Sample records for keratin gene expression

  1. Molecular evolution and expression of archosaurian β-keratins: diversification and expansion of archosaurian β-keratins and the origin of feather β-keratins.

    PubMed

    Greenwold, Matthew J; Sawyer, Roger H

    2013-09-01

    The archosauria consist of two living groups, crocodilians, and birds. Here we compare the structure, expression, and phylogeny of the beta (β)-keratins in two crocodilian genomes and two avian genomes to gain a better understanding of the evolutionary origin of the feather β-keratins. Unlike squamates such as the green anole with 40 β-keratins in its genome, the chicken and zebra finch genomes have over 100 β-keratin genes in their genomes, while the American alligator has 20 β-keratin genes, and the saltwater crocodile has 21 β-keratin genes. The crocodilian β-keratins are similar to those of birds and these structural proteins have a central filament domain and N- and C-termini, which contribute to the matrix material between the twisted β-sheets, which form the 2-3 nm filament. Overall the expression of alligator β-keratin genes in the integument increases during development. Phylogenetic analysis demonstrates that a crocodilian β-keratin clade forms a monophyletic group with the avian scale and feather β-keratins, suggesting that avian scale and feather β-keratins along with a subset of crocodilian β-keratins evolved from a common ancestral gene/s. Overall, our analyses support the view that the epidermal appendages of basal archosaurs used a diverse array of β-keratins, which evolved into crocodilian and avian specific clades. In birds, the scale and feather subfamilies appear to have evolved independently in the avian lineage from a subset of archosaurian claw β-keratins. The expansion of the avian specific feather β-keratin genes accompanied the diversification of birds and the evolution of feathers. Copyright © 2013 Wiley Periodicals, Inc.

  2. Clustered Xenopus keratin genes: A genomic, transcriptomic, and proteomic analysis.

    PubMed

    Suzuki, Ken-Ichi T; Suzuki, Miyuki; Shigeta, Mitsuki; Fortriede, Joshua D; Takahashi, Shuji; Mawaribuchi, Shuuji; Yamamoto, Takashi; Taira, Masanori; Fukui, Akimasa

    2017-06-15

    Keratin genes belong to the intermediate filament superfamily and their expression is altered following morphological and physiological changes in vertebrate epithelial cells. Keratin genes are divided into two groups, type I and II, and are clustered on vertebrate genomes, including those of Xenopus species. Various keratin genes have been identified and characterized by their unique expression patterns throughout ontogeny in Xenopus laevis; however, compilation of previously reported and newly identified keratin genes in two Xenopus species is required for our further understanding of keratin gene evolution, not only in amphibians but also in all terrestrial vertebrates. In this study, 120 putative type I and II keratin genes in total were identified based on the genome data from two Xenopus species. We revealed that most of these genes are highly clustered on two homeologous chromosomes, XLA9_10 and XLA2 in X. laevis, and XTR10 and XTR2 in X. tropicalis, which are orthologous to those of human, showing conserved synteny among tetrapods. RNA-Seq data from various embryonic stages and adult tissues highlighted the unique expression profiles of orthologous and homeologous keratin genes in developmental stage- and tissue-specific manners. Moreover, we identified dozens of epidermal keratin proteins from the whole embryo, larval skin, tail, and adult skin using shotgun proteomics. In light of our results, we discuss the radiation, diversification, and unique expression of the clustered keratin genes, which are closely related to epidermal development and terrestrial adaptation during amphibian evolution, including Xenopus speciation. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Identification of a feather β-keratin gene exclusively expressed in pennaceous barbule cells of contour feathers in chicken.

    PubMed

    Kowata, Kinue; Nakaoka, Minori; Nishio, Kaori; Fukao, Ayaka; Satoh, Akira; Ogoshi, Maho; Takahashi, Sumio; Tsudzuki, Masaoki; Takeuchi, Sakae

    2014-05-25

    Feathers are elaborate skin appendages shared by birds and theropod dinosaurs that have hierarchical branching of the rachis, barbs, and barbules. Feather filaments consist of β-keratins encoded by multiple genes, most of which are located in tandem arrays on chromosomes 2, 25, and 27 in chicken. The expansion of the genes is thought to have contributed to feather evolution; however, it is unclear how the individual genes are involved in feather formation. The aim of the present study was to identify feather keratin genes involved in the formation of barbules. Using a combination of microarray analysis, reverse-transcription polymerase chain reaction, and in situ hybridization, we found an uncharacterized keratin gene on chromosome 7 that was expressed specifically in barbule cells in regenerating chicken feathers. We have named the gene barbule specific keratin 1 (BlSK1). The BlSK1 gene structure was similar to the gene structure of previously characterized feather keratin genes, and consisted of a non-coding leader exon, an intron, and an exon with an open reading frame (ORF). The ORF was predicted to encode a 98 aa long protein, which shared 59% identity with feather keratin B. Orthologs of BlSK1 were found in the genomes of other avian species, including turkey, duck, zebra finch, and flycatcher, in regions that shared synteny with chromosome 7 of chicken. Interestingly, BlSK1 was expressed in feather follicles that generated pennaceous barbules but not in follicles that generated plumulaceous barbules. These results suggested that the composition of feather keratins probably varies depending on the structure of the feather filaments and, that individual feather keratin genes may be involved in building different portions and/or types of feathers in chicken. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Deregulated HOX genes in ameloblastomas are located in physical contiguity to keratin genes.

    PubMed

    Schiavo, Giulia; D'Antò, Vincenzo; Cantile, Monica; Procino, Alfredo; Di Giovanni, Stefano; Valletta, Rossella; Terracciano, Luigi; Baumhoer, Daniel; Jundt, Gernot; Cillo, Clemente

    2011-11-01

    The expression of the HOX gene network in mid-stage human tooth development mostly concerns the epithelial tooth germ compartment and involves the C and D HOX loci. To further dissect the HOX gene implication with tooth epithelium differentiation we compared the expression of the whole HOX network in human ameloblastomas, as paradigm of epithelial odontogenic tumors, with tooth germs. We identified two ameloblastoma molecular types with respectively low and high number of active HOX C genes. The highly expressing HOX C gene ameloblastomas were characterized by a strong keratinized phenotype. Locus C HOX genes are located on chromosome 12q13-15 in physical contiguity with one of the two keratin gene clusters included in the human genome. The most posterior HOX C gene, HOX C13, is capable to interact with hair keratin genes located on the other keratin gene cluster in physical contiguity with the HOX B locus on chromosome 17q21-22. Inside the HOX C locus, a 2.2 kb ncRNA (HOTAIR) able to repress transcription, in cis, along the entire HOX C locus and, in trans, at the posterior region of the HOX D locus has recently been identified. Interestingly both loci are deregulated in ameloblastomas. Our finding support an important role of the HOX network in characterizing the epithelial tooth compartment. Furthermore, the physical contiguity between locus C HOX and keratin genes in normal tooth epithelium and their deregulation in the neoplastic counterparts suggest they may act on the same mechanism potentially involved with epithelial tumorigenesis. Copyright © 2011 Wiley Periodicals, Inc.

  5. A curated catalog of canine and equine keratin genes

    PubMed Central

    Pujar, Shashikant; McGarvey, Kelly M.; Welle, Monika; Galichet, Arnaud; Müller, Eliane J.; Pruitt, Kim D.; Leeb, Tosso

    2017-01-01

    Keratins represent a large protein family with essential structural and functional roles in epithelial cells of skin, hair follicles, and other organs. During evolution the genes encoding keratins have undergone multiple rounds of duplication and humans have two clusters with a total of 55 functional keratin genes in their genomes. Due to the high similarity between different keratin paralogs and species-specific differences in gene content, the currently available keratin gene annotation in species with draft genome assemblies such as dog and horse is still imperfect. We compared the National Center for Biotechnology Information (NCBI) (dog annotation release 103, horse annotation release 101) and Ensembl (release 87) gene predictions for the canine and equine keratin gene clusters to RNA-seq data that were generated from adult skin of five dogs and two horses and from adult hair follicle tissue of one dog. Taking into consideration the knowledge on the conserved exon/intron structure of keratin genes, we annotated 61 putatively functional keratin genes in both the dog and horse, respectively. Subsequently, curators in the RefSeq group at NCBI reviewed their annotation of keratin genes in the dog and horse genomes (Annotation Release 104 and Annotation Release 102, respectively) and updated annotation and gene nomenclature of several keratin genes. The updates are now available in the NCBI Gene database (https://www.ncbi.nlm.nih.gov/gene). PMID:28846680

  6. Pathophysiology of keratinization

    PubMed Central

    Deo, Priya Nimish; Deshmukh, Revati

    2018-01-01

    Cytoskeleton of a cell is made up of microfilaments, microtubules and intermediate filaments. Keratins are diverse proteins. These intermediate filaments maintain the structural integrity of the keratinocytes. The word keratin covers these intermediate filament-forming proteins within the keratinocytes. They are expressed in a specific pattern and according to the stage of cellular differentiation. They always occur in pairs. Mutations in the genes which regulate the expression of keratin proteins are associated with a number of disorders which show defects in both skin and mucosa. In addition, there are a number of disorders which are seen because of abnormal keratinization. These keratins and keratin-associated proteins have become important markers in diagnostic pathology. This review article discusses the classification, structure, functions, the stains used for the demonstration of keratin and associated pathology. The review describes the physiology of keratinization, pathology behind abnormal keratin formation and various keratin disorders. PMID:29731562

  7. ERK2-mediated C-terminal serine phosphorylation of p300 is vital to the regulation of epidermal growth factor-induced keratin 16 gene expression.

    PubMed

    Chen, Yun-Ju; Wang, Ying-Nai; Chang, Wen-Chang

    2007-09-14

    We previously reported that the epidermal growth factor (EGF) regulates the gene expression of keratin 16 by activating the extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling which in turn enhances the recruitment of p300 to the keratin 16 promoter. The recruited p300 functionally cooperates with Sp1 and c-Jun to regulate the gene expression of keratin 16. This study investigated in detail the molecular events incurred upon p300 whereby EGF caused an enhanced interaction between p300 and Sp1. EGF apparently induced time- and dose-dependent phosphorylation of p300, both in vitro and in vivo, through the activation of ERK2. The six potential ERK2 phosphorylation sites, including three threonine and three serine residues as revealed by sequential analysis, were first identified in vitro. Confirmation of these six sites in vivo indicated that these three serine residues (Ser-2279, Ser-2315, and Ser-2366) on the C terminus of p300 were the major signaling targets of EGF. Furthermore, the C-terminal serine phosphorylation of p300 stimulated its histone acetyltransferase activity and enhanced its interaction with Sp1. These serine phosphorylation sites on p300 controlled the p300 recruitment to the keratin 16 promoter. When all three serine residues on p300 were replaced by alanine, EGF could no longer induce the gene expression of keratin 16. Taken together, these results strongly suggested that the ERK2-mediated C-terminal serine phosphorylation of p300 was a key event in the regulation of EGF-induced keratin 16 expression. These results also constituted the first report identifying the unique p300 phosphorylation sites induced by ERK2 in vivo.

  8. Prolactin--a novel neuroendocrine regulator of human keratin expression in situ.

    PubMed

    Ramot, Yuval; Bíró, Tamás; Tiede, Stephan; Tóth, Balázs I; Langan, Ewan A; Sugawara, Koji; Foitzik, Kerstin; Ingber, Arieh; Goffin, Vincent; Langbein, Lutz; Paus, Ralf

    2010-06-01

    The controls of human keratin expression in situ remain to be fully elucidated. Here, we have investigated the effects of the neurohormone prolactin (PRL) on keratin expression in a physiologically and clinically relevant test system: organ-cultured normal human hair follicles (HFs). Not only do HFs express a wide range of keratins, but they are also a source and target of PRL. Microarray analysis revealed that PRL differentially regulated a defined subset of keratins and keratin-associated proteins. Quantitative immunohistomorphometry and quantitative PCR confirmed that PRL up-regulated expression of keratins K5 and K14 and the epithelial stem cell-associated keratins K15 and K19 in organ-cultured HFs and/or isolated HF keratinocytes. PRL also up-regulated K15 promoter activity and K15 protein expression in situ, whereas it inhibited K6 and K31 expression. These regulatory effects were reversed by a pure competitive PRL receptor antagonist. Antagonist alone also modulated keratin expression, suggesting that "tonic stimulation" by endogenous PRL is required for normal expression levels of selected keratins. Therefore, our study identifies PRL as a major, clinically relevant, novel neuroendocrine regulator of both human keratin expression and human epithelial stem cell biology in situ.

  9. The effect of culture medium and carrier on explant culture of human limbal epithelium: A comparison of ultrastructure, keratin profile and gene expression.

    PubMed

    Pathak, Meeta; Olstad, O K; Drolsum, Liv; Moe, Morten C; Smorodinova, Natalia; Kalasova, Sarka; Jirsova, Katerina; Nicolaissen, Bjørn; Noer, Agate

    2016-12-01

    Patients with limbal stem cell deficiency (LSCD) often experience pain and photophobia due to recurrent epithelial defects and chronic inflammation of the cornea. Successfully restoring a healthy corneal surface in these patients by transplantation of ex vivo expanded human limbal epithelial cells (LECs) may alleviate these symptoms and significantly improve their quality of life. The clinical outcome of transplantation is known to be influenced by the quality of transplanted cells. Presently, several different protocols for cultivation and transplantation of LECs are in use. However, no consensus on an optimal protocol exists. The aim of this study was to examine the effect of culture medium and carrier on the morphology, staining of selected keratins and global gene expression in ex vivo cultured LECs. Limbal biopsies from cadaveric donors were cultured for three weeks on human amniotic membrane (HAM) or on tissue culture coated plastic (PL) in either a complex medium (COM), containing recombinant growth factors, hormones, cholera toxin and fetal bovine serum, or in medium supplemented only with human serum (HS). The expanded LECs were examined by light microscopy (LM), transmission electron microscopy (TEM), immunohistochemistry (IHC) for keratins K3, K7, K8, K12, K13, K14, K15 and K19, as well as microarray and qRT-PCR analysis. The cultured LECs exhibited similar morphology and keratin staining on LM, TEM and IHC examination, regardless of the culture condition. The epithelium was multilayered, with cuboidal basal cells and flattened superficial cells. Cells were attached to each other by desmosomes. Adhesion complexes were observed between basal cells and the underlying carrier in LECs cultured on HAM, but not in LECs cultured on PL. GeneChip Human Gene 2.0 ST microarray (Affymetrix) analysis revealed that 18,653 transcripts were ≥2 fold up or downregulated (p ≤ 0.05). Cells cultured in the same medium (COM or HS) showed more similarities in gene

  10. Genomic Organization, Transcriptomic Analysis, and Functional Characterization of Avian α- and β-Keratins in Diverse Feather Forms

    PubMed Central

    Fan, Wen-Lang; Yan, Jie; Chen, Chih-Kuan; Lai, Yu-Ting; Wu, Siao-Man; Mao, Chi-Tang; Chen, Jun-Jie; Lu, Mei-Yeh Jade; Ho, Meng-Ru; Widelitz, Randall B.; Chen, Chih-Feng; Chuong, Cheng-Ming; Li, Wen-Hsiung

    2014-01-01

    Feathers are hallmark avian integument appendages, although they were also present on theropods. They are composed of flexible corneous materials made of α- and β-keratins, but their genomic organization and their functional roles in feathers have not been well studied. First, we made an exhaustive search of α- and β-keratin genes in the new chicken genome assembly (Galgal4). Then, using transcriptomic analysis, we studied α- and β-keratin gene expression patterns in five types of feather epidermis. The expression patterns of β-keratin genes were different in different feather types, whereas those of α-keratin genes were less variable. In addition, we obtained extensive α- and β-keratin mRNA in situ hybridization data, showing that α-keratins and β-keratins are preferentially expressed in different parts of the feather components. Together, our data suggest that feather morphological and structural diversity can largely be attributed to differential combinations of α- and β-keratin genes in different intrafeather regions and/or feather types from different body parts. The expression profiles provide new insights into the evolutionary origin and diversification of feathers. Finally, functional analysis using mutant chicken keratin forms based on those found in the human α-keratin mutation database led to abnormal phenotypes. This demonstrates that the chicken can be a convenient model for studying the molecular biology of human keratin-based diseases. PMID:25152353

  11. The human keratins: biology and pathology

    PubMed Central

    Divo, Markus; Langbein, Lutz

    2008-01-01

    The keratins are the typical intermediate filament proteins of epithelia, showing an outstanding degree of molecular diversity. Heteropolymeric filaments are formed by pairing of type I and type II molecules. In humans 54 functional keratin genes exist. They are expressed in highly specific patterns related to the epithelial type and stage of cellular differentiation. About half of all keratins—including numerous keratins characterized only recently—are restricted to the various compartments of hair follicles. As part of the epithelial cytoskeleton, keratins are important for the mechanical stability and integrity of epithelial cells and tissues. Moreover, some keratins also have regulatory functions and are involved in intracellular signaling pathways, e.g. protection from stress, wound healing, and apoptosis. Applying the new consensus nomenclature, this article summarizes, for all human keratins, their cell type and tissue distribution and their functional significance in relation to transgenic mouse models and human hereditary keratin diseases. Furthermore, since keratins also exhibit characteristic expression patterns in human tumors, several of them (notably K5, K7, K8/K18, K19, and K20) have great importance in immunohistochemical tumor diagnosis of carcinomas, in particular of unclear metastases and in precise classification and subtyping. Future research might open further fields of clinical application for this remarkable protein family. PMID:18461349

  12. Beta-keratins of differentiating epidermis of snake comprise glycine-proline-serine-rich proteins with an avian-like gene organization.

    PubMed

    Dalla Valle, Luisa; Nardi, Alessia; Belvedere, Paola; Toni, Mattia; Alibardi, Lorenzo

    2007-07-01

    Beta-keratins of reptilian scales have been recently cloned and characterized in some lizards. Here we report for the first time the sequence of some beta-keratins from the snake Elaphe guttata. Five different cDNAs were obtained using 5'- and 3'-RACE analyses. Four sequences differ by only few nucleotides in the coding region, whereas the last cDNA shows, in this region, only 84% of identity. The gene corresponding to one of the cDNA sequences has a single intron present in the 5'-untranslated region. This genomic organization is similar to that of birds' beta-keratins. Cloning and Southern blotting analysis suggest that snake beta-keratins belong to a family of high-related genes as for geckos. PCR analysis suggests a head-to-tail orientation of genes in the same chromosome. In situ hybridization detected beta-keratin transcripts almost exclusively in differentiating oberhautchen and beta-cells of the snake epidermis in renewal phase. This is confirmed by Northern blotting that showed, in this phase, a high expression of two different transcripts whereas only the longer transcript is expressed at a much lower level in resting skin. The cDNA coding sequences encoded putative glycine-proline-serine rich proteins containing 137-139 amino acids, with apparent isoelectric point at 7.5 and 8.2. A central region, rich in proline, shows over 50% homology with avian scale, claw, and feather keratins. The prediction of secondary structure shows mainly a random coil conformation and few beta-strand regions in the central region, likely involved in the formation of a fibrous framework of beta-keratins. This region was possibly present in basic reptiles that originated reptiles and birds. Copyright 2007 Wiley-Liss, Inc.

  13. Topographical mapping of α- and β-keratins on developing chicken skin integuments: Functional interaction and evolutionary perspectives

    PubMed Central

    Wu, Ping; Ng, Chen Siang; Yan, Jie; Lai, Yung-Chih; Chen, Chih-Kuan; Lai, Yu-Ting; Wu, Siao-Man; Chen, Jiun-Jie; Luo, Weiqi; Widelitz, Randall B.; Li, Wen-Hsiung; Chuong, Cheng-Ming

    2015-01-01

    Avian integumentary organs include feathers, scales, claws, and beaks. They cover the body surface and play various functions to help adapt birds to diverse environments. These keratinized structures are mainly composed of corneous materials made of α-keratins, which exist in all vertebrates, and β-keratins, which only exist in birds and reptiles. Here, members of the keratin gene families were used to study how gene family evolution contributes to novelty and adaptation, focusing on tissue morphogenesis. Using chicken as a model, we applied RNA-seq and in situ hybridization to map α- and β-keratin genes in various skin appendages at embryonic developmental stages. The data demonstrate that temporal and spatial α- and β-keratin expression is involved in establishing the diversity of skin appendage phenotypes. Embryonic feathers express a higher proportion of β-keratin genes than other skin regions. In feather filament morphogenesis, β-keratins show intricate complexity in diverse substructures of feather branches. To explore functional interactions, we used a retrovirus transgenic system to ectopically express mutant α- or antisense β-keratin forms. α- and β-keratins show mutual dependence and mutations in either keratin type results in disrupted keratin networks and failure to form proper feather branches. Our data suggest that combinations of α- and β-keratin genes contribute to the morphological and structural diversity of different avian skin appendages, with feather-β-keratins conferring more possible composites in building intrafeather architecture complexity, setting up a platform of morphological evolution of functional forms in feathers. PMID:26598683

  14. Autosomal Recessive Hypotrichosis with Woolly Hair Caused by a Mutation in the Keratin 25 Gene Expressed in Hair Follicles.

    PubMed

    Zernov, Nikolay V; Skoblov, Mikhail Y; Marakhonov, Andrey V; Shimomura, Yutaka; Vasilyeva, Tatyana A; Konovalov, Fedor A; Abrukova, Anna V; Zinchenko, Rena A

    2016-06-01

    Hypotrichosis is an abnormal condition characterized by decreased hair density and various defects in hair structure and growth patterns. In particular, in woolly hair, hypotrichosis is characterized by a tightly curled structure and abnormal growth. In this study, we present a detailed comparative examination of individuals affected by autosomal-recessive hypotrichosis (ARH), which distinguishes two types of ARH. Earlier, we demonstrated that exon 4 deletion in the lipase H gene caused an ARH (hypotrichosis 7; MIM: 604379) in populations of the Volga-Ural region of Russia. Screening for this mutation in all affected individuals revealed its presence only in the group with the hypotrichosis 7 phenotype. Other patients formed a separate group of woolly hair-associated ARH, with a homozygous missense mutation c.712G>T (p.Val238Leu) in a highly conserved position of type I keratin KRT25 (K25). Haplotype analysis indicated a founder effect. An expression study in the HaCaT cell line demonstrated a deleterious effect of the p.Val238Leu mutation on the formation of keratin intermediate filaments. Hence, we have identified a previously unreported missense mutation in the KRT25 gene causing ARH with woolly hair. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Keratin expression profiling of transitional epithelium in the painful bladder syndrome/interstitial cystitis.

    PubMed

    Laguna, Pilar; Smedts, Frank; Nordling, Jörgen; Horn, Thomas; Bouchelouche, Kirsten; Hopman, Anton; de la Rosette, Jean

    2006-01-01

    Painful bladder syndrome/interstitial cystitis (PBS/IC) is a severely debilitating condition. Its cause is poorly understood; therapy is symptomatic and often unsuccessful. To study urothelial involvement, we characterized the keratin phenotype of bladder urothelium in 18 patients with PBS/IC using a panel of 11 keratin antibodies recognizing simple keratins found in columnar epithelia (keratins 7, 8, 18, and 20) and keratins associated with basal cell compartments of squamous epithelia (keratins 5, 13, 14, and 17). We also tested 2 antibodies recognizing more than 1 keratin also directed against basal cell compartments of squamous epithelia (D5/16 B4 and 34betaE12). Bladder urothelium in PBS/IC showed distinct differences in the profiles of keratins 7, 8, 14, 17, 18, and 20 compared with literature reports for normal bladder urothelium. These were characterized by a shift from the normal bladder urothelial keratin phenotype to a more squamous keratin profile, despite the lack of morphologic evidence of squamous epithelial differentiation and a loss of compartmentalization of keratin expression. The severity of these changes varied between biopsy specimens. Whether these changes are primary or secondary to another underlying condition remains to be determined.

  16. Rapid Evolution of Beta-Keratin Genes Contribute to Phenotypic Differences That Distinguish Turtles and Birds from Other Reptiles

    PubMed Central

    Li, Yang I.; Kong, Lesheng; Ponting, Chris P.; Haerty, Wilfried

    2013-01-01

    Sequencing of vertebrate genomes permits changes in distinct protein families, including gene gains and losses, to be ascribed to lineage-specific phenotypes. A prominent example of this is the large-scale duplication of beta-keratin genes in the ancestors of birds, which was crucial to the subsequent evolution of their beaks, claws, and feathers. Evidence suggests that the shell of Pseudomys nelsoni contains at least 16 beta-keratins proteins, but it is unknown whether this is a complete set and whether their corresponding genes are orthologous to avian beak, claw, or feather beta-keratin genes. To address these issues and to better understand the evolution of the turtle shell at a molecular level, we surveyed the diversity of beta-keratin genes from the genome assemblies of three turtles, Chrysemys picta, Pelodiscus sinensis, and Chelonia mydas, which together represent over 160 Myr of chelonian evolution. For these three turtles, we found 200 beta-keratins, which indicate that, as for birds, a large expansion of beta-keratin genes in turtles occurred concomitantly with the evolution of a unique phenotype, namely, their plastron and carapace. Phylogenetic reconstruction of beta-keratin gene evolution suggests that separate waves of gene duplication within a single genomic location gave rise to scales, claws, and feathers in birds, and independently the scutes of the shell in turtles. PMID:23576313

  17. Keratins 17 and 19 expression as prognostic markers in oral squamous cell carcinoma.

    PubMed

    Coelho, B A; Peterle, G T; Santos, M; Agostini, L P; Maia, L L; Stur, E; Silva, C V M; Mendes, S O; Almança, C C J; Freitas, F V; Borçoi, A R; Archanjo, A B; Mercante, A M C; Nunes, F D; Carvalho, M B; Tajara, E H; Louro, I D; Silva-Conforti, A M A

    2015-11-25

    Five-year survival rates for oral squamous cell carcinoma (OSCC) are 30% and the mortality rate is 50%. Immunohistochemistry panels are used to evaluate proliferation, vascularization, apoptosis, HPV infection, and keratin expression, which are important markers of malignant progression. Keratins are a family of intermediate filaments predominantly expressed in epithelial cells and have an essential role in mechanical support and cytoskeleton formation, which is essential for the structural integrity and stability of the cell. In this study, we analyzed the expressions of keratins 17 and 19 (K17 and K19) by immunohistochemistry in tumoral and non-tumoral tissues from patients with OSCC. The results show that expression of these keratins is higher in tumor tissues compared to non-tumor tissues. Positive K17 expression correlates with lymph node metastasis and multivariate analysis confirmed this relationship, revealing a 6-fold increase in lymph node metastasis when K17 is expressed. We observed a correlation between K17 expression with disease-free survival and disease-specific death in patients who received surgery and radiotherapy. Multivariate analysis revealed that low expression of K17 was an independent marker for early disease relapse and disease-specific death in patients treated with surgery and radiotherapy, with an approximately 4-fold increased risk when compared to high K17 expression. Our results suggest a potential role for K17 and K19 expression profiles as tumor prognostic markers in OSCC patients.

  18. Autosomal-dominant Meesmann epithelial corneal dystrophy without an exon mutation in the keratin-3 or keratin-12 gene in a Chinese family.

    PubMed

    Cao, Wei; Yan, Ming; Hao, QianYun; Wang, ShuLin; Wu, LiHua; Liu, Qing; Li, MingYan; Biddle, Fred G; Wu, Wei

    2013-04-01

    Meesmann epithelial corneal dystrophy (MECD) is a dominantly inherited disorder, characterized by fragility of the anterior corneal epithelium and formation of intraepithelial microcysts. It has been described in a number of different ancestral groups. To date, all reported cases of MECD have been associated with either a single mutation in one exon of the keratin-3 gene (KRT3) or a single mutation in one of two exons of the keratin-12 gene (KRT12). Each mutation leads to a predicted amino acid change in the respective keratin-3 or keratin-12 proteins that combine to form the corneal-specific heterodimeric intermediate filament protein. This case report describes a four-generation Chinese kindred with typical autosomal-dominant MECD. Exon sequencing of KRT3 and KRT12 in six affected and eight unaffected individuals (including two spouses) did not detect any mutations or nucleotide sequence variants. This kindred demonstrates that single mis-sense mutations may be sufficient but are not required in all individuals with the MECD phenotype. It provides a unique opportunity to investigate further genomic and functional heterogeneity in MECD.

  19. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia

    PubMed Central

    Bragulla, Hermann H; Homberger, Dominique G

    2009-01-01

    Historically, the term ‘keratin’ stood for all of the proteins extracted from skin modifications, such as horns, claws and hooves. Subsequently, it was realized that this keratin is actually a mixture of keratins, keratin filament-associated proteins and other proteins, such as enzymes. Keratins were then defined as certain filament-forming proteins with specific physicochemical properties and extracted from the cornified layer of the epidermis, whereas those filament-forming proteins that were extracted from the living layers of the epidermis were grouped as ‘prekeratins’ or ‘cytokeratins’. Currently, the term ‘keratin’ covers all intermediate filament-forming proteins with specific physicochemical properties and produced in any vertebrate epithelia. Similarly, the nomenclature of epithelia as cornified, keratinized or non-keratinized is based historically on the notion that only the epidermis of skin modifications such as horns, claws and hooves is cornified, that the non-modified epidermis is a keratinized stratified epithelium, and that all other stratified and non-stratified epithelia are non-keratinized epithelia. At this point in time, the concepts of keratins and of keratinized or cornified epithelia need clarification and revision concerning the structure and function of keratin and keratin filaments in various epithelia of different species, as well as of keratin genes and their modifications, in view of recent research, such as the sequencing of keratin proteins and their genes, cell culture, transfection of epithelial cells, immunohistochemistry and immunoblotting. Recently, new functions of keratins and keratin filaments in cell signaling and intracellular vesicle transport have been discovered. It is currently understood that all stratified epithelia are keratinized and that some of these keratinized stratified epithelia cornify by forming a Stratum corneum. The processes of keratinization and cornification in skin modifications are

  20. New consensus nomenclature for mammalian keratins

    PubMed Central

    Schweizer, Jürgen; Bowden, Paul E.; Coulombe, Pierre A.; Langbein, Lutz; Lane, E. Birgitte; Magin, Thomas M.; Maltais, Lois; Omary, M. Bishr; Parry, David A.D.; Rogers, Michael A.; Wright, Mathew W.

    2006-01-01

    Keratins are intermediate filament–forming proteins that provide mechanical support and fulfill a variety of additional functions in epithelial cells. In 1982, a nomenclature was devised to name the keratin proteins that were known at that point. The systematic sequencing of the human genome in recent years uncovered the existence of several novel keratin genes and their encoded proteins. Their naming could not be adequately handled in the context of the original system. We propose a new consensus nomenclature for keratin genes and proteins that relies upon and extends the 1982 system and adheres to the guidelines issued by the Human and Mouse Genome Nomenclature Committees. This revised nomenclature accommodates functional genes and pseudogenes, and although designed specifically for the full complement of human keratins, it offers the flexibility needed to incorporate additional keratins from other mammalian species. PMID:16831889

  1. Differential expression of Cyclin D1 in keratin-producing odontogenic cysts

    PubMed Central

    Vera-Sirera, Beatriz; Forner-Navarro, Leopoldo

    2015-01-01

    Objetives: The aim of the present study was to analyze the expression levels of Cyclin D1 (CCD1), a nuclear protein that plays a crucial role in cell cycle progression, in a series of keratin-producing odontogenic cysts. Study Design: A total of 58 keratin-producing odontogenic cysts, diagnosed over ten years and classified according to the WHO 2005 criteria, were immunohistochemically analyzed in terms of CCD1 expression, which was quantified in the basal, suprabasal and intermediate/superficial epithelial compartments. The extent of immunostaining was measured as a proportion of total epithelial thickness. Quantified immunohistochemical data were correlated with clinicopathological features and clinical recurrence. Results: Keratin-producing odontogenic cysts were classified as 6 syndromic keratocystic odontogenic tumors (S-KCOT), 40 sporadic or non-syndromic KCOT (NS-KCOT) and 12 orthokeratinized odontogenic cysts (OOC). Immunohistochemically, CCD1 staining was evident predominantly in the parabasal region of all cystic lesions, but among-lesion differences were apparent, showing a clear expansion of parabasal compartment especially in the S-KCOT, followed to a lesser extent in the NS-KCOT, and being much more reduced in the OOC, which had the greatest average epithelial thickness. Conclusions: The differential expression of CCD1 noted in the present study suggests that dysregulation of cell cycle progression from G1 to the S phase contributes to the different aggressiveness of these lesions. However, CCD1 expression levels did not predict NS-KCOT recurrence, which is likely influenced by factors unrelated to lesion biology. Key words:Keratin-producing odontogenic cyst, keratocyst, keratocystic odontogenic tumor, nevoid basal cell carcinoma syndrome, orthokeratinized odontogenic cyst, cyclin D1, immunohistochemistry. PMID:25475773

  2. A novel role of the NRF2 transcription factor in the regulation of arsenite-mediated keratin 16 gene expression in human keratinocytes.

    PubMed

    Endo, Hitoshi; Sugioka, Yoshihiko; Nakagi, Yoshihiko; Saijo, Yasuaki; Yoshida, Takahiko

    2008-07-01

    Inorganic sodium arsenite (iAs) is a ubiquitous environmental contaminant and is associated with an increased risk of skin hyperkeratosis and cancer. We investigated the molecular mechanisms underlying the regulation of the keratin 16 (K16) gene by iAs in the human keratinocyte cell line HaCaT. We performed reverse transcriptase polymerase chain reaction, luciferase assays, Western blots, and electrophoretic mobility shift assays to determine the transcriptional regulation of the K16 gene by iAs. We used gene overexpression approaches to elucidate the nuclear factor erythroid-derived 2 related factor 2 (NRF2) involved in the K16 induction. iAs induced the mRNA and protein expression of K16. We also found that the expression of K16 was transcriptionally induced by iAs through activator protein-1-like sites and an antioxidant response element (ARE) in its gene promoter region. Treatment with iAs also enhanced the production and translocation of the NRF2 transcription factor, an ARE-binding protein, into the nucleus without modification of its mRNA expression. In addition, iAs elongated the half-life of the NRF2 protein. When overexpressed in HaCaT cells, NRF2 was also directly involved in not only the up-regulation of the detoxification gene thioredoxin but also K16 gene expression. Our data clearly indicate that the K16 gene is a novel target of NRF2. Furthermore, our findings also suggest that NRF2 has opposing roles in the cell--in the activation of detoxification pathways and in promoting the development of skin disorders.

  3. Transcriptional insulation of the human keratin 18 gene in transgenic mice.

    PubMed Central

    Neznanov, N; Thorey, I S; Ceceña, G; Oshima, R G

    1993-01-01

    Expression of the 10-kb human keratin 18 (K18) gene in transgenic mice results in efficient and appropriate tissue-specific expression in a variety of internal epithelial organs, including liver, lung, intestine, kidney, and the ependymal epithelium of brain, but not in spleen, heart, or skeletal muscle. Expression at the RNA level is directly proportional to the number of integrated K18 transgenes. These results indicate that the K18 gene is able to insulate itself both from the commonly observed cis-acting effects of the sites of integration and from the potential complications of duplicated copies of the gene arranged in head-to-tail fashion. To begin to identify the K18 gene sequences responsible for this property of transcriptional insulation, additional transgenic mouse lines containing deletions of either the 5' or 3' distal end of the K18 gene have been characterized. Deletion of 1.5 kb of the distal 5' flanking sequence has no effect upon either the tissue specificity or the copy number-dependent behavior of the transgene. In contrast, deletion of the 3.5-kb 3' flanking sequence of the gene results in the loss of the copy number-dependent behavior of the gene in liver and intestine. However, expression in kidney, lung, and brain remains efficient and copy number dependent in these transgenic mice. Furthermore, herpes simplex virus thymidine kinase gene expression is copy number dependent in transgenic mice when the gene is located between the distal 5'- and 3'-flanking sequences of the K18 gene. Each adult transgenic male expressed the thymidine kinase gene in testes and brain and proportionally to the number of integrated transgenes. We conclude that the characteristic of copy number-dependent expression of the K18 gene is tissue specific because the sequence requirements for transcriptional insulation in adult liver and intestine are different from those for lung and kidney. In addition, the behavior of the transgenic thymidine kinase gene in testes and

  4. Alu sequence involvement in transcriptional insulation of the keratin 18 gene in transgenic mice.

    PubMed Central

    Thorey, I S; Ceceña, G; Reynolds, W; Oshima, R G

    1993-01-01

    The human keratin 18 (K18) gene is expressed in a variety of adult simple epithelial tissues, including liver, intestine, lung, and kidney, but is not normally found in skin, muscle, heart, spleen, or most of the brain. Transgenic animals derived from the cloned K18 gene express the transgene in appropriate tissues at levels directly proportional to the copy number and independently of the sites of integration. We have investigated in transgenic mice the dependence of K18 gene expression on the distal 5' and 3' flanking sequences and upon the RNA polymerase III promoter of an Alu repetitive DNA transcription unit immediately upstream of the K18 promoter. Integration site-independent expression of tandemly duplicated K18 transgenes requires the presence of either an 825-bp fragment of the 5' flanking sequence or the 3.5-kb 3' flanking sequence. Mutation of the RNA polymerase III promoter of the Alu element within the 825-bp fragment abolishes copy number-dependent expression in kidney but does not abolish integration site-independent expression when assayed in the absence of the 3' flanking sequence of the K18 gene. The characteristics of integration site-independent expression and copy number-dependent expression are separable. In addition, the formation of the chromatin state of the K18 gene, which likely restricts the tissue-specific expression of this gene, is not dependent upon the distal flanking sequences of the 10-kb K18 gene but rather may depend on internal regulatory regions of the gene. Images PMID:7692231

  5. Reactivation of larval keratin gene (krt62.L) in blastema epithelium during Xenopus froglet limb regeneration.

    PubMed

    Satoh, Akira; Mitogawa, Kazumasa; Saito, Nanami; Suzuki, Miyuki; Suzuki, Ken-Ichi T; Ochi, Haruki; Makanae, Aki

    2017-12-15

    Limb regeneration is considered a form of limb redevelopment because of the molecular and morphological similarities. Forming a regeneration blastema is, in essence, creating a developing limb bud in an adult body. This reactivation of a developmental process in a mature body is worth studying. Xenopus laevis has a biphasic life cycle that involves distinct larval and adult stages. These distinct developmental stages are useful for investigating the reactivation of developmental processes in post-metamorphic frogs (froglets). In this study, we focused on the re-expression of a larval gene (krt62.L) during Xenopus froglet limb regeneration. Recently renamed krt62.L, this gene was known as the larval keratin (xlk) gene, which is specific to larval-tadpole stages. During limb regeneration in a froglet, krt62.L was re-expressed in a basal layer of blastema epithelium, where adult-specific keratin (Krt12.6.S) expression was also observable. Nerves produce important regulatory factors for amphibian limb regeneration, and also play a role in blastema formation and maintenance. The effect of nerve function on krt62.L expression could be seen in the maintenance of krt62.L expression, but not in its induction. When an epidermis-stripped limb bud was grafted in a froglet blastema, the grafted limb bud could reach the digit-forming stage. This suggests that krt62.L-positive froglet blastema epithelium is able to support the limb development process. These findings imply that the developmental process is locally reactivated in an postmetamorphic body during limb regeneration. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Differential expression of cyclin D1 in keratin-producing odontogenic cysts.

    PubMed

    Vera-Sirera, Beatriz; Forner-Navarro, Leopoldo; Vera-Sempere, Francisco

    2015-01-01

    The aim of the present study was to analyze the expression levels of Cyclin D1 (CCD1), a nuclear protein that plays a crucial role in cell cycle progression, in a series of keratin-producing odontogenic cysts. A total of 58 keratin-producing odontogenic cysts, diagnosed over ten years and classified according to the WHO 2005 criteria, were immunohistochemically analyzed in terms of CCD1 expression, which was quantified in the basal, suprabasal and intermediate/superficial epithelial compartments. The extent of immunostaining was measured as a proportion of total epithelial thickness. Quantified immunohistochemical data were correlated with clinicopathological features and clinical recurrence. Keratin-producing odontogenic cysts were classified as 6 syndromic keratocystic odontogenic tumors (S-KCOT), 40 sporadic or non-syndromic KCOT (NS-KCOT) and 12 orthokeratinized odontogenic cysts (OOC). Immunohistochemically, CCD1 staining was evident predominantly in the parabasal region of all cystic lesions, but among-lesion differences were apparent, showing a clear expansion of parabasal compartment especially in the S-KCOT, followed to a lesser extent in the NS-KCOT, and being much more reduced in the OOC, which had the greatest average epithelial thickness. The differential expression of CCD1 noted in the present study suggests that dysregulation of cell cycle progression from G1 to the S phase contributes to the different aggressiveness of these lesions. However, CCD1 expression levels did not predict NS-KCOT recurrence, which is likely influenced by factors unrelated to lesion biology.

  7. Heterogeneity of keratin expression and actin distribution in benign and malignant mammary diseases.

    PubMed

    Wada, T; Yasutomi, M; Yamada, K; Hashimura, K; Kunikata, M; Tanaka, T; Huang, J W; Mori, M

    1991-01-01

    Immunoreactivity of monoclonal anti-cytokeratin KL1, PKK1, K8.12 and anti-actin antibodies in 101 cases of diseased human breast lesions showed irregular keratin distribution in luminal cells of terminal ductal-lobular unit and basal layer cells of the interlobular and main duct. Actin staining was confined to myoepithelial cells. Benign lesions showed great heterogeneity in luminal cells of the terminal ductal-lobular units. Breast carcinoma showed a reduced staining for keratins, heterogeneity of keratin expression was found in solid tubular carcinoma, and actin was usually absent: however, papillo-ductal or comedo type had actin positive myoepithelial cells around carcinoma foci.

  8. Loss of keratin K2 expression causes aberrant aggregation of K10, hyperkeratosis, and inflammation.

    PubMed

    Fischer, Heinz; Langbein, Lutz; Reichelt, Julia; Praetzel-Wunder, Silke; Buchberger, Maria; Ghannadan, Minoo; Tschachler, Erwin; Eckhart, Leopold

    2014-10-01

    Keratin K2 is one of the most abundant structural proteins of the epidermis; however, its biological significance has remained elusive. Here we show that suprabasal type II keratins, K1 and K2, are expressed in a mutually exclusive manner at different body sites of the mouse, with K2 being confined to the ear, sole, and tail skin. Deletion of K2 caused acanthosis and hyperkeratosis of the ear and the tail epidermis, corneocyte fragility, increased transepidermal water loss, and local inflammation in the ear skin. The loss of K2 was partially compensated by upregulation of K1 expression. However, a significant portion of K2-deficient suprabasal keratinocytes lacked a regular cytoskeleton and developed massive aggregates of the type I keratin, K10. Aggregate formation, but not hyperkeratosis, was suppressed by the deletion of both K2 and K10, whereas deletion of K10 alone caused clumping of K2 in ear skin. Taken together, this study demonstrates that K2 is a necessary and sufficient binding partner of K10 at distinct body sites of the mouse and that unbalanced expression of these keratins results in aggregate formation.

  9. Keratins 8 and 18 are type II acute-phase responsive genes overexpressed in human liver disease.

    PubMed

    Guldiken, Nurdan; Usachov, Valentyn; Levada, Kateryna; Trautwein, Christian; Ziol, Marianne; Nahon, Pierre; Strnad, Pavel

    2015-04-01

    Keratins (Ks) 7, 8, 18 and 19 constitute important markers and modifiers of liver disease. In mice, K8 and K18 are stress inducible and a dysregulated K8 > K18 stoichiometry predisposes to formation of Mallory-Denk bodies (MDBs), i.e. aggregates characteristic of chronic liver disorders such as alcoholic liver disease (ALD). In our study, we analyse the expression and the regulation of keratins in context of human liver disease. K7, K8, K18 and K19 mRNA levels were determined in liver biopsies from patients with ALD, non-alcoholic steatohepatitis (NASH), chronic hepatitis B (HBV), hepatitis C (HCV) and from control subjects. HepG2 and Hep3B cells were treated with IL-1β, IL-6 and TNF-α. Mice were injected with turpentine, an established IL-6 inducer. K7, K8 and K18 were 1.5- to 3-fold upregulated in livers of ALD and HCV patients with a more active disease, but not in HBV/NASH subjects, while K19 was significantly elevated in all analysed disorders. K8 and K18 expression displayed a strong correlation (r = 0.89), but dysregulated levels with the K8 > K18 state were seen in ALD. All keratins were overexpressed in subjects with moderate vs. minimal inflammation, while K7, K8 and K18 were upregulated in patients with advanced liver fibrosis. In HepG2/Hep3B cells, IL-6 treatment but not IL-1β or TNF-α significantly increased K8 and K18 expression and elevated K18 levels were seen after turpentine injection. Keratins represent type II acute-phase responsive genes overexpressed in specific human liver disorders. A K8 > K18 state occurs in ALD and predisposes to MDB formation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Testosterone regulates keratin 33B expression in rat penis growth through androgen receptor signaling

    PubMed Central

    Ma, Yan-Min; Wu, Kai-Jie; Dang, Qiang; Shi, Qi; Gao, Yang; Guo, Peng; Xu, Shan; Wang, Xin-Yang; He, Da-Lin; Gong, Yong-Guang

    2014-01-01

    Androgen therapy is the mainstay of treatment for the hypogonadotropic hypogonadal micropenis because it obviously enhances penis growth in prepubescent microphallic patients. However, the molecular mechanisms of androgen treatment leading to penis growth are still largely unknown. To clarify this well-known phenomenon, we successfully generated a castrated male Sprague Dawley rat model at puberty followed by testosterone administration. Interestingly, compared with the control group, testosterone treatment stimulated a dose-dependent increase of penis weight, length, and width in castrated rats accompanied with a dramatic recovery of the pathological changes of the penis. Mechanistically, testosterone administration substantially increased the expression of androgen receptor (AR) protein. Increased AR protein in the penis could subsequently initiate transcription of its target genes, including keratin 33B (Krt33b). Importantly, we demonstrated that KRT33B is generally expressed in the rat penis and that most KRT33B expression is cytoplasmic. Furthermore, AR could directly modulate its expression by binding to a putative androgen response element sequence of the Krt33b promoter. Overall, this study reveals a novel mechanism facilitating penis growth after testosterone treatment in precastrated prepubescent animals, in which androgen enhances the expression of AR protein as well as its target genes, such as Krt33b. PMID:24994782

  11. Testosterone regulates keratin 33B expression in rat penis growth through androgen receptor signaling.

    PubMed

    Ma, Yan-Min; Wu, Kai-Jie; Dang, Qiang; Shi, Qi; Gao, Yang; Guo, Peng; Xu, Shan; Wang, Xin-Yang; He, Da-Lin; Gong, Yong-Guang

    2014-01-01

    Androgen therapy is the mainstay of treatment for the hypogonadotropic hypogonadal micropenis because it obviously enhances penis growth in prepubescent microphallic patients. However, the molecular mechanisms of androgen treatment leading to penis growth are still largely unknown. To clarify this well-known phenomenon, we successfully generated a castrated male Sprague Dawley rat model at puberty followed by testosterone administration. Interestingly, compared with the control group, testosterone treatment stimulated a dose-dependent increase of penis weight, length, and width in castrated rats accompanied with a dramatic recovery of the pathological changes of the penis. Mechanistically, testosterone administration substantially increased the expression of androgen receptor (AR) protein. Increased AR protein in the penis could subsequently initiate transcription of its target genes, including keratin 33B (Krt33b). Importantly, we demonstrated that KRT33B is generally expressed in the rat penis and that most KRT33B expression is cytoplasmic. Furthermore, AR could directly modulate its expression by binding to a putative androgen response element sequence of the Krt33b promoter. Overall, this study reveals a novel mechanism facilitating penis growth after testosterone treatment in precastrated prepubescent animals, in which androgen enhances the expression of AR protein as well as its target genes, such as Krt33b.

  12. Effects of grain processing methods on the expression of genes involved in volatile fatty acid transport and pH regulation, and keratinization in rumen epithelium of beef cattle

    PubMed Central

    Del Bianco Benedeti, Pedro; Silva, Breno de Castro; Pacheco, Marcos Vinícius Carneiro; Carvalho Filho, Ivan; Lopes, Mariana Mescouto; Marcondes, Marcos Inácio; Mantovani, Hilário Cuquetto; Valadares Filho, Sebastião de Campos; Detmann, Edenio

    2018-01-01

    Two experiments were carried out to evaluate the effects of corn and sorghum with different processing methods on the expression of genes involved in volatile fatty acids transport and pH regulation, and ruminal keratinization in rumen epithelium of finishing bulls. For Exp. 1, five rumen cannulated Nellore bulls were used in a 5x5 Latin square arrangement, with 14 d for adaptation and 9 d for sample collection. Treatments were: dry ground corn, dry ground sorghum, reconstituted corn, reconstituted sorghum, and control (forage-based diet). Samples of rumen epithelium from ventral sac were excised, rinsed, snap-frozen and stored at -80°C until total RNA isolation and quantitative real-time PCR analysis. In the Exp. 2, 24 Nellore bulls were assigned to a completely randomized design lasting 168 d. Experimental treatments were similar to those at Exp. 1, but without the control treatment. After the experimental period, bulls were slaughtered and rumen epithelium samples were rapidly excised for further histological analysis. Rumen epithelial tissue from animals fed reconstituted corn had lower expression of downregulated-in-adenoma (P = 0.03) and Na+/H+ exchanger 2 (trend; P = 0.09). The expression of Na+/ H+ exchanger 1 (P = 0.10) and putative anion transporter (P = 0.06) tended to be lower in rumen epithelium of bulls fed reconstituted grains. Ruminal concentration of valerate was greater for animals fed reconstituted grain (P = 0.01). Likewise, animals fed reconstituted corn tended to have greater butyrate ruminal concentration (P = 0.08). Keratinized layer thickness did not differ among treatments (P > 0.10). Therefore, reconstituted grains (especially corn) decrease the mRNA expression of genes involved in volatile fatty acids transport and pH control in the rumen epithelium. PMID:29902237

  13. Genetic variants in pachyonychia congenita-associated keratins increase susceptibility to tooth decay

    PubMed Central

    Carlson, Jenna C.; Karacz, Chelsea M.; Schwartz, Mary E.; Cross, Michael A.; Marazita, Mary L.

    2018-01-01

    Pachyonychia congenita (PC) is a cutaneous disorder primarily characterized by nail dystrophy and painful palmoplantar keratoderma. PC is caused by mutations in KRT6A, KRT6B, KRT6C, KRT16, and KRT17, a set of keratin genes expressed in the nail bed, palmoplantar epidermis, oral mucosal epithelium, hair follicle and sweat gland. RNA-seq analysis revealed that all PC-associated keratins (except for Krt6c that does exist in the mouse genome) are expressed in the mouse enamel organ. We further demonstrated that these keratins are produced by ameloblasts and are incorporated into mature human enamel. Using genetic and intraoral examination data from 573 adults and 449 children, we identified several missense polymorphisms in KRT6A, KRT6B and KRT6C that lead to a higher risk for dental caries. Structural analysis of teeth from a PC patient carrying a p.Asn171Lys substitution in keratin-6a (K6a) revealed disruption of enamel rod sheaths resulting in altered rod shape and distribution. Finally, this PC-associated substitution as well as more frequent caries-associated SNPs, found in two of the KRT6 genes, that result in p.Ser143Asn substitution (rs28538343 in KRT6B and rs151117600 in KRT6C), alter the assembly of K6 filaments in ameloblast-like cells. These results identify a new set of keratins involved in tooth enamel formation, distinguish novel susceptibility loci for tooth decay and reveal additional clinical features of pachyonychia congenita. PMID:29357356

  14. Genetic variants in pachyonychia congenita-associated keratins increase susceptibility to tooth decay.

    PubMed

    Duverger, Olivier; Carlson, Jenna C; Karacz, Chelsea M; Schwartz, Mary E; Cross, Michael A; Marazita, Mary L; Shaffer, John R; Morasso, Maria I

    2018-01-01

    Pachyonychia congenita (PC) is a cutaneous disorder primarily characterized by nail dystrophy and painful palmoplantar keratoderma. PC is caused by mutations in KRT6A, KRT6B, KRT6C, KRT16, and KRT17, a set of keratin genes expressed in the nail bed, palmoplantar epidermis, oral mucosal epithelium, hair follicle and sweat gland. RNA-seq analysis revealed that all PC-associated keratins (except for Krt6c that does exist in the mouse genome) are expressed in the mouse enamel organ. We further demonstrated that these keratins are produced by ameloblasts and are incorporated into mature human enamel. Using genetic and intraoral examination data from 573 adults and 449 children, we identified several missense polymorphisms in KRT6A, KRT6B and KRT6C that lead to a higher risk for dental caries. Structural analysis of teeth from a PC patient carrying a p.Asn171Lys substitution in keratin-6a (K6a) revealed disruption of enamel rod sheaths resulting in altered rod shape and distribution. Finally, this PC-associated substitution as well as more frequent caries-associated SNPs, found in two of the KRT6 genes, that result in p.Ser143Asn substitution (rs28538343 in KRT6B and rs151117600 in KRT6C), alter the assembly of K6 filaments in ameloblast-like cells. These results identify a new set of keratins involved in tooth enamel formation, distinguish novel susceptibility loci for tooth decay and reveal additional clinical features of pachyonychia congenita.

  15. A novel autosomal partially dominant mutation designated G476D in the keratin 5 gene causing epidermolysis bullosa simplex Weber-Cockayne type: a family study with a genetic twist.

    PubMed

    Kowalewski, Cezary; Hamada, Takahiro; Wozniak, Katarzyna; Kawano, Yuko; Szczecinska, Weronika; Yasumoto, Shinichiro; Schwartz, Robert A; Hashimoto, Takashi

    2007-07-01

    Epidermolysis bullosa simplex Weber-Cockayne type (EBS-WC) is a genetically inherited skin disease characterized by blistering restricted to the palms and soles. Its inheritance in nearly all kindreds is caused by a dominant-negative mutation in either KRT5 or KRT14, the genes encoding keratin 5 and keratin 14 proteins, respectively. Rarely, recessive mutations have also been found. We described a family with EBS-WC caused by a novel autosomal dominant mutation (G476D) in the keratin 5 gene. One family member was first seen with mucosal erosions and generalized blisters localized on the anogenital area, trunk, face and sites of mechanical trauma. Molecular analysis in this patient showed the presence of an additional mutation, an autosomal recessive (G183E) one, in the same gene. This observation suggests an additional effect of a recessively inherited mutation modulating the phenotypic expression of EBS caused by a partially dominant mutation and is important for accurate genetic counseling.

  16. Microarray analysis identifies keratin loci as sensitive biomarkers for thyroid hormone disruption in the salamander Ambystoma mexicanum.

    PubMed

    Page, Robert B; Monaghan, James R; Samuels, Amy K; Smith, Jeramiah J; Beachy, Christopher K; Voss, S Randal

    2007-02-01

    Ambystomatid salamanders offer several advantages for endocrine disruption research, including genomic and bioinformatics resources, an accessible laboratory model (Ambystoma mexicanum), and natural lineages that are broadly distributed among North American habitats. We used microarray analysis to measure the relative abundance of transcripts isolated from A. mexicanum epidermis (skin) after exogenous application of thyroid hormone (TH). Only one gene had a >2-fold change in transcript abundance after 2 days of TH treatment. However, hundreds of genes showed significantly different transcript levels at days 12 and 28 in comparison to day 0. A list of 123 TH-responsive genes was identified using statistical, BLAST, and fold level criteria. Cluster analysis identified two groups of genes with similar transcription patterns: up-regulated versus down-regulated. Most notably, several keratins exhibited dramatic (1000 fold) increases or decreases in transcript abundance. Keratin gene expression changes coincided with morphological remodeling of epithelial tissues. This suggests that keratin loci can be developed as sensitive biomarkers to assay temporal disruptions of larval-to-adult gene expression programs. Our study has identified the first collection of loci that are regulated during TH-induced metamorphosis in a salamander, thus setting the stage for future investigations of TH disruption in the Mexican axolotl and other salamanders of the genus Ambystoma.

  17. Keratins as components of the enamel organic matrix

    PubMed Central

    Duverger, Olivier; Beniash, Elia; Morasso, Maria I.

    2016-01-01

    Dental enamel is a hardest tissue in the human body, and although it starts as a tissue rich in proteins, by the time of eruption of the tooth in the oral cavity only a small fraction of the protein remains. While this organic matrix of enamel represents less than 1% by weight it plays essential roles in improving both toughness and resilience to chemical attacks. Despite the fact that the first studies of the enamel matrix began in the 19th century its exact composition and mechanisms of its function remain poorly understood. It was proposed that keratin or a keratin-like primitive epithelial component exists in mature enamel, however due to the extreme insolubility of its organic matrix the presence of keratins there was never clearly established. We have recently identified expression of a number of hair keratins in ameloblasts, the enamel secreting cells, and demonstrated their incorporation into mature enamel. Mutation in epithelial hair keratin KRT75 leads to a skin condition called pseudofollicularis barbae. Carriers of this mutation have an altered enamel structure and mechanical properties. Importantly, these individuals have a much higher prevalence of caries. To the best of our knowledge, this is the first study showing a direct link between a mutation in a protein-coding region of a gene and increased caries rates. In this paper we present an overview of the evidence of keratin-like material in enamel that has accumulated over the last 150 years. Furthermore, we propose potential mechanisms of action of KTR75 in enamel and highlight the clinical implications of the link between mutations in KRT75 and caries. Finally, we discuss the potential use of keratins for enamel repair. PMID:26709044

  18. Immunohistochemical expression of glucose transporter 1 in keratin-producing odontogenic cysts.

    PubMed

    Vera-Sirera, Beatriz; Forner-Navarro, Leopoldo; Vera-Sempere, Francisco

    2016-03-10

    Keratin-producing odontogenic cysts (KPOCs) are a group of cystic lesions that are often aggressive, with high rates of recurrence and multifocality. KPOCs included orthokeratinised odontogenic cyst (OOC) and parakeratotic odontogenic cysts, which are now considered true tumours denominated keratocystic odontogenic tumours (KCOTs). GLUT1 is a protein transporter that is involved in the active uptake of glucose across cell membranes and that is overexpressed in tumours in close correlation with the proliferation rate and positron emission tomography (PET) imaging results. A series of 58 keratin-producing odontogenic cysts was evaluated histologically and immunohistochemically in terms of GLUT1 expression. Different data were correlated using the beta regression model in relation to histological type and immunohistochemical expression of GLUT1, which was quantified using two different morphological methods. KPOC cases comprised 12 OOCs and 46 KCOTs, the latter corresponding to 6 syndromic and 40 sporadic KCOTs. GLUT1 expression was very low in OOC cases compared with KCOT cases, with statistical significant differences when quantification was considered. Different GLUT1 localisation patterns were revealed by immunostaining, with the parabasal cells showing higher reactivity in KCOTs. However, among KCOTs cases, GLUT1 expression was unable to establish differences between syndromic and sporadic cases. GLUT1 expression differentiated between OOC and KCOT cases, with significantly higher expression in KCOTs, but did not differentiate between syndromic and sporadic KCOT cases. However, given the structural characteristics of KCOTs, we hypothesised that PET imaging methodology is probably not a useful diagnostic tool for KCOTs. Further studies of GLUT1 expression and PET examination in KCOT series are needed to confirm this last hypothesis.

  19. Skn-1a/Oct-11 and {Delta}Np63{alpha} exert antagonizing effects on human keratin expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lena, Anna Maria; Cipollone, Rita; Amelio, Ivano

    2010-10-29

    Research highlights: {yields} Skn-1a markedly downregulates {Delta}Np63-driven K14 expression. {yields} {Delta}Np63 inhibits Skn-1a-mediated K10 expression. {yields} {Delta}Np63, mutated in SAM domain, is less effecting in K10 downregulation. {yields} Immunolocalization in human skin of the two transcription factors is partially overlapping. {yields} The antagonistic effects of Skn-1a and p63 is through competition for overlapping responsive elements or through an indirect interaction. -- Abstract: The formation of a stratified epidermis requires a carefully controlled balance between keratinocyte proliferation and differentiation. Here, we report the reciprocal effect on keratin expression of {Delta}Np63, pivotal in normal epidermal morphogenesis and maintenance, and Skn-1a/Oct-11, a POUmore » transcription factor that triggers and regulates the differentiation of keratinocytes. The expression of Skn-1a markedly downregulated {Delta}Np63-driven K14 expression in luciferase reporter assays. The extent of downregulation was comparable to the inhibition of Skn-1a-mediated K10 expression upon expression of {Delta}Np63. {Delta}Np63, mutated in the protein-protein interaction domain (SAM domain; mutated in human ectodermal dysplasia syndrome), was significantly less effecting in downregulating K10, raising the possibility of a direct interaction among Skn-1a and {Delta}Np63. Immunolocalization in human skin biopsies revealed that the expression of the two transcription factors is partially overlapping. Co-immunoprecipitation experiments did not, however, demonstrate a direct interaction between {Delta}Np63 and Skn-1a, suggesting that the antagonistic effects of Skn-1a and p63 on keratin promoter transactivation is probably through competition for overlapping binding sites on target gene promoter or through an indirect interaction.« less

  20. Isolation of a new class of cysteine-glycine-proline-rich beta-proteins (beta-keratins) and their expression in snake epidermis.

    PubMed

    Dalla Valle, Luisa; Nardi, Alessia; Alibardi, Lorenzo

    2010-03-01

    Scales of snakes contain hard proteins (beta-keratins), now referred to as keratin-associated beta-proteins. In the present study we report the isolation, sequencing, and expression of a new group of these proteins from snake epidermis, designated cysteine-glycine-proline-rich proteins. One deduced protein from expressed mRNAs contains 128 amino acids (12.5 kDa) with a theoretical pI at 7.95, containing 10.2% cysteine and 15.6% glycine. The sequences of two more snake cysteine-proline-rich proteins have been identified from genomic DNA. In situ hybridization shows that the messengers for these proteins are present in the suprabasal and early differentiating beta-cells of the renewing scale epidermis. The present study shows that snake scales, as previously seen in scales of lizards, contain cysteine-rich beta-proteins in addition to glycine-rich beta-proteins. These keratin-associated beta-proteins mix with intermediate filament keratins (alpha-keratins) to produce the resistant corneous layer of snake scales. The specific proportion of these two subfamilies of proteins in different scales can determine various degrees of hardness in scales.

  1. Monoclonal Antibody Analysis of Keratin Expression in the Central Nervous System

    NASA Astrophysics Data System (ADS)

    Franko, Maryellen C.; Gibbs, Clarence J.; Rhoades, Dorothy A.; Carleton Gajdusek, D.

    1987-05-01

    A monoclonal antibody directed against a 65-kDa brain protein demonstrates an epitope found in keratin from human epidermis. By indirect immunofluorescence, the antibody decorates intracytoplasmic filaments in a subclass of astrocytes and Purkinje cells of adult hamster brain. Double-label immunofluorescence study using antibody to glial fibrillary acidic protein and this antibody reveals the 65-kDa protein to be closely associated with glial filaments in astrocytes of fetal mouse brain cultures. Immunoblot analysis of purified human epidermal keratin and hamster brain homogenate confirms the reactivity of this antibody to epidermal keratin polypeptides. All the major epidermal keratins were recognized by this antibody. It did not bind to the remaining major intermediate filament proteins. These findings suggest that monoclonal antibody 34C9 recognizes a cytoskeletal structure connected with intermediate filaments. In addition, the monoclonal antibody demonstrates that epidermal keratins share an epitope not only among themselves but also with a ``neural keratin.''

  2. Keratin 17 null mice exhibit age- and strain-dependent alopecia

    PubMed Central

    McGowan, Kevin M.; Tong, Xuemei; Colucci-Guyon, Emma; Langa, Francina; Babinet, Charles; Coulombe, Pierre A.

    2002-01-01

    Onset of type I keratin 17 (K17) synthesis marks the adoption of an appendageal fate within embryonic ectoderm, and its expression persists in specific cell types within mature hair, glands, and nail. We report that K17 null mice develop severe alopecia during the first week postbirth, correlating with hair fragility, alterations in follicular histology, and apoptosis in matrix cells. These alterations are incompletely penetrant and normalize starting with the first postnatal cycle. Absence of a hair phenotype correlates with a genetic strain-dependent compensation by related keratins, including K16. These findings reveal a crucial role for K17 in the structural integrity of the first hair produced and the survival of hair-producing cells. Given that identical inherited mutations in this gene can cause either pachyonychia congenita or steatocystoma multiplex, the features of this mouse model suggest that this clinical heterogeneity arises from a cell type-specific, genetically determined compensation by related keratins. PMID:12050118

  3. Keratin 17 null mice exhibit age- and strain-dependent alopecia.

    PubMed

    McGowan, Kevin M; Tong, Xuemei; Colucci-Guyon, Emma; Langa, Francina; Babinet, Charles; Coulombe, Pierre A

    2002-06-01

    Onset of type I keratin 17 (K17) synthesis marks the adoption of an appendageal fate within embryonic ectoderm, and its expression persists in specific cell types within mature hair, glands, and nail. We report that K17 null mice develop severe alopecia during the first week postbirth, correlating with hair fragility, alterations in follicular histology, and apoptosis in matrix cells. These alterations are incompletely penetrant and normalize starting with the first postnatal cycle. Absence of a hair phenotype correlates with a genetic strain-dependent compensation by related keratins, including K16. These findings reveal a crucial role for K17 in the structural integrity of the first hair produced and the survival of hair-producing cells. Given that identical inherited mutations in this gene can cause either pachyonychia congenita or steatocystoma multiplex, the features of this mouse model suggest that this clinical heterogeneity arises from a cell type-specific, genetically determined compensation by related keratins.

  4. Isolation of a new class of cysteine–glycine–proline-rich beta-proteins (beta-keratins) and their expression in snake epidermis

    PubMed Central

    Dalla Valle, Luisa; Nardi, Alessia; Alibardi, Lorenzo

    2010-01-01

    Scales of snakes contain hard proteins (beta-keratins), now referred to as keratin-associated beta-proteins. In the present study we report the isolation, sequencing, and expression of a new group of these proteins from snake epidermis, designated cysteine–glycine–proline-rich proteins. One deduced protein from expressed mRNAs contains 128 amino acids (12.5 kDa) with a theoretical pI at 7.95, containing 10.2% cysteine and 15.6% glycine. The sequences of two more snake cysteine–proline-rich proteins have been identified from genomic DNA. In situ hybridization shows that the messengers for these proteins are present in the suprabasal and early differentiating beta-cells of the renewing scale epidermis. The present study shows that snake scales, as previously seen in scales of lizards, contain cysteine-rich beta-proteins in addition to glycine-rich beta-proteins. These keratin-associated beta-proteins mix with intermediate filament keratins (alpha-keratins) to produce the resistant corneous layer of snake scales. The specific proportion of these two subfamilies of proteins in different scales can determine various degrees of hardness in scales. PMID:20070430

  5. Androgen regulation of the human hair follicle: the type I hair keratin hHa7 is a direct target gene in trichocytes.

    PubMed

    Jave-Suarez, Luis F; Langbein, Lutz; Winter, Hermelita; Praetzel, Silke; Rogers, Michael A; Schweizer, Juergen

    2004-03-01

    Previous work had shown that most members of the complex human hair keratin family were expressed in terminal scalp hairs. An exception to this rule was the type I hair keratin hHa7, which was only detected in some but not all vellus hairs of the human scalp (Langbein et al, 1999). Here we show that hHa7 exhibits constitutive expression in medullary cells of all types of male and female sexual hairs. Medullated beard, axillary, and pubic hairs arise during puberty from small, unmedullated vellus hairs under the influence of circulating androgens. This suggested an androgen-controlled expression of the hHa7 gene. Further evidence for this assumption was provided by the demonstration of androgen receptor (AR) expression in the nuclei of medullary cells of beard hairs. Moreover, homology search for the semipalindromic androgen receptor-binding element (ARE) consensus sequence GG(A)/(T)ACAnnnTGTTCT in the proximal hHa7 promoter revealed three putative ARE motifs. Electrophoretic mobility shift assays demonstrated the specific binding of AR to all three hHa7 AREs. Their function as AR-responsive elements, either individually or in concert within the hHa7 promoter, could be further confirmed by transfection studies with or without an AR expression vector in PtK2 and prostate PC3-Arwt cells, respectively in the presence or absence of a synthetic androgen. Our study detected hHa7 as the first gene in hair follicle trichocytes whose expression appears to be directly regulated by androgens. As such, hHa7 represents a marker for androgen action on hair follicles and might be a suitable tool for investigations of androgen-dependent hair disorders.

  6. NCAM (CD56) expression in keratin-producing odontogenic cysts: aberrant expression in KCOT.

    PubMed

    Vera-Sirera, Beatriz; Forner-Navarro, Leopoldo; Vera-Sempere, Francisco

    2015-02-12

    To investigate immunohistochemically the expression of neural cell adhesion molecule (NCAM), which has been identified as a signaling receptor with frequent reactivity in ameloblastomas (AB), in a series of keratin-producing odontogenic cysts (KPOCs). Immunohistochemical expression of NCAM, using a monoclonal antibody, was determined in a series of 58 KPOCs comprising 12 orthokeratinized odontogenic cysts (OOCs) and 46 keratocystic odontogenic tumors (KCOTs), corresponding to 40 non-syndromic KCOT (NS-KCOTs) and 6 syndromic KCOT (S-KCOTs), associated with nevic basocellular syndrome (NBCS). NCAM expression was negative in all OOCs, but 36.45% of KCOTs exhibited focal and heterogeneous expression at the basal cell level, as well as in basal budding areas and the basal cells of daughter cysts. The latter two locations were especially applicable to S-KCOTs, with focal NCAM reactivity occurring in 66.66% of cases. Aberrant NCAM expression, in KCOTs but especially in S-KCOTs, together with its immunomorphological location, suggests that this adhesion molecule and signaling receptor plays a role in the pathogenesis of KCOTs, with a probable impact on lesional recurrence.

  7. Variation of Keratin 7 Expression and Other Phenotypic Characteristics of Independent Isolates of Cadmium Transformed Human Urothelial Cells (UROtsa)

    PubMed Central

    Somji, Seema; Zhou, Xu Dong; Mehus, Aaron; Sens, Mary Ann; Garrett, Scott H.; Lutz, Krista L.; Dunlevy, Jane R.; Zheng, Yun; Sens, Donald. A.

    2009-01-01

    This laboratory has shown that a human urothelial cell line (UROtsa) transformed by cadmium (Cd+2) produced subcutaneous tumor heterotransplants that resemble human transitional cell carcinoma (TCC). In the present study, additional Cd+2 transformed cell lines were isolated to determine if independent exposures of the cell line to Cd+2 would result in malignantly transformed cell lines possessing similar phenotypic properties. Seven independent isolates were isolated and assessed for their doubling times, morphology, ability to heterotransplant subcutaneously and in the peritoneal cavity of nude mice and for the expression keratin 7. The 7 cell lines all displayed an epithelial morphology with no evidence of squamous differentiation. Doubling times were variable among the isolates, being significantly reduced or similar to the parental cells. All 7 isolates were able to form subcutaneous tumor heterotransplants with a TCC morphology and all heterotransplants displayed areas of squamous differentiation of the transitional cells. The degree of squamous differentiation varied among the isolates. In contrast to subcutaneous tumor formation, only 1 isolate of the Cd+2 transformed cells (UTCd#1) was able to effectively colonize multiple sites within the peritoneal cavity. An analysis of keratin 7 expression showed no correlation with squamous differentiation for the subcutaneous heterotransplants generated from the 7 cell lines. Keratin 7 was expressed in 6 of the 7 cell lines and their subcutaneous tumor heterotransplants. Keratin 7 was not expressed in the cell line that was able to form tumors within the peritoneal cavity. These results show that individual isolates of Cd+2 transformed cells have both similarities and differences in their phenotype. PMID:19921857

  8. Gene Expression Profiling in Pachyonychia Congenita Skin

    PubMed Central

    Cao, Yu-An; Hickerson, Robyn P.; Seegmiller, Brandon L.; Grapov, Dmitry; Gross, Maren M.; Bessette, Marc R.; Phinney, Brett S.; Flores, Manuel A.; Speaker, Tycho J.; Vermeulen, Annaleen; Bravo, Albert A.; Bruckner, Anna L.; Milstone, Leonard M.; Schwartz, Mary E.; Rice, Robert H.; Kaspar, Roger L.

    2015-01-01

    Background Pachyonychia congenita (PC) is a skin disorder resulting from mutations in keratin (K) proteins including K6a, K6b, K16, and K17. One of the major symptoms is painful plantar keratoderma. The pathogenic sequelae resulting from the keratin mutations remain unclear. Objective To better understand PC pathogenesis. Methods RNA profiling was performed on biopsies taken from PC-involved and uninvolved plantar skin of seven genotyped PC patients (two K6a, one K6b, three K16, and one K17) as well as from control volunteers. Protein profiling was generated from tape-stripping samples. Results A comparison of PC-involved skin biopsies to adjacent uninvolved plantar skin identified 112 differentially-expressed mRNAs common to patient groups harboring K6 (i.e., both K6a and K6b) and K16 mutations. Among these mRNAs, 25 encode structural proteins including keratins, small proline-rich and late cornified envelope proteins, 20 are related to metabolism and 16 encode proteases, peptidases, and their inhibitors including kallikrein-related peptidases (KLKs), and serine protease inhibitors (SERPINs). mRNAs were also identified to be differentially expressed only in K6 (81) or K16 (141) patient samples. Furthermore, 13 mRNAs were identified that may be involved in pain including nociception and neuropathy. Protein profiling, comparing three K6a plantar tape-stripping samples to non-PC controls, showed changes in the PC corneocytes similar, but not identical, to the mRNA analysis. Conclusion Many differentially-expressed genes identified in PC-involved skin encode components critical for skin barrier homeostasis including keratinocyte proliferation, differentiation, cornification, and desquamation. The profiling data provide a foundation for unraveling the pathogenesis of PC and identifying targets for developing effective PC therapeutics. PMID:25656049

  9. Delineation of Matriptase Protein Expression by Enzymatic Gene Trapping Suggests Diverging Roles in Barrier Function, Hair Formation, and Squamous Cell Carcinogenesis

    PubMed Central

    List, Karin; Szabo, Roman; Molinolo, Alfredo; Nielsen, Boye Schnack; Bugge, Thomas H.

    2006-01-01

    The membrane serine protease matriptase is required for epidermal barrier function, hair formation, and thymocyte development in mice, and dysregulated matriptase expression causes epidermal squamous cell carcinoma. To elucidate the specific functions of matriptase in normal and aberrant epidermal differentiation, we used enzymatic gene trapping combined with immunohistochemical, ultrastructural, and barrier function assays to delineate the spatio-temporal expression and function of matriptase in mouse keratinized tissue development, homeostasis, and malignant transformation. In the interfollicular epidermis, matriptase expression was restricted to postmitotic transitional layer keratinocytes undergoing terminal differentiation. Matriptase was also expressed in keratinizing oral epithelium, where it was required for oral barrier function, and in thymic epithelium. In all three tissues, matriptase colocalized with profilaggrin. In staged embryos, the onset of epidermal matriptase expression coincided with that of profilaggrin expression and acquisition of the epidermal barrier. In marked contrast to stratifying keritinized epithelium, matripase expression commenced already in undifferentiated and rapidly proliferating profilaggrin-negative matrix cells and displayed hair growth cycle-dependent expression. Exposure of the epidermis to carcinogens led to the gradual appearance of matriptase in a keratin-5-positive proliferative cell compartment during malignant progression. Combined with previous studies, these data suggest that matriptase has diverging functions in the genesis of stratified keratinized epithelium, hair follicles, and squamous cell carcinoma. PMID:16651618

  10. Delineation of matriptase protein expression by enzymatic gene trapping suggests diverging roles in barrier function, hair formation, and squamous cell carcinogenesis.

    PubMed

    List, Karin; Szabo, Roman; Molinolo, Alfredo; Nielsen, Boye Schnack; Bugge, Thomas H

    2006-05-01

    The membrane serine protease matriptase is required for epidermal barrier function, hair formation, and thymocyte development in mice, and dysregulated matriptase expression causes epidermal squamous cell carcinoma. To elucidate the specific functions of matriptase in normal and aberrant epidermal differentiation, we used enzymatic gene trapping combined with immunohistochemical, ultrastructural, and barrier function assays to delineate the spatio-temporal expression and function of matriptase in mouse keratinized tissue development, homeostasis, and malignant transformation. In the interfollicular epidermis, matriptase expression was restricted to postmitotic transitional layer keratinocytes undergoing terminal differentiation. Matriptase was also expressed in keratinizing oral epithelium, where it was required for oral barrier function, and in thymic epithelium. In all three tissues, matriptase colocalized with profilaggrin. In staged embryos, the onset of epidermal matriptase expression coincided with that of profilaggrin expression and acquisition of the epidermal barrier. In marked contrast to stratifying keritinized epithelium, matripase expression commenced already in undifferentiated and rapidly proliferating profilaggrin-negative matrix cells and displayed hair growth cycle-dependent expression. Exposure of the epidermis to carcinogens led to the gradual appearance of matriptase in a keratin-5-positive proliferative cell compartment during malignant progression. Combined with previous studies, these data suggest that matriptase has diverging functions in the genesis of stratified keratinized epithelium, hair follicles, and squamous cell carcinoma.

  11. Keratinization-associated miR-7 and miR-21 Regulate Tumor Suppressor Reversion-inducing Cysteine-rich Protein with Kazal Motifs (RECK) in Oral Cancer*

    PubMed Central

    Jung, Hyun Min; Phillips, Brittany L.; Patel, Rushi S.; Cohen, Donald M.; Jakymiw, Andrew; Kong, William W.; Cheng, Jin Q.; Chan, Edward K. L.

    2012-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that posttranscriptionally regulate gene expression during many biological processes. Recently, the aberrant expressions of miRNAs have become a major focus in cancer research. The purpose of this study was to identify deregulated miRNAs in oral cancer and further focus on specific miRNAs that were related to patient survival. Here, we report that miRNA expression profiling provided more precise information when oral squamous cell carcinomas were subcategorized on the basis of clinicopathological parameters (tumor primary site, histological subtype, tumor stage, and HPV16 status). An innovative radar chart analysis method was developed to depict subcategories of cancers taking into consideration the expression patterns of multiple miRNAs combined with the clinicopathological parameters. Keratinization of tumors and the high expression of miR-21 were the major factors related to the poor prognosis of patients. Interestingly, a majority of the keratinized tumors expressed high levels of miR-21. Further investigations demonstrated the regulation of the tumor suppressor gene reversion-inducing cysteine-rich protein with kazal motifs (RECK) by two keratinization-associated miRNAs, miR-7 and miR-21. Transfection of miR-7 and miR-21-mimics reduced the expression of RECK through direct miRNA-mediated regulation, and these miRNAs were inversely correlated with RECK in CAL 27 orthotopic xenograft tumors. Furthermore, a similar inverse correlation was demonstrated in CAL 27 cells treated in vitro by different external stimuli such as trypsinization, cell density, and serum concentration. Taken together, our data show that keratinization is associated with poor prognosis of oral cancer patients and keratinization-associated miRNAs mediate deregulation of RECK which may contribute to the aggressiveness of tumors. PMID:22761427

  12. Raman spectroscopic study of keratin 8 knockdown oral squamous cell carcinoma derived cells

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Alam, Hunain; Dmello, Crismita; Vaidya, Milind M.; Krishna, C. Murali

    2012-03-01

    Keratins are one of most widely used markers for oral cancers. Keratin 8 and 18 are expressed in simple epithelia and perform both mechanical and regulatory functions. Their expression are not seen in normal oral tissues but are often expressed in oral squamous cell carcinoma. Aberrant expression of keratins 8 and 18 is most common change in human oral cancer. Optical-spectroscopic methods are sensitive to biochemical changes and being projected as novel diagnostic tools for cancer diagnosis. Aim of this study was to evaluate potentials of Raman spectroscopy in detecting minor changes associated with differential level of keratin expression in tongue-cancer-derived AW13516 cells. Knockdown clones for K8 were generated and synchronized by growing under serum-free conditions. Cell pellets of three independent experiments in duplicate were used for recording Raman spectra with fiberoptic-probe coupled HE-785 Raman-instrument. A total of 123 and 96 spectra from knockdown clones and vector controls respectively in 1200-1800 cm-1 region were successfully utilized for classification using LDA. Two separate clusters with classification-efficiency of ~95% were obtained. Leave-one-out cross-validation yielded ~63% efficiency. Findings of the study demonstrate the potentials of Raman spectroscopy in detecting even subtle changes such as variations in keratin expression levels. Future studies towards identifying Raman signals from keratin in oral cells can help in precise cancer diagnosis.

  13. A novel keratin18 promoter that drives reporter gene expression in the intrahepatic and extrahepatic biliary system allows isolation of cell-type specific transcripts from zebrafish liver

    PubMed Central

    Wilkins, Benjamin J.; Gong, Weilong; Pack, Michael

    2015-01-01

    Heritable and acquired biliary disorders are an important cause of acute and chronic human liver disease. Biliary development and physiology have been studied extensively in rodent models and more recently, zebrafish have been used to uncover pathogenic mechanisms and potential therapies for these conditions. Here we report development of novel transgenic lines labeling the intrahepatic and extrahepatic biliary system of zebrafish larvae that can be used for lineage tracing and isolation of biliary-specific RNAs from mixed populations of liver cells. We show that GFP expression driven by a 4.4 kilobase promoter fragment from the zebrafish keratin18 (krt18) gene allows visualization of all components of the developing biliary system as early as 3 days post-fertilization. In addition, expression of a ribosomal fusion protein (EGFP-Rpl10a) in krt18:TRAP transgenic fish allows for enrichment of translated biliary cell mRNAs via translating ribosome affinity purification (TRAP). Future studies utilizing these reagents will enhance our understanding of the morphologic and molecular processes involved in biliary development and disease. PMID:24394404

  14. Novel mutations in the helix termination motif of keratin 3 and keratin 12 in 2 Taiwanese families with Meesmann corneal dystrophy.

    PubMed

    Chen, Ying-Ting; Tseng, Sung-Huei; Chao, Sheau-Chiou

    2005-11-01

    To analyze mutations of the keratin 3 gene (KRT3) and keratin 12 gene (KRT12) in 2 Taiwanese families with Meesmann corneal dystrophy (MCD). Diagnosis of MCD was confirmed by slit-lamp examination of the cornea in 4 members of family 1 and 6 members of family 2. All exons and flanking intron boundaries of KRT3 and KRT12 were amplified by polymerase chain reaction (PCR), and products were subjected to direct sequencing. Restriction fragment length polymorphism analysis (RFLP) with created mismatch primers, Bst XI and Nsp I, was used to confirm the presence of the mutations in affected individuals in family 1 and family 2, respectively. A novel heterozygous missense mutation (1508G-->C), predicting the substitution of a proline for an arginine (R503P) was detected in the helix termination motif of the keratin 3 polypeptide in family 1. Another novel heterozygous missense mutation (1286A-->G), predicting the substitution of a cysteine for a tyrosine at codon 429 (Y429C) was detected in the helix termination motif of the keratin 12 polypeptide in family 2. These 2 mutations were excluded from 50 normal controls by RFLP analysis, indicating that they were not common polymorphisms. A novel missense mutation (R503P) in KRT3 and another novel missense mutation (Y429C) in KRT12 lead to MCD in 2 unrelated Taiwanese families. The mutant codons in our study are all located in the highly conserved alpha-helix-termination motif, which is essential for keratin filament assembly. Mutation at this area may account for the disruption of keratin filament assembly, leading to MCD.

  15. Highly Conserved Keratin-Associated Protein 7-1 Gene in Yak, Taurine and Zebu Cattle.

    PubMed

    Arlud, S; He, N; Sari, E M; Ma, Z-J; Zhang, H; An, T-W; Han, J-L

    2017-01-01

    Keratin-associated proteins (KRTAPs) play a critical role in cross-linking the keratin intermediate filaments to build a hair shaft. The genetic polymorphisms of the bovine KRTAP7-1 gene were investigated for the first time in this study. The complete coding sequence of the KRTAP7-1 gene in 108 domestic yak, taurine and zebu cattle from China and Indonesia were successfully amplified using polymerase chain reaction and then directly sequenced. Only two single-nucleotide polymorphisms (one nonsynonymous at c.7C/G and another synonymous at c.21C/T) and three haplotypes (BOVIN-KRTAP7-1*A, B and C) were identified in the complete coding sequence of the bovine KRTAP7-1 gene among all animals. There was no polymorphism across three Chinese indigenous yak breeds and one Indonesian zebu cattle population, all sharing the BOVINKRTAP71*A haplotype. The four taurine cattle populations also had BOVIN-KRTAP7-1*A as the most common haplotype with a frequency of 0.80. The frequency of novel haplotype BOVIN-KRTAP7-1*B was only 0.07 present in one heterozygous animal in each of the four taurine cattle populations, while BOVINKRTAP7- 1*C was only found in a Simmental and a local Chinese Yellow cattle population with frequencies of 0.17 and 0.36, respectively. The monomorphic yak KRTAP7-1 gene in particular, and highly conserved bovine, sheep and goat KRTAP7-1 genes in general, demonstrated its unique intrinsic structural property (e.g., > 21% high glycine content) and primary functional importance in supporting the mechanical strength and shape of hair.

  16. RNA Sequencing-Based Genome Reannotation of the Dermatophyte Arthroderma benhamiae and Characterization of Its Secretome and Whole Gene Expression Profile during Infection

    PubMed Central

    De Coi, Niccolò; Feuermann, Marc; Schmid-Siegert, Emanuel; Băguţ, Elena-Tatiana; Mignon, Bernard; Waridel, Patrice; Peter, Corinne; Pradervand, Sylvain

    2016-01-01

    ABSTRACT Dermatophytes are the most common agents of superficial mycoses in humans and animals. The aim of the present investigation was to systematically identify the extracellular, possibly secreted, proteins that are putative virulence factors and antigenic molecules of dermatophytes. A complete gene expression profile of Arthroderma benhamiae was obtained during infection of its natural host (guinea pig) using RNA sequencing (RNA-seq) technology. This profile was completed with those of the fungus cultivated in vitro in two media containing either keratin or soy meal protein as the sole source of nitrogen and in Sabouraud medium. More than 60% of transcripts deduced from RNA-seq data differ from those previously deposited for A. benhamiae. Using these RNA-seq data along with an automatic gene annotation procedure, followed by manual curation, we produced a new annotation of the A. benhamiae genome. This annotation comprised 7,405 coding sequences (CDSs), among which only 2,662 were identical to the currently available annotation, 383 were newly identified, and 15 secreted proteins were manually corrected. The expression profile of genes encoding proteins with a signal peptide in infected guinea pigs was found to be very different from that during in vitro growth when using keratin as the substrate. Especially, the sets of the 12 most highly expressed genes encoding proteases with a signal sequence had only the putative vacuolar aspartic protease gene PEP2 in common, during infection and in keratin medium. The most upregulated gene encoding a secreted protease during infection was that encoding subtilisin SUB6, which is a known major allergen in the related dermatophyte Trichophyton rubrum. IMPORTANCE Dermatophytoses (ringworm, jock itch, athlete’s foot, and nail infections) are the most common fungal infections, but their virulence mechanisms are poorly understood. Combining transcriptomic data obtained from growth under various culture conditions with data

  17. RNA Sequencing-Based Genome Reannotation of the Dermatophyte Arthroderma benhamiae and Characterization of Its Secretome and Whole Gene Expression Profile during Infection.

    PubMed

    Tran, Van Du T; De Coi, Niccolò; Feuermann, Marc; Schmid-Siegert, Emanuel; Băguţ, Elena-Tatiana; Mignon, Bernard; Waridel, Patrice; Peter, Corinne; Pradervand, Sylvain; Pagni, Marco; Monod, Michel

    2016-01-01

    Dermatophytes are the most common agents of superficial mycoses in humans and animals. The aim of the present investigation was to systematically identify the extracellular, possibly secreted, proteins that are putative virulence factors and antigenic molecules of dermatophytes. A complete gene expression profile of Arthroderma benhamiae was obtained during infection of its natural host (guinea pig) using RNA sequencing (RNA-seq) technology. This profile was completed with those of the fungus cultivated in vitro in two media containing either keratin or soy meal protein as the sole source of nitrogen and in Sabouraud medium. More than 60% of transcripts deduced from RNA-seq data differ from those previously deposited for A. benhamiae . Using these RNA-seq data along with an automatic gene annotation procedure, followed by manual curation, we produced a new annotation of the A. benhamiae genome. This annotation comprised 7,405 coding sequences (CDSs), among which only 2,662 were identical to the currently available annotation, 383 were newly identified, and 15 secreted proteins were manually corrected. The expression profile of genes encoding proteins with a signal peptide in infected guinea pigs was found to be very different from that during in vitro growth when using keratin as the substrate. Especially, the sets of the 12 most highly expressed genes encoding proteases with a signal sequence had only the putative vacuolar aspartic protease gene PEP2 in common, during infection and in keratin medium. The most upregulated gene encoding a secreted protease during infection was that encoding subtilisin SUB6, which is a known major allergen in the related dermatophyte Trichophyton rubrum . IMPORTANCE Dermatophytoses (ringworm, jock itch, athlete's foot, and nail infections) are the most common fungal infections, but their virulence mechanisms are poorly understood. Combining transcriptomic data obtained from growth under various culture conditions with data obtained

  18. The Chicken Frizzle Feather Is Due to an α-Keratin (KRT75) Mutation That Causes a Defective Rachis

    PubMed Central

    Foley, John; Foley, Anne; McDonald, Merry-Lynn; Juan, Wen-Tau; Huang, Chih-Jen; Lai, Yu-Ting; Lo, Wen-Sui; Chen, Chih-Feng; Leal, Suzanne M.; Zhang, Huanmin; Widelitz, Randall B.; Patel, Pragna I.; Li, Wen-Hsiung; Chuong, Cheng-Ming

    2012-01-01

    Feathers have complex forms and are an excellent model to study the development and evolution of morphologies. Existing chicken feather mutants are especially useful for identifying genetic determinants of feather formation. This study focused on the gene F, underlying the frizzle feather trait that has a characteristic curled feather rachis and barbs in domestic chickens. Our developmental biology studies identified defects in feather medulla formation, and physical studies revealed that the frizzle feather curls in a stepwise manner. The frizzle gene is transmitted in an autosomal incomplete dominant mode. A whole-genome linkage scan of five pedigrees with 2678 SNPs revealed association of the frizzle locus with a keratin gene-enriched region within the linkage group E22C19W28_E50C23. Sequence analyses of the keratin gene cluster identified a 69 bp in-frame deletion in a conserved region of KRT75, an α-keratin gene. Retroviral-mediated expression of the mutated F cDNA in the wild-type rectrix qualitatively changed the bending of the rachis with some features of frizzle feathers including irregular kinks, severe bending near their distal ends, and substantially higher variations among samples in comparison to normal feathers. These results confirmed KRT75 as the F gene. This study demonstrates the potential of our approach for identifying genetic determinants of feather forms. PMID:22829773

  19. CTCF-Mediated and Pax6-Associated Gene Expression in Corneal Epithelial Cell-Specific Differentiation

    PubMed Central

    Tsui, Shanli; Wang, Jie; Wang, Ling; Dai, Wei; Lu, Luo

    2016-01-01

    Background The purpose of the study is to elicit the epigenetic mechanism involving CCCTC binding factor (CTCF)-mediated chromatin remodeling that regulates PAX6 gene interaction with differentiation-associated genes to control corneal epithelial differentiation. Methods Cell cycle progression and specific keratin expressions were measured to monitor changes of differentiation-induced primary human limbal stem/progenitor (HLS/P), human corneal epithelial (HCE) and human telomerase-immortalized corneal epithelial (HTCE) cells. PAX6-interactive and differentiation-associated genes in chromatin remodeling mediated by the epigenetic factor CTCF were detected by circular chromosome conformation capture (4C) and ChIP (Chromatin immunoprecipitation)-on-chip approaches, and verified by FISH (Fluorescent in situ hybridization). Furthermore, CTCF activities were altered by CTCF-shRNA to study the effect of CTCF on mediating interaction of Pax6 and differentiation-associated genes in corneal epithelial cell fate. Results Our results demonstrated that differentiation-induced human corneal epithelial cells expressed typical corneal epithelial characteristics including morphological changes, increased keratin12 expression and G0/G1 accumulations. Expressions of CTCF and PAX6 were suppressed and elevated following the process of differentiation, respectively. During corneal epithelial cell differentiation, differentiation-induced RCN1 and ADAM17 were found interacting with PAX6 in the process of CTCF-mediated chromatin remodeling detected by 4C and verified by ChIP-on-chip and FISH. Diminished CTCF mRNA with CTCF-shRNA in HTCE cells weakened the interaction of PAX6 gene in controlling RCN1/ADAM17 and enhanced early onset of the genes in cell differentiation. Conclusion Our results explain how epigenetic factor CTCF-mediated chromatin remodeling regulates interactions between eye-specific PAX6 and those genes that are induced/associated with cell differentiation to modulate

  20. A novel mutation of the Keratin 12 gene responsible for a severe phenotype of Meesmann's corneal dystrophy

    PubMed Central

    Sullivan, Lori S.; Baylin, Eric B.; Font, Ramon; Daiger, Stephen P.; Pepose, Jay S.; Clinch, Thomas E.; Nakamura, Hisashi; Zhao, Xinping C.

    2007-01-01

    Purpose To determine if a mutation within the coding region of the keratin 12 gene (KRT12) is responsible for a severe form of Meesmann's corneal dystrophy. Methods A family with clinically identified Meesmann's corneal dystrophy was recruited and studied. Electron microscopy was performed on scrapings of corneal epithelial cells from the proband. Mutations in the KRT12 gene were sought using direct genomic sequencing of leukocyte DNA from two affected and two unaffected family members. Subsequently, the observed mutation was screened in all available family members using polymerase chain reaction and direct sequencing. Results A heterozygous missense mutation (Arg430Pro) was found in exon 6 of KRT12 in all 14 affected individuals studied. Unaffected family members and 100 normal controls were negative for this mutation. Conclusions We have identified a novel mutation in the KRT12 gene that is associated with a symptomatic phenotype of Meesmann's corneal dystrophy. This mutation results in a substitution of proline for arginine in the helix termination motif that may disrupt the normal helix, leading to a dramatic structural change of the keratin 12 protein. PMID:17653038

  1. FAM83H and casein kinase I regulate the organization of the keratin cytoskeleton and formation of desmosomes

    PubMed Central

    Kuga, Takahisa; Sasaki, Mitsuho; Mikami, Toshinari; Miake, Yasuo; Adachi, Jun; Shimizu, Maiko; Saito, Youhei; Koura, Minako; Takeda, Yasunori; Matsuda, Junichiro; Tomonaga, Takeshi; Nakayama, Yuji

    2016-01-01

    FAM83H is essential for the formation of dental enamel because a mutation in the FAM83H gene causes amelogenesis imperfecta (AI). We previously reported that the overexpression of FAM83H often occurs and disorganizes the keratin cytoskeleton in colorectal cancer cells. We herein show that FAM83H regulates the organization of the keratin cytoskeleton and maintains the formation of desmosomes in ameloblastoma cells. FAM83H is expressed and localized on keratin filaments in human ameloblastoma cell lines and in mouse ameloblasts and epidermal germinative cells in vivo. FAM83H shows preferential localization to keratin filaments around the nucleus that often extend to cell-cell junctions. Alterations in the function of FAM83H by its overexpression, knockdown, or an AI-causing truncated mutant prevent the proper organization of the keratin cytoskeleton in ameloblastoma cells. Furthermore, the AI-causing mutant prevents desmosomal proteins from being localized to cell-cell junctions. The effects of the AI-causing mutant depend on its binding to and possible inhibition of casein kinase I (CK-1). The suppression of CK-1 by its inhibitor, D4476, disorganizes the keratin cytoskeleton. Our results suggest that AI caused by the FAM83H mutation is mediated by the disorganization of the keratin cytoskeleton and subsequent disruption of desmosomes in ameloblasts. PMID:27222304

  2. FAM83H and casein kinase I regulate the organization of the keratin cytoskeleton and formation of desmosomes.

    PubMed

    Kuga, Takahisa; Sasaki, Mitsuho; Mikami, Toshinari; Miake, Yasuo; Adachi, Jun; Shimizu, Maiko; Saito, Youhei; Koura, Minako; Takeda, Yasunori; Matsuda, Junichiro; Tomonaga, Takeshi; Nakayama, Yuji

    2016-05-25

    FAM83H is essential for the formation of dental enamel because a mutation in the FAM83H gene causes amelogenesis imperfecta (AI). We previously reported that the overexpression of FAM83H often occurs and disorganizes the keratin cytoskeleton in colorectal cancer cells. We herein show that FAM83H regulates the organization of the keratin cytoskeleton and maintains the formation of desmosomes in ameloblastoma cells. FAM83H is expressed and localized on keratin filaments in human ameloblastoma cell lines and in mouse ameloblasts and epidermal germinative cells in vivo. FAM83H shows preferential localization to keratin filaments around the nucleus that often extend to cell-cell junctions. Alterations in the function of FAM83H by its overexpression, knockdown, or an AI-causing truncated mutant prevent the proper organization of the keratin cytoskeleton in ameloblastoma cells. Furthermore, the AI-causing mutant prevents desmosomal proteins from being localized to cell-cell junctions. The effects of the AI-causing mutant depend on its binding to and possible inhibition of casein kinase I (CK-1). The suppression of CK-1 by its inhibitor, D4476, disorganizes the keratin cytoskeleton. Our results suggest that AI caused by the FAM83H mutation is mediated by the disorganization of the keratin cytoskeleton and subsequent disruption of desmosomes in ameloblasts.

  3. Hair growth promoting activity of discarded biocomposite keratin extract.

    PubMed

    Akanda, Md Rashedunnabi; Kim, Hak-Yong; Park, Mira; Kim, In-Shik; Ahn, Dongchoon; Tae, Hyun-Jin; Park, Byung-Yong

    2017-08-01

    Keratin biomaterial has been used in regenerative medicine owing to its in-vivo and in-vitro biocompatibility. The present study was aimed to investigate the hair growth promoting activity of keratin extract and its mechanism of action. Keratin extract was topically applied on the synchronized depilated dorsal skin of telogenic C57BL/6 mice and promoted hair growth by inducing the anagen phase. The histomorphometric observation indicated significantly increases the number, shaft of hair follicles and deep subcutis area in the keratin extract treated group in contrast to the control group, which was considered an indication of anagen phase induction. Subsequently, the quantitative real-time polymerase chain reaction analysis revealed that fibroblast growth factor-10, vascular endothelial growth factor, insulin-like growth factor-1, β-catenin, and Shh were expressed earlier in the keratin extract-treated group than in the control group. Besides, keratin extract has been observed to be biocompatible when analyzed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and 4',6-diamidino-2-phenylindole staining using immortalized human keratinocyte cells, showing more than 90% cell viability. Our study demonstrated that keratin extract stimulating hair follicle growth by inducing the growth phase; anagen in telogenic C57BL/6 mice and thus the topical application of keratin extract may represent a promising biomaterial for the management and applications of hair follicle disorder.

  4. Structure and expression of genes for a class of cysteine-rich proteins of the cuticle layers of differentiating wool and hair follicles

    PubMed Central

    1990-01-01

    The major histological components of the hair follicle are the hair cortex and cuticle. The hair cuticle cells encase and protect the cortex and undergo a different developmental program to that of the cortex. We report the molecular characterization of a set of evolutionarily conserved hair genes which are transcribed in the hair cuticle late in follicle development. Two genes were isolated and characterized, one expressed in the human follicle and one in the sheep follicle. Each gene encodes a small protein of 16 kD, containing greater than 50 cysteine residues, ranging from 31 to 36 mol% cysteine. Their high cysteine content and in vitro expression data identify them as ultra-high-sulfur (UHS) keratin proteins. The predicted proteins are composed almost entirely of cysteine-rich and glycine-rich repeats. Genomic blots reveal that the UHS keratin proteins are encoded by related multigene families in both the human and sheep genomes. Tissue in situ hybridization demonstrates that the expression of both genes is localized to the hair fiber cuticle and occurs at a late stage in fiber morphogenesis. PMID:1703541

  5. Keratinizing dentigerous cyst

    PubMed Central

    Sivasankar, Vaishnavi; Ranganathan, Kannan; Praveen, B

    2014-01-01

    Keratinizing dentigerous cyst is a rare entity. This article reports a case of keratinizing dentigerous cyst associated with an impacted mandibular canine. Clinical and radiological features, cone-beam computed tomography findings and histological features of the case are reported along with a discussion on keratinizing odontogenic cysts and the need for follow-up. PMID:24808713

  6. Epithelial Keratins Modulate cMet Expression and Signaling and Promote InlB-Mediated Listeria monocytogenes Infection of HeLa Cells.

    PubMed

    Cruz, Rui; Pereira-Castro, Isabel; Almeida, Maria T; Moreira, Alexandra; Cabanes, Didier; Sousa, Sandra

    2018-01-01

    The host cytoskeleton is a major target for bacterial pathogens during infection. In particular, pathogens usurp the actin cytoskeleton function to strongly adhere to the host cell surface, to induce plasma membrane remodeling allowing invasion and to spread from cell to cell and disseminate to the whole organism. Keratins are cytoskeletal proteins that are the major components of intermediate filaments in epithelial cells however, their role in bacterial infection has been disregarded. Here we investigate the role of the major epithelial keratins, keratins 8 and 18 (K8 and K18), in the cellular infection by Listeria monocytogenes . We found that K8 and K18 are required for successful InlB/cMet-dependent L. monocytogenes infection, but are dispensable for InlA/E-cadherin-mediated invasion. Both K8 and K18 accumulate at InlB-mediated internalization sites following actin recruitment and modulate actin dynamics at those sites. We also reveal the key role of K8 and K18 in HGF-induced signaling which occurs downstream the activation of cMet. Strikingly, we show here that K18, and at a less extent K8, controls the expression of cMet and other surface receptors such TfR and integrin β1, by promoting the stability of their corresponding transcripts. Together, our results reveal novel functions for major epithelial keratins in the modulation of actin dynamics at the bacterial entry sites and in the control of surface receptors mRNA stability and expression.

  7. The organic osmolyte betaine induces keratin 2 expression in rat epidermal keratinocytes - A genome-wide study in UVB irradiated organotypic 3D cultures.

    PubMed

    Rauhala, Leena; Hämäläinen, Lasse; Dunlop, Thomas W; Pehkonen, Petri; Bart, Geneviève; Kokkonen, Maarit; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna

    2015-12-25

    The moisturizing and potentially protective properties of the organic osmolyte betaine (trimethylglycine) have made it an attractive component for skin care products. Its wide use despite the lack of comprehensive studies addressing its specific effects in skin led us to characterize the molecular targets of betaine in keratinocytes and to explore, whether it modifies the effects of acute UVB exposure. Genome-wide expression analysis was performed on organotypic cultures of rat epidermal keratinocytes, treated either with betaine (10mM), UVB (30 mJ/cm(2)) or their combination. Results were verified with qRT-PCR, western blotting and immunohistochemistry. Additionally, cell proliferation and differentiation were analyzed. Among the 89 genes influenced by betaine, the differentiation marker keratin 2 showed the highest upregulation, which was also confirmed at protein level. Expression of Egr1, a transcription factor, and Purkinje cell protein 4, a regulator of Ca(2+)/calmodulin metabolism, also increased, while downregulated genes included several ion-channel components, such as Fxyd2. Bioinformatics analyses suggest that genes modulated by betaine are involved in DNA replication, might counteract UV-induced processes, and include many targets of transcription factors associated with cell proliferation and differentiation. Our results indicate that betaine controls unique gene expression pathways in keratinocytes, including some involved in differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Epigenetic control of skin differentiation genes by phytocannabinoids

    PubMed Central

    Pucci, Mariangela; Rapino, Cinzia; Di Francesco, Andrea; Dainese, Enrico; D'Addario, Claudio; Maccarrone, Mauro

    2013-01-01

    BACKGROUND AND PURPOSE Endocannabinoid signalling has been shown to have a role in the control of epidermal physiology, whereby anandamide is able to regulate the expression of skin differentiation genes through DNA methylation. Here, we investigated the possible epigenetic regulation of these genes by several phytocannabinoids, plant-derived cannabinoids that have the potential to be novel therapeutics for various human diseases. EXPERIMENTAL APPROACH The effects of cannabidiol, cannabigerol and cannabidivarin on the expression of skin differentiation genes keratins 1 and 10, involucrin and transglutaminase 5, as well as on DNA methylation of keratin 10 gene, were investigated in human keratinocytes (HaCaT cells). The effects of these phytocannabinoids on global DNA methylation and the activity and expression of four major DNA methyltransferases (DNMT1, 3a, 3b and 3L) were also examined. KEY RESULTS Cannabidiol and cannabigerol significantly reduced the expression of all the genes tested in differentiated HaCaT cells, by increasing DNA methylation of keratin 10 gene, but cannabidivarin was ineffective. Remarkably, cannabidiol reduced keratin 10 mRNA through a type-1 cannabinoid (CB1) receptor-dependent mechanism, whereas cannabigerol did not affect either CB1 or CB2 receptors of HaCaT cells. In addition, cannabidiol, but not cannabigerol, increased global DNA methylation levels by selectively enhancing DNMT1 expression, without affecting DNMT 3a, 3b or 3L. CONCLUSIONS AND IMPLICATIONS These findings show that the phytocannabinoids cannabidiol and cannabigerol are transcriptional repressors that can control cell proliferation and differentiation. This indicates that they (especially cannabidiol) have the potential to be lead compounds for the development of novel therapeutics for skin diseases. PMID:23869687

  9. Keratin: dissolution, extraction and biomedical application.

    PubMed

    Shavandi, Amin; Silva, Tiago H; Bekhit, Adnan A; Bekhit, Alaa El-Din A

    2017-08-22

    Keratinous materials such as wool, feathers and hooves are tough unique biological co-products that usually have high sulfur and protein contents. A high cystine content (7-13%) differentiates keratins from other structural proteins, such as collagen and elastin. Dissolution and extraction of keratin is a difficult process compared to other natural polymers, such as chitosan, starch, collagen, and a large-scale use of keratin depends on employing a relatively fast, cost-effective and time efficient extraction method. Keratin has some inherent ability to facilitate cell adhesion, proliferation, and regeneration of the tissue, therefore keratin biomaterials can provide a biocompatible matrix for regrowth and regeneration of the defective tissue. Additionally, due to its amino acid constituents, keratin can be tailored and finely tuned to meet the exact requirement of degradation, drug release or incorporation of different hydrophobic or hydrophilic tails. This review discusses the various methods available for the dissolution and extraction of keratin with emphasis on their advantages and limitations. The impacts of various methods and chemicals used on the structure and the properties of keratin are discussed with the aim of highlighting options available toward commercial keratin production. This review also reports the properties of various keratin-based biomaterials and critically examines how these materials are influenced by the keratin extraction procedure, discussing the features that make them effective as biomedical applications, as well as some of the mechanisms of action and physiological roles of keratin. Particular attention is given to the practical application of keratin biomaterials, namely addressing the advantages and limitations on the use of keratin films, 3D composite scaffolds and keratin hydrogels for tissue engineering, wound healing, hemostatic and controlled drug release.

  10. Keratins Are Altered in Intestinal Disease-Related Stress Responses

    PubMed Central

    Helenius, Terhi O.; Antman, Cecilia A.; Asghar, Muhammad Nadeem; Nyström, Joel H.; Toivola, Diana M.

    2016-01-01

    Keratin (K) intermediate filaments can be divided into type I/type II proteins, which form obligate heteropolymers. Epithelial cells express type I-type II keratin pairs, and K7, K8 (type II) and K18, K19 and K20 (type I) are the primary keratins found in the single-layered intestinal epithelium. Keratins are upregulated during stress in liver, pancreas, lung, kidney and skin, however, little is known about their dynamics in the intestinal stress response. Here, keratin mRNA, protein and phosphorylation levels were studied in response to murine colonic stresses modeling human conditions, and in colorectal cancer HT29 cells. Dextran sulphate sodium (DSS)-colitis was used as a model for intestinal inflammatory stress, which elicited a strong upregulation and widened crypt distribution of K7 and K20. K8 levels were slightly downregulated in acute DSS, while stress-responsive K8 serine-74 phosphorylation (K8 pS74) was increased. By eliminating colonic microflora using antibiotics, K8 pS74 in proliferating cells was significantly increased, together with an upregulation of K8 and K19. In the aging mouse colon, most colonic keratins were upregulated. In vitro, K8, K19 and K8 pS74 levels were increased in response to lipopolysaccharide (LPS)-induced inflammation in HT29 cells. In conclusion, intestinal keratins are differentially and dynamically upregulated and post-translationally modified during stress and recovery. PMID:27626448

  11. Keratins Are Altered in Intestinal Disease-Related Stress Responses.

    PubMed

    Helenius, Terhi O; Antman, Cecilia A; Asghar, Muhammad Nadeem; Nyström, Joel H; Toivola, Diana M

    2016-09-10

    Keratin (K) intermediate filaments can be divided into type I/type II proteins, which form obligate heteropolymers. Epithelial cells express type I-type II keratin pairs, and K7, K8 (type II) and K18, K19 and K20 (type I) are the primary keratins found in the single-layered intestinal epithelium. Keratins are upregulated during stress in liver, pancreas, lung, kidney and skin, however, little is known about their dynamics in the intestinal stress response. Here, keratin mRNA, protein and phosphorylation levels were studied in response to murine colonic stresses modeling human conditions, and in colorectal cancer HT29 cells. Dextran sulphate sodium (DSS)-colitis was used as a model for intestinal inflammatory stress, which elicited a strong upregulation and widened crypt distribution of K7 and K20. K8 levels were slightly downregulated in acute DSS, while stress-responsive K8 serine-74 phosphorylation (K8 pS74) was increased. By eliminating colonic microflora using antibiotics, K8 pS74 in proliferating cells was significantly increased, together with an upregulation of K8 and K19. In the aging mouse colon, most colonic keratins were upregulated. In vitro, K8, K19 and K8 pS74 levels were increased in response to lipopolysaccharide (LPS)-induced inflammation in HT29 cells. In conclusion, intestinal keratins are differentially and dynamically upregulated and post-translationally modified during stress and recovery.

  12. Perlecan expression influences the keratin 15‐positive cell population fate in the epidermis of aging skin

    PubMed Central

    Dos Santos, Morgan; Michopoulou, Anna; André‐Frei, Valérie; Boulesteix, Sophie; Guicher, Christine; Dayan, Guila; Whitelock, John; Damour, Odile; Rousselle, Patricia

    2016-01-01

    The epidermis is continuously renewed by stem cell proliferation and differentiation. Basal keratinocytes append the dermal‐epidermal junction, a cell surface‐associated, extracellular matrix that provides structural support and influences their behaviour. It consists of laminins, type IV collagen, nidogens, and perlecan, which are necessary for tissue organization and structural integrity. Perlecan is a heparan sulfate proteoglycan known to be involved in keratinocyte survival and differentiation. Aging affects the dermal epidermal junction resulting in decreased contact with keratinocytes, thus impacting epidermal renewal and homeostasis. We found that perlecan expression decreased during chronological skin aging. Our in vitro studies revealed reduced perlecan transcript levels in aged keratinocytes. The production of in vitro skin models revealed that aged keratinocytes formed a thin and poorly organized epidermis. Supplementing these models with purified perlecan reversed the phenomenon allowing restoration of a well‐differentiated multi‐layered epithelium. Perlecan down‐regulation in cultured keratinocytes caused depletion of the cell population that expressed keratin 15. This phenomenon depended on the perlecan heparan sulphate moieties, which suggested the involvement of a growth factor. Finally, we found defects in keratin 15 expression in the epidermis of aging skin. This study highlighted a new role for perlecan in maintaining the self‐renewal capacity of basal keratinocytes. PMID:26996820

  13. Keratin K15 as a Biomarker of Epidermal Stem Cells

    PubMed Central

    Bose, Amrita; Teh, Muy-Teck; Mackenzie, Ian C.; Waseem, Ahmad

    2013-01-01

    Keratin 15 (K15) is type I keratin protein co-expressed with the K5/K14 pair present in the basal keratinocytes of all stratified epithelia. Although it is a minor component of the cytoskeleton with a variable expression pattern, nonetheless its expression has been reported as a stem cell marker in the bulge of hair follicles. Conversely, suprabasal expression of K15 has also been reported in both normal and diseased tissues, which is inconsistent with its role as a stem cell marker. Our recently published work has given evidence of the molecular pathways that seem to control the expression of K15 in undifferentiated and differentiated cells. In this article, we have critically reviewed the published work to establish the reliability of K15 as an epidermal stem cell marker. PMID:24071939

  14. Hydrogels from feather keratin show higher viscoelastic properties and cell proliferation than those from hair and wool keratins.

    PubMed

    Esparza, Yussef; Bandara, Nandika; Ullah, Aman; Wu, Jianping

    2018-09-01

    Hydrogel prepared from keratin shows potential applications in tissue engineering. However, the importance of the keratin sources has not been considered. The objectives of this study were to characterize and compare the rheological (storage modulus), physical (porosity, pore size, swelling capacity, and water contact angle) and in vitro cell compatibility of hydrogel scaffolds prepared from various keratin sources. Keratins were characterized by means of their molecular weight, amino acid composition, thermal and conformational properties. Hydrogels from chicken feather keratins demonstrated substantially higher storage modulus (G') than hair and wool keratin hydrogels. However, higher swelling capacity (>3000%) was determined in hair and wool over feather keratin (1500%) hydrogels. Our results suggest that small molecular weight and β-sheet conformation of feather keratin (~10 kDa) facilitated the self-assembly of rigid hydrogels through disulfide bond re-oxidation. Whereas, high molecular weight (10-75 kDa) stretchable α-helix conformation in hair and wool keratins resulted in weaker hydrogels. The cell cultures using fibroblasts showed the highest proliferation rate on chicken feather keratin hydrogel scaffolds. After 15 days of culture, partial breakdown of keratin fibers was observed. Results indicate that stiffer avian keratins can be used to fabricate more mechanically robust biomaterials than mammalian keratins. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Immunohistochemical localization of thrombomodulin in the stratified epithelium of the rat is restricted to the keratinizing epidermis.

    PubMed

    Daimon, T; Nakano, M

    1999-12-01

    The expression and function of thrombomodulin (TM), an endothelial cofactor protein for thrombin-mediated protein C activation, in the epithelium are not fully characterized. This report describes the distribution and localization of TM in the various types of epithelia in the rat by light and electron microscopic immunocytochemistry. TM showed a limited distribution and was expressed by the keratinizing stratified epithelia of the skin, tongue, and esophagus, but was not present on the non-keratinizing epithelia of the vagina, ureter, trachea, stomach, or gut. An identical pattern of TM expression was seen in mucocutaneous junctions, transitional zones from a non-keratinizing stratified epithelium to a keratinizing epithelium at the edge of the eyelid and in the anal canal. As the keratinization of the stratified epithelia proceeded, the staining intensity increased in the transitional zones. Within the keratinizing stratified epithelia, TM staining was limited to the keratinocytes of the spinous layer, the spinous cells. The subcellular localization of TM on the spinous cells was restricted to the plasma membrane facing the intercellular spaces. TM was not detectable on the desmosomes or the two membranes making up the junction, presumably the nexus. The functional significance of TM in keratinizing epithelia is discussed.

  16. Forty keratin-associated beta-proteins (beta-keratins) form the hard layers of scales, claws, and adhesive pads in the green anole lizard, Anolis carolinensis.

    PubMed

    Dalla Valle, Luisa; Nardi, Alessia; Bonazza, Giulia; Zucal, Chiara; Zuccal, Chiara; Emera, Deena; Alibardi, Lorenzo

    2010-01-15

    Using bioinformatic methods we have detected the genes of 40 keratin-associated beta-proteins (KAbetaPs) (beta-keratins) from the first available draft genome sequence of a reptile, the lizard Anolis carolinensis (Broad Institute, Boston). All genes are clustered in a single but not yet identified chromosomal locus, and contain a single intron of variable length. 5'-RACE and RT-PCR analyses using RNA from different epidermal regions show tissue-specific expression of different transcripts. These results were confirmed from the analysis of the A. carolinensis EST libraries (Broad Institute). Most deduced proteins are 12-16 kDa with a pI of 7.5-8.5. Two genes encoding putative proteins of 40 and 45 kDa are also present. Despite variability in amino acid sequences, four main subfamilies can be described. The largest subfamily includes proteins high in glycine, a small subfamily contains proteins high in cysteine, a third large subfamily contains proteins high in cysteine and glycine, and the fourth, smallest subfamily comprises proteins low in cysteine and glycine. An inner region of high amino acid identity is the most constant characteristic of these proteins and maps to a region with two to three close beta-folds in the proteins. This beta-fold region is responsible for the formation of filaments of the corneous material in all types of scales in this species. Phylogenetic analysis shows that A. carolinensis KAbetaPs are more similar to those of other lepidosaurians (snake, lizard, and gecko lizard) than to those of archosaurians (chick and crocodile) and turtles. (c) 2009 Wiley-Liss, Inc.

  17. Targeted deletion of Atg5 reveals differential roles of autophagy in keratin K5-expressing epithelia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukseree, Supawadee; Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok; Rossiter, Heidemarie

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer We generated mice lacking Atg5 and autophagy in keratin K5-positive epithelia. Black-Right-Pointing-Pointer Suppression of autophagy in thymic epithelium was not associated with signs of autoimmunity. Black-Right-Pointing-Pointer Autophagy was required for normal terminal differentiation of preputial gland cells. Black-Right-Pointing-Pointer Autophagy-deficient cells of the preputial glands degraded nuclear DNA prematurely. -- Abstract: Autophagy contributes to the homeostasis of many tissues, yet its role in epithelia is incompletely understood. A recent report proposed that Atg5-dependent autophagy in thymic epithelial cells is essential for their function in the negative selection of self-reactive T-cells and, thus, for the suppression of tissue inflammation. Heremore » we crossed mice carrying floxed alleles of the Atg5 gene with mice expressing the Cre recombinase under the control of the keratin K5 promoter to suppress autophagy in all K5-positive epithelia. The efficiency of autophagy abrogation was confirmed by immunoanalyses of LC3, which was converted to the autophagy-associated LC3-II form in normal but not Atg5-deficient cells, and of p62, which accumulated in Atg5-deficient cells. Mice carrying the epithelium-specific deletion of Atg5 showed normal weight gain, absence of tissue inflammation, and a normal morphology of the thymic epithelium. By contrast, autophagy-deficient epithelial cells of the preputial gland showed aberrant eosinophilic staining in histology and premature degradation of nuclear DNA during terminal differentiation. Taken together, the results of this study suggest that autophagy is dispensable for the suppression of autoimmunity by thymic epithelial cells but essential for normal differentiation of the preputial gland in mice.« less

  18. Genomic regression of claw keratin, taste receptor and light-associated genes provides insights into biology and evolutionary origins of snakes.

    PubMed

    Emerling, Christopher A

    2017-10-01

    Regressive evolution of anatomical traits often corresponds with the regression of genomic loci underlying such characters. As such, studying patterns of gene loss can be instrumental in addressing questions of gene function, resolving conflicting results from anatomical studies, and understanding the evolutionary history of clades. The evolutionary origins of snakes involved the regression of a number of anatomical traits, including limbs, taste buds and the visual system, and by analyzing serpent genomes, I was able to test three hypotheses associated with the regression of these features. The first concerns two keratins that are putatively specific to claws. Both genes that encode these keratins are pseudogenized/deleted in snake genomes, providing additional evidence of claw-specificity. The second hypothesis is that snakes lack taste buds, an issue complicated by conflicting results in the literature. I found evidence that different snakes have lost one or more taste receptors, but all snakes examined retained at least one gustatory channel. The final hypothesis addressed is that the earliest snakes were adapted to a dim light niche. I found evidence of deleted and pseudogenized genes with light-associated functions in snakes, demonstrating a pattern of gene loss similar to other dim light-adapted clades. Molecular dating estimates suggest that dim light adaptation preceded the loss of limbs, providing some bearing on interpretations of the ecological origins of snakes. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Keratins K2 and K10 are essential for the epidermal integrity of plantar skin.

    PubMed

    Fischer, Heinz; Langbein, Lutz; Reichelt, Julia; Buchberger, Maria; Tschachler, Erwin; Eckhart, Leopold

    2016-01-01

    K1 and K2 are the main type II keratins in the suprabasal epidermis where each of them heterodimerizes with the type I keratin K10 to form intermediate filaments. In regions of the ears, tail, and soles of the mouse, only K2 is co-expressed with K10, suggesting that these keratins suffice to form a mechanically resilient cytoskeleton. To determine the effects of the suppression of both main keratins, K2 and K10, in the suprabasal plantar epidermis of the mouse. Krt2(-/-) Krt10(-/-) mice were generated by crossing Krt2(-/-) and Krt10(-/-) mice. Epidermal morphology of soles of hind-paws was examined macroscopically and histologically. Immunofluorescence analysis and quantitative PCR analysis were performed to analyze the expression of keratins in sole skin of wildtype and Krt2(-/-) Krt10(-/-) mice. Highly abundant proteins of the sole stratum corneum were determined by electrophoretic and chromatographic separation and subsequent mass spectrometry. K2 and K10 are the most prominent suprabasal keratins in normal mouse soles with the exception of the footpads where K1, K9 and K10 predominate. Mice lacking both K2 and K10 were viable and developed epidermal acanthosis and hyperkeratosis in inter-footpad epidermis of the soles. The expression of keratins K1, K9 and K16 was massively increased at the RNA and protein levels in the soles of Krt2(-/-) Krt10(-/-) mice. This study demonstrates that the loss of the main cytoskeletal components of plantar epidermis, i.e. K2 and K10, can be only partly compensated by the upregulation of other keratins. The thickening of the epidermis in the soles of Krt2(-/-) Krt10(-/-) mice may serve as a model for pathomechanistic aspects of palmoplantar keratoderma. Copyright © 2015. Published by Elsevier Ireland Ltd.

  20. Drug-induced keratin 9 interaction with Hsp70 in bladder cancer cells.

    PubMed

    Andolino, C; Hess, C; Prince, T; Williams, H; Chernin, M

    2018-05-25

    A pull-down experiment (co-immunoprecipitation) was performed on a T24 human bladder cancer cell lysate treated with the Hsp inhibitor VER155008 using an Hsp70 antibody attached to Dynabeads. Keratin 9, a cytoskeleton intermediate filament protein, was identified by LC MS/MS analysis. This novel finding was confirmed by Western blotting, RT-PCR, and immunocytochemistry. Other members of the keratin family of proteins have been shown to be involved in cancer progression, most recently identified to be associated with cell invasion and metastasis. The specific role of keratin 9 expression in these cells is yet to be determined.

  1. Rhomboid family member 2 regulates cytoskeletal stress-associated Keratin 16

    PubMed Central

    Maruthappu, Thiviyani; Chikh, Anissa; Fell, Benjamin; Delaney, Paul J.; Brooke, Matthew A.; Levet, Clemence; Moncada-Pazos, Angela; Ishida-Yamamoto, Akemi; Blaydon, Diana; Waseem, Ahmad; Leigh, Irene M.; Freeman, Matthew; Kelsell, David P.

    2017-01-01

    Keratin 16 (K16) is a cytoskeletal scaffolding protein highly expressed at pressure-bearing sites of the mammalian footpad. It can be induced in hyperproliferative states such as wound healing, inflammation and cancer. Here we show that the inactive rhomboid protease RHBDF2 (iRHOM2) regulates thickening of the footpad epidermis through its interaction with K16. K16 expression is absent in the thinned footpads of irhom2−/− mice compared with irhom2+/+mice, due to reduced keratinocyte proliferation. Gain-of-function mutations in iRHOM2 underlie Tylosis with oesophageal cancer (TOC), characterized by palmoplantar thickening, upregulate K16 with robust downregulation of its type II keratin binding partner, K6. By orchestrating the remodelling and turnover of K16, and uncoupling it from K6, iRHOM2 regulates the epithelial response to physical stress. These findings contribute to our understanding of the molecular mechanisms underlying hyperproliferation of the palmoplantar epidermis in both physiological and disease states, and how this ‘stress' keratin is regulated. PMID:28128203

  2. Measuring the regulation of keratin filament network dynamics

    PubMed Central

    Moch, Marcin; Herberich, Gerlind; Aach, Til; Leube, Rudolf E.; Windoffer, Reinhard

    2013-01-01

    The organization of the keratin intermediate filament cytoskeleton is closely linked to epithelial function. To study keratin network plasticity and its regulation at different levels, tools are needed to localize and measure local network dynamics. In this paper, we present image analysis methods designed to determine the speed and direction of keratin filament motion and to identify locations of keratin filament polymerization and depolymerization at subcellular resolution. Using these methods, we have analyzed time-lapse fluorescence recordings of fluorescent keratin 13 in human vulva carcinoma-derived A431 cells. The fluorescent keratins integrated into the endogenous keratin cytoskeleton, and thereby served as reliable markers of keratin dynamics. We found that increased times after seeding correlated with down-regulation of inward-directed keratin filament movement. Bulk flow analyses further revealed that keratin filament polymerization in the cell periphery and keratin depolymerization in the more central cytoplasm were both reduced. Treating these cells and other human keratinocyte-derived cells with EGF reversed all these processes within a few minutes, coinciding with increased keratin phosphorylation. These results highlight the value of the newly developed tools for identifying modulators of keratin filament network dynamics and characterizing their mode of action, which, in turn, contributes to understanding the close link between keratin filament network plasticity and epithelial physiology. PMID:23757496

  3. Keratin pattern of acanthosis nigricans in syndromelike association with polythelia, polycystic kidneys, and syndactyly.

    PubMed

    Bonnekoh, B; Wevers, A; Spangenberger, H; Mahrle, G; Krieg, T

    1993-09-01

    Acanthosis nigricans (AN) comprises a broad spectrum of etiologic subtypes. The underlying pathomechanisms have not yet been completely clarified. We present a patient affected with a syndromelike AN subtype including disturbed epidermopoiesis as evidenced by immunohistologic findings and in situ hybridization. A 54-year-old white man contracted AN during childhood. There were connate malformations consisting of webbed toes II/III on the right side and a supernumerary left mammilla. As an adult he developed psoriasis vulgaris, obesity, and latent diabetes mellitus, polycystic kidney and liver disease. With regard to keratin 6 mRNA, and the protein expression of keratin 6/16, KI-67, and proliferating cell nuclear antigen, the AN lesion showed moderate hyperproliferation. A much higher degree of hyperproliferation was evident in psoriatic areas of the patient's skin. In contrast to psoriatic tissue, basal keratinocytes of the AN showed an unusually high expression of keratin 18 and 19 protein. The observation thus deals with a unique, syndromelike constellation of AN characterized by a particular epidermal pattern of moderate hyperproliferation. A further dysregulation of protein expression in the epidermis is indicated by the demonstration of the rare keratins 18 and 19 in basal keratinocytes of the AN lesion.

  4. Keratin 1 maintains skin integrity and participates in an inflammatory network in skin through interleukin-18.

    PubMed

    Roth, Wera; Kumar, Vinod; Beer, Hans-Dietmar; Richter, Miriam; Wohlenberg, Claudia; Reuter, Ursula; Thiering, Sören; Staratschek-Jox, Andrea; Hofmann, Andrea; Kreusch, Fatima; Schultze, Joachim L; Vogl, Thomas; Roth, Johannes; Reichelt, Julia; Hausser, Ingrid; Magin, Thomas M

    2012-11-15

    Keratin 1 (KRT1) and its heterodimer partner keratin 10 (KRT10) are major constituents of the intermediate filament cytoskeleton in suprabasal epidermis. KRT1 mutations cause epidermolytic ichthyosis in humans, characterized by loss of barrier integrity and recurrent erythema. In search of the largely unknown pathomechanisms and the role of keratins in barrier formation and inflammation control, we show here that Krt1 is crucial for maintenance of skin integrity and participates in an inflammatory network in murine keratinocytes. Absence of Krt1 caused a prenatal increase in interleukin-18 (IL-18) and the S100A8 and S100A9 proteins, accompanied by a barrier defect and perinatal lethality. Depletion of IL-18 partially rescued Krt1(-/-) mice. IL-18 release was keratinocyte-autonomous, KRT1 and caspase-1 dependent, supporting an upstream role of KRT1 in the pathology. Finally, transcriptome profiling revealed a Krt1-mediated gene expression signature similar to atopic eczema and psoriasis, but different from Krt5 deficiency and epidermolysis bullosa simplex. Our data suggest a functional link between KRT1 and human inflammatory skin diseases.

  5. Preparation of keratin and chemically modified keratin hydrogels and their evaluation as cell substrate with drug releasing ability.

    PubMed

    Nakata, Ryo; Osumi, Yu; Miyagawa, Shoko; Tachibana, Akira; Tanabe, Toshizumi

    2015-07-01

    Keratin was extracted as a reduced form from wool, which was then subjected to acetamidation, carboxymethylation or aminoethylation at abundant free cysteine residues to give acetamidated keratin (AAK), carboxymethylated keratin (CMK) and aminoethylated keratin (AEK). Hydrogels were prepared from intact and three chemically modified keratins simply by concentrating their aqueous solution and subsequent cooling. The lowest concentration to form a hydrogel without fluidity was 110 mg/ml for AAK, 120 mg/ml for AEK, 130 mg/ml for keratin and 180 mg/ml for CMK. Comparing with a hydrogel just prepared (swelling ratio: 600-700), each hydrogel slightly shrank in an acidic solution. While AAK hydrogel little swelled in neutral and basic solutions, other hydrogels became swollen and CMK hydrogel reached to dissolution. Hydrogels of keratin, AAK and AEK were found to support cell proliferation, although cell elongation on AAK and AEK hydrogel was a little suppressed. On the other hand, CMK hydrogel did not seem to be suitable for a cell substrate because of its high swelling in culture medium. Evaluation of the hydrogels as a drug carrier showed that keratin and AAK hydrogels were good sustained drug release carriers, which showed the drug release for more than three days, while the release from AEK and CMK hydrogels completed within one day. Thus, keratin and chemically modified keratin hydrogels, especially keratin and AAK hydrogels, were promising biomaterials as a cell substrate and a sustained drug release carrier. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Sarcoptes scabiei Mites Modulate Gene Expression in Human Skin Equivalents

    PubMed Central

    Morgan, Marjorie S.; Arlian, Larry G.; Markey, Michael P.

    2013-01-01

    The ectoparasitic mite, Sarcoptes scabiei that burrows in the epidermis of mammalian skin has a long co-evolution with its hosts. Phenotypic studies show that the mites have the ability to modulate cytokine secretion and expression of cell adhesion molecules in cells of the skin and other cells of the innate and adaptive immune systems that may assist the mites to survive in the skin. The purpose of this study was to identify genes in keratinocytes and fibroblasts in human skin equivalents (HSEs) that changed expression in response to the burrowing of live scabies mites. Overall, of the more than 25,800 genes measured, 189 genes were up-regulated >2-fold in response to scabies mite burrowing while 152 genes were down-regulated to the same degree. HSEs differentially expressed large numbers of genes that were related to host protective responses including those involved in immune response, defense response, cytokine activity, taxis, response to other organisms, and cell adhesion. Genes for the expression of interleukin-1α (IL-1α) precursor, IL-1β, granulocyte/macrophage-colony stimulating factor (GM-CSF) precursor, and G-CSF precursor were up-regulated 2.8- to 7.4-fold, paralleling cytokine secretion profiles. A large number of genes involved in epithelium development and keratinization were also differentially expressed in response to live scabies mites. Thus, these skin cells are directly responding as expected in an inflammatory response to products of the mites and the disruption of the skin’s protective barrier caused by burrowing. This suggests that in vivo the interplay among these skin cells and other cell types, including Langerhans cells, dendritic cells, lymphocytes and endothelial cells, is responsible for depressing the host’s protective response allowing these mites to survive in the skin. PMID:23940705

  7. Ultrastructural localization of hair keratins, high sulfur keratin-associated proteins and sulfhydryl oxidase in the human hair.

    PubMed

    Alibardi, Lorenzo

    2017-03-01

    Hardening of the human hair shaft during cornification results from the bonding of keratins and keratin-associated proteins. In situ hybridization and light immunocytochemical studies have shown the general distribution of different keratins and some associated proteins but not determined their ultrastructural localization. I report here the localization of hair keratins, two high-sulfur keratin-associated proteins and sulfhydryl oxidase has been studied under the transmission electron microscope in the cornification zone of the human hair. The ultrastructural study on keratin distribution in general confirms previous light microscopic studies. Sulfur-rich KAP1 is mainly cortical but the labeling disappears in fully cornified cortical cells while a diffuse labeling is also present in differentiating cuticle cells. Sulfur-rich K26 immunolocalization is only detected in the exocuticle and endocuticle. Sparse labeling for sulfhydryl oxidase occurs in differentiating cortical cells but is weak and uneven in cuticle cells and absent in medulla and inner root sheath. Labeling disappears in the upper fully cornified cortex and cuticle. The observations indicate that sulfhydryl oxidase and keratin associated proteins are initially produced in the cytoplasm among keratin bundles accumulating in cortical and cuticle cells but these proteins undergo changes during the following cornification that alter the epitopes tagged by the antibodies.

  8. Toward unraveling the complexity of simple epithelial keratins in human disease.

    PubMed

    Omary, M Bishr; Ku, Nam-On; Strnad, Pavel; Hanada, Shinichiro

    2009-07-01

    Simple epithelial keratins (SEKs) are found primarily in single-layered simple epithelia and include keratin 7 (K7), K8, K18-K20, and K23. Genetically engineered mice that lack SEKs or overexpress mutant SEKs have helped illuminate several keratin functions and served as important disease models. Insight into the contribution of SEKs to human disease has indicated that K8 and K18 are the major constituents of Mallory-Denk bodies, hepatic inclusions associated with several liver diseases, and are essential for inclusion formation. Furthermore, mutations in the genes encoding K8, K18, and K19 predispose individuals to a variety of liver diseases. Hence, as we discuss here, the SEK cytoskeleton is involved in the orchestration of several important cellular functions and contributes to the pathogenesis of human liver disease.

  9. Alpha- and beta-keratins of the snake epidermis.

    PubMed

    Toni, Mattia; Alibardi, Lorenzo

    2007-01-01

    Snake scales contain specialized hard keratins (beta-keratins) and alpha- or cyto-keratins in their epidermis. The number, isoelectric point, and the evolution of these proteins in snakes and their similarity with those of other vertebrates are not known. In the present study, alpha- and beta-keratins of snake molts and of the whole epidermis have been studied by using two-dimensional electrophoresis and immunocytochemistry. Specific keratins in snake epidermis have been identified by using antibodies that recognize acidic and basic cytokeratins and avian or lizard scale beta-keratin. Alpha keratins of 40-70 kDa and isoelectric point (pI) at 4.5-7.0 are present in molts. The study suggests that cytokeratins in snakes are acidic or neutral, in contrast to mammals and birds where basic keratins are also present. Beta keratins of 10-15 kDa and a pI of 6.5-8.5 are found in molts. Some beta-keratins appear as basic proteins (pI 8.2) comparable to those present in the epidermis of other reptiles. Some basic "beta-keratins" associate with cytokeratins as matrix proteins and replace cytokeratins forming the corneous material of the mature beta-layer of snake scales, as in other reptiles. The study also suggests that more forms of beta-keratins (more than three different types) are present in the epidermis of snakes.

  10. Mechanistic investigation of a hemostatic keratin biomaterial

    NASA Astrophysics Data System (ADS)

    Rahmany, Maria Bahawdory

    Traumatic injury leads to more productive years lost than heart disease, cancer and stroke combined. Trauma is often accompanied and complicated by uncontrolled bleeding. Human hair keratin biomaterials have demonstrated efficacy in controlling hemorrhage in both small and large animal models; however little is known about the mechanism by which these proteins aid in blood clotting. Inspection of the amino acid sequence of known keratins shows the presence of several cellular binding motifs, suggesting a possible mechanism and potentially eliminating the need to functionalize the material's surface for cellular interaction. In addition to small animal studies, the hemostatic activity of keratin hydrogels was explored through porcine hemorrhage models representing both a high flow and low flow bleed. In both studies, keratin hydrogels appeared to lead to a significant reduction in blood loss. The promising results from these in vivo studies provided the motivation for this project. The objective of this dissertation work was to assess the mechanism of action of a hemostatic keratin biomaterial, and more broadly assess the biomaterial-cellular interaction(s). It is our hypothesis that keratin biomaterials have the capacity to specifically interact with cells and lead to propagation of intracellular signaling pathway, specifically contributing to hemostasis. Through application of biochemical and molecular tools, we demonstrate here that keratin biomaterials contribute to hemostasis through two probable mechanisms; integrin mediated platelet adhesion and increased fibrin polymerization. Platelets are the major cell type involved in coagulation both by acting as a catalytic surface for the clotting cascade and adhering to extracellular matrix (ECM) proteins providing a soft platelet plug. Because keratin biomaterials have structural and biochemical characteristics similar to ECM proteins, we utilized several adhesion assays to investigate platelet adhesion to keratin

  11. Toward unraveling the complexity of simple epithelial keratins in human disease

    PubMed Central

    Omary, M. Bishr; Ku, Nam-On; Strnad, Pavel; Hanada, Shinichiro

    2009-01-01

    Simple epithelial keratins (SEKs) are found primarily in single-layered simple epithelia and include keratin 7 (K7), K8, K18–K20, and K23. Genetically engineered mice that lack SEKs or overexpress mutant SEKs have helped illuminate several keratin functions and served as important disease models. Insight into the contribution of SEKs to human disease has indicated that K8 and K18 are the major constituents of Mallory-Denk bodies, hepatic inclusions associated with several liver diseases, and are essential for inclusion formation. Furthermore, mutations in the genes encoding K8, K18, and K19 predispose individuals to a variety of liver diseases. Hence, as we discuss here, the SEK cytoskeleton is involved in the orchestration of several important cellular functions and contributes to the pathogenesis of human liver disease. PMID:19587454

  12. Cultivation of human dermal fibroblasts and epidermal keratinocytes on keratin-coated silica bead substrates.

    PubMed

    Tan, Bee Yi; Nguyen, Luong T H; Kim, Hyo-Sop; Kim, Jae-Ho; Ng, Kee Woei

    2017-10-01

    Human hair keratin is promising as a bioactive material platform for various biomedical applications. To explore its versatility further, human hair keratin was coated onto monolayers of silica beads to produce film-like substrates. This combination was hypothesized to provide a synergistic effect in improving the biochemical properties of the resultant composite. Atomic force microscopy analysis showed uniform coatings of keratin on the silica beads with a slight increase in the resulting surface roughness. Keratin-coated silica beads had higher surface energy and relatively lower negative charge than those of bare silica beads. To investigate cell response, human dermal fibroblasts (HDFs), and human epidermal keratinocytes (HEKs) were cultured on the substrates over 4 days. Results showed that keratin coatings significantly enhanced the metabolic activity of HDFs and encouraged cell spreading but did not exert any significant effects on HEKs. HDF expression of collagen I was significantly more intense on the keratin-coated compared to the bare silica substrates. Furthermore, HDF secretion of various cytokines suggested that keratin coatings triggered active cell responses related to wound healing. Collectively, our study demonstrated that human hair keratin-coated silica bead monolayers have the potential to modulate HDF behavior in culture and may be exploited further. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2789-2798, 2017. © 2017 Wiley Periodicals, Inc.

  13. Keratins and lipids in ethnic hair.

    PubMed

    Cruz, C F; Fernandes, M M; Gomes, A C; Coderch, L; Martí, M; Méndez, S; Gales, L; Azoia, N G; Shimanovich, U; Cavaco-Paulo, A

    2013-06-01

    Human hair has an important and undeniable relevance in society due to its important role in visual appearance and social communication. Hair is mainly composed of structural proteins, mainly keratin and keratin associated proteins and lipids. Herein, we report a comprehensive study of the content and distribution of the lipids among ethnic hair, African, Asian and Caucasian hair. More interestingly, we also report the study of the interaction between those two main components of hair, specifically, the influence of the hair internal lipids in the structure of the hair keratin. This was achieved by the use of a complete set of analytical tools, such as thin layer chromatography-flame ionization detector, X-ray analysis, molecular dynamics simulation and confocal microscopy. The experimental results indicated different amounts of lipids on ethnic hair compositions and higher percentage of hair internal lipids in African hair. In this type of hair, the axial diffraction of keratin was not observed in X-ray analysis, but after hair lipids removal, the keratin returned to its typical packing arrangement. In molecular dynamic simulation, lipids were shown to intercalate dimers of keratin, changing its structure. From those results, we assume that keratin structure may be influenced by higher concentration of lipids in African hair. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  14. Gene Expression Architecture of Mouse Dorsal and Tail Skin Reveals Functional Differences in Inflammation and Cancer.

    PubMed

    Quigley, David A; Kandyba, Eve; Huang, Phillips; Halliwill, Kyle D; Sjölund, Jonas; Pelorosso, Facundo; Wong, Christine E; Hirst, Gillian L; Wu, Di; Delrosario, Reyno; Kumar, Atul; Balmain, Allan

    2016-07-26

    Inherited germline polymorphisms can cause gene expression levels in normal tissues to differ substantially between individuals. We present an analysis of the genetic architecture of normal adult skin from 470 genetically unique mice, demonstrating the effect of germline variants, skin tissue location, and perturbation by exogenous inflammation or tumorigenesis on gene signaling pathways. Gene networks related to specific cell types and signaling pathways, including sonic hedgehog (Shh), Wnt, Lgr family stem cell markers, and keratins, differed at these tissue sites, suggesting mechanisms for the differential susceptibility of dorsal and tail skin to development of skin diseases and tumorigenesis. The Pten tumor suppressor gene network is rewired in premalignant tumors compared to normal tissue, but this response to perturbation is lost during malignant progression. We present a software package for expression quantitative trait loci (eQTL) network analysis and demonstrate how network analysis of whole tissues provides insights into interactions between cell compartments and signaling molecules. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Binding Interactions of Keratin-Based Hair Fiber Extract to Gold, Keratin, and BMP-2

    PubMed Central

    de Guzman, Roche C.; Tsuda, Shanel M.; Ton, Minh-Thi N.; Zhang, Xiao; Esker, Alan R.; Van Dyke, Mark E.

    2015-01-01

    Hair-derived keratin biomaterials composed mostly of reduced keratin proteins (kerateines) have demonstrated their utility as carriers of biologics and drugs for tissue engineering. Electrostatic forces between negatively-charged keratins and biologic macromolecules allow for effective drug retention; attraction to positively-charged growth factors like bone morphogenetic protein 2 (BMP-2) has been used as a strategy for osteoinduction. In this study, the intermolecular surface and bulk interaction properties of kerateines were investigated. Thiol-rich kerateines were chemisorbed onto gold substrates to form an irreversible 2-nm rigid layer for surface plasmon resonance analysis. Kerateine-to-kerateine cohesion was observed in pH-neutral water with an equilibrium dissociation constant (KD) of 1.8 × 10−4 M, indicating that non-coulombic attractive forces (i.e. hydrophobic and van der Waals) were at work. The association of BMP-2 to kerateine was found to be greater (KD = 1.1 × 10−7 M), within the range of specific binding. Addition of salts (phosphate-buffered saline; PBS) shortened the Debye length or the electrostatic field influence which weakened the kerateine-BMP-2 binding (KD = 3.2 × 10−5 M). BMP-2 in bulk kerateine gels provided a limited release in PBS (~ 10% dissociation in 4 weeks), suggesting that electrostatic intermolecular attraction was significant to retain BMP-2 within the keratin matrix. Complete dissociation between kerateine and BMP-2 occurred when the PBS pH was lowered (to 4.5), below the keratin isoelectric point of 5.3. This phenomenon can be attributed to the protonation of keratin at a lower pH, leading to positive-positive repulsion. Therefore, the dynamics of kerateine-BMP-2 binding is highly dependent on pH and salt concentration, as well as on BMP-2 solubility at different pH and molarity. The study findings may contribute to our understanding of the release kinetics of drugs from keratin biomaterials and allow for the

  16. Proteome analysis reveals that de novo regenerated mucosa over fibula flap-reconstructed mandibles resembles mature keratinized oral mucosa.

    PubMed

    Kumar, Vinay V; James, Bonney L; Ruß, Manuela; Mikkat, Stefan; Suresh, Amritha; Kämmerer, Peer W; Glocker, Michael O

    2018-03-01

    The aim of this study was to determine whether intra-oral de novo regenerated mucosa (D) that grew over free fibula flap reconstructed-mandibles resembled the donor tissue i.e. external skin (S) of the lateral leg, or the recipient site tissue, i.e. keratinized oral mucosa (K). Differential proteome analysis was performed with ten tissue samples from each of the three groups: de novo regenerated mucosa (D), external skin (S), and keratinized oral mucosa (K). Expression differences of cornulin and involucrin were validated by Western blot analysis and their spatial distributions in the respective tissues were ascertained by immunohistochemistry. From all three investigated tissue types a total of 1188 proteins were identified, 930 of which were reproducibly and robustly quantified by proteome analysis. The best differentiating proteins were assembled in an oral mucosa proteome signature that encompasses 56 differentially expressed proteins. Principal component analysis of both, the 930 quantifiable proteins and the 56 oral mucosa signature proteins revealed that the de novo regenerated mucosa resembles keratinized oral mucosa much closer than extra-oral skin. Differentially expressed cornification-related proteins comprise proteins from all subclasses of the cornified cell envelope. Prominently expressed in intra-oral mucosa tissues were (i) cornifin-A, cornifin-B, SPRR3, and involucrin from the cornified-cell-envelope precursor group, (ii) S100A9, S100A8 and S100A2 from the S100 group, and (iii) cornulin which belongs to the fused-gene-protein group. According to its proteome signature de novo regenerated mucosa over the free fibula flap not only presents a passive structural surface layer but has adopted active tissue function. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Degradation and regeneration of feather keratin in NMMO solution.

    PubMed

    Ma, Bomou; Sun, Qisong; Yang, Jing; Wizi, Jakpa; Hou, Xiuliang; Yang, Yiqi

    2017-07-01

    Chicken feather, a potential source of keratin, is often disposed as waste material. Although some methods, i.e., hydrolysis, reduction, and oxidation, have been developed to isolate keratin for composites, it has been limited due to the rising environmental concerns. In this work, a green solvent N-methylmorpholine N-oxide (NMMO) was used to extract keratin from chicken feather waste. Eighty-nine percent of keratin was extracted using 75% NMMO solution. However, the result from size exclusion HPLC showed that most of the keratin degraded into polypeptide with molecular weight of 2189 and only 25.3% regenerated keratin was obtained with molecular weight of 14,485. Analysis of amino acid composition showed a severe damage to the disulfide bonds in keratin during the extraction procedure. Oxidization had an important effect on the reconstitution of the disulfide bonds, which formed a stable three-dimensional net structure in the regenerated keratins. Besides, Raman spectra, NMR, FT-IR, XRD, and TGA were used to characterize the properties of regenerated keratin and raw chicken feather. In the end, a possible mechanism was proposed based on the results.

  18. Keratin-6 driven ODC expression to hair follicle keratinocytes enhances stemness and tumorigenesis by negatively regulating Notch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arumugam, Aadithya; Weng, Zhiping; Chaudhary, Sandeep C.

    Highlights: • Targeting ODC to hair follicle augments skin carcinogenesis and invasive SCCs. • Hair follicle ODC expands stem cell compartment carrying CD34{sup +}/K15{sup +}/p63{sup +} keratinocytes. • Negatively regulated Notch1 is associated with expansion of stem cell compartment. - Abstract: Over-expression of ornithine decarboxylase (ODC) is known to be involved in the epidermal carcinogenesis. However, the mechanism by which it enhances skin carcinogenesis remains undefined. Recently, role of stem cells localized in various epidermal compartments has been shown in the pathogenesis of skin cancer. To direct ODC expression in distinct epidermal compartments, we have developed keratin 6 (K6)-ODC/SKH-1 andmore » keratin 14 (K14)-ODC/SKH-1 mice and employed them to investigate the role of ODC directed to these epidermal compartments on UVB-induced carcinogenesis. K6-driven ODC over-expression directed to outer root sheath (ORS) of hair follicle was more effective in augmenting tumorigenesis as compared to mice where K14-driven ODC expression was directed to inter-follicular epidermal keratinocytes. Chronically UVB-irradiated K6-ODC/SKH-1 developed 15 ± 2.5 tumors/mouse whereas K14-ODC/SKH-1 developed only 6.8 ± 1.5 tumors/mouse. K6-ODC/SKH-1 showed augmented UVB-induced proliferation and much higher pro-inflammatory responses than K14-ODC/SKH-1 mice. Tumors induced in K6-ODC/SKH-1 were rapidly growing, invasive and ulcerative squamous cell carcinoma (SCC) showing decreased expression of epidermal polarity marker E-cadherin and enhanced mesenchymal marker, fibronectin. Interestingly, the number of CD34/CK15/p63 positive stem-like cells was significantly higher in chronically UVB-irradiated K6-ODC/SKH-1 as compared to K14-ODC/SKH-1 mice. Reduced Notch1 expression was correlated with the expansion of stem cell compartment in these animals. However, other signaling pathways such as DNA damage response or mTOR signaling pathways were not significantly

  19. Biodegradable materials based on silk fibroin and keratin.

    PubMed

    Vasconcelos, Andreia; Freddi, Giuliano; Cavaco-Paulo, Artur

    2008-04-01

    Wool and silk were dissolved and used for the preparation of blended films. Two systems are proposed: (1) blend films of silk fibroin and keratin aqueous solutions and (2) silk fibroin and keratin dissolved in formic acid. The FTIR spectra of pure films cast from aqueous solutions indicated that the keratin secondary structure mainly consists of alpha-helix and random coil conformations. The IR spectrum of pure SF is characteristic of films with prevalently amorphous structure (random coil conformation). Pure keratin film cast from formic acid shows an increase in the amount of beta-sheet and disordered keratin structures. The FTIR pattern of SF dissolved in formic acid is characteristic of films with prevalently beta-sheet conformations with beta-sheet crystallites embedded in an amorphous matrix. The thermal behavior of the blends confirmed the FTIR results. DSC curve of pure SF is typical of amorphous SF and the curve of pure keratin show the characteristic melting peak of alpha-helices for the aqueous system. These patterns are no longer observed in the films cast from formic acid due to the ability of formic acid to induce crystallization of SF and to increase the amount of beta-sheet structures on keratin. The nonlinear trend of the different parameters obtained from FTIR analysis and DSC curves of both SF/keratin systems indicate that when proteins are mixed they do not follow additives rules but are able to establish intermolecular interactions. Degradable polymeric biomaterials are preferred candidates for medical applications. It was investigated the degradation behavior of both SF/keratin systems by in vitro enzymatic incubation with trypsin. The SF/keratin films cast from water underwent a slower biological degradation than the films cast from formic acid. The weight loss obtained is a function of the amount of keratin in the blend. This study encourages the further investigation of the type of matrices presented here to be applied whether in scaffolds

  20. Sulfur mustard induces the formation of keratin aggregates in human epidermal keratinocytes.

    PubMed

    Dillman, James F; McGary, Kriston L; Schlager, John J

    2003-12-01

    The vesicant sulfur mustard is an alkylating agent that has the capacity to cross-link biological molecules. We are interested in identifying specific proteins that are altered upon sulfur mustard exposure. Keratins are particularly important for the structural integrity of skin, and several genetically inherited blistering diseases have been linked to mutations in keratin 5 and keratin 14. We examined whether sulfur mustard exposure alters keratin biochemistry in cultured human epidermal keratinocytes. Western blotting with specific monoclonal antibodies revealed the formation of stable high-molecular-weight "aggregates" containing keratin 14 and/or keratin 5. These aggregates begin to form within 15 min after sulfur mustard exposure. These aggregates display a complex gel electrophoresis pattern between approximately 100 and approximately 200 kDa. Purification and analysis of these aggregates by one- and two-dimensional gel electrophoresis and mass spectrometry confirmed the presence of keratin 14 and keratin 5 and indicate that at least some of the aggregates are composed of keratin 14-keratin 14, keratin 14-keratin 5, or keratin 5-keratin 5 dimers. These studies demonstrate that sulfur mustard induces keratin aggregation in keratinocytes and support further investigation into the role of keratin aggregation in sulfur mustard-induced vesication.

  1. Progress towards genetic and pharmacological therapies for keratin genodermatoses: current perspective and future promise

    PubMed Central

    Chamcheu, Jean Christopher; Wood, Gary S.; Siddiqui, Imtiaz A.; Syed, Deeba N.; Adhami, Vaqar M.; Teng, Joyce M.; Mukhtar, Hasan

    2012-01-01

    Hereditary keratin disorders of the skin and its appendages comprise a large group of clinically heterogeneous disfiguring blistering and ichthyotic diseases, primarily characterized by the loss of tissue integrity, blistering and hyperkeratosis in severely affected tissues. Pathogenic mutations in keratins cause these afflictions. Typically, these mutations in concert with characteristic features have formed the basis for improved disease diagnosis, prognosis and most recently therapy development. Examples include epidermolysis bullosa simplex, keratinopathic ichthyosis, pachyonychia congenita and several other tissue-specific hereditary keratinopathies. Understanding the molecular and genetic events underlying skin dysfunction has initiated alternative treatment approaches that may provide novel therapeutic opportunities for affected patients. Animal and in vitro disease modelling studies have shed more light on molecular pathogenesis, further defining the role of keratins in disease processes and promoting the translational development of new gene and pharmacological therapeutic strategies. Given that the molecular basis for these monogenic disorders is well established, gene therapy and drug discovery targeting pharmacological compounds with the ability to reinforce the compromised cytoskeleton may lead to promising new therapeutic strategies for treating hereditary keratinopathies. In this review, we will summarize and discuss recent advances in the preclinical and clinical modelling and development of gene, natural product, pharmacological and protein-based therapies for these disorders, highlighting the feasibility of new approaches for translational clinical therapy. PMID:22716242

  2. Progress towards genetic and pharmacological therapies for keratin genodermatoses: current perspective and future promise.

    PubMed

    Chamcheu, Jean Christopher; Wood, Gary S; Siddiqui, Imtiaz A; Syed, Deeba N; Adhami, Vaqar M; Teng, Joyce M; Mukhtar, Hasan

    2012-07-01

    Hereditary keratin disorders of the skin and its appendages comprise a large group of clinically heterogeneous disfiguring blistering and ichthyotic diseases, primarily characterized by the loss of tissue integrity, blistering and hyperkeratosis in severely affected tissues. Pathogenic mutations in keratins cause these afflictions. Typically, these mutations in concert with characteristic features have formed the basis for improved disease diagnosis, prognosis and most recently therapy development. Examples include epidermolysis bullosa simplex, keratinopathic ichthyosis, pachyonychia congenita and several other tissue-specific hereditary keratinopathies. Understanding the molecular and genetic events underlying skin dysfunction has initiated alternative treatment approaches that may provide novel therapeutic opportunities for affected patients. Animal and in vitro disease modelling studies have shed more light on molecular pathogenesis, further defining the role of keratins in disease processes and promoting the translational development of new gene and pharmacological therapeutic strategies. Given that the molecular basis for these monogenic disorders is well established, gene therapy and drug discovery targeting pharmacological compounds with the ability to reinforce the compromised cytoskeleton may lead to promising new therapeutic strategies for treating hereditary keratinopathies. In this review, we will summarize and discuss recent advances in the preclinical and clinical modelling and development of gene, natural product, pharmacological and protein-based therapies for these disorders, highlighting the feasibility of new approaches for translational clinical therapy. © 2012 John Wiley & Sons A/S.

  3. The role of the ubiquitin proteasome pathway in keratin intermediate filament protein degradation.

    PubMed

    Rogel, Micah R; Jaitovich, Ariel; Ridge, Karen M

    2010-02-01

    Lung injury, whether caused by hypoxic or mechanical stresses, elicits a variety of responses at the cellular level. Alveolar epithelial cells respond and adapt to such injurious stimuli by reorganizing the cellular cytoskeleton, mainly accomplished through modification of the intermediate filament (IF) network. The structural and mechanical integrity in epithelial cells is maintained through this adaptive reorganization response. Keratin, the predominant IF expressed in epithelial cells, displays highly dynamic properties in response to injury, sometimes in the form of degradation of the keratin IF network. Post-translational modification, such as phosphorylation, targets keratin proteins for degradation in these circumstances. As with other structural and regulatory proteins, turnover of keratin is regulated by the ubiquitin (Ub)-proteasome pathway. The degradation process begins with activation of Ub by the Ub-activating enzyme (E1), followed by the exchange of Ub to the Ub-conjugating enzyme (E2). E2 shuttles the Ub molecule to the substrate-specific Ub ligase (E3), which then delivers the Ub to the substrate protein, thereby targeting it for degradation. In some cases of injury and IF-related disease, aggresomes form in epithelial cells. The mechanisms that regulate aggresome formation are currently unknown, although proteasome overload may play a role. Therefore, a more complete understanding of keratin degradation--causes, mechanisms, and consequences--will allow for a greater understanding of epithelial cell biology and lung pathology alike.

  4. Keratin14 mRNA expression in human pneumocytes during quiescence, repair and disease

    PubMed Central

    Confalonieri, Marco; Buratti, Emanuele; Grassi, Gabriele; Bussani, Rossana; Chilosi, Marco; Farra, Rossella; Abrami, Michela; Stuani, Cristiana; Salton, Francesco; Ficial, Miriam; Confalonieri, Paola; Zandonà, Lorenzo; Romano, Maurizio

    2017-01-01

    The lung alveoli slowly self-renew pneumocytes, but their facultative regeneration capacity is rapidly efficient after an injury, so fibrosis infrequently occurs. We recently observed Keratin 14 (KRT14) expression during diffuse alveolar damage (DAD), but not in controls. We wonder if KRT14 may be a marker of pneumocyte transition from quiescence to regeneration. Quantitative PCR and Western blot analyses highlighted the presence of KRT14 (mRNA and protein) only in human lung samples with DAD or interstitial lung disease (ILD). In the exponentially growing cell lines A549 and H441, the mRNA and protein levels of KRT14 peaked at day one after cell seeding and decreased at day two, opposite to what observed for the proliferation marker E2F1. The inverse relation of KRT14 versus E2F1 expression holds true also for other proliferative markers, such as cyclin E1 and cyclin D1. Of interest, we also found that E2F1 silencing caused cell cycle arrest and increased KRT14 expression, whilst E2F1 stimulation induced cell cycle progression and decreased KRT14. KRT14 also increased in proliferative pneumocytes (HPAEpiC) just before transdifferentiation. Overall, our results suggest that KRT14 is a viable biomarker of pneumocyte activation, and repair/regeneration. The involvement of KRT14 in regenerative process may suggest a novel pharmaceutical target to accelerate lung repair. PMID:28199407

  5. Keratin14 mRNA expression in human pneumocytes during quiescence, repair and disease.

    PubMed

    Confalonieri, Marco; Buratti, Emanuele; Grassi, Gabriele; Bussani, Rossana; Chilosi, Marco; Farra, Rossella; Abrami, Michela; Stuani, Cristiana; Salton, Francesco; Ficial, Miriam; Confalonieri, Paola; Zandonà, Lorenzo; Romano, Maurizio

    2017-01-01

    The lung alveoli slowly self-renew pneumocytes, but their facultative regeneration capacity is rapidly efficient after an injury, so fibrosis infrequently occurs. We recently observed Keratin 14 (KRT14) expression during diffuse alveolar damage (DAD), but not in controls. We wonder if KRT14 may be a marker of pneumocyte transition from quiescence to regeneration. Quantitative PCR and Western blot analyses highlighted the presence of KRT14 (mRNA and protein) only in human lung samples with DAD or interstitial lung disease (ILD). In the exponentially growing cell lines A549 and H441, the mRNA and protein levels of KRT14 peaked at day one after cell seeding and decreased at day two, opposite to what observed for the proliferation marker E2F1. The inverse relation of KRT14 versus E2F1 expression holds true also for other proliferative markers, such as cyclin E1 and cyclin D1. Of interest, we also found that E2F1 silencing caused cell cycle arrest and increased KRT14 expression, whilst E2F1 stimulation induced cell cycle progression and decreased KRT14. KRT14 also increased in proliferative pneumocytes (HPAEpiC) just before transdifferentiation. Overall, our results suggest that KRT14 is a viable biomarker of pneumocyte activation, and repair/regeneration. The involvement of KRT14 in regenerative process may suggest a novel pharmaceutical target to accelerate lung repair.

  6. Molecular evolution of the keratin associated protein gene family in mammals, role in the evolution of mammalian hair.

    PubMed

    Wu, Dong-Dong; Irwin, David M; Zhang, Ya-Ping

    2008-08-23

    Hair is unique to mammals. Keratin associated proteins (KRTAPs), which contain two major groups: high/ultrahigh cysteine and high glycine-tyrosine, are one of the major components of hair and play essential roles in the formation of rigid and resistant hair shafts. The KRTAP family was identified as being unique to mammals, and near-complete KRTAP gene repertoires for eight mammalian genomes were characterized in this study. An expanded KRTAP gene repertoire was found in rodents. Surprisingly, humans have a similar number of genes as other primates despite the relative hairlessness of humans. We identified several new subfamilies not previously reported in the high/ultrahigh cysteine KRTAP genes. Genes in many subfamilies of the high/ultrahigh cysteine KRTAP genes have evolved by concerted evolution with frequent gene conversion events, yielding a higher GC base content for these gene sequences. In contrast, the high glycine-tyrosine KRTAP genes have evolved more dynamically, with fewer gene conversion events and thus have a lower GC base content, possibly due to positive selection. Most of the subfamilies emerged early in the evolution of mammals, thus we propose that the mammalian ancestor should have a diverse KRTAP gene repertoire. We propose that hair content characteristics have evolved and diverged rapidly among mammals because of rapid divergent evolution of KRTAPs between species. In contrast, subfamilies of KRTAP genes have been homogenized within each species due to concerted evolution.

  7. Synthesis of Keratin-based Nanofiber for Biomedical Engineering.

    PubMed

    Thompson, Zanshe S; Rijal, Nava P; Jarvis, David; Edwards, Angela; Bhattarai, Narayan

    2016-02-07

    Electrospinning, due to its versatility and potential for applications in various fields, is being frequently used to fabricate nanofibers. Production of these porous nanofibers is of great interest due to their unique physiochemical properties. Here we elaborate on the fabrication of keratin containing poly (ε-caprolactone) (PCL) nanofibers (i.e., PCL/keratin composite fiber). Water soluble keratin was first extracted from human hair and mixed with PCL in different ratios. The blended solution of PCL/keratin was transformed into nanofibrous membranes using a laboratory designed electrospinning set up. Fiber morphology and mechanical properties of the obtained nanofiber were observed and measured using scanning electron microscopy and tensile tester. Furthermore, degradability and chemical properties of the nanofiber were studied by FTIR. SEM images showed uniform surface morphology for PCL/keratin fibers of different compositions. These PCL/keratin fibers also showed excellent mechanical properties such as Young's modulus and failure point. Fibroblast cells were able to attach and proliferate thus proving good cell viability. Based on the characteristics discussed above, we can strongly argue that the blended nanofibers of natural and synthetic polymers can represent an excellent development of composite materials that can be used for different biomedical applications.

  8. Flow behavior of regenerated wool-keratin proteins in different mediums.

    PubMed

    Alemdar, Ayse; Iridag, Yesim; Kazanci, Murat

    2005-04-01

    Keratin is abundantly present in nature and the major component of hair, wool, feather, nail and horns. Dissolution of keratin is often required when non-textile applications are demanded. However, the low solubility of keratin in water is the major problem. It becomes unstable and precipitated when stored for a long time. Therefore, it is necessary to find a good solvent that provides high stability and easy processibility. In this research, we used formic acid and dimethylformamide (DMF) to dissolve regenerated keratin protein films. It is shown that formic acid is a good solvent for regenerated keratin proteins for the purpose of storage. Transparent and stable regenerated keratin solution is obtained in formic acid.

  9. Soft epidermis of a scaleless snake lacks beta-keratin.

    PubMed

    Toni, M; Alibardi, L

    2007-01-01

    Beta-keratins are responsible for the mechanical resistance of scales in reptiles. In a scaleless crotalus snake (Crotalus atrox), large areas of the skin are completely devoid of scales, and the skin appears delicate and wrinkled. The epidermis of this snake has been assessed for the presence of beta-keratin by immunocytochemistry and immunoblotting using an antibody against chicken scale beta-keratin. This antibody recognizes beta-keratins in normal snake scales with molecular weights of 15-18 kDa and isoelectric points at 6.8, 7.5, 8.3 and 9.4. This indicates that beta-keratins of the stratum corneum are mainly basic proteins, so may interact with cytokeratins of the epidermis, most of which appear acidic (isoelectric points 4.5-5.5). A beta-layer and beta-keratin immunoreactivity are completely absent in moults of the scaleless mutant, and the corneous layer comprises a multi-layered alpha-layer covered by a flat oberhautchen. In conclusion, the present study shows that a lack of beta-keratins is correlated with the loss of scales and mechanical protection in the skin of this mutant snake.

  10. Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia.

    PubMed

    Badea, Liviu; Herlea, Vlad; Dima, Simona Olimpia; Dumitrascu, Traian; Popescu, Irinel

    2008-01-01

    The precise details of pancreatic ductal adenocarcinoma (PDAC) pathogenesis are still insufficiently known, requiring the use of high-throughput methods. However, PDAC is especially difficult to study using microarrays due to its strong desmoplastic reaction, which involves a hyperproliferating stroma that effectively "masks" the contribution of the minoritary neoplastic epithelial cells. Thus it is not clear which of the genes that have been found differentially expressed between normal and whole tumor tissues are due to the tumor epithelia and which simply reflect the differences in cellular composition. To address this problem, laser microdissection studies have been performed, but these have to deal with much smaller tissue sample quantities and therefore have significantly higher experimental noise. In this paper we combine our own large sample whole-tissue study with a previously published smaller sample microdissection study by Grützmann et al. to identify the genes that are specifically overexpressed in PDAC tumor epithelia. The overlap of this list of genes with other microarray studies of pancreatic cancer as well as with the published literature is impressive. Moreover, we find a number of genes whose over-expression appears to be inversely correlated with patient survival: keratin 7, laminin gamma 2, stratifin, platelet phosphofructokinase, annexin A2, MAP4K4 and OACT2 (MBOAT2), which are all specifically upregulated in the neoplastic epithelia, rather than the tumor stroma. We improve on other microarray studies of PDAC by putting together the higher statistical power due to a larger number of samples with information about cell-type specific expression and patient survival.

  11. The action of a dietary retinoid on gene expression and cancer induction in electron-irradiated rat skin

    NASA Technical Reports Server (NTRS)

    Burns, Fredric J.; Chen, Shuaili; Xu, Guijuan; Wu, Feng; Tang, Moon-Shong

    2002-01-01

    Current models of radiation carcinogenesis generally assume that the DNA is damaged in a variety of ways by the radiation and that subsequent cell divisions contribute to the conversion of the damage to heritable mutations. Cancer may seem complex and intractable, but its complexity provides multiple opportunities for preventive interventions. Mitotic inhibitors are among the strongest cancer preventive agents, not only slowing the growth rate of preneoplasias but also increasing the fidelity of DNA repair processes. Ionizing radiation, including electrons, is a strong inducer of cancer in rat skin, and dietary retinoids have shown potent cancer preventive activity in the same system. A non-toxic dietary dose of retinyl acetate altered gene expression levels 24 hours after electron irradiation of rat skin. Of the 8740 genes on an Affymetrix rat expression array, the radiation significantly (5 fold or higher) altered 188, while the retinoid altered 231, including 16 radiation-altered genes that were reversely altered. While radiation strongly affected the expression of stress response, immune/inflammation and nucleic acid metabolism genes, the retinoid most strongly affected proliferation-related genes, including some significant reversals, such as, keratin 14, retinol binding protein, and calcium binding proteins. These results point to reversal of proliferation-relevant genes as a likely basis for the anti-radiogenic effects of dietary retinyl acetate.

  12. Non-Coding Keratin Variants Associate with Liver Fibrosis Progression in Patients with Hemochromatosis

    PubMed Central

    Lunova, Mariia; Guldiken, Nurdan; Lienau, Tim C.; Stickel, Felix; Omary, M. Bishr

    2012-01-01

    Background Keratins 8 and 18 (K8/K18) are intermediate filament proteins that protect the liver from various forms of injury. Exonic K8/K18 variants associate with adverse outcome in acute liver failure and with liver fibrosis progression in patients with chronic hepatitis C infection or primary biliary cirrhosis. Given the association of K8/K18 variants with end-stage liver disease and progression in several chronic liver disorders, we studied the importance of keratin variants in patients with hemochromatosis. Methods The entire K8/K18 exonic regions were analyzed in 162 hemochromatosis patients carrying homozygous C282Y HFE (hemochromatosis gene) mutations. 234 liver-healthy subjects were used as controls. Exonic regions were PCR-amplified and analyzed using denaturing high-performance liquid chromatography and DNA sequencing. Previously-generated transgenic mice overexpressing K8 G62C were studied for their susceptibility to iron overload. Susceptibility to iron toxicity of primary hepatocytes that express K8 wild-type and G62C was also assessed. Results We identified amino-acid-altering keratin heterozygous variants in 10 of 162 hemochromatosis patients (6.2%) and non-coding heterozygous variants in 6 additional patients (3.7%). Two novel K8 variants (Q169E/R275W) were found. K8 R341H was the most common amino-acid altering variant (4 patients), and exclusively associated with an intronic KRT8 IVS7+10delC deletion. Intronic, but not amino-acid-altering variants associated with the development of liver fibrosis. In mice, or ex vivo, the K8 G62C variant did not affect iron-accumulation in response to iron-rich diet or the extent of iron-induced hepatocellular injury. Conclusion In patients with hemochromatosis, intronic but not exonic K8/K18 variants associate with liver fibrosis development. PMID:22412904

  13. Surface active complexes formed between keratin polypeptides and ionic surfactants.

    PubMed

    Pan, Fang; Lu, Zhiming; Tucker, Ian; Hosking, Sarah; Petkov, Jordan; Lu, Jian R

    2016-12-15

    Keratins are a group of important proteins in skin and hair and as biomaterials they can provide desirable properties such as strength, biocompatibility, and moisture regaining and retaining. The aim of this work is to develop water-soluble keratin polypeptides from sheep wool and then explore how their surface adsorption behaves with and without surfactants. Successful preparation of keratin samples was demonstrated by identification of the key components from gel electrophoresis and the reproducible production of gram scale samples with and without SDS (sodium dodecylsulphate) during wool fibre dissolution. SDS micelles could reduce the formation of disulphide bonds between keratins during extraction, reducing inter-molecular crosslinking and improving keratin polypeptide solubility. However, Zeta potential measurements of the two polypeptide batches demonstrated almost identical pH dependent surface charge distributions with isoelectric points around pH 3.5, showing complete removal of SDS during purification by dialysis. In spite of different solubility from the two batches of keratin samples prepared, very similar adsorption and aggregation behavior was revealed from surface tension measurements and dynamic light scattering. Mixing of keratin polypeptides with SDS and C 12 TAB (dodecyltrimethylammonium bromide) led to the formation of keratin-surfactant complexes that were substantially more effective at reducing surface tension than the polypeptides alone, showing great promise in the delivery of keratin polypeptides via the surface active complexes. Neutron reflection measurements revealed the coexistence of surfactant and keratin polypeptides at the interface, thus providing the structural support to the observed surface tension changes associated with the formation of the surface active complexes. Copyright © 2016. Published by Elsevier Inc.

  14. Interplay between Solo and keratin filaments is crucial for mechanical force–induced stress fiber reinforcement

    PubMed Central

    Fujiwara, Sachiko; Ohashi, Kazumasa; Mashiko, Toshiya; Kondo, Hiroshi; Mizuno, Kensaku

    2016-01-01

    Mechanical force–induced cytoskeletal reorganization is essential for cell and tissue remodeling and homeostasis; however, the underlying cellular mechanisms remain elusive. Solo (ARHGEF40) is a RhoA-targeting guanine nucleotide exchange factor (GEF) involved in cyclical stretch–induced human endothelial cell reorientation and convergent extension cell movement in zebrafish gastrula. In this study, we show that Solo binds to keratin-8/keratin-18 (K8/K18) intermediate filaments through multiple sites. Solo overexpression promotes the formation of thick actin stress fibers and keratin bundles, whereas knockdown of Solo, expression of a GEF-inactive mutant of Solo, or inhibition of ROCK suppresses stress fiber formation and leads to disorganized keratin networks, indicating that the Solo-RhoA-ROCK pathway serves to precisely organize keratin networks, as well as to promote stress fibers. Of importance, knockdown of Solo or K18 or overexpression of GEF-inactive or deletion mutants of Solo suppresses tensile force–induced stress fiber reinforcement. Furthermore, knockdown of Solo or K18 suppresses tensile force-induced RhoA activation. These results strongly suggest that the interplay between Solo and K8/K18 filaments plays a crucial role in tensile force–induced RhoA activation and consequent actin cytoskeletal reinforcement. PMID:26823019

  15. Pleiotropic function of DLX3 in amelogenesis: from regulating pH and keratin expression to controlling enamel rod decussation.

    PubMed

    Duverger, Olivier; Morasso, Maria I

    2018-12-01

    DLX3 is essential for tooth enamel development and is so far the only transcription factor known to be mutated in a syndromic form of amelogenesis imperfecta. Through conditional deletion of Dlx3 in the dental epithelium in mouse, we have previously established the involvement of DLX3 in enamel pH regulation, as well as in controlling the expression of sets of keratins that contribute to enamel rod sheath formation. Here, we show that the decussation pattern of enamel rods was lost in conditional knockout animals, suggesting that DLX3 controls the coordinated migration of ameloblasts during enamel secretion. We further demonstrate that DLX3 regulates the expression of some components of myosin II complexes potentially involved in driving the movement of ameloblasts that leads to enamel rod decussation.

  16. Effects of Plectin Depletion on Keratin Network Dynamics and Organization

    PubMed Central

    Moch, Marcin; Windoffer, Reinhard; Schwarz, Nicole; Pohl, Raphaela; Omenzetter, Andreas; Schnakenberg, Uwe; Herb, Fabian; Chaisaowong, Kraisorn; Merhof, Dorit; Ramms, Lena; Fabris, Gloria; Hoffmann, Bernd; Merkel, Rudolf; Leube, Rudolf E.

    2016-01-01

    The keratin intermediate filament cytoskeleton protects epithelial cells against various types of stress and is involved in fundamental cellular processes such as signaling, differentiation and organelle trafficking. These functions rely on the cell type-specific arrangement and plasticity of the keratin system. It has been suggested that these properties are regulated by a complex cycle of assembly and disassembly. The exact mechanisms responsible for the underlying molecular processes, however, have not been clarified. Accumulating evidence implicates the cytolinker plectin in various aspects of the keratin cycle, i.e., by acting as a stabilizing anchor at hemidesmosomal adhesion sites and the nucleus, by affecting keratin bundling and branching and by linkage of keratins to actin filament and microtubule dynamics. In the present study we tested these hypotheses. To this end, plectin was downregulated by shRNA in vulvar carcinoma-derived A431 cells. As expected, integrin β4- and BPAG-1-positive hemidesmosomal structures were strongly reduced and cytosolic actin stress fibers were increased. In addition, integrins α3 and β1 were reduced. The experiments furthermore showed that loss of plectin led to a reduction in keratin filament branch length but did not alter overall mechanical properties as assessed by indentation analyses using atomic force microscopy and by displacement analyses of cytoplasmic superparamagnetic beads using magnetic tweezers. An increase in keratin movement was observed in plectin-depleted cells as was the case in control cells lacking hemidesmosome-like structures. Yet, keratin turnover was not significantly affected. We conclude that plectin alone is not needed for keratin assembly and disassembly and that other mechanisms exist to guarantee proper keratin cycling under steady state conditions in cultured single cells. PMID:27007410

  17. Isolation and Analysis of Keratins and Keratin-Associated Proteins from Hair and Wool.

    PubMed

    Deb-Choudhury, Santanu; Plowman, Jeffrey E; Harland, Duane P

    2016-01-01

    The presence of highly cross-linked protein networks in hair and wool makes them very difficult substrates for protein extraction, a prerequisite for further protein analysis and characterization. It is therefore imperative that these cross-links formed by disulfide bridges are first disrupted for the efficient extraction of proteins. Chaotropes such as urea are commonly used as efficient extractants. However, a combination of urea and thiourea not only improves recovery of proteins but also results in improved resolution of the keratins in 2DE gels. Reductants also play an important role in protein dissolution. Dithiothreitol effectively removes keratinous material from the cortex, whereas phosphines, like Tris(2-carboxyethyl)phosphine, remove material from the exocuticle. The relative extractability of the keratins and keratin-associated proteins is also dependent on the concentration of chaotropes, reductants, and pH, thus providing a means to preferentially extract these proteins. Ionic liquids such as 1-butyl-3-methylimidazolium chloride (BMIM(+)[Cl](-)) are known to solubilize wool by disrupting noncovalent interactions, specifically intermolecular hydrogen bonds. BMIM(+)[Cl](-) proved to be an effective extractant of wool proteins and complementary in nature to chaotropes such as urea and thiourea for identifying unique peptides of wool proteins using mass spectrometry (MS). Successful identification of proteins resolved by one- or two-dimensional electrophoresis and MS is highly dependent on the optimal recovery of its protease-digested peptides with an efficient removal of interfering substances. The detergent sodium deoxycholate used in conjunction with Empore™ disks improved identification of proteins by mass spectrometry leading to higher percentage sequence coverage, identification of unique peptides and higher score. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Pure keratin membrane and fibers from chicken feather.

    PubMed

    Ma, Bomou; Qiao, Xue; Hou, Xiuliang; Yang, Yiqi

    2016-08-01

    In this research, keratin was extracted from the disposable chicken feather using l-cysteine as reducing agent. Then, it was re-dissolved in the sodium carbonate-sodium bicarbonate buffer, and the pure keratin membrane and fiber were fabricated by doctor-blade casting process and wet spinning method, respectively. Scanning electron microscopy (SEM), fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and thermogravimetric analysis (TGA) were used to characterize the chemical and physical properties of resulting powder, membrane and fiber. Compared with the raw chicken feather, the regenerated keratin materials retain its chemical structure and thermal stability, their relative crystallinity is a little different depend on the shaping method, which leads to the difference in moisture regain. The mechanical results show that tensile strength of the keratin membrane researches 3.5MPa, have potential application in biomedical fields. However, the keratin fiber presents low tenacity, i.e. 0.5cN/dtex, this problem should be solved in order to apply the new fiber in textile and material science. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Keratin 8 and 18 Loss in Epithelial Cancer Cells Increases Collective Cell Migration and Cisplatin Sensitivity through Claudin1 Up-regulation*

    PubMed Central

    Fortier, Anne-Marie; Asselin, Eric; Cadrin, Monique

    2013-01-01

    Keratins 8 and 18 (K8/18) are simple epithelial cell-specific intermediate filament proteins. Keratins are essential for tissue integrity and are involved in intracellular signaling pathways that regulate cell response to injuries, cell growth, and death. K8/18 expression is maintained during tumorigenesis; hence, they are used as a diagnostic marker in tumor pathology. In recent years, studies have provided evidence that keratins should be considered not only as markers but also as regulators of cancer cell signaling. The loss of K8/18 expression during epithelial-mesenchymal transition (EMT) is associated with metastasis and chemoresistance. In the present study, we investigated whether K8/18 expression plays an active role in EMT. We show that K8/18 stable knockdown using shRNA increased collective migration and invasiveness of epithelial cancer cells without modulating EMT markers. K8/18-depleted cells showed PI3K/Akt/NF-κB hyperactivation and increased MMP2 and MMP9 expression. K8/18 deletion also increased cisplatin-induced apoptosis. Increased Fas receptor membrane targeting suggests that apoptosis is enhanced via the extrinsic pathway. Interestingly, we identified the tight junction protein claudin1 as a regulator of these processes. This is the first indication that modulation of K8/18 expression can influence the phenotype of epithelial cancer cells at a transcriptional level and supports the hypothesis that keratins play an active role in cancer progression. PMID:23449973

  20. Mammalian keratin associated proteins (KRTAPs) subgenomes: disentangling hair diversity and adaptation to terrestrial and aquatic environments.

    PubMed

    Khan, Imran; Maldonado, Emanuel; Vasconcelos, Vítor; O'Brien, Stephen J; Johnson, Warren E; Antunes, Agostinho

    2014-09-10

    Adaptation of mammals to terrestrial life was facilitated by the unique vertebrate trait of body hair, which occurs in a range of morphological patterns. Keratin associated proteins (KRTAPs), the major structural hair shaft proteins, are largely responsible for hair variation. We exhaustively characterized the KRTAP gene family in 22 mammalian genomes, confirming the existence of 30 KRTAP subfamilies evolving at different rates with varying degrees of diversification and homogenization. Within the two major classes of KRTAPs, the high cysteine (HS) subfamily experienced strong concerted evolution, high rates of gene conversion/recombination and high GC content. In contrast, high glycine-tyrosine (HGT) KRTAPs showed evidence of positive selection and low rates of gene conversion/recombination. Species with more hair and of higher complexity tended to have more KRATP genes (gene expansion). The sloth, with long and coarse hair, had the most KRTAP genes (175 with 141 being intact). By contrast, the "hairless" dolphin had 35 KRTAPs and the highest pseudogenization rate (74% relative to the 19% mammalian average). Unique hair-related phenotypes, such as scales (armadillo) and spines (hedgehog), were correlated with changes in KRTAPs. Gene expression variation probably also influences hair diversification patterns, for example human have an identical KRTAP repertoire as apes, but much less hair. We hypothesize that differences in KRTAP gene repertoire and gene expression, together with distinct rates of gene conversion/recombination, pseudogenization and positive selection, are likely responsible for micro and macro-phenotypic hair diversification among mammals in response to adaptations to ecological pressures.

  1. New keratin isolates: actives for natural hair protection.

    PubMed

    Roddick-Lanzilotta, Alisa; Kelly, Rob; Scott, Sonya; Chahal, Surinder

    2007-01-01

    Hair is primarily composed of keratin proteins and it is well established that peptides and proteins bestow desirable effects on the hair, for example improving moisturization and softness. In the present work we describe how keratin actives with unique properties convey a range of beneficial properties to a variety of hair types. It has been observed that these functional keratins protect hair from damage associated with chemical treatments such as perming and relaxation, help to restore the mechanical strength of damaged fibers and decrease fading of colored hair.

  2. Eye drop delivery of nano-polymeric micelle formulated genes with cornea-specific promoters.

    PubMed

    Tong, Yaw-Chong; Chang, Shwu-Fen; Liu, Chia-Yang; Kao, Winston W-Y; Huang, Chong Heng; Liaw, Jiahorng

    2007-11-01

    This study evaluates the eye drop delivery of genes with cornea-specific promoters, i.e., keratin 12 (K12) and keratocan (Kera3.2) promoters, by non-ionic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) polymeric micelles (PM) to mouse and rabbit eyes, and investigates the underlying mechanisms. Three PM-formulated plasmids (pCMV-Lac Z, pK12-Lac Z and pKera3.2-Lac Z) containing the Lac Z gene for beta-galactosidase (beta-Gal) whose expression was driven by the promoter of either the cytomegalovirus early gene, the keratin 12 gene or the keratocan gene, were characterized by critical micelle concentration (CMC), dynamic light scattering (DLS), and atomic force microscopy (AFM). Transgene expression in ocular tissue after gene delivery was analyzed by 5-bromo-4-chloro-3-indolyl-beta-D-galactoside (X-Gal) color staining, 1,2-dioxetane beta-Gal enzymatic activity measurement, and real-time polymerase chain reaction (PCR) analysis. The delivery mechanisms of plasmid-PM on mouse and rabbit corneas were evaluated by EDTA and RGD (arginine-glycine-aspartic acid) peptide. The sizes of the three plasmid-PM complexes were around 150-200 nm with unimodal distribution. Enhanced stability was found for three plasmid-PM formulations after DNase I treatment. After six doses of eye drop delivery of pK12-Lac Z-PM three times a day, beta-Gal activity was significantly increased in both mouse and rabbit corneas. Stroma-specific Lac Z expression was only found in pKera3.2-Lac Z-PM-treated animals with pretreatment by 5 mM EDTA, an opener of junctions. Lac Z gene expression in both pK12-Lac Z-PM and pKera3.2-Lac Z-PM delivery groups was decreased by RGD peptide pretreatment. Cornea epithelium- and stroma-specific gene expression could be achieved using cornea-specific promoters of keratin 12 and keratocan genes, and the gene was delivered with PM formulation through non-invasive, eye drop in mice and rabbits. The transfection mechanism of plasmid-PM may

  3. Gene expression markers in circulating tumor cells may predict bone metastasis and response to hormonal treatment in breast cancer.

    PubMed

    Wang, Haiying; Molina, Julian; Jiang, John; Ferber, Matthew; Pruthi, Sandhya; Jatkoe, Timothy; Derecho, Carlo; Rajpurohit, Yashoda; Zheng, Jian; Wang, Yixin

    2013-11-01

    Circulating tumor cells (CTCs) have recently attracted attention due to their potential as prognostic and predictive markers for the clinical management of metastatic breast cancer patients. The isolation of CTCs from patients may enable the molecular characterization of these cells, which may help establish a minimally invasive assay for the prediction of metastasis and further optimization of treatment. Molecular markers of proven clinical value may therefore be useful in predicting disease aggressiveness and response to treatment. In our earlier study, we identified a gene signature in breast cancer that appears to be significantly associated with bone metastasis. Among the genes that constitute this signature, trefoil factor 1 (TFF1) was identified as the most differentially expressed gene associated with bone metastasis. In this study, we investigated 25 candidate gene markers in the CTCs of metastatic breast cancer patients with different metastatic sites. The panel of the 25 markers was investigated in 80 baseline samples (first blood draw of CTCs) and 30 follow-up samples. In addition, 40 healthy blood donors (HBDs) were analyzed as controls. The assay was performed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) with RNA extracted from CTCs captured by the CellSearch system. Our study indicated that 12 of the genes were uniquely expressed in CTCs and 10 were highly expressed in the CTCs obtained from patients compared to those obtained from HBDs. Among these genes, the expression of keratin 19 was highly correlated with the CTC count. The TFF1 expression in CTCs was a strong predictor of bone metastasis and the patients with a high expression of estrogen receptor β in CTCs exhibited a better response to hormonal treatment. Molecular characterization of these genes in CTCs may provide a better understanding of the mechanism underlying tumor metastasis and identify gene markers in CTCs for predicting disease progression and

  4. Keratins Regulate p38MAPK-Dependent Desmoglein Binding Properties in Pemphigus

    PubMed Central

    Vielmuth, Franziska; Walter, Elias; Fuchs, Michael; Radeva, Mariya Y.; Buechau, Fanny; Magin, Thomas M.; Spindler, Volker; Waschke, Jens

    2018-01-01

    Keratins are crucial for the anchorage of desmosomes. Severe alterations of keratin organization and detachment of filaments from the desmosomal plaque occur in the autoimmune dermatoses pemphigus vulgaris and pemphigus foliaceus (PF), which are mainly caused by autoantibodies against desmoglein (Dsg) 1 and 3. Keratin alterations are a structural hallmark in pemphigus pathogenesis and correlate with loss of intercellular adhesion. However, the significance for autoantibody-induced loss of intercellular adhesion is largely unknown. In wild-type (wt) murine keratinocytes, pemphigus autoantibodies induced keratin filament retraction. Under the same conditions, we used murine keratinocytes lacking all keratin filaments (KtyII k.o.) as a model system to dissect the role of keratins in pemphigus. KtyII k.o. cells show compromised intercellular adhesion without antibody (Ab) treatment, which was not impaired further by pathogenic pemphigus autoantibodies. Nevertheless, direct activation of p38MAPK via anisomycin further decreased intercellular adhesion indicating that cell cohesion was not completely abrogated in the absence of keratins. Direct inhibition of Dsg3, but not of Dsg1, interaction via pathogenic autoantibodies as revealed by atomic force microscopy was detectable in both cell lines demonstrating that keratins are not required for this phenomenon. However, PF-IgG shifted Dsg1-binding events from cell borders toward the free cell surface in wt cells. This led to a distribution pattern of Dsg1-binding events similar to KtyII k.o. cells under resting conditions. In keratin-deficient keratinocytes, PF-IgG impaired Dsg1-binding strength, which was not different from wt cells under resting conditions. In addition, pathogenic autoantibodies were capable of activating p38MAPK in both KtyII wt and k.o. cells, the latter of which already displayed robust p38MAPK activation under resting conditions. Since inhibition of p38MAPK blocked autoantibody-induced loss of

  5. FARO server: Meta-analysis of gene expression by matching gene expression signatures to a compendium of public gene expression data.

    PubMed

    Manijak, Mieszko P; Nielsen, Henrik B

    2011-06-11

    Although, systematic analysis of gene annotation is a powerful tool for interpreting gene expression data, it sometimes is blurred by incomplete gene annotation, missing expression response of key genes and secondary gene expression responses. These shortcomings may be partially circumvented by instead matching gene expression signatures to signatures of other experiments. To facilitate this we present the Functional Association Response by Overlap (FARO) server, that match input signatures to a compendium of 242 gene expression signatures, extracted from more than 1700 Arabidopsis microarray experiments. Hereby we present a publicly available tool for robust characterization of Arabidopsis gene expression experiments which can point to similar experimental factors in other experiments. The server is available at http://www.cbs.dtu.dk/services/faro/.

  6. A homozygous missense variant in type I keratin KRT25 causes autosomal recessive woolly hair.

    PubMed

    Ansar, Muhammad; Raza, Syed Irfan; Lee, Kwanghyuk; Irfanullah; Shahi, Shamim; Acharya, Anushree; Dai, Hang; Smith, Joshua D; Shendure, Jay; Bamshad, Michael J; Nickerson, Deborah A; Santos-Cortez, Regie Lyn P; Ahmad, Wasim; Leal, Suzanne M

    2015-10-01

    Woolly hair (WH) is a hair abnormality that is primarily characterised by tightly curled hair with abnormal growth. In two unrelated consanguineous Pakistani families with non-syndromic autosomal recessive (AR) WH, homozygosity mapping and linkage analysis identified a locus within 17q21.1-q22, which contains the type I keratin gene cluster. A DNA sample from an affected individual from each family underwent exome sequencing. A homozygous missense variant c.950T>C (p.(Leu317Pro)) within KRT25 segregated with ARWH in both families, and has a combined maximum two-point LOD score of 7.9 at ϴ=0. The KRT25 variant is predicted to result in disruption of the second α-helical rod domain and the entire protein structure, thus possibly interfering with heterodimerisation of K25 with type II keratins within the inner root sheath (IRS) of the hair follicle and the medulla of the hair shaft. Our findings implicate a novel gene involved in human hair abnormality, and are consistent with the curled, fragile hair found in mice with Krt25 mutations, and further support the role of IRS-specific type I keratins in hair follicle development and maintenance of hair texture. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. "Panta rhei": Perpetual cycling of the keratin cytoskeleton.

    PubMed

    Leube, Rudolf E; Moch, Marcin; Kölsch, Anne; Windoffer, Reinhard

    2011-01-01

    The filamentous cytoskeletal systems fulfil seemingly incompatible functions by maintaining a stable scaffolding to ensure tissue integrity and simultaneously facilitating rapid adaptation to intracellular processes and environmental stimuli. This paradox is particularly obvious for the abundant keratin intermediate filaments in epithelial tissues. The epidermal keratin cytoskeleton, for example, supports the protective and selective barrier function of the skin while enabling rapid growth and remodelling in response to physical, chemical and microbial challenges. We propose that these dynamic properties are linked to the perpetual re-cycling of keratin intermediate filaments that we observe in cultured cells. This cycle of assembly and disassembly is independent of protein biosynthesis and consists of distinct, temporally and spatially defined steps. In this way, the keratin cytoskeleton remains in constant motion but stays intact and is also able to restructure rapidly in response to specific regulatory cues as is needed, e.g., during division, differentiation and wound healing.

  8. [Immunohistochemical observation on keratin filaments of cultured tumor cells by ABC staining].

    PubMed

    Wang, J; Yang, F

    1991-06-01

    Avidin-Biotin Peroxidase complex technique, ABV staining, was employed by using monoclonal anti-keratin antibody HK2 in this study. The organization and dynamics of keratins in both interphase and mitotic T56 and HeLa cells were analysed. We also observed the effects of microtubule (MT) and microfilament (MF) inhibitors, colchicine and cytochalasin B, on the organization of keratin filaments in T56 and HeLa cells. The results showed that a significant alteration in the structural organization and distribution of keratin filaments occurred during mitosis, and an extensive rearrangement of keratin networks of the two cell lines was induced in interphase after the MT and MF were disrupted by combined treatment with the two drugs, colchicine and cytochalasin B; the keratin networks turned into a star-like lattice rapidly within 1-2h. Neither colchicine nor cytochalasin B alone elicited significant organizational change in the keratin networks of the two cell lines.

  9. Microbial decomposition of keratin in nature-a new hypothesis of industrial relevance.

    PubMed

    Lange, Lene; Huang, Yuhong; Busk, Peter Kamp

    2016-03-01

    Discovery of keratin-degrading enzymes from fungi and bacteria has primarily focused on finding one protease with efficient keratinase activity. Recently, an investigation was conducted of all keratinases secreted from a fungus known to grow on keratinaceous materials, such as feather, horn, and hooves. The study demonstrated that a minimum of three keratinases is needed to break down keratin, an endo-acting, an exo-acting, and an oligopeptide-acting keratinase. Further, several studies have documented that disruption of sulfur bridges of the keratin structure acts synergistically with the keratinases to loosen the molecular structure, thus giving the enzymes access to their substrate, the protein structure. With such complexity, it is relevant to compare microbial keratin decomposition with the microbial decomposition of well-studied polymers such as cellulose and chitin. Interestingly, it was recently shown that the specialized enzymes, lytic polysaccharide monoxygenases (LPMOs), shown to be important for breaking the recalcitrance of cellulose and chitin, are also found in keratin-degrading fungi. A holistic view of the complex molecular self-assembling structure of keratin and knowledge about enzymatic and boosting factors needed for keratin breakdown have been used to formulate a hypothesis for mode of action of the LPMOs in keratin decomposition and for a model for degradation of keratin in nature. Testing such hypotheses and models still needs to be done. Even now, the hypothesis can serve as an inspiration for designing industrial processes for keratin decomposition for conversion of unexploited waste streams, chicken feather, and pig bristles into bioaccessible animal feed.

  10. Neighboring Genes Show Correlated Evolution in Gene Expression

    PubMed Central

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  11. Origin of archosaurian integumentary appendages: the bristles of the wild turkey beard express feather-type beta keratins.

    PubMed

    Sawyer, Roger H; Washington, Lynette D; Salvatore, Brian A; Glenn, Travis C; Knapp, Loren W

    2003-06-15

    The discovery that structurally unique "filamentous integumentary appendages" are associated with several different non-avian dinosaurs continues to stimulate the development of models to explain the evolutionary origin of feathers. Taking the phylogenetic relationships of the non-avian dinosaurs into consideration, some models propose that the "filamentous integumentary appendages" represent intermediate stages in the sequential evolution of feathers. Here we present observations on a unique integumentary structure, the bristle of the wild turkey beard, and suggest that this non-feather appendage provides another explanation for some of the "filamentous integumentary appendages." Unlike feathers, beard bristles grow continuously from finger-like outgrows of the integument lacking follicles. We find that these beard bristles, which show simple branching, are hollow, distally, and express the feather-type beta keratins. The significance of these observations to explanations for the evolution of archosaurian integumentary appendages is discussed.

  12. Neighboring Genes Show Correlated Evolution in Gene Expression.

    PubMed

    Ghanbarian, Avazeh T; Hurst, Laurence D

    2015-07-01

    When considering the evolution of a gene's expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Brazilian keratin hair treatment: a review.

    PubMed

    Weathersby, Courtney; McMichael, Amy

    2013-06-01

    Brazilian keratin treatments are widely available products that are used by women all over the world to straighten hair. Marketers of these products claim that the keratin treatments render naturally curly hair more manageable and frizz-free while enhancing color and shine, giving the hair a healthier appearance. Although widely used, there have been virtually no reports of adverse side effects. Unfortunately, many of the products that are applied by salon professionals contain formaldehyde or its derivatives and are being marketed as safe. © 2013 Wiley Periodicals, Inc.

  14. Keratin gel in the management of Epidermolysis bullosa.

    PubMed

    Denyer, J; Marsh, C; Kirsner, R S

    2015-10-01

    Epidermolysis bullosa (EB) describes a number of genetically inherited conditions which cause skin fragility and minor trauma leading to skin damage, skin loss and wounding. Owing to the fragility of the skin and requirement for frequent dressing changes, at present, the optimal dressing(s) is not clear. Our objective was to assess the use of a keratin gel in the management of wounds in patients with different forms of EB. We treated patients with different types of EB and a range of wounds with a novel keratin gel. In a convenience sample of consecutive patients, we introduced the keratin gel into their treatment regimen maintaining other aspects of their care. Patients reported faster healing and more resilient healed skin. Of the ten patients treated in this pilot study, six found the gel effective; two found it ineffective; and in two patients, it caused itching leading to discontinuation of the treatment. The results of this case study series suggest that keratin gel can be useful in the management of EB and are consistent with previous published experiences.

  15. The structure of the "amorphous" matrix of keratins.

    PubMed

    Kadir, Murat; Wang, Xinwei; Zhu, Bowen; Liu, Jing; Harland, Duane; Popescu, Crisan

    2017-05-01

    Various keratin fibers, particularly human hairs, were investigated by transmission electron microscopy, TEM, solid-state 1 H NMR and Transient Electro-Thermal Technique, TET. The results converge to suggest that the matrix of keratin fiber cortex, far from being amorphous, has a well-defined nano-scale grainy structure, the size of these grains being around 2-4nm. The size of the grains appears to strongly depend on the chemical treatment of the fiber, on the temperature and on the relative humidity of the environment, as well as on the physiological factors at the level of fiber production in follicle. By suggesting an organization at the nano-scale of the protein chains in these grains, likely to be Keratin Associated Proteins, the results challenge the view of matrix as a homogeneous glassy material. Moreover, they indicate the potential of further investigating the purpose of this structure that appears to reflect not only chemical treatments of keratins but also biological processes at the level of the follicle. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Normal keratinized mucosa transplants in nude mice.

    PubMed

    Holmstrup, P; Dabelsteen, E; Reibel, J; Harder, F

    1981-01-01

    Two types of normal keratinized mucosa were transplanted to subcutaneous sites of nude mice of two different strains. 24 intact specimens of clinically normal human palatal mucosa were transplanted to nude mice of the strain nu/nu NC. The transplants were recovered after 42 d with a recovery rate of 96%. Moreover, 22 intact specimens of normal rat forestomach mucosa were transplanted to nude mice of the strain nu/nu BALB/c/BOM. These transplants were recovered after 21 d with a recovery rate of 63%. The histologic features of the transplants were essentially the same as those of the original tissues. However, epithelial outgrowths from the transplants differed with respect to the pattern of keratinization. The outgrowths of human palatal mucosa transplants were essentially unkeratinized, while the outgrowths of the rat forestomach transplants showed continued keratinization.

  17. Interplay between Solo and keratin filaments is crucial for mechanical force-induced stress fiber reinforcement.

    PubMed

    Fujiwara, Sachiko; Ohashi, Kazumasa; Mashiko, Toshiya; Kondo, Hiroshi; Mizuno, Kensaku

    2016-03-15

    Mechanical force-induced cytoskeletal reorganization is essential for cell and tissue remodeling and homeostasis; however, the underlying cellular mechanisms remain elusive. Solo (ARHGEF40) is a RhoA-targeting guanine nucleotide exchange factor (GEF) involved in cyclical stretch-induced human endothelial cell reorientation and convergent extension cell movement in zebrafish gastrula. In this study, we show that Solo binds to keratin-8/keratin-18 (K8/K18) intermediate filaments through multiple sites. Solo overexpression promotes the formation of thick actin stress fibers and keratin bundles, whereas knockdown of Solo, expression of a GEF-inactive mutant of Solo, or inhibition of ROCK suppresses stress fiber formation and leads to disorganized keratin networks, indicating that the Solo-RhoA-ROCK pathway serves to precisely organize keratin networks, as well as to promote stress fibers. Of importance, knockdown of Solo or K18 or overexpression of GEF-inactive or deletion mutants of Solo suppresses tensile force-induced stress fiber reinforcement. Furthermore, knockdown of Solo or K18 suppresses tensile force-induced RhoA activation. These results strongly suggest that the interplay between Solo and K8/K18 filaments plays a crucial role in tensile force-induced RhoA activation and consequent actin cytoskeletal reinforcement. © 2016 Fujiwara et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Annurca Apple Nutraceutical Formulation Enhances Keratin Expression in a Human Model of Skin and Promotes Hair Growth and Tropism in a Randomized Clinical Trial.

    PubMed

    Tenore, Gian Carlo; Caruso, Domenico; Buonomo, Giuseppe; D'Avino, Maria; Santamaria, Rita; Irace, Carlo; Piccolo, Marialuisa; Maisto, Maria; Novellino, Ettore

    2018-01-01

    Several pharmaceutical products have been formulated over the past decades for the treatment of male and female alopecia, and pattern baldness, but relatively few metadata on their efficacy have been published. For these reasons, the pharmaceutical and medical attention has recently focused on the discovery of new and safer remedies. Particularly, great interest has been attracted by oligomeric procyanidin bioactivity, able to promote hair epithelial cell growth as well as to induce the anagen phase. Specifically, the procyanidin B2, a dimeric derivative extracted from apples, has demonstrated to be one of the most effective and safest natural compounds in promoting hair growth, both in vitro and in humans by topical applications. By evaluating the polyphenolic content of different apple varieties, we have recently found in the apple fruits of cv Annurca (AFA), native to Southern Italy, one of the highest contents of oligomeric procyanidins, and, specifically, of procyanidin B2. Thus, in the present work we explored the in vitro bioactivity of AFA polyphenolic extract as a nutraceutical formulation, named AppleMets (AMS), highlighting its effects on the cellular keratin expression in a human experimental model of adult skin. Successively, testing the effects of AMS on hair growth and tropism in healthy subjects, we observed significant results in terms of increased hair growth, density, and keratin content, already after 2 months. This study proves for the first time the impact of apple procyanidin B2 on keratin biosynthesis in vitro, and highlights its effect as a nutraceutical on human hair growth and tropism.

  19. Gene expression divergence and nucleotide differentiation between males of different color morphs and mating strategies in the ruff

    PubMed Central

    Ekblom, Robert; Farrell, Lindsay L; Lank, David B; Burke, Terry

    2012-01-01

    By next generation transcriptome sequencing, it is possible to obtain data on both nucleotide sequence variation and gene expression. We have used this approach (RNA-Seq) to investigate the genetic basis for differences in plumage coloration and mating strategies in a non-model bird species, the ruff (Philomachus pugnax). Ruff males show enormous variation in the coloration of ornamental feathers, used for individual recognition. This polymorphism is linked to reproductive strategies, with dark males (Independents) defending territories on leks against other Independents, whereas white morphs (Satellites) co-occupy Independent's courts without agonistic interactions. Previous work found a strong genetic component for mating strategy, but the genes involved were not identified. We present feather transcriptome data of more than 6,000 de-novo sequenced ruff genes (although with limited coverage for many of them). None of the identified genes showed significant expression divergence between males, but many genetic markers showed nucleotide differentiation between different color morphs and mating strategies. These include several feather keratin genes, splicing factors, and the Xg blood-group gene. Many of the genes with significant genetic structure between mating strategies have not yet been annotated and their functions remain to be elucidated. We also conducted in-depth investigations of 28 pre-identified coloration candidate genes. Two of these (EDNRB and TYR) were specifically expressed in black- and rust-colored males, respectively. We have demonstrated the utility of next generation transcriptome sequencing for identifying and genotyping large number of genetic markers in a non-model species without previous genomic resources, and highlight the potential of this approach for addressing the genetic basis of ecologically important variation. PMID:23145334

  20. Simple Epithelial Keratins.

    PubMed

    Strnad, Pavel; Guldiken, Nurdan; Helenius, Terhi O; Misiorek, Julia O; Nyström, Joel H; Lähdeniemi, Iris A K; Silvander, Jonas S G; Kuscuoglu, Deniz; Toivola, Diana M

    2016-01-01

    Simple epithelial keratins (SEKs) are the cytoplasmic intermediate filament proteins of single-layered and glandular epithelial cells as found in the liver, pancreas, intestine, and lung. SEKs have broad cytoprotective functions, which are facilitated by dynamic posttranslational modifications and interaction with associated proteins. SEK filaments are composed of obligate heteropolymers of type II (K7, K8) and type I (K18-K20, K23) keratins. The multifaceted roles of SEKs are increasingly appreciated due to findings obtained from transgenic mouse models and human studies that identified SEK variants in several digestive diseases. Reorganization of the SEK network into aggregates called Mallory-Denk bodies (MDBs) is characteristic for specific liver disorders such as alcoholic and nonalcoholic steatohepatitis. To spur further research on SEKs, we here review the methods and potential caveats of their isolation as well as possibilities to study them in cell culture. The existing transgenic SEK mouse models, their advantages and potential drawbacks are discussed. The tools to induce MDBs, ways of their visualization and quantification, as well as the possibilities to detect SEK variants in humans are summarized. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Development and Characterization of a 3D Printed, Keratin-Based Hydrogel.

    PubMed

    Placone, Jesse K; Navarro, Javier; Laslo, Gregory W; Lerman, Max J; Gabard, Alexis R; Herendeen, Gregory J; Falco, Erin E; Tomblyn, Seth; Burnett, Luke; Fisher, John P

    2017-01-01

    Keratin, a naturally-derived polymer derived from human hair, is physiologically biodegradable, provides adequate cell support, and can self-assemble or be crosslinked to form hydrogels. Nevertheless, it has had limited use in tissue engineering and has been mainly used as casted scaffolds for drug or growth factor delivery applications. Here, we present and assess a novel method for the printed, sequential production of 3D keratin scaffolds. Using a riboflavin-SPS-hydroquinone (initiator-catalyst-inhibitor) photosensitive solution we produced 3D keratin constructs via UV crosslinking in a lithography-based 3D printer. The hydrogels obtained have adequate printing resolution and result in compressive and dynamic mechanical properties, uptake and swelling capacities, cytotoxicity, and microstructural characteristics that are comparable or superior to those of casted keratin scaffolds previously reported. The novel keratin-based printing resin and printing methodology presented have the potential to impact future research by providing an avenue to rapidly and reproducibly manufacture patient-specific hydrogels for tissue engineering and regenerative medicine applications.

  2. Gene expression markers in circulating tumor cells may predict bone metastasis and response to hormonal treatment in breast cancer

    PubMed Central

    WANG, HAIYING; MOLINA, JULIAN; JIANG, JOHN; FERBER, MATTHEW; PRUTHI, SANDHYA; JATKOE, TIMOTHY; DERECHO, CARLO; RAJPUROHIT, YASHODA; ZHENG, JIAN; WANG, YIXIN

    2013-01-01

    Circulating tumor cells (CTCs) have recently attracted attention due to their potential as prognostic and predictive markers for the clinical management of metastatic breast cancer patients. The isolation of CTCs from patients may enable the molecular characterization of these cells, which may help establish a minimally invasive assay for the prediction of metastasis and further optimization of treatment. Molecular markers of proven clinical value may therefore be useful in predicting disease aggressiveness and response to treatment. In our earlier study, we identified a gene signature in breast cancer that appears to be significantly associated with bone metastasis. Among the genes that constitute this signature, trefoil factor 1 (TFF1) was identified as the most differentially expressed gene associated with bone metastasis. In this study, we investigated 25 candidate gene markers in the CTCs of metastatic breast cancer patients with different metastatic sites. The panel of the 25 markers was investigated in 80 baseline samples (first blood draw of CTCs) and 30 follow-up samples. In addition, 40 healthy blood donors (HBDs) were analyzed as controls. The assay was performed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) with RNA extracted from CTCs captured by the CellSearch system. Our study indicated that 12 of the genes were uniquely expressed in CTCs and 10 were highly expressed in the CTCs obtained from patients compared to those obtained from HBDs. Among these genes, the expression of keratin 19 was highly correlated with the CTC count. The TFF1 expression in CTCs was a strong predictor of bone metastasis and the patients with a high expression of estrogen receptor β in CTCs exhibited a better response to hormonal treatment. Molecular characterization of these genes in CTCs may provide a better understanding of the mechanism underlying tumor metastasis and identify gene markers in CTCs for predicting disease progression and

  3. Gene Architectures that Minimize Cost of Gene Expression.

    PubMed

    Frumkin, Idan; Schirman, Dvir; Rotman, Aviv; Li, Fangfei; Zahavi, Liron; Mordret, Ernest; Asraf, Omer; Wu, Song; Levy, Sasha F; Pilpel, Yitzhak

    2017-01-05

    Gene expression burdens cells by consuming resources and energy. While numerous studies have investigated regulation of expression level, little is known about gene design elements that govern expression costs. Here, we ask how cells minimize production costs while maintaining a given protein expression level and whether there are gene architectures that optimize this process. We measured fitness of ∼14,000 E. coli strains, each expressing a reporter gene with a unique 5' architecture. By comparing cost-effective and ineffective architectures, we found that cost per protein molecule could be minimized by lowering transcription levels, regulating translation speeds, and utilizing amino acids that are cheap to synthesize and that are less hydrophobic. We then examined natural E. coli genes and found that highly expressed genes have evolved more forcefully to minimize costs associated with their expression. Our study thus elucidates gene design elements that improve the economy of protein expression in natural and heterologous systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Model-based analysis of keratin intermediate filament assembly

    NASA Astrophysics Data System (ADS)

    Martin, Ines; Leitner, Anke; Walther, Paul; Herrmann, Harald; Marti, Othmar

    2015-09-01

    The cytoskeleton of epithelial cells consists of three types of filament systems: microtubules, actin filaments and intermediate filaments (IFs). Here, we took a closer look at type I and type II IF proteins, i.e. keratins. They are hallmark constituents of epithelial cells and are responsible for the generation of stiffness, the cellular response to mechanical stimuli and the integrity of entire cell layers. Thereby, keratin networks constitute an important instrument for cells to adapt to their environment. In particular, we applied models to characterize the assembly of keratin K8 and K18 into elongated filaments as a means for network formation. For this purpose, we measured the length of in vitro assembled keratin K8/K18 filaments by transmission electron microscopy at different time points. We evaluated the experimental data of the longitudinal annealing reaction using two models from polymer chemistry: the Schulz-Zimm model and the condensation polymerization model. In both scenarios one has to make assumptions about the reaction process. We compare how well the models fit the measured data and thus determine which assumptions fit best. Based on mathematical modelling of experimental filament assembly data we define basic mechanistic properties of the elongation reaction process.

  5. Dissolution and characterization of biofunctional keratin particles extracted from chicken feathers

    NASA Astrophysics Data System (ADS)

    Sharma, Swati; Gupta, Arun; Chik, Syed Mohd Saufi Bin Tuan; Yeo Gek Kee, Chua; Poddar, Pradeep Kumar

    2017-04-01

    In the present study chicken feathers were hydrolyzed in alkaline environment. The pH value of feather hydrolyzed solution was adjusted according to the principle of isoelectric precipitation. Three kinds of precipitates of keratin polypeptide were collected at pH of 3.5, 5.5 and 7.5 respectively. The keratin solution were freeze dried and denoted as FKP1, FKP2, FKP3 respectively. All keratin particles possessed smooth, uniform and round surface by scanning electron microscope (SEM). FKP1, FKP2 and FKP3 had higher glass transition temperature examined by thermogravimetry (TG). Fourier transform infrared spectroscopy (FTIR) revealed that the extracted keratin retained the most of protein backbone, with the breakage of disulfide cross-links and hydrogen bonds.

  6. Transcript Profiling Identifies Dynamic Gene Expression Patterns and an Important Role for Nrf2/Keap1 Pathway in the Developing Mouse Esophagus

    PubMed Central

    Li, Haiyan; Hu, Yuhui; Tevebaugh, Whitney; Yamamoto, Masayuki; Que, Jianwen; Chen, Xiaoxin

    2012-01-01

    Background and Aims Morphological changes during human and mouse esophageal development have been well characterized. However, changes at the molecular level in the course of esophageal morphogenesis remain unclear. This study aims to globally profile critical genes and signaling pathways during the development of mouse esophagus. By using microarray analysis this study also aims to determine how the Nrf2/Keap1 pathway regulates the morphogenesis of the esophageal epithelium. Methods Gene expression microarrays were used to survey gene expression in the esophagus at three critical phases: specification, metaplasia and maturation. The esophagi were isolated from wild-type, Nrf2−/−, Keap1−/−, or Nrf2−/−Keap1−/− embryos or young adult mice. Array data were statistically analyzed for differentially expressed genes and pathways. Histochemical and immunohistochemical staining were used to verify potential involvement of the Wnt pathway, Pparβ/δ and the PI3K/Akt pathway in the development of esophageal epithelium. Results Dynamic gene expression patterns accompanied the morphological changes of the developing esophagus at critical phases. Particularly, the Nrf2/Keap1 pathway had a baseline activity in the metaplasia phase and was further activated in the maturation phase. The Wnt pathway was active early and became inactive later in the metaplasia phase. In addition, Keap1−/− mice showed increased expression of Nrf2 downstream targets and genes involved in keratinization. Microarray and immunostaining data also suggested that esophageal hyperkeratosis in the Keap1−/− mice was due to activation of Pparβ/δ and the PI3K/Akt pathway. Conclusions Morphological changes of the esophageal epithelium are associated with dynamic changes in gene expression. Nrf2/Keap1 pathway activity is required for maturation of mouse esophageal epithelium. PMID:22567161

  7. Linking the molecular evolution of avian beta (β) keratins to the evolution of feathers.

    PubMed

    Greenwold, Matthew J; Sawyer, Roger H

    2011-12-15

    Feathers of today's birds are constructed of beta (β)-keratins, structural proteins of the epidermis that are found solely in reptiles and birds. Discoveries of "feathered dinosaurs" continue to stimulate interest in the evolutionary origin of feathers, but few studies have attempted to link the molecular evolution of their major structural proteins (β-keratins) to the appearance of feathers in the fossil record. Using molecular dating methods, we show that before the appearance of Anchiornis (∼155 Million years ago (Ma)) the basal β-keratins of birds began diverging from their archosaurian ancestor ∼216 Ma. However, the subfamily of feather β-keratins, as found in living birds, did not begin diverging until ∼143 Ma. Thus, the pennaceous feathers on Anchiornis, while being constructed of avian β-keratins, most likely did not contain the feather β-keratins found in the feathers of modern birds. Our results demonstrate that the evolutionary origin of feathers does not coincide with the molecular evolution of the feather β-keratins found in modern birds. More likely, during the Late Jurassic, the epidermal structures that appeared on organisms in the lineage leading to birds, including early forms of feathers, were constructed of avian β-keratins other than those found in the feathers of modern birds. Recent biophysical studies of the β-keratins in feathers support the view that the appearance of the subfamily of feather β-keratins altered the biophysical nature of the feather establishing its role in powered flight. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  8. Chemopreventive agents alters global gene expression pattern: predicting their mode of action and targets.

    PubMed

    Narayanan, Bhagavathi A

    2006-12-01

    and cyclin A1. Genomic expression profile with vitamin D indicated differential expression of gene targets such as c-JUN, JUNB, JUND, FREAC-1/FoxF1, ZNF-44/KOX7, plectin, filamin, and keratin-13, involved in antiproliferative, differentiation pathways. The agent UBEIL has a remarkable effect on cyclin D1. Curcumin mediated NrF2 pathway significantly altered p21(Waf1/Cip1) levels. Aromatase inhibitors affected the expression of cyclin D1. Interestingly, few dietary compounds listed in this review also have effect on APC, cdk inhibitors p21(Waf1/Cip1) and p27. Tea polyphenol EGCG has a significant effect on TGF-beta expression, while several other earlier studies have shown its effect on cell cycle regulatory proteins. This review article reveals potential chemoprevention drug targets, which are mainly centered on cell cycle regulatory pathway genes in cancer.

  9. Low-grade and high-grade mammary carcinomas in WAP-T transgenic mice are independent entities distinguished by Met expression.

    PubMed

    Otto, Benjamin; Gruner, Katharina; Heinlein, Christina; Wegwitz, Florian; Nollau, Peter; Ylstra, Bauke; Pantel, Klaus; Schumacher, Udo; Baumbusch, Lars O; Martin-Subero, José Ignacio; Siebert, Reiner; Wagener, Christoph; Streichert, Thomas; Deppert, Wolfgang; Tolstonog, Genrich V

    2013-03-15

    Mammary carcinomas developing in SV40 transgenic WAP-T mice arise in two distinct histological phenotypes: as differentiated low-grade and undifferentiated high-grade tumors. We integrated different types of information such as histological grading, analysis of aCGH-based gene copy number and gene expression profiling to provide a comprehensive molecular description of mammary tumors in WAP-T mice. Applying a novel procedure for the correlation of gene copy number with gene expression on a global scale, we observed in tumor samples a global coherence between genotype and transcription. This coherence can be interpreted as a matched transcriptional regulation inherited from the cells of tumor origin and determined by the activity of cancer driver genes. Despite common recurrent genomic aberrations, e.g. gain of chr. 15 in most WAP-T tumors, loss of chr. 19 frequently occurs only in low-grade tumors. These tumors show features of "basal-like" epithelial differentiation, particularly expression of keratin 14. The high-grade tumors are clearly separated from the low-grade tumors by strong expression of the Met gene and by coexpression of epithelial (e.g. keratin 18) and mesenchymal (e.g. vimentin) markers. In high-grade tumors, the expression of the nonmutated Met protein is associated with Met-locus amplification and Met activity. The role of Met as a cancer driver gene is supported by the contribution of active Met signaling to motility and growth of mammary tumor-derived cells. Finally, we discuss the independent origin of low- and high-grade tumors from distinct cells of tumor origin, possibly luminal progenitors, distinguished by Met gene expression and Met signaling. Copyright © 2012 UICC.

  10. Carbon Fibers from Chicken Feather Keratin

    NASA Astrophysics Data System (ADS)

    Miller, Melissa E.; Wool, Richard

    2006-03-01

    As the availability of synthetic and fossil-fuel based resources is becoming limited, bio-based materials offer an environmentally friendly alternative. Chicken feathers remain a huge agricultural waste. The feathers are comprised of approximately 97% keratin, but are currently used only to enrich animal feed. However, this usage is becoming a problem with the spread of diseases such as Bovine Spongiform Encephalopathy, commonly called ``Mad Cow Disease.'' The hollow, microcrystalline, oriented keratin feather fibers offer a novel, low cost approach to producing carbon fibers through controlled pyrolysis. Carbonized feather fibers (CFF) were prepared by first heating to 225 ^oC (below the melting point)in N2 for 26 hours to crosslink and stabilize the fiber structure; then carbonization occurred by increasing the temperature to 450 ^oC for two more hours. The resulting CFF were hollow, stiff and strong and had an affine 80% weight loss, which is near the theoretical value for the C-content of keratin. Initial studies showed that a composite with the CFF and an epoxidized soybean oil (AESO) gave an improved fiber modulus ECFF of order 13.5--66.1 GPa. With continued research, the goals are to increase the stiffness of the feathers to 100 GPa, while increasing the strength in the range of 5-10 GPa.

  11. An analysis of gene expression data involving examination of signaling pathways activation reveals new insights into the mechanism of action of minoxidil topical foam in men with androgenetic alopecia

    PubMed Central

    Wu, Jeff; Pappas, Apostolos; Mirmirani, Paradi; McCormick, Thomas S.; Cooper, Kevin D.; Schastnaya, Jane; Ozerov, Ivan V.; Aliper, Alexander; Zhavoronkov, Alex

    2017-01-01

    ABSTRACT Androgenetic alopecia is the most common form of hair loss. Minoxidil has been approved for the treatment of hair loss, however its mechanism of action is still not fully clarified. In this study, we aimed to elucidate the effects of 5% minoxidil topical foam on gene expression and activation of signaling pathways in vertex and frontal scalp of men with androgenetic alopecia. We identified regional variations in gene expression and perturbed signaling pathways using in silico Pathway Activation Network Decomposition Analysis (iPANDA) before and after treatment with minoxidil. Vertex and frontal scalp of patients showed a generally similar response to minoxidil. Both scalp regions showed upregulation of genes that encode keratin associated proteins and downregulation of ILK, Akt, and MAPK signaling pathways after minoxidil treatment. Our results provide new insights into the mechanism of action of minoxidil topical foam in men with androgenetic alopecia. PMID:28594262

  12. An analysis of gene expression data involving examination of signaling pathways activation reveals new insights into the mechanism of action of minoxidil topical foam in men with androgenetic alopecia.

    PubMed

    Stamatas, Georgios N; Wu, Jeff; Pappas, Apostolos; Mirmirani, Paradi; McCormick, Thomas S; Cooper, Kevin D; Consolo, Mary; Schastnaya, Jane; Ozerov, Ivan V; Aliper, Alexander; Zhavoronkov, Alex

    2017-01-01

    Androgenetic alopecia is the most common form of hair loss. Minoxidil has been approved for the treatment of hair loss, however its mechanism of action is still not fully clarified. In this study, we aimed to elucidate the effects of 5% minoxidil topical foam on gene expression and activation of signaling pathways in vertex and frontal scalp of men with androgenetic alopecia. We identified regional variations in gene expression and perturbed signaling pathways using in silico Pathway Activation Network Decomposition Analysis (iPANDA) before and after treatment with minoxidil. Vertex and frontal scalp of patients showed a generally similar response to minoxidil. Both scalp regions showed upregulation of genes that encode keratin associated proteins and downregulation of ILK, Akt, and MAPK signaling pathways after minoxidil treatment. Our results provide new insights into the mechanism of action of minoxidil topical foam in men with androgenetic alopecia.

  13. Keratinous inclusion cyst of oesophagus: unusual finding

    PubMed Central

    Wan Abdul Rahman, Wan Faiziah; Mutum, Samarendra Singh; Fauzi, Mohd Hashairi

    2013-01-01

    Cysts of the oesophagus are unusual findings and they are classified according to the embryological site of origin. It may represent inclusion cysts, retention cysts and developmental cysts. We present a case of keratinous inclusion cyst of the lower oesophagus in a 71-year-old Malay woman who presented with dyspepsia and severe epigastric pain. An oesophago-gastro-duodenoscopy demonstrated a sliding hiatus hernia with whitish ulcer-like lesion at the lower oesophagus. Biopsy from the lesion revealed a keratinous inclusion cyst. The patient was given pantoprazole and put on regular follow-up for monitoring any other development. PMID:23878290

  14. Keratin 17 Mutations in Four Families from India with Pachyonychia Congenita

    PubMed Central

    Agarwala, Manoj; Salphale, Pankaj; Peter, Dincy; Wilson, Neil J; Pulimood, Susanne; Schwartz, Mary E; Smith, Frances J D

    2017-01-01

    Pachyonychia congenita (PC) is a rare autosomal dominant genetic skin disorder due to a mutation in any one of the five keratin genes, KRT6A, KRT6B, KRT6C, KRT16, or KRT17. The main features are palmoplantar keratoderma, plantar pain, and nail dystrophy. Cysts of various types, follicular hyperkeratosis, oral leukokeratosis, hyperhidrosis, and natal teeth may also be present. Four unrelated Indian families presented with a clinical diagnosis of PC. This was confirmed by genetic testing; mutations in KRT17 were identified in all affected individuals. PMID:28794556

  15. Keratin 17 is overexpressed and predicts poor survival in estrogen receptor-negative/human epidermal growth factor receptor-2-negative breast cancer.

    PubMed

    Merkin, Ross D; Vanner, Elizabeth A; Romeiser, Jamie L; Shroyer, A Laurie W; Escobar-Hoyos, Luisa F; Li, Jinyu; Powers, Robert S; Burke, Stephanie; Shroyer, Kenneth R

    2017-04-01

    Clinicopathological features of breast cancer have limited accuracy to predict survival. By immunohistochemistry (IHC), keratin 17 (K17) expression has been correlated with triple-negative status (estrogen receptor [ER]/progesterone receptor/human epidermal growth factor receptor-2 [HER2] negative) and decreased survival, but K17 messenger RNA (mRNA) expression has not been evaluated in breast cancer. K17 is a potential prognostic cancer biomarker, targeting p27, and driving cell cycle progression. This study compared K17 protein and mRNA expression to ER/progesterone receptor/HER2 receptor status and event-free survival. K17 IHC was performed on 164 invasive breast cancers and K17 mRNA was evaluated in 1097 breast cancers. The mRNA status of other keratins (16/14/9) was evaluated in 113 ER - /HER2 - ductal carcinomas. IHC demonstrated intense cytoplasmic and membranous K17 localization in myoepithelial cells of benign ducts and lobules and tumor cells of ductal carcinoma in situ. In ductal carcinomas, K17 protein was detected in most triple-negative tumors (28/34, 82%), some non-triple-negative tumors (52/112, 46%), but never in lobular carcinomas (0/15). In ductal carcinomas, high K17 mRNA was associated with reduced 5-year event-free survival in advanced tumor stage (n = 149, hazard ratio [HR] = 3.68, P = .018), and large (n = 73, HR = 3.95, P = .047), triple-negative (n = 103, HR = 2.73, P = .073), and ER - /HER2 - (n = 113, HR = 2.99, P = .049) tumors. There were significant correlations among keratins 17, 16, 14, and 9 mRNA levels suggesting these keratins (all encoded on chromosome 17) could be coordinately expressed in breast cancer. Thus, K17 is expressed in a subset of triple-negative breast cancers, and is a marker of poor prognosis in patients with advanced stage and ER - /HER2 - breast cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Click chemistry modification of natural keratin fibers for sustained shrink-resist performance.

    PubMed

    Yu, Dan; Cai, Jackie Y; Church, Jeffrey S; Wang, Lijing

    2015-01-01

    This paper introduces a novel chemical treatment for achieving sustained shrink-resist performance on natural keratin fibers. The new treatment involves the controlled reduction of keratin in the cuticle region of the fiber, and the application of a water soluble diacrylate, namely glycerol 1,3-diglycerolate diacrylate (GDA), on the reduced keratin substrate. The acrylate groups of the GDA react with cysteine residues in the reduced keratin through thiol-ene click reactions at room temperature, leading to GDA grafting and the formation of GDA crosslinks in the keratin structure. The modified substrates were characterized by infrared spectroscopy and scanning electron microscopy, and assessed for its shrink-resistance and wet burst strength. This chemical modification has shown to alter the fiber surface morphology and hydrophilicity, resulting in substantially improved shrink-resistance with good fiber strength retention. Possible shrink-resistance mechanisms were also discussed. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  17. Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data.

    PubMed

    Ezer, Daphne; Moignard, Victoria; Göttgens, Berthold; Adryan, Boris

    2016-08-01

    Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete pipeline for the analysis of single cell qPCR data that uses the mathematics behind bursty expression to develop more accurate and robust algorithms for analyzing the origin of heterogeneity in experimental samples, specifically an algorithm for clustering cells by their bursting behavior (Simulated Annealing for Bursty Expression Clustering, SABEC) and a statistical tool for comparing the kinetic parameters of bursty expression across populations of cells (Estimation of Parameter changes in Kinetics, EPiK). We applied these methods to hematopoiesis, including a new single cell dataset in which transcription factors (TFs) involved in the earliest branchpoint of blood differentiation were individually up- and down-regulated. We could identify two unique sub-populations within a seemingly homogenous group of hematopoietic stem cells. In addition, we could predict regulatory mechanisms controlling the expression levels of eighteen key hematopoietic transcription factors throughout differentiation. Detailed information about gene regulatory mechanisms can therefore be obtained simply from high throughput single cell gene expression data, which should be widely applicable given the rapid expansion of single cell genomics.

  18. Annotation of gene function in citrus using gene expression information and co-expression networks

    PubMed Central

    2014-01-01

    Background The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world’s most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a “guilt-by-association” principle whereby genes encoding proteins involved in similar and/or related biological processes may exhibit similar expression patterns across diverse sets of experimental conditions. While bioinformatics resources such as GCN analysis are widely available for efficient gene function prediction in model plant species including Arabidopsis, soybean and rice, in citrus these tools are not yet developed. Results We have constructed a comprehensive GCN for citrus inferred from 297 publicly available Affymetrix Genechip Citrus Genome microarray datasets, providing gene co-expression relationships at a genome-wide scale (33,000 transcripts). The comprehensive citrus GCN consists of a global GCN (condition-independent) and four condition-dependent GCNs that survey the sweet orange species only, all citrus fruit tissues, all citrus leaf tissues, or stress-exposed plants. All of these GCNs are clustered using genome-wide, gene-centric (guide) and graph clustering algorithms for flexibility of gene function prediction. For each putative cluster, gene ontology (GO) enrichment and gene expression specificity analyses were performed to enhance gene function, expression and regulation pattern prediction. The guide-gene approach was used to infer novel roles of genes involved in disease susceptibility and vitamin C metabolism, and graph-clustering approaches were used to investigate isoprenoid/phenylpropanoid metabolism in citrus peel, and citric acid catabolism via the GABA shunt in citrus fruit. Conclusions Integration of citrus gene co-expression networks

  19. Keratin-lipid structural organization in the corneous layer of snake.

    PubMed

    Ripamonti, Alberto; Alibardi, Lorenzo; Falini, Giuseppe; Fermani, Simona; Gazzano, Massimo

    2009-12-01

    The shed epidermis (molt) of snakes comprises four distinct layers. The upper two layers, here considered as beta-layer, contain essentially beta-keratin. The following layer, known as mesos-layer, is similar to the human stratum corneum, and is formed by thin cells surrounded by intercellular lipids. The latter layer mainly contains alpha-keratin. In this study, the molecular assemblies of proteins and lipids contained in these layers have been analyzed in the scale of two species of snakes, the elapid Tiger snake (TS, Notechis scutatus) and the viperid Gabon viper (GV, Bitis gabonica). Scanning X-ray micro-diffraction, FTIR and Raman spectroscopies, thermal analysis, and scanning electron microscopy experiments confirm the presence of the three layers in the GV skin scale. Conversely, in the TS molt a typical alpha-keratin layer appears to be absent. In the latter, experimental data suggest the presence of two domains similar to those found in the lipid intercellular matrix of stratum corneum. X-ray diffraction data also allow to determine the relative orientation of keratins and lipids. The keratin fibrils are randomly oriented inside the layers parallel to the surface of scales while the lipids are organized in lamellar structures having aliphatic chains normal to the scale surface. The high ordered lipid organization in the mature mesos layer probably increases its effectiveness in limiting water-loss.

  20. Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia.

    PubMed

    Windoffer, Reinhard; Beil, Michael; Magin, Thomas M; Leube, Rudolf E

    2011-09-05

    Epithelia are exposed to multiple forms of stress. Keratin intermediate filaments are abundant in epithelia and form cytoskeletal networks that contribute to cell type-specific functions, such as adhesion, migration, and metabolism. A perpetual keratin filament turnover cycle supports these functions. This multistep process keeps the cytoskeleton in motion, facilitating rapid and protein biosynthesis-independent network remodeling while maintaining an intact network. The current challenge is to unravel the molecular mechanisms underlying the regulation of the keratin cycle in relation to actin and microtubule networks and in the context of epithelial tissue function.

  1. Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia

    PubMed Central

    Windoffer, Reinhard; Beil, Michael; Magin, Thomas M.

    2011-01-01

    Epithelia are exposed to multiple forms of stress. Keratin intermediate filaments are abundant in epithelia and form cytoskeletal networks that contribute to cell type–specific functions, such as adhesion, migration, and metabolism. A perpetual keratin filament turnover cycle supports these functions. This multistep process keeps the cytoskeleton in motion, facilitating rapid and protein biosynthesis–independent network remodeling while maintaining an intact network. The current challenge is to unravel the molecular mechanisms underlying the regulation of the keratin cycle in relation to actin and microtubule networks and in the context of epithelial tissue function. PMID:21893596

  2. Digital gene expression analysis of gene expression differences within Brassica diploids and allopolyploids.

    PubMed

    Jiang, Jinjin; Wang, Yue; Zhu, Bao; Fang, Tingting; Fang, Yujie; Wang, Youping

    2015-01-27

    Brassica includes many successfully cultivated crop species of polyploid origin, either by ancestral genome triplication or by hybridization between two diploid progenitors, displaying complex repetitive sequences and transposons. The U's triangle, which consists of three diploids and three amphidiploids, is optimal for the analysis of complicated genomes after polyploidization. Next-generation sequencing enables the transcriptome profiling of polyploids on a global scale. We examined the gene expression patterns of three diploids (Brassica rapa, B. nigra, and B. oleracea) and three amphidiploids (B. napus, B. juncea, and B. carinata) via digital gene expression analysis. In total, the libraries generated between 5.7 and 6.1 million raw reads, and the clean tags of each library were mapped to 18547-21995 genes of B. rapa genome. The unambiguous tag-mapped genes in the libraries were compared. Moreover, the majority of differentially expressed genes (DEGs) were explored among diploids as well as between diploids and amphidiploids. Gene ontological analysis was performed to functionally categorize these DEGs into different classes. The Kyoto Encyclopedia of Genes and Genomes analysis was performed to assign these DEGs into approximately 120 pathways, among which the metabolic pathway, biosynthesis of secondary metabolites, and peroxisomal pathway were enriched. The non-additive genes in Brassica amphidiploids were analyzed, and the results indicated that orthologous genes in polyploids are frequently expressed in a non-additive pattern. Methyltransferase genes showed differential expression pattern in Brassica species. Our results provided an understanding of the transcriptome complexity of natural Brassica species. The gene expression changes in diploids and allopolyploids may help elucidate the morphological and physiological differences among Brassica species.

  3. Aberrant Gene Expression in Humans

    PubMed Central

    Yang, Ence; Ji, Guoli; Brinkmeyer-Langford, Candice L.; Cai, James J.

    2015-01-01

    Gene expression as an intermediate molecular phenotype has been a focus of research interest. In particular, studies of expression quantitative trait loci (eQTL) have offered promise for understanding gene regulation through the discovery of genetic variants that explain variation in gene expression levels. Existing eQTL methods are designed for assessing the effects of common variants, but not rare variants. Here, we address the problem by establishing a novel analytical framework for evaluating the effects of rare or private variants on gene expression. Our method starts from the identification of outlier individuals that show markedly different gene expression from the majority of a population, and then reveals the contributions of private SNPs to the aberrant gene expression in these outliers. Using population-scale mRNA sequencing data, we identify outlier individuals using a multivariate approach. We find that outlier individuals are more readily detected with respect to gene sets that include genes involved in cellular regulation and signal transduction, and less likely to be detected with respect to the gene sets with genes involved in metabolic pathways and other fundamental molecular functions. Analysis of polymorphic data suggests that private SNPs of outlier individuals are enriched in the enhancer and promoter regions of corresponding aberrantly-expressed genes, suggesting a specific regulatory role of private SNPs, while the commonly-occurring regulatory genetic variants (i.e., eQTL SNPs) show little evidence of involvement. Additional data suggest that non-genetic factors may also underlie aberrant gene expression. Taken together, our findings advance a novel viewpoint relevant to situations wherein common eQTLs fail to predict gene expression when heritable, rare inter-individual variation exists. The analytical framework we describe, taking into consideration the reality of differential phenotypic robustness, may be valuable for investigating

  4. The X-Ray Crystal Structure of the Keratin 1-Keratin 10 Helix 2B Heterodimer Reveals Molecular Surface Properties and Biochemical Insights into Human Skin Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunick, Christopher G.; Milstone, Leonard M.

    Keratins 1 (K1) and 10 (K10) are the primary keratins expressed in differentiated epidermis. Mutations in K1/K10 are associated with human skin diseases. We determined the crystal structure of the complex between the distal (2B) helices of K1 and K10 to better understand how human keratin structure correlates with function. The 3.3 Å resolution structure confirms many features inferred by previous biochemical analyses, but adds unexpected insights. It demonstrates a parallel, coiled-coil heterodimer with a predominantly hydrophobic intermolecular interface; this heterodimer formed a higher order complex with a second K1-K10-2B heterodimer via a Cys401K10 disulfide link, although the bond anglemore » is unanticipated. The molecular surface analysis of K1-K10-2B identified several pockets, one adjacent to the disulfide linkage and conserved in K5-K14. The solvent accessible surface area of the K1-K10 structure is 20–25% hydrophobic. The 2B region contains mixed acidic and basic patches proximally (N-terminal), whereas it is largely acidic distally (C-terminal). Mapping of conserved and nonconserved residues between K1-K10 and K5-K14 onto the structure demonstrated the majority of unique residues align along the outer helical ridge. Finally, the structure permitted a fresh analysis of the deleterious effects caused by K1/K10 missense mutations found in patients with phenotypic skin disease.« less

  5. Immunocytochemical and autoradiographic studies on the process of keratinization in avian epidermis suggests absence of keratohyalin.

    PubMed

    Alibardi, Lorenzo

    2004-02-01

    The process of keratinization in apteric avian epidermis and in scutate scales of some avian species has been studied by autoradiography for histidine and immunohistochemistry for keratins and other epidermal proteins. Acidic or basic alpha-keratins are present in basal, spinosus, and transitional layers, but are not seen in the corneous layer. Keratinization-specific alpha-keratins (AE2-positive) are observed in the corneous layer of apteric epidermis but not in that of scutate scales, which contain mainly beta-keratin. Alpha-keratin bundles accumulate along the plasma membrane of transitional cells of apteric epidermis. In contrast to the situation in scutate scales, in the transitional layer and in the lowermost part of the corneous layer of apteric epidermis, filaggrin-like, loricrin-like, and transglutaminase immunoreactivities are present. The lack of isopeptide bond immunoreactivity suggests that undetectable isopeptide bonds are present in avian keratinocytes. Using immunogold ultrastructural immunocytochemistry a low but localized loricrin-like and, less, filaggrin-like labeling is seen over round-oval granules or vesicles among keratin bundles of upper spinosus and transitional keratinocytes of apteric epidermis. Filaggrin-and loricrin-labeling are absent in alpha-keratin bundles localized along the plasma membrane and in the corneous layer, formerly considered keratohyalin. Using ultrastructural autoradiography for tritiated histidine, occasional trace grains are seen among these alpha-keratin bundles. A different mechanism of redistribution of matrix and corneous cell envelope proteins probably operates in avian keratinocytes as compared to that of mammals. Keratin bundles are compacted around the lipid-core of apteric epidermis keratinocytes, which do not form complex chemico/mechanical-resistant corneous cell envelopes as in mammalian keratinocytes. These observations suggest that low amounts of matrix proteins are present among keratin bundles of

  6. Three gene expression vector sets for concurrently expressing multiple genes in Saccharomyces cerevisiae.

    PubMed

    Ishii, Jun; Kondo, Takashi; Makino, Harumi; Ogura, Akira; Matsuda, Fumio; Kondo, Akihiko

    2014-05-01

    Yeast has the potential to be used in bulk-scale fermentative production of fuels and chemicals due to its tolerance for low pH and robustness for autolysis. However, expression of multiple external genes in one host yeast strain is considerably labor-intensive due to the lack of polycistronic transcription. To promote the metabolic engineering of yeast, we generated systematic and convenient genetic engineering tools to express multiple genes in Saccharomyces cerevisiae. We constructed a series of multi-copy and integration vector sets for concurrently expressing two or three genes in S. cerevisiae by embedding three classical promoters. The comparative expression capabilities of the constructed vectors were monitored with green fluorescent protein, and the concurrent expression of genes was monitored with three different fluorescent proteins. Our multiple gene expression tool will be helpful to the advanced construction of genetically engineered yeast strains in a variety of research fields other than metabolic engineering. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  7. Keratin capped silver nanoparticles - synthesis and characterization of a nanomaterial with desirable handling properties

    USDA-ARS?s Scientific Manuscript database

    Silver nanoparticles (NPs) were produced with keratin stabilizer and the NPs exhibited unimodal Gaussian distribution with average diameter of 3.5nm +/- 0.7 nm. The molecular mass of keratin stabilizer was 6-8 kDa. The mass of keratin capped NPs was >250 kDa to indicate the formation of crosslinked...

  8. Keratin impact on PKCδ- and ASMase-mediated regulation of hepatocyte lipid raft size – implication for FasR-associated apoptosis

    PubMed Central

    Gilbert, Stéphane; Loranger, Anne; Omary, M. Bishr

    2016-01-01

    ABSTRACT Keratins are epithelial cell intermediate filament (IF) proteins that are expressed as pairs in a cell-differentiation-regulated manner. Hepatocytes express the keratin 8 and 18 pair (denoted K8/K18) of IFs, and a loss of K8 or K18, as in K8-null mice, leads to degradation of the keratin partner. We have previously reported that a K8/K18 loss in hepatocytes leads to altered cell surface lipid raft distribution and more efficient Fas receptor (FasR, also known as TNFRSF6)-mediated apoptosis. We demonstrate here that the absence of K8 or transgenic expression of the K8 G62C mutant in mouse hepatocytes reduces lipid raft size. Mechanistically, we find that the lipid raft size is dependent on acid sphingomyelinase (ASMase, also known as SMPD1) enzyme activity, which is reduced in absence of K8/K18. Notably, the reduction of ASMase activity appears to be caused by a less efficient redistribution of surface membrane PKCδ toward lysosomes. Moreover, we delineate the lipid raft volume range that is required for an optimal FasR-mediated apoptosis. Hence, K8/K18-dependent PKCδ- and ASMase-mediated modulation of lipid raft size can explain the more prominent FasR-mediated signaling resulting from K8/K18 loss. The fine-tuning of ASMase-mediated regulation of lipid rafts might provide a therapeutic target for death-receptor-related liver diseases. PMID:27422101

  9. Modified approach for keratinized tissue augmentation in multiple teeth

    PubMed Central

    Terenzi, Mayara; Pigossi, Suzane Cristina; Pires, Luana Carla; Cirelli, Joni Augusto; Sampaio, José Eduardo

    2017-01-01

    This case report demonstrated a modified technique of free gingival graft (FGG) aiming to increase keratinized attached tissue in large recipient areas. A FGG to increase the amount of attached gingival tissue, facilitate oral hygiene, and prevent further clinical attachment loss was realized in two patients. Because the extensive recipient area, a modified technique was performed to obtain a smaller graft of the donor area. A template of the graft was made about 25%–30% smaller than the total recipient area. After graft removal, interspersed incisions were made in the upper and lower edges of it. After 9–24 months of follow-up, the final width of the keratinized tissue was 4.0–4.4 times larger in comparison to initial clinical condition. In conclusion, this FGG technique can be considered an alternative to gain sufficient amount of keratinized gingival tissue using a smaller graft. PMID:29551874

  10. IL-13 Stimulates Proliferation and Expression of Mucin and Immunomodulatory Genes in Cultured Conjunctival Goblet Cells.

    PubMed

    Tukler Henriksson, Johanna; Coursey, Terry G; Corry, David B; De Paiva, Cintia S; Pflugfelder, Stephen C

    2015-07-01

    To investigate the effects of IL-13 on goblet cell proliferation, differentiation, and expression of mucin and immunomodulatory genes. Explants were excised from the conjunctiva of young C57BL/6 mice. Cultures received 200 μL per week of either Keratinocyte media (KSFM) or KSFM supplemented with 10 ng/mL IL-13 and were incubated for 3 (D3), 7 (D7), or 14 (D14) days. Subsequently, cell proliferation was assessed or cultures were immunostained, collected for dot blot, or for reverse transcription (RT) and quantitative real-time PCR (qPCR) or for RT-PCR gene array. The cultured conjunctival epithelium expressed goblet cell associated keratin 7 and mucins MUC5AC and MUC2 and when stimulated with IL-13 showed increased proliferation at D3 and D7 (P < 0.05) compared with control. MUC5AC expression was increased in the IL-13-treated group at D3 and D14 (P < 0.05). IL-13-treated cultures showed increased chemokine ligand 26 (CCL26), chloride channel calcium activated channel 3 (CLCA3), fas ligand (FasL), and Relm-β at D7. All conjunctival cultures expressed MUC2, and its expression was decreased at D3 (P < 0.05) and increased at D14 (P < 0.05) with IL-13 treatment. This study demonstrated that conjunctival goblet cells are IL-13 responsive cells that produce factors known to maintain epithelial barrier, stimulate mucin production, and modulate immune response in nonocular mucosa when treated with IL-13. The functional significance of IL-13-stimulated factors remains to be determined.

  11. Complete Structure of an Epithelial Keratin Dimer: Implications for Intermediate Filament Assembly.

    PubMed

    Bray, David J; Walsh, Tiffany R; Noro, Massimo G; Notman, Rebecca

    2015-01-01

    Keratins are cytoskeletal proteins that hierarchically arrange into filaments, starting with the dimer sub-unit. They are integral to the structural support of cells, in skin, hair and nails. In skin, keratin is thought to play a critical role in conferring the barrier properties and elasticity of skin. In general, the keratin dimer is broadly described by a tri-domain structure: a head, a central rod and a tail. As yet, no atomistic-scale picture of the entire dimer structure exists; this information is pivotal for establishing molecular-level connections between structure and function in intermediate filament proteins. The roles of the head and tail domains in facilitating keratin filament assembly and function remain as open questions. To address these, we report results of molecular dynamics simulations of the entire epithelial human K1/K10 keratin dimer. Our findings comprise: (1) the first three-dimensional structural models of the complete dimer unit, comprising of the head, rod and tail domains; (2) new insights into the chirality of the rod-domain twist gained from analysis of the full domain structure; (3) evidence for tri-subdomain partitioning in the head and tail domains; and, (4) identification of the residue characteristics that mediate non-covalent contact between the chains in the dimer. Our findings are immediately applicable to other epithelial keratins, such as K8/K18 and K5/K14, and to intermediate filament proteins in general.

  12. Keratin impact on PKCδ- and ASMase-mediated regulation of hepatocyte lipid raft size - implication for FasR-associated apoptosis.

    PubMed

    Gilbert, Stéphane; Loranger, Anne; Omary, M Bishr; Marceau, Normand

    2016-09-01

    Keratins are epithelial cell intermediate filament (IF) proteins that are expressed as pairs in a cell-differentiation-regulated manner. Hepatocytes express the keratin 8 and 18 pair (denoted K8/K18) of IFs, and a loss of K8 or K18, as in K8-null mice, leads to degradation of the keratin partner. We have previously reported that a K8/K18 loss in hepatocytes leads to altered cell surface lipid raft distribution and more efficient Fas receptor (FasR, also known as TNFRSF6)-mediated apoptosis. We demonstrate here that the absence of K8 or transgenic expression of the K8 G62C mutant in mouse hepatocytes reduces lipid raft size. Mechanistically, we find that the lipid raft size is dependent on acid sphingomyelinase (ASMase, also known as SMPD1) enzyme activity, which is reduced in absence of K8/K18. Notably, the reduction of ASMase activity appears to be caused by a less efficient redistribution of surface membrane PKCδ toward lysosomes. Moreover, we delineate the lipid raft volume range that is required for an optimal FasR-mediated apoptosis. Hence, K8/K18-dependent PKCδ- and ASMase-mediated modulation of lipid raft size can explain the more prominent FasR-mediated signaling resulting from K8/K18 loss. The fine-tuning of ASMase-mediated regulation of lipid rafts might provide a therapeutic target for death-receptor-related liver diseases. © 2016. Published by The Company of Biologists Ltd.

  13. Polycistronic gene expression in Aspergillus niger.

    PubMed

    Schuetze, Tabea; Meyer, Vera

    2017-09-25

    Genome mining approaches predict dozens of biosynthetic gene clusters in each of the filamentous fungal genomes sequenced so far. However, the majority of these gene clusters still remain cryptic because they are not expressed in their natural host. Simultaneous expression of all genes belonging to a biosynthetic pathway in a heterologous host is one approach to activate biosynthetic gene clusters and to screen the metabolites produced for bioactivities. Polycistronic expression of all pathway genes under control of a single and tunable promoter would be the method of choice, as this does not only simplify cloning procedures, but also offers control on timing and strength of expression. However, polycistronic gene expression is a feature not commonly found in eukaryotic host systems, such as Aspergillus niger. In this study, we tested the suitability of the viral P2A peptide for co-expression of three genes in A. niger. Two genes descend from Fusarium oxysporum and are essential to produce the secondary metabolite enniatin (esyn1, ekivR). The third gene (luc) encodes the reporter luciferase which was included to study position effects. Expression of the polycistronic gene cassette was put under control of the Tet-On system to ensure tunable gene expression in A. niger. In total, three polycistronic expression cassettes which differed in the position of luc were constructed and targeted to the pyrG locus in A. niger. This allowed direct comparison of the luciferase activity based on the position of the luciferase gene. Doxycycline-mediated induction of the Tet-On expression cassettes resulted in the production of one long polycistronic mRNA as proven by Northern analyses, and ensured comparable production of enniatin in all three strains. Notably, gene position within the polycistronic expression cassette matters, as, luciferase activity was lowest at position one and had a comparable activity at positions two and three. The P2A peptide can be used to express at

  14. Transcriptome-Level Signatures in Gene Expression and Gene Expression Variability during Bacterial Adaptive Evolution.

    PubMed

    Erickson, Keesha E; Otoupal, Peter B; Chatterjee, Anushree

    2017-01-01

    Antibiotic-resistant bacteria are an increasingly serious public health concern, as strains emerge that demonstrate resistance to almost all available treatments. One factor that contributes to the crisis is the adaptive ability of bacteria, which exhibit remarkable phenotypic and gene expression heterogeneity in order to gain a survival advantage in damaging environments. This high degree of variability in gene expression across biological populations makes it a challenging task to identify key regulators of bacterial adaptation. Here, we research the regulation of adaptive resistance by investigating transcriptome profiles of Escherichia coli upon adaptation to disparate toxins, including antibiotics and biofuels. We locate potential target genes via conventional gene expression analysis as well as using a new analysis technique examining differential gene expression variability. By investigating trends across the diverse adaptation conditions, we identify a focused set of genes with conserved behavior, including those involved in cell motility, metabolism, membrane structure, and transport, and several genes of unknown function. To validate the biological relevance of the observed changes, we synthetically perturb gene expression using clustered regularly interspaced short palindromic repeat (CRISPR)-dCas9. Manipulation of select genes in combination with antibiotic treatment promotes adaptive resistance as demonstrated by an increased degree of antibiotic tolerance and heterogeneity in MICs. We study the mechanisms by which identified genes influence adaptation and find that select differentially variable genes have the potential to impact metabolic rates, mutation rates, and motility. Overall, this work provides evidence for a complex nongenetic response, encompassing shifts in gene expression and gene expression variability, which underlies adaptive resistance. IMPORTANCE Even initially sensitive bacteria can rapidly thwart antibiotic treatment through stress

  15. Feather keratin hydrolysates obtained from microbial keratinases: effect on hair fiber

    PubMed Central

    2013-01-01

    Background Hair is composed mainly of keratin protein and a small amount of lipid. Protein hydrolysates, in particular those with low molecular weight distribution have been known to protect hair against chemical and environmental damage. Many types of protein hydrolysates from plants and animals have been used in hair and personal care such as keratin hydrolysates obtained from nails, horns and wool. Most of these hydrolysates are obtained by chemical hydrolysis and hydrothermal methods, but recently hydrolyzed hair keratin, feather keratin peptides, and feather meal peptides have been obtained by enzymatic hydrolysis using Bacillus spp in submerged fermentation. Results Keratin peptides were obtained by enzymatic hydrolysis of keratinases using Bacillus subtilis AMR. The microorganism was grown on a feather medium, pH 8.0 (1% feathers) and supplemented with 0.01% of yeast extract, for 5 days, at 28°C with agitation. The supernatant containing the hydrolysates was colleted by centrifugation and ultra filtered in an AMICON system using nano–membranes (Millipore – YC05). The Proteins and peptides were analyzed using HPTLC and MALDI-TOF-MS. Commercial preparations of keratin hydrolysates were used as a comparative standard. After five days the feather had been degraded (90-95%) by the peptidases and keratinases of the microorganism. MALDI-TOF mass spectrometry showed multiple peaks that correspond to peptides in the range of 800 to 1079 Daltons and the commercial hydrolysate was in the range of 900 to 1400 Da. HPTLC showed lower molecular mass peptides and amino acids in the enzymatic hydrolysate when compared with the commercial hydrolysate . A mild shampoo and a rinse off conditioner were formulated with the enzymatic hydrolysate and applied to hair fibers to evaluate the hydration, with and without heat, using a Corneometer® CM 825. The hydration was more efficient with heat, suggesting a more complete incorporation of hydrolysates into the fibers

  16. Novel immobilization of a quaternary ammonium moiety on keratin fibers for medical applications.

    PubMed

    Yu, Dan; Cai, Jackie Y; Liu, Xin; Church, Jeffrey S; Wang, Lijing

    2014-09-01

    This paper introduces a new approach for immobilizing a quaternary ammonium moiety on a keratinous substrate for enhanced medical applications. The method involves the generation of thiols by controlled reduction of cystine disulfide bonds in the keratin, followed by reaction with [2-(acryloyloxy)ethyl]trimethylammonium chloride through thiol-ene click chemistry. The modified substrate was characterized with Raman and infrared spectroscopy, and assessed for its antibacterial efficacy and other performance changes. The results have demonstrated that the quaternary ammonium moiety has been effectively attached onto the keratin structure, and the resultant keratin substrate exhibits a multifunctional effect including antibacterial and antistatic properties, improved liquid moisture management property, improved dyeability and a non-leaching characteristic of the treated substrate. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  17. Gene expression inference with deep learning

    PubMed Central

    Chen, Yifei; Li, Yi; Narayan, Rajiv; Subramanian, Aravind; Xie, Xiaohui

    2016-01-01

    Motivation: Large-scale gene expression profiling has been widely used to characterize cellular states in response to various disease conditions, genetic perturbations, etc. Although the cost of whole-genome expression profiles has been dropping steadily, generating a compendium of expression profiling over thousands of samples is still very expensive. Recognizing that gene expressions are often highly correlated, researchers from the NIH LINCS program have developed a cost-effective strategy of profiling only ∼1000 carefully selected landmark genes and relying on computational methods to infer the expression of remaining target genes. However, the computational approach adopted by the LINCS program is currently based on linear regression (LR), limiting its accuracy since it does not capture complex nonlinear relationship between expressions of genes. Results: We present a deep learning method (abbreviated as D-GEX) to infer the expression of target genes from the expression of landmark genes. We used the microarray-based Gene Expression Omnibus dataset, consisting of 111K expression profiles, to train our model and compare its performance to those from other methods. In terms of mean absolute error averaged across all genes, deep learning significantly outperforms LR with 15.33% relative improvement. A gene-wise comparative analysis shows that deep learning achieves lower error than LR in 99.97% of the target genes. We also tested the performance of our learned model on an independent RNA-Seq-based GTEx dataset, which consists of 2921 expression profiles. Deep learning still outperforms LR with 6.57% relative improvement, and achieves lower error in 81.31% of the target genes. Availability and implementation: D-GEX is available at https://github.com/uci-cbcl/D-GEX. Contact: xhx@ics.uci.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26873929

  18. Gene expression inference with deep learning.

    PubMed

    Chen, Yifei; Li, Yi; Narayan, Rajiv; Subramanian, Aravind; Xie, Xiaohui

    2016-06-15

    Large-scale gene expression profiling has been widely used to characterize cellular states in response to various disease conditions, genetic perturbations, etc. Although the cost of whole-genome expression profiles has been dropping steadily, generating a compendium of expression profiling over thousands of samples is still very expensive. Recognizing that gene expressions are often highly correlated, researchers from the NIH LINCS program have developed a cost-effective strategy of profiling only ∼1000 carefully selected landmark genes and relying on computational methods to infer the expression of remaining target genes. However, the computational approach adopted by the LINCS program is currently based on linear regression (LR), limiting its accuracy since it does not capture complex nonlinear relationship between expressions of genes. We present a deep learning method (abbreviated as D-GEX) to infer the expression of target genes from the expression of landmark genes. We used the microarray-based Gene Expression Omnibus dataset, consisting of 111K expression profiles, to train our model and compare its performance to those from other methods. In terms of mean absolute error averaged across all genes, deep learning significantly outperforms LR with 15.33% relative improvement. A gene-wise comparative analysis shows that deep learning achieves lower error than LR in 99.97% of the target genes. We also tested the performance of our learned model on an independent RNA-Seq-based GTEx dataset, which consists of 2921 expression profiles. Deep learning still outperforms LR with 6.57% relative improvement, and achieves lower error in 81.31% of the target genes. D-GEX is available at https://github.com/uci-cbcl/D-GEX CONTACT: xhx@ics.uci.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. The expression of keratins, vimentin, neurofilament proteins, smooth muscle actin, neuron-specific enolase, and synaptophysin in tumors of the specific glands in the canine anal region.

    PubMed

    Vos, J H; van den Ingh, T S; Ramaekers, F C; Molenbeek, R F; de Neijs, M; van Mil, F N; Ivanyi, D

    1993-07-01

    Eight canine tumors originating from specific glandular structures in the anal region, as well as metastatic tumor tissue of two of these cases (case Nos. 7, 8), were immunohistochemically analyzed using various monoclonal antibodies (MoAbs) directed against human keratin types, vimentin, neurofilament proteins, and alpha-smooth muscle actin. These tumors also were stained for the broad-spectrum neuroendocrine markers neuron-specific enolase (NSE) and synaptophysin. In histologically normal canine anal structures, alpha-smooth muscle actin and NSE antibodies stained basally localized (probably myoepithelial) cells in the anal glands and the anal sac glands. NSE staining also was present in a limited number of luminal cells in both anal glands and anal sac glands. Synaptophysin labeling was not observed in any of these glandular structures. Histologically, the tumors were differentiated into well- and moderately differentiated perianal gland tumors (n = 5) and carcinomas without perianal gland differentiation (n = 3), corresponding to the so-called apocrine carcinomas of the anal region. Immunohistochemically, the perianal gland tumors could be differentiated from the carcinomas by marked differences in staining pattern with the various keratin MoAbs, particularly MoAbs directed against human keratin types 7 and 18. The keratin-staining characteristics of the carcinomas suggest a glandular luminal cell origin. Metastases of the carcinomas showed loss of some keratin-staining characteristics as compared with the primary tumor. Staining for NSE was only observed in solitary cells and small cell clusters in the carcinomas and their metastases, whereas the alpha-smooth muscle actin antibody did not react with the carcinoma cells. None of the tumors stained for neurofilament proteins or synaptophysin. An unequivocal neuroendocrine nature of the carcinomas could not be substantiated by our immunohistochemical study, although the presence of a population of neuroendocrine

  20. Various Techniques to Increase Keratinized Tissue for Implant Supported Overdentures: Retrospective Case Series

    PubMed Central

    Cayarga, Rodrigo; Suzuki, Takanori; Kaufman, Zev

    2015-01-01

    Purpose. The purpose of this retrospective case series is to describe and compare different surgical techniques that can be utilized to augment the keratinized soft tissue around implant-supported overdentures. Materials and Methods. The data set was extracted as deidentified information from the routine treatment of patients at the Ashman Department of Periodontology and Implant Dentistry at New York University College of Dentistry. Eight edentulous patients were selected to be included in this study. Patients were treated for lack of keratinized tissue prior to implant placement, during the second stage surgery, and after delivery of the final prosthesis. Results. All 8 patients in this study were wearing a complete maxillary and/or mandibular denture for at least a year before the time of the surgery. One of the following surgical techniques was utilized to increase the amount of keratinized tissue: apically positioned flap (APF), pedicle graft (PG), connective tissue graft (CTG), or free gingival graft (FGG). Conclusions. The amount of keratinized tissue should be taken into consideration when planning for implant-supported overdentures. The apical repositioning flap is an effective approach to increase the width of keratinized tissue prior to the implant placement. PMID:26124833

  1. Fluorescence detection of protein content in house dust: the possible role of keratin.

    PubMed

    Voloshina, O V; Shirshin, E A; Lademann, J; Fadeev, V V; Darvin, M E

    2017-03-01

    We propose a fluorescence method for protein content assessment in fine house dust, which can be used as an indicator of the hygienic state of occupied rooms. The results of the measurements performed with 30 house dust samples, including ultrafiltration experiments, strongly suggest that the fluorescence emission of house dust extracts excited at 350 nm is mainly due to protein fragments, which are presumably keratin hydrolysates. This suggestion is supported by several facts: (i) Spectral band shapes for all the samples under investigation are close and correspond to that of keratin; (ii) fluorescence intensity correlates with the total protein content as provided by Lowry assay; (iii) treatment of the samples with proteinase K, which induces keratin hydrolysis, results in fluorescence enhancement without changing fluorescence band shape; and (iv) Raman spectra of keratin and fine house dust samples exhibit a very similar structure. Based on the obtained results and literature data, we propose a hypothesis that keratin is a major substrate for fluorescence species in fine house dust, which are responsible for emission at 350-nm excitation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. PERB11 (MIC): a polymorphic MHC gene is expressed in skin and single nucleotide polymorphisms are associated with psoriasis

    PubMed Central

    Tay, G K; Hui, J; Gaudieri, S; Schmitt-Egenolf, M; Martinez, O P; Leelayuwat, C; Williamson, J F; Eiermann, T H; Dawkins, R L

    2000-01-01

    The susceptibility genes for psoriasis remain to be identified. At least one of these must be in the major histocompatibility complex (MHC) to explain associations with alleles at human leucocyte antigen (HLA)-A, -B, -C, -DR, -DQ and C4. In fact, most of these alleles are components of just two ancestral haplotypes (AHs) designated 13.1 and 57.1. Although relevant MHC gene(s) could be within a region of at least 4 Mb, most studies have favoured the area near HLA-B and -C. This region contains a large number of non-HLA genes, many of which are duplicated and polymorphic. Members of one such gene family, PERB11.1 and PERB11.2, are expressed in the skin and are encoded in the region between tumour necrosis factor and HLA-B. To investigate the relationship of PERB11.1 alleles to psoriasis, sequence based typing was performed on 97 patients classified according to age of onset and family history. The frequency of the PERB11.1*06 allele is 44% in type I psoriasis but only 7% in controls (Pc = 0.003 by Fisher's exact test, two-tailed). The major determinant of this association is a single nucleotide polymorphism (SNP) within intron 4. In normal and affected skin, expression of PERB11 is mainly in the basal layer of the epidermis including ducts and follicles. PERB11 is also present in the upper keratin layers but there is relative deficiency in the intermediate layers. These findings suggest a possible role for PERB11 and other MHC genes in the pathogenesis of psoriasis. PMID:10691930

  3. Preparation and study on the structure of keratin/PVA membrane containing wool fibers

    NASA Astrophysics Data System (ADS)

    Wu, Min; Shen, Shuming; Yang, Xuhong; Tang, Rencheng

    2017-10-01

    The urea / sodium sulfide / sodium dodecyl sulfate (SDS) method was used to dissolve the wool in this study. Then the Wool fiber/keratin/PVA composites with different proportions were prepared, and the surface morphology, molecular structure, mechanical property of the composite films and the influence of the proportions on their structure and properties were studied. The results showed that, there are α-helix structure, β-sheet and random coil conformations in the pure keratin film, as well as in the wool fiber. Compared with wool fiber, the crystallinity of keratin decreased. PVA can obviously improve the mechanical property of the blended film. When the blended ratio of keratin/PVA is 20/80, the mechanical property of the blended film is greatly improved. The composite films with 8%-16% of wool fibers have better flexibility than those without wool fibers.

  4. Calcium phosphate coated Keratin-PCL scaffolds for potential bone tissue regeneration.

    PubMed

    Zhao, Xinxin; Lui, Yuan Siang; Choo, Caleb Kai Chuen; Sow, Wan Ting; Huang, Charlotte Liwen; Ng, Kee Woei; Tan, Lay Poh; Loo, Joachim Say Chye

    2015-04-01

    The incorporation of hydroxyapatite (HA) nanoparticles within or on the surface of electrospun polymeric scaffolds is a popular approach for bone tissue engineering. However, the fabrication of osteoconductive composite scaffolds via benign processing conditions still remains a major challenge to date. In this work, a new method was developed to achieve a uniform coating of calcium phosphate (CaP) onto electrospun keratin-polycaprolactone composites (Keratin-PCL). Keratin within PCL was crosslinked to decrease its solubility, before coating of CaP. A homogeneous coating was achieved within a short time frame (~10min) by immersing the scaffolds into Ca(2+) and (PO4)(3-) solutions separately. Results showed that the incorporation of keratin into PCL scaffolds not only provided nucleation sites for Ca(2+) adsorption and subsequent homogeneous CaP surface deposition, but also facilitated cell-matrix interactions. An improvement in the mechanical strength of the resultant composite scaffold, as compared to other conventional coating methods, was also observed. This approach of developing a biocompatible bone tissue engineering scaffold would be adopted for further in vitro osteogenic differentiation studies in the future. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease

    PubMed Central

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Availability and implementation: Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. Database URL: http://rged.wall-eva.net PMID:25252782

  6. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease.

    PubMed

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. http://rged.wall-eva.net. © The Author(s) 2014. Published by Oxford University Press.

  7. Single-Nucleotide Polymorphisms Associated with Skin Naphthyl–Keratin Adduct Levels in Workers Exposed to Naphthalene

    PubMed Central

    Jiang, Rong; French, John E.; Stober, Vandy P.; Kang-Sickel, Juei-Chuan C.; Zou, Fei

    2012-01-01

    Background: Individual genetic variation that results in differences in systemic response to xenobiotic exposure is not accounted for as a predictor of outcome in current exposure assessment models. Objective: We developed a strategy to investigate individual differences in single-nucleotide polymorphisms (SNPs) as genetic markers associated with naphthyl–keratin adduct (NKA) levels measured in the skin of workers exposed to naphthalene. Methods: The SNP-association analysis was conducted in PLINK using candidate-gene analysis and genome-wide analysis. We identified significant SNP–NKA associations and investigated the potential impact of these SNPs along with personal and workplace factors on NKA levels using a multiple linear regression model and the Pratt index. Results: In candidate-gene analysis, a SNP (rs4852279) located near the CYP26B1 gene contributed to the 2-naphthyl–keratin adduct (2NKA) level. In the multiple linear regression model, the SNP rs4852279, dermal exposure, exposure time, task replacing foam, age, and ethnicity all were significant predictors of 2NKA level. In genome-wide analysis, no single SNP reached genome-wide significance for NKA levels (all p ≥ 1.05 × 10–5). Pathway and network analyses of SNPs associated with NKA levels were predicted to be involved in the regulation of cellular processes and homeostasis. Conclusions: These results provide evidence that a quantitative biomarker can be used as an intermediate phenotype when investigating the association between genetic markers and exposure–dose relationship in a small, well-characterized exposed worker population. PMID:22391508

  8. Gene Expression Profiling of Gastric Cancer

    PubMed Central

    Marimuthu, Arivusudar; Jacob, Harrys K.C.; Jakharia, Aniruddha; Subbannayya, Yashwanth; Keerthikumar, Shivakumar; Kashyap, Manoj Kumar; Goel, Renu; Balakrishnan, Lavanya; Dwivedi, Sutopa; Pathare, Swapnali; Dikshit, Jyoti Bajpai; Maharudraiah, Jagadeesha; Singh, Sujay; Sameer Kumar, Ghantasala S; Vijayakumar, M.; Veerendra Kumar, Kariyanakatte Veeraiah; Premalatha, Chennagiri Shrinivasamurthy; Tata, Pramila; Hariharan, Ramesh; Roa, Juan Carlos; Prasad, T.S.K; Chaerkady, Raghothama; Kumar, Rekha Vijay; Pandey, Akhilesh

    2015-01-01

    Gastric cancer is the second leading cause of cancer death worldwide, both in men and women. A genomewide gene expression analysis was carried out to identify differentially expressed genes in gastric adenocarcinoma tissues as compared to adjacent normal tissues. We used Agilent’s whole human genome oligonucleotide microarray platform representing ~41,000 genes to carry out gene expression analysis. Two-color microarray analysis was employed to directly compare the expression of genes between tumor and normal tissues. Through this approach, we identified several previously known candidate genes along with a number of novel candidate genes in gastric cancer. Testican-1 (SPOCK1) was one of the novel molecules that was 10-fold upregulated in tumors. Using tissue microarrays, we validated the expression of testican-1 by immunohistochemical staining. It was overexpressed in 56% (160/282) of the cases tested. Pathway analysis led to the identification of several networks in which SPOCK1 was among the topmost networks of interacting genes. By gene enrichment analysis, we identified several genes involved in cell adhesion and cell proliferation to be significantly upregulated while those corresponding to metabolic pathways were significantly downregulated. The differentially expressed genes identified in this study are candidate biomarkers for gastric adenoacarcinoma. PMID:27030788

  9. T-cell lymphomas associated gene expression signature: Bioinformatics analysis based on gene expression Omnibus.

    PubMed

    Zhou, Lei-Lei; Xu, Xiao-Yue; Ni, Jie; Zhao, Xia; Zhou, Jian-Wei; Feng, Ji-Feng

    2018-06-01

    Due to the low incidence and the heterogeneity of subtypes, the biological process of T-cell lymphomas is largely unknown. Although many genes have been detected in T-cell lymphomas, the role of these genes in biological process of T-cell lymphomas was not further analyzed. Two qualified datasets were downloaded from Gene Expression Omnibus database. The biological functions of differentially expressed genes were evaluated by gene ontology enrichment and KEGG pathway analysis. The network for intersection genes was constructed by the cytoscape v3.0 software. Kaplan-Meier survival curves and log-rank test were employed to assess the association between differentially expressed genes and clinical characters. The intersection mRNAs were proved to be associated with fundamental processes of T-cell lymphoma cells. These intersection mRNAs were involved in the activation of some cancer-related pathways, including PI3K/AKT, Ras, JAK-STAT, and NF-kappa B signaling pathway. PDGFRA, CXCL12, and CCL19 were the most significant central genes in the signal-net analysis. The results of survival analysis are not entirely credible. Our findings uncovered aberrantly expressed genes and a complex RNA signal network in T-cell lymphomas and indicated cancer-related pathways involved in disease initiation and progression, providing a new insight for biotargeted therapy in T-cell lymphomas. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. The role of allogenic keratin-derived dressing in wound healing in a mouse model.

    PubMed

    Konop, Marek; Sulejczak, Dorota; Czuwara, Joanna; Kosson, Piotr; Misicka, Aleksandra; Lipkowski, Andrzej W; Rudnicka, Lidia

    2017-01-01

    Keratin is an interesting protein needed for wound healing and tissue recovery. We have recently proposed a new, simple and inexpensive method to obtain fur and hair keratin-derived biomaterials suitable for medical application. The aim of the study was to evaluate the role of the fur keratin-derived protein (FKDP) dressing in the allogenic full-thickness surgical skin wound model. The data obtained using scanning electron microscopy showed that employed processed biomaterial had higher surface porosity compared with control raw material. From the MTS test, it was found keratin biomaterial is not only toxic to the NIH/3T3 cell line (p < 0.05), but also enhances cell proliferation compared with the control. In vivo studies have shown keratin dressings are tissue biocompatible, accelerate wound closure and epithelialization to the statistically significant differences on day 5 (p < 0.05) in comparison to control wounds. Histological examination revealed, that in FKDP-treated wounds the inflammatory response contained predominantly macrophages whilst their morphological untreated variants showed mixed cell infiltrates rich in neutrophils. Predominant macrophages based response creates more favorable environment for healing. In FKDP-dressed wounds the number of microhemorrhages was also significantly decreased (p < 0.05) as compared with undressed wounds. Applied keratin dressing favors reconstruction of a more regular skin structure and assures better cosmetic effect in terms of scar formation and appearance. In conclusion, fur keratin-derived protein dressings significantly accelerated wound healing in the mouse model. Further studies are needed to determine the molecular mechanisms involved in the multilayer wound healing process and to assess the possible use of these dressings for medical purposes. © 2016 by the Wound Healing Society.

  11. Keratin film ablation for the fabrication of brick and mortar skin structure using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Haq, Bibi Safia; Khan, Hidayat Ullah; Dou, Yuehua; Alam, Khan; Attaullah, Shehnaz; Zari, Islam

    2015-09-01

    The patterning of thin keratin films has been explored to manufacture model skin surfaces based on the "bricks and mortar" view of the relationship between keratin and lipids. It has been demonstrated that laser light is capable of preparing keratin-based "bricks and mortar" wall structure as in epidermis, the outermost layer of the human skin. "Bricks and mortar" pattern in keratin films has been fabricated using an ArF excimer laser (193 nm wavelength) and femtosecond laser (800 and 400 nm wavelength). Due to the very low ablation threshold of keratin, femtosecond laser systems are practical for laser processing of proteins. These model skin structures are fabricated for the first time that will help to produce potentially effective moisturizing products for the protection of skin from dryness, diseases and wrinkles.

  12. Investigating the microstructure of keratin extracted from wool: peptide sequence (MALDI-TOF/TOF) and protein conformation (FTIR)

    USDA-ARS?s Scientific Manuscript database

    Keratin was extracted from wool by reduction with 2-mercaptoethanol. It was isolated as intact keratin and characterized by its similar molecular weight, protein composition, and secondary structure to native keratin. Gel electrophoresis patterns and MALDI-TOF/TOF peptide sequences provided the ide...

  13. Reconstructing directed gene regulatory network by only gene expression data.

    PubMed

    Zhang, Lu; Feng, Xi Kang; Ng, Yen Kaow; Li, Shuai Cheng

    2016-08-18

    Accurately identifying gene regulatory network is an important task in understanding in vivo biological activities. The inference of such networks is often accomplished through the use of gene expression data. Many methods have been developed to evaluate gene expression dependencies between transcription factor and its target genes, and some methods also eliminate transitive interactions. The regulatory (or edge) direction is undetermined if the target gene is also a transcription factor. Some methods predict the regulatory directions in the gene regulatory networks by locating the eQTL single nucleotide polymorphism, or by observing the gene expression changes when knocking out/down the candidate transcript factors; regrettably, these additional data are usually unavailable, especially for the samples deriving from human tissues. In this study, we propose the Context Based Dependency Network (CBDN), a method that is able to infer gene regulatory networks with the regulatory directions from gene expression data only. To determine the regulatory direction, CBDN computes the influence of source to target by evaluating the magnitude changes of expression dependencies between the target gene and the others with conditioning on the source gene. CBDN extends the data processing inequality by involving the dependency direction to distinguish between direct and transitive relationship between genes. We also define two types of important regulators which can influence a majority of the genes in the network directly or indirectly. CBDN can detect both of these two types of important regulators by averaging the influence functions of candidate regulator to the other genes. In our experiments with simulated and real data, even with the regulatory direction taken into account, CBDN outperforms the state-of-the-art approaches for inferring gene regulatory network. CBDN identifies the important regulators in the predicted network: 1. TYROBP influences a batch of genes that are

  14. Monoallelic Gene Expression in Mammals.

    PubMed

    Chess, Andrew

    2016-11-23

    Monoallelic expression not due to cis-regulatory sequence polymorphism poses an intriguing problem in epigenetics because it requires the unequal treatment of two segments of DNA that are present in the same nucleus and that can indeed have absolutely identical sequences. Here, I focus on a few recent developments in the field of monoallelic expression that are of particular interest and raise interesting questions for future work. One development is regarding analyses of imprinted genes, in which recent work suggests the possibility that intriguing networks of imprinted genes exist and are important for genetic and physiological studies. Another issue that has been raised in recent years by a number of publications is the question of how skewed allelic expression should be for it to be designated as monoallelic expression and, further, what methods are appropriate or inappropriate for analyzing genomic data to examine allele-specific expression. Perhaps the most exciting recent development in mammalian monoallelic expression is a clever and carefully executed analysis of genetic diversity of autosomal genes subject to random monoallelic expression (RMAE), which provides compelling evidence for distinct evolutionary forces acting on random monoallelically expressed genes.

  15. Localization of Alpha-Keratin and Beta-Keratin (Corneous Beta Protein) in the Epithelium on the Ventral Surface of the Lingual Apex and Its Lingual Nail in the Domestic Goose (Anser Anser f. domestica) by Using Immunohistochemistry and Raman Microspectroscopy Analysis.

    PubMed

    Skieresz-Szewczyk, Kinga; Jackowiak, Hanna; Buchwald, Tomasz; Szybowicz, Mirosław

    2017-08-01

    The epithelium of the ventral surface of the apex of the tongue in most birds is specified by the presence of the special superficial layer called lingual nail. The aim of the present study is to determine the localization of the alpha-keratin and beta-keratin (corneous beta protein) in this special epithelium in the domestic goose by using immunohistochemistry staining and the Raman spectroscopy analysis. Due to lack of commercially available antibodies to detect beta-keratin (corneous beta protein), the Raman spectroscopy was used as a specific tool to detect and describe the secondary structure of proteins. The immunohistochemical (IHC) detections reveal the presence of alpha-keratin in all layers of the epithelium, but significant differences in the distribution of the alpha-keratin in the epithelial layers appear. The staining reaction is stronger from the basal layer to the upper zone of the intermediate layer. The unique result is weak staining for the alpha-keratin in the lingual nail. Applications of the Raman spectroscopy as a complementary method not only confirmed results of IHC staining for alpha-keratin, but showed that this technique could be used to demonstrate the presence of beta-keratin (corneous beta protein). Functionally, the localization of alpha-keratin in the epithelium of the ventral surface of the lingual apex provides a proper scaffold for epithelial cells and promotes structural integrity, whereas the presence of beta-keratin (corneous beta protein) in the lingual nail, described also as exoskeleton of the ventral surface of the apex, endures mechanical stress. Anat Rec, 300:1361-1368, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Intratarsal keratinous eyelid cysts in Gorlin syndrome: A review and reappraisal.

    PubMed

    Wolkow, Natalie; Jakobiec, Frederick A; Yoon, Michael K

    2017-12-27

    A 38-year-old woman presented with multiple bilateral recurrent eyelid cysts. Her medical history was notable for Gorlin (nevoid basal cell carcinoma) syndrome. Histopathologic and immunohistochemical examinations revealed that the lesions were intratarsal keratinous cysts. They were similar in appearance to sporadic intratarsal keratinous cysts and closely resembled odontogenic keratocysts of the jaw. Eyelid cysts occur in up to 40% of patients with Gorlin syndrome; however, their description has been cursory and, for the most part, outside of the ophthalmic literature. Although ophthalmologists are familiar with the periocular basal cell carcinomas that occur in patients with Gorlin syndrome, up to 10% of patients never develop a basal cell carcinoma, but they may manifest other ophthalmic findings. Awareness of these other features may contribute to the earlier diagnosis of the syndrome. We discuss the clinical and histopathologic features of intratarsal keratinous cysts in Gorlin syndrome, comparing them to sporadic intratarsal keratinous cysts, other eyelid cysts, and jaw cysts that also characterize this syndrome. We briefly review the ocular and systemic manifestations of Gorlin syndrome and recent genetic and therapeutic developments so that the eyelid cysts may be appreciated within the appropriate context of Gorlin syndrome as a whole. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Expressing genes do not forget their LINEs: transposable elements and gene expression

    PubMed Central

    Kines, Kristine J.; Belancio, Victoria P.

    2012-01-01

    1. ABSTRACT Historically the accumulated mass of mammalian transposable elements (TEs), particularly those located within gene boundaries, was viewed as a genetic burden potentially detrimental to the genomic landscape. This notion has been strengthened by the discovery that transposable sequences can alter the architecture of the transcriptome, not only through insertion, but also long after the integration process is completed. Insertions previously considered harmless are now known to impact the expression of host genes via modification of the transcript quality or quantity, transcriptional interference, or by the control of pathways that affect the mRNA life-cycle. Conversely, several examples of the evolutionary advantageous impact of TEs on the host gene structure that diversified the cellular transcriptome are reported. TE-induced changes in gene expression can be tissue-or disease-specific, raising the possibility that the impact of TE sequences may vary during development, among normal cell types, and between normal and disease-affected tissues. The understanding of the rules and abundance of TE-interference with gene expression is in its infancy, and its contribution to human disease and/or evolution remains largely unexplored. PMID:22201807

  18. The use of isoelectric focusing to identify rhinoceros keratins.

    PubMed

    Butler, D J; De Forest, P R; Kobilinsky, L

    1990-03-01

    Keratins represent the principal structural proteins of hair. They are also found in horn, nail, claw, hoof, and feather. Hair and nail samples from human and canine sources and hair samples from mule deer, white tail deer, cat, moose, elk, antelope, caribou, raccoon, and goat were studied. Parrot and goose feathers were also analyzed. Keratins are polymorphic, and species differences are known to exist. Proteinaceous extracts of deer and antelope antlers and bovine and rhinoceros horn were prepared by solubilizing 10 mg of horn sample in 200 microL of a solution containing 12M urea, 74mM Trizma base, and 78mM dithiothreitol (DTT). Extraction took place over a 48-h period. A 25-microL aliquot of extract was removed and incubated with 5 microL of 0.1 M DTT for 10 min at 25 degrees C. Keratins were then separated by isoelectric focusing (IEF) on 5.2% polyacrylamide gels for 3 h and visualized using silver staining. At least 20 bands could be observed for each species studied. However, band patterns differed in the position of each band, in the number of bands, and in band coloration resulting from the silver staining process. Horn from two species of rhinoceros was examined. For both specimens, most bands occurred in the pH range of 4 to 5. Although similar patterns for both species were observed, they differed sufficiently to differentiate one from the other. As might be expected, the closer two species are related phylogenetically, the greater the similarity in the IEF pattern produced from their solubilized keratin.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Analysis of bHLH coding genes using gene co-expression network approach.

    PubMed

    Srivastava, Swati; Sanchita; Singh, Garima; Singh, Noopur; Srivastava, Gaurava; Sharma, Ashok

    2016-07-01

    Network analysis provides a powerful framework for the interpretation of data. It uses novel reference network-based metrices for module evolution. These could be used to identify module of highly connected genes showing variation in co-expression network. In this study, a co-expression network-based approach was used for analyzing the genes from microarray data. Our approach consists of a simple but robust rank-based network construction. The publicly available gene expression data of Solanum tuberosum under cold and heat stresses were considered to create and analyze a gene co-expression network. The analysis provide highly co-expressed module of bHLH coding genes based on correlation values. Our approach was to analyze the variation of genes expression, according to the time period of stress through co-expression network approach. As the result, the seed genes were identified showing multiple connections with other genes in the same cluster. Seed genes were found to be vary in different time periods of stress. These analyzed seed genes may be utilized further as marker genes for developing the stress tolerant plant species.

  20. GENE EXPRESSION NETWORKS

    EPA Science Inventory

    "Gene expression network" is the term used to describe the interplay, simple or complex, between two or more gene products in performing a specific cellular function. Although the delineation of such networks is complicated by the existence of multiple and subtle types of intera...

  1. Fabrication of human hair keratin/jellyfish collagen/eggshell-derived hydroxyapatite osteoinductive biocomposite scaffolds for bone tissue engineering: From waste to regenerative medicine products.

    PubMed

    Arslan, Yavuz Emre; Sezgin Arslan, Tugba; Derkus, Burak; Emregul, Emel; Emregul, Kaan C

    2017-06-01

    In the present study, we aimed at fabricating an osteoinductive biocomposite scaffold using keratin obtained from human hair, jellyfish collagen and eggshell-derived nano-sized spherical hydroxyapatite (nHA) for bone tissue engineering applications. Keratin, collagen and nHA were characterized with the modified Lowry method, free-sulfhydryl groups and hydroxyproline content analysis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR) and thermal gravimetric analysis (TGA) which confirmed the success of the extraction and/or isolation processes. Human adipose mesenchymal stem cells (hAMSCs) were isolated and the cell surface markers were characterized via flow cytometry analysis in addition to multilineage differentiation capacity. The undifferentiated hAMSCs were highly positive for CD29, CD44, CD73, CD90 and CD105, but were not seen to express hematopoietic cell surface markers such as CD14, CD34 and CD45. The cells were successfully directed towards osteogenic, chondrogenic and adipogenic lineages in vitro. The microarchitecture of the scaffolds and cell attachment were evaluated using scanning electron microscopy (SEM). The cell viability on the scaffolds was assessed by the MTT assay which revealed no evidence of cytotoxicity. The osteogenic differentiation of hAMSCs on the scaffolds was determined histologically using alizarin red S, osteopontin and osteonectin stainings. Early osteogenic differentiation markers of hAMSCs were significantly expressed on the collagen-keratin-nHA scaffolds. In conclusion, it is believed that collagen-keratin-nHA osteoinductive biocomposite scaffolds have the potential of being used in bone tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Arabidopsis gene expression patterns during spaceflight

    NASA Astrophysics Data System (ADS)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  3. Pangolin armor: Overlapping, structure, and mechanical properties of the keratinous scales.

    PubMed

    Wang, Bin; Yang, Wen; Sherman, Vincent R; Meyers, Marc A

    2016-09-01

    The pangolin has a flexible dermal armor consisting of overlapping keratinous scales. Although they show potential for bioinspired flexible armor, the design principles of pangolin armor are barely known. Here we report on the overlapping organization, hierarchical structure (from the nano to the mesolevel), and mechanical response of scales from ground (Chinese) and arboreal (African tree) pangolins. Both scales exhibit the same overlapping organization, with each scale at the center of neighboring scales arranged in a hexagonal pattern. The scales have a cuticle of several layers of loosely attached flattened keratinized cells, while the interior structure exhibits three regions distinguished by the geometry and orientations of the keratinized cells, which form densely packed lamellae; each one corresponds to one layer of cells. Unlike most other keratinous materials, the scales show a crossed-lamellar structure (∼5μm) and crossed fibers (∼50μm). A nano-scale suture structure, observed for the first time, outlines cell membranes and leads to an interlocking interface between lamellae, thus enhancing the bonding and shear resistance. The tensile response of the scales shows an elastic limit followed by a short plateau prior to failure, with Young's modulus ∼1 GPa and tensile strength 60-100MPa. The mechanical response is transversely isotropic, a result of the cross lamellar structure. The strain rate sensitivity in the range of 10(-5)-10(-1)s(-1) region is found to be equal to 0.07-0.08, typical of other keratins and polymers. The mechanical response is highly dependent on the degree of hydration, a characteristic of keratins. Although many fish and reptiles have protective scales and carapaces, mammals are characteristically fast and light. The pangolin is one of the few mammal possessing a flexible dermal armor for protection from predators, such as lions. Here we study the arrangement of the scales as well as their hierarchical structure from the nano

  4. Keratin sponge/hydrogel II, active agent delivery

    USDA-ARS?s Scientific Manuscript database

    Keratin sponge/hydrogels from oxidation and reduction hydrolysis of fine and coarse wool fibers were formed to behave as cationic hydrogels to swell and release active agents in the specific region of the gastro-intestinal (GI) tract. Their porous, interpenetrating networks (IPN) were effective for...

  5. Keratin 5 overexpression is associated with serous ovarian cancer recurrence and chemotherapy resistance.

    PubMed

    Ricciardelli, Carmela; Lokman, Noor A; Pyragius, Carmen E; Ween, Miranda P; Macpherson, Anne M; Ruszkiewicz, Andrew; Hoffmann, Peter; Oehler, Martin K

    2017-03-14

    This study investigated the clinical significance of keratin 5 and 6 expression in serous ovarian cancer progression and chemotherapy resistance. KRT5 and KRT6 (KRT6A, KRT6B & KRT6C) gene expression was assessed in publically available serous ovarian cancer data sets, ovarian cancer cell lines and primary serous ovarian cancer cells. Monoclonal antibodies which detect both K5/6 or only K5 were used to assess protein expression in ovarian cancer cell lines and a cohort of high grade serous ovarian carcinomas at surgery (n = 117) and after neoadjuvant chemotherapy (n = 21). Survival analyses showed that high KRT5 mRNA in stage III/IV serous ovarian cancers was significantly associated with reduced progression-free (HR 1.38, P < 0.0001) and overall survival (HR 1.28, P = 0.013) whilst high KRT6 mRNA was only associated with reduced progression-free survival (HR 1.2, P = 0.031). Both high K5/6 (≥ 10%, HR 1.78 95% CI; 1.03-2.65, P = 0.017) and high K5 (≥ 10%, HR 1.90, 95% CI; 1.12-3.19, P = 0.017) were associated with an increased risk of disease recurrence. KRT5 but not KRT6C mRNA expression was increased in chemotherapy resistant primary serous ovarian cancer cells compared to chemotherapy sensitive cells. The proportion of serous ovarian carcinomas with high K5/6 or high K5 immunostaining was significantly increased following neoadjuvant chemotherapy. K5 can be used to predict serous ovarian cancer prognosis and identify cancer cells that are resistant to chemotherapy. Developing strategies to target K5 may therefore improve serous ovarian cancer survival.

  6. Viscoelastic properties of α-keratin fibers in hair.

    PubMed

    Yu, Yang; Yang, Wen; André Meyers, Marc

    2017-12-01

    Considerable viscoelasticity and strain-rate sensitivity are a characteristic of α-keratin fibers, which can be considered a biopolymer. The understanding of viscoelasticity is an important part of the knowledge of the overall mechanical properties of these biological materials. Here, horse and human hairs are examined to analyze the sources of this response. The dynamic mechanical response of α-keratin fibers over a range of frequencies and temperatures is analyzed using a dynamic mechanical analyzer. The α-keratin fibers behave more elastically at higher frequencies while they become more viscous at higher temperatures. A glass transition temperature of ∼55°C is identified. The stress relaxation behavior of α-keratin fibers at two strains, 0.02 and 0.25, is established and fit to a constitutive equation based on the Maxwell-Wiechert model. The constitutive equation is further compared to the experimental results within the elastic region and a good agreement is obtained. The two relaxation constants, 14s and 359s for horse hair and 11s and 207s for human hair, are related to two hierarchical levels of relaxation: the amorphous matrix-intermediate filament interfaces, for the short term, and the cellular components for the long term. Results of the creep test also provide important knowledge on the uncoiling and phase transformation of the α-helical structure as hair is uniaxially stretched. SEM results show that horse hair has a rougher surface morphology and damaged cuticles. It also exhibits a lower strain-rate sensitivity of 0.05 compared to that of 0.11 for human hair. After the horse and human hairs are chemically treated and the disulfide bonds are cleaved, they exhibit a similar strain-rate sensitivity of ∼0.05. FTIR results confirms that the human hair is more sensitive to the -S-S- cleavage, resulting in an increase of cysteic acid content. Therefore, the disulfide bonds in the matrix are experimentally identified as one source of the strain

  7. Candidate genes for panhypopituitarism identified by gene expression profiling

    PubMed Central

    Mortensen, Amanda H.; MacDonald, James W.; Ghosh, Debashis

    2011-01-01

    Mutations in the transcription factors PROP1 and PIT1 (POU1F1) lead to pituitary hormone deficiency and hypopituitarism in mice and humans. The dysmorphology of developing Prop1 mutant pituitaries readily distinguishes them from those of Pit1 mutants and normal mice. This and other features suggest that Prop1 controls the expression of genes besides Pit1 that are important for pituitary cell migration, survival, and differentiation. To identify genes involved in these processes we used microarray analysis of gene expression to compare pituitary RNA from newborn Prop1 and Pit1 mutants and wild-type littermates. Significant differences in gene expression were noted between each mutant and their normal littermates, as well as between Prop1 and Pit1 mutants. Otx2, a gene critical for normal eye and pituitary development in humans and mice, exhibited elevated expression specifically in Prop1 mutant pituitaries. We report the spatial and temporal regulation of Otx2 in normal mice and Prop1 mutants, and the results suggest Otx2 could influence pituitary development by affecting signaling from the ventral diencephalon and regulation of gene expression in Rathke's pouch. The discovery that Otx2 expression is affected by Prop1 deficiency provides support for our hypothesis that identifying molecular differences in mutants will contribute to understanding the molecular mechanisms that control pituitary organogenesis and lead to human pituitary disease. PMID:21828248

  8. Rejoining of cut wounds by engineered gelatin-keratin glue.

    PubMed

    Thirupathi Kumara Raja, S; Thiruselvi, T; Sailakshmi, G; Ganesh, S; Gnanamani, A

    2013-08-01

    Rejoining of cut tissue ends of a critical site challenges clinicians. The toxicity, antigenicity, low adhesive strength, flexibility, swelling and cost of the currently employed glue demands an alternative. Engineered gelatin-keratin glue (EGK-glue) described in the present study was found to be suitable for wet tissue approximation. EGK-glue was prepared by engineering gelatin with caffeic acid using EDC and conjugating with keratin by periodate oxidation. UV-visible, (1)H NMR and circular dichroism analyses followed by experiments on gelation time, rheology, gel adhesive strength (in vitro), wet tissue approximation (in vivo), H&E staining of tissue sections at scheduled time intervals and tensile strength of the healed skin were carried out to assess the effectiveness of the EGK-glue in comparison with fibrin glue and cyanoacrylate. Results of UV-visible, NMR and CD analyses confirmed the functionalization and secondary structural changes. Increasing concentration of keratin reduces the gelation time (<15s). Lap-shear test demonstrates the maximum adhesive strength of 16.6±1.2kPa. Results of hemocompatibility and cytocompatibility studies suggested the suitability of the glue for clinical applications. Tissue approximation property assessed using the incision wound model (Wistar strain) in comparison with cyanoacrylate and fibrin glue suggested, that EGK-glue explicitly accelerates the rejoining of tissue with a 1.86 fold increase in skin tensile strength after healing. Imparting quinone moiety to gelatin-keratin conjugates through caffeic acid and a weaker oxidizing agent provides an adhesive glue with appreciable strength, and hemocompatible, cytocompatible and biodegradable properties, which, rejoin the cut tissue ends effectively. EGK-glue obtained in the present study finds wide biomedical/clinical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Characteristics and EGFP expression of goat mammary gland epithelial cells.

    PubMed

    Zheng, Y-M; He, X-Y; Zhang, Y

    2010-12-01

    The aims of this study were (i) to establish a goat mammary gland epithelial (GMGE) cell line, and (ii) to determine if these GMGE cells could be maintained long-term in culture by continuous subculturing following transfection with a reporter gene, enhanced green fluorescence protein (EGFP). Primary culture of GMGE cells was achieved by outgrowth of migrating cells from the fragments of the mammary gland tissue of a lactating goat. The passage 16 GMGE cells were transfected with EGFP gene using lipofection. The expression of Cell keratins of epithelial cells in GMGE cells was test by immunofluorescence. Βeta-Casein gene mRNA was test for GMGE cells by RT-PCR. The results showed that when grown at low density on a plastic substratum, the GMGE cells formed islands, and when grown to confluency, the cells formed a monolayer and aggregated with the characteristic cobble-stone morphology of epithelial cells. GMGE cells could form dome-like structure which looked like nipple, and the lumen-like structures formed among the cells. Several blister-like structures appeared in the appearance of the cells. The GMGE cells contained different cell types, majority of the cells were short shuttle-like or polygon which were beehive-like. A part of cells were round and flat, a small number of cells were elongated. Some of the GMGE cells contained milk drops. The cell nuclei were round which had 2-4 obvious cores. The expression of Cell keratins demonstrated the property of epithelial cells in GMGE cells by immunofluorescence. The GMGE cells could express transcript encoding a Βeta-Casein protein. EGFP gene was successfully transferred into the GMGE cells, and the transfected cells could be maintained long-term in culture by continuous subculturing. In conclusion, we have established a EGFP gene transfected GMGE (ET-GMGE) cell line and maintained it long-term in culture by continuous subculturing. © 2010 Blackwell Verlag GmbH.

  10. Alternative-splicing-mediated gene expression

    NASA Astrophysics Data System (ADS)

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  11. Novel keratin modified bacterial cellulose nanocomposite production and characterization for skin tissue engineering.

    PubMed

    Keskin, Zalike; Sendemir Urkmez, Aylin; Hames, E Esin

    2017-06-01

    As it is known that bacterial cellulose (BC) is a biocompatible and natural biopolymer due to which it has a large set of biomedical applications. But still it lacks some desired properties, which limits its uses in many other applications. Therefore, the properties of BC need to be boosted up to an acceptable level. Here in this study for the first time, a new natural nanocomposite was produced by the incorporating keratin (isolated from human hair) to the BC (produced by Acetobacter xylinum) to enhance dermal fibroblast cells' attachment. Two different approaches were used in BC based nanocomposite production: in situ and post modifications. BC/keratin nanocomposites were characterized using SEM, FTIR, EDX, XRD, DSC and XPS analyses. Both production methods have yielded successful results for production of BC based nanocomposite-containing keratin. In vitro cell culture experiments performed with human skin keratinocytes and human skin fibroblast cells indicate the potential of the novel BC/keratin nanocomposites for use in skin tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Gene Expression Noise, Fitness Landscapes, and Evolution

    NASA Astrophysics Data System (ADS)

    Charlebois, Daniel

    The stochastic (or noisy) process of gene expression can have fitness consequences for living organisms. For example, gene expression noise facilitates the development of drug resistance by increasing the time scale at which beneficial phenotypic states can be maintained. The present work investigates the relationship between gene expression noise and the fitness landscape. By incorporating the costs and benefits of gene expression, we track how the fluctuation magnitude and timescale of expression noise evolve in simulations of cell populations under stress. We find that properties of expression noise evolve to maximize fitness on the fitness landscape, and that low levels of expression noise emerge when the fitness benefits of gene expression exceed the fitness costs (and that high levels of noise emerge when the costs of expression exceed the benefits). The findings from our theoretical/computational work offer new hypotheses on the development of drug resistance, some of which are now being investigated in evolution experiments in our laboratory using well-characterized synthetic gene regulatory networks in budding yeast. Nserc Postdoctoral Fellowship (Grant No. PDF-453977-2014).

  13. Familial aggregation analysis of gene expressions

    PubMed Central

    Rao, Shao-Qi; Xu, Liang-De; Zhang, Guang-Mei; Li, Xia; Li, Lin; Shen, Gong-Qing; Jiang, Yang; Yang, Yue-Ying; Gong, Bin-Sheng; Jiang, Wei; Zhang, Fan; Xiao, Yun; Wang, Qing K

    2007-01-01

    Traditional studies of familial aggregation are aimed at defining the genetic (and non-genetic) causes of a disease from physiological or clinical traits. However, there has been little attempt to use genome-wide gene expressions, the direct phenotypic measures of genes, as the traits to investigate several extended issues regarding the distributions of familially aggregated genes on chromosomes or in functions. In this study we conducted a genome-wide familial aggregation analysis by using the in vitro cell gene expressions of 3300 human autosome genes (Problem 1 data provided to Genetic Analysis Workshop 15) in order to answer three basic genetics questions. First, we investigated how gene expressions aggregate among different types (degrees) of relative pairs. Second, we conducted a bioinformatics analysis of highly familially aggregated genes to see how they are distributed on chromosomes. Third, we performed a gene ontology enrichment test of familially aggregated genes to find evidence to support their functional consensus. The results indicated that 1) gene expressions did aggregate in families, especially between sibs. Of 3300 human genes analyzed, there were a total of 1105 genes with one or more significant (empirical p < 0.05) familial correlation; 2) there were several genomic hot spots where highly familially aggregated genes (e.g., the chromosome 6 HLA genes cluster) were clustered; 3) as we expected, gene ontology enrichment tests revealed that the 1105 genes were aggregating not only in families but also in functional categories. PMID:18466548

  14. HOXB homeobox gene expression in cervical carcinoma.

    PubMed

    López, R; Garrido, E; Piña, P; Hidalgo, A; Lazos, M; Ochoa, R; Salcedo, M

    2006-01-01

    The homeobox (HOX) genes are a family of transcription factors that bind to specific DNA sequences in target genes regulating gene expression. Thirty-nine HOX genes have been mapped in four conserved clusters: A, B, C, and D; they act as master genes regulating the identity of body segments along the anteroposterior axis of the embryo. The role played by HOX genes in adult cell differentiation is unclear to date, but growing evidence suggests that they may play an important role in the development of cancer. To study the role played by HOX genes in cervical cancer, in the present work, we analyzed the expression of HOXB genes and the localization of their transcripts in human cervical tissues. Reverse transcription-polymerase chain reaction analysis and nonradioactive RNA in situ hybridization were used to detect HOXB expression in 11 normal cervical tissues and 17 cervical carcinomas. It was determined that HOXB1, B3, B5, B6, B7, B8, and B9 genes are expressed in normal adult cervical epithelium and squamous cervical carcinomas. Interestingly, HOXB2, HOXB4, and HOXB13 gene expression was found only in tumor tissues. Our findings suggest that the new expression of HOXB2, HOXB4, and B13 genes is involved in cervical cancer.

  15. Identifying potential maternal genes of Bombyx mori using digital gene expression profiling

    PubMed Central

    Xu, Pingzhen

    2018-01-01

    Maternal genes present in mature oocytes play a crucial role in the early development of silkworm. Although maternal genes have been widely studied in many other species, there has been limited research in Bombyx mori. High-throughput next generation sequencing provides a practical method for gene discovery on a genome-wide level. Herein, a transcriptome study was used to identify maternal-related genes from silkworm eggs. Unfertilized eggs from five different stages of early development were used to detect the changing situation of gene expression. The expressed genes showed different patterns over time. Seventy-six maternal genes were annotated according to homology analysis with Drosophila melanogaster. More than half of the differentially expressed maternal genes fell into four expression patterns, while the expression patterns showed a downward trend over time. The functional annotation of these material genes was mainly related to transcription factor activity, growth factor activity, nucleic acid binding, RNA binding, ATP binding, and ion binding. Additionally, twenty-two gene clusters including maternal genes were identified from 18 scaffolds. Altogether, we plotted a profile for the maternal genes of Bombyx mori using a digital gene expression profiling method. This will provide the basis for maternal-specific signature research and improve the understanding of the early development of silkworm. PMID:29462160

  16. Molecular evidence of keratin and melanosomes in feathers of the Early Cretaceous bird Eoconfuciusornis.

    PubMed

    Pan, Yanhong; Zheng, Wenxia; Moyer, Alison E; O'Connor, Jingmai K; Wang, Min; Zheng, Xiaoting; Wang, Xiaoli; Schroeter, Elena R; Zhou, Zhonghe; Schweitzer, Mary H

    2016-12-06

    Microbodies associated with feathers of both nonavian dinosaurs and early birds were first identified as bacteria but have been reinterpreted as melanosomes. Whereas melanosomes in modern feathers are always surrounded by and embedded in keratin, melanosomes embedded in keratin in fossils has not been demonstrated. Here we provide multiple independent molecular analyses of both microbodies and the associated matrix recovered from feathers of a new specimen of the basal bird Eoconfuciusornis from the Early Cretaceous Jehol Biota of China. Our work represents the oldest ultrastructural and immunological recognition of avian beta-keratin from an Early Cretaceous (∼130-Ma) bird. We apply immunogold to identify protein epitopes at high resolution, by localizing antibody-antigen complexes to specific fossil ultrastructures. Retention of original keratinous proteins in the matrix surrounding electron-opaque microbodies supports their assignment as melanosomes and adds to the criteria employable to distinguish melanosomes from microbial bodies. Our work sheds new light on molecular preservation within normally labile tissues preserved in fossils.

  17. Molecular evidence of keratin and melanosomes in feathers of the Early Cretaceous bird Eoconfuciusornis

    PubMed Central

    Pan, Yanhong; Zheng, Wenxia; Moyer, Alison E.; O’Connor, Jingmai K.; Zheng, Xiaoting; Wang, Xiaoli; Schroeter, Elena R.; Zhou, Zhonghe; Schweitzer, Mary H.

    2016-01-01

    Microbodies associated with feathers of both nonavian dinosaurs and early birds were first identified as bacteria but have been reinterpreted as melanosomes. Whereas melanosomes in modern feathers are always surrounded by and embedded in keratin, melanosomes embedded in keratin in fossils has not been demonstrated. Here we provide multiple independent molecular analyses of both microbodies and the associated matrix recovered from feathers of a new specimen of the basal bird Eoconfuciusornis from the Early Cretaceous Jehol Biota of China. Our work represents the oldest ultrastructural and immunological recognition of avian beta-keratin from an Early Cretaceous (∼130-Ma) bird. We apply immunogold to identify protein epitopes at high resolution, by localizing antibody–antigen complexes to specific fossil ultrastructures. Retention of original keratinous proteins in the matrix surrounding electron-opaque microbodies supports their assignment as melanosomes and adds to the criteria employable to distinguish melanosomes from microbial bodies. Our work sheds new light on molecular preservation within normally labile tissues preserved in fossils. PMID:27872291

  18. Time-Course Gene Set Analysis for Longitudinal Gene Expression Data

    PubMed Central

    Hejblum, Boris P.; Skinner, Jason; Thiébaut, Rodolphe

    2015-01-01

    Gene set analysis methods, which consider predefined groups of genes in the analysis of genomic data, have been successfully applied for analyzing gene expression data in cross-sectional studies. The time-course gene set analysis (TcGSA) introduced here is an extension of gene set analysis to longitudinal data. The proposed method relies on random effects modeling with maximum likelihood estimates. It allows to use all available repeated measurements while dealing with unbalanced data due to missing at random (MAR) measurements. TcGSA is a hypothesis driven method that identifies a priori defined gene sets with significant expression variations over time, taking into account the potential heterogeneity of expression within gene sets. When biological conditions are compared, the method indicates if the time patterns of gene sets significantly differ according to these conditions. The interest of the method is illustrated by its application to two real life datasets: an HIV therapeutic vaccine trial (DALIA-1 trial), and data from a recent study on influenza and pneumococcal vaccines. In the DALIA-1 trial TcGSA revealed a significant change in gene expression over time within 69 gene sets during vaccination, while a standard univariate individual gene analysis corrected for multiple testing as well as a standard a Gene Set Enrichment Analysis (GSEA) for time series both failed to detect any significant pattern change over time. When applied to the second illustrative data set, TcGSA allowed the identification of 4 gene sets finally found to be linked with the influenza vaccine too although they were found to be associated to the pneumococcal vaccine only in previous analyses. In our simulation study TcGSA exhibits good statistical properties, and an increased power compared to other approaches for analyzing time-course expression patterns of gene sets. The method is made available for the community through an R package. PMID:26111374

  19. Pre-gastrula expression of zebrafish extraembryonic genes

    PubMed Central

    2010-01-01

    Background Many species form extraembryonic tissues during embryogenesis, such as the placenta of humans and other viviparous mammals. Extraembryonic tissues have various roles in protecting, nourishing and patterning embryos. Prior to gastrulation in zebrafish, the yolk syncytial layer - an extraembryonic nuclear syncytium - produces signals that induce mesoderm and endoderm formation. Mesoderm and endoderm precursor cells are situated in the embryonic margin, an external ring of cells along the embryo-yolk interface. The yolk syncytial layer initially forms below the margin, in a domain called the external yolk syncytial layer (E-YSL). Results We hypothesize that key components of the yolk syncytial layer's mesoderm and endoderm inducing activity are expressed as mRNAs in the E-YSL. To identify genes expressed in the E-YSL, we used microarrays to compare the transcription profiles of intact pre-gastrula embryos with pre-gastrula embryonic cells that we had separated from the yolk and yolk syncytial layer. This identified a cohort of genes with enriched expression in intact embryos. Here we describe our whole mount in situ hybridization analysis of sixty-eight of them. This includes ten genes with E-YSL expression (camsap1l1, gata3, znf503, hnf1ba, slc26a1, slc40a1, gata6, gpr137bb, otop1 and cebpa), four genes with expression in the enveloping layer (EVL), a superficial epithelium that protects the embryo (zgc:136817, zgc:152778, slc14a2 and elovl6l), three EVL genes whose expression is transiently confined to the animal pole (elovl6l, zgc:136359 and clica), and six genes with transient maternal expression (mtf1, wu:fj59f04, mospd2, rftn2, arrdc1a and pho). We also assessed the requirement of Nodal signaling for the expression of selected genes in the E-YSL, EVL and margin. Margin expression was Nodal dependent for all genes we tested, including the concentrated margin expression of an EVL gene: zgc:110712. All other instances of EVL and E-YSL expression that we

  20. Novel bilayer wound dressing based on electrospun gelatin/keratin nanofibrous mats for skin wound repair.

    PubMed

    Yao, Chun-Hsu; Lee, Chia-Yu; Huang, Chiung-Hua; Chen, Yueh-Sheng; Chen, Kuo-Yu

    2017-10-01

    A bilayer membrane (GKU) with a commercial polyurethane wound dressing as an outer layer and electrospun gelatin/keratin nanofibrous mat as an inner layer was fabricated as a novel wound dressing. Scanning electron micrographs showed that gelatin/keratin nanofibers had a uniform morphology and bead-free structure with average fiber diameter of 160.4nm. 3-(4,5-Dimethylthiazolyl)-2,5-diphenyltetrazolium bromide assay using L929 fibroblast cells indicated that the residues released from the gelatin/keratin composite nanofibrous mat accelerated cell proliferation. Cell attachment experiments revealed that adhered cells spread better and migrated deeper into the gelatin/keratin nanofibrous mat than that into the gelatin nanofibrous mat. In animal studies, compared with the bilayer membrane without keratin, gauze and commercial wound dressing, Comfeel®, GKU membrane gave much more number of blood vessels and a greater reduction in wound area at 4days, and better wound repair at 14days with a thicker epidermis and larger number of newly formed hair follicles. GKU membrane, thus, could be a good candidate for wound dressing applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Regulation of gene expression in plasmid ColE1: delayed expression of the kil gene.

    PubMed Central

    Zhang, S P; Yan, L F; Zubay, G

    1988-01-01

    cea, imm, and kil are a cluster of three functionally related genes of the plasmid ColE1. The cea and kil genes are in the same inducible operon, with transcription being initiated from a promoter adjacent to the cea gene. The imm gene is located between the cea and kil genes, but it is transcribed in the opposite direction. Complementary interaction between the imm mRNA and the anti-imm sequences in the middle of the cea-kil transcript causes a pronounced delay in expression of the kil gene when the cea-kil operon is induced. A segment in the overlapping region between the cea and imm genes causes delayed expression of the kil gene in the absence of imm gene transcription. This delay effect increases the yields of colicin synthesized in induced cells. Images PMID:3142845

  2. Digital gene expression for non-model organisms

    PubMed Central

    Hong, Lewis Z.; Li, Jun; Schmidt-Küntzel, Anne; Warren, Wesley C.; Barsh, Gregory S.

    2011-01-01

    Next-generation sequencing technologies offer new approaches for global measurements of gene expression but are mostly limited to organisms for which a high-quality assembled reference genome sequence is available. We present a method for gene expression profiling called EDGE, or EcoP15I-tagged Digital Gene Expression, based on ultra-high-throughput sequencing of 27-bp cDNA fragments that uniquely tag the corresponding gene, thereby allowing direct quantification of transcript abundance. We show that EDGE is capable of assaying for expression in >99% of genes in the genome and achieves saturation after 6–8 million reads. EDGE exhibits very little technical noise, reveals a large (106) dynamic range of gene expression, and is particularly suited for quantification of transcript abundance in non-model organisms where a high-quality annotated genome is not available. In a direct comparison with RNA-seq, both methods provide similar assessments of relative transcript abundance, but EDGE does better at detecting gene expression differences for poorly expressed genes and does not exhibit transcript length bias. Applying EDGE to laboratory mice, we show that a loss-of-function mutation in the melanocortin 1 receptor (Mc1r), recognized as a Mendelian determinant of yellow hair color in many different mammals, also causes reduced expression of genes involved in the interferon response. To illustrate the application of EDGE to a non-model organism, we examine skin biopsy samples from a cheetah (Acinonyx jubatus) and identify genes likely to control differences in the color of spotted versus non-spotted regions. PMID:21844123

  3. Gene expression systems in corynebacteria.

    PubMed

    Srivastava, Preeti; Deb, J K

    2005-04-01

    Corynebacterium belongs to a group of gram-positive bacteria having moderate to high G+C content, the other members being Mycobacterium, Nocardia, and Rhodococcus. Considerable information is now available on the plasmids, gene regulatory elements, and gene expression in corynebacteria, especially in soil corynebacteria such as Corynebacterium glutamicum. These bacteria are non-pathogenic and, unlike Bacillus and Streptomyces, are low in proteolytic activity and thus have the potential of becoming attractive systems for expression of heterologous proteins. This review discusses recent advances in our understanding of the organization of various regulatory elements, such as promoters, transcription terminators, and development of vectors for cloning and gene expression.

  4. Unstable Expression of Commonly Used Reference Genes in Rat Pancreatic Islets Early after Isolation Affects Results of Gene Expression Studies.

    PubMed

    Kosinová, Lucie; Cahová, Monika; Fábryová, Eva; Týcová, Irena; Koblas, Tomáš; Leontovyč, Ivan; Saudek, František; Kříž, Jan

    2016-01-01

    The use of RT-qPCR provides a powerful tool for gene expression studies; however, the proper interpretation of the obtained data is crucially dependent on accurate normalization based on stable reference genes. Recently, strong evidence has been shown indicating that the expression of many commonly used reference genes may vary significantly due to diverse experimental conditions. The isolation of pancreatic islets is a complicated procedure which creates severe mechanical and metabolic stress leading possibly to cellular damage and alteration of gene expression. Despite of this, freshly isolated islets frequently serve as a control in various gene expression and intervention studies. The aim of our study was to determine expression of 16 candidate reference genes and one gene of interest (F3) in isolated rat pancreatic islets during short-term cultivation in order to find a suitable endogenous control for gene expression studies. We compared the expression stability of the most commonly used reference genes and evaluated the reliability of relative and absolute quantification using RT-qPCR during 0-120 hrs after isolation. In freshly isolated islets, the expression of all tested genes was markedly depressed and it increased several times throughout the first 48 hrs of cultivation. We observed significant variability among samples at 0 and 24 hrs but substantial stabilization from 48 hrs onwards. During the first 48 hrs, relative quantification failed to reflect the real changes in respective mRNA concentrations while in the interval 48-120 hrs, the relative expression generally paralleled the results determined by absolute quantification. Thus, our data call into question the suitability of relative quantification for gene expression analysis in pancreatic islets during the first 48 hrs of cultivation, as the results may be significantly affected by unstable expression of reference genes. However, this method could provide reliable information from 48 hrs onwards.

  5. Keratin decomposition by trogid beetles: evidence from a feeding experiment and stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Sugiura, Shinji; Ikeda, Hiroshi

    2014-03-01

    The decomposition of vertebrate carcasses is an important ecosystem function. Soft tissues of dead vertebrates are rapidly decomposed by diverse animals. However, decomposition of hard tissues such as hairs and feathers is much slower because only a few animals can digest keratin, a protein that is concentrated in hairs and feathers. Although beetles of the family Trogidae are considered keratin feeders, their ecological function has rarely been explored. Here, we investigated the keratin-decomposition function of trogid beetles in heron-breeding colonies where keratin was frequently supplied as feathers. Three trogid species were collected from the colonies and observed feeding on heron feathers under laboratory conditions. We also measured the nitrogen (δ15N) and carbon (δ13C) stable isotope ratios of two trogid species that were maintained on a constant diet (feathers from one heron individual) during 70 days under laboratory conditions. We compared the isotopic signatures of the trogids with the feathers to investigate isotopic shifts from the feathers to the consumers for δ15N and δ13C. We used mixing models (MixSIR and SIAR) to estimate the main diets of individual field-collected trogid beetles. The analysis indicated that heron feathers were more important as food for trogid beetles than were soft tissues under field conditions. Together, the feeding experiment and stable isotope analysis provided strong evidence of keratin decomposition by trogid beetles.

  6. Expression Atlas: gene and protein expression across multiple studies and organisms

    PubMed Central

    Tang, Y Amy; Bazant, Wojciech; Burke, Melissa; Fuentes, Alfonso Muñoz-Pomer; George, Nancy; Koskinen, Satu; Mohammed, Suhaib; Geniza, Matthew; Preece, Justin; Jarnuczak, Andrew F; Huber, Wolfgang; Stegle, Oliver; Brazma, Alvis; Petryszak, Robert

    2018-01-01

    Abstract Expression Atlas (http://www.ebi.ac.uk/gxa) is an added value database that provides information about gene and protein expression in different species and contexts, such as tissue, developmental stage, disease or cell type. The available public and controlled access data sets from different sources are curated and re-analysed using standardized, open source pipelines and made available for queries, download and visualization. As of August 2017, Expression Atlas holds data from 3,126 studies across 33 different species, including 731 from plants. Data from large-scale RNA sequencing studies including Blueprint, PCAWG, ENCODE, GTEx and HipSci can be visualized next to each other. In Expression Atlas, users can query genes or gene-sets of interest and explore their expression across or within species, tissues, developmental stages in a constitutive or differential context, representing the effects of diseases, conditions or experimental interventions. All processed data matrices are available for direct download in tab-delimited format or as R-data. In addition to the web interface, data sets can now be searched and downloaded through the Expression Atlas R package. Novel features and visualizations include the on-the-fly analysis of gene set overlaps and the option to view gene co-expression in experiments investigating constitutive gene expression across tissues or other conditions. PMID:29165655

  7. Gene Expression: Sizing it all up

    USDA-ARS?s Scientific Manuscript database

    Genomic architecture appears to be a largely unexplored component of gene expression. Although surely not the end of the story, we are learning that when it comes to gene expression, size is important. We have been surprised to find that certain patterns of expression, tissue-specific versus constit...

  8. Direct Introduction of Genes into Rats and Expression of the Genes

    NASA Astrophysics Data System (ADS)

    Benvenisty, Nissim; Reshef, Lea

    1986-12-01

    A method of introducing actively expressed genes into intact mammals is described. DNA precipitated with calcium phosphate has been injected intraperitoneally into newborn rats. The injected genes have been taken up and expressed by the animal tissues. To examine the generality of the method we have injected newborn rats with the chloramphenicol acetyltransferase prokaryotic gene fused with various viral and cellular gene promoters and the gene for hepatitis B surface antigen, and we observed appearance of chloramphenicol acetyltransferase activity and hepatitis B surface antigen in liver and spleen. In addition, administration of genes coding for hormones (insulin or growth hormone) resulted in their expression.

  9. Methods for monitoring multiple gene expression

    DOEpatents

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  10. Methods for monitoring multiple gene expression

    DOEpatents

    Berka, Randy [Davis, CA; Bachkirova, Elena [Davis, CA; Rey, Michael [Davis, CA

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  11. Methods for monitoring multiple gene expression

    DOEpatents

    Berka, Randy [Davis, CA; Bachkirova, Elena [Davis, CA; Rey, Michael [Davis, CA

    2008-06-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  12. Hematopoietic progenitors express neural genes

    PubMed Central

    Goolsby, James; Marty, Marie C.; Heletz, Dafna; Chiappelli, Joshua; Tashko, Gerti; Yarnell, Deborah; Fishman, Paul S.; Dhib-Jalbut, Suhayl; Bever, Christopher T.; Pessac, Bernard; Trisler, David

    2003-01-01

    Bone marrow, or cells selected from bone marrow, were reported recently to give rise to cells with a neural phenotype after in vitro treatment with neural-inducing factors or after delivery into the brain. However, we showed previously that untreated bone marrow cells express products of the neural myelin basic protein gene, and we demonstrate here that a subset of ex vivo bone marrow cells expresses the neurogenic transcription factor Pax-6 as well as neuronal genes encoding neurofilament H, NeuN (neuronal nuclear protein), HuC/HuD (Hu-antigen C/Hu-antigen D), and GAD65 (glutamic acid decarboxylase 65), as well as the oligodendroglial gene encoding CNPase (2′,3′ cyclic nucleotide 3′-phosphohydrolase). In contrast, astroglial glial fibrillary acidic protein (GFAP) was not detected. These cells also were CD34+, a marker of hematopoietic stem cells. Cultures of these highly proliferative CD34+ cells, derived from adult mouse bone marrow, uniformly displayed a phenotype comparable with that of hematopoietic progenitor cells (CD45+, CD34+, Sca-1+, AA4.1+, cKit+, GATA-2+, and LMO-2+). The neuronal and oligodendroglial genes expressed in ex vivo bone marrow also were expressed in all cultured CD34+ cells, and GFAP was not observed. After CD34+ cell transplantation into adult brain, neuronal or oligodendroglial markers segregated into distinct nonoverlapping cell populations, whereas astroglial GFAP appeared, in the absence of other neural markers, in a separate set of implanted cells. Thus, neuronal and oligodendroglial gene products are present in a subset of bone marrow cells, and the expression of these genes can be regulated in brain. The fact that these CD34+ cells also express transcription factors (Rex-1 and Oct-4) that are found in early development elicits the hypothesis that they may be pluripotent embryonic-like stem cells. PMID:14634211

  13. Digital gene expression analysis of the zebra finch genome

    PubMed Central

    2010-01-01

    Background In order to understand patterns of adaptation and molecular evolution it is important to quantify both variation in gene expression and nucleotide sequence divergence. Gene expression profiling in non-model organisms has recently been facilitated by the advent of massively parallel sequencing technology. Here we investigate tissue specific gene expression patterns in the zebra finch (Taeniopygia guttata) with special emphasis on the genes of the major histocompatibility complex (MHC). Results Almost 2 million 454-sequencing reads from cDNA of six different tissues were assembled and analysed. A total of 11,793 zebra finch transcripts were represented in this EST data, indicating a transcriptome coverage of about 65%. There was a positive correlation between the tissue specificity of gene expression and non-synonymous to synonymous nucleotide substitution ratio of genes, suggesting that genes with a specialised function are evolving at a higher rate (or with less constraint) than genes with a more general function. In line with this, there was also a negative correlation between overall expression levels and expression specificity of contigs. We found evidence for expression of 10 different genes related to the MHC. MHC genes showed relatively tissue specific expression levels and were in general primarily expressed in spleen. Several MHC genes, including MHC class I also showed expression in brain. Furthermore, for all genes with highest levels of expression in spleen there was an overrepresentation of several gene ontology terms related to immune function. Conclusions Our study highlights the usefulness of next-generation sequence data for quantifying gene expression in the genome as a whole as well as in specific candidate genes. Overall, the data show predicted patterns of gene expression profiles and molecular evolution in the zebra finch genome. Expression of MHC genes in particular, corresponds well with expression patterns in other vertebrates

  14. Regulatory systems for hypoxia-inducible gene expression in ischemic heart disease gene therapy.

    PubMed

    Kim, Hyun Ah; Rhim, Taiyoun; Lee, Minhyung

    2011-07-18

    Ischemic heart diseases are caused by narrowed coronary arteries that decrease the blood supply to the myocardium. In the ischemic myocardium, hypoxia-responsive genes are up-regulated by hypoxia-inducible factor-1 (HIF-1). Gene therapy for ischemic heart diseases uses genes encoding angiogenic growth factors and anti-apoptotic proteins as therapeutic genes. These genes increase blood supply into the myocardium by angiogenesis and protect cardiomyocytes from cell death. However, non-specific expression of these genes in normal tissues may be harmful, since growth factors and anti-apoptotic proteins may induce tumor growth. Therefore, tight gene regulation is required to limit gene expression to ischemic tissues, to avoid unwanted side effects. For this purpose, various gene expression strategies have been developed for ischemic-specific gene expression. Transcriptional, post-transcriptional, and post-translational regulatory strategies have been developed and evaluated in ischemic heart disease animal models. The regulatory systems can limit therapeutic gene expression to ischemic tissues and increase the efficiency of gene therapy. In this review, recent progresses in ischemic-specific gene expression systems are presented, and their applications to ischemic heart diseases are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Evaluation of the efficacy of keratinized mucosa augmentation techniques around dental implants: a systematic review.

    PubMed

    Wu, Qingqing; Qu, Yili; Gong, Ping; Wang, Tianlu; Gong, Ting; Man, Yi

    2015-05-01

    The absence of periimplant keratinized mucosa is considered risky in patients with a predisposition to periodontitis or recession. Although various soft tissue augmentation techniques exist, dentists are seeking for more efficient approaches to augment periimplant keratinized mucosa. The purpose of this systematic review was to evaluate the efficacy of the various techniques and biomaterials adopted in periimplant keratinized mucosa augmentation and whether one technique or biomaterial is superior. A search in Medline-PubMed and the Cochrane Central Register of controlled trials was conducted. Randomized clinical trials, prospective cohort studies, clinical control studies, and case series from January 1, 1980, to December 31, 2013, with a follow-up of at least 6 months reporting changes on keratinized mucosa width were included. Several journals were hand-searched for related articles. The bibliographies of all publications selected for inclusion were also scanned. The screening of titles and abstracts resulted in 60 relevant publications. Six of them were finally included. Free gingival graft, connective tissue graft, acellular dermal matrix, and collagen matrix were used for keratinized mucosa augmentation. Because of heterogeneity of the studies, only descriptive analysis was performed. Improvements in keratinized mucosa width were reported in all studies. A definitive conclusion could not be achieved owing to the lack of well-designed studies and appropriate methods of studying soft tissue. The establishment of universal surgical guidelines and measurement systems is imperative in the future. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  16. Modifying surface resistivity and liquid moisture management property of keratin fibers through thiol-ene click reactions.

    PubMed

    Yu, Dan; Cai, Jackie Y; Church, Jeffrey S; Wang, Lijing

    2014-01-22

    This paper reports on a new method for improving the antistatic and liquid moisture management properties of keratinous materials. The method involves the generation of thiols by controlled reduction of cystine disulfide bonds in keratin with tris(2-carboxyethyl) phosphine hydrochloride and subsequent grafting of hydrophilic groups onto the reduced keratin by reaction with an acrylate sulfonate or acrylamide sulfonate through thiol-ene click chemistry. The modified substrates were characterized with Raman spectroscopy and scanning electron microscopy and evaluated for their performance changes in liquid moisture management, surface resistivity, and wet burst strength. The results have revealed that the thiol-acrylate reaction is more efficient than the thiol-acrylamide reaction, and the keratinous substrate modified with an acrylate sulfonate salt exhibits significantly improved antistatic and liquid moisture management properties.

  17. Free Gingival Graft to Increase Keratinized Mucosa after Placing of Mandibular Fixed Implant-Supported Prosthesis

    PubMed Central

    Marcantonio, Elcio

    2017-01-01

    Insufficiently keratinized tissue can be increased surgically by free gingival grafting. The presence or reconstruction of keratinized mucosa around the implant can facilitate restorative procedure and allow the maintenance of an oral hygiene routine without irritation or discomfort to the patient. The aim of this clinical case report is to describe an oral rehabilitation procedure of an edentulous patient with absence of keratinized mucosa in the interforaminal area, using a free gingival graft associated with a mandibular fixed implant-supported prosthesis. The treatment included the manufacturing of a maxillary complete denture and a mandibular fixed implant-supported prosthesis followed by a free gingival graft to increase the width of the mandibular keratinized mucosa. Free gingival graft was obtained from the palate and grafted on the buccal side of interforaminal area. The follow-up of 02 and 12 months after mucogingival surgery showed that the free gingival graft promoted peri-implant health, hygiene, and patient comfort. Clinical Significance. The free gingival graft is an effective treatment in increasing the width of mandibular keratinized mucosa on the buccal side of the interforaminal area and provided an improvement in maintaining the health of peri-implant tissues which allows for better oral hygiene. PMID:28293441

  18. Method of controlling gene expression

    DOEpatents

    Peters, Norman K.; Frost, John W.; Long, Sharon R.

    1991-12-03

    A method of controlling expression of a DNA segment under the control of a nod gene promoter which comprises administering to a host containing a nod gene promoter an amount sufficient to control expression of the DNA segment of a compound of the formula: ##STR1## in which each R is independently H or OH, is described.

  19. An atlas of gene expression and gene co-regulation in the human retina.

    PubMed

    Pinelli, Michele; Carissimo, Annamaria; Cutillo, Luisa; Lai, Ching-Hung; Mutarelli, Margherita; Moretti, Maria Nicoletta; Singh, Marwah Veer; Karali, Marianthi; Carrella, Diego; Pizzo, Mariateresa; Russo, Francesco; Ferrari, Stefano; Ponzin, Diego; Angelini, Claudia; Banfi, Sandro; di Bernardo, Diego

    2016-07-08

    The human retina is a specialized tissue involved in light stimulus transduction. Despite its unique biology, an accurate reference transcriptome is still missing. Here, we performed gene expression analysis (RNA-seq) of 50 retinal samples from non-visually impaired post-mortem donors. We identified novel transcripts with high confidence (Observed Transcriptome (ObsT)) and quantified the expression level of known transcripts (Reference Transcriptome (RefT)). The ObsT included 77 623 transcripts (23 960 genes) covering 137 Mb (35 Mb new transcribed genome). Most of the transcripts (92%) were multi-exonic: 81% with known isoforms, 16% with new isoforms and 3% belonging to new genes. The RefT included 13 792 genes across 94 521 known transcripts. Mitochondrial genes were among the most highly expressed, accounting for about 10% of the reads. Of all the protein-coding genes in Gencode, 65% are expressed in the retina. We exploited inter-individual variability in gene expression to infer a gene co-expression network and to identify genes specifically expressed in photoreceptor cells. We experimentally validated the photoreceptors localization of three genes in human retina that had not been previously reported. RNA-seq data and the gene co-expression network are available online (http://retina.tigem.it). © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Ectopic Cdx2 expression in murine esophagus models an intermediate stage in the emergence of Barrett's esophagus.

    PubMed

    Kong, Jianping; Crissey, Mary Ann; Funakoshi, Shinsuke; Kreindler, James L; Lynch, John P

    2011-04-06

    Barrett's esophagus (BE) is an intestinal metaplasia that occurs in the setting of chronic acid and bile reflux and is associated with a risk for adenocarcinoma. Expression of intestine-specific transcription factors in the esophagus likely contributes to metaplasia development. Our objective was to explore the effects of an intestine-specific transcription factor when expressed in the mouse esophageal epithelium. Transgenic mice were derived in which the transcription factor Cdx2 is expressed in squamous epithelium using the murine Keratin-14 gene promoter. Effects of the transgene upon cell proliferation and differentiation, gene expression, and barrier integrity were explored. K14-Cdx2 mice express the Cdx2 transgene in esophageal squamous tissues. Cdx2 expression was associated with reduced basal epithelial cell proliferation and altered cell morphology. Ultrastructurally two changes were noted. Cdx2 expression was associated with dilated space between the basal cells and diminished cell-cell adhesion caused by reduced Desmocollin-3 mRNA and protein expression. This compromised epithelial barrier function, as the measured trans-epithelial electrical resistance (TEER) of the K14-Cdx2 epithelium was significantly reduced compared to controls (1189 Ohm*cm(2) ±343.5 to 508 Ohm*cm(2)±92.48, p = 0.0532). Secondly, basal cells with features of a transitional cell type, intermediate between keratinocytes and columnar Barrett's epithelial cells, were observed. These cells had reduced keratin bundles and increased endoplasmic reticulum levels, suggesting the adoption of secretory-cell features. Moreover, at the ultrastructural level they resembled "Distinctive" cells associated with multilayered epithelium. Treatment of the K14-Cdx2 mice with 5'-Azacytidine elicited expression of BE-associated genes including Cdx1, Krt18, and Slc26a3/Dra, suggesting the phenotype could be advanced under certain conditions. We conclude that ectopic Cdx2 expression in keratinocytes

  1. Transient, Inducible, Placenta-Specific Gene Expression in Mice

    PubMed Central

    Fan, Xiujun; Petitt, Matthew; Gamboa, Matthew; Huang, Mei; Dhal, Sabita; Druzin, Maurice L.; Wu, Joseph C.

    2012-01-01

    Molecular understanding of placental functions and pregnancy disorders is limited by the absence of methods for placenta-specific gene manipulation. Although persistent placenta-specific gene expression has been achieved by lentivirus-based gene delivery methods, developmentally and physiologically important placental genes have highly stage-specific functions, requiring controllable, transient expression systems for functional analysis. Here, we describe an inducible, placenta-specific gene expression system that enables high-level, transient transgene expression and monitoring of gene expression by live bioluminescence imaging in mouse placenta at different stages of pregnancy. We used the third generation tetracycline-responsive tranactivator protein Tet-On 3G, with 10- to 100-fold increased sensitivity to doxycycline (Dox) compared with previous versions, enabling unusually sensitive on-off control of gene expression in vivo. Transgenic mice expressing Tet-On 3G were created using a new integrase-based, site-specific approach, yielding high-level transgene expression driven by a ubiquitous promoter. Blastocysts from these mice were transduced with the Tet-On 3G-response element promoter-driving firefly luciferase using lentivirus-mediated placenta-specific gene delivery and transferred into wild-type pseudopregnant recipients for placenta-specific, Dox-inducible gene expression. Systemic Dox administration at various time points during pregnancy led to transient, placenta-specific firefly luciferase expression as early as d 5 of pregnancy in a Dox dose-dependent manner. This system enables, for the first time, reliable pregnancy stage-specific induction of gene expression in the placenta and live monitoring of gene expression during pregnancy. It will be widely applicable to studies of both placental development and pregnancy, and the site-specific Tet-On G3 mouse will be valuable for studies in a broad range of tissues. PMID:23011919

  2. Faster-X Evolution of Gene Expression in Drosophila

    PubMed Central

    Meisel, Richard P.; Malone, John H.; Clark, Andrew G.

    2012-01-01

    DNA sequences on X chromosomes often have a faster rate of evolution when compared to similar loci on the autosomes, and well articulated models provide reasons why the X-linked mode of inheritance may be responsible for the faster evolution of X-linked genes. We analyzed microarray and RNA–seq data collected from females and males of six Drosophila species and found that the expression levels of X-linked genes also diverge faster than autosomal gene expression, similar to the “faster-X” effect often observed in DNA sequence evolution. Faster-X evolution of gene expression was recently described in mammals, but it was limited to the evolutionary lineages shortly following the creation of the therian X chromosome. In contrast, we detect a faster-X effect along both deep lineages and those on the tips of the Drosophila phylogeny. In Drosophila males, the dosage compensation complex (DCC) binds the X chromosome, creating a unique chromatin environment that promotes the hyper-expression of X-linked genes. We find that DCC binding, chromatin environment, and breadth of expression are all predictive of the rate of gene expression evolution. In addition, estimates of the intraspecific genetic polymorphism underlying gene expression variation suggest that X-linked expression levels are not under relaxed selective constraints. We therefore hypothesize that the faster-X evolution of gene expression is the result of the adaptive fixation of beneficial mutations at X-linked loci that change expression level in cis. This adaptive faster-X evolution of gene expression is limited to genes that are narrowly expressed in a single tissue, suggesting that relaxed pleiotropic constraints permit a faster response to selection. Finally, we present a conceptional framework to explain faster-X expression evolution, and we use this framework to examine differences in the faster-X effect between Drosophila and mammals. PMID:23071459

  3. Analysis of global gene expression profiles to identify differentially expressed genes critical for embryo development in Brassica rapa.

    PubMed

    Zhang, Yu; Peng, Lifang; Wu, Ya; Shen, Yanyue; Wu, Xiaoming; Wang, Jianbo

    2014-11-01

    Embryo development represents a crucial developmental period in the life cycle of flowering plants. To gain insights into the genetic programs that control embryo development in Brassica rapa L., RNA sequencing technology was used to perform transcriptome profiling analysis of B. rapa developing embryos. The results generated 42,906,229 sequence reads aligned with 32,941 genes. In total, 27,760, 28,871, 28,384, and 25,653 genes were identified from embryos at globular, heart, early cotyledon, and mature developmental stages, respectively, and analysis between stages revealed a subset of stage-specific genes. We next investigated 9,884 differentially expressed genes with more than fivefold changes in expression and false discovery rate ≤ 0.001 from three adjacent-stage comparisons; 1,514, 3,831, and 6,633 genes were detected between globular and heart stage embryo libraries, heart stage and early cotyledon stage, and early cotyledon and mature stage, respectively. Large numbers of genes related to cellular process, metabolism process, response to stimulus, and biological process were expressed during the early and middle stages of embryo development. Fatty acid biosynthesis, biosynthesis of secondary metabolites, and photosynthesis-related genes were expressed predominantly in embryos at the middle stage. Genes for lipid metabolism and storage proteins were highly expressed in the middle and late stages of embryo development. We also identified 911 transcription factor genes that show differential expression across embryo developmental stages. These results increase our understanding of the complex molecular and cellular events during embryo development in B. rapa and provide a foundation for future studies on other oilseed crops.

  4. Microarray expression profiling identifies genes with altered expression in HDL-deficient mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callow, Matthew J.; Dudoit, Sandrine; Gong, Elaine L.

    2000-05-05

    Based on the assumption that severe alterations in the expression of genes known to be involved in HDL metabolism may affect the expression of other genes we screened an array of over 5000 mouse expressed sequence tags (ESTs) for altered gene expression in the livers of two lines of mice with dramatic decreases in HDL plasma concentrations. Labeled cDNA from livers of apolipoprotein AI (apo AI) knockout mice, Scavenger Receptor BI (SR-BI) transgenic mice and control mice were co-hybridized to microarrays. Two-sample t-statistics were used to identify genes with altered expression levels in the knockout or transgenic mice compared withmore » the control mice. In the SR-BI group we found 9 array elements representing at least 5 genes to be significantly altered on the basis of an adjusted p value of less than 0.05. In the apo AI knockout group 8 array elements representing 4 genes were altered compared with the control group (p < 0.05). Several of the genes identified in the SR-BI transgenic suggest altered sterol metabolism and oxidative processes. These studies illustrate the use of multiple-testing methods for the identification of genes with altered expression in replicated microarray experiments of apo AI knockout and SR-BI transgenic mice.« less

  5. The amelioration of cardiac dysfunction after myocardial infarction by the injection of keratin biomaterials derived from human hair.

    PubMed

    Shen, Deliang; Wang, Xiaofang; Zhang, Li; Zhao, Xiaoyan; Li, Jingyi; Cheng, Ke; Zhang, Jinying

    2011-12-01

    Cardiac dysfunction following acute myocardial infarction is a major cause of advanced cardiomyopathy. Conventional pharmacological therapies rely on prompt reperfusion and prevention of repetitive maladaptive pathways. Keratin biomaterials can be manufactured in an autologous fashion and are effective in various models of tissue regeneration. However, its potential application in cardiac regeneration has not been tested. Keratin biomaterials were derived from human hair and its structure morphology, carryover of beneficial factors, biocompatibility with cardiomyocytes, and in vivo degradation profile were characterized. After delivery into infarcted rat hearts, the keratin scaffolds were efficiently infiltrated by cardiomyocytes and endothelial cells. Injection of keratin biomaterials promotes angiogenesis but does not exacerbate inflammation in the post-MI hearts. Compared to control-injected animals, keratin biomaterials-injected animals exhibited preservation of cardiac function and attenuation of adverse ventricular remodeling over the 8 week following time course. Tissue western blot analysis revealed up-regulation of beneficial factors (BMP4, NGF, TGF-beta) in the keratin-injected hearts. The salient functional benefits, the simplicity of manufacturing and the potentially autologous nature of this biomaterial provide impetus for further translation to the clinic. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Keratin Durability Has Implications for the Fossil Record: Results from a 10 Year Feather Degradation Experiment

    PubMed Central

    Moyer, Alison E.; Zheng, Wenxia; Schweitzer, Mary H.

    2016-01-01

    Keratinous ‘soft tissue’ structures (i.e. epidermally derived and originally non-biomineralized), include feathers, skin, claws, beaks, and hair. Despite their relatively common occurrence in the fossil record (second only to bone and teeth), few studies have addressed natural degradation processes that must occur in all organic material, including those keratinous structures that are incorporated into the rock record as fossils. Because feathers have high preservation potential and strong phylogenetic signal, in the current study we examine feathers subjected to different burial environments for a duration of ~10 years, using transmission electron microscopy (TEM) and in situ immunofluorescence (IF). We use morphology and persistence of specific immunoreactivity as indicators of preservation at the molecular and microstructural levels. We show that feather keratin is durable, demonstrates structural and microstructural integrity, and retains epitopes suitable for specific antibody recognition in even the harshest conditions. These data support the hypothesis that keratin antibody reactivity can be used to identify the nature and composition of epidermal structures in the rock record, and to address evolutionary questions by distinguishing between alpha- (widely distributed) and beta- (limited to sauropsids) keratin. PMID:27384819

  7. Stochastic gene expression in Arabidopsis thaliana.

    PubMed

    Araújo, Ilka Schultheiß; Pietsch, Jessica Magdalena; Keizer, Emma Mathilde; Greese, Bettina; Balkunde, Rachappa; Fleck, Christian; Hülskamp, Martin

    2017-12-14

    Although plant development is highly reproducible, some stochasticity exists. This developmental stochasticity may be caused by noisy gene expression. Here we analyze the fluctuation of protein expression in Arabidopsis thaliana. Using the photoconvertible KikGR marker, we show that the protein expressions of individual cells fluctuate over time. A dual reporter system was used to study extrinsic and intrinsic noise of marker gene expression. We report that extrinsic noise is higher than intrinsic noise and that extrinsic noise in stomata is clearly lower in comparison to several other tissues/cell types. Finally, we show that cells are coupled with respect to stochastic protein expression in young leaves, hypocotyls and roots but not in mature leaves. Our data indicate that stochasticity of gene expression can vary between tissues/cell types and that it can be coupled in a non-cell-autonomous manner.

  8. Neotenic phenomenon in gene expression in the skin of Foxn1- deficient (nude) mice - a projection for regenerative skin wound healing.

    PubMed

    Kur-Piotrowska, Anna; Kopcewicz, Marta; Kozak, Leslie P; Sachadyn, Pawel; Grabowska, Anna; Gawronska-Kozak, Barbara

    2017-01-09

    Mouse fetuses up to 16 day of embryonic development and nude (Foxn1- deficient) mice are examples of animals that undergo regenerative (scar-free) skin healing. The expression of transcription factor Foxn1 in the epidermis of mouse fetuses begins at embryonic day 16.5 which coincides with the transition point from scar-free to scar-forming skin wound healing. In the present study, we tested the hypothesis that Foxn1 expression in the skin is an essential condition to establish the adult skin phenotype and that Foxn1 inactivity in nude mice keeps skin in the immature stage resembling the phenomena of neoteny. Uninjured skin of adult C57BL/6J (B6) mice, mouse fetuses at days 14 (E14) and 18 (E18) of embryonic development and B6.Cg-Foxn1 nu (nude) mice were characterized for their gene expression profiles by RNA sequencing that was validated through qRT-PCR, Western Blot and immunohistochemistry. Differentially regulated genes indicated that nude mice were more similar to E14 (model of regenerative healing) and B6 were more similar to E18 (model of reparative healing). The up-regulated genes in nude and E14 mice were associated with tissue remodeling, cytoskeletal rearrangement, wound healing and immune response, whereas the down-regulated genes were associated with differentiation. E14 and nude mice exhibit prominent up-regulation of keratin (Krt23, -73, -82, -16, -17), involucrin (Ivl) and filaggrin (Flg2) genes. The transcription factors associated with the Hox genes known to specify cell fate during embryonic development and promote embryonic stem cells differentiation were down-regulated in both nude and E14. Among the genes enriched in the nude skin but not shared with E14 fetuses were members of the Wnt and matrix metalloproteinases (Mmps) families whereas Bmp and Notch related genes were down-regulated. In summary, Foxn1 appears to be a pivotal control element of the developmental program and skin maturation. Nude mice may be considered as a model of neoteny

  9. Analysis of multiplex gene expression maps obtained by voxelation.

    PubMed

    An, Li; Xie, Hongbo; Chin, Mark H; Obradovic, Zoran; Smith, Desmond J; Megalooikonomou, Vasileios

    2009-04-29

    Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we present an approach for identifying the relation between gene expression maps obtained by voxelation and gene functions. To analyze the dataset, we chose typical genes as queries and aimed at discovering similar gene groups. Gene similarity was determined by using the wavelet features extracted from the left and right hemispheres averaged gene expression maps, and by the Euclidean distance between each pair of feature vectors. We also performed a multiple clustering approach on the gene expression maps, combined with hierarchical clustering. Among each group of similar genes and clusters, the gene function similarity was measured by calculating the average gene function distances in the gene ontology structure. By applying our methodology to find similar genes to certain target genes we were able to improve our understanding of gene expression patterns and gene functions. By applying the clustering analysis method, we obtained significant clusters, which have both very similar gene expression maps and very similar gene functions respectively to their corresponding gene ontologies. The cellular component ontology resulted in prominent clusters expressed in cortex and corpus callosum. The molecular function ontology gave prominent clusters in cortex, corpus callosum and hypothalamus. The biological process ontology resulted in clusters in cortex, hypothalamus and choroid plexus. Clusters from all three ontologies combined were most prominently expressed in cortex and corpus callosum. The experimental

  10. Multiscale Embedded Gene Co-expression Network Analysis

    PubMed Central

    Song, Won-Min; Zhang, Bin

    2015-01-01

    Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma. PMID:26618778

  11. Multiscale Embedded Gene Co-expression Network Analysis.

    PubMed

    Song, Won-Min; Zhang, Bin

    2015-11-01

    Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma.

  12. Computational gene expression profiling under salt stress reveals patterns of co-expression

    PubMed Central

    Sanchita; Sharma, Ashok

    2016-01-01

    Plants respond differently to environmental conditions. Among various abiotic stresses, salt stress is a condition where excess salt in soil causes inhibition of plant growth. To understand the response of plants to the stress conditions, identification of the responsible genes is required. Clustering is a data mining technique used to group the genes with similar expression. The genes of a cluster show similar expression and function. We applied clustering algorithms on gene expression data of Solanum tuberosum showing differential expression in Capsicum annuum under salt stress. The clusters, which were common in multiple algorithms were taken further for analysis. Principal component analysis (PCA) further validated the findings of other cluster algorithms by visualizing their clusters in three-dimensional space. Functional annotation results revealed that most of the genes were involved in stress related responses. Our findings suggest that these algorithms may be helpful in the prediction of the function of co-expressed genes. PMID:26981411

  13. Vascular gene expression: a hypothesis

    PubMed Central

    Martínez-Navarro, Angélica C.; Galván-Gordillo, Santiago V.; Xoconostle-Cázares, Beatriz; Ruiz-Medrano, Roberto

    2013-01-01

    The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a “primitive” vascular tissue (a lycophyte), as well as from others that lack a true vascular tissue (a bryophyte), and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non-vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT, and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants. PMID:23882276

  14. GSEH: A Novel Approach to Select Prostate Cancer-Associated Genes Using Gene Expression Heterogeneity.

    PubMed

    Kim, Hyunjin; Choi, Sang-Min; Park, Sanghyun

    2018-01-01

    When a gene shows varying levels of expression among normal people but similar levels in disease patients or shows similar levels of expression among normal people but different levels in disease patients, we can assume that the gene is associated with the disease. By utilizing this gene expression heterogeneity, we can obtain additional information that abets discovery of disease-associated genes. In this study, we used collaborative filtering to calculate the degree of gene expression heterogeneity between classes and then scored the genes on the basis of the degree of gene expression heterogeneity to find "differentially predicted" genes. Through the proposed method, we discovered more prostate cancer-associated genes than 10 comparable methods. The genes prioritized by the proposed method are potentially significant to biological processes of a disease and can provide insight into them.

  15. Keratin 13 expression reprograms bone and brain metastases of human prostate cancer cells.

    PubMed

    Li, Qinlong; Yin, Lijuan; Jones, Lawrence W; Chu, Gina C-Y; Wu, Jason B-Y; Huang, Jen-Ming; Li, Quanlin; You, Sungyong; Kim, Jayoung; Lu, Yi-Tsung; Mrdenovic, Stefan; Wang, Ruoxiang; Freeman, Michael R; Garraway, Isla; Lewis, Michael S; Chung, Leland W K; Zhau, Haiyen E

    2016-12-20

    Lethal progression of prostate cancer metastasis can be improved by developing animal models that recapitulate the clinical conditions. We report here that cytokeratin 13 (KRT13), an intermediate filament protein, plays a directive role in prostate cancer bone, brain, and soft tissue metastases. KRT13 expression was elevated in bone, brain, and soft tissue metastatic prostate cancer cell lines and in primary and metastatic clinical prostate, lung, and breast cancer specimens. When KRT13 expression was determined at a single cell level in primary tumor tissues of 44 prostate cancer cases, KRT13 level predicted bone metastasis and the overall survival of prostate cancer patients. Genetically enforced KRT13 expression in human prostate cancer cell lines drove metastases toward mouse bone, brain and soft tissues through a RANKL-independent mechanism, as KRT13 altered the expression of genes associated with EMT, stemness, neuroendocrine/neuromimicry, osteomimicry, development, and extracellular matrices, but not receptor activator NF-κB ligand (RANKL) signaling networks in prostate cancer cells. Our results suggest new inhibitors targeting RANKL-independent pathways should be developed for the treatment of prostate cancer bone and soft tissue metastases.

  16. Effect of clay content on morphology and processability of electrospun keratin/poly(lactic acid) nanofiber.

    PubMed

    Isarankura Na Ayutthaya, Siriorn; Tanpichai, Supachok; Sangkhun, Weradesh; Wootthikanokkhan, Jatuphorn

    2016-04-01

    This research work has concerned the development of volatile organic compounds (VOCs) removal filters from biomaterials, based on keratin extracted from chicken feather waste and poly(lactic acid) (PLA) (50/50%w/w) blend. Clay (Na-montmorillonite) was also added to the blend solution prior to carrying out an electro-spinning process. The aim of this study was to investigate the effect of clay content on viscosity, conductivity, and morphology of the electrospun fibers. Scanning electron micrographs showed that smooth and bead-free fibers were obtained when clay content used was below 2 pph. XRD patterns of the electrospun fibers indicated that the clay was intercalated and exfoliated within the polymers matrix. Percentage crystallinity of keratin in the blend increased after adding the clay, as evidenced from FTIR spectra and DSC thermograms. Transmission electron micrographs revealed a kind of core-shell structure with clay being predominately resided within the keratin rich shell and at the interfacial region. Filtration performance of the electrospun keratin/PLA fibers, described in terms of pressure drop and its capability of removing methylene blue, were also explored. Overall, our results demonstrated that it was possible to improve process-ability, morphology and filtration efficiency of the electrospun keratin fibers by adding a suitable amount of clay. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Moisture, anisotropy, stress state, and strain rate effects on bighorn sheep horn keratin mechanical properties

    DOE PAGES

    Johnson, K. L.; Trim, M. W.; Francis, D. K.; ...

    2016-10-01

    Our paper investigates the effects of moisture, anisotropy, stress state, and strain rate on the mechanical properties of the bighorn sheep (Ovis Canadensis) horn keratin. The horns consist of fibrous keratin tubules extending along the length of the horn and are contained within an amorphous keratin matrix. We tested samples in the rehydrated (35 wt.% water) and ambient dry (10 wt.% water) conditions along the longitudinal and radial directions under tension and compression. Increased moisture content was found to increase ductility and decrease strength, as well as alter the stress state dependent nature of the material. Furthermore, the horn keratinmore » demonstrates a significant strain rate dependence in both tension and compression, and also showed increased energy absorption in the hydrated condition at high strain rates when compared to quasi-static data, with increases of 114% in tension and 192% in compression. Compressive failure occurred by lamellar buckling in the longitudinal orientation followed by shear delamination. Tensile failure in the longitudinal orientation occurred by lamellar delamination combined with tubule pullout and fracture. Finally, the structure-property relationships quantified here for bighorn sheep horn keratin can be used to help validate finite element simulations of ram’s impacting each other as well as being useful for other analysis regarding horn keratin on other animals.« less

  18. Moisture, anisotropy, stress state, and strain rate effects on bighorn sheep horn keratin mechanical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, K. L.; Trim, M. W.; Francis, D. K.

    Our paper investigates the effects of moisture, anisotropy, stress state, and strain rate on the mechanical properties of the bighorn sheep (Ovis Canadensis) horn keratin. The horns consist of fibrous keratin tubules extending along the length of the horn and are contained within an amorphous keratin matrix. We tested samples in the rehydrated (35 wt.% water) and ambient dry (10 wt.% water) conditions along the longitudinal and radial directions under tension and compression. Increased moisture content was found to increase ductility and decrease strength, as well as alter the stress state dependent nature of the material. Furthermore, the horn keratinmore » demonstrates a significant strain rate dependence in both tension and compression, and also showed increased energy absorption in the hydrated condition at high strain rates when compared to quasi-static data, with increases of 114% in tension and 192% in compression. Compressive failure occurred by lamellar buckling in the longitudinal orientation followed by shear delamination. Tensile failure in the longitudinal orientation occurred by lamellar delamination combined with tubule pullout and fracture. Finally, the structure-property relationships quantified here for bighorn sheep horn keratin can be used to help validate finite element simulations of ram’s impacting each other as well as being useful for other analysis regarding horn keratin on other animals.« less

  19. Validating internal controls for quantitative plant gene expression studies

    PubMed Central

    Brunner, Amy M; Yakovlev, Igor A; Strauss, Steven H

    2004-01-01

    Background Real-time reverse transcription PCR (RT-PCR) has greatly improved the ease and sensitivity of quantitative gene expression studies. However, accurate measurement of gene expression with this method relies on the choice of a valid reference for data normalization. Studies rarely verify that gene expression levels for reference genes are adequately consistent among the samples used, nor compare alternative genes to assess which are most reliable for the experimental conditions analyzed. Results Using real-time RT-PCR to study the expression of 10 poplar (genus Populus) housekeeping genes, we demonstrate a simple method for determining the degree of stability of gene expression over a set of experimental conditions. Based on a traditional method for analyzing the stability of varieties in plant breeding, it defines measures of gene expression stability from analysis of variance (ANOVA) and linear regression. We found that the potential internal control genes differed widely in their expression stability over the different tissues, developmental stages and environmental conditions studied. Conclusion Our results support that quantitative comparisons of candidate reference genes are an important part of real-time RT-PCR studies that seek to precisely evaluate variation in gene expression. The method we demonstrated facilitates statistical and graphical evaluation of gene expression stability. Selection of the best reference gene for a given set of experimental conditions should enable detection of biologically significant changes in gene expression that are too small to be revealed by less precise methods, or when highly variable reference genes are unknowingly used in real-time RT-PCR experiments. PMID:15317655

  20. Validating internal controls for quantitative plant gene expression studies.

    PubMed

    Brunner, Amy M; Yakovlev, Igor A; Strauss, Steven H

    2004-08-18

    Real-time reverse transcription PCR (RT-PCR) has greatly improved the ease and sensitivity of quantitative gene expression studies. However, accurate measurement of gene expression with this method relies on the choice of a valid reference for data normalization. Studies rarely verify that gene expression levels for reference genes are adequately consistent among the samples used, nor compare alternative genes to assess which are most reliable for the experimental conditions analyzed. Using real-time RT-PCR to study the expression of 10 poplar (genus Populus) housekeeping genes, we demonstrate a simple method for determining the degree of stability of gene expression over a set of experimental conditions. Based on a traditional method for analyzing the stability of varieties in plant breeding, it defines measures of gene expression stability from analysis of variance (ANOVA) and linear regression. We found that the potential internal control genes differed widely in their expression stability over the different tissues, developmental stages and environmental conditions studied. Our results support that quantitative comparisons of candidate reference genes are an important part of real-time RT-PCR studies that seek to precisely evaluate variation in gene expression. The method we demonstrated facilitates statistical and graphical evaluation of gene expression stability. Selection of the best reference gene for a given set of experimental conditions should enable detection of biologically significant changes in gene expression that are too small to be revealed by less precise methods, or when highly variable reference genes are unknowingly used in real-time RT-PCR experiments.

  1. Keratin sponge/hydrogel part 1. fabrication and characterization

    USDA-ARS?s Scientific Manuscript database

    Keratin sponge/hydrogel products formed by either the oxidation or reduction of U.S. domestic fine- or coarse-grade wool exhibited distinctively different topologies and molecular weights of 6- 8 kDa and 40-60 kDa, each with unique macro-porous structure and microstructural behaviors. The sponge/ ...

  2. HOX gene expression in phenotypic and genotypic subgroups and low HOXA gene expression as an adverse prognostic factor in pediatric ALL.

    PubMed

    Starkova, Julia; Zamostna, Blanka; Mejstrikova, Ester; Krejci, Roman; Drabkin, Harry A; Trka, Jan

    2010-12-01

    HOX genes play an important role in both normal lymphopoiesis and leukemogenesis. However, HOX expression patterns in leukemia cells compared to normal lymphoid progenitors have not been systematically studied in acute lymphoblastic leukemia (ALL) subtypes. The RNA expression levels of HOXA, HOXB, and CDX1/2 genes were analyzed by qRT-PCR in a cohort of 61 diagnostic pediatric ALL samples and FACS-sorted subpopulations of normal lymphoid progenitors. The RNA expression of HOXA7-10, HOXA13, and HOXB2-4 genes was exclusively detected in leukemic cells and immature progenitors. The RNA expression of HOXB6 and CDX2 genes was exclusively detected in leukemic cells but not in B-lineage cells at any of the studied developmental stages. HOXA3-4, HOXA7, and HOXB3-4 genes were differentially expressed between BCP-ALL and T-ALL subgroups, and among genotypically defined MLL/AF4, TEL/AML1, BCR/ABL, hyperdiploid and normal karyotype subgroups. However, this differential expression did not define specific clusters in hierarchical cluster analysis. HOXA7 gene was low expressed at the RNA level in patients with hyperdiploid leukemia, whereas HOXB7 and CDX2 genes were low expressed in TEL/AML1-positive and BCR/ABL-positive cases, respectively. In contrast to previous findings in acute myeloid leukemia, high HOXA RNA expression was associated with an excellent prognosis in Cox's regression model (P = 0.03). In MLL/AF4-positive ALL, lower HOXA RNA expression correlated with the methylation status of their promoters. HOX gene RNA expression cannot discriminate leukemia subgroups or relative maturity of leukemic cells. However, HOXA RNA expression correlates with prognosis, and particular HOX genes are expressed in specific genotypically characterized subgroups.

  3. Validation of reference genes for quantitative gene expression analysis in experimental epilepsy.

    PubMed

    Sadangi, Chinmaya; Rosenow, Felix; Norwood, Braxton A

    2017-12-01

    To grasp the molecular mechanisms and pathophysiology underlying epilepsy development (epileptogenesis) and epilepsy itself, it is important to understand the gene expression changes that occur during these phases. Quantitative real-time polymerase chain reaction (qPCR) is a technique that rapidly and accurately determines gene expression changes. It is crucial, however, that stable reference genes are selected for each experimental condition to ensure that accurate values are obtained for genes of interest. If reference genes are unstably expressed, this can lead to inaccurate data and erroneous conclusions. To date, epilepsy studies have used mostly single, nonvalidated reference genes. This is the first study to systematically evaluate reference genes in male Sprague-Dawley rat models of epilepsy. We assessed 15 potential reference genes in hippocampal tissue obtained from 2 different models during epileptogenesis, 1 model during chronic epilepsy, and a model of noninjurious seizures. Reference gene ranking varied between models and also differed between epileptogenesis and chronic epilepsy time points. There was also some variance between the four mathematical models used to rank reference genes. Notably, we found novel reference genes to be more stably expressed than those most often used in experimental epilepsy studies. The consequence of these findings is that reference genes suitable for one epilepsy model may not be appropriate for others and that reference genes can change over time. It is, therefore, critically important to validate potential reference genes before using them as normalizing factors in expression analysis in order to ensure accurate, valid results. © 2017 Wiley Periodicals, Inc.

  4. DNMT3B modulates the expression of cancer-related genes and downregulates the expression of the gene VAV3 via methylation

    PubMed Central

    Peralta-Arrieta, Irlanda; Hernández-Sotelo, Daniel; Castro-Coronel, Yaneth; Leyva-Vázquez, Marco Antonio; Illades-Aguiar, Berenice

    2017-01-01

    Altered promoter DNA methylation is one of the most important epigenetic abnormalities in human cancer. DNMT3B, de novo methyltransferase, is clearly related to abnormal methylation of tumour suppressor genes, DNA repair genes and its overexpression contributes to oncogenic processes and tumorigenesis in vivo. The purpose of this study was to assess the effect of the overexpression of DNMT3B in HaCaT cells on global gene expression and on the methylation of selected genes to the identification of genes that can be target of DNMT3B. We found that the overexpression of DNMT3B in HaCaT cells, modulate the expression of genes related to cancer, downregulated the expression of 151 genes with CpG islands and downregulated the expression of the VAV3 gene via methylation of its promoter. These results highlight the importance of DNMT3B in gene expression and human cancer. PMID:28123849

  5. DNMT3B modulates the expression of cancer-related genes and downregulates the expression of the gene VAV3 via methylation.

    PubMed

    Peralta-Arrieta, Irlanda; Hernández-Sotelo, Daniel; Castro-Coronel, Yaneth; Leyva-Vázquez, Marco Antonio; Illades-Aguiar, Berenice

    2017-01-01

    Altered promoter DNA methylation is one of the most important epigenetic abnormalities in human cancer. DNMT3B, de novo methyltransferase, is clearly related to abnormal methylation of tumour suppressor genes, DNA repair genes and its overexpression contributes to oncogenic processes and tumorigenesis in vivo . The purpose of this study was to assess the effect of the overexpression of DNMT3B in HaCaT cells on global gene expression and on the methylation of selected genes to the identification of genes that can be target of DNMT3B. We found that the overexpression of DNMT3B in HaCaT cells, modulate the expression of genes related to cancer, downregulated the expression of 151 genes with CpG islands and downregulated the expression of the VAV3 gene via methylation of its promoter. These results highlight the importance of DNMT3B in gene expression and human cancer.

  6. [Differential expression genes of bone tissues surrounding implants in diabetic rats by gene chip].

    PubMed

    Wang, Xin-xin; Ma, Yue; Li, Qing; Jiang, Bao-qi; Lan, Jing

    2012-10-01

    To compare mRNA expression profiles of bone tissues surrounding implants between normal rats and rats with diabetes using microarray technology. Six Wistar rats were randomly selected and divided into normal model group and diabetic group. Diabetic model condition was established by injecting Streptozotocin into peritoneal space. Titanium implants were implanted into the epiphyseal end of the rats' tibia. Bone tissues surrounding implant were harvested and sampled after 3 months to perform comprehensive RNA gene expression profiling, including 17983 for genome-wide association study.GO analysis was used to compare different gene expression and real-time PCR was used to confirm the results on core samples. The results indicated that there were 1084 differential gene expression. In the diabetic model, there were 352 enhanced expression genes, 732 suppressed expression genes. GO analysis involved 1154 different functional type. Osteoblast related gene expressions in bone tissue samples of diabetic rats were decreased, and lipid metabolism pathway related gene expression was increased.

  7. Magnetic field-controlled gene expression in encapsulated cells

    PubMed Central

    Ortner, Viktoria; Kaspar, Cornelius; Halter, Christian; Töllner, Lars; Mykhaylyk, Olga; Walzer, Johann; Günzburg, Walter H.; Dangerfield, John A.; Hohenadl, Christine; Czerny, Thomas

    2012-01-01

    Cell and gene therapies have an enormous range of potential applications, but as for most other therapies, dosing is a critical issue, which makes regulated gene expression a prerequisite for advanced strategies. Several inducible expression systems have been established, which mainly rely on small molecules as inducers, such as hormones or antibiotics. The application of these inducers is difficult to control and the effects on gene regulation are slow. Here we describe a novel system for induction of gene expression in encapsulated cells. This involves the modification of cells to express potential therapeutic genes under the control of a heat inducible promoter and the co-encapsulation of these cells with magnetic nanoparticles. These nanoparticles produce heat when subjected to an alternating magnetic field; the elevated temperatures in the capsules then induce gene expression. In the present study we define the parameters of such systems and provide proof-of-principle using reporter gene constructs. The fine-tuned heating of nanoparticles in the magnetic field allows regulation of gene expression from the outside over a broad range and within short time. Such a system has great potential for advancement of cell and gene therapy approaches. PMID:22197778

  8. Evidence of accelerated beak growth associated with avian keratin disorder in black-capped chickadees (Poecile atricapillus)

    USGS Publications Warehouse

    Van Hemert, Caroline R.; Handel, Colleen M.; O'Hara, Todd M.

    2012-01-01

    We recently documented an epizootic of beak deformities in more than 2,000 Blackcapped Chickadees (Poecile atricapillus) and other wild bird species in North America. This emerging avian disease, which has been termed avian keratin disorder, results in gross overgrowth of the rhamphotheca, the outer, keratinized layer of the beak. To test the hypothesis that the beak deformities characteristic of this disorder are associated with accelerated keratin production, we measured rates of beak growth and wear in affected Black-capped Chickadees (n=16) and a control sample of unaffected chickadees (n=14) collected from south-central (61°09'-61°38'N, 149°11' -149°48'W) and interior Alaska (64°51' -64°53'N, 147°49' -147°59'W). Rates of absolute growth were 50-100% higher in affected birds than they were in control birds and exceeded records from other passerine species. These results suggest that abnormally rapid epidermal growth is the primary physical mechanism by which beak deformities develop and are maintained in affected chickadees. Although beak overgrowth typically worsened over time, differential patterns of wear influenced the severity and morphology of deformities. In some cases, the effects of accelerated keratin growth were partially mitigated by frequent breakage of rhamphothecal tips. However, mortalities occurred in 9 of 16 birds (56%) with beak deformities during the study, suggesting that avian keratin disorder results in severe health consequences for affected birds. Additional study of factors that control beak keratin production is needed to understand the pathogenesis of this debilitating disease in wild birds.

  9. Development of chitosan/gelatin/keratin composite containing hydrocortisone sodium succinate as a buccal mucoadhesive patch to treat desquamative gingivitis.

    PubMed

    Davoudi, Zahra; Rabiee, Mohammad; Houshmand, Behzad; Eslahi, Niloofar; Khoshroo, Kimia; Rasoulianboroujeni, Morteza; Tahriri, Mohammadreza; Tayebi, Lobat

    2018-01-01

    The aim of this research was to develop chitosan/gelatin/keratin composite containing hydrocortisone sodium succinate as a buccal mucoadhesive patch to treat desquamative gingivitis, which was fabricated through an environmental friendly process. Mucoadhesive films increase the advantage of higher efficiency and drug localization in the affected region. In this research, mucoadhesive films, for the release of hydrocortisone sodium succinate, were prepared using different ratios of chitosan, gelatin and keratin. In the first step, chitosan and gelatin proportions were optimized after evaluating the mechanical properties, swelling capacity, water uptake, stability, and biodegradation of the films. Then, keratin was added at different percentages to the optimum composite of chitosan and gelatin together with the drug. The results of surface pH showed that none of the samples were harmful to the buccal cavity. FTIR analysis confirmed the influence of keratin on the structure of the composite. The presence of a higher amount of keratin in the composite films resulted in high mechanical, mucoadhesive properties and stability, low water uptake and biodegradation in phosphate buffer saline (pH = 7.4) containing 10 4  U/ml lysozyme. The release profile of the films ascertained that keratin is a rate controller in the release of the hydrocortisone sodium succinate. Finally, chitosan/gelatin/keratin composite containing hydrocortisone sodium succinate can be employed in dental applications.

  10. Identification of Human HK Genes and Gene Expression Regulation Study in Cancer from Transcriptomics Data Analysis

    PubMed Central

    Zhang, Zhang; Liu, Jingxing; Wu, Jiayan; Yu, Jun

    2013-01-01

    The regulation of gene expression is essential for eukaryotes, as it drives the processes of cellular differentiation and morphogenesis, leading to the creation of different cell types in multicellular organisms. RNA-Sequencing (RNA-Seq) provides researchers with a powerful toolbox for characterization and quantification of transcriptome. Many different human tissue/cell transcriptome datasets coming from RNA-Seq technology are available on public data resource. The fundamental issue here is how to develop an effective analysis method to estimate expression pattern similarities between different tumor tissues and their corresponding normal tissues. We define the gene expression pattern from three directions: 1) expression breadth, which reflects gene expression on/off status, and mainly concerns ubiquitously expressed genes; 2) low/high or constant/variable expression genes, based on gene expression level and variation; and 3) the regulation of gene expression at the gene structure level. The cluster analysis indicates that gene expression pattern is higher related to physiological condition rather than tissue spatial distance. Two sets of human housekeeping (HK) genes are defined according to cell/tissue types, respectively. To characterize the gene expression pattern in gene expression level and variation, we firstly apply improved K-means algorithm and a gene expression variance model. We find that cancer-associated HK genes (a HK gene is specific in cancer group, while not in normal group) are expressed higher and more variable in cancer condition than in normal condition. Cancer-associated HK genes prefer to AT-rich genes, and they are enriched in cell cycle regulation related functions and constitute some cancer signatures. The expression of large genes is also avoided in cancer group. These studies will help us understand which cell type-specific patterns of gene expression differ among different cell types, and particularly for cancer. PMID:23382867

  11. Arabidopsis gene expression patterns are altered during spaceflight

    NASA Astrophysics Data System (ADS)

    Paul, Anna-Lisa; Popp, Michael P.; Gurley, William B.; Guy, Charles; Norwood, Kelly L.; Ferl, Robert J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments results in differential gene expression. A 5-day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β-Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on gene expression patterns initially by using the Adh/GUS transgene to address specifically the possibility that spaceflight induces a hypoxic stress response (Paul, A.L., Daugherty, C.J., Bihn, E.A., Chapman, D.K., Norwood, K.L., Ferl, R.J., 2001. Transgene expression patterns indicate that spaceflight affects stress signal perception and transduction in arabidopsis, Plant Physiol. 126, 613-621). As a follow-on to the reporter gene analysis, we report here the evaluation of genome-wide patterns of native gene expression within Arabidopsis shoots utilizing the Agilent DNA array of 21,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes was further characterized with quantitative Real-Time RT PCR (ABI - Taqman®). Comparison of the patterns of expression for arrays probed with RNA isolated from plants exposed to spaceflight compared to RNA isolated from ground control plants revealed 182 genes that were differentially expressed in response to the spaceflight mission by more than 4-fold, and of those only 50 genes were expressed at levels chosen to support a conservative change call. None of the genes that are hallmarks of hypoxic stress were induced to this level. However, genes related to heat shock were dramatically induced - but in a pattern and under growth conditions that are not easily explained by elevated temperatures. These gene expression data are discussed in light of current models for plant responses to the spaceflight environment and with regard to potential future spaceflight experiment

  12. Reference genes for measuring mRNA expression.

    PubMed

    Dundas, Jitesh; Ling, Maurice

    2012-12-01

    The aim of this review is to find answers to some of the questions surrounding reference genes and their reliability for quantitative experiments. Reference genes are assumed to be at a constant expression level, over a range of conditions such as temperature. These genes, such as GADPH and beta-actin, are used extensively for gene expression studies using techniques like quantitative PCR. There have been several studies carried out on identifying reference genes. However, a lot of evidence indicates issues to the general suitability of these genes. Recent studies had shown that different factors, including the environment and methods, play an important role in changing the expression levels of the reference genes. Thus, we conclude that there is no reference gene that can deemed suitable for all the experimental conditions. In addition, we believe that every experiment will require the scientific evaluation and selection of the best candidate gene for use as a reference gene to obtain reliable scientific results.

  13. Dynamic association rules for gene expression data analysis.

    PubMed

    Chen, Shu-Chuan; Tsai, Tsung-Hsien; Chung, Cheng-Han; Li, Wen-Hsiung

    2015-10-14

    The purpose of gene expression analysis is to look for the association between regulation of gene expression levels and phenotypic variations. This association based on gene expression profile has been used to determine whether the induction/repression of genes correspond to phenotypic variations including cell regulations, clinical diagnoses and drug development. Statistical analyses on microarray data have been developed to resolve gene selection issue. However, these methods do not inform us of causality between genes and phenotypes. In this paper, we propose the dynamic association rule algorithm (DAR algorithm) which helps ones to efficiently select a subset of significant genes for subsequent analysis. The DAR algorithm is based on association rules from market basket analysis in marketing. We first propose a statistical way, based on constructing a one-sided confidence interval and hypothesis testing, to determine if an association rule is meaningful. Based on the proposed statistical method, we then developed the DAR algorithm for gene expression data analysis. The method was applied to analyze four microarray datasets and one Next Generation Sequencing (NGS) dataset: the Mice Apo A1 dataset, the whole genome expression dataset of mouse embryonic stem cells, expression profiling of the bone marrow of Leukemia patients, Microarray Quality Control (MAQC) data set and the RNA-seq dataset of a mouse genomic imprinting study. A comparison of the proposed method with the t-test on the expression profiling of the bone marrow of Leukemia patients was conducted. We developed a statistical way, based on the concept of confidence interval, to determine the minimum support and minimum confidence for mining association relationships among items. With the minimum support and minimum confidence, one can find significant rules in one single step. The DAR algorithm was then developed for gene expression data analysis. Four gene expression datasets showed that the proposed

  14. Presence of keratin-specific antibody-forming cells in palatine tonsils of patients with pustulosis palmaris et plantaris (PPP) and its correlation with prognosis after tonsillectomy.

    PubMed

    Tanimoto, Yoichiro; Fukuyama, Satoshi; Tanaka, Norimitsu; Ohori, Jun-Ichiro; Tanimoto, Yukari; Kurono, Yuichi

    2014-01-01

    Keratin-specific immune responses in tonsils may be associated with the pathogenesis of pustulosis palmaris et plantaris (PPP). Evaluation of keratin-specific immune responses in tonsils might be useful to predict the effectiveness of tonsillectomy for patients with PPP. The aim of the present study was to clarify the role of keratin-specific immune responses in the pathogenesis of PPP in tonsils. It has been reported that anti-keratin antibodies in serum were higher in patients with PPP and decreased after tonsillectomy, indicating that anti-keratin antibodies might be generated in tonsils. In order to demonstrate the presence of keratin-specific immune responses in tonsils, the numbers of keratin-specific antibody-forming cells (AFCs) in tonsillar and peripheral blood lymphocytes were examined by enzyme-linked immunospot assay. The prognosis of PPP was compared after tonsillectomy. The numbers of keratin-specific IgM and IgG AFCs in tonsils and of IgG AFCs in peripheral blood were significantly increased in patients with PPP. The numbers of keratin-specific IgG AFCs in peripheral blood correlated positively with tonsil and serum IgG antibodies specific to keratin. Our data show that a good prognosis in patients with PPP depended on the numbers of keratin-specific IgG and IgM AFCs in peripheral blood and the levels of keratin-specific IgG antibodies in serum being significantly decreased 6 months after tonsillectomy.

  15. Platelet-Released Growth Factors Induce Differentiation of Primary Keratinocytes

    PubMed Central

    Tohidnezhad, Mersedeh; Lammel, Justus; Lippross, Sebastian; Behrendt, Peter; Klüter, Tim; Pufe, Thomas; Jahr, Holger; Cremer, Jochen; Rademacher, Franziska; Gläser, Regine; Harder, Jürgen

    2017-01-01

    Autologous thrombocyte concentrate lysates, for example, platelet-released growth factors, (PRGFs) or their clinically related formulations (e.g., Vivostat PRF®) came recently into the physicians' focus as they revealed promising effects in regenerative and reparative medicine such as the support of healing of chronic wounds. To elucidate the underlying mechanisms, we analyzed the influence of PRGF and Vivostat PRF on human keratinocyte differentiation in vitro and on epidermal differentiation status of skin wounds in vivo. Therefore, we investigated the expression of early (keratin 1 and keratin 10) and late (transglutaminase-1 and involucrin) differentiation markers. PRGF treatment of primary human keratinocytes decreased keratin 1 and keratin 10 gene expression but induced involucrin and transglutaminase-1 gene expression in an epidermal growth factor receptor- (EGFR-) dependent manner. In concordance with these results, microscopic analyses revealed that PRGF-treated human keratinocytes displayed morphological features typical of keratinocytes undergoing terminal differentiation. In vivo treatment of artificial human wounds with Vivostat PRF revealed a significant induction of involucrin and transglutaminase-1 gene expression. Together, our results indicate that PRGF and Vivostat PRF induce terminal differentiation of primary human keratinocytes. This potential mechanism may contribute to the observed beneficial effects in the treatment of hard-to-heal wounds with autologous thrombocyte concentrate lysates in vivo. PMID:28808357

  16. Giant axonal neuropathy alters the structure of keratin intermediate filaments in human hair

    PubMed Central

    Soomro, Asfia; Alsop, Richard J.; Negishi, Atsuko; Kreplak, Laurent; Fudge, Douglas; Kuczmarski, Edward R.; Goldman, Robert D.

    2017-01-01

    Giant axonal neuropathy (GAN) follows an autosomal recessive genetic inheritance and impedes the peripheral and central nervous system due to axonal swellings that are packed with neurofilaments. The patients display a number of phenotypes, including hypotonia, muscle weakness, decreased reflexes, ataxia, seizures, intellectual disability, pale skin and often curled hair. We used X-ray diffraction and tensile testing to determine potential changes to the structure of keratin intermediate filaments (IFs) in the hair of patients with GAN. A statistically significant decrease in the 47 and the 27 Å diffraction signals were observed. Tensile tests determined that the hair was slightly stiffer, stronger and more extensible in GAN patients. These results suggest that the structure of keratin IFs in hair is altered in GAN, and the findings are compatible with an increased positional disorder of the keratin tetramers within the hair fibres. PMID:28424304

  17. Giant axonal neuropathy alters the structure of keratin intermediate filaments in human hair.

    PubMed

    Soomro, Asfia; Alsop, Richard J; Negishi, Atsuko; Kreplak, Laurent; Fudge, Douglas; Kuczmarski, Edward R; Goldman, Robert D; Rheinstädter, Maikel C

    2017-04-01

    Giant axonal neuropathy (GAN) follows an autosomal recessive genetic inheritance and impedes the peripheral and central nervous system due to axonal swellings that are packed with neurofilaments. The patients display a number of phenotypes, including hypotonia, muscle weakness, decreased reflexes, ataxia, seizures, intellectual disability, pale skin and often curled hair. We used X-ray diffraction and tensile testing to determine potential changes to the structure of keratin intermediate filaments (IFs) in the hair of patients with GAN. A statistically significant decrease in the 47 and the 27 Å diffraction signals were observed. Tensile tests determined that the hair was slightly stiffer, stronger and more extensible in GAN patients. These results suggest that the structure of keratin IFs in hair is altered in GAN, and the findings are compatible with an increased positional disorder of the keratin tetramers within the hair fibres. © 2017 The Author(s).

  18. Biased gene expression in early honeybee larval development

    PubMed Central

    2013-01-01

    Background Female larvae of the honeybee (Apis mellifera) develop into either queens or workers depending on nutrition. This nutritional stimulus triggers different developmental trajectories, resulting in adults that differ from each other in physiology, behaviour and life span. Results To understand how these trajectories are established we have generated a comprehensive atlas of gene expression throughout larval development. We found substantial differences in gene expression between worker and queen-destined larvae at 6 hours after hatching. Some of these early changes in gene expression are maintained throughout larval development, indicating that caste-specific developmental trajectories are established much earlier than previously thought. Within our gene expression data we identified processes that potentially underlie caste differentiation. Queen-destined larvae have higher expression of genes involved in transcription, translation and protein folding early in development with a later switch to genes involved in energy generation. Using RNA interference, we were able to demonstrate that one of these genes, hexamerin 70b, has a role in caste differentiation. Both queen and worker developmental trajectories are associated with the expression of genes that have alternative splice variants, although only a single variant of a gene tends to be differentially expressed in a given caste. Conclusions Our data, based on the biases in gene expression early in development together with published data, supports the idea that caste development in the honeybee consists of two phases; an initial biased phase of development, where larvae can still switch to the other caste by differential feeding, followed by commitment to a particular developmental trajectory. PMID:24350621

  19. GeneSigDB—a curated database of gene expression signatures

    PubMed Central

    Culhane, Aedín C.; Schwarzl, Thomas; Sultana, Razvan; Picard, Kermshlise C.; Picard, Shaita C.; Lu, Tim H.; Franklin, Katherine R.; French, Simon J.; Papenhausen, Gerald; Correll, Mick; Quackenbush, John

    2010-01-01

    The primary objective of most gene expression studies is the identification of one or more gene signatures; lists of genes whose transcriptional levels are uniquely associated with a specific biological phenotype. Whilst thousands of experimentally derived gene signatures are published, their potential value to the community is limited by their computational inaccessibility. Gene signatures are embedded in published article figures, tables or in supplementary materials, and are frequently presented using non-standard gene or probeset nomenclature. We present GeneSigDB (http://compbio.dfci.harvard.edu/genesigdb) a manually curated database of gene expression signatures. GeneSigDB release 1.0 focuses on cancer and stem cells gene signatures and was constructed from more than 850 publications from which we manually transcribed 575 gene signatures. Most gene signatures (n = 560) were successfully mapped to the genome to extract standardized lists of EnsEMBL gene identifiers. GeneSigDB provides the original gene signature, the standardized gene list and a fully traceable gene mapping history for each gene from the original transcribed data table through to the standardized list of genes. The GeneSigDB web portal is easy to search, allows users to compare their own gene list to those in the database, and download gene signatures in most common gene identifier formats. PMID:19934259

  20. Gene Expression Studies in Lygus lineolaris

    USDA-ARS?s Scientific Manuscript database

    Genes are expressed in insect cells, as in all living organisms, by transcription of DNA into RNA followed by translation of RNA into proteins. The intricate patterns of differential gene expression in time and space directly influence the development and function of every aspect of the organism. Wh...

  1. Regenerated keratin membrane to match the in vitro drug diffusion through human epidermis

    PubMed Central

    Selmin, Francesca; Cilurzo, Francesco; Aluigi, Annalisa; Franzè, Silvia; Minghetti, Paola

    2012-01-01

    This work aimed to develop membranes made of regenerated keratin and ceramides (CERs) to match the barrier property of the human stratum corneum in in vitro percutaneous absorption studies. The membrane composition was optimized on the basis of the in vitro drug diffusion profiles of ibuprofen, propranolol and testosterone chosen as model drugs on the basis of their different diffusion and solubility properties. The data were compared to those obtained using human epidermis. The ATR-FTIR and SEM analyses revealed that CERs were suspended into the regenerated keratin matrix, even if a partial solubilization occurred. It resulted in the membranes being physically stable after exposure to aqueous buffer and/or mineral oil and the fluxes of ibuprofen and propranolol from these vehicles through membranes and human skin were of the same order of magnitude. The best relationship with human epidermis data was obtained with 180 μm-thick membrane containing 1% ceramide III and 1% ceramide VI. The data on the testosterone diffusion were affected by the exposure of the membrane to a water/ethanol solution over a prolonged period of time, indicating that such an organic solvent was able to modify the supermolecular organization of keratin and CERs. The keratin/CER membranes can represent a simplified model to assay the in vitro skin permeability study of small molecules. PMID:25755997

  2. Identification of reference genes in human myelomonocytic cells for gene expression studies in altered gravity.

    PubMed

    Thiel, Cora S; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Unverdorben, Felix; Buttron, Isabell; Lauber, Beatrice; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E; Ullrich, Oliver

    2015-01-01

    Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes ("housekeeping genes") are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity.

  3. Nephron segment-specific gene expression using AAV vectors.

    PubMed

    Asico, Laureano D; Cuevas, Santiago; Ma, Xiaobo; Jose, Pedro A; Armando, Ines; Konkalmatt, Prasad R

    2018-02-26

    AAV9 vector provides efficient gene transfer in all segments of the renal nephron, with minimum expression in non-renal cells, when administered retrogradely via the ureter. It is important to restrict the transgene expression to the desired cell type within the kidney, so that the physiological endpoints represent the function of the transgene expressed in that specific cell type within kidney. We hypothesized that segment-specific gene expression within the kidney can be accomplished using the highly efficient AAV9 vectors carrying the promoters of genes that are expressed exclusively in the desired segment of the nephron in combination with administration by retrograde infusion into the kidney via the ureter. We constructed AAV vectors carrying eGFP under the control of: kidney-specific cadherin (KSPC) gene promoter for expression in the entire nephron; Na + /glucose co-transporter (SGLT2) gene promoter for expression in the S1 and S2 segments of the proximal tubule; sodium, potassium, 2 chloride co-transporter (NKCC2) gene promoter for expression in the thick ascending limb of Henle's loop (TALH); E-cadherin (ECAD) gene promoter for expression in the collecting duct (CD); and cytomegalovirus (CMV) early promoter that provides expression in most of the mammalian cells, as control. We tested the specificity of the promoter constructs in vitro for cell type-specific expression in mouse kidney cells in primary culture, followed by retrograde infusion of the AAV vectors via the ureter in the mouse. Our data show that AAV9 vector, in combination with the segment-specific promoters administered by retrograde infusion via the ureter, provides renal nephron segment-specific gene expression. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Genetic deletion of keratin 8 corrects the altered bone formation and osteopenia in a mouse model of cystic fibrosis.

    PubMed

    Le Henaff, Carole; Faria Da Cunha, Mélanie; Hatton, Aurélie; Tondelier, Danielle; Marty, Caroline; Collet, Corinne; Zarka, Mylène; Geoffroy, Valérie; Zatloukal, Kurt; Laplantine, Emmanuel; Edelman, Aleksander; Sermet-Gaudelus, Isabelle; Marie, Pierre J

    2016-04-01

    Patients with cystic fibrosis (CF) display low bone mass and alterations in bone formation. Mice carrying the F508del genetic mutation in the cystic fibrosis conductance regulator (Cftr) gene display reduced bone formation and decreased bone mass. However, the underlying molecular mechanisms leading to these skeletal defects are unknown, which precludes the development of an efficient anti-osteoporotic therapeutic strategy. Here we report a key role for the intermediate filament protein keratin 8 (Krt8), in the osteoblast dysfunctions in F508del-Cftr mice. We found that murine and human osteoblasts express Cftr and Krt8 at low levels. Genetic studies showed that Krt8 deletion (Krt8(-/-)) in F508del-Cftr mice increased the levels of circulating markers of bone formation, corrected the expression of osteoblast phenotypic genes, promoted trabecular bone formation and improved bone mass and microarchitecture. Mechanistically, Krt8 deletion in F508del-Cftr mice corrected overactive NF-κB signaling and decreased Wnt-β-catenin signaling induced by the F508del-Cftr mutation in osteoblasts. In vitro, treatment with compound 407, which specifically disrupts the Krt8-F508del-Cftr interaction in epithelial cells, corrected the abnormal NF-κB and Wnt-β-catenin signaling and the altered phenotypic gene expression in F508del-Cftr osteoblasts. In vivo, short-term treatment with 407 corrected the altered Wnt-β-catenin signaling and bone formation in F508del-Cftr mice. Collectively, the results show that genetic or pharmacologic targeting of Krt8 leads to correction of osteoblast dysfunctions, altered bone formation and osteopenia in F508del-Cftr mice, providing a therapeutic strategy targeting the Krt8-F508del-CFTR interaction to correct the abnormal bone formation and bone loss in cystic fibrosis. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. In situ identification of keratin-hydrolyzing organisms in swine manure inoculated anaerobic digesters.

    PubMed

    Xia, Yun; Massé, Daniel I; McAllister, Tim A; Beaulieu, Carole; Talbot, Guylaine; Kong, Yunhong; Seviour, Robert

    2011-12-01

    Feathers, a poultry byproduct, are composed of > 90% keratin which is resistant to degradation during anaerobic digestion. In this study, four 42-L anaerobic digesters inoculated with adapted swine manure were used to investigate feather digestion. Ground feathers were added into two anaerobic digesters for biogas production, whereas another two without feathers were used as negative control. Feather degradation and enhanced methane production were recorded. Keratin-hydrolyzing organisms (KHOs) were visualized in the feather bag fluids after boron-dipyrromethene (BODIPY) fluorescence casein staining. Their abundances correlated (R(2)  = 0.96) to feather digestion rates. A 16S rRNA clone library was constructed for the bacterial populations attached to the feather particles. Ninety-three clones (> 1300 bp) were retrieved and 57 (61%) belonged to class Clostridia in the phylum Firmicutes, while 34 (37%) belonged to class Bacteroidia in the phylum Bacteroidetes. Four oligonucleotide FISH probes were designed for the major Clostridia clusters and used with other FISH probes to identify the KHOs. Probe FIMs1029 hybridized with most (> 80%) of the KHOs. Its targeted sequence perfectly matches that possessed by 10 Clostridia 16S rRNA gene clones belonging to a previously uncharacterized new genus closely related to Alkaliphilus in the subfamily Clostridiaceae 2 of family Clostridiaceae. © 2011 Her Majesty the Queen in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada. Published by Blackwell Publishing Ltd.

  6. Identifying osteosarcoma metastasis associated genes by weighted gene co-expression network analysis (WGCNA).

    PubMed

    Tian, Honglai; Guan, Donghui; Li, Jianmin

    2018-06-01

    Osteosarcoma (OS), the most common malignant bone tumor, accounts for the heavy healthy threat in the period of children and adolescents. OS occurrence usually correlates with early metastasis and high death rate. This study aimed to better understand the mechanism of OS metastasis.Based on Gene Expression Omnibus (GEO) database, we downloaded 4 expression profile data sets associated with OS metastasis, and selected differential expressed genes. Weighted gene co-expression network analysis (WGCNA) approach allowed us to investigate the most OS metastasis-correlated module. Gene Ontology functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were used to give annotation of selected OS metastasis-associated genes.We select 897 differential expressed genes from OS metastasis and OS non-metastasis groups. Based on these selected genes, WGCNA further explored 142 genes included in the most OS metastasis-correlated module. Gene Ontology functional and KEGG pathway enrichment analyses showed that significantly OS metastasis-associated genes were involved in pathway correlated with insulin-like growth factor binding.Our research figured out several potential molecules participating in metastasis process and factors acting as biomarker. With this study, we could better explore the mechanism of OS metastasis and further discover more therapy targets.

  7. Evidence of accelerated beak growth associated with avian keratin disorder in Black-capped Chickadees (Poecile atricapillus)

    USGS Publications Warehouse

    Van Hemert, Caroline; Handel, Colleen M.; O'Hara, Todd M.

    2012-01-01

    We recently documented an epizootic of beak deformities in more than 2,000 Blackcapped Chickadees (Poecile atricapillus) and other wild bird species in North America. This emerging avian disease, which has been termed avian keratin disorder, results in gross overgrowth of the rhamphotheca, the outer, keratinized layer of the beak. To test the hypothesis that the beak deformities characteristic of this disorder are associated with accelerated keratin production, we measured rates of beak growth and wear in affected Black-capped Chickadees (n=16) and a control sample of unaffected chickadees (n=14) collected from south-central (61°09′−61°38′N, 149°11′ −149°48′W) and interior Alaska (64°51′ −64°53′N, 147°49′ −147°59′W). Rates of absolute growth were 50–100% higher in affected birds than they were in control birds and exceeded records from other passerine species. These results suggest that abnormally rapid epidermal growth is the primary physical mechanism by which beak deformities develop and are maintained in affected chickadees. Although beak overgrowth typically worsened over time, differential patterns of wear influenced the severity and morphology of deformities. In some cases, the effects of accelerated keratin growth were partially mitigated by frequent breakage of rhamphothecal tips. However, mortalities occurred in 9 of 16 birds (56%) with beak deformities during the study, suggesting that avian keratin disorder results in severe health consequences for affected birds. Additional study of factors that control beak keratin production is needed to understand the pathogenesis of this debilitating disease in wild birds.

  8. Evidence of accelerated beak growth associated with avian keratin disorder in black-capped chickadees (Poecile atricapillus)

    USGS Publications Warehouse

    Van Hemert, Caroline R.; Handel, Colleen M.; O'Hara, Todd M.

    2012-01-01

    We recently documented an epizootic of beak deformities in more than 2,000 Black-capped Chickadees (Poecile atricapillus) and other wild bird species in North America. This emerging avian disease, which has been termed avian keratin disorder, results in gross overgrowth of the rhamphotheca, the outer, keratinized layer of the beak. To test the hypothesis that the beak deformities characteristic of this disorder are associated with accelerated keratin production, we measured rates of beak growth and wear in affected Black-capped Chickadees (n=16) and a control sample of unaffected chickadees (n=14) collected from south-central (61°09′–61°38′N, 149°11′–149°48′W) and interior Alaska (64°51′–64°53′N, 147°49′–147°59′W). Rates of absolute growth were 50–100% higher in affected birds than they were in control birds and exceeded records from other passerine species. These results suggest that abnormally rapid epidermal growth is the primary physical mechanism by which beak deformities develop and are maintained in affected chickadees. Although beak overgrowth typically worsened over time, differential patterns of wear influenced the severity and morphology of deformities. In some cases, the effects of accelerated keratin growth were partially mitigated by frequent breakage of rhamphothecal tips. However, mortalities occurred in 9 of 16 birds (56%) with beak deformities during the study, suggesting that avian keratin disorder results in severe health consequences for affected birds. Additional study of factors that control beak keratin production is needed to understand the pathogenesis of this debilitating disease in wild birds.

  9. Gene expression analysis of pancreatic cell lines reveals genes overexpressed in pancreatic cancer.

    PubMed

    Alldinger, Ingo; Dittert, Dag; Peiper, Matthias; Fusco, Alberto; Chiappetta, Gennaro; Staub, Eike; Lohr, Matthias; Jesnowski, Ralf; Baretton, Gustavo; Ockert, Detlef; Saeger, Hans-Detlev; Grützmann, Robert; Pilarsky, Christian

    2005-01-01

    Pancreatic cancer is one of the leading causes of cancer-related death. Using DNA gene expression analysis based on a custom made Affymetrix cancer array, we investigated the expression pattern of both primary and established pancreatic carcinoma cell lines. We analyzed the gene expression of 5 established pancreatic cancer cell lines (AsPC-1, BxPC-3, Capan-1, Capan-2 and HPAF II) and 5 primary isolates, 1 of them derived from benign pancreatic duct cells. Out of 1,540 genes which were expressed in at least 3 experiments, we found 122 genes upregulated and 18 downregulated in tumor cell lines compared to benign cells with a fold change >3. Several of the upregulated genes (like Prefoldin 5, ADAM9 and E-cadherin) have been associated with pancreatic cancer before. The other differentially regulated genes, however, play a so far unknown role in the course of human pancreatic carcinoma. By means of immunohistochemistry we could show that thymosin beta-10 (TMSB10), upregulated in tumor cell lines, is expressed in human pancreatic carcinoma, but not in non-neoplastic pancreatic tissue, suggesting a role for TMSB10 in the carcinogenesis of pancreatic carcinoma. Using gene expression profiling of pancreatic cell lines we were able to identify genes differentially expressed in pancreatic adenocarcinoma, which might contribute to pancreatic cancer development. Copyright 2005 S. Karger AG, Basel.

  10. Random forests-based differential analysis of gene sets for gene expression data.

    PubMed

    Hsueh, Huey-Miin; Zhou, Da-Wei; Tsai, Chen-An

    2013-04-10

    In DNA microarray studies, gene-set analysis (GSA) has become the focus of gene expression data analysis. GSA utilizes the gene expression profiles of functionally related gene sets in Gene Ontology (GO) categories or priori-defined biological classes to assess the significance of gene sets associated with clinical outcomes or phenotypes. Many statistical approaches have been proposed to determine whether such functionally related gene sets express differentially (enrichment and/or deletion) in variations of phenotypes. However, little attention has been given to the discriminatory power of gene sets and classification of patients. In this study, we propose a method of gene set analysis, in which gene sets are used to develop classifications of patients based on the Random Forest (RF) algorithm. The corresponding empirical p-value of an observed out-of-bag (OOB) error rate of the classifier is introduced to identify differentially expressed gene sets using an adequate resampling method. In addition, we discuss the impacts and correlations of genes within each gene set based on the measures of variable importance in the RF algorithm. Significant classifications are reported and visualized together with the underlying gene sets and their contribution to the phenotypes of interest. Numerical studies using both synthesized data and a series of publicly available gene expression data sets are conducted to evaluate the performance of the proposed methods. Compared with other hypothesis testing approaches, our proposed methods are reliable and successful in identifying enriched gene sets and in discovering the contributions of genes within a gene set. The classification results of identified gene sets can provide an valuable alternative to gene set testing to reveal the unknown, biologically relevant classes of samples or patients. In summary, our proposed method allows one to simultaneously assess the discriminatory ability of gene sets and the importance of genes for

  11. Clustering cancer gene expression data by projective clustering ensemble

    PubMed Central

    Yu, Xianxue; Yu, Guoxian

    2017-01-01

    Gene expression data analysis has paramount implications for gene treatments, cancer diagnosis and other domains. Clustering is an important and promising tool to analyze gene expression data. Gene expression data is often characterized by a large amount of genes but with limited samples, thus various projective clustering techniques and ensemble techniques have been suggested to combat with these challenges. However, it is rather challenging to synergy these two kinds of techniques together to avoid the curse of dimensionality problem and to boost the performance of gene expression data clustering. In this paper, we employ a projective clustering ensemble (PCE) to integrate the advantages of projective clustering and ensemble clustering, and to avoid the dilemma of combining multiple projective clusterings. Our experimental results on publicly available cancer gene expression data show PCE can improve the quality of clustering gene expression data by at least 4.5% (on average) than other related techniques, including dimensionality reduction based single clustering and ensemble approaches. The empirical study demonstrates that, to further boost the performance of clustering cancer gene expression data, it is necessary and promising to synergy projective clustering with ensemble clustering. PCE can serve as an effective alternative technique for clustering gene expression data. PMID:28234920

  12. Perspectives: Gene Expression in Fisheries Management

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Pavey, Scott A.

    2010-01-01

    Functional genes and gene expression have been connected to physiological traits linked to effective production and broodstock selection in aquaculture, selective implications of commercial fish harvest, and adaptive changes reflected in non-commercial fish populations subject to human disturbance and climate change. Gene mapping using single nucleotide polymorphisms (SNPs) to identify functional genes, gene expression (analogue microarrays and real-time PCR), and digital sequencing technologies looking at RNA transcripts present new concepts and opportunities in support of effective and sustainable fisheries. Genomic tools have been rapidly growing in aquaculture research addressing aspects of fish health, toxicology, and early development. Genomic technologies linking effects in functional genes involved in growth, maturation and life history development have been tied to selection resulting from harvest practices. Incorporating new and ever-increasing knowledge of fish genomes is opening a different perspective on local adaptation that will prove invaluable in wild fish conservation and management. Conservation of fish stocks is rapidly incorporating research on critical adaptive responses directed at the effects of human disturbance and climate change through gene expression studies. Genomic studies of fish populations can be generally grouped into three broad categories: 1) evolutionary genomics and biodiversity; 2) adaptive physiological responses to a changing environment; and 3) adaptive behavioral genomics and life history diversity. We review current genomic research in fisheries focusing on those that use microarrays to explore differences in gene expression among phenotypes and within or across populations, information that is critically important to the conservation of fish and their relationship to humans.

  13. Identification of Reference Genes in Human Myelomonocytic Cells for Gene Expression Studies in Altered Gravity

    PubMed Central

    Thiel, Cora S.; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E.

    2015-01-01

    Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes (“housekeeping genes”) are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity. PMID:25654098

  14. Discovery and validation of a glioblastoma co-expressed gene module

    PubMed Central

    Dunwoodie, Leland J.; Poehlman, William L.; Ficklin, Stephen P.; Feltus, Frank Alexander

    2018-01-01

    Tumors exhibit complex patterns of aberrant gene expression. Using a knowledge-independent, noise-reducing gene co-expression network construction software called KINC, we created multiple RNAseq-based gene co-expression networks relevant to brain and glioblastoma biology. In this report, we describe the discovery and validation of a glioblastoma-specific gene module that contains 22 co-expressed genes. The genes are upregulated in glioblastoma relative to normal brain and lower grade glioma samples; they are also hypo-methylated in glioblastoma relative to lower grade glioma tumors. Among the proneural, neural, mesenchymal, and classical glioblastoma subtypes, these genes are most-highly expressed in the mesenchymal subtype. Furthermore, high expression of these genes is associated with decreased survival across each glioblastoma subtype. These genes are of interest to glioblastoma biology and our gene interaction discovery and validation workflow can be used to discover and validate co-expressed gene modules derived from any co-expression network. PMID:29541392

  15. Discovery and validation of a glioblastoma co-expressed gene module.

    PubMed

    Dunwoodie, Leland J; Poehlman, William L; Ficklin, Stephen P; Feltus, Frank Alexander

    2018-02-16

    Tumors exhibit complex patterns of aberrant gene expression. Using a knowledge-independent, noise-reducing gene co-expression network construction software called KINC, we created multiple RNAseq-based gene co-expression networks relevant to brain and glioblastoma biology. In this report, we describe the discovery and validation of a glioblastoma-specific gene module that contains 22 co-expressed genes. The genes are upregulated in glioblastoma relative to normal brain and lower grade glioma samples; they are also hypo-methylated in glioblastoma relative to lower grade glioma tumors. Among the proneural, neural, mesenchymal, and classical glioblastoma subtypes, these genes are most-highly expressed in the mesenchymal subtype. Furthermore, high expression of these genes is associated with decreased survival across each glioblastoma subtype. These genes are of interest to glioblastoma biology and our gene interaction discovery and validation workflow can be used to discover and validate co-expressed gene modules derived from any co-expression network.

  16. Discovering causal signaling pathways through gene-expression patterns

    PubMed Central

    Parikh, Jignesh R.; Klinger, Bertram; Xia, Yu; Marto, Jarrod A.; Blüthgen, Nils

    2010-01-01

    High-throughput gene-expression studies result in lists of differentially expressed genes. Most current meta-analyses of these gene lists include searching for significant membership of the translated proteins in various signaling pathways. However, such membership enrichment algorithms do not provide insight into which pathways caused the genes to be differentially expressed in the first place. Here, we present an intuitive approach for discovering upstream signaling pathways responsible for regulating these differentially expressed genes. We identify consistently regulated signature genes specific for signal transduction pathways from a panel of single-pathway perturbation experiments. An algorithm that detects overrepresentation of these signature genes in a gene group of interest is used to infer the signaling pathway responsible for regulation. We expose our novel resource and algorithm through a web server called SPEED: Signaling Pathway Enrichment using Experimental Data sets. SPEED can be freely accessed at http://speed.sys-bio.net/. PMID:20494976

  17. Sustainability of keratinocyte gene transfer and cell survival in vivo.

    PubMed

    Choate, K A; Khavari, P A

    1997-05-20

    The epidermis is an attractive site for therapeutic gene delivery because it is accessible and capable of delivering polypeptides to the systemic circulation. A number of difficulties, however, have emerged in attempts at cutaneous gene delivery, and central among these is an inability to sustain therapeutic gene production. We have examined two major potential contributing factors, viral vector stamina and involvement of long-lived epidermal progenitor cells. Human keratinocytes were either untreated or transduced with a retroviral vector for beta-galactosidase (beta-Gal) at > 99% efficiency and then grafted onto immunodeficient mice to regenerate human epidermis. Human epidermis was monitored in vivo after grafting for clinical and histologic appearance as well as for gene expression. Although integrated vector sequences persisted unchanged in engineered epidermis at 10 weeks post-grafting, retroviral long terminal repeat (LTR)-driven beta-Gal expression ceased in vivo after approximately 4 weeks. Endogenous cellular promoters, however, maintained consistently normal gene expression levels without evidence of time-dependent decline, as determined by immunostaining with species-specific antibodies for human involucrin, filaggrin, keratinocyte transglutaminase, keratin 10, type VII collagen, and Laminin 5 proteins out to week 14 post-grafting. Transduced human keratinocytes generated multilayer epidermis sustained through multiple epidermal turnover cycles; this epidermis demonstrated retention of a spatially appropriate pattern of basal and suprabasal epidermal marker gene expression. These results confirm previous findings suggesting that viral promoter-driven gene expression is not durable and demonstrate that keratinocytes passaged in vitro can regenerate and sustain normal epidermis for prolonged periods.

  18. Keratin based bioplastic film from chicken feathers and its characterization.

    PubMed

    Ramakrishnan, Navina; Sharma, Swati; Gupta, Arun; Alashwal, Basma Yahya

    2018-05-01

    Plastics have been one of the highly valued materials and it plays an significant role in human's life such as in food packaging and biomedical applications. Bioplastic materials can gradually work as a substitute for various materials based on fossil oil. The issue like sustainability and environmental challenges which occur due to manufacturing and disposal of synthetic plastics can be conquering by bio-based plastics. Feathers are among the most inexpensive abundant, and renewable protein sources. Feathers disposal to the landfills leads to environmental pollutions and it results into wastage of 90% of protein raw material. Keratin is non-burning hydrophilic, and biodegradable due to which it can be applicable in various ways via chemical processing. Main objective of this research is to synthesis bioplastic using keratin from chicken feathers. Extracted keratin solution mixed with different concentration of glycerol (2 to 10%) to produce plastic films. The mixture was stirred under constant magnetic stirring at 60 °C for 5 h. The mixtures are then poured into aluminum weighing boat and dried in an oven at 60 °C for 24 h. The mechanical properties of the samples were tested and the physic-chemical properties of the bioplastic were studied. According to the results, Scanning Electron Microscopy test showed good compatible morphologies without holes, cavity and edge. The difference in chemical composition was analyzed using Fourier transform infrared spectroscopy (FTIR). The samples were also characterized by thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-Ray diffraction (XRD) to check the thermal and crystallinity properties. Other than that, bioplastic made up from keratin with 2% of glycerol has the best mechanical and thermal properties. According to biodegradability test, all bioplastic produced are proven biodegradable. Therefore, the results showed possible application of the film as an alternative to fossil oil

  19. Systematic identification of human housekeeping genes possibly useful as references in gene expression studies.

    PubMed

    Caracausi, Maria; Piovesan, Allison; Antonaros, Francesca; Strippoli, Pierluigi; Vitale, Lorenza; Pelleri, Maria Chiara

    2017-09-01

    The ideal reference, or control, gene for the study of gene expression in a given organism should be expressed at a medium‑high level for easy detection, should be expressed at a constant/stable level throughout different cell types and within the same cell type undergoing different treatments, and should maintain these features through as many different tissues of the organism. From a biological point of view, these theoretical requirements of an ideal reference gene appear to be best suited to housekeeping (HK) genes. Recent advancements in the quality and completeness of human expression microarray data and in their statistical analysis may provide new clues toward the quantitative standardization of human gene expression studies in biology and medicine, both cross‑ and within‑tissue. The systematic approach used by the present study is based on the Transcriptome Mapper tool and exploits the automated reassignment of probes to corresponding genes, intra‑ and inter‑sample normalization, elaboration and representation of gene expression values in linear form within an indexed and searchable database with a graphical interface recording quantitative levels of expression, expression variability and cross‑tissue width of expression for more than 31,000 transcripts. The present study conducted a meta‑analysis of a pool of 646 expression profile data sets from 54 different human tissues and identified actin γ 1 as the HK gene that best fits the combination of all the traditional criteria to be used as a reference gene for general use; two ribosomal protein genes, RPS18 and RPS27, and one aquaporin gene, POM121 transmembrane nucleporin C, were also identified. The present study provided a list of tissue‑ and organ‑specific genes that may be most suited for the following individual tissues/organs: Adipose tissue, bone marrow, brain, heart, kidney, liver, lung, ovary, skeletal muscle and testis; and also provides in these cases a representative

  20. Investigation of preparation techniques for δ2H analysis of keratin materials and a proposed analytical protocol

    USGS Publications Warehouse

    Qi, H.; Coplen, T.B.

    2011-01-01

    Accurate hydrogen isotopic measurements of keratin materials have been a challenge due to exchangeable hydrogen in the sample matrix and the paucity of appropriate isotopic reference materials for calibration. We found that the most reproducible δ2HVSMOW-SLAP and mole fraction of exchangeable hydrogen, x(H)ex, of keratin materials were measured with equilibration at ambient temperature using two desiccators and two different equilibration waters with two sets of the keratin materials for 6 days. Following equilibration, drying the keratin materials in a vacuum oven for 4 days at 60 °C was most critical. The δ2H analysis protocol also includes interspersing isotopic reference waters in silver tubes among samples in the carousel of a thermal conversion elemental analyzer (TC/EA) reduction unit. Using this analytical protocol, δ2HVSMOW-SLAP values of the non-exchangeable fractions of USGS42 and USGS43 human-hair isotopic reference materials were determined to be –78.5 ± 2.3 ‰ and –50.3 ± 2.8 ‰, respectively. The measured x(H)ex values of keratin materials analyzed with steam equilibration and N2 drying were substantially higher than those previously published, and dry N2 purging was unable to remove absorbed moisture completely, even with overnight purging. The δ2H values of keratin materials measured with steam equilibration were about 10 ‰ lower than values determined with equilibration in desiccators at ambient temperatures when on-line evacuation was used to dry samples. With steam equilibrations the x(H)ex of commercial keratin powder was as high as 28 %. Using human-hair isotopic reference materials to calibrate other keratin materials, such as hoof or horn, can introduce bias in δ2H measurements because the amount of absorbed water and the x(H)ex values may differ from those of unknown samples. Correct δ2HVSMOW-SLAP values of the non-exchangeable fractions of unknown human-hair samples can be determined with atmospheric moisture

  1. Biased Gene Fractionation and Dominant Gene Expression among the Subgenomes of Brassica rapa

    PubMed Central

    Cheng, Feng; Wu, Jian; Fang, Lu; Sun, Silong; Liu, Bo; Lin, Ke; Bonnema, Guusje; Wang, Xiaowu

    2012-01-01

    Polyploidization, both ancient and recent, is frequent among plants. A “two-step theory" was proposed to explain the meso-triplication of the Brassica “A" genome: Brassica rapa. By accurately partitioning of this genome, we observed that genes in the less fractioned subgenome (LF) were dominantly expressed over the genes in more fractioned subgenomes (MFs: MF1 and MF2), while the genes in MF1 were slightly dominantly expressed over the genes in MF2. The results indicated that the dominantly expressed genes tended to be resistant against gene fractionation. By re-sequencing two B. rapa accessions: a vegetable turnip (VT117) and a Rapid Cycling line (L144), we found that genes in LF had less non-synonymous or frameshift mutations than genes in MFs; however mutation rates were not significantly different between MF1 and MF2. The differences in gene expression patterns and on-going gene death among the three subgenomes suggest that “two-step" genome triplication and differential subgenome methylation played important roles in the genome evolution of B. rapa. PMID:22567157

  2. Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa.

    PubMed

    Cheng, Feng; Wu, Jian; Fang, Lu; Sun, Silong; Liu, Bo; Lin, Ke; Bonnema, Guusje; Wang, Xiaowu

    2012-01-01

    Polyploidization, both ancient and recent, is frequent among plants. A "two-step theory" was proposed to explain the meso-triplication of the Brassica "A" genome: Brassica rapa. By accurately partitioning of this genome, we observed that genes in the less fractioned subgenome (LF) were dominantly expressed over the genes in more fractioned subgenomes (MFs: MF1 and MF2), while the genes in MF1 were slightly dominantly expressed over the genes in MF2. The results indicated that the dominantly expressed genes tended to be resistant against gene fractionation. By re-sequencing two B. rapa accessions: a vegetable turnip (VT117) and a Rapid Cycling line (L144), we found that genes in LF had less non-synonymous or frameshift mutations than genes in MFs; however mutation rates were not significantly different between MF1 and MF2. The differences in gene expression patterns and on-going gene death among the three subgenomes suggest that "two-step" genome triplication and differential subgenome methylation played important roles in the genome evolution of B. rapa.

  3. Constitutive expression of the K-domain of a Vaccinium corymbosum SOC1-like (VcSOC1-K) MADS-box gene is sufficient to promote flowering in tobacco.

    PubMed

    Song, Guo-qing; Walworth, Aaron; Zhao, Dongyan; Hildebrandt, Britton; Leasia, Michael

    2013-11-01

    The K-domain of a blueberry-derived SOC1 -like gene promotes flowering in tobacco without negatively impacting yield, demonstrating potential for manipulation of flowering time in horticultural crops. The SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and SOC1-likes, belonging to the MIKC(c) (type II) MADS-box gene subfamily, are major floral activators and integrators of plant flowering. Both MADS-domains and K (Keratin)-domains are highly conserved in MIKC(c)-type MADS proteins. While there are many reports on overexpression of intact MIKC(c)-type MADS-box genes, few studies have been conducted to investigate the effects of the K-domains. In this report, a 474-bp K-domain of Vaccinium SOC1-like (VcSOC1-K) was cloned from the cDNA library of the northern highbush blueberry (Vaccinium corymbosum L.). Functional analysis of the VcSOC1-K was conducted by ectopically expressing of 35S:VcSOC1-K in tobacco. Reverse transcription PCR confirmed expression of the VcSOC1-K in T0 plants. Phenotypically, T1 transgenic plants (10 T1 plants/event) flowered sooner after seeding, and were shorter with fewer leaves at the time of flowering, than nontransgenic plants; but seed pod production of transgenic plants was not significantly affected. These results demonstrate that overexpression of the K-domain of a MIKC(c)-type MADS-box gene alone is sufficient to promote early flowering and more importantly without affecting seed production.

  4. Carcinogen-induced trans activation of gene expression.

    PubMed Central

    Kleinberger, T; Flint, Y B; Blank, M; Etkin, S; Lavi, S

    1988-01-01

    We report a new mechanism of carcinogen action by which the expression of several genes was concomitantly enhanced. This mechanism involved the altered activity of cellular factors which modulate the expression of genes under their control. The increased expression was regulated at least in part on the transcriptional level and did not require amplification of the overexpressed genes. This phenomenon was transient; it was apparent as early as 24 h after carcinogen treatment and declined a few days later. Images PMID:2835673

  5. Clustering Algorithms: Their Application to Gene Expression Data

    PubMed Central

    Oyelade, Jelili; Isewon, Itunuoluwa; Oladipupo, Funke; Aromolaran, Olufemi; Uwoghiren, Efosa; Ameh, Faridah; Achas, Moses; Adebiyi, Ezekiel

    2016-01-01

    Gene expression data hide vital information required to understand the biological process that takes place in a particular organism in relation to its environment. Deciphering the hidden patterns in gene expression data proffers a prodigious preference to strengthen the understanding of functional genomics. The complexity of biological networks and the volume of genes present increase the challenges of comprehending and interpretation of the resulting mass of data, which consists of millions of measurements; these data also inhibit vagueness, imprecision, and noise. Therefore, the use of clustering techniques is a first step toward addressing these challenges, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. The clustering of gene expression data has been proven to be useful in making known the natural structure inherent in gene expression data, understanding gene functions, cellular processes, and subtypes of cells, mining useful information from noisy data, and understanding gene regulation. The other benefit of clustering gene expression data is the identification of homology, which is very important in vaccine design. This review examines the various clustering algorithms applicable to the gene expression data in order to discover and provide useful knowledge of the appropriate clustering technique that will guarantee stability and high degree of accuracy in its analysis procedure. PMID:27932867

  6. The small heat shock protein Hsp27 affects assembly dynamics and structure of keratin intermediate filament networks.

    PubMed

    Kayser, Jona; Haslbeck, Martin; Dempfle, Lisa; Krause, Maike; Grashoff, Carsten; Buchner, Johannes; Herrmann, Harald; Bausch, Andreas R

    2013-10-15

    The mechanical properties of living cells are essential for many processes. They are defined by the cytoskeleton, a composite network of protein fibers. Thus, the precise control of its architecture is of paramount importance. Our knowledge about the molecular and physical mechanisms defining the network structure remains scarce, especially for the intermediate filament cytoskeleton. Here, we investigate the effect of small heat shock proteins on the keratin 8/18 intermediate filament cytoskeleton using a well-controlled model system of reconstituted keratin networks. We demonstrate that Hsp27 severely alters the structure of such networks by changing their assembly dynamics. Furthermore, the C-terminal tail domain of keratin 8 is shown to be essential for this effect. Combining results from fluorescence and electron microscopy with data from analytical ultracentrifugation reveals the crucial role of kinetic trapping in keratin network formation. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Systems Biophysics of Gene Expression

    PubMed Central

    Vilar, Jose M.G.; Saiz, Leonor

    2013-01-01

    Gene expression is a process central to any form of life. It involves multiple temporal and functional scales that extend from specific protein-DNA interactions to the coordinated regulation of multiple genes in response to intracellular and extracellular changes. This diversity in scales poses fundamental challenges to the use of traditional approaches to fully understand even the simplest gene expression systems. Recent advances in computational systems biophysics have provided promising avenues to reliably integrate the molecular detail of biophysical process into the system behavior. Here, we review recent advances in the description of gene regulation as a system of biophysical processes that extend from specific protein-DNA interactions to the combinatorial assembly of nucleoprotein complexes. There is now basic mechanistic understanding on how promoters controlled by multiple, local and distal, DNA binding sites for transcription factors can actively control transcriptional noise, cell-to-cell variability, and other properties of gene regulation, including precision and flexibility of the transcriptional responses. PMID:23790365

  8. Hepatic Xenobiotic Metabolizing Enzyme Gene Expression ...

    EPA Pesticide Factsheets

    BACKGROUND: Differences in responses to environmental chemicals and drugs between life stages are likely due in part to differences in the expression of xenobiotic metabolizing enzymes and transporters (XMETs). No comprehensive analysis of the mRNA expression of XMETs has been carried out through life stages in any species. RESULTS: Using full-genome arrays, the mRNA expression of all XMETs and their regulatory proteins was examined during fetal (gestation day (GD) 19), neonatal (postnatal day (PND) 7), prepubescent (PND32), middle age (12 months), and old age (18 and 24 months) in the C57BL/6J (C57) mouse liver and compared to adults. Fetal and neonatal life stages exhibited dramatic differences in XMET mRNA expression compared to the relatively minor effects of old age. The total number of XMET probe sets that differed from adults was 636, 500, 84, 5, 43, and 102 for GD19, PND7, PND32, 12 months, 18 months and 24 months, respectively. At all life stages except PND32, under-expressed genes outnumbered over-expressed genes. The altered XMETs included those in all of the major metabolic and transport phases including introduction of reactive or polar groups (Phase I), conjugation (Phase II) and excretion (Phase III). In the fetus and neonate, parallel increases in expression were noted in the dioxin receptor, Nrf2 components and their regulated genes while nuclear receptors and regulated genes were generally down-regulated. Suppression of male-specific XMETs w

  9. Evaluating the consistency of gene sets used in the analysis of bacterial gene expression data.

    PubMed

    Tintle, Nathan L; Sitarik, Alexandra; Boerema, Benjamin; Young, Kylie; Best, Aaron A; Dejongh, Matthew

    2012-08-08

    Statistical analyses of whole genome expression data require functional information about genes in order to yield meaningful biological conclusions. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) are common sources of functionally grouped gene sets. For bacteria, the SEED and MicrobesOnline provide alternative, complementary sources of gene sets. To date, no comprehensive evaluation of the data obtained from these resources has been performed. We define a series of gene set consistency metrics directly related to the most common classes of statistical analyses for gene expression data, and then perform a comprehensive analysis of 3581 Affymetrix® gene expression arrays across 17 diverse bacteria. We find that gene sets obtained from GO and KEGG demonstrate lower consistency than those obtained from the SEED and MicrobesOnline, regardless of gene set size. Despite the widespread use of GO and KEGG gene sets in bacterial gene expression data analysis, the SEED and MicrobesOnline provide more consistent sets for a wide variety of statistical analyses. Increased use of the SEED and MicrobesOnline gene sets in the analysis of bacterial gene expression data may improve statistical power and utility of expression data.

  10. Plasticity-Related Gene Expression During Eszopiclone-Induced Sleep.

    PubMed

    Gerashchenko, Dmitry; Pasumarthi, Ravi K; Kilduff, Thomas S

    2017-07-01

    Experimental evidence suggests that restorative processes depend on synaptic plasticity changes in the brain during sleep. We used the expression of plasticity-related genes to assess synaptic plasticity changes during drug-induced sleep. We first characterized sleep induced by eszopiclone in mice during baseline conditions and during the recovery from sleep deprivation. We then compared the expression of 18 genes and two miRNAs critically involved in synaptic plasticity in these mice. Gene expression was assessed in the cerebral cortex and hippocampus by the TaqMan reverse transcription polymerase chain reaction and correlated with sleep parameters. Eszopiclone reduced the latency to nonrapid eye movement (NREM) sleep and increased NREM sleep amounts. Eszopiclone had no effect on slow wave activity (SWA) during baseline conditions but reduced the SWA increase during recovery sleep (RS) after sleep deprivation. Gene expression analyses revealed three distinct patterns: (1) four genes had higher expression either in the cortex or hippocampus in the group of mice with increased amounts of wakefulness; (2) a large proportion of plasticity-related genes (7 out of 18 genes) had higher expression during RS in the cortex but not in the hippocampus; and (3) six genes and the two miRNAs showed no significant changes across conditions. Even at a relatively high dose (20 mg/kg), eszopiclone did not reduce the expression of plasticity-related genes during RS period in the cortex. These results indicate that gene expression associated with synaptic plasticity occurs in the cortex in the presence of a hypnotic medication. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  11. Chamber Specific Gene Expression Landscape of the Zebrafish Heart

    PubMed Central

    Singh, Angom Ramcharan; Sivadas, Ambily; Sabharwal, Ankit; Vellarikal, Shamsudheen Karuthedath; Jayarajan, Rijith; Verma, Ankit; Kapoor, Shruti; Joshi, Adita; Scaria, Vinod; Sivasubbu, Sridhar

    2016-01-01

    The organization of structure and function of cardiac chambers in vertebrates is defined by chamber-specific distinct gene expression. This peculiarity and uniqueness of the genetic signatures demonstrates functional resolution attributed to the different chambers of the heart. Altered expression of the cardiac chamber genes can lead to individual chamber related dysfunctions and disease patho-physiologies. Information on transcriptional repertoire of cardiac compartments is important to understand the spectrum of chamber specific anomalies. We have carried out a genome wide transcriptome profiling study of the three cardiac chambers in the zebrafish heart using RNA sequencing. We have captured the gene expression patterns of 13,396 protein coding genes in the three cardiac chambers—atrium, ventricle and bulbus arteriosus. Of these, 7,260 known protein coding genes are highly expressed (≥10 FPKM) in the zebrafish heart. Thus, this study represents nearly an all-inclusive information on the zebrafish cardiac transcriptome. In this study, a total of 96 differentially expressed genes across the three cardiac chambers in zebrafish were identified. The atrium, ventricle and bulbus arteriosus displayed 20, 32 and 44 uniquely expressing genes respectively. We validated the expression of predicted chamber-restricted genes using independent semi-quantitative and qualitative experimental techniques. In addition, we identified 23 putative novel protein coding genes that are specifically restricted to the ventricle and not in the atrium or bulbus arteriosus. In our knowledge, these 23 novel genes have either not been investigated in detail or are sparsely studied. The transcriptome identified in this study includes 68 differentially expressing zebrafish cardiac chamber genes that have a human ortholog. We also carried out spatiotemporal gene expression profiling of the 96 differentially expressed genes throughout the three cardiac chambers in 11 developmental stages and 6

  12. Analytical workflow profiling gene expression in murine macrophages

    PubMed Central

    Nixon, Scott E.; González-Peña, Dianelys; Lawson, Marcus A.; McCusker, Robert H.; Hernandez, Alvaro G.; O’Connor, Jason C.; Dantzer, Robert; Kelley, Keith W.

    2015-01-01

    Comprehensive and simultaneous analysis of all genes in a biological sample is a capability of RNA-Seq technology. Analysis of the entire transcriptome benefits from summarization of genes at the functional level. As a cellular response of interest not previously explored with RNA-Seq, peritoneal macrophages from mice under two conditions (control and immunologically challenged) were analyzed for gene expression differences. Quantification of individual transcripts modeled RNA-Seq read distribution and uncertainty (using a Beta Negative Binomial distribution), then tested for differential transcript expression (False Discovery Rate-adjusted p-value < 0.05). Enrichment of functional categories utilized the list of differentially expressed genes. A total of 2079 differentially expressed transcripts representing 1884 genes were detected. Enrichment of 92 categories from Gene Ontology Biological Processes and Molecular Functions, and KEGG pathways were grouped into 6 clusters. Clusters included defense and inflammatory response (Enrichment Score = 11.24) and ribosomal activity (Enrichment Score = 17.89). Our work provides a context to the fine detail of individual gene expression differences in murine peritoneal macrophages during immunological challenge with high throughput RNA-Seq. PMID:25708305

  13. Differential co-expression analysis of a microarray gene expression profiles of pulmonary adenocarcinoma.

    PubMed

    Fu, Shijie; Pan, Xufeng; Fang, Wentao

    2014-08-01

    Lung cancer severely reduces the quality of life worldwide and causes high socioeconomic burdens. However, key genes leading to the generation of pulmonary adenocarcinoma remain elusive despite intensive research efforts. The present study aimed to identify the potential associations between transcription factors (TFs) and differentially co‑expressed genes (DCGs) in the regulation of transcription in pulmonary adenocarcinoma. Gene expression profiles of pulmonary adenocarcinoma were downloaded from the Gene Expression Omnibus, and gene expression was analyzed using a computational method. A total of 37,094 differentially co‑expressed links (DCLs) and 251 DCGs were identified, which were significantly enriched in 10 pathways. The construction of the regulatory network and the analysis of the regulatory impact factors revealed eight crucial TFs in the regulatory network. These TFs regulated the expression of DCGs by promoting or inhibiting their expression. In addition, certain TFs and target genes associated with DCGs did not appear in the DCLs, which indicated that those TFs could be synergistic with other factors. This is likely to provide novel insights for research into pulmonary adenocarcinoma. In conclusion, the present study may enhance the understanding of disease mechanisms and lead to an improved diagnosis of lung cancer. However, further studies are required to confirm these observations.

  14. Co-option of Hair Follicle Keratins into Amelogenesis Is Associated with the Evolution of Prismatic Enamel: A Hypothesis

    PubMed Central

    Beniash, Elia

    2017-01-01

    Recent discovery of hair follicle keratin 75 (KRT75) in enamel raises questions about the function of this protein in enamel and the mechanisms of its secretion. It is also not clear how this protein with a very specific and narrow expression pattern, limited to the inner root sheath of the hair follicle, became associated with enamel. We propose a hypothesis that KRT75 was co-opted by ameloblasts during the evolution of Tomes' process and the prismatic enamel in synapsids. PMID:29114231

  15. Gene expression analysis of flax seed development

    PubMed Central

    2011-01-01

    Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions LIBEST_026995 to LIBEST_027011) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise

  16. The Gene Expression Omnibus Database.

    PubMed

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome-protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/.

  17. The Gene Expression Omnibus database

    PubMed Central

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome–protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/. PMID:27008011

  18. Using RNA-seq data to select reference genes for normalizing gene expression in apple roots.

    PubMed

    Zhou, Zhe; Cong, Peihua; Tian, Yi; Zhu, Yanmin

    2017-01-01

    Gene expression in apple roots in response to various stress conditions is a less-explored research subject. Reliable reference genes for normalizing quantitative gene expression data have not been carefully investigated. In this study, the suitability of a set of 15 apple genes were evaluated for their potential use as reliable reference genes. These genes were selected based on their low variance of gene expression in apple root tissues from a recent RNA-seq data set, and a few previously reported apple reference genes for other tissue types. Four methods, Delta Ct, geNorm, NormFinder and BestKeeper, were used to evaluate their stability in apple root tissues of various genotypes and under different experimental conditions. A small panel of stably expressed genes, MDP0000095375, MDP0000147424, MDP0000233640, MDP0000326399 and MDP0000173025 were recommended for normalizing quantitative gene expression data in apple roots under various abiotic or biotic stresses. When the most stable and least stable reference genes were used for data normalization, significant differences were observed on the expression patterns of two target genes, MdLecRLK5 (MDP0000228426, a gene encoding a lectin receptor like kinase) and MdMAPK3 (MDP0000187103, a gene encoding a mitogen-activated protein kinase). Our data also indicated that for those carefully validated reference genes, a single reference gene is sufficient for reliable normalization of the quantitative gene expression. Depending on the experimental conditions, the most suitable reference genes can be specific to the sample of interest for more reliable RT-qPCR data normalization.

  19. Using RNA-seq data to select reference genes for normalizing gene expression in apple roots

    PubMed Central

    Zhou, Zhe; Cong, Peihua; Tian, Yi

    2017-01-01

    Gene expression in apple roots in response to various stress conditions is a less-explored research subject. Reliable reference genes for normalizing quantitative gene expression data have not been carefully investigated. In this study, the suitability of a set of 15 apple genes were evaluated for their potential use as reliable reference genes. These genes were selected based on their low variance of gene expression in apple root tissues from a recent RNA-seq data set, and a few previously reported apple reference genes for other tissue types. Four methods, Delta Ct, geNorm, NormFinder and BestKeeper, were used to evaluate their stability in apple root tissues of various genotypes and under different experimental conditions. A small panel of stably expressed genes, MDP0000095375, MDP0000147424, MDP0000233640, MDP0000326399 and MDP0000173025 were recommended for normalizing quantitative gene expression data in apple roots under various abiotic or biotic stresses. When the most stable and least stable reference genes were used for data normalization, significant differences were observed on the expression patterns of two target genes, MdLecRLK5 (MDP0000228426, a gene encoding a lectin receptor like kinase) and MdMAPK3 (MDP0000187103, a gene encoding a mitogen-activated protein kinase). Our data also indicated that for those carefully validated reference genes, a single reference gene is sufficient for reliable normalization of the quantitative gene expression. Depending on the experimental conditions, the most suitable reference genes can be specific to the sample of interest for more reliable RT-qPCR data normalization. PMID:28934340

  20. Regulated Expression of Adenoviral Vectors-Based Gene Therapies

    PubMed Central

    Curtin, James F.; Candolfi, Marianela; Puntel, Mariana; Xiong, Weidong; Muhammad, A. K. M.; Kroeger, Kurt; Mondkar, Sonali; Liu, Chunyan; Bondale, Niyati; Lowenstein, Pedro R.; Castro, Maria G.

    2008-01-01

    Summary Regulatable promoter systems allow gene expression to be tightly controlled in vivo. This is highly desirable for the development of safe, efficacious adenoviral vectors that can be used to treat human diseases in the clinic. Ideally, regulatable cassettes should have minimal gene expression in the “OFF” state, and expression should quickly reach therapeutic levels in the “ON” state. In addition, the components of regulatable cassettes should be non-toxic at physiological concentrations and should not be immunogenic, especially when treating chronic illness that requires long-lasting gene expression. In this chapter, we will describe in detail protocols to develop and validate first generation (Ad) and high-capacity adenoviral (HC-Ad) vectors that express therapeutic genes under the control of the TetON regulatable system. Our laboratory has successfully used these protocols to regulate the expression of marker genes, immune stimulatory genes, and toxins for cancer gene therapeutics, i.e., glioma that is a deadly form of brain cancer. We have shown that this third generation TetON regulatable system, incorporating a doxycycline (DOX)-sensitive rtTA2S-M2 inducer and tTSKid silencer, is non-toxic, relatively non-immunogenic, and can tightly regulate reporter transgene expression downstream of a TRE promoter from adenoviral vectors in vitro and also in vivo. PMID:18470649

  1. Targeting gene expression selectively in cancer cells by using the progression-elevated gene-3 promoter.

    PubMed

    Su, Zhao-Zhong; Sarkar, Devanand; Emdad, Luni; Duigou, Gregory J; Young, Charles S H; Ware, Joy; Randolph, Aaron; Valerie, Kristoffer; Fisher, Paul B

    2005-01-25

    One impediment to effective cancer-specific gene therapy is the rarity of regulatory sequences targeting gene expression selectively in tumor cells. Although many tissue-specific promoters are recognized, few cancer-selective gene promoters are available. Progression-elevated gene-3 (PEG-3) is a rodent gene identified by subtraction hybridization that displays elevated expression as a function of transformation by diversely acting oncogenes, DNA damage, and cancer cell progression. The promoter of PEG-3, PEG-Prom, displays robust expression in a broad spectrum of human cancer cell lines with marginal expression in normal cellular counterparts. Whereas GFP expression, when under the control of a CMV promoter, is detected in both normal and cancer cells, when GFP is expressed under the control of the PEG-Prom, cancer-selective expression is evident. Mutational analysis identifies the AP-1 and PEA-3 transcription factors as primary mediators of selective, cancer-specific expression of the PEG-Prom. Synthesis of apoptosis-inducing genes, under the control of the CMV promoter, inhibits the growth of both normal and cancer cells, whereas PEG-Prom-mediated expression of these genes kills only cancer cells and spares normal cells. The efficacy of the PEG-Prom as part of a cancer gene therapeutic regimen is further documented by in vivo experiments in which PEG-Prom-controlled expression of an apoptosis-inducing gene completely inhibited prostate cancer xenograft growth in nude mice. These compelling observations indicate that the PEG-Prom, with its cancer-specific expression, provides a means of selectively delivering genes to cancer cells, thereby providing a crucial component in developing effective cancer gene therapies.

  2. Covariance Structure Models for Gene Expression Microarray Data

    ERIC Educational Resources Information Center

    Xie, Jun; Bentler, Peter M.

    2003-01-01

    Covariance structure models are applied to gene expression data using a factor model, a path model, and their combination. The factor model is based on a few factors that capture most of the expression information. A common factor of a group of genes may represent a common protein factor for the transcript of the co-expressed genes, and hence, it…

  3. Keratinizing odontogenic cysts with a spectrum of verrucoid morphology: investigation of a potential role of human papillomavirus.

    PubMed

    Lalla, Kalpesh; Mahomed, Farzana; Meer, Shabnum

    2016-11-01

    The role of human papillomavirus (HPV) in keratinizing odontogenic cysts (OC) has only rarely been studied. We describe the clinicopathologic findings in a series of OCs that had unusual keratinization patterns and were investigated for a possible HPV etiology. Tissue samples from 29 patients with keratinizing OCs were studied for light microscopic features suggestive of HPV infection and by an HPV DNA polymerase chain reaction assay. The mean age at presentation was 31.1 years; 79.3% of the OCs occurred in the mandible and 46.4% were associated with an impacted tooth. The phenotypic characteristics koilocytes, hypergranulosis, and a verrucous pattern of the cyst-lining epithelium were observed in 69%, 62.1%, and 17.2% of cases, respectively. These histomorphologic features did not, however, correlate with HPV infection. HPV does not appear to play a role in keratinizing OCs and is not responsible for the wart-like histomorphologic features that may be seen in these lesions. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Identifying key genes in rheumatoid arthritis by weighted gene co-expression network analysis.

    PubMed

    Ma, Chunhui; Lv, Qi; Teng, Songsong; Yu, Yinxian; Niu, Kerun; Yi, Chengqin

    2017-08-01

    This study aimed to identify rheumatoid arthritis (RA) related genes based on microarray data using the WGCNA (weighted gene co-expression network analysis) method. Two gene expression profile datasets GSE55235 (10 RA samples and 10 healthy controls) and GSE77298 (16 RA samples and seven healthy controls) were downloaded from Gene Expression Omnibus database. Characteristic genes were identified using metaDE package. WGCNA was used to find disease-related networks based on gene expression correlation coefficients, and module significance was defined as the average gene significance of all genes used to assess the correlation between the module and RA status. Genes in the disease-related gene co-expression network were subject to functional annotation and pathway enrichment analysis using Database for Annotation Visualization and Integrated Discovery. Characteristic genes were also mapped to the Connectivity Map to screen small molecules. A total of 599 characteristic genes were identified. For each dataset, characteristic genes in the green, red and turquoise modules were most closely associated with RA, with gene numbers of 54, 43 and 79, respectively. These genes were enriched in totally enriched in 17 Gene Ontology terms, mainly related to immune response (CD97, FYB, CXCL1, IKBKE, CCR1, etc.), inflammatory response (CD97, CXCL1, C3AR1, CCR1, LYZ, etc.) and homeostasis (C3AR1, CCR1, PLN, CCL19, PPT1, etc.). Two small-molecule drugs sanguinarine and papaverine were predicted to have a therapeutic effect against RA. Genes related to immune response, inflammatory response and homeostasis presumably have critical roles in RA pathogenesis. Sanguinarine and papaverine have a potential therapeutic effect against RA. © 2017 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  5. The use of mucograft collagen matrix to augment the zone of keratinized tissue around teeth: a pilot study.

    PubMed

    Nevins, Myron; Nevins, Marc L; Kim, Soo-Woo; Schupbach, Peter; Kim, David M

    2011-01-01

    This prospective split-mouth pilot case series compared the use of a bilayer collagen matrix (CM) to an autogenous gingival graft (AGG) in the ability to increase the zone of keratinized attached gingiva. Five patients with inadequate amounts of keratinized attached gingiva bilaterally in the posterior mandible were enrolled using a split-mouth design. There were statistically significant increases in attached gingiva at all test (CM) and control (AGG) sites. The CM sites at 12 months blended well with surrounding tissues, while the AGG sites were morphologically dissimilar to the adjacent areas. Biopsy results showed intrapatient histologic similarity between CM and AGG treatments, with all sites exhibiting mature connective tissue covered by keratinized epithelium. Thus, the obtained data support further investigations in evaluating the role of CM as a viable alternative to AGG in augmenting areas deficient in keratinized gingiva.

  6. Novel gene sets improve set-level classification of prokaryotic gene expression data.

    PubMed

    Holec, Matěj; Kuželka, Ondřej; Železný, Filip

    2015-10-28

    Set-level classification of gene expression data has received significant attention recently. In this setting, high-dimensional vectors of features corresponding to genes are converted into lower-dimensional vectors of features corresponding to biologically interpretable gene sets. The dimensionality reduction brings the promise of a decreased risk of overfitting, potentially resulting in improved accuracy of the learned classifiers. However, recent empirical research has not confirmed this expectation. Here we hypothesize that the reported unfavorable classification results in the set-level framework were due to the adoption of unsuitable gene sets defined typically on the basis of the Gene ontology and the KEGG database of metabolic networks. We explore an alternative approach to defining gene sets, based on regulatory interactions, which we expect to collect genes with more correlated expression. We hypothesize that such more correlated gene sets will enable to learn more accurate classifiers. We define two families of gene sets using information on regulatory interactions, and evaluate them on phenotype-classification tasks using public prokaryotic gene expression data sets. From each of the two gene-set families, we first select the best-performing subtype. The two selected subtypes are then evaluated on independent (testing) data sets against state-of-the-art gene sets and against the conventional gene-level approach. The novel gene sets are indeed more correlated than the conventional ones, and lead to significantly more accurate classifiers. The novel gene sets are indeed more correlated than the conventional ones, and lead to significantly more accurate classifiers. Novel gene sets defined on the basis of regulatory interactions improve set-level classification of gene expression data. The experimental scripts and other material needed to reproduce the experiments are available at http://ida.felk.cvut.cz/novelgenesets.tar.gz.

  7. Genetic effects on gene expression across human tissues

    PubMed Central

    2017-01-01

    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease. PMID:29022597

  8. Genetic effects on gene expression across human tissues.

    PubMed

    Battle, Alexis; Brown, Christopher D; Engelhardt, Barbara E; Montgomery, Stephen B

    2017-10-11

    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease.

  9. Partitioning of functional gene expression data using principal points.

    PubMed

    Kim, Jaehee; Kim, Haseong

    2017-10-12

    DNA microarrays offer motivation and hope for the simultaneous study of variations in multiple genes. Gene expression is a temporal process that allows variations in expression levels with a characterized gene function over a period of time. Temporal gene expression curves can be treated as functional data since they are considered as independent realizations of a stochastic process. This process requires appropriate models to identify patterns of gene functions. The partitioning of the functional data can find homogeneous subgroups of entities for the massive genes within the inherent biological networks. Therefor it can be a useful technique for the analysis of time-course gene expression data. We propose a new self-consistent partitioning method of functional coefficients for individual expression profiles based on the orthonormal basis system. A principal points based functional partitioning method is proposed for time-course gene expression data. The method explores the relationship between genes using Legendre coefficients as principal points to extract the features of gene functions. Our proposed method provides high connectivity in connectedness after clustering for simulated data and finds a significant subsets of genes with the increased connectivity. Our approach has comparative advantages that fewer coefficients are used from the functional data and self-consistency of principal points for partitioning. As real data applications, we are able to find partitioned genes through the gene expressions found in budding yeast data and Escherichia coli data. The proposed method benefitted from the use of principal points, dimension reduction, and choice of orthogonal basis system as well as provides appropriately connected genes in the resulting subsets. We illustrate our method by applying with each set of cell-cycle-regulated time-course yeast genes and E. coli genes. The proposed method is able to identify highly connected genes and to explore the complex

  10. Methylomics of gene expression in human monocytes

    PubMed Central

    Liu, Yongmei; Ding, Jingzhong; Reynolds, Lindsay M.; Lohman, Kurt; Register, Thomas C.; De La Fuente, Alberto; Howard, Timothy D.; Hawkins, Greg A.; Cui, Wei; Morris, Jessica; Smith, Shelly G.; Barr, R. Graham; Kaufman, Joel D.; Burke, Gregory L.; Post, Wendy; Shea, Steven; Mccall, Charles E.; Siscovick, David; Jacobs, David R.; Tracy, Russell P.; Herrington, David M.; Hoeschele, Ina

    2013-01-01

    DNA methylation is one of several epigenetic mechanisms that contribute to the regulation of gene expression; however, the extent to which methylation of CpG dinucleotides correlates with gene expression at the genome-wide level is still largely unknown. Using purified primary monocytes from subjects in a large community-based cohort (n = 1264), we characterized methylation (>485 000 CpG sites) and mRNA expression (>48K transcripts) and carried out genome-wide association analyses of 8370 expression phenotypes. We identified 11 203 potential cis-acting CpG loci whose degree of methylation was associated with gene expression (eMS) at a false discovery rate threshold of 0.001. Most of the associations were consistent in effect size and direction of effect across sex and three ethnicities. Contrary to expectation, these eMS were not predominately enriched in promoter regions, or CpG islands, but rather in the 3′ UTR, gene bodies, CpG shores or ‘offshore’ sites, and both positive and negative correlations between methylation and expression were observed across all locations. eMS were enriched for regions predicted to be regulatory by ENCODE (Encyclopedia of DNA Elements) data in multiple cell types, particularly enhancers. One of the strongest association signals detected (P < 2.2 × 10−308) was a methylation probe (cg17005068) in the promoter/enhancer region of the glutathione S-transferase theta 1 gene (GSTT1, encoding the detoxification enzyme) with GSTT1 mRNA expression. Our study provides a detailed description of the epigenetic architecture in human monocytes and its relationship to gene expression. These data may help prioritize interrogation of biologically relevant methylation loci and provide new insights into the epigenetic basis of human health and diseases. PMID:23900078

  11. Sex-Biased Gene Expression and Sexual Conflict throughout Development

    PubMed Central

    Ingleby, Fiona C.; Flis, Ilona; Morrow, Edward H.

    2015-01-01

    Sex-biased gene expression is likely to account for most sexually dimorphic traits because males and females share much of their genome. When fitness optima differ between sexes for a shared trait, sexual dimorphism can allow each sex to express their optimum trait phenotype, and in this way, the evolution of sex-biased gene expression is one mechanism that could help to resolve intralocus sexual conflict. Genome-wide patterns of sex-biased gene expression have been identified in a number of studies, which we review here. However, very little is known about how sex-biased gene expression relates to sex-specific fitness and about how sex-biased gene expression and conflict vary throughout development or across different genotypes, populations, and environments. We discuss the importance of these neglected areas of research and use data from a small-scale experiment on sex-specific expression of genes throughout development to highlight potentially interesting avenues for future research. PMID:25376837

  12. Ectopic Cdx2 Expression in Murine Esophagus Models an Intermediate Stage in the Emergence of Barrett's Esophagus

    PubMed Central

    Kong, Jianping; Crissey, Mary Ann; Funakoshi, Shinsuke; Kreindler, James L.; Lynch, John P.

    2011-01-01

    Barrett's esophagus (BE) is an intestinal metaplasia that occurs in the setting of chronic acid and bile reflux and is associated with a risk for adenocarcinoma. Expression of intestine-specific transcription factors in the esophagus likely contributes to metaplasia development. Our objective was to explore the effects of an intestine-specific transcription factor when expressed in the mouse esophageal epithelium. Transgenic mice were derived in which the transcription factor Cdx2 is expressed in squamous epithelium using the murine Keratin-14 gene promoter. Effects of the transgene upon cell proliferation and differentiation, gene expression, and barrier integrity were explored. K14-Cdx2 mice express the Cdx2 transgene in esophageal squamous tissues. Cdx2 expression was associated with reduced basal epithelial cell proliferation and altered cell morphology. Ultrastructurally two changes were noted. Cdx2 expression was associated with dilated space between the basal cells and diminished cell-cell adhesion caused by reduced Desmocollin-3 mRNA and protein expression. This compromised epithelial barrier function, as the measured trans-epithelial electrical resistance (TEER) of the K14-Cdx2 epithelium was significantly reduced compared to controls (1189 Ohm*cm2 ±343.5 to 508 Ohm*cm2±92.48, p = 0.0532). Secondly, basal cells with features of a transitional cell type, intermediate between keratinocytes and columnar Barrett's epithelial cells, were observed. These cells had reduced keratin bundles and increased endoplasmic reticulum levels, suggesting the adoption of secretory-cell features. Moreover, at the ultrastructural level they resembled “Distinctive” cells associated with multilayered epithelium. Treatment of the K14-Cdx2 mice with 5′-Azacytidine elicited expression of BE-associated genes including Cdx1, Krt18, and Slc26a3/Dra, suggesting the phenotype could be advanced under certain conditions. We conclude that ectopic Cdx2 expression in keratinocytes

  13. Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression.

    PubMed

    Yu, Ying; Huang, Wengong; Chen, Hongyu; Wu, Guangwen; Yuan, Hongmei; Song, Xixia; Kang, Qinghua; Zhao, Dongsheng; Jiang, Weidong; Liu, Yan; Wu, Jianzhong; Cheng, Lili; Yao, Yubo; Guan, Fengzhi

    2014-10-01

    The salinization and alkalization of soil are widespread environmental problems, and alkaline salt stress is more destructive than neutral salt stress. Therefore, understanding the mechanism of plant tolerance to saline-alkaline stress has become a major challenge. However, little attention has been paid to the mechanism of plant alkaline salt tolerance. In this study, gene expression profiling of flax was analyzed under alkaline-salt stress (AS2), neutral salt stress (NSS) and alkaline stress (AS) by digital gene expression. Three-week-old flax seedlings were placed in 25 mM Na2CO3 (pH11.6) (AS2), 50mM NaCl (NSS) and NaOH (pH11.6) (AS) for 18 h. There were 7736, 1566 and 454 differentially expressed genes in AS2, NSS and AS compared to CK, respectively. The GO category gene enrichment analysis revealed that photosynthesis was particularly affected in AS2, carbohydrate metabolism was particularly affected in NSS, and the response to biotic stimulus was particularly affected in AS. We also analyzed the expression pattern of five categories of genes including transcription factors, signaling transduction proteins, phytohormones, reactive oxygen species proteins and transporters under these three stresses. Some key regulatory gene families involved in abiotic stress, such as WRKY, MAPKKK, ABA, PrxR and ion channels, were differentially expressed. Compared with NSS and AS, AS2 triggered more differentially expressed genes and special pathways, indicating that the mechanism of AS2 was more complex than NSS and AS. To the best of our knowledge, this was the first transcriptome analysis of flax in response to saline-alkaline stress. These data indicate that common and diverse features of saline-alkaline stress provide novel insights into the molecular mechanisms of plant saline-alkaline tolerance and offer a number of candidate genes as potential markers of tolerance to saline-alkaline stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Genomics Analysis of Genes Expressed in Maize Endosperm Identifies Novel Seed Proteins and Clarifies Patterns of Zein Gene Expression

    PubMed Central

    Woo, Young-Min; Hu, David Wang-Nan; Larkins, Brian A.; Jung, Rudolf

    2001-01-01

    We analyzed cDNA libraries from developing endosperm of the B73 maize inbred line to evaluate the expression of storage protein genes. This study showed that zeins are by far the most highly expressed genes in the endosperm, but we found an inverse relationship between the number of zein genes and the relative amount of specific mRNAs. Although α-zeins are encoded by large multigene families, only a few of these genes are transcribed at high or detectable levels. In contrast, relatively small gene families encode the γ- and δ-zeins, and members of these gene families, especially the γ-zeins, are highly expressed. Knowledge of expressed storage protein genes allowed the development of DNA and antibody probes that distinguish between closely related gene family members. Using in situ hybridization, we found differences in the temporal and spatial expression of the α-, γ-, and δ-zein gene families, which provides evidence that γ-zeins are synthesized throughout the endosperm before α- and δ-zeins. This observation is consistent with earlier studies that suggested that γ-zeins play an important role in prolamin protein body assembly. Analysis of endosperm cDNAs also revealed several previously unidentified proteins, including a 50-kD γ-zein, an 18-kD α-globulin, and a legumin-related protein. Immunolocalization of the 50-kD γ-zein showed this protein to be located at the surface of prolamin-containing protein bodies, similar to other γ-zeins. The 18-kD α-globulin, however, is deposited in novel, vacuole-like organelles that were not described previously in maize endosperm. PMID:11595803

  15. Noise in gene expression is coupled to growth rate

    PubMed Central

    Keren, Leeat; van Dijk, David; Weingarten-Gabbay, Shira; Davidi, Dan; Jona, Ghil; Weinberger, Adina; Milo, Ron; Segal, Eran

    2015-01-01

    Genetically identical cells exposed to the same environment display variability in gene expression (noise), with important consequences for the fidelity of cellular regulation and biological function. Although population average gene expression is tightly coupled to growth rate, the effects of changes in environmental conditions on expression variability are not known. Here, we measure the single-cell expression distributions of approximately 900 Saccharomyces cerevisiae promoters across four environmental conditions using flow cytometry, and find that gene expression noise is tightly coupled to the environment and is generally higher at lower growth rates. Nutrient-poor conditions, which support lower growth rates, display elevated levels of noise for most promoters, regardless of their specific expression values. We present a simple model of noise in expression that results from having an asynchronous population, with cells at different cell-cycle stages, and with different partitioning of the cells between the stages at different growth rates. This model predicts non-monotonic global changes in noise at different growth rates as well as overall higher variability in expression for cell-cycle–regulated genes in all conditions. The consistency between this model and our data, as well as with noise measurements of cells growing in a chemostat at well-defined growth rates, suggests that cell-cycle heterogeneity is a major contributor to gene expression noise. Finally, we identify gene and promoter features that play a role in gene expression noise across conditions. Our results show the existence of growth-related global changes in gene expression noise and suggest their potential phenotypic implications. PMID:26355006

  16. Models of stochastic gene expression

    NASA Astrophysics Data System (ADS)

    Paulsson, Johan

    2005-06-01

    Gene expression is an inherently stochastic process: Genes are activated and inactivated by random association and dissociation events, transcription is typically rare, and many proteins are present in low numbers per cell. The last few years have seen an explosion in the stochastic modeling of these processes, predicting protein fluctuations in terms of the frequencies of the probabilistic events. Here I discuss commonalities between theoretical descriptions, focusing on a gene-mRNA-protein model that includes most published studies as special cases. I also show how expression bursts can be explained as simplistic time-averaging, and how generic approximations can allow for concrete interpretations without requiring concrete assumptions. Measures and nomenclature are discussed to some extent and the modeling literature is briefly reviewed.

  17. Comparison of acellular dermal graft and palatal autograft in the reconstruction of keratinized gingiva around dental implants: a case report.

    PubMed

    Yan, Ji-Jong; Tsai, Alex Yi-Min; Wong, Man-Ying; Hou, Lein-Tuan

    2006-06-01

    The use of autogenous gingival grafts has proved to be an effective and predictable way to increase the amount of keratinized gingiva. However, discomfort and pain at the donor site are unavoidable. Acellular dermal matrix (ADM) allograft can be used as a donor tissue to eliminate the need for another surgical site and alleviate pain and trauma. The purpose of this study was to evaluate the effectiveness of ADM allograft in increasing the width of keratinized gingiva around dental implants. A patient with inadequate keratinized gingiva around dental implants in maxillary and mandibular anterior regions received either an ADM graft or palatal autograft by random allocation. The width of keratinized gingiva and other clinical periodontal parameters were recorded initially and at 3 and 6 months after surgery. Both grafts provided satisfactory results. The width of keratinized tissues was increased by using the ADM allograft, but by a lesser amount than seen with the autogenous gingival graft.

  18. Imprinted gene expression in fetal growth and development.

    PubMed

    Lambertini, L; Marsit, C J; Sharma, P; Maccani, M; Ma, Y; Hu, J; Chen, J

    2012-06-01

    Experimental studies showed that genomic imprinting is fundamental in fetoplacental development by timely regulating the expression of the imprinted genes to overlook a set of events determining placenta implantation, growth and embryogenesis. We examined the expression profile of 22 imprinted genes which have been linked to pregnancy abnormalities that may ultimately influence childhood development. The study was conducted in a subset of 106 placenta samples, overrepresented with small and large for gestational age cases, from the Rhode Island Child Health Study. We investigated associations between imprinted gene expression and three fetal development parameters: newborn head circumference, birth weight, and size for gestational age. Results from our investigation show that the maternally imprinted/paternally expressed gene ZNF331 inversely associates with each parameter to drive smaller fetal size, while paternally imprinted/maternally expressed gene SLC22A18 directly associates with the newborn head circumference promoting growth. Multidimensional Scaling analysis revealed two clusters within the 22 imprinted genes which are independently associated with fetoplacental development. Our data suggest that cluster 1 genes work by assuring cell growth and tissue development, while cluster 2 genes act by coordinating these processes. Results from this epidemiologic study offer solid support for the key role of imprinting in fetoplacental development. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Intermediate filament structure in fully differentiated (oxidised) trichocyte keratin.

    PubMed

    Fraser, R D Bruce; Parry, David A D

    2017-10-01

    For the past 50years there has been considerable debate over the sub-structure of the fully differentiated (oxidised) trichocyte keratin intermediate filament. Depending on the staining and preparative procedures employed, IF observed in transverse section in the transmission electron microscope have varied in appearance between that of a "ring" and a "ring-core" structure, corresponding to the so-called (8+0) and (7+1) protofilament arrangements. In a new analysis of the fine structure of the 1nm equatorial region of the X-ray diffraction pattern of quill we show that the observed pattern is consistent with the (8+0) model and we are also able to assign values to the various parameters. In contrast, we show that the observed X-ray pattern is inconsistent with a (7+1) arrangement. Furthermore, in the (7+1) model steric hindrance would be encountered between the core protofilament and those constituting the ring. The appearance of a central "core" in transverse TEM sections, previously attributed to a central protofilament, is explained in terms of portions of the apolar, disulfide-bonded head and/or tail domains of the trichocyte keratin IF molecules, including the conserved H subdomains, lying along the axis of the IF, thereby decreasing the efficacy of the reducing agents used prior to staining. The H1 subdomain, previously shown to be important in the assembly of epidermal IF molecules at the two- to four-molecule level, is likely to have a similar role for the trichocyte keratins and may form part of a central scaffold on which the molecules assemble into fully functional IF. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The gsdf gene locus harbors evolutionary conserved and clustered genes preferentially expressed in fish previtellogenic oocytes.

    PubMed

    Gautier, Aude; Le Gac, Florence; Lareyre, Jean-Jacques

    2011-02-01

    The gonadal soma-derived factor (GSDF) belongs to the transforming growth factor-β superfamily and is conserved in teleostean fish species. Gsdf is specifically expressed in the gonads, and gene expression is restricted to the granulosa and Sertoli cells in trout and medaka. The gsdf gene expression is correlated to early testis differentiation in medaka and was shown to stimulate primordial germ cell and spermatogonia proliferation in trout. In the present study, we show that the gsdf gene localizes to a syntenic chromosomal fragment conserved among vertebrates although no gsdf-related gene is detected on the corresponding genomic region in tetrapods. We demonstrate using quantitative RT-PCR that most of the genes localized in the synteny are specifically expressed in medaka gonads. Gsdf is the only gene of the synteny with a much higher expression in the testis compared to the ovary. In contrast, gene expression pattern analysis of the gsdf surrounding genes (nup54, aff1, klhl8, sdad1, and ptpn13) indicates that these genes are preferentially expressed in the female gonads. The tissue distribution of these genes is highly similar in medaka and zebrafish, two teleostean species that have diverged more than 110 million years ago. The cellular localization of these genes was determined in medaka gonads using the whole-mount in situ hybridization technique. We confirm that gsdf gene expression is restricted to Sertoli and granulosa cells in contact with the premeiotic and meiotic cells. The nup54 gene is expressed in spermatocytes and previtellogenic oocytes. Transcripts corresponding to the ovary-specific genes (aff1, klhl8, and sdad1) are detected only in previtellogenic oocytes. No expression was detected in the gonocytes in 10 dpf embryos. In conclusion, we show that the gsdf gene localizes to a syntenic chromosomal fragment harboring evolutionary conserved genes in vertebrates. These genes are preferentially expressed in previtelloogenic oocytes, and thus, they

  1. Origins of extrinsic variability in eukaryotic gene expression

    NASA Astrophysics Data System (ADS)

    Volfson, Dmitri; Marciniak, Jennifer; Blake, William J.; Ostroff, Natalie; Tsimring, Lev S.; Hasty, Jeff

    2006-02-01

    Variable gene expression within a clonal population of cells has been implicated in a number of important processes including mutation and evolution, determination of cell fates and the development of genetic disease. Recent studies have demonstrated that a significant component of expression variability arises from extrinsic factors thought to influence multiple genes simultaneously, yet the biological origins of this extrinsic variability have received little attention. Here we combine computational modelling with fluorescence data generated from multiple promoter-gene inserts in Saccharomyces cerevisiae to identify two major sources of extrinsic variability. One unavoidable source arising from the coupling of gene expression with population dynamics leads to a ubiquitous lower limit for expression variability. A second source, which is modelled as originating from a common upstream transcription factor, exemplifies how regulatory networks can convert noise in upstream regulator expression into extrinsic noise at the output of a target gene. Our results highlight the importance of the interplay of gene regulatory networks with population heterogeneity for understanding the origins of cellular diversity.

  2. Origins of extrinsic variability in eukaryotic gene expression

    NASA Astrophysics Data System (ADS)

    Volfson, Dmitri; Marciniak, Jennifer; Blake, William J.; Ostroff, Natalie; Tsimring, Lev S.; Hasty, Jeff

    2006-03-01

    Variable gene expression within a clonal population of cells has been implicated in a number of important processes including mutation and evolution, determination of cell fates and the development of genetic disease. Recent studies have demonstrated that a significant component of expression variability arises from extrinsic factors thought to influence multiple genes in concert, yet the biological origins of this extrinsic variability have received little attention. Here we combine computational modeling with fluorescence data generated from multiple promoter-gene inserts in Saccharomyces cerevisiae to identify two major sources of extrinsic variability. One unavoidable source arising from the coupling of gene expression with population dynamics leads to a ubiquitous noise floor in expression variability. A second source which is modeled as originating from a common upstream transcription factor exemplifies how regulatory networks can convert noise in upstream regulator expression into extrinsic noise at the output of a target gene. Our results highlight the importance of the interplay of gene regulatory networks with population heterogeneity for understanding the origins of cellular diversity.

  3. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.).

    PubMed

    Huis, Rudy; Hawkins, Simon; Neutelings, Godfrey

    2010-04-19

    Quantitative real-time PCR (qRT-PCR) is currently the most accurate method for detecting differential gene expression. Such an approach depends on the identification of uniformly expressed 'housekeeping genes' (HKGs). Extensive transcriptomic data mining and experimental validation in different model plants have shown that the reliability of these endogenous controls can be influenced by the plant species, growth conditions and organs/tissues examined. It is therefore important to identify the best reference genes to use in each biological system before using qRT-PCR to investigate differential gene expression. In this paper we evaluate different candidate HKGs for developmental transcriptomic studies in the economically-important flax fiber- and oil-crop (Linum usitatissimum L). Specific primers were designed in order to quantify the expression levels of 20 different potential housekeeping genes in flax roots, internal- and external-stem tissues, leaves and flowers at different developmental stages. After calculations of PCR efficiencies, 13 HKGs were retained and their expression stabilities evaluated by the computer algorithms geNorm and NormFinder. According to geNorm, 2 Transcriptional Elongation Factors (TEFs) and 1 Ubiquitin gene are necessary for normalizing gene expression when all studied samples are considered. However, only 2 TEFs are required for normalizing expression in stem tissues. In contrast, NormFinder identified glyceraldehyde-3-phosphate dehydrogenase (GADPH) as the most stably expressed gene when all samples were grouped together, as well as when samples were classed into different sub-groups.qRT-PCR was then used to investigate the relative expression levels of two splice variants of the flax LuMYB1 gene (homologue of AtMYB59). LuMYB1-1 and LuMYB1-2 were highly expressed in the internal stem tissues as compared to outer stem tissues and other samples. This result was confirmed with both geNorm-designated- and Norm

  4. Global Expression Profiling in Atopic Eczema Reveals Reciprocal Expression of Inflammatory and Lipid Genes

    PubMed Central

    Sääf, Annika M.; Tengvall-Linder, Maria; Chang, Howard Y.; Adler, Adam S.; Wahlgren, Carl-Fredrik; Scheynius, Annika; Nordenskjöld, Magnus; Bradley, Maria

    2008-01-01

    Background Atopic eczema (AE) is a common chronic inflammatory skin disorder. In order to dissect the genetic background several linkage and genetic association studies have been performed. Yet very little is known about specific genes involved in this complex skin disease, and the underlying molecular mechanisms are not fully understood. Methodology/Findings We used human DNA microarrays to identify a molecular picture of the programmed responses of the human genome to AE. The transcriptional program was analyzed in skin biopsy samples from lesional and patch-tested skin from AE patients sensitized to Malassezia sympodialis (M. sympodialis), and corresponding biopsies from healthy individuals. The most notable feature of the global gene-expression pattern observed in AE skin was a reciprocal expression of induced inflammatory genes and repressed lipid metabolism genes. The overall transcriptional response in M. sympodialis patch-tested AE skin was similar to the gene-expression signature identified in lesional AE skin. In the constellation of genes differentially expressed in AE skin compared to healthy control skin, we have identified several potential susceptibility genes that may play a critical role in the pathological condition of AE. Many of these genes, including genes with a role in immune responses, lipid homeostasis, and epidermal differentiation, are localized on chromosomal regions previously linked to AE. Conclusions/Significance Through genome-wide expression profiling, we were able to discover a distinct reciprocal expression pattern of induced inflammatory genes and repressed lipid metabolism genes in skin from AE patients. We found a significant enrichment of differentially expressed genes in AE with cytobands associated to the disease, and furthermore new chromosomal regions were found that could potentially guide future region-specific linkage mapping in AE. The full data set is available at http://microarray-pubs.stanford.edu/eczema. PMID

  5. Global gene expression analyses of hematopoietic stem cell-like cell lines with inducible Lhx2 expression

    PubMed Central

    Richter, Karin; Wirta, Valtteri; Dahl, Lina; Bruce, Sara; Lundeberg, Joakim; Carlsson, Leif; Williams, Cecilia

    2006-01-01

    Background Expression of the LIM-homeobox gene Lhx2 in murine hematopoietic cells allows for the generation of hematopoietic stem cell (HSC)-like cell lines. To address the molecular basis of Lhx2 function, we generated HSC-like cell lines where Lhx2 expression is regulated by a tet-on system and hence dependent on the presence of doxycyclin (dox). These cell lines efficiently down-regulate Lhx2 expression upon dox withdrawal leading to a rapid differentiation into various myeloid cell types. Results Global gene expression of these cell lines cultured in dox was compared to different time points after dox withdrawal using microarray technology. We identified 267 differentially expressed genes. The majority of the genes overlapping with HSC-specific databases were those down-regulated after turning off Lhx2 expression and a majority of the genes overlapping with those defined as late progenitor-specific genes were the up-regulated genes, suggesting that these cell lines represent a relevant model system for normal HSCs also at the level of global gene expression. Moreover, in situ hybridisations of several genes down-regulated after dox withdrawal showed overlapping expression patterns with Lhx2 in various tissues during embryonic development. Conclusion Global gene expression analysis of HSC-like cell lines with inducible Lhx2 expression has identified genes putatively linked to self-renewal / differentiation of HSCs, and function of Lhx2 in organ development and stem / progenitor cells of non-hematopoietic origin. PMID:16600034

  6. A Gene Co-Expression Network in Whole Blood of Schizophrenia Patients Is Independent of Antipsychotic-Use and Enriched for Brain-Expressed Genes

    PubMed Central

    de Jong, Simone; Boks, Marco P. M.; Fuller, Tova F.; Strengman, Eric; Janson, Esther; de Kovel, Carolien G. F.; Ori, Anil P. S.; Vi, Nancy; Mulder, Flip; Blom, Jan Dirk; Glenthøj, Birte; Schubart, Chris D.; Cahn, Wiepke; Kahn, René S.; Horvath, Steve; Ophoff, Roel A.

    2012-01-01

    Despite large-scale genome-wide association studies (GWAS), the underlying genes for schizophrenia are largely unknown. Additional approaches are therefore required to identify the genetic background of this disorder. Here we report findings from a large gene expression study in peripheral blood of schizophrenia patients and controls. We applied a systems biology approach to genome-wide expression data from whole blood of 92 medicated and 29 antipsychotic-free schizophrenia patients and 118 healthy controls. We show that gene expression profiling in whole blood can identify twelve large gene co-expression modules associated with schizophrenia. Several of these disease related modules are likely to reflect expression changes due to antipsychotic medication. However, two of the disease modules could be replicated in an independent second data set involving antipsychotic-free patients and controls. One of these robustly defined disease modules is significantly enriched with brain-expressed genes and with genetic variants that were implicated in a GWAS study, which could imply a causal role in schizophrenia etiology. The most highly connected intramodular hub gene in this module (ABCF1), is located in, and regulated by the major histocompatibility (MHC) complex, which is intriguing in light of the fact that common allelic variants from the MHC region have been implicated in schizophrenia. This suggests that the MHC increases schizophrenia susceptibility via altered gene expression of regulatory genes in this network. PMID:22761806

  7. Querying Co-regulated Genes on Diverse Gene Expression Datasets Via Biclustering.

    PubMed

    Deveci, Mehmet; Küçüktunç, Onur; Eren, Kemal; Bozdağ, Doruk; Kaya, Kamer; Çatalyürek, Ümit V

    2016-01-01

    Rapid development and increasing popularity of gene expression microarrays have resulted in a number of studies on the discovery of co-regulated genes. One important way of discovering such co-regulations is the query-based search since gene co-expressions may indicate a shared role in a biological process. Although there exist promising query-driven search methods adapting clustering, they fail to capture many genes that function in the same biological pathway because microarray datasets are fraught with spurious samples or samples of diverse origin, or the pathways might be regulated under only a subset of samples. On the other hand, a class of clustering algorithms known as biclustering algorithms which simultaneously cluster both the items and their features are useful while analyzing gene expression data, or any data in which items are related in only a subset of their samples. This means that genes need not be related in all samples to be clustered together. Because many genes only interact under specific circumstances, biclustering may recover the relationships that traditional clustering algorithms can easily miss. In this chapter, we briefly summarize the literature using biclustering for querying co-regulated genes. Then we present a novel biclustering approach and evaluate its performance by a thorough experimental analysis.

  8. A deep auto-encoder model for gene expression prediction.

    PubMed

    Xie, Rui; Wen, Jia; Quitadamo, Andrew; Cheng, Jianlin; Shi, Xinghua

    2017-11-17

    Gene expression is a key intermediate level that genotypes lead to a particular trait. Gene expression is affected by various factors including genotypes of genetic variants. With an aim of delineating the genetic impact on gene expression, we build a deep auto-encoder model to assess how good genetic variants will contribute to gene expression changes. This new deep learning model is a regression-based predictive model based on the MultiLayer Perceptron and Stacked Denoising Auto-encoder (MLP-SAE). The model is trained using a stacked denoising auto-encoder for feature selection and a multilayer perceptron framework for backpropagation. We further improve the model by introducing dropout to prevent overfitting and improve performance. To demonstrate the usage of this model, we apply MLP-SAE to a real genomic datasets with genotypes and gene expression profiles measured in yeast. Our results show that the MLP-SAE model with dropout outperforms other models including Lasso, Random Forests and the MLP-SAE model without dropout. Using the MLP-SAE model with dropout, we show that gene expression quantifications predicted by the model solely based on genotypes, align well with true gene expression patterns. We provide a deep auto-encoder model for predicting gene expression from SNP genotypes. This study demonstrates that deep learning is appropriate for tackling another genomic problem, i.e., building predictive models to understand genotypes' contribution to gene expression. With the emerging availability of richer genomic data, we anticipate that deep learning models play a bigger role in modeling and interpreting genomics.

  9. Quantification of multiple gene expression in individual cells.

    PubMed

    Peixoto, António; Monteiro, Marta; Rocha, Benedita; Veiga-Fernandes, Henrique

    2004-10-01

    Quantitative gene expression analysis aims to define the gene expression patterns determining cell behavior. So far, these assessments can only be performed at the population level. Therefore, they determine the average gene expression within a population, overlooking possible cell-to-cell heterogeneity that could lead to different cell behaviors/cell fates. Understanding individual cell behavior requires multiple gene expression analyses of single cells, and may be fundamental for the understanding of all types of biological events and/or differentiation processes. We here describe a new reverse transcription-polymerase chain reaction (RT-PCR) approach allowing the simultaneous quantification of the expression of 20 genes in the same single cell. This method has broad application, in different species and any type of gene combination. RT efficiency is evaluated. Uniform and maximized amplification conditions for all genes are provided. Abundance relationships are maintained, allowing the precise quantification of the absolute number of mRNA molecules per cell, ranging from 2 to 1.28 x 10(9) for each individual gene. We evaluated the impact of this approach on functional genetic read-outs by studying an apparently homogeneous population (monoclonal T cells recovered 4 d after antigen stimulation), using either this method or conventional real-time RT-PCR. Single-cell studies revealed considerable cell-to-cell variation: All T cells did not express all individual genes. Gene coexpression patterns were very heterogeneous. mRNA copy numbers varied between different transcripts and in different cells. As a consequence, this single-cell assay introduces new and fundamental information regarding functional genomic read-outs. By comparison, we also show that conventional quantitative assays determining population averages supply insufficient information, and may even be highly misleading.

  10. Soybean kinome: functional classification and gene expression patterns

    PubMed Central

    Liu, Jinyi; Chen, Nana; Grant, Joshua N.; Cheng, Zong-Ming (Max); Stewart, C. Neal; Hewezi, Tarek

    2015-01-01

    The protein kinase (PK) gene family is one of the largest and most highly conserved gene families in plants and plays a role in nearly all biological functions. While a large number of genes have been predicted to encode PKs in soybean, a comprehensive functional classification and global analysis of expression patterns of this large gene family is lacking. In this study, we identified the entire soybean PK repertoire or kinome, which comprised 2166 putative PK genes, representing 4.67% of all soybean protein-coding genes. The soybean kinome was classified into 19 groups, 81 families, and 122 subfamilies. The receptor-like kinase (RLK) group was remarkably large, containing 1418 genes. Collinearity analysis indicated that whole-genome segmental duplication events may have played a key role in the expansion of the soybean kinome, whereas tandem duplications might have contributed to the expansion of specific subfamilies. Gene structure, subcellular localization prediction, and gene expression patterns indicated extensive functional divergence of PK subfamilies. Global gene expression analysis of soybean PK subfamilies revealed tissue- and stress-specific expression patterns, implying regulatory functions over a wide range of developmental and physiological processes. In addition, tissue and stress co-expression network analysis uncovered specific subfamilies with narrow or wide interconnected relationships, indicative of their association with particular or broad signalling pathways, respectively. Taken together, our analyses provide a foundation for further functional studies to reveal the biological and molecular functions of PKs in soybean. PMID:25614662

  11. Evolution under monogamy feminizes gene expression in Drosophila melanogaster.

    PubMed

    Hollis, Brian; Houle, David; Yan, Zheng; Kawecki, Tadeusz J; Keller, Laurent

    2014-03-18

    Many genes have evolved sexually dimorphic expression as a consequence of divergent selection on males and females. However, because the sexes share a genome, the extent to which evolution can shape gene expression independently in each sex is controversial. Here, we use experimental evolution to reveal suboptimal sex-specific expression for much of the genome. By enforcing a monogamous mating system in populations of Drosophila melanogaster for over 100 generations, we eliminated major components of selection on males: female choice and male-male competition. If gene expression is subject to sexually antagonistic selection, relaxed selection on males should cause evolution towards female optima. Monogamous males and females show this pattern of feminization in both the whole-body and head transcriptomes. Genes with male-biased expression patterns evolved decreased expression under monogamy, while genes with female-biased expression evolved increased expression, relative to polygamous populations. Our results demonstrate persistent and widespread evolutionary tension between male and female adaptation.

  12. Single-nucleotide polymorphism-gene intermixed networking reveals co-linkers connected to multiple gene expression phenotypes

    PubMed Central

    Gong, Bin-Sheng; Zhang, Qing-Pu; Zhang, Guang-Mei; Zhang, Shao-Jun; Zhang, Wei; Lv, Hong-Chao; Zhang, Fan; Lv, Sa-Li; Li, Chuan-Xing; Rao, Shao-Qi; Li, Xia

    2007-01-01

    Gene expression profiles and single-nucleotide polymorphism (SNP) profiles are modern data for genetic analysis. It is possible to use the two types of information to analyze the relationships among genes by some genetical genomics approaches. In this study, gene expression profiles were used as expression traits. And relationships among the genes, which were co-linked to a common SNP(s), were identified by integrating the two types of information. Further research on the co-expressions among the co-linked genes was carried out after the gene-SNP relationships were established using the Haseman-Elston sib-pair regression. The results showed that the co-expressions among the co-linked genes were significantly higher if the number of connections between the genes and a SNP(s) was more than six. Then, the genes were interconnected via one or more SNP co-linkers to construct a gene-SNP intermixed network. The genes sharing more SNPs tended to have a stronger correlation. Finally, a gene-gene network was constructed with their intensities of relationships (the number of SNP co-linkers shared) as the weights for the edges. PMID:18466544

  13. Integrated analysis of gene expression and methylation profiles of 48 candidate genes in breast cancer patients.

    PubMed

    Li, Zibo; Heng, Jianfu; Yan, Jinhua; Guo, Xinwu; Tang, Lili; Chen, Ming; Peng, Limin; Wu, Yepeng; Wang, Shouman; Xiao, Zhi; Deng, Zhongping; Dai, Lizhong; Wang, Jun

    2016-11-01

    Gene-specific methylation and expression have shown biological and clinical importance for breast cancer diagnosis and prognosis. Integrated analysis of gene methylation and gene expression may identify genes associated with biology mechanism and clinical outcome of breast cancer and aid in clinical management. Using high-throughput microfluidic quantitative PCR, we analyzed the expression profiles of 48 candidate genes in 96 Chinese breast cancer patients and investigated their correlation with gene methylation and associations with breast cancer clinical parameters. Breast cancer-specific gene expression alternation was found in 25 genes with significant expression difference between paired tumor and normal tissues. A total of 9 genes (CCND2, EGFR, GSTP1, PGR, PTGS2, RECK, SOX17, TNFRSF10D, and WIF1) showed significant negative correlation between methylation and gene expression, which were validated in the TCGA database. Total 23 genes (ACADL, APC, BRCA2, CADM1, CAV1, CCND2, CST6, EGFR, ESR2, GSTP1, ICAM5, NPY, PGR, PTGS2, RECK, RUNX3, SFRP1, SOX17, SYK, TGFBR2, TNFRSF10D, WIF1, and WRN) annotated with potential TFBSs in the promoter regions showed negative correlation between methylation and expression. In logistics regression analysis, 31 of the 48 genes showed improved performance in disease prediction with combination of methylation and expression coefficient. Our results demonstrated the complex correlation and the possible regulatory mechanisms between DNA methylation and gene expression. Integration analysis of methylation and expression of candidate genes could improve performance in breast cancer prediction. These findings would contribute to molecular characterization and identification of biomarkers for potential clinical applications.

  14. Noise in gene expression is coupled to growth rate.

    PubMed

    Keren, Leeat; van Dijk, David; Weingarten-Gabbay, Shira; Davidi, Dan; Jona, Ghil; Weinberger, Adina; Milo, Ron; Segal, Eran

    2015-12-01

    Genetically identical cells exposed to the same environment display variability in gene expression (noise), with important consequences for the fidelity of cellular regulation and biological function. Although population average gene expression is tightly coupled to growth rate, the effects of changes in environmental conditions on expression variability are not known. Here, we measure the single-cell expression distributions of approximately 900 Saccharomyces cerevisiae promoters across four environmental conditions using flow cytometry, and find that gene expression noise is tightly coupled to the environment and is generally higher at lower growth rates. Nutrient-poor conditions, which support lower growth rates, display elevated levels of noise for most promoters, regardless of their specific expression values. We present a simple model of noise in expression that results from having an asynchronous population, with cells at different cell-cycle stages, and with different partitioning of the cells between the stages at different growth rates. This model predicts non-monotonic global changes in noise at different growth rates as well as overall higher variability in expression for cell-cycle-regulated genes in all conditions. The consistency between this model and our data, as well as with noise measurements of cells growing in a chemostat at well-defined growth rates, suggests that cell-cycle heterogeneity is a major contributor to gene expression noise. Finally, we identify gene and promoter features that play a role in gene expression noise across conditions. Our results show the existence of growth-related global changes in gene expression noise and suggest their potential phenotypic implications. © 2015 Keren et al.; Published by Cold Spring Harbor Laboratory Press.

  15. Vaginal Gene Expression During Treatment With Aromatase Inhibitors.

    PubMed

    Kallak, Theodora Kunovac; Baumgart, Juliane; Nilsson, Kerstin; Åkerud, Helena; Poromaa, Inger Sundström; Stavreus-Evers, Anneli

    2015-12-01

    Aromatase inhibitor (AI) treatment suppresses estrogen biosynthesis and causes genitourinary symptoms of menopause such as vaginal symptoms, ultimately affecting the quality of life for many postmenopausal women with breast cancer. Thus, the aim of this study was to examine vaginal gene expression in women during treatment with AIs compared with estrogen-treated women. The secondary aim was to study the presence and localization of vaginal aromatase. Vaginal biopsies were collected from postmenopausal women treated with AIs and from age-matched control women treated with vaginal estrogen therapy. Differential gene expression was studied with the Affymetrix Gene Chip Gene 1.0 ST Array (Affymetrix Inc, Santa Clara, CA) system, Ingenuity pathway analysis, quantitative real-time polymerase chain reaction, and immunohistochemistry. The expression of 279 genes differed between the 2 groups; AI-treated women had low expression of genes involved in cell differentiation, proliferation, and cell adhesion. Some differentially expressed genes were found to interact indirectly with the estrogen receptor alpha. In addition, aromatase protein staining was evident in the basal and the intermediate vaginal epithelium layers, and also in stromal cells with a slightly stronger staining intensity found in AI-treated women. In this study, we demonstrated that genes involved in cell differentiation, proliferation, and cell adhesion are differentially expressed in AI-treated women. The expression of vaginal aromatase suggests that this could be the result of local and systemic inhibition of aromatase. Our results emphasize the role of estrogen for vaginal cell differentiation and proliferation and future drug candidates should be aimed at improving cell differentiation and proliferation. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Analysis of lamprey clustered Fox genes: insight into Fox gene evolution and expression in vertebrates.

    PubMed

    Wotton, Karl R; Shimeld, Sebastian M

    2011-12-01

    In the human genome, members of the FoxC, FoxF, FoxL1, and FoxQ1 gene families are found in two paralagous clusters. One cluster contains the genes FOXQ1, FOXF2, FOXC1 and the second consists of FOXF1, FOXC2, and FOXL1. In jawed vertebrates these genes are known to be expressed in different pharyngeal tissues and all, except FoxQ1, are involved in patterning the early embryonic mesoderm. We have previously traced the evolution of this cluster in the bony vertebrates, and the gene content is identical in the dogfish, a member of the most basally branching lineage of the jawed vertebrates. Here we extend these analyses to jawless vertebrates. Using genomic searches and molecular approaches we have identified homologues of these genes from lampreys. We identify two FoxC genes, two FoxF genes, two FoxQ1 genes and single FoxL1 gene. We examine the embryonic expression of one predominantly mesodermally expressed gene family, FoxC, and the endodermally expressed member of the cluster, FoxQ1. We identified FoxQ1 transcripts in the pharyngeal endoderm, while the two FoxC genes are differentially expressed in the pharyngeal mesenchyme and ectoderm. Furthermore we identify conserved expression of lamprey FoxC genes in the paraxial and intermediate mesoderms. We interpret our results through a chordate-wide comparison of expression patterns and discuss gene content in the context of theories on the evolution of the vertebrate genome. 2011 Elsevier B.V. All rights reserved.

  17. Unique Gene Expression and MR T2 Relaxometry Patterns Define Chronic Murine Dextran Sodium Sulphate Colitis as a Model for Connective Tissue Changes in Human Crohn’s Disease

    PubMed Central

    Breynaert, Christine; Dresselaers, Tom; Perrier, Clémentine; Arijs, Ingrid; Cremer, Jonathan; Van Lommel, Leentje; Van Steen, Kristel; Ferrante, Marc; Schuit, Frans; Vermeire, Séverine; Rutgeerts, Paul; Himmelreich, Uwe; Ceuppens, Jan L.; Geboes, Karel; Van Assche, Gert

    2013-01-01

    Introduction Chronically relapsing inflammation, tissue remodeling and fibrosis are hallmarks of inflammatory bowel diseases. The aim of this study was to investigate changes in connective tissue in a chronic murine model resulting from repeated cycles of dextran sodium sulphate (DSS) ingestion, to mimic the relapsing nature of the human disease. Materials and Methods C57BL/6 mice were exposed to DSS in drinking water for 1 week, followed by a recovery phase of 2 weeks. This cycle of exposure was repeated for up to 3 times (9 weeks in total). Colonic inflammation, fibrosis, extracellular matrix proteins and colonic gene expression were studied. In vivo MRI T 2 relaxometry was studied as a potential non-invasive imaging tool to evaluate bowel wall inflammation and fibrosis. Results Repeated cycles of DSS resulted in a relapsing and remitting disease course, which induced a chronic segmental, transmural colitis after 2 and 3 cycles of DSS with clear induction of fibrosis and remodeling of the muscular layer. Tenascin expression mirrored its expression in Crohn’s colitis. Microarray data identified a gene expression profile different in chronic colitis from that in acute colitis. Additional recovery was associated with upregulation of unique genes, in particular keratins, pointing to activation of molecular pathways for healing and repair. In vivo MRI T2 relaxometry of the colon showed a clear shift towards higher T2 values in the acute stage and a gradual regression of T2 values with increasing cycles of DSS. Conclusions Repeated cycles of DSS exposure induce fibrosis and connective tissue changes with typical features, as occurring in Crohn’s disease. Colonic gene expression analysis revealed unique expression profiles in chronic colitis compared to acute colitis and after additional recovery, pointing to potential new targets to intervene with the induction of fibrosis. In vivo T2 relaxometry is a promising non-invasive assessment of inflammation and fibrosis

  18. Regulation of gene expression in protozoa parasites.

    PubMed

    Gomez, Consuelo; Esther Ramirez, M; Calixto-Galvez, Mercedes; Medel, Olivia; Rodríguez, Mario A

    2010-01-01

    Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis.

  19. Divergent and nonuniform gene expression patterns in mouse brain

    PubMed Central

    Morris, John A.; Royall, Joshua J.; Bertagnolli, Darren; Boe, Andrew F.; Burnell, Josh J.; Byrnes, Emi J.; Copeland, Cathy; Desta, Tsega; Fischer, Shanna R.; Goldy, Jeff; Glattfelder, Katie J.; Kidney, Jolene M.; Lemon, Tracy; Orta, Geralyn J.; Parry, Sheana E.; Pathak, Sayan D.; Pearson, Owen C.; Reding, Melissa; Shapouri, Sheila; Smith, Kimberly A.; Soden, Chad; Solan, Beth M.; Weller, John; Takahashi, Joseph S.; Overly, Caroline C.; Lein, Ed S.; Hawrylycz, Michael J.; Hohmann, John G.; Jones, Allan R.

    2010-01-01

    Considerable progress has been made in understanding variations in gene sequence and expression level associated with phenotype, yet how genetic diversity translates into complex phenotypic differences remains poorly understood. Here, we examine the relationship between genetic background and spatial patterns of gene expression across seven strains of mice, providing the most extensive cellular-resolution comparative analysis of gene expression in the mammalian brain to date. Using comprehensive brainwide anatomic coverage (more than 200 brain regions), we applied in situ hybridization to analyze the spatial expression patterns of 49 genes encoding well-known pharmaceutical drug targets. Remarkably, over 50% of the genes examined showed interstrain expression variation. In addition, the variability was nonuniformly distributed across strain and neuroanatomic region, suggesting certain organizing principles. First, the degree of expression variance among strains mirrors genealogic relationships. Second, expression pattern differences were concentrated in higher-order brain regions such as the cortex and hippocampus. Divergence in gene expression patterns across the brain could contribute significantly to variations in behavior and responses to neuroactive drugs in laboratory mouse strains and may help to explain individual differences in human responsiveness to neuroactive drugs. PMID:20956311

  20. Transcriptomic Analysis of Differentially Expressed Genes During Larval Development of Rapana venosa by Digital Gene Expression Profiling.

    PubMed

    Song, Hao; Yu, Zheng-Lin; Sun, Li-Na; Xue, Dong-Xiu; Zhang, Tao; Wang, Hai-Yan

    2016-07-07

    During the life cycle of shellfish, larval development, especially metamorphosis, has a vital influence on the dynamics, distribution, and recruitment of natural populations, as well as seed breeding. Rapana venosa, a carnivorous gastropod, is an important commercial shellfish in China, and is an ecological invader in the United States, Argentina, and France. However, information about the mechanism of its early development is still limited, because research in this area has long suffered from a lack of genomic resources. In this study, 15 digital gene expression (DGE) libraries from five developmental stages of R. venosa were constructed and sequenced on the IIIumina Hi-Sequation 2500 platform. Bioinformaticsanalysis identified numerous differentially and specifically expressed genes, which revealed that genes associated with growth, nervous system, digestive system, immune system, and apoptosis participate in important developmental processes. The functional analysis of differentially expressed genes was further implemented by gene ontology, and Kyoto encyclopedia of genes and genomes enrichment. DGE profiling provided a general picture of the transcriptomic activities during the early development of R. venosa, which may provide interesting hints for further study. Our data represent the first comparative transcriptomic information available for the early development of R. venosa, which is a prerequisite for a better understanding of the physiological traits controlling development. Copyright © 2016 Song et al.

  1. Rethinking cell-cycle-dependent gene expression in Schizosaccharomyces pombe.

    PubMed

    Cooper, Stephen

    2017-11-01

    Three studies of gene expression during the division cycle of Schizosaccharomyces pombe led to the proposal that a large number of genes are expressed at particular times during the S. pombe cell cycle. Yet only a small fraction of genes proposed to be expressed in a cell-cycle-dependent manner are reproducible in all three published studies. In addition to reproducibility problems, questions about expression amplitudes, cell-cycle timing of expression, synchronization artifacts, and the problem with methods for synchronizing cells must be considered. These problems and complications prompt the idea that caution should be used before accepting the conclusion that there are a large number of genes expressed in a cell-cycle-dependent manner in S. pombe.

  2. Transposon integration enhances expression of stress response genes.

    PubMed

    Feng, Gang; Leem, Young-Eun; Levin, Henry L

    2013-01-01

    Transposable elements possess specific patterns of integration. The biological impact of these integration profiles is not well understood. Tf1, a long-terminal repeat retrotransposon in Schizosaccharomyces pombe, integrates into promoters with a preference for the promoters of stress response genes. To determine the biological significance of Tf1 integration, we took advantage of saturated maps of insertion activity and studied how integration at hot spots affected the expression of the adjacent genes. Our study revealed that Tf1 integration did not reduce gene expression. Importantly, the insertions activated the expression of 6 of 32 genes tested. We found that Tf1 increased gene expression by inserting enhancer activity. Interestingly, the enhancer activity of Tf1 could be limited by Abp1, a host surveillance factor that sequesters transposon sequences into structures containing histone deacetylases. We found the Tf1 promoter was activated by heat treatment and, remarkably, only genes that themselves were induced by heat could be activated by Tf1 integration, suggesting a synergy of Tf1 enhancer sequence with the stress response elements of target promoters. We propose that the integration preference of Tf1 for the promoters of stress response genes and the ability of Tf1 to enhance the expression of these genes co-evolved to promote the survival of cells under stress.

  3. Transposon integration enhances expression of stress response genes

    PubMed Central

    Feng, Gang; Leem, Young-Eun; Levin, Henry L.

    2013-01-01

    Transposable elements possess specific patterns of integration. The biological impact of these integration profiles is not well understood. Tf1, a long-terminal repeat retrotransposon in Schizosaccharomyces pombe, integrates into promoters with a preference for the promoters of stress response genes. To determine the biological significance of Tf1 integration, we took advantage of saturated maps of insertion activity and studied how integration at hot spots affected the expression of the adjacent genes. Our study revealed that Tf1 integration did not reduce gene expression. Importantly, the insertions activated the expression of 6 of 32 genes tested. We found that Tf1 increased gene expression by inserting enhancer activity. Interestingly, the enhancer activity of Tf1 could be limited by Abp1, a host surveillance factor that sequesters transposon sequences into structures containing histone deacetylases. We found the Tf1 promoter was activated by heat treatment and, remarkably, only genes that themselves were induced by heat could be activated by Tf1 integration, suggesting a synergy of Tf1 enhancer sequence with the stress response elements of target promoters. We propose that the integration preference of Tf1 for the promoters of stress response genes and the ability of Tf1 to enhance the expression of these genes co-evolved to promote the survival of cells under stress. PMID:23193295

  4. Keratin hydrogel carrier system for simultaneous delivery of exogenous growth factors and muscle progenitor cells1,2,3

    PubMed Central

    Tomblyn, Seth; Kneller, Elizabeth Pettit; Walker, Stephen J.; Ellenburg, Mary D.; Kowalczewski, Christine J.; Van Dyke, Mark; Burnett, Luke; Saul, Justin M.

    2017-01-01

    Ideal material characteristics for tissue engineering or regenerative medicine approaches to volumetric muscle loss (VML) include the ability to deliver cells, growth factors and molecules that support tissue formation from a system with a tunable degradation profile. Two different types of human hair-derived keratins were tested as options to fulfill these VML design requirements: (1) oxidatively extracted keratin (keratose) characterized by a lack of covalent crosslinking between cysteine residues, and (2) reductively extracted keratin (kerateine) characterized by disulfide crosslinks. Human skeletal muscle myoblasts cultured on coatings of both types of keratin had increased numbers of multinucleated cells compared to collagen or Matrigel™ and adhesion levels greater than collagen. Rheology showed elastic moduli from 102 – 105 Pa and viscous moduli from 101 – 104 Pa depending on gel concentration and keratin type. Kerateine and keratose showed differing rates of degradation due to the presence or absence of disulfide crosslinks, which likely contributed to observed differences in release profiles of several growth factors. In vivo testing in a subcutaneous mouse model showed that keratose hydrogels can be used to deliver mouse muscle progenitor cells and growth factors. Histological assessment showed minimal inflammatory responses and an increase in markers of muscle formation. PMID:25953729

  5. Variation-preserving normalization unveils blind spots in gene expression profiling

    PubMed Central

    Roca, Carlos P.; Gomes, Susana I. L.; Amorim, Mónica J. B.; Scott-Fordsmand, Janeck J.

    2017-01-01

    RNA-Seq and gene expression microarrays provide comprehensive profiles of gene activity, but lack of reproducibility has hindered their application. A key challenge in the data analysis is the normalization of gene expression levels, which is currently performed following the implicit assumption that most genes are not differentially expressed. Here, we present a mathematical approach to normalization that makes no assumption of this sort. We have found that variation in gene expression is much larger than currently believed, and that it can be measured with available assays. Our results also explain, at least partially, the reproducibility problems encountered in transcriptomics studies. We expect that this improvement in detection will help efforts to realize the full potential of gene expression profiling, especially in analyses of cellular processes involving complex modulations of gene expression. PMID:28276435

  6. Reference genes for gene expression studies in wheat flag leaves grown under different farming conditions

    PubMed Central

    2011-01-01

    Background Internal control genes with highly uniform expression throughout the experimental conditions are required for accurate gene expression analysis as no universal reference genes exists. In this study, the expression stability of 24 candidate genes from Triticum aestivum cv. Cubus flag leaves grown under organic and conventional farming systems was evaluated in two locations in order to select suitable genes that can be used for normalization of real-time quantitative reverse-transcription PCR (RT-qPCR) reactions. The genes were selected among the most common used reference genes as well as genes encoding proteins involved in several metabolic pathways. Findings Individual genes displayed different expression rates across all samples assayed. Applying geNorm, a set of three potential reference genes were suitable for normalization of RT-qPCR reactions in winter wheat flag leaves cv. Cubus: TaFNRII (ferredoxin-NADP(H) oxidoreductase; AJ457980.1), ACT2 (actin 2; TC234027), and rrn26 (a putative homologue to RNA 26S gene; AL827977.1). In addition of these three genes that were also top-ranked by NormFinder, two extra genes: CYP18-2 (Cyclophilin A, AY456122.1) and TaWIN1 (14-3-3 like protein, AB042193) were most consistently stably expressed. Furthermore, we showed that TaFNRII, ACT2, and CYP18-2 are suitable for gene expression normalization in other two winter wheat varieties (Tommi and Centenaire) grown under three treatments (organic, conventional and no nitrogen) and a different environment than the one tested with cv. Cubus. Conclusions This study provides a new set of reference genes which should improve the accuracy of gene expression analyses when using wheat flag leaves as those related to the improvement of nitrogen use efficiency for cereal production. PMID:21951810

  7. Weighted gene co-expression network analysis of expression data of monozygotic twins identifies specific modules and hub genes related to BMI.

    PubMed

    Wang, Weijing; Jiang, Wenjie; Hou, Lin; Duan, Haiping; Wu, Yili; Xu, Chunsheng; Tan, Qihua; Li, Shuxia; Zhang, Dongfeng

    2017-11-13

    The therapeutic management of obesity is challenging, hence further elucidating the underlying mechanisms of obesity development and identifying new diagnostic biomarkers and therapeutic targets are urgent and necessary. Here, we performed differential gene expression analysis and weighted gene co-expression network analysis (WGCNA) to identify significant genes and specific modules related to BMI based on gene expression profile data of 7 discordant monozygotic twins. In the differential gene expression analysis, it appeared that 32 differentially expressed genes (DEGs) were with a trend of up-regulation in twins with higher BMI when compared to their siblings. Categories of positive regulation of nitric-oxide synthase biosynthetic process, positive regulation of NF-kappa B import into nucleus, and peroxidase activity were significantly enriched within GO database and NF-kappa B signaling pathway within KEGG database. DEGs of NAMPT, TLR9, PTGS2, HBD, and PCSK1N might be associated with obesity. In the WGCNA, among the total 20 distinct co-expression modules identified, coral1 module (68 genes) had the strongest positive correlation with BMI (r = 0.56, P = 0.04) and disease status (r = 0.56, P = 0.04). Categories of positive regulation of phospholipase activity, high-density lipoprotein particle clearance, chylomicron remnant clearance, reverse cholesterol transport, intermediate-density lipoprotein particle, chylomicron, low-density lipoprotein particle, very-low-density lipoprotein particle, voltage-gated potassium channel complex, cholesterol transporter activity, and neuropeptide hormone activity were significantly enriched within GO database for this module. And alcoholism and cell adhesion molecules pathways were significantly enriched within KEGG database. Several hub genes, such as GAL, ASB9, NPPB, TBX2, IL17C, APOE, ABCG4, and APOC2 were also identified. The module eigengene of saddlebrown module (212 genes) was also significantly

  8. Epidermal dysplasia and abnormal hair follicles in transgenic mice overexpressing homeobox gene MSX-2.

    PubMed

    Jiang, T X; Liu, Y H; Widelitz, R B; Kundu, R K; Maxson, R E; Chuong, C M

    1999-08-01

    The homeobox gene Msx-2 is expressed specifically in sites of skin appendage formation. To explore its part in skin morphogenesis, we produced transgenic mice expressing Msx-2 under the control of the cytomegalovirus promoter. The skin of these transgenic mice was flaky, exhibiting desquamation and shorter hairs. Histologic analysis showed thickened epidermis with hyperproliferation, which was restricted to the basal layer. Hyperkeratosis was also evident. A wide zone of suprabasal cells were misaligned and coexpressed keratins 14 and 10. There was reduced expression of integrin beta 1 and DCC in the basal layer. Hair follicles were misaligned with a shrunken matrix region. The dermis showed increased cellularity and empty vacuoles. We suggest that Msx-2 is involved in the growth control of skin and skin appendages.

  9. G-NEST: A gene neighborhood scoring tool to identify co-conserved, co-expressed genes

    USDA-ARS?s Scientific Manuscript database

    In previous studies, gene neighborhoods--spatial clusters of co-expressed genes in the genome--have been defined using arbitrary rules such as requiring adjacency, a minimum number of genes, a fixed window size, or a minimum expression level. In the current study, we developed a Gene Neighborhood Sc...

  10. Low-rank regularization for learning gene expression programs.

    PubMed

    Ye, Guibo; Tang, Mengfan; Cai, Jian-Feng; Nie, Qing; Xie, Xiaohui

    2013-01-01

    Learning gene expression programs directly from a set of observations is challenging due to the complexity of gene regulation, high noise of experimental measurements, and insufficient number of experimental measurements. Imposing additional constraints with strong and biologically motivated regularizations is critical in developing reliable and effective algorithms for inferring gene expression programs. Here we propose a new form of regulation that constrains the number of independent connectivity patterns between regulators and targets, motivated by the modular design of gene regulatory programs and the belief that the total number of independent regulatory modules should be small. We formulate a multi-target linear regression framework to incorporate this type of regulation, in which the number of independent connectivity patterns is expressed as the rank of the connectivity matrix between regulators and targets. We then generalize the linear framework to nonlinear cases, and prove that the generalized low-rank regularization model is still convex. Efficient algorithms are derived to solve both the linear and nonlinear low-rank regularized problems. Finally, we test the algorithms on three gene expression datasets, and show that the low-rank regularization improves the accuracy of gene expression prediction in these three datasets.

  11. Identification of a locus control region for quadruplicated green-sensitive opsin genes in zebrafish

    PubMed Central

    Tsujimura, Taro; Chinen, Akito; Kawamura, Shoji

    2007-01-01

    Duplication of opsin genes has a crucial role in the evolution of visual system. Zebrafish have four green-sensitive (RH2) opsin genes (RH2–1, RH2–2, RH2–3, and RH2–4) arrayed in tandem. They are expressed in the short member of the double cones (SDC) but differ in expression areas in the retina and absorption spectra of their encoding photopigments. The shortest and the second shortest wavelength subtypes, RH2–1 and RH2–2, are expressed in the central-to-dorsal retina. The longer wavelength subtype, RH2–3, is expressed circumscribing the RH2–1/RH2–2 area, and the longest subtype, RH2–4, is expressed further circumscribing the RH2–3 area and mainly occupying the ventral retina. The present report shows that a 0.5-kb region located 15 kb upstream of the RH2 gene array is an essential regulator for their expression. When the 0.5-kb region was deleted from a P1-artificial chromosome (PAC) clone encompassing the four RH2 genes and when one of these genes was replaced with a reporter GFP gene, the GFP expression in SDCs was abolished in the zebrafish to which a series of the modified PAC clones were introduced. Transgenic studies also showed that the 0.5-kb region conferred the SDC-specific expression for promoters of a non-SDC (UV opsin) and a nonretinal (keratin 8) gene. Changing the location of the 0.5-kb region in the PAC clone conferred the highest expression for its proximal gene. The 0.5-kb region was thus designated as RH2-LCR analogous to the locus control region of the L-M opsin genes of primates. PMID:17646658

  12. Aging and Gene Expression in the Primate Brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraser, Hunter B.; Khaitovich, Philipp; Plotkin, Joshua B.

    2005-02-18

    It is well established that gene expression levels in many organisms change during the aging process, and the advent of DNA microarrays has allowed genome-wide patterns of transcriptional changes associated with aging to be studied in both model organisms and various human tissues. Understanding the effects of aging on gene expression in the human brain is of particular interest, because of its relation to both normal and pathological neurodegeneration. Here we show that human cerebral cortex, human cerebellum, and chimpanzee cortex each undergo different patterns of age-related gene expression alterations. In humans, many more genes undergo consistent expression changes inmore » the cortex than in the cerebellum; in chimpanzees, many genes change expression with age in cortex, but the pattern of changes in expression bears almost no resemblance to that of human cortex. These results demonstrate the diversity of aging patterns present within the human brain, as well as how rapidly genome-wide patterns of aging can evolve between species; they may also have implications for the oxidative free radical theory of aging, and help to improve our understanding of human neurodegenerative diseases.« less

  13. Identification and Characterization of Genes Required for Early Myxococcus xanthus Developmental Gene Expression

    PubMed Central

    Guo, Dongchuan; Wu, Yun; Kaplan, Heidi B.

    2000-01-01

    Starvation and cell density regulate the developmental expression of Myxococcus xanthus gene 4521. Three classes of mutants allow expression of this developmental gene during growth on nutrient agar, such that colonies of strains containing a Tn5 lac Ω4521 fusion are Lac+. One class of these mutants inactivates SasN, a negative regulator of 4521 expression; another class activates SasS, a sensor kinase-positive regulator of 4521 expression; and a third class blocks lipopolysaccharide (LPS) O-antigen biosynthesis. To identify additional positive regulators of 4521 expression, 11 Lac− TnV.AS transposon insertion mutants were isolated from a screen of 18,000 Lac+ LPS O-antigen mutants containing Tn5 lac Ω4521 (Tcr). Ten mutations identified genes that could encode positive regulators of 4521 developmental expression based on their ability to abolish 4521 expression during development in the absence of LPS O antigen and in an otherwise wild-type background. Eight of these mutations mapped to the sasB locus, which encodes the known 4521 regulators SasS and SasN. One mapped to sasS, whereas seven identified new genes. Three mutations mapped to a gene encoding an NtrC-like response regulator homologue, designated sasR, and four others mapped to a gene designated sasP. One mutation, designated ssp10, specifically suppressed the LPS O-antigen defect; the ssp10 mutation had no effect on 4521 expression in an otherwise wild-type background but reduced 4521 developmental expression in the absence of LPS O antigen to a level close to that of the parent strain. All of the mutations except those in sasP conferred defects during growth and development. These data indicate that a number of elements are required for 4521 developmental expression and that most of these are necessary for normal growth and fruiting body development. PMID:10913090

  14. An RNA-Seq based gene expression atlas of the common bean.

    PubMed

    O'Rourke, Jamie A; Iniguez, Luis P; Fu, Fengli; Bucciarelli, Bruna; Miller, Susan S; Jackson, Scott A; McClean, Philip E; Li, Jun; Dai, Xinbin; Zhao, Patrick X; Hernandez, Georgina; Vance, Carroll P

    2014-10-06

    Common bean (Phaseolus vulgaris) is grown throughout the world and comprises roughly 50% of the grain legumes consumed worldwide. Despite this, genetic resources for common beans have been lacking. Next generation sequencing, has facilitated our investigation of the gene expression profiles associated with biologically important traits in common bean. An increased understanding of gene expression in common bean will improve our understanding of gene expression patterns in other legume species. Combining recently developed genomic resources for Phaseolus vulgaris, including predicted gene calls, with RNA-Seq technology, we measured the gene expression patterns from 24 samples collected from seven tissues at developmentally important stages and from three nitrogen treatments. Gene expression patterns throughout the plant were analyzed to better understand changes due to nodulation, seed development, and nitrogen utilization. We have identified 11,010 genes differentially expressed with a fold change ≥ 2 and a P-value < 0.05 between different tissues at the same time point, 15,752 genes differentially expressed within a tissue due to changes in development, and 2,315 genes expressed only in a single tissue. These analyses identified 2,970 genes with expression patterns that appear to be directly dependent on the source of available nitrogen. Finally, we have assembled this data in a publicly available database, The Phaseolus vulgaris Gene Expression Atlas (Pv GEA), http://plantgrn.noble.org/PvGEA/ . Using the website, researchers can query gene expression profiles of their gene of interest, search for genes expressed in different tissues, or download the dataset in a tabular form. These data provide the basis for a gene expression atlas, which will facilitate functional genomic studies in common bean. Analysis of this dataset has identified genes important in regulating seed composition and has increased our understanding of nodulation and impact of the

  15. [Up regulation of phenylacetate to glioma homeobox gene expression].

    PubMed

    Tian, Yu; Yang, Chaohua; Zhao, Conghai

    2002-03-01

    Even though phenylacetate (PA) bas been shown to inhibit the growth and induce differentiation in rat C6 glioma cell line, its mechanisms are still poorly understood. This study is aimed to identify which Hox gene is related to glioma and to observe the change in expression on mRNA level as treated by phenylasetate. Twenty-two kinds of Hox gene were divided into 3 groups according to their primer sequence. Semiquantitative reverse transcription- polymerase chain reaction (RT-PCR) was used to investigate the mRNA expression of Hox gene groups and some Hox gene in rat C6 glioma cell line following differentiation induced by PA. The level of Hox gene expression was expressed as ratio expression rate (RER) of Hox gene/beta-actin according to computer image analysis and the difference between C6 cells and PA treated C6 cells was analyzed by student t-test. It was found that Hox genes matching to primers P2 were mildly expressed in C6 cells and the expression of HoxB2 mRNA was significantly up-regulated in PA treated C6 cells (P < 0.001). The weak expression of HoxB2 may be involved in glioma origin and the mechanisms of PA action are correlated with transcription process in the glioma cells.

  16. Molecular transformation, gene cloning, and gene expression systems for filamentous fungi

    USGS Publications Warehouse

    Gold, Scott E.; Duick, John W.; Redman, Regina S.; Rodriguez, Rusty J.

    2001-01-01

    This chapter discusses the molecular transformation, gene cloning, and gene expression systems for filamentous fungi. Molecular transformation involves the movement of discrete amounts of DNA into cells, the expression of genes on the transported DNA, and the sustainable replication of the transforming DNA. The ability to transform fungi is dependent on the stable replication and expression of genes located on the transforming DNA. Three phenomena observed in bacteria, that is, competence, plasmids, and restriction enzymes to facilitate cloning, were responsible for the development of molecular transformation in fungi. Initial transformation success with filamentous fungi, involving the complementation of auxotrophic mutants by exposure to sheared genomic DNA or RNA from wt isolates, occurred with low transformation efficiencies. In addition, it was difficult to retrieve complementing DNA fragments and isolate genes of interest. This prompted the development of transformation vectors and methods to increase efficiencies. The physiological studies performed with fungi indicated that the cell wall could be removed to generate protoplasts. It was evident that protoplasts could be transformed with significantly greater efficiencies than walled cells.

  17. With Reference to Reference Genes: A Systematic Review of Endogenous Controls in Gene Expression Studies.

    PubMed

    Chapman, Joanne R; Waldenström, Jonas

    2015-01-01

    The choice of reference genes that are stably expressed amongst treatment groups is a crucial step in real-time quantitative PCR gene expression studies. Recent guidelines have specified that a minimum of two validated reference genes should be used for normalisation. However, a quantitative review of the literature showed that the average number of reference genes used across all studies was 1.2. Thus, the vast majority of studies continue to use a single gene, with β-actin (ACTB) and/or glyceraldehyde 3-phosphate dehydrogenase (GAPDH) being commonly selected in studies of vertebrate gene expression. Few studies (15%) tested a panel of potential reference genes for stability of expression before using them to normalise data. Amongst studies specifically testing reference gene stability, few found ACTB or GAPDH to be optimal, whereby these genes were significantly less likely to be chosen when larger panels of potential reference genes were screened. Fewer reference genes were tested for stability in non-model organisms, presumably owing to a dearth of available primers in less well characterised species. Furthermore, the experimental conditions under which real-time quantitative PCR analyses were conducted had a large influence on the choice of reference genes, whereby different studies of rat brain tissue showed different reference genes to be the most stable. These results highlight the importance of validating the choice of normalising reference genes before conducting gene expression studies.

  18. Gene expression variability in human hepatic drug metabolizing enzymes and transporters.

    PubMed

    Yang, Lun; Price, Elvin T; Chang, Ching-Wei; Li, Yan; Huang, Ying; Guo, Li-Wu; Guo, Yongli; Kaput, Jim; Shi, Leming; Ning, Baitang

    2013-01-01

    Interindividual variability in the expression of drug-metabolizing enzymes and transporters (DMETs) in human liver may contribute to interindividual differences in drug efficacy and adverse reactions. Published studies that analyzed variability in the expression of DMET genes were limited by sample sizes and the number of genes profiled. We systematically analyzed the expression of 374 DMETs from a microarray data set consisting of gene expression profiles derived from 427 human liver samples. The standard deviation of interindividual expression for DMET genes was much higher than that for non-DMET genes. The 20 DMET genes with the largest variability in the expression provided examples of the interindividual variation. Gene expression data were also analyzed using network analysis methods, which delineates the similarities of biological functionalities and regulation mechanisms for these highly variable DMET genes. Expression variability of human hepatic DMET genes may affect drug-gene interactions and disease susceptibility, with concomitant clinical implications.

  19. Gravity-regulated gene expression in Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Sederoff, Heike; Brown, Christopher S.; Heber, Steffen; Kajla, Jyoti D.; Kumar, Sandeep; Lomax, Terri L.; Wheeler, Benjamin; Yalamanchili, Roopa

    Plant growth and development is regulated by changes in environmental signals. Plants sense environmental changes and respond to them by modifying gene expression programs to ad-just cell growth, differentiation, and metabolism. Functional expression of genes comprises many different processes including transcription, translation, post-transcriptional and post-translational modifications, as well as the degradation of RNA and proteins. Recently, it was discovered that small RNAs (sRNA, 18-24 nucleotides long), which are heritable and systemic, are key elements in regulating gene expression in response to biotic and abiotic changes. Sev-eral different classes of sRNAs have been identified that are part of a non-cell autonomous and phloem-mobile network of regulators affecting transcript stability, translational kinetics, and DNA methylation patterns responsible for heritable transcriptional silencing (epigenetics). Our research has focused on gene expression changes in response to gravistimulation of Arabidopsis roots. Using high-throughput technologies including microarrays and 454 sequencing, we iden-tified rapid changes in transcript abundance of genes as well as differential expression of small RNA in Arabidopsis root apices after minutes of reorientation. Some of the differentially regu-lated transcripts are encoded by genes that are important for the bending response. Functional mutants of those genes respond faster to reorientation than the respective wild type plants, indicating that these proteins are repressors of differential cell elongation. We compared the gravity responsive sRNAs to the changes in transcript abundances of their putative targets and identified several potential miRNA: target pairs. Currently, we are using mutant and transgenic Arabidopsis plants to characterize the function of those miRNAs and their putative targets in gravitropic and phototropic responses in Arabidopsis.

  20. General statistics of stochastic process of gene expression in eukaryotic cells.

    PubMed Central

    Kuznetsov, V A; Knott, G D; Bonner, R F

    2002-01-01

    Thousands of genes are expressed at such very low levels (< or =1 copy per cell) that global gene expression analysis of rarer transcripts remains problematic. Ambiguity in identification of rarer transcripts creates considerable uncertainty in fundamental questions such as the total number of genes expressed in an organism and the biological significance of rarer transcripts. Knowing the distribution of the true number of genes expressed at each level and the corresponding gene expression level probability function (GELPF) could help resolve these uncertainties. We found that all observed large-scale gene expression data sets in yeast, mouse, and human cells follow a Pareto-like distribution model skewed by many low-abundance transcripts. A novel stochastic model of the gene expression process predicts the universality of the GELPF both across different cell types within a multicellular organism and across different organisms. This model allows us to predict the frequency distribution of all gene expression levels within a single cell and to estimate the number of expressed genes in a single cell and in a population of cells. A random "basal" transcription mechanism for protein-coding genes in all or almost all eukaryotic cell types is predicted. This fundamental mechanism might enhance the expression of rarely expressed genes and, thus, provide a basic level of phenotypic diversity, adaptability, and random monoallelic expression in cell populations. PMID:12136033

  1. Gene Expression Dynamics Inspector (GEDI): for integrative analysis of expression profiles

    NASA Technical Reports Server (NTRS)

    Eichler, Gabriel S.; Huang, Sui; Ingber, Donald E.

    2003-01-01

    Genome-wide expression profiles contain global patterns that evade visual detection in current gene clustering analysis. Here, a Gene Expression Dynamics Inspector (GEDI) is described that uses self-organizing maps to translate high-dimensional expression profiles of time courses or sample classes into animated, coherent and robust mosaics images. GEDI facilitates identification of interesting patterns of molecular activity simultaneously across gene, time and sample space without prior assumption of any structure in the data, and then permits the user to retrieve genes of interest. Important changes in genome-wide activities may be quickly identified based on 'Gestalt' recognition and hence, GEDI may be especially useful for non-specialist end users, such as physicians. AVAILABILITY: GEDI v1.0 is written in Matlab, and binary Matlab.dll files which require Matlab to run can be downloaded for free by academic institutions at http://www.chip.org/ge/gedihome.html Supplementary information: http://www.chip.org/ge/gedihome.html.

  2. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.

    PubMed

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis.

  3. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis

    PubMed Central

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis. PMID:26393928

  4. Gene Expression by Mouse Inner Ear Hair Cells during Development

    PubMed Central

    Scheffer, Déborah I.; Shen, Jun

    2015-01-01

    Hair cells of the inner ear are essential for hearing and balance. As a consequence, pathogenic variants in genes specifically expressed in hair cells often cause hereditary deafness. Hair cells are few in number and not easily isolated from the adjacent supporting cells, so the biochemistry and molecular biology of hair cells can be difficult to study. To study gene expression in hair cells, we developed a protocol for hair cell isolation by FACS. With nearly pure hair cells and surrounding cells, from cochlea and utricle and from E16 to P7, we performed a comprehensive cell type-specific RNA-Seq study of gene expression during mouse inner ear development. Expression profiling revealed new hair cell genes with distinct expression patterns: some are specific for vestibular hair cells, others for cochlear hair cells, and some are expressed just before or after maturation of mechanosensitivity. We found that many of the known hereditary deafness genes are much more highly expressed in hair cells than surrounding cells, suggesting that genes preferentially expressed in hair cells are good candidates for unknown deafness genes. PMID:25904789

  5. Vascular Gene Expression in Nonneoplastic and Malignant Brain

    PubMed Central

    Madden, Stephen L.; Cook, Brian P.; Nacht, Mariana; Weber, William D.; Callahan, Michelle R.; Jiang, Yide; Dufault, Michael R.; Zhang, Xiaoming; Zhang, Wen; Walter-Yohrling, Jennifer; Rouleau, Cecile; Akmaev, Viatcheslav R.; Wang, Clarence J.; Cao, Xiaohong; St. Martin, Thia B.; Roberts, Bruce L.; Teicher, Beverly A.; Klinger, Katherine W.; Stan, Radu-Virgil; Lucey, Brenden; Carson-Walter, Eleanor B.; Laterra, John; Walter, Kevin A.

    2004-01-01

    Malignant gliomas are uniformly lethal tumors whose morbidity is mediated in large part by the angiogenic response of the brain to the invading tumor. This profound angiogenic response leads to aggressive tumor invasion and destruction of surrounding brain tissue as well as blood-brain barrier breakdown and life-threatening cerebral edema. To investigate the molecular mechanisms governing the proliferation of abnormal microvasculature in malignant brain tumor patients, we have undertaken a cell-specific transcriptome analysis from surgically harvested nonneoplastic and tumor-associated endothelial cells. SAGE-derived endothelial cell gene expression patterns from glioma and nonneoplastic brain tissue reveal distinct gene expression patterns and consistent up-regulation of certain glioma endothelial marker genes across patient samples. We define the G-protein-coupled receptor RDC1 as a tumor endothelial marker whose expression is distinctly induced in tumor endothelial cells of both brain and peripheral vasculature. Further, we demonstrate that the glioma-induced gene, PV1, shows expression both restricted to endothelial cells and coincident with endothelial cell tube formation. As PV1 provides a framework for endothelial cell caveolar diaphragms, this protein may serve to enhance glioma-induced disruption of the blood-brain barrier and transendothelial exchange. Additional characterization of this extensive brain endothelial cell gene expression database will provide unique molecular insights into vascular gene expression. PMID:15277233

  6. Wear resistance of Polymethyl Methacrylate (PMMA) with the Addition of Bone Ash, Hydroxylapatite and Keratin

    NASA Astrophysics Data System (ADS)

    Emre, G.; Akkus, A.; Karamış, M. B.

    2018-01-01

    In this study mechanichal and tribological properties of keratin, bone ash and hydroxylapatite by adding to PMMA ( known as the main prosthesis material) were investigated. Hydroxylapatite, bone ash, and keratin materials were added as PMMA in to the content of PMMA, in the proportions of %1, %3 and %5, respectively. The resulting mixtures were put into the molds and solidified in order to obtain samples to be used in the wear experiments. Each experiment was conducted by preparing three experimental samples. The wear data were compared according to the average values of the experimental samples. In the wear test, the results were also evaluated according to the average values obtained from each group and the results of the control group. It was observed that, the wear resistance of the PMMA including 3%, 5% bone ash and PMMA including 5% keratin flour were higher than the values of the control group.

  7. Selection and validation of reference genes for gene expression analysis in apomictic and sexual Cenchrus ciliaris

    PubMed Central

    2013-01-01

    Background Apomixis is a naturally occurring asexual mode of seed reproduction resulting in offspring genetically identical to the maternal plant. Identifying differential gene expression patterns between apomictic and sexual plants is valuable to help deconstruct the trait. Quantitative RT-PCR (qRT-PCR) is a popular method for analyzing gene expression. Normalizing gene expression data using proper reference genes which show stable expression under investigated conditions is critical in qRT-PCR analysis. We used qRT-PCR to validate expression and stability of six potential reference genes (EF1alpha, EIF4A, UBCE, GAPDH, ACT2 and TUBA) in vegetative and reproductive tissues of B-2S and B-12-9 accessions of C. ciliaris. Findings Among tissue types evaluated, EF1alpha showed the highest level of expression while TUBA showed the lowest. When all tissue types were evaluated and compared between genotypes, EIF4A was the most stable reference gene. Gene expression stability for specific ovary stages of B-2S and B-12-9 was also determined. Except for TUBA, all other tested reference genes could be used for any stage-specific ovary tissue normalization, irrespective of the mode of reproduction. Conclusion Our gene expression stability assay using six reference genes, in sexual and apomictic accessions of C. ciliaris, suggests that EIF4A is the most stable gene across all tissue types analyzed. All other tested reference genes, with the exception of TUBA, could be used for gene expression comparison studies between sexual and apomictic ovaries over multiple developmental stages. This reference gene validation data in C. ciliaris will serve as an important base for future apomixis-related transcriptome data validation. PMID:24083672

  8. Comparative Study of Ultrasonication-Induced and Naturally Self-Assembled Silk Fibroin-Wool Keratin Hydrogel Biomaterials

    PubMed Central

    Vu, Trang; Xue, Ye; Vuong, Trinh; Erbe, Matthew; Bennet, Christopher; Palazzo, Ben; Popielski, Lucas; Rodriguez, Nelson; Hu, Xiao

    2016-01-01

    This study reports the formation of biocompatible hydrogels using protein polymers from natural silk cocoon fibroins and sheep wool keratins. Silk fibroin protein contains β-sheet secondary structures, allowing for the formation of physical cross-linkers in the hydrogels. Comparative studies were performed on two groups of samples. In the first group, ultrasonication was used to induce a quick gelation of a protein aqueous solution, enhancing the ability of Bombyx mori silk fibroin chains to quickly entrap the wool keratin protein molecules homogenously. In the second group, silk/keratin mixtures were left at room temperature for days, resulting in naturally-assembled gelled solutions. It was found that silk/wool blended solutions can form hydrogels at different mixing ratios, with perfectly interconnected gel structure when the wool content was less than 30 weight percent (wt %) for the first group (ultrasonication), and 10 wt % for the second group (natural gel). Differential scanning calorimetry (DSC) and temperature modulated DSC (TMDSC) were used to confirm that the fibroin/keratin hydrogel system was well-blended without phase separation. Fourier transform infrared spectroscopy (FTIR) was used to investigate the secondary structures of blended protein gels. It was found that intermolecular β-sheet contents significantly increase as the system contains more silk for both groups of samples, resulting in stable crystalline cross-linkers in the blended hydrogel structures. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to analyze the samples’ characteristic morphology on both micro- and nanoscales, which showed that ultrasonic waves can significantly enhance the cross-linker formation and avoid phase separation between silk and keratin molecules in the blended systems. With the ability to form cross-linkages non-chemically, these silk/wool hydrogels may be economically useful for various biomedical applications, thanks to the

  9. Anterior-posterior regionalized gene expression in the Ciona notochord

    PubMed Central

    Veeman, Michael

    2014-01-01

    Background In the simple ascidian chordate Ciona the signaling pathways and gene regulatory networks giving rise to initial notochord induction are largely understood and the mechanisms of notochord morphogenesis are being systematically elucidated. The notochord has generally been thought of as a non-compartmentalized or regionalized organ that is not finely patterned at the level of gene expression. Quantitative imaging methods have recently shown, however, that notochord cell size, shape and behavior vary consistently along the anterior-posterior (AP) axis. Results Here we screen candidate genes by whole mount in situ hybridization for potential AP asymmetry. We identify 4 genes that show non-uniform expression in the notochord. Ezrin/radixin/moesin (ERM) is expressed more strongly in the secondary notochord lineage than the primary. CTGF is expressed stochastically in a subset of notochord cells. A novel calmodulin-like gene (BCamL) is expressed more strongly at both the anterior and posterior tips of the notochord. A TGF-β ortholog is expressed in a gradient from posterior to anterior. The asymmetries in ERM, BCamL and TGF-β expression are evident even before the notochord cells have intercalated into a single-file column. Conclusions We conclude that the Ciona notochord is not a homogeneous tissue but instead shows distinct patterns of regionalized gene expression. PMID:24288133

  10. Genomic DNA-based absolute quantification of gene expression in Vitis

    USDA-ARS?s Scientific Manuscript database

    Many studies in which gene expression is quantified by polymerase chain reaction represent the expression of a gene of interest (GOI) relative to that of a reference gene (RG). Relative expression is founded on the assumptions that RG expression is stable across samples, treatments, organs, etc., an...

  11. Automated Discovery of Functional Generality of Human Gene Expression Programs

    PubMed Central

    Gerber, Georg K; Dowell, Robin D; Jaakkola, Tommi S; Gifford, David K

    2007-01-01

    An important research problem in computational biology is the identification of expression programs, sets of co-expressed genes orchestrating normal or pathological processes, and the characterization of the functional breadth of these programs. The use of human expression data compendia for discovery of such programs presents several challenges including cellular inhomogeneity within samples, genetic and environmental variation across samples, uncertainty in the numbers of programs and sample populations, and temporal behavior. We developed GeneProgram, a new unsupervised computational framework based on Hierarchical Dirichlet Processes that addresses each of the above challenges. GeneProgram uses expression data to simultaneously organize tissues into groups and genes into overlapping programs with consistent temporal behavior, to produce maps of expression programs, which are sorted by generality scores that exploit the automatically learned groupings. Using synthetic and real gene expression data, we showed that GeneProgram outperformed several popular expression analysis methods. We applied GeneProgram to a compendium of 62 short time-series gene expression datasets exploring the responses of human cells to infectious agents and immune-modulating molecules. GeneProgram produced a map of 104 expression programs, a substantial number of which were significantly enriched for genes involved in key signaling pathways and/or bound by NF-κB transcription factors in genome-wide experiments. Further, GeneProgram discovered expression programs that appear to implicate surprising signaling pathways or receptor types in the response to infection, including Wnt signaling and neurotransmitter receptors. We believe the discovered map of expression programs involved in the response to infection will be useful for guiding future biological experiments; genes from programs with low generality scores might serve as new drug targets that exhibit minimal “cross-talk,” and

  12. Caste- and development-associated gene expression in a lower termite

    PubMed Central

    Scharf, Michael E; Wu-Scharf, Dancia; Pittendrigh, Barry R; Bennett, Gary W

    2003-01-01

    Background Social insects such as termites express dramatic polyphenism (the occurrence of multiple forms in a species on the basis of differential gene expression) both in association with caste differentiation and between castes after differentiation. We have used cDNA macroarrays to compare gene expression between polyphenic castes and intermediary developmental stages of the termite Reticulitermes flavipes. Results We identified differentially expressed genes from nine ontogenic categories. Quantitative PCR was used to quantify precise differences in gene expression between castes and between intermediary developmental stages. We found worker and nymph-biased expression of transcripts encoding termite and endosymbiont cellulases; presoldier-biased expression of transcripts encoding the storage/hormone-binding protein vitellogenin; and soldier-biased expression of gene transcripts encoding two transcription/translation factors, two signal transduction factors and four cytoskeletal/muscle proteins. The two transcription/translation factors showed significant homology to the bicaudal and bric-a-brac developmental genes of Drosophila. Conclusions Our results show differential expression of regulatory, structural and enzyme-coding genes in association with termite castes and their developmental precursor stages. They also provide the first glimpse into how insect endosymbiont cellulase gene expression can vary in association with the caste of a host. These findings shed light on molecular processes associated with termite biology, polyphenism, caste differentiation and development and highlight potentially interesting variations in developmental themes between termites, other insects, and higher animals. PMID:14519197

  13. Xylella fastidiosa gene expression analysis by DNA microarrays.

    PubMed

    Travensolo, Regiane F; Carareto-Alves, Lucia M; Costa, Maria V C G; Lopes, Tiago J S; Carrilho, Emanuel; Lemos, Eliana G M

    2009-04-01

    Xylella fastidiosa genome sequencing has generated valuable data by identifying genes acting either on metabolic pathways or in associated pathogenicity and virulence. Based on available information on these genes, new strategies for studying their expression patterns, such as microarray technology, were employed. A total of 2,600 primer pairs were synthesized and then used to generate fragments using the PCR technique. The arrays were hybridized against cDNAs labeled during reverse transcription reactions and which were obtained from bacteria grown under two different conditions (liquid XDM(2) and liquid BCYE). All data were statistically analyzed to verify which genes were differentially expressed. In addition to exploring conditions for X. fastidiosa genome-wide transcriptome analysis, the present work observed the differential expression of several classes of genes (energy, protein, amino acid and nucleotide metabolism, transport, degradation of substances, toxins and hypothetical proteins, among others). The understanding of expressed genes in these two different media will be useful in comprehending the metabolic characteristics of X. fastidiosa, and in evaluating how important certain genes are for the functioning and survival of these bacteria in plants.

  14. A Compendium of Canine Normal Tissue Gene Expression

    PubMed Central

    Chen, Qing-Rong; Wen, Xinyu; Khan, Javed; Khanna, Chand

    2011-01-01

    Background Our understanding of disease is increasingly informed by changes in gene expression between normal and abnormal tissues. The release of the canine genome sequence in 2005 provided an opportunity to better understand human health and disease using the dog as clinically relevant model. Accordingly, we now present the first genome-wide, canine normal tissue gene expression compendium with corresponding human cross-species analysis. Methodology/Principal Findings The Affymetrix platform was utilized to catalogue gene expression signatures of 10 normal canine tissues including: liver, kidney, heart, lung, cerebrum, lymph node, spleen, jejunum, pancreas and skeletal muscle. The quality of the database was assessed in several ways. Organ defining gene sets were identified for each tissue and functional enrichment analysis revealed themes consistent with known physio-anatomic functions for each organ. In addition, a comparison of orthologous gene expression between matched canine and human normal tissues uncovered remarkable similarity. To demonstrate the utility of this dataset, novel canine gene annotations were established based on comparative analysis of dog and human tissue selective gene expression and manual curation of canine probeset mapping. Public access, using infrastructure identical to that currently in use for human normal tissues, has been established and allows for additional comparisons across species. Conclusions/Significance These data advance our understanding of the canine genome through a comprehensive analysis of gene expression in a diverse set of tissues, contributing to improved functional annotation that has been lacking. Importantly, it will be used to inform future studies of disease in the dog as a model for human translational research and provides a novel resource to the community at large. PMID:21655323

  15. Identification of differentially expressed genes in cucumber (Cucumis sativus L.) root under waterlogging stress by digital gene expression profile.

    PubMed

    Qi, Xiao-Hua; Xu, Xue-Wen; Lin, Xiao-Jian; Zhang, Wen-Jie; Chen, Xue-Hao

    2012-03-01

    High-throughput tag-sequencing (Tag-seq) analysis based on the Solexa Genome Analyzer platform was applied to analyze the gene expression profiling of cucumber plant at 5 time points over a 24h period of waterlogging treatment. Approximately 5.8 million total clean sequence tags per library were obtained with 143013 distinct clean tag sequences. Approximately 23.69%-29.61% of the distinct clean tags were mapped unambiguously to the unigene database, and 53.78%-60.66% of the distinct clean tags were mapped to the cucumber genome database. Analysis of the differentially expressed genes revealed that most of the genes were down-regulated in the waterlogging stages, and the differentially expressed genes mainly linked to carbon metabolism, photosynthesis, reactive oxygen species generation/scavenging, and hormone synthesis/signaling. Finally, quantitative real-time polymerase chain reaction using nine genes independently verified the tag-mapped results. This present study reveals the comprehensive mechanisms of waterlogging-responsive transcription in cucumber. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Ion channel gene expression predicts survival in glioma patients

    PubMed Central

    Wang, Rong; Gurguis, Christopher I.; Gu, Wanjun; Ko, Eun A; Lim, Inja; Bang, Hyoweon; Zhou, Tong; Ko, Jae-Hong

    2015-01-01

    Ion channels are important regulators in cell proliferation, migration, and apoptosis. The malfunction and/or aberrant expression of ion channels may disrupt these important biological processes and influence cancer progression. In this study, we investigate the expression pattern of ion channel genes in glioma. We designate 18 ion channel genes that are differentially expressed in high-grade glioma as a prognostic molecular signature. This ion channel gene expression based signature predicts glioma outcome in three independent validation cohorts. Interestingly, 16 of these 18 genes were down-regulated in high-grade glioma. This signature is independent of traditional clinical, molecular, and histological factors. Resampling tests indicate that the prognostic power of the signature outperforms random gene sets selected from human genome in all the validation cohorts. More importantly, this signature performs better than the random gene signatures selected from glioma-associated genes in two out of three validation datasets. This study implicates ion channels in brain cancer, thus expanding on knowledge of their roles in other cancers. Individualized profiling of ion channel gene expression serves as a superior and independent prognostic tool for glioma patients. PMID:26235283

  17. Base composition and expression level of human genes.

    PubMed

    Arhondakis, Stilianos; Auletta, Fabio; Torelli, Giuseppe; D'Onofrio, Giuseppe

    2004-01-21

    It is well known that the gene distribution is non-uniform in the human genome, reaching the highest concentration in the GC-rich isochores. Also the amino acid frequencies, and the hydrophobicity, of the corresponding encoded proteins are affected by the high GC level of the genes localized in the GC-rich isochores. It was hypothesized that the gene expression level as well is higher in GC-rich compared to GC-poor isochores [Mol. Biol. Evol. 10 (1993) 186]. Several features of human genes and proteins, namely expression level, coding and non-coding lengths, and hydrophobicity were investigated in the present paper. The results support the hypothesis reported above, since all the parameters so far studied converge to the same conclusion, that the average expression level of the GC-rich genes is significantly higher than that of the GC-poor genes.

  18. Gene expression patterns combined with bioinformatics analysis identify genes associated with cholangiocarcinoma.

    PubMed

    Li, Chen; Shen, Weixing; Shen, Sheng; Ai, Zhilong

    2013-12-01

    To explore the molecular mechanisms of cholangiocarcinoma (CC), microarray technology was used to find biomarkers for early detection and diagnosis. The gene expression profiles from 6 patients with CC and 5 normal controls were downloaded from Gene Expression Omnibus and compared. As a result, 204 differentially co-expressed genes (DCGs) in CC patients compared to normal controls were identified using a computational bioinformatics analysis. These genes were mainly involved in coenzyme metabolic process, peptidase activity and oxidation reduction. A regulatory network was constructed by mapping the DCGs to known regulation data. Four transcription factors, FOXC1, ZIC2, NKX2-2 and GCGR, were hub nodes in the network. In conclusion, this study provides a set of targets useful for future investigations into molecular biomarker studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Polyandry and sex-specific gene expression

    PubMed Central

    Mank, Judith E.; Wedell, Nina; Hosken, David J.

    2013-01-01

    Polyandry is widespread in nature, and has important evolutionary consequences for the evolution of sexual dimorphism and sexual conflict. Although many of the phenotypic consequences of polyandry have been elucidated, our understanding of the impacts of polyandry and mating systems on the genome is in its infancy. Polyandry can intensify selection on sexual characters and generate more intense sexual conflict. This has consequences for sequence evolution, but also for sex-biased gene expression, which acts as a link between mating systems, sex-specific selection and the evolution of sexual dimorphism. We discuss this and the remarkable confluence of sexual-conflict theory and patterns of gene expression, while also making predictions about transcription patterns, mating systems and sexual conflict. Gene expression is a key link in the genotype–phenotype chain, and although in its early stages, understanding the sexual selection–transcription relationship will provide significant insights into this critical association. PMID:23339238

  20. Novel expression of the stanniocalcin gene in fish.

    PubMed

    McCudden, C R; Kogon, M R; DiMattia, G E; Wagner, G F

    2001-10-01

    It is currently accepted that the fish stanniocalcin (STC) gene is expressed exclusively in the corpuscles of Stannius (CS), unique endocrine glands on the kidneys of bony fishes. In this study, we have re-examined the pattern of fish STC gene expression in the light of the recent evidence for widespread expression of the gene in mammals. Surprisingly, we found by Northern blotting that the fish gene was also expressed in the kidneys and gonads, in addition to the CS glands. Moreover, Southern blotting of RT-PCR products revealed STC mRNA transcripts in all tissues assayed, including brain, heart, gill, muscle and intestine. In situ hybridization studies using digoxigenin-labeled riboprobes localized STC mRNA to chondrocytes, and both mature and developing nephritic tubules. Immunocytochemical staining indicated that the STC protein was widespread in cells of the gill, kidney, brain, eye, pseudobranch and skin. We also characterized the salmon STC gene, establishing that it was comprised of five exons as opposed to four in mammals. A single transcription start site was identified by primer extension 99 bp upstream of the start codon. This is the first evidence of STC gene expression in fish tissues other than the CS glands and suggests that, as in mammals, fish STC operates via both local and endocrine pathways.

  1. The low noise limit in gene expression

    DOE PAGES

    Dar, Roy D.; Weinberger, Leor S.; Cox, Chris D.; ...

    2015-10-21

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiencymore » can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. Lastly, these results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes.« less

  2. Oxygen and tissue culture affect placental gene expression.

    PubMed

    Brew, O; Sullivan, M H F

    2017-07-01

    Placental explant culture is an important model for studying placental development and functions. We investigated the differences in placental gene expression in response to tissue culture, atmospheric and physiologic oxygen concentrations. Placental explants were collected from normal term (38-39 weeks of gestation) placentae with no previous uterine contractile activity. Placental transcriptomic expressions were evaluated with GeneChip ® Human Genome U133 Plus 2.0 arrays (Affymetrix). We uncovered sub-sets of genes that regulate response to stress, induction of apoptosis programmed cell death, mis-regulation of cell growth, proliferation, cell morphogenesis, tissue viability, and protection from apoptosis in cultured placental explants. We also identified a sub-set of genes with highly unstable pattern of expression after exposure to tissue culture. Tissue culture irrespective of oxygen concentration induced dichotomous increase in significant gene expression and increased enrichment of significant pathways and transcription factor targets (TFTs) including HIF1A. The effect was exacerbated by culture at atmospheric oxygen concentration, where further up-regulation of TFTs including PPARA, CEBPD, HOXA9 and down-regulated TFTs such as JUND/FOS suggest intrinsic heightened key biological and metabolic mechanisms such as glucose use, lipid biosynthesis, protein metabolism; apoptosis, inflammatory responses; and diminished trophoblast proliferation, differentiation, invasion, regeneration, and viability. These findings demonstrate that gene expression patterns differ between pre-culture and cultured explants, and the gene expression of explants cultured at atmospheric oxygen concentration favours stressed, pro-inflammatory and increased apoptotic transcriptomic response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Multicenter Clinical Trial of Keratin Biomaterial for Peripheral Nerve Regeneration

    DTIC Science & Technology

    2012-10-01

    Drug Evaluation Research (CDER), the Center for Biologics E valuation Research (CBER), and the Center for Devices and Radiological Health ( CDRH ) on May...Research (CBER) , and the Center for Devices and Radiological Health ( CDRH ) to clar ify the designation of the keratin hydrogel. During this m eeting

  4. VH gene expression and regulation in the mutant Alicia rabbit. Rescue of VHa2 allotype expression.

    PubMed

    Chen, H T; Alexander, C B; Young-Cooper, G O; Mage, R G

    1993-04-01

    Rabbits of the Alicia strain, derived from rabbits expressing the VHa2 allotype, have a mutation in the H chain locus that has a cis effect upon the expression of VHa2 and VHa- genes. A small deletion at the most J-proximal (3') end of the VH locus leads to low expression of all the genes on the entire chromosome in heterozygous ali mutants and altered relative expression of VH genes in homozygotes. To study VH gene expression and regulation, we used the polymerase chain reaction to amplify the VH genes expressed in spleens of young and adult wild-type and mutant Alicia rabbits. The cDNA from reverse transcription of splenic mRNA was amplified and polymerase chain reaction libraries were constructed and screened with oligonucleotides from framework regions 1 and 3, as well as JH. Thirty-three VH-positive clones were sequenced and analyzed. We found that in mutant Alicia rabbits, products of the first functional VH gene (VH4a2), (or VH4a2-like genes) were expressed in 2- to 8-wk-olds. Expression of both the VHx and VHy types of VHa- genes was also elevated but the relative proportions of VHx and VHy, especially VHx, decreased whereas the relative levels of expression of VH4a2 or VH4a2-like genes increased with age. Our results suggest that the appearance of sequences resembling that of the VH1a2, which is deleted in the mutant ali rabbits, could be caused by alterations of the sequences of the rearranged VH4a2 genes by gene conversions and/or rearrangement of upstream VH1a2-like genes later in development.

  5. The human cumulus--oocyte complex gene-expression profile

    PubMed Central

    Assou, Said; Anahory, Tal; Pantesco, Véronique; Le Carrour, Tanguy; Pellestor, Franck; Klein, Bernard; Reyftmann, Lionel; Dechaud, Hervé; De Vos, John; Hamamah, Samir

    2006-01-01

    BACKGROUND The understanding of the mechanisms regulating human oocyte maturation is still rudimentary. We have identified transcripts differentially expressed between immature and mature oocytes, and cumulus cells. METHODS Using oligonucleotides microarrays, genome wide gene expression was studied in pooled immature and mature oocytes or cumulus cells from patients who underwent IVF. RESULTS In addition to known genes such as DAZL, BMP15 or GDF9, oocytes upregulated 1514 genes. We show that PTTG3 and AURKC are respectively the securin and the Aurora kinase preferentially expressed during oocyte meiosis. Strikingly, oocytes overexpressed previously unreported growth factors such as TNFSF13/APRIL, FGF9, FGF14, and IL4, and transcription factors including OTX2, SOX15 and SOX30. Conversely, cumulus cells, in addition to known genes such as LHCGR or BMPR2, overexpressed cell-tocell signaling genes including TNFSF11/RANKL, numerous complement components, semaphorins (SEMA3A, SEMA6A, SEMA6D) and CD genes such as CD200. We also identified 52 genes progressively increasing during oocyte maturation, comprising CDC25A and SOCS7. CONCLUSION The identification of genes up and down regulated during oocyte maturation greatly improves our understanding of oocyte biology and will provide new markers that signal viable and competent oocytes. Furthermore, genes found expressed in cumulus cells are potential markers of granulosa cell tumors. PMID:16571642

  6. Broad Integration of Expression Maps and Co-Expression Networks Compassing Novel Gene Functions in the Brain

    PubMed Central

    Okamura-Oho, Yuko; Shimokawa, Kazuro; Nishimura, Masaomi; Takemoto, Satoko; Sato, Akira; Furuichi, Teiichi; Yokota, Hideo

    2014-01-01

    Using a recently invented technique for gene expression mapping in the whole-anatomy context, termed transcriptome tomography, we have generated a dataset of 36,000 maps of overall gene expression in the adult-mouse brain. Here, using an informatics approach, we identified a broad co-expression network that follows an inverse power law and is rich in functional interaction and gene-ontology terms. Our framework for the integrated analysis of expression maps and graphs of co-expression networks revealed that groups of combinatorially expressed genes, which regulate cell differentiation during development, were present in the adult brain and each of these groups was associated with a discrete cell types. These groups included non-coding genes of unknown function. We found that these genes specifically linked developmentally conserved groups in the network. A previously unrecognized robust expression pattern covering the whole brain was related to the molecular anatomy of key biological processes occurring in particular areas. PMID:25382412

  7. Application of community phylogenetic approaches to understand gene expression: differential exploration of venom gene space in predatory marine gastropods.

    PubMed

    Chang, Dan; Duda, Thomas F

    2014-06-05

    Predatory marine gastropods of the genus Conus exhibit substantial variation in venom composition both within and among species. Apart from mechanisms associated with extensive turnover of gene families and rapid evolution of genes that encode venom components ('conotoxins'), the evolution of distinct conotoxin expression patterns is an additional source of variation that may drive interspecific differences in the utilization of species' 'venom gene space'. To determine the evolution of expression patterns of venom genes of Conus species, we evaluated the expression of A-superfamily conotoxin genes of a set of closely related Conus species by comparing recovered transcripts of A-superfamily genes that were previously identified from the genomes of these species. We modified community phylogenetics approaches to incorporate phylogenetic history and disparity of genes and their expression profiles to determine patterns of venom gene space utilization. Less than half of the A-superfamily gene repertoire of these species is expressed, and only a few orthologous genes are coexpressed among species. Species exhibit substantially distinct expression strategies, with some expressing sets of closely related loci ('under-dispersed' expression of available genes) while others express sets of more disparate genes ('over-dispersed' expression). In addition, expressed genes show higher dN/dS values than either unexpressed or ancestral genes; this implies that expression exposes genes to selection and facilitates rapid evolution of these genes. Few recent lineage-specific gene duplicates are expressed simultaneously, suggesting that expression divergence among redundant gene copies may be established shortly after gene duplication. Our study demonstrates that venom gene space is explored differentially by Conus species, a process that effectively permits the independent and rapid evolution of venoms in these species.

  8. Finding gene regulatory network candidates using the gene expression knowledge base.

    PubMed

    Venkatesan, Aravind; Tripathi, Sushil; Sanz de Galdeano, Alejandro; Blondé, Ward; Lægreid, Astrid; Mironov, Vladimir; Kuiper, Martin

    2014-12-10

    Network-based approaches for the analysis of large-scale genomics data have become well established. Biological networks provide a knowledge scaffold against which the patterns and dynamics of 'omics' data can be interpreted. The background information required for the construction of such networks is often dispersed across a multitude of knowledge bases in a variety of formats. The seamless integration of this information is one of the main challenges in bioinformatics. The Semantic Web offers powerful technologies for the assembly of integrated knowledge bases that are computationally comprehensible, thereby providing a potentially powerful resource for constructing biological networks and network-based analysis. We have developed the Gene eXpression Knowledge Base (GeXKB), a semantic web technology based resource that contains integrated knowledge about gene expression regulation. To affirm the utility of GeXKB we demonstrate how this resource can be exploited for the identification of candidate regulatory network proteins. We present four use cases that were designed from a biological perspective in order to find candidate members relevant for the gastrin hormone signaling network model. We show how a combination of specific query definitions and additional selection criteria derived from gene expression data and prior knowledge concerning candidate proteins can be used to retrieve a set of proteins that constitute valid candidates for regulatory network extensions. Semantic web technologies provide the means for processing and integrating various heterogeneous information sources. The GeXKB offers biologists such an integrated knowledge resource, allowing them to address complex biological questions pertaining to gene expression. This work illustrates how GeXKB can be used in combination with gene expression results and literature information to identify new potential candidates that may be considered for extending a gene regulatory network.

  9. Zipf's Law in Gene Expression

    NASA Astrophysics Data System (ADS)

    Furusawa, Chikara; Kaneko, Kunihiko

    2003-02-01

    Using data from gene expression databases on various organisms and tissues, including yeast, nematodes, human normal and cancer tissues, and embryonic stem cells, we found that the abundances of expressed genes exhibit a power-law distribution with an exponent close to -1; i.e., they obey Zipf’s law. Furthermore, by simulations of a simple model with an intracellular reaction network, we found that Zipf’s law of chemical abundance is a universal feature of cells where such a network optimizes the efficiency and faithfulness of self-reproduction. These findings provide novel insights into the nature of the organization of reaction dynamics in living cells.

  10. Validation of reference genes for quantifying changes in gene expression in virus-infected tobacco.

    PubMed

    Baek, Eseul; Yoon, Ju-Yeon; Palukaitis, Peter

    2017-10-01

    To facilitate quantification of gene expression changes in virus-infected tobacco plants, eight housekeeping genes were evaluated for their stability of expression during infection by one of three systemically-infecting viruses (cucumber mosaic virus, potato virus X, potato virus Y) or a hypersensitive-response-inducing virus (tobacco mosaic virus; TMV) limited to the inoculated leaf. Five reference-gene validation programs were used to establish the order of the most stable genes for the systemically-infecting viruses as ribosomal protein L25 > β-Tubulin > Actin, and the least stable genes Ubiquitin-conjugating enzyme (UCE) < PP2A < GAPDH. For local infection by TMV, the most stable genes were EF1α > Cysteine protease > Actin, and the least stable genes were GAPDH < PP2A < UCE. Using two of the most stable and the two least stable validated reference genes, three defense responsive genes were examined to compare their relative changes in gene expression caused by each virus. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Dlx homeobox gene family expression in osteoclasts.

    PubMed

    Lézot, F; Thomas, B L; Blin-Wakkach, C; Castaneda, B; Bolanos, A; Hotton, D; Sharpe, P T; Heymann, D; Carles, G F; Grigoriadis, A E; Berdal, A

    2010-06-01

    Skeletal growth and homeostasis require the finely orchestrated secretion of mineralized tissue matrices by highly specialized cells, balanced with their degradation by osteoclasts. Time- and site-specific expression of Dlx and Msx homeobox genes in the cells secreting these matrices have been identified as important elements in the regulation of skeletal morphology. Such specific expression patterns have also been reported in osteoclasts for Msx genes. The aim of the present study was to establish the expression patterns of Dlx genes in osteoclasts and identify their function in regulating skeletal morphology. The expression patterns of all Dlx genes were examined during the whole osteoclastogenesis using different in vitro models. The results revealed that Dlx1 and Dlx2 are the only Dlx family members with a possible function in osteoclastogenesis as well as in mature osteoclasts. Dlx5 and Dlx6 were detected in the cultures but appear to be markers of monocytes and their derivatives. In vivo, Dlx2 expression in osteoclasts was examined using a Dlx2/LacZ transgenic mouse. Dlx2 is expressed in a subpopulation of osteoclasts in association with tooth, brain, nerve, and bone marrow volumetric growths. Altogether the present data suggest a role for Dlx2 in regulation of skeletal morphogenesis via functions within osteoclasts. (c) 2010 Wiley-Liss, Inc.

  12. Keratin 17 in premalignant and malignant squamous lesions of the cervix: proteomic discovery and immunohistochemical validation as a diagnostic and prognostic biomarker

    PubMed Central

    Escobar-Hoyos, Luisa F; Yang, Jie; Zhu, Jiawen; Cavallo, Julie-Ann; Zhai, Haiyan; Burke, Stephanie; Koller, Antonius; Chen, Emily I; Shroyer, Kenneth R

    2014-01-01

    Most previously described immunohistochemical markers of cervical high-grade squamous intraepithelial lesion (HSIL) and squamous cell carcinoma may help to improve diagnostic accuracy but have a minimal prognostic value. The goals of the current study were to identify and validate novel candidate biomarkers that could potentially improve diagnostic and prognostic accuracy for cervical HSIL and squamous cell carcinoma. Microdissected tissue sections from formalin-fixed paraffin-embedded normal ectocervical squamous mucosa, low-grade squamous intraepithelial lesion (LSIL), HSIL and squamous cell carcinoma sections were analyzed by mass spectrometry-based shotgun proteomics for biomarker discovery. The diagnostic specificity of candidate biomarkers was subsequently evaluated by immunohistochemical analysis of tissue microarrays. Among 1750 proteins identified by proteomic analyses, keratin 4 (KRT4) and keratin 17 (KRT17) showed reciprocal patterns of expression in the spectrum of cases ranging from normal ectocervical squamous mucosa to squamous cell carcinoma. Immunohistochemical studies confirmed that KRT4 expression was significantly decreased in squamous cell carcinoma compared with the other diagnostic categories. By contrast, KRT17 expression was significantly increased in HSIL and squamous cell carcinoma compared with normal ectocervical squamous mucosa and LSIL. KRT17 was also highly expressed in immature squamous metaplasia and in endocervical reserve cells but was generally not detected in mature squamous metaplasia. Furthermore, high levels of KRT17 expression were significantly associated with poor survival of squamous cell carcinoma patients (Hazard ratio = 14.76, P = 0.01). In summary, both KRT4 and KRT17 expressions are related to the histopathology of the cervical squamous mucosa; KRT17 is highly overexpressed in immature squamous metaplasia, in HSIL, and in squamous cell carcinoma and the level of KRT17 in squamous cell carcinoma may help to identify

  13. Keratin-based products for effective wound care management in superficial and partial thickness burns injuries.

    PubMed

    Loan, Fiona; Cassidy, Sharon; Marsh, Clive; Simcock, Jeremy

    2016-05-01

    This n=40 cohort study on superficial and partial thickness burns compares novel keratin-based products with the standard products used at our facility. The keratin products are found to facilitate healing with minimal scarring, be well tolerated with minimal pain and itch, be easy to use for the health professional and be cost effective for the health care provider. For these reasons they are being adopted into use at our facility. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  14. Sex-specific gene expression during asexual development of Neurospora crassa.

    PubMed

    Wang, Zheng; Kin, Koryu; López-Giráldez, Francesc; Johannesson, Hanna; Townsend, Jeffrey P

    2012-07-01

    The impact of loci that determine sexual identity upon the asexual, dominant stage of fungal life history has been well studied. To investigate their impact, expression differences between strains of different mating type during asexual development were assayed, with RNA sampled from otherwise largely isogenic mat A and mat a strains of Neurospora crassa at early, middle, and late clonal stages of development. We observed significant differences in overall gene expression between mating types across clonal development, especially at late development stages. The expression levels of mating-type genes and pheromone genes were assayed by reverse transcription and quantitative PCR, revealing expression of pheromone and receptor genes in strains of both mating types in all development stages, and revealing that mating type (mat) genes were increasingly expressed over the course of asexual development. Interestingly, among differentially expressed genes, the mat A genotype more frequently exhibited a higher expression level than mat a, and demonstrated greater transcriptional regulatory dynamism. Significant up-regulation of expression was observed for many late light-responsive genes at late asexual development stages. Further investigation of the impact of light and the roles of light response genes in asexual development of both mating types are warranted. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Codon usage and amino acid usage influence genes expression level.

    PubMed

    Paul, Prosenjit; Malakar, Arup Kumar; Chakraborty, Supriyo

    2018-02-01

    Highly expressed genes in any species differ in the usage frequency of synonymous codons. The relative recurrence of an event of the favored codon pair (amino acid pairs) varies between gene and genomes due to varying gene expression and different base composition. Here we propose a new measure for predicting the gene expression level, i.e., codon plus amino bias index (CABI). Our approach is based on the relative bias of the favored codon pair inclination among the genes, illustrated by analyzing the CABI score of the Medicago truncatula genes. CABI showed strong correlation with all other widely used measures (CAI, RCBS, SCUO) for gene expression analysis. Surprisingly, CABI outperforms all other measures by showing better correlation with the wet-lab data. This emphasizes the importance of the neighboring codons of the favored codon in a synonymous group while estimating the expression level of a gene.

  16. Profile of the genes expressed in the human peripheral retina, macula, and retinal pigment epithelium determined through serial analysis of gene expression (SAGE)

    PubMed Central

    Sharon, Dror; Blackshaw, Seth; Cepko, Constance L.; Dryja, Thaddeus P.

    2002-01-01

    We used the serial analysis of gene expression (SAGE) technique to catalogue and measure the relative levels of expression of the genes expressed in the human peripheral retina, macula, and retinal pigment epithelium (RPE) from one or both of two humans, aged 88 and 44 years. The cone photoreceptor contribution to all transcription in the retina was found to be similar in the macula versus the retinal periphery, whereas the rod contribution was greater in the periphery versus the macula. Genes encoding structural proteins for axons were found to be expressed at higher levels in the macula versus the retinal periphery, probably reflecting the large proportion of ganglion cells in the central retina. In comparison with the younger eye, the peripheral retina of the older eye had a substantially higher proportion of mRNAs from genes encoding proteins involved in iron metabolism or protection against oxidative damage and a substantially lower proportion of mRNAs from genes encoding proteins involved in rod phototransduction. These differences may reflect the difference in age between the two donors or merely interindividual variation. The RPE library had numerous previously unencountered tags, suggesting that this cell type has a large, idiosyncratic repertoire of expressed genes. Comparison of these libraries with 100 reported nonocular SAGE libraries revealed 89 retina-specific or enriched genes expressed at substantial levels, of which 14 are known to cause a retinal disease and 53 are RPE-specific genes. We expect that these libraries will serve as a resource for understanding the relative expression levels of genes in the retina and the RPE and for identifying additional disease genes. PMID:11756676

  17. Chemical Approaches to Control Gene Expression

    PubMed Central

    Gottesfeld, Joel M.; Turner, James M.; Dervan, Peter B.

    2000-01-01

    A current goal in molecular medicine is the development of new strategies to interfere with gene expression in living cells in the hope that novel therapies for human disease will result from these efforts. This review focuses on small-molecule or chemical approaches to manipulate gene expression by modulating either transcription of messenger RNA-coding genes or protein translation. The molecules under study include natural products, designed ligands, and compounds identified through functional screens of combinatorial libraries. The cellular targets for these molecules include DNA, messenger RNA, and the protein components of the transcription, RNA processing, and translational machinery. Studies with model systems have shown promise in the inhibition of both cellular and viral gene transcription and mRNA utilization. Moreover, strategies for both repression and activation of gene transcription have been described. These studies offer promise for treatment of diseases of pathogenic (viral, bacterial, etc.) and cellular origin (cancer, genetic diseases, etc.). PMID:11097426

  18. [Preliminary analysis of retinal gene expression profile of diabetic rat].

    PubMed

    Mei, Yan; Zhou, Hong-ying; Xiang, Tao; Lu, You-guang; Li, Ai-dong; Tang, En-jie; Yang, Hui-jun

    2005-10-01

    Establishing the retinal gene expression profiles of non-diabetic rat and diabetic rat and comparing the profiles in order to analyze the possible genes related with diabetic retinopathy. The whole retinal transcriptional fragments of non-diabetic rat and 8-week diabetic rat were obtained by restriction fragments differential display-PCR (RFDD-PCR). Bioinformatic analysis of retinal gene expression was performed using soft wares, including Fragment Analysis. After comparison of the expression profiles, the related gene fragments of diabetic retinopathy were initially selected as the target gene of further approach. A total of 3639 significant fragments were obtained. By means of more than 3-fold contrast of fluorescent intensity as the differential expression standard, the authors got 840 differential fragments, accounting for 23.08% of the expressed numbers and including 5 visual related genes, 13 excitatory neruotransmitter genes and 3 inhibitory neurotransmitter genes. At the 8th week, the expression of Rhodopsin kinase, beta-arrestin, Phosducinìrod photoreceptor cGMP-gated channel and Rpe65 as well as iGlu R1-4 were down-regulated. mGluRs and GABA-Rs were all up-regulated, whereas the expression of GlyR was unchanged. These results prompt again that the changes in retinal nervous layer of rat have occurred at an early stage of diabetes. The genes expression pattern of visual related genes and excitatory and inhibitory neurotransmitters in rat diabetic retina have been involved in neuro-dysfunctions of diabetic retina.

  19. Gene Expression Profiling in the Hibernating Primate, Cheirogaleus Medius

    PubMed Central

    Faherty, Sheena L.; Villanueva-Cañas, José Luis; Klopfer, Peter H.; Albà, M. Mar; Yoder, Anne D.

    2016-01-01

    Hibernation is a complex physiological response that some mammalian species employ to evade energetic demands. Previous work in mammalian hibernators suggests that hibernation is activated not by a set of genes unique to hibernators, but by differential expression of genes that are present in all mammals. This question of universal genetic mechanisms requires further investigation and can only be tested through additional investigations of phylogenetically dispersed species. To explore this question, we use RNA-Seq to investigate gene expression dynamics as they relate to the varying physiological states experienced throughout the year in a group of primate hibernators—Madagascar’s dwarf lemurs (genus Cheirogaleus). In a novel experimental approach, we use longitudinal sampling of biological tissues as a method for capturing gene expression profiles from the same individuals throughout their annual hibernation cycle. We identify 90 candidate genes that have variable expression patterns when comparing two active states (Active 1 and Active 2) with a torpor state. These include genes that are involved in metabolic pathways, feeding behavior, and circadian rhythms, as might be expected to correlate with seasonal physiological state changes. The identified genes appear to be critical for maintaining the health of an animal that undergoes prolonged periods of metabolic depression concurrent with the hibernation phenotype. By focusing on these differentially expressed genes in dwarf lemurs, we compare gene expression patterns in previously studied mammalian hibernators. Additionally, by employing evolutionary rate analysis, we find that hibernation-related genes do not evolve under positive selection in hibernating species relative to nonhibernators. PMID:27412611

  20. α-keratin/Alginate Biosorbent for Removal of Methylene Blue on Aqueous Solution in a Batch System

    NASA Astrophysics Data System (ADS)

    Fadillah, G.; Putri, E. N. K.; Febrianastuti, S.; Munawaroh, H.; Purnawan, C.; Wahyuningsih, S.

    2018-03-01

    Methylene Blue (MB) is a cationic dyes which is commonly used in textile industries for coloring agent. The precence of MB in water caused some negative effect on the environment and human health. Many common technologies such as membrane filtration, electrophoresis and adsorption have been widely empolyed for removal of MB in water, but the adsorption technique still has advantages than the others. In this study, removal of MB used a biosorbent α-keratin/alginate (KA). The biosorbent KA was prepared by using the encapsulation technique in CaCl2 2 % (w/v) solution. The biosorbent was characterized by Fourier Transform Infrared (FTIR) and Scanning Electron Microscope (SEM). The effect of composition of α-keratin and alginate, the pH of solution and contact time on the adsorption were investigated. The optimum adsorption of MB in aqueous solution was found at the composition of α-keratin and alginate of 1:2 (w/w), the pH at 5.0 and contact time at 4 hours. The adsorption of MB on KA biosorbent was comparatively higher than α-keratin and alginate only. Adsorption of MB dyes in aqueous solution followed the Langmuir adsorption isotherm, and the dynamic adsorption model could be described through a pseudo-second order kinetics.

  1. Metadata Analysis of Phanerochaete chrysosporium Gene Expression Data Identified Common CAZymes Encoding Gene Expression Profiles Involved in Cellulose and Hemicellulose Degradation.

    PubMed

    Kameshwar, Ayyappa Kumar Sista; Qin, Wensheng

    2017-01-01

    In literature, extensive studies have been conducted on popular wood degrading white rot fungus, Phanerochaete chrysosporium about its lignin degrading mechanisms compared to the cellulose and hemicellulose degrading abilities. This study delineates cellulose and hemicellulose degrading mechanisms through large scale metadata analysis of P. chrysosporium gene expression data (retrieved from NCBI GEO) to understand the common expression patterns of differentially expressed genes when cultured on different growth substrates. Genes encoding glycoside hydrolase classes commonly expressed during breakdown of cellulose such as GH-5,6,7,9,44,45,48 and hemicellulose are GH-2,8,10,11,26,30,43,47 were found to be highly expressed among varied growth conditions including simple customized and complex natural plant biomass growth mediums. Genes encoding carbohydrate esterase class enzymes CE (1,4,8,9,15,16) polysaccharide lyase class enzymes PL-8 and PL-14, and glycosyl transferases classes GT (1,2,4,8,15,20,35,39,48) were differentially expressed in natural plant biomass growth mediums. Based on these results, P. chrysosporium, on natural plant biomass substrates was found to express lignin and hemicellulose degrading enzymes more than cellulolytic enzymes except GH-61 (LPMO) class enzymes, in early stages. It was observed that the fate of P. chrysosporium transcriptome is significantly affected by the wood substrate provided. We believe, the gene expression findings in this study plays crucial role in developing genetically efficient microbe with effective cellulose and hemicellulose degradation abilities.

  2. Anterior-posterior regionalized gene expression in the Ciona notochord.

    PubMed

    Reeves, Wendy; Thayer, Rachel; Veeman, Michael

    2014-04-01

    In the simple ascidian chordate Ciona, the signaling pathways and gene regulatory networks giving rise to initial notochord induction are largely understood and the mechanisms of notochord morphogenesis are being systematically elucidated. The notochord has generally been thought of as a non-compartmentalized or regionalized organ that is not finely patterned at the level of gene expression. Quantitative imaging methods have recently shown, however, that notochord cell size, shape, and behavior vary consistently along the anterior-posterior (AP) axis. Here we screen candidate genes by whole mount in situ hybridization for potential AP asymmetry. We identify 4 genes that show non-uniform expression in the notochord. Ezrin/radixin/moesin (ERM) is expressed more strongly in the secondary notochord lineage than the primary. CTGF is expressed stochastically in a subset of notochord cells. A novel calmodulin-like gene (BCamL) is expressed more strongly at both the anterior and posterior tips of the notochord. A TGF-β ortholog is expressed in a gradient from posterior to anterior. The asymmetries in ERM, BCamL, and TGF-β expression are evident even before the notochord cells have intercalated into a single-file column. We conclude that the Ciona notochord is not a homogeneous tissue but instead shows distinct patterns of regionalized gene expression. Copyright © 2013 Wiley Periodicals, Inc.

  3. Evaluation of Allelic Expression of Imprinted Genes in Adult Human Blood

    PubMed Central

    Frost, Jennifer M.; Monk, Dave; Stojilkovic-Mikic, Taita; Woodfine, Kathryn; Chitty, Lyn S.; Murrell, Adele; Stanier, Philip; Moore, Gudrun E.

    2010-01-01

    Background Imprinted genes are expressed from only one allele in a parent-of-origin dependent manner. Loss of imprinted (LOI) expression can result in a variety of human disorders and is frequently reported in cancer. Biallelic expression of imprinted genes in adult blood has been suggested as a useful biomarker and is currently being investigated in colorectal cancer. In general, the expression profiles of imprinted genes are well characterised during human and mouse fetal development, but not in human adults. Methodology/Principal Findings We investigated quantitative expression of 36 imprinted genes in adult human peripheral blood leukocytes obtained from healthy individuals. Allelic expression was also investigated in B and T lymphocytes and myeloid cells. We found that 21 genes were essentially undetectable in adult blood. Only six genes were demonstrably monoallelic, and most importantly, we found that nine genes were either biallelic or showed variable expression in different individuals. Separated leukocyte populations showed the same expression patterns as whole blood. Differential methylation at each of the imprinting control loci analysed was maintained, including regions that contained biallelically expressed genes. This suggests in some cases methylation has become uncoupled from its role in regulating gene expression. Conclusions/Significance We conclude that only a limited set of imprinted genes, including IGF2 and SNRPN, may be useful for LOI cancer biomarker studies. In addition, blood is not a good tissue to use for the discovery of new imprinted genes. Finally, lymphocyte DNA methylation status in the adult may not always be a reliable indicator of monoallelic gene expression. PMID:21042416

  4. DNA-Demethylase Regulated Genes Show Methylation-Independent Spatiotemporal Expression Patterns

    PubMed Central

    Schumann, Ulrike; Lee, Joanne; Kazan, Kemal; Ayliffe, Michael; Wang, Ming-Bo

    2017-01-01

    Recent research has indicated that a subset of defense-related genes is downregulated in the Arabidopsis DNA demethylase triple mutant rdd (ros1 dml2 dml3) resulting in increased susceptibility to the fungal pathogen Fusarium oxysporum. In rdd plants these downregulated genes contain hypermethylated transposable element sequences (TE) in their promoters, suggesting that this methylation represses gene expression in the mutant and that these sequences are actively demethylated in wild-type plants to maintain gene expression. In this study, the tissue-specific and pathogen-inducible expression patterns of rdd-downregulated genes were investigated and the individual role of ROS1, DML2, and DML3 demethylases in these spatiotemporal regulation patterns was determined. Large differences in defense gene expression were observed between pathogen-infected and uninfected tissues and between root and shoot tissues in both WT and rdd plants, however, only subtle changes in promoter TE methylation patterns occurred. Therefore, while TE hypermethylation caused decreased gene expression in rdd plants it did not dramatically effect spatiotemporal gene regulation, suggesting that this latter regulation is largely methylation independent. Analysis of ros1-3, dml2-1, and dml3-1 single gene mutant lines showed that promoter TE hypermethylation and defense-related gene repression was predominantly, but not exclusively, due to loss of ROS1 activity. These data demonstrate that DNA demethylation of TE sequences, largely by ROS1, promotes defense-related gene expression but does not control spatiotemporal expression in Arabidopsis. Summary: Ros1-mediated DNA demethylation of promoter transposable elements is essential for activation of defense-related gene expression in response to fungal infection in Arabidopsis thaliana. PMID:28894455

  5. Expression pattern of circadian genes and steroidogenesis-related genes after testosterone stimulation in the human ovary.

    PubMed

    Chen, Minghui; Xu, Yanwen; Miao, Benyu; Zhao, Hui; Luo, Lu; Shi, Huijuan; Zhou, Canquan

    2016-09-10

    Previous studies have shown that circadian genes might be involved in the development of polycystic ovarian syndrome (PCOS). Hyperandrogenism is a hallmark feature of PCOS. However, the effect of hyperandrogenism on circadian gene expression in human granulosa cells is unknown, and the general expression pattern of circadian genes in the human ovary is unclear. Expression of the circadian proteins CLOCK and PER2 in human ovaries was observed by immunohistochemistry. The mRNA expression patterns of the circadian genes CLOCK, PER2, and BMAL1, and the steroidogenesis-related genes STAR, CYP11A1, HSD3B2, and CYP19A1 in cultured human luteinized granulosa cells were analyzed over the course of 48 h after testosterone treatment by quantitative polymerase chain reaction. Immunostaining of CLOCK and PER2 protein was detected in the granulosa cells of dominant antral follicles but was absent in the primordial, primary, or preantral follicles of human ovaries. After testosterone stimulation, expression of PER2 showed an oscillating pattern, with two peaks occurring at the 24th and 44th hours; expression of CLOCK increased significantly to the peak at the 24th hour, whereas expression of BMAL1 did not change significantly over time in human luteinized granulosa cells. Among the four steroidogenesis-related genes evaluated, only STAR displayed an oscillating expression pattern with two peaks occurring at the 24th and 40th hours after testosterone stimulation. Circadian genes are expressed in the dominant antral follicles of the human ovary. Oscillating expression of the circadian gene PER2 can be induced by testosterone in human granulosa cells in vitro. Expression of STAR also displayed an oscillating pattern after testosterone stimulation. Our results indicate a potential relationship between the circadian clock and steroidogenesis in the human ovary, and demonstrate the effect of testosterone on circadian gene expression in granulosa cells.

  6. The mouse forkhead gene Foxp2 modulates expression of the lung genes.

    PubMed

    Yang, Zhi; Hikosaka, Keisuke; Sharkar, Mohammad T K; Tamakoshi, Tomoki; Chandra, Abhishek; Wang, Bo; Itakura, Tatsuo; Xue, XiaoDong; Uezato, Tadayoshi; Kimura, Wataru; Miura, Naoyuki

    2010-07-03

    Foxp2 is expressed in the lung during mouse development. A monoclonal anti-mouse Foxp2 antibody was created to determine the expression pattern in the developing lung. Next, transcriptional control of two lung genes, CC10 and surfactant protein C (SPC) genes, by Foxp2 was investigated in H441 and A549 cells. Thirdly, expression patterns of Foxp2 and Foxf2 were compared in the developing lung. Finally, Foxp2 expression was determined in the Foxf2-null mice. Immunohistochemical staining and in situ hybridization were applied to the sections of lungs in the developing embryos. Monoclonal anti-Foxp2 antibody demonstrated that Foxp2 was expressed in the bronchial epithelium at E10.5 and its expression became restricted to the distal portion of the elongating bronchiolar epithelium and finally to type II alveolar epithelial cells around birth and in the adult. Foxp2 activated the SPC gene promoter in the presence of Nkx2.1 in A549 cells while it repressed the CC10 gene promoter in H441 cells. Next, the expression domains of the Foxp2 and Foxf2 were found to be exclusive in the lung. Finally, the expression of Foxp2 did not change in the lung of Foxf2-null mice. The Foxp2 protein is expressed in the growing distal edge of airway epithelium. When the bronchiolus elongates, Foxp2 suppresses CC10 expression. When the lung alveolus is formed, Foxp2 modulates the Nkx2.1-mediated SPC expression in type II alveolar cells. Foxp2 and Foxf2 independently play distinct roles in the alveoli and the mesenchyme, respectively. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  7. Using RNA-Seq data to select refence genes for normalizing gene expression in apple roots

    USDA-ARS?s Scientific Manuscript database

    Gene expression in apple roots in response to various stress conditions is a less-explored research subject. Reliable reference genes for normalizing quantitative gene expression data have not been carefully investigated. In this study, the suitability of a set of 15 apple genes were evaluated for t...

  8. The complexity of gene expression dynamics revealed by permutation entropy

    PubMed Central

    2010-01-01

    Background High complexity is considered a hallmark of living systems. Here we investigate the complexity of temporal gene expression patterns using the concept of Permutation Entropy (PE) first introduced in dynamical systems theory. The analysis of gene expression data has so far focused primarily on the identification of differentially expressed genes, or on the elucidation of pathway and regulatory relationships. We aim to study gene expression time series data from the viewpoint of complexity. Results Applying the PE complexity metric to abiotic stress response time series data in Arabidopsis thaliana, genes involved in stress response and signaling were found to be associated with the highest complexity not only under stress, but surprisingly, also under reference, non-stress conditions. Genes with house-keeping functions exhibited lower PE complexity. Compared to reference conditions, the PE of temporal gene expression patterns generally increased upon stress exposure. High-complexity genes were found to have longer upstream intergenic regions and more cis-regulatory motifs in their promoter regions indicative of a more complex regulatory apparatus needed to orchestrate their expression, and to be associated with higher correlation network connectivity degree. Arabidopsis genes also present in other plant species were observed to exhibit decreased PE complexity compared to Arabidopsis specific genes. Conclusions We show that Permutation Entropy is a simple yet robust and powerful approach to identify temporal gene expression profiles of varying complexity that is equally applicable to other types of molecular profile data. PMID:21176199

  9. Functional Conservation of MIKC*-Type MADS Box Genes in Arabidopsis and Rice Pollen Maturation[C][W

    PubMed Central

    Liu, Yuan; Cui, Shaojie; Wu, Feng; Yan, Shuo; Lin, Xuelei; Du, Xiaoqiu; Chong, Kang; Schilling, Susanne; Theißen, Günter; Meng, Zheng

    2013-01-01

    There are two groups of MADS intervening keratin-like and C-terminal (MIKC)-type MADS box genes, MIKCC type and MIKC* type. In seed plants, the MIKCC type shows considerable diversity, but the MIKC* type has only two subgroups, P- and S-clade, which show conserved expression in the gametophyte. To examine the functional conservation of MIKC*-type genes, we characterized all three rice (Oryza sativa) MIKC*-type genes. All three genes are specifically expressed late in pollen development. The single knockdown or knockout lines, respectively, of the S-clade MADS62 and MADS63 did not show a mutant phenotype, but lines in which both S-clade genes were affected showed severe defects in pollen maturation and germination, as did knockdown lines of MADS68, the only P-clade gene in rice. The rice MIKC*-type proteins form strong heterodimeric complexes solely with partners from the other subclade; these complexes specifically bind to N10-type C-A-rich-G-boxes in vitro and regulate downstream gene expression by binding to N10-type promoter motifs. The rice MIKC* genes have a much lower degree of functional redundancy than the Arabidopsis thaliana MIKC* genes. Nevertheless, our data indicate that the function of heterodimeric MIKC*-type protein complexes in pollen development has been conserved since the divergence of monocots and eudicots, roughly 150 million years ago. PMID:23613199

  10. Gene expression studies of reference genes for quantitative real-time PCR: an overview in insects.

    PubMed

    Shakeel, Muhammad; Rodriguez, Alicia; Tahir, Urfa Bin; Jin, Fengliang

    2018-02-01

    Whenever gene expression is being examined, it is essential that a normalization process is carried out to eliminate non-biological variations. The use of reference genes, such as glyceraldehyde-3-phosphate dehydrogenase, actin, and ribosomal protein genes, is the usual method of choice for normalizing gene expression. Although reference genes are used to normalize target gene expression, a major problem is that the stability of these genes differs among tissues, developmental stages, species, and responses to abiotic factors. Therefore, the use and validation of multiple reference genes are required. This review discusses the reasons that why RT-qPCR has become the preferred method for validating results of gene expression profiles, the use of specific and non-specific dyes and the importance of use of primers and probes for qPCR as well as to discuss several statistical algorithms developed to help the validation of potential reference genes. The conflicts arising in the use of classical reference genes in gene normalization and their replacement with novel references are also discussed by citing the high stability and low stability of classical and novel reference genes under various biotic and abiotic experimental conditions by employing various methods applied for the reference genes amplification.

  11. Maternal residential air pollution and placental imprinted gene expression.

    PubMed

    Kingsley, Samantha L; Deyssenroth, Maya A; Kelsey, Karl T; Awad, Yara Abu; Kloog, Itai; Schwartz, Joel D; Lambertini, Luca; Chen, Jia; Marsit, Carmen J; Wellenius, Gregory A

    2017-11-01

    Maternal exposure to air pollution is associated with reduced fetal growth, but its relationship with expression of placental imprinted genes (important regulators of fetal growth) has not yet been studied. To examine relationships between maternal residential air pollution and expression of placental imprinted genes in the Rhode Island Child Health Study (RICHS). Women-infant pairs were enrolled following delivery between 2009 and 2013. We geocoded maternal residential addresses at delivery, estimated daily levels of fine particulate matter (PM 2.5 ; n=355) and black carbon (BC; n=336) using spatial-temporal models, and estimated residential distance to nearest major roadway (n=355). Using linear regression models we investigated the associations between each exposure metric and expression of nine candidate genes previously associated with infant birthweight in RICHS, with secondary analyses of a panel of 108 imprinted genes expressed in the placenta. We also explored effect measure modification by infant sex. PM 2.5 and BC were associated with altered expression for seven and one candidate genes, respectively, previously linked with birthweight in this cohort. Adjusting for multiple comparisons, we found that PM 2.5 and BC were associated with changes in expression of 41 and 12 of 108 placental imprinted genes, respectively. Infant sex modified the association between PM 2.5 and expression of CHD7 and between proximity to major roadways and expression of ZDBF2. We found that maternal exposure to residential PM 2.5 and BC was associated with changes in placental imprinted gene expression, which suggests a plausible line of investigation of how air pollution affects fetal growth and development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Expression profiles of key phenylpropanoid genes during Vanilla planifolia pod development reveal a positive correlation between PAL gene expression and vanillin biosynthesis.

    PubMed

    Fock-Bastide, Isabelle; Palama, Tony Lionel; Bory, Séverine; Lécolier, Aurélie; Noirot, Michel; Joët, Thierry

    2014-01-01

    In Vanilla planifolia pods, development of flavor precursors is dependent on the phenylpropanoid pathway. The distinctive vanilla aroma is produced by numerous phenolic compounds of which vanillin is the most important. Because of the economic importance of vanilla, vanillin biosynthetic pathways have been extensively studied but agreement has not yet been reached on the processes leading to its accumulation. In order to explore the transcriptional control exerted on these pathways, five key phenylpropanoid genes expressed during pod development were identified and their mRNA accumulation profiles were evaluated during pod development and maturation using quantitative real-time PCR. As a prerequisite for expression analysis using qRT-PCR, five potential reference genes were tested, and two genes encoding Actin and EF1 were shown to be the most stable reference genes for accurate normalization during pod development. For the first time, genes encoding a phenylalanine ammonia-lyase (VpPAL1) and a cinnamate 4-hydroxylase (VpC4H1) were identified in vanilla pods and studied during maturation. Among phenylpropanoid genes, differential regulation was observed from 3 to 8 months after pollination. VpPAL1 was gradually up-regulated, reaching the maximum expression level at maturity. In contrast, genes encoding 4HBS, C4H, OMT2 and OMT3 did not show significant increase in expression levels after the fourth month post-pollination. Expression profiling of these key phenylpropanoid genes is also discussed in light of accumulation patterns for key phenolic compounds. Interestingly, VpPAL1 gene expression was shown to be positively correlated to maturation and vanillin accumulation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  13. Ebola virus infection induces irregular dendritic cell gene expression.

    PubMed

    Melanson, Vanessa R; Kalina, Warren V; Williams, Priscilla

    2015-02-01

    Filoviruses subvert the human immune system in part by infecting and replicating in dendritic cells (DCs). Using gene arrays, a phenotypic profile of filovirus infection in human monocyte-derived DCs was assessed. Monocytes from human donors were cultured in GM-CSF and IL-4 and were infected with Ebola virus Kikwit variant for up to 48 h. Extracted DC RNA was analyzed on SuperArray's Dendritic and Antigen Presenting Cell Oligo GEArray and compared to uninfected controls. Infected DCs exhibited increased expression of cytokine, chemokine, antiviral, and anti-apoptotic genes not seen in uninfected controls. Significant increases of intracellular antiviral and MHC I and II genes were also noted in EBOV-infected DCs. However, infected DCs failed to show any significant difference in co-stimulatory T-cell gene expression from uninfected DCs. Moreover, several chemokine genes were activated, but there was sparse expression of chemokine receptors that enabled activated DCs to home to lymph nodes. Overall, statistically significant expression of several intracellular antiviral genes was noted, which may limit viral load but fails to stop replication. EBOV gene expression profiling is of vital importance in understanding pathogenesis and devising novel therapeutic treatments such as small-molecule inhibitors.

  14. Differential gene expression in queen–worker caste determination in bumble-bees

    PubMed Central

    Pereboom, Jeffrey J. M; Jordan, William C; Sumner, Seirian; Hammond, Robert L; Bourke, Andrew F. G

    2005-01-01

    Investigating how differential gene expression underlies caste determination in the social Hymenoptera is central to understanding how variation in gene expression underlies adaptive phenotypic diversity. We investigated for the first time the association between differential gene expression and queen–worker caste determination in the bumble-bee Bombus terrestris. Using suppression subtractive hybridization we isolated 12 genes that were differentially expressed in queen- and worker-destined larvae. We found that the sets of genes underlying caste differences in larvae and adults failed to overlap greatly. We also found that B. terrestris shares some of the genes whose differential expression is associated with caste determination in the honeybee, Apis mellifera, but their expression patterns were not identical. Instead, we found B. terrestris to exhibit a novel pattern, whereby most genes upregulated (i.e. showing relatively higher levels of expression) in queen-destined larvae early in development were upregulated in worker-destined larvae late in development. Overall, our results suggest that caste determination in B. terrestris involves a difference not so much in the identity of genes expressed by queen- and worker-destined larvae, but primarily in the relative timing of their expression. This conclusion is of potential importance in the further study of phenotypic diversification via differential gene expression. PMID:16024376

  15. Keratin 5/14‑mediated cell differentiation and transformation are regulated by TAp63 and Notch‑1 in oral squamous cell carcinoma‑derived cells.

    PubMed

    Srivastava, Saumya S; Alam, Hunain; Patil, Sonam J; Shrinivasan, Rashmi; Raikundalia, Sweta; Chaudhari, Pratik Rajeev; Vaidya, Milind M

    2018-05-01

    Keratins 5/14 (K5/14) are intermediate filament proteins expressed in the basal layer of stratified epithelial cells and are known targets of p63. Previous research in our laboratory showed that upon K5/14 downregulation in oral squamous cell carcinoma (OSCC)‑derived cells, there was an increase in intracellular Notch‑1 levels and differentiation markers such as involucrin, keratin 1 and a decrease in tumorigenic potential in vivo. However, the molecules involved in the K14 regulated cell differentiation and transformation are not known to date. In order to understand the possible role of TAp63, we downregulated TAp63 in a K14‑knockdown background. We observed that there was a decrease in the expression of Notch‑1. Expression levels of differentiation markers such as involucrin, K1, loricrin and filaggrin were also decreased. Furthermore, TAp63 downregulation led to an increase in invasion, migration and in vivo tumorigenic potential of these cells. We observed a decrease in β‑catenin signaling in K14‑downregulated cells. Notably, when TAp63 was downregulated in K14‑knockdown cells, there was increase in non‑phospho β‑catenin levels. Hence, this study indicates that TAp63 plays an important role in K14‑downregulated cells possibly by regulating the Notch‑1 expression. K14 regulates the expression of TAp63 which in turn regulates expression of Notch‑1. The present study is a step forward in our quest to understand the functional significance of molecules that regulate the process of differentiation and tumorigenesis in stratified epithelial cells.

  16. Comparative studies of gene expression and the evolution of gene regulation

    PubMed Central

    Romero, Irene Gallego; Ruvinsky, Ilya; Gilad, Yoav

    2014-01-01

    The hypothesis that differences in gene regulation play an important role in speciation and adaptation is more than 40 years old. With the advent of new sequencing technologies, we are able to characterize and study gene expression levels and associated regulatory mechanisms in a large number of individuals and species at unprecedented resolution and scale. We have thus gained new insights into the evolutionary pressures that shape gene expression levels, as well as developed an appreciation for the relative importance of evolutionary changes in different regulatory genetic and epigenetic mechanisms. The current challenge is to link gene regulatory changes to adaptive evolution of complex phenotypes. Here we mainly focus on comparative studies in primates, and how they are complemented by studies in model organisms. PMID:22705669

  17. Gene expression in obstetric antiphospholipid syndrome: a systematic review.

    PubMed

    Muhammad Aliff, M; Muhammad Shazwan, S; Nur Fariha, M M; Hayati, A R; Nur Syahrina, A R; Maizatul Azma, M; Nazefah, A H; Jameela, S; Asral Wirda, A A

    2016-12-01

    Antiphospholipid syndrome (APS) is a multisystem disease that may present as venous or arterial thrombosis and/or pregnancy complications with the presence of antiphospholipid antibodies. Until today, heterogeneity of pathogenic mechanism fits well with various clinical manifestations. Moreover, previous studies have indicated that genes are differentially expressed between normal and in the disease state. Hence, this study systematically searched the literature on human gene expression that was differentially expressed in Obstetric APS. Electronic search was performed until 31st March 2015 through PubMed and Embase databases; where the following Medical Subject Heading (MeSH) terms were used and they had been specified as the primary focus of the articles; gene, antiphospholipid, obstetric, and pregnancy in the title or abstract. From 502 studies retrieved from the search, only original publications that had performed gene expression analyses of human placental tissue that reported on differentially expressed gene in pregnancies with Obstetric APS were included. Two reviewers independently scrutinized the titles and the abstracts before examining the eligibility of studies that met the inclusion criteria. For each study; diagnostic criteria for APS, method for analysis, and the gene signature were extracted independently by two reviewers. The genes listed were further analysed with the DAVID and the KEGG pathways. Three eligible gene expression studies involving obstetric APS, comprising the datasets on gene expression, were identified. All three studies showed a reduction in transcript expression on PRL, STAT5, TF, DAF, ABCA1, and HBEGF in Obstetric APS. The high enrichment score for functionality in DAVID had been positive regulation of cell proliferation. Meanwhile, pertaining to the KEGG pathway, two pathways were associated with some of the listed genes, which were ErBb signalling pathway and JAK-STAT signalling pathway. Ultimately, studies on a genetic level

  18. Differentially expressed genes in nonsmall cell lung cancer: expression profiling of cancer-related genes in squamous cell lung cancer.

    PubMed

    Kettunen, Eeva; Anttila, Sisko; Seppänen, Jouni K; Karjalainen, Antti; Edgren, Henrik; Lindström, Irmeli; Salovaara, Reijo; Nissén, Anna-Maria; Salo, Jarmo; Mattson, Karin; Hollmén, Jaakko; Knuutila, Sakari; Wikman, Harriet

    2004-03-01

    The expression patterns of cancer-related genes in 13 cases of squamous cell lung cancer (SCC) were characterized and compared with those in normal lung tissue and 13 adenocarcinomas (AC), the other major type of nonsmall cell lung cancer (NSCLC). cDNA array was used to screen the gene expression levels and the array results were verified using a real-time reverse-transcriptase-polymerase chain reaction (RT-PCR). Thirty-nine percent of the 25 most upregulated and the 25 most downregulated genes were common to SCC and AC. Of these genes, DSP, HMGA1 (alias HMGIY), TIMP1, MIF, CCNB1, TN, MMP11, and MMP12 were upregulated and COPEB (alias CPBP), TYROBP, BENE, BMPR2, SOCS3, TIMP3, CAV1, and CAV2 were downregulated. The expression levels of several genes from distinct protein families (cytokeratins and hemidesmosomal proteins) were markedly increased in SCC compared with AC and normal lung. In addition, several genes, overexpressed in SCC, such as HMGA1, CDK4, IGFBP3, MMP9, MMP11, MMP12, and MMP14, fell into distinct chromosomal loci, which we have detected as gained regions on the basis of comparative genomic hybridization data. Our study revealed new candidate genes involved in NSCLC.

  19. Extensive keratinized tissue augmentation during implant rehabilitation after Le Fort I osteotomy: using a new porcine collagen membrane (Mucoderm).

    PubMed

    Nocini, Pier Francesco; Castellani, Roberto; Zanotti, Guglielmo; Gelpi, Federico; Covani, Ugo; Marconcini, Simone; de Santis, Daniele

    2014-05-01

    The aim of this study was to test a new collagen matrix (Mucoderm) positioned during oral implant abutment connection. A patient previously treated with Le Fort I for bone augmentation and 8 implants showing minimal amount of keratinized tissue was selected for an extensive keratinized tissue augmentation and deepening of the oral vestibule by apically positioning a split palatal flap and palatal grafting with Mucoderm. Clinical data at 9 and 14 days and 1 and 2 months showed resorption of the collagen graft, augmentation of the keratinized tissue around the implants, and deepening of the vestibule, with minimal morbidity and reduced surgical treatment time. However, some vestibular keratinized tissue contraction was evident. The new collagen matrix may be a promising material as a substitute for an autologous gingival/connective tissue graft. Despite the preliminary results of this innovative article, before drawing any general conclusion, the benefit of the procedure should be further evaluated by prospective clinical trials.

  20. Evolutionary Approach for Relative Gene Expression Algorithms

    PubMed Central

    Czajkowski, Marcin

    2014-01-01

    A Relative Expression Analysis (RXA) uses ordering relationships in a small collection of genes and is successfully applied to classiffication using microarray data. As checking all possible subsets of genes is computationally infeasible, the RXA algorithms require feature selection and multiple restrictive assumptions. Our main contribution is a specialized evolutionary algorithm (EA) for top-scoring pairs called EvoTSP which allows finding more advanced gene relations. We managed to unify the major variants of relative expression algorithms through EA and introduce weights to the top-scoring pairs. Experimental validation of EvoTSP on public available microarray datasets showed that the proposed solution significantly outperforms in terms of accuracy other relative expression algorithms and allows exploring much larger solution space. PMID:24790574

  1. Functional clustering of time series gene expression data by Granger causality

    PubMed Central

    2012-01-01

    Background A common approach for time series gene expression data analysis includes the clustering of genes with similar expression patterns throughout time. Clustered gene expression profiles point to the joint contribution of groups of genes to a particular cellular process. However, since genes belong to intricate networks, other features, besides comparable expression patterns, should provide additional information for the identification of functionally similar genes. Results In this study we perform gene clustering through the identification of Granger causality between and within sets of time series gene expression data. Granger causality is based on the idea that the cause of an event cannot come after its consequence. Conclusions This kind of analysis can be used as a complementary approach for functional clustering, wherein genes would be clustered not solely based on their expression similarity but on their topological proximity built according to the intensity of Granger causality among them. PMID:23107425

  2. Immunoelectron microscopic localisation of keratin and luminal epithelial antigens in normal and neoplastic urothelium.

    PubMed

    Wilson, P D; Nathrath, W B; Trejdosiewicz, L K

    1982-01-01

    Immunoelectron microscope cytochemistry was carried out on 2% paraformaldehyde fixed, 50 mu sections of normal urothelium and bladder carcinoma cells in culture using antisera raised in rabbits to human 40-63 000 MW epidermal "broad spectrum" keratin and calf urothelial "luminal epithelial antigen" (aLEA) Both the unconjugated and indirect immunoperoxidase-DAB techniques were used before routine embedding. The localisation of both keratin and luminal epithelial antigen (LEA) was similar in normal and neoplastic cells and reaction product was associated not only with tonofilaments but also lining membrane vesicles and on fine filaments in the cytoplasmic ground substance.

  3. Gene and enhancer trap tagging of vascular-expressed genes in poplar trees

    Treesearch

    Andrew Groover; Joseph R. Fontana; Gayle Dupper; Caiping Ma; Robert Martienssen; Steven Strauss; Richard Meilan

    2004-01-01

    We report a gene discovery system for poplar trees based on gene and enhancer traps. Gene and enhancer trap vectors carrying the β-glucuronidase (GUS) reporter gene were inserted into the poplar genome via Agrobacterium tumefaciens transformation, where they reveal the expression pattern of genes at or near the insertion sites. Because GUS...

  4. Gene duplication, tissue-specific gene expression and sexual conflict in stalk-eyed flies (Diopsidae).

    PubMed

    Baker, Richard H; Narechania, Apurva; Johns, Philip M; Wilkinson, Gerald S

    2012-08-19

    Gene duplication provides an essential source of novel genetic material to facilitate rapid morphological evolution. Traits involved in reproduction and sexual dimorphism represent some of the fastest evolving traits in nature, and gene duplication is intricately involved in the origin and evolution of these traits. Here, we review genomic research on stalk-eyed flies (Diopsidae) that has been used to examine the extent of gene duplication and its role in the genetic architecture of sexual dimorphism. Stalk-eyed flies are remarkable because of the elongation of the head into long stalks, with the eyes and antenna laterally displaced at the ends of these stalks. Many species are strongly sexually dimorphic for eyespan, and these flies have become a model system for studying sexual selection. Using both expressed sequence tag and next-generation sequencing, we have established an extensive database of gene expression in the developing eye-antennal imaginal disc, the adult head and testes. Duplicated genes exhibit narrower expression patterns than non-duplicated genes, and the testes, in particular, provide an abundant source of gene duplication. Within somatic tissue, duplicated genes are more likely to be differentially expressed between the sexes, suggesting gene duplication may provide a mechanism for resolving sexual conflict.

  5. Gene duplication, tissue-specific gene expression and sexual conflict in stalk-eyed flies (Diopsidae)

    PubMed Central

    Baker, Richard H.; Narechania, Apurva; Johns, Philip M.; Wilkinson, Gerald S.

    2012-01-01

    Gene duplication provides an essential source of novel genetic material to facilitate rapid morphological evolution. Traits involved in reproduction and sexual dimorphism represent some of the fastest evolving traits in nature, and gene duplication is intricately involved in the origin and evolution of these traits. Here, we review genomic research on stalk-eyed flies (Diopsidae) that has been used to examine the extent of gene duplication and its role in the genetic architecture of sexual dimorphism. Stalk-eyed flies are remarkable because of the elongation of the head into long stalks, with the eyes and antenna laterally displaced at the ends of these stalks. Many species are strongly sexually dimorphic for eyespan, and these flies have become a model system for studying sexual selection. Using both expressed sequence tag and next-generation sequencing, we have established an extensive database of gene expression in the developing eye-antennal imaginal disc, the adult head and testes. Duplicated genes exhibit narrower expression patterns than non-duplicated genes, and the testes, in particular, provide an abundant source of gene duplication. Within somatic tissue, duplicated genes are more likely to be differentially expressed between the sexes, suggesting gene duplication may provide a mechanism for resolving sexual conflict. PMID:22777023

  6. Gene expression profiles reveal key genes for early diagnosis and treatment of adamantinomatous craniopharyngioma.

    PubMed

    Yang, Jun; Hou, Ziming; Wang, Changjiang; Wang, Hao; Zhang, Hongbing

    2018-04-23

    Adamantinomatous craniopharyngioma (ACP) is an aggressive brain tumor that occurs predominantly in the pediatric population. Conventional diagnosis method and standard therapy cannot treat ACPs effectively. In this paper, we aimed to identify key genes for ACP early diagnosis and treatment. Datasets GSE94349 and GSE68015 were obtained from Gene Expression Omnibus database. Consensus clustering was applied to discover the gene clusters in the expression data of GSE94349 and functional enrichment analysis was performed on gene set in each cluster. The protein-protein interaction (PPI) network was built by the Search Tool for the Retrieval of Interacting Genes, and hubs were selected. Support vector machine (SVM) model was built based on the signature genes identified from enrichment analysis and PPI network. Dataset GSE94349 was used for training and testing, and GSE68015 was used for validation. Besides, RT-qPCR analysis was performed to analyze the expression of signature genes in ACP samples compared with normal controls. Seven gene clusters were discovered in the differentially expressed genes identified from GSE94349 dataset. Enrichment analysis of each cluster identified 25 pathways that highly associated with ACP. PPI network was built and 46 hubs were determined. Twenty-five pathway-related genes that overlapped with the hubs in PPI network were used as signatures to establish the SVM diagnosis model for ACP. The prediction accuracy of SVM model for training, testing, and validation data were 94, 85, and 74%, respectively. The expression of CDH1, CCL2, ITGA2, COL8A1, COL6A2, and COL6A3 were significantly upregulated in ACP tumor samples, while CAMK2A, RIMS1, NEFL, SYT1, and STX1A were significantly downregulated, which were consistent with the differentially expressed gene analysis. SVM model is a promising classification tool for screening and early diagnosis of ACP. The ACP-related pathways and signature genes will advance our knowledge of ACP pathogenesis

  7. Gene Expression Profiling Predicts the Development of Oral Cancer

    PubMed Central

    Saintigny, Pierre; Zhang, Li; Fan, You-Hong; El-Naggar, Adel K.; Papadimitrakopoulou, Vali; Feng, Lei; Lee, J. Jack; Kim, Edward S.; Hong, Waun Ki; Mao, Li

    2011-01-01

    Patients with oral preneoplastic lesion (OPL) have high risk of developing oral cancer. Although certain risk factors such as smoking status and histology are known, our ability to predict oral cancer risk remains poor. The study objective was to determine the value of gene expression profiling in predicting oral cancer development. Gene expression profile was measured in 86 of 162 OPL patients who were enrolled in a clinical chemoprevention trial that used the incidence of oral cancer development as a prespecified endpoint. The median follow-up time was 6.08 years and 35 of the 86 patients developed oral cancer over the course. Gene expression profiles were associated with oral cancer-free survival and used to develope multivariate predictive models for oral cancer prediction. We developed a 29-transcript predictive model which showed marked improvement in terms of prediction accuracy (with 8% predicting error rate) over the models using previously known clinico-pathological risk factors. Based on the gene expression profile data, we also identified 2182 transcripts significantly associated with oral cancer risk associated genes (P-value<0.01, single variate Cox proportional hazards model). Functional pathway analysis revealed proteasome machinery, MYC, and ribosomes components as the top gene sets associated with oral cancer risk. In multiple independent datasets, the expression profiles of the genes can differentiate head and neck cancer from normal mucosa. Our results show that gene expression profiles may improve the prediction of oral cancer risk in OPL patients and the significant genes identified may serve as potential targets for oral cancer chemoprevention. PMID:21292635

  8. Hypergravity-induced changes in gene expression in Arabidopsis hypocotyls

    NASA Astrophysics Data System (ADS)

    Yoshioka, R.; Soga, K.; Wakabayashi, K.; Takeba, G.; Hoson, T.

    2003-05-01

    Under hypergravity conditions, the cell wall of stem organs becomes mechanically rigid and elongation growth is suppressed, which can be recognized as the mechanism for plants to resist gravitational force. The changes in gene expression by hypergravity treatment were analyzed in Arabidopsis hypocotyls by the differential display method, for identifying genes involved in hypergravity-induced growth suppression. Sixty-two cDNA clones were expressed differentially between the control and 300 g conditions: the expression levels of 39 clones increased, whereas those of 23 clones decreased under hypergravity conditions. Sequence analysis and database searching revealed that 12 clones, 9 up-regulated and 3 down-regulated, have homology to known proteins. The expression of these genes was further analyzed using RT-PCR. Finally, six genes were confirmed to be up-regulated by hypergravity. One of such genes encoded 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGR), which catalyzes a reaction producing mevalonic acid, a key precursor ofterpenoids such as membrane sterols and several types of hormones. The expression of HMGR gene increased within several hours after hypergravity treatment. Also, compactin, an inhibitor of HMGR, prevented hypergravity-induced growth suppression, suggesting that HMGR is involved in suppression of Arabidopsis hypocotyl growth by hypergravity. In addition, hypergravity increased the expression levels of genes encoding CCR1 and ERD15, which were shown to take part in the signaling pathway of environmental stimuli such as temperature and water, and those of the α-tubulin gene. These genes may be involved in a series of cellular events leading to growth suppression of stem organs under hypergravity conditions.

  9. Genes Expressed During Fruiting Body Formation of Agrocybe cylindracea

    PubMed Central

    Shim, Sung Mi; Kim, Sang Beom; Kim, Hey Young; Rho, Hyun-Su; Lee, Hyun Sook; Lee, Min Woong; Lee, U Youn; Im, Kyung Hoan

    2006-01-01

    Agrocybe cylindracea, an edible mushroom belonging to Bolbitiaceae, Agaricales, is widely used as invaluable medicinal material in the oriental countries. This study was initiated to find the genes expressed during the fruiting body formation of A. cylindracea. The cDNAs expressed differentially during fruiting body morphogenesis of A. cylindracea were isolated through subtractive hybridization between vegetative mycelia and fruiting bodies. The cDNAs expressed in the fruiting body morphogenesis of A. cylindracea were cloned and twenty genes were identified. Eleven were homologous to genes of known functions, three were homologous to genes in other organism without any function known. Six were completely novel genes specific to A. cylindracea so far examined. Some genes with known functions were a pleurotolysin, a self-assembling poreforming cytolysins; Aa-Pri1 and Pir2p, specifically induced genes during fruiting initiation of other mushroom, Agrocybe aegerita; an amino acid permease; a cytochrome P450; a MADS-box gene; a peptidylprolyl isomerase; and a serine proteinase. For other clones, no clear function was annotated so far. We believe the first report of the differentially expressed genes in fruiting process of A. cylindracea will be great helps for further research. PMID:24039501

  10. Dynamic changes in gene expression during human trophoblast differentiation.

    PubMed

    Handwerger, Stuart; Aronow, Bruce

    2003-01-01

    The genetic program that directs human placental differentiation is poorly understood. In a recent study, we used DNA microarray analyses to determine genes that are dynamically regulated during human placental development in an in vitro model system in which highly purified cytotrophoblast cells aggregate spontaneously and fuse to form a multinucleated syncytium that expresses placental lactogen, human chorionic gonadotropin, and other proteins normally expressed by fully differentiated syncytiotrophoblast cells. Of the 6918 genes present on the Incyte Human GEM V microarray that we analyzed over a 9-day period, 141 were induced and 256 were downregulated by more than 2-fold. The dynamically regulated genes fell into nine distinct kinetic patterns of induction or repression, as detected by the K-means algorithm. Classifying the genes according to functional characteristics, the regulated genes could be divided into six overall categories: cell and tissue structural dynamics, cell cycle and apoptosis, intercellular communication, metabolism, regulation of gene expression, and expressed sequence tags and function unknown. Gene expression changes within key functional categories were tightly coupled to the morphological changes that occurred during trophoblast differentiation. Within several key gene categories (e.g., cell and tissue structure), many genes were strongly activated, while others with related function were strongly repressed. These findings suggest that trophoblast differentiation is augmented by "categorical reprogramming" in which the ability of induced genes to function is enhanced by diminished synthesis of other genes within the same category. We also observed categorical reprogramming in human decidual fibroblasts decidualized in vitro in response to progesterone, estradiol, and cyclic AMP. While there was little overlap between genes that are dynamically regulated during trophoblast differentiation versus decidualization, many of the categories

  11. Expression of HES and HEY genes in infantile hemangiomas.

    PubMed

    Adepoju, Omotinuwe; Wong, Alvin; Kitajewski, Alex; Tong, Karen; Boscolo, Elisa; Bischoff, Joyce; Kitajewski, Jan; Wu, June K

    2011-08-11

    Infantile hemangiomas (IHs) are the most common benign tumor of infancy, yet their pathogenesis is poorly understood. IHs are believed to originate from a progenitor cell, the hemangioma stem cell (HemSC). Recent studies by our group showed that NOTCH proteins and NOTCH ligands are expressed in hemangiomas, indicating Notch signaling may be active in IHs. We sought to investigate downstream activation of Notch signaling in hemangioma cells by evaluating the expression of the basic HLH family proteins, HES/HEY, in IHs. HemSCs and hemangioma endothelial cells (HemECs) are isolated from freshly resected hemangioma specimens. Quantitative RT-PCR was performed to probe for relative gene transcript levels (normalized to beta-actin). Immunofluorescence was performed to evaluate protein expression. Co-localization studies were performed with CD31 (endothelial cells) and NOTCH3 (peri-vascular, non-endothelial cells). HemSCs were treated with the gamma secretase inhibitor (GSI) Compound E, and gene transcript levels were quantified with real-time PCR. HEY1, HEYL, and HES1 are highly expressed in HemSCs, while HEY2 is highly expressed in HemECs. Protein expression evaluation by immunofluorescence confirms that HEY2 is expressed by HemECs (CD31+ cells), while HEY1, HEYL, and HES1 are more widely expressed and mostly expressed by perivascular cells of hemangiomas. Inhibition of Notch signaling by addition of GSI resulted in down-regulation of HES/HEY genes. HES/HEY genes are expressed in IHs in cell type specific patterns; HEY2 is expressed in HemECs and HEY1, HEYL, HES1 are expressed in HemSCs. This pattern suggests that HEY/HES genes act downstream of Notch receptors that function in distinct cell types of IHs. HES/HEY gene transcripts are decreased with the addition of a gamma-secretase inhibitor, Compound E, demonstrating that Notch signaling is active in infantile hemangioma cells.

  12. Monoallelic expression of the human FOXP2 speech gene

    PubMed Central

    Adegbola, Abidemi A.; Cox, Gerald F.; Bradshaw, Elizabeth M.; Hafler, David A.; Gimelbrant, Alexander; Chess, Andrew

    2015-01-01

    The recent descriptions of widespread random monoallelic expression (RMAE) of genes distributed throughout the autosomal genome indicate that there are more genes subject to RMAE on autosomes than the number of genes on the X chromosome where X-inactivation dictates RMAE of X-linked genes. Several of the autosomal genes that undergo RMAE have independently been implicated in human Mendelian disorders. Thus, parsing the relationship between allele-specific expression of these genes and disease is of interest. Mutations in the human forkhead box P2 gene, FOXP2, cause developmental verbal dyspraxia with profound speech and language deficits. Here, we show that the human FOXP2 gene undergoes RMAE. Studying an individual with developmental verbal dyspraxia, we identify a deletion 3 Mb away from the FOXP2 gene, which impacts FOXP2 gene expression in cis. Together these data suggest the intriguing possibility that RMAE impacts the haploinsufficiency phenotypes observed for FOXP2 mutations. PMID:25422445

  13. Monoallelic expression of the human FOXP2 speech gene.

    PubMed

    Adegbola, Abidemi A; Cox, Gerald F; Bradshaw, Elizabeth M; Hafler, David A; Gimelbrant, Alexander; Chess, Andrew

    2015-06-02

    The recent descriptions of widespread random monoallelic expression (RMAE) of genes distributed throughout the autosomal genome indicate that there are more genes subject to RMAE on autosomes than the number of genes on the X chromosome where X-inactivation dictates RMAE of X-linked genes. Several of the autosomal genes that undergo RMAE have independently been implicated in human Mendelian disorders. Thus, parsing the relationship between allele-specific expression of these genes and disease is of interest. Mutations in the human forkhead box P2 gene, FOXP2, cause developmental verbal dyspraxia with profound speech and language deficits. Here, we show that the human FOXP2 gene undergoes RMAE. Studying an individual with developmental verbal dyspraxia, we identify a deletion 3 Mb away from the FOXP2 gene, which impacts FOXP2 gene expression in cis. Together these data suggest the intriguing possibility that RMAE impacts the haploinsufficiency phenotypes observed for FOXP2 mutations.

  14. Assessment of Normal Variability in Peripheral Blood Gene Expression

    DOE PAGES

    Campbell, Catherine; Vernon, Suzanne D.; Karem, Kevin L.; ...

    2002-01-01

    Peripheral blood is representative of many systemic processes and is an ideal sample for expression profiling of diseases that have no known or accessible lesion. Peripheral blood is a complex mixture of cell types and some differences in peripheral blood gene expression may reflect the timing of sample collection rather than an underlying disease process. For this reason, it is important to assess study design factors that may cause variability in gene expression not related to what is being analyzed. Variation in the gene expression of circulating peripheral blood mononuclear cells (PBMCs) from three healthy volunteers sampled three times onemore » day each week for one month was examined for 1,176 genes printed on filter arrays. Less than 1% of the genes showed any variation in expression that was related to the time of collection, and none of the changes were noted in more than one individual. These results suggest that observed variation was due to experimental variability.« less

  15. Estradiol-induced gene expression in largemouth bass (Micropterus salmoides)

    USGS Publications Warehouse

    Bowman, C.J.; Kroll, K.J.; Gross, T.G.; Denslow, N.D.

    2002-01-01

    Vitellogenin (Vtg) and estrogen receptor (ER) gene expression levels were measured in largemouth bass to evaluate the activation of the ER-mediated pathway by estradiol (E2). Single injections of E2 ranging from 0.0005 to 5 mg/kg up-regulated plasma Vtg in a dose-dependent manner. Vtg and ER mRNAs were measured using partial cDNA sequences corresponding to the C-terminal domain for Vtg and the ligand-binding domain of ER?? sequences. After acute E2-exposures (2 mg/kg), Vtg and ER mRNAs and plasma Vtg levels peaked after 2 days. The rate of ER mRNA accumulation peaked 36-42 h earlier than Vtg mRNA. The expression window for ER defines the primary response to E2 in largemouth bass and that for Vtg a delayed primary response. The specific effect of E2 on other estrogen-regulated genes was tested during these same time windows using differential display RT-PCR. Specific up-regulated genes that are expressed in the same time window as Vtg were ERp72 (a membrane-bound disulfide isomerase) and a gene with homology to an expressed gene identified in zebrafish. Genes that were expressed in a pattern that mimics the ER include the gene for zona radiata protein ZP2, and a gene with homology to an expressed gene found in winter flounder. One gene for fibrinogen ?? was down-regulated and an unidentified gene was transiently up-regulated after 12 h of exposure and returned to basal levels by 48 h. Taken together these studies indicate that the acute molecular response to E2 involves a complex network of responses over time. ?? 2002 Elsevier Science Ireland Ltd. All rights reserved.

  16. Gene expression correlates of postinfective fatigue syndrome after infectious mononucleosis.

    PubMed

    Cameron, Barbara; Galbraith, Sally; Zhang, Yun; Davenport, Tracey; Vollmer-Conna, Ute; Wakefield, Denis; Hickie, Ian; Dunsmuir, William; Whistler, Toni; Vernon, Suzanne; Reeves, William C; Lloyd, Andrew R

    2007-07-01

    Infectious mononucleosis (IM) commonly triggers a protracted postinfective fatigue syndrome (PIFS) of unknown pathogenesis. Seven subjects with PIFS with 6 or more months of disabling symptoms and 8 matched control subjects who had recovered promptly from documented IM were studied. The expression of 30,000 genes was examined in the peripheral blood by microarray analysis in 65 longitudinally collected samples. Gene expression patterns associated with PIFS were sought by correlation with symptom factor scores. Differential expression of 733 genes was identified when samples collected early during the illness and at the late (recovered) time point were compared. Of these genes, 234 were found to be significantly correlated with the reported severity of the fatigue symptom factor, and 180 were found to be correlated with the musculoskeletal pain symptom factor. Validation by analysis of the longitudinal expression pattern revealed 35 genes for which changes in expression were consistent with the illness course. These genes included several that are involved in signal transduction pathways, metal ion binding, and ion channel activity. Gene expression correlates of the cardinal symptoms of PIFS after IM have been identified. Further studies of these gene products may help to elucidate the pathogenesis of PIFS.

  17. UV irradiation-induced methionine oxidation in human skin keratins: Mass spectrometry-based non-invasive proteomic analysis.

    PubMed

    Lee, Seon Hwa; Matsushima, Keita; Miyamoto, Kohei; Oe, Tomoyuki

    2016-02-05

    Ultraviolet (UV) radiation is the major environmental factor that causes oxidative skin damage. Keratins are the main constituents of human skin and have been identified as oxidative target proteins. We have recently developed a mass spectrometry (MS)-based non-invasive proteomic methodology to screen oxidative modifications in human skin keratins. Using this methodology, UV effects on methionine (Met) oxidation in human skin keratins were investigated. The initial screening revealed that Met(259), Met(262), and Met(296) in K1 keratin were the most susceptible oxidation sites upon UVA (or UVB) irradiation of human tape-stripped skin. Subsequent liquid chromatography/electrospray ionization-MS and tandem MS analyses confirmed amino acid sequences and oxidation sites of tryptic peptides D(290)VDGAYMTK(298) (P1) and N(258)MQDMVEDYR(267) (P2). The relative oxidation levels of P1 and P2 increased in a time-dependent manner upon UVA irradiation. Butylated hydroxytoluene was the most effective antioxidant for artifactual oxidation of Met residues. The relative oxidation levels of P1 and P2 after UVA irradiation for 48 h corresponded to treatment with 100mM hydrogen peroxide for 15 min. In addition, Met(259) was oxidized by only UVA irradiation. The Met sites identified in conjunction with the current proteomic methodology can be used to evaluate skin damage under various conditions of oxidative stress. We demonstrated that the relative Met oxidation levels in keratins directly reflected UV-induced damages to human tape-stripped skin. Human skin proteins isolated by tape stripping were analyzed by MS-based non-invasive proteomic methodology. Met(259), Met(262), and Met(296) in K1 keratin were the most susceptible oxidation sites upon UV irradiation. Met(259) was oxidized by only UVA irradiation. Quantitative LC/ESI-SRM/MS analyses confirmed a time-dependent increase in the relative oxidation of target peptides (P1 and P2) containing these Met residues, upon UVA irradiation

  18. Bacterial reference genes for gene expression studies by RT-qPCR: survey and analysis.

    PubMed

    Rocha, Danilo J P; Santos, Carolina S; Pacheco, Luis G C

    2015-09-01

    The appropriate choice of reference genes is essential for accurate normalization of gene expression data obtained by the method of reverse transcription quantitative real-time PCR (RT-qPCR). In 2009, a guideline called the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) highlighted the importance of the selection and validation of more than one suitable reference gene for obtaining reliable RT-qPCR results. Herein, we searched the recent literature in order to identify the bacterial reference genes that have been most commonly validated in gene expression studies by RT-qPCR (in the first 5 years following publication of the MIQE guidelines). Through a combination of different search parameters with the text mining tool MedlineRanker, we identified 145 unique bacterial genes that were recently tested as candidate reference genes. Of these, 45 genes were experimentally validated and, in most of the cases, their expression stabilities were verified using the software tools geNorm and NormFinder. It is noteworthy that only 10 of these reference genes had been validated in two or more of the studies evaluated. An enrichment analysis using Gene Ontology classifications demonstrated that genes belonging to the functional categories of DNA Replication (GO: 0006260) and Transcription (GO: 0006351) rendered a proportionally higher number of validated reference genes. Three genes in the former functional class were also among the top five most stable genes identified through an analysis of gene expression data obtained from the Pathosystems Resource Integration Center. These results may provide a guideline for the initial selection of candidate reference genes for RT-qPCR studies in several different bacterial species.

  19. Large clusters of co-expressed genes in the Drosophila genome.

    PubMed

    Boutanaev, Alexander M; Kalmykova, Alla I; Shevelyov, Yuri Y; Nurminsky, Dmitry I

    2002-12-12

    Clustering of co-expressed, non-homologous genes on chromosomes implies their co-regulation. In lower eukaryotes, co-expressed genes are often found in pairs. Clustering of genes that share aspects of transcriptional regulation has also been reported in higher eukaryotes. To advance our understanding of the mode of coordinated gene regulation in multicellular organisms, we performed a genome-wide analysis of the chromosomal distribution of co-expressed genes in Drosophila. We identified a total of 1,661 testes-specific genes, one-third of which are clustered on chromosomes. The number of clusters of three or more genes is much higher than expected by chance. We observed a similar trend for genes upregulated in the embryo and in the adult head, although the expression pattern of individual genes cannot be predicted on the basis of chromosomal position alone. Our data suggest that the prevalent mechanism of transcriptional co-regulation in higher eukaryotes operates with extensive chromatin domains that comprise multiple genes.

  20. Case-based retrieval framework for gene expression data.

    PubMed

    Anaissi, Ali; Goyal, Madhu; Catchpoole, Daniel R; Braytee, Ali; Kennedy, Paul J

    2015-01-01

    The process of retrieving similar cases in a case-based reasoning system is considered a big challenge for gene expression data sets. The huge number of gene expression values generated by microarray technology leads to complex data sets and similarity measures for high-dimensional data are problematic. Hence, gene expression similarity measurements require numerous machine-learning and data-mining techniques, such as feature selection and dimensionality reduction, to be incorporated into the retrieval process. This article proposes a case-based retrieval framework that uses a k-nearest-neighbor classifier with a weighted-feature-based similarity to retrieve previously treated patients based on their gene expression profiles. The herein-proposed methodology is validated on several data sets: a childhood leukemia data set collected from The Children's Hospital at Westmead, as well as the Colon cancer, the National Cancer Institute (NCI), and the Prostate cancer data sets. Results obtained by the proposed framework in retrieving patients of the data sets who are similar to new patients are as follows: 96% accuracy on the childhood leukemia data set, 95% on the NCI data set, 93% on the Colon cancer data set, and 98% on the Prostate cancer data set. The designed case-based retrieval framework is an appropriate choice for retrieving previous patients who are similar to a new patient, on the basis of their gene expression data, for better diagnosis and treatment of childhood leukemia. Moreover, this framework can be applied to other gene expression data sets using some or all of its steps.

  1. Gene expression distribution deconvolution in single-cell RNA sequencing.

    PubMed

    Wang, Jingshu; Huang, Mo; Torre, Eduardo; Dueck, Hannah; Shaffer, Sydney; Murray, John; Raj, Arjun; Li, Mingyao; Zhang, Nancy R

    2018-06-26

    Single-cell RNA sequencing (scRNA-seq) enables the quantification of each gene's expression distribution across cells, thus allowing the assessment of the dispersion, nonzero fraction, and other aspects of its distribution beyond the mean. These statistical characterizations of the gene expression distribution are critical for understanding expression variation and for selecting marker genes for population heterogeneity. However, scRNA-seq data are noisy, with each cell typically sequenced at low coverage, thus making it difficult to infer properties of the gene expression distribution from raw counts. Based on a reexamination of nine public datasets, we propose a simple technical noise model for scRNA-seq data with unique molecular identifiers (UMI). We develop deconvolution of single-cell expression distribution (DESCEND), a method that deconvolves the true cross-cell gene expression distribution from observed scRNA-seq counts, leading to improved estimates of properties of the distribution such as dispersion and nonzero fraction. DESCEND can adjust for cell-level covariates such as cell size, cell cycle, and batch effects. DESCEND's noise model and estimation accuracy are further evaluated through comparisons to RNA FISH data, through data splitting and simulations and through its effectiveness in removing known batch effects. We demonstrate how DESCEND can clarify and improve downstream analyses such as finding differentially expressed genes, identifying cell types, and selecting differentiation markers. Copyright © 2018 the Author(s). Published by PNAS.

  2. Gene expression in Pseudomonas aeruginosa exposed to hydroxyl-radicals.

    PubMed

    Aharoni, Noa; Mamane, Hadas; Biran, Dvora; Lakretz, Anat; Ron, Eliora Z

    2018-05-01

    Recent studies have shown the efficiency of hydroxyl radicals generated via ultraviolet (UV)-based advanced oxidation processes (AOPs) combined with hydrogen peroxide (UV/H 2 O 2 ) as a treatment process in water. The effects of AOP treatments on bacterial gene expression was examined using Pseudomonas aeruginosa strain PAO1 as a model-organism bacterium. Many bacterial genes are not expressed all the time, but their expression is regulated. The regulation is at the beginning of the gene, in a genetic region called "promoter" and affects the level of transcription (synthesis of messenger RNA) and translation (synthesis of protein). The level of expression of the regulated genes can change as a function of environmental conditions, and they can be expressed more (induced, upregulated) or less (downregulated). Exposure of strain PAO1 to UV/H 2 O 2 treatment resulted in a major change in gene expression, including elevated expression of several genes. One interesting gene is PA3237, which was significantly upregulated under UV/H 2 O 2 as compared to UV or H 2 O 2 treatments alone. The induction of this gene is probably due to formation of radicals, as it is abolished in the presence of the radical scavenger tert-butanol (TBA) and is seen even when the bacteria are added after the treatment (post-treatment exposure). Upregulation of the PA3237 promoter could also be detected using a reporter gene, suggesting the use of such genetic constructs to develop biosensors for monitoring AOPs in water-treatment plants. Currently biosensors for AOPs do not exist, consequently impairing the ability to monitor these processes on-line according to radical exposure in natural waters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. GeneMesh: a web-based microarray analysis tool for relating differentially expressed genes to MeSH terms.

    PubMed

    Jani, Saurin D; Argraves, Gary L; Barth, Jeremy L; Argraves, W Scott

    2010-04-01

    An important objective of DNA microarray-based gene expression experimentation is determining inter-relationships that exist between differentially expressed genes and biological processes, molecular functions, cellular components, signaling pathways, physiologic processes and diseases. Here we describe GeneMesh, a web-based program that facilitates analysis of DNA microarray gene expression data. GeneMesh relates genes in a query set to categories available in the Medical Subject Headings (MeSH) hierarchical index. The interface enables hypothesis driven relational analysis to a specific MeSH subcategory (e.g., Cardiovascular System, Genetic Processes, Immune System Diseases etc.) or unbiased relational analysis to broader MeSH categories (e.g., Anatomy, Biological Sciences, Disease etc.). Genes found associated with a given MeSH category are dynamically linked to facilitate tabular and graphical depiction of Entrez Gene information, Gene Ontology information, KEGG metabolic pathway diagrams and intermolecular interaction information. Expression intensity values of groups of genes that cluster in relation to a given MeSH category, gene ontology or pathway can be displayed as heat maps of Z score-normalized values. GeneMesh operates on gene expression data derived from a number of commercial microarray platforms including Affymetrix, Agilent and Illumina. GeneMesh is a versatile web-based tool for testing and developing new hypotheses through relating genes in a query set (e.g., differentially expressed genes from a DNA microarray experiment) to descriptors making up the hierarchical structure of the National Library of Medicine controlled vocabulary thesaurus, MeSH. The system further enhances the discovery process by providing links between sets of genes associated with a given MeSH category to a rich set of html linked tabular and graphic information including Entrez Gene summaries, gene ontologies, intermolecular interactions, overlays of genes onto KEGG

  4. Hox gene expression during postlarval development of the polychaete Alitta virens.

    PubMed

    Bakalenko, Nadezhda I; Novikova, Elena L; Nesterenko, Alexander Y; Kulakova, Milana A

    2013-05-01

    Hox genes are the family of transcription factors that play a key role in the patterning of the anterior-posterior axis of all bilaterian animals. These genes display clustered organization and colinear expression. Expression boundaries of individual Hox genes usually correspond with morphological boundaries of the body. Previously, we studied Hox gene expression during larval development of the polychaete Alitta virens (formerly Nereis virens) and discovered that Hox genes are expressed in nereid larva according to the spatial colinearity principle. Adult Alitta virens consist of multiple morphologically similar segments, which are formed sequentially in the growth zone. Since the worm grows for most of its life, postlarval segments constantly change their position along the anterior-posterior axis. We studied the expression dynamics of the Hox cluster during postlarval development of the nereid Alitta virens and found that 8 out of 11 Hox genes are transcribed as wide gene-specific gradients in the ventral nerve cord, ectoderm, and mesoderm. The expression domains constantly shift in accordance with the changing proportions of the growing worm, so expression domains of most Hox genes do not have stable anterior or/and posterior boundaries.In the course of our study, we revealed long antisense RNA (asRNA) for some Hox genes. Expression patterns of two of these genes were analyzed using whole-mount in-situ hybridization. This is the first discovery of antisense RNA for Hox genes in Lophotrochozoa. Hox gene expression in juvenile A. virens differs significantly from Hox gene expression patterns both in A. virens larva and in other Bilateria.We suppose that the postlarval function of the Hox genes in this polychaete is to establish and maintain positional coordinates in a constantly growing body, as opposed to creating morphological difference between segments.

  5. Heterologous gene expression driven by carbonic anhydrase gene promoter in Dunaliella salina

    NASA Astrophysics Data System (ADS)

    Chai, Yurong; Lu, Yumin; Wang, Tianyun; Hou, Weihong; Xue, Lexun

    2006-12-01

    Dunaliella salina, a halotolerant unicellular green alga without a rigid cell wall, can live in salinities ranging from 0.05 to 5 mol/L NaCl. These features of D. salina make it an ideal host for the production of antibodies, oral vaccine, and commercially valuable polypeptides. To produce high level of heterologous proteins from D. salina, highly efficient promoters are required to drive expression of target genes under controlled condition. In the present study, we cloned a 5' franking region of 1.4 kb from the carbonic anhydrase ( CAH) gene of D. salina by genomic walking and PCR. The fragment was ligated to the pMD18-T vector and characterized. Sequence analysis indicated that this region contained conserved motifs, including a TATA- like box and CAAT-box. Tandem (GT)n repeats that had a potential role of transcriptional control, were also found in this region. The transcription start site (TSS) of the CAH gene was determined by 5' RACE and nested PCR method. Transformation assays showed that the 1.4 kb fragment was able to drive expression of the selectable bar (bialaphos resistance) gene when the fusion was transformed into D. salina by biolistics. Northern blotting hybridizations showed that the bar transcript was most abundant in cells grown in 2 mol/L NaCl, and less abundant in 0.5 mol/L NaCl, indicating that expression of the bar gene was induced at high salinity. These results suggest the potential use of the CAH gene promoter to induce the expression of heterologous genes in D. salina under varied salt condition.

  6. Constrained clusters of gene expression profiles with pathological features.

    PubMed

    Sese, Jun; Kurokawa, Yukinori; Monden, Morito; Kato, Kikuya; Morishita, Shinichi

    2004-11-22

    Gene expression profiles should be useful in distinguishing variations in disease, since they reflect accurately the status of cells. The primary clustering of gene expression reveals the genotypes that are responsible for the proximity of members within each cluster, while further clustering elucidates the pathological features of the individual members of each cluster. However, since the first clustering process and the second classification step, in which the features are associated with clusters, are performed independently, the initial set of clusters may omit genes that are associated with pathologically meaningful features. Therefore, it is important to devise a way of identifying gene expression clusters that are associated with pathological features. We present the novel technique of 'itemset constrained clustering' (IC-Clustering), which computes the optimal cluster that maximizes the interclass variance of gene expression between groups, which are divided according to the restriction that only divisions that can be expressed using common features are allowed. This constraint automatically labels each cluster with a set of pathological features which characterize that cluster. When applied to liver cancer datasets, IC-Clustering revealed informative gene expression clusters, which could be annotated with various pathological features, such as 'tumor' and 'man', or 'except tumor' and 'normal liver function'. In contrast, the k-means method overlooked these clusters.

  7. Regulatory states in the developmental control of gene expression.

    PubMed

    Peter, Isabelle S

    2017-09-01

    A growing body of evidence shows that gene expression in multicellular organisms is controlled by the combinatorial function of multiple transcription factors. This indicates that not the individual transcription factors or signaling molecules, but the combination of expressed regulatory molecules, the regulatory state, should be viewed as the functional unit in gene regulation. Here, I discuss the concept of the regulatory state and its proposed role in the genome-wide control of gene expression. Recent analyses of regulatory gene expression in sea urchin embryos have been instrumental for solving the genomic control of cell fate specification in this system. Some of the approaches that were used to determine the expression of regulatory states during sea urchin embryogenesis are reviewed. Significant developmental changes in regulatory state expression leading to the distinct specification of cell fates are regulated by gene regulatory network circuits. How these regulatory state transitions are encoded in the genome is illuminated using the sea urchin endoderm-mesoderms cell fate decision circuit as an example. These observations highlight the importance of considering developmental gene regulation, and the function of individual transcription factors, in the context of regulatory states. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Ethanol modifies the effect of handling stress on gene expression: problems in the analysis of two-way gene expression studies in mouse brain.

    PubMed

    Rulten, Stuart L; Ripley, Tamzin L; Manerakis, Ektor; Stephens, David N; Mayne, Lynne V

    2006-08-02

    Studies analysing the effects of acute treatments on animal behaviour and brain biochemistry frequently use pairwise comparisons between sham-treated and -untreated animals. In this study, we analyse expression of tPA, Grik2, Smarca2 and the transcription factor, Sp1, in mouse cerebellum following acute ethanol treatment. Expression is compared to saline-injected and -untreated control animals. We demonstrate that acute i.p. injection of saline may alter gene expression in a gene-specific manner and that ethanol may modify the effects of sham treatment on gene expression, as well as inducing specific effects independent of any handling related stress. In addition to demonstrating the complexity of gene expression in response to physical and environmental stress, this work raises questions on the interpretation and validity of studies relying on pairwise comparisons.

  9. Preservation of keratinized mucosa around implants using a prefabricated implant-retained stent: a case-control study

    PubMed Central

    2016-01-01

    Purpose The aim of this study was to clinically assess the impact of a prefabricated implant-retained stent clipped over healing abutments on the preservation of keratinized mucosa around implants after implant surgery, and to compare it with horizontal external mattress sutures. Methods A total of 50 patients were enrolled in this study. In the test group, a prefabricated implant-retained stent was clipped on the healing abutment after implant surgery to replace the keratinized tissue bucco-apically. In the control group, horizontal external mattress sutures were applied instead of using a stent. After the surgical procedure, the width of the buccal keratinized mucosa was measured at the mesial, middle, and distal aspects of the healing abutment. The change in the width of the buccal keratinized mucosa was assessed at 1 and 3 months. Results Healing was uneventful in both groups. The difference of width between baseline and 1 month was −0.26±0.85 mm in the test group, without any statistical significance (P=0.137). Meanwhile, the corresponding difference in the control group was −0.74±0.73 mm and it showed statistical significance (P<0.001). The difference of width between baseline and 3 months was −0.57±0.97 mm in the test group and −0.86±0.71 mm in the control group. These reductions were statistically significant (P<0.05); however, there was no difference between the 2 groups. Conclusions Using a prefabricated implant-retained stent was shown to be effective in the preservation of the keratinized mucosa around implants and it was simple and straightforward in comparison to the horizontal external mattress suture technique. PMID:27800215

  10. Transcriptional Coupling of Neighboring Genes and Gene Expression Noise: Evidence that Gene Orientation and Noncoding Transcripts Are Modulators of Noise

    PubMed Central

    Wang, Guang-Zhong; Lercher, Martin J.; Hurst, Laurence D.

    2011-01-01

    Abstract How is noise in gene expression modulated? Do mechanisms of noise control impact genome organization? In yeast, the expression of one gene can affect that of a very close neighbor. As the effect is highly regionalized, we hypothesize that genes in different orientations will have differing degrees of coupled expression and, in turn, different noise levels. Divergently organized gene pairs, in particular those with bidirectional promoters, have close promoters, maximizing the likelihood that expression of one gene affects the neighbor. With more distant promoters, the same is less likely to hold for gene pairs in nondivergent orientation. Stochastic models suggest that coupled chromatin dynamics will typically result in low abundance-corrected noise (ACN). Transcription of noncoding RNA (ncRNA) from a bidirectional promoter, we thus hypothesize to be a noise-reduction, expression-priming, mechanism. The hypothesis correctly predicts that protein-coding genes with a bidirectional promoter, including those with a ncRNA partner, have lower ACN than other genes and divergent gene pairs uniquely have correlated ACN. Moreover, as predicted, ACN increases with the distance between promoters. The model also correctly predicts ncRNA transcripts to be often divergently transcribed from genes that a priori would be under selection for low noise (essential genes, protein complex genes) and that the latter genes should commonly reside in divergent orientation. Likewise, that genes with bidirectional promoters are rare subtelomerically, cluster together, and are enriched in essential gene clusters is expected and observed. We conclude that gene orientation and transcription of ncRNAs are candidate modulators of noise. PMID:21402863

  11. Angiogenesis-related gene expression analysis in celiac disease.

    PubMed

    Castellanos-Rubio, Ainara; Caja, Sergio; Irastorza, Iñaki; Fernandez-Jimenez, Nora; Plaza-Izurieta, Leticia; Vitoria, Juan Carlos; Maki, Markku; Lindfors, Katri; Bilbao, Jose Ramon

    2012-05-01

    Celiac disease (CD) involves disturbance of the small-bowel mucosal vascular network, and transglutaminase autoantibodies (TGA) have been related to angiogenesis disturbance, a complex phenomenon probably also influenced by common genetic variants in angiogenesis-related genes. A set of genes with "angiogenesis" GO term identified in a previous expression microarray experiment (SCG2, STAB1, TGFA, ANG, ERBB2, GNA13, PML, CASP8, ECGF1, JAG1, HIF1A, TNFSF13 and TGM2) was selected for genetic and functional studies. SNPs that showed a trend for association with CD in the first GWAS were genotyped in 555 patients and 541 controls. Gene expression of all genes was quantified in 15 pairs of intestinal biopsies (diagnosis vs. GFD) and in three-dimensional HUVEC and T84 cell cultures incubated with TGA-positive and negative serum. A regulatory SNP in TNFSF13 (rs11552708) is associated with CD (p = 0.01, OR = 0.7). Expression changes in biopsies pointed to TGM2 and PML as up-regulated antiangiogenic genes and to GNA13, TGFA, ERBB2 and SCG2 as down-regulated proangiogenic factors in CD. TGA seem to enhance TGM2 expression in both cell models, but PML expression was induced only in T84 enterocytes while GNA13 and ERBB2 were repressed in HUVEC endothelial cells, with several genes showing discordant effects in each model, highlighting the complexity of gene interactions in the pathogenesis of CD. Finally, cell culture models are useful tools to help dissect complex responses observed in human explants.

  12. RefEx, a reference gene expression dataset as a web tool for the functional analysis of genes.

    PubMed

    Ono, Hiromasa; Ogasawara, Osamu; Okubo, Kosaku; Bono, Hidemasa

    2017-08-29

    Gene expression data are exponentially accumulating; thus, the functional annotation of such sequence data from metadata is urgently required. However, life scientists have difficulty utilizing the available data due to its sheer magnitude and complicated access. We have developed a web tool for browsing reference gene expression pattern of mammalian tissues and cell lines measured using different methods, which should facilitate the reuse of the precious data archived in several public databases. The web tool is called Reference Expression dataset (RefEx), and RefEx allows users to search by the gene name, various types of IDs, chromosomal regions in genetic maps, gene family based on InterPro, gene expression patterns, or biological categories based on Gene Ontology. RefEx also provides information about genes with tissue-specific expression, and the relative gene expression values are shown as choropleth maps on 3D human body images from BodyParts3D. Combined with the newly incorporated Functional Annotation of Mammals (FANTOM) dataset, RefEx provides insight regarding the functional interpretation of unfamiliar genes. RefEx is publicly available at http://refex.dbcls.jp/.

  13. Exploring the key genes and pathways in enchondromas using a gene expression microarray.

    PubMed

    Shi, Zhongju; Zhou, Hengxing; Pan, Bin; Lu, Lu; Kang, Yi; Liu, Lu; Wei, Zhijian; Feng, Shiqing

    2017-07-04

    Enchondromas are the most common primary benign osseous neoplasms that occur in the medullary bone; they can undergo malignant transformation into chondrosarcoma. However, enchondromas are always undetected in patients, and the molecular mechanism is unclear. To identify key genes and pathways associated with the occurrence and development of enchondromas, we downloaded the gene expression dataset GSE22855 and obtained the differentially expressed genes (DEGs) by analyzing high-throughput gene expression in enchondromas. In total, 635 genes were identified as DEGs. Of these, 225 genes (35.43%) were up-regulated, and the remaining 410 genes (64.57%) were down-regulated. We identified the predominant gene ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that were significantly over-represented in the enchondromas samples compared with the control samples. Subsequently the top 10 core genes were identified from the protein-protein interaction (PPI) network. The enrichment analyses of the genes mainly involved in two significant modules showed that the DEGs were principally related to ribosomes, protein digestion and absorption, ECM-receptor interaction, focal adhesion, amoebiasis and the PI3K-Akt signaling pathway.Together, these data elucidate the molecular mechanisms underlying the occurrence and development of enchondromas and provide promising candidates for therapeutic intervention and prognostic evaluation. However, further experimental studies are needed to confirm these results.

  14. Turning publicly available gene expression data into discoveries using gene set context analysis.

    PubMed

    Ji, Zhicheng; Vokes, Steven A; Dang, Chi V; Ji, Hongkai

    2016-01-08

    Gene Set Context Analysis (GSCA) is an open source software package to help researchers use massive amounts of publicly available gene expression data (PED) to make discoveries. Users can interactively visualize and explore gene and gene set activities in 25,000+ consistently normalized human and mouse gene expression samples representing diverse biological contexts (e.g. different cells, tissues and disease types, etc.). By providing one or multiple genes or gene sets as input and specifying a gene set activity pattern of interest, users can query the expression compendium to systematically identify biological contexts associated with the specified gene set activity pattern. In this way, researchers with new gene sets from their own experiments may discover previously unknown contexts of gene set functions and hence increase the value of their experiments. GSCA has a graphical user interface (GUI). The GUI makes the analysis convenient and customizable. Analysis results can be conveniently exported as publication quality figures and tables. GSCA is available at https://github.com/zji90/GSCA. This software significantly lowers the bar for biomedical investigators to use PED in their daily research for generating and screening hypotheses, which was previously difficult because of the complexity, heterogeneity and size of the data. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Gene duplication, silencing and expression alteration govern the molecular evolution of PRC2 genes in plants.

    PubMed

    Furihata, Hazuka Y; Suenaga, Kazuya; Kawanabe, Takahiro; Yoshida, Takanori; Kawabe, Akira

    2016-10-13

    PRC2 genes were analyzed for their number of gene duplications, d N /d S ratios and expression patterns among Brassicaceae and Gramineae species. Although both amino acid sequences and copy number of the PRC2 genes were generally well conserved in both Brassicaceae and Gramineae species, we observed that some rapidly evolving genes experienced duplications and expression pattern changes. After multiple duplication events, all but one or two of the duplicated copies tend to be silenced. Silenced copies were reactivated in the endosperm and showed ectopic expression in developing seeds. The results indicated that rapid evolution of some PRC2 genes is initially caused by a relaxation of selective constraint following the gene duplication events. Several loci could become maternally expressed imprinted genes and acquired functional roles in the endosperm.

  16. Validation of reference genes for quantitative RT-PCR studies of gene expression in perennial ryegrass (Lolium perenne L.)

    PubMed Central

    2010-01-01

    Background Perennial ryegrass (Lolium perenne L.) is an important pasture and turf crop. Biotechniques such as gene expression studies are being employed to improve traits in this temperate grass. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) is among the best methods available for determining changes in gene expression. Before analysis of target gene expression, it is essential to select an appropriate normalisation strategy to control for non-specific variation between samples. Reference genes that have stable expression at different biological and physiological states can be effectively used for normalisation; however, their expression stability must be validated before use. Results Existing Serial Analysis of Gene Expression data were queried to identify six moderately expressed genes that had relatively stable gene expression throughout the year. These six candidate reference genes (eukaryotic elongation factor 1 alpha, eEF1A; TAT-binding protein homolog 1, TBP-1; eukaryotic translation initiation factor 4 alpha, eIF4A; YT521-B-like protein family protein, YT521-B; histone 3, H3; ubiquitin-conjugating enzyme, E2) were validated for qRT-PCR normalisation in 442 diverse perennial ryegrass (Lolium perenne L.) samples sourced from field- and laboratory-grown plants under a wide range of experimental conditions. Eukaryotic EF1A is encoded by members of a multigene family exhibiting differential expression and necessitated the expression analysis of different eEF1A encoding genes; a highly expressed eEF1A (h), a moderately, but stably expressed eEF1A (s), and combined expression of multigene eEF1A (m). NormFinder identified eEF1A (s) and YT521-B as the best combination of two genes for normalisation of gene expression data in perennial ryegrass following different defoliation management in the field. Conclusions This study is unique in the magnitude of samples tested with the inclusion of numerous field-grown samples, helping pave the way to

  17. Ikaros gene expression and leukemia.

    PubMed

    Tonnelle, Cécile; Calmels, Boris; Maroc, Christine; Gabert, Jean; Chabannon, Christian

    2002-01-01

    The Ikaros (Ik) protein, or LyF1, was initially described as a protein binding to regulatory sequences of a number of genes expressed in murine lymphoid cells. Ikaros is a critical regulator of normal hematopoietic stem cell differentiation, as evidenced by dramatic defects in the lymphoid compartments, in homozygous animals with gene inactivation. Because differential splicing produces multiple isoforms with potentially different functions, Ikaros provides a unique model to study how post-transcriptional mechanisms may be involved in neoplastic processes. Indeed, several groups including ours have underlined evidences that expression of different Ikaros isoforms vary among different types of leukemias. The predominance of short isoforms in certain subsets is intriguing. Here, additional observations reinforced the hypothesis that Ikaros expression may be deregulated in human leukemias. Whether this is a cause or a consequence of the leukemic process remains speculative. Other human diseases however, provide examples of abnormal post-transcriptional regulations that have been further characterized.

  18. GESearch: An Interactive GUI Tool for Identifying Gene Expression Signature.

    PubMed

    Ye, Ning; Yin, Hengfu; Liu, Jingjing; Dai, Xiaogang; Yin, Tongming

    2015-01-01

    The huge amount of gene expression data generated by microarray and next-generation sequencing technologies present challenges to exploit their biological meanings. When searching for the coexpression genes, the data mining process is largely affected by selection of algorithms. Thus, it is highly desirable to provide multiple options of algorithms in the user-friendly analytical toolkit to explore the gene expression signatures. For this purpose, we developed GESearch, an interactive graphical user interface (GUI) toolkit, which is written in MATLAB and supports a variety of gene expression data files. This analytical toolkit provides four models, including the mean, the regression, the delegate, and the ensemble models, to identify the coexpression genes, and enables the users to filter data and to select gene expression patterns by browsing the display window or by importing knowledge-based genes. Subsequently, the utility of this analytical toolkit is demonstrated by analyzing two sets of real-life microarray datasets from cell-cycle experiments. Overall, we have developed an interactive GUI toolkit that allows for choosing multiple algorithms for analyzing the gene expression signatures.

  19. Gene expression in cerebral ischemia: a new approach for neuroprotection.

    PubMed

    Millán, Mónica; Arenillas, Juan

    2006-01-01

    Cerebral ischemia is one of the strongest stimuli for gene induction in the brain. Hundreds of genes have been found to be induced by brain ischemia. Many genes are involved in neurodestructive functions such as excitotoxicity, inflammatory response and neuronal apoptosis. However, cerebral ischemia is also a powerful reformatting and reprogramming stimulus for the brain through neuroprotective gene expression. Several genes may participate in both cellular responses. Thus, isolation of candidate genes for neuroprotection strategies and interpretation of expression changes have been proven difficult. Nevertheless, many studies are being carried out to improve the knowledge of the gene activation and protein expression following ischemic stroke, as well as in the development of new therapies that modify biochemical, molecular and genetic changes underlying cerebral ischemia. Owing to the complexity of the process involving numerous critical genes expressed differentially in time, space and concentration, ongoing therapeutic efforts should be based on multiple interventions at different levels. By modification of the acute gene expression induced by ischemia or the apoptotic gene program, gene therapy is a promising treatment but is still in a very experimental phase. Some hurdles will have to be overcome before these therapies can be introduced into human clinical stroke trials. Copyright 2006 S. Karger AG, Basel.

  20. dictyExpress: a Dictyostelium discoideum gene expression database with an explorative data analysis web-based interface.

    PubMed

    Rot, Gregor; Parikh, Anup; Curk, Tomaz; Kuspa, Adam; Shaulsky, Gad; Zupan, Blaz

    2009-08-25

    Bioinformatics often leverages on recent advancements in computer science to support biologists in their scientific discovery process. Such efforts include the development of easy-to-use web interfaces to biomedical databases. Recent advancements in interactive web technologies require us to rethink the standard submit-and-wait paradigm, and craft bioinformatics web applications that share analytical and interactive power with their desktop relatives, while retaining simplicity and availability. We have developed dictyExpress, a web application that features a graphical, highly interactive explorative interface to our database that consists of more than 1000 Dictyostelium discoideum gene expression experiments. In dictyExpress, the user can select experiments and genes, perform gene clustering, view gene expression profiles across time, view gene co-expression networks, perform analyses of Gene Ontology term enrichment, and simultaneously display expression profiles for a selected gene in various experiments. Most importantly, these tasks are achieved through web applications whose components are seamlessly interlinked and immediately respond to events triggered by the user, thus providing a powerful explorative data analysis environment. dictyExpress is a precursor for a new generation of web-based bioinformatics applications with simple but powerful interactive interfaces that resemble that of the modern desktop. While dictyExpress serves mainly the Dictyostelium research community, it is relatively easy to adapt it to other datasets. We propose that the design ideas behind dictyExpress will influence the development of similar applications for other model organisms.

  1. dictyExpress: a Dictyostelium discoideum gene expression database with an explorative data analysis web-based interface

    PubMed Central

    Rot, Gregor; Parikh, Anup; Curk, Tomaz; Kuspa, Adam; Shaulsky, Gad; Zupan, Blaz

    2009-01-01

    Background Bioinformatics often leverages on recent advancements in computer science to support biologists in their scientific discovery process. Such efforts include the development of easy-to-use web interfaces to biomedical databases. Recent advancements in interactive web technologies require us to rethink the standard submit-and-wait paradigm, and craft bioinformatics web applications that share analytical and interactive power with their desktop relatives, while retaining simplicity and availability. Results We have developed dictyExpress, a web application that features a graphical, highly interactive explorative interface to our database that consists of more than 1000 Dictyostelium discoideum gene expression experiments. In dictyExpress, the user can select experiments and genes, perform gene clustering, view gene expression profiles across time, view gene co-expression networks, perform analyses of Gene Ontology term enrichment, and simultaneously display expression profiles for a selected gene in various experiments. Most importantly, these tasks are achieved through web applications whose components are seamlessly interlinked and immediately respond to events triggered by the user, thus providing a powerful explorative data analysis environment. Conclusion dictyExpress is a precursor for a new generation of web-based bioinformatics applications with simple but powerful interactive interfaces that resemble that of the modern desktop. While dictyExpress serves mainly the Dictyostelium research community, it is relatively easy to adapt it to other datasets. We propose that the design ideas behind dictyExpress will influence the development of similar applications for other model organisms. PMID:19706156

  2. Immunohistochemical demonstration of keratins in the epidermal layers of the Malayan pangolin (Manis javanica), with remarks on the evolution of the integumental scale armour.

    PubMed

    Meyer, W; Liumsiricharoen, M; Suprasert, A; Fleischer, L G; Hewicker-Trautwein, M

    2013-09-16

    Using immunohistochemistry, the study demonstrates the distribution of keratins (pan-keratin with CK1-8, 10, 14-16, 19; keratins CK1, 5, 6, 9, 10; hair keratins AE13, AE14) in the epidermis of the Malayan pangolin (Manis javanica). A varying reaction spectrum was observed for pan-keratin, with body region-dependent negative to very strong reaction intensities. The dorsolateral epidermis exhibited positive reactions only in its vital layers, whereas the abdominal epidermis showed strong positive reactions in the soft two outer strata. The single acidic and basic-to-neutral (cyto)keratins produced clear variations compared to the pan-keratin tinging. E.g., CK1 appeared in all epidermal layers of both body regions, except for the ventral stratum corneum, whereas CK5, 6, 9, 10 were restricted to the soft ventral epidermis. Here, distinctly positive reactions were confined to the stratum granulosum, except for CK6 that appeared in the soft stratum corneum. A different staining pattern was obvious for the hair keratins, i.e., positive reactions of AE13 concentrated only in the granular layer of the dorsal epidermis. In the abdominal epidermis, remarkable tinging for AE14 was visible in the stratum basale, decreasing toward the corneal layer, but was also found in the outer root sheath cells of the hair follicles in the ventral body part. Our findings are discussed related to the evolution of the horny dorsal scales of the pangolin, which may have started from the tail root, projecting forward to the head.

  3. Identification of stress responsive genes by studying specific relationships between mRNA and protein abundance.

    PubMed

    Morimoto, Shimpei; Yahara, Koji

    2018-03-01

    Protein expression is regulated by the production and degradation of mRNAs and proteins but the specifics of their relationship are controversial. Although technological advances have enabled genome-wide and time-series surveys of mRNA and protein abundance, recent studies have shown paradoxical results, with most statistical analyses being limited to linear correlation, or analysis of variance applied separately to mRNA and protein datasets. Here, using recently analyzed genome-wide time-series data, we have developed a statistical analysis framework for identifying which types of genes or biological gene groups have significant correlation between mRNA and protein abundance after accounting for potential time delays. Our framework stratifies all genes in terms of the extent of time delay, conducts gene clustering in each stratum, and performs a non-parametric statistical test of the correlation between mRNA and protein abundance in a gene cluster. Consequently, we revealed stronger correlations than previously reported between mRNA and protein abundance in two metabolic pathways. Moreover, we identified a pair of stress responsive genes ( ADC17 and KIN1 ) that showed a highly similar time series of mRNA and protein abundance. Furthermore, we confirmed robustness of the analysis framework by applying it to another genome-wide time-series data and identifying a cytoskeleton-related gene cluster (keratin 18, keratin 17, and mitotic spindle positioning) that shows similar correlation. The significant correlation and highly similar changes of mRNA and protein abundance suggests a concerted role of these genes in cellular stress response, which we consider provides an answer to the question of the specific relationships between mRNA and protein in a cell. In addition, our framework for studying the relationship between mRNAs and proteins in a cell will provide a basis for studying specific relationships between mRNA and protein abundance after accounting for potential

  4. Automatic Control of Gene Expression in Mammalian Cells.

    PubMed

    Fracassi, Chiara; Postiglione, Lorena; Fiore, Gianfranco; di Bernardo, Diego

    2016-04-15

    Automatic control of gene expression in living cells is paramount importance to characterize both endogenous gene regulatory networks and synthetic circuits. In addition, such a technology can be used to maintain the expression of synthetic circuit components in an optimal range in order to ensure reliable performance. Here we present a microfluidics-based method to automatically control gene expression from the tetracycline-inducible promoter in mammalian cells in real time. Our approach is based on the negative-feedback control engineering paradigm. We validated our method in a monoclonal population of cells constitutively expressing a fluorescent reporter protein (d2EYFP) downstream of a minimal CMV promoter with seven tet-responsive operator motifs (CMV-TET). These cells also constitutively express the tetracycline transactivator protein (tTA). In cells grown in standard growth medium, tTA is able to bind the CMV-TET promoter, causing d2EYFP to be maximally expressed. Upon addition of tetracycline to the culture medium, tTA detaches from the CMV-TET promoter, thus preventing d2EYFP expression. We tested two different model-independent control algorithms (relay and proportional-integral (PI)) to force a monoclonal population of cells to express an intermediate level of d2EYFP equal to 50% of its maximum expression level for up to 3500 min. The control input is either tetracycline-rich or standard growth medium. We demonstrated that both the relay and PI controllers can regulate gene expression at the desired level, despite oscillations (dampened in the case of the PI controller) around the chosen set point.

  5. The evolution of duplicate gene expression in mammalian organs

    PubMed Central

    Guschanski, Katerina; Warnefors, Maria; Kaessmann, Henrik

    2017-01-01

    Gene duplications generate genomic raw material that allows the emergence of novel functions, likely facilitating adaptive evolutionary innovations. However, global assessments of the functional and evolutionary relevance of duplicate genes in mammals were until recently limited by the lack of appropriate comparative data. Here, we report a large-scale study of the expression evolution of DNA-based functional gene duplicates in three major mammalian lineages (placental mammals, marsupials, egg-laying monotremes) and birds, on the basis of RNA sequencing (RNA-seq) data from nine species and eight organs. We observe dynamic changes in tissue expression preference of paralogs with different duplication ages, suggesting differential contribution of paralogs to specific organ functions during vertebrate evolution. Specifically, we show that paralogs that emerged in the common ancestor of bony vertebrates are enriched for genes with brain-specific expression and provide evidence for differential forces underlying the preferential emergence of young testis- and liver-specific expressed genes. Further analyses uncovered that the overall spatial expression profiles of gene families tend to be conserved, with several exceptions of pronounced tissue specificity shifts among lineage-specific gene family expansions. Finally, we trace new lineage-specific genes that may have contributed to the specific biology of mammalian organs, including the little-studied placenta. Overall, our study provides novel and taxonomically broad evidence for the differential contribution of duplicate genes to tissue-specific transcriptomes and for their importance for the phenotypic evolution of vertebrates. PMID:28743766

  6. Turning the gene tap off; implications of regulating gene expression for cancer therapeutics

    PubMed Central

    Curtin, James F.; Candolfi, Marianela; Xiong, Weidong; Lowenstein, Pedro R.; Castro, Maria G.

    2008-01-01

    Cancer poses a tremendous therapeutic challenge worldwide, highlighting the critical need for developing novel therapeutics. A promising cancer treatment modality is gene therapy, which is a form of molecular medicine designed to introduce into target cells genetic material with therapeutic intent. Anticancer gene therapy strategies currently used in preclinical models, and in some cases in the clinic, include proapoptotic genes, oncolytic/replicative vectors, conditional cytotoxic approaches, inhibition of angiogenesis, inhibition of growth factor signaling, inactivation of oncogenes, inhibition of tumor invasion and stimulation of the immune system. The translation of these novel therapeutic modalities from the preclinical setting to the clinic has been driven by encouraging preclinical efficacy data and advances in gene delivery technologies. One area of intense research involves the ability to accurately regulate the levels of therapeutic gene expression to achieve enhanced efficacy and provide the capability to switch gene expression off completely if adverse side effects should arise. This feature could also be implemented to switch gene expression off when a successful therapeutic outcome ensues. Here, we will review recent developments related to the engineering of transcriptional switches within gene delivery systems, which could be implemented in clinical gene therapy applications directed at the treatment of cancer. PMID:18347132

  7. Identification of differentially expressed genes in childhood asthma.

    PubMed

    Zhang, Nian-Zhen; Chen, Xiu-Juan; Mu, Yu-Hua; Wang, Hewen

    2018-05-01

    Asthma has been the most common chronic disease in children that places a major burden for affected people and their families.An integrated analysis of microarrays studies was performed to identify differentially expressed genes (DEGs) in childhood asthma compared with normal control. We also obtained the differentially methylated genes (DMGs) in childhood asthma according to GEO. The genes that were both differentially expressed and differentially methylated were identified. Functional annotation and protein-protein interaction network construction were performed to interpret biological functions of DEGs. We performed q-RT-PCR to verify the expression of selected DEGs.One DNA methylation and 3 gene expression datasets were obtained. Four hundred forty-one DEGs and 1209 DMGs in childhood asthma were identified. Among which, 16 genes were both differentially expressed and differentially methylated in childhood asthma. Natural killer cell mediated cytotoxicity pathway, Jak-STAT signaling pathway, and Wnt signaling pathway were 3 significantly enriched pathways in childhood asthma according to our KEGG enrichment analysis. The PPI network of top 20 up- and downregulated DEGs consisted of 822 nodes and 904 edges and 2 hub proteins (UBQLN4 and MID2) were identified. The expression of 8 DEGs (GZMB, FGFBP2, CLC, TBX21, ALOX15, IL12RB2, UBQLN4) was verified by qRT-PCR and only the expression of GZMB and FGFBP2 was inconsistent with our integrated analysis.Our finding was helpful to elucidate the underlying mechanism of childhood asthma and develop new potential diagnostic biomarker and provide clues for drug design.

  8. Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes

    PubMed Central

    Fang, Xiefan; Mei, Wenbin; Barbazuk, William B.; Rivkees, Scott A.

    2014-01-01

    Previous studies demonstrated that in utero caffeine treatment at embryonic day (E) 8.5 alters DNA methylation patterns, gene expression, and cardiac function in adult mice. To provide insight into the mechanisms, we examined cardiac gene and microRNA (miRNA) expression in cardiomyocytes shortly after exposure to physiologically relevant doses of caffeine. In HL-1 and primary embryonic cardiomyocytes, caffeine treatment for 48 h significantly altered the expression of cardiac structural genes (Myh6, Myh7, Myh7b, Tnni3), hormonal genes (Anp and BnP), cardiac transcription factors (Gata4, Mef2c, Mef2d, Nfatc1), and microRNAs (miRNAs; miR208a, miR208b, miR499). In addition, expressions of these genes were significantly altered in embryonic hearts exposed to in utero caffeine. For in utero experiments, pregnant CD-1 dams were treated with 20–60 mg/kg of caffeine, which resulted in maternal circulation levels of 37.3–65.3 μM 2 h after treatment. RNA sequencing was performed on embryonic ventricles treated with vehicle or 20 mg/kg of caffeine daily from E6.5-9.5. Differential expression (DE) analysis revealed that 124 genes and 849 transcripts were significantly altered, and differential exon usage (DEU) analysis identified 597 exons that were changed in response to prenatal caffeine exposure. Among the DE genes identified by RNA sequencing were several cardiac structural genes and genes that control DNA methylation and histone modification. Pathway analysis revealed that pathways related to cardiovascular development and diseases were significantly affected by caffeine. In addition, global cardiac DNA methylation was reduced in caffeine-treated cardiomyocytes. Collectively, these data demonstrate that caffeine exposure alters gene expression and DNA methylation in embryonic cardiomyocytes. PMID:25354728

  9. Multi-targeted priming for genome-wide gene expression assays.

    PubMed

    Adomas, Aleksandra B; Lopez-Giraldez, Francesc; Clark, Travis A; Wang, Zheng; Townsend, Jeffrey P

    2010-08-17

    Complementary approaches to assaying global gene expression are needed to assess gene expression in regions that are poorly assayed by current methodologies. A key component of nearly all gene expression assays is the reverse transcription of transcribed sequences that has traditionally been performed by priming the poly-A tails on many of the transcribed genes in eukaryotes with oligo-dT, or by priming RNA indiscriminately with random hexamers. We designed an algorithm to find common sequence motifs that were present within most protein-coding genes of Saccharomyces cerevisiae and of Neurospora crassa, but that were not present within their ribosomal RNA or transfer RNA genes. We then experimentally tested whether degenerately priming these motifs with multi-targeted primers improved the accuracy and completeness of transcriptomic assays. We discovered two multi-targeted primers that would prime a preponderance of genes in the genomes of Saccharomyces cerevisiae and Neurospora crassa while avoiding priming ribosomal RNA or transfer RNA. Examining the response of Saccharomyces cerevisiae to nitrogen deficiency and profiling Neurospora crassa early sexual development, we demonstrated that using multi-targeted primers in reverse transcription led to superior performance of microarray profiling and next-generation RNA tag sequencing. Priming with multi-targeted primers in addition to oligo-dT resulted in higher sensitivity, a larger number of well-measured genes and greater power to detect differences in gene expression. Our results provide the most complete and detailed expression profiles of the yeast nitrogen starvation response and N. crassa early sexual development to date. Furthermore, our multi-targeting priming methodology for genome-wide gene expression assays provides selective targeting of multiple sequences and counter-selection against undesirable sequences, facilitating a more complete and precise assay of the transcribed sequences within the genome.

  10. Expression profile of genes associated with mastitis in dairy cattle

    PubMed Central

    2009-01-01

    In order to characterize the expression of genes associated with immune response mechanisms to mastitis, we quantified the relative expression of the IL-2, IL-4, IL-6, IL-8, IL-10, IFN-γ and TNF- α genes in milk cells of healthy cows and cows with clinical mastitis. Total RNA was extracted from milk cells of six Black and White Holstein (BW) cows and six Gyr cows, including three animals with and three without mastitis per breed. Gene expression was analyzed by real-time PCR. IL-10 gene expression was higher in the group of BW and Gyr cows with mastitis compared to animals free of infection from both breeds (p < 0.05). It was also higher in BW Holstein animals with clinical mastitis (p < 0.001), but it was not significant when Gyr cows with and without mastitis were compared (0.05 < p < 0.10). Among healthy cows, BW Holstein animals tended to present a higher expression of all genes studied, with a significant difference for the IL-2 and IFN- γ genes (p < 0.001). For animals with mastitis no significant difference in gene expression was observed between the two breeds. These findings suggest that animals with mastitis develop a preferentially cell-mediated immune response. Further studies including larger samples are necessary to better characterize the gene expression profile in cows with mastitis. PMID:21637453

  11. The Role of Multiple Transcription Factors In Archaeal Gene Expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles J. Daniels

    2008-09-23

    Since the inception of this research program, the project has focused on two central questions: What is the relationship between the 'eukaryal-like' transcription machinery of archaeal cells and its counterparts in eukaryal cells? And, how does the archaeal cell control gene expression using its mosaic of eukaryal core transcription machinery and its bacterial-like transcription regulatory proteins? During the grant period we have addressed these questions using a variety of in vivo approaches and have sought to specifically define the roles of the multiple TATA binding protein (TBP) and TFIIB-like (TFB) proteins in controlling gene expression in Haloferax volcanii. H. volcaniimore » was initially chosen as a model for the Archaea based on the availability of suitable genetic tools; however, later studies showed that all haloarchaea possessed multiple tbp and tfb genes, which led to the proposal that multiple TBP and TFB proteins may function in a manner similar to alternative sigma factors in bacterial cells. In vivo transcription and promoter analysis established a clear relationship between the promoter requirements of haloarchaeal genes and those of the eukaryal RNA polymerase II promoter. Studies on heat shock gene promoters, and the demonstration that specific tfb genes were induced by heat shock, provided the first indication that TFB proteins may direct expression of specific gene families. The construction of strains lacking tbp or tfb genes, coupled with the finding that many of these genes are differentially expressed under varying growth conditions, provided further support for this model. Genetic tools were also developed that led to the construction of insertion and deletion mutants, and a novel gene expression scheme was designed that allowed the controlled expression of these genes in vivo. More recent studies have used a whole genome array to examine the expression of these genes and we have established a linkage between the expression of

  12. Evaluation and selection of reliable reference genes for gene expression under abiotic stress in cotton (Gossypium hirsutum L.).

    PubMed

    Wang, Min; Wang, Qinglian; Zhang, Baohong

    2013-11-01

    Reference genes are critical for normalization of the gene expression level of target genes. The widely used housekeeping genes may change their expression levels at different tissue under different treatment or stress conditions. Therefore, systematical evaluation on the housekeeping genes is required for gene expression analysis. Up to date, no work was performed to evaluate the housekeeping genes in cotton under stress treatment. In this study, we chose 10 housekeeping genes to systematically assess their expression levels at two different tissues (leaves and roots) under two different abiotic stresses (salt and drought) with three different concentrations. Our results show that there is no best reference gene for all tissues at all stress conditions. The reliable reference gene should be selected based on a specific condition. For example, under salt stress, UBQ7, GAPDH and EF1A8 are better reference genes in leaves; TUA10, UBQ7, CYP1, GAPDH and EF1A8 were better in roots. Under drought stress, UBQ7, EF1A8, TUA10, and GAPDH showed less variety of expression level in leaves and roots. Thus, it is better to identify reliable reference genes first before performing any gene expression analysis. However, using a combination of housekeeping genes as reference gene may provide a new strategy for normalization of gene expression. In this study, we found that combination of four housekeeping genes worked well as reference genes under all the stress conditions. © 2013.

  13. Influence of Gene Expression on Hardness in Wheat

    PubMed Central

    Nirmal, Ravi C.; Wrigley, Colin

    2016-01-01

    Puroindoline (Pina and Pinb) genes control grain texture or hardness in wheat. Wild-type/soft alleles lead to softer grain while a mutation in one or both of these genes results in a hard grain. Variation in hardness in genotypes with identical Pin alleles (wild-type or mutant) is known but the molecular basis of this is not known. We now report the identification of wheat genotypes with hard grain texture and wild-type/soft Pin alleles indicating that hardness in wheat may be controlled by factors other than mutations in the coding region of the Pin genes. RNA-Seq analysis was used to determine the variation in the transcriptome of developing grains of thirty three diverse wheat genotypes including hard (mutant Pin) and soft (wild type) and those that were hard without having Pin mutations. This defined the role of pin gene expression and identified other candidate genes associated with hardness. Pina was not expressed in hard wheat with a mutation in the Pina gene. The ratio of Pina to Pinb expression was generally lower in the hard non mutant genotypes. Hardness may be associated with differences in Pin expression and other factors and is not simply associated with mutations in the PIN protein coding sequences. PMID:27741295

  14. Influence of Gene Expression on Hardness in Wheat.

    PubMed

    Nirmal, Ravi C; Furtado, Agnelo; Wrigley, Colin; Henry, Robert J

    2016-01-01

    Puroindoline (Pina and Pinb) genes control grain texture or hardness in wheat. Wild-type/soft alleles lead to softer grain while a mutation in one or both of these genes results in a hard grain. Variation in hardness in genotypes with identical Pin alleles (wild-type or mutant) is known but the molecular basis of this is not known. We now report the identification of wheat genotypes with hard grain texture and wild-type/soft Pin alleles indicating that hardness in wheat may be controlled by factors other than mutations in the coding region of the Pin genes. RNA-Seq analysis was used to determine the variation in the transcriptome of developing grains of thirty three diverse wheat genotypes including hard (mutant Pin) and soft (wild type) and those that were hard without having Pin mutations. This defined the role of pin gene expression and identified other candidate genes associated with hardness. Pina was not expressed in hard wheat with a mutation in the Pina gene. The ratio of Pina to Pinb expression was generally lower in the hard non mutant genotypes. Hardness may be associated with differences in Pin expression and other factors and is not simply associated with mutations in the PIN protein coding sequences.

  15. Identifying a gene expression signature of cluster headache in blood

    PubMed Central

    Eising, Else; Pelzer, Nadine; Vijfhuizen, Lisanne S.; Vries, Boukje de; Ferrari, Michel D.; ‘t Hoen, Peter A. C.; Terwindt, Gisela M.; van den Maagdenberg, Arn M. J. M.

    2017-01-01

    Cluster headache is a relatively rare headache disorder, typically characterized by multiple daily, short-lasting attacks of excruciating, unilateral (peri-)orbital or temporal pain associated with autonomic symptoms and restlessness. To better understand the pathophysiology of cluster headache, we used RNA sequencing to identify differentially expressed genes and pathways in whole blood of patients with episodic (n = 19) or chronic (n = 20) cluster headache in comparison with headache-free controls (n = 20). Gene expression data were analysed by gene and by module of co-expressed genes with particular attention to previously implicated disease pathways including hypocretin dysregulation. Only moderate gene expression differences were identified and no associations were found with previously reported pathogenic mechanisms. At the level of functional gene sets, associations were observed for genes involved in several brain-related mechanisms such as GABA receptor function and voltage-gated channels. In addition, genes and modules of co-expressed genes showed a role for intracellular signalling cascades, mitochondria and inflammation. Although larger study samples may be required to identify the full range of involved pathways, these results indicate a role for mitochondria, intracellular signalling and inflammation in cluster headache. PMID:28074859

  16. PiiL: visualization of DNA methylation and gene expression data in gene pathways.

    PubMed

    Moghadam, Behrooz Torabi; Zamani, Neda; Komorowski, Jan; Grabherr, Manfred

    2017-08-02

    DNA methylation is a major mechanism involved in the epigenetic state of a cell. It has been observed that the methylation status of certain CpG sites close to or within a gene can directly affect its expression, either by silencing or, in some cases, up-regulating transcription. However, a vertebrate genome contains millions of CpG sites, all of which are potential targets for methylation, and the specific effects of most sites have not been characterized to date. To study the complex interplay between methylation status, cellular programs, and the resulting phenotypes, we present PiiL, an interactive gene expression pathway browser, facilitating analyses through an integrated view of methylation and expression on multiple levels. PiiL allows for specific hypothesis testing by quickly assessing pathways or gene networks, where the data is projected onto pathways that can be downloaded directly from the online KEGG database. PiiL provides a comprehensive set of analysis features that allow for quick and specific pattern searches. Individual CpG sites and their impact on host gene expression, as well as the impact on other genes present in the regulatory network, can be examined. To exemplify the power of this approach, we analyzed two types of brain tumors, Glioblastoma multiform and lower grade gliomas. At a glance, we could confirm earlier findings that the predominant methylation and expression patterns separate perfectly by mutations in the IDH genes, rather than by histology. We could also infer the IDH mutation status for samples for which the genotype was not known. By applying different filtering methods, we show that a subset of CpG sites exhibits consistent methylation patterns, and that the status of sites affect the expression of key regulator genes, as well as other genes located downstream in the same pathways. PiiL is implemented in Java with focus on a user-friendly graphical interface. The source code is available under the GPL license from https://github.com/behroozt/PiiL.git .

  17. DNA Methylation of Gene Expression in Acanthamoeba castellanii Encystation.

    PubMed

    Moon, Eun-Kyung; Hong, Yeonchul; Lee, Hae-Ahm; Quan, Fu-Shi; Kong, Hyun-Hee

    2017-04-01

    Encystation mediating cyst specific cysteine proteinase (CSCP) of Acanthamoeba castellanii is expressed remarkably during encystation. However, the molecular mechanism involved in the regulation of CSCP gene expression remains unclear. In this study, we focused on epigenetic regulation of gene expression during encystation of Acanthamoeba . To evaluate methylation as a potential mechanism involved in the regulation of CSCP expression, we first investigated the correlation between promoter methylation status of CSCP gene and its expression. A 2,878 bp of promoter sequence of CSCP gene was amplified by PCR. Three CpG islands (island 1-3) were detected in this sequence using bioinformatics tools. Methylation of CpG island in trophozoites and cysts was measured by bisulfite sequence PCR. CSCP promoter methylation of CpG island 1 (1,633 bp) was found in 8.2% of trophozoites and 7.3% of cysts. Methylation of CpG island 2 (625 bp) was observed in 4.2% of trophozoites and 5.8% of cysts. Methylation of CpG island 3 (367 bp) in trophozoites and cysts was both 3.6%. These results suggest that DNA methylation system is present in CSCP gene expression of Acanthamoeba . In addition, the expression of encystation mediating CSCP is correlated with promoter CpG island 1 hypomethylation.

  18. GEsture: an online hand-drawing tool for gene expression pattern search.

    PubMed

    Wang, Chunyan; Xu, Yiqing; Wang, Xuelin; Zhang, Li; Wei, Suyun; Ye, Qiaolin; Zhu, Youxiang; Yin, Hengfu; Nainwal, Manoj; Tanon-Reyes, Luis; Cheng, Feng; Yin, Tongming; Ye, Ning

    2018-01-01

    Gene expression profiling data provide useful information for the investigation of biological function and process. However, identifying a specific expression pattern from extensive time series gene expression data is not an easy task. Clustering, a popular method, is often used to classify similar expression genes, however, genes with a 'desirable' or 'user-defined' pattern cannot be efficiently detected by clustering methods. To address these limitations, we developed an online tool called GEsture. Users can draw, or graph a curve using a mouse instead of inputting abstract parameters of clustering methods. GEsture explores genes showing similar, opposite and time-delay expression patterns with a gene expression curve as input from time series datasets. We presented three examples that illustrate the capacity of GEsture in gene hunting while following users' requirements. GEsture also provides visualization tools (such as expression pattern figure, heat map and correlation network) to display the searching results. The result outputs may provide useful information for researchers to understand the targets, function and biological processes of the involved genes.

  19. Gene co-expression network analysis in Rhodobacter capsulatus and application to comparative expression analysis of Rhodobacter sphaeroides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pena-Castillo, Lourdes; Mercer, Ryan; Gurinovich, Anastasia

    2014-08-28

    The genus Rhodobacter contains purple nonsulfur bacteria found mostly in freshwater environments. Representative strains of two Rhodobacter species, R. capsulatus and R. sphaeroides, have had their genomes fully sequenced and both have been the subject of transcriptional profiling studies. Gene co-expression networks can be used to identify modules of genes with similar expression profiles. Functional analysis of gene modules can then associate co-expressed genes with biological pathways, and network statistics can determine the degree of module preservation in related networks. In this paper, we constructed an R. capsulatus gene co-expression network, performed functional analysis of identified gene modules, and investigatedmore » preservation of these modules in R. capsulatus proteomics data and in R. sphaeroides transcriptomics data. Results: The analysis identified 40 gene co-expression modules in R. capsulatus. Investigation of the module gene contents and expression profiles revealed patterns that were validated based on previous studies supporting the biological relevance of these modules. We identified two R. capsulatus gene modules preserved in the protein abundance data. We also identified several gene modules preserved between both Rhodobacter species, which indicate that these cellular processes are conserved between the species and are candidates for functional information transfer between species. Many gene modules were non-preserved, providing insight into processes that differentiate the two species. In addition, using Local Network Similarity (LNS), a recently proposed metric for expression divergence, we assessed the expression conservation of between-species pairs of orthologs, and within-species gene-protein expression profiles. Conclusions: Our analyses provide new sources of information for functional annotation in R. capsulatus because uncharacterized genes in modules are now connected with groups of genes that constitute a joint functional

  20. Adult mouse brain gene expression patterns bear an embryologic imprint

    PubMed Central

    Zapala, Matthew A.; Hovatta, Iiris; Ellison, Julie A.; Wodicka, Lisa; Del Rio, Jo A.; Tennant, Richard; Tynan, Wendy; Broide, Ron S.; Helton, Rob; Stoveken, Barbara S.; Winrow, Christopher; Lockhart, Daniel J.; Reilly, John F.; Young, Warren G.; Bloom, Floyd E.; Lockhart, David J.; Barlow, Carrolee

    2005-01-01

    The current model to explain the organization of the mammalian nervous system is based on studies of anatomy, embryology, and evolution. To further investigate the molecular organization of the adult mammalian brain, we have built a gene expression-based brain map. We measured gene expression patterns for 24 neural tissues covering the mouse central nervous system and found, surprisingly, that the adult brain bears a transcriptional “imprint” consistent with both embryological origins and classic evolutionary relationships. Embryonic cellular position along the anterior–posterior axis of the neural tube was shown to be closely associated with, and possibly a determinant of, the gene expression patterns in adult structures. We also observed a significant number of embryonic patterning and homeobox genes with region-specific expression in the adult nervous system. The relationships between global expression patterns for different anatomical regions and the nature of the observed region-specific genes suggest that the adult brain retains a degree of overall gene expression established during embryogenesis that is important for regional specificity and the functional relationships between regions in the adult. The complete collection of extensively annotated gene expression data along with data mining and visualization tools have been made available on a publicly accessible web site (www.barlow-lockhart-brainmapnimhgrant.org). PMID:16002470