Metric for the Detection of O’Connell Effect Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Johnston, Kyle; Haber, Rana; Knote, Matthew; Caballero-Nieves, Saida Maria; Peter, Adrian; Petit, Véronique

    2018-01-01

    With the advent of digital astronomy, new benefits and new challenges have been presented to the modern day astronomer. No longer can the astronomer rely on manual processing, instead the profession as a whole has begun to adopt more advanced computational means. Here we focus on the construction and application of a novel time-domain signature extraction methodology and the development of a supporting supervised pattern detection algorithm for the targeted identification of eclipsing binaries which demonstrate a feature known as the O’Connell Effect. A methodology for the reduction of stellar variable observations (time-domain data) into Distribution Fields (DF) is presented. Push-Pull metric learning, a variant of LMNN learning, is used to generate a learned distance metric for the specific detection problem proposed. The metric will be trained on a set of a labelled Kepler eclipsing binary data, in particular systems showing the O’Connell effect. Performance estimates will be presented, as well the results of the detector applied to an unlabeled Kepler EB data set; this work is a crucial step in the upcoming era of big data from the next generation of big telescopes, such as LSST.

  9. Envelopes in eclipsing binary stars

    NASA Technical Reports Server (NTRS)

    Huang, S.

    1972-01-01

    Theoretical research on eclipsing binaries is presented. The specific areas of investigation are the following: (1) the relevance of envelopes to the study of the light curves of eclipsing binaries, (2) the disk envelope, and (3) the spherical envelope.

  10. Light curve solutions of the eccentric binaries KIC 10992733, KIC 5632781, KIC 10026136 and their out-of-eclipse variability

    NASA Astrophysics Data System (ADS)

    Kjurkchieva, Diana; Vasileva, Doroteya

    2018-01-01

    We determined the orbits and stellar parameters of three eccentric eclipsing binaries by light curve solutions of their Kepler data. KIC 10992733 and KIC 5632781 undergo total eclipses while KIC 10026136 reveals partial eclipses. The components of the targets are G and K stars. KIC 10992733 exhibited variations which were attributed to variable visibility of spot(s) on asynchronously rotating component. KIC 5632781 and KIC 1002613 reveal tidally-induced features at periastron, i.e. they might be considered as eclipsing heartbeat stars. The characteristics of the periastron features (shape, width and amplitude) confirm the theoretical predictions.

  11. TESTING THE ASTEROSEISMIC SCALING RELATIONS FOR RED GIANTS WITH ECLIPSING BINARIES OBSERVED BY KEPLER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaulme, P.; McKeever, J.; Jackiewicz, J.

    2016-12-01

    Given the potential of ensemble asteroseismology for understanding fundamental properties of large numbers of stars, it is critical to determine the accuracy of the scaling relations on which these measurements are based. From several powerful validation techniques, all indications so far show that stellar radius estimates from the asteroseismic scaling relations are accurate to within a few percent. Eclipsing binary systems hosting at least one star with detectable solar-like oscillations constitute the ideal test objects for validating asteroseismic radius and mass inferences. By combining radial velocity (RV) measurements and photometric time series of eclipses, it is possible to determine themore » masses and radii of each component of a double-lined spectroscopic binary. We report the results of a four-year RV survey performed with the échelle spectrometer of the Astrophysical Research Consortium’s 3.5 m telescope and the APOGEE spectrometer at Apache Point Observatory. We compare the masses and radii of 10 red giants (RGs) obtained by combining radial velocities and eclipse photometry with the estimates from the asteroseismic scaling relations. We find that the asteroseismic scaling relations overestimate RG radii by about 5% on average and masses by about 15% for stars at various stages of RG evolution. Systematic overestimation of mass leads to underestimation of stellar age, which can have important implications for ensemble asteroseismology used for Galactic studies. As part of a second objective, where asteroseismology is used for understanding binary systems, we confirm that oscillations of RGs in close binaries can be suppressed enough to be undetectable, a hypothesis that was proposed in a previous work.« less

  12. Eclipsing Binaries in Open Clusters

    NASA Astrophysics Data System (ADS)

    Southworth, John; Clausen, Jens Viggo

    2006-08-01

    The study of detached eclipsing binaries in open clusters can provide stringent tests of theoretical stellar evolutionary models, which must simultaneously fit the masses, radii, and luminosities of the eclipsing stars and the radiative properties of every other star in the cluster. We review recent progress in such studies and discuss two unusually interesting objects currently under analysis. GV Carinae is an A0 m + A8 m binary in the Southern open cluster NGC 3532; its eclipse depths have changed by 0.1 mag between 1990 and 2001, suggesting that its orbit is being perturbed by a relatively close third body. DW Carinae is a high-mass unevolved B1 V + B1 V binary in the very young open cluster Collinder 228, and displays double-peaked emission in the centre of the Hα line which is characteristic of Be stars. We conclude by pointing out that the great promise of eclipsing binaries in open clusters can only be satisfied when both the binaries and their parent clusters are well-observed, a situation which is less common than we would like.

  13. Discovery of Three Self-lensing Binaries from Kepler

    NASA Astrophysics Data System (ADS)

    Kawahara, Hajime; Masuda, Kento; MacLeod, Morgan; Latham, David W.; Bieryla, Allyson; Benomar, Othman

    2018-03-01

    We report the discovery of three edge-on binaries with white dwarf (WD) companions that gravitationally magnify (instead of eclipsing) the light of their stellar primaries, as revealed by a systematic search for pulses with long periods in the Kepler photometry. We jointly model the self-lensing light curves and radial-velocity orbits to derive the WD masses, all of which are close to 0.6 solar masses. The orbital periods are long, ranging from 419 to 728 days, and the eccentricities are low, all less than 0.2. These characteristics are reminiscent of the orbits found for many blue stragglers in open clusters and the field, for which stable mass transfer due to Roche-lobe overflow from an evolving primary (now a WD) has been proposed as the formation mechanism. Because the actual masses for our three WD companions have been accurately determined, these self-lensing systems would provide excellent tests for models of interacting binaries.

  14. Eclipsing Binary V1178 Tau: A Reddening Independent Determination of the Age and Distance to NGC 1817

    NASA Astrophysics Data System (ADS)

    Hedlund, Anne; Sandquist, Eric L.; Arentoft, Torben; Brogaard, Karsten; Grundahl, Frank; Stello, Dennis; Bedin, Luigi R.; Libralato, Mattia; Malavolta, Luca; Nardiello, Domenico; Molenda-Zakowicz, Joanna; Vanderburg, Andrew

    2018-06-01

    V1178 Tau is a double-lined spectroscopic eclipsing binary in NGC1817, one of the more massive clusters observed in the K2 mission. We have determined the orbital period (P = 2.20 d) for the first time, and we model radial velocity measurements from the HARPS and ALFOSC spectrographs, light curves collected by Kepler, and ground based light curves using the Eclipsing Light Curve code (ELC, Orosz & Hauschildt 2000). We present masses and radii for the stars in the binary, allowing for a reddening-independent means of determining the cluster age. V1178 Tau is particularly useful for calculating the age of the cluster because the stars are close to the cluster turnoff, providing a more precise age determination. Furthermore, because one of the stars in the binary is a delta Scuti variable, the analysis provides improved insight into their pulsations.

  15. KIC 11401845: An Eclipsing Binary with Multiperiodic Pulsations and Light-travel Time

    NASA Astrophysics Data System (ADS)

    Lee, Jae Woo; Hong, Kyeongsoo; Kim, Seung-Lee; Koo, Jae-Rim

    2017-02-01

    We report the {\\text{}}{Kepler} photometry of KIC 11401845 displaying multiperiodic pulsations, superimposed on binary effects. Light-curve synthesis shows that the binary star is a short-period detached system with a very low mass ratio of q = 0.070 and filling factors of F1 = 45% and F2 = 99%. Multiple-frequency analyses were applied to the light residuals after subtracting the synthetic eclipsing curve from the observed data. We detected 23 frequencies with signal-to-noise ratios larger than 4.0, of which the orbital harmonics (f4, f6, f9, f15) in the low-frequency domain may originate from tidally excited modes. For the high frequencies of 13.7-23.8 day-1, the period ratios and pulsation constants are in the ranges of {P}{pul}/{P}{orb}=0.020{--}0.034 and Q = 0.018-0.031 days, respectively. These values and the position on the Hertzsprung-Russell diagram demonstrate that the primary component is a δ Sct pulsating star. We examined the eclipse timing variation of KIC 11401845 from the pulsation-subtracted data and found a delay of 56 ± 17 s in the arrival times of the secondary eclipses relative to the primary eclipses. A possible explanation of the time shift may be some combination of a light-travel-time delay of about 34 s and a very small eccentricity of e\\cos ω < 0.0002. This result represents the first measurement of the Rømer delay in noncompact binaries.

  16. Stellar Obliquity and Magnetic Activity of Planet-hosting Stars and Eclipsing Binaries Based on Transit Chord Correlation

    NASA Astrophysics Data System (ADS)

    Dai, Fei; Winn, Joshua N.; Berta-Thompson, Zachory; Sanchis-Ojeda, Roberto; Albrecht, Simon

    2018-04-01

    The light curve of an eclipsing system shows anomalies whenever the eclipsing body passes in front of active regions on the eclipsed star. In some cases, the pattern of anomalies can be used to determine the obliquity Ψ of the eclipsed star. Here we present a method for detecting and analyzing these patterns, based on a statistical test for correlations between the anomalies observed in a sequence of eclipses. Compared to previous methods, ours makes fewer assumptions and is easier to automate. We apply it to a sample of 64 stars with transiting planets and 24 eclipsing binaries for which precise space-based data are available, and for which there was either some indication of flux anomalies or a previously reported obliquity measurement. We were able to determine obliquities for 10 stars with hot Jupiters. In particular we found Ψ ≲ 10° for Kepler-45, which is only the second M dwarf with a measured obliquity. The other eight cases are G and K stars with low obliquities. Among the eclipsing binaries, we were able to determine obliquities in eight cases, all of which are consistent with zero. Our results also reveal some common patterns of stellar activity for magnetically active G and K stars, including persistently active longitudes.

  17. Massive eclipsing binary candidates

    NASA Technical Reports Server (NTRS)

    Garrison, R. F.; Schild, R. E.; Hiltner, W. A.

    1983-01-01

    New UBV data are provided for 63 southern OB stars which are either identified in the survey by Garrison, Hiltner, and Schild as having double lines or are known from Wood et al. to be eclipsing binaries. Twenty of the stars are known eclipsing variables. Four stars, not previously known as eclipsing, have both spectroscopic evidence of duplicity and significant photometric variations. Several additional stars have a marginally significant spread in V magnitude.

  18. Eclipsing Stellar Binaries in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Li, Gongjie; Ginsburg, Idan; Naoz, Smadar; Loeb, Abraham

    2017-12-01

    Compact stellar binaries are expected to survive in the dense environment of the Galactic center. The stable binaries may undergo Kozai–Lidov oscillations due to perturbations from the central supermassive black hole (Sgr A*), yet the general relativistic precession can suppress the Kozai–Lidov oscillations and keep the stellar binaries from merging. However, it is challenging to resolve the binary sources and distinguish them from single stars. The close separations of the stable binaries allow higher eclipse probabilities. Here, we consider the massive star SO-2 as an example and calculate the probability of detecting eclipses, assuming it is a binary. We find that the eclipse probability is ∼30%–50%, reaching higher values when the stellar binary is more eccentric or highly inclined relative to its orbit around Sgr A*.

  19. Eclipsing binary stars with a δ Scuti component

    NASA Astrophysics Data System (ADS)

    Kahraman Aliçavuş, F.; Soydugan, E.; Smalley, B.; Kubát, J.

    2017-09-01

    Eclipsing binaries with a δ Sct component are powerful tools to derive the fundamental parameters and probe the internal structure of stars. In this study, spectral analysis of six primary δ Sct components in eclipsing binaries has been performed. Values of Teff, v sin I, and metallicity for the stars have been derived from medium-resolution spectroscopy. Additionally, a revised list of δ Sct stars in eclipsing binaries is presented. In this list, we have only given the δ Sct stars in eclipsing binaries to show the effects of the secondary components and tidal-locking on the pulsations of primary δ Sct components. The stellar pulsation, atmospheric and fundamental parameters (e.g. mass, radius) of 92 δ Sct stars in eclipsing binaries have been gathered. Comparison of the properties of single and eclipsing binary member δ Sct stars has been made. We find that single δ Sct stars pulsate in longer periods and with higher amplitudes than the primary δ Sct components in eclipsing binaries. The v sin I of δ Sct components is found to be significantly lower than that of single δ Sct stars. Relationships between the pulsation periods, amplitudes and stellar parameters in our list have been examined. Significant correlations between the pulsation periods and the orbital periods, Teff, log g, radius, mass ratio, v sin I and the filling factor have been found.

  20. Chromospheric activity of periodic variable stars (including eclipsing binaries) observed in DR2 LAMOST stellar spectral survey

    NASA Astrophysics Data System (ADS)

    Zhang, Liyun; Lu, Hongpeng; Han, Xianming L.; Jiang, Linyan; Li, Zhongmu; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Cao, Zihuang

    2018-05-01

    The LAMOST spectral survey provides a rich databases for studying stellar spectroscopic properties and chromospheric activity. We cross-matched a total of 105,287 periodic variable stars from several photometric surveys and databases (CSS, LINEAR, Kepler, a recently updated eclipsing star catalogue, ASAS, NSVS, some part of SuperWASP survey, variable stars from the Tsinghua University-NAOC Transient Survey, and other objects from some new references) with four million stellar spectra published in the LAMOST data release 2 (DR2). We found 15,955 spectra for 11,469 stars (including 5398 eclipsing binaries). We calculated their equivalent widths (EWs) of their Hα, Hβ, Hγ, Hδ and Caii H lines. Using the Hα line EW, we found 447 spectra with emission above continuum for a total of 316 stars (178 eclipsing binaries). We identified 86 active stars (including 44 eclipsing binaries) with repeated LAMOST spectra. A total of 68 stars (including 34 eclipsing binaries) show chromospheric activity variability. We also found LAMOST spectra of 12 cataclysmic variables, five of which show chromospheric activity variability. We also made photometric follow-up studies of three short period targets (DY CVn, HAT-192-0001481, and LAMOST J164933.24+141255.0) using the Xinglong 60-cm telescope and the SARA 90-cm and 1-m telescopes, and obtained new BVRI CCD light curves. We analyzed these light curves and obtained orbital and starspot parameters. We detected the first flare event with a huge brightness increase of more than about 1.5 magnitudes in R filter in LAMOST J164933.24+141255.0.

  1. Transiting circumbinary planets Kepler-34 b and Kepler-35 b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welsh, William F.; Orosz, Jerome A.; Carter, Joshua A.

    Most Sun-like stars in the Galaxy reside in gravitationally-bound pairs of stars called 'binary stars'. While long anticipated, the existence of a 'circumbinary planet' orbiting such a pair of normal stars was not definitively established until the discovery of Kepler-16. Incontrovertible evidence was provided by the miniature eclipses ('transits') of the stars by the planet. However, questions remain about the prevalence of circumbinary planets and their range of orbital and physical properties. Here we present two additional transiting circumbinary planets, Kepler-34 and Kepler-35. Each is a low-density gas giant planet on an orbit closely aligned with that of its parentmore » stars. Kepler-34 orbits two Sun-like stars every 289 days, while Kepler-35 orbits a pair of smaller stars (89% and 81% of the Sun's mass) every 131 days. Due to the orbital motion of the stars, the planets experience large multi-periodic variations in incident stellar radiation. The observed rate of circumbinary planets implies > ~1% of close binary stars have giant planets in nearly coplanar orbits, yielding a Galactic population of at least several million.« less

  2. Record-Breaking Eclipsing Binary

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    A new record holder exists for the longest-period eclipsing binary star system: TYC-2505-672-1. This intriguing system contains a primary star that is eclipsed by its companion once every 69 years with each eclipse lasting several years!120 Years of ObservationsIn a recent study, a team of scientists led by Joseph Rodriguez (Vanderbilt University) characterizes the components of TYC-2505-672-1. This binary star system consists of an M-type red giant star that undergoes a ~3.45-year-long, near-total eclipse with a period of ~69.1 years. This period is more than double that of the previous longest-period eclipsing binary!Rodriguez and collaborators combined photometric observations of TYC-2505-672-1 by the Kilodegree Extremely Little Telescope (KELT) with a variety of archival data, including observations by the American Association of Variable Star Observers (AAVSO) network and historical data from the Digital Access to a Sky Century @ Harvard (DASCH) program.In the 120 years spanned by these observations, two eclipses are detected: one in 1942-1945 and one in 2011-2015. The authors use the observations to analyze the components of the system and attempt to better understand what causes its unusual light curve.Characterizing an Unusual SystemObservations of TYC-2505-672-1 plotted from 1890 to 2015 reveal two eclipses. (The blue KELT observations during the eclipse show upper limits only.) [Rodriguez et al. 2016]By modeling the systems emission, Rodriguez and collaborators establish that TYC-2505-672-1 consists of a 3600-K primary star thats the M giant orbited by a small, hot, dim companion thats a toasty 8000 K. But if the companion is small, why does the eclipse last several years?The authors argue that the best model of TYC-2505-672-1 is one in which the small companion star is surrounded by a large, opaque circumstellar disk. Rodriguez and collaborators suggest that the companion could be a former red giant whose atmosphere was stripped from it, leaving behind

  3. Flare Activity of Wide Binary Stars with Kepler

    NASA Astrophysics Data System (ADS)

    Clarke, Riley W.; Davenport, James R. A.; Covey, Kevin R.; Baranec, Christoph

    2018-01-01

    We present an analysis of flare activity in wide binary stars using a combination of value-added data sets from the NASA Kepler mission. The target list contains a set of previously discovered wide binary star systems identified by proper motions in the Kepler field. We cross-matched these systems with estimates of flare activity for ∼200,000 stars in the Kepler field, allowing us to compare relative flare luminosity between stars in coeval binaries. From a sample of 184 previously known wide binaries in the Kepler field, we find 58 with detectable flare activity in at least 1 component, 33 of which are similar in mass (q > 0.8). Of these 33 equal-mass binaries, the majority display similar (±1 dex) flare luminosity between both stars, as expected for stars of equal mass and age. However, we find two equal-mass pairs where the secondary (lower mass) star is more active than its counterpart, and two equal-mass pairs where the primary star is more active. The stellar rotation periods are also anomalously fast for stars with elevated flare activity. Pairs with discrepant rotation and activity qualitatively seem to have lower mass ratios. These outliers may be due to tidal spin-up, indicating these wide binaries could be hierarchical triple systems. We additionally present high-resolution adaptive optics images for two wide binary systems to test this hypothesis. The demographics of stellar rotation and magnetic activity between stars in wide binaries may be useful indicators for discerning the formation scenarios of these systems.

  4. Finding False Positives Planet Candidates Due To Background Eclipsing Binaries in K2

    NASA Astrophysics Data System (ADS)

    Mullally, Fergal; Thompson, Susan E.; Coughlin, Jeffrey; DAVE Team

    2016-06-01

    We adapt the difference image centroid approach, used for finding background eclipsing binaries, to vet K2 planet candidates. Difference image centroids were used with great success to vet planet candidates in the original Kepler mission, where the source of a transit could be identified by subtracting images of out-of-transit cadences from in-transit cadences. To account for K2's roll pattern, we reconstruct out-of-transit images from cadences that are nearby in both time and spacecraft roll angle. We describe the method and discuss some K2 planet candidates which this method suggests are false positives.

  5. Magnetic Inflation and Stellar Mass. I. Revised Parameters for the Component Stars of the Kepler Low-mass Eclipsing Binary T-Cyg1-12664

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Eunkyu; Muirhead, Philip S.; Swift, Jonathan J.

    Several low-mass eclipsing binary stars show larger than expected radii for their measured mass, metallicity, and age. One proposed mechanism for this radius inflation involves inhibited internal convection and starspots caused by strong magnetic fields. One particular eclipsing binary, T-Cyg1-12664, has proven confounding to this scenario. Çakırlı et al. measured a radius for the secondary component that is twice as large as model predictions for stars with the same mass and age, but a primary mass that is consistent with predictions. Iglesias-Marzoa et al. independently measured the radii and masses of the component stars and found that the radius ofmore » the secondary is not in fact inflated with respect to models, but that the primary is, which is consistent with the inhibited convection scenario. However, in their mass determinations, Iglesias-Marzoa et al. lacked independent radial velocity measurements for the secondary component due to the star’s faintness at optical wavelengths. The secondary component is especially interesting, as its purported mass is near the transition from partially convective to a fully convective interior. In this article, we independently determined the masses and radii of the component stars of T-Cyg1-12664 using archival Kepler data and radial velocity measurements of both component stars obtained with IGRINS on the Discovery Channel Telescope and NIRSPEC and HIRES on the Keck Telescopes. We show that neither of the component stars is inflated with respect to models. Our results are broadly consistent with modern stellar evolutionary models for main-sequence M dwarf stars and do not require inhibited convection by magnetic fields to account for the stellar radii.« less

  6. SEVEN NEW BINARIES DISCOVERED IN THE KEPLER LIGHT CURVES THROUGH THE BEER METHOD CONFIRMED BY RADIAL-VELOCITY OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faigler, S.; Mazeh, T.; Tal-Or, L.

    We present seven newly discovered non-eclipsing short-period binary systems with low-mass companions, identified by the recently introduced BEER algorithm, applied to the publicly available 138-day photometric light curves obtained by the Kepler mission. The detection is based on the beaming effect (sometimes called Doppler boosting), which increases (decreases) the brightness of any light source approaching (receding from) the observer, enabling a prediction of the stellar Doppler radial-velocity (RV) modulation from its precise photometry. The BEER algorithm identifies the BEaming periodic modulation, with a combination of the well-known Ellipsoidal and Reflection/heating periodic effects, induced by short-period companions. The seven detections weremore » confirmed by spectroscopic RV follow-up observations, indicating minimum secondary masses in the range 0.07-0.4 M{sub Sun }. The binaries discovered establish for the first time the feasibility of the BEER algorithm as a new detection method for short-period non-eclipsing binaries, with the potential to detect in the near future non-transiting brown-dwarf secondaries, or even massive planets.« less

  7. V850 Cyg: An eclipsing binary with a giant γ Dor pulsator

    NASA Astrophysics Data System (ADS)

    Çakırlı, Ö.; Ibanoglu, C.; Sipahi, E.; Akan, M. C.

    2017-04-01

    We present new spectroscopic observations of the double-lined eclipsing binary V850 Cyg. The long-cadence photometric observations obtained by Kepler were analysed and combined with the analysis of radial velocities for deriving the absolute parameters of the components. Masses and radii were determined as Mp=1.601 ± 0.076 M⊙ and Rp=4.239 ± 0.076 R⊙, Ms=0.851 ± 0.053 M⊙ and Rs=5.054 ± 0.087 R⊙ for the components of V850 Cyg. We estimate an interstellar reddening of 0.28 ± 0.12 mag and a distance of 1040 ± 160 pc for the system. The measured rotational velocity of the secondary appears to lower than that of synchronize rotation. However its spectral lines are too weak to be measured the rotational velocity with reasonable accuracy. We have extracted the synthetic light curve from the observations and excluded the data within the eclipses for the frequency analysis. We obtained at least nine frequencies in the γ Dor regime. It seems that the primary component oscillates with a dominant period of about 1.152549 ± 0.000009 days. We also compare pulsational properties of the primary star of V850 Cyg with the γ Dor type pulsating components in other binaries.

  8. New Eclipsing Contact Binary System in Auriga

    NASA Astrophysics Data System (ADS)

    Austin, S. J.; Robertson, J. W.; Justice, C.; Campbell, R. T.; Hoskins, J.

    2004-05-01

    We present data on a newly discovered eclipsing binary system. The serendipitous discovery of this variable star was made by J.W. Robertson analyzing inhomogeneous ensemble photometry of stars in the field of the cataclysmic variable FS Aurigae from Indiana University RoboScope data. We obtained differential time-series BVR photometry during 2003 of this field variable using an ensemble of telescopes including the university observatories at ATU, UCA and joint ventures with amateur observatories in the state of Arkansas (Whispering Pines Observatory and Nubbin Ridge Observatory). The orbital period of this eclipsing system is 0.2508 days. The B-V light curve indicates colors of 1.2 around quadrature, to nearly 1.4 at primary eclipse. Binary star light curve models that best fit the BVR differential photometry suggest that the system is a contact binary overfilling the inner Roche Lobe by 12%, a primary component with a temperature of 4350K, a secondary component with a temperature of 3500K, a mass ratio of 0.37, and an inclination of 83 degrees. We present BVR light curves, an ephemeris, and best fit model parameters for the physical characteristics of this new eclipsing binary system.

  9. What we learn from eclipsing binaries in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Guinan, Edward F.

    1990-01-01

    Recent results on stars and stellar physics from IUE (International Ultraviolet Explorer) observations of eclipsing binaries are discussed. Several case studies are presented, including V 444 Cyg, Aur stars, V 471 Tau and AR Lac. Topics include stellar winds and mass loss, stellar atmospheres, stellar dynamos, and surface activity. Studies of binary star dynamics and evolution are discussed. The progress made with IUE in understanding the complex dynamical and evolutionary processes taking place in W UMa-type binaries and Algol systems is highlighted. The initial results of intensive studies of the W UMa star VW Cep and three representative Algol-type binaries (in different stages of evolution) focused on gas flows and accretion, are included. The future prospects of eclipsing binary research are explored. Remaining problems are surveyed and the next challenges are presented. The roles that eclipsing binaries could play in studies of stellar evolution, cluster dynamics, galactic structure, mass luminosity relations for extra galactic systems, cosmology, and even possible detection of extra solar system planets using eclipsing binaries are discussed.

  10. Two white dwarfs in ultrashort binaries with detached, eclipsing, likely sub-stellar companions detected by K2

    NASA Astrophysics Data System (ADS)

    Parsons, S. G.; Hermes, J. J.; Marsh, T. R.; Gänsicke, B. T.; Tremblay, P.-E.; Littlefair, S. P.; Sahman, D. I.; Ashley, R. P.; Green, M.; Rattanasoon, S.; Dhillon, V. S.; Burleigh, M. R.; Casewell, S. L.; Buckley, D. A. H.; Braker, I. P.; Irawati, P.; Dennihy, E.; Rodríguez-Gil, P.; Winget, D. E.; Winget, K. I.; Bell, Keaton J.; Kilic, Mukremin

    2017-10-01

    Using data from the extended Kepler mission in K2 Campaign 10, we identify two eclipsing binaries containing white dwarfs with cool companions that have extremely short orbital periods of only 71.2 min (SDSS J1205-0242, a.k.a. EPIC 201283111) and 72.5 min (SDSS J1231+0041, a.k.a. EPIC 248368963). Despite their short periods, both systems are detached with small, low-mass companions, in one case a brown dwarf and in the other case either a brown dwarf or a low-mass star. We present follow-up photometry and spectroscopy of both binaries, as well as phase-resolved spectroscopy of the brighter system, and use these data to place preliminary estimates on the physical and binary parameters. SDSS J1205-0242 is composed of a 0.39 ± 0.02 M⊙ helium-core white dwarf that is totally eclipsed by a 0.049 ± 0.006 M⊙ (51 ± 6MJ) brown-dwarf companion, while SDSS J1231+0041 is composed of a 0.56 ± 0.07 M⊙ white dwarf that is partially eclipsed by a companion of mass ≲0.095 M⊙. In the case of SDSS J1205-0242, we look at the combined constraints from common-envelope evolution and brown-dwarf models; the system is compatible with similar constraints from other post-common-envelope binaries, given the current parameter uncertainties, but has potential for future refinement.

  11. The Eclipsing Binary On-Line Atlas (EBOLA)

    NASA Astrophysics Data System (ADS)

    Bradstreet, D. H.; Steelman, D. P.; Sanders, S. J.; Hargis, J. R.

    2004-05-01

    In conjunction with the upcoming release of \\it Binary Maker 3.0, an extensive on-line database of eclipsing binaries is being made available. The purposes of the atlas are: \\begin {enumerate} Allow quick and easy access to information on published eclipsing binaries. Amass a consistent database of light and radial velocity curve solutions to aid in solving new systems. Provide invaluable querying capabilities on all of the parameters of the systems so that informative research can be quickly accomplished on a multitude of published results. Aid observers in establishing new observing programs based upon stars needing new light and/or radial velocity curves. Encourage workers to submit their published results so that others may have easy access to their work. Provide a vast but easily accessible storehouse of information on eclipsing binaries to accelerate the process of understanding analysis techniques and current work in the field. \\end {enumerate} The database will eventually consist of all published eclipsing binaries with light curve solutions. The following information and data will be supplied whenever available for each binary: original light curves in all bandpasses, original radial velocity observations, light curve parameters, RA and Dec, V-magnitudes, spectral types, color indices, periods, binary type, 3D representation of the system near quadrature, plots of the original light curves and synthetic models, plots of the radial velocity observations with theoretical models, and \\it Binary Maker 3.0 data files (parameter, light curve, radial velocity). The pertinent references for each star are also given with hyperlinks directly to the papers via the NASA Abstract website for downloading, if available. In addition the Atlas has extensive searching options so that workers can specifically search for binaries with specific characteristics. The website has more than 150 systems already uploaded. The URL for the site is http://ebola.eastern.edu/.

  12. Synthetic Survey of the Kepler Field

    NASA Astrophysics Data System (ADS)

    Wells, Mark; Prša, Andrej

    2018-01-01

    In the era of large scale surveys, including LSST and Gaia, binary population studies will flourish due to the large influx of data. In addition to probing binary populations as a function of galactic latitude, under-sampled groups such as low mass binaries will be observed at an unprecedented rate. To prepare for these missions, binary population simulations need to be carried out at high fidelity. These simulations will enable the creation of simulated data and, through comparison with real data, will allow the underlying binary parameter distributions to be explored. In order for the simulations to be considered robust, they should reproduce observed distributions accurately. To this end we have developed a simulator which takes input models and creates a synthetic population of eclipsing binaries. Starting from a galactic single star model, implemented using Galaxia, a code by Sharma et al. (2011), and applying observed multiplicity, mass-ratio, period, and eccentricity distributions, as reported by Raghavan et al. (2010), Duchêne & Kraus (2013), and Moe & Di Stefano (2017), we are able to generate synthetic binary surveys that correspond to any survey cadences. In order to calibrate our input models we compare the results of our synthesized eclipsing binary survey to the Kepler Eclipsing Binary catalog.

  13. On the period determination of ASAS eclipsing binaries

    NASA Astrophysics Data System (ADS)

    Mayangsari, L.; Priyatikanto, R.; Putra, M.

    2014-03-01

    Variable stars, or particularly eclipsing binaries, are very essential astronomical occurrence. Surveys are the backbone of astronomy, and many discoveries of variable stars are the results of surveys. All-Sky Automated Survey (ASAS) is one of the observing projects whose ultimate goal is photometric monitoring of variable stars. Since its first light in 1997, ASAS has collected 50,099 variable stars, with 11,076 eclipsing binaries among them. In the present work we focus on the period determination of the eclipsing binaries. Since the number of data points in each ASAS eclipsing binary light curve is sparse, period determination of any system is a not straightforward process. For 30 samples of such systems we compare the implementation of Lomb-Scargle algorithm which is an Fast Fourier Transform (FFT) basis and Phase Dispersion Minimization (PDM) method which is non-FFT basis to determine their period. It is demonstrated that PDM gives better performance at handling eclipsing detached (ED) systems whose variability are non-sinusoidal. More over, using semi-automatic recipes, we get better period solution and satisfactorily improve 53% of the selected object's light curves, but failed against another 7% of selected objects. In addition, we also highlight 4 interesting objects for further investigation.

  14. KIC 7177553: A QUADRUPLE SYSTEM OF TWO CLOSE BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, H.; Borkovits, T.; Rappaport, S. A.

    2016-03-01

    KIC 7177553 was observed by the Kepler satellite to be an eclipsing eccentric binary star system with an 18-day orbital period. Recently, an eclipse timing study of the Kepler binaries has revealed eclipse timing variations (ETVs) in this object with an amplitude of ∼100 s and an outer period of 529 days. The implied mass of the third body is that of a super-Jupiter, but below the mass of a brown dwarf. We therefore embarked on a radial velocity (RV) study of this binary to determine its system configuration and to check the hypothesis that it hosts a giant planet. Frommore » the RV measurements, it became immediately obvious that the same Kepler target contains another eccentric binary, this one with a 16.5-day orbital period. Direct imaging using adaptive optics reveals that the two binaries are separated by 0.″4 (∼167 AU) and have nearly the same magnitude (to within 2%). The close angular proximity of the two binaries and very similar γ velocities strongly suggest that KIC 7177553 is one of the rare SB4 systems consisting of two eccentric binaries where at least one system is eclipsing. Both systems consist of slowly rotating, nonevolved, solar-like stars of comparable masses. From the orbital separation and the small difference in γ velocity, we infer that the period of the outer orbit most likely lies in the range of 1000–3000 yr. New images taken over the next few years, as well as the high-precision astrometry of the Gaia satellite mission, will allow us to set much narrower constraints on the system geometry. Finally, we note that the observed ETVs in the Kepler data cannot be produced by the second binary. Further spectroscopic observations on a longer timescale will be required to prove the existence of the massive planet.« less

  15. A1540-53, an eclipsing X-ray binary pulsator

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Swank, J. H.; Boldt, E. A.; Holt, S. S.; Serlemitsos, P. J.; Pravdo, S. H.; Saba, J. R.

    1977-01-01

    An eclipsing X-ray binary pulsator consistent with the location of A1540-53 has been observed. The source pulse period was 528.93 + or - 0.10 s. The binary nature is confirmed by a Doppler curve for the pulsation period. The eclipse angle of 30.5 + or - 3 deg and the 4-hour transition to and from eclipse suggest an early-type giant or supergiant primary star.

  16. Properties OF M31. V. 298 eclipsing binaries from PAndromeda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C.-H.; Koppenhoefer, J.; Seitz, S.

    2014-12-10

    The goal of this work is to conduct a photometric study of eclipsing binaries in M31. We apply a modified box-fitting algorithm to search for eclipsing binary candidates and determine their period. We classify these candidates into detached, semi-detached, and contact systems using the Fourier decomposition method. We cross-match the position of our detached candidates with the photometry from Local Group Survey and select 13 candidates brighter than 20.5 mag in V. The relative physical parameters of these detached candidates are further characterized with the Detached Eclipsing Binary Light curve fitter (DEBiL) by Devor. We will follow up the detachedmore » eclipsing binaries spectroscopically and determine the distance to M31.« less

  17. Gaia eclipsing binary and multiple systems. Supervised classification and self-organizing maps

    NASA Astrophysics Data System (ADS)

    Süveges, M.; Barblan, F.; Lecoeur-Taïbi, I.; Prša, A.; Holl, B.; Eyer, L.; Kochoska, A.; Mowlavi, N.; Rimoldini, L.

    2017-07-01

    on randomized training sets. Results: We obtain excellent results (about 5% global error rate) with classification into light curve morphology classes on the Hipparcos data. The classification into system morphology classes using the Catalog and Atlas of Eclipsing binaries (CALEB) has a higher error rate (about 10.5%), most importantly due to the (sometimes strong) similarity of the photometric light curves originating from physically different systems. When trained on CALEB and then applied to Kepler-detected eclipsing binaries subsampled according to Gaia observing times, LDA and SOM provide tractable, easy-to-visualize subspaces of the full (functional) space of light curves that summarize the most important phenomenological elements of the individual light curves. The sequence of light curves ordered by their first linear discriminant coefficient is compared to results obtained using local linear embedding. The SOM method proves able to find a 2-dimensional embedded surface in the space of the light curves which separates the system morphology classes in its different regions, and also identifies a few other phenomena, such as the asymmetry of the light curves due to spots, eccentric systems, and systems with a single eclipse. Furthermore, when data from other surveys are projected to the same SOM surface, the resulting map yields a good overview of the general biases and distortions due to differences in time sampling or population.

  18. How I Learned to Stop Worrying and Love Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Moe, Maxwell Cassady

    Relatively massive B-type stars with closely orbiting stellar companions can evolve to produce Type Ia supernovae, X-ray binaries, millisecond pulsars, mergers of neutron stars, gamma ray bursts, and sources of gravitational waves. However, the formation mechanism, intrinsic frequency, and evolutionary processes of B-type binaries are poorly understood. As of 2012, the binary statistics of massive stars had not been measured at low metallicities, extreme mass ratios, or intermediate orbital periods. This thesis utilizes large data sets of eclipsing binaries to measure the physical properties of B-type binaries in these previously unexplored portions of the parameter space. The updated binary statistics provide invaluable insight into the formation of massive stars and binaries as well as reliable initial conditions for population synthesis studies of binary star evolution. We first compare the properties of B-type eclipsing binaries in our Milky Way Galaxy and the nearby Magellanic Cloud Galaxies. We model the eclipsing binary light curves and perform detailed Monte Carlo simulations to recover the intrinsic properties and distributions of the close binary population. We find the frequency, period distribution, and mass-ratio distribution of close B-type binaries do not significantly depend on metallicity or environment. These results indicate the formation of massive binaries are relatively insensitive to their chemical abundances or immediate surroundings. Second, we search for low-mass eclipsing companions to massive B-type stars in the Large Magellanic Cloud Galaxy. In addition to finding such extreme mass-ratio binaries, we serendipitously discover a new class of eclipsing binaries. Each system comprises a massive B-type star that is fully formed and a nascent low-mass companion that is still contracting toward its normal phase of evolution. The large low-mass secondaries discernibly reflect much of the light they intercept from the hot B-type stars, thereby

  19. A1540-53, an eclipsing X-ray binary pulsator

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Swank, J. H.; Boldt, E. A.; Holt, S. S.; Pravdo, S. H.; Saba, J. R.; Serlemitsos, P. J.

    1977-01-01

    An eclipsing X-ray binary pulsator consistent with the location of A1540-53 was observed. The source pulse period was 528.93 plus or minus 0.10 seconds. The binary nature is confirmed by a Doppler curve for the pulsation period. The eclipse angle of 30.5 deg plus or minus 3 deg and the 4 h transition to and from eclipse suggest an early type, giant or supergiant, primary star.

  20. One Hundred Thousand Eyes: Analysis of Kepler Archival Data

    NASA Astrophysics Data System (ADS)

    Fischer, Debra

    We are using a powerful resource, more than 100,000 eyes of users on the successful Planet Hunters Web project, who will identify the best follow-up science targets for this ADAP proposal among the Kepler public archive light curves. Planet Hunters is a Citizen Science program with a user base of more than 50,000 individuals who have already contributed the 24/7 cumulative equivalent of 200 human years assessing Kepler data. They independently identified most of the Kepler candidates with radii greater than 3-4 REARTH and they detected ten transiting planet candidates that were missed by the Kepler pipeline algorithms, including two circumbinary transiting planet candidates. These detections have provided important feedback for the Kepler algorithms about possible leaks where candidates might be lost. Our scientific follow up program will use Planet Hunter classifications of archival data from the Kepler Mission to: "Detect and model new transiting planets: for radii greater than 3 4 REARTH and orbital periods longer than one year, the Planet Hunters should be quite competitive with automated pipelines that require at least 3 transits for a detection and fill in the parameter space for Neptune-size planets over a wide range of orbital periods. For stars where a single transit can be modeled as a long period planet, we will establish a watch list for future transits. We will carry out checks for false positives (pixel centroiding analysis, AO observations, Doppler measurements where appropriate). "Analyze the completeness statistics for Kepler transits and independently determine a corrected planet occurrence rate as a function of planet radius and orbital period. This will be done by injecting synthetic transits into real Kepler light curves and calculating the efficiency with which the transits are detected by Planet Hunters. "Model the full spectroscopic and photometric orbital solutions for a set of ~60 detached eclipsing binary systems with low mass K and M

  1. Observations of the eclipsing binary b Persei

    NASA Astrophysics Data System (ADS)

    Templeton, Matthew R.

    2015-01-01

    Dr. Robert Zavala (USNO-Flagstaff) et al. request V time-series observations of the bright variable star b Persei 7-21 January 2015 UT, in hopes of catching a predicted eclipse on January 15. This is a follow-up to the February 2013 campaign announced in Alert Notice 476, and will be used as a photometric comparison for upcoming interferometric observations with the Navy Precision Optical Interferometer (NPOI) in Arizona. b Per (V=4.598, B-V=0.054) is ideal for photoelectric photometers or DSLR cameras. Telescopic CCD observers may observe by stopping down larger apertures. Comparison and check stars assigned by PI: Comp: SAO 24412, V=4.285, B-V = -0.013; Check: SAO 24512, V=5.19, B-V = -0.05. From the PI: "[W]e wanted to try and involve AAVSO observers in a follow up to our successful detection of the b Persei eclipse of Feb 2013, AAVSO Alert Notice 476 and Special Notice 333. Our goal now is to get good time resolution photometry as the third star passes in front of the close ellipsoidal binary. The potential for multiple eclipses exists. The close binary has a 1.5 day orbital period, and the eclipsing C component requires about 4 days to pass across the close binary pair. The primary eclipse depth is 0.15 magnitude. Photometry to 0.02 or 0.03 mags would be fine to detect this eclipse. Eclipse prediction date (JD 2457033.79 = 2015 01 11 UT, ~+/- 1 day) is based on one orbital period from the 2013 eclipse." More information is available at PI's b Persei eclipse web page: http://inside.warren-wilson.edu/~dcollins/bPersei/. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details and information on the targets.

  2. Sub-1% accuracy in fundamental stellar parameters from triply eclipsing systems

    NASA Astrophysics Data System (ADS)

    Prsa, Andrej

    The current state-of-the-art level of accuracy in fundamental stellar parameters from eclipsing binary stars is 2-3%. Here we propose to use eclipsing triple stars to reduce the error bars by an entire order of magnitude, i.e. to 0.2-0.3%. This can be done because a presence of the third component breaks most of the degeneracy inherent in binary systems between the inclination and stellar sizes. We detail the feasibility arguments and foresee that these results will provide exceptional benchmark objects for stringent tests of stellar evolution and population models. The formation channel of close binary stars (with separations of several stellar radii) is a matter of debate. It is clear that close binaries cannot form in situ because (1) the physical radius of a star shrinks by a large factor between birth and the main sequence, yet many main-sequence stars have companions orbiting at a distance of only a few stellar radii, and (2) in current theories of planet formation, the region within 0.1 AU of a protostar is too hot and rarefied for a Jupiter-mass planet to form, yet many hot jupiters are observed at such distances. Current theories of dynamic orbital evolution attribute orbital shrinking to Kozai cycles and tidal friction, which are long-lasting, perturbative effects that take Gyrs to shrink orbits by 1-2 orders of magnitude. This implies that, if a binary star system has a tertiary companion, it will be in a hierarchical structure, and any disruptive orbital encounters should be exceedingly rare after a certain period. The Kepler satellite observed continuously over 2800 eclipsing binary stars over 4 years of its mission lifetime. The ultra-high precision photometry and essentially uninterrupted time coverage enables us to time the eclipses to a 6 second precision. Because of the well understood physics that governs the orbital motion of two bodies around the center of mass, the expected times of eclipses can be predicted to a fraction of a second. When

  3. What Makes Red Giants Tick? Linking Tidal Forces, Activity, and Solar-Like Oscillations via Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Rawls, Meredith L.; Gaulme, Patrick; McKeever, Jean; Jackiewicz, Jason

    2016-01-01

    Thanks to advances in asteroseismology, red giants have become astrophysical laboratories for studying stellar evolution and probing the Milky Way. However, not all red giants show solar-like oscillations. It has been proposed that stronger tidal interactions from short-period binaries and increased magnetic activity on spotty giants are linked to absent or damped solar-like oscillations, yet each star tells a nuanced story. In this work, we characterize a subset of red giants in eclipsing binaries observed by Kepler. The binaries exhibit a range of orbital periods, solar-like oscillation behavior, and stellar activity. We use orbital solutions together with a suite of modeling tools to combine photometry and spectroscopy in a detailed analysis of tidal synchronization timescales, star spot activity, and stellar evolution histories. These red giants offer an unprecedented opportunity to test stellar physics and are important benchmarks for ensemble asteroseismology.

  4. The first eclipsing binary catalogue from the MOA-II data base

    NASA Astrophysics Data System (ADS)

    Li, M. C. A.; Rattenbury, N. J.; Bond, I. A.; Sumi, T.; Bennett, D. P.; Koshimoto, N.; Abe, F.; Asakura, Y.; Barry, R.; Bhattacharya, A.; Donachie, M.; Evans, P.; Freeman, M.; Fukui, A.; Hirao, Y.; Itow, Y.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Saito, To.; Sharan, A.; Sullivan, D. J.; Suzuki, D.; Tristram, P. J.; Yonehara, A.

    2017-09-01

    We present the first catalogue of eclipsing binaries in two MOA (Microlensing Observations in Astrophysics) fields towards the Galactic bulge, in which over 8000 candidates, mostly contact and semidetached binaries of periods <1 d, were identified. In this paper, the light curves of a small number of interesting candidates, including eccentric binaries, binaries with noteworthy phase modulations and eclipsing RS Canum Venaticorum type stars, are shown as examples. In addition, we identified three triple object candidates by detecting the light-travel-time effect in their eclipse time variation curves.

  5. BEER ANALYSIS OF KEPLER AND CoRoT LIGHT CURVES. IV. DISCOVERY OF FOUR NEW LOW-MASS WHITE DWARF COMPANIONS IN THE KEPLER DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faigler, S.; Kull, I.; Mazeh, T.

    We report the discovery of four short-period eclipsing systems in the Kepler light curves, consisting of an A-star primary and a low-mass white dwarf (WD) secondary (dA+WD)—KIC 4169521, KOI-3818, KIC 2851474, and KIC 9285587. The systems show BEaming, Ellipsoidal and Reflection (BEER) phase modulations together with primary and secondary eclipses. These add to the 6 Kepler and 18 WASP short-period eclipsing dA+WD binaries that were previously known. The light curves, together with follow-up spectroscopic observations, allow us to derive the masses, radii, and effective temperatures of the two components of the four systems. The orbital periods, of 1.17–3.82 days, andmore » WD masses, of 0.19–0.22 M{sub ⊙}, are similar to those of the previously known systems. The WD radii of KOI-3818, KIC 2851474, and KIC 9285587 are 0.026, 0.035, and 0.026 R{sub ⊙}, respectively, the smallest WD radii derived so far for short-period eclipsing dA+WD binaries. These three binaries extend the previously known population to older systems with cooler and smaller WD secondaries. KOI-3818 displays evidence for a fast-rotating primary and a minute but significant eccentricity, ∼1.5 × 10{sup −3}. These features are probably the outcome of the mass-transfer process.« less

  6. Eclipsing Binaries with Possible Tertiary Components

    NASA Astrophysics Data System (ADS)

    Snyder, LeRoy F.

    2013-05-01

    Many eclipsing binary star systems (EBS) show long-term variations in their orbital periods which are evident in their O-C (observed minus calculated period) diagrams. This research carried out an analysis of 324 eclipsing binary systems taken from the systems analyzed in the Bob Nelson's O-C Files database. Of these 18 systems displayed evidence of periodic variations of the arrival times of the eclipses. These rates of period changes are sinusoidal variations. The sinusoidal character of these variations is suggestive of Keplerian motion caused by an orbiting companion. The reason for these changes is unknown, but mass loss, apsidal motion, magnetic activity and the presence of a third body have been proposed. This paper has assumed light time effect as the cause of the sinusoidal variations caused by the gravitational pull of a tertiary companion orbiting around the eclipsing binary systems. An observed minus calculated (O-C) diagram of the 324 systems was plotted using a quadratic ephemeris to determine if the system displayed a sinusoidal trend in theO-C residuals. After analysis of the 18 systems, seven systems, AW UMa, BB PEG, OO Aql, V508 Oph, VW Cep, WCrv and YY ERI met the benchmark of the criteria of a possible orbiting companion. The other 11 systems displayed a sinusoidal variation in the O-C residuals of the primary eclipses but these systems in the Bob Nelson's O-C Files did not contain times of minimum (Tmin) of the secondary eclipses and therefore not conclusive in determining the presents of the effects of a tertiary companion. An analysis of the residuals of the seven systems yields a light-time semi-amplitude, orbital period, eccentricity and mass of the tertiary companion as the amplitude of the variation is proportional to the mass, period and inclination of the 3rd orbiting body. Knowing the low mass of the tertiary body in the seven cases the possibility of five of these tertiary companions being brown dwarfs is discussed.

  7. Rotational Synchronization May Enhance Habitability for Circumbinary Planets: Kepler Binary Case Studies

    NASA Astrophysics Data System (ADS)

    Mason, Paul A.; Zuluaga, Jorge I.; Clark, Joni M.; Cuartas-Restrepo, Pablo A.

    2013-09-01

    We report a mechanism capable of reducing (or increasing) stellar activity in binary stars, thereby potentially enhancing (or destroying) circumbinary habitability. In single stars, stellar aggression toward planetary atmospheres causes mass-loss, which is especially detrimental for late-type stars, because habitable zones are very close and activity is long lasting. In binaries, tidal rotational breaking reduces magnetic activity, thus reducing harmful levels of X-ray and ultraviolet (XUV) radiation and stellar mass-loss that are able to erode planetary atmospheres. We study this mechanism for all confirmed circumbinary (p-type) planets. We find that main sequence twins provide minimal flux variation and in some cases improved environments if the stars rotationally synchronize within the first Gyr. Solar-like twins, like Kepler 34 and Kepler 35, provide low habitable zone XUV fluxes and stellar wind pressures. These wide, moist, habitable zones may potentially support multiple habitable planets. Solar-type stars with lower mass companions, like Kepler 47, allow for protected planets over a wide range of secondary masses and binary periods. Kepler 38 and related binaries are marginal cases. Kepler 64 and analogs have dramatically reduced stellar aggression due to synchronization of the primary, but are limited by the short lifetime. Kepler 16 appears to be inhospitable to planets due to extreme XUV flux. These results have important implications for estimates of the number of stellar systems containing habitable planets in the Galaxy and allow for the selection of binaries suitable for follow-up searches for habitable planets.

  8. ROTATIONAL SYNCHRONIZATION MAY ENHANCE HABITABILITY FOR CIRCUMBINARY PLANETS: KEPLER BINARY CASE STUDIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, Paul A.; Zuluaga, Jorge I.; Cuartas-Restrepo, Pablo A.

    2013-09-10

    We report a mechanism capable of reducing (or increasing) stellar activity in binary stars, thereby potentially enhancing (or destroying) circumbinary habitability. In single stars, stellar aggression toward planetary atmospheres causes mass-loss, which is especially detrimental for late-type stars, because habitable zones are very close and activity is long lasting. In binaries, tidal rotational breaking reduces magnetic activity, thus reducing harmful levels of X-ray and ultraviolet (XUV) radiation and stellar mass-loss that are able to erode planetary atmospheres. We study this mechanism for all confirmed circumbinary (p-type) planets. We find that main sequence twins provide minimal flux variation and in somemore » cases improved environments if the stars rotationally synchronize within the first Gyr. Solar-like twins, like Kepler 34 and Kepler 35, provide low habitable zone XUV fluxes and stellar wind pressures. These wide, moist, habitable zones may potentially support multiple habitable planets. Solar-type stars with lower mass companions, like Kepler 47, allow for protected planets over a wide range of secondary masses and binary periods. Kepler 38 and related binaries are marginal cases. Kepler 64 and analogs have dramatically reduced stellar aggression due to synchronization of the primary, but are limited by the short lifetime. Kepler 16 appears to be inhospitable to planets due to extreme XUV flux. These results have important implications for estimates of the number of stellar systems containing habitable planets in the Galaxy and allow for the selection of binaries suitable for follow-up searches for habitable planets.« less

  9. KIC 6048106: an Algol-type eclipsing system with long-term magnetic activity and hybrid pulsations - I. Binary modelling

    NASA Astrophysics Data System (ADS)

    Samadi Ghadim, A.; Lampens, P.; Jassur, M.

    2018-03-01

    The A-F-type stars and pulsators (δ Scuti-γ Dor) are in a critical regime where they experience a transition from radiative to convective transport of energy in their envelopes. Such stars can pulsate in both gravity and acoustic modes. Hence, the knowledge of their fundamental parameters along with their observed pulsation characteristics can help in improving the stellar models. When residing in a binary system, these pulsators provide more accurate and less model-dependent stellar parameters than in the case of their single counterparts. We present a light-curve model for the eclipsing system KIC 6048106 based on the Kepler photometry and the code PHOEBE. We aim to obtain accurate physical parameters and tough constraints for the stellar modelling of this intermediate-mass hybrid pulsator. We performed a separate modelling of three light-curve segments which show a distinct behaviour due to a difference in activity. We also analysed the Kepler Eclipse Time Variations (ETVs). KIC 6048106 is an Algol-type binary with F5-K5 components, a near-circular orbit and a 1.56-d period undergoing variations of the order of Δ P/P˜eq 3.60× 10^{-7} in 287 ± 7 d. The primary component is a main-sequence star with M1 = 1.55 ± 0.11 M⊙, R1 = 1.57 ± 0.12 R⊙. The secondary is a much cooler subgiant with M2 = 0.33 ± 0.07 M⊙, R2 = 1.77 ± 0.16 R⊙. Many small near-polar spots are active on its surface. The second quadrature phase shows a brightness modulation on a time-scale 290 ± 7 d, in good agreement with the ETV modulation. This study reveals a stable binary configuration along with clear evidence of a long-term activity of the secondary star.

  10. Kepler eclipsing binaries with δ Scuti components and tidally induced heartbeat stars

    NASA Astrophysics Data System (ADS)

    Guo, Zhao; Gies, Douglas R.; Matson, Rachel A.

    δ Scuti stars are generally fast rotators and their pulsations are not in the asymptotic regime, so the interpretation of their pulsation spectra is a very difficult task. Binary stars, especially eclipsing systems, offer us the opportunity to constrain the space of fundamental stellar parameters. Firstly, we show the results of KIC9851944 and KIC4851217 as two case studies. We found the signature of the large frequency separation in the pulsational spectrum of both stars. The observed mean stellar density and the large frequency separation obey the linear relation in the log-log space as found by Suarez et al. (2014) and García Hernández et al. (2015). Second, we apply the simple `one-layer model' of Moreno & Koenigsberger (1999) to the prototype heartbeat star KOI-54. The model naturally reproduces the tidally induced high frequency oscillations and their frequencies are very close to the observed frequency at 90 and 91 times the orbital frequency.

  11. The EB factory project. II. Validation with the Kepler field in preparation for K2 and TESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parvizi, Mahmoud; Paegert, Martin; Stassun, Keivan G., E-mail: mahmoud.parvizi@vanderbilt.edu

    Large repositories of high precision light curve data, such as the Kepler data set, provide the opportunity to identify astrophysically important eclipsing binary (EB) systems in large quantities. However, the rate of classical “by eye” human analysis restricts complete and efficient mining of EBs from these data using classical techniques. To prepare for mining EBs from the upcoming K2 mission as well as other current missions, we developed an automated end-to-end computational pipeline—the Eclipsing Binary Factory (EBF)—that automatically identifies EBs and classifies them into morphological types. The EBF has been previously tested on ground-based light curves. To assess the performancemore » of the EBF in the context of space-based data, we apply the EBF to the full set of light curves in the Kepler “Q3” Data Release. We compare the EBs identified from this automated approach against the human generated Kepler EB Catalog of ∼2600 EBs. When we require EB classification with ⩾90% confidence, we find that the EBF correctly identifies and classifies eclipsing contact (EC), eclipsing semi-detached (ESD), and eclipsing detached (ED) systems with a false positive rate of only 4%, 4%, and 8%, while complete to 64%, 46%, and 32%, respectively. When classification confidence is relaxed, the EBF identifies and classifies ECs, ESDs, and EDs with a slightly higher false positive rate of 6%, 16%, and 8%, while much more complete to 86%, 74%, and 62%, respectively. Through our processing of the entire Kepler “Q3” data set, we also identify 68 new candidate EBs that may have been missed by the human generated Kepler EB Catalog. We discuss the EBF's potential application to light curve classification for periodic variable stars more generally for current and upcoming surveys like K2 and the Transiting Exoplanet Survey Satellite.« less

  12. The Eb Factory Project. Ii. Validation With the Kepler Field in Preparation for K2 and Tess

    NASA Astrophysics Data System (ADS)

    Parvizi, Mahmoud; Paegert, Martin; Stassun, Keivan G.

    2014-12-01

    Large repositories of high precision light curve data, such as the Kepler data set, provide the opportunity to identify astrophysically important eclipsing binary (EB) systems in large quantities. However, the rate of classical “by eye” human analysis restricts complete and efficient mining of EBs from these data using classical techniques. To prepare for mining EBs from the upcoming K2 mission as well as other current missions, we developed an automated end-to-end computational pipeline—the Eclipsing Binary Factory (EBF)—that automatically identifies EBs and classifies them into morphological types. The EBF has been previously tested on ground-based light curves. To assess the performance of the EBF in the context of space-based data, we apply the EBF to the full set of light curves in the Kepler “Q3” Data Release. We compare the EBs identified from this automated approach against the human generated Kepler EB Catalog of ˜ 2600 EBs. When we require EB classification with ≥slant 90% confidence, we find that the EBF correctly identifies and classifies eclipsing contact (EC), eclipsing semi-detached (ESD), and eclipsing detached (ED) systems with a false positive rate of only 4%, 4%, and 8%, while complete to 64%, 46%, and 32%, respectively. When classification confidence is relaxed, the EBF identifies and classifies ECs, ESDs, and EDs with a slightly higher false positive rate of 6%, 16%, and 8%, while much more complete to 86%, 74%, and 62%, respectively. Through our processing of the entire Kepler “Q3” data set, we also identify 68 new candidate EBs that may have been missed by the human generated Kepler EB Catalog. We discuss the EBF's potential application to light curve classification for periodic variable stars more generally for current and upcoming surveys like K2 and the Transiting Exoplanet Survey Satellite.

  13. High-level magnetic activity nature of the eclipsing binary KIC 12418816

    NASA Astrophysics Data System (ADS)

    Dal, H. A.; Özdarcan, O.

    2018-02-01

    We present comprehensive spectroscopic and photometric analysis of the detached eclipsing binary KIC 12418816, which is composed of two very similar and young main-sequence stars of spectral type K0 on a circular orbit. Combining spectroscopic and photometric modelling, we find masses and radii of the components of 0.88 ± 0.06 M⊙ and 0.85 ± 0.02 R⊙ for the primary and 0.84 ± 0.05 M⊙ and 0.84 ± 0.02 R⊙ for the secondary. Both components exhibit narrow emission features superposed on the cores of the Ca II H and K lines, while H α and H β photospheric absoprtion is more completely infilled by broader emission. Very high precision Kepler photometry reveals remarkable sinusoidal light variation at out-of-eclipse phases, indicating strong spot activity, presumably on the surface of the secondary component. Spots on the secondary component appear to migrate towards decreasing orbital phase with a migration period of 0.72 ± 0.05 yr. Besides the sinusoidal variation, we detect 81 flares and find that both components possess flare activity. Our analysis shows that 25 flares out of 81 exhibit very high energies together with lower frequency, while the rest of them are very frequent but with lower energies.

  14. DEBCat: A Catalog of Detached Eclipsing Binary Stars

    NASA Astrophysics Data System (ADS)

    Southworth, J.

    2015-07-01

    Detached eclipsing binary star systems are our primary source of measured physical properties of normal stars. I introduce DEBCat: a catalog of detached eclipsing binaries with mass and radius measurements to the 2% precision necessary to put useful constraints on theoretical models of stellar evolution. The catalog was begun in 2006, as an update of the compilation by Andersen (1991). It now contains over 170 systems, and new results are added on appearance in the refereed literature. DEBCat is available at: http://www.astro.keele.ac.uk/jkt/debcat/.

  15. The new eclipsing magnetic binary system E 1114 + 182

    NASA Technical Reports Server (NTRS)

    Biermann, P.; Schmidt, G. D.; Liebert, J.; Tapia, S.; Strittmatter, P. A.; West, S.; Stockman, H. S.; Kuehr, H.; Lamb, D. Q.

    1985-01-01

    A comprehensive analysis of E 1114 + 182, the first eclipsing AM Herculis binary system and the shortest-period eclipsing cataclysmic variable known, is presented. The time-resolved X-ray observations which led to the system's recognition as an AM Her system with a roughly 90 minute orbital period are reported. The current optical photometric and polarimetric ephemeris and a description of the system's phase-modulated properties are given. The detailed photometric eclipse profile and the highly variable spectroscopic behavior are addressed. This information is used to determine systemic parameters and derive new information on the line emission regions. The data put severe constraints on current torque models for keeping the binary and white dwarf rotation in phase.

  16. Eclipsing Binaries From the CSTAR Project at Dome A, Antarctica

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Zhang, Hui; Wang, Songhu; Zhou, Ji-Lin; Zhou, Xu; Wang, Lingzhi; Wang, Lifan; Wittenmyer, R. A.; Liu, Hui-Gen; Meng, Zeyang; Ashley, M. C. B.; Storey, J. W. V.; Bayliss, D.; Tinney, Chris; Wang, Ying; Wu, Donghong; Liang, Ensi; Yu, Zhouyi; Fan, Zhou; Feng, Long-Long; Gong, Xuefei; Lawrence, J. S.; Liu, Qiang; Luong-Van, D. M.; Ma, Jun; Wu, Zhenyu; Yan, Jun; Yang, Huigen; Yang, Ji; Yuan, Xiangyan; Zhang, Tianmeng; Zhu, Zhenxi; Zou, Hu

    2015-04-01

    The Chinese Small Telescope ARray (CSTAR) has observed an area around the Celestial South Pole at Dome A since 2008. About 20,000 light curves in the i band were obtained during the observation season lasting from 2008 March to July. The photometric precision achieves about 4 mmag at i = 7.5 and 20 mmag at i = 12 within a 30 s exposure time. These light curves are analyzed using Lomb-Scargle, Phase Dispersion Minimization, and Box Least Squares methods to search for periodic signals. False positives may appear as a variable signature caused by contaminating stars and the observation mode of CSTAR. Therefore, the period and position of each variable candidate are checked to eliminate false positives. Eclipsing binaries are removed by visual inspection, frequency spectrum analysis, and a locally linear embedding technique. We identify 53 eclipsing binaries in the field of view of CSTAR, containing 24 detached binaries, 8 semi-detached binaries, 18 contact binaries, and 3 ellipsoidal variables. To derive the parameters of these binaries, we use the Eclipsing Binaries via Artificial Intelligence method. The primary and secondary eclipse timing variations (ETVs) for semi-detached and contact systems are analyzed. Correlated primary and secondary ETVs confirmed by false alarm tests may indicate an unseen perturbing companion. Through ETV analysis, we identify two triple systems (CSTAR J084612.64-883342.9 and CSTAR J220502.55-895206.7). The orbital parameters of the third body in CSTAR J220502.55-895206.7 are derived using a simple dynamical model.

  17. Period analysis of the eclipsing binary AI Dra

    NASA Astrophysics Data System (ADS)

    Zasche, P.; Uhlář, R.; Svoboda, P.

    2010-03-01

    The eclipsing binary system AI Dra reveals changes of its orbital period. These variations could be described as a result of orbiting the eclipsing pair around a common center of mass with two unseen companions with the periods about 18 and 43 years together with a steady period increase. Fourteen new minima observations were carried out by the authors.

  18. A Photometric Study of the Eclipsing Binary Star PY Boötis

    NASA Astrophysics Data System (ADS)

    Michaels, E. J.

    2016-12-01

    Presented here are the first precision multi-band CCD photometry of the eclipsing binary star PY Boötis. Best-fit stellar models were determined by analyzing the light curves with the Wilson-Devinney program. Asymmetries in the light curves were interpreted as resulting from magnetic activity which required spots to be included in the model. The resulting model is consistent with a W-type contact eclipsing binary having total eclipses.

  19. Modeling Radial Velocities and Eclipse Photometry of the Kepler Target KIC 4054905: an Oscillating Red Giant in an Eclipsing Binary

    NASA Astrophysics Data System (ADS)

    Benbakoura, M.; Gaulme, P.; McKeever, J.; Beck, P. G.; Jackiewicz, J.; García, R. A.

    2017-12-01

    Asteroseismology is a powerful tool to measure the fundamental properties of stars and probe their interiors. This is particularly efficient for red giants because their modes are well detectable and give information on their deep layers. However, the seismic relations used to infer the mass and radius of a star have been calibrated on the Sun. Therefore, it is crucial to assess their accuracy for red giants which are not perfectly homologous to it. We study eclipsing binaries with a giant component to test their validity. We identified 16 systems for which we intend to compare the dynamical masses and radii obtained by combined photometry and spectroscopy to the values obtained from asteroseismology. In the present work, we illustrate our approach on a system from our sample.

  20. On the development and applications of automated searches for eclipsing binary stars

    NASA Astrophysics Data System (ADS)

    Devor, Jonathan

    Eclipsing binary star systems provide the most accurate method of measuring both the masses and radii of stars. Moreover, they enable testing tidal synchronization and circularization theories, as well as constraining models of stellar structure and dynamics. With the recent availability of large-scale multi-epoch photometric datasets, we are able to study eclipsing binary stars en masse. In this thesis, we analyzed 185,445 light curves from ten TrES fields, and 218,699 light curves from the OGLE II bulge fields. In order to manage such large quantities of data, we developed a pipeline with which we systematically identified eclipsing binaries, solved for their geometric orientations, and then found their components' absolute properties. Following this analysis, we assembled catalogs of eclipsing binaries with their models, computed statistical distributions of their properties, and located rare cases for further follow-up. Of particular importance are low-mass eclipsing binaries, which are rare, yet critical for resolving the ongoing mass-radius discrepancy between theoretical models and observations. To this end, we have discovered over a dozen new low-mass eclipsing binary candidates, and spectroscopically confirmed the masses of five of them. One of these confirmed candidates, T-Lyr1-17236, is especially interesting because of its uniquely long orbital period. We examined T-Lyr1-17236 in detail and found that it is consistent with the magnetic disruption hypothesis for explaining the observed mass-radius discrepancy. Both the source code of our pipeline and the complete list of our candidates are freely available.

  1. Oscillating red giants in eclipsing binary systems: empirical reference value for asteroseismic scaling relation

    NASA Astrophysics Data System (ADS)

    Themeßl, N.; Hekker, S.; Southworth, J.; Beck, P. G.; Pavlovski, K.; Tkachenko, A.; Angelou, G. C.; Ball, W. H.; Barban, C.; Corsaro, E.; Elsworth, Y.; Handberg, R.; Kallinger, T.

    2018-05-01

    The internal structures and properties of oscillating red-giant stars can be accurately inferred through their global oscillation modes (asteroseismology). Based on 1460 days of Kepler observations we perform a thorough asteroseismic study to probe the stellar parameters and evolutionary stages of three red giants in eclipsing binary systems. We present the first detailed analysis of individual oscillation modes of the red-giant components of KIC 8410637, KIC 5640750 and KIC 9540226. We obtain estimates of their asteroseismic masses, radii, mean densities and logarithmic surface gravities by using the asteroseismic scaling relations as well as grid-based modelling. As these red giants are in double-lined eclipsing binaries, it is possible to derive their independent dynamical masses and radii from the orbital solution and compare it with the seismically inferred values. For KIC 5640750 we compute the first spectroscopic orbit based on both components of this system. We use high-resolution spectroscopic data and light curves of the three systems to determine up-to-date values of the dynamical stellar parameters. With our comprehensive set of stellar parameters we explore consistencies between binary analysis and asteroseismic methods, and test the reliability of the well-known scaling relations. For the three red giants under study, we find agreement between dynamical and asteroseismic stellar parameters in cases where the asteroseismic methods account for metallicity, temperature and mass dependence as well as surface effects. We are able to attain agreement from the scaling laws in all three systems if we use Δνref, emp = 130.8 ± 0.9 μHz instead of the usual solar reference value.

  2. The X-ray eclipse of the LMC binary CAL 87

    NASA Technical Reports Server (NTRS)

    Schmidtke, P. C.; Mcgrath, T. K.; Cowley, A. P.; Frattare, L. M.

    1993-01-01

    ROSAT-PSPC observations of the LMC eclipsing binary CAL 87 show a short-duration, shallow X-ray eclipse which coincides in phase with the primary optical minimum. Characteristics of the eclipse suggest the X-ray emitting region is only partially occulted. Similarities with the eclipse of the accretion-disk corona in X 1822-37 are discussed. However, no temperature variation through eclipse is found for CAL 87. A revised orbital period, combining published data and recent optical photometry, is given.

  3. Evidence for a planetary mass third body orbiting the binary star KIC 5095269

    NASA Astrophysics Data System (ADS)

    Getley, A. K.; Carter, B.; King, R.; O'Toole, S.

    2017-07-01

    In this paper, we report the evidence for a planetary mass body orbiting the close binary star KIC 5095269. This detection arose from a search for eclipse timing variations amongst the more than 2000 eclipsing binaries observed by Kepler. Light curve and periodic eclipse time variations have been analysed using systemic and a custom Binary Eclipse Timings code based on the Transit Analysis Package which indicates a 7.70 ± 0.08MJup object orbiting every 237.7 ± 0.1 d around a 1.2 M⊙ primary and a 0.51 M⊙ secondary in an 18.6 d orbit. A dynamical integration over 107 yr suggests a stable orbital configuration. Radial velocity observations are recommended to confirm the properties of the binary star components and the planetary mass of the companion.

  4. Digitizing Villanova University's Eclipsing Binary Card Catalogue

    NASA Astrophysics Data System (ADS)

    Guzman, Giannina; Dalton, Briana; Conroy, Kyle; Prsa, Andrej

    2018-01-01

    Villanova University’s Department of Astrophysics and Planetary Science has years of hand-written archival data on Eclipsing Binaries at its disposal. This card catalog began at Princeton in the 1930’s with notable contributions from scientists such as Henry Norris Russel. During World War II, the archive was moved to the University of Pennsylvania, which was one of the world centers for Eclipsing Binary research, consequently, the contributions to the catalog during this time were immense. It was then moved to University of Florida at Gainesville before being accepted by Villanova in the 1990’s. The catalog has been kept in storage since then. The objective of this project is to digitize this archive and create a fully functional online catalog that contains the information available on the cards, along with the scan of the actual cards. Our group has built a database using a python-powered infrastructure to contain the collected data. The team also built a prototype web-based searchable interface as a front-end to the catalog. Following the data-entry process, information like the Right Ascension and Declination will be run against SIMBAD and any differences between values will be noted as part of the catalog. Information published online from the card catalog and even discrepancies in information for a star, could be a catalyst for new studies on these Eclipsing Binaries. Once completed, the database-driven interface will be made available to astronomers worldwide. The group will also acquire, from the database, a list of referenced articles that have yet to be found online in order to further pursue their digitization. This list will be comprised of references in the cards that were neither found on ADS nor online during the data-entry process. Pursuing the integration of these references to online queries such as ADS will be an ongoing process that will contribute and further facilitate studies on Eclipsing Binaries.

  5. Hubble Space Telescope Parallel Observations Supporting the Kepler Mission

    NASA Astrophysics Data System (ADS)

    Caldwell, J.; Borucki, W.

    1999-09-01

    Kepler will detect Earth-like planets by monitoring 100,000 stars over four years for planetary transits. The required photometric precision is one part in 100.000. It is expected that if such ``Earths" are common, about 200 will be detected. In order to achieve the necessary precision, Kepler will be intentionally unfocussed, spreading the light of a single star over an area of 25 pixels. This will minimize the effect of space-craft jitter on photon counting. However, it will also allow the possibility of confusion with background objects which may be in the line of sight to a Kepler target. The greatest concern is that there may be a distant eclipsing binary star which could introduce a photometric signature that is similar to a planetary transit. For the brightest stars in Kepler's intended magnitude range, which is 9 to 14 mv, this will not be serious, because the profiles are different: eclipses have a ``V" shape, transits are flat-bottomed, and Kepler will differentiate the two. However, in this magnitude range, the number of stars per magnitude doubles at each fainter magnitude. More than half of Kepler's discoveries will be in the magnitude which is the faintest in which the precision of the photometry will be able to reveal a transit. That is, most of the discoveries will be low signal to noise events, in which the reality of a small decrease in the light from the region of the target star is certain, but the details of the decrease are not. Hubble Space Telescope images indicate there will be, on average, 0.5 background objects in the magnitude range that could be a problem for Kepler in the 25 pixel blur region of Kepler's optics. Approximately half of the stars will be binaries. The probability that a binary will be eclipsing is the same as that a planetary orbit will be transitting. In order to reduce the chance of a misidentification, various strategies can be used. Rather than integrating the signal over the 25 pixels and returning only the sum, the

  6. A New Orbit for the Eclipsing Binary V577 Oph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffery, Elizabeth J.; Barnes, Thomas G. III; Montemayor, Thomas J.

    Pulsating stars in eclipsing binary systems are unique objects for providing constraints on stellar models. To fully leverage the information available from the binary system, full orbital radial velocity curves must be obtained. We report 23 radial velocities for components of the eclipsing binary V577 Oph, whose primary star is a δ Sct variable. The velocities cover a nearly complete orbit and a time base of 20 years. We computed orbital elements for the binary and compared them to the ephemeris computed by Creevey et al. The comparison shows marginally different results. In particular, a change in the systemic velocitymore » by −2 km s{sup −1} is suggested by our results. We compare this systemic velocity difference to that expected due to reflex motion of the binary in response to the third body in the system. The systemic velocity difference is consistent with reflex motion, given our mass determination for the eclipsing binary and the orbital parameters determined by Volkov and Volkova for the three-body orbit. We see no evidence for the third body in our spectra, but we do see strong interstellar Na D lines that are consistent in strength with the direction and expected distance of V577 Oph.« less

  7. Discovery of four new low-mass white-dwarf companions in the Kepler data

    NASA Astrophysics Data System (ADS)

    Faigler, Simchon; Kull, Ilya; Mazeh, Tsevi; Kiefer, Flavien; Latham, David W.; Bloemen, Steven

    2015-12-01

    We report the discovery of four new short-period eclipsing systems in the Kepler light curves, consisting of an A-star primary and a low-mass white-dwarf (WD) secondary (dA+WD) - KIC 4169521, KOI-3818, KIC 2851474 and KIC 9285587. These add to the 6 Kepler, and 19 non-Kepler, previously known short-period eclipsing dA+WD binaries.The discoveries were made through searching the light curves of bright Kepler stars for BEaming, Ellipsoidal and Reflection (BEER) modulations that are consistent with a compact companion, using the BEER search algorithm. This was followed by inspection of the search top hits, looking for eclipsing systems with a secondary eclipse deeper than the primary one, as expected for a WD that is hotter than the primary star. Follow-up spectroscopic radial-velocity (RV) observations confirmed the binarity of the systems. We derive the systems' parameters through analyses of the light curves' eclipses and phase modulations, combined with RV orbital solutions and stellar evolution models.The four systems' orbital periods of 1.17-3.82 days and WD masses of 0.19-0.22 Msun are similar to those reported for the previously known systems. These values are consistent with evolution models of such systems, that undergo a stable mass transfer from the WD progenitor to the current A star.For KIC 4169521 we derive a bloated WD radius of 0.09 Rsun that is well within the WD radius range of 0.04-0.43 Rsun of the known systems. For the remaining three systems we report WD radii of 0.026-0.035 Rsun, the smallest WD radii derived so far for short-period eclipsing dA+WD binaries.As suggested before, the previously known systems, together with KIC 4169521, all with hot and bloated WD secondaries, represent young systems probably at a proto-WD, or initial WD cooling track stage. The other three new systems - KOI-3818, KIC 2851474, and KIC 9285587, are probably positioned further along the WD cooling track, and extend the known population to older systems with cooler

  8. VizieR Online Data Catalog: OGLE eclipsing binaries in LMC (Wyrzykowski+, 2003)

    NASA Astrophysics Data System (ADS)

    Wyrzykowski, L.; Udalski, A.; Kubiak, M.; Szymanski, M.; Zebrun, K.; Soszynski, I.; Wozniak, P. R.; Pietrzynski, G.; Szewczyk, O.

    2003-09-01

    We present the catalog of 2580 eclipsing binary stars detected in 4.6 square degree area of the central parts of the Large Magellanic Cloud. The photometric data were collected during the second phase of the OGLE microlensing search from 1997 to 2000. The eclipsing objects were selected with the automatic search algorithm based on an artificial neural network. Basic statistics of eclipsing stars are presented. Also, the list of 36 candidates of detached eclipsing binaries for spectroscopic study and for precise LMC distance determination is provided. The full catalog is accessible from the OGLE Internet archive. (2 data files).

  9. Searching Planets Around Some Selected Eclipsing Close Binary Stars Systems

    NASA Astrophysics Data System (ADS)

    Nasiroglu, Ilham; Slowikowska, Agnieszka; Krzeszowski, Krzysztof; Zejmo, M. Michal; Er, Hüseyin; Goździewski, Krzysztof; Zola, Stanislaw; Koziel-Wierzbowska, Dorota; Debski, Bartholomew; Ogloza, Waldemar; Drozdz, Marek

    2016-07-01

    We present updated O-C diagrams of selected short period eclipsing binaries observed since 2009 with the T100 Telescope at the TUBITAK National Observatory (Antalya, Turkey), the T60 Telescope at the Adiyaman University Observatory (Adiyaman, Turkey), the 60cm at the Mt. Suhora Observatory of the Pedagogical University (Poland) and the 50cm Cassegrain telescope at the Fort Skala Astronomical Observatory of the Jagiellonian University in Krakow, Poland. All four telescopes are equipped with sensitive, back-illuminated CCD cameras and sets of wide band filters. One of the targets in our sample is a post-common envelope eclipsing binary NSVS 14256825. We collected more than 50 new eclipses for this system that together with the literature data gives more than 120 eclipse timings over the time span of 8.5 years. The obtained O-C diagram shows quasi-periodic variations that can be well explained by the existence of the third body on Jupiter-like orbit. We also present new results indicating a possible light time travel effect inferred from the O-C diagrams of two other binary systems: HU Aqr and V470 Cam.

  10. Kepler's Final Survey Catalog

    NASA Astrophysics Data System (ADS)

    Mullally, S. E.

    2017-12-01

    The Kepler mission was designed to detect transiting exoplanets and has succeeded in finding over 4000 candidates. These candidates include approximately 50 terrestrial-sized worlds near to the habitable zone of their GKM dwarf stars (shown in figure against the stellar temperature). However not all transit detections are created equal. False positives, such as background eclipsing binaries, can mimic the signal of a transiting planet. Additionally, at Kepler's detection limit noise, either from the star or from the detector, can create signals that also mimic a transiting planet. For the data release 25 Kepler catalog we simulated these false alarms and determined how often known false alarms are called candidates. When this reliability information is combined with our studies of catalog completeness, this catalog can be used to understand the occurrence rate of exoplanets, even for the small, temperate planet candidates found by Kepler. I will discuss the automated methods we used to create and characterize this latest catalog, highlighting how we balanced the completeness and reliability of the long period candidates. While Kepler has been very successful at detecting transiting terrestrial-sized exoplanets, many of these detections are around stars that are too dim for successful follow-up work. Future missions will pick up where Kepler left off and find small planets around some of the brightest and smallest stars.

  11. A spectroscopic investigation of the eclipsing binary Epsilon Aurigae

    NASA Technical Reports Server (NTRS)

    Balachandran, Suchitra

    1991-01-01

    The objectives were to examine, in detail, the spectra of the eclipsing binary Epsilon Aurigae taken with the IUE satellite telescope during the 1982 to 1984 eclipse. All of the low resolution spectra were analyzed and UV light curves are presented. The primary findings are as follows: (1) a constant eclipse depth from 1600 A to longer wavelengths and a sharp drop in the eclipse depth from 1600 to 1200 A; (2) the absence of large amplitude fluctuations in the UV as expected from a Cepheid primary; and (3) equal ingress and egress times in contradiction to that interpreted from visible light curves. The effects of these findings on the eclipse geometry are being studied.

  12. Relativistic apsidal motion in eccentric eclipsing binaries

    NASA Astrophysics Data System (ADS)

    Wolf, M.; Claret, A.; Kotková, L.; Kučáková, H.; Kocián, R.; Brát, L.; Svoboda, P.; Šmelcer, L.

    2010-01-01

    Context. The study of apsidal motion in detached eclipsing binary systems is known to be an important source of information about stellar internal structure as well as the possibility of verifying of General Relativity outside the Solar System. Aims: As part of the long-term Ondřejov and Ostrava observational projects, we aim to measure precise times of minima for eccentric eclipsing binaries, needed for the accurate determination of apsidal motion, providing a suitable test of the effects of General Relativity. Methods: About seventy new times of minimum light recorded with photoelectric or CCD photometers were obtained for ten eccentric-orbit eclipsing binaries with significant relativistic apsidal motion. Their O-C diagrams were analysed using all reliable timings found in the literature, and new or improved elements of apsidal motion were obtained. Results: We confirm very long periods of apsidal motion for all systems. For BF Dra and V1094 Tau, we present the first apsidal-motion solution. The relativistic effects are dominant, representing up to 100% of the total observable apsidal-motion rate in several systems. The theoretical and observed values of the internal structure constant k 2 were compared for systems with lower relativistic contribution. Using the light-time effect solution, we predict a faint third component for V1094 Tau orbiting with a short period of about 8 years. Partly based on photoelectric observations secured at the Hvar Observatory, Faculty of Geodesy, Zagreb, Croatia, in October 2008.

  13. Speckle Imaging and Spectroscopy of Kepler Exo-planet Transit Candidate Stars

    NASA Astrophysics Data System (ADS)

    Howell, Steve B.; Sherry, William; Horch, Elliott; Doyle, Laurance

    2010-02-01

    The NASA Kepler mission was successfully launched on 6 March 2009 and has begun science operations. Commissioning tests done early on in the mission have shown that for the bright sources, 10-15 ppm relative photometry can be achieved. This level assures we will detect Earth- like transits if they are present. ``Hot Jupiter" and similar large planet candidates have already been discovered and will be discussed at the Jan. AAS meeting as well as in a special issue of Science magazine to appear near years end. The plethora of variability observed is astounding and includes a number of eclipsing binaries which appear to have Jupiter and smaller size objects as an orbiting their body. Our proposal consists of three highly related objectives: 1) To continue our highly successful speckle imaging program which is a major component of defense to weed out false positive candidate transiting planets found by Kepler and move the rest to probable or certain exo-planet detections; 2) To obtain low resolution ``discovery" type spectra for planet candidate stars in order to provide spectral type and luminosity class indicators as well as a first look triage to eliminate binaries and rapid rotators; and 3) to obtain ~1Aresolution time ordered spectra of eclipsing binaries that are exo-planet candidates in order to obtain the velocity solution for the binary star, allowing its signal to be modeled and removed from the Keck or HET exo-planet velocity search. As of this writing, Kepler has produced a list of 227 exo-planet candidates which require false positive decision tree observations. Our proposed effort performs much of the first line of defense for the mission.

  14. K2 eclipsing binaries in the benchmark open cluster Ruprecht 147

    NASA Astrophysics Data System (ADS)

    Torres, Guillermo

    Open clusters are ideal laboratories to study stellar astrophysics. They represent homogeneous collections of hundreds or thousands of stars that were formed together and should therefore have the same age, chemical composition, space motion, and distance. Easily measured properties for member stars such as the brightness and color can be used to infer some of the characteristics of the ensemble including the age and distance, by comparing with model isochrones in the color-magnitude diagram. In recent years space missions such as CoRoT and Kepler have enabled the detection of solar-like oscillations in some of the brighter open cluster members, which can yield asteroseismic estimates of the stellar masses and radii through simple scaling relations anchored on the Sun, and also ages under certain assumptions. Furthermore, when photometric rotation periods of stars can be measured in them, clusters will well-known ages then become essential calibrators for gyrochronology relations, which describe how stars spin down as they get older due to magnetic braking from stellar winds. These relations are important because they provide one of the few empirical ways to age-date field stars. For clusters endowed with detached, double-lined eclipsing binaries amenable to study, even stronger constraints on their properties become available that are of an entirely different nature. The absolute masses and radii of the binary components can be measured very accurately and in a model-independent way, providing an opportunity for stringent tests of stellar evolution theory. The ages that can also be obtained by comparison with models can serve to validate other age estimates mentioned above. Ruprecht 147 is remarkable in that it permits all of these types of studies at the same time. It is the oldest nearby open cluster, with an age of about 3 Gyr and a distance of only 300 pc. This makes it a favorable target for follow-up studies. The metallicity is well determined from previous

  15. Recent Minima of 171 Eclipsing Binary Stars

    NASA Astrophysics Data System (ADS)

    Samolyk, G.

    2015-12-01

    This paper continues the publication of times of minima for 171 eclipsing binary stars from observations reported to the AAVSO EB section. Times of minima from observations received by the author from March 2015 thru October 2015 are presented.

  16. ON THE PULSATIONAL-ORBITAL-PERIOD RELATION OF ECLIPSING BINARIES WITH δ-SCT COMPONENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X. B.; Luo, C. Q.; Fu, J. N.

    2013-11-01

    We have deduced a theoretical relation between the pulsation and orbital-periods of pulsating stars in close binaries based on their Roche lobe filling. It appears to be of a simple linear form, with the slope as a function of the pulsation constant, the mass ratio, and the filling factor for an individual system. Testing the data of 69 known eclipsing binaries containing δ-Sct-type components yields an empirical slope of 0.020 ± 0.006 for the P{sub pul}-P{sub orb} relation. We have further derived the upper limit of the P{sub pul}/P{sub orb} ratio for the δ-Sct stars in eclipsing binaries with amore » value of 0.09 ± 0.02. This value could serve as a criterion to distinguish whether or not a pulsator in an eclipsing binary pulsates in the p-mode. Applying the deduced P{sub pul}-P{sub orb} relation, we have computed the dominant pulsation constants for 37 δ-Sct stars in eclipsing systems with definite photometric solutions. These ranged between 0.008 and 0.033 days with a mean value of about 0.014 days, indicating that δ-Sct stars in eclipsing binaries mostly pulsate in the fourth or fifth overtones.« less

  17. High-resolution multi-band imaging for validation and characterization of small Kepler planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Everett, Mark E.; Silva, David R.; Barclay, Thomas

    2015-02-01

    High-resolution ground-based optical speckle and near-infrared adaptive optics images are taken to search for stars in close angular proximity to host stars of candidate planets identified by the NASA Kepler Mission. Neighboring stars are a potential source of false positive signals. These stars also blend into Kepler light curves, affecting estimated planet properties, and are important for an understanding of planets in multiple star systems. Deep images with high angular resolution help to validate candidate planets by excluding potential background eclipsing binaries as the source of the transit signals. A study of 18 Kepler Object of Interest stars hosting amore » total of 28 candidate and validated planets is presented. Validation levels are determined for 18 planets against the likelihood of a false positive from a background eclipsing binary. Most of these are validated at the 99% level or higher, including five newly validated planets in two systems: Kepler-430 and Kepler-431. The stellar properties of the candidate host stars are determined by supplementing existing literature values with new spectroscopic characterizations. Close neighbors of seven of these stars are examined using multi-wavelength photometry to determine their nature and influence on the candidate planet properties. Most of the close neighbors appear to be gravitationally bound secondaries, while a few are best explained as closely co-aligned field stars. Revised planet properties are derived for each candidate and validated planet, including cases where the close neighbors are the potential host stars.« less

  18. Using Kepler K2 to Measure the Binary Fraction of PN Central Stars

    NASA Astrophysics Data System (ADS)

    Jacoby, George H.; Hillwig, Todd; De Marco, Orsola; Hurowitz, Jonathan; Jones, David; Kronberger, Matthias; Harmer, Dianne

    2018-01-01

    During the initial Kepler mission, 5 Planetary Nebula (PN) central stars were observed. The light curves for 4 of these central stars indicated a history of close binary interactions. That large fraction was suggestive that the actual fraction of PN harboring close binaries is much larger than the known lower limit of 20%, but that sample is far too small to be compelling. We have since acquired Kepler K2 data for Campaigns 0, 2, 7, and 11, hosting PN samples of 3, 4, 8, and 185 targets, respectively. We will provide an update on the number of binary candidates found in each field, and in particular, the Galactic Bulge field of Campaign 11. We also will discuss the challenges of working with Kepler observations in the crowded Campaign 11 field and the impact of those challenges on our ability to estimate the fraction of PN central stars that are binaries. This study was supported in part by NASA grants NNX17AE64G and NNX17AF80G.

  19. The Optical Gravitational Lensing Experiment. Eclipsing Binary Stars in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Wyrzykowski, L.; Udalski, A.; Kubiak, M.; Szymanski, M.; Zebrun, K.; Soszynski, I.; Wozniak, P. R.; Pietrzynski, G.; Szewczyk, O.

    2003-03-01

    We present the catalog of 2580 eclipsing binary stars detected in 4.6 square degree area of the central parts of the Large Magellanic Cloud. The photometric data were collected during the second phase of the OGLE microlensing search from 1997 to 2000. The eclipsing objects were selected with the automatic search algorithm based on an artificial neural network. Basic statistics of eclipsing stars are presented. Also, the list of 36 candidates of detached eclipsing binaries for spectroscopic study and for precise LMC distance determination is provided. The full catalog is accessible from the OGLE Internet archive.

  20. The 1982 ultraviolet eclipse of the symbiotic binary AR Pav

    NASA Technical Reports Server (NTRS)

    Hutchings, J. B.; Cowley, A. P.; Ake, T. B.; Imhoff, C. L.

    1983-01-01

    Observations with the International Ultraviolet Explorer (IUE) of the symbiotic binary AR Pav through its 1982 eclipse show that the hot star is not eclipsed. The hot star is associated with an extended region of continuum emission which is partially eclipsed. The eclipsed radiation is hotter near to its center, with a maximum temperature of about 9000 K. The uneclipsed flux is hotter than this. UV emission lines are not measurably eclipsed and presumably arise in a much larger region than the continuum. These data provide new constraints on models of the system but also are apparently in contradiction to those based on ground-based data.

  1. CCD Times of Minima of Selected Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Zejda, Miloslav

    2004-12-01

    682 CCD minima observations of 259 eclipsing binaries made mainly by author are presented. The observed stars were chosen mainly from catalogue BRKA of observing programme of BRNO-Variable Star Section of CAS.

  2. A model of V356 Sagittarii. [eclipsing binary star

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.; Caldwell, C. N.

    1978-01-01

    It is pointed out that V356 Sgr is an abnormal member of the Algol class of binaries. According to Popper (1955), the primary component is of spectral type B3V and is rotating rapidly, while the secondary is of type A2II and is rotating at least approximately in synchronism with the orbital motion. The system is either semidetached or quite near to being semidetached. The main anomalies are related to the ratio of eclipse depths, the very small reflection effect of the light curves, differences between the duration of the primary and the secondary eclipse, and the unusual characteristics of the primary eclipse. It is concluded that the lack of agreement between theory and observation can be due only to an important attribute of the binary which has not yet been incorporated into the theory. The peculiarities can most reasonably be explained in terms of a geometrically and optically thick disk which surrounds the primary component.

  3. Indoor Astronomy: A Model Eclipsing Binary Star System.

    ERIC Educational Resources Information Center

    Bloomer, Raymond H., Jr.

    1979-01-01

    Describes a two-hour physics laboratory experiment modeling the phenomena of eclipsing binary stars developed by the Air Force Academy as part of a week-long laboratory-oriented experience for visiting high school students. (BT)

  4. Double-lined M dwarf eclipsing binaries from Catalina Sky Survey and LAMOST

    NASA Astrophysics Data System (ADS)

    Lee, Chien-Hsiu; Lin, Chien-Cheng

    2017-02-01

    Eclipsing binaries provide a unique opportunity to determine fundamental stellar properties. In the era of wide-field cameras and all-sky imaging surveys, thousands of eclipsing binaries have been reported through light curve classification, yet their basic properties remain unexplored due to the extensive efforts needed to follow them up spectroscopically. In this paper we investigate three M2-M3 type double-lined eclipsing binaries discovered by cross-matching eclipsing binaries from the Catalina Sky Survey with spectroscopically classified M dwarfs from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope survey data release one and two. Because these three M dwarf binaries are faint, we further acquire radial velocity measurements using GMOS on the Gemini North telescope with R˜ 4000, enabling us to determine the mass and radius of individual stellar components. By jointly fitting the light and radial velocity curves of these systems, we derive the mass and radius of the primary and secondary components of these three systems, in the range between 0.28-0.42M_⊙ and 0.29-0.67R_⊙, respectively. Future observations with a high resolution spectrograph will help us pin down the uncertainties in their stellar parameters, and render these systems benchmarks to study M dwarfs, providing inputs to improving stellar models in the low mass regime, or establishing an empirical mass-radius relation for M dwarf stars.

  5. Eclipsing binary stars in the era of massive surveys First results and future prospects

    NASA Astrophysics Data System (ADS)

    Papageorgiou, Athanasios; Catelan, Márcio; Ramos, Rodrigo Contreras; Drake, Andrew J.

    2017-09-01

    Our thinking about eclipsing binary stars has undergone a tremendous change in the last decade. Eclipsing binary stars are one of nature's best laboratories for determining the fundamental physical properties of stars and thus for testing the predictions of theoretical models. Some of the largest ongoing variable star surveys include the Catalina Real-time Transient Survey (CRTS) and the VISTA Variables in the Vía Láctea survey (VVV). They both contain a large amount of photometric data and plenty of information about eclipsing binaries that wait to be extracted and exploited. Here we briefly describe our efforts in this direction.

  6. The Kepler DB: a database management system for arrays, sparse arrays, and binary data

    NASA Astrophysics Data System (ADS)

    McCauliff, Sean; Cote, Miles T.; Girouard, Forrest R.; Middour, Christopher; Klaus, Todd C.; Wohler, Bill

    2010-07-01

    The Kepler Science Operations Center stores pixel values on approximately six million pixels collected every 30 minutes, as well as data products that are generated as a result of running the Kepler science processing pipeline. The Kepler Database management system (Kepler DB)was created to act as the repository of this information. After one year of flight usage, Kepler DB is managing 3 TiB of data and is expected to grow to over 10 TiB over the course of the mission. Kepler DB is a non-relational, transactional database where data are represented as one-dimensional arrays, sparse arrays or binary large objects. We will discuss Kepler DB's APIs, implementation, usage and deployment at the Kepler Science Operations Center.

  7. The Kepler DB, a Database Management System for Arrays, Sparse Arrays and Binary Data

    NASA Technical Reports Server (NTRS)

    McCauliff, Sean; Cote, Miles T.; Girouard, Forrest R.; Middour, Christopher; Klaus, Todd C.; Wohler, Bill

    2010-01-01

    The Kepler Science Operations Center stores pixel values on approximately six million pixels collected every 30-minutes, as well as data products that are generated as a result of running the Kepler science processing pipeline. The Kepler Database (Kepler DB) management system was created to act as the repository of this information. After one year of ight usage, Kepler DB is managing 3 TiB of data and is expected to grow to over 10 TiB over the course of the mission. Kepler DB is a non-relational, transactional database where data are represented as one dimensional arrays, sparse arrays or binary large objects. We will discuss Kepler DB's APIs, implementation, usage and deployment at the Kepler Science Operations Center.

  8. A possible additional body in eclipsing binary system HS 2231+2441

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.; Shliakhetska, Ya. O.; Romanyuk, Ya. O.

    2016-12-01

    Analysis of the light curves of eclipsing binary systems HS 2231+2441, obtained with the 36-cm telescope, is made. In processing the photometric data on eclipses by method of timing, obtained evidence for the existence of a third body in the system.

  9. Modeling Kepler Transit Light Curves as False Positives: Rejection of Blend Scenarios for Kepler-9, and Validation of Kepler-9 d, a Super-Earth-Size Planet in a Multiple System

    NASA Technical Reports Server (NTRS)

    Torres, Guillermo; Fressin, Francois; Batalha, Natalie M.; Borucki, William J.; Brown, Timothy M.; Bryson, Stephen T.; Buchhave, Lars A.; Charbonneau, David; Ciardi, David R.; Dunham, Edward W.; hide

    2011-01-01

    Light curves from the Kepler Mission contain valuable information on the nature of the phenomena producing the transit-like signals. To assist in exploring the possibility that they are due to an astrophysical false positive we describe a procedure (BLENDER) to model the photometry in terms of a blend rather than a planet orbiting a star. A blend may consist of a background or foreground eclipsing binary (or star-planet pair) whose eclipses are attenuated by the light of the candidate and possibly other stars within the photometric aperture. We apply BLENDER to the case of Kepler-9 (KIC 3323887), a target harboring two previously confirmed Saturn-size planets (Kepler-9 b and Kepler-9 c) showing transit timing variations, and an additional shallower signal with a 1.59 day period suggesting the presence of a super-Earth-size planet. Using BLENDER together with constraints from other follow-up observations we are able to rule out all blends for the two deeper signals and provide independent validation of their planetary nature. For the shallower signal, we rule out a large fraction of the false positives that might mimic the transits. The false alarm rate for remaining blends depends in part (and inversely) on the unknown frequency of small-size planets. Based on several realistic estimates of this frequency, we conclude with very high confidence that this small signal is due to a super-Earth-size planet (Kepler-9 d) in a multiple system, rather than a false positive. The radius is determined to be 1.64(exp)(sub-14),R, and current spectroscopic observations are as yet insufficient to establish its mass.

  10. Photometric Study of the Pulsating, Eclipsing Binary OO Dra

    NASA Astrophysics Data System (ADS)

    Zhang, X. B.; Deng, L. C.; Tian, J. F.; Wang, K.; Sun, J. J.; Liu, Q. L.; Xin, H. Q.; Zhou, Q.; Yan, Z. Z.; Luo, Z. Q.; Luo, C. Q.

    2014-12-01

    We present a comprehensive photometric study of the pulsating, eclipsing binary OO Dra. Simultaneous B- and V-band photometry of the star was carried out on 14 nights. A revised orbital period and a new ephemeris were derived from the data. The first photometric solution of the binary system and the physical parameters of the component stars are determined. They reveal that OO Dra could be a detached system with a less-massive secondary component nearly filling its Roche lobe. By subtracting the eclipsing light changes from the data, we obtained the intrinsic pulsating light curves of the hotter, massive primary component. A frequency analysis of the residual light yields two confident pulsation modes in both B- and V-band data with the dominant frequency detected at 41.865 c/d. A brief discussion concerning the evolutionary status and the pulsation nature of the binary system is finally given.

  11. A NEW CLASS OF NASCENT ECLIPSING BINARIES WITH EXTREME MASS RATIOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, Maxwell; Stefano, Rosanne Di, E-mail: mmoe@cfa.harvard.edu

    2015-03-10

    Early B-type main-sequence (MS) stars (M {sub 1} ≈ 5-16 M {sub ☉}) with closely orbiting low-mass stellar companions (q = M {sub 2}/M {sub 1} < 0.25) can evolve to produce Type Ia supernovae, low-mass X-ray binaries, and millisecond pulsars. However, the formation mechanism and intrinsic frequency of such close extreme mass-ratio binaries have been debated, especially considering none have hitherto been detected. Utilizing observations of the Large Magellanic Cloud galaxy conducted by the Optical Gravitational Lensing Experiment, we have discovered a new class of eclipsing binaries in which a luminous B-type MS star irradiates a closely orbiting low-massmore » pre-MS companion that has not yet fully formed. The primordial pre-MS companions have large radii and discernibly reflect much of the light they intercept from the B-type MS primaries (ΔI {sub refl} ≈ 0.02-0.14 mag). For the 18 definitive MS + pre-MS eclipsing binaries in our sample with good model fits to the observed light-curves, we measure short orbital periods P = 3.0-8.5 days, young ages τ ≈ 0.6-8 Myr, and small secondary masses M {sub 2} ≈ 0.8-2.4 M {sub ☉} (q ≈ 0.07-0.36). The majority of these nascent eclipsing binaries are still associated with stellar nurseries, e.g., the system with the deepest eclipse ΔI {sub 1} = 2.8 mag and youngest age τ = 0.6 ± 0.4 Myr is embedded in the bright H II region 30 Doradus. After correcting for selection effects, we find that (2.0 ± 0.6)% of B-type MS stars have companions with short orbital periods P = 3.0-8.5 days and extreme mass ratios q ≈ 0.06-0.25. This is ≈10 times greater than that observed for solar-type MS primaries. We discuss how these new eclipsing binaries provide invaluable insights, diagnostics, and challenges for the formation and evolution of stars, binaries, and H II regions.« less

  12. KOI-3278: a self-lensing binary star system.

    PubMed

    Kruse, Ethan; Agol, Eric

    2014-04-18

    Over 40% of Sun-like stars are bound in binary or multistar systems. Stellar remnants in edge-on binary systems can gravitationally magnify their companions, as predicted 40 years ago. By using data from the Kepler spacecraft, we report the detection of such a "self-lensing" system, in which a 5-hour pulse of 0.1% amplitude occurs every orbital period. The white dwarf stellar remnant and its Sun-like companion orbit one another every 88.18 days, a long period for a white dwarf-eclipsing binary. By modeling the pulse as gravitational magnification (microlensing) along with Kepler's laws and stellar models, we constrain the mass of the white dwarf to be ~63% of the mass of our Sun. Further study of this system, and any others discovered like it, will help to constrain the physics of white dwarfs and binary star evolution.

  13. Spectroscopic obit for the eclipsing binary IQ Persei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, A.

    1975-10-01

    Spectroscopic orbital elements are derived for the eclipsing binary IQ Per. Faint secondary lines are detected, and a mass ratio and individual masses are inferred. The components are found to be on the main sequence, and the system is detached. (auth)

  14. Determining Binary Star Orbits Using Kepler's Equation

    NASA Astrophysics Data System (ADS)

    Boule, Cory; Andrews, Kaitlyn; Penfield, Andrew; Puckette, Ian; Goodale, Keith; Harfenist, Steven

    2017-04-01

    Students calculated ephemerides and generated orbits of four well-known binary systems. Using an iterative technique in Microsoft® Excel® to solve Kepler's equation, separation and position angle values were generated as well as plots of the apparent orbits. Current position angle and separation values were measured in the field and compared well to the calculated values for the stars: STF1196AB,C, STF296AB, STF296AB and STF60AB.

  15. Photometric study of the pulsating, eclipsing binary OO DRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X. B.; Deng, L. C.; Tian, J. F.

    We present a comprehensive photometric study of the pulsating, eclipsing binary OO Dra. Simultaneous B- and V-band photometry of the star was carried out on 14 nights. A revised orbital period and a new ephemeris were derived from the data. The first photometric solution of the binary system and the physical parameters of the component stars are determined. They reveal that OO Dra could be a detached system with a less-massive secondary component nearly filling its Roche lobe. By subtracting the eclipsing light changes from the data, we obtained the intrinsic pulsating light curves of the hotter, massive primary component.more » A frequency analysis of the residual light yields two confident pulsation modes in both B- and V-band data with the dominant frequency detected at 41.865 c/d. A brief discussion concerning the evolutionary status and the pulsation nature of the binary system is finally given.« less

  16. EPIC 219217635: A Doubly Eclipsing Quadruple System Containing an Evolved Binary

    NASA Astrophysics Data System (ADS)

    Borkovits, T.; Albrecht, S.; Rappaport, S.; Nelson, L.; Vanderburg, A.; Gary, B. L.; Tan, T. G.; Justesen, A. B.; Kristiansen, M. H.; Jacobs, T. L.; LaCourse, D.; Ngo, H.; Wallack, N.; Ruane, G.; Mawet, D.; Howell, S. B.; Tronsgaard, R.

    2018-05-01

    We have discovered a doubly eclipsing, bound, quadruple star system in the field of K2 Campaign 7. EPIC 219217635 is a stellar image with Kp = 12.7 that contains an eclipsing binary (`EB') with PA = 3.59470 d and a second EB with PB = 0.61825 d. We have obtained followup radial-velocity (`RV') spectroscopy observations, adaptive optics imaging, as well as ground-based photometric observations. From our analysis of all the observations, we derive good estimates for a number of the system parameters. We conclude that (1) both binaries are bound in a quadruple star system; (2) a linear trend to the RV curve of binary A is found over a 2-year interval, corresponding to an acceleration, \\dot{γ }= 0.0024 ± 0.0007 cm s-2; (3) small irregular variations are seen in the eclipse-timing variations (`ETVs') detected over the same interval; (4) the orbital separation of the quadruple system is probably in the range of 8-25 AU; and (5) the orbital planes of the two binaries must be inclined with respect to each other by at least 25°. In addition, we find that binary B is evolved, and the cooler and currently less massive star has transferred much of its envelope to the currently more massive star. We have also demonstrated that the system is sufficiently bright that the eclipses can be followed using small ground-based telescopes, and that this system may be profitably studied over the next decade when the outer orbit of the quadruple is expected to manifest itself in the ETV and/or RV curves.

  17. PHYSICS OF ECLIPSING BINARIES. II. TOWARD THE INCREASED MODEL FIDELITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prša, A.; Conroy, K. E.; Horvat, M.

    The precision of photometric and spectroscopic observations has been systematically improved in the last decade, mostly thanks to space-borne photometric missions and ground-based spectrographs dedicated to finding exoplanets. The field of eclipsing binary stars strongly benefited from this development. Eclipsing binaries serve as critical tools for determining fundamental stellar properties (masses, radii, temperatures, and luminosities), yet the models are not capable of reproducing observed data well, either because of the missing physics or because of insufficient precision. This led to a predicament where radiative and dynamical effects, insofar buried in noise, started showing up routinely in the data, but weremore » not accounted for in the models. PHOEBE (PHysics Of Eclipsing BinariEs; http://phoebe-project.org) is an open source modeling code for computing theoretical light and radial velocity curves that addresses both problems by incorporating missing physics and by increasing the computational fidelity. In particular, we discuss triangulation as a superior surface discretization algorithm, meshing of rotating single stars, light travel time effects, advanced phase computation, volume conservation in eccentric orbits, and improved computation of local intensity across the stellar surfaces that includes the photon-weighted mode, the enhanced limb darkening treatment, the better reflection treatment, and Doppler boosting. Here we present the concepts on which PHOEBE is built and proofs of concept that demonstrate the increased model fidelity.« less

  18. The Optical Gravitational Lensing Experiment. Eclipsing Binary Stars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Wyrzykowski, L.; Udalski, A.; Kubiak, M.; Szymanski, M. K.; Zebrun, K.; Soszynski, I.; Wozniak, P. R.; Pietrzynski, G.; Szewczyk, O.

    2004-03-01

    We present new version of the OGLE-II catalog of eclipsing binary stars detected in the Small Magellanic Cloud, based on Difference Image Analysis catalog of variable stars in the Magellanic Clouds containing data collected from 1997 to 2000. We found 1351 eclipsing binary stars in the central 2.4 square degree area of the SMC. 455 stars are newly discovered objects, not found in the previous release of the catalog. The eclipsing objects were selected with the automatic search algorithm based on the artificial neural network. The full catalog is accessible from the OGLE Internet archive.

  19. Survival of planets around shrinking stellar binaries

    PubMed Central

    Muñoz, Diego J.; Lai, Dong

    2015-01-01

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov–Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like. PMID:26159412

  20. Survival of planets around shrinking stellar binaries.

    PubMed

    Muñoz, Diego J; Lai, Dong

    2015-07-28

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like.

  1. New Light-Time Curve of Eclipsing Binary AM Leo

    NASA Astrophysics Data System (ADS)

    Gorda, S. Yu.; Matveeva, E. A.

    2017-12-01

    We present 72 photoelectric and CCD times of minima of eclipsing binary AM Leo obtained mainly during at Kourovka Astronomical Observatory of the Ural Federal University in Russia. We obtained new values of period of 50.5 years and eccentricity of 0.28 of the orbit of the eclipsing pair around the mass center of the system AM Leo with the third body. These results have been received taking into account the times of minima taken from literature and obtained from to .

  2. Search for A-F Spectral type pulsating components in Algol-type eclipsing binary systems

    NASA Astrophysics Data System (ADS)

    Kim, S.-L.; Lee, J. W.; Kwon, S.-G.; Youn, J.-H.; Mkrtichian, D. E.; Kim, C.

    2003-07-01

    We present the results of a systematic search for pulsating components in Algol-type eclipsing binary systems. A total number of 14 eclipsing binaries with A-F spectral type primary components were observed for 22 nights. We confirmed small-amplitude oscillating features of a recently detected pulsator TW Dra, which has a pulsating period of 0.053 day and a semi-amplitude of about 5 mmag in B-passband. We discovered new pulsating components in two eclipsing binaries of RX Hya and AB Per. The primary component of RX Hya is pulsating with a dominant period of 0.052 day and a semi-amplitude of about 7 mmag. AB Per has also a pulsating component with a period of 0.196 day and a semi-amplitude of about 10 mmag in B-passband. We suggest that these two new pulsators are members of the newly introduced group of mass-accreting pulsating stars in semi-detached Algol-type eclipsing binary systems. Table 4 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/405/231

  3. Planet Hunters: New Kepler Planet Candidates from Analysis of Quarter 2

    NASA Astrophysics Data System (ADS)

    Lintott, Chris J.; Schwamb, Megan E.; Barclay, Thomas; Sharzer, Charlie; Fischer, Debra A.; Brewer, John; Giguere, Matthew; Lynn, Stuart; Parrish, Michael; Batalha, Natalie; Bryson, Steve; Jenkins, Jon; Ragozzine, Darin; Rowe, Jason F.; Schwainski, Kevin; Gagliano, Robert; Gilardi, Joe; Jek, Kian J.; Pääkkönen, Jari-Pekka; Smits, Tjapko

    2013-06-01

    We present new planet candidates identified in NASA Kepler Quarter 2 public release data by volunteers engaged in the Planet Hunters citizen science project. The two candidates presented here survive checks for false positives, including examination of the pixel offset to constrain the possibility of a background eclipsing binary. The orbital periods of the planet candidates are 97.46 days (KIC 4552729) and 284.03 (KIC 10005758) days and the modeled planet radii are 5.3 and 3.8 R ⊕. The latter star has an additional known planet candidate with a radius of 5.05 R ⊕ and a period of 134.49 days, which was detected by the Kepler pipeline. The discovery of these candidates illustrates the value of massively distributed volunteer review of the Kepler database to recover candidates which were otherwise uncataloged. .

  4. BEER ANALYSIS OF KEPLER AND CoRoT LIGHT CURVES. I. DISCOVERY OF KEPLER-76b: A HOT JUPITER WITH EVIDENCE FOR SUPERROTATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faigler, S.; Tal-Or, L.; Mazeh, T.

    We present the first case in which the BEER algorithm identified a hot Jupiter in the Kepler light curve, and its reality was confirmed by orbital solutions based on follow-up spectroscopy. The companion Kepler-76b was identified by the BEER algorithm, which detected the BEaming (sometimes called Doppler boosting) effect together with the Ellipsoidal and Reflection/emission modulations (BEER), at an orbital period of 1.54 days, suggesting a planetary companion orbiting the 13.3 mag F star. Further investigation revealed that this star appeared in the Kepler eclipsing binary catalog with estimated primary and secondary eclipse depths of 5 Multiplication-Sign 10{sup -3} andmore » 1 Multiplication-Sign 10{sup -4}, respectively. Spectroscopic radial velocity follow-up observations with Tillinghast Reflector Echelle Spectrograph and SOPHIE confirmed Kepler-76b as a transiting 2.0 {+-} 0.26 M{sub Jup} hot Jupiter. The mass of a transiting planet can be estimated from either the beaming or the ellipsoidal amplitude. The ellipsoidal-based mass estimate of Kepler-76b is consistent with the spectroscopically measured mass while the beaming-based estimate is significantly inflated. We explain this apparent discrepancy as evidence for the superrotation phenomenon, which involves eastward displacement of the hottest atmospheric spot of a tidally locked planet by an equatorial superrotating jet stream. This phenomenon was previously observed only for HD 189733b in the infrared. We show that a phase shift of 10. Degree-Sign 3 {+-} 2. Degree-Sign 0 of the planet reflection/emission modulation, due to superrotation, explains the apparently inflated beaming modulation, resolving the ellipsoidal/beaming amplitude discrepancy. Kepler-76b is one of very few confirmed planets in the Kepler light curves that show BEER modulations and the first to show superrotation evidence in the Kepler band. Its discovery illustrates for the first time the ability of the BEER algorithm to detect

  5. The O-type eclipsing contact binary LY Aurigae - member of a quadruple system

    NASA Astrophysics Data System (ADS)

    Mayer, Pavel; Drechsel, Horst; Harmanec, Petr; Yang, Stephenson; Šlechta, Miroslav

    2013-11-01

    The eclipsing binary LY Aur (O9 II + O9 III) belongs to the rare class of early-type contact systems. We obtained 23 new spectra at the Ondřejov and Dominion Astrophysical Observatories, which were analysed with four older Calar Alto and one ELODIE archive spectra. A new result of this study is that the visual companion of LY Aur - the spectral lines of which are clearly seen in our spectra - is also an SB1 binary having an orbital period of 20.46d, an eccentric orbit, and a radial velocity semi-amplitude of 33 km s-1. The Hα line blend contains an emission component, which shows dependence on the orbital phase of the eclipsing system, with the strongest emission around the secondary eclipse. Revised elements of the eclipsing binary and the orbital solution of the companion binary are determined from our set of spectra and new light-curve solutions of the eclipsing pair. The mass of the primary of 25.5 M⊙ agrees well with its spectral type, whereas the secondary mass of 14 M⊙ is smaller than expected. From an O-C analysis of the minimum times of LY Aur that span more than 40 years, we found that the orbital period is decreasing, indicating the presence of interaction processes. The system is likely in a phase of non-conservative mass exchange. Based on spectral observations collected at the German-Spanish Observatory, Calar Alto, Spain; Dominion Astrophysical Observatory, Canada; Ondřejov Observatory, Czech Republic, and an archival Haute Provence Observatory ELODIE spectrum.

  6. Variable Stars with the Kepler Space Telescope

    NASA Astrophysics Data System (ADS)

    Molnár, L.; Szabó, R.; Plachy, E.

    2016-12-01

    The Kepler space telescope has revolutionized our knowledge about exoplanets and stars and is continuing to do so in the K2 mission. The exquisite photometric precision, together with the long, uninterrupted observations opened up a new way to investigate the structure and evolution of stars. Asteroseismology, the study of stellar oscillations, allowed us to investigate solar-like stars, and to peer into the insides of red giants and massive stars. But many discoveries have been made about classical variable stars, too, ranging from pulsators like Cepheids and RR Lyraes to eclipsing binary stars and cataclysmic variables, and even supernovae. In this review, which is far from an exhaustive summary of all results obtained with Kepler, we collected some of the most interesting discoveries, and ponder on the role for amateur observers in this golden era of stellar astrophysics.

  7. Investigation of Times of Minima of Selected Early-Type Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Mayer, Pavel; Wolf, Marek; Niarchos, P. G.; Gazeas, K. D.; Manimanis, V. N.; Chochol, Drahomír

    2006-08-01

    New precise times of minimum light for several early-type eclipsing binaries were obtained at three observatories. The changes of period of the following measured binaries are discussed: V1182 Aql, LY Aur, SZ Cam, FZ CMa, QZ Car, LZ Cen, V606 Cen, AH Cep and TU~Mus.

  8. Kepler Planet Detection Metrics: Automatic Detection of Background Objects Using the Centroid Robovetter

    NASA Technical Reports Server (NTRS)

    Mullally, Fergal

    2017-01-01

    We present an automated method of identifying background eclipsing binaries masquerading as planet candidates in the Kepler planet candidate catalogs. We codify the manual vetting process for Kepler Objects of Interest (KOIs) described in Bryson et al. (2013) with a series of measurements and tests that can be performed algorithmically. We compare our automated results with a sample of manually vetted KOIs from the catalog of Burke et al. (2014) and find excellent agreement. We test the performance on a set of simulated transits and find our algorithm correctly identifies simulated false positives approximately 50 of the time, and correctly identifies 99 of simulated planet candidates.

  9. Data Mining the Ogle-II I-band Database for Eclipsing Binary Stars

    NASA Astrophysics Data System (ADS)

    Ciocca, M.

    2013-08-01

    The OGLE I-band database is a searchable database of quality photometric data available to the public. During Phase 2 of the experiment, known as "OGLE-II", I-band observations were made over a period of approximately 1,000 days, resulting in over 1010 measurements of more than 40 million stars. This was accomplished by using a filter with a passband near the standard Cousins Ic. The database of these observations is fully searchable using the mysql database engine, and provides the magnitude measurements and their uncertainties. In this work, a program of data mining the OGLE I-band database was performed, resulting in the discovery of 42 previously unreported eclipsing binaries. Using the software package Peranso (Vanmuster 2011) to analyze the light curves obtained from OGLE-II, the eclipsing types, the epochs and the periods of these eclipsing variables were determined, to one part in 106. A preliminary attempt to model the physical parameters of these binaries was also performed, using the Binary Maker 3 software (Bradstreet and Steelman 2004).

  10. Photometric study of the eclipsing binary GR Bootis

    NASA Astrophysics Data System (ADS)

    Zhang, Z. L.; Zhang, Y. P.; Fu, J. N.; Xue, H. F.

    2016-07-01

    We present CCD photometry and low-resolution spectra of the eclipsing binary GR Boo. A new ephemeris is determined based on all the available times of the minimum light. The period analysis reveals that the orbital period is decreasing with a rate of dP / dt = - 2.05 ×10-10 d yr-1 . A photometric analysis for the obtained light curves is performed with the Wilson-Devinney Differential Correction program for the first time. The photometric solutions confirm the W UMa-type nature of the binary system. The mass ratio turns out to be q = 0.985 ± 0.001 . The evolutionary status and physical nature of the binary system are briefly discussed.

  11. MM Herculis - An eclipsing binary of the RS CVn

    NASA Technical Reports Server (NTRS)

    Sowell, J. R.; Hall, D. S.; Henry, G. W.; Burke, E. W., Jr.; Milone, E. F.

    1983-01-01

    V, B and U differential photoelectric photometry has been obtained for the RS Canum Venaticorum-class eclipsing binary star MM Her, with the light outside the eclipse being Fourier-analyzed to study wave migration and amplitude. These, together with the mean light level of the system, have been monitored from 1976 through 1980. Observations within the eclipse have revealed eclipses to be partial, rather than total as previously thought. The geometric elements of the presently rectified light curve are forced on the pre-1980 light curves and found to be compatible. With these elements, and previously obtained double line radial velocity curves, new absolute dimensions of 1.18 solar masses and 1.58 solar radii are calculated for the hotter star and 1.27 solar masses and 2.83 solar radii for the cooler star. The plotting of color indices on the color-color curve indicates G2V and K2IV spectral types.

  12. An ultraviolet investigation of the unusual eclipsing binary system FF AQR

    NASA Technical Reports Server (NTRS)

    Dorren, J. D.; Guinan, E. F.; Sion, E. M.

    1982-01-01

    A series of seven low dispersion IUE exposures in ultraviolet and wavelength regions obtained on December 6, 1981 during the eclipse of the subdwarf, during egress, and out of eclipse is analyzed. These observations and the binary phase at which they were made are shown on a schematic representation of the V-band light curve obtained in 1975. The depth in V is 0.15 mag. The circles are IUE V magnitudes from FES measures obtained during the observing run. They indicate an eclipse depth some 0.05 mag lower than expected, possibly due to difficulties with the color term in the FES calibration. The eclipse depths of Dworetsky in U, B and V were assumed in the calculations.

  13. V380 Dra: New short-period totally eclipsing active binary

    NASA Astrophysics Data System (ADS)

    Özdarcan, O.

    2014-02-01

    In this study, first complete and standard BVR light curves and photometric analysis of the eclipsing binary system V380 Dra are presented. Photometric analysis result indicates that the system has components which are cool main sequence stars. In light and color curves, remarkable asymmetry is observed, especially after secondary minimum, which is believed to be a result of chromospheric activity in one or both components. O-C diagram of available small number of eclipse times, together with new eclipse timings in this work, exhibits no significant variation. Preliminary light curve solution shows that the secondary minimum is total eclipse. By using the advantage of total eclipse and mass-luminosity relation, it is found that the system has a possible mass ratio of q = 0.81. First estimation of masses and radii of primary and secondary components are M1 = 0.77 M⊙,M2 = 0.62 M⊙ and R1 = 0.93 R⊙,R2 = 0.77 R⊙, respectively.

  14. Modeling the Effects of Asynchronous Rotation on Secondary Eclipse Timings in HW VIr Binaries

    NASA Astrophysics Data System (ADS)

    Clancy, Padraig

    2018-01-01

    HW Vir binaries are post common envelope binaries consisting of a hot subdwarf and red dwarf, with light curves dominated by primary eclipses, a strong reflection effect, and secondary eclipses. They have orbital periods ranging from a few hours to half a day and are generally thought to be tidally locked; most studies assume both synchronous rotation and zero eccentricity when modeling HW Vir light curves and radial velocities. Their stable eclipse timings are frequently used in O-C studies to look for the presence of circumbinary objects, measure evolutionary changes in the orbital period, and even constrain the component masses through Roemer delay measurements of the secondary eclipse. While most systems are probably tidally locked or close to it, even slightly asynchronous rotation could theoretically shift the orbital phase of the reflection effect. Here we investigate how asynchronous rotation might affect measurements of secondary eclipse timings by generating thousands of synthetic light curves with a range of reflection effect phases, fitting eclipse timings, and creating O-C diagrams.

  15. CCD Times of Minima of Faint Eclipsing Binaries in 2000

    NASA Astrophysics Data System (ADS)

    Zejda, Miloslav

    2002-06-01

    196 CCD minima observations of 122 eclipsing binaries made by the author in 2000 are presented. The observed stars were chosen from the catalogue BRKA of observing programme of BRNO-Variable Star Section of CAS.

  16. PLANET HUNTERS: NEW KEPLER PLANET CANDIDATES FROM ANALYSIS OF QUARTER 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lintott, Chris J.; Schwamb, Megan E.; Schwainski, Kevin, E-mail: cjl@astro.ox.ac.uk

    2013-06-15

    We present new planet candidates identified in NASA Kepler Quarter 2 public release data by volunteers engaged in the Planet Hunters citizen science project. The two candidates presented here survive checks for false positives, including examination of the pixel offset to constrain the possibility of a background eclipsing binary. The orbital periods of the planet candidates are 97.46 days (KIC 4552729) and 284.03 (KIC 10005758) days and the modeled planet radii are 5.3 and 3.8 R{sub Circled-Plus }. The latter star has an additional known planet candidate with a radius of 5.05 R{sub Circled-Plus} and a period of 134.49 days,more » which was detected by the Kepler pipeline. The discovery of these candidates illustrates the value of massively distributed volunteer review of the Kepler database to recover candidates which were otherwise uncataloged.« less

  17. DID THE ANCIENT EGYPTIANS RECORD THE PERIOD OF THE ECLIPSING BINARY ALGOL-THE RAGING ONE?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jetsu, L.; Porceddu, S.; Lyytinen, J.

    The eclipses in binary stars give precise information of orbital period changes. Goodricke discovered the 2.867 day period in the eclipses of Algol in the year 1783. The irregular orbital period changes of this longest known eclipsing binary continue to puzzle astronomers. The mass transfer between the two members of this binary should cause a long-term increase of the orbital period, but observations over two centuries have not confirmed this effect. Here, we present evidence indicating that the period of Algol was 2.850 days three millennia ago. For religious reasons, the ancient Egyptians have recorded this period into the Cairomore » Calendar (CC), which describes the repetitive changes of the Raging one. CC may be the oldest preserved historical document of the discovery of a variable star.« less

  18. New Constraints on the False Positive Rate for Short-Period Kepler Planet Candidates

    NASA Astrophysics Data System (ADS)

    Colón, Knicole D.; Morehead, Robert C.; Ford, Eric B.

    2015-01-01

    The Kepler space mission has discovered thousands of potential planets orbiting other stars, thereby setting the stage for in-depth studies of different populations of planets. We present new multi-wavelength transit photometry of small (Rp < 6 Earth radii), short-period (P < 6 days) Kepler planet candidates acquired with the Gran Telescopio Canarias. Multi-wavelength transit photometry allows us to search for wavelength-dependent transit depths and subsequently identify eclipsing binary false positives (which are especially prevalent at the shortest orbital periods). We combine these new observations of three candidates with previous results for five other candidates (Colón & Ford 2011 and Colón, Ford, & Morehead 2012) to provide new constraints on the false positive rate for small, close-in candidates. In our full sample, we identify four candidates as viable planets and four as eclipsing binary false positives. We therefore find a higher false positive rate for small, close-in candidates compared to the lower false positive rate of ~10% determined by other studies for the full sample of Kepler planet candidates (e.g. Fressin et al. 2013). We also discuss the dearth of known planets with periods less than ~2.5 days and radii between ~3 and 11 Earth radii (the so-called 'sub-Jovian desert'), since the majority of the candidates in our study are located in or around this 'desert.' The lack of planets with these orbital and physical properties is not expected to be due to observational bias, as short-period planets are generally easier to detect (especially if they are larger or more massive than Earth). We consider the implications of our results for the other ~20 Kepler planet candidates located in this desert. Characterizing these candidates will allow us to better understand the formation processes of this apparently rare class of planets.

  19. Long-term eclipse timing of white dwarf binaries: an observational hint of a magnetic mechanism at work

    NASA Astrophysics Data System (ADS)

    Bours, M. C. P.; Marsh, T. R.; Parsons, S. G.; Dhillon, V. S.; Ashley, R. P.; Bento, J. P.; Breedt, E.; Butterley, T.; Caceres, C.; Chote, P.; Copperwheat, C. M.; Hardy, L. K.; Hermes, J. J.; Irawati, P.; Kerry, P.; Kilkenny, D.; Littlefair, S. P.; McAllister, M. J.; Rattanasoon, S.; Sahman, D. I.; Vučković, M.; Wilson, R. W.

    2016-08-01

    We present a long-term programme for timing the eclipses of white dwarfs in close binaries to measure apparent and/or real variations in their orbital periods. Our programme includes 67 close binaries, both detached and semi-detached and with M-dwarfs, K-dwarfs, brown dwarfs or white dwarfs secondaries. In total, we have observed more than 650 white dwarf eclipses. We use this sample to search for orbital period variations and aim to identify the underlying cause of these variations. We find that the probability of observing orbital period variations increases significantly with the observational baseline. In particular, all binaries with baselines exceeding 10 yr, with secondaries of spectral type K2 - M5.5, show variations in the eclipse arrival times that in most cases amount to several minutes. In addition, among those with baselines shorter than 10 yr, binaries with late spectral type (>M6), brown dwarf or white dwarf secondaries appear to show no orbital period variations. This is in agreement with the so-called Applegate mechanism, which proposes that magnetic cycles in the secondary stars can drive variability in the binary orbits. We also present new eclipse times of NN Ser, which are still compatible with the previously published circumbinary planetary system model, although only with the addition of a quadratic term to the ephemeris. Finally, we conclude that we are limited by the relatively short observational baseline for many of the binaries in the eclipse timing programme, and therefore cannot yet draw robust conclusions about the cause of orbital period variations in evolved, white dwarf binaries.

  20. Searching for planets around eclipsing binary stars using timing method: NSVS 14256825

    NASA Astrophysics Data System (ADS)

    Nasiroglu, Ilham; Goździewski, Krzysztof; Słowikowska, Aga; Krzeszowski, Krzysztof; Żejmo, Michal; Zola, Staszek; Er, Huseyin

    2018-04-01

    We present four new mid eclipse times and an updated O-C diagram of the short period eclipsing binary NSVS14256825. The new data follow the (O-C) trend and its model proposed in Nasiroglu et al. (2017). The (O-C) diagram shows quasi-periodic variations that can be explained with the presence of a brown-dwarf in a quasi-circular circumbinary orbit.

  1. The 1984 eclipse of the symbiotic binary SY Muscae

    NASA Technical Reports Server (NTRS)

    Kenyon, S. J.; Michalitisianos, A. G.; Lutz, J. H.; Kafatos, M.

    1985-01-01

    Data from IUE spectra obtained with the 10 x 20-arcsec aperture on May 13, 1984, and optical spectrophotometry obtained with an SIT vidicon on the 1.5-m telescope at CTIO on April 29-May 1, 1984, are reported for the symbiotic binary SY Mus. The data are found to be consistent with a model of a red-giant secondary of 60 solar radii which completely eclipses the hot primary every 627 d but only partially eclipses the 75-solar-radius He(+) region surrounding the primary. The distance to SY Mus is estimated as 1.3 kpc. It is suggested that the large Balmer decrement in eclipse, with (H-alpha)/(H-beta) = 8.3 and (H-beta)/(H-gamma) = 1.5, is associated with an electron density of about 10 to the 10th/cu cm.

  2. Kepler AutoRegressive Planet Search

    NASA Astrophysics Data System (ADS)

    Feigelson, Eric

    NASA's Kepler mission is the source of more exoplanets than any other instrument, but the discovery depends on complex statistical analysis procedures embedded in the Kepler pipeline. A particular challenge is mitigating irregular stellar variability without loss of sensitivity to faint periodic planetary transits. This proposal presents a two-stage alternative analysis procedure. First, parametric autoregressive ARFIMA models, commonly used in econometrics, remove most of the stellar variations. Second, a novel matched filter is used to create a periodogram from which transit-like periodicities are identified. This analysis procedure, the Kepler AutoRegressive Planet Search (KARPS), is confirming most of the Kepler Objects of Interest and is expected to identify additional planetary candidates. The proposed research will complete application of the KARPS methodology to the prime Kepler mission light curves of 200,000: stars, and compare the results with Kepler Objects of Interest obtained with the Kepler pipeline. We will then conduct a variety of astronomical studies based on the KARPS results. Important subsamples will be extracted including Habitable Zone planets, hot super-Earths, grazing-transit hot Jupiters, and multi-planet systems. Groundbased spectroscopy of poorly studied candidates will be performed to better characterize the host stars. Studies of stellar variability will then be pursued based on KARPS analysis. The autocorrelation function and nonstationarity measures will be used to identify spotted stars at different stages of autoregressive modeling. Periodic variables with folded light curves inconsistent with planetary transits will be identified; they may be eclipsing or mutually-illuminating binary star systems. Classification of stellar variables with KARPS-derived statistical properties will be attempted. KARPS procedures will then be applied to archived K2 data to identify planetary transits and characterize stellar variability.

  3. Period changes of the sample of eclipsing binaries with active chromospheres

    NASA Astrophysics Data System (ADS)

    Jableka, D.; Zola, S.; Zakrzewski, B.; Szymanski, T.; Kuzmicz, A.; de Villiers, S. N.; Zejda, M.; Koziel-Wierzbowska, D.

    2012-11-01

    In this work we present results derived from analysis of the O-C behaviour of ten eclipsing binary systems: AR Lac, CG Cyg, HP Aur, MM Her, RS CVn, RT And, SV Cam, V471 Tau, WW Dra and CF Tuc. It was proved on the basis of moments of minima compiled from the literature and new ones determined from recent observations, that these binaries show long term (19-91 years) modulations of their orbital periods, clearly visible in their O-C diagrams. Two possible explanations for this effect are considered: (1) the light-travel time effect due to the presence of a third body orbiting the eclipsing systems; (2) the Applegate mechanism predicting period modulation by changes in the distribution of angular momentum as a star goes through its activity cycles. It was found that in the case of four systems the existence of a third star, orbiting the binary, is a more plausible explanation of observations.

  4. Absolute Properties of the Low-Mass Eclipsing Binary CM Draconis

    NASA Astrophysics Data System (ADS)

    Morales, Juan Carlos; Ribas, Ignasi; Jordi, Carme; Torres, Guillermo; Gallardo, José; Guinan, Edward F.; Charbonneau, David; Wolf, Marek; Latham, David W.; Anglada-Escudé, Guillem; Bradstreet, David H.; Everett, Mark E.; O'Donovan, Francis T.; Mandushev, Georgi; Mathieu, Robert D.

    2009-02-01

    Spectroscopic and eclipsing binary systems offer the best means for determining accurate physical properties of stars, including their masses and radii. The data available for low-mass stars have yielded firm evidence that stellar structure models predict smaller radii and higher effective temperatures than observed, but the number of systems with detailed analyses is still small. In this paper, we present a complete reanalysis of one of such eclipsing systems, CM Dra, composed of two dM4.5 stars. New and existing light curves as well as a radial velocity curve are modeled to measure the physical properties of both components. The masses and radii determined for the components of CM Dra are M 1 = 0.2310 ± 0.0009 M sun, M 2 = 0.2141 ± 0.0010M sun, R 1 = 0.2534 ± 0.0019 R sun, and R 2 = 0.2396 ± 0.0015 R sun. With relative uncertainties well below the 1% level, these values constitute the most accurate properties to date for fully convective stars. This makes CM Dra a valuable benchmark for testing theoretical models. In comparing our measurements with theory, we confirm the discrepancies previously reported for other low-mass eclipsing binaries. These discrepancies seem likely to be due to the effects of magnetic activity. We find that the orbit of this system is slightly eccentric, and we have made use of eclipse timings spanning three decades to infer the apsidal motion and other related properties.

  5. IUE spectra of the eclipsing binary NN Serpentis

    NASA Technical Reports Server (NTRS)

    Wood, Janet H.; Marsh, Thomas R.

    1991-01-01

    Low-resolution SWP and LWP IUE spectra are used to fit the temperature and angular radius of the white dwarf in the detached eclipsing binary NN Ser. It is found that the redenning to the system has E(B-V) of 0.05 +/-0.05, the white dwarf temperature is 60,000 +/-10,000 K, and the age of the white dwarf is less than 10 exp 7. The shape of eclipse and the K-magnitude of the secondary star are used to constrain the inclination of the binary and the masses and radii of the two stars. The size of the secondary star relative to its Roche lobe and the age of the white dwarf indicate that mass transfer has not yet occurred and that the system is a precataclysmic variable rather than a cataclysmic variable which has entered the period gap. Fitting the observed magnitude of the sinusoidal modulation with a reprocessing model shows that only when i is approximately equal to 90 deg is the required temperature of the secondary star consistent with these results. For this solution the white dwarf temperature is also consistent with those obtained from the IUE spectra.

  6. W UMa Type Eclipsing Binary VW Cep

    NASA Astrophysics Data System (ADS)

    Kang, Bong-Seok; Lee, Yong-Sam; Jeong, Jang-Hae

    2000-06-01

    A total of 1,018 observations (509 in B, 509 in V ) of the eclipsing binary VW Cep was made during 7 nights from April through May in 1999 at Sobaeksan Optical Astronomy Observatory, using the CCD camera attached to the 61cm telescope. A time of minimum light of HJD2451327.2282 was determined from our data, and we constructed BV light curves with the data. Using Wilson-Devinney's binary model, we analized the light curves. The absolute dimension of M1 = 0.95Msolar, M2 = 0.33Msolar, R1 = 1.02Rsolar, R2 = 0.66Rsolar of the VW Cep system were derived from our light curve solution and Kaszas et al. (1998) spectroscoppic rsult.

  7. VizieR Online Data Catalog: OGLE II SMC eclipsing binaries (Wyrzykowski+, 2004)

    NASA Astrophysics Data System (ADS)

    Wyrzykowski, L.; Udalski, A.; Kubiak, M.; Szymanski, M. K.; Zebrun, K.; Soszinski, I.; Wozniak, P. R.; Pietrzynski, G.; Szewczyk, O.

    2009-03-01

    We present new version of the OGLE-II catalog of eclipsing binary stars detected in the Small Magellanic Cloud, based on Difference Image Analysis catalog of variable stars in the Magellanic Clouds containing data collected from 1997 to 2000. We found 1351 eclipsing binary stars in the central 2.4 square degree area of the SMC. 455 stars are newly discovered objects, not found in the previous release of the catalog. The eclipsing objects were selected with the automatic search algorithm based on the artificial neural network. The full catalog with individual photometry is accessible from the OGLE INTERNET archive, at ftp://sirius.astrouw.edu.pl/ogle/ogle2/var_stars/smc/ecl . Regular observations of the SMC fields started on June 26, 1997 and covered about 2.4 square degrees of central parts of the SMC. Reductions of the photometric data collected up to the end of May 2000 were performed with the Difference Image Analysis (DIA) package. (1 data file).

  8. Coevality in Young Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Simon, M.; Toraskar, Jayashree

    2017-06-01

    The ages of the components in very short period pre-main-sequence (PMS) binaries are essential to an understanding of their formation. We considered a sample of seven PMS eclipsing binaries (EBs) with ages 1-6.3 MY and component masses 0.2-1.4 {M}⊙ . The very high precision with which their masses and radii have been measured and the capability provided by the Modules for Experiments in Stellar Astrophysics to calculate their evolutionary tracks at exactly the measured masses allows the determination of age differences of the components independent of their luminosities and effective temperatures. We found that the components of five EBs, ASAS J052821+0338.5, Parenago 1802, JW 380, CoRoT 223992193, and UScoCTIO 5, formed within 0.3 MY of each other. The parameters for the components of V1174 Ori imply an implausible large age difference of 2.7 MY and should be reconsidered. The seventh EB in our sample, RX J0529.4+0041 fell outside the applicability of our analysis.

  9. Orbital and Systemic Parameters for Algol Binaries in the Field-of-View of the Kepler Spacecraft

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine J.; Vaccaro, Todd R.; Wilson, Robert E.

    2013-02-01

    We propose observations of seven Algol-type binaries with the 4m Echelle spectrograph necessary for the interpretation of ongoing photometry from the it Kepler spacecraft and archival it Kepler data being analyzed for an approved NASA/ADAP project. These Algols are direct-impact systems (periods range from 1.3-4.5^d) in which the gas stream strikes the photosphere of the gainer, producing a shock. The it Kepler light curves reveal striking long and short-term variability never before seen in ground-based observations. Especially interesting is a long-term oscillation in the relative brightness of the quadrature light that we call L/T variability, which appears to be caused from a migrating variable hot spot. The it Kepler photometry is being interpreted with an updated version of the Wilson & Devinney (WD) program. The KPNO spectra will supply it critical input parameters (e.g. temperatures) and yield radial velocity curves from which we will determine the masses of the stars and absolute dimensions of the systems. Currently there are it no published spectra of most of the program binaries, including WX Dra, the prototype L/T variable and our primary target. We request 4 nights of observing time to cover one orbital cycle in the binaries with the longest periods. This project will yield information on the detailed physics of mass transfer, especially the roles of accretion hot spots and magnetic fields, and also test the new WD program for future applications by others working with the it Kepler database.

  10. Tatooines Future: The Eccentric Response of Keplers Circumbinary Planets to Common-Envelope Evolution of their Host Stars

    NASA Technical Reports Server (NTRS)

    Kostov, Veselin B.; Moore, Keavin; Tamayo, Daniel; Jayawardhana, Ray; Rinehart, Stephen A.

    2016-01-01

    Inspired by the recent Kepler discoveries of circumbinary planets orbiting nine close binary stars, we explore the fate of the former as the latter evolve off the main sequence. We combine binary star evolution models with dynamical simulations to study the orbital evolution of these planets as their hosts undergo common-envelope stages, losing in the process a tremendous amount of mass on dynamical timescales. Five of the systems experience at least one Roche-lobe overflow and common-envelope stages (Kepler-1647 experiences three), and the binary stars either shrink to very short orbits or coalesce; two systems trigger a double-degenerate supernova explosion. Kepler's circumbinary planets predominantly remain gravitationally bound at the end of the common-envelope phase, migrate to larger orbits, and may gain significant eccentricity; their orbital expansion can be more than an order of magnitude and can occur over the course of a single planetary orbit. The orbits these planets can reach are qualitatively consistent with those of the currently known post-common-envelope, eclipse-time variations circumbinary candidates. Our results also show that circumbinary planets can experience both modes of orbital expansion (adiabatic and non-adiabatic) if their host binaries undergo more than one common-envelope stage; multiplanet circumbinary systems like Kepler-47 can experience both modes during the same common-envelope stage. Additionally, unlike Mercury orbiting the Sun, a circumbinary planet with the same semi-major axis can survive the common envelope evolution of a close binary star with a total mass of 1 Solar Mass.

  11. Photometric Analysis of Eclipsing Binary Az Vir

    NASA Astrophysics Data System (ADS)

    Neugarten, Andrew; Akiba, Tatsuya; Gokhale, Vayujeet

    2018-06-01

    We present photometric analysis of the eclipsing binary star system Az Vir. Standard BVR filter data were obtained using the 17-inch PlaneWave Instruments CDK telescope at the Truman State University Observatory in Kirksville, Mo and the 31-inch NURO telescope at the Lowell Observatory complex in Flagstaff, AZ. We apply an eight-term truncated Fourier fit to the light curves generated from these data to confirm the classification of Az Vir as a W Ursae Majoris-type eclipsing variable, using criteria specified by Rucinski (1997). We also calculate the values for the O’Connell Effect Ratio (OER) and the Light Curve Asymmetry (LCA) to quantify the asymmetry in the BVR light curves. In addition, we use data provided by the SuperWASP mission to perform long term O-C (observed minus calculated) analysis on the system to determine if and how its period is changing.

  12. The Late-type Eclipsing Binaries in the Large Magellanic Cloud: Catalog of Fundamental Physical Parameters

    NASA Astrophysics Data System (ADS)

    Graczyk, Dariusz; Pietrzyński, Grzegorz; Thompson, Ian B.; Gieren, Wolfgang; Pilecki, Bogumił; Konorski, Piotr; Villanova, Sandro; Górski, Marek; Suchomska, Ksenia; Karczmarek, Paulina; Stepień, Kazimierz; Storm, Jesper; Taormina, Mónica; Kołaczkowski, Zbigniew; Wielgórski, Piotr; Narloch, Weronika; Zgirski, Bartłomiej; Gallenne, Alexandre; Ostrowski, Jakub; Smolec, Radosław; Udalski, Andrzej; Soszyński, Igor; Kervella, Pierre; Nardetto, Nicolas; Szymański, Michał K.; Wyrzykowski, Łukasz; Ulaczyk, Krzysztof; Poleski, Radosław; Pietrukowicz, Paweł; Kozłowski, Szymon; Skowron, Jan; Mróz, Przemysław

    2018-06-01

    We present a determination of the precise fundamental physical parameters of 20 detached, double-lined, eclipsing binary stars in the Large Magellanic Cloud (LMC) containing G- or early K-type giant stars. Eleven are new systems; the remaining nine are systems already analyzed by our team for which we present updated parameters. The catalog results from our long-term survey of eclipsing binaries in the Magellanic Clouds suitable for high-precision determination of distances (the Araucaria Project). The V-band brightnesses of the systems range from 15.4 to 17.7 mag, and their orbital periods range from 49 to 773 days. Six systems have favorable geometry showing total eclipses. The absolute dimensions of all eclipsing binary components are calculated with a precision of better than 3%, and all systems are suitable for a precise distance determination. The measured stellar masses are in the range 1.4 to 4.6 M ⊙, and comparison with the MESA isochrones gives ages between 0.1 and 2.1 Gyr. The systems show an age–metallicity relation with no evolution of metallicity for systems older than 0.6 Gyr, followed by a rise to a metallicity maximum at age 0.5 Gyr and then a slow metallicity decrease until 0.1 Gyr. Two systems have components with very different masses: OGLE LMC-ECL-05430 and OGLE LMC-ECL-18365. Neither system can be fitted by a single stellar evolution isochrone, explained by a past mass transfer scenario in the case of ECL-18365 and a gravitational capture or hierarchical binary merger scenario in the case of ECL-05430. The longest-period system, OGLE LMC SC9_230659, shows a surprising apsidal motion that shifts the apparent position of the eclipses. This is a clear sign of a physical companion to the system; however, neither investigation of the spectra nor light-curve analysis indicates a third-light contribution larger than 2%–3%. In one spectrum of OGLE LMC-ECL-12669, we noted a peculiar dimming of one of the components by 65% well outside of the

  13. The OGLE Collection of Variable Stars. Over 450 000 Eclipsing and Ellipsoidal Binary Systems Toward the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Soszyński, I.; Pawlak, M.; Pietrukowicz, P.; Udalski, A.; Szymański, M. K.; Wyrzykowski, Ł.; Ulaczyk, K.; Poleski, R.; Kozłowski, S.; Skowron, D. M.; Skowron, J.; Mróz, P.; Hamanowicz, A.

    2016-12-01

    We present a collection of 450 598 eclipsing and ellipsoidal binary systems detected in the OGLE fields toward the Galactic bulge. The collection consists of binary systems of all types: detached, semi-detached, and contact eclipsing binaries, RS CVn stars, cataclysmic variables, HW Vir binaries, double periodic variables, and even planetary transits. For all stars we provide the I- and V-band time-series photometry obtained during the OGLE-II, OGLE-III, and OGLE-IV surveys. We discuss methods used to identify binary systems in the OGLE data and present several objects of particular interest.

  14. GSC 4232.2850, a new eclipsing binary with elliptical orbit

    NASA Astrophysics Data System (ADS)

    Goranskij, V.; Shugarov, S.; Kroll, P.; Golovin, A.

    2005-04-01

    GSC 4232.2830 (20h 01m 28s.407, +61? 10' 17".18, 2000.0, v=12m.1) was suspected to be an eclipsing binary by VPG in the routine overview of photographical plates taken with 40-cm astrograph of SAI Crimean station. To define orbital elements of the binary, we searched for observations in Sonneberg Observatory plate collection, NSVS database (Wozniak et al., 2004), and carried out visual monitoring with a small telescope equipped with an electronic image tube, an analogue of a night vision device. Later, when we had found a preliminary solution, we carried out accurate CCD photometry to improve the orbital elements. We should note, that the depths of eclipses in the NSVS database do not exceed 0m.2, what contradicts to other observations. We suppose that NSVS measurements concern to integral light of two stars, a variable star, and a nearby brighter star, GSC 4232.2395, due to low resolution of this survey, 72". Using all the available observations we found the single orbital solution with an elliptical orbit and the period of 11,6 day. The center of the secondary minimum occurs at the orbital phase 0.69835 or 8.1 day after the primary minimum. The improved ephemeris derived using accurate CCD observations is following: HJD Min I = 2453278,3185(2) + 11.628188 (5) x E. O-C analysis does not show orbital period variations during the time interval of observations, or any evidence of apsidal motion. The observations show that both eclipses have about equal depth 0m.60, but essentially different duration, 0p.028 (7 h.8) for Min I, and 0 p.0175 (4 h.9) for Min II. The eclipses are partial. CCD photometry gives mean colors U-B = -0 m.06, B-V = 0 m.57, and V-R = 0 m.50 without notable color variations in the eclipse phases. Old Sonneberg photographic observations indicate that the eclipses were shallower in the middle of the past century than in the present time! Such contradictions may suggest that the depth of eclipses varied, as in the well-known system SSLac

  15. KMTNet Time-series Photometry of the Doubly Eclipsing Binary Stars Located in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Hong, Kyeongsoo; Koo, Jae-Rim; Lee, Jae Woo; Kim, Seung-Lee; Lee, Chung-Uk; Park, Jang-Ho; Kim, Hyoun-Woo; Lee, Dong-Joo; Kim, Dong-Jin; Han, Cheongho

    2018-05-01

    We report the results of photometric observations for doubly eclipsing binaries OGLE-LMC-ECL-15674 and OGLE-LMC-ECL-22159, both of which are composed of two pairs (designated A&B) of a detached eclipsing binary located in the Large Magellanic Cloud. The light curves were obtained by high-cadence time-series photometry using the Korea Microlensing Telescope Network 1.6 m telescopes located at three southern sites (CTIO, SAAO, and SSO) between 2016 September and 2017 January. The orbital periods were determined to be 1.433 and 1.387 days for components A and B of OGLE-LMC-ECL-15674, respectively, and 2.988 and 3.408 days for OGLE-LMC-ECL-22159A and B, respectively. Our light curve solutions indicate that the significant changes in the eclipse depths of OGLE-LMC-ECL-15674A and B were caused by variations in their inclination angles. The eclipse timing diagrams of the A and B components of OGLE-LMC-ECL-15674 and OGLE-LMC-ECL-22159 were analyzed using 28, 44, 28, and 26 new times of minimum light, respectively. The apsidal motion period of OGLE-LMC-ECL-15674B was estimated by detailed analysis of eclipse timings for the first time. The detached eclipsing binary OGLE-LMC-ECL-15674B shows a fast apsidal period of 21.5 ± 0.1 years.

  16. Interfacing modeling suite Physics Of Eclipsing Binaries 2.0 with a Virtual Reality Platform

    NASA Astrophysics Data System (ADS)

    Harriett, Edward; Conroy, Kyle; Prša, Andrej; Klassner, Frank

    2018-01-01

    To explore alternate methods for modeling eclipsing binary stars, we extrapolate upon PHOEBE’s (PHysics Of Eclipsing BinariEs) capabilities in a virtual reality (VR) environment to create an immersive and interactive experience for users. The application used is Vizard, a python-scripted VR development platform for environments such as Cave Automatic Virtual Environment (CAVE) and other off-the-shelf VR headsets. Vizard allows the freedom for all modeling to be precompiled without compromising functionality or usage on its part. The system requires five arguments to be precomputed using PHOEBE’s python front-end: the effective temperature, flux, relative intensity, vertex coordinates, and orbits; the user can opt to implement other features from PHOEBE to be accessed within the simulation as well. Here we present the method for making the data observables accessible in real time. An Occulus Rift will be available for a live showcase of various cases of VR rendering of PHOEBE binary systems including detached and contact binary stars.

  17. Kepler Detects Planet Orbiting Two Stars (Kepler-16b) Reporter Package for TWAN

    NASA Image and Video Library

    2011-09-19

    NASA's Kepler Mission has made the first detection of a planet orbiting two stars. About 200 light years away from our solar system, the planet Kepler-16b is cold, gaseous and about the size of Saturn. Its stars are both smaller than the Sun and about 2 billion years younger than our Solar System. They orbit around each other, so from our vantage point they take turns eclipsing each other about every 41 days. The planet Kepler-16b orbits around both stars every 229 days.

  18. International Ultraviolet Explorer observations of the peculiar variable spectrum of the eclipsing binary R Arae

    NASA Technical Reports Server (NTRS)

    Mccluskey, G. E.; Kondo, Y.

    1983-01-01

    The eclipsing binary system R Arae = HD 149730 is a relatively bright southern system with an orbital period of about 4.4 days. It is a single-lined spectroscopic binary. The spectral class of the primary component is B9 Vp. The system was included in a study of mass flow and evolution in close binary systems using the International Ultraviolet Explorer satellite (IUE). Four spectra in the wavelength range from 1150 to 1900 A were obtained with the far-ultraviolet SWP camera, and six spectra in the range from 1900 to 3200 range were obtained with the mid-ultraviolet LWR camera. The close binary R Arae exhibits very unusual ultraviolet spectra. It appears that no other close binary system, observed with any of the orbiting satellites, shows outside-eclipse ultraviolet continuum flux variations of this nature.

  19. New Low-mass Eclipsing Binary Systems in Praesepe Discovered by K2

    NASA Astrophysics Data System (ADS)

    Gillen, Edward; Hillenbrand, Lynne A.; David, Trevor J.; Aigrain, Suzanne; Rebull, Luisa; Stauffer, John; Cody, Ann Marie; Queloz, Didier

    2017-11-01

    We present the discovery and characterization of four low-mass (M< 0.6 {M}⊙ ) eclipsing binary (EB) systems in the sub-Gyr old Praesepe open cluster using Kepler/K2 time series photometry and Keck/HIRES spectroscopy. We present a new Gaussian process EB model, GP-EBOP, as well as a method of simultaneously determining effective temperatures and distances for EBs. Three of the reported systems (AD 3814, AD 2615 and AD 1508) are detached and double-lined, and precise solutions are presented for the first two. We determine masses and radii to 1%-3% precision for AD 3814 and to 5%-6% for AD 2615. Together with effective temperatures determined to ˜50 K precision, we test the PARSEC v1.2 and BHAC15 stellar evolution models. Our EB parameters are more consistent with the PARSEC models, primarily because the BHAC15 temperature scale is hotter than our data over the mid-M-dwarf mass range probed. Both ADs 3814 and 2615, which have orbital periods of 6.0 and 11.6 days, are circularized but not synchronized. This suggests that either synchronization proceeds more slowly in fully convective stars than the theory of equilibrium tides predicts, or magnetic braking is currently playing a more important role than tidal forces in the spin evolution of these binaries. The fourth system (AD 3116) comprises a brown dwarf transiting a mid-M-dwarf, which is the first such system discovered in a sub-Gyr open cluster. Finally, these new discoveries increase the number of characterized EBs in sub-Gyr open clusters by 20% (40%) below M< 1.5 M ⊙ (M< 0.6 M ⊙).

  20. Confirmation of an exoplanet using the transit color signature: Kepler-418b, a blended giant planet in a multiplanet system

    NASA Astrophysics Data System (ADS)

    Tingley, B.; Parviainen, H.; Gandolfi, D.; Deeg, H. J.; Palle, E.; Montañés Rodriguez, P.; Murgas, F.; Alonso, R.; Bruntt, H.; Fridlund, M.

    2014-07-01

    Aims: We announce confirmation of Kepler-418b, one of two proposed planets in this system. This is the first confirmation of an exoplanet based primarily on the transit color signature technique. Methods: We used the Kepler public data archive combined with multicolor photometry from the Gran Telescopio de Canarias and radial velocity follow-up using FIES at the Nordic Optical Telescope for confirmation. Results: We report a confident detection of a transit color signature that can only be explained by a compact occulting body, entirely ruling out a contaminating eclipsing binary, a hierarchical triple, or a grazing eclipsing binary. Those findings are corroborated by our radial velocity measurements, which put an upper limit of ~1 MJup on the mass of Kepler-418b. We also report that the host star is significantly blended, confirming the ~10% light contamination suspected from the crowding metric in the Kepler light curve measured by the Kepler team. We report detection of an unresolved light source that contributes an additional ~30% to the target star, which would not have been detected without multicolor photometric analysis. The resulting planet-star radius ratio is 0.110 ± 0.0025, more than 25% more than the 0.087 measured by Kepler leading to a radius of 1.20 ± 0.16 RJup instead of the 0.94 RJup measured by the Kepler team. Conclusions: This is the first confirmation of an exoplanet candidate based primarily on the transit color signature, demonstrating that this technique is viable from ground for giant planets. It is particularly useful for planets with long periods such as Kepler-418b, which tend to have long transit durations. While this technique is limited to candidates with deep transits from the ground, it may be possible to confirm earth-like exoplanet candidates with a few hours of observing time with an instrument like the James Webb Space Telescope. Additionally, multicolor photometric analysis of transits can reveal unknown stellar neighbors

  1. The dynamical mass of a classical Cepheid variable star in an eclipsing binary system.

    PubMed

    Pietrzyński, G; Thompson, I B; Gieren, W; Graczyk, D; Bono, G; Udalski, A; Soszyński, I; Minniti, D; Pilecki, B

    2010-11-25

    Stellar pulsation theory provides a means of determining the masses of pulsating classical Cepheid supergiants-it is the pulsation that causes their luminosity to vary. Such pulsational masses are found to be smaller than the masses derived from stellar evolution theory: this is the Cepheid mass discrepancy problem, for which a solution is missing. An independent, accurate dynamical mass determination for a classical Cepheid variable star (as opposed to type-II Cepheids, low-mass stars with a very different evolutionary history) in a binary system is needed in order to determine which is correct. The accuracy of previous efforts to establish a dynamical Cepheid mass from Galactic single-lined non-eclipsing binaries was typically about 15-30% (refs 6, 7), which is not good enough to resolve the mass discrepancy problem. In spite of many observational efforts, no firm detection of a classical Cepheid in an eclipsing double-lined binary has hitherto been reported. Here we report the discovery of a classical Cepheid in a well detached, double-lined eclipsing binary in the Large Magellanic Cloud. We determine the mass to a precision of 1% and show that it agrees with its pulsation mass, providing strong evidence that pulsation theory correctly and precisely predicts the masses of classical Cepheids.

  2. High-Resolution Infrared Spectroscopic Observations of the Upper Scorpius Eclipsing Binary EPIC 203868608

    NASA Astrophysics Data System (ADS)

    Johnson, Marshall C.; Mace, Gregory N.; Kim, Hwihyun; Kaplan, Kyle; McLane, Jacob; Sokal, Kimberly R.

    2017-06-01

    EPIC 203868608 is a source in the ~10 Myr old Upper Scorpius OB association. Using K2 photometry and ground-based follow-up observations, David et al. (2016) found that it consists of two brown dwarfs with a tertiary object at a projected separation of ~20 AU; the former objects appear to be a double-lined eclipsing binary with a period of 4.5 days. This is one of only two known eclipsing SB2s where both components are below the hydrogen-burning limit. We present additional follow-up observations of this system from the IGRINS high-resolution near-infrared spectrograph at McDonald Observatory. Our measured radial velocities do not follow the orbital solution presented by David et al. (2016). Instead, our combined IGRINS plus literature radial velocity dataset appears to indicate a period significantly different than that of the eclipsing binary obvious from the K2 light curve. We will discuss possible scenarios to account for the conflicting observations of this system.

  3. The Palomar Transient Factory Orion Project: Eclipsing Binaries and Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    van Eyken, Julian C.; Ciardi, David R.; Rebull, Luisa M.; Stauffer, John R.; Akeson, Rachel L.; Beichman, Charles A.; Boden, Andrew F.; von Braun, Kaspar; Gelino, Dawn M.; Hoard, D. W.; Howell, Steve B.; Kane, Stephen R.; Plavchan, Peter; Ramírez, Solange V.; Bloom, Joshua S.; Cenko, S. Bradley; Kasliwal, Mansi M.; Kulkarni, Shrinivas R.; Law, Nicholas M.; Nugent, Peter E.; Ofek, Eran O.; Poznanski, Dovi; Quimby, Robert M.; Grillmair, Carl J.; Laher, Russ; Levitan, David; Mattingly, Sean; Surace, Jason A.

    2011-08-01

    The Palomar Transient Factory (PTF) Orion project is one of the experiments within the broader PTF survey, a systematic automated exploration of the sky for optical transients. Taking advantage of the wide (3fdg5 × 2fdg3) field of view available using the PTF camera installed at the Palomar 48 inch telescope, 40 nights were dedicated in 2009 December to 2010 January to perform continuous high-cadence differential photometry on a single field containing the young (7-10 Myr) 25 Ori association. Little is known empirically about the formation of planets at these young ages, and the primary motivation for the project is to search for planets around young stars in this region. The unique data set also provides for much ancillary science. In this first paper, we describe the survey and the data reduction pipeline, and present some initial results from an inspection of the most clearly varying stars relating to two of the ancillary science objectives: detection of eclipsing binaries and young stellar objects. We find 82 new eclipsing binary systems, 9 of which are good candidate 25 Ori or Orion OB1a association members. Of these, two are potential young W UMa type systems. We report on the possible low-mass (M-dwarf primary) eclipsing systems in the sample, which include six of the candidate young systems. Forty-five of the binary systems are close (mainly contact) systems, and one of these shows an orbital period among the shortest known for W UMa binaries, at 0.2156509 ± 0.0000071 days, with flat-bottomed primary eclipses, and a derived distance that appears consistent with membership in the general Orion association. One of the candidate young systems presents an unusual light curve, perhaps representing a semi-detached binary system with an inflated low-mass primary or a star with a warped disk, and may represent an additional young Orion member. Finally, we identify 14 probable new classical T-Tauri stars in our data, along with one previously known (CVSO 35) and

  4. Physical implications of the eclipsing binary pulsar

    NASA Technical Reports Server (NTRS)

    Wasserman, Ira; Cordes, James M.

    1988-01-01

    The observed characteristics of the msec pulsar P1957+20, discovered in an eclipsing binary by Fruchter et al. (1988), are considered theoretically. Model equations for the stellar wind and optical emission are derived and used to estimate the effective temperature and optical luminosity associated with wind excitation; then the energy levels required to generate such winds are investigated. The color temperature of the pulsar-heated stellar surface calculated under the assumption of adiabatic expansion is 1000-10,000 K, in good agreement with the observational estimate of 5500 K.

  5. Observations, Roche Lobe Analysis, and Period Study of the Eclipsing Contact Binary System GM Canum Venaticorum

    NASA Astrophysics Data System (ADS)

    Alton, K. B.; Nelson, R. H.

    2018-06-01

    GM CVn is an eclipsing W UMa binary system (P = 0.366984 d) which has been largely neglected since its variability was first detected during the ROTSE campaign (1999-2000). Other than a single unfiltered light curve (LC) no other photometric data have been published. LC data collected in three bandpasses (B, V, and Rc) at UnderOak Observatory (UO) produced three new times of minimum for GM CVn. These along with other eclipse timings from the literature were used to update the linear ephemeris. Roche modeling to produce synthetic LC fits to the observed data was accomplished using binary maker 3, wdwint56a, and phoebe v.31a. Newly acquired radial velocity data were pivotal to defining the absolute and geometric parameters for this partially eclipsing binary system. An unspotted solution achieved the best Roche model fits for the multi-color LCs collected in 2013.

  6. VizieR Online Data Catalog: Detection of Kepler multiple M-star systems (Rappaport+, 2014)

    NASA Astrophysics Data System (ADS)

    Rappaport, S.; Swift, J.; Levine, A.; Joss, M.; Sanchis-Ojeda, R.; Barclay, T.; Still, M.; Handler, G.; Olah, K.; Muirhead, P. S.; Huber, D.; Vida, K.

    2017-07-01

    In all, we find 297 of the 3897 targets exhibit the requisite significant Fourier transform (FT) signal comprising a base frequency plus its harmonic, with the base frequency exceeding 0.5 cycles/day (i.e., Prot<2 days). We believe that the majority of these periodicities are likely to be due to stellar rotation manifested via starspots, but a significant number may be due to planet transits and binary eclipses. The individual FTs for these systems were further examined to eliminate those which were clearly not due to rotating starspots. In all cases we folded the data modulo the detected fundamental period, and were readily able to rule out cases due to transiting planets since their well-known sharp, relatively rectangular dipping profiles are characteristic. Of course, we also checked the KOI list for matches. Any of the objects that appear in the Kepler eclipsing binary ("EB") star catalog (e.g., Matijevic et al. 2012AJ....143..123M) were likewise eliminated. (2 data files).

  7. ROTATION PERIODS OF WIDE BINARIES IN THE KEPLER FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janes, K. A.

    In a search of proper motion catalogs for common proper motion stars in the field of the Kepler spacecraft I identified 93 likely binary systems. A comparison of their rotation periods is a test of the gyrochronology concept. To find their periods I calculated the autocorrelation function (ACF) of the Kepler mission photometry for each star. In most systems for which good periods can be found, the cooler star has a longer period than the hotter component, in general agreement with models. However, there is a wide range in the gradients of lines connecting binary pairs in a period–color diagram.more » Furthermore, near the solar color, only a few stars have longer periods than the Sun, suggesting that they, and their cooler companions, are not much older than the Sun. In addition, there is an apparent gap at intermediate periods in the period distribution of the late K and early M stars. Either star formation in this direction has been variable, or stars evolve in period at a non-uniform rate, or some stars evolve more rapidly than others at the same mass. Finally, using the ACF as a measure of the activity level, I found that while the F, G, and early K stars become less active as their periods increase, there is no correlation between period and activity for the mid K to early M stars.« less

  8. HD 66051: the first eclipsing binary hosting an early-type magnetic star

    NASA Astrophysics Data System (ADS)

    Kochukhov, O.; Johnston, C.; Alecian, E.; Wade, G. A.

    2018-05-01

    Early-type magnetic stars are rarely found in close binary systems. No such objects were known in eclipsing binaries prior to this study. Here we investigated the eclipsing, spectroscopic double-lined binary HD 66051, which exhibits out-of-eclipse photometric variations suggestive of surface brightness inhomogeneities typical of early-type magnetic stars. Using a new set of high-resolution spectropolarimetric observations, we discovered a weak magnetic field on the primary and found intrinsic, element-dependent variability in its spectral lines. The magnetic field structure of the primary is dominated by a nearly axisymmetric dipolar component with a polar field strength Bd ≈ 600 G and an inclination with respect to the rotation axis of βd = 13°. A weaker quadrupolar component is also likely to be present. We combined the radial velocity measurements derived from our spectra with archival optical photometry to determine fundamental masses (3.16 and 1.75 M⊙) and radii (2.78 and 1.39 R⊙) with a 1-3% precision. We also obtained a refined estimate of the effective temperatures (13000 and 9000 K) and studied chemical abundances for both components with the help of disentangled spectra. We demonstrate that the primary component of HD 66051 is a typical late-B magnetic chemically peculiar star with a non-uniform surface chemical abundance distribution. It is not an HgMn-type star as suggested by recent studies. The secondary is a metallic-line star showing neither a strong, global magnetic field nor intrinsic spectral variability. Fundamental parameters provided by our work for this interesting system open unique possibilities for probing interior structure, studying atomic diffusion, and constraining binary star evolution.

  9. VX Her: Eclipsing Binary System or Single Variable Star

    NASA Astrophysics Data System (ADS)

    Perry, Kathleen; Castelaz, Michael; Henson, Gary; Boghozian, Andrew

    2015-01-01

    VX Her is a pulsating variable star with a period of .4556504 days. It is believed to be part of an eclipsing binary system (Fitch et al. 1966). This hypothesis originated from Fitch seeing VX Her's minimum point on its light curve reaching a 0.7 magnitude fainter than normal and remaining that way for nearly two hours. If VX Her were indeed a binary system, I would expect to see similar results with a fainter minimum and a broader, more horizontal dip. Having reduced and analyzed images from the Southeastern Association for Research in Astronomy Observatory in Chile and Kitt Peak, as well as images from a 0.15m reflector at East Tennessee State University, I found that VX Her has the standard light curve of the prototype variable star, RR Lyrae. Using photometry, I found no differing features in its light curve to suggest that it is indeed a binary system. However, more observations are needed in case VX Her is a wide binary.

  10. Finding binaries from phase modulation of pulsating stars with Kepler: V. Orbital parameters, with eccentricity and mass-ratio distributions of 341 new binaries

    NASA Astrophysics Data System (ADS)

    Murphy, Simon J.; Moe, Maxwell; Kurtz, Donald W.; Bedding, Timothy R.; Shibahashi, Hiromoto; Boffin, Henri M. J.

    2018-03-01

    The orbital parameters of binaries at intermediate periods (102-103 d) are difficult to measure with conventional methods and are very incomplete. We have undertaken a new survey, applying our pulsation timing method to Kepler light curves of 2224 main-sequence A/F stars and found 341 non-eclipsing binaries. We calculate the orbital parameters for 317 PB1 systems (single-pulsator binaries) and 24 PB2s (double-pulsators), tripling the number of intermediate-mass binaries with full orbital solutions. The method reaches down to small mass ratios q ≈ 0.02 and yields a highly homogeneous sample. We parametrize the mass-ratio distribution using both inversion and Markov-Chain Monte Carlo forward-modelling techniques, and find it to be skewed towards low-mass companions, peaking at q ≈ 0.2. While solar-type primaries exhibit a brown dwarf desert across short and intermediate periods, we find a small but statistically significant (2.6σ) population of extreme-mass-ratio companions (q < 0.1) to our intermediate-mass primaries. Across periods of 100-1500 d and at q > 0.1, we measure the binary fraction of current A/F primaries to be 15.4 per cent ± 1.4 per cent, though we find that a large fraction of the companions (21 per cent ± 6 per cent) are white dwarfs in post-mass-transfer systems with primaries that are now blue stragglers, some of which are the progenitors of Type Ia supernovae, barium stars, symbiotics, and related phenomena. Excluding these white dwarfs, we determine the binary fraction of original A/F primaries to be 13.9 per cent ± 2.1 per cent over the same parameter space. Combining our measurements with those in the literature, we find the binary fraction across these periods is a constant 5 per cent for primaries M1 < 0.8 M⊙, but then increases linearly with log M1, demonstrating that natal discs around more massive protostars M1 ≳ 1 M⊙ become increasingly more prone to fragmentation. Finally, we find the eccentricity distribution of the main

  11. HD 47755, a new eclipsing binary

    NASA Technical Reports Server (NTRS)

    Koch, R. H.; Bradstreet, D. H.; Hrivnak, B. J.; Pfeiffer, R. J.; Perry, P. M.

    1986-01-01

    The IUE spectra of the close binary star HD 47755 have been examined in order to determine its geometry, chemical composition, and light curve. UBV fluxes in the spectra, when dereddened for E(B-V) = 0.09 yield an effective temperature of 16,500 K. The ratio of the mean radii of the stars is found to agree well with an old blueband spectrophotometric value. Eclipses in the binary have been observed and a complex green light curve is derived. It is suggested that the wind from at least one of the components of HD 47755 is the source of the complexity in the light curve. The geometry of the HD 47755 is compared to that of V 641 Mon, A definite cluster member of NGC 2264. The interstellar line spectrum is found to be similar to that of V 641 Mon and the column densities for a few interstellar ions are given in a table. Evaluation of the nonastrometric evidence indicates that HD 47755 is also a member of NGC 2264.

  12. The Age and Distance of the Kepler Open Cluster NGC 6811 from an Eclipsing Binary, Turnoff Star Pulsation, and Giant Asteroseismology

    NASA Astrophysics Data System (ADS)

    Sandquist, Eric L.; Jessen-Hansen, J.; Shetrone, Matthew D.; Brogaard, Karsten; Meibom, Søren; Leitner, Marika; Stello, Dennis; Bruntt, Hans; Antoci, Victoria; Orosz, Jerome A.; Grundahl, Frank; Frandsen, Søren

    2016-11-01

    We present the analysis of an eccentric, partially eclipsing long-period (P = 19.23 days) binary system KIC 9777062 that contains main-sequence stars near the turnoff of the intermediate-age open cluster NGC 6811. The primary is a metal-lined Am star with a possible convective blueshift to its radial velocities, and one star (probably the secondary) is likely to be a γ Dor pulsator. The component masses are 1.603 ± 0.006(stat.) ± 0.016(sys.) and 1.419 ± 0.003 ± 0.008 {M}⊙ , and the radii are 1.744 ± 0.004 ± 0.002 and 1.544 ± 0.002 ± 0.002 {R}⊙ . The isochrone ages of the stars are mildly inconsistent: the age from the mass-radius combination for the primary (1.05 ± 0.05 ± 0.09 Gyr, where the last quote was systematic uncertainty from models and metallicity) is smaller than that from the secondary (1.21 ± 0.05 ± 0.15 Gyr) and is consistent with the inference from the color-magnitude diagram (1.00 ± 0.05 Gyr). We have improved the measurements of the asteroseismic parameters Δν and ν max for helium-burning stars in the cluster. The masses of the stars appear to be larger (or alternately, the radii appear to be smaller) than predicted from isochrones using the ages derived from the eclipsing stars. The majority of stars near the cluster turnoff are pulsating stars: we identify a sample of 28 δ Sct, 15 γ Dor, and 5 hybrid types. We used the period-luminosity relation for high-amplitude δ Sct stars to fit the ensemble of the strongest frequencies for the cluster members, finding {(m-M)}V=10.37+/- 0.03. This is larger than most previous determinations, but smaller than values derived from the eclipsing binary (10.47 ± 0.05). Based on observations made with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen, and with the Nordic Optical Telescope, operated by the Nordic

  13. A computer program for modeling non-spherical eclipsing binary star systems

    NASA Technical Reports Server (NTRS)

    Wood, D. B.

    1972-01-01

    The accurate analysis of eclipsing binary light curves is fundamental to obtaining information on the physical properties of stars. The model described accounts for the important geometric and photometric distortions such as rotational and tidal distortion, gravity brightening, and reflection effect. This permits a more accurate analysis of interacting eclipsing star systems. The model is designed to be useful to anyone with moderate computing resources. The programs, written in FORTRAN 4 for the IBM 360, consume about 80k bytes of core. The FORTRAN program listings are provided, and the computational aspects are described in some detail.

  14. Planet Hunters, Undergraduate Research, and Detection of Extrasolar Planet Kepler-818 b

    NASA Astrophysics Data System (ADS)

    Baker, David; Crannell, Graham; Duncan, James; Hays, Aryn; Hendrix, Landon

    2017-01-01

    Detection of extrasolar planets provides an excellent research opportunity for undergraduate students. In Spring 2012, we searched for transiting extrasolar planets using Kepler spacecraft data in our Research Experience in Physics course at Austin College. Offered during the regular academic year, these Research Experience courses engage students in the scientific process, including proposal writing, paper submission, peer review, and oral presentations. Since 2004, over 190 undergraduate students have conducted authentic scientific research through Research Experience courses at Austin College.Zooniverse’s citizen science Planet Hunters web site offered an efficient method for rapid analysis of Kepler data. Light curves from over 5000 stars were analyzed, of which 2.3% showed planetary candidates already tagged by the Kepler team. Another 1.5% of the light curves suggested eclipsing binary stars, and 1.6% of the light curves had simulated planets for training purposes.One of the stars with possible planetary transits had not yet been listed as a planetary candidate. We reported possible transits for Kepler ID 4282872, which later was promoted to planetary candidate KOI-1325 in 2012 and confirmed to host extrasolar planet Kepler-818 b in 2016 (Morton et al. 2016). Kepler-818 b is a “hot Neptune” with period 10.04 days, flux decrease during transit ~0.4%, planetary radius 4.69 Earth radii, and semi-major axis 0.089 au.

  15. Asiago eclipsing binaries program IV. SZ Camelopardalis, a β Cephei pulsator in a quadruple, eclipsing system

    NASA Astrophysics Data System (ADS)

    Tamajo, E.; Munari, U.; Siviero, A.; Tomasella, L.; Dallaporta, S.

    2012-03-01

    We present a spectroscopic and photometric analysis of the multiple system and early-type eclipsing binary SZ Cam (O9 IV + B0.5 V), which consists of an eclipsing SB2 pair of orbital period P = 2.7 days in a long orbit (~55 yrs) around a non-eclipsing SB1 pair of orbital period P = 2.8 days. We have reconstructed the spectra of the individual components of SZ Cam from the observed composite spectra using the technique of spectral disentangling. We used them together with extensive and accurate BVIC CCD photometry to obtain an orbital solution. Our photometry revealed the presence of a β Cep variable in the SZ Cam hierarchical system, probably located within the non-eclipsing SB1 pair. The pulsation period is (0.33265 ± 0.00005) days and the observed total amplitude in the B band is (0.0105 ± 0.0005) mag. NLTE analysis of the disentangled spectra provided atmospheric parameters for all three components, consistent with those derived from orbital solution. Full Table 3 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/539/A139

  16. First photometric study of two southern eclipsing binaries IS Tel and DW Aps

    NASA Astrophysics Data System (ADS)

    Özer, S.; Sürgit, D.; Erdem, A.; Öztürk, O.

    2017-02-01

    The paper presents the first photometric analysis of two southern eclipsing binary stars, IS Tel and DW Aps. Their V light curves from the All Sky Automated Survey were modelled by using Wilson-Devinney method. The final models give these two Algol-like binary stars as having detached configurations. Absolute parameters of the components of the systems were also estimated.

  17. A SUBSTELLAR COMPANION TO THE WHITE DWARF-RED DWARF ECLIPSING BINARY NN Ser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, S.-B.; Dai, Z.-B.; Liao, W.-P.

    2009-11-20

    NN Ser is a short-period (P = 3.12 hr) close binary containing a very hot white dwarf primary with a mass of 0.535 M{sub sun} and a fully convective secondary with a mass of 0.111 M{sub sun}. The changes in the orbital period of the eclipsing binary were analyzed based on our five newly determined eclipse times together with those compiled from the literature. A small-amplitude (0fd00031) cyclic period variation with a period of 7.56 years was discovered to be superimposed on a possible long-term decrease. The periodic change was plausibly explained as the light-travel time effect via the presencemore » of a tertiary companion. The mass of the tertiary companion is determined to be M{sub 3}sin i' = 0.0107(+-0.0017) M{sub sun} when a total mass of 0.646 M{sub sun} for NN Ser is adopted. For orbital inclinations i' >= 49.{sup 0}56, the mass of the tertiary component was calculated to be M {sub 3} <= 0.014 M{sub sun}; thus it would be an extrasolar planet. The third body is orbiting the white dwarf-red dwarf eclipsing binary at a distance shorter than 3.29 AU. Since the observed decrease rate of the orbital period is about two orders larger than that caused by gravitational radiation, it can be plausibly interpreted by magnetic braking of the fully convective component, which is driving this binary to evolve into a normal cataclysmic variable.« less

  18. IUE observations of the atmospheric eclipsing binary system Zeta Aurigae

    NASA Technical Reports Server (NTRS)

    Champman, R. D.

    1980-01-01

    IUE observations of the eclipsing binary system Zeta Aurigae made prior to and during the eclipse of the relatively small B8 V star by the cool supergiant star (spectral type K2 II) are reported. Spectral lines produced by the absorption of B star radiation in the atmosphere of the K star during eclipse can be used as a probe of the extended K star atmosphere, due to the negligible cool star continuum in the 1200-3200 A region. Spectra taken prior to eclipse are found to be similar to those of the single B8 V star 64 Ori, with the exception of very strong multi-component absorption lines of Si II, Si IV, C IV and the Mg resonance doublet with strong P Cygni profiles, indicating a double shell. Absorption lines including those corresponding to Al II, Al III, Cr II, Mn II, Fe II, Ni II and Ca II are observed to increase in strength and number as the eclipse progresses, with high-ionization-potential lines formed far from the K star, possibly in a shock wave, and low-ionization potential lines, formed in cool plasma, probably a cool wind, nearer to the K star. Finally, an emission-line spectra with lines corresponding to those previously observed in absorption is noted at the time the B-star continuum had disappeared.

  19. Transiting circumbinary planets Kepler-34 b and Kepler-35 b.

    PubMed

    Welsh, William F; Orosz, Jerome A; Carter, Joshua A; Fabrycky, Daniel C; Ford, Eric B; Lissauer, Jack J; Prša, Andrej; Quinn, Samuel N; Ragozzine, Darin; Short, Donald R; Torres, Guillermo; Winn, Joshua N; Doyle, Laurance R; Barclay, Thomas; Batalha, Natalie; Bloemen, Steven; Brugamyer, Erik; Buchhave, Lars A; Caldwell, Caroline; Caldwell, Douglas A; Christiansen, Jessie L; Ciardi, David R; Cochran, William D; Endl, Michael; Fortney, Jonathan J; Gautier, Thomas N; Gilliland, Ronald L; Haas, Michael R; Hall, Jennifer R; Holman, Matthew J; Howard, Andrew W; Howell, Steve B; Isaacson, Howard; Jenkins, Jon M; Klaus, Todd C; Latham, David W; Li, Jie; Marcy, Geoffrey W; Mazeh, Tsevi; Quintana, Elisa V; Robertson, Paul; Shporer, Avi; Steffen, Jason H; Windmiller, Gur; Koch, David G; Borucki, William J

    2012-01-11

    Most Sun-like stars in the Galaxy reside in gravitationally bound pairs of stars (binaries). Although long anticipated, the existence of a 'circumbinary planet' orbiting such a pair of normal stars was not definitively established until the discovery of the planet transiting (that is, passing in front of) Kepler-16. Questions remained, however, about the prevalence of circumbinary planets and their range of orbital and physical properties. Here we report two additional transiting circumbinary planets: Kepler-34 (AB)b and Kepler-35 (AB)b, referred to here as Kepler-34 b and Kepler-35 b, respectively. Each is a low-density gas-giant planet on an orbit closely aligned with that of its parent stars. Kepler-34 b orbits two Sun-like stars every 289 days, whereas Kepler-35 b orbits a pair of smaller stars (89% and 81% of the Sun's mass) every 131 days. The planets experience large multi-periodic variations in incident stellar radiation arising from the orbital motion of the stars. The observed rate of circumbinary planets in our sample implies that more than ∼1% of close binary stars have giant planets in nearly coplanar orbits, yielding a Galactic population of at least several million.

  20. Gravity Modes Reveal the Internal Rotation of a Post-mass-transfer Gamma Doradus/Delta Scuti Hybrid Pulsator in Kepler Eclipsing Binary KIC 9592855

    NASA Astrophysics Data System (ADS)

    Guo, Z.; Gies, D. R.; Matson, R. A.

    2017-12-01

    We report the discovery of a post-mass-transfer Gamma Doradus/Delta Scuti hybrid pulsator in the eclipsing binary KIC 9592855. This binary has a circular orbit, an orbital period of 1.2 days, and contains two stars of almost identical masses ({M}1=1.72 {M}⊙ ,{M}2=1.71 {M}⊙ ). However, the cooler secondary star is more evolved ({R}2=1.96 {R}⊙ ), while the hotter primary is still on the zero-age-main-sequence ({R}1=1.53 {R}⊙ ). Coeval models from single-star evolution cannot explain the observed masses and radii, and binary evolution with mass-transfer needs to be invoked. After subtracting the binary light curve, the Fourier spectrum shows low-order pressure-mode pulsations, and more dominantly, a cluster of low-frequency gravity modes at about 2 day-1. These g-modes are nearly equally spaced in period, and the period spacing pattern has a negative slope. We identify these g-modes as prograde dipole modes and find that they stem from the secondary star. The frequency range of unstable p-modes also agrees with that of the secondary. We derive the internal rotation rate of the convective core and the asymptotic period spacing from the observed g-modes. The resulting values suggest that the core and envelope rotate nearly uniformly, i.e., their rotation rates are both similar to the orbital frequency of this synchronized binary.

  1. Correlations among the parameters of the spherical model for eclipsing binaries

    NASA Technical Reports Server (NTRS)

    Sobieski, S.; White, J. E.

    1971-01-01

    Correlation coefficients were computed to investigate the parameters for describing the spherical model of an eclipsing binary system. Regions in parameter hyperspace were identified where strong correlations exist and, by implication, the solution determinacy is low. The results are presented in tabular form for a large number of system configurations.

  2. 1SWASP J200503.05-343726.5: A high mass ratio eclipsing binary near the period limit

    NASA Astrophysics Data System (ADS)

    Bin, Zhang; Shengbang, Qian; Zejda, Miloslav; Liying, Zhu; Nianping, Liu

    2017-07-01

    First CCD photometric light curves of the eclipsing binary system 1SWASP J200503.05-343726.5 are presented. Our complete light curves in V, R and I bands using the Bessell filter show an out-of-eclipsing distortion, which means that the components of the system may be active. The preliminary photometric solutions with a cool star-spot are derived by using the 2013 version of the Wilson-Devinney (W-D) code. The photometric solutions suggest that 1SWASP J200503.05-343726.5 is a shallow-contact eclipsing binary(f = 9.0 %) with a mass ratio of q = 1.0705 , which is very high for late-type binary systems near the period limit. The primary component is about 230 K hotter than the secondary component. Based on our new CCD eclipse times, the orbital period change was analyzed. According to O - C diagram, the orbital period of the 1SWASP J200503.05-343726.5 shows an increase at a rate of P˙ = + 5.43 ×10-8 days year-1. The period increase may be caused by mass transfer from the less massive component to the more massive one. This shallow-contact system may be formed from a detached short-period binary via orbital shrinkage because of dynamical interactions with a third component or by magnetic braking.

  3. Precision of Times-of-Minima and the Detection of Low-Mass Third Bodies Orbiting Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Genet, R. M.; Smith, T. C.

    2004-12-01

    Low-mass third bodies orbiting eclipsing binaries are difficult to detect by way of periodic shifts in photometric times-of-minima because the observational precision of these timings are of the same order as the expected effects of any low-mass companions. We are implementing three approaches to increasing the precision of our times-of-minima. First, we are obtaining many times-of-minima by utilizing relatively low-cost, dedicated telescopes and CCD cameras (10- and 14-inch Meade LX-200 telescopes and SBIG ST7-XE cameras). Operating in a semiautomatic mode, we select an eclipsing binary system, based on its placement in the sky, and observe it all night long - usually many nights in a row. We choose binaries with short enough periods to assure us of obtaining a complete light curve (and hence an eclipse) every night we observe. Second, we are striving to increase the photometric precision of each observation through the use of multiple comparison stars (ensemble photometry). We are also, in conjunction with California Polytechnic State University, investigating other ways of increasing the photometric precision of these low-cost systems (see E. Sturm this conference). Finally, we are utilizing complete, as opposed to partial, light curves in our analysis. Information outside primary eclipses is gathered as a matter of course, and its use can improve precision. A total of 186 complete light curves were obtained at the Dark Ridge and Orion Observatories during the 2004 observing season on six eclipsing binaries (TZ Boo, V523 Cas, RW Com, V1191 Cyg, GM Dra, and V400 Lyr). Please see T. Smith and R. Genet (this conference) for preliminary results on V523 Cas (30+ complete light curves).

  4. The eclipsing system V404 Lyr: Light-travel times and γ Doradus pulsations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jae Woo; Kim, Seung-Lee; Hong, Kyeongsoo

    We present the physical properties of V404 Lyr exhibiting eclipse timing variations and multiperiodic pulsations from all historical data including the Kepler and SuperWASP observations. Detailed analyses of 2922 minimum epochs showed that the orbital period has varied through a combination of an upward-opening parabola and two sinusoidal variations, with periods of P {sub 3} = 649 days and P {sub 4} = 2154 days and semi-amplitudes of K {sub 3} = 193 s and K {sub 4} = 49 s, respectively. The secular period increase at a rate of +1.41 × 10{sup –7} days yr{sup –1} could be interpretedmore » as a combination of the secondary to primary mass transfer and angular momentum loss. The most reasonable explanation for both sinusoids is a pair of light-travel-time effects due to two circumbinary objects with projected masses of M {sub 3} = 0.47 M {sub ☉} and M {sub 4} = 0.047 M {sub ☉}. The third-body parameters are consistent with those calculated using the Wilson-Devinney binary code. For the orbital inclinations i {sub 4} ≳ 43°, the fourth component has a mass within the hydrogen-burning limit of ∼0.07 M {sub ☉}, which implies that it is a brown dwarf. A satisfactory model for the Kepler light curves was obtained by applying a cool spot to the secondary component. The results demonstrate that the close eclipsing pair is in a semi-detached, but near-contact, configuration; the primary fills approximately 93% of its limiting lobe and is larger than the lobe-filling secondary. Multiple frequency analyses were applied to the light residuals after subtracting the synthetic eclipsing curve from the Kepler data. This revealed that the primary component of V404 Lyr is a γ Dor type pulsating star, exhibiting seven pulsation frequencies in the range of 1.85-2.11 day{sup –1} with amplitudes of 1.38-5.72 mmag and pulsation constants of 0.24-0.27 days. The seven frequencies were clearly identified as high-order low-degree gravity-mode oscillations which might be

  5. Correlations among the parameters of the spherical model for eclipsing binaries.

    NASA Technical Reports Server (NTRS)

    Sobieski, S.; White, J.

    1973-01-01

    Correlation coefficients have been computed to investigate the parameters used to describe the spherical model of an eclipsing binary system. Regions in parameter hyperspace have been identified where strong correlations exist and, by implication, the solution determinacy is low. The results are presented in tabular form for a large number of system configurations.

  6. Discovery of two eclipsing X-ray binaries in M 51

    NASA Astrophysics Data System (ADS)

    Wang, Song; Soria, Roberto; Urquhart, Ryan; Liu, Jifeng

    2018-04-01

    We discovered eclipses and dips in two luminous (and highly variable) X-ray sources in M 51. One (CXOM51 J132943.3+471135) is an ultraluminous supersoft source, with a thermal spectrum at a temperature of about 0.1 keV and characteristic blackbody radius of about 104 km. The other (CXOM51 J132946.1+471042) has a two-component spectrum with additional thermal-plasma emission; it approached an X-ray luminosity of 1039erg s-1 during outbursts in 2005 and 2012. From the timing of three eclipses in a series of Chandra observations, we determine the binary period (52.75 ± 0.63 hr) and eclipse fraction (22% ± 0.1%) of CXOM51 J132946.1+471042. We also identify a blue optical counterpart in archival Hubble Space Telescope images, consistent with a massive donor star (mass of ˜20-35M⊙). By combining the X-ray lightcurve parameters with the optical constraints on the donor star, we show that the mass ratio in the system must be M_2/M_1 ≳ 18, and therefore the compact object is most likely a neutron star (exceeding its Eddington limit in outburst). The general significance of our result is that we illustrate one method (applicable to high-inclination sources) of identifying luminous neutron star X-ray binaries, in the absence of X-ray pulsations or phase-resolved optical spectroscopy. Finally, we discuss the different X-ray spectral appearance expected from super-Eddington neutron stars and black holes at high viewing angles.

  7. Discovery of two eclipsing X-ray binaries in M 51

    NASA Astrophysics Data System (ADS)

    Wang, Song; Soria, Roberto; Urquhart, Ryan; Liu, Jifeng

    2018-07-01

    We discovered eclipses and dips in two luminous (and highly variable) X-ray sources in M 51. One (CXOM51 J132943.3+471135) is an ultraluminous supersoft source, with a thermal spectrum at a temperature of about 0.1 keV and characteristic blackbody radius of about 104 km. The other (CXOM51 J132946.1+471042) has a two-component spectrum with additional thermal-plasma emission; it approached an X-ray luminosity of 1039 erg s-1 during outbursts in 2005 and 2012. From the timing of three eclipses in a series of Chandra observations, we determine the binary period (52.75 ± 0.63 h) and eclipse fraction (22 ± 0.1 per cent) of CXOM51 J132946.1+471042. We also identify a blue optical counterpart in archival Hubble Space Telescope images, consistent with a massive donor star (mass of ˜20-35 M⊙). By combining the X-ray light-curve parameters with the optical constraints on the donor star, we show that the mass ratio in the system must be M_2/M_1 ≳ 18 and therefore the compact object is most likely a neutron star (exceeding its Eddington limit in outburst). The general significance of our result is that we illustrate one method (applicable to high-inclination sources) of identifying luminous neutron star X-ray binaries, in the absence of X-ray pulsations or phase-resolved optical spectroscopy. Finally, we discuss the different X-ray spectral appearance expected from super-Eddington neutron stars and black holes at high viewing angles.

  8. A Photometric Study of the Eclipsing Binary NSV 1000

    NASA Astrophysics Data System (ADS)

    Richards, T. J.; Bembrick, C. S.

    2018-06-01

    Abstract NSV 1000 is an unstudied eclipsing binary in Hydrus. Our photometric research in the period 2014-2016 shows it is a W UMa system with a period of 0.336 579 6(3) d, consistent with the catalogued period. Model fitting to our B, V, and Ic light curves shows the two stars are barely in contact. The parameters derived from the fit satisfy the broadly defined characteristics of a W-type W UMa system.

  9. WW Geminorum: An Early B-type Eclipsing Binary Evolving into the Contact Phase

    NASA Astrophysics Data System (ADS)

    Yang, Y.-G.; Yang, Y.; Dai, H.-F.; Yin, X.-G.

    2014-11-01

    WW Gem is a B-type eclipsing binary with a period of 1.2378 days. The CCD photometry of this binary was performed in 2013 December using the 85 cm telescope at the Xinglong Stations of the National Astronomical Observatories of China. Using the updated W-D program, the photometric model was deduced from the VRI light curves. The results imply that WW Gem is a near-contact eclipsing binary whose primary component almost fills its Roche lobe. The photometric mass ratio is q ph = 0.48(± 0.05). All collected times of minimum light, including two new ones, were used for the period studies. The orbital period changes of WW Gem could be described by an upward parabola, possibly overlaid by a light-time orbit with a period of P mod = 7.41(± 0.04) yr and a semi-amplitude of A = 0.0079 days(± 0.0005 days), respectively. This kind of cyclic oscillation may be attributed to the light-travel time effect via the third body. The long-term period increases at a rate of dP/dt = +3.47(±0.04) × 10-8 day yr-1, which may be explained by the conserved mass transfer from the less massive component to the more massive one. With mass transfer, the massive binary WW Gem may be evolving into a contact binary.

  10. Evidence for Atmospheric Cold-trap Processes in the Noninverted Emission Spectrum of Kepler-13Ab Using HST /WFC3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beatty, Thomas G.; Zhao, Ming; Gilliland, Ronald L.

    We observed two eclipses of the Kepler-13A planetary system, on UT 2014 April 28 and UT 2014 October 13, in the near-infrared using Wide Field Camera 3 on the Hubble Space Telescope . By using the nearby binary stars Kepler-13BC as a reference, we were able to create a differential light curve for Kepler-13A that had little of the systematics typically present in HST /WFC3 spectrophotometry. We measure a broadband (1.1–1.65 μ m) eclipse depth of 734 ± 28 ppm and are able to measure the emission spectrum of the planet at R  ≈ 50 with an average precision of 70 ppm. Wemore » find that Kepler-13Ab possesses a noninverted, monotonically decreasing vertical temperature profile. We exclude an isothermal profile and an inverted profile at more than 3 σ . We also find that the dayside emission of Kepler-13Ab appears generally similar to an isolated M7 brown dwarf at a similar effective temperature. Due to the relatively high mass and surface gravity of Kepler-13Ab, we suggest that the apparent lack of an inversion is due to cold-trap processes in the planet’s atmosphere. Using a toy model for where cold traps should inhibit inversions, as well as observations of other planets in this temperature range with measured emission spectra, we argue that with more detailed modeling and more observations we may be able to place useful constraints on the size of condensates on the daysides of hot Jupiters.« less

  11. Chandra Observations of the Eclipsing Wolf-Rayet Binary CQ CepOver a Full Orbital Cycle

    NASA Astrophysics Data System (ADS)

    Skinner, Steve L.; Guedel, Manuel; Schmutz, Werner; Zhekov, Svetozar

    2018-06-01

    We present results of Chandra X-ray observations and simultaneous optical light curves of the short-period (1.64 d) eclipsing WN6+O9 binary system CQ Cep obtained in 2013 and 2017 covering a full binary orbit. Our primary objective was to compare the observed X-ray properties with colliding wind shock theory, which predicts that the hottest shock plasma (T > 20 MK) will form on or near the line-of-centers between the stars. Thus, X-ray variability is expected during eclipses when the hottest plasma is occulted. The X-ray spectrum is strikingly similar to apparently single WN6 stars such as WR 134 and spectral lines reveal plasma over a broad range of temperatures T ~ 4 - 40 MK. Both primary and secondary optical eclipses were clearly detected and provide an accurate orbital period determination (P = 1.6412 d). The X-ray emission remained remarkably steady throughout the orbit and statistical tests give a low probability of variability. The lack of significant X-ray variabililty during eclipses indicates that the X-ray emission is not confined along the line-of-centers but is extended on larger spatial scales, contrary to colliding wind predictions.

  12. B and V photometry and analysis of the eclipsing binary RZ CAS

    NASA Astrophysics Data System (ADS)

    Riazi, N.; Bagheri, M. R.; Faghihi, F.

    1994-01-01

    Photoelectric light curves of the eclipsing binary RZ Cas are presented for B and V filters. The light curves are analyzed for light and geometrical elements, starting with a previously suggested preliminary method. The approximate results thus obtained are then optimised through the Wilson-Devinney computer programs.

  13. Observations of hot stars and eclipsing binaries with FRESIP

    NASA Technical Reports Server (NTRS)

    Gies, Douglas R.

    1994-01-01

    The FRESIP project offers an unprecedented opportunity to study pulsations in hot stars (which vary on time scales of a day) over a several year period. The photometric data will determine what frequencies are present, how or if the amplitudes change with time, and whether there is a connection between pulsation and mass loss episodes. It would initiate a new field of asteroseismology studies of hot star interiors. A search should be made for selected hot stars for inclusion in the list of project targets. Many of the primary solar mass targets will be eclipsing binaries, and I present estimates of their frequency and typical light curves. The photometric data combined with follow up spectroscopy and interferometric observations will provide fundamental data on these stars. The data will provide definitive information on the mass ratio distribution of solar-mass binaries (including the incidence of brown dwarf companions) and on the incidence of planets in binary systems.

  14. Photometric analysis of the eclipsing binary star AI Draconis

    NASA Astrophysics Data System (ADS)

    Deǧirmenci, Ö. L.; Gülmen, Ö.; Sezer, C.; Erdem, A.; Devlen, A.

    2000-11-01

    New photometric data from the eclipsing binary star AI Draconis has been analyzed with the method of Wilson-Devinney. The system shows a period increase of about 0.91 sec per century, which corresponds to a mass transfer from the less to the more massive component at a rate of 7.5 10-7 Msun/yr under the conservative mass transfer hypothesis. We also suggest that the system has an unseen component which orbits around the mass center of the triplet system with a period of about 23 yrs. We found that the projectional angular separation between the third star and eclipsing pair varies from 0.048 arcsec to 0.235 arcsec. These results suggestive of a third body should be checked in the future with more sensitive observations. Table 1 is only available electronically with the On-Line publication at http://link.springer.de/link/service/00230/

  15. Full Phase Multi-Band Study of Eclipsing Binaries 1SWASP J061850.43+220511.9 and 2MASSJ07095549+3643564

    NASA Astrophysics Data System (ADS)

    Terheide, Rachel; Zhang, Liyun; Han, Xianming; Lu, Hongpeng

    2018-01-01

    We present full-phase VRI-band light curves for eclipsing binary 1SWASP J061850.43+220511.9, and full-phase BVRI-band light curves for eclipsing binary 2MASS J07095549+3643564. The observations were conducted using the 0.94-m Holcomb Observatory telescope located on Butler University Campus in Indianapolis, Indiana, and the 0.6-m SARA telescope located at the Cerro Tololo Inter-American Observatory in Chile. We obtained key system parameters for both eclipsing binaries. For 1SWASP J061850.43+220511.9, the period is 0.21482 ±0.00053 days compared to 0.21439 days from an older study (Lohr et. al), the system mass ratio is found as 2.50 and the system is classified as EW type. Similarly, for 2MASS J07095549+3643564, we obtained a linear ephemeris and a physical model for the first time. We found its period to be 0.22297 ±0.00032 days, as compared to 0.446092 days and 0.11152 days from previous research (Drake et. al 2014, Hartman et. al 2011). 2MASS J07095549+3643564 is classified as a W Uma type eclipsing binary.

  16. The Exciting World of Binary Stars: Not Just Eclipses Anymore (Abstract)

    NASA Astrophysics Data System (ADS)

    Pablo, B.

    2018-06-01

    (Abstract only) Binary stars have always been essential to astronomy. Their periodic eclipses are the most common and efficient method for determining precise masses and radii of stars. Binaries are known for their predictability and have been observed for hundreds if not thousands of years. As such, they are often ignored by observers as uninteresting, however, nothing could be farther from the truth. In the last ten years alone the importance of binary stars, as well of our knowledge of them, has changed significantly. In this talk, I will introduce you to this new frontier of heartbeats, mergers, and evolution, while hopefully motivating a change in the collective thinking of how this unique class of objects is viewed. Most importantly,

  17. EC 10246-2707: an eclipsing subdwarf B + M dwarf binary

    NASA Astrophysics Data System (ADS)

    Barlow, B. N.; Kilkenny, D.; Drechsel, H.; Dunlap, B. H.; O'Donoghue, D.; Geier, S.; O'Steen, R. G.; Clemens, J. C.; LaCluyze, A. P.; Reichart, D. E.; Haislip, J. B.; Nysewander, M. C.; Ivarsen, K. M.

    2013-03-01

    We announce the discovery of a new eclipsing hot subdwarf B + M dwarf binary, EC 10246-2707, and present multicolour photometric and spectroscopic observations of this system. Similar to other HW Vir-type binaries, the light curve shows both primary and secondary eclipses, along with a strong reflection effect from the M dwarf; no intrinsic light contribution is detected from the cool companion. The orbital period is 0.118 507 9936 ± 0.000 000 0009 d, or about 3 h. Analysis of our time series spectroscopy reveals a velocity semi-amplitude of K1 = 71.6 ± 1.7 km s-1 for the sdB and best-fitting atmospheric parameters of Teff = 28 900 ± 500 K, log g = 5.64 ± 0.06 and log N(He)/N(H) = -2.5 ± 0.2. Although we cannot claim a unique solution from modelling the light curve, the best-fitting model has an sdB mass of 0.45 M⊙ and a cool companion mass of 0.12 M⊙. These results are roughly consistent with a canonical-mass sdB and M dwarf separated by a ˜ 0.84 R⊙. We find no evidence of pulsations in the light curve and limit the amplitude of rapid photometric oscillations to <0.08 per cent. Using 15 yr of eclipse timings, we construct an observed minus calculated (O - C) diagram but find no statistically significant period changes; we rule out |dot{P}| > 7.2 × 10^{-12}. If EC 10246-2707 evolves into a cataclysmic variable, its period should fall below the famous cataclysmic variable period gap.

  18. Introducing Triquetrum, A Possible Future for Kepler and Ptolemy II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Christopher; Billings, Jay Jay

    Triquetrum is an open platform for managing and executing scientific workflows that is under development as an Eclipse project. Both Triquetrum and Kepler use Ptolemy II as their execution engine. Triquetrum presents opportunities and risks for the Kepler community. The opportunities include a possibly larger community for interaction and a path for Kepler to move from Kepler's one-off ant-based build environment towards a more common OSGi-based environment and a way to maintain a stable Ptolemy II core. The risks include the fact that Triquetrum is a fork of Ptolemy II that would result in package name changes and other possiblemore » changes. In addition, Triquetrum is licensed under the Eclipse Public License v1.0, which includes a patent clause that could conflict with the University of California patent clause. This paper describes these opportunities and risks.« less

  19. Photometric Study of The Solar Type, Total Eclipsing Binary, TYC 2853-18-1

    NASA Astrophysics Data System (ADS)

    Samec, Ronald G.; Figg, E. R.; Faulkner, D.; Van Hamme, W.

    2009-12-01

    We present an analysis of the Solar-Type eclipsing binary, TYC 2853-18-1 (Persei), based on observations taken at the National Undergraduate Research Observatory (NURO) and the Southeastern Association for Research in Astronomy (SARA) in the Fall, 2007 and Spring, 2008. Light curves, a period study and a synthetic light curve solution are presented for this variable which was recently discovered by TYCHO as an eclipsing binary (2006, IBVS 5700). Our CCD observations of TYC 2853-18-1 [GSC 2853 0018, RA(2000) = 02h 47m 07.996s, DEC(2000) = +41° 22’ 32.80"] were taken on 20,27 December, 2007 at Lowell Observatory with the 0.81-m reflector with NURO time and 25 November, 3 December, 2007 and 19 February, 2008 via remote observing from Kitt Peak with SARA. NURO observations were take with the thermoelectrically cooled (<-100C) 2KX2K CCD NASACAM. Standard BVRcIc Johnson-Cousins filters were used. Our light curve solution was calculated with the 2004 Wilson code. Mean times of eclipse include, HJDMinI = 2454516.6131(±0.0005), 2454440.52974(±0.00008), 2454438.7605 (±0.0001), 2454462.6464 (±0.0003), HJDMinII = 2454455.71985 (±0.00060), 255462.7943 (±0.0002). These, including the epoch by ROTSE (2006, IBVS 5699) and the epoch calculated by the Wilson code, yielded the following ephemeris: HJD Hel Min I =2451370.8753(±.0.0010)d + 0.2949039 (±0.0000001)E Our unspotted Wilson code solution reveals TYC 2853-18-1 to be a W-type W UMa contact binary with unequal eclipse depths (amplitudes are 0.72 and 0.61 mags in V). It has shallow contact (8% fill-out) and a brief, but total eclipse. Its curves dictate a mass ratio of 2.62±0.01, a component temperature difference of only 73±5 ° K and an inclination of 82.0±0.2°. Spot activity is indicated by night to night variations. We wish to thank the NURO and SARA for their allocation of observing time, as well as NASA and the AAS for their support in paying for travel and publication expenses.

  20. A Photometric Study of Three Eclipsing Binary Stars (Poster abstract)

    NASA Astrophysics Data System (ADS)

    Ryan, A.

    2016-12-01

    (Abstract only) As part of a program to study eclipsing binary stars that exhibit the O'Connell Effect (OCE) we are observing a selection of binary stars in a long term study. The OCE is a difference in maximum light across the ligthcurve possibly cause by starspots. We observed for 7 nights at McDonald Observatory using the 30-inch telescope in July 2015, and used the same telescope remotely for a total of 20 additional nights in August, October, December, and January. We will present lightcurves for three stars from this study, characterize the OCE for these stars, and present our model results for the physical parameters of the star making up each of these systems.

  1. The Search for Pre-Main Sequence Eclipsing Binary Stars in the Lagoon Nebula

    NASA Astrophysics Data System (ADS)

    Henderson, Calen B.; Stassun, K. G.

    2009-01-01

    We report time-series CCD I-band photometry for the pre-main-sequence cluster NGC 6530, located within the Lagoon Nebula. The data were obtained with the 4Kx4K imager on the SMARTS 1.0m telescope at CTIO on 36 nights over the summers of 2005 and 2006. In total we have light curves for 50,000 stars in an area 1 deg2, with a sampling cadence of 1 hour. The stars in our sample have masses in the range 0.25-4.0 Msun, assuming a distance of 1.25 kpc to the cluster. Our goals are to look for stars with rotation periods and to identify eclipsing binary candidates. Here we present light curves of photometrically variable stars and potential eclipsing binary star systems. This work has been supported by the National Science Foundation under Career grant AST-0349075.

  2. WW Geminorum: An early B-type eclipsing binary evolving into the contact phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y.-G.; Dai, H.-F.; Yin, X.-G.

    2014-11-01

    WW Gem is a B-type eclipsing binary with a period of 1.2378 days. The CCD photometry of this binary was performed in 2013 December using the 85 cm telescope at the Xinglong Stations of the National Astronomical Observatories of China. Using the updated W-D program, the photometric model was deduced from the VRI light curves. The results imply that WW Gem is a near-contact eclipsing binary whose primary component almost fills its Roche lobe. The photometric mass ratio is q {sub ph} = 0.48(± 0.05). All collected times of minimum light, including two new ones, were used for the periodmore » studies. The orbital period changes of WW Gem could be described by an upward parabola, possibly overlaid by a light-time orbit with a period of P {sub mod} = 7.41(± 0.04) yr and a semi-amplitude of A = 0.0079 days(± 0.0005 days), respectively. This kind of cyclic oscillation may be attributed to the light-travel time effect via the third body. The long-term period increases at a rate of dP/dt = +3.47(±0.04) × 10{sup –8} day yr{sup –1}, which may be explained by the conserved mass transfer from the less massive component to the more massive one. With mass transfer, the massive binary WW Gem may be evolving into a contact binary.« less

  3. THE VARYING LIGHT CURVE AND TIMINGS OF THE ULTRASHORT-PERIOD CONTACT BINARY KIC 9532219

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jae Woo; Hong, Kyeongsoo; Koo, Jae-Rim

    2016-03-20

    KIC 9532219 is a W UMa-type eclipsing binary with an orbital period of 0.1981549 days that is below the short-period limit (∼0.22 days) of the period distribution for contact binaries. The Kepler light curve of the system exhibits striking changes in both eclipse depths and light maxima. Applying third-body and spot effects, the light-curve synthesis indicates that the eclipsing pair is currently in a marginal contact stage with a mass ratio of q = 1.20, an orbital inclination of i = 66.°0, a temperature difference of T{sub 1}–T{sub 2} = 172 K, and a third light of l{sub 3} = 75.9%.more » To understand the light variations with time, we divided up the light curve into 312 segments and analyzed them separately. The results reveal that variation of eclipse depth is primarily caused by changing amounts of contamination due to the nearby star KIC 9532228 between the Kepler Quarters and that the variable O’Connell effect originates from the starspot activity on the less massive primary component. Based on our light-curve timings, a period study of KIC 9532219 indicates that the orbital period has varied as a combination of a downward parabola and a light-travel-time (LTT) effect due to a third body, which has a period of 1196 days and a minimum mass of 0.0892 M{sub ⊙} in an orbit of eccentricity 0.150. The parabolic variation could be a small part of a second LTT orbit due to a fourth component in a wider orbit, instead of either mass transfer or angular momentum loss.« less

  4. Processing and Managing the Kepler Mission's Treasure Trove of Stellar and Exoplanet Data

    NASA Technical Reports Server (NTRS)

    Jenkins, Jon M.

    2016-01-01

    The Kepler telescope launched into orbit in March 2009, initiating NASAs first mission to discover Earth-size planets orbiting Sun-like stars. Kepler simultaneously collected data for 160,000 target stars at a time over its four-year mission, identifying over 4700 planet candidates, 2300 confirmed or validated planets, and over 2100 eclipsing binaries. While Kepler was designed to discover exoplanets, the long term, ultra- high photometric precision measurements it achieved made it a premier observational facility for stellar astrophysics, especially in the field of asteroseismology, and for variable stars, such as RR Lyraes. The Kepler Science Operations Center (SOC) was developed at NASA Ames Research Center to process the data acquired by Kepler from pixel-level calibrations all the way to identifying transiting planet signatures and subjecting them to a suite of diagnostic tests to establish or break confidence in their planetary nature. Detecting small, rocky planets transiting Sun-like stars presents a variety of daunting challenges, from achieving an unprecedented photometric precision of 20 parts per million (ppm) on 6.5-hour timescales, supporting the science operations, management, processing, and repeated reprocessing of the accumulating data stream. This paper describes how the design of the SOC meets these varied challenges, discusses the architecture of the SOC and how the SOC pipeline is operated and is run on the NAS Pleiades supercomputer, and summarizes the most important pipeline features addressing the multiple computational, image and signal processing challenges posed by Kepler.

  5. Observations of candidate oscillating eclipsing binaries and two newly discovered pulsating variables

    NASA Astrophysics Data System (ADS)

    Liakos, A.; Niarchos, P.

    2009-03-01

    CCD observations of 24 eclipsing binary systems with spectral types ranging between A0-F0, candidate for containing pulsating components, were obtained. Appropriate exposure times in one or more photometric filters were used so that short-periodic pulsations could be detected. Their light curves were analyzed using the Period04 software in order to search for pulsational behaviour. Two new variable stars, namely GSC 2673-1583 and GSC 3641-0359, were discov- ered as by-product during the observations of eclipsing variables. The Fourier analysis of the observations of each star, the dominant pulsation frequencies and the derived frequency spectra are also presented.

  6. Characterization of Exoplanet Atmospheres and Kepler Planet Candidates with Multi-Color Photometry from the Gran Telescopio Canarias

    NASA Astrophysics Data System (ADS)

    Colon, Knicole; Ford, E. B.

    2012-01-01

    With over 180 confirmed transiting exoplanets and NASA's Kepler mission's recent discovery of over 1200 transiting exoplanet candidates, we can conduct detailed investigations into the (i) properties of exoplanet atmospheres and (ii) false positive rates for planet search surveys. To aid these investigations, we developed a novel technique of using the Optical System for Imaging and low Resolution Integrated Spectroscopy (OSIRIS) installed on the 10.4-meter Gran Telescopio Canarias (GTC) to acquire near-simultaneous multi-color photometry of (i) HD 80606b in bandpasses around the potassium (K I) absorption feature, (ii) GJ 1214b in bandpasses around a possible methane absorption feature and (iii) several Kepler planet candidates. For HD 80606b, we measure a significant color change during transit between wavelengths that probe the K I line core and the K I wing, equivalent to a 4.2% change in the apparent planetary radius. We hypothesize that the excess absorption may be due to K I in a high-speed wind being driven from the exoplanet's exosphere. This is one of the first detections of K I in an exoplanet atmosphere. For GJ 1214b, we compare the transit depths measured "on” and "off” a possible methane absorption feature and use our results to help resolve conflicting results from other studies regarding the composition of this super-Earth-size planet's atmosphere. For Kepler candidates, we use the color change during transit to reject candidates that are false positives (e.g., a blend with an eclipsing binary either in the background/foreground or bound to the target star). We target small planets (<6 Earth radii) with short orbital periods (<6 days), since eclipsing binaries can mimic planets in this regime. Our results include identification of two false positives and test recent predictions of the false positive rates for the Kepler sample. This research demonstrates the value of the GTC for exoplanet follow-up.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostov, Veselin B.; Orosz, Jerome A.; Welsh, William F.

    We report the discovery of a new Kepler transiting circumbinary planet (CBP). This latest addition to the still-small family of CBPs defies the current trend of known short-period planets orbiting near the stability limit of binary stars. Unlike the previous discoveries, the planet revolving around the eclipsing binary system Kepler-1647 has a very long orbital period (∼1100 days) and was at conjunction only twice during the Kepler mission lifetime. Due to the singular configuration of the system, Kepler-1647b is not only the longest-period transiting CBP at the time of writing, but also one of the longest-period transiting planets. With amore » radius of 1.06 ± 0.01 R {sub Jup}, it is also the largest CBP to date. The planet produced three transits in the light curve of Kepler-1647 (one of them during an eclipse, creating a syzygy) and measurably perturbed the times of the stellar eclipses, allowing us to measure its mass, 1.52 ± 0.65 M {sub Jup}. The planet revolves around an 11-day period eclipsing binary consisting of two solar-mass stars on a slightly inclined, mildly eccentric ( e {sub bin} = 0.16), spin-synchronized orbit. Despite having an orbital period three times longer than Earth’s, Kepler-1647b is in the conservative habitable zone of the binary star throughout its orbit.« less

  8. New inclination changing eclipsing binaries in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Juryšek, J.; Zasche, P.; Wolf, M.; Vraštil, J.; Vokrouhlický, D.; Skarka, M.; Liška, J.; Janík, J.; Zejda, M.; Kurfürst, P.; Paunzen, E.

    2018-01-01

    Context. Multiple stellar systems are unique laboratories for astrophysics. Analysis of their orbital dynamics, if well characterized from their observations, may reveal invaluable information about the physical properties of the participating stars. Unfortunately, there are only a few known and well described multiple systems, this is even more so for systems located outside the Milky Way galaxy. A particularly interesting situation occurs when the inner binary in a compact triple system is eclipsing. This is because the stellar interaction, typically resulting in precession of orbital planes, may be observable as a variation of depth of the eclipses on a long timescale. Aims: We aim to present a novel method to determine compact triples using publicly available photometric data from large surveys. Here we apply it to eclipsing binaries (EBs) in Magellanic Clouds from OGLE III database. Our tool consists of identifying the cases where the orbital plane of EB evolves in accord with expectations from the interaction with a third star. Methods: We analyzed light curves (LCs) of 26121 LMC and 6138 SMC EBs with the goal to identify those for which the orbital inclination varies in time. Archival LCs of the selected systems, when complemented by our own observations with Danish 1.54-m telescope, were thoroughly analyzed using the PHOEBE program. This provided physical parameters of components of each system. Time dependence of the EB's inclination was described using the theory of orbital-plane precession. By observing the parameter-dependence of the precession rate, we were able to constrain the third companion mass and its orbital period around EB. Results: We identified 58 candidates of new compact triples in Magellanic Clouds. This is the largest published sample of such systems so far. Eight of them were analyzed thoroughly and physical parameters of inner binary were determined together with an estimation of basic characteristics of the third star. Prior to our

  9. Mapping the accretion disc of the short period eclipsing binary SDSS J0926+3624

    NASA Astrophysics Data System (ADS)

    Schlindwein, Wagner; Baptista, Raymundo

    2018-05-01

    We report the analysis of time-series of optical photometry of SDSS J0926+3624 collected with the Liverpool Robotic Telescope between 2012 February and March while the object was in quiescence. We combined our median eclipse timing with those in the literature to revise the ephemeris and confirm that the binary period is increasing at a rate \\dot{P}=(3.2 ± 0.4)× 10^{-13} s/s. The light curves show no evidence of either the orbital hump produced by a bright spot at disc rim or of superhumps; the average out-of-eclipse brightness level is consistently lower than previously reported. The eclipse map from the average light curve shows a hot white dwarf surrounded by a faint, cool accretion disc plus enhanced emission along the gas stream trajectory beyond the impact point at the outer disc rim, suggesting the occurrence of gas stream overflow/penetration at that epoch. We estimate a disc mass input rate of \\dot{M}=(9 ± 1)× 10^{-12} M_⊙ yr^{-1}, more than an order of magnitude lower than that expected from binary evolution with conservative mass transfer.

  10. Photoelectric observations of the long-period eclipsing binaries at Yonsei University Observatory

    NASA Technical Reports Server (NTRS)

    Nha, I. S.; Lee, Y. S.; Chun, Y. W.; Kim, H. I.; Kim, Y. S.

    1985-01-01

    A long term project (ten-years; 1982-92) for the photoelectric observation in the UBV passbands of selected eclipsing binaries with P 10 days has initiated at Yonsei University Observatory using 40-cm and 61-cm reflectors. The instrumentation used and the observation techniques and the reduction procedures applied to this investigation are described.

  11. The infrared counterpart of the eclipsing X-ray binary HO253 + 193

    NASA Technical Reports Server (NTRS)

    Zuckerman, B.; Becklin, E. E.; Mclean, I. S.; Patterson, Joseph

    1992-01-01

    We report the identification of the infrared counterpart of the pulsating X-ray source HO253 + 193. It is a highly reddened star varying in K light with a period near 3 hr, but an apparent even-odd effect in the light curve implies that the true period is 6.06 hr. Together with the recent report of X-ray eclipses at the latter period, this establishes the close binary nature of the source. Infrared minimum occurs at X-ray minimum, certifying that the infrared variability arises from the tidal distortion of the lobe-filling secondary. The absence of a point source at radio wavelengths, plus the distance derived from the infrared data, suggests that the binary system is accidentally located behind the dense core of the molecular cloud Lynds 1457. The eclipses and pulsations in the X-ray light curve, coupled with the hard X-ray spectrum and low luminosity, demonstrate that HO253 + 193 contains an accreting magnetic white dwarf, and hence belongs to the 'DQ Herculis' class of cataclysmic variables.

  12. From YY Boo (eclipsing binary) via J1407 (ringed companion) to WD 1145+017 (white dwarf with debris disk) (Abstract)

    NASA Astrophysics Data System (ADS)

    Hambsch, F.-J.

    2018-06-01

    (Abstract only) Several years ago by accident I observed YY Boo outside of an eclipse and was very surprised to see a short term periodic variation of about 0.1 mag. That was completely unexpected and it initiated an international campaign by amateurs to identify the cause of these variations. It turned out that YY Boo showed a pulsation period of about 88 min in addition to being an Algol type eclipsing binary. Hence it turned out that YY Boo has become a new member of a class of pulsating eclipsing binary systems with, at that time, the second largest amplitude after BO Her.

  13. The evolution of eccentricity in the eclipsing binary system AS Camelopardalis

    NASA Astrophysics Data System (ADS)

    Kozyreva, Valentina; Kusakin, Anatoly; Bogomazov, Alexey

    2018-01-01

    In 2002, 2004 and 2017 we conducted high precision CCD photometry observations of the eclipsing binary system AS Cam. By analysis of the light curves from1967 to 2017 (our data + data from the literature) we obtained photometric elements of the system and found a change in the system’s orbital eccentricity of Δe = 0.03±0.01. This change can indicate that there is a third companion in the system in a highly inclined orbit with respect to the orbital plane of the central binary, and its gravitational influence may cause the discrepancy between observed and theoretical apsidal motion rates of AS Cam.

  14. Light curve variations of the eclipsing binary V367 Cygni

    NASA Astrophysics Data System (ADS)

    Akan, M. C.

    1987-07-01

    The long-period eclipsing binary star V367 Cygni has been observed photoelectrically in two colours, B and V, in 1984, 1985, and 1986. These new light curves of the system have been discussed and compared for the light-variability with the earlier ones presented by Heiser (1962). Using some of the previously published photoelectric light curves and the present ones, several primary minima times have been derived to calculate the light elements. Any attempt to obtain a photometric solution of the binary is complicated by the peculiar nature of the light curve caused by the presence of the circumstellar matter in the system. Despite this difficulty, however, some approaches are being carried out to solve the light curves which are briefly discussed.

  15. The Kepler Data Processing Handbook: A Field Guide to Prospecting for Habitable Worlds

    NASA Technical Reports Server (NTRS)

    Jenkins, Jon M.

    2017-01-01

    The Kepler telescope hurtled into orbit in March 2009, initiating NASA's first mission to discover Earth-size planets orbiting Sun-like stars. Kepler simultaneously collected data for approximately 165,000 target stars at a time over its four-year mission, identifying over 4700 planet candidates, over 2300 confirmed or validated planets, and over 2100 eclipsing binaries. While Kepler was designed to discover exoplanets, the long-term, ultrahigh photometric precision measurements it achieved made it a premier observational facility for stellar astrophysics, especially in the field of asteroseismology, and for variable stars, such as RR Lyrae. The Kepler Science Operations Center (SOC) was developed at NASA Ames Research Center to process the data acquired by Kepler from pixel-level calibrations all the way to identifying transiting planet signatures and subjecting them to a suite of diagnostic tests to establish or break confidence in their planetary nature. Detecting small, rocky planets transiting Sun-like stars presents a variety of daunting challenges, including achieving an unprecedented photometric precision of 20 ppm on 6.5-hour timescales, and supporting the science operations, management, processing, and repeated reprocessing of the accumulating data stream. A newly revised and expanded version of the Kepler Data Processing Handbook (KDPH) has been released to support the legacy archival products. The KDPH details the theory, design and performance of the algorithms supporting each data processing step. This paper presents an overview of the KDPH and features illustrations of several key algorithms in the Kepler Science Data Processing Pipeline. Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA, Science Mission Directorate.

  16. A Comprehensive Catalog of Galactic Eclipsing Binary Stars with Eccentric Orbits Based on Eclipse Timing Diagrams

    NASA Astrophysics Data System (ADS)

    Kim, C.-H.; Kreiner, J. M.; Zakrzewski, B.; Ogłoza, W.; Kim, H.-W.; Jeong, M.-J.

    2018-04-01

    A comprehensive catalog of 623 galactic eclipsing binary (EB) systems with eccentric orbits is presented with more than 2830 times of minima determined from the archived photometric data by various sky-survey projects and new photometric measurements. The systems are divided into two groups according to whether the individual system has a GCVS name or not. All the systems in both groups are further classified into three categories (D, A, and A+III) on the basis of their eclipse timing diagrams: 453 D systems showing just constantly displaced secondary minima, 139 A systems displaying only apsidal motion (AM), and 31 A+III systems exhibiting both AM and light-time effects. AM parameters for 170 systems (A and A+III systems) are consistently calculated and cataloged with basic information for all systems. Some important statistics for the AM parameters are discussed and compared with those derived for the eccentric EB systems in the Large and Small Magellanic Clouds.

  17. Photometric and Spectroscopic Analysis for the Determination of Physical Parameters of an Eclipsing Binary Star System

    NASA Astrophysics Data System (ADS)

    Reid, Piper

    2013-01-01

    A binary star system is a pair of stars that are bound together by gravity. Most of the stars that we see in the night sky are members of multiple star systems. A system of stars where one star passes in front of the other (as observed from Earth) on a periodic basis is called an eclipsing binary. Eclipsing binaries can have very short rotational periods and in all cases these pairs of stars are so far away that they can only be resolved from Earth as a single point of light. The interaction of the two stars serves to produce physical phenomena that can be observed and used to study stellar properties. By careful data collection and analysis is it possible for an amateur astronomer using commercial, low cost equipment (including a home built spectroscope) to gather photometric (brightness versus time) and spectroscopic (brightness versus wavelength) data, analyze the data, and calculate the physical properties of a binary star system? Using a CCD camera, tracking mount and telescope photometric data of BB Pegasi was collected and a light curve produced. 57 Cygni was also studied using a spectroscope, tracking mount and telescope to prove that Doppler shift of Hydrogen Balmer absorption lines can be used to determine radial velocity. The orbital period, orbital velocity, radius of each star, separation of the two stars and mass of each star was calculated for the eclipsing binary BB Pegasi using photometric and spectroscopic data and Kepler’s 3rd Law. These data were then compared to published data. By careful use of consumer grade astronomical equipment it is possible for an amateur astronomer to determine an array of physical parameters of a distant binary star system from a suburban setting.

  18. Period Study and Analyses of 2017 Observations of the Totally Eclipsing, Solar Type Binary, MT Camelopardalis

    NASA Astrophysics Data System (ADS)

    Faulkner, Danny R.; Samec, Ronald G.; Caton, Daniel B.

    2018-06-01

    We report here on a period study and the analysis of BVRcIc light curves (taken in 2017) of MT Cam (GSC03737-01085), which is a solar type (T ~ 5500K) eclipsing binary. D. Caton observed MT Cam on 05, 14, 15, 16, and 17, December 2017 with the 0.81-m reflector at Dark Sky Observatory. Six times of minimum light were calculated from four primary eclipses and two secondary eclipses:HJD I = 24 58092.4937±0.0002, 2458102.74600±0.0021, 2458104.5769±0.0002, 2458104.9434±0.0029HJD II = 2458103.6610±0.0001, 2458104.7607±0.0020,Six times of minimum light were also calculated from data taken by Terrell, Gross, and Cooney, in their 2016 and 2004 observations (reported in IBVS #6166; TGC, hereafter). In addition, six more times of minimum light were taken from the literature. From all 18 times of minimum light, we determined the following light elements:JD Hel Min I=2458102.7460(4) + 0.36613937(5) EWe found the orbital period was constant over the 14 years spanning all observations. We note that TGC found a slightly increasing period. However, our results were obtained from a period study rather than comparison of observations from only two epochs by the Wilson-Devinney (W-D) Program. A BVRcIc Johnson-Cousins filtered simultaneous W-D Program solution gives a mass ratio (0.3385±0.0014) very nearly the same as TGC’s (0.347±0.003), and a component temperature difference of only ~40 K. As with TGC, no spot was needed in the modeling. Our modeling (beginning with Binary Maker 3.0 fits) was done without prior knowledge of TGC’s. This shows the agreement achieved when independent analyses are done with the W-D code. The present observations were taken 1.8 years later than the last curves by TGC, so some variation is expected.The Roche Lobe fill-out of the binary is ~13% and the inclination is ~83.5 degrees. The system is a shallow contact W-type W UMa Binary, albeit, the amplitudes of the primary and secondary eclipse are very nearly identical. An eclipse duration of ~21

  19. New Pleiades Eclipsing Binaries and a Hyades Transiting System Identified by K2

    NASA Astrophysics Data System (ADS)

    David, Trevor J.; Conroy, Kyle E.; Hillenbrand, Lynne A.; Stassun, Keivan G.; Stauffer, John; Rebull, Luisa M.; Cody, Ann Marie; Isaacson, Howard; Howard, Andrew W.; Aigrain, Suzanne

    2016-05-01

    We present the discovery in Kepler’s K2 mission observations and our follow-up radial velocity (RV) observations from Keck/HIRES for four eclipsing binary (EB) star systems in the young benchmark Pleiades and Hyades clusters. Based on our modeling results, we announce two new low mass ({M}{tot}\\lt 0.6 {M}⊙ ) EBs among Pleiades members (HCG 76 and MHO 9) and we report on two previously known Pleiades binaries that are also found to be EB systems (HII 2407 and HD 23642). We measured the masses of the binary HCG 76 to ≲2.5% precision, and the radii to ≲4.5% precision, which together with the precise effective temperatures yield an independent Pleiades distance of 132 ± 5 pc. We discuss another EB toward the Pleiades that is a possible but unlikely Pleiades cluster member (AK II 465). The two new confirmed Pleiades systems extend the mass range of Pleiades EB components to 0.2-2 {M}⊙ . Our initial measurements of the fundamental stellar parameters for the Pleiades EBs are discussed in the context of the current stellar models and the nominal cluster isochrone, finding good agreement with the stellar models of Baraffe et al. at the nominal Pleiades age of 120 Myr. Finally, in the Hyades, we report a new low mass eclipsing system (vA 50) that was concurrently discovered and studied by Mann et al. We confirm that the eclipse is likely caused by a Neptune-sized transiting planet, and with the additional RV constraints presented here we improve the constraint on the maximum mass of the planet to be ≲1.2 MJup.

  20. CHANGING PHASES OF ALIEN WORLDS: PROBING ATMOSPHERES OF KEPLER PLANETS WITH HIGH-PRECISION PHOTOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esteves, Lisa J.; Mooij, Ernst J. W. De; Jayawardhana, Ray, E-mail: esteves@astro.utoronto.ca, E-mail: demooij@astro.utoronto.ca, E-mail: rayjay@yorku.ca

    We present a comprehensive analysis of planetary phase variations, including possible planetary light offsets, using eighteen quarters of data from the Kepler space telescope. Our analysis found fourteen systems with significant detections in each of the phase curve components: planet’s phase function, secondary eclipse, Doppler boosting, and ellipsoidal variations. We model the full phase curve simultaneously, including primary and secondary transits, and derive albedos, day- and night-side temperatures and planet masses. Most planets manifest low optical geometric albedos (< 0.25), with the exception of Kepler-10b, Kepler-91b, and KOI-13b. We find that KOI-13b, with a small eccentricity of 0.0006 ± 0.0001,more » is the only planet for which an eccentric orbit is favored. We detect a third harmonic for HAT-P-7b for the first time, and confirm the third harmonic for KOI-13b reported in Esteves et al.: both could be due to their spin–orbit misalignments. For six planets, we report a planetary brightness peak offset from the substellar point: of those, the hottest two (Kepler-76b and HAT-P-7b) exhibit pre-eclipse shifts or on the evening-side, while the cooler four (Kepler-7b, Kepler-8b, Kepler-12b, and Kepler-41b) peak post-eclipse or on the morning-side. Our findings dramatically increase the number of Kepler planets with detected planetary light offsets, and provide the first evidence in the Kepler data for a correlation between the peak offset direction and the planet’s temperature. Such a correlation could arise if thermal emission dominates light from hotter planets that harbor hot spots shifted toward the evening-side, as theoretically predicted, while reflected light dominates cooler planets with clouds on the planet’s morning-side.« less

  1. Data Validation in the Kepler Science Operations Center Pipeline

    NASA Technical Reports Server (NTRS)

    Wu, Hayley; Twicken, Joseph D.; Tenenbaum, Peter; Clarke, Bruce D.; Li, Jie; Quintana, Elisa V.; Allen, Christopher; Chandrasekaran, Hema; Jenkins, Jon M.; Caldwell, Douglas A.; hide

    2010-01-01

    We present an overview of the Data Validation (DV) software component and its context within the Kepler Science Operations Center (SOC) pipeline and overall Kepler Science mission. The SOC pipeline performs a transiting planet search on the corrected light curves for over 150,000 targets across the focal plane array. We discuss the DV strategy for automated validation of Threshold Crossing Events (TCEs) generated in the transiting planet search. For each TCE, a transiting planet model is fitted to the target light curve. A multiple planet search is conducted by repeating the transiting planet search on the residual light curve after the model flux has been removed; if an additional detection occurs, a planet model is fitted to the new TCE. A suite of automated tests are performed after all planet candidates have been identified. We describe a centroid motion test to determine the significance of the motion of the target photocenter during transit and to estimate the coordinates of the transit source within the photometric aperture; a series of eclipsing binary discrimination tests on the parameters of the planet model fits to all transits and the sequences of odd and even transits; and a statistical bootstrap to assess the likelihood that the TCE would have been generated purely by chance given the target light curve with all transits removed. Keywords: photometry, data validation, Kepler, Earth-size planets

  2. Hot subdwarfs in (eclipsing) binaries with brown dwarf or low-mass main-sequence companions

    NASA Astrophysics Data System (ADS)

    Schaffenroth, Veronika; Geier, Stephan; Heber, Uli

    2014-09-01

    The formation of hot subdwarf stars (sdBs), which are core helium-burning stars located on the extended horizontal branch, is not yet understood. Many of the known hot subdwarf stars reside in close binary systems with short orbital periods of between a few hours and a few days, with either M-star or white-dwarf companions. Common-envelope ejection is the most probable formation channel. Among these, eclipsing systems are of special importance because it is possible to constrain the parameters of both components tightly by combining spectroscopic and light-curve analyses. They are called HW Virginis systems. Soker (1998) proposed that planetary or brown-dwarf companions could cause the mass loss necessary to form an sdB. Substellar objects with masses greater than >10 M_J were predicted to survive the common-envelope phase and end up in a close orbit around the stellar remnant, while planets with lower masses would entirely evaporate. This raises the question if planets can affect stellar evolution. Here we report on newly discovered eclipsing or not eclipsing hot subdwarf binaries with brown-dwarf or low-mass main-sequence companions and their spectral and photometric analysis to determine the fundamental parameters of both components.

  3. Line Identifications in the Far Ultraviolet Spectrum of the Eclipsing Binary System 31 Cygni

    NASA Astrophysics Data System (ADS)

    Hagen Bauer, Wendy; Bennett, P. D.

    2011-05-01

    The eclipsing binary system 31 Cygni (K4 Ib + B3 V) was observed at several phases with the Far Ultraviolet Spectrosocopic Explorer (FUSE) satellite. During total eclipse, a rich emission spectrum was observed, produced by scattering of hot star photons in the extended wind of the K supergiant. The system was observed during deep chromospheric eclipse, and 2.5 months after total eclipse ended. We present an atlas of line identifications in these spectra. During total eclipse, emission features from C II , C III, N I, N II, N III, O I, Si II, P II, P III, S II, S III, Ar I, Cr III, Fe II, Fe III, and Ni II were detected. The strongest emission features arise from N II. These lines appear strongly in absorption during chromospheric eclipse, and even 2.5 months after total eclipse, the absorption bottoms out on the underlying emission seen during total eclipse. The second strongest features in the emission spectrum arise from Fe III. Any chromospheric Fe III absorption is buried within strong chromospheric absorption from other species, mainly Fe II. The emission profiles of most of the doubly-ionized species are red-shifted relative to the systemic velocity, with asymmetric profiles with a steeper long-wavelength edge. Emission profiles from singly-ionized species tend to be more symmetric and centered near the systemic velocity. In deep chromospheric eclipse, absorption features are seen from neutral and singly-ionized species, arising from lower levels up to 3 eV. Many strong chromospheric features are doubled in the observation obtained during egress from eclipse. The 31 Cygni spectrum taken 2.5 months after total eclipse ended ws compared to single-star B spectra from the FUSE archives. There was still some additional chromospheric absorption from strong low-excitation Fe II, O I and Ar I.

  4. LX Persei, an eclipsing binary with H and K emission

    NASA Technical Reports Server (NTRS)

    Weiler, E. J.

    1974-01-01

    The masses and MK classes were calculated for the eclipsing spectroscopic binary LX Persei. Its spectrum shows strong H and K emission and doubled lines in the photographic region. The Ca II emission velocity shifts vary in phase with the secondary's absorption lines and are presumably associated with this component. The stars are tentatively classed as G0 V and K0 IV, and the cooler component is the more massive by a ratio of 0.96. The system has a period of 8.0 days.

  5. A YOUNG ECLIPSING BINARY AND ITS LUMINOUS NEIGHBORS IN THE EMBEDDED STAR CLUSTER Sh 2-252E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lester, Kathryn V.; Gies, Douglas R.; Guo, Zhao, E-mail: lester@chara.gsu.edu, E-mail: gies@chara.gsu.edu, E-mail: guo@chara.gsu.edu

    We present a photometric and light curve analysis of an eccentric eclipsing binary in the K2 Campaign 0 field, which resides in Sh 2-252E, a young star cluster embedded in an H ii region. We describe a spectroscopic investigation of the three brightest stars in the crowded aperture to identify which is the binary system. We find that none of these stars are components of the eclipsing binary system, which must be one of the fainter nearby stars. These bright cluster members all have remarkable spectra: Sh 2-252a (EPIC 202062176) is a B0.5 V star with razor sharp absorption lines, Sh 2-252b is amore » Herbig A0 star with disk-like emission lines, and Sh 2-252c is a pre-main-sequence star with very red color.« less

  6. Physical Properties and Evolution of the Eclipsing Binary System XZ Canis Minoris

    NASA Astrophysics Data System (ADS)

    Poochaum, R.; Komonjinda, S.; Soonthornthum, B.; Rattanasoon, S.

    2010-07-01

    This research aims to study the eclipse binary system so that its physical properties and evolution can be determined and used as an example to teach high school astronomy. The study of an eclipsing binary system XZ Canis Minoris (XZ CMi) was done at Sirindhorn Observatory, Chiang Mai University using a 0.5-meter reflecting telescope with CCD photometric system (2184×1417 pixel) in B V and R bands of UVB System. The data obtained were used to construct the light curve for each wavelength band and to compute the times of its light minima. New elements were derived using observations with linear to all available minima. As a result, linear ephemeris is HDJmin I = .578 808 948+/-0.000 000 121+2450 515.321 26+/-0.001 07 E, and the new orbital period of XZ CMi is 0.578 808 948+/-0.000 000 121 day. The values obtained were used with the previously published times of minima to get O-C curve of XZ CMi. The result revealed that the orbital period of XZ CMi is continuously decreased at a rate of 0.007 31+/-0.000 57 sec/year. This result indicates that the binary stars are moving closer continuously. From the O-C residuals, there is significant change to indicate the existence of the third body or magnetic activity cycle on the star. However, further analysis of the physical properties of XZ CMi is required.

  7. An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent.

    PubMed

    Pietrzyński, G; Graczyk, D; Gieren, W; Thompson, I B; Pilecki, B; Udalski, A; Soszyński, I; Kozłowski, S; Konorski, P; Suchomska, K; Bono, G; Moroni, P G Prada; Villanova, S; Nardetto, N; Bresolin, F; Kudritzki, R P; Storm, J; Gallenne, A; Smolec, R; Minniti, D; Kubiak, M; Szymański, M K; Poleski, R; Wyrzykowski, L; Ulaczyk, K; Pietrukowicz, P; Górski, M; Karczmarek, P

    2013-03-07

    In the era of precision cosmology, it is essential to determine the Hubble constant to an accuracy of three per cent or better. At present, its uncertainty is dominated by the uncertainty in the distance to the Large Magellanic Cloud (LMC), which, being our second-closest galaxy, serves as the best anchor point for the cosmic distance scale. Observations of eclipsing binaries offer a unique opportunity to measure stellar parameters and distances precisely and accurately. The eclipsing-binary method was previously applied to the LMC, but the accuracy of the distance results was lessened by the need to model the bright, early-type systems used in those studies. Here we report determinations of the distances to eight long-period, late-type eclipsing systems in the LMC, composed of cool, giant stars. For these systems, we can accurately measure both the linear and the angular sizes of their components and avoid the most important problems related to the hot, early-type systems. The LMC distance that we derive from these systems (49.97 ± 0.19 (statistical) ± 1.11 (systematic) kiloparsecs) is accurate to 2.2 per cent and provides a firm base for a 3-per-cent determination of the Hubble constant, with prospects for improvement to 2 per cent in the future.

  8. A New Light Curve and Analysis of the Long Period Eclipsing Binary BF Draconis

    NASA Astrophysics Data System (ADS)

    Wolf, G. W.; Craig, L. E.; Caffey, J. F.

    1999-01-01

    The star BF Draconis was found to be an eclipsing binary by Strohmeier, Knigge and Ott (1962) and originally thought to be an Algol-type system with a period of 5.6 days. A spectrographic study by Imbert (1985) showed that the period was actually double this value and that the system consisted of two well-separated, almost-equal F-type stars in elliptical orbit. Diethelm, Wolf and Agerer (1993) later published a preliminary light curve of this system showing minima of unequal depth and width with a displaced secondary, confirming the elliptical orbit but disagreeing with Imbert on the specific orbital parameters. As a part of our long-term program of obtaining improved light curves of double-lined spectroscopic and eclipsing binaries, we have observed BF Draconis for the past four years using the 0.4 meter telescope at the Baker Observatory of Southwest Missouri State University. Complete light curves in the Cousins BVRI passbands have been obtained with our Photometrics CCD system, and a new model and orbital parameters for the binary have been determined using the Wilson-Devinney program. This research has been supported by NSF Grants AST-9315061 and AST-9605822 and NASA Grant NGT5-40060.

  9. The KOI 425 Multi-star System

    NASA Astrophysics Data System (ADS)

    Hughes, Anna; Boley, Aaron C.

    2017-10-01

    Kepler Object of Interest 425 (KOI 425) is an eclipsing binary with periodic features in addition to the known primary and secondary transits. This KOI has been observed by Saterne et al. 2012 with SOPHIE, who found its phase variance to be indicative of a diluted eclipsing binary, likely produced by a multi-star system. We analyze the complete set of Kepler archival data for this system along with the published SOPHIE results to assess the multiplicity and the dynamics of the system.

  10. K2 Variable Catalogue: Variable stars and eclipsing binaries in K2 campaigns 1 and 0

    NASA Astrophysics Data System (ADS)

    Armstrong, D. J.; Kirk, J.; Lam, K. W. F.; McCormac, J.; Walker, S. R.; Brown, D. J. A.; Osborn, H. P.; Pollacco, D. L.; Spake, J.

    2015-07-01

    Aims: We have created a catalogue of variable stars found from a search of the publicly available K2 mission data from Campaigns 1 and 0. This catalogue provides the identifiers of 8395 variable stars, including 199 candidate eclipsing binaries with periods up to 60 d and 3871 periodic or quasi-periodic objects, with periods up to 20 d for Campaign 1 and 15 d for Campaign 0. Methods: Lightcurves are extracted and detrended from the available data. These are searched using a combination of algorithmic and human classification, leading to a classifier for each object as an eclipsing binary, sinusoidal periodic, quasi periodic, or aperiodic variable. The source of the variability is not identified, but could arise in the non-eclipsing binary cases from pulsation or stellar activity. Each object is cross-matched against variable star related guest observer proposals to the K2 mission, which specifies the variable type in some cases. The detrended lightcurves are also compared to lightcurves currently publicly available. Results: The resulting catalogue gives the ID, type, period, semi-amplitude, and range of the variation seen. We also make available the detrended lightcurves for each object. The catalogue is available at http://deneb.astro.warwick.ac.uk/phrlbj/k2varcat/ and at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/579/A19

  11. The EB factory project. I. A fast, neural-net-based, general purpose light curve classifier optimized for eclipsing binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paegert, Martin; Stassun, Keivan G.; Burger, Dan M.

    2014-08-01

    We describe a new neural-net-based light curve classifier and provide it with documentation as a ready-to-use tool for the community. While optimized for identification and classification of eclipsing binary stars, the classifier is general purpose, and has been developed for speed in the context of upcoming massive surveys such as the Large Synoptic Survey Telescope. A challenge for classifiers in the context of neural-net training and massive data sets is to minimize the number of parameters required to describe each light curve. We show that a simple and fast geometric representation that encodes the overall light curve shape, together withmore » a chi-square parameter to capture higher-order morphology information results in efficient yet robust light curve classification, especially for eclipsing binaries. Testing the classifier on the ASAS light curve database, we achieve a retrieval rate of 98% and a false-positive rate of 2% for eclipsing binaries. We achieve similarly high retrieval rates for most other periodic variable-star classes, including RR Lyrae, Mira, and delta Scuti. However, the classifier currently has difficulty discriminating between different sub-classes of eclipsing binaries, and suffers a relatively low (∼60%) retrieval rate for multi-mode delta Cepheid stars. We find that it is imperative to train the classifier's neural network with exemplars that include the full range of light curve quality to which the classifier will be expected to perform; the classifier performs well on noisy light curves only when trained with noisy exemplars. The classifier source code, ancillary programs, a trained neural net, and a guide for use, are provided.« less

  12. Constraining the Radiation and Plasma Environment of the Kepler Circumbinary Habitable-zone Planets

    NASA Astrophysics Data System (ADS)

    Zuluaga, Jorge I.; Mason, Paul A.; Cuartas-Restrepo, Pablo A.

    2016-02-01

    The discovery of many planets using the Kepler telescope includes 10 planets orbiting eight binary stars. Three binaries, Kepler-16, Kepler-47, and Kepler-453, have at least one planet in the circumbinary habitable zone (BHZ). We constrain the level of high-energy radiation and the plasma environment in the BHZ of these systems. With this aim, BHZ limits in these Kepler binaries are calculated as a function of time, and the habitability lifetimes are estimated for hypothetical terrestrial planets and/or moons within the BHZ. With the time-dependent BHZ limits established, a self-consistent model is developed describing the evolution of stellar activity and radiation properties as proxies for stellar aggression toward planetary atmospheres. Modeling binary stellar rotation evolution, including the effect of tidal interaction between stars in binaries, is key to establishing the environment around these systems. We find that Kepler-16 and its binary analogs provide a plasma environment favorable for the survival of atmospheres of putative Mars-sized planets and exomoons. Tides have modified the rotation of the stars in Kepler-47, making its radiation environment less harsh in comparison to the solar system. This is a good example of the mechanism first proposed by Mason et al. Kepler-453 has an environment similar to that of the solar system with slightly better than Earth radiation conditions at the inner edge of the BHZ. These results can be reproduced and even reparameterized as stellar evolution and binary tidal models progress, using our online tool http://bhmcalc.net.

  13. CONSTRAINING THE RADIATION AND PLASMA ENVIRONMENT OF THE KEPLER CIRCUMBINARY HABITABLE-ZONE PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuluaga, Jorge I.; Mason, Paul A.; Cuartas-Restrepo, Pablo A.

    The discovery of many planets using the Kepler telescope includes 10 planets orbiting eight binary stars. Three binaries, Kepler-16, Kepler-47, and Kepler-453, have at least one planet in the circumbinary habitable zone (BHZ). We constrain the level of high-energy radiation and the plasma environment in the BHZ of these systems. With this aim, BHZ limits in these Kepler binaries are calculated as a function of time, and the habitability lifetimes are estimated for hypothetical terrestrial planets and/or moons within the BHZ. With the time-dependent BHZ limits established, a self-consistent model is developed describing the evolution of stellar activity and radiation propertiesmore » as proxies for stellar aggression toward planetary atmospheres. Modeling binary stellar rotation evolution, including the effect of tidal interaction between stars in binaries, is key to establishing the environment around these systems. We find that Kepler-16 and its binary analogs provide a plasma environment favorable for the survival of atmospheres of putative Mars-sized planets and exomoons. Tides have modified the rotation of the stars in Kepler-47, making its radiation environment less harsh in comparison to the solar system. This is a good example of the mechanism first proposed by Mason et al. Kepler-453 has an environment similar to that of the solar system with slightly better than Earth radiation conditions at the inner edge of the BHZ. These results can be reproduced and even reparameterized as stellar evolution and binary tidal models progress, using our online tool http://bhmcalc.net.« less

  14. Physical Properties of the LMC Eclipsing Binary Stars

    NASA Astrophysics Data System (ADS)

    Prsa, Andrej; Devinney, E. J.; Guinan, E. F.; Engle, S. G.; DeGeorge, M.

    2009-01-01

    To date, three independent studies have devised an automatic procedure to analyse and extract the principal parameters of 2581 detached eclipsing binary stars from the OGLE photometric survey of the Large Magellanic Cloud (LMC): Devor (2005), Tamuz et al. (2006), and Prsa et al. (2008). For time efficiency, Devor used a simple model of two spherical, limb-darkened stars without tidal or reflection physics. Tamuz et al.'s approach employs a more realistic EBOP model, which is still limited in handling proximity physics. Our study used a back-propagating neural network that was trained on the light curves computed by a modern Wilson-Devinney code. The three approaches are confronted and correlations in the results are sought that indicate the degree of reliability of the obtained results. A database of solutions consistent across all three studies is presented. We assess the suitability of each method for other morphology types (i.e. semi-detached and overcontact binaries) and we overview the practical limitations of these methods for the upcoming survey data. This research is supported by NFS/RUI Grant No. AST-05-07542, which we gratefully acknowledge.

  15. The Araucaria project. The distance to the small Magellanic Cloud from late-type eclipsing binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graczyk, Dariusz; Pietrzyński, Grzegorz; Gieren, Wolfgang

    2014-01-01

    We present a distance determination to the Small Magellanic Cloud (SMC) based on an analysis of four detached, long-period, late-type eclipsing binaries discovered by the Optical Gravitational Lensing Experiment (OGLE) survey. The components of the binaries show negligible intrinsic variability. A consistent set of stellar parameters was derived with low statistical and systematic uncertainty. The absolute dimensions of the stars are calculated with a precision of better than 3%. The surface brightness-infrared color relation was used to derive the distance to each binary. The four systems clump around a distance modulus of (m – M) = 18.99 with a dispersionmore » of only 0.05 mag. Combining these results with the distance published by Graczyk et al. for the eclipsing binary OGLE SMC113.3 4007, we obtain a mean distance modulus to the SMC of 18.965 ± 0.025 (stat.) ± 0.048 (syst.) mag. This corresponds to a distance of 62.1 ± 1.9 kpc, where the error includes both uncertainties. Taking into account other recent published determinations of the SMC distance we calculated the distance modulus difference between the SMC and the Large Magellanic Cloud equal to 0.458 ± 0.068 mag. Finally, we advocate μ{sub SMC} = 18.95 ± 0.07 as a new 'canonical' value of the distance modulus to this galaxy.« less

  16. 1998 UBV Light Curves of Eclipsing Binary AI Draconis and Absolute Parameters

    NASA Astrophysics Data System (ADS)

    Jassur, D. M. Z.; Khaledian, M. S.; Kermani, M. H.

    New UBV photometry of Algol-Type eclipsing binary star AI Dra and the absolute physical parameters of this system have been presented. The light curve analysis carried out by the method of differential corrections indicates that both components are inside their Roche-Lobes. From combining the photometric solution with spectroscopic data obtained from velocity curve analysis, it has been found that the system consist of a main sequence primary and an evolved (subgiant) secondary.

  17. Analysis of Pulsating Components in the Eclipsing Binary Systems LT Herculis, RZ Microscopii, LY Puppis, V632 Scorpii, and V638 Scorpii

    NASA Astrophysics Data System (ADS)

    Streamer, M.; Bohlsen, T.; Ogmen, Y.

    2016-06-01

    Eclipsing binary stars are especially valuable for studies of stellar evolution. If pulsating components are also present then the stellar interior can be studied using asteroseismology techniques. We present photometric data and the analysis of the delta Scuti pulsations that we have discovered in five eclipsing binary systems. The systems are: LT Herculis, RZ Microscopii, LY Puppis, V632 Scorpii and V638 Scorpii. The dominant pulsation frequencies range between 13 - 29 cycles per day with semi-amplitudes of 4 - 20 millimagnitudes.

  18. The Age of Upper Scorpius from Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    David, Trevor; Hillenbrand, Lynne

    2018-01-01

    The Upper Scorpius OB association is the nearest region of recent massive star formation and thus an important benchmark for investigations concerning astrophysical timescales. Classical estimates of the association age based on the kinematics of high-mass members and a Hertzsprung-Russell (H-R) diagram of the full stellar population established an age of 5 Myr. However, recent analyses based on the H-R diagram for intermediate- and high-mass members suggest an older age of 11 Myr. Importantly, the H-R diagram ages of stars in Upper Scorpius (and other clusters of a similar age) are mass-dependent, such that low-mass members appear younger than their high-mass counterparts. Here we report an age that is self-consistent in the mass range of 0.3–5 M⊙, and based on the fundamentally-determined masses and radii of eclipsing binaries (EBs). We present nine EBs in Upper Scorpius, four of which are newly reported here and all of which were discovered from K2 photometry. Joint fitting of the eclipse photometry and radial velocities from newly acquired Keck-I/HIRES spectra yields precise masses and radii for those systems that are spectroscopically double-lined. We identify one of the EB components as a slowly pulsating B-star. We use these EBs to develop an empirical mass-radius relation for pre-main-sequence stars, and to evaluate the predictions of widely-used stellar evolutionary models. Our results are consistent with previous studies that indicate most models underestimate the masses of low-mass stars by tens of percent based on H-R diagram analyses. Models including the effects of magnetic fields produce better agreement between the observed bulk and radiative parameters of these young, low-mass stars. From the orbital elements and photometrically inferred rotation periods, we consider the dynamical states of several binaries and compare with expectations from tidal dissipation theories.

  19. ECLIPSING BINARY SCIENCE VIA THE MERGING OF TRANSIT AND DOPPLER EXOPLANET SURVEY DATA-A CASE STUDY WITH THE MARVELS PILOT PROJECT AND SuperWASP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Scott W.; Ge Jian; De Lee, Nathan M.

    2011-08-15

    Exoplanet transit and Doppler surveys discover many binary stars during their operation that can be used to conduct a variety of ancillary science. Specifically, eclipsing binary stars can be used to study the stellar mass-radius relationship and to test predictions of theoretical stellar evolution models. By cross-referencing 24 binary stars found in the MARVELS Pilot Project with SuperWASP photometry, we find two new eclipsing binaries, TYC 0272-00458-1 and TYC 1422-01328-1, which we use as case studies to develop a general approach to eclipsing binaries in survey data. TYC 0272-00458-1 is a single-lined spectroscopic binary for which we calculate a massmore » of the secondary and radii for both components using reasonable constraints on the primary mass through several different techniques. For a primary mass of M{sub 1} = 0.92 {+-} 0.1 M{sub sun}, we find M{sub 2} = 0.610 {+-} 0.036 M{sub sun}, R{sub 1} = 0.932 {+-} 0.076 R{sub sun}, and R{sub 2} = 0.559 {+-} 0.102 R{sub sun}, and find that both stars have masses and radii consistent with model predictions. TYC 1422-01328-1 is a triple-component system for which we can directly measure the masses and radii of the eclipsing pair. We find that the eclipsing pair consists of an evolved primary star (M{sub 1} = 1.163 {+-} 0.034 M{sub sun}, R{sub 1} = 2.063 {+-} 0.058 R{sub sun}) and a G-type dwarf secondary (M{sub 2} = 0.905 {+-} 0.067 M{sub sun}, R{sub 2} = 0.887 {+-} 0.037 R{sub sun}). We provide the framework necessary to apply this analysis to much larger data sets.« less

  20. Observations and Light Curve Solutions of Ultrashort-Period Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Kjurkchieva, Diana P.; Dimitrov, Dinko P.; Ibryamov, Sunay I.; Vasileva, Doroteya L.

    2018-02-01

    Photometric observations in V and I bands and low-dispersion spectra of 10 ultrashort-period binaries (NSVS 2175434, NSVS 2607629, NSVS 5038135, NSVS 8040227, NSVS 9747584, NSVS 4876238, ASAS 071829-0336.7, SWASP 074658.62+224448.5, NSVS 2729229, NSVS 10632802) are presented. One of them, NSVS 2729229, is newly discovered target. The results from modelling and analysis of our observations revealed that (i) eight targets have overcontact configurations with considerable fill-out factor (up to 0.5), while NSVS 4876238 and ASAS 0718-03 have almost contact configurations; (ii) NSVS 4876238 is rare ultrashort-period binary of detached type; (iii) all stellar components are late dwarfs; (iv) the temperature difference of the components of each target does not exceed 400 K; (v) NSVS 2175434 and SWASP 074658.62 + 224448.5 exhibit total eclipses and their parameters could be assumed as well determined; (v) NSVS 2729229 shows emission in the Hα line. Masses, radii, and luminosities of the stellar components were estimated by the empirical relation `period, orbital axis' for short- and ultrashort-period binaries. We found linear relations mass-luminosity and mass-radius for the stellar components of our targets.

  1. V342 Andromedae B is an eccentric-orbit eclipsing binary

    NASA Astrophysics Data System (ADS)

    Dimitrov, W.; Kamiński, K.; Lehmann, H.; Ligęza, P.; Fagas, M.; Bagińska, P.; Kwiatkowski, T.; Bąkowska, K.; Kowalczyk, A.; Polińska, M.; Bartczak, P.; Przybyszewska, A.; Kruszewski, A.; Kurzawa, K.; Schwarzenberg-Czerny, A.

    2015-03-01

    We present a photometric and spectroscopic study of the visual binary V342 Andromedae. Visual components of the system have angular separations of 3 arcseconds. We obtained two spectroscopic data sets. An examination of both the A and B component spectra reveals that the B component is a spectroscopic binary with an eccentric orbit. The orbital period, taken from the Hipparcos Catalog, agrees with the orbital period of the B component measured spectroscopically. We also collected a new set of photometric measurements. The argument of periastron is close to 270° and the orbit eccentricity is not seen in our photometric data. About five years after the first spectroscopic observations, a new set of spectroscopic data was obtained. We analysed the apsidal motion, but we did not find any significant changes in the orbital orientation. A Wilson-Devinney model was calculated based on the photometric and the radial velocity curves. The result shows two very similar stars with masses M1 = 1.27 ± 0.01 M⊙, M2 = 1.28 ± 0.01 M⊙, respectively. The radii are R1 = 1.21 ± 0.01 R⊙, R2 = 1.25 ± 0.01 R⊙, respectively. Radial velocity measurements of component A, the most luminous star in the system, reveal no significant periodic variations. We calculated the time of the eclipsing binary orbit's circularization, which is about two orders of magnitude shorter than the estimated age of the system. The discrepancies in the age estimation can be explained by the Kozai effect induced by the visual component A. The atmospheric parameters and the chemical abundances for the eclipsing pair, as well as the LSD profiles for both visual components, were calculated from two high-resolution, well-exposed spectra obtained on the 2-m class telescope. Based on spectroscopy obtained at the David Dunlap Observatory, University of Toronto, Canada, Poznań Spectroscopic Telescope 1, Poland and Thüringer Landessternwarte, Tautenburg, Germany.

  2. The Surface Brightness-color Relations Based on Eclipsing Binary Stars: Toward Precision Better than 1% in Angular Diameter Predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graczyk, Dariusz; Gieren, Wolfgang; Konorski, Piotr

    In this study we investigate the calibration of surface brightness–color (SBC) relations based solely on eclipsing binary stars. We selected a sample of 35 detached eclipsing binaries with trigonometric parallaxes from Gaia DR1 or Hipparcos whose absolute dimensions are known with an accuracy better than 3% and that lie within 0.3 kpc from the Sun. For the purpose of this study, we used mostly homogeneous optical and near-infrared photometry based on the Tycho-2 and 2MASS catalogs. We derived geometric angular diameters for all stars in our sample with a precision better than 10%, and for 11 of them with amore » precision better than 2%. The precision of individual angular diameters of the eclipsing binary components is currently limited by the precision of the geometric distances (∼5% on average). However, by using a subsample of systems with the best agreement between their geometric and photometric distances, we derived the precise SBC relations based only on eclipsing binary stars. These relations have precisions that are comparable to the best available SBC relations based on interferometric angular diameters, and they are fully consistent with them. With very precise Gaia parallaxes becoming available in the near future, angular diameters with a precision better than 1% will be abundant. At that point, the main uncertainty in the total error budget of the SBC relations will come from transformations between different photometric systems, disentangling of component magnitudes, and for hot OB stars, the main uncertainty will come from the interstellar extinction determination. We argue that all these issues can be overcome with modern high-quality data and conclude that a precision better than 1% is entirely feasible.« less

  3. YSOVAR: Six Pre-main-sequence Eclipsing Binaries in the Orion Nebula Cluster

    DTIC Science & Technology

    2012-06-25

    reserved. Printed in the U.S.A. YSOVAR: SIX PRE-MAIN-SEQUENCE ECLIPSING BINARIES IN THE ORION NEBULA CLUSTER M. Morales-Calderón1,2, J. R. Stauffer1, K. G...multi-color light curves for∼2400 candidate Orion Nebula Cluster (ONC) members from our Warm Spitzer Exploration Science Program YSOVAR, we have...readable tables 1. INTRODUCTION The Orion Nebula Cluster (ONC) contains several thousand members, and since it is nearby, it provides an excellent em

  4. Absolute dimensions and masses of eclipsing binaries. V. IQ Persei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacy, C.H.; Frueh, M.L.

    1985-08-01

    New photometric and spectroscopic observations of the 1.7 day eclipsing binary IQ Persei (B8 + A6) have been analyzed to yield very accurate fundamental properties of the system. Reticon spectroscopic observations obtained at McDonald Observatory were used to determine accurate radial velocities of both stars in this slightly eccentric large light-ratio binary. A new set of VR light curves obtained at McDonald Observatory were analyzed by synthesis techniques, and previously published UBV light curves were reanalyzed to yield accurate photometric orbits. Orbital parameters derived from both sets of photometric observations are in excellent agreement. The absolute dimensions, masses, luminosities, andmore » apsidal motion period (140 yr) derived from these observations agree well with the predictions of theoretical stellar evolution models. The A6 secondary is still very close to the zero-age main sequence. The B8 primary is about one-third of the way through its main-sequence evolution. 27 references.« less

  5. The Light-time Effect in the Eclipsing Binaries with Early-type Components U CrB and RW Tau

    NASA Astrophysics Data System (ADS)

    Khaliullina, A. I.

    2018-04-01

    A detailed study of the orbital-period variations of the Algol-type eclipsing binaries with earlyspectral- type primary components U CrB and RW Tau has been performed. The period variations in both systems can be described as a superposition of secular and cyclic variations of the period. A secular period increase at a rate of 2.58d × 10-7/year is observed for U CrB, which can be explained if there is a uniform flow of matter from the lower-mass to the higher-mass component, with the total angular momentum conserved. RW Tau features a secular period decrease at a rate of -8.6d × 10-7/year; this could be due to a loss of angular momentum by the binary due to magnetic braking. The cyclic orbital-period variations of U CrB and RWTau can be explained by the motion of the eclipsing binary systems along their long-period orbits. In U CrB, this implies that the eclipsing binary moves with a period of 91.3 years around a third body with mass M 3 > 1.13 M ⊙; in RW Tau, the period of the motion around the third body is 66.6 years, and the mass of the third body is M 3 > 1.24 M ⊙. It also cannot be ruled out that the variations are due to the magnetic cycles of the late-type secondaries. The residual period variations could be a superposition of variations due to non-stationary ejection of matter and effects due to magnetic cycles.

  6. VizieR Online Data Catalog: ASAS, NSVS, and LINEAR detached eclipsing binaries (Lee, 2015)

    NASA Astrophysics Data System (ADS)

    Lee, C.-H.

    2016-04-01

    We follow the approach of Devor et al. (2008AJ....135..850D, Cat. J/AJ/135/850) to analyse the LC from ASAS (Pojmanski et al., Cat. II/264, NSVS (Wozniak et al., 2004AJ....127.2436W, and LINEAR (Palaversa et al., Cat. J/AJ/146/101) and extract the physical properties of the eclipsing binaries. (3 data files).

  7. Search for light curve modulations among Kepler candidates. Three very low-mass transiting companions

    NASA Astrophysics Data System (ADS)

    Lillo-Box, J.; Ribas, A.; Barrado, D.; Merín, B.; Bouy, H.

    2016-07-01

    Context. Light curve modulations in the sample of Kepler planet candidates allows the disentangling of the nature of the transiting object by photometrically measuring its mass. This is possible by detecting the effects of the gravitational pull of the companion (ellipsoidal modulations) and in some cases, the photometric imprints of the Doppler effect when observing in a broad band (Doppler beaming). Aims: We aim to photometrically unveil the nature of some transiting objects showing clear light curve modulations in the phase-folded Kepler light curve. Methods: We selected a subsample among the large crop of Kepler objects of interest (KOIs) based on their chances to show detectable light curve modulations, I.e., close (a< 12 R⋆) and large (in terms of radius, according to their transit signal) candidates. We modeled their phase-folded light curves with consistent equations for the three effects, namely, reflection, ellipsoidal and beaming (known as REB modulations). Results: We provide detailed general equations for the fit of the REB modulations for the case of eccentric orbits. These equations are accurate to the photometric precisions achievable by current and forthcoming instruments and space missions. By using this mathematical apparatus, we find three close-in very low-mass companions (two of them in the brown dwarf mass domain) orbiting main-sequence stars (KOI-554, KOI-1074, and KOI-3728), and reject the planetary nature of the transiting objects (thus classifying them as false positives). In contrast, the detection of the REB modulations and transit/eclipse signal allows the measurement of their mass and radius that can provide important constraints for modeling their interiors since just a few cases of low-mass eclipsing binaries are known. Additionally, these new systems can help to constrain the similarities in the formation process of the more massive and close-in planets (hot Jupiters), brown dwarfs, and very low-mass companions.

  8. Light Curve and Analysis of the Eclipsing Binary BF Centauri

    NASA Astrophysics Data System (ADS)

    Morris, M. A.; Wolf, G. W.

    2003-12-01

    The eclipsing binary star BF Centauri was observed photometrically by GWW in the uvby filter system from Mt. John Observatory in New Zealand during 1982, 1989 and 1998. It was also observed spectroscopically at 10 A/mm by W. A. Lawson in 1993 at Mt. Stromlo in Australia to obtain a radial velocity solution. The combined light curves and spectroscopic results have been analyzed using the 1998 version of Robert Wilson's WD light-curve programs. A consistent model for the system will be presented. This analysis was done as a part of a senior research project by MAM, who would like to acknowledge financial support from the Missouri Space Grant Consortium.

  9. Photometric Solutions of Three Eclipsing Binary Stars Observed from Dome A, Antarctica

    NASA Astrophysics Data System (ADS)

    Liu, N.; Fu, J. N.; Zong, W.; Wang, L. Z.; Uddin, S. A.; Zhang, X. B.; Zhang, Y. P.; Cang, T. Q.; Li, G.; Yang, Y.; Yang, G. C.; Mould, J.; Morrell, N.

    2018-04-01

    Based on spectroscopic observations for the eclipsing binaries CSTAR 036162 and CSTAR 055495 with the WiFeS/2.3 m telescope at SSO and CSTAR 057775 with the Mage/Magellan I at LCO in 2017, stellar parameters are derived. More than 100 nights of almost-continuous light curves reduced from the time-series photometric observations by CSTAR at Dome A of Antarctic in i in 2008 and in g and r in 2009, respectively, are applied to find photometric solutions for the three binaries with the Wilson–Devinney code. The results show that CSTAR 036162 is a detached configuration with the mass ratio q = 0.354 ± 0.0009, while CSTAR 055495 is a semi-detached binary system with the unusual q = 0.946 ± 0.0006, which indicates that CSTAR 055495 may be a rare binary system with mass ratio close to one and the secondary component filling its Roche Lobe. This implies that a mass-ratio reversal has just occurred and CSTAR 055495 is in a rapid mass-transfer stage. Finally, CSTAR 057775 is believed to be an A-type W UMa binary with q = 0.301 ± 0.0008 and a fill-out factor of f = 0.742(8).

  10. A Comprehensive Stellar Astrophysical Study of the Old Open Cluster M67 with Kepler

    NASA Astrophysics Data System (ADS)

    Mathieu, Robert D.; Vanderburg, Andrew; K2 M67 Team

    2016-06-01

    M67 is among the best studied of all star clusters. Being at an age and metallicity very near solar, at an accessible distance of 850 pc with low reddening, and rich in content (over 1000 members including main-sequence dwarfs, a well populated subgiant branch and red giant branch, white dwarfs, blue stragglers, sub-subgiants, X-ray sources and CVs), M67 is a cornerstone of stellar astrophysics.The K2 mission (Campaign 5) has obtained long-cadence observations for 2373 stars, both within an optimized central superaperture and as specified targets outside the superaperture. 1,432 of these stars are likely cluster members based on kinematic and photometric criteria.We have extracted light curves and corrected for K2 roll systematics, producing light curves with noise characteristics qualitatively similar to Kepler light curves of stars of similar magnitudes. The data quality is slightly poorer than for field stars observed by K2 due to crowding near the cluster core, but the data are of sufficient quality to detect seismic oscillations, binary star eclipses, flares, and candidate transit events. We are in the process of uploading light curves and various diagnostic files to MAST; light curves and supporting data will also be made available on ExoFOP.Importantly, several investigators within the M67 K2 team are independently doing light curve extractions and analyses for confirmation of science results. We also are adding extensive ground-based supporting data, including APOGEE near-infrared spectra, TRES and WIYN optical spectra, LCOGT photometry, and more.Our science goals encompass asteroseismology and stellar evolution, alternative stellar evolution pathways in binary stars, stellar rotation and angular momentum evolution, stellar activity, eclipsing binaries and beaming, and exoplanets. We will present early science results as available by the time of the meeting, and certainly including asteroseismology, blue stragglers and sub-subgiants, and newly discovered

  11. Light equation in eclipsing binary CV Boo: third body candidate in elliptical orbit

    NASA Astrophysics Data System (ADS)

    Bogomazov, A. I.; Kozyreva, V. S.; Satovskii, B. L.; Krushevska, V. N.; Kuznyetsova, Y. G.; Ehgamberdiev, S. A.; Karimov, R. G.; Khalikova, A. V.; Ibrahimov, M. A.; Irsmambetova, T. R.; Tutukov, A. V.

    2016-12-01

    A short period eclipsing binary star CV Boo is tested for the possible existence of additional bodies in the system with a help of the light equation method. We use data on the moments of minima from the literature as well as from our observations during 2014 May-July. A variation of the CV Boo's orbital period is found with a period of {≈}75 d. This variation can be explained by the influence of a third star with a mass of {≈}0.4 M_{⊙} in an eccentric orbit with e≈0.9. A possibility that the orbital period changes on long time scales is discussed. The suggested tertiary companion is near the chaotic zone around the central binary, so CV Boo represents an interesting example to test its dynamical evolution. A list of 14 minima moments of the binary obtained from our observations is presented.

  12. Kepler observations of the asteroseismic binary HD 176465

    NASA Astrophysics Data System (ADS)

    White, T. R.; Benomar, O.; Silva Aguirre, V.; Ball, W. H.; Bedding, T. R.; Chaplin, W. J.; Christensen-Dalsgaard, J.; Garcia, R. A.; Gizon, L.; Stello, D.; Aigrain, S.; Antia, H. M.; Appourchaux, T.; Bazot, M.; Campante, T. L.; Creevey, O. L.; Davies, G. R.; Elsworth, Y. P.; Gaulme, P.; Handberg, R.; Hekker, S.; Houdek, G.; Howe, R.; Huber, D.; Karoff, C.; Marques, J. P.; Mathur, S.; McQuillan, A.; Metcalfe, T. S.; Mosser, B.; Nielsen, M. B.; Régulo, C.; Salabert, D.; Stahn, T.

    2017-05-01

    Binary star systems are important for understanding stellar structure and evolution, and are especially useful when oscillations can be detected and analysed with asteroseismology. However, only four systems are known in which solar-like oscillations are detected in both components. Here, we analyse the fifth such system, HD 176465, which was observed by Kepler. We carefully analysed the system's power spectrum to measure individual mode frequencies, adapting our methods where necessary to accommodate the fact that both stars oscillate in a similar frequency range. We also modelled the two stars independently by fitting stellar models to the frequencies and complementaryparameters. We are able to cleanly separate the oscillation modes in both systems. The stellar models produce compatible ages and initial compositions for the stars, as is expected from their common and contemporaneous origin. Combining the individual ages, the system is about 3.0 ± 0.5 Gyr old. The two components of HD 176465 are young physically-similar oscillating solar analogues, the first such system to be found, and provide important constraints for stellar evolution and asteroseismology.

  13. Recent Observations of the Neglected Southern Eclipsing Binary Systems V343 Cen, UY Mus, HT Aps, and V1961 Sgr

    NASA Astrophysics Data System (ADS)

    Faulkner, D. R.; Samec, R. G.; Stoddard, M. L.; McKenzie, R.; Rebar, D.; Lavoie, G. D.; Moody, S.; Miller, J.; Van Hamme, W.

    2002-12-01

    As a part of our continuing search for solar type binaries with impacting gas streams, we present light curves of V343 Cen, UY Mus, HT Aps, and V1961 Sgr. These are all neglected variables whose observing histories show little or no observations since their discovery. The CCD observations were taken at the 0.9-m at CTI0 in the UBVRI Johnson-Cousins system. The observations were taken in on 2002, May 31-June 8 and 2001, May 16 - 23 respectively. UY Mus is a near contact binary with a large difference in eclipse depths of V = 0.67 mag. Otherwise the curve appears symmetric. The times of minimum light determined from our data are HJD Min I = 242047.62316(6) and Min II = 2452050.4874(3) where the value in parentheses is the standard error in the last decimal place. V1961 Sgr (GCVS 6848 485) is a W UMa binary with a difference in eclipse depths of V = 0.11 mag and a possible variable spot area causing a V = 0.04 mag variation in MAX I from night to night. HT Aps is a near contact solar type binary with a large difference in eclipse depths of V= 0.47 mag and a somewhat asymmetric (difference in maxima, V= 0.4 mag) light curve. It is a possibly a candidate for a binary with a gas stream. One time of minimum light determined from our data is HJD Min I = 2452331.63725 (12). V343 Cen is a near contact binary with a large difference in eclipse depths of V= 0.42 mag and distortions that give evidence of a gas stream collision. The difference in maxima is V = 0.07 mag. The curve shows little variation over the 4 day interval of observation. Light curves analyses, new period determinations and photometric data will be presented for these variables. Acknowledgements: We wish to thank the American Astronomical Society for their continued support of our undergraduate research programs through their small research grants. Faulkner and Samec were visiting Astronomers, Cerro Tololo InterAmerican Observatory, National Optical Astronomical Observatories, which are operated by the

  14. Determination of the Fundamental Properties of the Eclipsing Binary V541 Cygni

    NASA Astrophysics Data System (ADS)

    McGruder, Chima; Torres, Guillermo; Siverd, Robert; Pepper, Joshua; Rodriguez, Joseph; KELT Collaboration

    2017-01-01

    We report new high-resolution spectroscopic observations of the B-type detached spectroscopic eclipsing binary V541 Cygni (e = 0.465 and P =15.34 days). We combine analysis of these new spectra with analysis of V-band photometry from the literature to obtain the most precise measurements of the fundamental properties of the stars to date (yielding ~1% errors in the masses and ~2% for the radii). A comparison with current stellar evolution models indicates good fits for an age of ~ 200 million years and [Fe/H] ~ -0.2. Available eclipse timings gathered over 40 years were used to re-determine the apsidal motion of the system, dω/dt = 0.993 degs/cent, which is larger than what theory suggests.The SAO REU program was funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  15. A PSF-based approach to Kepler/K2 data - II. Exoplanet candidates in Praesepe (M 44)

    NASA Astrophysics Data System (ADS)

    Libralato, M.; Nardiello, D.; Bedin, L. R.; Borsato, L.; Granata, V.; Malavolta, L.; Piotto, G.; Ochner, P.; Cunial, A.; Nascimbeni, V.

    2016-12-01

    In this work, we keep pushing K2 data to a high photometric precision, close to that of the Kepler main mission, using a point-spread function (PSF)-based, neighbour-subtraction technique, which also overcome the dilution effects in crowded environments. We analyse the open cluster M 44 (NGC 2632), observed during the K2 Campaign 5, and extract light curves of stars imaged on module 14, where most of the cluster lies. We present two candidate exoplanets hosted by cluster members and five by field stars. As a by-product of our investigation, we find 1680 eclipsing binaries and variable stars, 1071 of which are new discoveries. Among them, we report the presence of a heartbeat binary star. Together with this work, we release to the community a catalogue with the variable stars and the candidate exoplanets found, as well as all our raw and detrended light curves.

  16. HS 0705+6700: a New Eclipsing sdB Binary

    NASA Astrophysics Data System (ADS)

    Drechsel, H.; Heber, U.; Napiwotzki, R.; Ostensen, R.; Solheim, J.-E.; Deetjen, J.; Schuh, S.

    HS 0705+6700 is a newly discovered eclipsing sdB binary system consisting of an sdB primary and a cool secondary main sequence star. CCD photometry obtained in October and November 2000 with the 2.5m Nordic (NOT) telescope (La Palma, Tenerife) in the B passband and with the 2.2m Calar Alto telescope (CAFOS, R filter) yielded eclipse light curves with complete orbital phase coverage at high time resolution. A periodogram analysis of 12 primary minimum times distributed over the time span from October 2000 to March 2001 allowed to derive the following exact period and linear ephemeris: prim. min. = HJD 2451822.759782(22) + 0.09564665(39) ṡ E A total of 15 spectra taken with the 3.5m Calar Alto telescope (TWIN spectrograph) on March 11-12, 2001, were used to establish the radial velocity curve of the primary star (K1 = 85.8 km/s) , and to determine its basic atmospheric parameters (Teff = 29300 K, log g = 5.47). The B and R light curves were solved using our Wilson-Devinney based light curve analysis code MORO (Drechsel et al. 1995, A&A 294, 723). The best fit solution yielded exact system parameters consistent with the spectroscopic results. Detailed results will be published elsewhere (Drechsel et al. 2001, A&A, in preparation).

  17. LUMINOSITY DISCREPANCY IN THE EQUAL-MASS, PRE-MAIN-SEQUENCE ECLIPSING BINARY PAR 1802: NON-COEVALITY OR TIDAL HEATING?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez Maqueo Chew, Yilen; Stassun, Keivan G.; Hebb, Leslie

    Parenago 1802, a member of the {approx}1 Myr Orion Nebula Cluster, is a double-lined, detached eclipsing binary in a 4.674 day orbit, with equal-mass components (M{sub 2}/M{sub 1} = 0.985 {+-} 0.029). Here we present extensive VI{sub C} JHK{sub S} light curves (LCs) spanning {approx}15 yr, as well as a Keck/High Resolution Echelle Spectrometer (HIRES) optical spectrum. The LCs evince a third light source that is variable with a period of 0.73 days, and is also manifested in the high-resolution spectrum, strongly indicating the presence of a third star in the system, probably a rapidly rotating Classical T Tauri star.more » We incorporate this third light into our radial velocity and LC modeling of the eclipsing pair, measuring accurate masses (M{sub 1} = 0.391 {+-} 0.032 and M{sub 2} = 0.385 {+-} 0.032 M{sub Sun }), radii (R{sub 1} = 1.73 {+-} 0.02 and R{sub 2} = 1.62 {+-} 0.02 R{sub Sun }), and temperature ratio (T{sub eff,1}/T{sub eff,2} = 1.0924 {+-} 0.0017). Thus, the radii of the eclipsing stars differ by 6.9% {+-} 0.8%, the temperatures differ by 9.2% {+-} 0.2%, and consequently the luminosities differ by 62% {+-} 3%, despite having masses equal to within 3%. This could be indicative of an age difference of {approx}3 Multiplication-Sign 10{sup 5} yr between the two eclipsing stars, perhaps a vestige of the binary formation history. We find that the eclipsing pair is in an orbit that has not yet fully circularized, e = 0.0166 {+-} 0.003. In addition, we measure the rotation rate of the eclipsing stars to be 4.629 {+-} 0.006 days; they rotate slightly faster than their 4.674 day orbit. The non-zero eccentricity and super-synchronous rotation suggest that the eclipsing pair should be tidally interacting, so we calculate the tidal history of the system according to different tidal evolution theories. We find that tidal heating effects can explain the observed luminosity difference of the eclipsing pair, providing an alternative to the previously suggested age

  18. UBV Photometry of Selected Eclipsing Binaries in the Magellanic Clouds.

    NASA Astrophysics Data System (ADS)

    Davidge, Timothy John

    1987-12-01

    UBV photoelectric observations of five eclipsing binaries in the Magellanic Clouds are presented and discussed in detail. The systems studied are HV162O and HV1669 in the Small Magellanic Cloud and HV2241, HV2765, and HV5943 in the Large Magellanic Cloud. Classification spectra indicate that the components of these systems are of spectral type late O or early B. The systems are located in moderately crowded areas. Therefore, CCD observations were used to construct models of the star fields around the variables. These were used to correct the photoelectric measurements for contamination. Light curve solutions were found with the Wilson -Devinney program. A two dimensional search of parameter space involving the mass ratio and the surface potential of the secondary component was employed. This procedure was tested by numerical simulation and was found to predict the light curve elements, including the mass ratios, within their estimated uncertainties. It appears likely that none of the systems are in contact, a surprising result considering the high frequency of early type contact binaries in the solar neighborhood. The light curve solutions were then used to compute the absolute dimensions of the components. Only one system, HV2241, has a radial velocity curve, allowing its absolute dimensions to be well established. Less accurate absolute dimensions were calculated for the remaining systems using photometric information. The components were then placed on H-R diagrams and compared with theoretical models of stellar evolution. The positions of the components on these diagrams appear to support the existence of convective core overshooting. The evolutionary status of the systems was also discussed. The system with the most accurately determined absolute dimensions, HV2241, appears to have undergone, or is nearing the end of, Case A mass transfer. Two other systems, HV1620 and HV1669, may also be involved in mass transfer. Finally, the use of eclipsing binaries as

  19. Orbital period variation study of the low-mass Algol eclipsing binary AI Draconis

    NASA Astrophysics Data System (ADS)

    Hanna, Magdy A.

    2013-06-01

    Orbital period changes for the Algol-type eclipsing binary AI Dra were studied based on the analysis of its observed times of light minimum. The period variation showed cyclic changes in the interval from JD. ≈ 24 36000 to JD. ≈ 24 47500 and a secular period increase rate (dP/dt = 2.44 × 10-7 d/year) starting from JD. ≈ 24 48500 up to 24 55262, in a time scale equals to 5 × 106 year.

  20. KIC 4150611: a rare multi-eclipsing quintuple with a hybrid pulsator

    NASA Astrophysics Data System (ADS)

    Hełminiak, K. G.; Ukita, N.; Kambe, E.; Kozłowski, S. K.; Pawłaszek, R.; Maehara, H.; Baranec, C.; Konacki, M.

    2017-06-01

    Aims: We aim to analyse KIC 4150611 (HD 181469) - an interesting, bright quintuple system that includes a hybrid δ Sct/γ Dor pulsator. Four periods of eclipses - 94.2, 8.65, 1.52 and 1.43 d - have been observed by the Kepler satellite, and three point sources (A, B, and C) are seen in high angular resolution images. Methods: From spectroscopic observations made with the HIDES spectrograph attached to the 1.88-m telescope of the Okayama Astrophysical Observatory (OAO), we have calculated for the first time radial velocities (RVs) of the component B - a pair of G-type stars - and combined them with Kepler photometry in order to obtain absolute physical parameters of this pair. We also managed to directly measure RVs of the pulsator, for the first time. Additionally, we modelled the light curves of the 1.52 and 1.43-day pairs, and measured their eclipse timing variations (ETVs). We also performed relative astrometry and photometry of three sources seen on the images taken with the NIRC2 camera of the Keck II telescope. Finally, we compared our results with theoretical isochrones. Results: The brightest component Aa is the hybrid pulsator, transited every 94.2 days by a pair of K/M-type stars (Ab1+Ab2), which themselves form a 1.52-day eclipsing binary. The components Ba and Bb are late G-type stars, forming another eclipsing pair with a 8.65 day period. Their masses and radii are MBa = 0.894 ± 0.010 M⊙, RBa = 0.802 ± 0.044 R⊙ for the primary, and MBb = 0.888 ± 0.010 M⊙, RBb = 0.856 ± 0.038 R⊙ for the secondary. The remaining period of 1.43 days is possibly related to a faint third star C, which itself is most likely a background object. The system's properties are well-represented by a 35 Myr isochrone, basing on which the masses of the pulsator and the 1.52-day pair are MAa = 1.64(6) M⊙, and MAb,tot = 0.90(13) M⊙, respectively. There are also suggestions of additional bodies in the system.

  1. Further Evidence of a Brown Dwarf Orbiting the Post-Common Envelope Eclipsing Binary V470 Cam (HS 0705+6700)

    NASA Astrophysics Data System (ADS)

    Bogensberger, David; Clarke, Fraser; Lynas-Gray, Anthony Eugene

    2017-12-01

    Several post-common envelope binaries have slightly increasing, decreasing or oscillating orbital periods. One of several possible explanations is light travel-time changes, caused by the binary centre-of-mass being perturbed by the gravitational pull of a third body. Further studies are necessary because it is not clear how a third body could have survived subdwarf progenitor mass-loss at the tip of the Red Giant Branch, or formed subsequently. Thirty-nine primary eclipse times for V470 Cam were secured with the Philip Wetton Telescope during the period 2016 November 25th to 2017 January 27th. Available eclipse timings suggest a brown dwarf tertiary having a mass of at least 0.0236(40) M⊙, an elliptical orbit with an eccentricity of 0.376(98) and an orbital period of 11.77(67) years about the binary centreof- mass. The mass and orbit suggest a hybrid formation, in which some ejected material from the subdwarf progenitor was accreted on to a precursor tertiary component, although additional observations would be needed to confirm this interpretation and investigate other possible origins for the binary orbital period change.

  2. Orbital variability in the eclipsing pulsar binary PSR B1957+20

    NASA Technical Reports Server (NTRS)

    Arzoumanian, Z.; Fruchter, A. S.; Taylor, J. H.

    1994-01-01

    We have conducted timing observations of the eclipsing millisecond binary pulsar PSR B1957+20, extending the span of data on this pulsar to more than five years. During this time the orbital period of the system has varied by roughly Delta P(sub b)/P(sub b) = 1.6 x 10(exp -7), changing quardratically with time and displaying with time and displaying an orbital period second derivative of P(sub b) = (1.43 +/- 0.08) x 10(exp -18)/sec. The previous measurement of a large negative orbital period derivative reflected only the short-term behavior of the system during the early observations; the orbital period derivative is now positive. If, as we suspect, the PSR B1957+20 system is undergoing quasi-cyclic orbital period variations similar to those found in other close binaries such as Algol and RS CVn, then the 0.025 solar mass companion to PSR B1957+20 is most likely non-degenerate, convective, and magnetically active.

  3. Period Variations of the Eclipsing Binary Systems T LMi and VX Lac

    NASA Astrophysics Data System (ADS)

    Yılmaz, M.; İzci, D. D.; Gümüş, D.; Özavci, İ.; Selam, S. O.

    2015-07-01

    We present a period analysis of the two Algol-type eclipsing binary systems T LMi and VX Lac using all available times of minimum in the literature, as well as new minima obtained at the Ankara University Kreiken Observatory. The period analysis of T LMi suggests mass transfer between the components and also a third body that is dynamically bound to the binary system. The analysis of VX Lac also suggests mass transfer between the components, and the presence of a third and a fourth body under the assumption of a Light-Time Effect. In addition, the periodic variation of VX Lac was examined under the hypothesis of magnetic activity, and the corresponding parameters were derived. We report here the orbital parameters for both systems, along with the ones related to mass transfer, and those for the third and fourth bodies.

  4. Multi-band photometric study of the short-period eclipsing binary GR Boo

    NASA Astrophysics Data System (ADS)

    Wang, Daimei; Zhang, Liyun; Han, Xianming L.; Lu, Hongpeng

    2017-05-01

    We present BVRI light curves with complete phase coverage for the short-period (p = 0.377day) eclipsing binary star GR Boo. We carried out the observations using the SARA 90 cm telescope located at Kitt Peak National Observatory. We obtained six new light curve minimum times. By fitting all of the available O-C minimum times, we obtained an updated ephemeris that shows the orbital period of GR Boo is decreasing at a rate of P˙ = - 2.36 ×10-7 days/year. This decrease in its period can be explained by either mass transfer from the more massive component to the less massive one, or angular momentum exchange due to magnetic activities. We also obtained a set of revised orbital parameters using the Wilson & Devinney program. And finally, we concluded that GR Boo is a contact binary with a dark spot.

  5. THREE NEW ECLIPSING WHITE-DWARF-M-DWARF BINARIES DISCOVERED IN A SEARCH FOR TRANSITING PLANETS AROUND M-DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, Nicholas M.; Kraus, Adam L.; Street, Rachel

    2012-10-01

    We present three new eclipsing white-dwarf/M-dwarf binary systems discovered during a search for transiting planets around M-dwarfs. Unlike most known eclipsing systems of this type, the optical and infrared emission is dominated by the M-dwarf components, and the systems have optical colors and discovery light curves consistent with being Jupiter-radius transiting planets around early M-dwarfs. We detail the PTF/M-dwarf transiting planet survey, part of the Palomar Transient Factory (PTF). We present a graphics processing unit (GPU)-based box-least-squares search for transits that runs approximately 8 Multiplication-Sign faster than similar algorithms implemented on general purpose systems. For the discovered systems, we decomposemore » low-resolution spectra of the systems into white-dwarf and M-dwarf components, and use radial velocity measurements and cooling models to estimate masses and radii for the white dwarfs. The systems are compact, with periods between 0.35 and 0.45 days and semimajor axes of approximately 2 R{sub Sun} (0.01 AU). The M-dwarfs have masses of approximately 0.35 M{sub Sun }, and the white dwarfs have hydrogen-rich atmospheres with temperatures of around 8000 K and have masses of approximately 0.5 M{sub Sun }. We use the Robo-AO laser guide star adaptive optics system to tentatively identify one of the objects as a triple system. We also use high-cadence photometry to put an upper limit on the white-dwarf radius of 0.025 R{sub Sun} (95% confidence) in one of the systems. Accounting for our detection efficiency and geometric factors, we estimate that 0.08%{sub -0.05%}{sup +0.10%} (90% confidence) of M-dwarfs are in these short-period, post-common-envelope white-dwarf/M-dwarf binaries where the optical light is dominated by the M-dwarf. The lack of detections at shorter periods, despite near-100% detection efficiency for such systems, suggests that binaries including these relatively low-temperature white dwarfs are preferentially found at

  6. An independent planet search in the Kepler dataset. I. One hundred new candidates and revised Kepler objects of interest

    NASA Astrophysics Data System (ADS)

    Ofir, A.; Dreizler, S.

    2013-07-01

    Aims: We present first results of our efforts to re-analyze the Kepler photometric dataset, searching for planetary transits using an alternative processing pipeline to the one used by the Kepler mission Methods: The SARS pipeline was tried and tested extensively by processing all available CoRoT mission data. For this first paper of the series we used this pipeline to search for (additional) planetary transits only in a small subset of stars - the Kepler objects of interest (KOIs), which are already known to include at least one promising planet candidate. Results: Although less than 1% of the Kepler dataset are KOIs we are able to significantly update the overall statistics of planetary multiplicity: we find 84 new transit signals on 64 systems on these light curves (LCs) only, nearly doubling the number of transit signals in these systems. Forty-one of the systems were singly-transiting systems that are now multiply-transiting. This significantly reduces the chances of false positive in them. Notable among the new discoveries are KOI 435 as a new six-candidate system (of which kind only Kepler-11 was known before), KOI 277 (which includes two candidates in a 6:7 period commensurability that has anti-correlated transit timing variations) - all but validating the system, KOIs 719, 1574, and 1871 that have small planet candidates (1.15,2.05 and 1.71 R⊕) in the habitable zone of their host star, and KOI 1843 that exhibits the shortest period (4.25 h) and is among the smallest (0.63 R⊕) of all planet candidates. We are also able to reject 11 KOIs as eclipsing binaries based on photometry alone, update the ephemeris for five KOIs and otherwise discuss a number of other objects, which brings the total of new signals and revised KOIs in this study to more than one hundred. Interestingly, a large fraction, about ~1/3, of the newly detected candidates participate in period commensurabilities. Finally, we discuss the possible overestimation of parameter errors in the

  7. A simultaneous spectroscopic and photometric study of two eclipsing binaries: V566 Oph and V972 Her

    NASA Astrophysics Data System (ADS)

    Selam, S. O.; Esmer, E. M.; Şenavcı, H. V.; Bahar, E.; Yörükoğlu, O.; Yılmaz, M.; Baştürk, Ö.

    2018-02-01

    In this study, we have performed simultaneous solutions of light and radial velocity curves of two eclipsing binary systems, V566 Oph and V972 Her. We observed both systems spectroscopically with a very recently installed spectrograph on the 40 cm telescope, T40, located in Ankara University Kreiken Observatory (AUKR), for the first time. We made use of the photometric data from the Hipparcos satellite for V972 Her, while we obtained the photometric observations of V566 Oph by using the 35 cm telescope, T35, located also in our observatory campus. We derived the absolute parameters for both systems and discussed their evolutionary states. In addition to the simultaneous analysis, we have also analyzed the change in mid-eclipse times for V566 Oph, and found cyclic variations, for which we have discussed light-time effect and magnetic activity as their potential origin, superimposed on a secular change due to a mass transfer between the components of the binary.

  8. The detached eclipsing binary TX Her revisited

    NASA Astrophysics Data System (ADS)

    Erdem, A.; Aliçavuş, F.; Soydugan, F.; Doğru, S. S.; Soydugan, E.; Çiçek, C.; Demircan, O.

    2011-12-01

    This paper presents new CCD Bessell BVRI light curves and photometric analysis of the Algol-type binary star TX Her. The CCD observations were carried out at Çanakkale Onsekiz Mart University Observatory in 2010. New BVRI light curves from this study and radial velocity curves from Popper (1970) were solved simultaneously using modern light and radial velocity curves synthesis methods. The general results show that TX Her is a well-detached eclipsing binary, however, both component stars fill at least half of their Roche lobes. A significant third light contribution to the total light of the system could not be determined. Using O- C residuals formed by the updated minima times, an orbital period study of the system was performed. It was confirmed that the tilted sinusoidal O- C variation corresponds to an apparent period variation caused by the light travel time effect due to an unseen third body. The following absolute parameters of the components were derived: M1 = 1.62 ± 0.04 M ⊙, M2 = 1.45 ± 0.03 M ⊙, R1 = 1.69 ± 0.03 R ⊙, R2 = 1.43 ± 0.03 R ⊙, L1 = 8.21 ± 0.90 L ⊙ and L2 = 3.64 ± 0.60 L ⊙. The distance to TX Her was calculated as 155 ± 10 pc, taking into account interstellar extinction. The position of the components of TX Her in the HR diagram are also discussed. The components are young stars with an age of ˜500 Myr.

  9. APSIDAL MOTION AND A LIGHT CURVE SOLUTION FOR 13 LMC ECCENTRIC ECLIPSING BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zasche, P.; Wolf, M.; Vraštil, J.

    2015-12-15

    New CCD observations for 13 eccentric eclipsing binaries from the Large Magellanic Cloud were carried out using the Danish 1.54 m telescope located at the La Silla Observatory in Chile. These systems were observed for their times of minimum and 56 new minima were obtained. These are needed for accurate determination of the apsidal motion. Besides that, in total 436 times of minimum were derived from the photometric databases OGLE and MACHO. The O – C diagrams of minimum timings for these B-type binaries were analyzed and the parameters of the apsidal motion were computed. The light curves of thesemore » systems were fitted using the program PHOEBE, giving the light curve parameters. We derived for the first time relatively short periods of the apsidal motion ranging from 21 to 107 years. The system OGLE-LMC-ECL-07902 was also analyzed using the spectra and radial velocities, resulting in masses of 6.8 and 4.4 M{sub ⊙} for the eclipsing components. For one system (OGLE-LMC-ECL-20112), the third-body hypothesis was also used to describe the residuals after subtraction of the apsidal motion, resulting in a period of about 22 years. For several systems an additional third light was also detected, which makes these systems suspect for triplicity.« less

  10. On a possible additional component in an eclipsing binary system HS 2231 + 2441

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.; Romanyuk, Ya. O.; Shliahetskaya, Ya. O.

    2016-05-01

    Timing method based on the registration period of variations of a periodic process, associated with the star. The study of stellar eclipsing binary system for a long time allows a series of several transits, depending on the orbital period of the satellite smaller. We present a photometric study of system of the type HW Vir HS 2231 + 2441. Photometric data processing was performed using C-MuniWin Version 1.2.30 program. The accuracy of values for each observation point is in the range 0,003...0,009m for different nights. The calculated ephemeris determined from the light curve by fitting of arc of minimums to the nuclei of primary and secondary eclipses. The amplitude of the periodic changes of minimums moments that arise from the orbital motion of a close pair of stars around the barycenter of the triple system, is less than 0.0008 days (1.15 minutes). It was found that the periodic variation of the orbital period can be explained by the gravitational influence of a third companion on the central binary system with an orbital period of about 97±10d. Periodogram analysis of the observational data series indicate also on the periodicity with values of 48±5d and 195±15d, but with substantially less reliably

  11. Epsilon Aurigae. [eclipsing binary system

    NASA Technical Reports Server (NTRS)

    Chapman, R. D.

    1985-01-01

    In April 1984, fourth contact ended the two year long eclipse of Epsilon Aurigae. An astrometric study of the study of the system was carried out by Van de kamp (1978) leading to the conclusion that the orbit is seen very close to edge on. The eclipse was monitored by a number of groups from the ground and from spacecraft such as the IUE. Ultraviolet observations of the system from IUE have thrown new light on the nature of the system that led to the conclusion that the secondary object is probably a cold, dusty accretion disk surrounding a star that is completely hidden inside the disk.

  12. Eclipsing binary stars as tests of gravity theories - The apsidal motion of AS Camelopardalis

    NASA Technical Reports Server (NTRS)

    Maloney, Frank P.; Guinan, Edward F.; Boyd, Patricia T.

    1989-01-01

    AS Camelopardalis is an 8th-magnitude eclipsing binary that consists of two main-sequence (B8 V and a B9.5 V) components in an eccentric orbit (e = 0.17) with an orbital period of 3.43 days. Like the eccentric eclipsing system DI Herculis, and a few other systems, AS Cam is an important test case for studying relativistic apsidal motion. In these systems, the theoretical general relativistic apsidal motion is comparable to that expected from classical effects arising from tidal and rotational deformation of the stellar components. Accurate determinations of the orbital and stellar properties of AS Cam have been made by Hilditch (1972) and Khalliulin and Kozyreva (1983) that permit the theoretical relativistic and classical contributions to the apsidal motion to be determined reasonably well. All the published timings of primary and secondary minima have been gathered and supplemented with eclipse timings from 1899 to 1920 obtained from the Harvard plate collection. Least-squares solutions of the eclipse timings extending over an 80 yr interval yield a smaller than expected apsidal motion, in agreement with that found by Khalliulin and Kozyreva from a smaller set of data. The observed apsidal motion for AS Cam is about one-third that expected from the combined relativistic and classical effects. Thus, AS Cam joins DI Her in having an observed apsidal motion significantly less than that predicted from theory.

  13. Simultaneous CCD Photometry of Two Eclipsing Binary Stars in Pegasus - Part2: BX Peg

    NASA Astrophysics Data System (ADS)

    Alton, K. B.

    2013-05-01

    BX Peg is an overcontact W UMa binary system (P = 0.280416 d) which has been rather well studied, but not fully understood due to complex changes in eclipse timings and light curve variations attributed to star spots. Photometric data collected in three bandpasses (B, V, and Ic) produced nineteen new times of minimum for BX Peg. These were used to update the linear ephemeris and further analyze potential changes in orbital periodicity by examining long-term changes in eclipse timings. In addition, synthetic fitting of light curves by Roche modeling was accomplished with the assistance of three different programs, two of which employ the Wilson-Devinney code. Different spotted solutions were necessary to achieve the best Roche model fits for BX Peg light curves collected in 2008 and 2011. Overall, the long-;term decrease (9.66 × 10-3 sec y-1) in orbital period defined by the parabolic fit of eclipse timing data could arise from mass transfer or angular momentum loss. The remaining residuals from observed minus predicted eclipse timings for BX Peg exhibit complex but non-random behavior. These may be related to magnetic activity cycles and/or the presence of an unseen mass influencing the times of minimum, however, additional minima need to be collected over a much longer timescale to resolve the nature of these complex changes.

  14. Eclipse timings of the low-mass X-ray binary EXO 0748-676: Statistical arguments against orbital period changes

    NASA Technical Reports Server (NTRS)

    Hertz, Paul; Wood, Kent S.; Cominsky, Lynn

    1995-01-01

    EXO 0748-676, an eclipsing low-mass X-ray binary, is one of only about four or five low-mass X-ray binaries for which orbital period evolution has been reported. We observed a single eclipse egress with ROSAT . The time of this egress is consistent with the apparent increase in P(sub orb) previously reported on the basis of EXOSAT and Ginga observations. Standard analysis, in which O-C (observed minus calculated) timing residuals are examined for deviations from a constant period, implicitly assume that the only uncertainty in each residual is measurement error and that these errors are independent. We argue that the variable eclipse durations and profiles observed in EXO 0748-676 imply that there is an additional source of uncertainty in timing measurements, that this uncertainty is intrinsic to the binary system, and that it is correlated from observation to observation with a variance which increases as a function of the number of binary cycles between observations. This intrinsic variability gives rise to spurious trends in O-C residuals which are misinterpreted as changes in the orbital period. We describe several statistics tests which can be used to test for the presence of intrinsic variability. We apply those statistical tests which are suitable to the EXO 0748-676 observations. The apparent changes in the orbital period of EXO 0748-676 can be completely accounted for by intrinsic variability with an rms variability of approximately 0.35 s per orbital cycle. The variability appears to be correlated from cycle-to-cycle on timescales of less than 1 yr. We suggest that the intrinsic variability is related to slow changes in either the source's X-ray luminosity or the structure of the companion star's atmosphere. We note that several other X-ray binaries and cataclysmic variables have previously reported orbital period changes which may also be due to intrinsic variability rather than orbital period evolution.

  15. Advances in Telescope and Detector Technologies - Impacts on the Study and Understanding of Binary Star and Exoplanet Systems

    NASA Astrophysics Data System (ADS)

    Guinan, Edward F.; Engle, Scott; Devinney, Edward J.

    2012-04-01

    Current and planned telescope systems (both on the ground and in space) as well as new technologies will be discussed with emphasis on their impact on the studies of binary star and exoplanet systems. Although no telescopes or space missions are primarily designed to study binary stars (what a pity!), several are available (or will be shortly) to study exoplanet systems. Nonetheless those telescopes and instruments can also be powerful tools for studying binary and variable stars. For example, early microlensing missions (mid-1990s) such as EROS, MACHO and OGLE were initially designed for probing dark matter in the halos of galaxies but, serendipitously, these programs turned out to be a bonanza for the studies of eclipsing binaries and variable stars in the Magellanic Clouds and in the Galactic Bulge. A more recent example of this kind of serendipity is the Kepler Mission. Although Kepler was designed to discover exoplanet transits (and so far has been very successful, returning many planetary candidates), Kepler is turning out to be a ``stealth'' stellar astrophysics mission returning fundamentally important and new information on eclipsing binaries, variable stars and, in particular, providing a treasure trove of data of all types of pulsating stars suitable for detailed Asteroseismology studies. With this in mind, current and planned telescopes and networks, new instruments and techniques (including interferometers) are discussed that can play important roles in our understanding of both binary star and exoplanet systems. Recent advances in detectors (e.g. laser frequency comb spectrographs), telescope networks (both small and large - e.g. Super-WASP, HAT-net, RoboNet, Las Combres Observatory Global Telescope (LCOGT) Network), wide field (panoramic) telescope systems (e.g. Large Synoptic Survey Telescope (LSST) and Pan-Starrs), huge telescopes (e.g. the Thirty Meter Telescope (TMT), the Overwhelming Large Telescope (OWL) and the Extremely Large Telescope (ELT

  16. First Spectroscopic Solutions of Two Southern Eclipsing Binaries: HO Tel and QY Tel

    NASA Astrophysics Data System (ADS)

    Sürgit, D.; Erdem, A.; Engelbrecht, C. A.; van Heerden, P.; Manick, R.

    2015-07-01

    We present preliminary results from the analysis of spectroscopic observations of two southern eclipsing binary stars, HO Tel and QY Tel. The grating spectra of these two systems were obtained at the Sutherland Station of the South African Astronomical Observatory in 2013. Radial velocities of the components were determined by the Fourier disentangling technique. Keplerian radial velocity models of HO Tel and QY Tel give their mass ratio as 0.921±0.005 and 1.089±0.007, respectively.

  17. SARA South Observations and Analysis of the Solar Type, Totally Eclipsing, Over Contact Binary, PY Aquarii

    NASA Astrophysics Data System (ADS)

    Chamberlain, Heather; Samec, Ronald G.; Caton, Daniel Bruce; Van Hamme, Walter

    2018-01-01

    PY Aqr (GSC 05191-00853) is a solar Type (T ~ 5750K) eclipsing binary. It was observed in July to October, 2017 at Cerro Tololo in remote mode with the 0.6-m SARA South reflector. Two times of minimum light were calculated from our present observations, a primary and a secondary eclipse:HJD Min I = 2457951.7762±0.0006 HJD Min II = 2458019.5295±00.0003. Both weighted as 1.0.In addition, four timings were determined from online data given in IBVS 5600 and five observations at minima were determined from archived All Sky Automated Survey Data:HJD Min I = 2452908.3165, 2452912.33612 HJD Min II = 2452877.5621, 2452913.34465. All weighted as 0.5.ASAS Observations at minima: 2452094.688, 2453478.882, 2453266.576, 2452093.685 and 54729.600. Each weighted as 0.10The following linear and quadratic ephemerides were determined from all available times of minimum light:JD Hel Min I=2452951.7443±0.0008d + 0.402093441±0.000000099 X E {1} JD Hel Min I=2452951.7439±0.0007d + 0.4020912±0.0000007 X E +0.00000000018 ± 0.00000000006 X E2 {2}A BVRI Bessell filtered simultaneous Wilson-Devinney Program (W-D) solution reveals that the system has a mass ratio of ~0.34 and a component temperature difference of only ~40 K. One low luminosity (Tfact ~ 0.94, ~66 degree radius) large cool region of spots was iterated on the primary component in the WD Synthetic Light Curve computations. It appears in the Southern Hemisphere (colatitude 155 degrees). The Roche Lobe fill-out of the binary is ~17%. The inclination is ~86 degrees. An eclipse duration of ~10 minutes was determined for the primary eclipse and the light curve solution. Additional and more detailed information is given in this report.

  18. Inferring Planet Occurrence Rates With a Q1-Q16 Kepler Planet Candidate Catalog Produced by a Machine Learning Classifier

    NASA Astrophysics Data System (ADS)

    Catanzarite, Joseph; Jenkins, Jon Michael; Burke, Christopher J.; McCauliff, Sean D.; Kepler Science Operations Center

    2015-01-01

    NASA's Kepler Space Telescope monitored the photometric variations of over 170,000 stars within a ~100 square degree field in the constellation Cygnus, at half-hour cadence, over its four year prime mission. The Kepler SOC (Science Operations Center) pipeline calibrates the pixels of the target apertures for each star, corrects light curves for systematic error, and detects TCEs (threshold-crossing events) that may be due to transiting planets. Finally the pipeline estimates planet parameters for all TCEs and computes quantitative diagnostics that are used by the TCERT (Threshold Crossing Event Review Team) to produce a catalog containing KOIs (Kepler Objects of Interest). KOIs are TCEs that are determined to be either likely transiting planets or astrophysical false positives such as background eclipsing binary stars. Using examples from the Q1-Q16 TCERT KOI catalog as a training set, we created a machine-learning classifier that dispositions the TCEs into categories of PC (planet candidate), AFP (astrophysical false positive) and NTP (non-transiting phenomenon). The classifier uniformly and consistently applies heuristics developed by TCERT as well as other diagnostics to the Q1-Q16 TCEs to produce a more robust and reliable catalog of planet candidates than is possible with only human classification. In this work, we estimate planet occurrence rates, based on the machine-learning-produced catalog of Kepler planet candidates. Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA, Science Mission Directorate.

  19. Apsidal motion in eccentric eclipsing binaries: TV Ceti and V451 Ophiuchi

    NASA Astrophysics Data System (ADS)

    Wolf, M.; Diethelm, R.; Hornoch, K.

    2001-07-01

    Several new times of minimum light recorded with photoelectric means have been gathered for two bright eccentric eclipsing binaries TV Cet (P = 9fd1 , e = 0.055) and V451 Oph (P = 2fd2 , e = 0.013). Analysis of all available eclipse timings of TV Ceti has revealed a small motion of the line of apsides of dot ω = 0.000 30 +/- 0.000 08 deg cycle-1, corresponding to an apsidal period of U = 30 000 +/- 8 000 years. The contribution from the general relativity effects is dominant (dot ωrel/dot ω ~ 80 % ). In this system, the third body on an eccentric orbit with a period of 28.5 years is also predicted. The more precise values for the apsidal motion elements were computed for V451 Oph, where apsidal motion with a period of 170 +/- 5 years was confirmed. The corresponding internal structure constants log k2 were derived. Some of the observations reported in this paper were obtained at the South Africa Astronomical Observatory, Sutherland, South Africa.

  20. An Atlas of O-C Diagrams of Eclipsing Binary Stars

    NASA Astrophysics Data System (ADS)

    Kreiner, Jerzy M.; Kim, Chun-Hwey; Nha, Il-Seong

    The Atlas contains data for 1,138 eclipsing binaries represented by 91,798 minima timings, collected from the usual international and local journals, observatory publications and unpublished minima. Among this source material there is a considerable representation of amateur astronomers. Some timings were found in the card-index catalogue of the Astronomical Observatory of the Jagiellonian University, Cracow. Stars were included in the Atlas provided that they satisfied 3 criteria: (1) at least 20 minima had been times; (2) these minima spanned at least 2,500 cycles; and (3) the 2,500 cycles represented no fewer than 40 years. Some additional stars not strictly satisfying these criteria were also included if useful information was available. For each star, the Atlas contains the (O-C) diagram calculated by the authors and a table of general information containing: binary characteristics; assorted catalogue numbers; the statistics of the collected minima timings; the light elements (light ephemeris); comments and literature references. All of the data and diagrams in the Atlas are also available in electronic form on the Internet at http://www.as.ap.krakow.pl/o- c".

  1. The first Doppler images of the eclipsing binary SZ Piscium

    NASA Astrophysics Data System (ADS)

    Xiang, Yue; Gu, Shenghong; Cameron, A. Collier; Barnes, J. R.; Zhang, Liyun

    2016-02-01

    We present the first Doppler images of the active eclipsing binary system SZ Psc, based on the high-resolution spectral data sets obtained in 2004 November and 2006 September-December. The least-squares deconvolution technique was applied to derive high signal-to-noise profiles from the observed spectra of SZ Psc. Absorption features contributed by a third component of the system were detected in the LSD profiles at all observed phases. We estimated the mass and period of the third component to be about 0.9 M⊙ and 1283 ± 10 d, respectively. After removing the contribution of the third body from the least-squares deconvolved profiles, we derived the surface maps of SZ Psc. The resulting Doppler images indicate significant star-spot activities on the surface of the K subgiant component. The distributions of star-spots are more complex than that revealed by previous photometric studies. The cooler K component exhibited pronounced high-latitude spots as well as numerous low- and intermediate-latitude spot groups during the entire observing seasons, but did not show any large, stable polar cap, different from many other active RS CVn-type binaries.

  2. Kepler-16: a transiting circumbinary planet.

    PubMed

    Doyle, Laurance R; Carter, Joshua A; Fabrycky, Daniel C; Slawson, Robert W; Howell, Steve B; Winn, Joshua N; Orosz, Jerome A; Prša, Andrej; Welsh, William F; Quinn, Samuel N; Latham, David; Torres, Guillermo; Buchhave, Lars A; Marcy, Geoffrey W; Fortney, Jonathan J; Shporer, Avi; Ford, Eric B; Lissauer, Jack J; Ragozzine, Darin; Rucker, Michael; Batalha, Natalie; Jenkins, Jon M; Borucki, William J; Koch, David; Middour, Christopher K; Hall, Jennifer R; McCauliff, Sean; Fanelli, Michael N; Quintana, Elisa V; Holman, Matthew J; Caldwell, Douglas A; Still, Martin; Stefanik, Robert P; Brown, Warren R; Esquerdo, Gilbert A; Tang, Sumin; Furesz, Gabor; Geary, John C; Berlind, Perry; Calkins, Michael L; Short, Donald R; Steffen, Jason H; Sasselov, Dimitar; Dunham, Edward W; Cochran, William D; Boss, Alan; Haas, Michael R; Buzasi, Derek; Fischer, Debra

    2011-09-16

    We report the detection of a planet whose orbit surrounds a pair of low-mass stars. Data from the Kepler spacecraft reveal transits of the planet across both stars, in addition to the mutual eclipses of the stars, giving precise constraints on the absolute dimensions of all three bodies. The planet is comparable to Saturn in mass and size and is on a nearly circular 229-day orbit around its two parent stars. The eclipsing stars are 20 and 69% as massive as the Sun and have an eccentric 41-day orbit. The motions of all three bodies are confined to within 0.5° of a single plane, suggesting that the planet formed within a circumbinary disk.

  3. A Bright Short Period M-M Eclipsing Binary from the KELT Survey: Magnetic Activity and the Mass-Radius Relationship for M Dwarfs

    NASA Astrophysics Data System (ADS)

    Lubin, Jack B.; Rodriguez, Joseph E.; Zhou, George; Conroy, Kyle E.; Stassun, Keivan G.; Collins, Karen; Stevens, Daniel J.; Labadie-Bartz, Jonathan; Stockdale, Christopher; Myers, Gordon; Colón, Knicole D.; Bento, Joao; Kehusmaa, Petri; Petrucci, Romina; Jofré, Emiliano; Quinn, Samuel N.; Lund, Michael B.; Kuhn, Rudolf B.; Siverd, Robert J.; Beatty, Thomas G.; Harlingten, Caisey; Pepper, Joshua; Gaudi, B. Scott; James, David; Jensen, Eric L. N.; Reichart, Daniel; Kedziora-Chudczer, Lucyna; Bailey, Jeremy; Melville, Graeme

    2017-08-01

    We report the discovery of KELT J041621-620046, a moderately bright (J ˜ 10.2) M-dwarf eclipsing binary system at a distance of 39 ± 3 pc. KELT J041621-620046 was first identified as an eclipsing binary using observations from the Kilodegree Extremely Little Telescope (KELT) survey. The system has a short orbital period of ˜1.11 days and consists of components with {M}1={0.447}+0.052-0.047 {M}⊙ and {M}2={0.399}+0.046-0.042 {M}⊙ in nearly circular orbits. The radii of the two stars are {R}1={0.540}+0.034-0.032 {R}⊙ and {\\text{}}{R}2=0.453+/- 0.017 {R}⊙ . Full system and orbital properties were determined (to ˜10% error) by conducting an EBOP (Eclipsing Binary Orbit Program) global modeling of the high precision photometric and spectroscopic observations obtained by the KELT Follow-up Network. Each star is larger by 17%-28% and cooler by 4%-10% than predicted by standard (non-magnetic) stellar models. Strong Hα emission indicates chromospheric activity in both stars. The observed radii and temperature discrepancies for both components are more consistent with those predicted by empirical relations that account for convective suppression due to magnetic activity.

  4. Orbital period study of the Algol-type eclipsing binary system TW Draconis

    NASA Astrophysics Data System (ADS)

    Qian, S. B.; Boonrucksar, S.

    2002-10-01

    The century-long times of light minimum of the Algol-type eclipsing binary star, TW Dra (BD +64°1077, Sp A5V+K2III), are investigated by considering a new pattern of period change. Two sudden period increases and two successive period decreases are discovered to superimpose on a rapid secular increase (d P/d t=+4.43×10 -6 days/year). The secular increase may be caused by a dynamical mass transfer from the secondary to the primary component (d m/d t=6.81×10 -7 M ⊙/year) that is in agreement with the semi-detached configuration of the system and with the existence of a hot spot and a gaseous stream in the binary system. The irregular period jumps superimposed on the secular increase can be explained by the structure variation of the K2-type giant via instabilities of the outer convective layer or via magnetic activity cycles.

  5. A possible third component in the eclipsing binary system HS 2231+2441

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.; Romanyuk, Ya. O.; Shliahetskaya, Ya. O.

    2016-05-01

    We used a differential photometry method in which we compared the flow of program star and standard one. Observations of the 21 nights in the period from July 26 to December 2, 2015 are used for processing. The accuracy of determining for each measurement is in the range 0,003...0,009 m for different nights. On the basis of obtained data were created corresponding light curves. Next, we calculate the time difference between the centers of transits. Its time dependence showed the presence of a possible periodic change in the deflection of the middle transit time from the calculated average value. This may indicate the presence of a third object in the eclipsing binary system. It has been found that the periodic variation of the orbital period can be explained by the gravitational influence of a third companion on the central binary system with an orbital period of about 97±10 d.

  6. HATS-36b and 24 Other Transiting/Eclipsing Systems from the HATSouth-K2 Campaign 7 Program

    NASA Astrophysics Data System (ADS)

    Bayliss, D.; Hartman, J. D.; Zhou, G.; Bakos, G. Á.; Vanderburg, A.; Bento, J.; Mancini, L.; Ciceri, S.; Brahm, R.; Jordán, A.; Espinoza, N.; Rabus, M.; Tan, T. G.; Penev, K.; Bhatti, W.; de Val-Borro, M.; Suc, V.; Csubry, Z.; Henning, Th.; Sarkis, P.; Lázár, J.; Papp, I.; Sári, P.

    2018-03-01

    We report on the result of a campaign to monitor 25 HATSouth candidates using the Kepler space telescope during Campaign 7 of the K2 mission. We discover HATS-36b (EPIC 215969174b, K2-145b), an eccentric (e=0.105+/- 0.028) hot Jupiter with a mass of 3.216+/- 0.062 {M}{{J}} and a radius of 1.235+/- 0.043 {R}{{J}}, which transits a solar-type G0V star (V = 14.386) in a 4.1752-day period. We also refine the properties of three previously discovered HATSouth transiting planets (HATS-9b, HATS-11b, and HATS-12b) and search the K2 data for TTVs and additional transiting planets in these systems. In addition, we also report on a further three systems that remain as Jupiter-radius transiting exoplanet candidates. These candidates do not have determined masses, however pass all of our other vetting observations. Finally, we report on the 18 candidates that we are now able to classify as eclipsing binary or blended eclipsing binary systems based on a combination of the HATSouth data, the K2 data, and follow-up ground-based photometry and spectroscopy. These range in periods from 0.7 day to 16.7 days, and down to 1.5 mmag in eclipse depths. Our results show the power of combining ground-based imaging and spectroscopy with higher precision space-based photometry, and serve as an illustration as to what will be possible when combining ground-based observations with TESS data.

  7. The atmospheric structures of the companion stars of eclipsing binary x ray sources

    NASA Technical Reports Server (NTRS)

    Clark, George W.

    1992-01-01

    This investigation was aimed at determining structural features of the atmospheres of the massive early-type companion stars of eclipse x-ray pulsars by measurement of the attenuation of the x-ray spectrum during eclipse transitions and in deep eclipse. Several extended visits were made to ISAS in Japan by G. Clark and his graduate student, Jonathan Woo to coordinate the Ginga observations and preliminary data reduction, and to work with the Japanese host scientist, Fumiaki Nagase, in the interpretation of the data. At MIT extensive developments were made in software systems for data interpretation. In particular, a Monte Carlo code was developed for a 3-D simulation of the propagation of x-rays from the neutron star through the ionized atmosphere of the companion. With this code it was possible to determine the spectrum of Compton-scattered x-rays in deep eclipse and to subtract that component from the observed spectra, thereby isolating the software component that is attributable in large measure to x-rays that have been scattered by interstellar grains. This research has culminated in the submission of paper to the Astrophysical Journal on the determination of properties of the atmosphere of QV Nor, the BOI companion of 4U 1538-52, and the properties of interstellar dust grains along the line of sight from the source. The latter results were an unanticipated byproduct of the investigation. Data from Ginga observations of the Magellanic binaries SMC X-1 and LMC X-4 are currently under investigation as the PhD thesis project of Jonathan Woo who anticipated completion in the spring of 1993.

  8. First Precision Photometric Observations and Analyses of The Totally Eclipsing, Solar Type Binary, V573 Pegasi

    NASA Astrophysics Data System (ADS)

    Samec, Ronald G.; Caton, Daniel B.; Faulkner, Danny R.

    2018-06-01

    CCD, VRI light curves of V573 Peg were taken in 26,27 September and 2, 4 and 6 October, 2017 at the Dark Sky Observatory in North Carolina with the 0.81-m reflector of Appalachian State University by D. Caton. V573 Peg was discovered by the SAVS survey which classified it as a V= 0.51 amplitude, EW variable. They included a rough spectrum identifying the binary was about a type G, although the period would indicate it is an F-type contact binary. Five times of minimum light were calculated, two primary eclipses and three secondary, from our present observations:HJD I = 2458023.6420±0.0012, 2458028.6522±0.0021,HJD II = 2458022.5991±0.0011, 2458023.8510±0.0010 and 2458028.8608±0.0005,The following linear and quadratic ephemerides were determined from all available times of minimum light.JD Hel MinI = 2456876.49437±0.00078d + 0.41745021±0. 00000017 × E, -JD Hel MinI = 2456876.49580±0.00023d + 0. 417448601±0.000000083× E - 0.000000000274±0.000000000012 X E2A 14-year period study (24 times of minimum light) revealed that the orbital period decreasing with a high level of confidence, possibly due to magnetic braking. The mass ratio is found to be somewhat extreme, M2/M1=0.2629±0.0006.Its Roche Lobe fill-out is 25%. The solution had no need of spots. The temperature difference of the components is about ~130 K, with the secondary as the hotter star, so it is a W-type W UMa Binary. The inclination is 80.4±0.1° . The secondary eclipse shows a time of constant light with an eclipse duration of 24 minutes. More details of our results will be given at the meeting.

  9. The Chandra Delta Ori Large Project: Occultation Measurements of the Shocked Gas tn the Nearest Eclipsing O-Star Binary

    NASA Technical Reports Server (NTRS)

    Corcoran, Michael F.; Nichols, Joy; Naze, Yael; Rauw, Gregor; Pollock, Andrew; Moffat, Anthony; Richardson, Noel; Evans, Nancy; Hamaguchi, Kenji; Oskinova, Lida; hide

    2013-01-01

    Delta Ori is the nearest massive, single-lined eclipsing binary (O9.5 II + B0.5III). As such it serves as a fundamental calibrator of the mass-radius-luminosity relation in the upper HR diagram. It is also the only eclipsing O-type binary system which is bright enough to be observable with the CHANDRA gratings in a reasonable exposure. Studies of resolved X-ray line complexes provide tracers of wind mass loss rate and clumpiness; occultation by the X-ray dark companion of the line emitting region can provide direct spatial information on the location of the X-ray emitting gas produced by shocks embedded in the wind of the primary star. We obtained phase-resolved spectra with Chandra in order to determine the level of phase-dependent vs. secular variability in the shocked wind. Along with the Chandra observations we obtained simultaneous photometry from space with the Canadian MOST satellite to help understand the relation between X-ray and photospheric variability.

  10. Photometric study and absolute parameters of the short-period eclipsing binary HH Bootis

    NASA Astrophysics Data System (ADS)

    Gürol, B.; Bradstreet, D. H.; Demircan, Y.; Gürsoytrak, S. H.

    2015-11-01

    We present the results of our investigation on the geometrical and physical parameters of the W UMa type binary system HH Bootis from new CCD (BVRI) light curves and published radial velocity data. The photometric data were obtained in 2011 and 2012 at Ankara University Observatory (AUO). Light and radial velocity observations were analyzed simultaneously using the Wilson-Devinney (2013 revision) code to obtain absolute and geometrical parameters. The system was determined to be a W-type W UMa system of a type different from that suggested by Dal and Sipahi (2013). An interesting cyclic period variation in the time intervals between primary and secondary eclipses ("half-period variation") was discovered and analyzed and its possible cause is discussed. Combining our photometric solution with the spectroscopic data we derived masses and radii of the eclipsing system to be M1 = 0.627M⊙ , M2 = 1.068M⊙ , R1 = 0.782R⊙ and R2 = 0.997R⊙ . New light elements were derived and finally the evolutionary status of the system is discussed.

  11. V773 Cas, QS Aql, AND BR Ind: ECLIPSING BINARIES AS PARTS OF MULTIPLE SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zasche, P.; Juryšek, J.; Nemravová, J.

    2017-01-01

    Eclipsing binaries remain crucial objects for our understanding of the universe. In particular, those that are components of multiple systems can help us solve the problem of the formation of these systems. Analysis of the radial velocities together with the light curve produced for the first time precise physical parameters of the components of the multiple systems V773 Cas, QS Aql, and BR Ind. Their visual orbits were also analyzed, which resulted in slightly improved orbital elements. What is typical for all these systems is that their most dominant source is the third distant component. The system V773 Cas consists of two similarmore » G1-2V stars revolving in a circular orbit and a more distant component of the A3V type. Additionally, the improved value of parallax was calculated to be 17.6 mas. Analysis of QS Aql resulted in the following: the inner eclipsing pair is composed of B6V and F1V stars, and the third component is of about the B6 spectral type. The outer orbit has high eccentricity of about 0.95, and observations near its upcoming periastron passage between the years 2038 and 2040 are of high importance. Also, the parallax of the system was derived to be about 2.89 mas, moving the star much closer to the Sun than originally assumed. The system BR Ind was found to be a quadruple star consisting of two eclipsing K dwarfs orbiting each other with a period of 1.786 days; the distant component is a single-lined spectroscopic binary with an orbital period of about 6 days. Both pairs are moving around each other on their 148 year orbit.« less

  12. Atmospheric characterization of the hot Jupiter Kepler-13Ab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shporer, Avi; O'Rourke, Joseph G.; Knutson, Heather A.

    Kepler-13Ab (= KOI-13.01) is a unique transiting hot Jupiter. It is one of very few known short-period planets orbiting a hot A-type star, making it one of the hottest planets currently known. The availability of Kepler data allows us to measure the planet's occultation (secondary eclipse) and phase curve in the optical, which we combine with occultations observed by warm Spitzer at 4.5 μm and 3.6 μm and a ground-based occultation observation in the K{sub s} band (2.1 μm). We derive a day-side hemisphere temperature of 2750 ± 160 K as the effective temperature of a black body showing themore » same occultation depths. Comparing the occultation depths with one-dimensional planetary atmosphere models suggests the presence of an atmospheric temperature inversion. Our analysis shows evidence for a relatively high geometric albedo, A {sub g} = 0.33{sub −0.06}{sup +0.04}. While measured with a simplistic method, a high A {sub g} is supported also by the fact that the one-dimensional atmosphere models underestimate the occultation depth in the optical. We use stellar spectra to determine the dilution, in the four wide bands where occultation was measured, due to the visual stellar binary companion 1.''15 ± 0.''05 away. The revised stellar parameters measured using these spectra are combined with other measurements, leading to revised planetary mass and radius estimates of M{sub p} = 4.94-8.09 M {sub J} and R{sub p} = 1.406 ± 0.038 R {sub J}. Finally, we measure a Kepler midoccultation time that is 34.0 ± 6.9 s earlier than expected based on the midtransit time and the delay due to light-travel time and discuss possible scenarios.« less

  13. The hot subdwarf in the eclipsing binary HD 185510

    NASA Technical Reports Server (NTRS)

    Jeffery, C. S.; Simon, Theodore; Evans, T. L.

    1992-01-01

    High-resolution spectroscopic measurements of radial velocity are employed to characterize the eclipsing binary HD 185510 in terms of masses and evolutionary status. The IUE is used to obtain the radial velocities which indicate a large mass ratio Mp/Ms of 7.45 +/- 0.15, and Teff is given at 25,000 +/- 1000 K based on Ly alpha and UV spectrophotometry. Photometric observations are used to give an orbital inclination of between 90 and 70 deg inclusive, leading to masses of 0.31-0.37 and 2.3-2.8 solar mass for the hot star and the K star, respectively. The surface gravity of HD 185510B is shown to be higher than those values for sdB stars suggesting that the object is a low-mass white dwarf that has not reached its fully degenerate configuration. The object is theorized to be a low-mass helium main-sequence star or a nascent helium degenerate in a post-Algol system.

  14. The apsidal motion of the eccentric eclipsing binary DI Herculis - An apparent discrepancy with general relativity

    NASA Technical Reports Server (NTRS)

    Guinan, E. F.; Maloney, F. P.

    1985-01-01

    The apsidal motion of the eccentric eclipsing binary DI Herculis (HD 175227) is determined from an analysis of the available observations and eclipse timings from 1959 to 1984. Least squares solutions to the primary and secondary minima extending over an 84-yr interval yielded a small advance of periastron omega dot of 0.65 deg/100 yr + or - 0.18/100 yr. The observed advance of the periastron is about one seventh of the theoretical value of 4.27 deg/100 yr that is expected from the combined relativistic and classical effects. The discrepancy is about -3.62 deg/100 yr, or a magnitude of about 20 sigma. Classical mechanisms which explain the discrepancy are discussed, together with the possibility that there may be problems with general relativity itself.

  15. Period variations of Algol-type eclipsing binaries AD And, TWCas and IV Cas

    NASA Astrophysics Data System (ADS)

    Parimucha, Štefan; Gajdoš, Pavol; Kudak, Viktor; Fedurco, Miroslav; Vaňko, Martin

    2018-04-01

    We present new analyses of variations in O – C diagrams of three Algol-type eclipsing binary stars: AD And, TW Cas and IV Cas. We have used all published minima times (including visual and photographic) as well as newly determined ones from our and SuperWasp observations. We determined orbital parameters of 3rd bodies in the systems with statistically significant errors, using our code based on genetic algorithms and Markov chain Monte Carlo simulations. We confirmed the multiple nature of AD And and the triple-star model of TW Cas, and we proposed a quadruple-star model of IV Cas.

  16. A spectrum synthesis program for binary stars

    NASA Technical Reports Server (NTRS)

    Linnell, Albert P.; Hubeny, Ivan

    1994-01-01

    A new program produces synthetic spectra of binary stars at arbitrary values of orbital longitude, including longitudes of partial or complete eclipse. The stellar components may be distorted, either tidally or rotationally, or both. Either or both components may be rotating nonsynchronously. We illustrate the program performance with two cases: EE Peg, an eclipsing binary with small distortion, and SX Aur, an eclipsing binary that is close to contact.

  17. The K2 M67 Study: A Curiously Young Star in an Eclipsing Binary in an Old Open Cluster

    NASA Astrophysics Data System (ADS)

    Sandquist, Eric L.; Mathieu, Robert D.; Quinn, Samuel N.; Pollack, Maxwell L.; Latham, David W.; Brown, Timothy M.; Esselstein, Rebecca; Aigrain, Suzanne; Parviainen, Hannu; Vanderburg, Andrew; Stello, Dennis; Somers, Garrett; Pinsonneault, Marc H.; Tayar, Jamie; Orosz, Jerome A.; Bedin, Luigi R.; Libralato, Mattia; Malavolta, Luca; Nardiello, Domenico

    2018-04-01

    We present an analysis of a slightly eccentric (e = 0.05), partially eclipsing, long-period (P = 69.73 days) main-sequence binary system (WOCS 12009, Sanders 1247) in the benchmark old open cluster M67. Using Kepler K2 and ground-based photometry, along with a large set of new and reanalyzed spectra, we derived highly precise masses (1.111 ± 0.015 and 0.748 ± 0.005 M ⊙) and radii (1.071 ± 0.008 ± 0.003 and 0.713 ± 0.019 ± 0.026 R ⊙, with statistical and systematic error estimates) for the stars. The radius of the secondary star is in agreement with theory. The primary, however, is approximately 15% smaller than reasonable isochrones for the cluster predict. Our best explanation is that the primary star was produced from the merger of two stars, as this can also account for the nondetection of photospheric lithium and its higher temperature relative to other cluster main-sequence stars at the same V magnitude. To understand the dynamical characteristics (low measured rotational line broadening of the primary star and low eccentricity of the current binary orbit), we believe that the most probable (but not the only) explanation is the tidal evolution of a close binary within a primordial triple system (possibly after a period of Kozai–Lidov oscillations), leading to merger approximately 1 Gyr ago. This star appears to be a future blue straggler that is being revealed as the cluster ages and the most massive main-sequence stars die out. Based on observations made at Kitt Peak National Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation; with the Tillinghast Reflector Echelle Spectrograph (TRES) on the 1.5 m Tillinghast telescope, located at the Smithsonian Astrophysical Observatory’s Fred L. Whipple Observatory on Mt. Hopkins in Arizona; the HARPS-N spectrograph on the Italian Telescopio Nazionale

  18. A matched filter method for ground-based sub-noise detection of terrestrial extrasolar planets in eclipsing binaries: application to CM Draconis.

    PubMed

    Jenkins, J M; Doyle, L R; Cullers, D K

    1996-02-01

    The photometric detection of extrasolar planets by transits in eclipsing binary systems can be significantly improved by cross-correlating the observational light curves with synthetic models of possible planetary transit features, essentially a matched filter approach. We demonstrate the utility and application of this transit detection algorithm for ground-based detections of terrestrial-sized (Earth-to-Neptune radii) extrasolar planets in the dwarf M-star eclipsing binary system CM Draconis. Preliminary photometric observational data of this system demonstrate that the observational noise is well characterized as white and Gaussian at the observational time steps required for precision photometric measurements. Depending on planet formation scenarios, terrestrial-sized planets may form quite close to this low-luminosity system. We demonstrate, for example, that planets as small as 1.4 Earth radii with periods on the order of a few months in the CM Draconis system could be detected at the 99.9% confidence level in less than a year using 1-m class telescopes from the ground. This result contradicts commonly held assumptions limiting present ground-based efforts to, at best, detections of gas giant planets after several years of observation. This method can be readily extended to a number of other larger star systems with the utilization of larger telescopes and longer observing times. Its extension to spacecraft observations should also allow the determination of the presence of terrestrial-sized planets in nearly 100 other known eclipsing binary systems.

  19. A matched filter method for ground-based sub-noise detection of terrestrial extrasolar planets in eclipsing binaries: application to CM Draconis

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.; Doyle, L. R.; Cullers, D. K.

    1996-01-01

    The photometric detection of extrasolar planets by transits in eclipsing binary systems can be significantly improved by cross-correlating the observational light curves with synthetic models of possible planetary transit features, essentially a matched filter approach. We demonstrate the utility and application of this transit detection algorithm for ground-based detections of terrestrial-sized (Earth-to-Neptune radii) extrasolar planets in the dwarf M-star eclipsing binary system CM Draconis. Preliminary photometric observational data of this system demonstrate that the observational noise is well characterized as white and Gaussian at the observational time steps required for precision photometric measurements. Depending on planet formation scenarios, terrestrial-sized planets may form quite close to this low-luminosity system. We demonstrate, for example, that planets as small as 1.4 Earth radii with periods on the order of a few months in the CM Draconis system could be detected at the 99.9% confidence level in less than a year using 1-m class telescopes from the ground. This result contradicts commonly held assumptions limiting present ground-based efforts to, at best, detections of gas giant planets after several years of observation. This method can be readily extended to a number of other larger star systems with the utilization of larger telescopes and longer observing times. Its extension to spacecraft observations should also allow the determination of the presence of terrestrial-sized planets in nearly 100 other known eclipsing binary systems.

  20. Measuring tides and binary parameters from gravitational wave data and eclipsing timings of detached white dwarf binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Sweta; Nelemans, Gijs, E-mail: s.shah@astro.ru.nl

    The discovery of the most compact detached white dwarf (WD) binary SDSS J065133.33+284423.3 has been discussed in terms of probing the tidal effects in WDs. This system is also a verification source for the space-based gravitational wave (GW) detector, eLISA, or the evolved Laser Interferometer Space Antenna, which will observe short-period compact Galactic binaries with P {sub orb} ≲ 5 hr. We address the prospects of performing tidal studies using eLISA binaries by showing the fractional uncertainties in the orbital decay rate, f-dot , and the rate of that decay, f{sup ¨} expected from both the GW and electromagnetic (EM)more » data for some of the high-f binaries. We find that f-dot and f{sup ¨} can be measured using GW data only for the most massive WD binaries observed at high frequencies. From timing the eclipses for ∼10 yr, we find that f-dot can be known to ∼0.1% for J0651. We find that from GW data alone, measuring the effects of tides in binaries is (almost) impossible. We also investigate the improvement in the knowledge of the binary parameters by combining the GW amplitude and inclination with EM data with and without f-dot . In our previous work, we found that EM data on distance constrained the 2σ uncertainty in chirp mass to 15%-25% whereas adding f-dot reduces it to 0.11%. EM data on f-dot also constrain the 2σ uncertainty in distance to 35%-19%. EM data on primary mass constrain the secondary mass m {sub 2} to factors of two to ∼40% whereas adding f-dot reduces this to 25%. Finally, using single-line spectroscopic data constrains 2σ uncertainties in both the m {sub 2}, d to factors of two to ∼40%. Adding EM data on f-dot reduces these 2σ uncertainties to ≤25% and 6%-19%, respectively. Thus we find that EM measurements of f-dot and radial velocity are valuable in constraining eLISA binary parameters.« less

  1. The Kepler Project: Mission Update

    NASA Technical Reports Server (NTRS)

    Borucki, William J.; Koch, David G.

    2009-01-01

    Kepler is a Discovery-class mission designed to determine the frequency of Earth-size planets in and near the habitable zone of solar-like stars. The instrument consists of a 0.95 m aperture photometer designed to obtain high precision photometric measurement of > 100,000 stars to search for patterns of transits. The focal plane of the Schmidt-telescope contains 42 CCDs with at total of 95 mega pixels that cover 116 square degrees of sky. The photometer was launched into an Earth-trailing heliocentric orbit on March 6, 2009, finished its commissioning on May 12, and is now in the science operations mode. During the commissioning of the Kepler photometer, data were obtained at a 30 minute cadence for 53,000 stars for 9.7 days. Although the data have not yet been corrected for the presence of systematic errors and artifacts, the data show the presence of hundreds of eclipsing binary stars and variable stars of amazing variety. To provide some estimate of the capability of the photometer, a quick analysis of the photometric precision was made. Analysis of the commissioning data also show transits, occultations and light emitted from the known exoplanet HAT-P7b. The data show a smooth rise and fall of light: from the planet as it orbits its star, punctuated by a drop of 130 +/- 11 ppm in flux when the planet passes behind its star. We interpret this as the phase variation of the dayside thermal emission plus reflected light from the planet as it orbits its star and is occulted. The depth of the occultation is similar in amplitude to that expected from a transiting Earth-size planet and demonstrates that the Mission has the precision necessary to detect such planets.

  2. Testing tidal theory for evolved stars by using red-giant binaries observed by Kepler

    NASA Astrophysics Data System (ADS)

    Beck, P. G.; Mathis, S.; Gallet, F.; Charbonnel, C.; Benbakoura, M.; García, R. A.; do Nascimento, J.-D.

    2018-06-01

    Tidal interaction governs the redistribution of angular momentum in close binary stars and planetary systems and determines the systems evolution towards the possible equilibrium state. Turbulent friction acting on the equilibrium tide in the convective envelope of low-mass stars is known to have a strong impact on this exchange of angular momentum in binaries. Moreover, theoretical modelling in recent literature as well as presented in this paper suggests that the dissipation of the dynamical tide, constituted of tidal inertial waves propagating in the convective envelope, is weak compared to the dissipation of the equilibrium tide during the red-giant phase. This prediction is confirmed when we apply the equilibrium-tide formalism developed by Zahn (1977), Verbunt & Phinney (1995), and Remus, Mathis & Zahn (2012) onto the sample of all known red-giant binaries observed by the NASA Kepler mission. Moreover, the observations are adequately explained by only invoking the equilibrium tide dissipation. Such ensemble analysis also benefits from the seismic characterisation of the oscillating components and surface rotation rates. Through asteroseismology, previous claims of the eccentricity as an evolutionary state diagnostic are discarded. This result is important for our understanding of the evolution of multiple star and planetary systems during advanced stages of stellar evolution.

  3. Kepler False Positive Rate & Occurrence of Earth-size and Larger Planets

    NASA Astrophysics Data System (ADS)

    Fressin, Francois; Torres, G.; Charbonneau, D.; Kepler Team

    2013-01-01

    We model the Kepler exoplanet survey targets and their background stars to estimate the occurrence of astrophysical configurations which could mimic an exoplanetary transit. Using real noise level estimates, we compute the number and the characteristics of detectable eclipsing pairs involving stars or planets. We select the fraction of those that would pass the Kepler candidate vetting procedure, including the modeling of the centroid shift of their position on the Kepler camera. By comparing their distribution with that of the Kepler Object Interests from the first 6 quarters of Kepler data, we quantify the false positive rate of Kepler, as a function of candidate planet size and period. Most importantly, this approach allows quantifying and characterizing the distribution of planets, with no assumption of any prior, as the remaining population of the Kepler candidate list minus the simulated population of alternate astrophysical causes. We study the actual detection recovery rate for Kepler that allows reproducing both the KOI size and period distribution as well as their SNR distribution. We estimate the occurrence of planets down to Earth-size, and study if their frequency is correlated with their host star spectral type. This work is supported by the Spitzer General Observer Proposal #80117 - Validating the First Habitable-Zone Planet Candidates Identified by the NASA Kepler Mission, and by the Kepler Participating Scientist Contract led by David Charbonneau, to confirm the planetary nature of candidates identified by the Kepler mission

  4. Absolute parameters of eclipsing binaries in Southern Hemisphere sky - II: QY Tel

    NASA Astrophysics Data System (ADS)

    Erdem, A.; Sürgit, D.; Engelbrecht, C. A.; van Heerden, H. P.; Manick, R.

    2016-11-01

    This paper presents the first analysis of spectroscopic and photometric observations of the neglected southern eclipsing binary star, QY Tel. Spectroscopic observations were carried out at the South African Astronomical Observatory in 2013. New radial velocity curves from this study and V light curves from the All Sky Automated Survey were solved simultaneously using modern light and radial velocity curve synthesis methods. The final model describes QY Tel as a detached binary star where both component stars fill at least half of their Roche limiting lobes. The masses and radii were found to be 1.32 (± 0.06) M⊙, 1.74 (± 0.15) R⊙ and 1.44 (± 0.09) M⊙, 2.70 (± 0.16) R⊙ for the primary and secondary components of the system, respectively. The distance to QY Tel was calculated as 365 (± 40) pc, taking into account interstellar extinction. The evolution case of QY Tel is also examined. Both components of the system are evolved main-sequence stars with an age of approximately 3.2 Gy, when compared to Geneva theoretical evolution models.

  5. BV Observations of the Eclipsing Binary XZ Andromedae at the EKU Observatory (Abstract)

    NASA Astrophysics Data System (ADS)

    Ciocca, M.

    2018-06-01

    (Abstract only) XZ Andromedae is an Algol-type eclipsing binary. It has been the subject of many observing campaigns, all aiming at determining the mechanisms responsible for its period variation. Results have been inconsistent and the period changes did not seem to have a common explanation between authors. The latest of these observations (Y.-G. Yang, New Astronomy, 25, 2013, 109) concluded that a third companion may be present and that mass transfer from the secondary to the primary companion may be occurring. We performed measurements in the Bessel band passes B and V, measured several times of minimum and developed a model, using binary maker 3, that matches well the observations and includes mass transfer by adding a hot spot on the primary (the cool, more evolved companion) and a "cold" spot on the secondary (hotter, but smaller companion). The data were collected at the EKU observatory with a Celestron C14 telescope and a SBIG STL-6303 camera.

  6. Binary Model for the Heartbeat Star System KIC 4142768

    NASA Astrophysics Data System (ADS)

    Manuel, Joseph; Hambleton, Kelly

    2018-01-01

    Heartbeat stars are a class of eccentric (e > 0.2) binary systems that undergo strong tidal forces. These tidal forces cause the shape of each star and the temperature across the stellar surfaces to change. This effect also generates variations in the light curve in the form of tidally-induced pulsations, which are theorized to have a significant effect on the circularization of eccentric orbits (Zahn, 1975). Using the binary modeling software PHOEBE (Prša & Zwitter 2005) on the Kepler photometric data and Keck radial velocity data for the eclipsing, heartbeat star KIC 4142768, we have determined the fundamental parameters including masses and radii. The frequency analysis of the residual data has surprisingly revealed approximately 29 pulsations with 8 being Delta Scuti pulsations, 10 being Gamma Doradus pulsations, and 11 being tidally-induced pulsations. After subtracting an initial binary model from the original, detrended photometric data, we analyzed the pulsation frequencies in the residual data. We then were able to disentangle the identified pulsations from the original data in order to conduct subsequent binary modeling. We plan to continue this study by applying asteroseismology to KIC 4142768. Through our continued investigation, we hope to extract information about the star’s internal structure and expect this will yield additional, interesting results.

  7. A multiwavelength investigation of the massive eclipsing binary Cygnus OB2 #5

    NASA Astrophysics Data System (ADS)

    Linder, N.; Rauw, G.; Manfroid, J.; Damerdji, Y.; De Becker, M.; Eenens, P.; Royer, P.; Vreux, J.-M.

    2009-02-01

    Context: The properties of the early-type binary Cyg OB2 #5 have been debated for many years and spectroscopic and photometric investigations yielded conflicting results. Aims: We have attempted to constrain the physical properties of the binary by collecting new optical and X-ray observations. Methods: The optical light curves obtained with narrow-band continuum and line-bearing filters are analysed and compared. Optical spectra are used to map the location of the He ii λ 4686 and Hα line-emission regions in velocity space. New XMM-Newton as well as archive X-ray spectra are analysed to search for variability and constrain the properties of the hot plasma in this system. Results: We find that the orbital period of the system slowly changes though we are unable to discriminate between several possible explanations of this trend. The best fit solution of the continuum light curve reveals a contact configuration with the secondary star being significantly brighter and hotter on its leading side facing the primary. The mean temperature of the secondary star turns out to be only slightly lower than that of the primary, whilst the bolometric luminosity ratio is found to be 3.1. The solution of the light curve yields a distance of 925 ± 25 pc much lower than the usually assumed distance of the Cyg OB2 association. Whilst we confirm the existence of episodes of higher X-ray fluxes, the data reveal no phase-locked modulation with the 6.6 day period of the eclipsing binary nor any clear relation between the X-ray flux and the 6.7 yr radio cycle. Conclusions: The bright region of the secondary star is probably heated by energy transfer in a common envelope in this contact binary system as well as by the collision with the primary's wind. The existence of a common photosphere probably also explains the odd mass-luminosity relation of the stars in this system. Most of the X-ray, non-thermal radio, and possibly γ-ray emission of Cyg OB2 #5 is likely to arise from the

  8. VizieR Online Data Catalog: Light curves for the eclipsing binary V1094 Tau (Maxted+, 2015)

    NASA Astrophysics Data System (ADS)

    Maxted, P. F. L.; Hutcheon, R. J.; Torres, G.; Lacy, C. H. S.; Southworth, J.; Smalley, B.; Pavlovski, K.; Marschall, L. A.; Clausen, J. V.

    2015-04-01

    Photometric light curves of the detached eclipsing binary V1094 Tau in the Stroemgren u-,v-,b- and y-bands, and in the Johnson V-band. The curves in the Stroemgren bands were obtained with the Stroemgren Automatic Telescope (SAT) at ESO, La Silla. The curves in the V-band were obtained with the NFO telescope in New Mexico and with the URSA telescope at the University of Arkansas. (6 data files).

  9. Observations and Light Curve Solutions of the Eclipsing Binaries KR Lyn, CSS J110212+244412, NSVS 4917488 and NSVS 7336024

    NASA Astrophysics Data System (ADS)

    Kjurkchieva, D.; Popov, V. A.; Eneva, J.; Petrov, N.

    2018-05-01

    We present photometric observations in Sloan filters g', i' of the short-period eclipsing stars KR Lyn, CSS J110212+244412, NSVS 4917488 and NSVS 7336024. The light curve solutions revealed that all targets are overcontact binaries whose components are G and K stars. Their temperature differences do not exceed 300 K but they differ considerably in size and mass. NSVS 4917488 and NSVS 7336024 reveal total eclipses and their parameters can be considered as well-determined. We found that KR Lyn, NSVS 4917488 and NSVS 7336024 are of W-subtype while CSS J110212+244412 is A-subtype W UMa-type star.

  10. Time-resolved spectroscopy and photometry of the eclipsing AM Herculis binary EXO 033319 - 2554.2

    NASA Technical Reports Server (NTRS)

    Allen, Richard G.; Berriman, Graham; Smith, Paul S.; Schmidt, Gary D.

    1989-01-01

    Time-resolved optical observations of the eclipsing AM Herculis binary EXO 033319 - 2554.2 are presented. High-speed photometry of an eclipse is presented and used to derive a new ephemeris for the system and to estimate the size of the region responsible for the cyclotron emission. Optical spectra that span the orbital cycle are presented, the cyclotron emission in these spectra is discussed, and the flux and radial velocity variations of H-beta, H-gamma, and He II 4686 A are examined. Models of the flux and radial velocity variations of the emission lines indicate that about half the line emission comes from low-velocity material that is about 1.4 x 10 to the 10th cm from the white dwarf. The rest comes from high-velocity material that is about 10 to the 10th cm from the white dwarf and is moving toward it at about 600 km/s.

  11. Short apsidal period of three eccentric eclipsing binaries discovered in the Large Magellanic Cloud

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Kyeongsoo; Lee, Chung-Uk; Kim, Seung-Lee

    2014-06-01

    We present new elements of apsidal motion in three eccentric eclipsing binaries located in the Large Magellanic Cloud. The apsidal motions of the systems were analyzed using both light curves and eclipse timings. The OGLE-III data obtained during the long period of 8 yr (2002-2009) allowed us to determine the apsidal motion period from their analyses. The existence of third light in all selected systems was investigated by light curve analysis. The O – C diagrams of EROS 1018, EROS 1041, and EROS 1054 were analyzed using the 30, 44, and 26 new times of minimum light, respectively, determined frommore » full light curves constructed from EROS, MACHO, OGLE-II, OGLE-III, and our own observations. This enabled a detailed study of the apsidal motion in these systems for the first time. All of the systems have a significant apsidal motion below 100 yr. In particular, EROS 1018 shows a very fast apsidal period of 19.9 ± 2.2 yr in a detached system.« less

  12. Decoding of the light changes in eclipsing Wolf-Rayet binaries. I. A non-classical approach to the solution of light curves

    NASA Astrophysics Data System (ADS)

    Perrier, C.; Breysacher, J.; Rauw, G.

    2009-09-01

    Aims: We present a technique to determine the orbital and physical parameters of eclipsing eccentric Wolf-Rayet + O-star binaries, where one eclipse is produced by the absorption of the O-star light by the stellar wind of the W-R star. Methods: Our method is based on the use of the empirical moments of the light curve that are integral transforms evaluated from the observed light curves. The optical depth along the line of sight and the limb darkening of the W-R star are modelled by simple mathematical functions, and we derive analytical expressions for the moments of the light curve as a function of the orbital parameters and the key parameters of the transparency and limb-darkening functions. These analytical expressions are then inverted in order to derive the values of the orbital inclination, the stellar radii, the fractional luminosities, and the parameters of the wind transparency and limb-darkening laws. Results: The method is applied to the SMC W-R eclipsing binary HD 5980, a remarkable object that underwent an LBV-like event in August 1994. The analysis refers to the pre-outburst observational data. A synthetic light curve based on the elements derived for the system allows a quality assessment of the results obtained.

  13. Absolute parameters of southern detached eclipsing binary: HD 53570

    NASA Astrophysics Data System (ADS)

    Sürgit, D.

    2018-05-01

    In this study, we conducted the first analysis of spectroscopic and photometric observations of the eclipsing binary star HD 53570. Spectroscopic observations of HD 53570 were made at the Sutherland Station of the South African Astronomical Observatory in 2013 and 2014. The radial velocities of the components were determined using the cross-correlation technique. The spectroscopic mass ratio obtained for the system was 1.13 ( ± 0.07). The All Sky Automated Survey V light curve of HD 53570 was analyzed using the Wilson-Devinney code combined with the Monte Carlo search method. The final model showed that HD 53570 has a detached configuration. The mass and radii of the primary and secondary components of HD 53570 were derived as 1.06 ( ± 0.07) M⊙, 1.20 ( ± 0.16) M⊙, and 1.42 ( ± 0.14) R⊙, 2.07 ( ± 0.16) R⊙, respectively. The distance of HD 53570 was computed as 248 ( ± 38) pc considering interstellar extinction. The evolutionary status of the component stars was also investigated using Geneva evolutionary models.

  14. Analysis of GSC 2475-1587 and GSC 841-277: Two Eclipsing Binary Stars Found During Asteroid Lightcurve Observations

    NASA Astrophysics Data System (ADS)

    Stephens, R. D.; Warner, B. D.

    2006-05-01

    When observing asteroids we select from two to five comparison stars for differential photometry, taking the average value of the comparisons for the single value to be subtracted from the value for the asteroid. As a check, the raw data of each comparison star are plotted as is the difference between any single comparison and the average of the remaining stars in the set. On more than one occasion, we have found that at least one of the comparisons was variable. In two instances, we took time away from our asteroid lightcurve work to determine the period of the two binaries and attempted to model the system using David Bradstreet's Binary Maker 3. Unfortunately, neither binary showed a total eclipse. Therefore, our results are not conclusive and present only one of many possibilities.

  15. Time Series Observations of the 2015 Eclipse of b Persei (not beta Persei) (Abstract)

    NASA Astrophysics Data System (ADS)

    Collins, D. F.

    2016-06-01

    (Abstract only) The bright (V = 4.6) ellipsoidal variable b Persei consists of a close non-eclipsing binary pair that shows a nearly sinusoidal light curve with a ~1.5 day period. This system also contains a third star that orbits the binary pair every 702 days. AAVSO observers recently detected the first ever optical eclipse of A-B binary pair by the third star as a series of snapshots (D. Collins, R. Zavala, J. Sanborn - AAVSO Spring Meeting, 2013); abstract published in Collins, JAAVSO, 41, 2, 391 (2013); b Per mis-printed as b Per therein. A follow-up eclipse campaign in mid-January 2015 recorded time-series observations. These new time-series observations clearly show multiple ingress and egress of each component of the binary system by the third star over the eclipse duration of 2 to 3 days. A simulation of the eclipse was created. Orbital and some astrophysical parameters were adjusted within constraints to give a reasonable fit to the observed light curve.

  16. New prospects for observing and cataloguing exoplanets in well-detached binaries

    NASA Astrophysics Data System (ADS)

    Schwarz, R.; Funk, B.; Zechner, R.; Bazsó, Á.

    2016-08-01

    This paper is devoted to study the circumstances favourable to detect circumstellar and circumbinary planets in well-detached binary-star systems using eclipse timing variations (ETVs). We investigated the dynamics of well-detached binary star systems with a star separation from 0.5 to 3 au, to determine the probability of the detection of such variations with ground-based telescopes and space telescopes (like former missions CoRoT and Kepler and future space missions Plato, Tess and Cheops). For the chosen star separations both dynamical configurations (circumstellar and circumbinary) may be observable. We performed numerical simulations by using the full three-body problem as dynamical model. The dynamical stability and the ETVs are investigated by computing ETV maps for different masses of the secondary star and the exoplanet (Earth, Neptune and Jupiter size). In addition we changed the planet's and binary's eccentricities. We conclude that many amplitudes of ETVs are large enough to detect exoplanets in binary-star systems. As an application, we prepared statistics of the catalogue of exoplanets in binary star systems which we introduce in this article and compared the statistics with our parameter-space which we used for our calculations. In addition to these statistics of the catalogue we enlarged them by the investigation of well-detached binary star systems from several catalogues and discussed the possibility of further candidates.

  17. Kepler-47: A Three-Planet Circumbinary System

    NASA Astrophysics Data System (ADS)

    Welsh, William; Orosz, Jerome; Quarles, Billy; Haghighipour, Nader

    2015-12-01

    Kepler-47 is the most interesting of the known circumbinary planets. In the discovery paper by Orosz et al. (2012) two planets were detected, with periods of 49.5 and 303 days around the 7.5-day binary. In addition, a single "orphan" transit of a possible third planet was noticed. Since then, five additional transits by this planet candidate have been uncovered, leading to the unambiguous confirmation of a third transiting planet in the system. The planet has a period of 187 days, and orbits in between the previously detected planets. It lies on the inner edge of the optimistic habitable zone, while its outer sibling falls within the conservative habitable zone. The orbit of this new planet is precessing, causing its transits to become significantly deeper over the span of the Kepler observations. Although the planets are not massive enough to measurably perturb the binary, they are sufficiently massive to interact with each other and cause mild transit timing variations (TTVs). This enables our photodynamical model to estimate their masses. We find that all three planets have very low-density and are on remarkably co-planar orbits: all 4 orbits (the binary and three planets) are within ~2 degrees of one another. Thus the Kepler-47 system puts interesting constraints on circumbinary planet formation and migration scenarios.

  18. A Catalog of Eclipsing Binaries and Variable Stars Observed with ASTEP 400 from Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Chapellier, E.; Mékarnia, D.; Abe, L.; Guillot, T.; Agabi, K.; Rivet, J.-P.; Schmider, F.-X.; Crouzet, N.; Aristidi, E.

    2016-10-01

    We used the large photometric database of the ASTEP program, whose primary goal was to detect exoplanets in the southern hemisphere from Antarctica, to search for eclipsing binaries (EcBs) and variable stars. 673 EcBs and 1166 variable stars were detected, including 31 previously known stars. The resulting online catalogs give the identification, the classification, the period, and the depth or semi-amplitude of each star. Data and light curves for each object are available at http://astep-vo.oca.eu.

  19. Testing stellar evolution models with detached eclipsing binaries

    NASA Astrophysics Data System (ADS)

    Higl, J.; Weiss, A.

    2017-12-01

    Stellar evolution codes, as all other numerical tools, need to be verified. One of the standard stellar objects that allow stringent tests of stellar evolution theory and models, are detached eclipsing binaries. We have used 19 such objects to test our stellar evolution code, in order to see whether standard methods and assumptions suffice to reproduce the observed global properties. In this paper we concentrate on three effects that contain a specific uncertainty: atomic diffusion as used for standard solar model calculations, overshooting from convective regions, and a simple model for the effect of stellar spots on stellar radius, which is one of the possible solutions for the radius problem of M dwarfs. We find that in general old systems need diffusion to allow for, or at least improve, an acceptable fit, and that systems with convective cores indeed need overshooting. Only one system (AI Phe) requires the absence of it for a successful fit. To match stellar radii for very low-mass stars, the spot model proved to be an effective approach, but depending on model details, requires a high percentage of the surface being covered by spots. We briefly discuss improvements needed to further reduce the freedom in modelling and to allow an even more restrictive test by using these objects.

  20. A search for tight hierarchical triple systems amongst the eclipsing binaries in the CoRoT fields

    NASA Astrophysics Data System (ADS)

    Hajdu, T.; Borkovits, T.; Forgács-Dajka, E.; Sztakovics, J.; Marschalkó, G.; Benkő, J. M.; Klagyivik, P.; Sallai, M. J.

    2017-10-01

    We report a comprehensive search for hierarchical triple stellar system candidates amongst eclipsing binaries (EBs) observed by the CoRoT spacecraft. We calculate and check eclipse timing variation (ETV) diagrams for almost 1500 EBs in an automated manner. We identify five relatively short period Algol systems for which our combined light-curve and complex ETV analyses (including both the light-travel time effect and short-term dynamical third-body perturbations) resulted in consistent third-body solutions. The computed periods of the outer bodies are between 82 and 272 d (with an alternative solution of 831 d for one of the targets). We find that the inner and outer orbits are near coplanar in all but one case. The dynamical masses of the outer subsystems determined from the ETV analyses are consistent with both the results of our light-curve analyses and the spectroscopic information available in the literature. One of our candidate systems exhibits outer eclipsing events as well, the locations of which are in good agreement with the ETV solution. We also report another certain triply eclipsing triple system that, however, is lacking a reliable ETV solution due to the very short time range of the data, and four new blended systems (composite light curves of two EBs each), where we cannot decide whether the components are gravitationally bounded or not. Amongst these blended systems, we identify the longest period and highest eccentricity EB in the entire CoRoT sample.

  1. A Statistical Characterization of Reflection and Refraction in the Atmospheres of sub-Saturn Kepler Planet Candidates

    NASA Astrophysics Data System (ADS)

    Sheets, Holly A.; Deming, Drake; Arney, Giada; Meadows, Victoria

    2016-01-01

    We present the results of our method to detect small atmospheric signals in Kepler's close-in, sub-Saturn planet candidate light curves. We detect an average secondary eclipse for groups of super-Earth, Neptune-like, and other sub-Saturn-sized candidates by scaling and combining photometric data of the groups of candidates such that the eclipses add constructively. This greatly increases the signal-to-noise compared to combining eclipses for individual planets. We have modified our method for averaging short cadence light curves of multiple planet candidates (2014, ApJ, 794, 133), and have applied it to long cadence data, accounting for the broadening of the eclipse due to the 30 minute cadence. We then use the secondary eclipse depth to determine the average albedo for the group. In the short cadence data, we found that a group of close-in sub-Saturn candidates (1 to 6 Earth radii) was more reflective (geometric A ~ 0.22) than typical hot Jupiters (geometric A ~ 0.06 to 0.11: Demory 2014, ApJL, 789, L20). With the larger number of candidates available in long cadence, we improve the resolution in radius and consider groups of candidates with radii between 1 and 2, 2 and 4, and 4 and 6 Earth radii. We also modify our averaging technique to search for refracted light just before and after transit in the Kepler candidate light curves, as modelled by Misra and Meadows (2014, ApJL, 795, L14).

  2. Periodicity and eclipse minima timing of CM Draconis.

    NASA Astrophysics Data System (ADS)

    Vázquez-Martín, S.; Deeg, H. J.; Dreizler, S.; von Essen, C.; Kozhevnikov, V. P.

    2015-05-01

    Periodic deviations from a linear ephemeris of a binary star's eclipses can indicate the presence of a third body in orbit around both. Hints for such companion around the M4.5/M4.5 binary CMDra were published by Deeg et al. (2008). The assignment of a planet in the CMDra system can however only be accepted if the earlier observed periodicity trends can be verified through further observations over several years. For eclipsing binary stars of low mass, the method of eclipse minimum timing allows one to set mass limits for the detection of a third body. Deeg et al. (2008) concluded that the two possibilities for the source of CMDra's timing variations that remain valid are a planet of a few Jupiter masses on a two decade-long orbit, or an object on a century-to-millenium long orbit with masses 1.5M_J < M_{p} < 0.1M_{⊙}. However, they concluded that it is necessary to do continued observations of the timing of CMDra's eclipses to be decisive regarding the continued viability of the sinusoidal-fit-model, and hence, about the validity of a Jovian-type planet in a circumbinary orbiting around the system. Here we update the analysis of Deeg et al. (2008), including further data presented in Morales et al. (2009r) and new observations taken at Ural Observatory (2008-2013). Eclipse minimum times were obtained using the Kwee-van-Woerden method.

  3. Transit Timing Variation analysis with Kepler light curves of KOI 227 and Kepler 93b

    NASA Astrophysics Data System (ADS)

    Dulz, Shannon; Reed, Mike

    2017-01-01

    By searching for transit signals in approximately 150,000 stars, NASA’s Kepler Space telescope found thousands of exoplanets over its primary mission from 2009 to 2013 (Tenenbaum et al. 2014, ApJS, 211, 6). Yet, a detailed follow-up examination of Kepler light curves may contribute more evidence on system dynamics and planetary atmospheres of these objects. Kepler’s continuous observing of these systems over the mission duration produced light curves of sufficient duration to allow for the search for transit timing variations. Transit timing variations over the course of many orbits may indicate a precessing orbit or the existence of a non-transiting third body such as another exoplanet. Flux contributions of the planet just prior to secondary eclipse may provide a measurement of bond albedo from the day-side of the transiting planet. Any asymmetries of the transit shape may indicate thermal asymmetries which can measure upper atmosphere motion of the planet. These two factors can constrain atmospheric models of close orbiting exoplanets. We first establish our procedure with the well-documented TTV system, KOI 227 (Nesvorny et al. 2014, ApJ, 790, 31). Using the test case of KOI 227, we analyze Kepler-93b for TTVs and day-side flux contributions. Kepler-93b is likely a rocky planet with R = 1.50 ± 0.03 Earth Radii and M = 2.59 ± 2.0 Earth Masses (Marcy et al. 2014, ApJS, 210, 20). This research is funded by a NASA EPSCoR grant.

  4. The Kepler Mission: From Concept to Operations

    NASA Astrophysics Data System (ADS)

    Koch, David G.

    2011-01-01

    From concept to launch and operations, what became the Kepler mission took a quarter of a century to create. We will review some of the steps along the way, the challenges, opportunities, strategic decisions and choices that had to be made that resulted in a mission that has the capability to detect and determine the frequencies of Earth-size planets in or near the habitable zone of solar-like stars. The process of going from starlight focused onto individual pixels to declaration of a planet detection is long and complex. Data for each star are recorded on the spacecraft and telemetered to the ground once per month. The raw pixel data are processed to produce light curves for each star. The light curves are processed to search for sequences of transits. A team of scientists examines the output to decide which meet the many validation criteria and qualify as candidates. Next an extensive series of ground-based follow-up observations are performed on the candidates now numbering in excess of 700. The objective is to eliminate false positive cases, while simultaneously improving our knowledge of the parent stars. Extensive analysis and modeling is performed on both the original photometric data and the newly acquired ground-based data to ascertain the true nature of each candidate. On the order of one-quarter to one-half of the candidates are rejected, mostly as some form of eclipsing binary. Of the remaining, some meet all the criteria and are submitted by the science team for peer-reviewed publications. Others may just require more data or may be left as undecided candidates for future research. An extended mission beyond 3.5 years will significantly improve the results from the Kepler mission, especially by covering the outer portion of the habitable zone for solar-like stars.

  5. VizieR Online Data Catalog: A spectral approach to transit timing variations (Ofir+, 2018)

    NASA Astrophysics Data System (ADS)

    Ofir, A.; Xie, J.-W.; Jiang, C.-F.; Sari, R.; Aharonson, O.

    2018-03-01

    We used Kepler Data Release 24 as the source data and the Kepler Objects of Interest (KOIs) table downloaded from the NExSci archive on 2015 December 25 as the source of list of candidate signals, and processed 4706 object not dispositioned as "false positive". We remove eclipsing binaries from the candidates list (see section 4.1 for further details). (1 data file).

  6. Precise time series photometry for the Kepler-2.0 mission

    NASA Astrophysics Data System (ADS)

    Aigrain, S.; Hodgkin, S. T.; Irwin, M. J.; Lewis, J. R.; Roberts, S. J.

    2015-03-01

    The recently approved NASA K2 mission has the potential to multiply by an order of magnitude the number of short-period transiting planets found by Kepler around bright and low-mass stars, and to revolutionize our understanding of stellar variability in open clusters. However, the data processing is made more challenging by the reduced pointing accuracy of the satellite, which has only two functioning reaction wheels. We present a new method to extract precise light curves from K2 data, combining list-driven, soft-edged aperture photometry with a star-by-star correction of systematic effects associated with the drift in the roll angle of the satellite about its boresight. The systematics are modelled simultaneously with the stars' intrinsic variability using a semiparametric Gaussian process model. We test this method on a week of data collected during an engineering test in 2014 January, perform checks to verify that our method does not alter intrinsic variability signals, and compute the precision as a function of magnitude on long-cadence (30 min) and planetary transit (2.5 h) time-scales. In both cases, we reach photometric precisions close to the precision reached during the nominal Kepler mission for stars fainter than 12th magnitude, and between 40 and 80 parts per million for brighter stars. These results confirm the bright prospects for planet detection and characterization, asteroseismology and stellar variability studies with K2. Finally, we perform a basic transit search on the light curves, detecting two bona fide transit-like events, seven detached eclipsing binaries and 13 classical variables.

  7. A CHANDRA OBSERVATION OF THE ECLIPSING WOLF-RAYET BINARY CQ Cep

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skinner, Stephen L.; Zhekov, Svetozar A.; Güdel, Manuel

    The short-period (1.64 d) near-contact eclipsing WN6+O9 binary system CQ Cep provides an ideal laboratory for testing the predictions of X-ray colliding wind shock theory at close separation where the winds may not have reached terminal speeds before colliding. We present results of a Chandra X-ray observation of CQ Cep spanning ∼1 day during which a simultaneous Chandra optical light curve was acquired. Our primary objective was to compare the observed X-ray properties with colliding wind shock theory, which predicts that the hottest shock plasma (T ≳ 20 MK) will form on or near the line-of-centers between the stars. The X-raymore » spectrum is strikingly similar to apparently single WN6 stars such as WR 134 and spectral lines reveal plasma over a broad range of temperatures T ∼ 4-40 MK. A deep optical eclipse was seen as the O star passed in front of the Wolf-Rayet star and we determine an orbital period P {sub orb} = 1.6412400 d. Somewhat surprisingly, no significant X-ray variability was detected. This implies that the hottest X-ray plasma is not confined to the region between the stars, at odds with the colliding wind picture and suggesting that other X-ray production mechanisms may be at work. Hydrodynamic simulations that account for such effects as radiative cooling and orbital motion will be needed to determine if the new Chandra results can be reconciled with the colliding wind picture.« less

  8. Absolute Properties of the Eclipsing Binary Star BF Draconis

    NASA Astrophysics Data System (ADS)

    Lacy, Claud H. Sandberg; Torres, Guillermo; Fekel, Francis C.; Sabby, Jeffrey A.; Claret, Antonio

    2012-06-01

    BF Dra is now known to be an eccentric double-lined F6+F6 binary star with relatively deep (0.7 mag) partial eclipses. Previous studies of the system are improved with 7494 differential photometric observations from the URSA WebScope and 9700 from the NFO WebScope, 106 high-resolution spectroscopic observations from the Tennessee State University 2 m automatic spectroscopic telescope and the 1 m coudé-feed spectrometer at Kitt Peak National Observatory, and 31 accurate radial velocities from the CfA. Very accurate (better than 0.6%) masses and radii are determined from analysis of the two new light curves and four radial velocity curves. Theoretical models match the absolute properties of the stars at an age of about 2.72 Gyr and [Fe/H] = -0.17, and tidal theory correctly confirms that the orbit should still be eccentric. Our observations of BF Dra constrain the convective core overshooting parameter to be larger than about 0.13 Hp . We find, however, that standard tidal theory is unable to match the observed slow rotation rates of the components' surface layers.

  9. Two Earth-sized planets orbiting Kepler-20.

    PubMed

    Fressin, Francois; Torres, Guillermo; Rowe, Jason F; Charbonneau, David; Rogers, Leslie A; Ballard, Sarah; Batalha, Natalie M; Borucki, William J; Bryson, Stephen T; Buchhave, Lars A; Ciardi, David R; Désert, Jean-Michel; Dressing, Courtney D; Fabrycky, Daniel C; Ford, Eric B; Gautier, Thomas N; Henze, Christopher E; Holman, Matthew J; Howard, Andrew; Howell, Steve B; Jenkins, Jon M; Koch, David G; Latham, David W; Lissauer, Jack J; Marcy, Geoffrey W; Quinn, Samuel N; Ragozzine, Darin; Sasselov, Dimitar D; Seager, Sara; Barclay, Thomas; Mullally, Fergal; Seader, Shawn E; Still, Martin; Twicken, Joseph D; Thompson, Susan E; Uddin, Kamal

    2011-12-20

    Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically passes in front of (transits) its parent star, causing a decrease in starlight proportional to its radius. The smallest exoplanet hitherto discovered has a radius 1.42 times that of the Earth's radius (R(⊕)), and hence has 2.9 times its volume. Here we report the discovery of two planets, one Earth-sized (1.03R(⊕)) and the other smaller than the Earth (0.87R(⊕)), orbiting the star Kepler-20, which is already known to host three other, larger, transiting planets. The gravitational pull of the new planets on the parent star is too small to measure with current instrumentation. We apply a statistical method to show that the likelihood of the planetary interpretation of the transit signals is more than three orders of magnitude larger than that of the alternative hypothesis that the signals result from an eclipsing binary star. Theoretical considerations imply that these planets are rocky, with a composition of iron and silicate. The outer planet could have developed a thick water vapour atmosphere.

  10. Physical properties and catalog of EW-type eclipsing binaries observed by LAMOST

    NASA Astrophysics Data System (ADS)

    Qian, Sheng-Bang; He, Jia-Jia; Zhang, Jia; Zhu, Li-Ying; Shi, Xiang-Dong; Zhao, Er-Gang; Zhou, Xiao

    2017-08-01

    EW-type eclipsing binaries (hereafter called EWs) are strong interacting systems in which both component stars usually fill their critical Roche lobes and share a common envelope. Numerous EWs were discovered by several deep photometric surveys and there were about 40 785 EW-type binary systems listed in the international variable star index (VSX) by 2017 March 13. 7938 of them were observed with LAMOST by 2016 November 30 and their spectral types were identified. Stellar atmospheric parameters of 5363 EW-type binary stars were determined based on good spectroscopic observations. In the paper, those EWs are cataloged and their properties are analyzed. The distributions of orbital period (P), effective temperature (T), gravitational acceleration (log(g)), metallicity ([Fe/H]) and radial velocity (RV) are presented for these observed EW-type systems. It is shown that about 80.6% of sample stars have metallicity below zero, indicating that EW-type systems are old stellar populations. This is in agreement with the conclusion that EW binaries are formed from moderately close binaries through angular momentum loss via magnetic braking that takes a few hundred million to a few billion years. The unusually high metallicities of a few percent of EWs may be caused by contamination of material from the evolution of unseen neutron stars or black holes in the systems. The correlations between orbital period and effective temperature, gravitational acceleration and metallicity are presented and their scatters are mainly caused by (i) the presence of third bodies and (ii) sometimes wrongly determined periods. It is shown that some EWs contain evolved component stars and the physical properties of EWs mainly depend on their orbital periods. It is found that extremely short-period EWs may be older than their long-period cousins because they have lower metallicities. This reveals that they have a longer timescale of pre-contact evolution and their formation and evolution aremainly

  11. Discovery of a 3.6-hr Eclipsing Luminous X-Ray Binary in the Galaxy NGC 4214

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Rappaport, Saul; Tennant, Allyn F.; Swartz, Douglas A.; Pooley, David; Madhusudhan, N.

    2006-01-01

    We report the discovery of an eclipsing X-ray binary with a 3.62-hr period within 24 arcsec of the center of the dwarf starburst galaxy NGC 4214. The orbital period places interesting constraints on the nature of the binary, and allows for a few very different interpretations. The most likely possibility is that the source lies within NGC 4214 and has an X-ray luminosity of up to 7e38. In this case the binary may well be comprised of a naked He-burning donor star with a neutron-star accretor, though a stellar-mass black-hole accretor cannot be completely excluded. There is no obvious evidence for a strong stellar wind in the X-ray orbital light curve that would be expected from a massive He star; thus, the mass of the He star should be <3-4 solar masses. If correct, this would represent a new class of very luminous X-ray binary----perhaps related to Cyg X-3. Other less likely possibilities include a conventional low-mass X-ray binary that somehow manages to produce such a high X-ray luminosity and is apparently persistent over an interval of years; or a foreground AM Her binary of much lower luminosity that fortuitously lies in the direction of NGC 4214. Any model for this system must accommodate the lack of an optical counterpart down to a limiting magnitude of 22.6 in the visible.

  12. Quasi-Periodic Long-Term Quadrature Light Variability in Early Type Interacting Binary Systems

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine Joan

    2015-08-01

    Four years of Kepler observations have revealed a class of Algol-type binaries in which the relative brightness of the quadrature light varies from > 1 to <1 on a time scale of about 100-400 days. The behavior pattern is quasi-periodic. We call these systems L/T (leading hemisphere/ trailing hemisphere) variables. Although L/T inequality in eclipsing binaries has been noted from ground-based photometry by several observers since the early 1950s, the regular or quasi-regular switching between maxima is new. Twenty L/T systems have so far been found in the Kepler database and at least three classes of L/T behavior have been identified. In this presentation I will give an update on the L/T phenomenon gleaned from the Kepler and K2 databases. The Kepler and K2 light curves are being analyzed with the 2015 version of the Wilson-Devinney (WD) program that includes major improvements in modeling star spots (i.e. spot motions due to drift and stellar rotation and spot growth and decay). The prototype L/T variable is WX Draconis (A8V + K0IV, P=1.80 d) which shows L/ T light variations of 2-3%. The primary is a delta Scuti star with a dominant pulsation period of 41 m. Preliminary analysis of the WX Dra data suggests that the L/T variability can be fit with either an accretion hot spot on the primary (T = 2.3 Tphot) that jumps in longitude or a magnetic cool spotted region on the secondary. If the latter model is correct the dark region must occupy at least 20% of the surface of the facing hemisphere of the secondary if it is completely black, or a larger area if not completely black. In both hot and cool spot scenarios magnetic fields must play a role in the activity. Support from NASA grants NNX11AC78G and NNX12AE44G and USC’s Women in Science and Engineering (WiSE) program is greatly appreciated.

  13. First Precision Photometric Observations and Analyses of the Totally Eclipsing, Solar Type Binary V573 Pegasi

    NASA Astrophysics Data System (ADS)

    Samec, R. G.; Caton, D. B.; Faulkner, D. R.

    2018-06-01

    CCD VRcIc light curves of V573 Peg were taken 26 and 27 September and 2, 4, and 6 October, 2017, at the Dark Sky Observatory in North Carolina with the 0.81-m reflector of Appalachian State University. Five times of minimum light were calculated, two primary and three secondary eclipses, from our present observations. The following quadratic ephemeris was determined from all available times of minimum light: JD Hel MinI = 2456876.4958 (2) d + 0.41744860 (8) × E -2.74 (12) × 10^-10 × E2, where the parentheses hold the ± error in the last two digits of the preceding value. A 14-year period study (covered by 24 times of minimum light) reveals a decreasing orbital period with high confidence, possibly due to magnetic braking. The mass ratio is found to be somewhat extreme, M2 / M1 = 0.2629 ± 0.0006 (M1 / M2 = 3.8). Its Roche Lobe fill-out is ˜25%. The solution had no need of spots. The component temperature difference is about 130 K, with the less massive component as the hotter one, so it is a W-type W UMa Binary. The inclination is 80.4 ± 0.1°. Our secondary eclipse shows a time of constant light with an eclipse duration of 24 minutes. More information is given in the following report.

  14. Properties of an eclipsing double white dwarf binary NLTT 11748

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, David L.; Walker, Arielle N.; Marsh, Thomas R.

    2014-01-10

    We present high-quality ULTRACAM photometry of the eclipsing detached double white dwarf binary NLTT 11748. This system consists of a carbon/oxygen white dwarf and an extremely low mass (<0.2 M {sub ☉}) helium-core white dwarf in a 5.6 hr orbit. To date, such extremely low-mass white dwarfs, which can have thin, stably burning outer layers, have been modeled via poorly constrained atmosphere and cooling calculations where uncertainties in the detailed structure can strongly influence the eventual fates of these systems when mass transfer begins. With precise (individual precision ≈1%), high-cadence (≈2 s), multicolor photometry of multiple primary and secondary eclipsesmore » spanning >1.5 yr, we constrain the masses and radii of both objects in the NLTT 11748 system to a statistical uncertainty of a few percent. However, we find that overall uncertainty in the thickness of the envelope of the secondary carbon/oxygen white dwarf leads to a larger (≈13%) systematic uncertainty in the primary He WD's mass. Over the full range of possible envelope thicknesses, we find that our primary mass (0.136-0.162 M {sub ☉}) and surface gravity (log (g) = 6.32-6.38; radii are 0.0423-0.0433 R {sub ☉}) constraints do not agree with previous spectroscopic determinations. We use precise eclipse timing to detect the Rømer delay at 7σ significance, providing an additional weak constraint on the masses and limiting the eccentricity to ecos ω = (– 4 ± 5) × 10{sup –5}. Finally, we use multicolor data to constrain the secondary's effective temperature (7600 ± 120 K) and cooling age (1.6-1.7 Gyr).« less

  15. Orbital alignment of circumbinary planets that form in misaligned circumbinary discs: the case of Kepler-413b

    NASA Astrophysics Data System (ADS)

    Pierens, A.; Nelson, R. P.

    2018-06-01

    Although most of the circumbinary planets detected by the Kepler spacecraft are on orbits that are closely aligned with the binary orbital plane, the systems Kepler-413 and Kepler-453 exhibit small misalignments of ˜2.5°. One possibility is that these planets formed in a circumbinary disc whose midplane was inclined relative to the binary orbital plane. Such a configuration is expected to lead to a warped and twisted disc, and our aim is to examine the inclination evolution of planets embedded in these discs. We employed 3D hydrodynamical simulations that examine the disc response to the presence of a modestly inclined binary with parameters that match the Kepler-413 system, as a function of disc parameters and binary inclinations. The discs all develop slowly varying warps, and generally display very small amounts of twist. Very slow solid body precession occurs because a large outer disc radius is adopted. Simulations of planets embedded in these discs resulted in the planet aligning with the binary orbit plane for disc masses close to the minimum mass solar nebular, such that nodal precession of the planet was controlled by the binary. For higher disc masses, the planet maintains near coplanarity with the local disc midplane. Our results suggest that circumbinary planets born in tilted circumbinary discs should align with the binary orbit plane as the disc ages and loses mass, even if the circumbinary disc remains misaligned from the binary orbit. This result has important implications for understanding the origins of the known circumbinary planets.

  16. Detection of the Secondary Eclipse of Exoplanet HAT P-11b

    NASA Technical Reports Server (NTRS)

    Barry, R. K.; Deming, L. D.; Bakos, G.; Harrington, J.; Madhusudhan, N.; Noyes, R.; Seager, S.

    2010-01-01

    We have successfully conducted secondary eclipse observations of exoplanet HAT-P-11b using the Spitzer Space Telescope. HAT-P-11b was, until very recently, the smallest transiting extrasolar planet yet found and one of only two known exo-Neptunes. We observed the system at 3.6 microns for a period of 22 hours centered on the anticipated secondary eclipse time, to detect the eclipse and determine its phase. Having detected the secondary eclipse, we are at present making a more focused series of observations in both the 3.6 and 4.5 micron bands to fully characterize it. HAT-P-11b has a period of 4.8878 days, radius of 0.422 RJ, mass of 0.081 MJ and semi-major axis 0.053 AU. Measurements of the secondary eclipse will serve to clarify two key issues; 1) the planetary brightness temperature and the nature of its atmosphere, and 2) the eccentricity of its orbit, with implications for its dynamical evolution. A precise determination of the orbit phase for the secondary eclipse will also be of great utility for Kepler observations of this system at visible wavelengths.

  17. Doppler Imaging with FUSE: The Partially Eclipsing Binary VW Cep

    NASA Technical Reports Server (NTRS)

    Sonneborn, George (Technical Monitor); Brickhouse, Nancy

    2003-01-01

    This report covers the FUSE Guest Observer program. This project involves the study of emission line profiles for the partially eclipsing, rapidly rotating binary system VW Cep. Active regions on the surface of the star(s) produce observable line shifts as the stars move with respect to the observer. By studying the time-dependence of the line profile changes and centroid shifts, one can determine the location of the activity. FUSE spectra were obtained by the P.I. 27 Sept 2002 and data reduction is in progress. Since we are interested in line profile analysis, we are now investigating the wavelength scale calibration in some detail. We have also obtained and are analyzing Chandra data in order to compare the X-ray velocities with the FUV velocities. A complementary project comparing X-ray and Far UltraViolet (FUV) emission for the similar system 44i Boo is also underway. Postdoctoral fellow Ronnie Hoogerwerf has joined the investigation team and will perform the data analysis, once the calibration is optimized.

  18. MESA models for the evolutionary status of the epsilon Aurigae disk-eclipsed binary system

    NASA Astrophysics Data System (ADS)

    Stencel, Robert E.; Gibson, Justus

    2018-06-01

    The brightest member of the class of disk-eclipsed binary stars is the Algol-like long-period binary, epsilon Aurigae (HD 31964, F0Iap + disk, http://adsabs.harvard.edu/abs/2016SPIE.9907E..17S ). Using MESA (Modules for Experiments in Stellar Astrophysics, version 9575), we have made an evaluation of its evolutionary state. We sought to satisfy several observational constraints, including: (1) requiring evolutionary tracks to pass close to the current temperature and luminosity of the primary star; (2) obtaining a period near the observed value of 27.1 years; (3) matching a mass function of 3.0; (4) concurrent Roche lobe overflow and mass transfer; (5) an isotopic ratio 12C / 13C = 5 and, (6) matching the interferometrically determined angular diameter. A MESA model starting with binary masses of 9.85 + 4.5 solar masses, with a 100 day initial period, produces a 1.2 + 10.6 solar masses result having a 547 day period, plus a single digit 12C / 13C ratio. These values were reached near an age of 20 Myr, when the donor star comes close to the observed luminosity and temperature for epsilon Aurigae A, as a post-RGB/pre-AGB star. Contemporaneously, the accretor then appears as an upper main sequence, early B-type star. This benchmark model can provide a basis for further exploration of this interacting binary, and other long period binary stars. This report has been submitted to MNRAS, along with a parallel investigation of mass transfer stream and disk sub-structure. The authors are grateful to the estate of William Herschel Womble for the support of astronomy at the University of Denver.

  19. Assessing Shape Characteristics of Jupiter Trojans in the Kepler Campaign 6 Field

    NASA Astrophysics Data System (ADS)

    Sharkey, Benjamin; Ryan, Erin L.; Woodward, Charles E.

    2017-10-01

    We report estimates of spin pole orientations and body-centric axis ratios of nine Jupiter Trojan asteroids through convex shape models derived from Kepler K2 photometry. Our sample contains single-component as well as candidate binary systems (identified through lightcurve features). Photometric baselines on the targets covered 7 to 93 full rotation periods. By incorporating a bias against highly elongated physical shapes, spin vector orientations of single-component systems were constrained to several discrete regions. Single-component convex models failed to converge on two binary candidates while two others demonstrated pronounced tapering that may be consistent with concavities of contact binaries. Further work to create two-component models is likely necessary to constrain the candidate binary targets. We find that Kepler K2 photometry provides robust datasets capable of providing detailed information on physical shape parameters of Jupiter Trojans.

  20. BD -22 5866: A Low-Mass, Quadruple-lined Spectroscopic and Eclipsing Binary

    NASA Astrophysics Data System (ADS)

    Shkolnik, Evgenya; Liu, Michael C.; Reid, I. Neill; Hebb, Leslie; Cameron, Andrew C.; Torres, Carlos A.; Wilson, David M.

    2008-08-01

    We report our discovery of an extremely rare, low-mass, quadruple-lined spectroscopic binary BD -22 5866 (=NLTT 53279, integrated spectral type = M0 V), found during an ongoing search for the youngest M dwarfs in the solar neighborhood. From the cross-correlation function, we are able to measure relative flux levels, estimate the spectral types of the components, and set upper limits on the orbital periods and separations. The resulting system is hierarchical, composed of a K7 + K7 binary and an M1 + M2 binary with semimajor axes of aAsin iA <= 0.06 and aBsin iB <= 0.30 AU. A subsequent search of the SuperWASP photometric database revealed that the K7 + K7 binary is eclipsing with a period of 2.21 days and at an inclination angle of 85°. Within uncertainties of 5%, the masses and radii of both components appear to be equal (0.59 M⊙, 0.61 R⊙). These two tightly orbiting stars (a = 0.035 AU) are in synchronous rotation, causing the observed excess Ca II, Hα, X-ray, and UV emission. The fact that the system was unresolved with published adaptive optics imaging, limits the projected physical separation of the two binaries at the time of the observation to dABlesssim 4.1 AU at the photometric distance of 51 pc. The maximum observed radial velocity difference between the A and B binaries limits the orbit to aABsin iAB <= 6.1 AU. As this tight configuration is difficult to reproduce with current formation models of multiple systems, we speculate that an early dynamical process reduced the size of the system, such as the interaction of the two binaries with a circumquadruple disk. Intensive photometric, spectroscopic, and interferometric monitoring, as well as a parallax measurement of this rare quadruple system, is certainly warranted. Based on observations collected at the W. M. Keck Observatory and the Canada-France-Hawaii Telescope (CFHT). The Keck Observatory is operated as a scientific partnership between the California Institute of Technology, the University

  1. The EBLM project. I. Physical and orbital parameters, including spin-orbit angles, of two low-mass eclipsing binaries on opposite sides of the brown dwarf limit

    NASA Astrophysics Data System (ADS)

    Triaud, A. H. M. J.; Hebb, L.; Anderson, D. R.; Cargile, P.; Collier Cameron, A.; Doyle, A. P.; Faedi, F.; Gillon, M.; Gomez Maqueo Chew, Y.; Hellier, C.; Jehin, E.; Maxted, P.; Naef, D.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Stassun, K.; Udry, S.; West, R. G.

    2013-01-01

    This paper introduces a series of papers aiming to study the dozens of low-mass eclipsing binaries (EBLM), with F, G, K primaries, that have been discovered in the course of the WASP survey. Our objects are mostly single-line binaries whose eclipses have been detected by WASP and were initially followed up as potential planetary transit candidates. These have bright primaries, which facilitates spectroscopic observations during transit and allows the study of the spin-orbit distribution of F, G, K+M eclipsing binaries through the Rossiter-McLaughlin effect. Here we report on the spin-orbit angle of WASP-30b, a transiting brown dwarf, and improve its orbital parameters. We also present the mass, radius, spin-orbit angle and orbital parameters of a new eclipsing binary, J1219-39b (1SWAPJ121921.03-395125.6, TYC 7760-484-1), which, with a mass of 95 ± 2 Mjup, is close to the limit between brown dwarfs and stars. We find that both objects have projected spin-orbit angles aligned with their primaries' rotation. Neither primaries are synchronous. J1219-39b has a modestly eccentric orbit and is in agreement with the theoretical mass-radius relationship, whereas WASP-30b lies above it. Using WASP-South photometric observations (Sutherland, South Africa) confirmed with radial velocity measurement from the CORALIE spectrograph, photometry from the EulerCam camera (both mounted on the Swiss 1.2 m Euler Telescope), radial velocities from the HARPS spectrograph on the ESO's 3.6 m Telescope (prog ID 085.C-0393), and photometry from the robotic 60 cm TRAPPIST telescope, all located at ESO, La Silla, Chile. The data is publicly available at the CDS Strasbourg and on demand to the main author.Tables A.1-A.3 are available in electronic form at http://www.aanda.orgPhotometry tables are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/549/A18

  2. The Kepler Mission and the International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    Harman, Pamela; DeVore, E.; Gould, A.; Koch, D.

    2008-05-01

    Johannes Kepler was one of Galileo's contemporaries, publishing New Astronomy defining his first two laws, nearly 400 years ago, in 1609. It is a fitting tribute that the Kepler Mission launches in 2009. Kepler continued his studies of motion and made observations of satellites of Jupiter, and published his third law. We now recognize Kepler's laws as 1. Planets move in elliptical; 2. The planets move such that the line between the Sun and the Planet sweeps out equal areas in equal time no matter where in the orbit; and 3. The square of the period of the orbit of a planet is proportional to the mean distance from the Sun cubed. Kepler's laws were deduced empirically from the motions of the planet Mars in the early 17th century, before Newton deduced the law of gravity and his laws of motion. The Kepler Mission, a NASA Discovery mission, is specifically designed to survey our region of the Milky Way galaxy to detect and characterize hundreds of Earth-size and smaller planets in or near the habitable zone. The habitable zone encompasses the distances from a star where liquid water can exist on a planet's surface. Results from this mission will allow us to place our solar system within the continuum of planetary systems in the Galaxy. The Mission Education and Public Outreach (EPO) Program has developed a Night Sky Network (NSN) outreach kit, Shadows and Silhouettes. This NSN kit is used by amateur astronomers at school and public observing events to illustrate a transit, and explain eclipses.

  3. Accurate Masses, Radii, and Temperatures for the Eclipsing Binary V2154 Cyg, and Tests of Stellar Evolution Models

    NASA Astrophysics Data System (ADS)

    Bright, Jane; Torres, Guillermo

    2018-01-01

    We report new spectroscopic observations of the F-type triple system V2154 Cyg, in which two of the stars form an eclipsing binary with a period of 2.6306303 ± 0.0000038 days. We combine the results from our spectroscopic analysis with published light curves in the uvby Strömgren passbands to derive the first reported absolute dimensions of the stars in the eclipsing binary. The masses and radii are measured with high accuracy to better than 1.5% precision. For the primary and secondary respectively, we find that the masses are 1.269 ± 0.017 M⊙ and 0.7542 ± 0.0059 M⊙, the radii are 1.477 ± 0.012 R⊙ and 0.7232 ± 0.0091R⊙, and the temperatures are 6770 ± 150 K and 5020 ± 150 K. Current models of stellar evolution agree with the measured properties of the primary, but the secondary is larger than predicted. This may be due to activity in the secondary, as has been shown for other systems with a star of similar mass with this same discrepancy.The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution. GT acknowledges partial support for this work from NSF grant AST-1509375.

  4. BIRTH LOCATIONS OF THE KEPLER CIRCUMBINARY PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silsbee, Kedron; Rafikov, Roman R., E-mail: ksilsbee@astro.princeton.edu

    2015-07-20

    The Kepler mission has discovered about a dozen circumbinary planetary systems, all containing planets on ∼1 AU orbits. We place bounds on the locations in the circumbinary protoplanetary disk, where these planets could have formed through collisional agglomeration starting from small (kilometer-sized or less) planetesimals. We first present a model of secular planetesimal dynamics that accounts for the (1) perturbation due to the eccentric precessing binary, as well as the (2) gravity and (3) gas drag from a precessing eccentric disk. Their simultaneous action leads to rich dynamics, with (multiple) secular resonances emerging in the disk. We derive analytic resultsmore » for size-dependent planetesimal eccentricity and demonstrate the key role of the disk gravity for circumbinary dynamics. We then combine these results with a simple model for collisional outcomes and find that in systems like Kepler-16, planetesimal growth starting with 10–100 m planetesimals is possible outside a few AU. The exact location exterior to which this happens is sensitive to disk eccentricity, density, and precession rate, as well as to the size of the first generation of planetesimals. Strong perturbations from the binary in the inner part of the disk, combined with a secular resonance at a few AU, inhibit the growth of kilometer-sized planetesimals within 2–4 AU of the binary. In situ planetesimal growth in the Kepler circumbinary systems is possible only starting from large initial planetesimals (few-kilometer-sized even assuming favorable disk properties, i.e., low surface density)« less

  5. Planetary and Stellar Data Products Expected From The Kepler Mission

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Koch, David G.; Basri, Gibor; Cochran, William; Dunham, Edward W.; Gilliland, Ronald; Jenkins, Jon M.; Caldwell, Douglas; Kondo, Yoji; Latham, David; hide

    2002-01-01

    The Kepler Mission is a Discovery-class mission scheduled to be launched in the 2006-2007 time frame. It is a wide field of view photometer with a 95 m aperture designed to attain a photometric precision of 2 parts in 10^5 for the 12th magnitude stars. It will continually observe 100,000 main-sequence stars from 9th to 14th magnitude for a period of four years with a cadence of 4/hour. This database should be unique in its photometric precision, cadence, and duration of observations. Several hundred terrestrial-size planets will be detected if they are common around solar-like stars. Based on the current results of Doppler-velocity searches, over a thousand giant planets will also be found. A guest investigator program is planned that would provide the opportunity to observe thousands of other objects in the 105 square degree FOV. Such objects could include stars with micro-variability, other intrinsic variables, cataclysmic variables, eclipsing binaries (including x-ray binaries), and possibly AGN. A ground-based program to classify all 225,000 stars in the FOV and to do a detailed examination of a subset of the stars that show planetary companions is planned. Doppler-velocity observations will be made to find the presence of giant planets not seen in transit. The data will be rapidly released to the community for follow up observations and for changes to the guest investigator program.

  6. Synergies Between the Kepler, K2 and TESS Missions with the PLATO Mission (Revised)

    NASA Technical Reports Server (NTRS)

    Jenkins, Jon M.

    2017-01-01

    Two transit survey missions will have been flown by NASA prior to the launch of ESA's PLATO Mission in 2026, laying the groundwork for exoplanet discovery via the transit method. The Kepler Mission, which launched in 2009, collected data on its 100+ square degree field of view for four years before failure of a reaction wheel ended its primary mission. The results from Kepler include 2300+ confirmed or validated exoplanets, 2200+ planetary candidates, 2100+ eclipsing binaries. Kepler also revolutionized the field of asteroseismology by measuring the pressure mode oscillations of over 15000 solar-like stars spanning the lifecycle of such stars from hydrogen-burning dwarfs to helium-burning red giants. The re-purposed Kepler Mission, dubbed K2, continues to observe fields of view in and near the ecliptic plane for 80 days each, significantly broadening the scope of the astrophysical investigations as well as discovering an additional 156 exoplanets to date. The TESS mission will launch in 2017 to conduct an all-sky survey for small exoplanets orbiting stars 10X closer and 100X brighter than Kepler exoplanet host stars, allowing for far greater follow-up and characterization of their masses as well as their sizes for at least 50 small planets. Future assets such as James Webb Space Telescope, and ground-based assets such as ESOs Very Large Telescope (VLT) array, the Exremely Large Telescope (ELT), and the Thirty Meter Telescope (TMT) will be able to characterize the atmospheric composition and properties of these small planets. TESS will observe each 24 X 96 field of view for 30 days and thereby cover first the southern and then the northern hemisphere over 13 pointings during each year of the primary mission. The pole-most camera will observe the James Webb continuous viewing zone for one year in each hemisphere, permitting much longer period planets to be detected in this region. The PLATO mission will seek to detect habitable Earth-like planets with an instrument

  7. VizieR Online Data Catalog: Galactic bulge eclipsing & ellipsoidal binaries (Soszynski+, 2016)

    NASA Astrophysics Data System (ADS)

    Soszynski, I.; Pawlak, M.; Pietrukowicz, P.; Udalski, A.; Szymanski, M. K.; Wyrzykowski, L.; Ulaczyk, K.; Poleski, R.; Kozlowski, S.; Skowron, D. M.; Skowron, J.; Mroz, P.; Hamanowicz, A.

    2018-04-01

    Our collection of binary systems in the Galactic bulge is based on the photometric data collected by the OGLE survey between 1997 and 2015 at Las Campanas Observatory, Chile, with the 1.3-m Warsaw Telescope. The observatory is operated by the Carnegie Institution for Science. In 1997-2000, during the OGLE-II stage, about 30 million stars in the area of 11 square degrees in the central parts of the Milky Way were constantly monitored. In 2001, with the beginning of the OGLE-III survey, the sky coverage was extended to nearly 69 square degrees and the number of monitored stars increased to 200 million. Finally, from 2010 until today the OGLE-IV project regularly observes about 400 million stars in 182 square degrees of the densest regions of the Galactic bulge. Our search for eclipsing variables was based primarily on the OGLE-IV data. (4 data files).

  8. Formation and tidal synchronization of sdB stars in binaries an asteroseismic investigation using Kepler Observations

    NASA Astrophysics Data System (ADS)

    Pablo, Herbert William

    Subdwarf B (sdB) stars are low mass (0.5 M sun) helium burning stars with thin hydrogen envelopes and Teff 22000-40000 K. Many of these stars are found in binary systems. One common proposed formation mechanism is common envelope (CE) ejection, where the companion spirals deep into the star's envelope ejecting the outer layers and forming a close binary system. In this dissertation, we use short cadence (tint=58.86 s) Kepler photometric time-series data to study three close sdB binaries with P ≈ 10 hours and g-mode pulsations. Asteroseismic analysis finds that each system has a constant period spacing of ΔP ≈ 250 s consistent with single sdB stars. This analysis also shows the presence of rotational multiplets which we used to find the rotation period. In all three cases the binary system is far from tidal synchronization with a rotation period an order of magnitude longer than the orbital period. These observations agree with predictions using the Zahn formulation of tidal evolution which predicts a synchronization time longer than the sdB lifetime (108 yr). We use this synchronization time to backtrack the sdB's rotation history and find its initial rotation period as it is first exiting the CE. This is one of the only observationally based constraints that has been placed on CE evolution. Preliminary investigations of single sdB stars show similar rotation periods, indicating that the rotation period may be independent of the formation channel.

  9. Artificial Intelligence and the Brave New World of Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Devinney, E.; Guinan, E.; Bradstreet, D.; DeGeorge, M.; Giammarco, J.; Alcock, C.; Engle, S.

    2005-12-01

    The explosive growth of observational capabilities and information technology over the past decade has brought astronomy to a tipping point - we are going to be deluged by a virtual fire hose (more like Niagara Falls!) of data. An important component of this deluge will be newly discovered eclipsing binary stars (EBs) and other valuable variable stars. As exploration of the Local Group Galaxies grows via current and new ground-based and satellite programs, the number of EBs is expected to grow explosively from some 10,000 today to 8 million as GAIA comes online. These observational advances will present a unique opportunity to study the properties of EBs formed in galaxies with vastly different dynamical, star formation, and chemical histories than our home Galaxy. Thus the study of these binaries (e.g., from light curve analyses) is expected to provide clues about the star formation rates and dynamics of their host galaxies as well as the possible effects of varying chemical abundance on stellar evolution and structure. Additionally, minimal-assumption-based distances to Local Group objects (and possibly 3-D mapping within these objects) shall be returned. These huge datasets of binary stars will provide tests of current theories (or suggest new theories) regarding binary star formation and evolution. However, these enormous data will far exceed the capabilities of analysis via human examination. To meet the daunting challenge of successfully mining this vast potential of EBs and variable stars for astrophysical results with minimum human intervention, we are developing new data processing techniques and methodologies. Faced with an overwhelming volume of data, our goal is to integrate technologies of Machine Learning and Pattern Processing (Artificial Intelligence [AI]) into the data processing pipelines of the major current and future ground- and space-based observational programs. Data pipelines of the future will have to carry us from observations to

  10. VizieR Online Data Catalog: Orbital parameters of 341 new binaries (Murphy+, 2018)

    NASA Astrophysics Data System (ADS)

    Murphy, S. J.; Moe, M.; Kurtz, D. W.; Bedding, T.; Shibahashi, H.; Boffin, H. M. J.

    2018-01-01

    Kepler targets with effective temperatures between 6600 and 10000K have been investigated for pulsational phase modulation that can be attributed to binary orbital motion. For each target, we provide a binary status, which also reflects whether or not the target pulsates. For the binary systems, we provide the Kepler Input Catalogue (KIC) number, as well as the binary orbital elements: the period, semi-major axis, eccentricity, longitude of periastron, time of periastron passage, binary mass function and a calculated radial velocity semi-amplitude. (3 data files).

  11. Young and Waltzing Binary Stars

    NASA Astrophysics Data System (ADS)

    2001-10-01

    ADONIS Observes Low-mass Eclipsing System in Orion Summary A series of very detailed images of a binary system of two young stars have been combined into a movie . In merely 3 days, the stars swing around each other. As seen from the earth, they pass in front of each other twice during a full revolution, producing eclipses during which their combined brightness diminishes . A careful analysis of the orbital motions has now made it possible to deduce the masses of the two dancing stars . Both turn out to be about as heavy as our Sun. But while the Sun is about 4500 million years old, these two stars are still in their infancy. They are located some 1500 light-years away in the Orion star-forming region and they probably formed just 10 million years ago . This is the first time such an accurate determination of the stellar masses could be achieved for a young binary system of low-mass stars . The new result provides an important piece of information for our current understanding of how young stars evolve. The observations were obtained by a team of astronomers from Italy and ESO [1] using the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. PR Photo 29a/01 : The RXJ 0529.4+0041 system before primary eclipse PR Photo 29b/01 : The RXJ 0529.4+0041 system at mid-primary eclipse PR Photo 29c/01 : The RXJ 0529.4+0041 system after primary eclipse PR Photo 29d/01 : The RXJ 0529.4+0041 system before secondary eclipse PR Photo 29e/01 : The RXJ 0529.4+0041 system at mid-secondary eclipse PR Photo 29f/01 : The RXJ 0529.4+0041 system after secondary eclipse PR Video Clip 06/01 : Video of the RXJ 0529.4+0041 system Binary stars and stellar masses Since some time, astronomers have noted that most stars seem to form in binary or multiple systems. This is quite fortunate, as the study of binary stars is the only way in which it is possible to measure directly one of the most fundamental quantities of a star, its mass. The mass of a

  12. Coevolution of Binaries and Circumbinary Gaseous Disks

    NASA Astrophysics Data System (ADS)

    Fleming, David; Quinn, Thomas R.

    2018-04-01

    The recent discoveries of circumbinary planets by Kepler raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disk, and how the disk and binary interact. The central binary excites resonances in the surrounding protoplanetary disk that drive evolution in both the binary orbital elements and in the disk. To probe how these interactions impact both binary eccentricity and disk structure evolution, we ran N-body smooth particle hydrodynamics (SPH) simulations of gaseous protoplanetary disks surrounding binaries based on Kepler 38 for 10^4 binary orbital periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disk via a parametric instability and excite disk eccentricity growth. Eccentric binaries strongly couple to the disk causing eccentricity growth for both the disk and binary. Disks around sufficiently eccentric binaries strongly couple to the disk and develop an m = 1 spiral wave launched from the 1:3 eccentric outer Lindblad resonance (EOLR). This wave corresponds to an alignment of gas particle longitude of periastrons. We find that in all simulations, the binary semi-major axis decays due to dissipation from the viscous disk.

  13. Einstein observations of selected close binaries and shell stars

    NASA Technical Reports Server (NTRS)

    Guinan, E. F.; Koch, R. H.; Plavec, M. J.

    1984-01-01

    Several evolved close binaries and shell stars were observed with the IPC aboard the HEAO 2 Einstein Observatory. No eclipsing target was detected, and only two of the shell binaries were detected. It is argued that there is no substantial difference in L(X) for eclipsing and non-eclipsing binaries. The close binary and shell star CX Dra was detected as a moderately strong source, and the best interpretation is that the X-ray flux arises primarily from the corona of the cool member of the binary at about the level of Algol-like or RS CVn-type sources. The residual visible-band light curve of this binary has been modeled so as to conform as well as possible with this interpretation. HD 51480 was detected as a weak source. Substantial background information from IUE and ground scanner measurements are given for this binary. The positions and flux values of several accidentally detected sources are given.

  14. OBSERVATIONS OF BINARY STARS WITH THE DIFFERENTIAL SPECKLE SURVEY INSTRUMENT. IV. OBSERVATIONS OF KEPLER, CoRoT, AND HIPPARCOS STARS FROM THE GEMINI NORTH TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horch, Elliott P.; Howell, Steve B.; Everett, Mark E.

    2012-12-01

    We present the results of 71 speckle observations of binary and unresolved stars, most of which were observed with the DSSI speckle camera at the Gemini North Telescope in 2012 July. The main purpose of the run was to obtain diffraction-limited images of high-priority targets for the Kepler and CoRoT missions, but in addition, we observed a number of close binary stars where the resolution limit of Gemini was used to better determine orbital parameters and/or confirm results obtained at or below the diffraction limit of smaller telescopes. Five new binaries and one triple system were discovered, and first orbitsmore » are calculated for other two systems. Several systems are discussed in detail.« less

  15. Absolute properties of the eclipsing binary VV CORVI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fekel, Francis C.; Henry, Gregory W.; Sowell, James R., E-mail: fekel@evans.tsuniv.edu, E-mail: gregory.w.henry@gmail.com, E-mail: jim.sowell@physics.gatech.edu

    2013-12-01

    We have obtained red-wavelength spectroscopy and Johnson B and V differential photoelectric photometry of the eclipsing binary VV Crv = HR 4821. The system is the secondary of the common proper motion double star ADS 8627, which has a separation of 5.''2. VV Crv has an orbital period of 3.144536 days and a low but non-zero eccentricity of 0.085. With the Wilson-Devinney program we have determined a simultaneous solution of our spectroscopic and photometric observations. Those orbital elements produce masses of M {sub 1} = 1.978 ± 0.010 M {sub ☉} and M {sub 2} = 1.513 ± 0.008 Mmore » {sub ☉}, and radii of R {sub 1} = 3.375 ± 0.010 R {sub ☉} and R {sub 2} = 1.650 ± 0.008 R {sub ☉} for the primary and secondary, respectively. The effective temperatures of the two components are 6500 K (fixed) and 6638 K, so the star we call the primary is the more massive but cooler and larger component. A comparison with evolutionary tracks indicates that the components are metal rich with [Fe/H] = 0.3, and the system has an age of 1.2 Gyr. The primary is near the end of its main-sequence lifetime and is rotating significantly faster than its pseudosynchronous velocity. The secondary is still well ensconced on the main sequence and is rotating more slowly than its pseudosynchronous rate.« less

  16. Testing Models of Stellar Structure and Evolution I. Comparison with Detached Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    del Burgo, C.; Allende Prieto, C.

    2018-05-01

    We present the results of an analysis aimed at testing the accuracy and precision of the PARSEC v1.2S library of stellar evolution models, combined with a Bayesian approach, to infer stellar parameters. We mainly employ the online DEBCat catalogue by Southworth, a compilation of detached eclipsing binary systems with published measurements of masses and radii to ˜ 2 per cent precision. We select a sample of 318 binary components, with masses between 0.10 and 14.5 solar units, and distances between 1.3 pc and ˜ 8 kpc for Galactic objects and ˜ 44-68 kpc for the extragalactic ones. The Bayesian analysis applied takes on input effective temperature, radius, and [Fe/H], and their uncertainties, returning theoretical predictions for other stellar parameters. From the comparison with dynamical masses, we conclude inferred masses are precisely derived for stars on the main-sequence and in the core-helium-burning phase, with respective uncertainties of 4 per cent and 7 per cent, on average. Subgiants and red giants masses are predicted within 14 per cent, and early asymptotic giant branch stars within 24 per cent. These results are helpful to further improve the models, in particular for advanced evolutionary stages for which our understanding is limited. We obtain distances and ages for the binary systems and compare them, whenever possible, with precise literature estimates, finding excellent agreement. We discuss evolutionary effects and the challenges associated with the inference of stellar ages from evolutionary models. We also provide useful polynomial fittings to theoretical zero-age main-sequence relations.

  17. The first orbital parameters and period variation of the short-period eclipsing binary AQ Boo

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Zhang, Liyun; Pi, Qingfeng; Han, Xianming L.; Zhang, Xiliang; Lu, Hongpeng; Wang, Daimei; Li, TongAn

    2016-10-01

    We obtained the first VRI CCD light curves of the short-period contact eclipsing binary AQ Boo, which was observed on March 22 and April 19 in 2014 at Xinglong station of National Astronomical Observatories, and on January 20, 21 and February 28 in 2015 at Kunming station of Yunnan Observatories of Chinese Academy of Sciences, China. Using our six newly obtained minima and the minima that other authors obtained previously, we revised the ephemeris of AQ Boo. By fitting the O-C (observed minus calculated) values of the minima, the orbital period of AQ Boo shows a decreasing tendency P˙ = - 1.47(0.17) ×10-7 days/year. We interpret the phenomenon by mass transfer from the secondary (more massive) component to the primary (less massive) one. By using the updated Wilson & Devinney program, we also derived the photometric orbital parameters of AQ Boo for the first time. We conclude that AQ Boo is a near contact binary with a low contact factor of 14.43%, and will become an over-contact system as the mass transfer continues.

  18. Observations of the Eclipsing Millisecond Pulsar

    NASA Astrophysics Data System (ADS)

    Bookbinder, Jay

    1990-12-01

    FRUCHTER et al. (1988a) HAVE RECENTLY DISCOVERED a 1.6 MSEC PULSAR (PSR 1957+20) IN A 9.2 HOUR ECLIPSING BINARY SYSTEM. THE UNUSUAL BEHAVIOR OF THE DISPERSION MEASURE AS A FUNCTION OF ORBITAL PHASE, AND THE DISAPPEARANCE OF THE PULSAR SIGNAL FOR 50 MINUTES DURING EACH ORBIT, IMPLIES THAT THE ECLIPSES ARE DUE TO A PULSAR-INDUCED WIND FLOWING OFF OF THE COMPANION. THE OPTICAL COUNTERPART IS A 21ST MAGNITUDE OBJECT WHICH VARIES IN INTENSITY OVER THE BINARY PERIOD; ACCURATE GROUND-BASED OBSERVATIONS ARE PREVENTED BY THE PROXIMITY (0.7") OF A 20TH MAGNITUDE K DWARF. WE PROPOSE TO OBSERVE THE OPTICAL COUNTERPART IN A TWO-PART STUDY. FIRST, THE WF/PC WILL PROVIDE ACCURATE MULTICOLOR PHOTOMETRY, ENABLING US TO DETERMINE UNCONTAMINATED MAGNITUDES AND COLORS BOTH AT MAXIMUM (ANTI-ECLIPSE) AS WELL AS AT MINIMUM (ECLIPSE). SECOND, WE PROPOSE TO OBSERVE THE EXPECTED UV LINE EMISSION WITH FOS, ALLOWING FOR AN INTIAL DETERMINATION OF THE TEMPERATURE AND DENSITY STRUCTURE AND ABUNDANCES OF THE WIND THAT IS BEING ABLATED FROM THE COMPANION. STUDY OF THIS UNIQUE SYSTEM HOLDS ENORMOUS POTENTIAL FOR THE UNDERSTANDING OF THE RADIATION FIELD OF A MILLISECOND PULSAR AND THE EVOLUTION OF LMXRBs AND MSPs IN GENERAL. WE EXPECT THESE OBSERVATIONS TO PLACE VERY SIGNIFICANT CONTRAINTS ON MODELS OF THIS UNIQUE OBJECT.

  19. HIGH-RESOLUTION SPECTROSCOPY DURING ECLIPSE OF THE YOUNG SUBSTELLAR ECLIPSING BINARY 2MASS 0535-0546. II. SECONDARY SPECTRUM: NO EVIDENCE THAT SPOTS CAUSE THE TEMPERATURE REVERSAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhanjoy; Stassun, Keivan G., E-mail: s.mohanty@imperial.ac.uk, E-mail: keivan.stassun@vanderbilt.edu

    2012-10-10

    We present high-resolution optical spectra of the young brown dwarf eclipsing binary 2M0535-05, obtained during eclipse of the higher-mass (primary) brown dwarf. Combined with our previous spectrum of the primary alone (Paper I), the new observations yield the spectrum of the secondary alone. We investigate, through a differential analysis of the two binary components, whether cool surface spots are responsible for suppressing the temperature of the primary. In Paper I, we found a significant discrepancy between the empirical surface gravity of the primary and that inferred via fine analysis of its spectrum. Here we find precisely the same discrepancy inmore » surface gravity, both qualitatively and quantitatively. While this may again be ascribed to either cool spots or model opacity errors, it implies that cool spots cannot be responsible for preferentially lowering the temperature of the primary: if they were, spot effects on the primary spectrum should be preferentially larger, and they are not. The T{sub eff}'s we infer for the primary and secondary, from the TiO-{epsilon} bands alone, show the same reversal, in the same ratio, as is empirically observed, bolstering the validity of our analysis. In turn, this implies that if suppression of convection by magnetic fields on the primary is the fundamental cause of the T{sub eff} reversal, then it cannot be a local suppression yielding spots mainly on the primary (though both components may be equally spotted), but a global suppression in the interior of the primary. We briefly discuss current theories of how this might work.« less

  20. Kepler Mission: Detecting Earth-sized Planets in Habitable Zones

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    The Kepler Mission, which is presently in Phase A, is being proposed for launch in 5 years for a 4-year mission to determine the frequency of Earth-sized or larger planets in habitable zones in our galaxy. Kepler will be placed in an Earth-trailing orbit to provide stable physical environments for the sensitive scientific instruments. The satellite is equipped with a photometric system with the precision of 10E-5, which should be sufficient for detecting the transits of Earth-sized or larger planets in front of dwarf stars similar to the Sun. Approximately 100,000 or more sun-like stars brighter than the 14th apparently magnitude will be monitored continuously for 4 years in a preselected region of the sky, which is about 100 square degrees in size. In addition, Kepler will have a participating scientist program that will enable research in intrinsic variable stars, interacting binaries including cataclysmic stars and X-ray binaries, and a large number of solar analogs in our galaxy. Several ten thousand additional stars may be investigated in the guest observer program open to the whole world.

  1. Masses and ages of Delta Scuti stars in eclipsing binary systems

    NASA Astrophysics Data System (ADS)

    Tsvetkov, Ts. G.; Petrova, Ts. C.

    1993-05-01

    By using data mainly from Frolov et al. (1982) for four Delta Scuti stars in eclipsing binary systems, AB Cas, Y Cam, RS Cha, and AI Hya, their physical parameters, distances, and radial pulsation modes are determined. The evolutionary track systems of Iben (1967), Paczynski (1970), and Maeder and Meynet (1988) are interpolated in order to estimate evolutionary masses Me and ages t of these variables. Their pulsation masses MQ are estimated from the fitting formulae of Faulkner (1977) and Fitch (1981). Our estimates of evolutionary masses M(e) and pulsation masses M(Q) are close to the masses M determined by Frolov et al. from the star binarity. The only exception is AB Cas, for which there is no agreement between certain star parameters. Another, independent approach is also applied to the stars RS Cha and AI Hya: by using their photometric indices b - y and c(1) from the catalog of Lopez de Coca et al. (1990) and appropriate photometric calibrations, other sets of physical parameters, distances, modes, ages, and evolutionary and pulsation masses of both variables are obtained.

  2. Discovery and Characterization of Eclipsing Binary Stars and Transiting Planets in Young Benchmark Clusters: The Pleiades and Hyades

    NASA Astrophysics Data System (ADS)

    Stassun, Keivan; David, Trevor J.; Conroy, Kyle E.; Hillenbrand, Lynne; Stauffer, John R.; Pepper, Joshua; Rebull, Luisa M.; Cody, Ann Marie

    2016-06-01

    Prior to K2, only one eclipsing binary in the Pleiades was known (HD 23642). We present the discovery and characterization of three additional eclipsing binaries (EBs) in this ~120 Myr old benchmark open cluster. Unlike HD 23642, all three of the new EBs are low mass (Mtot < 1 M⊙) and thus their components are still undergoing pre-main-sequence contraction at the Pleiades age. Low mass EBs are rare, especially in the pre-main-sequence phase, and thus these systems are valuable for constraining theoretical stellar evolution models. One of the three new EBs is single-lined with a K-type primary (HII 2407). The second (HCG 76) comprises two nearly equal-mass 0.3 M⊙ stars, with masses and radii measured with precisions of better than 3% and 5%, respectively. The third (MHO 9) has an M-type primary with a secondary that is possibly quite close to the hydrogen-burning limit, but needs additional follow-up observations to better constrain its parameters. We use the precise parameters of HCG 76 to test the predictions of stellar evolution models, and to derive an independent distance to the Pleiades of 132±5 pc. Finally, we present tentative evidence for differential rotation in the primary component of the newly discovered Pleiades EB HII 2407, and we also characterize a newly discovered transiting Neptune-sized planet orbiting an M-dwarf in the Hyades.

  3. A POSSIBLE SIGNATURE OF LENSE-THIRRING PRECESSION IN DIPPING AND ECLIPSING NEUTRON-STAR LOW-MASS X-RAY BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homan, Jeroen, E-mail: jeroen@space.mit.edu

    2012-12-01

    Relativistic Lense-Thirring precession of a tilted inner accretion disk around a compact object has been proposed as a mechanism for low-frequency ({approx}0.01-70 Hz) quasi-periodic oscillations (QPOs) in the light curves of X-ray binaries. A substantial misalignment angle ({approx}15 Degree-Sign -20 Degree-Sign ) between the inner-disk rotation axis and the compact-object spin axis is required for the effects of this precession to produce observable modulations in the X-ray light curve. A consequence of this misalignment is that in high-inclination X-ray binaries the precessing inner disk will quasi-periodically intercept our line of sight to the compact object. In the case of neutron-starmore » systems, this should have a significant observational effect, since a large fraction of the accretion energy is released on or near the neutron-star surface. In this Letter, I suggest that this specific effect of Lense-Thirring precession may already have been observed as {approx}1 Hz QPOs in several dipping/eclipsing neutron-star X-ray binaries.« less

  4. Kepler Planet Detection Mission: Introduction and First Results

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Basri, Gibor; Batalha, Natalie; Brown, Timothy; Lissauer, Jack J.; Morrison, David; Rowe, Jason; Bryson, Stephen T.; Dotson, Jessie; hide

    2010-01-01

    The Kepler Mission is designed to determine the frequency of Earth-size and rocky planets in and near the habitable zone (HZ) of solar-like stars. The HZ is defined to be the region of space where a rocky planet could maintain liquid water on its surface. Kepler is the 10th competitively-selected Discovery Mission and was launched on March 6, 2009. Since completing its commissioning, Kepler has observed over 156,000 stars simultaneously and near continuously to search for planets that periodically pass in front of their host star (transit). The photometric precision is approximately 23 ppm for 50% of the 12th magnitude dwarf stars for an integration period of 6.5 hours. During the first 3 months of operation the photometer detected transit-like signatures from more than 200 stars. Careful examination shows that many of these events are false-positives such as small stars orbiting large stars or blends of target stars with eclipsing binary stars. Ground-based follow-up observations confirm the discovery of five new exoplanets with sizes between 0.37 andl.6 Jupiter radii (R(sub J)) and orbital periods ranging from 3.2 to 4.9 days. Ground-based observations with the Keck 1, Hobby-Ebberly, Hale, WIYN, MMT, Tillinghast, Shane, and Nordic Optical Telescopes are used to vet the planetary candidates and measure the masses of the putative planets. Observations of occultations and phase variations of hot, short-period planets such as HT-P-7b provide a probe of atmospheric properties. Asteroseismic analysis already shows the presence of p-mode oscillations in several stars. Such observations will be used to measure the mean stellar density and infer the stellar size and age. For stars too dim to permit asteroseismology, observations of the centroid motion of target stars will be used to measure the parallax and be combined with photometric measurements to estimate stellar sizes. Four open clusters are being observed to determine stellar rotation rates as a function of age and

  5. Photometric investigation of the totally eclipsing contact binary V12 in the intermediate-age open cluster NGC 7789

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, S.-B.; Wang, J.-J.; Liu, L.

    2015-02-01

    NGC 7789 is an intermediate-age open cluster with an age similar to the mean age of contact binary stars. V12 is a bright W UMa-type binary star with an orbital period of 0.3917 days. The first complete light curves of V12 in the V, R, and I bands are presented and analyzed with the Wilson–Devinney (W-D) method. The results show that V12 is an intermediate-contact binary (f=43.0(±2.2)%) with a mass ratio of 3.848, and it is a W-type contact binary where the less massive component is slightly hotter than the more massive one. The asymmetry of the light curves ismore » explained by the presence of a dark spot on the more massive component. The derived orbital inclination (i=83{sub .}{sup ∘}6) indicates that it is a totally eclipsing binary, which suggests that the determined parameters are reliable. The orbital period may show a long-term increase at a rate of P-dot =+2.48(±0.17)×10{sup −6} days yr{sup −1} that reveals a rapid mass transfer from the less massive component to the more massive one. However, more observations are needed to confirm this conclusion. The presence of an intermediate-contact binary in an intermediate-age open cluster may suggest that some contact binaries have a very short pre-contact timescale. The presence of a third body and/or stellar collision may help to shorten the pre-contact evolution.« less

  6. Optical polarization observations of epsilon Aurigae during the 2009-2011 eclipse

    NASA Astrophysics Data System (ADS)

    Henson, Gary D.; Burdette, John; Gray, Sharon

    2012-05-01

    Polarization observations of the unique eclipsing binary, Epsilon Aurigae, are being carried out using a new dual beam imaging polarimeter on the 0.36m telescope of the Harry D. Powell Observatory. This bright binary system has a 27.1 year period with an eclipse duration of nearly two years. The primary is known to be a pulsating F0 supergiant with the secondary a large and essentially opaque disk. We report here on the characteristics of the polarimeter and on the status of V-band observations that are being obtained to better understand the system's geometry and the nature of its two components. In particular, the characteristics of the secondary disk remain a puzzle. Results are compared to polarization observations from the 1982-1984 eclipse.

  7. Asteroseismology of KIC 7107778: a binary comprising almost identical subgiants

    NASA Astrophysics Data System (ADS)

    Li, Yaguang; Bedding, Timothy R.; Li, Tanda; Bi, Shaolan; Murphy, Simon J.; Corsaro, Enrico; Chen, Li; Tian, Zhijia

    2018-05-01

    We analyse an asteroseismic binary system: KIC 7107778, a non-eclipsing, unresolved target, with solar-like oscillations in both components. We used Kepler short cadence time series spanning nearly 2 yr to obtain the power spectrum. Oscillation mode parameters were determined using Bayesian inference and a nested sampling Monte Carlo algorithm with the DIAMONDS package. The power profiles of the two components fully overlap, indicating their close similarity. We modelled the two stars with MESA and calculated oscillation frequencies with GYRE. Stellar fundamental parameters (mass, radius, and age) were estimated by grid modelling with atmospheric parameters and the oscillation frequencies of l = 0, 2 modes as constraints. Most l = 1 mixed modes were identified with models searched using a bisection method. Stellar parameters for the two sub-giant stars are MA = 1.42 ± 0.06 M⊙, MB = 1.39 ± 0.03 M⊙, RA = 2.93 ± 0.05 R⊙, RB = 2.76 ± 0.04 R⊙, tA = 3.32 ± 0.54 Gyr and tB = 3.51 ± 0.33 Gyr. The mass difference of the system is ˜1 per cent. The results confirm their simultaneous birth and evolution, as is expected from binary formation. KIC 7107778 comprises almost identical twins, and is the first asteroseismic sub-giant binary to be detected.

  8. OGLE II Eclipsing Binaries In The LMC: Analysis With Class

    NASA Astrophysics Data System (ADS)

    Devinney, Edward J.; Prsa, A.; Guinan, E. F.; DeGeorge, M.

    2011-01-01

    The Eclipsing Binaries (EBs) via Artificial Intelligence (EBAI) Project is applying machine learning techniques to elucidate the nature of EBs. Previously, Prsa, et al. applied artificial neural networks (ANNs) trained on physically-realistic Wilson-Devinney models to solve the light curves of the 1882 detached EBs in the LMC discovered by the OGLE II Project (Wyrzykowski, et al.) fully automatically, bypassing the need for manually-derived starting solutions. A curious result is the non-monotonic distribution of the temperature ratio parameter T2/T1, featuring a subsidiary peak noted previously by Mazeh, et al. in an independent analysis using the EBOP EB solution code (Tamuz, et al.). To explore this and to gain a fuller understanding of the multivariate EBAI LMC observational plus solutions data, we have employed automatic clustering and advanced visualization (CAV) techniques. Clustering the OGLE II data aggregates objects that are similar with respect to many parameter dimensions. Measures of similarity for example, could include the multidimensional Euclidean Distance between data objects, although other measures may be appropriate. Applying clustering, we find good evidence that the T2/T1 subsidiary peak is due to evolved binaries, in support of Mazeh et al.'s speculation. Further, clustering suggests that the LMC detached EBs occupying the main sequence region belong to two distinct classes. Also identified as a separate cluster in the multivariate data are stars having a Period-I band relation. Derekas et al. had previously found a Period-K band relation for LMC EBs discovered by the MACHO Project (Alcock, et al.). We suggest such CAV techniques will prove increasingly useful for understanding the large, multivariate datasets increasingly being produced in astronomy. We are grateful for the support of this research from NSF/RUI Grant AST-05-75042 f.

  9. The 1982-1984 Eclipse of Epsilon Aurigae

    NASA Technical Reports Server (NTRS)

    Stencel, R. E. (Editor)

    1985-01-01

    A workshop proceedings concerned with the new data collected during the 1982-1984 eclipse period of the 27-year system Epsilon Aurigae is presented. This binary star has been a classic problem in astrophysics because the opaque eclipsing object is nonstellar, and probably disk shaped. Invited papers concerning the history of the system, optical, infrared and ultraviolet photometry, optical polarimetry and ultraviolet spectroscopy are included. An invited paper concerning comprehensive theoretical interpretation in the context of stellar evolution also is included. The information collected herein is unparalleled in scope and will remain a standard reference until the next eclipse cycle in the year 2009 A.D., in all probability.

  10. Monitoring HD 148703 during upcoming eclipses

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2017-06-01

    Dr. Milena Ratajczak (University of Wrocław) has requested AAVSO observers' assistance in monitoring the very bright (V = 4.23) and very unusual eclipsing binary HD 148703 (HR 6143, N Sco) during its infrequent primary and secondary eclipses scheduled for 2017 June 11 and June 14, respectively. Dr. Ratajczak writes: "[HD 148703] N Sco is a B-type detached eclipsing binary, which turned out to be an exceptionally interesting object to study when we realised its orbital period is 223 days and time between eclipses is only 3.5 days. Such configuration makes it an extremely eccentric system, probably the most eccentric from any objects of that class ever studied...Since the object is very bright, it's difficult to use professional photometric telescopes due to saturation issues. That is why we kindly invite amateur astronomers to join the campaign. Data taken during times of eclipses (photometry) and time between eclipses (radial velocities from spectroscopy) which occur next week are crucial to cover in order to determine orbital and stellar parameters of system's components. Data taken over that time will be of very high value for us." The next primary eclipse time of minimum is on 2017 June 11 (UT 00:41:45), and the secondary on June 14 (UT 09:17:34). Each eclipse lasts about 20 hours. The amplitude of the primary eclipse is 0.15 magnitude, and the secondary 0.35 mag. PEP V and DSLR V photometry is requested. (CCD V is welcome if saturation can be avoided.) Beginning immediately, one to a few snapshots each night are requested to establish an out-of-eclipse baseline for each observer; they should continue for a few nights after the secondary eclipse has occurred.Time series photometry is requested beginning 12 hours before each time of minimum and continuing until 12 hours after. Precision to 0.01 mag or better per single observation is needed. Exposures should be as long as possible without saturating; don't make very short exposures simply for the purpose of

  11. Discovery of 36 eclipsing EL CVn binaries found by the Palomar Transient Factory

    NASA Astrophysics Data System (ADS)

    van Roestel, J.; Kupfer, T.; Ruiz-Carmona, R.; Groot, P. J.; Prince, T. A.; Burdge, K.; Laher, R.; Shupe, D. L.; Bellm, E.

    2018-04-01

    We report on the discovery and analysis of 36 new eclipsing EL CVn-type binaries, consisting of a core helium-composition pre-white dwarf (pre-He-WD) and an early-type main-sequence companion. This more than doubles the known population of these systems. We have used supervised machine learning methods to search 0.8 million light curves from the Palomar Transient Factory (PTF), combined with Sloan Digital Sky Survey (SDSS), Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) and Two-Micron All-Sky Survey (2MASS) colours. The new systems range in orbital periods from 0.46 to 3.8 d and in apparent brightness from ˜14 to 16 mag in the PTF R or g΄ filters. For 12 of the systems, we obtained radial velocity curves with the Intermediate Dispersion Spectrograph at the Isaac Newton Telescope. We modelled the light curves, radial velocity curves and spectral energy distributions to determine the system parameters. The radii (0.3-0.7 R⊙) and effective temperatures (8000-17 000 K) of the pre-He-WDs are consistent with stellar evolution models, but the masses (0.12-0.28 M⊙) show more variance than models have predicted. This study shows that using machine learning techniques on large synoptic survey data is a powerful way to discover substantial samples of binary systems in short-lived evolutionary stages.

  12. Eclipse-Like Events on This Week @NASA – August 18, 2017

    NASA Image and Video Library

    2017-08-18

    ena such as the Aug. 21, 2017 solar eclipse can inspire awe, but scientists can also use eclipse-like events to learn more about the universe. For instance, a total eclipse, or an occultation in scientific terms – happens when a celestial body completely blocks light from a star, like our sun. This type of event can help astronomers learn more about an object’s atmosphere, including whether it might be surrounded by rings or other planetary matter. During a similar event, called a transit, variations in light that result when a closer object passes in front of a star, but only blocks a small part of the star, have been used by missions such as our Kepler space telescope, to discover new planets outside our solar system. Also, SpaceX Launches Science, Supplies to Space Station, New Communications Satellite Launched, Cassini Begins Final Five Orbits around Saturn and Spacewalk aboard the Space Station!

  13. The "Cool Algol" BD+05 706 : Photometric observations of a new eclipsing double-lined spectroscopic binary

    NASA Astrophysics Data System (ADS)

    Marschall, L. A.; Torres, G.; Neuhauser, R.

    1998-05-01

    BVRI Observations of the star BD+05 706, carried out between January, 1997, and April 1998 using the 0.4m reflector and Photometrics CCD camera at the Gettysburg College Observatory, show that the star is an eclipsing binary system with a light curve characteristic of a class of semi-detached binaries known as the "cool Algols". These results are in good agreement with the previous report of BD+05 706 as a cool Algol by Torres, Neuhauser, and Wichmann,(Astron. J., 115, May 1998) who based their classification on the strong X-ray emission detected by Rosat and on a series of spectroscopic observations of the radial velocities of both components of the system obtained at the Oak Ridge Observatory, the Fred L. Whipple Observatory, and the Multiple Mirror Telescope. Only 10 other examples of cool Algols are known, and the current photometric light curve, together with the radial velocity curves obtained previously, allows us to derive a complete solution for the physical parameters of each component, providing important constraints on models for these interesting systems.

  14. The remarkable eclipsing asynchronous AM Herculis binary RX J19402-1025

    NASA Technical Reports Server (NTRS)

    Patterson, Joseph; Skillman, David R.; Thorstensen, John; Hellier, Coel

    1995-01-01

    We report on two years of photometric and spectroscopic observation of the recently discovered AM Herculis star RX J19402-1025. A sharp eclipse feature is present in the optical and X-ray light curves, repeating with a period of 12116.290 +/- 0.003 s. The out-of-eclipse optical waveform contains approximately equal contributions from a signal at the same period and another signal at 12150 s. As these signals drift in and out of phase, the wave form of the light curve changes in a complex but predictable manner. After one entire 'supercycle' of 50 days (the beat period between the shorter periods), the light curve returns to its initial shape. We present long-term ephemerides for each of these periods. It is highly probable that the eclipse period is the underlying orbital period, while the magnetic white dwarf rotates with P = 12150 s. The eclipses appear to be eclipses of the white dwarf by the secondary star. But there is probably also a small obscuring effect from cold gas surrounding the secondary, especially on the orbit-leading side where the stream begins to fall towards the white dwarf. The latter hypothesis can account for several puzzling effects in this star, as well as the tendency among most AM Her stars for the sharp emission-line components to slightly precede the actual motion of the secondary. The presence of eclipses in an asynchronous AM Her star provides a marvelous opportunity to study how changes in the orientation of magnetic field lines affect the accretion flows. Repeated polarimetric light curves and high-resolution studies of the emission lines are now critical to exploit this potential.

  15. Testing the white dwarf mass-radius relationship with eclipsing binaries

    NASA Astrophysics Data System (ADS)

    Parsons, S. G.; Gänsicke, B. T.; Marsh, T. R.; Ashley, R. P.; Bours, M. C. P.; Breedt, E.; Burleigh, M. R.; Copperwheat, C. M.; Dhillon, V. S.; Green, M.; Hardy, L. K.; Hermes, J. J.; Irawati, P.; Kerry, P.; Littlefair, S. P.; McAllister, M. J.; Rattanasoon, S.; Rebassa-Mansergas, A.; Sahman, D. I.; Schreiber, M. R.

    2017-10-01

    We present high-precision, model-independent, mass and radius measurements for 16 white dwarfs in detached eclipsing binaries and combine these with previously published data to test the theoretical white dwarf mass-radius relationship. We reach a mean precision of 2.4 per cent in mass and 2.7 per cent in radius, with our best measurements reaching a precision of 0.3 per cent in mass and 0.5 per cent in radius. We find excellent agreement between the measured and predicted radii across a wide range of masses and temperatures. We also find the radii of all white dwarfs with masses less than 0.48 M⊙ to be fully consistent with helium core models, but they are on average 9 per cent larger than those of carbon-oxygen core models. In contrast, white dwarfs with masses larger than 0.52 M⊙ all have radii consistent with carbon-oxygen core models. Moreover, we find that all but one of the white dwarfs in our sample have radii consistent with possessing thick surface hydrogen envelopes (10-5 ≥ MH/MWD ≥ 10-4), implying that the surface hydrogen layers of these white dwarfs are not obviously affected by common envelope evolution.

  16. Motions of Kepler circumbinary planets in restricted three-body problem under radiating primaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dermawan, B., E-mail: budider@as.itb.ac.id; Hidayat, T., E-mail: taufiq@as.itb.ac.id; Huda, I. N., E-mail: ibnu.nurul@students.itb.ac.id

    2015-09-30

    By observing continuously a single field of view in the sky, Kepler mission reveals outstanding results on discoveries of exoplanets. One of its recent progress is the discoveries of circumbinary planets. A circumbinary planet is an exoplanet that moves around a binary system. In this study we investigate motions of Kepler circumbinary planets belong to six binary systems, namely Kepler-16, -34, -35, -38, -47, and -413. The motions are considered to follow the Restricted Three-Body Problem (RTBP). Because the primaries (central massive objects) are stars, they are both radiatives, while the planet is an infinitesimal object. The primaries move inmore » nearly circular and elliptic orbits with respect to their center of masses. We describe, in general, motions of the circumbinary planets in RTBP under radiating primaries. With respect to the averaged zero velocity curves, we show that motions of the exoplanets are stable, in accordance with their Hill stabilities.« less

  17. Light Curves and Analyses of the Eclipsing Overcontact Binaries V546 And & V566 And & the Discovery of a New Variable Star

    NASA Astrophysics Data System (ADS)

    Bradstreet, David H.; Sanders, S. J.; Volpert, C. G.

    2013-01-01

    New precision V & Rc light curves of the eclipsing binaries V546 And and V566 And have been obtained using the 41-cm telescopes at the Eastern University Observatory equipped with SBIG ST-10XME CCD’s. V546 And (GSC 2828:18, P = 0.3831 days, m = 11.2) has only one published discovery light curve with significant scatter in the data. The system was observed on seven nights from 30 Aug - 20 Sep 2012, accumulating approximately 900 observations in both V and Rc. The light curves show distinctly that the system is totally eclipsing and preliminary analysis indicates that the binary is W-type (the larger, more massive star is the cooler component), has a mass ratio of 0.34, small temperature difference between the stars of 300 K, and a fillout of 0.30. There is also strong evidence of the presence of starspots influencing the slopes of both eclipses. V566 And (GSC 2321:257, P = 0.3897 days, m = 10.9) is a totally eclipsing overcontact system likewise showing obvious O’Connell effects likely due to starspots. V566 And was observed on seven nights from 30 Aug - 25 Sep 2012, accumulating more than 900 observations in both V and Rc. Preliminary light curve models indicate a W-type system with a small temperature difference between the stars of 200 K and a mass ratio of only 0.20. The original comparison star for V566 And, GSC 2321:911 (m = 12.0), turned out to be a previously unknown variable star with a period of approximately 0.466 days and a light amplitude in Rc of 0.15 mag. This new variable has no information concerning it in the online archives and initial analysis seems to indicate that this may be an ellipsoidal variable. The complete light curve analyses will be presented for both systems and the new variable’s light curves will also be discussed.

  18. Multi-color light curves and orbital period research of eclipsing binary V1073 Cyg

    NASA Astrophysics Data System (ADS)

    Tian, Xiao-Man; Zhu, Li-Ying; Qian, Sheng-Bang; Li, Lin-Jia; Jiang, Lin-Qiao

    2018-02-01

    New multi-color BV RcIc photometric observations are presented for the W UMa type eclipsing binary V1073 Cyg. The multi-color light curve analysis with the Wilson-Devinney procedure yielded the absolute parameters of this system, showing that V1073 Cyg is a shallow contact binary system with a fill-out factor f = 0.124(±0.011). We collected all available times of light minima spanning 119 yr, including CCD data to construct the O ‑ C curve, and performed detailed O ‑ C analysis. The O ‑ C diagram shows that the period change is complex. A long-term continuous decrease and a cyclic variation exist. The period is decreasing at a rate of Ṗ = ‑1.04(±0.18) × 10‑10 d cycle‑1 and, with the period decrease, V1073 Cyg will evolve to the deep contact stage. The cyclic variation with a period of P 3 = 82.7(±3.6) yr and an amplitude of A = 0.028(±0.002)d may be explained by magnetic activity of one or both components or the light travel time effect caused by a distant third companion with M 3(i‧ = 90°) = 0.511 M⊙.

  19. A critical review of period analyses and implications for mass exchange in W UMa eclipsing binaries: Paper 3

    NASA Astrophysics Data System (ADS)

    Nelson, R. H.; Terrell, D.; Milone, E. F.

    2016-02-01

    This is the third of a series of four papers, the goal of which is to identify the overcontact eclipsing binary star systems for which a solid case can be made for mass exchange. To reach this goal, it is necessary first to identify those systems for which there is a strong case for period change. We have identified 60 candidate systems; in the first two papers (Nelson et al. 2014, 2016) we discussed 40 individual cases; this paper continues with the last 20. For each system, we present a detailed discussion and evaluation concerning the observational and interpretive material presented in the literature. At least one eclipse timing (ET) diagram, commonly referred to as an "O-C diagram", that includes the latest available data, accompanies each discussion. In paper 4, we will discuss the mechanisms that can cause period change and which of the 60 systems can be reliably concluded to exhibit mass exchange; we will also provide a list of marginal and rejected cases - suitable for future work.

  20. Forming Circumbinary Planets: N-body Simulations of Kepler-34

    NASA Astrophysics Data System (ADS)

    Lines, S.; Leinhardt, Z. M.; Paardekooper, S.; Baruteau, C.; Thebault, P.

    2014-02-01

    Observations of circumbinary planets orbiting very close to the central stars have shown that planet formation may occur in a very hostile environment, where the gravitational pull from the binary should be very strong on the primordial protoplanetary disk. Elevated impact velocities and orbit crossings from eccentricity oscillations are the primary contributors to high energy, potentially destructive collisions that inhibit the growth of aspiring planets. In this work, we conduct high-resolution, inter-particle gravity enabled N-body simulations to investigate the feasibility of planetesimal growth in the Kepler-34 system. We improve upon previous work by including planetesimal disk self-gravity and an extensive collision model to accurately handle inter-planetesimal interactions. We find that super-catastrophic erosion events are the dominant mechanism up to and including the orbital radius of Kepler-34(AB)b, making in situ growth unlikely. It is more plausible that Kepler-34(AB)b migrated from a region beyond 1.5 AU. Based on the conclusions that we have made for Kepler-34, it seems likely that all of the currently known circumbinary planets have also migrated significantly from their formation location with the possible exception of Kepler-47(AB)c.

  1. Photometric Analysis and Modeling of Five Mass-Transferring Binary Systems

    NASA Astrophysics Data System (ADS)

    Geist, Emily; Beaky, Matthew; Jamison, Kate

    2018-01-01

    In overcontact eclipsing binary systems, both stellar components have overfilled their Roche lobes, resulting in a dumbbell-shaped shared envelope. Mass transfer is common in overcontact binaries, which can be observed as a slow change on the rotation period of the system.We studied five overcontact eclipsing binary systems with evidence of period change, and thus likely mass transfer between the components, identified by Nelson (2014): V0579 Lyr, KN Vul, V0406 Lyr, V2240 Cyg, and MS Her. We used the 31-inch NURO telescope at Lowell Observatory in Flagstaff, Arizona to obtain images in B,V,R, and I filters for V0579 Lyr, and the 16-inch Meade LX200GPS telescope with attached SBIG ST-8XME CCD camera at Juniata College in Huntingdon, Pennsylvania to image KN Vul, V0406 Lyr, V2240 Cyg, and MS Her, also in B,V,R, and I.After data reduction, we created light curves for each of the systems and modeled the eclipsing binaries using the BinaryMaker3 and PHOEBE programs to determine their fundamental physical parameters for the first time. Complete light curves and preliminary models for each of these neglected eclipsing binary systems will be presented.

  2. Spectral irradiance curve calculations for any type of solar eclipse

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Merrill, J. E.

    1974-01-01

    A simple procedure is described for calculating the eclipse function (EF), alpha, and hence the spectral irradiance curve (SIC), (1-alpha), for any type of solar eclipse: namely, the occultation (partial/total) eclipse and the transit (partial/annular) eclipse. The SIC (or the EF) gives the variation of the amount (or the loss) of solar radiation of a given wavelength reaching a distant observer for various positions of the moon across the sun. The scheme is based on the theory of light curves of eclipsing binaries, the results of which are tabulated in Merrill's Tables, and is valid for all wavelengths for which the solar limb-darkening obeys the cosine law: J = sub c (1 - X + X cost gamma). As an example of computing the SIC for an occultation eclipse which may be total, the calculations for the March 7, 1970, eclipse are described in detail.

  3. Suzaku observation of the eclipsing high mass X-ray binary pulsar XTE J1855-026

    NASA Astrophysics Data System (ADS)

    Devasia, Jincy; Paul, Biswajit

    2018-02-01

    We report results from analysis performed on an eclipsing supergiant high mass X-ray binary pulsar XTE J1855-026 observed with the X-ray Imaging Spectrometer (XIS) on-board Suzaku Observatory in April 2015. Suzaku observed this source for a total effective exposure of ˜ 87 ks just before an eclipse. Pulsations are clearly observed and the pulse profiles of XTE J1855-026 did not show significant energy dependence during this observation consistent with previous reports. The time averaged energy spectrum of XTE J1855-026 in the 1.0-10.5 keV energy range can be well fitted with a partial covering power law model modified with interstellar absorption along with a black-body component for soft excess and a gaussian for iron fluorescence line emision. The hardness ratio evolution during this observation indicated significant absorption of soft X-rays in some segments of the observation. For better understanding of the reason behind this, we performed time-resolved spectroscopy in the 2.5-10.5 keV energy band which revealed significant variations in the spectral parameters, especially the hydrogen column density and iron line equivalent width with flux. The correlated variations in the spectral parameters indicate towards the presence of clumps in the stellar wind of the companion star accounting for the absorption of low energy X-rays in some time segments.

  4. Lunar Surface Properties from Diviner Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Hayne, Paul; Paige, David; Greenhagen, Benjamin; Bandfield, Joshua; Siegler, Matthew; Lucey, Paul

    2015-04-01

    The thermal behavior of planetary bodies can reveal information about fundamental processes shaping their surfaces and interiors. Diviner [1] has been mapping the Moon's diurnal temperatures since the Lunar Reconnaissance Orbiter (LRO) arrived in 2009, yielding new insights into regolith formation [2, 3], the distribution of volatiles [4, 5], lunar volcanism [6, 7, 8], and impact processes [9]. The Moon's cooling during eclipse provides complementary information on the physical properties of the uppermost surface layer, which can be used to further investigate these and other processes. We used data from Diviner's seven thermal infrared spectral channels to measure surface temperatures before, during and after the 8 Oct., 2014 eclipse. In its standard nadir-pushbroom mode, Diviner maps surface temperatures in a ~6-km swath with a spatial resolution of ~250 m. Using Diviner's independent scanning capability [11], we also targeted two regions of interest on sequential orbits to create a time series of thermal observations: 1) Kepler crater (-38°E, 8°N) and 2) an unnamed nighttime "cold spot" (-33.3°E, 3°N). Pre-eclipse surface temperatures in these regions were ~380 K. As a relatively young Copernican-aged impact crater, Kepler was selected to investigate the abundance and size distribution of rocks in the ejecta and interior. Lunar nighttime "cold spots" are anomalous features around very young impact craters, extending for up to hundreds of crater radii, notable for their low temperatures in the Diviner nighttime data [9]. Although their origins are not fully explained, they are likely the result of in-situ disruption and decompression of regolith during the impact process. The selected cold spot (one of hundreds or even thousands on the lunar surface) was located with good viewing ge- ometry from LRO, and had a diameter of ~10 km surrounding a crater < 1 km in diameter. At Kepler crater, we observed dramatic differences in the amount of cooling related to the

  5. Asteroseismic inversions in the Kepler era: application to the Kepler Legacy sample

    NASA Astrophysics Data System (ADS)

    Buldgen, Gaël; Reese, Daniel; Dupret, Marc-Antoine

    2017-10-01

    In the past few years, the CoRoT and Kepler missions have carried out what is now called the space photometry revolution. This revolution is still ongoing thanks to K2 and will be continued by the Tess and Plato2.0 missions. However, the photometry revolution must also be followed by progress in stellar modelling, in order to lead to more precise and accurate determinations of fundamental stellar parameters such as masses, radii and ages. In this context, the long-lasting problems related to mixing processes in stellar interior is the main obstacle to further improvements of stellar modelling. In this contribution, we will apply structural asteroseismic inversion techniques to targets from the Kepler Legacy sample and analyse how these can help us constrain the fundamental parameters and mixing processes in these stars. Our approach is based on previous studies using the SOLA inversion technique [1] to determine integrated quantities such as the mean density [2], the acoustic radius, and core conditions indicators [3], and has already been successfully applied to the 16Cyg binary system [4]. We will show how this technique can be applied to the Kepler Legacy sample and how new indicators can help us to further constrain the chemical composition profiles of stars as well as provide stringent constraints on stellar ages.

  6. Timing of AB And eclipses

    NASA Astrophysics Data System (ADS)

    Kozyreva, V. S.; Ibrahimov, M. A.; Gaynullina, E. R.; Karimov, R. G.; Hafizov, B. M.; Satovskii, B. L.; Krushevska, V. N.; Kuznyetsova, Yu. G.; Bogomazov, A. I.; Irsmambetova, T. R.; Tutukov, A. V.

    2018-01-01

    This study aims timing the eclipses of the short period low mass binary star AB And. The times of minima are taken from the literature and from our observations in October 2013 (22 times of minima) and in August 2014 (23 times of minima). We find and discuss an inaccuracy in the determination of the types of minima in the previous investigation by Li et al. (2014). We study the secular evolution of the central binary's orbital period and the possibility of the existence of third and fourth companions in the system.

  7. Hydrodynamic Simulations of Kepler's Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Sullivan, Jessica; Blondin, John; Borkowski, Kazik; Reynolds, Stephen

    2018-01-01

    Kepler’s supernova remnant contains unusual features that strongly suggest an origin in a single-degenerate Type Ia explosion, including anisotropic circumstellar medium (CSM), a strong brightness gradient, and spatially varying expansion proper motions. We present 3Dhydrodynamic simulations to test a picture in which Kepler's progenitor binary emitted a strong asymmetric wind, densest in the orbital plane, while the system moved at high velocity through the ISM. We simulate the creation of the presupernova environment as well as the supernova blast wave, using the VH-1 grid-based hydrodynamics code. We first modeled an anisotropic wind to create an asymmetric bowshock around the progenitor, then the blast wave from thesupernova. The final simulation places both previous model pieces onto a single grid and allows the blast wave to expand into the bowshock. Models were completed on a Yin-Yang grids with matching angular resolutions. By manipulating parameters that control the asymmetry of the system, we attempted to find conditions that recreated the current state of Kepler. We analyzed these models by comparing images of Kepler from the Chandra X-ray Observatory to line-of-sight projections from the model results. We also present comparisons of simulated expansion velocities with recent observations of X-ray proper motions from Chandra images. We were able to produce models that contained similar features to those seen in Kepler. We find the greatest resemblance to Kepler images with a presupernova wind with an equator-to-pole density contrast of 3 and a moderately disk-like CSM at a 5° angle between equatorial plane and system motion.

  8. Determination of the axial rotation rate using apsidal motion for early-type eclipsing binaries

    NASA Astrophysics Data System (ADS)

    Khaliullin, Kh. F.; Khaliullina, A. I.

    2007-11-01

    Because the modern theory of stellar structure and evolution has a sound observational basis, we can consider that the apsidal parameters k2 computed in terms of this theory correctly reflect the radial density distribution in stars of different masses and spectral types. This allows us to address the problem of apsidal motion in close binary systems in a new way. Unlike the traditional approach, in this paper we use the observed apsidal periods Uobs to estimate the angular axial velocities of components, ωr, at fixed model values of k2. We use this approach to analyse the observational data for 28 eclipsing systems with known Uobs and early-type primaries (M >= 1.6 Msolar or Te >= 6000 K). We measure the age of the system in units of the synchronization time, t/tsyn. Our analysis yielded the following results. (i) There is a clear correlation between ωr/ωsyn and t/tsyn: the younger a star, the higher the angular velocity of its axial rotation in units of ωsyn, the angular velocity at pseudo-synchronization. This correlation is more significant and obvious if the synchronization time, tsyn, is computed in terms of the Zahn theory. (ii) This observational fact implies that the synchronization of early-type components in close binary systems continues on the main sequence. The synchronization times for the inner layers of the components (i.e. those that are responsible for apsidal motion) are about 1.6 and 3.1 dex longer than those predicted by the theories of Zahn and Tassoul, respectively. The average initial angular velocities (for the zero-age main sequence) are equal to ω0/ωsyn ~ 2.0. The dependence of the parameter E2 on stellar mass probably needs to be refined in the Zahn theory. (iii) Some components of the eclipsing systems of the sample studied show radially differential axial rotation. This is consistent with the Zahn theory, which predicts that the synchronization starts at the surface, where radiative damping of dynamical tides occurs, and

  9. Contact Binaries on Their Way Towards Merging

    NASA Astrophysics Data System (ADS)

    Gazeas, K.

    2015-07-01

    Contact binaries are the most frequently observed type of eclipsing star system. They are small, cool, low-mass binaries belonging to a relatively old stellar population. They follow certain empirical relationships that closely connect a number of physical parameters with each other, largely because of constraints coming from the Roche geometry. As a result, contact binaries provide an excellent test of stellar evolution, specifically for stellar merger scenarios. Observing campaigns by many authors have led to the cataloging of thousands of contact binaries and enabled statistical studies of many of their properties. A large number of contact binaries have been found to exhibit extraordinary behavior, requiring follow-up observations to study their peculiarities in detail. For example, a doubly-eclipsing quadruple system consisting of a contact binary and a detached binary is a highly constrained system offering an excellent laboratory to test evolutionary theories for binaries. A new observing project was initiated at the University of Athens in 2012 in order to investigate the possible lower limit for the orbital period of binary systems before coalescence, prior to merging.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brewer, Lauren N.; Sandquist, Eric L.; Jeffries, Mark W. Jr.

    As part of our study of the old (∼2.5 Gyr) open cluster NGC 6819 in the Kepler field, we present photometric (Kepler and ground-based BVR{sub C}I{sub C}) and spectroscopic observations of the detached eclipsing binary WOCS 24009 (Auner 665; KIC 5023948) with a short orbital period of 3.6 days. WOCS 24009 is a triple-lined system, and we verify that the brightest star is physically orbiting the eclipsing binary using radial velocities and eclipse timing variations. The eclipsing binary components have masses M{sub B} = 1.090 ± 0.010 M{sub ⊙} and M{sub C} = 1.075 ± 0.013 M{sub ⊙}, and radii R{sub B} = 1.099 ± 0.006 ± 0.005 R{sub ⊙} and R{sub C} = 1.069 ± 0.006 ± 0.013 R{submore » ⊙}. The bright non-eclipsing star resides at the cluster turnoff, and ultimately its mass will directly constrain the turnoff mass: our preliminary determination is M{sub A} = 1.251 ± 0.057 M{sub ⊙}. A careful examination of the light curves indicates that the fainter star in the eclipsing binary undergoes a very brief period of total eclipse, which enables us to precisely decompose the light of the three stars and place them in the color–magnitude diagram (CMD). We also present improved analysis of two previously discussed detached eclipsing stars in NGC 6819 (WOCS 40007 and WOCS 23009) en route to a combined determination of the cluster’s distance modulus (m − M){sub V} = 12.38 ± 0.04. Because this paper significantly increases the number of measured stars in the cluster, we can better constrain the age of the CMD to be 2.21 ± 0.10 ± 0.20 Gyr. Additionally, using all measured eclipsing binary star masses and radii, we constrain the age to 2.38 ± 0.05 ± 0.22 Gyr. The quoted uncertainties are estimates of measurement and systematic uncertainties (due to model physics differences and metal content), respectively.« less

  11. Discovery of a Detached, Eclipsing 40 Minute Period Double White Dwarf Binary and a Friend: Implications for He+CO White Dwarf Mergers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Warren R.; Kilic, Mukremin; Kosakowski, Alekzander

    We report the discovery of two detached double white dwarf (WD) binaries, SDSS J082239.546+304857.19 and SDSS J104336.275+055149.90, with orbital periods of 40 and 46 minutes, respectively. The 40 minute system is eclipsing; it is composed of a 0.30 M {sub ⊙} and a 0.52 M {sub ⊙} WD. The 46 minute system is a likely LISA verification binary. The short 20 ± 2 Myr and ∼34 Myr gravitational-wave merger times of the two binaries imply that many more such systems have formed and merged over the age of the Milky Way. We update the estimated Milky Way He+CO WD binarymore » merger rate and affirm our previously published result: He+CO WD binaries merge at a rate at least 40 times greater than the formation rate of stable mass-transfer AM CVn binaries, and so the majority must have unstable mass-transfer. The implication is that spin–orbit coupling in He+CO WD mergers is weak, or perhaps nova-like outbursts drive He+CO WDs into merger, as proposed by Shen.« less

  12. State-change in the "transition" binary millisecond pulsar J1023+0038

    NASA Astrophysics Data System (ADS)

    Stappers, B. W.; Archibald, A.; Bassa, C.; Hessels, J.; Janssen, G.; Kaspi, V.; Lyne, A.; Patruno, A.; Hill, A. B.

    2013-10-01

    We report a change in the state of PSR J1023+0038, a source which is believed to be transitioning from an X-ray binary to an eclipsing binary radio millisecond pulsar (Archibald et al. 2009, Science, 324, 1411). The system was known to contain an accretion disk in 2001 but has shown no signs of it, or of accretion, since then, rather exhibiting all the properties of an eclipsing binary millisecond radio pulsar (MSP).

  13. HEARTBEAT STARS: SPECTROSCOPIC ORBITAL SOLUTIONS FOR SIX ECCENTRIC BINARY SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smullen, Rachel A.; Kobulnicky, Henry A., E-mail: rsmullen@email.arizona.edu

    2015-08-01

    We present multi-epoch spectroscopy of “heartbeat stars,” eccentric binaries with dynamic tidal distortions and tidally induced pulsations originally discovered with the Kepler satellite. Optical spectra of six known heartbeat stars using the Wyoming Infrared Observatory 2.3 m telescope allow measurement of stellar effective temperatures and radial velocities from which we determine orbital parameters including the periods, eccentricities, approximate mass ratios, and component masses. These spectroscopic solutions confirm that the stars are members of eccentric binary systems with eccentricities e > 0.34 and periods P = 7–20 days, strengthening conclusions from prior works that utilized purely photometric methods. Heartbeat stars inmore » this sample have A- or F-type primary components. Constraints on orbital inclinations indicate that four of the six systems have minimum mass ratios q = 0.3–0.5, implying that most secondaries are probable M dwarfs or earlier. One system is an eclipsing, double-lined spectroscopic binary with roughly equal-mass mid-A components (q = 0.95), while another shows double-lined behavior only near periastron, indicating that the F0V primary has a G1V secondary (q = 0.65). This work constitutes the first measurements of the masses of secondaries in a statistical sample of heartbeat stars. The good agreement between our spectroscopic orbital elements and those derived using a photometric model support the idea that photometric data are sufficient to derive reliable orbital parameters for heartbeat stars.« less

  14. Evaluating Gaia performances on eclipsing binaries. IV. Orbits and stellar parameters for SV Cam, BS Dra and HP Dra

    NASA Astrophysics Data System (ADS)

    Milone, E. F.; Munari, U.; Marrese, P. M.; Williams, M. D.; Zwitter, T.; Kallrath, J.; Tomov, T.

    2005-10-01

    This is the fourth in a series of papers that aim both to provide reasonable orbits for a number of eclipsing binaries and to evaluate the expected performance of Gaia of these objects and the accuracy that is achievable in the determination of such fundamental stellar parameters as mass and radius. In this paper, we attempt to derive the orbits and physical parameters for three eclipsing binaries in the mid-F to mid-G spectral range. As for previous papers, only the H_P, V_T, BT photometry from the Hipparcos/Tycho mission and ground-based radial velocities from spectroscopy in the region 8480-8740 Å are used in the analyses. These data sets simulate the photometric and spectroscopic data that are expected to be obtained by Gaia, the approved ESA Cornerstone mission to be launched in 2011. The systems targeted in this paper are SV Cam, BS Dra and HP Dra. SV Cam and BS Dra have been studied previously, allowing comparisons of the derived parameters with those from full scale and devoted ground-based investigations. HP Dra has no published orbital solution. SV Cam has a β Lyrae type light curve and the others have Algol-like light curves. SV Cam has the complication of light curve anomalies, usually attributed to spots; BS Dra has non-solar metallicity, and HP Dra appears to have a small eccentricity and a sizeable time derivative in the argument of the periastron. Thus all three provide interesting and different test cases.

  15. PREDICTING GAIA’S PARALLAX DISTANCE TO THE CYGNUS OB2 ASSOCIATION WITH ECLIPSING BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiminki, Daniel C.; Kobulnicky, Henry A.; Álvarez, Carlos A. Vargas

    2015-10-01

    The Cygnus OB2 Association is one of the nearest and largest collections of massive stars in the Galaxy. Situated at the heart of the “Cygnus X” complex of star-forming regions and molecular clouds, its distance has proven elusive owing to the ambiguous nature of kinematic distances along this ℓ ≃ 80° sightline and the heavy, patchy extinction. In an effort to refine the three-dimensional geometry of key Cygnus X constituents, we have measured distances to four eclipsing double-lined OB-type spectroscopic binaries that are probable members of Cyg OB2. We find distances of 1.33 ± 0.17, 1.32 ± 0.07, 1.44 ±more » 0.18, and 1.32 ± 0.13 kpc toward MT91 372, MT91 696, CPR2002 A36, and Schulte 3, respectively. We adopt a weighted average distance of 1.33 ± 0.06 kpc. This agrees well with spectrophotometric estimates for the Association as a whole and with parallax measurements of protostellar masers in the surrounding interstellar clouds, thereby linking the ongoing star formation in these clouds with Cyg OB2. We also identify Schulte 3C (O9.5V), a 4″ visual companion to the 4.75 day binary Schulte 3(A+B), as a previously unrecognized Association member.« less

  16. SS Bootis - A totally eclipsing binary of the RS CVn type

    NASA Technical Reports Server (NTRS)

    Vaucher, C. A.; Africano, J. L.; Henry, G. W.; Hall, D. S.; Wilson, J. W.

    1983-01-01

    Photoelectric photometry gathered for SS Bootis over the 1976-1981 period shows a distortion wave amplitude variation from 0.05 to 0.20 mag, with no apparent pattern. From the rectified light curve, a new time of midprimary eclipse was found to be 2444332.0335 + or - 0.0005 days. Solutions of the primary eclipse data, rectified for star spots as well as for ellipticity and reflection, are presented.

  17. New Light Curves and Analysis of the Overcontact Binaries PP Lac and DK Sge

    NASA Astrophysics Data System (ADS)

    Sanders, S. J.; Hargis, J. R.; Bradstreet, D. H.

    2004-12-01

    As a by-product of the ongoing work with the Catalog and AtLas of Eclipsing Binaries database (CALEB; Bradstreet et al. 2004), several hundred eclipsing binary systems have been identified that have either unpublished or poor quality light curves. We present new V & Rc light curves for the overcontact systems PP Lac and DK Sge, both chosen because their deep eclipses (peak-to-peak amplitudes of nearly 0.7 mag) help constrain the light curve modelling. Data were obtained using the 41-cm telescope at the Eastern University Observatory equipped with an SBIG ST-10XME CCD. PP Lac (P= 0.40116 d) is a W-type contact binary with only one previously published light curve (Dumont & Maraziti 1990), but the data are sparse and almost non-existent at primary eclipse. Modelling of these data gave varying results; the published mass ratios differ by nearly 0.3. Our data confirms the noted differing eclipse depths but we find the primary eclipse to be total. We present a new light curve solution using Binary Maker 3 (Bradstreet & Steelman 2002) and Wilson-Devinney, finding the mass ratio to be well-constrained by the duration of total eclipse. A period study will be presented using previously existing and newly derived times of minimum light. DK Sge (P=0.62182 d) appears to be an A-type contact binary with no published light curve. The eclipses are partial, with the primary eclipse being deeper by about 0.08 mag. The maxima show evidence of a slight asymmetry, although the light curve appears to be repeatable over the 1 month of observations. We present the first light curve solution using Binary Maker 3 and Wilson-Devinney, but have limited mass ratio constraints due to the absence of radial velocity data. A period study will be presented using previously existing and newly derived times of minimum light.

  18. The Eclipsing Central Stars of the Planetary Nebulae Lo 16 and PHR J1040-5417

    NASA Astrophysics Data System (ADS)

    Hillwig, Todd C.; Frew, David; Jones, David; Crispo, Danielle

    2017-01-01

    Binary central stars of planetary nebula are a valuable tool in understanding common envelope evolution. In these cases both the resulting close binary system and the expanding envelope (the planetary nebula) can be studied directly. In order to compare observed systems with common envelope evolution models we need to determine precise physical parameters of the binaries and the nebulae. Eclipsing central stars provide us with the best opportunity to determine high precision values for mass, radius, and temperature of the component stars in these close binaries. We present photometry and spectroscopy for two of these eclipsing systems; the central stars of Lo 16 and PHR 1040-5417. Using light curves and radial velocity curves along with binary modeling we provide physical parameters for the stars in both of these systems.

  19. Hidden slow pulsars in binaries

    NASA Technical Reports Server (NTRS)

    Tavani, Marco; Brookshaw, Leigh

    1993-01-01

    The recent discovery of the binary containing the slow pulsar PSR 1718-19 orbiting around a low-mass companion star adds new light on the characteristics of binary pulsars. The properties of the radio eclipses of PSR 1718-19 are the most striking observational characteristics of this system. The surface of the companion star produces a mass outflow which leaves only a small 'window' in orbital phase for the detection of PSR 1718-19 around 400 MHz. At this observing frequency, PSR 1718-19 is clearly observable only for about 1 hr out of the total 6.2 hr orbital period. The aim of this Letter is twofold: (1) to model the hydrodynamical behavior of the eclipsing material from the companion star of PSR 1718-19 and (2) to argue that a population of binary slow pulsars might have escaped detection in pulsar surveys carried out at 400 MHz. The possible existence of a population of partially or totally hidden slow pulsars in binaries will have a strong impact on current theories of binary evolution of neutron stars.

  20. NASA's Kepler Mission Discovers Multiple Planets Orbiting Twin Suns (Reporter Pkg)

    NASA Image and Video Library

    2012-08-28

    NASA's Kepler mission has discovered the first transiting circumbinary system -- multiple planets orbiting two suns -- 4,900 light-years from Earth, in the constellation Cygnus, proving that more than one planets can form and survive in orbit around a binary star.

  1. ASCA measurements of the grain-scattered X-ray halos of eclipsing massive X-ray binaries: Vela X-1 and Centaurus X-3

    NASA Technical Reports Server (NTRS)

    Woo, Jonathan W.; Clark, George W.; Day, Charles S. R.; Nagase, Fumiaki; Takeshima, Toshiaki

    1994-01-01

    We have measured the decaying dust-scattered X-ray halo of Cen X-3 during its binary eclipse with the ASCA solid-state imaging spectrometer (SIS). The surface brightness profile (SBP) of the image in the low-energy band (0.5-3 keV) lies substantially above the point-spread function (PSF) of the X-ray telescope, while the SBP in the high-energy band (5-10 keV) exhibits no significant deviation. By contrast, the SBPs of Vela X-1 during its eclipse are consistent with the PSF in both the low- and high-energy bands -- strong evidence that a dust halo is indeed present in Cen X-3. Accordingly, we modeled the SBP of Cen X-3 taken from six consecutive time segments under the principal assumptions that the dust is distributed uniformly along a segment of the line of sight, the grains have a power-law size distribution, and the low-energy source flux was the same function of orbital phase before as during our observation. The best-fit set of parameters included a grain density value of 1.3 g/cu cm, substanially less than the density of 'astronomical silicate.' This result supports the idea that interstellar grains are 'fluffy' aggregates of smaller solid particles. We attribute the failure to detect a halo of Vela X-1 during its eclipse phase to extended strong circumsource absorption that probably occurred before the eclipse and allowed the halo to decay away before the observation began.

  2. Spectroscopic and photometric study of the eclipsing interacting binary V495 Centauri

    NASA Astrophysics Data System (ADS)

    Rosales Guzmán, J. A.; Mennickent, R. E.; Djurašević, G.; Araya, I.; Curé, M.

    2018-05-01

    Double Periodic Variables (DPV) are among the new enigmas of semidetached eclipsing binaries. These are intermediate-mass binaries characterized by a long photometric period lasting on average 33 times the orbital period. We present a spectroscopic and photometric study of the DPV V495 Cen based on new high-resolution spectra and the ASAS V-band light curve. We have determined an improved orbital period of 33.492 ± 0.002 d and a long period of 1283 d. We find a cool evolved star of M2=0.91± 0.2 M_{⊙}, T2 = 6000 ± 250 K and R2=19.3 ± 0.5 R_{⊙} and a hot companion of M1= 5.76± 0.3 M_{⊙}, T1 = 16960 ± 400 K and R=4.5± 0.2 R_{⊙}. The mid-type B dwarf is surrounded by a concave and geometrically thick disc, of radial extension Rd= 40.2± 1.3 R_{⊙} contributing ˜11 per cent to the total luminosity of the system at the V band. The system is seen under inclination 84.8° ± 0.6° and it is at a distance d = 2092 ± 104.6 pc. The light-curve analysis suggests that the mass transfer stream impacts the external edge of the disc forming a hot region 11 per cent hotter than the surrounding disc material. The persistent V < R asymmetry of the Hα emission suggests the presence of a wind and the detection of a secondary absorption component in He I lines indicates a possible wind origin in the hotspot region.

  3. Assessing the Effect of Stellar Companions from High-resolution Imaging of Kepler Objects of Interest

    NASA Astrophysics Data System (ADS)

    Hirsch, Lea A.; Ciardi, David R.; Howard, Andrew W.; Everett, Mark E.; Furlan, Elise; Saylors, Mindy; Horch, Elliott P.; Howell, Steve B.; Teske, Johanna; Marcy, Geoffrey W.

    2017-03-01

    We report on 176 close (<2″) stellar companions detected with high-resolution imaging near 170 hosts of Kepler Objects of Interest (KOIs). These Kepler targets were prioritized for imaging follow-up based on the presence of small planets, so most of the KOIs in these systems (176 out of 204) have nominal radii <6 {R}\\oplus . Each KOI in our sample was observed in at least two filters with adaptive optics, speckle imaging, lucky imaging, or the Hubble Space Telescope. Multi-filter photometry provides color information on the companions, allowing us to constrain their stellar properties and assess the probability that the companions are physically bound. We find that 60%-80% of companions within 1″ are bound, and the bound fraction is >90% for companions within 0.″5 the bound fraction decreases with increasing angular separation. This picture is consistent with simulations of the binary and background stellar populations in the Kepler field. We also reassess the planet radii in these systems, converting the observed differential magnitudes to a contamination in the Kepler bandpass and calculating the planet radius correction factor, X R = R p (true)/R p (single). Under the assumption that planets in bound binaries are equally likely to orbit the primary or secondary, we find a mean radius correction factor for planets in stellar multiples of X R = 1.65. If stellar multiplicity in the Kepler field is similar to the solar neighborhood, then nearly half of all Kepler planets may have radii underestimated by an average of 65%, unless vetted using high-resolution imaging or spectroscopy.

  4. A Wide-field Survey for Transiting Hot Jupiters and Eclipsing Pre-main-sequence Binaries in Young Stellar Associations

    NASA Astrophysics Data System (ADS)

    Oelkers, Ryan J.; Macri, Lucas M.; Marshall, Jennifer L.; DePoy, Darren L.; Lambas, Diego G.; Colazo, Carlos; Stringer, Katelyn

    2016-09-01

    The past two decades have seen a significant advancement in the detection, classification, and understanding of exoplanets and binaries. This is due, in large part, to the increase in use of small-aperture telescopes (<20 cm) to survey large areas of the sky to milli-mag precision with rapid cadence. The vast majority of the planetary and binary systems studied to date consists of main-sequence or evolved objects, leading to a dearth of knowledge of properties at early times (<50 Myr). Only a dozen binaries and one candidate transiting Hot Jupiter are known among pre-main-sequence objects, yet these are the systems that can provide the best constraints on stellar formation and planetary migration models. The deficiency in the number of well characterized systems is driven by the inherent and aperiodic variability found in pre-main-sequence objects, which can mask and mimic eclipse signals. Hence, a dramatic increase in the number of young systems with high-quality observations is highly desirable to guide further theoretical developments. We have recently completed a photometric survey of three nearby (<150 pc) and young (<50 Myr) moving groups with a small-aperture telescope. While our survey reached the requisite photometric precision, the temporal coverage was insufficient to detect Hot Jupiters. Nevertheless, we discovered 346 pre-main-sequence binary candidates, including 74 high-priority objects for further study. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.

  5. Observational Δν-ρ¯ Relation for δ Sct Stars using Eclipsing Binaries and Space Photometry

    NASA Astrophysics Data System (ADS)

    García Hernández, A.; Martín-Ruiz, S.; Monteiro, Mário J. P. F. G.; Suárez, J. C.; Reese, D. R.; Pascual-Granado, J.; Garrido, R.

    2015-10-01

    Delta Scuti (δ Sct) stars are intermediate-mass pulsators, whose intrinsic oscillations have been studied for decades. However, modeling their pulsations remains a real theoretical challenge, thereby even hampering the precise determination of global stellar parameters. In this work, we used space photometry observations of eclipsing binaries with a δ Sct component to obtain reliable physical parameters and oscillation frequencies. Using that information, we derived an observational scaling relation between the stellar mean density and a frequency pattern in the oscillation spectrum. This pattern is analogous to the solar-like large separation but in the low order regime. We also show that this relation is independent of the rotation rate. These findings open the possibility of accurately characterizing this type of pulsator and validate the frequency pattern as a new observable for δ Sct stars.

  6. The variable He 10830 A line of Algol. [eclipsing binary star

    NASA Technical Reports Server (NTRS)

    Zirin, H.; Liggett, M. A.

    1982-01-01

    Spectra of several eclipses of Algol in the range 10500-11000 A where the line contribution of Algol B is important, are presented. Strong unshifted 10830 (2000 mA) absorption peaks at primary minimum but disappears between phases 0.3 and 0.7. At minimum the line must primarily arise in Algol B, but the presence of 10830 absorption just outside eclipse, when the contribution to the total light of Algol B is small, must be due to excitation of He in the atmosphere of the primary by X-ray irradiation from Algol B, a known X-ray source. A Si I line from Algol B is also detected, and the Pa-gamma line sometimes peaks during eclipse. Even if some of the 10830 absorption comes from Algol A, Algol B still has the strongest 10830 (3000 mA) yet measured in any star.

  7. Benchmark Transiting Brown Dwarf LHS 6343 C: Spitzer Secondary Eclipse Observations Yield Brightness Temperature and Mid-T Spectral Class

    NASA Astrophysics Data System (ADS)

    Montet, Benjamin T.; Johnson, John Asher; Fortney, Jonathan J.; Desert, Jean-Michel

    2016-05-01

    There are no field brown dwarf analogs with measured masses, radii, and luminosities, precluding our ability to connect the population of transiting brown dwarfs with measurable masses and radii and field brown dwarfs with measurable luminosities and atmospheric properties. LHS 6343 C, a weakly irradiated brown dwarf transiting one member of an M+M binary in the Kepler field, provides the first opportunity to probe the atmosphere of a non-inflated brown dwarf with a measured mass and radius. Here, we analyze four Spitzer observations of secondary eclipses of LHS 6343 C behind LHS 6343 A. Jointly fitting the eclipses with a Gaussian process noise model of the instrumental systematics, we measure eclipse depths of 1.06 ± 0.21 ppt at 3.6 μm and 2.09 ± 0.08 ppt at 4.5 μm, corresponding to brightness temperatures of 1026 ± 57 K and 1249 ± 36 K, respectively. We then apply brown dwarf evolutionary models to infer a bolometric luminosity {log}({L}\\star /{L}⊙ )=-5.16+/- 0.04. Given the known physical properties of the brown dwarf and the two M dwarfs in the LHS 6343 system, these depths are consistent with models of a 1100 K T dwarf at an age of 5 Gyr and empirical observations of field T5-6 dwarfs with temperatures of 1070 ± 130 K. We investigate the possibility that the orbit of LHS 6343 C has been altered by the Kozai-Lidov mechanism and propose additional astrometric or Rossiter-McLaughlin measurements of the system to probe the dynamical history of the system.

  8. LBT Discovery of a Yellow Supergiant Eclipsing Binary in the Dwarf Galaxy Holmberg IX

    NASA Astrophysics Data System (ADS)

    Prieto, J. L.; Stanek, K. Z.; Kochanek, C. S.; Weisz, D. R.; Baruffolo, A.; Bechtold, J.; Burwitz, V.; De Santis, C.; Gallozzi, S.; Garnavich, P. M.; Giallongo, E.; Hill, J. M.; Pogge, R. W.; Ragazzoni, R.; Speziali, R.; Thompson, D. J.; Wagner, R. M.

    2008-01-01

    In a variability survey of M81 using the Large Binocular Telescope we have discovered a peculiar eclipsing binary (MV ~ - 7.1) in the field of the dwarf galaxy Holmberg IX. It has a period of 271 days, and the light curve is well fit by an overcontact model in which both stars are overflowing their Roche lobes. It is composed of two yellow supergiants (V - Isimeq 1 mag, Teffsimeq 4800 K), rather than the far more common red or blue supergiants. Such systems must be rare. While we failed to find any similar systems in the literature, we did, however, note a second example. The SMC F0 supergiant R47 is a bright (MV ~ - 7.5) periodic variable whose All Sky Automated Survey (ASAS) light curve is well fit as a contact binary with a 181 day period. We propose that these systems are the progenitors of supernovae like SN 2004et and SN 2006ov, which appeared to have yellow progenitors. The binary interactions (mass transfer, mass loss) limit the size of the supergiant to give it a higher surface temperature than an isolated star at the same core evolutionary stage. We also discuss the possibility of this variable being a long-period Cepheid. Based on data acquired using the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in the United States, Italy and Germany. LBT Corporation partners are The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota, and University of Virginia.

  9. RR Lyrae stars in eclipsing systems -- historical candidates

    NASA Astrophysics Data System (ADS)

    Liška, J.; Skarka, M.; Hájková, P.; Auer, R. F.

    2016-03-01

    Discovery of binary systems among RR Lyrae stars belongs to challenges of present astronomy. So far, none of classical RR Lyrae stars was clearly confirmed, that it is a part of an eclipsing system. From this reason we studied two RR Lyrae stars, VX Her and RW Ari, in which changes assigned to eclipses were detected in sixties and seventies of the 20th century. In this paper our preliminary results based on analysis of new photometric measurements are presented as well as the results from the detailed analysis of original measurements. A new possible eclipsing system, RZ Cet was identified in the archive data. Our analysis rather indicates errors in measurements and reductions of the old data than real changes for all three stars.

  10. Spin–Orbit Misalignment and Precession in the Kepler-13Ab Planetary System

    NASA Astrophysics Data System (ADS)

    Herman, Miranda K.; de Mooij, Ernst J. W.; Huang, Chelsea X.; Jayawardhana, Ray

    2018-01-01

    Gravity darkening induced by rapid stellar rotation provides us with a unique opportunity to characterize the spin–orbit misalignment of a planetary system through analysis of its photometric transit. We use the gravity-darkened transit modeling code simuTrans to reproduce the transit light curve of Kepler-13Ab by separately analyzing phase-folded transits for 12 short-cadence Kepler quarters. We verify the temporal change in impact parameter indicative of spin–orbit precession identified by Szabó et al. and Masuda, reporting a rate of change {db}/{dt}=(-4.1+/- 0.2)× {10}-5 day‑1. We further investigate the effect of light dilution on the fitted impact parameter and find that less than 1% of additional light is sufficient to explain the seasonal variation seen in the Kepler quarter data. We then extend our precession analysis to the phase curve data from which we report a rate of change {db}/{dt}=(-3.2+/- 1.3)× {10}-5 day‑1. This value is consistent with that of the transit data at a lower significance and provides the first evidence of spin–orbit precession based solely on the temporal variation of the secondary eclipse.

  11. Discovery of a Detached, Eclipsing 40 Minute Period Double White Dwarf Binary and a Friend: Implications for He+CO White Dwarf Mergers

    NASA Astrophysics Data System (ADS)

    Brown, Warren R.; Kilic, Mukremin; Kosakowski, Alekzander; Gianninas, A.

    2017-09-01

    We report the discovery of two detached double white dwarf (WD) binaries, SDSS J082239.546+304857.19 and SDSS J104336.275+055149.90, with orbital periods of 40 and 46 minutes, respectively. The 40 minute system is eclipsing; it is composed of a 0.30 M ⊙ and a 0.52 M ⊙ WD. The 46 minute system is a likely LISA verification binary. The short 20 ± 2 Myr and ˜34 Myr gravitational-wave merger times of the two binaries imply that many more such systems have formed and merged over the age of the Milky Way. We update the estimated Milky Way He+CO WD binary merger rate and affirm our previously published result: He+CO WD binaries merge at a rate at least 40 times greater than the formation rate of stable mass-transfer AM CVn binaries, and so the majority must have unstable mass-transfer. The implication is that spin-orbit coupling in He+CO WD mergers is weak, or perhaps nova-like outbursts drive He+CO WDs into merger, as proposed by Shen. Based on observations obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona, and on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium.

  12. Kepler-424 b: A 'lonely' hot Jupiter that found A companion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endl, Michael; Caldwell, Douglas A.; Barclay, Thomas

    Hot Jupiter systems provide unique observational constraints for migration models in multiple systems and binaries. We report on the discovery of the Kepler-424 (KOI-214) two-planet system, which consists of a transiting hot Jupiter (Kepler-424b) in a 3.31 day orbit accompanied by a more massive outer companion in an eccentric (e = 0.3) 223 day orbit. The outer giant planet, Kepler-424c, is not detected transiting the host star. The masses of both planets and the orbital parameters for the second planet were determined using precise radial velocity (RV) measurements from the Hobby-Eberly Telescope (HET) and its High Resolution Spectrograph (HRS). Inmore » stark contrast to smaller planets, hot Jupiters are predominantly found to be lacking any nearby additional planets; they appear to be {sup l}onely{sup .} This might be a consequence of these systems having a highly dynamical past. The Kepler-424 planetary system has a hot Jupiter in a multiple system, similar to υ Andromedae. We also present our results for Kepler-422 (KOI-22), Kepler-77 (KOI-127), Kepler-43 (KOI-135), and Kepler-423 (KOI-183). These results are based on spectroscopic data collected with the Nordic Optical Telescope (NOT), the Keck 1 telescope, and HET. For all systems, we rule out false positives based on various follow-up observations, confirming the planetary nature of these companions. We performed a comparison with planetary evolutionary models which indicate that these five hot Jupiters have heavy element contents between 20 and 120 M {sub ⊕}.« less

  13. Campaign for a New Eclipsing Cepheid

    NASA Astrophysics Data System (ADS)

    Henden, Arne; Welch, Doug; Terrell, Dirk

    2007-06-01

    ASAS 182611+1212.6, discovered by Pojmanski et al. during the ASAS survey, independently discovered by Antipin at al. on Moscow archive plates, and found in the NSVS (Wozniak et al. 2004, AJ 127, 2436), was initially classified as a typical Type II Cepheid with a period of 4.1523 days. However, scatter in the light curve indicated possible multiperiodic behavior. After 3 years of CCD observations by Antipin, the system was seen to exhibit eclipses of period 51.38 days and amplitude about 0.3 mag (primary) and possibly about 0.2 mag (secondary). This is the first known glactic eclipsing binary Cepheid. The AAVSO is conducting a campaign to study this star via high-precision, multicolor photometry obtained over several eclipse cycles. Observers are requested to obtain multicolor photometry with a S/N=100 or better on every image. Time resolution of one hour is adequate, so cycling through the filters need not be rushed. Apply transformation coefficients when possible. For calculating ephemerides, the pulsational maximum occurred on HJD 2453196.529 with a period of 4.1523 days; the eclipse primary minimum occurred on HJD 2453571.36 with a period of 51.38 days. The next primary eclipse will occur around July 9, but these eclipses are several days wide. A finding chart may be found at http://www.aavso.org/observing/charts/vsp (enter ASAS182612 for its name, or use the coordinates) with suitable comparison stars marked. Report/upload observations to the AAVSO.

  14. RADIAL VELOCITY MONITORING OF KEPLER HEARTBEAT STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shporer, Avi; Fuller, Jim; Isaacson, Howard

    2016-09-20

    Heartbeat stars (HB stars) are a class of eccentric binary stars with close periastron passages. The characteristic photometric HB signal evident in their light curves is produced by a combination of tidal distortion, heating, and Doppler boosting near orbital periastron. Many HB stars continue to oscillate after periastron and along the entire orbit, indicative of the tidal excitation of oscillation modes within one or both stars. These systems are among the most eccentric binaries known, and they constitute astrophysical laboratories for the study of tidal effects. We have undertaken a radial velocity (RV) monitoring campaign of Kepler HB stars inmore » order to measure their orbits. We present our first results here, including a sample of 22 Kepler HB systems, where for 19 of them we obtained the Keplerian orbit and for 3 other systems we did not detect a statistically significant RV variability. Results presented here are based on 218 spectra obtained with the Keck/HIRES spectrograph during the 2015 Kepler observing season, and they have allowed us to obtain the largest sample of HB stars with orbits measured using a single instrument, which roughly doubles the number of HB stars with an RV measured orbit. The 19 systems measured here have orbital periods from 7 to 90 days and eccentricities from 0.2 to 0.9. We show that HB stars draw the upper envelope of the eccentricity–period distribution. Therefore, HB stars likely represent a population of stars currently undergoing high eccentricity migration via tidal orbital circularization, and they will allow for new tests of high eccentricity migration theories.« less

  15. The First Photometric and Period Investigation of the Total Eclipse Binary System V0474 Cam

    NASA Astrophysics Data System (ADS)

    Guo, D. F.; Li, K.; Hu, S. M.; Chen, X.

    2018-06-01

    Three complete multi-band light curves of the W UMa-type binary V0474 Cam, which display a total eclipse, were obtained on four nights during two observing seasons from 2016 February 9 to 2017 February 24. By analyzing all obtainable times of light minimum, including 8 newly calculated, a downward parabolic change was found to be overlaid with a possible cyclic oscillation. The secular period decrease is determined to be {dP}/{dt}=-9.42 × {10}-7 days yr‑1, which can be explained by the existence of angular momentum loss from the binary system via a magnetic stellar wind. The cyclic oscillation, with a 3.44-yr period and a 0.0015-days amplitude, could be explained more plausibly by the magnetic activity, although the light-travel time effect as result of the present of a third component cannot be excluded. According to the three complete light curves, the intrinsic variations are obvious, particularly in the deepness at primary minimum and in the phase around 0.75. The light curve of V0474 Cam is symmetric observed in February 2016, then it become asymmetric in December 2016 and February 2017. The W-D program was adopted to investigate the multi-band light curves and the results indicate V0474 Cam is a W-subtype binary (the less massive component is hotter). A mass ratio of q = 3.230 was derived by analyzing the symmetric light curves observed at February in 2016. After accepting the results derived from the symmetric light curves as the references, other two sets of asymmetrical light curves can be well resolved through adding a cool spot on the more massive component.

  16. Primordial main equence binary stars in the globular cluster M71

    NASA Technical Reports Server (NTRS)

    Yan, Lin; Mateo, Mario

    1994-01-01

    We report the identification of five short-period variables near the center of the metal-rich globular cluster M71. Our observations consist of multiepoch VI charge coupled device (CCD) images centered on the cluster and covering a 6.3 min x 6.3 min field. Four of these variables are contact eclipsing binaries with periods between 0.35 and 0.41 days; one is a detached or semidetached eclipsing binary with a period of 0.56 days. Two of the variables were first identified as possible eclipsing binaries in an earlier survey by Hodder et al. (1992). We have used a variety of arguments to conclude that all five binary stars are probable members of M71, a result that is consistent with the low number (0.15) of short-period field binaries expected along this line of sight. Based on a simple model of how contact binaries evolve from initially detached binaries, we have determined a lower limit of 1.3% on the frequency of primordial binaries in M71 with initial orbital periods in the range 2.5 - 5 days. This implies that the overall primordial binary frequency, f, is 22(sup +26)(sub -12)% assuming df/d log P = const ( the 'flat' distribution), or f = 57(sup +15)(sub -8)% for df/d log P = 0.032 log P + const as observed for G-dwarf binaries in the solar neighborhood (the 'sloped' distribution). Both estimates of f correspond to binaries with initial periods shorter than 800 yr since any longer-period binaries would have been disrupted over the lifetime of the cluster. Our short-period binary frequency is in excellent agreement with the observed frequency of red-giant binaries observed in globulars if we adopt the flat distribution. For the sloped distribution, our results significantly overestimate the number of red-giant binaries. All of the short-period M71 binaries lie within 1 mag of the luminosity of the cluster turnoff in the color-magnitude diagram despite the fact we should have easily detected similar eclipsing binaries 2 - 2.5 mag fainter than this. We discuss the

  17. The Quadruple-lined, Doubly Eclipsing System V482 Persei

    NASA Astrophysics Data System (ADS)

    Torres, Guillermo; Sandberg Lacy, Claud H.; Fekel, Francis C.; Wolf, Marek; Muterspaugh, Matthew W.

    2017-09-01

    We report spectroscopic and differential photometric observations of the A-type system V482 Per, which reveal it to be a rare hierarchical quadruple system containing two eclipsing binaries. One binary has the previously known orbital period of 2.4 days and a circular orbit, and the other a period of 6 days, a slightly eccentric orbit (e = 0.11), and shallow eclipses only 2.3% deep. The two binaries revolve around their common center of mass in a highly elongated orbit (e = 0.85) with a period of 16.67 yr. Radial velocities are measured for all components from our quadruple-lined spectra and are combined with the light curves and measurements of times of minimum light for the 2.4 day binary to solve for the elements of the inner and outer orbits simultaneously. The line-of-sight inclination angles of the three orbits are similar, suggesting they may be close to coplanar. The available observations appear to indicate that the 6 day binary experiences significant retrograde apsidal motion in the amount of about 60 deg per century. We derive absolute masses for the four stars good to better than 1.5%, along with radii with formal errors of 1.1% and 3.5% for the 2.4 day binary and ˜9% for the 6 day binary. A comparison of these and other physical properties with current stellar evolution models gives excellent agreement for a metallicity of [{Fe}/{{H}}]=-0.15 and an age of 360 Myr.

  18. GK Dra: a delta Scuti Star in a New Eclipsing System Discovered by Hipparcos

    NASA Astrophysics Data System (ADS)

    Dallaporta, Sergio; Tomov, Toma; Zwitter, Tomaz; Munari, Ulisse

    2002-09-01

    GK Dra has been discovered by the Hipparcos mission as a 17 days eclipsing binary. We present here the first ground-based study of this star, based on extensive BV photoelectric photometry. We found a period of 9.974 days, equal depth primary and secondary eclipse (m=0.35 mag), no color variation in eclipse, and one of the components being a Sct star with an amplitude of 0.04 mag and a period of about 2.7 hours.

  19. Fundamental parameters of exoplanets and their host stars

    NASA Astrophysics Data System (ADS)

    Coughlin, Jeffrey Langer

    For much of human history we have wondered how our solar system formed, and whether there are any other planets like ours around other stars. Only in the last 20 years have we had direct evidence for the existence of exoplanets, with the number of known exoplanets dramatically increasing in recent years, especially with the success of the Kepler mission. Observations of these systems are becoming increasingly more precise and numerous, thus allowing for detailed studies of their masses, radii, densities, temperatures, and atmospheric compositions. However, one cannot accurately study exoplanets without examining their host stars in equal detail, and understanding what assumptions must be made to calculate planetary parameters from the directly derived observational parameters. In this thesis, I present observations and models of the primary transits and secondary eclipses of transiting exoplanets from both the ground and Kepler in order to better study their physical characteristics and search for additional exoplanets. I then identify, observe, and model new eclipsing binaries to better understand the stellar mass-radius relationship and stellar limb-darkening, compare these observations to the predictions of stellar models, and attempt to define to what extent these fundamental stellar characteristics can impact derived planetary parameters. I also present novel techniques for the direct determination of exoplanet masses and stellar inclinations via multi-wavelength astrometry, the ground-based photometric observation of stars at sub-millimagnitude precision, the reduction of Kepler photometry from pixel-level data, the extraction of radial velocities from spectroscopic observations, and the automatic identification, period analysis, and modeling of eclipsing binaries and transiting planets in large datasets.

  20. Kottamia 74-inch telescope discovery of the new eclipsing binary 2MASS J20004638 + 0547475.: First CCD photometry and light curve analysis

    NASA Astrophysics Data System (ADS)

    Darwish, M. S.; Shokry, A.; Saad, S. M.; El-Sadek, M. A.; Essam, A.; Ismail, M.

    2017-05-01

    A CCD photometric study is presented for the eclipsing binary system 2MASS J20004638 + 0547475. Observations of the system were obtained in the V, R and I colours with the 2Kx2K CCD attached to 1.88 m Kottamia Optical Telescope. New times of light minimum and new ephemeris were obtained. The V, R and I light curves were analyzed using the PHOEBE 0.31 program to determine geometrical and physical parameters of the system. The results show that 2MASS J20004638 + 0547475, is A-Type WUMa and is an overcontact binary with high fill-out factor = 69%. The current evolutionary status of the system indicates that the primary component lies very close to the main sequence while the secondary is evolved. The asymmetric maxima were studied and a modeling of the hot spot parameters is given.

  1. Photometric study of two eclipsing binary stars: Light curve analysis and system parameters for GU CMa and SWASP J011732.10+525204.9

    NASA Astrophysics Data System (ADS)

    Shokry, A.; Saad, S. M.; Hamdy, M. A.; Beheary, M. M.; Abolazm, M. S.; Gadallah, K. A.; El-Depsey, M. H.; Al-Gazzar, M. S.

    2018-02-01

    A new photometric study of two eclipsing binary systems (GU CMa and SWASP J011732.10+525204.9) is presented. The accepted solutions of analyzing the light curves revealed that GU CMa is a semi-detached system consisting of two early spectral type components, (B2 and B2.5) while SWASP J011732.10+525204.9 is a contact binary with two late type components (K2 and M1). The primary component of each system is the massive one. The geometric configuration indicates that SWASP J011732.10+525204.9 passes through a very critical phase in which each component exactly fills its limited lobe with zero fill out ratio. New times of minimum and the absolute physical parameters for each system are determined. The evolution status for each system has been investigated.

  2. Photometric Study of Two Totally Eclipsing Contact Binaries: V789 Her and V1007 Cas

    NASA Astrophysics Data System (ADS)

    Li, K.; Xia, Q.-Q.; Hu, S.-M.; Guo, D.-F.; Chen, X.

    2018-07-01

    Two sets of V and R c light curves of V789 Her and one complete set of BVR c I c light curves of V1007 Cas were observed and presented. By analyzing all these light curves together with the Sloan g‧i‧ light curves observed by Kjurkchieva et al., we determined that both systems are W-subtype contact binaries and that V789 Her is a medium contact system, while V1007 Cas is a shallow contact system. Because the two binaries show totally eclipsing primary minima, the photometric results are reliable. In addition, the light curves of the two systems are asymmetric, requiring a dark spot on the primary or the secondary component in the modeling. By compiling all available times of minimum light including literatures, SuperWASP archive and ours, we analyzed the orbital period variations. We derived that the O ‑ C diagram of V789 Her displays a periodic oscillation whose period and amplitude are 29.2 years and 0.0179 days and the period of V1007 Cas exhibits a continuous decrease at dP/dt = ‑1.78(±0.09) × 10‑7 days yr‑1. The cyclic period modulation of V789 Her is probably attributed to the light travel time effect via a tertiary companion with very small mass. The continuous period decrease of V1007 Cas may result from the mass transfer between the two components. However, we cannot rule out the possibility of angular momentum loss because V1007 Cas shows strong magnetic activity. By analyzing the evolutionary status of the components of the two systems, we determined that they exhibit typical characteristics of other W-subtype contact binaries.

  3. Orbital evolution and search for eccentricity and apsidal motion in the eclipsing HMXB 4U 1700-37

    NASA Astrophysics Data System (ADS)

    Islam, Nazma; Paul, Biswajit

    2016-09-01

    In the absence of detectable pulsations in the eclipsing high-mass X-ray binary 4U 1700-37, the orbital period decay is necessarily determined from the eclipse timing measurements. We have used the earlier reported mid-eclipse time measurements of 4U 1700-37 together with the new measurements from long-term light curves obtained with the all sky monitors RXTE-ASM, Swift-BAT and MAXI-GSC, as well as observations with RXTE-PCA, to measure the long-term orbital evolution of the binary. The orbital period decay rate of the system is estimated to be {dot{P}}/P = -(4.7 ± 1.9) × 10^{-7} yr-1, smaller compared to its previous estimates. We have also used the mid-eclipse times and the eclipse duration measurements obtained from 10-years-long X-ray light curve with Swift-BAT to separately put constraints on the eccentricity of the binary system and attempted to measure any apsidal motion. For an apsidal motion rate greater than 5 deg yr-1, the eccentricity is found to be less than 0.008, which limits our ability to determine the apsidal motion rate from the current data. We discuss the discrepancy of the current limit of eccentricity with the earlier reported values from radial velocity measurements of the companion star.

  4. KEPLER-14b: A MASSIVE HOT JUPITER TRANSITING AN F STAR IN A CLOSE VISUAL BINARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchhave, Lars A.; Latham, David W.; Carter, Joshua A.

    We present the discovery of a hot Jupiter transiting an F star in a close visual (0.''3 sky projected angular separation) binary system. The dilution of the host star's light by the nearly equal magnitude stellar companion ({approx}0.5 mag fainter) significantly affects the derived planetary parameters, and if left uncorrected, leads to an underestimate of the radius and mass of the planet by 10% and 60%, respectively. Other published exoplanets, which have not been observed with high-resolution imaging, could similarly have unresolved stellar companions and thus have incorrectly derived planetary parameters. Kepler-14b (KOI-98) has a period of P = 6.790more » days and, correcting for the dilution, has a mass of M{sub p} = 8.40{sup +0.35}{sub -0.34} M{sub J} and a radius of R{sub p} = 1.136{sup +0.073}{sub -0.054} R{sub J}, yielding a mean density of {rho}{sub p} = 7.1 {+-} 1.1 g cm{sup -3}.« less

  5. ATMOSPHERE AND SPECTRAL MODELS OF THE KEPLER-FIELD PLANETS HAT-P-7b AND TrES-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spiegel, David S.; Burrows, Adam, E-mail: dsp@astro.princeton.ed, E-mail: burrows@astro.princeton.ed

    2010-10-10

    We develop atmosphere models of two of the three Kepler-field planets that were known prior to the start of the Kepler mission (HAT-P-7b and TrES-2). We find that published Kepler and Spitzer data for HAT-P-7b appear to require an extremely hot upper atmosphere on the dayside, with a strong thermal inversion and little day-night redistribution. The Spitzer data for TrES-2 suggest a mild thermal inversion with moderate day-night redistribution. We examine the effect of nonequilibrium chemistry on TrES-2 model atmospheres and find that methane levels must be adjusted by extreme amounts in order to cause even mild changes in atmosphericmore » structure and emergent spectra. Our best-fit models to the Spitzer data for TrES-2 lead us to predict a low secondary eclipse planet-star flux ratio ({approx}<2 x 10{sup -5}) in the Kepler bandpass, which is consistent with what very recent observations have found. Finally, we consider how the Kepler-band optical flux from a hot exoplanet depends on the strength of a possible extra optical absorber in the upper atmosphere. We find that the optical flux is not monotonic in optical opacity, and the non-monotonicity is greater for brighter, hotter stars.« less

  6. Orbital period variability in the eclipsing pulsar binary PSR B1957+20: Evidence for a tidally powered star

    NASA Technical Reports Server (NTRS)

    Applegate, James H.; Shaham, Jacob

    1994-01-01

    Recent observations indicate that the eclipsing pulsar binary PSR B1957+20 undergoes alternating epochs of orbital period increase and decrease. We apply a model developed to explain orbital period changes of alternating sign in other binaries to the PSR B1957+20 system and find that it fits the pulsars observations well. The novel feature of the PSR B1957+20 system is that the energy flow in the companion needed to power the orbital period change mechanism can be supplied by tidal dissipation, making the companion the first identified tidally powered star. The flow of energy in the companion drives magnetic activity, which underlies the observed orbital period variations. The magnetic activity and the wind driven by the pulsar irradiation results in a torque on the spin of the companion. This torque holds the companion out of synchronous rotation, causing tidal dissipation of energy. We propose that the progenitor had a approximately 2 hr orbital period and a companion mass of 0.1-0.2 solar mass, and the system is evolving to longer orbital periods by mass and angular momentum loss on a timescale of 10(exp 8) yr.

  7. Survey for δ Sct components in eclipsing binaries and new correlations between pulsation frequency and fundamental stellar characteristics

    NASA Astrophysics Data System (ADS)

    Liakos, A.; Niarchos, P.; Soydugan, E.; Zasche, P.

    2012-05-01

    CCD observations of 68 eclipsing binary systems, candidates for containing δ Scuti components, were obtained. Their light curves are analysed using the PERIOD04 software for possible pulsational behaviour. For the systems QY Aql, CZ Aqr, TY Cap, WY Cet, UW Cyg, HL Dra, HZ Dra, AU Lac, CL Lyn and IO UMa, complete light curves were observed due to the detection of a pulsating component. All of them, except QY Aql and IO UMa, are analysed with modern astronomical softwares in order to determine their geometrical and pulsational characteristics. Spectroscopic observations of WY Cet and UW Cyg were used to estimate the spectral class of their primary components, while for HZ Dra radial velocities of its primary were measured. O - C diagram analysis was performed for the cases showing peculiar orbital period variations, namely CZ Aqr, TY Cap, WY Cet and UW Cyg, with the aim of obtaining a comprehensive picture of these systems. An updated catalogue of 74 close binaries including a δ Scuti companion is presented. Moreover, a connection between orbital and pulsation periods, as well as a correlation between evolutionary status and dominant pulsation frequency for these systems, is discussed.

  8. Eclipse of epsilon Aurigae

    NASA Astrophysics Data System (ADS)

    Templeton, Matthew R.

    2009-07-01

    The bright, long-period, eclipsing binary star epsilon Aurigae is predicted to begin its next eclipse late July or early August of 2009. Epsilon Aurigae is now past solar conjunction and has reappeared as a morning object. All observers -- both visual and instrumental -- are encouraged to contribute observations of the eclipse during the next two years, beginning immediately for morning observers. Observations are urgently requested right now because it is less likely to be observed in the morning, and the eclipse will begin within the next month. The AAVSO is participating in a global campaign to record this eclipse as part of the International Year of Astronomy 2009 celebrations, organized by the Citizen Sky project (http://www.citizensky.org). For experienced visual observers, please observe this star on a weekly basis, using charts available via VSP from the AAVSO website. For novice visual observers, we recommend participating in this observing program by following the Citizen Sky 10-Star tutorial program, which provides a simple training experience in variable star observing. Photoelectric observers belonging to the AAVSO PEP-V program may submit data as usual via the WebObs feature of the AAVSO website Blue&Gold section. Photoelectric observers may also contribute reduced observations in all filters (including infrared J- and H-bands) directly to the AAVSO via WebObs. Observers using wide-field CCD and DSLR systems are also encouraged to participate; avoid saturating the star. For those with narrower-field systems (D < 2 degrees), we recommend taking a large number (10-100) of very short exposures and then stacking the resulting images. Observations should be submitted to the AAVSO International Database. Aaron Price is coordinating Citizen Sky for the AAVSO, and Dr. Robert Stencel and Jeffrey Hopkins are co-leading the precision photometry efforts.

  9. Mass ratio from Doppler beaming and Rømer delay versus ellipsoidal modulation in the Kepler data of KOI-74

    NASA Astrophysics Data System (ADS)

    Bloemen, S.; Marsh, T. R.; Degroote, P.; Østensen, R. H.; Pápics, P. I.; Aerts, C.; Koester, D.; Gänsicke, B. T.; Breedt, E.; Lombaert, R.; Pyrzas, S.; Copperwheat, C. M.; Exter, K.; Raskin, G.; Van Winckel, H.; Prins, S.; Pessemier, W.; Frémat, Y.; Hensberge, H.; Jorissen, A.; Van Eck, S.

    2012-05-01

    We present a light-curve analysis and radial velocity study of KOI-74, an eclipsing A star + white dwarf binary with a 5.2-d orbit. Aside from new spectroscopy covering the orbit of the system, we used 212 d of publicly available Kepler observations and present the first complete light-curve fitting to these data, modelling the eclipses and transits, ellipsoidal modulation, reflection and Doppler beaming. Markov chain Monte Carlo simulations are used to determine the system parameters and uncertainty estimates. Our results are in agreement with earlier studies, except that we find an inclination of 87°.0 ± 0°.4, which is significantly lower than the previously published value. The altered inclination leads to different values for the relative radii of the two stars and therefore also the mass ratio deduced from the ellipsoidal modulations seen in this system. We find that the mass ratio derived from the radial velocity amplitude (q= 0.104 ± 0.004) disagrees with that derived from the ellipsoidal modulation (q= 0.052 ± 0.004 assuming corotation). This was found before, but with our smaller inclination, the discrepancy is even larger than previously reported. Accounting for the rapid rotation of the A-star, instead of assuming corotation with the binary orbit, is found to increase the discrepancy even further by lowering the mass ratio to q= 0.047 ± 0.004. These results indicate that one has to be extremely careful in using the amplitude of an ellipsoidal modulation signal in a close binary to determine the mass ratio, when a proof of corotation is not firmly established. The same problem could arise whenever an ellipsoidal modulation amplitude is used to derive the mass of a planet orbiting a host star that is not in corotation with the planet's orbit. The radial velocities that can be inferred from the detected Doppler beaming in the light curve are found to be in agreement with our spectroscopic radial velocity determination. We also report the first

  10. Kepler-424 b: A "Lonely" Hot Jupiter that Found a Companion

    NASA Astrophysics Data System (ADS)

    Endl, Michael; Caldwell, Douglas A.; Barclay, Thomas; Huber, Daniel; Isaacson, Howard; Buchhave, Lars A.; Brugamyer, Erik; Robertson, Paul; Cochran, William D.; MacQueen, Phillip J.; Havel, Mathieu; Lucas, Phillip; Howell, Steve B.; Fischer, Debra; Quintana, Elisa; Ciardi, David R.

    2014-11-01

    Hot Jupiter systems provide unique observational constraints for migration models in multiple systems and binaries. We report on the discovery of the Kepler-424 (KOI-214) two-planet system, which consists of a transiting hot Jupiter (Kepler-424b) in a 3.31 day orbit accompanied by a more massive outer companion in an eccentric (e = 0.3) 223 day orbit. The outer giant planet, Kepler-424c, is not detected transiting the host star. The masses of both planets and the orbital parameters for the second planet were determined using precise radial velocity (RV) measurements from the Hobby-Eberly Telescope (HET) and its High Resolution Spectrograph (HRS). In stark contrast to smaller planets, hot Jupiters are predominantly found to be lacking any nearby additional planets; they appear to be "lonely". This might be a consequence of these systems having a highly dynamical past. The Kepler-424 planetary system has a hot Jupiter in a multiple system, similar to \\upsilon Andromedae. We also present our results for Kepler-422 (KOI-22), Kepler-77 (KOI-127), Kepler-43 (KOI-135), and Kepler-423 (KOI-183). These results are based on spectroscopic data collected with the Nordic Optical Telescope (NOT), the Keck 1 telescope, and HET. For all systems, we rule out false positives based on various follow-up observations, confirming the planetary nature of these companions. We performed a comparison with planetary evolutionary models which indicate that these five hot Jupiters have heavy element contents between 20 and 120 M ⊕. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  11. A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M 33.

    PubMed

    Orosz, Jerome A; McClintock, Jeffrey E; Narayan, Ramesh; Bailyn, Charles D; Hartman, Joel D; Macri, Lucas; Liu, Jiefeng; Pietsch, Wolfgang; Remillard, Ronald A; Shporer, Avi; Mazeh, Tsevi

    2007-10-18

    Stellar-mass black holes are found in X-ray-emitting binary systems, where their mass can be determined from the dynamics of their companion stars. Models of stellar evolution have difficulty producing black holes in close binaries with masses more than ten times that of the Sun (>10; ref. 4), which is consistent with the fact that the most massive stellar black holes known so far all have masses within one standard deviation of 10. Here we report a mass of (15.65 +/- 1.45) for the black hole in the recently discovered system M 33 X-7, which is located in the nearby galaxy Messier 33 (M 33) and is the only known black hole that is in an eclipsing binary. To produce such a massive black hole, the progenitor star must have retained much of its outer envelope until after helium fusion in the core was completed. On the other hand, in order for the black hole to be in its present 3.45-day orbit about its (70.0 +/- 6.9) companion, there must have been a 'common envelope' phase of evolution in which a significant amount of mass was lost from the system. We find that the common envelope phase could not have occurred in M 33 X-7 unless the amount of mass lost from the progenitor during its evolution was an order of magnitude less than what is usually assumed in evolutionary models of massive stars.

  12. Campaign Photometry During The 2010 Eclipse Of Epsilon Aurigae

    NASA Astrophysics Data System (ADS)

    Hopkins, Jeff; Stencel, R. E.

    2011-01-01

    Epsilon Aurigae is a long period (27.1 years) eclipsing binary star system with an eclipse that lasts nearly 2 years, but with severe ambiguities about component masses and shape. The current eclipse began on schedule in August of 2009. During the previous, 1982-1984 eclipse, an International Campaign was formed to coordinate a detailed study of the system. While that Campaign was deemed successful, the evolutionary status of the star system remained unclear. Epsilon Aurigae has been observed nearly continuously since the 1982 eclipse. The current Campaign was officially started in 2006. In addition to a Yahoo forum we have a dedicated web site and more than 18 online newsletters reporting photometry, spectroscopy, interferometry and polarimetry data. High quality UBVRIJH band photometric data since before the start of the current eclipse has been submitted. We explore the color differences among the light curves in terms of eclipse phases and archival data. At least one new model of the star system has been proposed since the current Campaign began: a low mass but very high luminosity F star plus a B star surrounded by a debris disk. The current eclipse and in particular the interferometry and spectroscopic data have caused new thoughts on defining eclipsing variable star contact points and phases of an eclipse. Second contact may not be the same point as start of totality and third contact may not be the same point as the start of egress and end of totality. In addition, the much awaited mid-eclipse brightening may or may not have appeared. This paper identifies the current Campaign contributors and the photometric data. This work was supported in part by the bequest of William Herschel Womble in support of astronomy at the University of Denver, by NSF grant 1016678 to the University of Denver.

  13. On the Lack of Circumbinary Planets Orbiting Isolated Binary Stars

    NASA Astrophysics Data System (ADS)

    Fleming, David; Barnes, Rory; Graham, David E.; Luger, Rodrigo; Quinn, Thomas R.

    2018-04-01

    To date, no binary star system with an orbital period less than 7.5 days has been observed to host a circumbinary planet (CBP), a puzzling observation given the thousands of binary stars with orbital periods < 10 days discovered by the Kepler mission (Kirk et al., 2016) and the observational biases that favor their detection (Munoz & Lai, 2015). We outline a mechanism that explains the observed lack of CBPs via coupled stellar-tidal evolution of isolated binary stars. Tidal forces between low-mass, short-period binary stars on the pre-main sequence slow the stellar rotations, transferring rotational angular momentum to the orbit as the stars approach the tidally locked state. This transfer increases the binary orbital period, expanding the region of dynamical instability around the binary, and destabilizing CBPs that tend to preferentially orbit just beyond the initial dynamical stability limit. After the stars tidally lock, we find that angular momentum loss due to magnetic braking can significantly shrink the binary orbit, and hence the region of dynamical stability, over time impacting where surviving CBPs are observed relative to the boundary. We perform simulations over a wide range of parameter space and find that the expansion of the instability region occurs for most plausible initial conditions and that in some cases, the stability semi-major axis doubles from its initial value. We examine the dynamical and observable consequences of a CBP falling within the dynamical instability limit by running N-body simulations of circumbinary planetary systems and find that typically, at least one planet is ejected from the system. We apply our theory to the shortest period Kepler binary that possesses a CBP, Kepler-47, and find that its existence is consistent with our model. Under conservative assumptions, we find that coupled stellar-tidal evolution of pre-main sequence binary stars removes at least one close-in CBP in 87% of multi-planet circumbinary systems.

  14. The Orbital and Physical Parameters, and the Distance of the Eclipsing Binary System OGLE-LMC-ECL-25658 in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Elgueta, S. S.; Graczyk, D.; Gieren, W.; Pietrzyński, G.; Thompson, I. B.; Konorski, P.; Pilecki, B.; Villanova, S.; Udalski, A.; Soszyński, I.; Suchomska, K.; Karczmarek, P.; Górski, M.; Wielgórski, P.

    2016-08-01

    We present an analysis of a new detached eclipsing binary, OGLE-LMC-ECL-25658, in the Large Magellanic Cloud (LMC). The system consists of two late G-type giant stars on an eccentric orbit with an orbital period of ˜200 days. The system shows total eclipses and the components have similar temperatures, making it ideal for a precise distance determination. Using multi-color photometric and high resolution spectroscopic data, we have performed an analysis of light and radial velocity curves simultaneously using the Wilson-Devinney code. We derived orbital and physical parameters of the binary with a high precision of \\lt 1%. The masses and surface metallicities of the components are virtually the same and equal to 2.23+/- 0.02 {M}⊙ and [{Fe}/{{H}}]\\=\\-0.63+/- 0.10 dex. However, their radii and rates of rotation show a distinct trace of differential stellar evolution. The distance to the system was calculated using an infrared calibration between V-band surface brightness and (V-K) color, leading to a distance modulus of (m-M)\\=\\18.452+/- 0.023 (statistical) ± 0.046 (systematic). Because OGLE-LMC-ECL-25658 is located relatively far from the LMC barycenter, we applied a geometrical correction for its position in the LMC disk using the van der Marel et al. model of the LMC. The resulting barycenter distance to the galaxy is {d}{{LMC}}\\=\\50.30+/- 0.53 (stat.) kpc, and is in perfect agreement with the earlier result of Pietrzyński et al.

  15. TIME-SERIES SPECTROSCOPY OF THE ECLIPSING BINARY Y CAM WITH A PULSATING COMPONENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Kyeongsoo; Lee, Jae Woo; Kim, Seung-Lee

    We present the physical properties of the semi-detached Algol-type eclipsing binary Y Cam based on high resolution spectra obtained using the Bohyunsan Optical Echelle Spectrograph. This is the first spectroscopic monitoring data obtained for this interesting binary system, which has a δ Sct-type pulsating component. We obtained a total of 59 spectra over 14 nights from 2009 December to 2011 March. Double-lined spectral features from the hot primary and cool secondary components were well identified. We determined the effective temperatures of the two stars to be T{sub eff,1} = 8000 ± 250 K and T{sub eff,2} = 4629 ± 150more » K. The projected rotational velocities are v{sub 1}sin i{sub 1} = 51 ± 4 km s{sup −1} and v{sub 2}sin i{sub 2} = 50 ± 10 km s{sup −1}, which are very similar to a synchronous rotation with the orbital motion. Physical parameters of each component were derived by analyzing our radial velocity data together with previous photometric light curves from the literature. The masses and radii are M{sub 1} = 2.08 ± 0.09 M{sub ⊙}, M{sub 2} = 0.48 ± 0.03 M{sub ⊙}, R{sub 1} = 3.14 ± 0.05 R{sub ⊙}, and R{sub 2} = 3.33 ± 0.05 R{sub ⊙}, respectively. A comparison of these parameters with the theoretical evolution tracks showed that the primary component is located between the zero-age main sequence and the terminal-age main sequence, while the low-mass secondary is noticeably evolved. This indicates that the two components have experienced mass exchange with each other and the primary has undergone an evolution process different from that of single δ Sct-type pulsators.« less

  16. The disappearing act: a dusty wind eclipsing RW Aur

    NASA Astrophysics Data System (ADS)

    Bozhinova, I.; Scholz, A.; Costigan, G.; Lux, O.; Davis, C. J.; Ray, T.; Boardman, N. F.; Hay, K. L.; Hewlett, T.; Hodosán, G.; Morton, B.

    2016-12-01

    RW Aur is a young binary star that experienced a deep dimming in 2010-2011 in component A and a second even deeper dimming from summer 2014 to summer 2016. We present new unresolved multiband photometry during the 2014-2016 eclipse, new emission line spectroscopy before and during the dimming, archive infrared photometry between 2014 and 2015, as well as an overview of literature data. Spectral observations were carried out with the Fibre-fed RObotic Dual-beam Optical Spectrograph on the Liverpool Telescope. Photometric monitoring was done with the Las Cumbres Observatory Global Telescope Network and James Gregory Telescope. Our photometry shows that RW Aur dropped in brightness to R = 12.5 in 2016 March. In addition to the long-term dimming trend, RW Aur is variable on time-scales as short as hours. The short-term variation is most likely due to an unstable accretion flow. This, combined with the presence of accretion-related emission lines in the spectra suggest that accretion flows in the binary system are at least partially visible during the eclipse. The equivalent width of [O I] increases by a factor of 10 in 2014, coinciding with the dimming event, confirming previous reports. The blueshifted part of the Hα profile is suppressed during the eclipse. In combination with the increase in mid-infrared brightness during the eclipse reported in the literature and seen in WISE archival data, and constraints on the geometry of the disc around RW Aur A we arrive at the conclusion that the obscuring screen is part of a wind emanating from the inner disc.

  17. Kepler Planet Detection Metrics: Robovetter Completeness and Effectiveness for Data Release 25

    NASA Technical Reports Server (NTRS)

    Coughlin, Jeffrey L.

    2017-01-01

    In general, the Kepler pipeline identifies a list of Threshold Crossing Events (TCEs), which are periodic flux decrements meeting certain criteria (Jenkins, 2017). These TCEs are reviewed and those that appear consistent with astrophysically transiting or eclipsing systems are classified as Kepler Objects of Interest (KOIs). Further review is given to KOIs, which are then dispositioned as Planet Candidates (PCs) or False Positive (FPs). FPs are further denoted by four major flags that indicate if the signal is Not Transit-Like (NTL), due to a Stellar Eclipse (SS; previously referred to as Significant Secondary), and/or due to contamination from a source other than the target as evidenced by a Centroid Offset (CO) oran Ephemeris Match (EM) with another object. This entire TCE review process is known as dispositioning or vetting.In the first five Kepler mission planet candidate catalogs (Borucki et al., 2011a,b; Batalha et al., 2013; Burke et al., 2014; Rowe et al., 2015), TCEs were manually examined on an individual basis and dispositioned using various plots and quantitative diagnostic tests (see e.g., Coughlin, 2017). In the sixth catalog, Mullally et al. (2015a) employed partial automation via simple parameter cuts to automatically disposition a large fraction of TCEs as not transit-like. Mullally et al. (2015a) also used an automated technique known as the centroid Robovetter (Mullally, 2017) to automatically identify some FP KOIs due to centroid offsets - a telltale signature of light contamination from another target. The remaining targets were manually dispositioned. In the seventh catalog, Coughlin et al. (2016) automated theentire dispositioning process using what is collectively known simply as the Robovetter.In the eighth and final mission catalog, Thompson et al. (2017) use a revised Robovetter to automate the dispositioning of all TCEs with an emphasis on creating a catalog suitable for accurately determining planet occurrence rates. In order to

  18. The quest for stable circumbinary companions to post-common envelope sdB eclipsing binaries. Does the observational evidence support their existence?

    NASA Astrophysics Data System (ADS)

    Pulley, D.; Faillace, G.; Smith, D.; Watkins, A.; von Harrach, S.

    2018-03-01

    Context. Period variations have been detected in a number of eclipsing close compact binary subdwarf B stars (sdBs) and these have often been interpreted as being caused by circumbinary massive planets or brown dwarfs. According to canonical binary models, the majority of sdB systems are produced from low mass stars with degenerate cores where helium is ignited in flashes. Various evolutionary scenarios have been proposed for these stars, but a definite mechanism remains to be established. Equally puzzling is the formation of these putative circumbinary objects which must have formed from the remaining post-common envelope circumbinary disk or survived its evolution. Aim. In this paper we review the eclipse time variations (ETVs) exhibited by seven such systems (EC 10246-2707, HS 0705+6700, HS 2231+2441, J08205+0008, NSVS 07826147, NSVS 14256825, and NY Vir) and explore whether there is conclusive evidence that the ETVs observed over the last two decades can reliably predict the presence of one or more circumbinary bodies. Methods: We report 246 new observations of the seven sdB systems made between 2013 September and 2017 July using a worldwide network of telescopes. We combined our new data with previously published measurements to analyse the ETVs of these systems. Results: Our data show that period variations cannot be modelled simply on the basis of circumbinary objects. This implies that more complex processes may be taking place in these systems. These difficulties are compounded by the secondary star not being spectroscopically visible. From ETVs, it has historically been suggested that five of the seven binary systems reported here had circumbinary objects. Based on our recent observations and analysis, only three systems remain serious contenders. We find agreement with other observers that at least a decade of observations is required to establish reliable ephemerides. With longer observational baselines it is quite conceivable that the data will support

  19. The first comprehensive catalog of γ Dor pulsators and their characteristics

    NASA Astrophysics Data System (ADS)

    Ibanoglu, C.; Çakırlı, Ö.; Sipahi, E.

    2018-07-01

    We present the first comprehensive catalog of the γ Doradus type pulsating stars. This catalog covers observational properties of all γ Dor variables obtained until January 2017. The photometric and physical properties of 109 well - known γ Dor pulsators, 18 hybrid stars, 13 anomalous γ Dor stars, and 22 γ Dor stars in eclipsing plus 1 non-eclipsing SB2 binary systems are presented as separate tables. In addition, 291 candidate γ Dor variables discovered by CoRot, 307 candidate γ Dor, 205 hybrid and 11 candidate γ Dor in binaries discovered by Kepler were also presented. Distribution of the genuine single γ Dor pulsators in the Ppuls-Teff, Amplitude-Teff, Amplitude-Ppuls and L-Teff diagrams are presented and discussed. We find following correlations for the γ Dor pulsators in the eclipsing binaries: Ppuls ∝ Porb0.27, Ppuls ∝ Q0.45, and Ppuls ∝ r-0.44, where (Q) is the pulsation constant and r is the fractional radius of the pulsating component in the binary system. The correlation coefficients are not high enough due to limited sample and scattering in the data.

  20. ABSOLUTE PROPERTIES OF THE PRE-MAIN-SEQUENCE ECLIPSING BINARY STAR NP PERSEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacy, Claud H. Sandberg; Fekel, Francis C.; Muterspaugh, Matthew W.

    2016-07-01

    NP Per is a well-detached, 2.2 day eclipsing binary whose components are both pre-main-sequence stars that are still contracting toward the main-sequence phase of evolution. We report extensive photometric and spectroscopic observations with which we have determined their properties accurately. Their surface temperatures are quite different: 6420 ± 90 K for the larger F5 primary star and 4540 ± 160 K for the smaller K5e star. Their masses and radii are 1.3207 ± 0.0087 solar masses and 1.372 ± 0.013 solar radii for the primary, and 1.0456 ± 0.0046 solar masses and 1.229 ± 0.013 solar radii for the secondary. The orbital period is variable over long periods of time. A comparisonmore » of the observations with current stellar evolution models from MESA indicates that the stars cannot be fit at a single age: the secondary appears significantly younger than the primary. If the stars are assumed to be coeval and to have the age of the primary (17 Myr), then the secondary is larger and cooler than predicted by current models. The H α spectral line of the secondary component is completely filled by, presumably, chromospheric emission due to a magnetic activity cycle.« less

  1. Theoretical studies of binaries in astrophysics

    NASA Astrophysics Data System (ADS)

    Dischler, Johann Sebastian

    This thesis introduces and summarizes four papers dealing with computer simulations of astrophysical processes involving binaries. The first part gives the rational and theoretical background to these papers. In paper I and II a statistical approach to studying eclipsing binaries is described. By using population synthesis models for binaries the probabilities for eclipses are calculated for different luminosity classes of binaries. These are compared with Hipparcos data and they agree well if one uses a standard input distribution for the orbit sizes. If one uses a random pairing model, where both companions are independently picked from an IMF, one finds too feclipsing binaries by an order of magnitude. In paper III we investigate a possible scenario for the origin of the stars observed close to the centre of our galaxy, called S stars. We propose that a cluster falls radially cowards the central black hole. The binaries within the cluster can then, if they have small impact parameters, be broken up by the black hole's tidal held and one of the components of the binary will be captured by the black hole. Paper IV investigates how the onset of mass transfer in eccentric binaries depends on the eccentricity. To do this we have developed a new two-phase SPH scheme where very light particles are at tire outer edge of our simulated star. This enables us to get a much better resolution of the very small mass that is transferred in close binaries. Our simulations show that the minimum required distance between the stars to have mass transfer decreases with the eccentricity.

  2. Kepler Archive Manual

    NASA Technical Reports Server (NTRS)

    Thompson, Susan E.; Fraquelli, Dorothy; Van Cleve, Jeffrey E.; Caldwell, Douglas A.

    2016-01-01

    A description of Kepler, its design, performance and operational constraints may be found in the Kepler Instrument Handbook (KIH, Van Cleve Caldwell 2016). A description of Kepler calibration and data processing is described in the Kepler Data Processing Handbook (KDPH, Jenkins et al. 2016; Fanelli et al. 2011). Science users should also consult the special ApJ Letters devoted to early Kepler results and mission design (April 2010, ApJL, Vol. 713 L79-L207). Additional technical details regarding the data processing and data qualities can be found in the Kepler Data Characteristics Handbook (KDCH, Christiansen et al. 2013) and the Data Release Notes (DRN). This archive manual specifically documents the file formats, as they exist for the last data release of Kepler, Data Release 25(KSCI-19065-002). The earlier versions of the archive manual and data release notes act as documentation for the earlier versions of the data files.

  3. Modeling circumbinary planets: The case of Kepler-38

    NASA Astrophysics Data System (ADS)

    Kley, Wilhelm; Haghighipour, Nader

    2014-04-01

    Context. Recently, a number of planets orbiting binary stars have been discovered by the Kepler space telescope. In a few systems the planets reside close to the dynamical stability limit. Owing to the difficulty of forming planets in such close orbits, it is believed that they have formed farther out in the disk and migrated to their present locations. Aims: Our goal is to construct more realistic models of planet migration in circumbinary disks and to determine the final position of these planets more accurately. In our work, we focus on the system Kepler-38 where the planet is close to the stability limit. Methods: The evolution of the circumbinary disk is studied using two-dimensional hydrodynamical simulations. We study locally isothermal disks as well as more realistic models that include full viscous heating, radiative cooling from the disk surfaces, and radiative diffusion in the disk midplane. After the disk has been brought into a quasi-equilibrium state, a 115 Earth-mass planet is embedded and its evolution is followed. Results: In all cases the planets stop inward migration near the inner edge of the disk. In isothermal disks with a typical disk scale height of H/r = 0.05, the final outcome agrees very well with the observed location of planet Kepler-38b. For the radiative models, the disk thickness and location of the inner edge is determined by the mass in the system. For surface densities on the order of 3000 g/cm2 at 1 AU, the inner gap lies close to the binary and planets stop in the region between the 5:1 and 4:1 mean-motion resonances with the binary. A model with a disk with approximately a quarter of the mass yields a final position very close to the observed one. Conclusions: For planets migrating in circumbinary disks, the final position is dictated by the structure of the disk. Knowing the observed orbits of circumbinary planets, radiative disk simulations with embedded planets can provide important information on the physical state of the

  4. The first multi-color photometric study of the short-period contact Eclipsing Binary DE Lyn

    NASA Astrophysics Data System (ADS)

    Hashimoto, Amanda; Zhang, Liyun; Han, Xianming L.; Hongpeng, Lu; Wang, Daimei

    2016-01-01

    We observed the contact eclipsing binary of DE Lyn using SARA 0.9 meter telescope at Kitt Peak National Observatory on February 9, 11, and 27, 2015. In this study, we obtained the first full phase coverage BVRI CCD light curves, analyzed the orbital period variation, and extracted the orbital parameters. We calculated the linear and quadratic ephemeris, and thereby found that DE Lyn has a decreasing orbital period rate of -5.1(±0.4)×10-7 days/year. We believe this decreasing trend is the result of the more massive component (secondary) transferring mass to the less massive component (primary), and we obtained a mass transfer rate of dm/dt = 7.06×10-7M⊙/year. By using the updated Wilson & Devinney program, we found the orbital parameters of DE Lyn, which, in turn, enabled us to calculate the low degree of contact factor as f = 9.02(± 0.01)%. Its degree of contact will continue to increase and will evolve into an over-contact system.

  5. The first multi-color photometric study of the short-period contact eclipsing binary DE Lyn

    NASA Astrophysics Data System (ADS)

    Hashimoto, Amanda; Zhang, Liyun; Han, Xianming L.; Lu, Hongpeng; Wang, Daimei

    2016-05-01

    We observed the contact eclipsing binary of DE Lyn using SARA 0.9 m telescope at Kitt Peak National Observatory on February 9, 11, and 27, 2015. In this study, we obtained the first full phase coverage BVRI CCD light curves, analyzed the orbital period variation, and extracted the orbital parameters. We calculated the linear and quadratic ephemeris, and thereby found that DE Lyn has a decreasing orbital period rate of - 5.1(± 0.4) × 10-7 days/year. We assume this decreasing trend is the result of the more massive component (secondary) transferring mass to the less massive component (primary), and we obtained a mass transfer rate of dm / dt = 7.06 ×10-7M⊙ /year . By using the updated Wilson & Devinney program, we found the orbital parameters of DE Lyn, which, in turn, enabled us to calculate the low degree of contact factor as f = 9.02(± 0.01)%. In the future, its degree of contact will continue to increase and will evolve into an over-contact system.

  6. Star-spot distributions and chromospheric activity on the RS CVn type eclipsing binary SV Cam

    NASA Astrophysics Data System (ADS)

    Şenavcı, H. V.; Bahar, E.; Montes, D.; Zola, S.; Hussain, G. A. J.; Frasca, A.; Işık, E.; Yörükoǧlu, O.

    2018-06-01

    Using a time series of high-resolution spectra and high-quality multi-colour photometry, we reconstruct surface maps of the primary component of the RS CVn type rapidly rotating eclipsing binary, SV Cam (F9V + K4V). We measure a mass ratio, q, of 0.641(2) using our highest quality spectra and obtain surface brightness maps of the primary component, which exhibit predominantly high-latitude spots located between 60° - 70° latitudes with a mean filling factor of ˜35%. This is also indicated by the R-band light curve inversion, subjected to rigourous numerical tests. The spectral subtraction of the Hα line reveals strong activity of the secondary component. The excess Hα absorption detected near the secondary minimum hints to the presence of cool material partially obscuring the primary star. The flux ratios of Ca II IRT excess emission indicate that the contribution of chromospheric plage regions associated with star-spots is dominant, even during the passage of the filament-like absorption feature.

  7. High-energy emission from the eclipsing millisecond pulsar PSR 1957+20

    NASA Technical Reports Server (NTRS)

    Arons, Jonathan; Tavani, Marco

    1993-01-01

    The properties of the high-energy emission expected from the eclipsing millisecond pulsar system PSR 1957+20 are investigated. Emission is considered by both the relativistic shock produced by the pulsar wind in the nebula surrounding the binary and by the shock constraining the mass outflow from the companion star of PSR 1957+20. On the basis of the results of microscopic plasma physical models of relativistic shocks it is suggested that the high-energy radiation is produced in the range from X-rays to MeV gamma rays in the binary and in the range from 0.01 eV to about 40 keV in the nebula. Doppler boost of the emission in the radiating wind suggests the flux should vary on the orbital time scale, with the largest flux observed roughly coincident with the pulsar's radio eclipse.

  8. GLOBAL ANALYSIS OF KOI-977: SPECTROSCOPY, ASTEROSEISMOLOGY, AND PHASE-CURVE ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Teruyuki; Sato, Bun'ei; Kobayashi, Atsushi

    2015-01-20

    We present a global analysis of KOI-977, one of the planet host candidates detected by Kepler. The Kepler Input Catalog (KIC) reports that KOI-977 is a red giant, for which few close-in planets have been discovered. Our global analysis involves spectroscopic and asteroseismic determinations of stellar parameters (e.g., mass and radius) and radial velocity (RV) measurements. Our analyses reveal that KOI-977 is indeed a red giant, possibly in the red clump, but its estimated radius (≳ 20 R {sub ☉} = 0.093 AU) is much larger than KOI-977.01's orbital distance (∼0.027 AU) estimated from its period (P {sub orb} ∼more » 1.35 days) and host star's mass. RV measurements show a small variation, which also contradicts the amplitude of ellipsoidal variations seen in the light curve folded with KOI-977.01's period. Therefore, we conclude that KOI-977.01 is a false positive, meaning that the red giant, for which we measured the radius and RVs, is different from the object that produces the transit-like signal (i.e., an eclipsing binary). On the basis of this assumption, we also perform a light curve analysis including the modeling of transits/eclipses and phase-curve variations, adopting various values for the dilution factor D, which is defined as the flux ratio between the red giant and eclipsing binary. Fitting the whole folded light curve as well as individual transits in the short cadence data simultaneously, we find that the estimated mass and radius ratios of the eclipsing binary are consistent with those of a solar-type star and a late-type star (e.g., an M dwarf) for D ≳ 20.« less

  9. WR 20a Is an Eclipsing Binary: Accurate Determination of Parameters for an Extremely Massive Wolf-Rayet System

    NASA Astrophysics Data System (ADS)

    Bonanos, A. Z.; Stanek, K. Z.; Udalski, A.; Wyrzykowski, L.; Żebruń, K.; Kubiak, M.; Szymański, M. K.; Szewczyk, O.; Pietrzyński, G.; Soszyński, I.

    2004-08-01

    We present a high-precision I-band light curve for the Wolf-Rayet binary WR 20a, obtained as a subproject of the Optical Gravitational Lensing Experiment. Rauw et al. have recently presented spectroscopy for this system, strongly suggesting extremely large minimum masses of 70.7+/-4.0 and 68.8+/-3.8 Msolar for the component stars of the system, with the exact values depending strongly on the period of the system. We detect deep eclipses of about 0.4 mag in the light curve of WR 20a, confirming and refining the suspected period of P=3.686 days and deriving an inclination angle of i=74.5d+/-2.0d. Using these photometric data and the radial velocity data of Rauw et al., we derive the masses for the two components of WR 20a to be 83.0+/-5.0 and 82.0+/-5.0 Msolar. Therefore, WR 20a is confirmed to consist of two extremely massive stars and to be the most massive binary known with an accurate mass determination. Based on observations obtained with the 1.3 m Warsaw telescope at Las Campanas Observatory, which is operated by the Carnegie Institute of Washington.

  10. Kepler

    NASA Technical Reports Server (NTRS)

    Howell, Steve B.

    2011-01-01

    The NASA Kepler mission recently announced over 1200 exoplanet candidates. While some are common Hot Jupiters, a large number are Neptune size and smaller, transit depths suggest sizes down to the radius of Earth. The Kepler project has a fairly high confidence that most of these candidates are real exoplanets. Many analysis steps and lessons learned from Kepler light curves are used during the vetting process. This talk will cover some new results in the areas of stellar variability, solar systems with multiple planets, and how transit-like signatures are vetted for false positives, especially those indicative of small planets.

  11. Kepler Discovery

    NASA Image and Video Library

    2011-02-02

    Douglas Hudgins, a Kepler Program Scientist, speaks during a news conference, Wednesday, Feb. 2, 2010, at NASA Headquarters in Washington. Scientists using NASA's Kepler, a space telescope, recently discovered six planets made of a mix of rock and gases orbiting a single sun-like star, known as Kepler-11, which is located approximately 2,000 light years from Earth. Photo Credit: (NASA/Paul E. Alers)

  12. CCD Photometry and Roche Modeling of the Eclipsing Deep Low Mass, Overcontact Binary Star System TYC 2058-753-1

    NASA Astrophysics Data System (ADS)

    Alton, K. B.

    2018-06-01

    Abstract TYC 2058-753-1 (NSVS 7903497; ASAS 165139+2255.7) is a W UMa binary system (P = 0.353205 d) which has not been rigorously studied since first being detected nearly 15 years ago by the ROTSE-I telescope. Other than the unfiltered ROTSE-I and monochromatic All Sky Automated Survey (ASAS) survey data, no multi-colored light curves (LC) have been published. Photometric data collected in three bandpasses (B, V, and Ic) at Desert Bloom Observatory in June 2017 produced six times-of-minimum for TYC 2058-753-1 which were used to establish a linear ephemeris from the first directly measured Min I epoch (HJD0). No published radial velocity data are available for this system, however, since this W UMa binary undergoes a very obvious total eclipse, Roche modeling produced a well-constrained photometric value for the mass ratio (qph = 0.103 ± 0.001). This low-mass ratio binary star system also exhibits a high degree of contact (f > 56%). There is a suggestion from the ROTSE-I and ASAS survey data as well as from the new LCs reported herein that maximum light during quadrature (Max I and Max II) is often not equal. As a result, Roche modeling of the TYC 2058-753-1 LCs was investigated with and without surface spots to address this asymmetry as well as a diagonally-aligned flat bottom during Min I that was observed in 2017.

  13. Kepler: A Search for Terrestrial Planets - Kepler Data Characterization Handbook

    NASA Technical Reports Server (NTRS)

    Van Cleve, Jeffrey; Christiansen, J. L.; Jenkins, J. M.; Caldwell, D. A.; Barclay, T.; Bryson, S. T.; Burke, C. J.; Campbell, J.; Catanzarite, J.; Clarke, B. D.; hide

    2016-01-01

    The Kepler Data Characteristics Handbook (KDCH) provides a description of all phenomena identified in the Kepler data throughout the mission, and an explanation for how these characteristics are handled by the final version of the Kepler Data Processing Pipeline (SOC 9.3).The KDCH complements the Kepler Data Release Notes (KDRNs), which document phenomena and processing unique to a data release. The original motivation for this separation into static, explanatory text and a more journalistic set of figures and tables in the KDRN was for the user to become familiar with the Data Characteristics Handbook, then peruse the short Notes for a new quarter, referring back to the Handbook when necessary. With the completion of the Kepler mission and the final Data Release 25, both the KDCH and the DRN encompass the entire Kepler mission, so the distinction between them is in the level of exposition, not the extent of the time interval discussed.

  14. Kepler's Third Law and NASA's "Kepler Mission"

    ERIC Educational Resources Information Center

    Gould, Alan; Komatsu, Toshi; DeVore, Edna; Harman, Pamela; Koch, David

    2015-01-01

    NASA's "Kepler Mission" has been wildly successful in discovering exoplanets. This paper summarizes the mission goals, briefly explains the transit method of finding exoplanets and design of the mission, provides some key findings, and describes useful education materials available at the "Kepler" website.

  15. The eclipsing AM Herculis variable H1907 + 690

    NASA Technical Reports Server (NTRS)

    Remillard, R. A.; Silber, A.; Stroozas, B. A.; Tapia, S.

    1991-01-01

    The discovery is reported of an eclipsing cataclysmic variable that exhibits up to 10 percent circular polarization at optical wavelengths, securing its classification as an AM Herculis type binary. The object, H1907 + 609, was located with the guidance of X-ray positions from the HEAO 1 survey. Optical CCD photometry exhibits deep eclipses, from which is derived a precise orbital period of 1.743750 hr. The eclipse duration suggests an inclination angle about 80 deg for a main-sequence secondary star. The optical flux has been persistently faint during observations spanning 1987-1990, while the X-ray measurements suggest long-term X-ray variability. The polarization and photometric light curves can be interpreted with a geometric model in which most of the accretion is directed toward a single magnetic pole, with an accretion spot displaced about 17 deg in longitude from the projection of the secondary star on the white dwarf surface.

  16. Long-Term Quadrature Light Variability in Early Type Interacting Binary Systems

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine J.; Wilson, R. E.; Vaccaro, T. R.

    2014-01-01

    Four years of Kepler observations have revealed a phenomenon in the light curves of short-period Algol-type eclipsing binaries that has never been reported from ground-based photometry. These systems display unequal brightness at their quadrature phases that numerically reverses over a time scale of about 100-400 days. We call these systems L/T (leading hemisphere/ trailing hemisphere) variables. Twenty-one such systems have so far been identified in the Kepler database and at least three classes of L/T behavior have been identified. The prototype is WX Draconis (A8V + K0IV, P=1.80 d) which shows L/ T light variations of 2-3%. The primary is a delta Scuti star with a dominant pulsation period of 41 m. The Kepler light curves are being analyzed with the 2013 version of the Wilson-Devinney (WD) program that includes major improvements in modeling star spots (i.e. spot motions due to drift and stellar rotation and spot growth and decay). Preliminary analysis of the WX Dra data suggests that the L/T variability can be fit with either an accretion hot spot on the primary (T = 2.3 T_phot) that jumps in longitude or a magnetic cool spotted region on the secondary. If the latter model is correct the dark region must occupy at least 20% of the surface of the facing hemisphere of the secondary if it is completely black, or a larger area if not completely black. In both hot and cool spot scenarios magnetic fields must play a role in the activity. Echelle spectra were recently secured with the KPNO 4-m telescope to determine the mass ratios of the L/T systems and their spectral types. This information will allow us to assess whether the hot or cool spot model explains the L/T activity. Progress toward this goal will be presented. Support from NASA grants NNX11AC78G and NNX12AE44G and USC’s Women in Science and Engineering (WiSE) program is greatly appreciated.

  17. Absolute Dimensions of the F-type Eclipsing Binary V2154 Cygni

    NASA Astrophysics Data System (ADS)

    Bright, Jane C.; Torres, Guillermo

    2017-11-01

    We report spectroscopic observations of the 2.63 day, detached, F-type main-sequence eclipsing binary V2154 Cyg. We use our observations together with existing uvby photometric measurements to derive accurate absolute masses and radii for the stars that are good to better than 1.5%. We obtain masses of {M}1=1.269+/- 0.017 {M}⊙ and {M}2=0.7542+/- 0.0059 {M}⊙ , radii of {R}1=1.477+/- 0.012 {R}⊙ and {R}2=0.7232+/- 0.0091 {R}⊙ , and effective temperatures of 6770 ± 150 K and 5020 ± 150 K for the primary and secondary stars, respectively. Both components appear to have their rotations synchronized with the motion in the circular orbit. A comparison of the properties of the primary with current stellar evolution models gives good agreement for a metallicity of [{Fe}/{{H}}]=-0.17, which is consistent with photometric estimates, and an age of about 2.2 Gyr. On the other hand, the K2 secondary is larger than predicted for its mass by about 4%. Similar discrepancies are known to exist for other cool stars, and are generally ascribed to stellar activity. The system is in fact an X-ray source, and we argue that the main site of the activity is the secondary star. Indirect estimates give a strength of about 1 kG for the average surface magnetic field on that star. A previously known close visual companion to V2154 Cyg is shown to be physically bound, making the system a hierarchical triple.

  18. Updated O-C Diagrams for Several Bright HW Vir Binaries Observed with the Evryscope

    NASA Astrophysics Data System (ADS)

    Corcoran, Kyle A.; Barlow, Brad; Corbett, Hank; Fors, Octavi; Howard, Ward S.; Law, Nicholas; Ratzloff, Jeff

    2018-01-01

    HW Vir systems are eclipsing, post-common-envelope binaries consisting of a hot subdwarf star and a cooler M dwarf or brown dwarf companion. They show a strong reflection effect and have characteristically short orbital periods of only a few hours, allowing observers to detect multiple eclipses per night. Observed minus calculated (O-C) studies allow one to measure miniscule variations in the orbital periods of these systems by comparing observed eclipse timings to a calculated ephemeris. This technique is useful for detecting period changes due to secular evolution of the binary, gravitational wave emission, or reflex motion from an orbiting circumbinary object. Numerous eclipse timings obtained over several years are vital to the proper interpretation and analysis of O-C diagrams. The Evryscope – an array of twenty-four individual telescopes built by UNC and deployed on Cerro Tololo – images the entire Southern sky once every two minutes, producing an insurmountable amount of data for objects brighter than 16th magnitude. The cadence with which Evryscope exposes makes it an unparalleled tool for O-C analyses of HW Vir binaries; it will catalogue thousands of eclipses over the next several years. Here we present updated O-C diagrams for several HW Vir binaries using recent measurements from the Evryscope. We also use observations of AA Dor, an incredibly stable astrophysical clock, to characterize the accuracy of the Evryscope’s timestamps.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coughlin, Jeffrey L.; Thompson, Susan E.; Burke, Christopher J.

    The Kepler mission has to date found almost 6000 planetary transit-like signals, utilizing three years of data for over 170,000 stars at extremely high photometric precision. Due to its design, contamination from eclipsing binaries, variable stars, and other transiting planets results in a significant number of these signals being false positives (FPs). This directly affects the determination of the occurrence rate of Earth-like planets in our Galaxy, as well as other planet population statistics. In order to detect as many of these FPs as possible, we perform ephemeris matching among all transiting planet, eclipsing binary, and variable star sources. Wemore » find that 685 Kepler Objects of Interest (KOIs)—12% of all those analyzed—are FPs as a result of contamination, due to 409 unique parent sources. Of these, 118 have not previously been identified by other methods. We estimate that ∼35% of KOIs are FPs due to contamination, when performing a first-order correction for observational bias. Comparing single-planet candidate KOIs to multi-planet candidate KOIs, we find an observed FP fraction due to contamination of 16% and 2.4% respectively, bolstering the existing evidence that multi-planet KOIs are significantly less likely to be FPs. We also analyze the parameter distributions of the ephemeris matches and derive a simple model for the most common type of contamination in the Kepler field. We find that the ephemeris matching technique is able to identify low signal-to-noise FPs that are difficult to identify with other vetting techniques. We expect FP KOIs to become more frequent when analyzing more quarters of Kepler data, and note that many of them will not be able to be identified based on Kepler data alone.« less

  20. Kepler Discovery

    NASA Image and Video Library

    2011-02-02

    A scale model of the Kepler space telescope is seen at a news conference, Wednesday, Feb. 2, 2010, at NASA Headquarters in Washington. Scientists using NASA's Kepler, a space telescope, recently discovered six planets made of a mix of rock and gases orbiting a single sun-like star, known as Kepler-11, which is located approximately 2,000 light years from Earth. Photo Credit: (NASA/Paul E. Alers)

  1. Kepler Media Briefing

    NASA Image and Video Library

    2009-02-19

    Jim Fanson, Kepler project manager, at NASA's Jet Propulsion Laboratory in Pasadena, Calif. holds a model of the Kepler spacecraft as he talks about the Kepler mission during a media briefing, Thursday, Feb. 19, 2008, at NASA Headquarters in Washington. Kepler, the first mission with the ability to find planets like earth, is scheduled to launch on March 5, 2009 from Cape Canaveral Air Force Station, Fla. aboard a Delta II rocket. Photo Credit: (NASA/Paul. E. Alers)

  2. Fitting Formulae and Constraints for the Existence of S-type and P-type Habitable Zones in Binary Systems

    NASA Astrophysics Data System (ADS)

    Wang, Zhaopeng; Cuntz, Manfred

    2017-10-01

    We derive fitting formulae for the quick determination of the existence of S-type and P-type habitable zones (HZs) in binary systems. Based on previous work, we consider the limits of the climatological HZ in binary systems (which sensitively depend on the system parameters) based on a joint constraint encompassing planetary orbital stability and a habitable region for a possible system planet. Additionally, we employ updated results on planetary climate models obtained by Kopparapu and collaborators. Our results are applied to four P-type systems (Kepler-34, Kepler-35, Kepler-413, and Kepler-1647) and two S-type systems (TrES-2 and KOI-1257). Our method allows us to gauge the existence of climatological HZs for these systems in a straightforward manner with detailed consideration of the observational uncertainties. Further applications may include studies of other existing systems as well as systems to be identified through future observational campaigns.

  3. The Eclipsing System EP Andromedae and Its Circumbinary Companions

    NASA Astrophysics Data System (ADS)

    Lee, Jae Woo; Hinse, Tobias Cornelius; Park, Jang-Ho

    2013-04-01

    We present new long-term CCD photometry for EP And acquired during the period 2007-2012. The light curves display total eclipses at primary minima and season-to-season light variability. Our synthesis for all available light curves indicates that the eclipsing pair is a W-type overcontact binary with parameters of q = 2.578, i = 83.°3, ΔT = 27 K, f = 28%, and l 3 = 2%-3%. The asymmetric light curves in 2007 were satisfactorily modeled by a cool spot on either of the eclipsing components from a magnetic dynamo. Including our 95 timing measurements, a total of 414 times of minimum light spanning about 82 yr was used for a period study. A detailed analysis of the eclipse timing diagram revealed that the orbital period of EP And has varied as a combination of an upward-opening parabola and two periodic variations, with cycle lengths of P 3 = 44.6 yr and P 4 = 1.834 yr and semi-amplitudes of K 3 = 0.0100 days and K 4 = 0.0039 days, respectively. The observed period increase at a fractional rate of +1.39 × 10-10 is in excellent agreement with that calculated from the W-D code and can be plausibly explained by some combination of mass transfer from the primary to the secondary star and angular momentum loss due to magnetic braking. The most reasonable explanation for both cycles is a pair of light-travel-time effects driven by the possible existence of a third and fourth component with projected masses of M 3 = 0.25 M ⊙ and M 4 = 0.90 M ⊙. The more massive companion could be revealed using high-resolution spectroscopic data extending over the course of a few years and could also be a binary itself. It is possible that the circumbinary objects may have played an important role in the formation and evolution of the eclipsing pair, which would cause it to have a short initial orbital period and thus evolve into an overcontact configuration by angular momentum loss.

  4. LOW FALSE POSITIVE RATE OF KEPLER CANDIDATES ESTIMATED FROM A COMBINATION OF SPITZER AND FOLLOW-UP OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Désert, Jean-Michel; Brown, Timothy M.; Charbonneau, David

    NASA’s Kepler mission has provided several thousand transiting planet candidates during the 4 yr of its nominal mission, yet only a small subset of these candidates have been confirmed as true planets. Therefore, the most fundamental question about these candidates is the fraction of bona fide planets. Estimating the rate of false positives of the overall Kepler sample is necessary to derive the planet occurrence rate. We present the results from two large observational campaigns that were conducted with the Spitzer Space Telescope during the the Kepler mission. These observations are dedicated to estimating the false positive rate (FPR) amongmore » the Kepler candidates. We select a sub-sample of 51 candidates, spanning wide ranges in stellar, orbital, and planetary parameter space, and we observe their transits with Spitzer at 4.5 μm. We use these observations to measures the candidate’s transit depths and infrared magnitudes. An authentic planet produces an achromatic transit depth (neglecting the modest effect of limb darkening). Conversely a bandpass-dependent depth alerts us to the potential presence of a blending star that could be the source of the observed eclipse: a false positive scenario. For most of the candidates (85%), the transit depths measured with Kepler are consistent with the transit depths measured with Spitzer as expected for planetary objects, while we find that the most discrepant measurements are due to the presence of unresolved stars that dilute the photometry. The Spitzer constraints on their own yield FPRs between 5% and depending on the Kepler Objects of Interest. By considering the population of the Kepler field stars, and by combining follow-up observations (imaging) when available, we find that the overall FPR of our sample is low. The measured upper limit on the FPR of our sample is 8.8% at a confidence level of 3σ. This observational result, which uses the achromatic property of planetary transit signals that is not

  5. ABSOLUTE PROPERTIES OF THE HIGHLY ECCENTRIC, SOLAR-TYPE ECLIPSING BINARY HD 74057

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowell, James R.; Henry, Gregory W.; Fekel, Francis C., E-mail: jim.sowell@physics.gatech.edu, E-mail: gregory.w.henry@gmail.com, E-mail: fekel@evans.tsuniv.edu

    2012-01-15

    We have obtained Stroemgren b and y differential photometric observations of the solar-type eclipsing binary HD 74057 plus follow-up high-resolution, red wavelength spectroscopic observations. The system has an orbital period of 31.2198 days, a high eccentricity of 0.47, and is seen almost exactly edge on with an inclination of 89.{sup 0}8. The two main-sequence G0 stars are nearly identical in all physical characteristics. We used the Wilson-Devinney program to obtain a simultaneous solution of our photometric and spectroscopic observations. The resulting masses of the components are M{sub 1} = 1.138 {+-} 0.003 M{sub Sun} and M{sub 2} = 1.131 {+-}more » 0.003 M{sub Sun }, and the radii are R{sub 1} = 1.064 {+-} 0.002 R{sub Sun} and R{sub 2} = 1.049 {+-} 0.002 R{sub Sun }. The effective temperatures are 5900 K (fixed) and 5843 K, and the iron abundance, [Fe/H], is estimated to be +0.07. A comparison with evolutionary tracks suggests that the system may be even more metal rich. The components rotate with periods of 8.4 days, significantly faster than the predicted pseudosynchronous period of 12.7 days. We see evidence that one or both components have cool spots. Both stars are close to the zero-age main sequence and are about 1.0 Gyr old.« less

  6. A New Binary Star System of EW Type in Draco: GSC 03905-01870

    NASA Astrophysics Data System (ADS)

    Barquin, S.

    2018-05-01

    Discovery of a new binary star system (GSC 03905-01870 = USNO-B1.0 1431-0327922 = UCAC4 716-059522) in the Draco constellation is presented. It was discovered during a search for previously unreported eclipsing binary stars through the ASAS-SN database. The shape of the light curve and its characteristics (period of 0.428988+-0.000001 d, amplitude of 0.34+-0.02 V Mag, primary minimum epoch HJD 2457994.2756+-0.0002) indicates that the new variable star is an eclipsing binary of W Ursae Majoris type. I registered this variable star in The International Variable Star Index (VSX), its AAVSO UID is 000-BMP-891.

  7. How Accurately Can We Predict Eclipses for Algol? (Poster abstract)

    NASA Astrophysics Data System (ADS)

    Turner, D.

    2016-06-01

    (Abstract only) beta Persei, or Algol, is a very well known eclipsing binary system consisting of a late B-type dwarf that is regularly eclipsed by a GK subgiant every 2.867 days. Eclipses, which last about 8 hours, are regular enough that predictions for times of minima are published in various places, Sky & Telescope magazine and The Observer's Handbook, for example. But eclipse minimum lasts for less than a half hour, whereas subtle mistakes in the current ephemeris for the star can result in predictions that are off by a few hours or more. The Algol system is fairly complex, with the Algol A and Algol B eclipsing system also orbited by Algol C with an orbital period of nearly 2 years. Added to that are complex long-term O-C variations with a periodicity of almost two centuries that, although suggested by Hoffmeister to be spurious, fit the type of light travel time variations expected for a fourth star also belonging to the system. The AB sub-system also undergoes mass transfer events that add complexities to its O-C behavior. Is it actually possible to predict precise times of eclipse minima for Algol months in advance given such complications, or is it better to encourage ongoing observations of the star so that O-C variations can be tracked in real time?

  8. Eclipsing Binaries in the OGLE Variable Star Catalogs. V. Long-Period EB-Type Light Curve Systems in the Small Magellanic Cloud and the PLC-β Relation

    NASA Astrophysics Data System (ADS)

    Rucinski, Slavek M.; Maceroni, Carla

    2001-01-01

    Thirty-eight long-period (P>10 days) apparently contact binary stars discovered by the OGLE-II project in the SMC show EB-type light curves and an ``inverted'' period-color relation with longer orbital periods for redder systems. The strong light variations between eclipses can be explained within a semidetached model in which ellipsoidal variations of a large, evolved, Roche lobe-filling component dominates over eclipse effects in the systemic light changes. The model requires further spectroscopic and color-curve support before it can be fully accepted. It is noted that the dominant role of the Roche lobe-filling component in the total systemic luminosity can explain the new period-luminosity-color (PLC) relation, which has been established for the long-period EB (LP-EB) systems. We call it the PLC-β relation, to distinguish it from the Cepheid relation. Two versions of the PLC-β relation-based on the (B-V)0 or (V-I)0 color indices-have been calibrated for 33 systems with (V-I)0>0.25 spanning the orbital period range of 11 to 181 days (it was found that blue systems with (V-I)0<=0.25 do not follow the same calibration). The relations can provide maximum-light, absolute-magnitude estimates accurate to ɛMV~=0.35 mag within the approximate range -3binaries are about 50 times less common than the Cepheids. Nevertheless, their large luminosities coupled with continuous light variations make these binaries very easy to spot in nearby galaxies, so that the PLC-β relation can offer an auxiliary and entirely independent method of distance determination to nearby stellar systems rich in massive stars.

  9. Eclipse studies of the dwarf nova EX Draconis

    NASA Astrophysics Data System (ADS)

    Baptista, R.; Catalán, M. S.; Costa, L.

    2000-08-01

    We report on V and R high-speed photometry of the dwarf nova EX Draconis (EX Dra) in quiescence and in outburst. The analysis of the outburst light curves indicates that the outbursts do not start in the outer disc regions. The disc expands during the rise to maximum and shrinks during decline and along the following quiescent period. The decrease in brightness at the later stages of the outburst is due to the fading of the light from the inner disc regions. At the end of two outbursts the system was seen to go through a phase of lower brightness, characterized by an out-of-eclipse level ~=15 per cent lower than the typical quiescent level and by the fairly symmetric eclipse of a compact source at disc centre with little evidence of a bright spot at disc rim. New eclipse timings were measured from the light curves taken in quiescence and a revised ephemeris was derived. The residuals with respect to the linear ephemeris are well described by a sinusoid of amplitude 1.2min and period ~=4yr and are possibly related to a solar-like magnetic activity cycle in the secondary star. Eclipse phases of the compact central source and of the bright spot were used to derive the geometry of the binary. By constraining the gas stream trajectory to pass through the observed position of the bright spot, we find q=0.72+/-0.06 and i85+3-2 degrees. The binary parameters were estimated by combining the measured mass ratio with the assumption that the secondary star obeys an empirical main-sequence mass-radius relation. We find M1=0.75+/-0.15Msolar and M2=0.54+/-0.10Msolar. The results indicate that the white dwarf at disc centre is surrounded by an extended and variable atmosphere or boundary layer of at least three times its radius and a temperature of T~=28000K. The fluxes at mid-eclipse yield an upper limit to the contribution of the secondary star and lead to a lower limit photometric parallax distance of D=290+/-80pc. The fluxes of the secondary star are well-matched by those of a

  10. High Fill-out, Extreme Mass Ratio Overcontact Binary Systems. X. The Newly Discovered Binary XY Leonis Minoris

    NASA Astrophysics Data System (ADS)

    Qian, S.-B.; Liu, L.; Zhu, L.-Y.; He, J.-J.; Yang, Y.-G.; Bernasconi, L.

    2011-05-01

    The newly discovered short-period close binary star, XY LMi, has been monitored photometrically since 2006. Its light curves are typical EW-type light curves and show complete eclipses with durations of about 80 minutes. Photometric solutions were determined through an analysis of the complete B, V, R, and I light curves using the 2003 version of the Wilson-Devinney code. XY LMi is a high fill-out, extreme mass ratio overcontact binary system with a mass ratio of q = 0.148 and a fill-out factor of f = 74.1%, suggesting that it is in the late evolutionary stage of late-type tidal-locked binary stars. As observed in other overcontact binary stars, evidence for the presence of two dark spots on both components is given. Based on our 19 epochs of eclipse times, we found that the orbital period of the overcontact binary is decreasing continuously at a rate of dP/dt = -1.67 × 10-7 days yr-1, which may be caused by mass transfer from the primary to the secondary and/or angular momentum loss via magnetic stellar wind. The decrease of the orbital period may result in the increase of the fill-out, and finally, it will evolve into a single rapid-rotation star when the fluid surface reaches the outer critical Roche lobe.

  11. Ultraviolet photometry of the eclipsing variable CW Cephei

    NASA Technical Reports Server (NTRS)

    Sobieski, S.

    1972-01-01

    A series of photometric observations was made of the eclipsing variable CW Cephei on the OAO 2. Approximate elements were derived from the eclipse depths and shape of the secondary. Persistent asymmetries and anomalous light variations, larger than the expected experimental error, were also found, subsequent ground-based observations show H alpha entirely in emission, indicating the presence of an extended gaseous system surrounding one or both components. A detailed comparison was made of the flux distribution of the binary relative to that for the nominally unreddened stars delta Pic, BlIII, and eta Aur, B3V, to investigate the effects of interstellar extinction. The resultant extinction curves, normalized at a wavelength of 3330 A, show a relatively smooth increase with decreasing wavelength.

  12. Fitting Formulae and Constraints for the Existence of S-type and P-type Habitable Zones in Binary Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Zhaopeng; Cuntz, Manfred, E-mail: zhaopeng.wang@mavs.uta.edu, E-mail: cuntz@uta.edu

    We derive fitting formulae for the quick determination of the existence of S-type and P-type habitable zones (HZs) in binary systems. Based on previous work, we consider the limits of the climatological HZ in binary systems (which sensitively depend on the system parameters) based on a joint constraint encompassing planetary orbital stability and a habitable region for a possible system planet. Additionally, we employ updated results on planetary climate models obtained by Kopparapu and collaborators. Our results are applied to four P-type systems (Kepler-34, Kepler-35, Kepler-413, and Kepler-1647) and two S-type systems (TrES-2 and KOI-1257). Our method allows us tomore » gauge the existence of climatological HZs for these systems in a straightforward manner with detailed consideration of the observational uncertainties. Further applications may include studies of other existing systems as well as systems to be identified through future observational campaigns.« less

  13. BOKS 45906: a CV with an orbital period of 56.6 min in the Kepler field?

    NASA Astrophysics Data System (ADS)

    Ramsay, Gavin; Howell, Steve B.; Wood, Matt A.; Smale, Alan; Barclay, Thomas; Seebode, Sally A.; Gelino, Dawn; Still, Martin; Cannizzo, John K.

    2014-02-01

    BOKS 45906 was found to be a blue source in the Burrell-Optical-Kepler Survey which showed a 3 mag outburst lasting ˜5 d. We present the Kepler light curve of this source which covers nearly 3 years. We find that it is in a faint optical state for approximately half the time and shows a series of outbursts separated by distinct dips in flux. Using data with 1 min sampling, we find clear evidence that in its low state BOKS 45906 shows a flux variability on a period of 56.5574 ± 0.0014 min and a semi-amplitude of ˜3 per cent. Since we can phase all the 1 min cadence data on a common ephemeris using this period, it is probable that 56.56 min is the binary orbital period. Optical spectra of BOKS 45906 show the presence of Balmer lines in emission indicating it is not an AM CVn (pure Helium) binary. Swift data show that it is a weak X-ray source and is weakly detected in the bluest of the UVOT filters. We conclude that BOKS 45906 is a cataclysmic variable with a period shorter than the `period-bounce' systems and therefore BOKS 45906 could be the first helium-rich cataclysmic variable detected in the Kepler field.

  14. Kepler Discovery

    NASA Image and Video Library

    2011-02-02

    William Borucki, Kepler Science Principal Investigator from NASA's Ames Research Center, second from left, speaks during a news conference, Wednesday, Feb. 2, 2010, at NASA Headquarters in Washington as Douglas Hudgins, left, Jack Lissauer and Debra Fischer, far right, look on. Scientists using NASA's Kepler, a space telescope, recently discovered six planets made of a mix of rock and gases orbiting a single sun-like star, known as Kepler-11, which is located approximately 2,000 light years from Earth. Photo Credit: (NASA/Paul E. Alers)

  15. Interpretation of BM Orionis. [eclipsing binary model

    NASA Technical Reports Server (NTRS)

    Huang, S.-S.

    1975-01-01

    The entire light curve of the BM Ori system both inside and outside primary and secondary eclipses has been examined on the basis of two models for the disk around the secondary component: one with the luminous energy of the disk coming entirely from the secondary, and another with the luminous energy coming at least partly from the primary. It has been found that if the disk is highly opaque, as is suggested by the fitting of the light curve, there exist in the first model discrepancies between what has been derived from the luminosity consideration for the secondary component and what has been derived from the radius consideration. Hence the second model is accepted. Based on this model the nature of both component stars has been examined from a consideration of the luminosity and the dimensions of the disk.

  16. Ingress observations of the 1980 eclipse of the symbiotic star CI Cyngni

    NASA Technical Reports Server (NTRS)

    Stencel, R. E.; Michalitsianos, A. G.; Kafatos, M.; Boyarchuk, A. A.

    1981-01-01

    One of the major results from the IUE may prove to be the knowledge gained by studies of the ultraviolet spectra of symbiotic stars. Symbiotics combine spectral features of a cool M giant like photosphere with strong high excitation emission lines of nebular origin, superposed. The UV spectra are dominated by intense permitted and semiforbidden emission lines and weak continua indicative of hot compact objects and accretion disks. Two symbiotics, AR Pav and CI Cyg are thought to be eclipsing binaries and IUE observations during the 1980 eclipse of CI Cygni are discussed.

  17. Tapir: A web interface for transit/eclipse observability

    NASA Astrophysics Data System (ADS)

    Jensen, Eric

    2013-06-01

    Tapir is a set of tools, written in Perl, that provides a web interface for showing the observability of periodic astronomical events, such as exoplanet transits or eclipsing binaries. The package provides tools for creating finding charts for each target and airmass plots for each event. The code can access target lists that are stored on-line in a Google spreadsheet or in a local text file.

  18. Planet Detection: The Kepler Mission

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon M.; Smith, Jeffrey C.; Tenenbaum, Peter; Twicken, Joseph D.; Van Cleve, Jeffrey

    2012-03-01

    and to perform a suite of diagnostic tests on each such event to make or break confidence in each transit-like signature by eliminating eclipsing binaries and other false positives. This chapter focuses on two of the most important subtasks, as they represent the most challenging ones from the perspective of the major themes of this book: machine learning and data mining. First, Section 17.2 gives a brief overview of the SOC science processing pipeline. This includes a special subsection detailing the adaptive, wavelet-based transit detector in the transiting planet search (TPS) pipeline component that performs the automated search through each of the hundreds of thousands of light curves for transit signatures of Earth-size planets. Following the overview, Section 17.3 describes an approach under development to improve the science pipeline’s ability to identify and remove instrumental signatures from the light curves while minimizing distortion of astrophysical signals in the data and preventing the introduction of additional noise that may mask small transit features. The chapter concludes with some thoughts about the future of large transit surveys in the context of the Kepler experience.

  19. Robotic laser adaptive optics imaging of 715 Kepler exoplanet candidates using Robo-AO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, Nicholas M.; Ziegler, Carl; Morton, Tim

    2014-08-10

    The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star with laser adaptive optics imaging to search for blended nearby stars, which may be physically associated companions and/or responsible for transit false positives. In this paper, we present the results from the 2012 observing season, searching for stars close to 715 Kepler planet candidate hosts. We find 53 companions, 43 of which are new discoveries. We detail the Robo-AO survey data reduction methods including a method of using the large ensemble of target observations as mutual point-spread-function references, along with a new automated companion-detection algorithm designedmore » for large adaptive optics surveys. Our survey is sensitive to objects from ≈0.''15 to 2.''5 separation, with magnitude differences up to Δm ≈ 6. We measure an overall nearby-star probability for Kepler planet candidates of 7.4% ± 1.0%, and calculate the effects of each detected nearby star on the Kepler-measured planetary radius. We discuss several Kepler Objects of Interest (KOIs) of particular interest, including KOI-191 and KOI-1151, which are both multi-planet systems with detected stellar companions whose unusual planetary system architecture might be best explained if they are 'coincident multiple' systems, with several transiting planets shared between the two stars. Finally, we find 98% confidence evidence that short-period giant planets are two to three times more likely than longer-period planets to be found in wide stellar binaries.« less

  20. Kepler Media Briefing

    NASA Image and Video Library

    2009-02-19

    Jon Morse, Director, Astrophysics Division, at NASA Headquarters, left, talks about the Kepler mission during a media briefing, Thursday, Feb. 19, 2008, at NASA Headquarters in Washington. Morse was joined at the briefing by William Borucki, principal investigator for Kepler Science at Ames Research Center, second left, Jim Fanson, Kepler Project Manager at the Jet Propulsion Laboratory and Debra Fischer, professor of Astronomy at San Francisco State University, right. Kepler is scheduled to launch on March 5, 2009 from Cape Canaveral Air Force Station, Fla. aboard a Delta II rocket. Photo Credit: (NASA/Paul. E. Alers)