Sample records for keratin-associated beta-proteins beta-keratins

  1. Alpha- and beta-keratins of the snake epidermis.

    PubMed

    Toni, Mattia; Alibardi, Lorenzo

    2007-01-01

    Snake scales contain specialized hard keratins (beta-keratins) and alpha- or cyto-keratins in their epidermis. The number, isoelectric point, and the evolution of these proteins in snakes and their similarity with those of other vertebrates are not known. In the present study, alpha- and beta-keratins of snake molts and of the whole epidermis have been studied by using two-dimensional electrophoresis and immunocytochemistry. Specific keratins in snake epidermis have been identified by using antibodies that recognize acidic and basic cytokeratins and avian or lizard scale beta-keratin. Alpha keratins of 40-70 kDa and isoelectric point (pI) at 4.5-7.0 are present in molts. The study suggests that cytokeratins in snakes are acidic or neutral, in contrast to mammals and birds where basic keratins are also present. Beta keratins of 10-15 kDa and a pI of 6.5-8.5 are found in molts. Some beta-keratins appear as basic proteins (pI 8.2) comparable to those present in the epidermis of other reptiles. Some basic "beta-keratins" associate with cytokeratins as matrix proteins and replace cytokeratins forming the corneous material of the mature beta-layer of snake scales, as in other reptiles. The study also suggests that more forms of beta-keratins (more than three different types) are present in the epidermis of snakes.

  2. Isolation of a new class of cysteine-glycine-proline-rich beta-proteins (beta-keratins) and their expression in snake epidermis.

    PubMed

    Dalla Valle, Luisa; Nardi, Alessia; Alibardi, Lorenzo

    2010-03-01

    Scales of snakes contain hard proteins (beta-keratins), now referred to as keratin-associated beta-proteins. In the present study we report the isolation, sequencing, and expression of a new group of these proteins from snake epidermis, designated cysteine-glycine-proline-rich proteins. One deduced protein from expressed mRNAs contains 128 amino acids (12.5 kDa) with a theoretical pI at 7.95, containing 10.2% cysteine and 15.6% glycine. The sequences of two more snake cysteine-proline-rich proteins have been identified from genomic DNA. In situ hybridization shows that the messengers for these proteins are present in the suprabasal and early differentiating beta-cells of the renewing scale epidermis. The present study shows that snake scales, as previously seen in scales of lizards, contain cysteine-rich beta-proteins in addition to glycine-rich beta-proteins. These keratin-associated beta-proteins mix with intermediate filament keratins (alpha-keratins) to produce the resistant corneous layer of snake scales. The specific proportion of these two subfamilies of proteins in different scales can determine various degrees of hardness in scales.

  3. Isolation of a new class of cysteine–glycine–proline-rich beta-proteins (beta-keratins) and their expression in snake epidermis

    PubMed Central

    Dalla Valle, Luisa; Nardi, Alessia; Alibardi, Lorenzo

    2010-01-01

    Scales of snakes contain hard proteins (beta-keratins), now referred to as keratin-associated beta-proteins. In the present study we report the isolation, sequencing, and expression of a new group of these proteins from snake epidermis, designated cysteine–glycine–proline-rich proteins. One deduced protein from expressed mRNAs contains 128 amino acids (12.5 kDa) with a theoretical pI at 7.95, containing 10.2% cysteine and 15.6% glycine. The sequences of two more snake cysteine–proline-rich proteins have been identified from genomic DNA. In situ hybridization shows that the messengers for these proteins are present in the suprabasal and early differentiating beta-cells of the renewing scale epidermis. The present study shows that snake scales, as previously seen in scales of lizards, contain cysteine-rich beta-proteins in addition to glycine-rich beta-proteins. These keratin-associated beta-proteins mix with intermediate filament keratins (alpha-keratins) to produce the resistant corneous layer of snake scales. The specific proportion of these two subfamilies of proteins in different scales can determine various degrees of hardness in scales. PMID:20070430

  4. Soft epidermis of a scaleless snake lacks beta-keratin.

    PubMed

    Toni, M; Alibardi, L

    2007-01-01

    Beta-keratins are responsible for the mechanical resistance of scales in reptiles. In a scaleless crotalus snake (Crotalus atrox), large areas of the skin are completely devoid of scales, and the skin appears delicate and wrinkled. The epidermis of this snake has been assessed for the presence of beta-keratin by immunocytochemistry and immunoblotting using an antibody against chicken scale beta-keratin. This antibody recognizes beta-keratins in normal snake scales with molecular weights of 15-18 kDa and isoelectric points at 6.8, 7.5, 8.3 and 9.4. This indicates that beta-keratins of the stratum corneum are mainly basic proteins, so may interact with cytokeratins of the epidermis, most of which appear acidic (isoelectric points 4.5-5.5). A beta-layer and beta-keratin immunoreactivity are completely absent in moults of the scaleless mutant, and the corneous layer comprises a multi-layered alpha-layer covered by a flat oberhautchen. In conclusion, the present study shows that a lack of beta-keratins is correlated with the loss of scales and mechanical protection in the skin of this mutant snake.

  5. Forty keratin-associated beta-proteins (beta-keratins) form the hard layers of scales, claws, and adhesive pads in the green anole lizard, Anolis carolinensis.

    PubMed

    Dalla Valle, Luisa; Nardi, Alessia; Bonazza, Giulia; Zucal, Chiara; Zuccal, Chiara; Emera, Deena; Alibardi, Lorenzo

    2010-01-15

    Using bioinformatic methods we have detected the genes of 40 keratin-associated beta-proteins (KAbetaPs) (beta-keratins) from the first available draft genome sequence of a reptile, the lizard Anolis carolinensis (Broad Institute, Boston). All genes are clustered in a single but not yet identified chromosomal locus, and contain a single intron of variable length. 5'-RACE and RT-PCR analyses using RNA from different epidermal regions show tissue-specific expression of different transcripts. These results were confirmed from the analysis of the A. carolinensis EST libraries (Broad Institute). Most deduced proteins are 12-16 kDa with a pI of 7.5-8.5. Two genes encoding putative proteins of 40 and 45 kDa are also present. Despite variability in amino acid sequences, four main subfamilies can be described. The largest subfamily includes proteins high in glycine, a small subfamily contains proteins high in cysteine, a third large subfamily contains proteins high in cysteine and glycine, and the fourth, smallest subfamily comprises proteins low in cysteine and glycine. An inner region of high amino acid identity is the most constant characteristic of these proteins and maps to a region with two to three close beta-folds in the proteins. This beta-fold region is responsible for the formation of filaments of the corneous material in all types of scales in this species. Phylogenetic analysis shows that A. carolinensis KAbetaPs are more similar to those of other lepidosaurians (snake, lizard, and gecko lizard) than to those of archosaurians (chick and crocodile) and turtles. (c) 2009 Wiley-Liss, Inc.

  6. Localization of Alpha-Keratin and Beta-Keratin (Corneous Beta Protein) in the Epithelium on the Ventral Surface of the Lingual Apex and Its Lingual Nail in the Domestic Goose (Anser Anser f. domestica) by Using Immunohistochemistry and Raman Microspectroscopy Analysis.

    PubMed

    Skieresz-Szewczyk, Kinga; Jackowiak, Hanna; Buchwald, Tomasz; Szybowicz, Mirosław

    2017-08-01

    The epithelium of the ventral surface of the apex of the tongue in most birds is specified by the presence of the special superficial layer called lingual nail. The aim of the present study is to determine the localization of the alpha-keratin and beta-keratin (corneous beta protein) in this special epithelium in the domestic goose by using immunohistochemistry staining and the Raman spectroscopy analysis. Due to lack of commercially available antibodies to detect beta-keratin (corneous beta protein), the Raman spectroscopy was used as a specific tool to detect and describe the secondary structure of proteins. The immunohistochemical (IHC) detections reveal the presence of alpha-keratin in all layers of the epithelium, but significant differences in the distribution of the alpha-keratin in the epithelial layers appear. The staining reaction is stronger from the basal layer to the upper zone of the intermediate layer. The unique result is weak staining for the alpha-keratin in the lingual nail. Applications of the Raman spectroscopy as a complementary method not only confirmed results of IHC staining for alpha-keratin, but showed that this technique could be used to demonstrate the presence of beta-keratin (corneous beta protein). Functionally, the localization of alpha-keratin in the epithelium of the ventral surface of the lingual apex provides a proper scaffold for epithelial cells and promotes structural integrity, whereas the presence of beta-keratin (corneous beta protein) in the lingual nail, described also as exoskeleton of the ventral surface of the apex, endures mechanical stress. Anat Rec, 300:1361-1368, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Beta-keratins of differentiating epidermis of snake comprise glycine-proline-serine-rich proteins with an avian-like gene organization.

    PubMed

    Dalla Valle, Luisa; Nardi, Alessia; Belvedere, Paola; Toni, Mattia; Alibardi, Lorenzo

    2007-07-01

    Beta-keratins of reptilian scales have been recently cloned and characterized in some lizards. Here we report for the first time the sequence of some beta-keratins from the snake Elaphe guttata. Five different cDNAs were obtained using 5'- and 3'-RACE analyses. Four sequences differ by only few nucleotides in the coding region, whereas the last cDNA shows, in this region, only 84% of identity. The gene corresponding to one of the cDNA sequences has a single intron present in the 5'-untranslated region. This genomic organization is similar to that of birds' beta-keratins. Cloning and Southern blotting analysis suggest that snake beta-keratins belong to a family of high-related genes as for geckos. PCR analysis suggests a head-to-tail orientation of genes in the same chromosome. In situ hybridization detected beta-keratin transcripts almost exclusively in differentiating oberhautchen and beta-cells of the snake epidermis in renewal phase. This is confirmed by Northern blotting that showed, in this phase, a high expression of two different transcripts whereas only the longer transcript is expressed at a much lower level in resting skin. The cDNA coding sequences encoded putative glycine-proline-serine rich proteins containing 137-139 amino acids, with apparent isoelectric point at 7.5 and 8.2. A central region, rich in proline, shows over 50% homology with avian scale, claw, and feather keratins. The prediction of secondary structure shows mainly a random coil conformation and few beta-strand regions in the central region, likely involved in the formation of a fibrous framework of beta-keratins. This region was possibly present in basic reptiles that originated reptiles and birds. Copyright 2007 Wiley-Liss, Inc.

  8. Rapid Evolution of Beta-Keratin Genes Contribute to Phenotypic Differences That Distinguish Turtles and Birds from Other Reptiles

    PubMed Central

    Li, Yang I.; Kong, Lesheng; Ponting, Chris P.; Haerty, Wilfried

    2013-01-01

    Sequencing of vertebrate genomes permits changes in distinct protein families, including gene gains and losses, to be ascribed to lineage-specific phenotypes. A prominent example of this is the large-scale duplication of beta-keratin genes in the ancestors of birds, which was crucial to the subsequent evolution of their beaks, claws, and feathers. Evidence suggests that the shell of Pseudomys nelsoni contains at least 16 beta-keratins proteins, but it is unknown whether this is a complete set and whether their corresponding genes are orthologous to avian beak, claw, or feather beta-keratin genes. To address these issues and to better understand the evolution of the turtle shell at a molecular level, we surveyed the diversity of beta-keratin genes from the genome assemblies of three turtles, Chrysemys picta, Pelodiscus sinensis, and Chelonia mydas, which together represent over 160 Myr of chelonian evolution. For these three turtles, we found 200 beta-keratins, which indicate that, as for birds, a large expansion of beta-keratin genes in turtles occurred concomitantly with the evolution of a unique phenotype, namely, their plastron and carapace. Phylogenetic reconstruction of beta-keratin gene evolution suggests that separate waves of gene duplication within a single genomic location gave rise to scales, claws, and feathers in birds, and independently the scutes of the shell in turtles. PMID:23576313

  9. Linking the molecular evolution of avian beta (β) keratins to the evolution of feathers.

    PubMed

    Greenwold, Matthew J; Sawyer, Roger H

    2011-12-15

    Feathers of today's birds are constructed of beta (β)-keratins, structural proteins of the epidermis that are found solely in reptiles and birds. Discoveries of "feathered dinosaurs" continue to stimulate interest in the evolutionary origin of feathers, but few studies have attempted to link the molecular evolution of their major structural proteins (β-keratins) to the appearance of feathers in the fossil record. Using molecular dating methods, we show that before the appearance of Anchiornis (∼155 Million years ago (Ma)) the basal β-keratins of birds began diverging from their archosaurian ancestor ∼216 Ma. However, the subfamily of feather β-keratins, as found in living birds, did not begin diverging until ∼143 Ma. Thus, the pennaceous feathers on Anchiornis, while being constructed of avian β-keratins, most likely did not contain the feather β-keratins found in the feathers of modern birds. Our results demonstrate that the evolutionary origin of feathers does not coincide with the molecular evolution of the feather β-keratins found in modern birds. More likely, during the Late Jurassic, the epidermal structures that appeared on organisms in the lineage leading to birds, including early forms of feathers, were constructed of avian β-keratins other than those found in the feathers of modern birds. Recent biophysical studies of the β-keratins in feathers support the view that the appearance of the subfamily of feather β-keratins altered the biophysical nature of the feather establishing its role in powered flight. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  10. Ultrastructural localization of hair keratins, high sulfur keratin-associated proteins and sulfhydryl oxidase in the human hair.

    PubMed

    Alibardi, Lorenzo

    2017-03-01

    Hardening of the human hair shaft during cornification results from the bonding of keratins and keratin-associated proteins. In situ hybridization and light immunocytochemical studies have shown the general distribution of different keratins and some associated proteins but not determined their ultrastructural localization. I report here the localization of hair keratins, two high-sulfur keratin-associated proteins and sulfhydryl oxidase has been studied under the transmission electron microscope in the cornification zone of the human hair. The ultrastructural study on keratin distribution in general confirms previous light microscopic studies. Sulfur-rich KAP1 is mainly cortical but the labeling disappears in fully cornified cortical cells while a diffuse labeling is also present in differentiating cuticle cells. Sulfur-rich K26 immunolocalization is only detected in the exocuticle and endocuticle. Sparse labeling for sulfhydryl oxidase occurs in differentiating cortical cells but is weak and uneven in cuticle cells and absent in medulla and inner root sheath. Labeling disappears in the upper fully cornified cortex and cuticle. The observations indicate that sulfhydryl oxidase and keratin associated proteins are initially produced in the cytoplasm among keratin bundles accumulating in cortical and cuticle cells but these proteins undergo changes during the following cornification that alter the epitopes tagged by the antibodies.

  11. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia

    PubMed Central

    Bragulla, Hermann H; Homberger, Dominique G

    2009-01-01

    Historically, the term ‘keratin’ stood for all of the proteins extracted from skin modifications, such as horns, claws and hooves. Subsequently, it was realized that this keratin is actually a mixture of keratins, keratin filament-associated proteins and other proteins, such as enzymes. Keratins were then defined as certain filament-forming proteins with specific physicochemical properties and extracted from the cornified layer of the epidermis, whereas those filament-forming proteins that were extracted from the living layers of the epidermis were grouped as ‘prekeratins’ or ‘cytokeratins’. Currently, the term ‘keratin’ covers all intermediate filament-forming proteins with specific physicochemical properties and produced in any vertebrate epithelia. Similarly, the nomenclature of epithelia as cornified, keratinized or non-keratinized is based historically on the notion that only the epidermis of skin modifications such as horns, claws and hooves is cornified, that the non-modified epidermis is a keratinized stratified epithelium, and that all other stratified and non-stratified epithelia are non-keratinized epithelia. At this point in time, the concepts of keratins and of keratinized or cornified epithelia need clarification and revision concerning the structure and function of keratin and keratin filaments in various epithelia of different species, as well as of keratin genes and their modifications, in view of recent research, such as the sequencing of keratin proteins and their genes, cell culture, transfection of epithelial cells, immunohistochemistry and immunoblotting. Recently, new functions of keratins and keratin filaments in cell signaling and intracellular vesicle transport have been discovered. It is currently understood that all stratified epithelia are keratinized and that some of these keratinized stratified epithelia cornify by forming a Stratum corneum. The processes of keratinization and cornification in skin modifications are

  12. Biodegradable materials based on silk fibroin and keratin.

    PubMed

    Vasconcelos, Andreia; Freddi, Giuliano; Cavaco-Paulo, Artur

    2008-04-01

    Wool and silk were dissolved and used for the preparation of blended films. Two systems are proposed: (1) blend films of silk fibroin and keratin aqueous solutions and (2) silk fibroin and keratin dissolved in formic acid. The FTIR spectra of pure films cast from aqueous solutions indicated that the keratin secondary structure mainly consists of alpha-helix and random coil conformations. The IR spectrum of pure SF is characteristic of films with prevalently amorphous structure (random coil conformation). Pure keratin film cast from formic acid shows an increase in the amount of beta-sheet and disordered keratin structures. The FTIR pattern of SF dissolved in formic acid is characteristic of films with prevalently beta-sheet conformations with beta-sheet crystallites embedded in an amorphous matrix. The thermal behavior of the blends confirmed the FTIR results. DSC curve of pure SF is typical of amorphous SF and the curve of pure keratin show the characteristic melting peak of alpha-helices for the aqueous system. These patterns are no longer observed in the films cast from formic acid due to the ability of formic acid to induce crystallization of SF and to increase the amount of beta-sheet structures on keratin. The nonlinear trend of the different parameters obtained from FTIR analysis and DSC curves of both SF/keratin systems indicate that when proteins are mixed they do not follow additives rules but are able to establish intermolecular interactions. Degradable polymeric biomaterials are preferred candidates for medical applications. It was investigated the degradation behavior of both SF/keratin systems by in vitro enzymatic incubation with trypsin. The SF/keratin films cast from water underwent a slower biological degradation than the films cast from formic acid. The weight loss obtained is a function of the amount of keratin in the blend. This study encourages the further investigation of the type of matrices presented here to be applied whether in scaffolds

  13. Colour-producing [beta]-keratin nanofibres in blue penguin (Eudyptula minor) feathers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D; Alba, Liliana; Saranathan, Vinodkumar

    2012-03-26

    The colours of living organisms are produced by the differential absorption of light by pigments (e.g. carotenoids, melanins) and/or by the physical interactions of light with biological nanostructures, referred to as structural colours. Only two fundamental morphologies of non-iridescent nanostructures are known in feathers, and recent work has proposed that they self-assemble by intracellular phase separation processes. Here, we report a new biophotonic nanostructure in the non-iridescent blue feather barbs of blue penguins (Eudyptula minor) composed of parallel {beta}-keratin nanofibres organized into densely packed bundles. Synchrotron small angle X-ray scattering and two-dimensional Fourier analysis of electron micrographs of the barbmore » nanostructure revealed short-range order in the organization of fibres at the appropriate size scale needed to produce the observed colour by coherent scattering. These two-dimensional quasi-ordered penguin nanostructures are convergent with similar arrays of parallel collagen fibres in avian and mammalian skin, but constitute a novel morphology for feathers. The identification of a new class of {beta}-keratin nanostructures adds significantly to the known mechanisms of colour production in birds and suggests additional complexity in their self-assembly.« less

  14. Molecular evolution and expression of archosaurian β-keratins: diversification and expansion of archosaurian β-keratins and the origin of feather β-keratins.

    PubMed

    Greenwold, Matthew J; Sawyer, Roger H

    2013-09-01

    The archosauria consist of two living groups, crocodilians, and birds. Here we compare the structure, expression, and phylogeny of the beta (β)-keratins in two crocodilian genomes and two avian genomes to gain a better understanding of the evolutionary origin of the feather β-keratins. Unlike squamates such as the green anole with 40 β-keratins in its genome, the chicken and zebra finch genomes have over 100 β-keratin genes in their genomes, while the American alligator has 20 β-keratin genes, and the saltwater crocodile has 21 β-keratin genes. The crocodilian β-keratins are similar to those of birds and these structural proteins have a central filament domain and N- and C-termini, which contribute to the matrix material between the twisted β-sheets, which form the 2-3 nm filament. Overall the expression of alligator β-keratin genes in the integument increases during development. Phylogenetic analysis demonstrates that a crocodilian β-keratin clade forms a monophyletic group with the avian scale and feather β-keratins, suggesting that avian scale and feather β-keratins along with a subset of crocodilian β-keratins evolved from a common ancestral gene/s. Overall, our analyses support the view that the epidermal appendages of basal archosaurs used a diverse array of β-keratins, which evolved into crocodilian and avian specific clades. In birds, the scale and feather subfamilies appear to have evolved independently in the avian lineage from a subset of archosaurian claw β-keratins. The expansion of the avian specific feather β-keratin genes accompanied the diversification of birds and the evolution of feathers. Copyright © 2013 Wiley Periodicals, Inc.

  15. Pathophysiology of keratinization

    PubMed Central

    Deo, Priya Nimish; Deshmukh, Revati

    2018-01-01

    Cytoskeleton of a cell is made up of microfilaments, microtubules and intermediate filaments. Keratins are diverse proteins. These intermediate filaments maintain the structural integrity of the keratinocytes. The word keratin covers these intermediate filament-forming proteins within the keratinocytes. They are expressed in a specific pattern and according to the stage of cellular differentiation. They always occur in pairs. Mutations in the genes which regulate the expression of keratin proteins are associated with a number of disorders which show defects in both skin and mucosa. In addition, there are a number of disorders which are seen because of abnormal keratinization. These keratins and keratin-associated proteins have become important markers in diagnostic pathology. This review article discusses the classification, structure, functions, the stains used for the demonstration of keratin and associated pathology. The review describes the physiology of keratinization, pathology behind abnormal keratin formation and various keratin disorders. PMID:29731562

  16. Isolation and Analysis of Keratins and Keratin-Associated Proteins from Hair and Wool.

    PubMed

    Deb-Choudhury, Santanu; Plowman, Jeffrey E; Harland, Duane P

    2016-01-01

    The presence of highly cross-linked protein networks in hair and wool makes them very difficult substrates for protein extraction, a prerequisite for further protein analysis and characterization. It is therefore imperative that these cross-links formed by disulfide bridges are first disrupted for the efficient extraction of proteins. Chaotropes such as urea are commonly used as efficient extractants. However, a combination of urea and thiourea not only improves recovery of proteins but also results in improved resolution of the keratins in 2DE gels. Reductants also play an important role in protein dissolution. Dithiothreitol effectively removes keratinous material from the cortex, whereas phosphines, like Tris(2-carboxyethyl)phosphine, remove material from the exocuticle. The relative extractability of the keratins and keratin-associated proteins is also dependent on the concentration of chaotropes, reductants, and pH, thus providing a means to preferentially extract these proteins. Ionic liquids such as 1-butyl-3-methylimidazolium chloride (BMIM(+)[Cl](-)) are known to solubilize wool by disrupting noncovalent interactions, specifically intermolecular hydrogen bonds. BMIM(+)[Cl](-) proved to be an effective extractant of wool proteins and complementary in nature to chaotropes such as urea and thiourea for identifying unique peptides of wool proteins using mass spectrometry (MS). Successful identification of proteins resolved by one- or two-dimensional electrophoresis and MS is highly dependent on the optimal recovery of its protease-digested peptides with an efficient removal of interfering substances. The detergent sodium deoxycholate used in conjunction with Empore™ disks improved identification of proteins by mass spectrometry leading to higher percentage sequence coverage, identification of unique peptides and higher score. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Keratin expression profiling of transitional epithelium in the painful bladder syndrome/interstitial cystitis.

    PubMed

    Laguna, Pilar; Smedts, Frank; Nordling, Jörgen; Horn, Thomas; Bouchelouche, Kirsten; Hopman, Anton; de la Rosette, Jean

    2006-01-01

    Painful bladder syndrome/interstitial cystitis (PBS/IC) is a severely debilitating condition. Its cause is poorly understood; therapy is symptomatic and often unsuccessful. To study urothelial involvement, we characterized the keratin phenotype of bladder urothelium in 18 patients with PBS/IC using a panel of 11 keratin antibodies recognizing simple keratins found in columnar epithelia (keratins 7, 8, 18, and 20) and keratins associated with basal cell compartments of squamous epithelia (keratins 5, 13, 14, and 17). We also tested 2 antibodies recognizing more than 1 keratin also directed against basal cell compartments of squamous epithelia (D5/16 B4 and 34betaE12). Bladder urothelium in PBS/IC showed distinct differences in the profiles of keratins 7, 8, 14, 17, 18, and 20 compared with literature reports for normal bladder urothelium. These were characterized by a shift from the normal bladder urothelial keratin phenotype to a more squamous keratin profile, despite the lack of morphologic evidence of squamous epithelial differentiation and a loss of compartmentalization of keratin expression. The severity of these changes varied between biopsy specimens. Whether these changes are primary or secondary to another underlying condition remains to be determined.

  18. Keratin-lipid structural organization in the corneous layer of snake.

    PubMed

    Ripamonti, Alberto; Alibardi, Lorenzo; Falini, Giuseppe; Fermani, Simona; Gazzano, Massimo

    2009-12-01

    The shed epidermis (molt) of snakes comprises four distinct layers. The upper two layers, here considered as beta-layer, contain essentially beta-keratin. The following layer, known as mesos-layer, is similar to the human stratum corneum, and is formed by thin cells surrounded by intercellular lipids. The latter layer mainly contains alpha-keratin. In this study, the molecular assemblies of proteins and lipids contained in these layers have been analyzed in the scale of two species of snakes, the elapid Tiger snake (TS, Notechis scutatus) and the viperid Gabon viper (GV, Bitis gabonica). Scanning X-ray micro-diffraction, FTIR and Raman spectroscopies, thermal analysis, and scanning electron microscopy experiments confirm the presence of the three layers in the GV skin scale. Conversely, in the TS molt a typical alpha-keratin layer appears to be absent. In the latter, experimental data suggest the presence of two domains similar to those found in the lipid intercellular matrix of stratum corneum. X-ray diffraction data also allow to determine the relative orientation of keratins and lipids. The keratin fibrils are randomly oriented inside the layers parallel to the surface of scales while the lipids are organized in lamellar structures having aliphatic chains normal to the scale surface. The high ordered lipid organization in the mature mesos layer probably increases its effectiveness in limiting water-loss.

  19. Molecular evidence of keratin and melanosomes in feathers of the Early Cretaceous bird Eoconfuciusornis.

    PubMed

    Pan, Yanhong; Zheng, Wenxia; Moyer, Alison E; O'Connor, Jingmai K; Wang, Min; Zheng, Xiaoting; Wang, Xiaoli; Schroeter, Elena R; Zhou, Zhonghe; Schweitzer, Mary H

    2016-12-06

    Microbodies associated with feathers of both nonavian dinosaurs and early birds were first identified as bacteria but have been reinterpreted as melanosomes. Whereas melanosomes in modern feathers are always surrounded by and embedded in keratin, melanosomes embedded in keratin in fossils has not been demonstrated. Here we provide multiple independent molecular analyses of both microbodies and the associated matrix recovered from feathers of a new specimen of the basal bird Eoconfuciusornis from the Early Cretaceous Jehol Biota of China. Our work represents the oldest ultrastructural and immunological recognition of avian beta-keratin from an Early Cretaceous (∼130-Ma) bird. We apply immunogold to identify protein epitopes at high resolution, by localizing antibody-antigen complexes to specific fossil ultrastructures. Retention of original keratinous proteins in the matrix surrounding electron-opaque microbodies supports their assignment as melanosomes and adds to the criteria employable to distinguish melanosomes from microbial bodies. Our work sheds new light on molecular preservation within normally labile tissues preserved in fossils.

  20. Molecular evidence of keratin and melanosomes in feathers of the Early Cretaceous bird Eoconfuciusornis

    PubMed Central

    Pan, Yanhong; Zheng, Wenxia; Moyer, Alison E.; O’Connor, Jingmai K.; Zheng, Xiaoting; Wang, Xiaoli; Schroeter, Elena R.; Zhou, Zhonghe; Schweitzer, Mary H.

    2016-01-01

    Microbodies associated with feathers of both nonavian dinosaurs and early birds were first identified as bacteria but have been reinterpreted as melanosomes. Whereas melanosomes in modern feathers are always surrounded by and embedded in keratin, melanosomes embedded in keratin in fossils has not been demonstrated. Here we provide multiple independent molecular analyses of both microbodies and the associated matrix recovered from feathers of a new specimen of the basal bird Eoconfuciusornis from the Early Cretaceous Jehol Biota of China. Our work represents the oldest ultrastructural and immunological recognition of avian beta-keratin from an Early Cretaceous (∼130-Ma) bird. We apply immunogold to identify protein epitopes at high resolution, by localizing antibody–antigen complexes to specific fossil ultrastructures. Retention of original keratinous proteins in the matrix surrounding electron-opaque microbodies supports their assignment as melanosomes and adds to the criteria employable to distinguish melanosomes from microbial bodies. Our work sheds new light on molecular preservation within normally labile tissues preserved in fossils. PMID:27872291

  1. Flow behavior of regenerated wool-keratin proteins in different mediums.

    PubMed

    Alemdar, Ayse; Iridag, Yesim; Kazanci, Murat

    2005-04-01

    Keratin is abundantly present in nature and the major component of hair, wool, feather, nail and horns. Dissolution of keratin is often required when non-textile applications are demanded. However, the low solubility of keratin in water is the major problem. It becomes unstable and precipitated when stored for a long time. Therefore, it is necessary to find a good solvent that provides high stability and easy processibility. In this research, we used formic acid and dimethylformamide (DMF) to dissolve regenerated keratin protein films. It is shown that formic acid is a good solvent for regenerated keratin proteins for the purpose of storage. Transparent and stable regenerated keratin solution is obtained in formic acid.

  2. Immunocytochemical and autoradiographic studies on the process of keratinization in avian epidermis suggests absence of keratohyalin.

    PubMed

    Alibardi, Lorenzo

    2004-02-01

    The process of keratinization in apteric avian epidermis and in scutate scales of some avian species has been studied by autoradiography for histidine and immunohistochemistry for keratins and other epidermal proteins. Acidic or basic alpha-keratins are present in basal, spinosus, and transitional layers, but are not seen in the corneous layer. Keratinization-specific alpha-keratins (AE2-positive) are observed in the corneous layer of apteric epidermis but not in that of scutate scales, which contain mainly beta-keratin. Alpha-keratin bundles accumulate along the plasma membrane of transitional cells of apteric epidermis. In contrast to the situation in scutate scales, in the transitional layer and in the lowermost part of the corneous layer of apteric epidermis, filaggrin-like, loricrin-like, and transglutaminase immunoreactivities are present. The lack of isopeptide bond immunoreactivity suggests that undetectable isopeptide bonds are present in avian keratinocytes. Using immunogold ultrastructural immunocytochemistry a low but localized loricrin-like and, less, filaggrin-like labeling is seen over round-oval granules or vesicles among keratin bundles of upper spinosus and transitional keratinocytes of apteric epidermis. Filaggrin-and loricrin-labeling are absent in alpha-keratin bundles localized along the plasma membrane and in the corneous layer, formerly considered keratohyalin. Using ultrastructural autoradiography for tritiated histidine, occasional trace grains are seen among these alpha-keratin bundles. A different mechanism of redistribution of matrix and corneous cell envelope proteins probably operates in avian keratinocytes as compared to that of mammals. Keratin bundles are compacted around the lipid-core of apteric epidermis keratinocytes, which do not form complex chemico/mechanical-resistant corneous cell envelopes as in mammalian keratinocytes. These observations suggest that low amounts of matrix proteins are present among keratin bundles of

  3. Distribution of keratin and associated proteins in the epidermis of monotreme, marsupial, and placental mammals.

    PubMed

    Alibardi, Lorenzo; Maderson, Paul F A

    2003-10-01

    The expression of acidic and basic keratins, and of some keratinization marker proteins such as filaggrin, loricrin, involucrin, and trichohyalin, is known for the epidermis of only a few eutherian species. Using light and high-resolution immunocytochemistry, the presence of these proteins has been studied in two monotreme and five marsupial species and compared to that in eutherians. In both monotreme and marsupial epidermis lamellar bodies occur in the upper spinosus and granular layers. Development of the granular layer varies between species and regionally within species. There is great interspecific variation in the size (0.1-3.0 microm) of keratohyalin granules (KHGs) associated with production of orthokeratotic corneous tissues. Those skin regions lacking hairs (platypus web), or showing reduced pelage density (wombat) have, respectively, minute or indiscernible KHGs, associated with patchy, or total, parakeratosis. Ultrastructural analysis shows that monotreme and marsupial KHGs comprise irregular coarse filaments of 25-40 nm that contact keratin filaments. Except for parakeratotic tissues of platypus web, distribution of acidic and basic proteins in monotreme and marsupial epidermis as revealed by anti-keratin antibodies AE1, AE2, and AE3 resembles that of eutherian epidermis. Antibodies against human or rat filaggrins have little or no cross-reactivity with epidermal proteins of other mammals: only sparse areas of wombat and rabbit epidermis show a weak immunofluorescence in transitional cells and in the deepest corneous tissues. Of the available, eutherian-derived antibodies, that against involucrin shows no cross-reactivity with any monotreme and marsupial epidermal tissues and that against trichohyalin cross-reacts only with cells in the inner root sheath and medulla of hairs. These results suggest that if involucrin and trichohyalin are present throughout noneutherian epidermis, they may have species-specific molecular structures. By contrast

  4. Keratinizing dentigerous cyst

    PubMed Central

    Sivasankar, Vaishnavi; Ranganathan, Kannan; Praveen, B

    2014-01-01

    Keratinizing dentigerous cyst is a rare entity. This article reports a case of keratinizing dentigerous cyst associated with an impacted mandibular canine. Clinical and radiological features, cone-beam computed tomography findings and histological features of the case are reported along with a discussion on keratinizing odontogenic cysts and the need for follow-up. PMID:24808713

  5. Keratin: dissolution, extraction and biomedical application.

    PubMed

    Shavandi, Amin; Silva, Tiago H; Bekhit, Adnan A; Bekhit, Alaa El-Din A

    2017-08-22

    Keratinous materials such as wool, feathers and hooves are tough unique biological co-products that usually have high sulfur and protein contents. A high cystine content (7-13%) differentiates keratins from other structural proteins, such as collagen and elastin. Dissolution and extraction of keratin is a difficult process compared to other natural polymers, such as chitosan, starch, collagen, and a large-scale use of keratin depends on employing a relatively fast, cost-effective and time efficient extraction method. Keratin has some inherent ability to facilitate cell adhesion, proliferation, and regeneration of the tissue, therefore keratin biomaterials can provide a biocompatible matrix for regrowth and regeneration of the defective tissue. Additionally, due to its amino acid constituents, keratin can be tailored and finely tuned to meet the exact requirement of degradation, drug release or incorporation of different hydrophobic or hydrophilic tails. This review discusses the various methods available for the dissolution and extraction of keratin with emphasis on their advantages and limitations. The impacts of various methods and chemicals used on the structure and the properties of keratin are discussed with the aim of highlighting options available toward commercial keratin production. This review also reports the properties of various keratin-based biomaterials and critically examines how these materials are influenced by the keratin extraction procedure, discussing the features that make them effective as biomedical applications, as well as some of the mechanisms of action and physiological roles of keratin. Particular attention is given to the practical application of keratin biomaterials, namely addressing the advantages and limitations on the use of keratin films, 3D composite scaffolds and keratin hydrogels for tissue engineering, wound healing, hemostatic and controlled drug release.

  6. New consensus nomenclature for mammalian keratins

    PubMed Central

    Schweizer, Jürgen; Bowden, Paul E.; Coulombe, Pierre A.; Langbein, Lutz; Lane, E. Birgitte; Magin, Thomas M.; Maltais, Lois; Omary, M. Bishr; Parry, David A.D.; Rogers, Michael A.; Wright, Mathew W.

    2006-01-01

    Keratins are intermediate filament–forming proteins that provide mechanical support and fulfill a variety of additional functions in epithelial cells. In 1982, a nomenclature was devised to name the keratin proteins that were known at that point. The systematic sequencing of the human genome in recent years uncovered the existence of several novel keratin genes and their encoded proteins. Their naming could not be adequately handled in the context of the original system. We propose a new consensus nomenclature for keratin genes and proteins that relies upon and extends the 1982 system and adheres to the guidelines issued by the Human and Mouse Genome Nomenclature Committees. This revised nomenclature accommodates functional genes and pseudogenes, and although designed specifically for the full complement of human keratins, it offers the flexibility needed to incorporate additional keratins from other mammalian species. PMID:16831889

  7. Keratins and lipids in ethnic hair.

    PubMed

    Cruz, C F; Fernandes, M M; Gomes, A C; Coderch, L; Martí, M; Méndez, S; Gales, L; Azoia, N G; Shimanovich, U; Cavaco-Paulo, A

    2013-06-01

    Human hair has an important and undeniable relevance in society due to its important role in visual appearance and social communication. Hair is mainly composed of structural proteins, mainly keratin and keratin associated proteins and lipids. Herein, we report a comprehensive study of the content and distribution of the lipids among ethnic hair, African, Asian and Caucasian hair. More interestingly, we also report the study of the interaction between those two main components of hair, specifically, the influence of the hair internal lipids in the structure of the hair keratin. This was achieved by the use of a complete set of analytical tools, such as thin layer chromatography-flame ionization detector, X-ray analysis, molecular dynamics simulation and confocal microscopy. The experimental results indicated different amounts of lipids on ethnic hair compositions and higher percentage of hair internal lipids in African hair. In this type of hair, the axial diffraction of keratin was not observed in X-ray analysis, but after hair lipids removal, the keratin returned to its typical packing arrangement. In molecular dynamic simulation, lipids were shown to intercalate dimers of keratin, changing its structure. From those results, we assume that keratin structure may be influenced by higher concentration of lipids in African hair. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  8. Immunocytochemistry suggests that the prevalence of a sub-type of beta-proteins determines the hardness in the epidermis of the hard-shelled turtle.

    PubMed

    Alibardi, Lorenzo

    2014-01-01

    The corneous layer of the epidermis in hard-shelled turtles largely derives from the accumulation of beta-proteins as indicated by microscopic, in situ hybridization, and immunocytochemical and Western blotting analysis. The expression of mRNAs of one of the most common type of beta-proteins shows higher expression in upper spinosus and pre-corneous keratinocytes of growing scutes. Two beta-proteins of 14-16 kDa, indicated as Tu2 and Tu17 and representing two subtypes of beta-proteins co-accumulate in the thick corneous layer of the epidermis in hard-shelled turtle. The two beta-proteins apparently mix in differentiating and mature corneocytes although Tu2 appears more prevalent than Tu17. The specific role of the different subtypes in the formation of the hard corneous material of the carapace and plastron is not clear. It is hypothesized that the relative amount of beta-proteins belonging to the two subclasses in relation to the alpha-keratin meshwork present in keratinocytes contributes to the formation of a variably resistant and inflexible corneous layer. Tu17 may have a more globular structure than Tu2 and is likely present in denser areas of the corneous layer containing also alpha-keratin. The increase of cysteine-glycine-rich beta-proteins in the matrix located among alpha-keratin filaments may allow the formation of a hard corneous material, probably through increase of cross-bridge formation and hydrophobicity. © 2013 Wiley Periodicals, Inc.

  9. Origin of archosaurian integumentary appendages: the bristles of the wild turkey beard express feather-type beta keratins.

    PubMed

    Sawyer, Roger H; Washington, Lynette D; Salvatore, Brian A; Glenn, Travis C; Knapp, Loren W

    2003-06-15

    The discovery that structurally unique "filamentous integumentary appendages" are associated with several different non-avian dinosaurs continues to stimulate the development of models to explain the evolutionary origin of feathers. Taking the phylogenetic relationships of the non-avian dinosaurs into consideration, some models propose that the "filamentous integumentary appendages" represent intermediate stages in the sequential evolution of feathers. Here we present observations on a unique integumentary structure, the bristle of the wild turkey beard, and suggest that this non-feather appendage provides another explanation for some of the "filamentous integumentary appendages." Unlike feathers, beard bristles grow continuously from finger-like outgrows of the integument lacking follicles. We find that these beard bristles, which show simple branching, are hollow, distally, and express the feather-type beta keratins. The significance of these observations to explanations for the evolution of archosaurian integumentary appendages is discussed.

  10. The human keratins: biology and pathology

    PubMed Central

    Divo, Markus; Langbein, Lutz

    2008-01-01

    The keratins are the typical intermediate filament proteins of epithelia, showing an outstanding degree of molecular diversity. Heteropolymeric filaments are formed by pairing of type I and type II molecules. In humans 54 functional keratin genes exist. They are expressed in highly specific patterns related to the epithelial type and stage of cellular differentiation. About half of all keratins—including numerous keratins characterized only recently—are restricted to the various compartments of hair follicles. As part of the epithelial cytoskeleton, keratins are important for the mechanical stability and integrity of epithelial cells and tissues. Moreover, some keratins also have regulatory functions and are involved in intracellular signaling pathways, e.g. protection from stress, wound healing, and apoptosis. Applying the new consensus nomenclature, this article summarizes, for all human keratins, their cell type and tissue distribution and their functional significance in relation to transgenic mouse models and human hereditary keratin diseases. Furthermore, since keratins also exhibit characteristic expression patterns in human tumors, several of them (notably K5, K7, K8/K18, K19, and K20) have great importance in immunohistochemical tumor diagnosis of carcinomas, in particular of unclear metastases and in precise classification and subtyping. Future research might open further fields of clinical application for this remarkable protein family. PMID:18461349

  11. Binding Interactions of Keratin-Based Hair Fiber Extract to Gold, Keratin, and BMP-2

    PubMed Central

    de Guzman, Roche C.; Tsuda, Shanel M.; Ton, Minh-Thi N.; Zhang, Xiao; Esker, Alan R.; Van Dyke, Mark E.

    2015-01-01

    Hair-derived keratin biomaterials composed mostly of reduced keratin proteins (kerateines) have demonstrated their utility as carriers of biologics and drugs for tissue engineering. Electrostatic forces between negatively-charged keratins and biologic macromolecules allow for effective drug retention; attraction to positively-charged growth factors like bone morphogenetic protein 2 (BMP-2) has been used as a strategy for osteoinduction. In this study, the intermolecular surface and bulk interaction properties of kerateines were investigated. Thiol-rich kerateines were chemisorbed onto gold substrates to form an irreversible 2-nm rigid layer for surface plasmon resonance analysis. Kerateine-to-kerateine cohesion was observed in pH-neutral water with an equilibrium dissociation constant (KD) of 1.8 × 10−4 M, indicating that non-coulombic attractive forces (i.e. hydrophobic and van der Waals) were at work. The association of BMP-2 to kerateine was found to be greater (KD = 1.1 × 10−7 M), within the range of specific binding. Addition of salts (phosphate-buffered saline; PBS) shortened the Debye length or the electrostatic field influence which weakened the kerateine-BMP-2 binding (KD = 3.2 × 10−5 M). BMP-2 in bulk kerateine gels provided a limited release in PBS (~ 10% dissociation in 4 weeks), suggesting that electrostatic intermolecular attraction was significant to retain BMP-2 within the keratin matrix. Complete dissociation between kerateine and BMP-2 occurred when the PBS pH was lowered (to 4.5), below the keratin isoelectric point of 5.3. This phenomenon can be attributed to the protonation of keratin at a lower pH, leading to positive-positive repulsion. Therefore, the dynamics of kerateine-BMP-2 binding is highly dependent on pH and salt concentration, as well as on BMP-2 solubility at different pH and molarity. The study findings may contribute to our understanding of the release kinetics of drugs from keratin biomaterials and allow for the

  12. New keratin isolates: actives for natural hair protection.

    PubMed

    Roddick-Lanzilotta, Alisa; Kelly, Rob; Scott, Sonya; Chahal, Surinder

    2007-01-01

    Hair is primarily composed of keratin proteins and it is well established that peptides and proteins bestow desirable effects on the hair, for example improving moisturization and softness. In the present work we describe how keratin actives with unique properties convey a range of beneficial properties to a variety of hair types. It has been observed that these functional keratins protect hair from damage associated with chemical treatments such as perming and relaxation, help to restore the mechanical strength of damaged fibers and decrease fading of colored hair.

  13. Prolactin--a novel neuroendocrine regulator of human keratin expression in situ.

    PubMed

    Ramot, Yuval; Bíró, Tamás; Tiede, Stephan; Tóth, Balázs I; Langan, Ewan A; Sugawara, Koji; Foitzik, Kerstin; Ingber, Arieh; Goffin, Vincent; Langbein, Lutz; Paus, Ralf

    2010-06-01

    The controls of human keratin expression in situ remain to be fully elucidated. Here, we have investigated the effects of the neurohormone prolactin (PRL) on keratin expression in a physiologically and clinically relevant test system: organ-cultured normal human hair follicles (HFs). Not only do HFs express a wide range of keratins, but they are also a source and target of PRL. Microarray analysis revealed that PRL differentially regulated a defined subset of keratins and keratin-associated proteins. Quantitative immunohistomorphometry and quantitative PCR confirmed that PRL up-regulated expression of keratins K5 and K14 and the epithelial stem cell-associated keratins K15 and K19 in organ-cultured HFs and/or isolated HF keratinocytes. PRL also up-regulated K15 promoter activity and K15 protein expression in situ, whereas it inhibited K6 and K31 expression. These regulatory effects were reversed by a pure competitive PRL receptor antagonist. Antagonist alone also modulated keratin expression, suggesting that "tonic stimulation" by endogenous PRL is required for normal expression levels of selected keratins. Therefore, our study identifies PRL as a major, clinically relevant, novel neuroendocrine regulator of both human keratin expression and human epithelial stem cell biology in situ.

  14. Mechanistic investigation of a hemostatic keratin biomaterial

    NASA Astrophysics Data System (ADS)

    Rahmany, Maria Bahawdory

    Traumatic injury leads to more productive years lost than heart disease, cancer and stroke combined. Trauma is often accompanied and complicated by uncontrolled bleeding. Human hair keratin biomaterials have demonstrated efficacy in controlling hemorrhage in both small and large animal models; however little is known about the mechanism by which these proteins aid in blood clotting. Inspection of the amino acid sequence of known keratins shows the presence of several cellular binding motifs, suggesting a possible mechanism and potentially eliminating the need to functionalize the material's surface for cellular interaction. In addition to small animal studies, the hemostatic activity of keratin hydrogels was explored through porcine hemorrhage models representing both a high flow and low flow bleed. In both studies, keratin hydrogels appeared to lead to a significant reduction in blood loss. The promising results from these in vivo studies provided the motivation for this project. The objective of this dissertation work was to assess the mechanism of action of a hemostatic keratin biomaterial, and more broadly assess the biomaterial-cellular interaction(s). It is our hypothesis that keratin biomaterials have the capacity to specifically interact with cells and lead to propagation of intracellular signaling pathway, specifically contributing to hemostasis. Through application of biochemical and molecular tools, we demonstrate here that keratin biomaterials contribute to hemostasis through two probable mechanisms; integrin mediated platelet adhesion and increased fibrin polymerization. Platelets are the major cell type involved in coagulation both by acting as a catalytic surface for the clotting cascade and adhering to extracellular matrix (ECM) proteins providing a soft platelet plug. Because keratin biomaterials have structural and biochemical characteristics similar to ECM proteins, we utilized several adhesion assays to investigate platelet adhesion to keratin

  15. Monoclonal Antibody Analysis of Keratin Expression in the Central Nervous System

    NASA Astrophysics Data System (ADS)

    Franko, Maryellen C.; Gibbs, Clarence J.; Rhoades, Dorothy A.; Carleton Gajdusek, D.

    1987-05-01

    A monoclonal antibody directed against a 65-kDa brain protein demonstrates an epitope found in keratin from human epidermis. By indirect immunofluorescence, the antibody decorates intracytoplasmic filaments in a subclass of astrocytes and Purkinje cells of adult hamster brain. Double-label immunofluorescence study using antibody to glial fibrillary acidic protein and this antibody reveals the 65-kDa protein to be closely associated with glial filaments in astrocytes of fetal mouse brain cultures. Immunoblot analysis of purified human epidermal keratin and hamster brain homogenate confirms the reactivity of this antibody to epidermal keratin polypeptides. All the major epidermal keratins were recognized by this antibody. It did not bind to the remaining major intermediate filament proteins. These findings suggest that monoclonal antibody 34C9 recognizes a cytoskeletal structure connected with intermediate filaments. In addition, the monoclonal antibody demonstrates that epidermal keratins share an epitope not only among themselves but also with a ``neural keratin.''

  16. Fluorescence detection of protein content in house dust: the possible role of keratin.

    PubMed

    Voloshina, O V; Shirshin, E A; Lademann, J; Fadeev, V V; Darvin, M E

    2017-03-01

    We propose a fluorescence method for protein content assessment in fine house dust, which can be used as an indicator of the hygienic state of occupied rooms. The results of the measurements performed with 30 house dust samples, including ultrafiltration experiments, strongly suggest that the fluorescence emission of house dust extracts excited at 350 nm is mainly due to protein fragments, which are presumably keratin hydrolysates. This suggestion is supported by several facts: (i) Spectral band shapes for all the samples under investigation are close and correspond to that of keratin; (ii) fluorescence intensity correlates with the total protein content as provided by Lowry assay; (iii) treatment of the samples with proteinase K, which induces keratin hydrolysis, results in fluorescence enhancement without changing fluorescence band shape; and (iv) Raman spectra of keratin and fine house dust samples exhibit a very similar structure. Based on the obtained results and literature data, we propose a hypothesis that keratin is a major substrate for fluorescence species in fine house dust, which are responsible for emission at 350-nm excitation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. The structure of the "amorphous" matrix of keratins.

    PubMed

    Kadir, Murat; Wang, Xinwei; Zhu, Bowen; Liu, Jing; Harland, Duane; Popescu, Crisan

    2017-05-01

    Various keratin fibers, particularly human hairs, were investigated by transmission electron microscopy, TEM, solid-state 1 H NMR and Transient Electro-Thermal Technique, TET. The results converge to suggest that the matrix of keratin fiber cortex, far from being amorphous, has a well-defined nano-scale grainy structure, the size of these grains being around 2-4nm. The size of the grains appears to strongly depend on the chemical treatment of the fiber, on the temperature and on the relative humidity of the environment, as well as on the physiological factors at the level of fiber production in follicle. By suggesting an organization at the nano-scale of the protein chains in these grains, likely to be Keratin Associated Proteins, the results challenge the view of matrix as a homogeneous glassy material. Moreover, they indicate the potential of further investigating the purpose of this structure that appears to reflect not only chemical treatments of keratins but also biological processes at the level of the follicle. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Surface active complexes formed between keratin polypeptides and ionic surfactants.

    PubMed

    Pan, Fang; Lu, Zhiming; Tucker, Ian; Hosking, Sarah; Petkov, Jordan; Lu, Jian R

    2016-12-15

    Keratins are a group of important proteins in skin and hair and as biomaterials they can provide desirable properties such as strength, biocompatibility, and moisture regaining and retaining. The aim of this work is to develop water-soluble keratin polypeptides from sheep wool and then explore how their surface adsorption behaves with and without surfactants. Successful preparation of keratin samples was demonstrated by identification of the key components from gel electrophoresis and the reproducible production of gram scale samples with and without SDS (sodium dodecylsulphate) during wool fibre dissolution. SDS micelles could reduce the formation of disulphide bonds between keratins during extraction, reducing inter-molecular crosslinking and improving keratin polypeptide solubility. However, Zeta potential measurements of the two polypeptide batches demonstrated almost identical pH dependent surface charge distributions with isoelectric points around pH 3.5, showing complete removal of SDS during purification by dialysis. In spite of different solubility from the two batches of keratin samples prepared, very similar adsorption and aggregation behavior was revealed from surface tension measurements and dynamic light scattering. Mixing of keratin polypeptides with SDS and C 12 TAB (dodecyltrimethylammonium bromide) led to the formation of keratin-surfactant complexes that were substantially more effective at reducing surface tension than the polypeptides alone, showing great promise in the delivery of keratin polypeptides via the surface active complexes. Neutron reflection measurements revealed the coexistence of surfactant and keratin polypeptides at the interface, thus providing the structural support to the observed surface tension changes associated with the formation of the surface active complexes. Copyright © 2016. Published by Elsevier Inc.

  19. The role of the ubiquitin proteasome pathway in keratin intermediate filament protein degradation.

    PubMed

    Rogel, Micah R; Jaitovich, Ariel; Ridge, Karen M

    2010-02-01

    Lung injury, whether caused by hypoxic or mechanical stresses, elicits a variety of responses at the cellular level. Alveolar epithelial cells respond and adapt to such injurious stimuli by reorganizing the cellular cytoskeleton, mainly accomplished through modification of the intermediate filament (IF) network. The structural and mechanical integrity in epithelial cells is maintained through this adaptive reorganization response. Keratin, the predominant IF expressed in epithelial cells, displays highly dynamic properties in response to injury, sometimes in the form of degradation of the keratin IF network. Post-translational modification, such as phosphorylation, targets keratin proteins for degradation in these circumstances. As with other structural and regulatory proteins, turnover of keratin is regulated by the ubiquitin (Ub)-proteasome pathway. The degradation process begins with activation of Ub by the Ub-activating enzyme (E1), followed by the exchange of Ub to the Ub-conjugating enzyme (E2). E2 shuttles the Ub molecule to the substrate-specific Ub ligase (E3), which then delivers the Ub to the substrate protein, thereby targeting it for degradation. In some cases of injury and IF-related disease, aggresomes form in epithelial cells. The mechanisms that regulate aggresome formation are currently unknown, although proteasome overload may play a role. Therefore, a more complete understanding of keratin degradation--causes, mechanisms, and consequences--will allow for a greater understanding of epithelial cell biology and lung pathology alike.

  20. Autosomal-dominant Meesmann epithelial corneal dystrophy without an exon mutation in the keratin-3 or keratin-12 gene in a Chinese family.

    PubMed

    Cao, Wei; Yan, Ming; Hao, QianYun; Wang, ShuLin; Wu, LiHua; Liu, Qing; Li, MingYan; Biddle, Fred G; Wu, Wei

    2013-04-01

    Meesmann epithelial corneal dystrophy (MECD) is a dominantly inherited disorder, characterized by fragility of the anterior corneal epithelium and formation of intraepithelial microcysts. It has been described in a number of different ancestral groups. To date, all reported cases of MECD have been associated with either a single mutation in one exon of the keratin-3 gene (KRT3) or a single mutation in one of two exons of the keratin-12 gene (KRT12). Each mutation leads to a predicted amino acid change in the respective keratin-3 or keratin-12 proteins that combine to form the corneal-specific heterodimeric intermediate filament protein. This case report describes a four-generation Chinese kindred with typical autosomal-dominant MECD. Exon sequencing of KRT3 and KRT12 in six affected and eight unaffected individuals (including two spouses) did not detect any mutations or nucleotide sequence variants. This kindred demonstrates that single mis-sense mutations may be sufficient but are not required in all individuals with the MECD phenotype. It provides a unique opportunity to investigate further genomic and functional heterogeneity in MECD.

  1. Hydrogels from feather keratin show higher viscoelastic properties and cell proliferation than those from hair and wool keratins.

    PubMed

    Esparza, Yussef; Bandara, Nandika; Ullah, Aman; Wu, Jianping

    2018-09-01

    Hydrogel prepared from keratin shows potential applications in tissue engineering. However, the importance of the keratin sources has not been considered. The objectives of this study were to characterize and compare the rheological (storage modulus), physical (porosity, pore size, swelling capacity, and water contact angle) and in vitro cell compatibility of hydrogel scaffolds prepared from various keratin sources. Keratins were characterized by means of their molecular weight, amino acid composition, thermal and conformational properties. Hydrogels from chicken feather keratins demonstrated substantially higher storage modulus (G') than hair and wool keratin hydrogels. However, higher swelling capacity (>3000%) was determined in hair and wool over feather keratin (1500%) hydrogels. Our results suggest that small molecular weight and β-sheet conformation of feather keratin (~10 kDa) facilitated the self-assembly of rigid hydrogels through disulfide bond re-oxidation. Whereas, high molecular weight (10-75 kDa) stretchable α-helix conformation in hair and wool keratins resulted in weaker hydrogels. The cell cultures using fibroblasts showed the highest proliferation rate on chicken feather keratin hydrogel scaffolds. After 15 days of culture, partial breakdown of keratin fibers was observed. Results indicate that stiffer avian keratins can be used to fabricate more mechanically robust biomaterials than mammalian keratins. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Investigating the microstructure of keratin extracted from wool: peptide sequence (MALDI-TOF/TOF) and protein conformation (FTIR)

    USDA-ARS?s Scientific Manuscript database

    Keratin was extracted from wool by reduction with 2-mercaptoethanol. It was isolated as intact keratin and characterized by its similar molecular weight, protein composition, and secondary structure to native keratin. Gel electrophoresis patterns and MALDI-TOF/TOF peptide sequences provided the ide...

  3. Simple Epithelial Keratins.

    PubMed

    Strnad, Pavel; Guldiken, Nurdan; Helenius, Terhi O; Misiorek, Julia O; Nyström, Joel H; Lähdeniemi, Iris A K; Silvander, Jonas S G; Kuscuoglu, Deniz; Toivola, Diana M

    2016-01-01

    Simple epithelial keratins (SEKs) are the cytoplasmic intermediate filament proteins of single-layered and glandular epithelial cells as found in the liver, pancreas, intestine, and lung. SEKs have broad cytoprotective functions, which are facilitated by dynamic posttranslational modifications and interaction with associated proteins. SEK filaments are composed of obligate heteropolymers of type II (K7, K8) and type I (K18-K20, K23) keratins. The multifaceted roles of SEKs are increasingly appreciated due to findings obtained from transgenic mouse models and human studies that identified SEK variants in several digestive diseases. Reorganization of the SEK network into aggregates called Mallory-Denk bodies (MDBs) is characteristic for specific liver disorders such as alcoholic and nonalcoholic steatohepatitis. To spur further research on SEKs, we here review the methods and potential caveats of their isolation as well as possibilities to study them in cell culture. The existing transgenic SEK mouse models, their advantages and potential drawbacks are discussed. The tools to induce MDBs, ways of their visualization and quantification, as well as the possibilities to detect SEK variants in humans are summarized. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. A curated catalog of canine and equine keratin genes

    PubMed Central

    Pujar, Shashikant; McGarvey, Kelly M.; Welle, Monika; Galichet, Arnaud; Müller, Eliane J.; Pruitt, Kim D.; Leeb, Tosso

    2017-01-01

    Keratins represent a large protein family with essential structural and functional roles in epithelial cells of skin, hair follicles, and other organs. During evolution the genes encoding keratins have undergone multiple rounds of duplication and humans have two clusters with a total of 55 functional keratin genes in their genomes. Due to the high similarity between different keratin paralogs and species-specific differences in gene content, the currently available keratin gene annotation in species with draft genome assemblies such as dog and horse is still imperfect. We compared the National Center for Biotechnology Information (NCBI) (dog annotation release 103, horse annotation release 101) and Ensembl (release 87) gene predictions for the canine and equine keratin gene clusters to RNA-seq data that were generated from adult skin of five dogs and two horses and from adult hair follicle tissue of one dog. Taking into consideration the knowledge on the conserved exon/intron structure of keratin genes, we annotated 61 putatively functional keratin genes in both the dog and horse, respectively. Subsequently, curators in the RefSeq group at NCBI reviewed their annotation of keratin genes in the dog and horse genomes (Annotation Release 104 and Annotation Release 102, respectively) and updated annotation and gene nomenclature of several keratin genes. The updates are now available in the NCBI Gene database (https://www.ncbi.nlm.nih.gov/gene). PMID:28846680

  5. Sulfur mustard induces the formation of keratin aggregates in human epidermal keratinocytes.

    PubMed

    Dillman, James F; McGary, Kriston L; Schlager, John J

    2003-12-01

    The vesicant sulfur mustard is an alkylating agent that has the capacity to cross-link biological molecules. We are interested in identifying specific proteins that are altered upon sulfur mustard exposure. Keratins are particularly important for the structural integrity of skin, and several genetically inherited blistering diseases have been linked to mutations in keratin 5 and keratin 14. We examined whether sulfur mustard exposure alters keratin biochemistry in cultured human epidermal keratinocytes. Western blotting with specific monoclonal antibodies revealed the formation of stable high-molecular-weight "aggregates" containing keratin 14 and/or keratin 5. These aggregates begin to form within 15 min after sulfur mustard exposure. These aggregates display a complex gel electrophoresis pattern between approximately 100 and approximately 200 kDa. Purification and analysis of these aggregates by one- and two-dimensional gel electrophoresis and mass spectrometry confirmed the presence of keratin 14 and keratin 5 and indicate that at least some of the aggregates are composed of keratin 14-keratin 14, keratin 14-keratin 5, or keratin 5-keratin 5 dimers. These studies demonstrate that sulfur mustard induces keratin aggregation in keratinocytes and support further investigation into the role of keratin aggregation in sulfur mustard-induced vesication.

  6. The amelioration of cardiac dysfunction after myocardial infarction by the injection of keratin biomaterials derived from human hair.

    PubMed

    Shen, Deliang; Wang, Xiaofang; Zhang, Li; Zhao, Xiaoyan; Li, Jingyi; Cheng, Ke; Zhang, Jinying

    2011-12-01

    Cardiac dysfunction following acute myocardial infarction is a major cause of advanced cardiomyopathy. Conventional pharmacological therapies rely on prompt reperfusion and prevention of repetitive maladaptive pathways. Keratin biomaterials can be manufactured in an autologous fashion and are effective in various models of tissue regeneration. However, its potential application in cardiac regeneration has not been tested. Keratin biomaterials were derived from human hair and its structure morphology, carryover of beneficial factors, biocompatibility with cardiomyocytes, and in vivo degradation profile were characterized. After delivery into infarcted rat hearts, the keratin scaffolds were efficiently infiltrated by cardiomyocytes and endothelial cells. Injection of keratin biomaterials promotes angiogenesis but does not exacerbate inflammation in the post-MI hearts. Compared to control-injected animals, keratin biomaterials-injected animals exhibited preservation of cardiac function and attenuation of adverse ventricular remodeling over the 8 week following time course. Tissue western blot analysis revealed up-regulation of beneficial factors (BMP4, NGF, TGF-beta) in the keratin-injected hearts. The salient functional benefits, the simplicity of manufacturing and the potentially autologous nature of this biomaterial provide impetus for further translation to the clinic. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Keratin Durability Has Implications for the Fossil Record: Results from a 10 Year Feather Degradation Experiment

    PubMed Central

    Moyer, Alison E.; Zheng, Wenxia; Schweitzer, Mary H.

    2016-01-01

    Keratinous ‘soft tissue’ structures (i.e. epidermally derived and originally non-biomineralized), include feathers, skin, claws, beaks, and hair. Despite their relatively common occurrence in the fossil record (second only to bone and teeth), few studies have addressed natural degradation processes that must occur in all organic material, including those keratinous structures that are incorporated into the rock record as fossils. Because feathers have high preservation potential and strong phylogenetic signal, in the current study we examine feathers subjected to different burial environments for a duration of ~10 years, using transmission electron microscopy (TEM) and in situ immunofluorescence (IF). We use morphology and persistence of specific immunoreactivity as indicators of preservation at the molecular and microstructural levels. We show that feather keratin is durable, demonstrates structural and microstructural integrity, and retains epitopes suitable for specific antibody recognition in even the harshest conditions. These data support the hypothesis that keratin antibody reactivity can be used to identify the nature and composition of epidermal structures in the rock record, and to address evolutionary questions by distinguishing between alpha- (widely distributed) and beta- (limited to sauropsids) keratin. PMID:27384819

  8. Keratins as components of the enamel organic matrix

    PubMed Central

    Duverger, Olivier; Beniash, Elia; Morasso, Maria I.

    2016-01-01

    Dental enamel is a hardest tissue in the human body, and although it starts as a tissue rich in proteins, by the time of eruption of the tooth in the oral cavity only a small fraction of the protein remains. While this organic matrix of enamel represents less than 1% by weight it plays essential roles in improving both toughness and resilience to chemical attacks. Despite the fact that the first studies of the enamel matrix began in the 19th century its exact composition and mechanisms of its function remain poorly understood. It was proposed that keratin or a keratin-like primitive epithelial component exists in mature enamel, however due to the extreme insolubility of its organic matrix the presence of keratins there was never clearly established. We have recently identified expression of a number of hair keratins in ameloblasts, the enamel secreting cells, and demonstrated their incorporation into mature enamel. Mutation in epithelial hair keratin KRT75 leads to a skin condition called pseudofollicularis barbae. Carriers of this mutation have an altered enamel structure and mechanical properties. Importantly, these individuals have a much higher prevalence of caries. To the best of our knowledge, this is the first study showing a direct link between a mutation in a protein-coding region of a gene and increased caries rates. In this paper we present an overview of the evidence of keratin-like material in enamel that has accumulated over the last 150 years. Furthermore, we propose potential mechanisms of action of KTR75 in enamel and highlight the clinical implications of the link between mutations in KRT75 and caries. Finally, we discuss the potential use of keratins for enamel repair. PMID:26709044

  9. Drug-induced keratin 9 interaction with Hsp70 in bladder cancer cells.

    PubMed

    Andolino, C; Hess, C; Prince, T; Williams, H; Chernin, M

    2018-05-25

    A pull-down experiment (co-immunoprecipitation) was performed on a T24 human bladder cancer cell lysate treated with the Hsp inhibitor VER155008 using an Hsp70 antibody attached to Dynabeads. Keratin 9, a cytoskeleton intermediate filament protein, was identified by LC MS/MS analysis. This novel finding was confirmed by Western blotting, RT-PCR, and immunocytochemistry. Other members of the keratin family of proteins have been shown to be involved in cancer progression, most recently identified to be associated with cell invasion and metastasis. The specific role of keratin 9 expression in these cells is yet to be determined.

  10. Measuring the regulation of keratin filament network dynamics

    PubMed Central

    Moch, Marcin; Herberich, Gerlind; Aach, Til; Leube, Rudolf E.; Windoffer, Reinhard

    2013-01-01

    The organization of the keratin intermediate filament cytoskeleton is closely linked to epithelial function. To study keratin network plasticity and its regulation at different levels, tools are needed to localize and measure local network dynamics. In this paper, we present image analysis methods designed to determine the speed and direction of keratin filament motion and to identify locations of keratin filament polymerization and depolymerization at subcellular resolution. Using these methods, we have analyzed time-lapse fluorescence recordings of fluorescent keratin 13 in human vulva carcinoma-derived A431 cells. The fluorescent keratins integrated into the endogenous keratin cytoskeleton, and thereby served as reliable markers of keratin dynamics. We found that increased times after seeding correlated with down-regulation of inward-directed keratin filament movement. Bulk flow analyses further revealed that keratin filament polymerization in the cell periphery and keratin depolymerization in the more central cytoplasm were both reduced. Treating these cells and other human keratinocyte-derived cells with EGF reversed all these processes within a few minutes, coinciding with increased keratin phosphorylation. These results highlight the value of the newly developed tools for identifying modulators of keratin filament network dynamics and characterizing their mode of action, which, in turn, contributes to understanding the close link between keratin filament network plasticity and epithelial physiology. PMID:23757496

  11. Keratins Are Altered in Intestinal Disease-Related Stress Responses

    PubMed Central

    Helenius, Terhi O.; Antman, Cecilia A.; Asghar, Muhammad Nadeem; Nyström, Joel H.; Toivola, Diana M.

    2016-01-01

    Keratin (K) intermediate filaments can be divided into type I/type II proteins, which form obligate heteropolymers. Epithelial cells express type I-type II keratin pairs, and K7, K8 (type II) and K18, K19 and K20 (type I) are the primary keratins found in the single-layered intestinal epithelium. Keratins are upregulated during stress in liver, pancreas, lung, kidney and skin, however, little is known about their dynamics in the intestinal stress response. Here, keratin mRNA, protein and phosphorylation levels were studied in response to murine colonic stresses modeling human conditions, and in colorectal cancer HT29 cells. Dextran sulphate sodium (DSS)-colitis was used as a model for intestinal inflammatory stress, which elicited a strong upregulation and widened crypt distribution of K7 and K20. K8 levels were slightly downregulated in acute DSS, while stress-responsive K8 serine-74 phosphorylation (K8 pS74) was increased. By eliminating colonic microflora using antibiotics, K8 pS74 in proliferating cells was significantly increased, together with an upregulation of K8 and K19. In the aging mouse colon, most colonic keratins were upregulated. In vitro, K8, K19 and K8 pS74 levels were increased in response to lipopolysaccharide (LPS)-induced inflammation in HT29 cells. In conclusion, intestinal keratins are differentially and dynamically upregulated and post-translationally modified during stress and recovery. PMID:27626448

  12. Keratins Are Altered in Intestinal Disease-Related Stress Responses.

    PubMed

    Helenius, Terhi O; Antman, Cecilia A; Asghar, Muhammad Nadeem; Nyström, Joel H; Toivola, Diana M

    2016-09-10

    Keratin (K) intermediate filaments can be divided into type I/type II proteins, which form obligate heteropolymers. Epithelial cells express type I-type II keratin pairs, and K7, K8 (type II) and K18, K19 and K20 (type I) are the primary keratins found in the single-layered intestinal epithelium. Keratins are upregulated during stress in liver, pancreas, lung, kidney and skin, however, little is known about their dynamics in the intestinal stress response. Here, keratin mRNA, protein and phosphorylation levels were studied in response to murine colonic stresses modeling human conditions, and in colorectal cancer HT29 cells. Dextran sulphate sodium (DSS)-colitis was used as a model for intestinal inflammatory stress, which elicited a strong upregulation and widened crypt distribution of K7 and K20. K8 levels were slightly downregulated in acute DSS, while stress-responsive K8 serine-74 phosphorylation (K8 pS74) was increased. By eliminating colonic microflora using antibiotics, K8 pS74 in proliferating cells was significantly increased, together with an upregulation of K8 and K19. In the aging mouse colon, most colonic keratins were upregulated. In vitro, K8, K19 and K8 pS74 levels were increased in response to lipopolysaccharide (LPS)-induced inflammation in HT29 cells. In conclusion, intestinal keratins are differentially and dynamically upregulated and post-translationally modified during stress and recovery.

  13. Preparation of keratin and chemically modified keratin hydrogels and their evaluation as cell substrate with drug releasing ability.

    PubMed

    Nakata, Ryo; Osumi, Yu; Miyagawa, Shoko; Tachibana, Akira; Tanabe, Toshizumi

    2015-07-01

    Keratin was extracted as a reduced form from wool, which was then subjected to acetamidation, carboxymethylation or aminoethylation at abundant free cysteine residues to give acetamidated keratin (AAK), carboxymethylated keratin (CMK) and aminoethylated keratin (AEK). Hydrogels were prepared from intact and three chemically modified keratins simply by concentrating their aqueous solution and subsequent cooling. The lowest concentration to form a hydrogel without fluidity was 110 mg/ml for AAK, 120 mg/ml for AEK, 130 mg/ml for keratin and 180 mg/ml for CMK. Comparing with a hydrogel just prepared (swelling ratio: 600-700), each hydrogel slightly shrank in an acidic solution. While AAK hydrogel little swelled in neutral and basic solutions, other hydrogels became swollen and CMK hydrogel reached to dissolution. Hydrogels of keratin, AAK and AEK were found to support cell proliferation, although cell elongation on AAK and AEK hydrogel was a little suppressed. On the other hand, CMK hydrogel did not seem to be suitable for a cell substrate because of its high swelling in culture medium. Evaluation of the hydrogels as a drug carrier showed that keratin and AAK hydrogels were good sustained drug release carriers, which showed the drug release for more than three days, while the release from AEK and CMK hydrogels completed within one day. Thus, keratin and chemically modified keratin hydrogels, especially keratin and AAK hydrogels, were promising biomaterials as a cell substrate and a sustained drug release carrier. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Keratin pattern of acanthosis nigricans in syndromelike association with polythelia, polycystic kidneys, and syndactyly.

    PubMed

    Bonnekoh, B; Wevers, A; Spangenberger, H; Mahrle, G; Krieg, T

    1993-09-01

    Acanthosis nigricans (AN) comprises a broad spectrum of etiologic subtypes. The underlying pathomechanisms have not yet been completely clarified. We present a patient affected with a syndromelike AN subtype including disturbed epidermopoiesis as evidenced by immunohistologic findings and in situ hybridization. A 54-year-old white man contracted AN during childhood. There were connate malformations consisting of webbed toes II/III on the right side and a supernumerary left mammilla. As an adult he developed psoriasis vulgaris, obesity, and latent diabetes mellitus, polycystic kidney and liver disease. With regard to keratin 6 mRNA, and the protein expression of keratin 6/16, KI-67, and proliferating cell nuclear antigen, the AN lesion showed moderate hyperproliferation. A much higher degree of hyperproliferation was evident in psoriatic areas of the patient's skin. In contrast to psoriatic tissue, basal keratinocytes of the AN showed an unusually high expression of keratin 18 and 19 protein. The observation thus deals with a unique, syndromelike constellation of AN characterized by a particular epidermal pattern of moderate hyperproliferation. A further dysregulation of protein expression in the epidermis is indicated by the demonstration of the rare keratins 18 and 19 in basal keratinocytes of the AN lesion.

  15. Rhomboid family member 2 regulates cytoskeletal stress-associated Keratin 16

    PubMed Central

    Maruthappu, Thiviyani; Chikh, Anissa; Fell, Benjamin; Delaney, Paul J.; Brooke, Matthew A.; Levet, Clemence; Moncada-Pazos, Angela; Ishida-Yamamoto, Akemi; Blaydon, Diana; Waseem, Ahmad; Leigh, Irene M.; Freeman, Matthew; Kelsell, David P.

    2017-01-01

    Keratin 16 (K16) is a cytoskeletal scaffolding protein highly expressed at pressure-bearing sites of the mammalian footpad. It can be induced in hyperproliferative states such as wound healing, inflammation and cancer. Here we show that the inactive rhomboid protease RHBDF2 (iRHOM2) regulates thickening of the footpad epidermis through its interaction with K16. K16 expression is absent in the thinned footpads of irhom2−/− mice compared with irhom2+/+mice, due to reduced keratinocyte proliferation. Gain-of-function mutations in iRHOM2 underlie Tylosis with oesophageal cancer (TOC), characterized by palmoplantar thickening, upregulate K16 with robust downregulation of its type II keratin binding partner, K6. By orchestrating the remodelling and turnover of K16, and uncoupling it from K6, iRHOM2 regulates the epithelial response to physical stress. These findings contribute to our understanding of the molecular mechanisms underlying hyperproliferation of the palmoplantar epidermis in both physiological and disease states, and how this ‘stress' keratin is regulated. PMID:28128203

  16. Genetic variants in pachyonychia congenita-associated keratins increase susceptibility to tooth decay

    PubMed Central

    Carlson, Jenna C.; Karacz, Chelsea M.; Schwartz, Mary E.; Cross, Michael A.; Marazita, Mary L.

    2018-01-01

    Pachyonychia congenita (PC) is a cutaneous disorder primarily characterized by nail dystrophy and painful palmoplantar keratoderma. PC is caused by mutations in KRT6A, KRT6B, KRT6C, KRT16, and KRT17, a set of keratin genes expressed in the nail bed, palmoplantar epidermis, oral mucosal epithelium, hair follicle and sweat gland. RNA-seq analysis revealed that all PC-associated keratins (except for Krt6c that does exist in the mouse genome) are expressed in the mouse enamel organ. We further demonstrated that these keratins are produced by ameloblasts and are incorporated into mature human enamel. Using genetic and intraoral examination data from 573 adults and 449 children, we identified several missense polymorphisms in KRT6A, KRT6B and KRT6C that lead to a higher risk for dental caries. Structural analysis of teeth from a PC patient carrying a p.Asn171Lys substitution in keratin-6a (K6a) revealed disruption of enamel rod sheaths resulting in altered rod shape and distribution. Finally, this PC-associated substitution as well as more frequent caries-associated SNPs, found in two of the KRT6 genes, that result in p.Ser143Asn substitution (rs28538343 in KRT6B and rs151117600 in KRT6C), alter the assembly of K6 filaments in ameloblast-like cells. These results identify a new set of keratins involved in tooth enamel formation, distinguish novel susceptibility loci for tooth decay and reveal additional clinical features of pachyonychia congenita. PMID:29357356

  17. Genetic variants in pachyonychia congenita-associated keratins increase susceptibility to tooth decay.

    PubMed

    Duverger, Olivier; Carlson, Jenna C; Karacz, Chelsea M; Schwartz, Mary E; Cross, Michael A; Marazita, Mary L; Shaffer, John R; Morasso, Maria I

    2018-01-01

    Pachyonychia congenita (PC) is a cutaneous disorder primarily characterized by nail dystrophy and painful palmoplantar keratoderma. PC is caused by mutations in KRT6A, KRT6B, KRT6C, KRT16, and KRT17, a set of keratin genes expressed in the nail bed, palmoplantar epidermis, oral mucosal epithelium, hair follicle and sweat gland. RNA-seq analysis revealed that all PC-associated keratins (except for Krt6c that does exist in the mouse genome) are expressed in the mouse enamel organ. We further demonstrated that these keratins are produced by ameloblasts and are incorporated into mature human enamel. Using genetic and intraoral examination data from 573 adults and 449 children, we identified several missense polymorphisms in KRT6A, KRT6B and KRT6C that lead to a higher risk for dental caries. Structural analysis of teeth from a PC patient carrying a p.Asn171Lys substitution in keratin-6a (K6a) revealed disruption of enamel rod sheaths resulting in altered rod shape and distribution. Finally, this PC-associated substitution as well as more frequent caries-associated SNPs, found in two of the KRT6 genes, that result in p.Ser143Asn substitution (rs28538343 in KRT6B and rs151117600 in KRT6C), alter the assembly of K6 filaments in ameloblast-like cells. These results identify a new set of keratins involved in tooth enamel formation, distinguish novel susceptibility loci for tooth decay and reveal additional clinical features of pachyonychia congenita.

  18. Clustered Xenopus keratin genes: A genomic, transcriptomic, and proteomic analysis.

    PubMed

    Suzuki, Ken-Ichi T; Suzuki, Miyuki; Shigeta, Mitsuki; Fortriede, Joshua D; Takahashi, Shuji; Mawaribuchi, Shuuji; Yamamoto, Takashi; Taira, Masanori; Fukui, Akimasa

    2017-06-15

    Keratin genes belong to the intermediate filament superfamily and their expression is altered following morphological and physiological changes in vertebrate epithelial cells. Keratin genes are divided into two groups, type I and II, and are clustered on vertebrate genomes, including those of Xenopus species. Various keratin genes have been identified and characterized by their unique expression patterns throughout ontogeny in Xenopus laevis; however, compilation of previously reported and newly identified keratin genes in two Xenopus species is required for our further understanding of keratin gene evolution, not only in amphibians but also in all terrestrial vertebrates. In this study, 120 putative type I and II keratin genes in total were identified based on the genome data from two Xenopus species. We revealed that most of these genes are highly clustered on two homeologous chromosomes, XLA9_10 and XLA2 in X. laevis, and XTR10 and XTR2 in X. tropicalis, which are orthologous to those of human, showing conserved synteny among tetrapods. RNA-Seq data from various embryonic stages and adult tissues highlighted the unique expression profiles of orthologous and homeologous keratin genes in developmental stage- and tissue-specific manners. Moreover, we identified dozens of epidermal keratin proteins from the whole embryo, larval skin, tail, and adult skin using shotgun proteomics. In light of our results, we discuss the radiation, diversification, and unique expression of the clustered keratin genes, which are closely related to epidermal development and terrestrial adaptation during amphibian evolution, including Xenopus speciation. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. "Panta rhei": Perpetual cycling of the keratin cytoskeleton.

    PubMed

    Leube, Rudolf E; Moch, Marcin; Kölsch, Anne; Windoffer, Reinhard

    2011-01-01

    The filamentous cytoskeletal systems fulfil seemingly incompatible functions by maintaining a stable scaffolding to ensure tissue integrity and simultaneously facilitating rapid adaptation to intracellular processes and environmental stimuli. This paradox is particularly obvious for the abundant keratin intermediate filaments in epithelial tissues. The epidermal keratin cytoskeleton, for example, supports the protective and selective barrier function of the skin while enabling rapid growth and remodelling in response to physical, chemical and microbial challenges. We propose that these dynamic properties are linked to the perpetual re-cycling of keratin intermediate filaments that we observe in cultured cells. This cycle of assembly and disassembly is independent of protein biosynthesis and consists of distinct, temporally and spatially defined steps. In this way, the keratin cytoskeleton remains in constant motion but stays intact and is also able to restructure rapidly in response to specific regulatory cues as is needed, e.g., during division, differentiation and wound healing.

  20. The small heat shock protein Hsp27 affects assembly dynamics and structure of keratin intermediate filament networks.

    PubMed

    Kayser, Jona; Haslbeck, Martin; Dempfle, Lisa; Krause, Maike; Grashoff, Carsten; Buchner, Johannes; Herrmann, Harald; Bausch, Andreas R

    2013-10-15

    The mechanical properties of living cells are essential for many processes. They are defined by the cytoskeleton, a composite network of protein fibers. Thus, the precise control of its architecture is of paramount importance. Our knowledge about the molecular and physical mechanisms defining the network structure remains scarce, especially for the intermediate filament cytoskeleton. Here, we investigate the effect of small heat shock proteins on the keratin 8/18 intermediate filament cytoskeleton using a well-controlled model system of reconstituted keratin networks. We demonstrate that Hsp27 severely alters the structure of such networks by changing their assembly dynamics. Furthermore, the C-terminal tail domain of keratin 8 is shown to be essential for this effect. Combining results from fluorescence and electron microscopy with data from analytical ultracentrifugation reveals the crucial role of kinetic trapping in keratin network formation. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Degradation and regeneration of feather keratin in NMMO solution.

    PubMed

    Ma, Bomou; Sun, Qisong; Yang, Jing; Wizi, Jakpa; Hou, Xiuliang; Yang, Yiqi

    2017-07-01

    Chicken feather, a potential source of keratin, is often disposed as waste material. Although some methods, i.e., hydrolysis, reduction, and oxidation, have been developed to isolate keratin for composites, it has been limited due to the rising environmental concerns. In this work, a green solvent N-methylmorpholine N-oxide (NMMO) was used to extract keratin from chicken feather waste. Eighty-nine percent of keratin was extracted using 75% NMMO solution. However, the result from size exclusion HPLC showed that most of the keratin degraded into polypeptide with molecular weight of 2189 and only 25.3% regenerated keratin was obtained with molecular weight of 14,485. Analysis of amino acid composition showed a severe damage to the disulfide bonds in keratin during the extraction procedure. Oxidization had an important effect on the reconstitution of the disulfide bonds, which formed a stable three-dimensional net structure in the regenerated keratins. Besides, Raman spectra, NMR, FT-IR, XRD, and TGA were used to characterize the properties of regenerated keratin and raw chicken feather. In the end, a possible mechanism was proposed based on the results.

  2. Viscoelastic properties of α-keratin fibers in hair.

    PubMed

    Yu, Yang; Yang, Wen; André Meyers, Marc

    2017-12-01

    -rate sensitivity and viscoelasticity in α-keratin fibers. Hair has outstanding mechanical strength which is equivalent to metals on a density-normalized basis. It possesses, in addition to the strength, a large ductility that is enabled by either the unfolding of the alpha helices and/or the transformation of these helices to beta sheets. We identify the deformation and failure mechanisms and connect them to the hierarchical structure, with emphasis on the significant viscoelasticity of these unique biological materials. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Analysis of internal structure changes in black human hair keratin fibers with aging using Raman spectroscopy.

    PubMed

    Kuzuhara, Akio; Fujiwara, Nobuki; Hori, Teruo

    To investigate the internal structure changes in virgin black human hair keratin fibers due to aging, the structure of cross-sections at various depths of virgin black human hair (sections of new growth hair: 2 mm from the scalp) from a group of eight Japanese females in their twenties and another group of eight Japanese females in their fifties were analyzed using Raman spectroscopy. For the first time, we have succeeded in recording the Raman spectra of virgin black human hair, which had been impossible due to high melanin granule content. The key points of this method are to cross-section hair samples to a thickness of 1.50-microm, to select points at various depths of the cortex with the fewest possible melanin granules, and to optimize laser power, cross slit width as well as total acquisition time. The reproducibility of the Raman bands, namely the alpha-helix (alpha) content, the beta-sheet and/or random coil (beta/R) content, the disulfide (--SS--) content, and random coil content of two adjoining cross-sections of a single hair keratin fiber was clearly good. The --SS-- content of virgin black human hair from the Japanese females in their fifties for the cortex region decreased compared with that of the Japanese females in their twenties. On the other hand, the beta/R and alpha contents of the cortex region did not change.

  4. Microbial decomposition of keratin in nature-a new hypothesis of industrial relevance.

    PubMed

    Lange, Lene; Huang, Yuhong; Busk, Peter Kamp

    2016-03-01

    Discovery of keratin-degrading enzymes from fungi and bacteria has primarily focused on finding one protease with efficient keratinase activity. Recently, an investigation was conducted of all keratinases secreted from a fungus known to grow on keratinaceous materials, such as feather, horn, and hooves. The study demonstrated that a minimum of three keratinases is needed to break down keratin, an endo-acting, an exo-acting, and an oligopeptide-acting keratinase. Further, several studies have documented that disruption of sulfur bridges of the keratin structure acts synergistically with the keratinases to loosen the molecular structure, thus giving the enzymes access to their substrate, the protein structure. With such complexity, it is relevant to compare microbial keratin decomposition with the microbial decomposition of well-studied polymers such as cellulose and chitin. Interestingly, it was recently shown that the specialized enzymes, lytic polysaccharide monoxygenases (LPMOs), shown to be important for breaking the recalcitrance of cellulose and chitin, are also found in keratin-degrading fungi. A holistic view of the complex molecular self-assembling structure of keratin and knowledge about enzymatic and boosting factors needed for keratin breakdown have been used to formulate a hypothesis for mode of action of the LPMOs in keratin decomposition and for a model for degradation of keratin in nature. Testing such hypotheses and models still needs to be done. Even now, the hypothesis can serve as an inspiration for designing industrial processes for keratin decomposition for conversion of unexploited waste streams, chicken feather, and pig bristles into bioaccessible animal feed.

  5. Dissolution and characterization of biofunctional keratin particles extracted from chicken feathers

    NASA Astrophysics Data System (ADS)

    Sharma, Swati; Gupta, Arun; Chik, Syed Mohd Saufi Bin Tuan; Yeo Gek Kee, Chua; Poddar, Pradeep Kumar

    2017-04-01

    In the present study chicken feathers were hydrolyzed in alkaline environment. The pH value of feather hydrolyzed solution was adjusted according to the principle of isoelectric precipitation. Three kinds of precipitates of keratin polypeptide were collected at pH of 3.5, 5.5 and 7.5 respectively. The keratin solution were freeze dried and denoted as FKP1, FKP2, FKP3 respectively. All keratin particles possessed smooth, uniform and round surface by scanning electron microscope (SEM). FKP1, FKP2 and FKP3 had higher glass transition temperature examined by thermogravimetry (TG). Fourier transform infrared spectroscopy (FTIR) revealed that the extracted keratin retained the most of protein backbone, with the breakage of disulfide cross-links and hydrogen bonds.

  6. Complete Structure of an Epithelial Keratin Dimer: Implications for Intermediate Filament Assembly.

    PubMed

    Bray, David J; Walsh, Tiffany R; Noro, Massimo G; Notman, Rebecca

    2015-01-01

    Keratins are cytoskeletal proteins that hierarchically arrange into filaments, starting with the dimer sub-unit. They are integral to the structural support of cells, in skin, hair and nails. In skin, keratin is thought to play a critical role in conferring the barrier properties and elasticity of skin. In general, the keratin dimer is broadly described by a tri-domain structure: a head, a central rod and a tail. As yet, no atomistic-scale picture of the entire dimer structure exists; this information is pivotal for establishing molecular-level connections between structure and function in intermediate filament proteins. The roles of the head and tail domains in facilitating keratin filament assembly and function remain as open questions. To address these, we report results of molecular dynamics simulations of the entire epithelial human K1/K10 keratin dimer. Our findings comprise: (1) the first three-dimensional structural models of the complete dimer unit, comprising of the head, rod and tail domains; (2) new insights into the chirality of the rod-domain twist gained from analysis of the full domain structure; (3) evidence for tri-subdomain partitioning in the head and tail domains; and, (4) identification of the residue characteristics that mediate non-covalent contact between the chains in the dimer. Our findings are immediately applicable to other epithelial keratins, such as K8/K18 and K5/K14, and to intermediate filament proteins in general.

  7. Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia.

    PubMed

    Windoffer, Reinhard; Beil, Michael; Magin, Thomas M; Leube, Rudolf E

    2011-09-05

    Epithelia are exposed to multiple forms of stress. Keratin intermediate filaments are abundant in epithelia and form cytoskeletal networks that contribute to cell type-specific functions, such as adhesion, migration, and metabolism. A perpetual keratin filament turnover cycle supports these functions. This multistep process keeps the cytoskeleton in motion, facilitating rapid and protein biosynthesis-independent network remodeling while maintaining an intact network. The current challenge is to unravel the molecular mechanisms underlying the regulation of the keratin cycle in relation to actin and microtubule networks and in the context of epithelial tissue function.

  8. Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia

    PubMed Central

    Windoffer, Reinhard; Beil, Michael; Magin, Thomas M.

    2011-01-01

    Epithelia are exposed to multiple forms of stress. Keratin intermediate filaments are abundant in epithelia and form cytoskeletal networks that contribute to cell type–specific functions, such as adhesion, migration, and metabolism. A perpetual keratin filament turnover cycle supports these functions. This multistep process keeps the cytoskeleton in motion, facilitating rapid and protein biosynthesis–independent network remodeling while maintaining an intact network. The current challenge is to unravel the molecular mechanisms underlying the regulation of the keratin cycle in relation to actin and microtubule networks and in the context of epithelial tissue function. PMID:21893596

  9. NMR spectroscopy reveals the presence and association of lipids and keratin in adhesive gecko setae

    PubMed Central

    Jain, Dharamdeep; Stark, Alyssa Y.; Niewiarowski, Peter H.; Miyoshi, Toshikazu; Dhinojwala, Ali

    2015-01-01

    Lipid and protein aggregates are one of the fundamental materials of biological systems. Examples include cell membranes, insect cuticle, vertebrate epidermis, feathers, hair and adhesive structures known as ‘setae’ on gecko toes. Until recently gecko setae were assumed to be composed entirely of keratin, but analysis of footprints left behind by geckos walking on surfaces revealed that setae include various kinds of lipids. However, the arrangement and molecular-level behavior of lipids and keratin in the setae is still not known. In the present study we demonstrate, for the first time, the use of Nuclear Magnetic Resonance (NMR) spectroscopy techniques to confirm the presence of lipids and investigate their association with keratin in ‘pristine' sheds, or natural molts of the adhesive toe pad and non-adhesive regions of the skin. Analysis was also carried on the sheds after they were ‘delipidized’ to remove surface lipids. Our results show a distribution of similar lipids in both the skin and toe shed but with different dynamics at a molecular level. The present study can help us understand the gecko system both biologically and for design of synthetic adhesives, but the findings may be relevant to the characteristics of lipid-protein interactions in other biological systems. PMID:25902194

  10. Keratinization-associated miR-7 and miR-21 Regulate Tumor Suppressor Reversion-inducing Cysteine-rich Protein with Kazal Motifs (RECK) in Oral Cancer*

    PubMed Central

    Jung, Hyun Min; Phillips, Brittany L.; Patel, Rushi S.; Cohen, Donald M.; Jakymiw, Andrew; Kong, William W.; Cheng, Jin Q.; Chan, Edward K. L.

    2012-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that posttranscriptionally regulate gene expression during many biological processes. Recently, the aberrant expressions of miRNAs have become a major focus in cancer research. The purpose of this study was to identify deregulated miRNAs in oral cancer and further focus on specific miRNAs that were related to patient survival. Here, we report that miRNA expression profiling provided more precise information when oral squamous cell carcinomas were subcategorized on the basis of clinicopathological parameters (tumor primary site, histological subtype, tumor stage, and HPV16 status). An innovative radar chart analysis method was developed to depict subcategories of cancers taking into consideration the expression patterns of multiple miRNAs combined with the clinicopathological parameters. Keratinization of tumors and the high expression of miR-21 were the major factors related to the poor prognosis of patients. Interestingly, a majority of the keratinized tumors expressed high levels of miR-21. Further investigations demonstrated the regulation of the tumor suppressor gene reversion-inducing cysteine-rich protein with kazal motifs (RECK) by two keratinization-associated miRNAs, miR-7 and miR-21. Transfection of miR-7 and miR-21-mimics reduced the expression of RECK through direct miRNA-mediated regulation, and these miRNAs were inversely correlated with RECK in CAL 27 orthotopic xenograft tumors. Furthermore, a similar inverse correlation was demonstrated in CAL 27 cells treated in vitro by different external stimuli such as trypsinization, cell density, and serum concentration. Taken together, our data show that keratinization is associated with poor prognosis of oral cancer patients and keratinization-associated miRNAs mediate deregulation of RECK which may contribute to the aggressiveness of tumors. PMID:22761427

  11. Feather keratin hydrolysates obtained from microbial keratinases: effect on hair fiber

    PubMed Central

    2013-01-01

    Background Hair is composed mainly of keratin protein and a small amount of lipid. Protein hydrolysates, in particular those with low molecular weight distribution have been known to protect hair against chemical and environmental damage. Many types of protein hydrolysates from plants and animals have been used in hair and personal care such as keratin hydrolysates obtained from nails, horns and wool. Most of these hydrolysates are obtained by chemical hydrolysis and hydrothermal methods, but recently hydrolyzed hair keratin, feather keratin peptides, and feather meal peptides have been obtained by enzymatic hydrolysis using Bacillus spp in submerged fermentation. Results Keratin peptides were obtained by enzymatic hydrolysis of keratinases using Bacillus subtilis AMR. The microorganism was grown on a feather medium, pH 8.0 (1% feathers) and supplemented with 0.01% of yeast extract, for 5 days, at 28°C with agitation. The supernatant containing the hydrolysates was colleted by centrifugation and ultra filtered in an AMICON system using nano–membranes (Millipore – YC05). The Proteins and peptides were analyzed using HPTLC and MALDI-TOF-MS. Commercial preparations of keratin hydrolysates were used as a comparative standard. After five days the feather had been degraded (90-95%) by the peptidases and keratinases of the microorganism. MALDI-TOF mass spectrometry showed multiple peaks that correspond to peptides in the range of 800 to 1079 Daltons and the commercial hydrolysate was in the range of 900 to 1400 Da. HPTLC showed lower molecular mass peptides and amino acids in the enzymatic hydrolysate when compared with the commercial hydrolysate . A mild shampoo and a rinse off conditioner were formulated with the enzymatic hydrolysate and applied to hair fibers to evaluate the hydration, with and without heat, using a Corneometer® CM 825. The hydration was more efficient with heat, suggesting a more complete incorporation of hydrolysates into the fibers

  12. Model-based analysis of keratin intermediate filament assembly

    NASA Astrophysics Data System (ADS)

    Martin, Ines; Leitner, Anke; Walther, Paul; Herrmann, Harald; Marti, Othmar

    2015-09-01

    The cytoskeleton of epithelial cells consists of three types of filament systems: microtubules, actin filaments and intermediate filaments (IFs). Here, we took a closer look at type I and type II IF proteins, i.e. keratins. They are hallmark constituents of epithelial cells and are responsible for the generation of stiffness, the cellular response to mechanical stimuli and the integrity of entire cell layers. Thereby, keratin networks constitute an important instrument for cells to adapt to their environment. In particular, we applied models to characterize the assembly of keratin K8 and K18 into elongated filaments as a means for network formation. For this purpose, we measured the length of in vitro assembled keratin K8/K18 filaments by transmission electron microscopy at different time points. We evaluated the experimental data of the longitudinal annealing reaction using two models from polymer chemistry: the Schulz-Zimm model and the condensation polymerization model. In both scenarios one has to make assumptions about the reaction process. We compare how well the models fit the measured data and thus determine which assumptions fit best. Based on mathematical modelling of experimental filament assembly data we define basic mechanistic properties of the elongation reaction process.

  13. Synthesis of Keratin-based Nanofiber for Biomedical Engineering.

    PubMed

    Thompson, Zanshe S; Rijal, Nava P; Jarvis, David; Edwards, Angela; Bhattarai, Narayan

    2016-02-07

    Electrospinning, due to its versatility and potential for applications in various fields, is being frequently used to fabricate nanofibers. Production of these porous nanofibers is of great interest due to their unique physiochemical properties. Here we elaborate on the fabrication of keratin containing poly (ε-caprolactone) (PCL) nanofibers (i.e., PCL/keratin composite fiber). Water soluble keratin was first extracted from human hair and mixed with PCL in different ratios. The blended solution of PCL/keratin was transformed into nanofibrous membranes using a laboratory designed electrospinning set up. Fiber morphology and mechanical properties of the obtained nanofiber were observed and measured using scanning electron microscopy and tensile tester. Furthermore, degradability and chemical properties of the nanofiber were studied by FTIR. SEM images showed uniform surface morphology for PCL/keratin fibers of different compositions. These PCL/keratin fibers also showed excellent mechanical properties such as Young's modulus and failure point. Fibroblast cells were able to attach and proliferate thus proving good cell viability. Based on the characteristics discussed above, we can strongly argue that the blended nanofibers of natural and synthetic polymers can represent an excellent development of composite materials that can be used for different biomedical applications.

  14. Hair growth promoting activity of discarded biocomposite keratin extract.

    PubMed

    Akanda, Md Rashedunnabi; Kim, Hak-Yong; Park, Mira; Kim, In-Shik; Ahn, Dongchoon; Tae, Hyun-Jin; Park, Byung-Yong

    2017-08-01

    Keratin biomaterial has been used in regenerative medicine owing to its in-vivo and in-vitro biocompatibility. The present study was aimed to investigate the hair growth promoting activity of keratin extract and its mechanism of action. Keratin extract was topically applied on the synchronized depilated dorsal skin of telogenic C57BL/6 mice and promoted hair growth by inducing the anagen phase. The histomorphometric observation indicated significantly increases the number, shaft of hair follicles and deep subcutis area in the keratin extract treated group in contrast to the control group, which was considered an indication of anagen phase induction. Subsequently, the quantitative real-time polymerase chain reaction analysis revealed that fibroblast growth factor-10, vascular endothelial growth factor, insulin-like growth factor-1, β-catenin, and Shh were expressed earlier in the keratin extract-treated group than in the control group. Besides, keratin extract has been observed to be biocompatible when analyzed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and 4',6-diamidino-2-phenylindole staining using immortalized human keratinocyte cells, showing more than 90% cell viability. Our study demonstrated that keratin extract stimulating hair follicle growth by inducing the growth phase; anagen in telogenic C57BL/6 mice and thus the topical application of keratin extract may represent a promising biomaterial for the management and applications of hair follicle disorder.

  15. Non-Coding Keratin Variants Associate with Liver Fibrosis Progression in Patients with Hemochromatosis

    PubMed Central

    Lunova, Mariia; Guldiken, Nurdan; Lienau, Tim C.; Stickel, Felix; Omary, M. Bishr

    2012-01-01

    Background Keratins 8 and 18 (K8/K18) are intermediate filament proteins that protect the liver from various forms of injury. Exonic K8/K18 variants associate with adverse outcome in acute liver failure and with liver fibrosis progression in patients with chronic hepatitis C infection or primary biliary cirrhosis. Given the association of K8/K18 variants with end-stage liver disease and progression in several chronic liver disorders, we studied the importance of keratin variants in patients with hemochromatosis. Methods The entire K8/K18 exonic regions were analyzed in 162 hemochromatosis patients carrying homozygous C282Y HFE (hemochromatosis gene) mutations. 234 liver-healthy subjects were used as controls. Exonic regions were PCR-amplified and analyzed using denaturing high-performance liquid chromatography and DNA sequencing. Previously-generated transgenic mice overexpressing K8 G62C were studied for their susceptibility to iron overload. Susceptibility to iron toxicity of primary hepatocytes that express K8 wild-type and G62C was also assessed. Results We identified amino-acid-altering keratin heterozygous variants in 10 of 162 hemochromatosis patients (6.2%) and non-coding heterozygous variants in 6 additional patients (3.7%). Two novel K8 variants (Q169E/R275W) were found. K8 R341H was the most common amino-acid altering variant (4 patients), and exclusively associated with an intronic KRT8 IVS7+10delC deletion. Intronic, but not amino-acid-altering variants associated with the development of liver fibrosis. In mice, or ex vivo, the K8 G62C variant did not affect iron-accumulation in response to iron-rich diet or the extent of iron-induced hepatocellular injury. Conclusion In patients with hemochromatosis, intronic but not exonic K8/K18 variants associate with liver fibrosis development. PMID:22412904

  16. The role of allogenic keratin-derived dressing in wound healing in a mouse model.

    PubMed

    Konop, Marek; Sulejczak, Dorota; Czuwara, Joanna; Kosson, Piotr; Misicka, Aleksandra; Lipkowski, Andrzej W; Rudnicka, Lidia

    2017-01-01

    Keratin is an interesting protein needed for wound healing and tissue recovery. We have recently proposed a new, simple and inexpensive method to obtain fur and hair keratin-derived biomaterials suitable for medical application. The aim of the study was to evaluate the role of the fur keratin-derived protein (FKDP) dressing in the allogenic full-thickness surgical skin wound model. The data obtained using scanning electron microscopy showed that employed processed biomaterial had higher surface porosity compared with control raw material. From the MTS test, it was found keratin biomaterial is not only toxic to the NIH/3T3 cell line (p < 0.05), but also enhances cell proliferation compared with the control. In vivo studies have shown keratin dressings are tissue biocompatible, accelerate wound closure and epithelialization to the statistically significant differences on day 5 (p < 0.05) in comparison to control wounds. Histological examination revealed, that in FKDP-treated wounds the inflammatory response contained predominantly macrophages whilst their morphological untreated variants showed mixed cell infiltrates rich in neutrophils. Predominant macrophages based response creates more favorable environment for healing. In FKDP-dressed wounds the number of microhemorrhages was also significantly decreased (p < 0.05) as compared with undressed wounds. Applied keratin dressing favors reconstruction of a more regular skin structure and assures better cosmetic effect in terms of scar formation and appearance. In conclusion, fur keratin-derived protein dressings significantly accelerated wound healing in the mouse model. Further studies are needed to determine the molecular mechanisms involved in the multilayer wound healing process and to assess the possible use of these dressings for medical purposes. © 2016 by the Wound Healing Society.

  17. Effects of Plectin Depletion on Keratin Network Dynamics and Organization

    PubMed Central

    Moch, Marcin; Windoffer, Reinhard; Schwarz, Nicole; Pohl, Raphaela; Omenzetter, Andreas; Schnakenberg, Uwe; Herb, Fabian; Chaisaowong, Kraisorn; Merhof, Dorit; Ramms, Lena; Fabris, Gloria; Hoffmann, Bernd; Merkel, Rudolf; Leube, Rudolf E.

    2016-01-01

    The keratin intermediate filament cytoskeleton protects epithelial cells against various types of stress and is involved in fundamental cellular processes such as signaling, differentiation and organelle trafficking. These functions rely on the cell type-specific arrangement and plasticity of the keratin system. It has been suggested that these properties are regulated by a complex cycle of assembly and disassembly. The exact mechanisms responsible for the underlying molecular processes, however, have not been clarified. Accumulating evidence implicates the cytolinker plectin in various aspects of the keratin cycle, i.e., by acting as a stabilizing anchor at hemidesmosomal adhesion sites and the nucleus, by affecting keratin bundling and branching and by linkage of keratins to actin filament and microtubule dynamics. In the present study we tested these hypotheses. To this end, plectin was downregulated by shRNA in vulvar carcinoma-derived A431 cells. As expected, integrin β4- and BPAG-1-positive hemidesmosomal structures were strongly reduced and cytosolic actin stress fibers were increased. In addition, integrins α3 and β1 were reduced. The experiments furthermore showed that loss of plectin led to a reduction in keratin filament branch length but did not alter overall mechanical properties as assessed by indentation analyses using atomic force microscopy and by displacement analyses of cytoplasmic superparamagnetic beads using magnetic tweezers. An increase in keratin movement was observed in plectin-depleted cells as was the case in control cells lacking hemidesmosome-like structures. Yet, keratin turnover was not significantly affected. We conclude that plectin alone is not needed for keratin assembly and disassembly and that other mechanisms exist to guarantee proper keratin cycling under steady state conditions in cultured single cells. PMID:27007410

  18. Pure keratin membrane and fibers from chicken feather.

    PubMed

    Ma, Bomou; Qiao, Xue; Hou, Xiuliang; Yang, Yiqi

    2016-08-01

    In this research, keratin was extracted from the disposable chicken feather using l-cysteine as reducing agent. Then, it was re-dissolved in the sodium carbonate-sodium bicarbonate buffer, and the pure keratin membrane and fiber were fabricated by doctor-blade casting process and wet spinning method, respectively. Scanning electron microscopy (SEM), fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and thermogravimetric analysis (TGA) were used to characterize the chemical and physical properties of resulting powder, membrane and fiber. Compared with the raw chicken feather, the regenerated keratin materials retain its chemical structure and thermal stability, their relative crystallinity is a little different depend on the shaping method, which leads to the difference in moisture regain. The mechanical results show that tensile strength of the keratin membrane researches 3.5MPa, have potential application in biomedical fields. However, the keratin fiber presents low tenacity, i.e. 0.5cN/dtex, this problem should be solved in order to apply the new fiber in textile and material science. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Evidence of accelerated beak growth associated with avian keratin disorder in black-capped chickadees (Poecile atricapillus)

    USGS Publications Warehouse

    Van Hemert, Caroline R.; Handel, Colleen M.; O'Hara, Todd M.

    2012-01-01

    We recently documented an epizootic of beak deformities in more than 2,000 Blackcapped Chickadees (Poecile atricapillus) and other wild bird species in North America. This emerging avian disease, which has been termed avian keratin disorder, results in gross overgrowth of the rhamphotheca, the outer, keratinized layer of the beak. To test the hypothesis that the beak deformities characteristic of this disorder are associated with accelerated keratin production, we measured rates of beak growth and wear in affected Black-capped Chickadees (n=16) and a control sample of unaffected chickadees (n=14) collected from south-central (61°09'-61°38'N, 149°11' -149°48'W) and interior Alaska (64°51' -64°53'N, 147°49' -147°59'W). Rates of absolute growth were 50-100% higher in affected birds than they were in control birds and exceeded records from other passerine species. These results suggest that abnormally rapid epidermal growth is the primary physical mechanism by which beak deformities develop and are maintained in affected chickadees. Although beak overgrowth typically worsened over time, differential patterns of wear influenced the severity and morphology of deformities. In some cases, the effects of accelerated keratin growth were partially mitigated by frequent breakage of rhamphothecal tips. However, mortalities occurred in 9 of 16 birds (56%) with beak deformities during the study, suggesting that avian keratin disorder results in severe health consequences for affected birds. Additional study of factors that control beak keratin production is needed to understand the pathogenesis of this debilitating disease in wild birds.

  20. Highly Conserved Keratin-Associated Protein 7-1 Gene in Yak, Taurine and Zebu Cattle.

    PubMed

    Arlud, S; He, N; Sari, E M; Ma, Z-J; Zhang, H; An, T-W; Han, J-L

    2017-01-01

    Keratin-associated proteins (KRTAPs) play a critical role in cross-linking the keratin intermediate filaments to build a hair shaft. The genetic polymorphisms of the bovine KRTAP7-1 gene were investigated for the first time in this study. The complete coding sequence of the KRTAP7-1 gene in 108 domestic yak, taurine and zebu cattle from China and Indonesia were successfully amplified using polymerase chain reaction and then directly sequenced. Only two single-nucleotide polymorphisms (one nonsynonymous at c.7C/G and another synonymous at c.21C/T) and three haplotypes (BOVIN-KRTAP7-1*A, B and C) were identified in the complete coding sequence of the bovine KRTAP7-1 gene among all animals. There was no polymorphism across three Chinese indigenous yak breeds and one Indonesian zebu cattle population, all sharing the BOVINKRTAP71*A haplotype. The four taurine cattle populations also had BOVIN-KRTAP7-1*A as the most common haplotype with a frequency of 0.80. The frequency of novel haplotype BOVIN-KRTAP7-1*B was only 0.07 present in one heterozygous animal in each of the four taurine cattle populations, while BOVINKRTAP7- 1*C was only found in a Simmental and a local Chinese Yellow cattle population with frequencies of 0.17 and 0.36, respectively. The monomorphic yak KRTAP7-1 gene in particular, and highly conserved bovine, sheep and goat KRTAP7-1 genes in general, demonstrated its unique intrinsic structural property (e.g., > 21% high glycine content) and primary functional importance in supporting the mechanical strength and shape of hair.

  1. Immunohistochemical localization of thrombomodulin in the stratified epithelium of the rat is restricted to the keratinizing epidermis.

    PubMed

    Daimon, T; Nakano, M

    1999-12-01

    The expression and function of thrombomodulin (TM), an endothelial cofactor protein for thrombin-mediated protein C activation, in the epithelium are not fully characterized. This report describes the distribution and localization of TM in the various types of epithelia in the rat by light and electron microscopic immunocytochemistry. TM showed a limited distribution and was expressed by the keratinizing stratified epithelia of the skin, tongue, and esophagus, but was not present on the non-keratinizing epithelia of the vagina, ureter, trachea, stomach, or gut. An identical pattern of TM expression was seen in mucocutaneous junctions, transitional zones from a non-keratinizing stratified epithelium to a keratinizing epithelium at the edge of the eyelid and in the anal canal. As the keratinization of the stratified epithelia proceeded, the staining intensity increased in the transitional zones. Within the keratinizing stratified epithelia, TM staining was limited to the keratinocytes of the spinous layer, the spinous cells. The subcellular localization of TM on the spinous cells was restricted to the plasma membrane facing the intercellular spaces. TM was not detectable on the desmosomes or the two membranes making up the junction, presumably the nexus. The functional significance of TM in keratinizing epithelia is discussed.

  2. Evidence of accelerated beak growth associated with avian keratin disorder in Black-capped Chickadees (Poecile atricapillus)

    USGS Publications Warehouse

    Van Hemert, Caroline; Handel, Colleen M.; O'Hara, Todd M.

    2012-01-01

    We recently documented an epizootic of beak deformities in more than 2,000 Blackcapped Chickadees (Poecile atricapillus) and other wild bird species in North America. This emerging avian disease, which has been termed avian keratin disorder, results in gross overgrowth of the rhamphotheca, the outer, keratinized layer of the beak. To test the hypothesis that the beak deformities characteristic of this disorder are associated with accelerated keratin production, we measured rates of beak growth and wear in affected Black-capped Chickadees (n=16) and a control sample of unaffected chickadees (n=14) collected from south-central (61°09′−61°38′N, 149°11′ −149°48′W) and interior Alaska (64°51′ −64°53′N, 147°49′ −147°59′W). Rates of absolute growth were 50–100% higher in affected birds than they were in control birds and exceeded records from other passerine species. These results suggest that abnormally rapid epidermal growth is the primary physical mechanism by which beak deformities develop and are maintained in affected chickadees. Although beak overgrowth typically worsened over time, differential patterns of wear influenced the severity and morphology of deformities. In some cases, the effects of accelerated keratin growth were partially mitigated by frequent breakage of rhamphothecal tips. However, mortalities occurred in 9 of 16 birds (56%) with beak deformities during the study, suggesting that avian keratin disorder results in severe health consequences for affected birds. Additional study of factors that control beak keratin production is needed to understand the pathogenesis of this debilitating disease in wild birds.

  3. Evidence of accelerated beak growth associated with avian keratin disorder in black-capped chickadees (Poecile atricapillus)

    USGS Publications Warehouse

    Van Hemert, Caroline R.; Handel, Colleen M.; O'Hara, Todd M.

    2012-01-01

    We recently documented an epizootic of beak deformities in more than 2,000 Black-capped Chickadees (Poecile atricapillus) and other wild bird species in North America. This emerging avian disease, which has been termed avian keratin disorder, results in gross overgrowth of the rhamphotheca, the outer, keratinized layer of the beak. To test the hypothesis that the beak deformities characteristic of this disorder are associated with accelerated keratin production, we measured rates of beak growth and wear in affected Black-capped Chickadees (n=16) and a control sample of unaffected chickadees (n=14) collected from south-central (61°09′–61°38′N, 149°11′–149°48′W) and interior Alaska (64°51′–64°53′N, 147°49′–147°59′W). Rates of absolute growth were 50–100% higher in affected birds than they were in control birds and exceeded records from other passerine species. These results suggest that abnormally rapid epidermal growth is the primary physical mechanism by which beak deformities develop and are maintained in affected chickadees. Although beak overgrowth typically worsened over time, differential patterns of wear influenced the severity and morphology of deformities. In some cases, the effects of accelerated keratin growth were partially mitigated by frequent breakage of rhamphothecal tips. However, mortalities occurred in 9 of 16 birds (56%) with beak deformities during the study, suggesting that avian keratin disorder results in severe health consequences for affected birds. Additional study of factors that control beak keratin production is needed to understand the pathogenesis of this debilitating disease in wild birds.

  4. Keratins K2 and K10 are essential for the epidermal integrity of plantar skin.

    PubMed

    Fischer, Heinz; Langbein, Lutz; Reichelt, Julia; Buchberger, Maria; Tschachler, Erwin; Eckhart, Leopold

    2016-01-01

    K1 and K2 are the main type II keratins in the suprabasal epidermis where each of them heterodimerizes with the type I keratin K10 to form intermediate filaments. In regions of the ears, tail, and soles of the mouse, only K2 is co-expressed with K10, suggesting that these keratins suffice to form a mechanically resilient cytoskeleton. To determine the effects of the suppression of both main keratins, K2 and K10, in the suprabasal plantar epidermis of the mouse. Krt2(-/-) Krt10(-/-) mice were generated by crossing Krt2(-/-) and Krt10(-/-) mice. Epidermal morphology of soles of hind-paws was examined macroscopically and histologically. Immunofluorescence analysis and quantitative PCR analysis were performed to analyze the expression of keratins in sole skin of wildtype and Krt2(-/-) Krt10(-/-) mice. Highly abundant proteins of the sole stratum corneum were determined by electrophoretic and chromatographic separation and subsequent mass spectrometry. K2 and K10 are the most prominent suprabasal keratins in normal mouse soles with the exception of the footpads where K1, K9 and K10 predominate. Mice lacking both K2 and K10 were viable and developed epidermal acanthosis and hyperkeratosis in inter-footpad epidermis of the soles. The expression of keratins K1, K9 and K16 was massively increased at the RNA and protein levels in the soles of Krt2(-/-) Krt10(-/-) mice. This study demonstrates that the loss of the main cytoskeletal components of plantar epidermis, i.e. K2 and K10, can be only partly compensated by the upregulation of other keratins. The thickening of the epidermis in the soles of Krt2(-/-) Krt10(-/-) mice may serve as a model for pathomechanistic aspects of palmoplantar keratoderma. Copyright © 2015. Published by Elsevier Ireland Ltd.

  5. Keratin film ablation for the fabrication of brick and mortar skin structure using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Haq, Bibi Safia; Khan, Hidayat Ullah; Dou, Yuehua; Alam, Khan; Attaullah, Shehnaz; Zari, Islam

    2015-09-01

    The patterning of thin keratin films has been explored to manufacture model skin surfaces based on the "bricks and mortar" view of the relationship between keratin and lipids. It has been demonstrated that laser light is capable of preparing keratin-based "bricks and mortar" wall structure as in epidermis, the outermost layer of the human skin. "Bricks and mortar" pattern in keratin films has been fabricated using an ArF excimer laser (193 nm wavelength) and femtosecond laser (800 and 400 nm wavelength). Due to the very low ablation threshold of keratin, femtosecond laser systems are practical for laser processing of proteins. These model skin structures are fabricated for the first time that will help to produce potentially effective moisturizing products for the protection of skin from dryness, diseases and wrinkles.

  6. Keratins Regulate p38MAPK-Dependent Desmoglein Binding Properties in Pemphigus

    PubMed Central

    Vielmuth, Franziska; Walter, Elias; Fuchs, Michael; Radeva, Mariya Y.; Buechau, Fanny; Magin, Thomas M.; Spindler, Volker; Waschke, Jens

    2018-01-01

    Keratins are crucial for the anchorage of desmosomes. Severe alterations of keratin organization and detachment of filaments from the desmosomal plaque occur in the autoimmune dermatoses pemphigus vulgaris and pemphigus foliaceus (PF), which are mainly caused by autoantibodies against desmoglein (Dsg) 1 and 3. Keratin alterations are a structural hallmark in pemphigus pathogenesis and correlate with loss of intercellular adhesion. However, the significance for autoantibody-induced loss of intercellular adhesion is largely unknown. In wild-type (wt) murine keratinocytes, pemphigus autoantibodies induced keratin filament retraction. Under the same conditions, we used murine keratinocytes lacking all keratin filaments (KtyII k.o.) as a model system to dissect the role of keratins in pemphigus. KtyII k.o. cells show compromised intercellular adhesion without antibody (Ab) treatment, which was not impaired further by pathogenic pemphigus autoantibodies. Nevertheless, direct activation of p38MAPK via anisomycin further decreased intercellular adhesion indicating that cell cohesion was not completely abrogated in the absence of keratins. Direct inhibition of Dsg3, but not of Dsg1, interaction via pathogenic autoantibodies as revealed by atomic force microscopy was detectable in both cell lines demonstrating that keratins are not required for this phenomenon. However, PF-IgG shifted Dsg1-binding events from cell borders toward the free cell surface in wt cells. This led to a distribution pattern of Dsg1-binding events similar to KtyII k.o. cells under resting conditions. In keratin-deficient keratinocytes, PF-IgG impaired Dsg1-binding strength, which was not different from wt cells under resting conditions. In addition, pathogenic autoantibodies were capable of activating p38MAPK in both KtyII wt and k.o. cells, the latter of which already displayed robust p38MAPK activation under resting conditions. Since inhibition of p38MAPK blocked autoantibody-induced loss of

  7. Immunohistochemical expression of glucose transporter 1 in keratin-producing odontogenic cysts.

    PubMed

    Vera-Sirera, Beatriz; Forner-Navarro, Leopoldo; Vera-Sempere, Francisco

    2016-03-10

    Keratin-producing odontogenic cysts (KPOCs) are a group of cystic lesions that are often aggressive, with high rates of recurrence and multifocality. KPOCs included orthokeratinised odontogenic cyst (OOC) and parakeratotic odontogenic cysts, which are now considered true tumours denominated keratocystic odontogenic tumours (KCOTs). GLUT1 is a protein transporter that is involved in the active uptake of glucose across cell membranes and that is overexpressed in tumours in close correlation with the proliferation rate and positron emission tomography (PET) imaging results. A series of 58 keratin-producing odontogenic cysts was evaluated histologically and immunohistochemically in terms of GLUT1 expression. Different data were correlated using the beta regression model in relation to histological type and immunohistochemical expression of GLUT1, which was quantified using two different morphological methods. KPOC cases comprised 12 OOCs and 46 KCOTs, the latter corresponding to 6 syndromic and 40 sporadic KCOTs. GLUT1 expression was very low in OOC cases compared with KCOT cases, with statistical significant differences when quantification was considered. Different GLUT1 localisation patterns were revealed by immunostaining, with the parabasal cells showing higher reactivity in KCOTs. However, among KCOTs cases, GLUT1 expression was unable to establish differences between syndromic and sporadic cases. GLUT1 expression differentiated between OOC and KCOT cases, with significantly higher expression in KCOTs, but did not differentiate between syndromic and sporadic KCOT cases. However, given the structural characteristics of KCOTs, we hypothesised that PET imaging methodology is probably not a useful diagnostic tool for KCOTs. Further studies of GLUT1 expression and PET examination in KCOT series are needed to confirm this last hypothesis.

  8. [Immunohistochemical observation on keratin filaments of cultured tumor cells by ABC staining].

    PubMed

    Wang, J; Yang, F

    1991-06-01

    Avidin-Biotin Peroxidase complex technique, ABV staining, was employed by using monoclonal anti-keratin antibody HK2 in this study. The organization and dynamics of keratins in both interphase and mitotic T56 and HeLa cells were analysed. We also observed the effects of microtubule (MT) and microfilament (MF) inhibitors, colchicine and cytochalasin B, on the organization of keratin filaments in T56 and HeLa cells. The results showed that a significant alteration in the structural organization and distribution of keratin filaments occurred during mitosis, and an extensive rearrangement of keratin networks of the two cell lines was induced in interphase after the MT and MF were disrupted by combined treatment with the two drugs, colchicine and cytochalasin B; the keratin networks turned into a star-like lattice rapidly within 1-2h. Neither colchicine nor cytochalasin B alone elicited significant organizational change in the keratin networks of the two cell lines.

  9. Novel mutations in the helix termination motif of keratin 3 and keratin 12 in 2 Taiwanese families with Meesmann corneal dystrophy.

    PubMed

    Chen, Ying-Ting; Tseng, Sung-Huei; Chao, Sheau-Chiou

    2005-11-01

    To analyze mutations of the keratin 3 gene (KRT3) and keratin 12 gene (KRT12) in 2 Taiwanese families with Meesmann corneal dystrophy (MCD). Diagnosis of MCD was confirmed by slit-lamp examination of the cornea in 4 members of family 1 and 6 members of family 2. All exons and flanking intron boundaries of KRT3 and KRT12 were amplified by polymerase chain reaction (PCR), and products were subjected to direct sequencing. Restriction fragment length polymorphism analysis (RFLP) with created mismatch primers, Bst XI and Nsp I, was used to confirm the presence of the mutations in affected individuals in family 1 and family 2, respectively. A novel heterozygous missense mutation (1508G-->C), predicting the substitution of a proline for an arginine (R503P) was detected in the helix termination motif of the keratin 3 polypeptide in family 1. Another novel heterozygous missense mutation (1286A-->G), predicting the substitution of a cysteine for a tyrosine at codon 429 (Y429C) was detected in the helix termination motif of the keratin 12 polypeptide in family 2. These 2 mutations were excluded from 50 normal controls by RFLP analysis, indicating that they were not common polymorphisms. A novel missense mutation (R503P) in KRT3 and another novel missense mutation (Y429C) in KRT12 lead to MCD in 2 unrelated Taiwanese families. The mutant codons in our study are all located in the highly conserved alpha-helix-termination motif, which is essential for keratin filament assembly. Mutation at this area may account for the disruption of keratin filament assembly, leading to MCD.

  10. Brazilian keratin hair treatment: a review.

    PubMed

    Weathersby, Courtney; McMichael, Amy

    2013-06-01

    Brazilian keratin treatments are widely available products that are used by women all over the world to straighten hair. Marketers of these products claim that the keratin treatments render naturally curly hair more manageable and frizz-free while enhancing color and shine, giving the hair a healthier appearance. Although widely used, there have been virtually no reports of adverse side effects. Unfortunately, many of the products that are applied by salon professionals contain formaldehyde or its derivatives and are being marketed as safe. © 2013 Wiley Periodicals, Inc.

  11. Evolution of hard proteins in the sauropsid integument in relation to the cornification of skin derivatives in amniotes.

    PubMed

    Alibardi, Lorenzo; Dalla Valle, Luisa; Nardi, Alessia; Toni, Mattia

    2009-04-01

    Hard skin appendages in amniotes comprise scales, feathers and hairs. The cell organization of these appendages probably derived from the localization of specialized areas of dermal-epidermal interaction in the integument. The horny scales and the other derivatives were formed from large areas of dermal-epidermal interaction. The evolution of these skin appendages was characterized by the production of specific coiled-coil keratins and associated proteins in the inter-filament matrix. Unlike mammalian keratin-associated proteins, those of sauropsids contain a double beta-folded sequence of about 20 amino acids, known as the core-box. The core-box shows 60%-95% sequence identity with known reptilian and avian proteins. The core-box determines the polymerization of these proteins into filaments indicated as beta-keratin filaments. The nucleotide and derived amino acid sequences for these sauropsid keratin-associated proteins are presented in conjunction with a hypothesis about their evolution in reptiles-birds compared to mammalian keratin-associated proteins. It is suggested that genes coding for ancestral glycine-serine-rich sequences of alpha-keratins produced a new class of small matrix proteins. In sauropsids, matrix proteins may have originated after mutation and enrichment in proline, probably in a central region of the ancestral protein. This mutation gave rise to the core-box, and other regions of the original protein evolved differently in the various reptilians orders. In lepidosaurians, two main groups, the high glycine proline and the high cysteine proline proteins, were formed. In archosaurians and chelonians two main groups later diversified into the high glycine proline tyrosine, non-feather proteins, and into the glycine-tyrosine-poor group of feather proteins, which evolved in birds. The latter proteins were particularly suited for making the elongated barb/barbule cells of feathers. In therapsids-mammals, mutations of the ancestral proteins formed

  12. Evolution of hard proteins in the sauropsid integument in relation to the cornification of skin derivatives in amniotes

    PubMed Central

    Alibardi, Lorenzo; Valle, Luisa Dalla; Nardi, Alessia; Toni, Mattia

    2009-01-01

    Hard skin appendages in amniotes comprise scales, feathers and hairs. The cell organization of these appendages probably derived from the localization of specialized areas of dermal–epidermal interaction in the integument. The horny scales and the other derivatives were formed from large areas of dermal–epidermal interaction. The evolution of these skin appendages was characterized by the production of specific coiled-coil keratins and associated proteins in the inter-filament matrix. Unlike mammalian keratin-associated proteins, those of sauropsids contain a double beta-folded sequence of about 20 amino acids, known as the core-box. The core-box shows 60%–95% sequence identity with known reptilian and avian proteins. The core-box determines the polymerization of these proteins into filaments indicated as beta-keratin filaments. The nucleotide and derived amino acid sequences for these sauropsid keratin-associated proteins are presented in conjunction with a hypothesis about their evolution in reptiles-birds compared to mammalian keratin-associated proteins. It is suggested that genes coding for ancestral glycine-serine-rich sequences of alpha-keratins produced a new class of small matrix proteins. In sauropsids, matrix proteins may have originated after mutation and enrichment in proline, probably in a central region of the ancestral protein. This mutation gave rise to the core-box, and other regions of the original protein evolved differently in the various reptilians orders. In lepidosaurians, two main groups, the high glycine proline and the high cysteine proline proteins, were formed. In archosaurians and chelonians two main groups later diversified into the high glycine proline tyrosine, non-feather proteins, and into the glycine-tyrosine-poor group of feather proteins, which evolved in birds. The latter proteins were particularly suited for making the elongated barb/barbule cells of feathers. In therapsids-mammals, mutations of the ancestral proteins

  13. Keratin gel in the management of Epidermolysis bullosa.

    PubMed

    Denyer, J; Marsh, C; Kirsner, R S

    2015-10-01

    Epidermolysis bullosa (EB) describes a number of genetically inherited conditions which cause skin fragility and minor trauma leading to skin damage, skin loss and wounding. Owing to the fragility of the skin and requirement for frequent dressing changes, at present, the optimal dressing(s) is not clear. Our objective was to assess the use of a keratin gel in the management of wounds in patients with different forms of EB. We treated patients with different types of EB and a range of wounds with a novel keratin gel. In a convenience sample of consecutive patients, we introduced the keratin gel into their treatment regimen maintaining other aspects of their care. Patients reported faster healing and more resilient healed skin. Of the ten patients treated in this pilot study, six found the gel effective; two found it ineffective; and in two patients, it caused itching leading to discontinuation of the treatment. The results of this case study series suggest that keratin gel can be useful in the management of EB and are consistent with previous published experiences.

  14. Normal keratinized mucosa transplants in nude mice.

    PubMed

    Holmstrup, P; Dabelsteen, E; Reibel, J; Harder, F

    1981-01-01

    Two types of normal keratinized mucosa were transplanted to subcutaneous sites of nude mice of two different strains. 24 intact specimens of clinically normal human palatal mucosa were transplanted to nude mice of the strain nu/nu NC. The transplants were recovered after 42 d with a recovery rate of 96%. Moreover, 22 intact specimens of normal rat forestomach mucosa were transplanted to nude mice of the strain nu/nu BALB/c/BOM. These transplants were recovered after 21 d with a recovery rate of 63%. The histologic features of the transplants were essentially the same as those of the original tissues. However, epithelial outgrowths from the transplants differed with respect to the pattern of keratinization. The outgrowths of human palatal mucosa transplants were essentially unkeratinized, while the outgrowths of the rat forestomach transplants showed continued keratinization.

  15. Raman spectroscopic study of keratin 8 knockdown oral squamous cell carcinoma derived cells

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Alam, Hunain; Dmello, Crismita; Vaidya, Milind M.; Krishna, C. Murali

    2012-03-01

    Keratins are one of most widely used markers for oral cancers. Keratin 8 and 18 are expressed in simple epithelia and perform both mechanical and regulatory functions. Their expression are not seen in normal oral tissues but are often expressed in oral squamous cell carcinoma. Aberrant expression of keratins 8 and 18 is most common change in human oral cancer. Optical-spectroscopic methods are sensitive to biochemical changes and being projected as novel diagnostic tools for cancer diagnosis. Aim of this study was to evaluate potentials of Raman spectroscopy in detecting minor changes associated with differential level of keratin expression in tongue-cancer-derived AW13516 cells. Knockdown clones for K8 were generated and synchronized by growing under serum-free conditions. Cell pellets of three independent experiments in duplicate were used for recording Raman spectra with fiberoptic-probe coupled HE-785 Raman-instrument. A total of 123 and 96 spectra from knockdown clones and vector controls respectively in 1200-1800 cm-1 region were successfully utilized for classification using LDA. Two separate clusters with classification-efficiency of ~95% were obtained. Leave-one-out cross-validation yielded ~63% efficiency. Findings of the study demonstrate the potentials of Raman spectroscopy in detecting even subtle changes such as variations in keratin expression levels. Future studies towards identifying Raman signals from keratin in oral cells can help in precise cancer diagnosis.

  16. Toward unraveling the complexity of simple epithelial keratins in human disease.

    PubMed

    Omary, M Bishr; Ku, Nam-On; Strnad, Pavel; Hanada, Shinichiro

    2009-07-01

    Simple epithelial keratins (SEKs) are found primarily in single-layered simple epithelia and include keratin 7 (K7), K8, K18-K20, and K23. Genetically engineered mice that lack SEKs or overexpress mutant SEKs have helped illuminate several keratin functions and served as important disease models. Insight into the contribution of SEKs to human disease has indicated that K8 and K18 are the major constituents of Mallory-Denk bodies, hepatic inclusions associated with several liver diseases, and are essential for inclusion formation. Furthermore, mutations in the genes encoding K8, K18, and K19 predispose individuals to a variety of liver diseases. Hence, as we discuss here, the SEK cytoskeleton is involved in the orchestration of several important cellular functions and contributes to the pathogenesis of human liver disease.

  17. Comparative Study of Ultrasonication-Induced and Naturally Self-Assembled Silk Fibroin-Wool Keratin Hydrogel Biomaterials

    PubMed Central

    Vu, Trang; Xue, Ye; Vuong, Trinh; Erbe, Matthew; Bennet, Christopher; Palazzo, Ben; Popielski, Lucas; Rodriguez, Nelson; Hu, Xiao

    2016-01-01

    This study reports the formation of biocompatible hydrogels using protein polymers from natural silk cocoon fibroins and sheep wool keratins. Silk fibroin protein contains β-sheet secondary structures, allowing for the formation of physical cross-linkers in the hydrogels. Comparative studies were performed on two groups of samples. In the first group, ultrasonication was used to induce a quick gelation of a protein aqueous solution, enhancing the ability of Bombyx mori silk fibroin chains to quickly entrap the wool keratin protein molecules homogenously. In the second group, silk/keratin mixtures were left at room temperature for days, resulting in naturally-assembled gelled solutions. It was found that silk/wool blended solutions can form hydrogels at different mixing ratios, with perfectly interconnected gel structure when the wool content was less than 30 weight percent (wt %) for the first group (ultrasonication), and 10 wt % for the second group (natural gel). Differential scanning calorimetry (DSC) and temperature modulated DSC (TMDSC) were used to confirm that the fibroin/keratin hydrogel system was well-blended without phase separation. Fourier transform infrared spectroscopy (FTIR) was used to investigate the secondary structures of blended protein gels. It was found that intermolecular β-sheet contents significantly increase as the system contains more silk for both groups of samples, resulting in stable crystalline cross-linkers in the blended hydrogel structures. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to analyze the samples’ characteristic morphology on both micro- and nanoscales, which showed that ultrasonic waves can significantly enhance the cross-linker formation and avoid phase separation between silk and keratin molecules in the blended systems. With the ability to form cross-linkages non-chemically, these silk/wool hydrogels may be economically useful for various biomedical applications, thanks to the

  18. Development and Characterization of a 3D Printed, Keratin-Based Hydrogel.

    PubMed

    Placone, Jesse K; Navarro, Javier; Laslo, Gregory W; Lerman, Max J; Gabard, Alexis R; Herendeen, Gregory J; Falco, Erin E; Tomblyn, Seth; Burnett, Luke; Fisher, John P

    2017-01-01

    Keratin, a naturally-derived polymer derived from human hair, is physiologically biodegradable, provides adequate cell support, and can self-assemble or be crosslinked to form hydrogels. Nevertheless, it has had limited use in tissue engineering and has been mainly used as casted scaffolds for drug or growth factor delivery applications. Here, we present and assess a novel method for the printed, sequential production of 3D keratin scaffolds. Using a riboflavin-SPS-hydroquinone (initiator-catalyst-inhibitor) photosensitive solution we produced 3D keratin constructs via UV crosslinking in a lithography-based 3D printer. The hydrogels obtained have adequate printing resolution and result in compressive and dynamic mechanical properties, uptake and swelling capacities, cytotoxicity, and microstructural characteristics that are comparable or superior to those of casted keratin scaffolds previously reported. The novel keratin-based printing resin and printing methodology presented have the potential to impact future research by providing an avenue to rapidly and reproducibly manufacture patient-specific hydrogels for tissue engineering and regenerative medicine applications.

  19. The use of isoelectric focusing to identify rhinoceros keratins.

    PubMed

    Butler, D J; De Forest, P R; Kobilinsky, L

    1990-03-01

    Keratins represent the principal structural proteins of hair. They are also found in horn, nail, claw, hoof, and feather. Hair and nail samples from human and canine sources and hair samples from mule deer, white tail deer, cat, moose, elk, antelope, caribou, raccoon, and goat were studied. Parrot and goose feathers were also analyzed. Keratins are polymorphic, and species differences are known to exist. Proteinaceous extracts of deer and antelope antlers and bovine and rhinoceros horn were prepared by solubilizing 10 mg of horn sample in 200 microL of a solution containing 12M urea, 74mM Trizma base, and 78mM dithiothreitol (DTT). Extraction took place over a 48-h period. A 25-microL aliquot of extract was removed and incubated with 5 microL of 0.1 M DTT for 10 min at 25 degrees C. Keratins were then separated by isoelectric focusing (IEF) on 5.2% polyacrylamide gels for 3 h and visualized using silver staining. At least 20 bands could be observed for each species studied. However, band patterns differed in the position of each band, in the number of bands, and in band coloration resulting from the silver staining process. Horn from two species of rhinoceros was examined. For both specimens, most bands occurred in the pH range of 4 to 5. Although similar patterns for both species were observed, they differed sufficiently to differentiate one from the other. As might be expected, the closer two species are related phylogenetically, the greater the similarity in the IEF pattern produced from their solubilized keratin.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Strong Keratin-like Nanofibers Made of Globular Protein

    NASA Astrophysics Data System (ADS)

    Dror, Yael; Makarov, Vadim; Admon, Arie; Zussman, Eyal

    2008-03-01

    Protein fibers as elementary structural and functional elements in nature inspire the engineering of protein-based products for versatile bio-medical applications. We have recently used the electrospinning process to fabricate strong sub-micron fibers made solely of serum albumin (SA). This raises the challenges of turning a globular non-viscous protein solution into a polymer--like spinnable solution and producing keratin-like fibers enriched in inter S-S bridges. A stable spinning process was achieved by using SA solution in a rich trifluoroethanol-water mixture with β-mercaptoethanol. The breakage of the intra disulfide bridges, as identified by mass spectrometry, together with the denaturing alcohol, enabled a pronounced expansion of the protein. This in turn, affects the rheological properties of the solution. X-ray diffraction pattern of the fibers revealed equatorial orientation, indicating the alignment of structures along the fiber axis. The mechanical properties reached remarkable average values (Young's modulus of 1.6GPa, and max stress of 36MPa) as compared to other fibrous protein nanofibers. These significant results are attributed to both the alignment and inter disulfide bonds (cross linking) that were formed by spontaneous post-spinning oxidation.

  1. Toward unraveling the complexity of simple epithelial keratins in human disease

    PubMed Central

    Omary, M. Bishr; Ku, Nam-On; Strnad, Pavel; Hanada, Shinichiro

    2009-01-01

    Simple epithelial keratins (SEKs) are found primarily in single-layered simple epithelia and include keratin 7 (K7), K8, K18–K20, and K23. Genetically engineered mice that lack SEKs or overexpress mutant SEKs have helped illuminate several keratin functions and served as important disease models. Insight into the contribution of SEKs to human disease has indicated that K8 and K18 are the major constituents of Mallory-Denk bodies, hepatic inclusions associated with several liver diseases, and are essential for inclusion formation. Furthermore, mutations in the genes encoding K8, K18, and K19 predispose individuals to a variety of liver diseases. Hence, as we discuss here, the SEK cytoskeleton is involved in the orchestration of several important cellular functions and contributes to the pathogenesis of human liver disease. PMID:19587454

  2. Comparative Genomics Identifies Epidermal Proteins Associated with the Evolution of the Turtle Shell

    PubMed Central

    Holthaus, Karin Brigit; Strasser, Bettina; Sipos, Wolfgang; Schmidt, Heiko A.; Mlitz, Veronika; Sukseree, Supawadee; Weissenbacher, Anton; Tschachler, Erwin; Alibardi, Lorenzo; Eckhart, Leopold

    2016-01-01

    The evolution of reptiles, birds, and mammals was associated with the origin of unique integumentary structures. Studies on lizards, chicken, and humans have suggested that the evolution of major structural proteins of the outermost, cornified layers of the epidermis was driven by the diversification of a gene cluster called Epidermal Differentiation Complex (EDC). Turtles have evolved unique defense mechanisms that depend on mechanically resilient modifications of the epidermis. To investigate whether the evolution of the integument in these reptiles was associated with specific adaptations of the sequences and expression patterns of EDC-related genes, we utilized newly available genome sequences to determine the epidermal differentiation gene complement of turtles. The EDC of the western painted turtle (Chrysemys picta bellii) comprises more than 100 genes, including at least 48 genes that encode proteins referred to as beta-keratins or corneous beta-proteins. Several EDC proteins have evolved cysteine/proline contents beyond 50% of total amino acid residues. Comparative genomics suggests that distinct subfamilies of EDC genes have been expanded and partly translocated to loci outside of the EDC in turtles. Gene expression analysis in the European pond turtle (Emys orbicularis) showed that EDC genes are differentially expressed in the skin of the various body sites and that a subset of beta-keratin genes within the EDC as well as those located outside of the EDC are expressed predominantly in the shell. Our findings give strong support to the hypothesis that the evolutionary innovation of the turtle shell involved specific molecular adaptations of epidermal differentiation. PMID:26601937

  3. Carbon Fibers from Chicken Feather Keratin

    NASA Astrophysics Data System (ADS)

    Miller, Melissa E.; Wool, Richard

    2006-03-01

    As the availability of synthetic and fossil-fuel based resources is becoming limited, bio-based materials offer an environmentally friendly alternative. Chicken feathers remain a huge agricultural waste. The feathers are comprised of approximately 97% keratin, but are currently used only to enrich animal feed. However, this usage is becoming a problem with the spread of diseases such as Bovine Spongiform Encephalopathy, commonly called ``Mad Cow Disease.'' The hollow, microcrystalline, oriented keratin feather fibers offer a novel, low cost approach to producing carbon fibers through controlled pyrolysis. Carbonized feather fibers (CFF) were prepared by first heating to 225 ^oC (below the melting point)in N2 for 26 hours to crosslink and stabilize the fiber structure; then carbonization occurred by increasing the temperature to 450 ^oC for two more hours. The resulting CFF were hollow, stiff and strong and had an affine 80% weight loss, which is near the theoretical value for the C-content of keratin. Initial studies showed that a composite with the CFF and an epoxidized soybean oil (AESO) gave an improved fiber modulus ECFF of order 13.5--66.1 GPa. With continued research, the goals are to increase the stiffness of the feathers to 100 GPa, while increasing the strength in the range of 5-10 GPa.

  4. Keratin decomposition by trogid beetles: evidence from a feeding experiment and stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Sugiura, Shinji; Ikeda, Hiroshi

    2014-03-01

    The decomposition of vertebrate carcasses is an important ecosystem function. Soft tissues of dead vertebrates are rapidly decomposed by diverse animals. However, decomposition of hard tissues such as hairs and feathers is much slower because only a few animals can digest keratin, a protein that is concentrated in hairs and feathers. Although beetles of the family Trogidae are considered keratin feeders, their ecological function has rarely been explored. Here, we investigated the keratin-decomposition function of trogid beetles in heron-breeding colonies where keratin was frequently supplied as feathers. Three trogid species were collected from the colonies and observed feeding on heron feathers under laboratory conditions. We also measured the nitrogen (δ15N) and carbon (δ13C) stable isotope ratios of two trogid species that were maintained on a constant diet (feathers from one heron individual) during 70 days under laboratory conditions. We compared the isotopic signatures of the trogids with the feathers to investigate isotopic shifts from the feathers to the consumers for δ15N and δ13C. We used mixing models (MixSIR and SIAR) to estimate the main diets of individual field-collected trogid beetles. The analysis indicated that heron feathers were more important as food for trogid beetles than were soft tissues under field conditions. Together, the feeding experiment and stable isotope analysis provided strong evidence of keratin decomposition by trogid beetles.

  5. Keratinous inclusion cyst of oesophagus: unusual finding

    PubMed Central

    Wan Abdul Rahman, Wan Faiziah; Mutum, Samarendra Singh; Fauzi, Mohd Hashairi

    2013-01-01

    Cysts of the oesophagus are unusual findings and they are classified according to the embryological site of origin. It may represent inclusion cysts, retention cysts and developmental cysts. We present a case of keratinous inclusion cyst of the lower oesophagus in a 71-year-old Malay woman who presented with dyspepsia and severe epigastric pain. An oesophago-gastro-duodenoscopy demonstrated a sliding hiatus hernia with whitish ulcer-like lesion at the lower oesophagus. Biopsy from the lesion revealed a keratinous inclusion cyst. The patient was given pantoprazole and put on regular follow-up for monitoring any other development. PMID:23878290

  6. Click chemistry modification of natural keratin fibers for sustained shrink-resist performance.

    PubMed

    Yu, Dan; Cai, Jackie Y; Church, Jeffrey S; Wang, Lijing

    2015-01-01

    This paper introduces a novel chemical treatment for achieving sustained shrink-resist performance on natural keratin fibers. The new treatment involves the controlled reduction of keratin in the cuticle region of the fiber, and the application of a water soluble diacrylate, namely glycerol 1,3-diglycerolate diacrylate (GDA), on the reduced keratin substrate. The acrylate groups of the GDA react with cysteine residues in the reduced keratin through thiol-ene click reactions at room temperature, leading to GDA grafting and the formation of GDA crosslinks in the keratin structure. The modified substrates were characterized by infrared spectroscopy and scanning electron microscopy, and assessed for its shrink-resistance and wet burst strength. This chemical modification has shown to alter the fiber surface morphology and hydrophilicity, resulting in substantially improved shrink-resistance with good fiber strength retention. Possible shrink-resistance mechanisms were also discussed. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  7. FAM83H and casein kinase I regulate the organization of the keratin cytoskeleton and formation of desmosomes

    PubMed Central

    Kuga, Takahisa; Sasaki, Mitsuho; Mikami, Toshinari; Miake, Yasuo; Adachi, Jun; Shimizu, Maiko; Saito, Youhei; Koura, Minako; Takeda, Yasunori; Matsuda, Junichiro; Tomonaga, Takeshi; Nakayama, Yuji

    2016-01-01

    FAM83H is essential for the formation of dental enamel because a mutation in the FAM83H gene causes amelogenesis imperfecta (AI). We previously reported that the overexpression of FAM83H often occurs and disorganizes the keratin cytoskeleton in colorectal cancer cells. We herein show that FAM83H regulates the organization of the keratin cytoskeleton and maintains the formation of desmosomes in ameloblastoma cells. FAM83H is expressed and localized on keratin filaments in human ameloblastoma cell lines and in mouse ameloblasts and epidermal germinative cells in vivo. FAM83H shows preferential localization to keratin filaments around the nucleus that often extend to cell-cell junctions. Alterations in the function of FAM83H by its overexpression, knockdown, or an AI-causing truncated mutant prevent the proper organization of the keratin cytoskeleton in ameloblastoma cells. Furthermore, the AI-causing mutant prevents desmosomal proteins from being localized to cell-cell junctions. The effects of the AI-causing mutant depend on its binding to and possible inhibition of casein kinase I (CK-1). The suppression of CK-1 by its inhibitor, D4476, disorganizes the keratin cytoskeleton. Our results suggest that AI caused by the FAM83H mutation is mediated by the disorganization of the keratin cytoskeleton and subsequent disruption of desmosomes in ameloblasts. PMID:27222304

  8. FAM83H and casein kinase I regulate the organization of the keratin cytoskeleton and formation of desmosomes.

    PubMed

    Kuga, Takahisa; Sasaki, Mitsuho; Mikami, Toshinari; Miake, Yasuo; Adachi, Jun; Shimizu, Maiko; Saito, Youhei; Koura, Minako; Takeda, Yasunori; Matsuda, Junichiro; Tomonaga, Takeshi; Nakayama, Yuji

    2016-05-25

    FAM83H is essential for the formation of dental enamel because a mutation in the FAM83H gene causes amelogenesis imperfecta (AI). We previously reported that the overexpression of FAM83H often occurs and disorganizes the keratin cytoskeleton in colorectal cancer cells. We herein show that FAM83H regulates the organization of the keratin cytoskeleton and maintains the formation of desmosomes in ameloblastoma cells. FAM83H is expressed and localized on keratin filaments in human ameloblastoma cell lines and in mouse ameloblasts and epidermal germinative cells in vivo. FAM83H shows preferential localization to keratin filaments around the nucleus that often extend to cell-cell junctions. Alterations in the function of FAM83H by its overexpression, knockdown, or an AI-causing truncated mutant prevent the proper organization of the keratin cytoskeleton in ameloblastoma cells. Furthermore, the AI-causing mutant prevents desmosomal proteins from being localized to cell-cell junctions. The effects of the AI-causing mutant depend on its binding to and possible inhibition of casein kinase I (CK-1). The suppression of CK-1 by its inhibitor, D4476, disorganizes the keratin cytoskeleton. Our results suggest that AI caused by the FAM83H mutation is mediated by the disorganization of the keratin cytoskeleton and subsequent disruption of desmosomes in ameloblasts.

  9. Topographical mapping of α- and β-keratins on developing chicken skin integuments: Functional interaction and evolutionary perspectives

    PubMed Central

    Wu, Ping; Ng, Chen Siang; Yan, Jie; Lai, Yung-Chih; Chen, Chih-Kuan; Lai, Yu-Ting; Wu, Siao-Man; Chen, Jiun-Jie; Luo, Weiqi; Widelitz, Randall B.; Li, Wen-Hsiung; Chuong, Cheng-Ming

    2015-01-01

    Avian integumentary organs include feathers, scales, claws, and beaks. They cover the body surface and play various functions to help adapt birds to diverse environments. These keratinized structures are mainly composed of corneous materials made of α-keratins, which exist in all vertebrates, and β-keratins, which only exist in birds and reptiles. Here, members of the keratin gene families were used to study how gene family evolution contributes to novelty and adaptation, focusing on tissue morphogenesis. Using chicken as a model, we applied RNA-seq and in situ hybridization to map α- and β-keratin genes in various skin appendages at embryonic developmental stages. The data demonstrate that temporal and spatial α- and β-keratin expression is involved in establishing the diversity of skin appendage phenotypes. Embryonic feathers express a higher proportion of β-keratin genes than other skin regions. In feather filament morphogenesis, β-keratins show intricate complexity in diverse substructures of feather branches. To explore functional interactions, we used a retrovirus transgenic system to ectopically express mutant α- or antisense β-keratin forms. α- and β-keratins show mutual dependence and mutations in either keratin type results in disrupted keratin networks and failure to form proper feather branches. Our data suggest that combinations of α- and β-keratin genes contribute to the morphological and structural diversity of different avian skin appendages, with feather-β-keratins conferring more possible composites in building intrafeather architecture complexity, setting up a platform of morphological evolution of functional forms in feathers. PMID:26598683

  10. Keratin based bioplastic film from chicken feathers and its characterization.

    PubMed

    Ramakrishnan, Navina; Sharma, Swati; Gupta, Arun; Alashwal, Basma Yahya

    2018-05-01

    Plastics have been one of the highly valued materials and it plays an significant role in human's life such as in food packaging and biomedical applications. Bioplastic materials can gradually work as a substitute for various materials based on fossil oil. The issue like sustainability and environmental challenges which occur due to manufacturing and disposal of synthetic plastics can be conquering by bio-based plastics. Feathers are among the most inexpensive abundant, and renewable protein sources. Feathers disposal to the landfills leads to environmental pollutions and it results into wastage of 90% of protein raw material. Keratin is non-burning hydrophilic, and biodegradable due to which it can be applicable in various ways via chemical processing. Main objective of this research is to synthesis bioplastic using keratin from chicken feathers. Extracted keratin solution mixed with different concentration of glycerol (2 to 10%) to produce plastic films. The mixture was stirred under constant magnetic stirring at 60 °C for 5 h. The mixtures are then poured into aluminum weighing boat and dried in an oven at 60 °C for 24 h. The mechanical properties of the samples were tested and the physic-chemical properties of the bioplastic were studied. According to the results, Scanning Electron Microscopy test showed good compatible morphologies without holes, cavity and edge. The difference in chemical composition was analyzed using Fourier transform infrared spectroscopy (FTIR). The samples were also characterized by thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-Ray diffraction (XRD) to check the thermal and crystallinity properties. Other than that, bioplastic made up from keratin with 2% of glycerol has the best mechanical and thermal properties. According to biodegradability test, all bioplastic produced are proven biodegradable. Therefore, the results showed possible application of the film as an alternative to fossil oil

  11. Cultivation of human dermal fibroblasts and epidermal keratinocytes on keratin-coated silica bead substrates.

    PubMed

    Tan, Bee Yi; Nguyen, Luong T H; Kim, Hyo-Sop; Kim, Jae-Ho; Ng, Kee Woei

    2017-10-01

    Human hair keratin is promising as a bioactive material platform for various biomedical applications. To explore its versatility further, human hair keratin was coated onto monolayers of silica beads to produce film-like substrates. This combination was hypothesized to provide a synergistic effect in improving the biochemical properties of the resultant composite. Atomic force microscopy analysis showed uniform coatings of keratin on the silica beads with a slight increase in the resulting surface roughness. Keratin-coated silica beads had higher surface energy and relatively lower negative charge than those of bare silica beads. To investigate cell response, human dermal fibroblasts (HDFs), and human epidermal keratinocytes (HEKs) were cultured on the substrates over 4 days. Results showed that keratin coatings significantly enhanced the metabolic activity of HDFs and encouraged cell spreading but did not exert any significant effects on HEKs. HDF expression of collagen I was significantly more intense on the keratin-coated compared to the bare silica substrates. Furthermore, HDF secretion of various cytokines suggested that keratin coatings triggered active cell responses related to wound healing. Collectively, our study demonstrated that human hair keratin-coated silica bead monolayers have the potential to modulate HDF behavior in culture and may be exploited further. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2789-2798, 2017. © 2017 Wiley Periodicals, Inc.

  12. Genomic Organization, Transcriptomic Analysis, and Functional Characterization of Avian α- and β-Keratins in Diverse Feather Forms

    PubMed Central

    Fan, Wen-Lang; Yan, Jie; Chen, Chih-Kuan; Lai, Yu-Ting; Wu, Siao-Man; Mao, Chi-Tang; Chen, Jun-Jie; Lu, Mei-Yeh Jade; Ho, Meng-Ru; Widelitz, Randall B.; Chen, Chih-Feng; Chuong, Cheng-Ming; Li, Wen-Hsiung

    2014-01-01

    Feathers are hallmark avian integument appendages, although they were also present on theropods. They are composed of flexible corneous materials made of α- and β-keratins, but their genomic organization and their functional roles in feathers have not been well studied. First, we made an exhaustive search of α- and β-keratin genes in the new chicken genome assembly (Galgal4). Then, using transcriptomic analysis, we studied α- and β-keratin gene expression patterns in five types of feather epidermis. The expression patterns of β-keratin genes were different in different feather types, whereas those of α-keratin genes were less variable. In addition, we obtained extensive α- and β-keratin mRNA in situ hybridization data, showing that α-keratins and β-keratins are preferentially expressed in different parts of the feather components. Together, our data suggest that feather morphological and structural diversity can largely be attributed to differential combinations of α- and β-keratin genes in different intrafeather regions and/or feather types from different body parts. The expression profiles provide new insights into the evolutionary origin and diversification of feathers. Finally, functional analysis using mutant chicken keratin forms based on those found in the human α-keratin mutation database led to abnormal phenotypes. This demonstrates that the chicken can be a convenient model for studying the molecular biology of human keratin-based diseases. PMID:25152353

  13. Keratin K15 as a Biomarker of Epidermal Stem Cells

    PubMed Central

    Bose, Amrita; Teh, Muy-Teck; Mackenzie, Ian C.; Waseem, Ahmad

    2013-01-01

    Keratin 15 (K15) is type I keratin protein co-expressed with the K5/K14 pair present in the basal keratinocytes of all stratified epithelia. Although it is a minor component of the cytoskeleton with a variable expression pattern, nonetheless its expression has been reported as a stem cell marker in the bulge of hair follicles. Conversely, suprabasal expression of K15 has also been reported in both normal and diseased tissues, which is inconsistent with its role as a stem cell marker. Our recently published work has given evidence of the molecular pathways that seem to control the expression of K15 in undifferentiated and differentiated cells. In this article, we have critically reviewed the published work to establish the reliability of K15 as an epidermal stem cell marker. PMID:24071939

  14. Co-option of Hair Follicle Keratins into Amelogenesis Is Associated with the Evolution of Prismatic Enamel: A Hypothesis

    PubMed Central

    Beniash, Elia

    2017-01-01

    Recent discovery of hair follicle keratin 75 (KRT75) in enamel raises questions about the function of this protein in enamel and the mechanisms of its secretion. It is also not clear how this protein with a very specific and narrow expression pattern, limited to the inner root sheath of the hair follicle, became associated with enamel. We propose a hypothesis that KRT75 was co-opted by ameloblasts during the evolution of Tomes' process and the prismatic enamel in synapsids. PMID:29114231

  15. Comparative Genomics Identifies Epidermal Proteins Associated with the Evolution of the Turtle Shell.

    PubMed

    Holthaus, Karin Brigit; Strasser, Bettina; Sipos, Wolfgang; Schmidt, Heiko A; Mlitz, Veronika; Sukseree, Supawadee; Weissenbacher, Anton; Tschachler, Erwin; Alibardi, Lorenzo; Eckhart, Leopold

    2016-03-01

    The evolution of reptiles, birds, and mammals was associated with the origin of unique integumentary structures. Studies on lizards, chicken, and humans have suggested that the evolution of major structural proteins of the outermost, cornified layers of the epidermis was driven by the diversification of a gene cluster called Epidermal Differentiation Complex (EDC). Turtles have evolved unique defense mechanisms that depend on mechanically resilient modifications of the epidermis. To investigate whether the evolution of the integument in these reptiles was associated with specific adaptations of the sequences and expression patterns of EDC-related genes, we utilized newly available genome sequences to determine the epidermal differentiation gene complement of turtles. The EDC of the western painted turtle (Chrysemys picta bellii) comprises more than 100 genes, including at least 48 genes that encode proteins referred to as beta-keratins or corneous beta-proteins. Several EDC proteins have evolved cysteine/proline contents beyond 50% of total amino acid residues. Comparative genomics suggests that distinct subfamilies of EDC genes have been expanded and partly translocated to loci outside of the EDC in turtles. Gene expression analysis in the European pond turtle (Emys orbicularis) showed that EDC genes are differentially expressed in the skin of the various body sites and that a subset of beta-keratin genes within the EDC as well as those located outside of the EDC are expressed predominantly in the shell. Our findings give strong support to the hypothesis that the evolutionary innovation of the turtle shell involved specific molecular adaptations of epidermal differentiation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Unraveling double stranded alpha-helical coiled coils: an x-ray diffraction study on hard alpha-keratin fibers.

    PubMed

    Kreplak, L; Doucet, J; Briki, F

    2001-04-15

    Transformations of proteins secondary and tertiary structures are generally studied in globular proteins in solution. In fibrous proteins, such as hard alpha-keratin, that contain long and well-defined double stranded alpha-helical coiled coil domains, such study can be directly done on the native fibrous tissue. In order to assess the structural behavior of the coiled coil domains under an axial mechanical stress, wide angle x-ray scattering and small angle x-ray scattering experiments have been carried out on stretched horse hair fibers at relative humidity around 30%. Our observations of the three major axial spacings as a function of the applied macroscopic strain have shown two rates. Up to 4% macroscopic strain the coiled coils were slightly distorted but retained their overall conformation. Above 4% the proportion of coiled coil domains progressively decreased. The main and new result of our study is the observation of the transition from alpha-helical coiled coils to disordered chains instead of the alpha-helical coiled coil to beta-sheet transition that occurs in wet fibers.

  17. Keratin capped silver nanoparticles - synthesis and characterization of a nanomaterial with desirable handling properties

    USDA-ARS?s Scientific Manuscript database

    Silver nanoparticles (NPs) were produced with keratin stabilizer and the NPs exhibited unimodal Gaussian distribution with average diameter of 3.5nm +/- 0.7 nm. The molecular mass of keratin stabilizer was 6-8 kDa. The mass of keratin capped NPs was >250 kDa to indicate the formation of crosslinked...

  18. Cross-immunoreactivity between the LH1 antibody and cytokeratin epitopes in the differentiating epidermis of embryos of the grass snake Natrix natrix L. during the end stages of embryogenesis.

    PubMed

    Swadźba, Elwira; Rupik, Weronika

    2012-01-01

    The monoclonal anti-cytokeratin 1/10 (LH1) antibody recognizing K1/K10 keratin epitopes that characterizes a keratinized epidermis of mammals cross-reacts with the beta and Oberhäutchen layers covering the scales and gastrosteges of grass snake embryos during the final period of epidermis differentiation. The immunolocalization of the anti-cytokeratin 1/10 (LH1) antibody appears in the beta layer of the epidermis, covering the outer surface of the gastrosteges at the beginning of developmental stage XI, and in the beta layer of the epidermis, covering the outer surface of the scales at the end of developmental stage XI. This antibody cross-reacts with the Oberhäutchen layers in the epidermis covering the outer surface of both scales and gastrosteges at developmental stages XI and XII just before its fusion with the beta layers. After fusion of the Oberhäutchen and beta layers, LH1 immunolabeling is weaker than before. This might suggest that alpha-keratins in these layers of the epidermis are masked by beta-keratins, modified, or degraded. The anti-cytokeratin 1/10 (LH1) antibody stains the Oberhäutchen layer in the epidermis covering the inner surface of the gastrosteges and the hinge regions between gastrosteges at the end of developmental stage XI. However, the Oberhäutchen of the epidermis covering the inner surfaces of the scales and the hinge regions between scales does not show cytokeratin 1/10 (LH1) immunolabeling until hatching. This cross-reactivity suggests that the beta and Oberhäutchen layers probably contain some alpha-keratins that react with the LH1 antibody. It is possible that these alpha-keratins create specific scaffolding for the latest beta-keratin deposition. It is also possible that the LH1 antibody cross-reacts with other epidermal proteins such as filament-associated proteins, i.e., filaggrin-like. The anti-cytokeratin 1/10 (LH1) antibody does not stain the alpha and mesos layers until hatching. We suppose that the differentiation of

  19. Modified approach for keratinized tissue augmentation in multiple teeth

    PubMed Central

    Terenzi, Mayara; Pigossi, Suzane Cristina; Pires, Luana Carla; Cirelli, Joni Augusto; Sampaio, José Eduardo

    2017-01-01

    This case report demonstrated a modified technique of free gingival graft (FGG) aiming to increase keratinized attached tissue in large recipient areas. A FGG to increase the amount of attached gingival tissue, facilitate oral hygiene, and prevent further clinical attachment loss was realized in two patients. Because the extensive recipient area, a modified technique was performed to obtain a smaller graft of the donor area. A template of the graft was made about 25%–30% smaller than the total recipient area. After graft removal, interspersed incisions were made in the upper and lower edges of it. After 9–24 months of follow-up, the final width of the keratinized tissue was 4.0–4.4 times larger in comparison to initial clinical condition. In conclusion, this FGG technique can be considered an alternative to gain sufficient amount of keratinized gingival tissue using a smaller graft. PMID:29551874

  20. Identification of a feather β-keratin gene exclusively expressed in pennaceous barbule cells of contour feathers in chicken.

    PubMed

    Kowata, Kinue; Nakaoka, Minori; Nishio, Kaori; Fukao, Ayaka; Satoh, Akira; Ogoshi, Maho; Takahashi, Sumio; Tsudzuki, Masaoki; Takeuchi, Sakae

    2014-05-25

    Feathers are elaborate skin appendages shared by birds and theropod dinosaurs that have hierarchical branching of the rachis, barbs, and barbules. Feather filaments consist of β-keratins encoded by multiple genes, most of which are located in tandem arrays on chromosomes 2, 25, and 27 in chicken. The expansion of the genes is thought to have contributed to feather evolution; however, it is unclear how the individual genes are involved in feather formation. The aim of the present study was to identify feather keratin genes involved in the formation of barbules. Using a combination of microarray analysis, reverse-transcription polymerase chain reaction, and in situ hybridization, we found an uncharacterized keratin gene on chromosome 7 that was expressed specifically in barbule cells in regenerating chicken feathers. We have named the gene barbule specific keratin 1 (BlSK1). The BlSK1 gene structure was similar to the gene structure of previously characterized feather keratin genes, and consisted of a non-coding leader exon, an intron, and an exon with an open reading frame (ORF). The ORF was predicted to encode a 98 aa long protein, which shared 59% identity with feather keratin B. Orthologs of BlSK1 were found in the genomes of other avian species, including turkey, duck, zebra finch, and flycatcher, in regions that shared synteny with chromosome 7 of chicken. Interestingly, BlSK1 was expressed in feather follicles that generated pennaceous barbules but not in follicles that generated plumulaceous barbules. These results suggested that the composition of feather keratins probably varies depending on the structure of the feather filaments and, that individual feather keratin genes may be involved in building different portions and/or types of feathers in chicken. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Beta-structures in fibrous proteins.

    PubMed

    Kajava, Andrey V; Squire, John M; Parry, David A D

    2006-01-01

    The beta-form of protein folding, one of the earliest protein structures to be defined, was originally observed in studies of silks. It was then seen in early studies of synthetic polypeptides and, of course, is now known to be present in a variety of guises as an essential component of globular protein structures. However, in the last decade or so it has become clear that the beta-conformation of chains is present not only in many of the amyloid structures associated with, for example, Alzheimer's Disease, but also in the prion structures associated with the spongiform encephalopathies. Furthermore, X-ray crystallography studies have revealed the high incidence of the beta-fibrous proteins among virulence factors of pathogenic bacteria and viruses. Here we describe the basic forms of the beta-fold, summarize the many different new forms of beta-structural fibrous arrangements that have been discovered, and review advances in structural studies of amyloid and prion fibrils. These and other issues are described in detail in later chapters.

  2. Differential expression of Cyclin D1 in keratin-producing odontogenic cysts

    PubMed Central

    Vera-Sirera, Beatriz; Forner-Navarro, Leopoldo

    2015-01-01

    Objetives: The aim of the present study was to analyze the expression levels of Cyclin D1 (CCD1), a nuclear protein that plays a crucial role in cell cycle progression, in a series of keratin-producing odontogenic cysts. Study Design: A total of 58 keratin-producing odontogenic cysts, diagnosed over ten years and classified according to the WHO 2005 criteria, were immunohistochemically analyzed in terms of CCD1 expression, which was quantified in the basal, suprabasal and intermediate/superficial epithelial compartments. The extent of immunostaining was measured as a proportion of total epithelial thickness. Quantified immunohistochemical data were correlated with clinicopathological features and clinical recurrence. Results: Keratin-producing odontogenic cysts were classified as 6 syndromic keratocystic odontogenic tumors (S-KCOT), 40 sporadic or non-syndromic KCOT (NS-KCOT) and 12 orthokeratinized odontogenic cysts (OOC). Immunohistochemically, CCD1 staining was evident predominantly in the parabasal region of all cystic lesions, but among-lesion differences were apparent, showing a clear expansion of parabasal compartment especially in the S-KCOT, followed to a lesser extent in the NS-KCOT, and being much more reduced in the OOC, which had the greatest average epithelial thickness. Conclusions: The differential expression of CCD1 noted in the present study suggests that dysregulation of cell cycle progression from G1 to the S phase contributes to the different aggressiveness of these lesions. However, CCD1 expression levels did not predict NS-KCOT recurrence, which is likely influenced by factors unrelated to lesion biology. Key words:Keratin-producing odontogenic cyst, keratocyst, keratocystic odontogenic tumor, nevoid basal cell carcinoma syndrome, orthokeratinized odontogenic cyst, cyclin D1, immunohistochemistry. PMID:25475773

  3. Loss of keratin K2 expression causes aberrant aggregation of K10, hyperkeratosis, and inflammation.

    PubMed

    Fischer, Heinz; Langbein, Lutz; Reichelt, Julia; Praetzel-Wunder, Silke; Buchberger, Maria; Ghannadan, Minoo; Tschachler, Erwin; Eckhart, Leopold

    2014-10-01

    Keratin K2 is one of the most abundant structural proteins of the epidermis; however, its biological significance has remained elusive. Here we show that suprabasal type II keratins, K1 and K2, are expressed in a mutually exclusive manner at different body sites of the mouse, with K2 being confined to the ear, sole, and tail skin. Deletion of K2 caused acanthosis and hyperkeratosis of the ear and the tail epidermis, corneocyte fragility, increased transepidermal water loss, and local inflammation in the ear skin. The loss of K2 was partially compensated by upregulation of K1 expression. However, a significant portion of K2-deficient suprabasal keratinocytes lacked a regular cytoskeleton and developed massive aggregates of the type I keratin, K10. Aggregate formation, but not hyperkeratosis, was suppressed by the deletion of both K2 and K10, whereas deletion of K10 alone caused clumping of K2 in ear skin. Taken together, this study demonstrates that K2 is a necessary and sufficient binding partner of K10 at distinct body sites of the mouse and that unbalanced expression of these keratins results in aggregate formation.

  4. Free Gingival Graft to Increase Keratinized Mucosa after Placing of Mandibular Fixed Implant-Supported Prosthesis

    PubMed Central

    Marcantonio, Elcio

    2017-01-01

    Insufficiently keratinized tissue can be increased surgically by free gingival grafting. The presence or reconstruction of keratinized mucosa around the implant can facilitate restorative procedure and allow the maintenance of an oral hygiene routine without irritation or discomfort to the patient. The aim of this clinical case report is to describe an oral rehabilitation procedure of an edentulous patient with absence of keratinized mucosa in the interforaminal area, using a free gingival graft associated with a mandibular fixed implant-supported prosthesis. The treatment included the manufacturing of a maxillary complete denture and a mandibular fixed implant-supported prosthesis followed by a free gingival graft to increase the width of the mandibular keratinized mucosa. Free gingival graft was obtained from the palate and grafted on the buccal side of interforaminal area. The follow-up of 02 and 12 months after mucogingival surgery showed that the free gingival graft promoted peri-implant health, hygiene, and patient comfort. Clinical Significance. The free gingival graft is an effective treatment in increasing the width of mandibular keratinized mucosa on the buccal side of the interforaminal area and provided an improvement in maintaining the health of peri-implant tissues which allows for better oral hygiene. PMID:28293441

  5. Novel immobilization of a quaternary ammonium moiety on keratin fibers for medical applications.

    PubMed

    Yu, Dan; Cai, Jackie Y; Liu, Xin; Church, Jeffrey S; Wang, Lijing

    2014-09-01

    This paper introduces a new approach for immobilizing a quaternary ammonium moiety on a keratinous substrate for enhanced medical applications. The method involves the generation of thiols by controlled reduction of cystine disulfide bonds in the keratin, followed by reaction with [2-(acryloyloxy)ethyl]trimethylammonium chloride through thiol-ene click chemistry. The modified substrate was characterized with Raman and infrared spectroscopy, and assessed for its antibacterial efficacy and other performance changes. The results have demonstrated that the quaternary ammonium moiety has been effectively attached onto the keratin structure, and the resultant keratin substrate exhibits a multifunctional effect including antibacterial and antistatic properties, improved liquid moisture management property, improved dyeability and a non-leaching characteristic of the treated substrate. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  6. Various Techniques to Increase Keratinized Tissue for Implant Supported Overdentures: Retrospective Case Series

    PubMed Central

    Cayarga, Rodrigo; Suzuki, Takanori; Kaufman, Zev

    2015-01-01

    Purpose. The purpose of this retrospective case series is to describe and compare different surgical techniques that can be utilized to augment the keratinized soft tissue around implant-supported overdentures. Materials and Methods. The data set was extracted as deidentified information from the routine treatment of patients at the Ashman Department of Periodontology and Implant Dentistry at New York University College of Dentistry. Eight edentulous patients were selected to be included in this study. Patients were treated for lack of keratinized tissue prior to implant placement, during the second stage surgery, and after delivery of the final prosthesis. Results. All 8 patients in this study were wearing a complete maxillary and/or mandibular denture for at least a year before the time of the surgery. One of the following surgical techniques was utilized to increase the amount of keratinized tissue: apically positioned flap (APF), pedicle graft (PG), connective tissue graft (CTG), or free gingival graft (FGG). Conclusions. The amount of keratinized tissue should be taken into consideration when planning for implant-supported overdentures. The apical repositioning flap is an effective approach to increase the width of keratinized tissue prior to the implant placement. PMID:26124833

  7. Preparation and study on the structure of keratin/PVA membrane containing wool fibers

    NASA Astrophysics Data System (ADS)

    Wu, Min; Shen, Shuming; Yang, Xuhong; Tang, Rencheng

    2017-10-01

    The urea / sodium sulfide / sodium dodecyl sulfate (SDS) method was used to dissolve the wool in this study. Then the Wool fiber/keratin/PVA composites with different proportions were prepared, and the surface morphology, molecular structure, mechanical property of the composite films and the influence of the proportions on their structure and properties were studied. The results showed that, there are α-helix structure, β-sheet and random coil conformations in the pure keratin film, as well as in the wool fiber. Compared with wool fiber, the crystallinity of keratin decreased. PVA can obviously improve the mechanical property of the blended film. When the blended ratio of keratin/PVA is 20/80, the mechanical property of the blended film is greatly improved. The composite films with 8%-16% of wool fibers have better flexibility than those without wool fibers.

  8. Calcium phosphate coated Keratin-PCL scaffolds for potential bone tissue regeneration.

    PubMed

    Zhao, Xinxin; Lui, Yuan Siang; Choo, Caleb Kai Chuen; Sow, Wan Ting; Huang, Charlotte Liwen; Ng, Kee Woei; Tan, Lay Poh; Loo, Joachim Say Chye

    2015-04-01

    The incorporation of hydroxyapatite (HA) nanoparticles within or on the surface of electrospun polymeric scaffolds is a popular approach for bone tissue engineering. However, the fabrication of osteoconductive composite scaffolds via benign processing conditions still remains a major challenge to date. In this work, a new method was developed to achieve a uniform coating of calcium phosphate (CaP) onto electrospun keratin-polycaprolactone composites (Keratin-PCL). Keratin within PCL was crosslinked to decrease its solubility, before coating of CaP. A homogeneous coating was achieved within a short time frame (~10min) by immersing the scaffolds into Ca(2+) and (PO4)(3-) solutions separately. Results showed that the incorporation of keratin into PCL scaffolds not only provided nucleation sites for Ca(2+) adsorption and subsequent homogeneous CaP surface deposition, but also facilitated cell-matrix interactions. An improvement in the mechanical strength of the resultant composite scaffold, as compared to other conventional coating methods, was also observed. This approach of developing a biocompatible bone tissue engineering scaffold would be adopted for further in vitro osteogenic differentiation studies in the future. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Presence of keratin-specific antibody-forming cells in palatine tonsils of patients with pustulosis palmaris et plantaris (PPP) and its correlation with prognosis after tonsillectomy.

    PubMed

    Tanimoto, Yoichiro; Fukuyama, Satoshi; Tanaka, Norimitsu; Ohori, Jun-Ichiro; Tanimoto, Yukari; Kurono, Yuichi

    2014-01-01

    Keratin-specific immune responses in tonsils may be associated with the pathogenesis of pustulosis palmaris et plantaris (PPP). Evaluation of keratin-specific immune responses in tonsils might be useful to predict the effectiveness of tonsillectomy for patients with PPP. The aim of the present study was to clarify the role of keratin-specific immune responses in the pathogenesis of PPP in tonsils. It has been reported that anti-keratin antibodies in serum were higher in patients with PPP and decreased after tonsillectomy, indicating that anti-keratin antibodies might be generated in tonsils. In order to demonstrate the presence of keratin-specific immune responses in tonsils, the numbers of keratin-specific antibody-forming cells (AFCs) in tonsillar and peripheral blood lymphocytes were examined by enzyme-linked immunospot assay. The prognosis of PPP was compared after tonsillectomy. The numbers of keratin-specific IgM and IgG AFCs in tonsils and of IgG AFCs in peripheral blood were significantly increased in patients with PPP. The numbers of keratin-specific IgG AFCs in peripheral blood correlated positively with tonsil and serum IgG antibodies specific to keratin. Our data show that a good prognosis in patients with PPP depended on the numbers of keratin-specific IgG and IgM AFCs in peripheral blood and the levels of keratin-specific IgG antibodies in serum being significantly decreased 6 months after tonsillectomy.

  10. The expression of keratins, vimentin, neurofilament proteins, smooth muscle actin, neuron-specific enolase, and synaptophysin in tumors of the specific glands in the canine anal region.

    PubMed

    Vos, J H; van den Ingh, T S; Ramaekers, F C; Molenbeek, R F; de Neijs, M; van Mil, F N; Ivanyi, D

    1993-07-01

    Eight canine tumors originating from specific glandular structures in the anal region, as well as metastatic tumor tissue of two of these cases (case Nos. 7, 8), were immunohistochemically analyzed using various monoclonal antibodies (MoAbs) directed against human keratin types, vimentin, neurofilament proteins, and alpha-smooth muscle actin. These tumors also were stained for the broad-spectrum neuroendocrine markers neuron-specific enolase (NSE) and synaptophysin. In histologically normal canine anal structures, alpha-smooth muscle actin and NSE antibodies stained basally localized (probably myoepithelial) cells in the anal glands and the anal sac glands. NSE staining also was present in a limited number of luminal cells in both anal glands and anal sac glands. Synaptophysin labeling was not observed in any of these glandular structures. Histologically, the tumors were differentiated into well- and moderately differentiated perianal gland tumors (n = 5) and carcinomas without perianal gland differentiation (n = 3), corresponding to the so-called apocrine carcinomas of the anal region. Immunohistochemically, the perianal gland tumors could be differentiated from the carcinomas by marked differences in staining pattern with the various keratin MoAbs, particularly MoAbs directed against human keratin types 7 and 18. The keratin-staining characteristics of the carcinomas suggest a glandular luminal cell origin. Metastases of the carcinomas showed loss of some keratin-staining characteristics as compared with the primary tumor. Staining for NSE was only observed in solitary cells and small cell clusters in the carcinomas and their metastases, whereas the alpha-smooth muscle actin antibody did not react with the carcinoma cells. None of the tumors stained for neurofilament proteins or synaptophysin. An unequivocal neuroendocrine nature of the carcinomas could not be substantiated by our immunohistochemical study, although the presence of a population of neuroendocrine

  11. Differentiation of the epidermis in turtle: an immunocytochemical, autoradiographic and electrophoretic analysis.

    PubMed

    Alibardi, Lorenzo; Spisni, Enzo; Toni, Mattia

    2004-01-01

    Proteins involved in the process of cornification of turtle epidermis are not well known. The present immunocytochemical, electrophoretic and autoradiographic study reports on the localization patterns and molecular weights of keratins, which are cornification proteins, and of tritiated histidine in turtle epidermis. Alpha-keratins with a molecular weight of 40-62 kDa are present in the epidermis. Beta-keratin is mainly detectable in the stratum corneum of the carapace and plastron, but is rarely present or even absent in the corneous layer of limb, tail and neck epidermis. After electrophoresis and immunoblotting with an antibody against chicken scale beta-keratin, bands at 15-17, 22-24, and 36-38 kDa appeared. This antibody recognized weaker bands at 38-40 and 58-60 kDa in the soft epidermis. After reduction and carboxymethylation of proteins extracted from carapace and plastron, but not of proteins from the soft epidermis, protein bands at 15-17 and 35-37 kDa were found when using the anti-beta 1-keratin antibody. Loricrin-, filaggrin-, sciellin-, and transglutaminase-like immunostaining was detectable only in the transitional and lowermost corneous layers of the soft epidermis. Vesicular bodies in the transitional layer were immunolabeled by the anti-loricrin antibody, and weakly by the anti-filaggrin and anti-transglutaminase antibodies. In immunoblots, the anti-loricrin antibody reacted with a major band at 50-54 kDa in both carapace-plastron and soft epidermis. The anti-sciellin antibody detected major bands at 38-40 and 50 kDa in hard epidermis, and at 50 and 54-56 kDa in soft epidermis. Filaggrin-like immunostained bands were observed at 50-55 and 62-64 kDa. This immunostaining was probably due to a common epitope in filaggrin and some keratins. Histidine was evenly incorporated in the epidermis, and the ultrastructural study showed random labeling, often associated with keratin bundles of alpha and beta-keratinocytes. Histidine-labeled protein bands were

  12. Sorafenib enhances proteasome inhibitor-mediated cytotoxicity via inhibition of unfolded protein response and keratin phosphorylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honma, Yuichi; Harada, Masaru, E-mail: msrharada@med.uoeh-u.ac.jp

    2013-08-15

    Hepatocellular carcinoma (HCC) is highly resistant to conventional systemic therapies and prognosis for advanced HCC patients remains poor. Recent studies of the molecular mechanisms responsible for tumor initiation and progression have identified several potential molecular targets in HCC. Sorafenib is a multi-kinase inhibitor shown to have survival benefits in advanced HCC. It acts by inhibiting the serine/threonine kinases and the receptor type tyrosine kinases. In preclinical experiments sorafenib had anti-proliferative activity in hepatoma cells and it reduced tumor angiogenesis and increased apoptosis. Here, we demonstrate for the first time that the cytotoxic mechanisms of sorafenib include its inhibitory effects onmore » protein ubiquitination, unfolded protein response (UPR) and keratin phosphorylation in response to endoplasmic reticulum (ER) stress. Moreover, we show that combined treatment with sorafenib and proteasome inhibitors (PIs) synergistically induced a marked increase in cell death in hepatoma- and hepatocyte-derived cells. These observations may open the way to potentially interesting treatment combinations that may augment the effect of sorafenib, possibly including drugs that promote ER stress. Because sorafenib blocked the cellular defense mechanisms against hepatotoxic injury not only in hepatoma cells but also in hepatocyte-derived cells, we must be careful to avoid severe liver injury. -- Graphical abstract: Display Omitted -- Highlights: •We examined the cytotoxic mechanisms of sorafenib in hepatoma cells. •Sorafenib induces cell death via apoptotic and necrotic fashion. •Sorafenib inhibits protein ubiquitination and unfolded protein response. •Autophagy induced by sorafenib may affect its cytotoxicity. •Sorafenib inhibits keratin phosphorylation and cytoplasmic inclusion formation.« less

  13. UV irradiation-induced methionine oxidation in human skin keratins: Mass spectrometry-based non-invasive proteomic analysis.

    PubMed

    Lee, Seon Hwa; Matsushima, Keita; Miyamoto, Kohei; Oe, Tomoyuki

    2016-02-05

    Ultraviolet (UV) radiation is the major environmental factor that causes oxidative skin damage. Keratins are the main constituents of human skin and have been identified as oxidative target proteins. We have recently developed a mass spectrometry (MS)-based non-invasive proteomic methodology to screen oxidative modifications in human skin keratins. Using this methodology, UV effects on methionine (Met) oxidation in human skin keratins were investigated. The initial screening revealed that Met(259), Met(262), and Met(296) in K1 keratin were the most susceptible oxidation sites upon UVA (or UVB) irradiation of human tape-stripped skin. Subsequent liquid chromatography/electrospray ionization-MS and tandem MS analyses confirmed amino acid sequences and oxidation sites of tryptic peptides D(290)VDGAYMTK(298) (P1) and N(258)MQDMVEDYR(267) (P2). The relative oxidation levels of P1 and P2 increased in a time-dependent manner upon UVA irradiation. Butylated hydroxytoluene was the most effective antioxidant for artifactual oxidation of Met residues. The relative oxidation levels of P1 and P2 after UVA irradiation for 48 h corresponded to treatment with 100mM hydrogen peroxide for 15 min. In addition, Met(259) was oxidized by only UVA irradiation. The Met sites identified in conjunction with the current proteomic methodology can be used to evaluate skin damage under various conditions of oxidative stress. We demonstrated that the relative Met oxidation levels in keratins directly reflected UV-induced damages to human tape-stripped skin. Human skin proteins isolated by tape stripping were analyzed by MS-based non-invasive proteomic methodology. Met(259), Met(262), and Met(296) in K1 keratin were the most susceptible oxidation sites upon UV irradiation. Met(259) was oxidized by only UVA irradiation. Quantitative LC/ESI-SRM/MS analyses confirmed a time-dependent increase in the relative oxidation of target peptides (P1 and P2) containing these Met residues, upon UVA irradiation

  14. Keratin 17 null mice exhibit age- and strain-dependent alopecia

    PubMed Central

    McGowan, Kevin M.; Tong, Xuemei; Colucci-Guyon, Emma; Langa, Francina; Babinet, Charles; Coulombe, Pierre A.

    2002-01-01

    Onset of type I keratin 17 (K17) synthesis marks the adoption of an appendageal fate within embryonic ectoderm, and its expression persists in specific cell types within mature hair, glands, and nail. We report that K17 null mice develop severe alopecia during the first week postbirth, correlating with hair fragility, alterations in follicular histology, and apoptosis in matrix cells. These alterations are incompletely penetrant and normalize starting with the first postnatal cycle. Absence of a hair phenotype correlates with a genetic strain-dependent compensation by related keratins, including K16. These findings reveal a crucial role for K17 in the structural integrity of the first hair produced and the survival of hair-producing cells. Given that identical inherited mutations in this gene can cause either pachyonychia congenita or steatocystoma multiplex, the features of this mouse model suggest that this clinical heterogeneity arises from a cell type-specific, genetically determined compensation by related keratins. PMID:12050118

  15. Keratin 17 null mice exhibit age- and strain-dependent alopecia.

    PubMed

    McGowan, Kevin M; Tong, Xuemei; Colucci-Guyon, Emma; Langa, Francina; Babinet, Charles; Coulombe, Pierre A

    2002-06-01

    Onset of type I keratin 17 (K17) synthesis marks the adoption of an appendageal fate within embryonic ectoderm, and its expression persists in specific cell types within mature hair, glands, and nail. We report that K17 null mice develop severe alopecia during the first week postbirth, correlating with hair fragility, alterations in follicular histology, and apoptosis in matrix cells. These alterations are incompletely penetrant and normalize starting with the first postnatal cycle. Absence of a hair phenotype correlates with a genetic strain-dependent compensation by related keratins, including K16. These findings reveal a crucial role for K17 in the structural integrity of the first hair produced and the survival of hair-producing cells. Given that identical inherited mutations in this gene can cause either pachyonychia congenita or steatocystoma multiplex, the features of this mouse model suggest that this clinical heterogeneity arises from a cell type-specific, genetically determined compensation by related keratins.

  16. 17{beta}-Hydroxysteroid dehydrogenase type 13 is a liver-specific lipid droplet-associated protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horiguchi, Yuka; Araki, Makoto; Motojima, Kiyoto

    2008-05-30

    17{beta}-Hydroxysteroid dehydrogenase (17{beta}HSD) type 13 is identified as a new lipid droplet-associated protein. 17{beta}HSD type 13 has an N-terminal sequence similar to that of 17{beta}HSD type 11, and both sequences function as an endoplasmic reticulum and lipid droplet-targeting signal. Localization of native 17{beta}HSD type 13 on the lipid droplets was confirmed by subcellular fractionation and Western blotting. In contrast to 17{beta}HSD type 11, however, expression of 17{beta}HSD type 13 is largely restricted to the liver and is not enhanced by peroxisome proliferator-activated receptor {alpha} and its ligand. Instead the expression level of 17{beta}HSD type 13 in the receptor-null mice wasmore » increased several-fold. 17{beta}HSD type 13 may have a distinct physiological role as a lipid droplet-associated protein in the liver.« less

  17. Keratinizing odontogenic cysts with a spectrum of verrucoid morphology: investigation of a potential role of human papillomavirus.

    PubMed

    Lalla, Kalpesh; Mahomed, Farzana; Meer, Shabnum

    2016-11-01

    The role of human papillomavirus (HPV) in keratinizing odontogenic cysts (OC) has only rarely been studied. We describe the clinicopathologic findings in a series of OCs that had unusual keratinization patterns and were investigated for a possible HPV etiology. Tissue samples from 29 patients with keratinizing OCs were studied for light microscopic features suggestive of HPV infection and by an HPV DNA polymerase chain reaction assay. The mean age at presentation was 31.1 years; 79.3% of the OCs occurred in the mandible and 46.4% were associated with an impacted tooth. The phenotypic characteristics koilocytes, hypergranulosis, and a verrucous pattern of the cyst-lining epithelium were observed in 69%, 62.1%, and 17.2% of cases, respectively. These histomorphologic features did not, however, correlate with HPV infection. HPV does not appear to play a role in keratinizing OCs and is not responsible for the wart-like histomorphologic features that may be seen in these lesions. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Intratarsal keratinous eyelid cysts in Gorlin syndrome: A review and reappraisal.

    PubMed

    Wolkow, Natalie; Jakobiec, Frederick A; Yoon, Michael K

    2017-12-27

    A 38-year-old woman presented with multiple bilateral recurrent eyelid cysts. Her medical history was notable for Gorlin (nevoid basal cell carcinoma) syndrome. Histopathologic and immunohistochemical examinations revealed that the lesions were intratarsal keratinous cysts. They were similar in appearance to sporadic intratarsal keratinous cysts and closely resembled odontogenic keratocysts of the jaw. Eyelid cysts occur in up to 40% of patients with Gorlin syndrome; however, their description has been cursory and, for the most part, outside of the ophthalmic literature. Although ophthalmologists are familiar with the periocular basal cell carcinomas that occur in patients with Gorlin syndrome, up to 10% of patients never develop a basal cell carcinoma, but they may manifest other ophthalmic findings. Awareness of these other features may contribute to the earlier diagnosis of the syndrome. We discuss the clinical and histopathologic features of intratarsal keratinous cysts in Gorlin syndrome, comparing them to sporadic intratarsal keratinous cysts, other eyelid cysts, and jaw cysts that also characterize this syndrome. We briefly review the ocular and systemic manifestations of Gorlin syndrome and recent genetic and therapeutic developments so that the eyelid cysts may be appreciated within the appropriate context of Gorlin syndrome as a whole. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Cysteic Acid in Dietary Keratin is Metabolized to Glutathione and Liver Taurine in a Rat Model of Human Digestion

    PubMed Central

    Wolber, Frances M.; McGrath, Michelle; Jackson, Felicity; Wylie, Kim; Broomfield, Anne

    2016-01-01

    Poultry feathers, consisting largely of keratin, are a low-value product of the poultry industry. The safety and digestibility of a dietary protein produced from keratin (KER) was compared to a cysteine-supplemented casein-based diet in a growing rat model for four weeks. KER proved to be an effective substitute for casein at 50% of the total dietary protein, with no changes in the rats’ food intake, weight gain, organ weight, bone mineral density, white blood cell counts, liver glutathione, or blood glutathione. Inclusion of KER in the diet reduced total protein digestibility from 94% to 86% but significantly increased total dietary cysteine uptake and subsequent liver taurine levels. The KER diet also significantly increased caecum weight and significantly decreased fat digestibility, resulting in a lower proportion of body fat, and induced a significant increase in blood haemoglobin. KER is therefore a safe and suitable protein substitute for casein, and the cysteic acid in keratin is metabolised to maintain normal liver and blood glutathione levels. PMID:26907334

  20. Differential expression of cyclin D1 in keratin-producing odontogenic cysts.

    PubMed

    Vera-Sirera, Beatriz; Forner-Navarro, Leopoldo; Vera-Sempere, Francisco

    2015-01-01

    The aim of the present study was to analyze the expression levels of Cyclin D1 (CCD1), a nuclear protein that plays a crucial role in cell cycle progression, in a series of keratin-producing odontogenic cysts. A total of 58 keratin-producing odontogenic cysts, diagnosed over ten years and classified according to the WHO 2005 criteria, were immunohistochemically analyzed in terms of CCD1 expression, which was quantified in the basal, suprabasal and intermediate/superficial epithelial compartments. The extent of immunostaining was measured as a proportion of total epithelial thickness. Quantified immunohistochemical data were correlated with clinicopathological features and clinical recurrence. Keratin-producing odontogenic cysts were classified as 6 syndromic keratocystic odontogenic tumors (S-KCOT), 40 sporadic or non-syndromic KCOT (NS-KCOT) and 12 orthokeratinized odontogenic cysts (OOC). Immunohistochemically, CCD1 staining was evident predominantly in the parabasal region of all cystic lesions, but among-lesion differences were apparent, showing a clear expansion of parabasal compartment especially in the S-KCOT, followed to a lesser extent in the NS-KCOT, and being much more reduced in the OOC, which had the greatest average epithelial thickness. The differential expression of CCD1 noted in the present study suggests that dysregulation of cell cycle progression from G1 to the S phase contributes to the different aggressiveness of these lesions. However, CCD1 expression levels did not predict NS-KCOT recurrence, which is likely influenced by factors unrelated to lesion biology.

  1. Heterogeneity of keratin expression and actin distribution in benign and malignant mammary diseases.

    PubMed

    Wada, T; Yasutomi, M; Yamada, K; Hashimura, K; Kunikata, M; Tanaka, T; Huang, J W; Mori, M

    1991-01-01

    Immunoreactivity of monoclonal anti-cytokeratin KL1, PKK1, K8.12 and anti-actin antibodies in 101 cases of diseased human breast lesions showed irregular keratin distribution in luminal cells of terminal ductal-lobular unit and basal layer cells of the interlobular and main duct. Actin staining was confined to myoepithelial cells. Benign lesions showed great heterogeneity in luminal cells of the terminal ductal-lobular units. Breast carcinoma showed a reduced staining for keratins, heterogeneity of keratin expression was found in solid tubular carcinoma, and actin was usually absent: however, papillo-ductal or comedo type had actin positive myoepithelial cells around carcinoma foci.

  2. Keratin 8 and 18 Loss in Epithelial Cancer Cells Increases Collective Cell Migration and Cisplatin Sensitivity through Claudin1 Up-regulation*

    PubMed Central

    Fortier, Anne-Marie; Asselin, Eric; Cadrin, Monique

    2013-01-01

    Keratins 8 and 18 (K8/18) are simple epithelial cell-specific intermediate filament proteins. Keratins are essential for tissue integrity and are involved in intracellular signaling pathways that regulate cell response to injuries, cell growth, and death. K8/18 expression is maintained during tumorigenesis; hence, they are used as a diagnostic marker in tumor pathology. In recent years, studies have provided evidence that keratins should be considered not only as markers but also as regulators of cancer cell signaling. The loss of K8/18 expression during epithelial-mesenchymal transition (EMT) is associated with metastasis and chemoresistance. In the present study, we investigated whether K8/18 expression plays an active role in EMT. We show that K8/18 stable knockdown using shRNA increased collective migration and invasiveness of epithelial cancer cells without modulating EMT markers. K8/18-depleted cells showed PI3K/Akt/NF-κB hyperactivation and increased MMP2 and MMP9 expression. K8/18 deletion also increased cisplatin-induced apoptosis. Increased Fas receptor membrane targeting suggests that apoptosis is enhanced via the extrinsic pathway. Interestingly, we identified the tight junction protein claudin1 as a regulator of these processes. This is the first indication that modulation of K8/18 expression can influence the phenotype of epithelial cancer cells at a transcriptional level and supports the hypothesis that keratins play an active role in cancer progression. PMID:23449973

  3. Pangolin armor: Overlapping, structure, and mechanical properties of the keratinous scales.

    PubMed

    Wang, Bin; Yang, Wen; Sherman, Vincent R; Meyers, Marc A

    2016-09-01

    The pangolin has a flexible dermal armor consisting of overlapping keratinous scales. Although they show potential for bioinspired flexible armor, the design principles of pangolin armor are barely known. Here we report on the overlapping organization, hierarchical structure (from the nano to the mesolevel), and mechanical response of scales from ground (Chinese) and arboreal (African tree) pangolins. Both scales exhibit the same overlapping organization, with each scale at the center of neighboring scales arranged in a hexagonal pattern. The scales have a cuticle of several layers of loosely attached flattened keratinized cells, while the interior structure exhibits three regions distinguished by the geometry and orientations of the keratinized cells, which form densely packed lamellae; each one corresponds to one layer of cells. Unlike most other keratinous materials, the scales show a crossed-lamellar structure (∼5μm) and crossed fibers (∼50μm). A nano-scale suture structure, observed for the first time, outlines cell membranes and leads to an interlocking interface between lamellae, thus enhancing the bonding and shear resistance. The tensile response of the scales shows an elastic limit followed by a short plateau prior to failure, with Young's modulus ∼1 GPa and tensile strength 60-100MPa. The mechanical response is transversely isotropic, a result of the cross lamellar structure. The strain rate sensitivity in the range of 10(-5)-10(-1)s(-1) region is found to be equal to 0.07-0.08, typical of other keratins and polymers. The mechanical response is highly dependent on the degree of hydration, a characteristic of keratins. Although many fish and reptiles have protective scales and carapaces, mammals are characteristically fast and light. The pangolin is one of the few mammal possessing a flexible dermal armor for protection from predators, such as lions. Here we study the arrangement of the scales as well as their hierarchical structure from the nano

  4. Keratin sponge/hydrogel II, active agent delivery

    USDA-ARS?s Scientific Manuscript database

    Keratin sponge/hydrogels from oxidation and reduction hydrolysis of fine and coarse wool fibers were formed to behave as cationic hydrogels to swell and release active agents in the specific region of the gastro-intestinal (GI) tract. Their porous, interpenetrating networks (IPN) were effective for...

  5. BetaTPred: prediction of beta-TURNS in a protein using statistical algorithms.

    PubMed

    Kaur, Harpreet; Raghava, G P S

    2002-03-01

    beta-turns play an important role from a structural and functional point of view. beta-turns are the most common type of non-repetitive structures in proteins and comprise on average, 25% of the residues. In the past numerous methods have been developed to predict beta-turns in a protein. Most of these prediction methods are based on statistical approaches. In order to utilize the full potential of these methods, there is a need to develop a web server. This paper describes a web server called BetaTPred, developed for predicting beta-TURNS in a protein from its amino acid sequence. BetaTPred allows the user to predict turns in a protein using existing statistical algorithms. It also allows to predict different types of beta-TURNS e.g. type I, I', II, II', VI, VIII and non-specific. This server assists the users in predicting the consensus beta-TURNS in a protein. The server is accessible from http://imtech.res.in/raghava/betatpred/

  6. Rejoining of cut wounds by engineered gelatin-keratin glue.

    PubMed

    Thirupathi Kumara Raja, S; Thiruselvi, T; Sailakshmi, G; Ganesh, S; Gnanamani, A

    2013-08-01

    Rejoining of cut tissue ends of a critical site challenges clinicians. The toxicity, antigenicity, low adhesive strength, flexibility, swelling and cost of the currently employed glue demands an alternative. Engineered gelatin-keratin glue (EGK-glue) described in the present study was found to be suitable for wet tissue approximation. EGK-glue was prepared by engineering gelatin with caffeic acid using EDC and conjugating with keratin by periodate oxidation. UV-visible, (1)H NMR and circular dichroism analyses followed by experiments on gelation time, rheology, gel adhesive strength (in vitro), wet tissue approximation (in vivo), H&E staining of tissue sections at scheduled time intervals and tensile strength of the healed skin were carried out to assess the effectiveness of the EGK-glue in comparison with fibrin glue and cyanoacrylate. Results of UV-visible, NMR and CD analyses confirmed the functionalization and secondary structural changes. Increasing concentration of keratin reduces the gelation time (<15s). Lap-shear test demonstrates the maximum adhesive strength of 16.6±1.2kPa. Results of hemocompatibility and cytocompatibility studies suggested the suitability of the glue for clinical applications. Tissue approximation property assessed using the incision wound model (Wistar strain) in comparison with cyanoacrylate and fibrin glue suggested, that EGK-glue explicitly accelerates the rejoining of tissue with a 1.86 fold increase in skin tensile strength after healing. Imparting quinone moiety to gelatin-keratin conjugates through caffeic acid and a weaker oxidizing agent provides an adhesive glue with appreciable strength, and hemocompatible, cytocompatible and biodegradable properties, which, rejoin the cut tissue ends effectively. EGK-glue obtained in the present study finds wide biomedical/clinical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Novel keratin modified bacterial cellulose nanocomposite production and characterization for skin tissue engineering.

    PubMed

    Keskin, Zalike; Sendemir Urkmez, Aylin; Hames, E Esin

    2017-06-01

    As it is known that bacterial cellulose (BC) is a biocompatible and natural biopolymer due to which it has a large set of biomedical applications. But still it lacks some desired properties, which limits its uses in many other applications. Therefore, the properties of BC need to be boosted up to an acceptable level. Here in this study for the first time, a new natural nanocomposite was produced by the incorporating keratin (isolated from human hair) to the BC (produced by Acetobacter xylinum) to enhance dermal fibroblast cells' attachment. Two different approaches were used in BC based nanocomposite production: in situ and post modifications. BC/keratin nanocomposites were characterized using SEM, FTIR, EDX, XRD, DSC and XPS analyses. Both production methods have yielded successful results for production of BC based nanocomposite-containing keratin. In vitro cell culture experiments performed with human skin keratinocytes and human skin fibroblast cells indicate the potential of the novel BC/keratin nanocomposites for use in skin tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Immunoelectron microscopic localisation of keratin and luminal epithelial antigens in normal and neoplastic urothelium.

    PubMed

    Wilson, P D; Nathrath, W B; Trejdosiewicz, L K

    1982-01-01

    Immunoelectron microscope cytochemistry was carried out on 2% paraformaldehyde fixed, 50 mu sections of normal urothelium and bladder carcinoma cells in culture using antisera raised in rabbits to human 40-63 000 MW epidermal "broad spectrum" keratin and calf urothelial "luminal epithelial antigen" (aLEA) Both the unconjugated and indirect immunoperoxidase-DAB techniques were used before routine embedding. The localisation of both keratin and luminal epithelial antigen (LEA) was similar in normal and neoplastic cells and reaction product was associated not only with tonofilaments but also lining membrane vesicles and on fine filaments in the cytoplasmic ground substance.

  9. Novel bilayer wound dressing based on electrospun gelatin/keratin nanofibrous mats for skin wound repair.

    PubMed

    Yao, Chun-Hsu; Lee, Chia-Yu; Huang, Chiung-Hua; Chen, Yueh-Sheng; Chen, Kuo-Yu

    2017-10-01

    A bilayer membrane (GKU) with a commercial polyurethane wound dressing as an outer layer and electrospun gelatin/keratin nanofibrous mat as an inner layer was fabricated as a novel wound dressing. Scanning electron micrographs showed that gelatin/keratin nanofibers had a uniform morphology and bead-free structure with average fiber diameter of 160.4nm. 3-(4,5-Dimethylthiazolyl)-2,5-diphenyltetrazolium bromide assay using L929 fibroblast cells indicated that the residues released from the gelatin/keratin composite nanofibrous mat accelerated cell proliferation. Cell attachment experiments revealed that adhered cells spread better and migrated deeper into the gelatin/keratin nanofibrous mat than that into the gelatin nanofibrous mat. In animal studies, compared with the bilayer membrane without keratin, gauze and commercial wound dressing, Comfeel®, GKU membrane gave much more number of blood vessels and a greater reduction in wound area at 4days, and better wound repair at 14days with a thicker epidermis and larger number of newly formed hair follicles. GKU membrane, thus, could be a good candidate for wound dressing applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The Utility of Naphthyl-Keratin Adducts as Biomarkers for Jet-Fuel Exposure

    EPA Science Inventory

    We investigated the association between biomarkers of dermal exposure, naphthyl-keratin adducts (NKA), and urine naphthalene biomarker levels in 105 workers routinely exposed to jet-fuel. A moderate correlation was observed between NKA and urine naphthalene levels (p = 0.061). Th...

  11. Deregulated HOX genes in ameloblastomas are located in physical contiguity to keratin genes.

    PubMed

    Schiavo, Giulia; D'Antò, Vincenzo; Cantile, Monica; Procino, Alfredo; Di Giovanni, Stefano; Valletta, Rossella; Terracciano, Luigi; Baumhoer, Daniel; Jundt, Gernot; Cillo, Clemente

    2011-11-01

    The expression of the HOX gene network in mid-stage human tooth development mostly concerns the epithelial tooth germ compartment and involves the C and D HOX loci. To further dissect the HOX gene implication with tooth epithelium differentiation we compared the expression of the whole HOX network in human ameloblastomas, as paradigm of epithelial odontogenic tumors, with tooth germs. We identified two ameloblastoma molecular types with respectively low and high number of active HOX C genes. The highly expressing HOX C gene ameloblastomas were characterized by a strong keratinized phenotype. Locus C HOX genes are located on chromosome 12q13-15 in physical contiguity with one of the two keratin gene clusters included in the human genome. The most posterior HOX C gene, HOX C13, is capable to interact with hair keratin genes located on the other keratin gene cluster in physical contiguity with the HOX B locus on chromosome 17q21-22. Inside the HOX C locus, a 2.2 kb ncRNA (HOTAIR) able to repress transcription, in cis, along the entire HOX C locus and, in trans, at the posterior region of the HOX D locus has recently been identified. Interestingly both loci are deregulated in ameloblastomas. Our finding support an important role of the HOX network in characterizing the epithelial tooth compartment. Furthermore, the physical contiguity between locus C HOX and keratin genes in normal tooth epithelium and their deregulation in the neoplastic counterparts suggest they may act on the same mechanism potentially involved with epithelial tumorigenesis. Copyright © 2011 Wiley Periodicals, Inc.

  12. Evaluation of the efficacy of keratinized mucosa augmentation techniques around dental implants: a systematic review.

    PubMed

    Wu, Qingqing; Qu, Yili; Gong, Ping; Wang, Tianlu; Gong, Ting; Man, Yi

    2015-05-01

    The absence of periimplant keratinized mucosa is considered risky in patients with a predisposition to periodontitis or recession. Although various soft tissue augmentation techniques exist, dentists are seeking for more efficient approaches to augment periimplant keratinized mucosa. The purpose of this systematic review was to evaluate the efficacy of the various techniques and biomaterials adopted in periimplant keratinized mucosa augmentation and whether one technique or biomaterial is superior. A search in Medline-PubMed and the Cochrane Central Register of controlled trials was conducted. Randomized clinical trials, prospective cohort studies, clinical control studies, and case series from January 1, 1980, to December 31, 2013, with a follow-up of at least 6 months reporting changes on keratinized mucosa width were included. Several journals were hand-searched for related articles. The bibliographies of all publications selected for inclusion were also scanned. The screening of titles and abstracts resulted in 60 relevant publications. Six of them were finally included. Free gingival graft, connective tissue graft, acellular dermal matrix, and collagen matrix were used for keratinized mucosa augmentation. Because of heterogeneity of the studies, only descriptive analysis was performed. Improvements in keratinized mucosa width were reported in all studies. A definitive conclusion could not be achieved owing to the lack of well-designed studies and appropriate methods of studying soft tissue. The establishment of universal surgical guidelines and measurement systems is imperative in the future. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. Modifying surface resistivity and liquid moisture management property of keratin fibers through thiol-ene click reactions.

    PubMed

    Yu, Dan; Cai, Jackie Y; Church, Jeffrey S; Wang, Lijing

    2014-01-22

    This paper reports on a new method for improving the antistatic and liquid moisture management properties of keratinous materials. The method involves the generation of thiols by controlled reduction of cystine disulfide bonds in keratin with tris(2-carboxyethyl) phosphine hydrochloride and subsequent grafting of hydrophilic groups onto the reduced keratin by reaction with an acrylate sulfonate or acrylamide sulfonate through thiol-ene click chemistry. The modified substrates were characterized with Raman spectroscopy and scanning electron microscopy and evaluated for their performance changes in liquid moisture management, surface resistivity, and wet burst strength. The results have revealed that the thiol-acrylate reaction is more efficient than the thiol-acrylamide reaction, and the keratinous substrate modified with an acrylate sulfonate salt exhibits significantly improved antistatic and liquid moisture management properties.

  14. Interplay between Solo and keratin filaments is crucial for mechanical force–induced stress fiber reinforcement

    PubMed Central

    Fujiwara, Sachiko; Ohashi, Kazumasa; Mashiko, Toshiya; Kondo, Hiroshi; Mizuno, Kensaku

    2016-01-01

    Mechanical force–induced cytoskeletal reorganization is essential for cell and tissue remodeling and homeostasis; however, the underlying cellular mechanisms remain elusive. Solo (ARHGEF40) is a RhoA-targeting guanine nucleotide exchange factor (GEF) involved in cyclical stretch–induced human endothelial cell reorientation and convergent extension cell movement in zebrafish gastrula. In this study, we show that Solo binds to keratin-8/keratin-18 (K8/K18) intermediate filaments through multiple sites. Solo overexpression promotes the formation of thick actin stress fibers and keratin bundles, whereas knockdown of Solo, expression of a GEF-inactive mutant of Solo, or inhibition of ROCK suppresses stress fiber formation and leads to disorganized keratin networks, indicating that the Solo-RhoA-ROCK pathway serves to precisely organize keratin networks, as well as to promote stress fibers. Of importance, knockdown of Solo or K18 or overexpression of GEF-inactive or deletion mutants of Solo suppresses tensile force–induced stress fiber reinforcement. Furthermore, knockdown of Solo or K18 suppresses tensile force-induced RhoA activation. These results strongly suggest that the interplay between Solo and K8/K18 filaments plays a crucial role in tensile force–induced RhoA activation and consequent actin cytoskeletal reinforcement. PMID:26823019

  15. Keratin 17 modulates hair follicle cycling in a TNFα-dependent fashion

    PubMed Central

    Tong, Xuemei; Coulombe, Pierre A.

    2006-01-01

    Mammalian hair follicles cycle between stages of rapid growth (anagen) and metabolic quiescence (telogen) throughout life. Transition from anagen to telogen involves an intermediate stage, catagen, consisting of a swift, apoptosis-driven involution of the lower half of the follicle. How catagen is coordinated, and spares the progenitor cells needed for anagen re-entry, is poorly understood. Keratin 17 (K17)-null mice develop alopecia in the first week post-birth, correlating with hair shaft fragility and untimely apoptosis in the hair bulb. Here we show that this abnormal apoptosis reflects premature entry into catagen. Of the proapoptotic challenges tested, K17-null skin keratinocytes in primary culture are selectively more sensitive to TNFα. K17 interacts with TNF receptor 1 (TNFR1)-associated death domain protein (TRADD), a death adaptor essential for TNFR1-dependent signal relay, suggesting a functional link between this keratin and TNFα signaling. The activity of NF-κB, a downstream target of TNFα, is increased in K17-null skin. We also find that TNFα is required for a timely anagen–catagen transition in mouse pelage follicles, and that its ablation partially rescues the hair cycling defect of K17-null mice. These findings identify K17 and TNFα as two novel and interdependent regulators of hair cycling. PMID:16702408

  16. Effect of clay content on morphology and processability of electrospun keratin/poly(lactic acid) nanofiber.

    PubMed

    Isarankura Na Ayutthaya, Siriorn; Tanpichai, Supachok; Sangkhun, Weradesh; Wootthikanokkhan, Jatuphorn

    2016-04-01

    This research work has concerned the development of volatile organic compounds (VOCs) removal filters from biomaterials, based on keratin extracted from chicken feather waste and poly(lactic acid) (PLA) (50/50%w/w) blend. Clay (Na-montmorillonite) was also added to the blend solution prior to carrying out an electro-spinning process. The aim of this study was to investigate the effect of clay content on viscosity, conductivity, and morphology of the electrospun fibers. Scanning electron micrographs showed that smooth and bead-free fibers were obtained when clay content used was below 2 pph. XRD patterns of the electrospun fibers indicated that the clay was intercalated and exfoliated within the polymers matrix. Percentage crystallinity of keratin in the blend increased after adding the clay, as evidenced from FTIR spectra and DSC thermograms. Transmission electron micrographs revealed a kind of core-shell structure with clay being predominately resided within the keratin rich shell and at the interfacial region. Filtration performance of the electrospun keratin/PLA fibers, described in terms of pressure drop and its capability of removing methylene blue, were also explored. Overall, our results demonstrated that it was possible to improve process-ability, morphology and filtration efficiency of the electrospun keratin fibers by adding a suitable amount of clay. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Moisture, anisotropy, stress state, and strain rate effects on bighorn sheep horn keratin mechanical properties

    DOE PAGES

    Johnson, K. L.; Trim, M. W.; Francis, D. K.; ...

    2016-10-01

    Our paper investigates the effects of moisture, anisotropy, stress state, and strain rate on the mechanical properties of the bighorn sheep (Ovis Canadensis) horn keratin. The horns consist of fibrous keratin tubules extending along the length of the horn and are contained within an amorphous keratin matrix. We tested samples in the rehydrated (35 wt.% water) and ambient dry (10 wt.% water) conditions along the longitudinal and radial directions under tension and compression. Increased moisture content was found to increase ductility and decrease strength, as well as alter the stress state dependent nature of the material. Furthermore, the horn keratinmore » demonstrates a significant strain rate dependence in both tension and compression, and also showed increased energy absorption in the hydrated condition at high strain rates when compared to quasi-static data, with increases of 114% in tension and 192% in compression. Compressive failure occurred by lamellar buckling in the longitudinal orientation followed by shear delamination. Tensile failure in the longitudinal orientation occurred by lamellar delamination combined with tubule pullout and fracture. Finally, the structure-property relationships quantified here for bighorn sheep horn keratin can be used to help validate finite element simulations of ram’s impacting each other as well as being useful for other analysis regarding horn keratin on other animals.« less

  18. Moisture, anisotropy, stress state, and strain rate effects on bighorn sheep horn keratin mechanical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, K. L.; Trim, M. W.; Francis, D. K.

    Our paper investigates the effects of moisture, anisotropy, stress state, and strain rate on the mechanical properties of the bighorn sheep (Ovis Canadensis) horn keratin. The horns consist of fibrous keratin tubules extending along the length of the horn and are contained within an amorphous keratin matrix. We tested samples in the rehydrated (35 wt.% water) and ambient dry (10 wt.% water) conditions along the longitudinal and radial directions under tension and compression. Increased moisture content was found to increase ductility and decrease strength, as well as alter the stress state dependent nature of the material. Furthermore, the horn keratinmore » demonstrates a significant strain rate dependence in both tension and compression, and also showed increased energy absorption in the hydrated condition at high strain rates when compared to quasi-static data, with increases of 114% in tension and 192% in compression. Compressive failure occurred by lamellar buckling in the longitudinal orientation followed by shear delamination. Tensile failure in the longitudinal orientation occurred by lamellar delamination combined with tubule pullout and fracture. Finally, the structure-property relationships quantified here for bighorn sheep horn keratin can be used to help validate finite element simulations of ram’s impacting each other as well as being useful for other analysis regarding horn keratin on other animals.« less

  19. Keratin sponge/hydrogel part 1. fabrication and characterization

    USDA-ARS?s Scientific Manuscript database

    Keratin sponge/hydrogel products formed by either the oxidation or reduction of U.S. domestic fine- or coarse-grade wool exhibited distinctively different topologies and molecular weights of 6- 8 kDa and 40-60 kDa, each with unique macro-porous structure and microstructural behaviors. The sponge/ ...

  20. Keratin 1 maintains skin integrity and participates in an inflammatory network in skin through interleukin-18.

    PubMed

    Roth, Wera; Kumar, Vinod; Beer, Hans-Dietmar; Richter, Miriam; Wohlenberg, Claudia; Reuter, Ursula; Thiering, Sören; Staratschek-Jox, Andrea; Hofmann, Andrea; Kreusch, Fatima; Schultze, Joachim L; Vogl, Thomas; Roth, Johannes; Reichelt, Julia; Hausser, Ingrid; Magin, Thomas M

    2012-11-15

    Keratin 1 (KRT1) and its heterodimer partner keratin 10 (KRT10) are major constituents of the intermediate filament cytoskeleton in suprabasal epidermis. KRT1 mutations cause epidermolytic ichthyosis in humans, characterized by loss of barrier integrity and recurrent erythema. In search of the largely unknown pathomechanisms and the role of keratins in barrier formation and inflammation control, we show here that Krt1 is crucial for maintenance of skin integrity and participates in an inflammatory network in murine keratinocytes. Absence of Krt1 caused a prenatal increase in interleukin-18 (IL-18) and the S100A8 and S100A9 proteins, accompanied by a barrier defect and perinatal lethality. Depletion of IL-18 partially rescued Krt1(-/-) mice. IL-18 release was keratinocyte-autonomous, KRT1 and caspase-1 dependent, supporting an upstream role of KRT1 in the pathology. Finally, transcriptome profiling revealed a Krt1-mediated gene expression signature similar to atopic eczema and psoriasis, but different from Krt5 deficiency and epidermolysis bullosa simplex. Our data suggest a functional link between KRT1 and human inflammatory skin diseases.

  1. Development of chitosan/gelatin/keratin composite containing hydrocortisone sodium succinate as a buccal mucoadhesive patch to treat desquamative gingivitis.

    PubMed

    Davoudi, Zahra; Rabiee, Mohammad; Houshmand, Behzad; Eslahi, Niloofar; Khoshroo, Kimia; Rasoulianboroujeni, Morteza; Tahriri, Mohammadreza; Tayebi, Lobat

    2018-01-01

    The aim of this research was to develop chitosan/gelatin/keratin composite containing hydrocortisone sodium succinate as a buccal mucoadhesive patch to treat desquamative gingivitis, which was fabricated through an environmental friendly process. Mucoadhesive films increase the advantage of higher efficiency and drug localization in the affected region. In this research, mucoadhesive films, for the release of hydrocortisone sodium succinate, were prepared using different ratios of chitosan, gelatin and keratin. In the first step, chitosan and gelatin proportions were optimized after evaluating the mechanical properties, swelling capacity, water uptake, stability, and biodegradation of the films. Then, keratin was added at different percentages to the optimum composite of chitosan and gelatin together with the drug. The results of surface pH showed that none of the samples were harmful to the buccal cavity. FTIR analysis confirmed the influence of keratin on the structure of the composite. The presence of a higher amount of keratin in the composite films resulted in high mechanical, mucoadhesive properties and stability, low water uptake and biodegradation in phosphate buffer saline (pH = 7.4) containing 10 4  U/ml lysozyme. The release profile of the films ascertained that keratin is a rate controller in the release of the hydrocortisone sodium succinate. Finally, chitosan/gelatin/keratin composite containing hydrocortisone sodium succinate can be employed in dental applications.

  2. Keratin impact on PKCδ- and ASMase-mediated regulation of hepatocyte lipid raft size - implication for FasR-associated apoptosis.

    PubMed

    Gilbert, Stéphane; Loranger, Anne; Omary, M Bishr; Marceau, Normand

    2016-09-01

    Keratins are epithelial cell intermediate filament (IF) proteins that are expressed as pairs in a cell-differentiation-regulated manner. Hepatocytes express the keratin 8 and 18 pair (denoted K8/K18) of IFs, and a loss of K8 or K18, as in K8-null mice, leads to degradation of the keratin partner. We have previously reported that a K8/K18 loss in hepatocytes leads to altered cell surface lipid raft distribution and more efficient Fas receptor (FasR, also known as TNFRSF6)-mediated apoptosis. We demonstrate here that the absence of K8 or transgenic expression of the K8 G62C mutant in mouse hepatocytes reduces lipid raft size. Mechanistically, we find that the lipid raft size is dependent on acid sphingomyelinase (ASMase, also known as SMPD1) enzyme activity, which is reduced in absence of K8/K18. Notably, the reduction of ASMase activity appears to be caused by a less efficient redistribution of surface membrane PKCδ toward lysosomes. Moreover, we delineate the lipid raft volume range that is required for an optimal FasR-mediated apoptosis. Hence, K8/K18-dependent PKCδ- and ASMase-mediated modulation of lipid raft size can explain the more prominent FasR-mediated signaling resulting from K8/K18 loss. The fine-tuning of ASMase-mediated regulation of lipid rafts might provide a therapeutic target for death-receptor-related liver diseases. © 2016. Published by The Company of Biologists Ltd.

  3. Keratin impact on PKCδ- and ASMase-mediated regulation of hepatocyte lipid raft size – implication for FasR-associated apoptosis

    PubMed Central

    Gilbert, Stéphane; Loranger, Anne; Omary, M. Bishr

    2016-01-01

    ABSTRACT Keratins are epithelial cell intermediate filament (IF) proteins that are expressed as pairs in a cell-differentiation-regulated manner. Hepatocytes express the keratin 8 and 18 pair (denoted K8/K18) of IFs, and a loss of K8 or K18, as in K8-null mice, leads to degradation of the keratin partner. We have previously reported that a K8/K18 loss in hepatocytes leads to altered cell surface lipid raft distribution and more efficient Fas receptor (FasR, also known as TNFRSF6)-mediated apoptosis. We demonstrate here that the absence of K8 or transgenic expression of the K8 G62C mutant in mouse hepatocytes reduces lipid raft size. Mechanistically, we find that the lipid raft size is dependent on acid sphingomyelinase (ASMase, also known as SMPD1) enzyme activity, which is reduced in absence of K8/K18. Notably, the reduction of ASMase activity appears to be caused by a less efficient redistribution of surface membrane PKCδ toward lysosomes. Moreover, we delineate the lipid raft volume range that is required for an optimal FasR-mediated apoptosis. Hence, K8/K18-dependent PKCδ- and ASMase-mediated modulation of lipid raft size can explain the more prominent FasR-mediated signaling resulting from K8/K18 loss. The fine-tuning of ASMase-mediated regulation of lipid rafts might provide a therapeutic target for death-receptor-related liver diseases. PMID:27422101

  4. Progress towards genetic and pharmacological therapies for keratin genodermatoses: current perspective and future promise

    PubMed Central

    Chamcheu, Jean Christopher; Wood, Gary S.; Siddiqui, Imtiaz A.; Syed, Deeba N.; Adhami, Vaqar M.; Teng, Joyce M.; Mukhtar, Hasan

    2012-01-01

    Hereditary keratin disorders of the skin and its appendages comprise a large group of clinically heterogeneous disfiguring blistering and ichthyotic diseases, primarily characterized by the loss of tissue integrity, blistering and hyperkeratosis in severely affected tissues. Pathogenic mutations in keratins cause these afflictions. Typically, these mutations in concert with characteristic features have formed the basis for improved disease diagnosis, prognosis and most recently therapy development. Examples include epidermolysis bullosa simplex, keratinopathic ichthyosis, pachyonychia congenita and several other tissue-specific hereditary keratinopathies. Understanding the molecular and genetic events underlying skin dysfunction has initiated alternative treatment approaches that may provide novel therapeutic opportunities for affected patients. Animal and in vitro disease modelling studies have shed more light on molecular pathogenesis, further defining the role of keratins in disease processes and promoting the translational development of new gene and pharmacological therapeutic strategies. Given that the molecular basis for these monogenic disorders is well established, gene therapy and drug discovery targeting pharmacological compounds with the ability to reinforce the compromised cytoskeleton may lead to promising new therapeutic strategies for treating hereditary keratinopathies. In this review, we will summarize and discuss recent advances in the preclinical and clinical modelling and development of gene, natural product, pharmacological and protein-based therapies for these disorders, highlighting the feasibility of new approaches for translational clinical therapy. PMID:22716242

  5. Progress towards genetic and pharmacological therapies for keratin genodermatoses: current perspective and future promise.

    PubMed

    Chamcheu, Jean Christopher; Wood, Gary S; Siddiqui, Imtiaz A; Syed, Deeba N; Adhami, Vaqar M; Teng, Joyce M; Mukhtar, Hasan

    2012-07-01

    Hereditary keratin disorders of the skin and its appendages comprise a large group of clinically heterogeneous disfiguring blistering and ichthyotic diseases, primarily characterized by the loss of tissue integrity, blistering and hyperkeratosis in severely affected tissues. Pathogenic mutations in keratins cause these afflictions. Typically, these mutations in concert with characteristic features have formed the basis for improved disease diagnosis, prognosis and most recently therapy development. Examples include epidermolysis bullosa simplex, keratinopathic ichthyosis, pachyonychia congenita and several other tissue-specific hereditary keratinopathies. Understanding the molecular and genetic events underlying skin dysfunction has initiated alternative treatment approaches that may provide novel therapeutic opportunities for affected patients. Animal and in vitro disease modelling studies have shed more light on molecular pathogenesis, further defining the role of keratins in disease processes and promoting the translational development of new gene and pharmacological therapeutic strategies. Given that the molecular basis for these monogenic disorders is well established, gene therapy and drug discovery targeting pharmacological compounds with the ability to reinforce the compromised cytoskeleton may lead to promising new therapeutic strategies for treating hereditary keratinopathies. In this review, we will summarize and discuss recent advances in the preclinical and clinical modelling and development of gene, natural product, pharmacological and protein-based therapies for these disorders, highlighting the feasibility of new approaches for translational clinical therapy. © 2012 John Wiley & Sons A/S.

  6. Giant axonal neuropathy alters the structure of keratin intermediate filaments in human hair

    PubMed Central

    Soomro, Asfia; Alsop, Richard J.; Negishi, Atsuko; Kreplak, Laurent; Fudge, Douglas; Kuczmarski, Edward R.; Goldman, Robert D.

    2017-01-01

    Giant axonal neuropathy (GAN) follows an autosomal recessive genetic inheritance and impedes the peripheral and central nervous system due to axonal swellings that are packed with neurofilaments. The patients display a number of phenotypes, including hypotonia, muscle weakness, decreased reflexes, ataxia, seizures, intellectual disability, pale skin and often curled hair. We used X-ray diffraction and tensile testing to determine potential changes to the structure of keratin intermediate filaments (IFs) in the hair of patients with GAN. A statistically significant decrease in the 47 and the 27 Å diffraction signals were observed. Tensile tests determined that the hair was slightly stiffer, stronger and more extensible in GAN patients. These results suggest that the structure of keratin IFs in hair is altered in GAN, and the findings are compatible with an increased positional disorder of the keratin tetramers within the hair fibres. PMID:28424304

  7. Giant axonal neuropathy alters the structure of keratin intermediate filaments in human hair.

    PubMed

    Soomro, Asfia; Alsop, Richard J; Negishi, Atsuko; Kreplak, Laurent; Fudge, Douglas; Kuczmarski, Edward R; Goldman, Robert D; Rheinstädter, Maikel C

    2017-04-01

    Giant axonal neuropathy (GAN) follows an autosomal recessive genetic inheritance and impedes the peripheral and central nervous system due to axonal swellings that are packed with neurofilaments. The patients display a number of phenotypes, including hypotonia, muscle weakness, decreased reflexes, ataxia, seizures, intellectual disability, pale skin and often curled hair. We used X-ray diffraction and tensile testing to determine potential changes to the structure of keratin intermediate filaments (IFs) in the hair of patients with GAN. A statistically significant decrease in the 47 and the 27 Å diffraction signals were observed. Tensile tests determined that the hair was slightly stiffer, stronger and more extensible in GAN patients. These results suggest that the structure of keratin IFs in hair is altered in GAN, and the findings are compatible with an increased positional disorder of the keratin tetramers within the hair fibres. © 2017 The Author(s).

  8. Regenerated keratin membrane to match the in vitro drug diffusion through human epidermis

    PubMed Central

    Selmin, Francesca; Cilurzo, Francesco; Aluigi, Annalisa; Franzè, Silvia; Minghetti, Paola

    2012-01-01

    This work aimed to develop membranes made of regenerated keratin and ceramides (CERs) to match the barrier property of the human stratum corneum in in vitro percutaneous absorption studies. The membrane composition was optimized on the basis of the in vitro drug diffusion profiles of ibuprofen, propranolol and testosterone chosen as model drugs on the basis of their different diffusion and solubility properties. The data were compared to those obtained using human epidermis. The ATR-FTIR and SEM analyses revealed that CERs were suspended into the regenerated keratin matrix, even if a partial solubilization occurred. It resulted in the membranes being physically stable after exposure to aqueous buffer and/or mineral oil and the fluxes of ibuprofen and propranolol from these vehicles through membranes and human skin were of the same order of magnitude. The best relationship with human epidermis data was obtained with 180 μm-thick membrane containing 1% ceramide III and 1% ceramide VI. The data on the testosterone diffusion were affected by the exposure of the membrane to a water/ethanol solution over a prolonged period of time, indicating that such an organic solvent was able to modify the supermolecular organization of keratin and CERs. The keratin/CER membranes can represent a simplified model to assay the in vitro skin permeability study of small molecules. PMID:25755997

  9. Single-Nucleotide Polymorphisms Associated with Skin Naphthyl–Keratin Adduct Levels in Workers Exposed to Naphthalene

    PubMed Central

    Jiang, Rong; French, John E.; Stober, Vandy P.; Kang-Sickel, Juei-Chuan C.; Zou, Fei

    2012-01-01

    Background: Individual genetic variation that results in differences in systemic response to xenobiotic exposure is not accounted for as a predictor of outcome in current exposure assessment models. Objective: We developed a strategy to investigate individual differences in single-nucleotide polymorphisms (SNPs) as genetic markers associated with naphthyl–keratin adduct (NKA) levels measured in the skin of workers exposed to naphthalene. Methods: The SNP-association analysis was conducted in PLINK using candidate-gene analysis and genome-wide analysis. We identified significant SNP–NKA associations and investigated the potential impact of these SNPs along with personal and workplace factors on NKA levels using a multiple linear regression model and the Pratt index. Results: In candidate-gene analysis, a SNP (rs4852279) located near the CYP26B1 gene contributed to the 2-naphthyl–keratin adduct (2NKA) level. In the multiple linear regression model, the SNP rs4852279, dermal exposure, exposure time, task replacing foam, age, and ethnicity all were significant predictors of 2NKA level. In genome-wide analysis, no single SNP reached genome-wide significance for NKA levels (all p ≥ 1.05 × 10–5). Pathway and network analyses of SNPs associated with NKA levels were predicted to be involved in the regulation of cellular processes and homeostasis. Conclusions: These results provide evidence that a quantitative biomarker can be used as an intermediate phenotype when investigating the association between genetic markers and exposure–dose relationship in a small, well-characterized exposed worker population. PMID:22391508

  10. Extracellular heat shock protein HSP90{beta} secreted by MG63 osteosarcoma cells inhibits activation of latent TGF-{beta}1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Shigeki; Kulkarni, Ashok B., E-mail: ak40m@nih.gov

    2010-07-30

    Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex, which consists of latency-associated peptide (LAP) and the mature ligand. The release of the mature ligand from LAP usually occurs through conformational change of the latent complex and is therefore considered to be the first step in the activation of the TGF-{beta} signaling pathway. So far, factors such as heat, pH changes, and proteolytic cleavage are reportedly involved in this activation process, but the precise molecular mechanism is still far from clear. Identification and characterization of the cell surface proteins that bind to LAP are important to our understandingmore » of the latent TGF-{beta} activation process. In this study, we have identified heat shock protein 90 {beta} (HSP90{beta}) from the cell surface of the MG63 osteosarcoma cell line as a LAP binding protein. We have also found that MG63 cells secrete HSP90{beta} into extracellular space which inhibits the activation of latent TGF-{beta}1, and that there is a subsequent decrease in cell proliferation. TGF-{beta}1-mediated stimulation of MG63 cells resulted in the increased cell surface expression of HSP90{beta}. Thus, extracellular HSP90{beta} is a negative regulator for the activation of latent TGF-{beta}1 modulating TGF-{beta} signaling in the extracellular domain. -- Research highlights: {yields} Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex. {yields} This complex consists of latency-associated peptide (LAP) and the mature ligand. {yields} The release of the mature ligand from LAP is the first step in TGF-{beta} activation. {yields} We identified for the first time a novel mechanism for this activation process. {yields} Heat shock protein 90 {beta} is discovered as a negative regulator for this process.« less

  11. Investigation of preparation techniques for δ2H analysis of keratin materials and a proposed analytical protocol

    USGS Publications Warehouse

    Qi, H.; Coplen, T.B.

    2011-01-01

    Accurate hydrogen isotopic measurements of keratin materials have been a challenge due to exchangeable hydrogen in the sample matrix and the paucity of appropriate isotopic reference materials for calibration. We found that the most reproducible δ2HVSMOW-SLAP and mole fraction of exchangeable hydrogen, x(H)ex, of keratin materials were measured with equilibration at ambient temperature using two desiccators and two different equilibration waters with two sets of the keratin materials for 6 days. Following equilibration, drying the keratin materials in a vacuum oven for 4 days at 60 °C was most critical. The δ2H analysis protocol also includes interspersing isotopic reference waters in silver tubes among samples in the carousel of a thermal conversion elemental analyzer (TC/EA) reduction unit. Using this analytical protocol, δ2HVSMOW-SLAP values of the non-exchangeable fractions of USGS42 and USGS43 human-hair isotopic reference materials were determined to be –78.5 ± 2.3 ‰ and –50.3 ± 2.8 ‰, respectively. The measured x(H)ex values of keratin materials analyzed with steam equilibration and N2 drying were substantially higher than those previously published, and dry N2 purging was unable to remove absorbed moisture completely, even with overnight purging. The δ2H values of keratin materials measured with steam equilibration were about 10 ‰ lower than values determined with equilibration in desiccators at ambient temperatures when on-line evacuation was used to dry samples. With steam equilibrations the x(H)ex of commercial keratin powder was as high as 28 %. Using human-hair isotopic reference materials to calibrate other keratin materials, such as hoof or horn, can introduce bias in δ2H measurements because the amount of absorbed water and the x(H)ex values may differ from those of unknown samples. Correct δ2HVSMOW-SLAP values of the non-exchangeable fractions of unknown human-hair samples can be determined with atmospheric moisture

  12. Mammalian keratin associated proteins (KRTAPs) subgenomes: disentangling hair diversity and adaptation to terrestrial and aquatic environments.

    PubMed

    Khan, Imran; Maldonado, Emanuel; Vasconcelos, Vítor; O'Brien, Stephen J; Johnson, Warren E; Antunes, Agostinho

    2014-09-10

    Adaptation of mammals to terrestrial life was facilitated by the unique vertebrate trait of body hair, which occurs in a range of morphological patterns. Keratin associated proteins (KRTAPs), the major structural hair shaft proteins, are largely responsible for hair variation. We exhaustively characterized the KRTAP gene family in 22 mammalian genomes, confirming the existence of 30 KRTAP subfamilies evolving at different rates with varying degrees of diversification and homogenization. Within the two major classes of KRTAPs, the high cysteine (HS) subfamily experienced strong concerted evolution, high rates of gene conversion/recombination and high GC content. In contrast, high glycine-tyrosine (HGT) KRTAPs showed evidence of positive selection and low rates of gene conversion/recombination. Species with more hair and of higher complexity tended to have more KRATP genes (gene expansion). The sloth, with long and coarse hair, had the most KRTAP genes (175 with 141 being intact). By contrast, the "hairless" dolphin had 35 KRTAPs and the highest pseudogenization rate (74% relative to the 19% mammalian average). Unique hair-related phenotypes, such as scales (armadillo) and spines (hedgehog), were correlated with changes in KRTAPs. Gene expression variation probably also influences hair diversification patterns, for example human have an identical KRTAP repertoire as apes, but much less hair. We hypothesize that differences in KRTAP gene repertoire and gene expression, together with distinct rates of gene conversion/recombination, pseudogenization and positive selection, are likely responsible for micro and macro-phenotypic hair diversification among mammals in response to adaptations to ecological pressures.

  13. Keratin 8 limits TLR-triggered inflammatory responses through inhibiting TRAF6 polyubiquitination

    PubMed Central

    Dong, Xiao-Ming; Liu, En-Dong; Meng, Yun-Xiao; Liu, Chao; Bi, Ya-Lan; Wu, Huan-Wen; Jin, Yan-Chao; Yao, Jing-Hui; Tang, Liu-Jun; Wang, Jian; Li, Min; Zhang, Chao; Yu, Miao; Zhan, Yi-Qun; Chen, Hui; Ge, Chang-Hui; Yang, Xiao-Ming; Li, Chang-Yan

    2016-01-01

    Toll-like receptors (TLRs) have critical roles in innate immunity and inflammation and the detailed mechanisms by which TLR signaling is fine tuned remain unclear. Keratin 8 (CK8) belongs to the type II keratin family and is the major compontent of the intermediate filaments of simple or single-layered epithelia. Here we report that down-regulation of CK8 in mice enhanced TLR-mediated responses, rendering mice more susceptible to lipopolysaccharide (LPS)-induced endotoxin shock and Escherichia coli–caused septic peritonitis with reduced survival, elevated levels of inflammation cytokines and more severe tissue damage. We found that CK8 suppressed TLR-induced nuclear factor (NF)-κB activation and interacted with the adaptor tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) to prevent its polyubiquitination. Our findings demonstrate a novel role of CK8 in negative regulation of TLR/NF-κB signaling and highlight a previously unidentified nonclassical function for CK8 in limiting inflammatory responses. PMID:27586056

  14. A homozygous missense variant in type I keratin KRT25 causes autosomal recessive woolly hair.

    PubMed

    Ansar, Muhammad; Raza, Syed Irfan; Lee, Kwanghyuk; Irfanullah; Shahi, Shamim; Acharya, Anushree; Dai, Hang; Smith, Joshua D; Shendure, Jay; Bamshad, Michael J; Nickerson, Deborah A; Santos-Cortez, Regie Lyn P; Ahmad, Wasim; Leal, Suzanne M

    2015-10-01

    Woolly hair (WH) is a hair abnormality that is primarily characterised by tightly curled hair with abnormal growth. In two unrelated consanguineous Pakistani families with non-syndromic autosomal recessive (AR) WH, homozygosity mapping and linkage analysis identified a locus within 17q21.1-q22, which contains the type I keratin gene cluster. A DNA sample from an affected individual from each family underwent exome sequencing. A homozygous missense variant c.950T>C (p.(Leu317Pro)) within KRT25 segregated with ARWH in both families, and has a combined maximum two-point LOD score of 7.9 at ϴ=0. The KRT25 variant is predicted to result in disruption of the second α-helical rod domain and the entire protein structure, thus possibly interfering with heterodimerisation of K25 with type II keratins within the inner root sheath (IRS) of the hair follicle and the medulla of the hair shaft. Our findings implicate a novel gene involved in human hair abnormality, and are consistent with the curled, fragile hair found in mice with Krt25 mutations, and further support the role of IRS-specific type I keratins in hair follicle development and maintenance of hair texture. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. Keratins 17 and 19 expression as prognostic markers in oral squamous cell carcinoma.

    PubMed

    Coelho, B A; Peterle, G T; Santos, M; Agostini, L P; Maia, L L; Stur, E; Silva, C V M; Mendes, S O; Almança, C C J; Freitas, F V; Borçoi, A R; Archanjo, A B; Mercante, A M C; Nunes, F D; Carvalho, M B; Tajara, E H; Louro, I D; Silva-Conforti, A M A

    2015-11-25

    Five-year survival rates for oral squamous cell carcinoma (OSCC) are 30% and the mortality rate is 50%. Immunohistochemistry panels are used to evaluate proliferation, vascularization, apoptosis, HPV infection, and keratin expression, which are important markers of malignant progression. Keratins are a family of intermediate filaments predominantly expressed in epithelial cells and have an essential role in mechanical support and cytoskeleton formation, which is essential for the structural integrity and stability of the cell. In this study, we analyzed the expressions of keratins 17 and 19 (K17 and K19) by immunohistochemistry in tumoral and non-tumoral tissues from patients with OSCC. The results show that expression of these keratins is higher in tumor tissues compared to non-tumor tissues. Positive K17 expression correlates with lymph node metastasis and multivariate analysis confirmed this relationship, revealing a 6-fold increase in lymph node metastasis when K17 is expressed. We observed a correlation between K17 expression with disease-free survival and disease-specific death in patients who received surgery and radiotherapy. Multivariate analysis revealed that low expression of K17 was an independent marker for early disease relapse and disease-specific death in patients treated with surgery and radiotherapy, with an approximately 4-fold increased risk when compared to high K17 expression. Our results suggest a potential role for K17 and K19 expression profiles as tumor prognostic markers in OSCC patients.

  16. Interplay between Solo and keratin filaments is crucial for mechanical force-induced stress fiber reinforcement.

    PubMed

    Fujiwara, Sachiko; Ohashi, Kazumasa; Mashiko, Toshiya; Kondo, Hiroshi; Mizuno, Kensaku

    2016-03-15

    Mechanical force-induced cytoskeletal reorganization is essential for cell and tissue remodeling and homeostasis; however, the underlying cellular mechanisms remain elusive. Solo (ARHGEF40) is a RhoA-targeting guanine nucleotide exchange factor (GEF) involved in cyclical stretch-induced human endothelial cell reorientation and convergent extension cell movement in zebrafish gastrula. In this study, we show that Solo binds to keratin-8/keratin-18 (K8/K18) intermediate filaments through multiple sites. Solo overexpression promotes the formation of thick actin stress fibers and keratin bundles, whereas knockdown of Solo, expression of a GEF-inactive mutant of Solo, or inhibition of ROCK suppresses stress fiber formation and leads to disorganized keratin networks, indicating that the Solo-RhoA-ROCK pathway serves to precisely organize keratin networks, as well as to promote stress fibers. Of importance, knockdown of Solo or K18 or overexpression of GEF-inactive or deletion mutants of Solo suppresses tensile force-induced stress fiber reinforcement. Furthermore, knockdown of Solo or K18 suppresses tensile force-induced RhoA activation. These results strongly suggest that the interplay between Solo and K8/K18 filaments plays a crucial role in tensile force-induced RhoA activation and consequent actin cytoskeletal reinforcement. © 2016 Fujiwara et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. The X-Ray Crystal Structure of the Keratin 1-Keratin 10 Helix 2B Heterodimer Reveals Molecular Surface Properties and Biochemical Insights into Human Skin Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunick, Christopher G.; Milstone, Leonard M.

    Keratins 1 (K1) and 10 (K10) are the primary keratins expressed in differentiated epidermis. Mutations in K1/K10 are associated with human skin diseases. We determined the crystal structure of the complex between the distal (2B) helices of K1 and K10 to better understand how human keratin structure correlates with function. The 3.3 Å resolution structure confirms many features inferred by previous biochemical analyses, but adds unexpected insights. It demonstrates a parallel, coiled-coil heterodimer with a predominantly hydrophobic intermolecular interface; this heterodimer formed a higher order complex with a second K1-K10-2B heterodimer via a Cys401K10 disulfide link, although the bond anglemore » is unanticipated. The molecular surface analysis of K1-K10-2B identified several pockets, one adjacent to the disulfide linkage and conserved in K5-K14. The solvent accessible surface area of the K1-K10 structure is 20–25% hydrophobic. The 2B region contains mixed acidic and basic patches proximally (N-terminal), whereas it is largely acidic distally (C-terminal). Mapping of conserved and nonconserved residues between K1-K10 and K5-K14 onto the structure demonstrated the majority of unique residues align along the outer helical ridge. Finally, the structure permitted a fresh analysis of the deleterious effects caused by K1/K10 missense mutations found in patients with phenotypic skin disease.« less

  18. The use of mucograft collagen matrix to augment the zone of keratinized tissue around teeth: a pilot study.

    PubMed

    Nevins, Myron; Nevins, Marc L; Kim, Soo-Woo; Schupbach, Peter; Kim, David M

    2011-01-01

    This prospective split-mouth pilot case series compared the use of a bilayer collagen matrix (CM) to an autogenous gingival graft (AGG) in the ability to increase the zone of keratinized attached gingiva. Five patients with inadequate amounts of keratinized attached gingiva bilaterally in the posterior mandible were enrolled using a split-mouth design. There were statistically significant increases in attached gingiva at all test (CM) and control (AGG) sites. The CM sites at 12 months blended well with surrounding tissues, while the AGG sites were morphologically dissimilar to the adjacent areas. Biopsy results showed intrapatient histologic similarity between CM and AGG treatments, with all sites exhibiting mature connective tissue covered by keratinized epithelium. Thus, the obtained data support further investigations in evaluating the role of CM as a viable alternative to AGG in augmenting areas deficient in keratinized gingiva.

  19. Comparison of acellular dermal graft and palatal autograft in the reconstruction of keratinized gingiva around dental implants: a case report.

    PubMed

    Yan, Ji-Jong; Tsai, Alex Yi-Min; Wong, Man-Ying; Hou, Lein-Tuan

    2006-06-01

    The use of autogenous gingival grafts has proved to be an effective and predictable way to increase the amount of keratinized gingiva. However, discomfort and pain at the donor site are unavoidable. Acellular dermal matrix (ADM) allograft can be used as a donor tissue to eliminate the need for another surgical site and alleviate pain and trauma. The purpose of this study was to evaluate the effectiveness of ADM allograft in increasing the width of keratinized gingiva around dental implants. A patient with inadequate keratinized gingiva around dental implants in maxillary and mandibular anterior regions received either an ADM graft or palatal autograft by random allocation. The width of keratinized gingiva and other clinical periodontal parameters were recorded initially and at 3 and 6 months after surgery. Both grafts provided satisfactory results. The width of keratinized tissues was increased by using the ADM allograft, but by a lesser amount than seen with the autogenous gingival graft.

  20. beta. -Amyloid precursor protein of Alzheimer disease occurs as 110- to 135-kilodalton membrane-associated proteins in neural and nonneural tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selkoe, D.J.; Podlisny, M.B.; Joachim, C.L.

    1988-10-01

    Progressive cerebral deposition of extracellular filaments composed of the {beta}-amyloid protein ({beta}AP) is a constant feature of Alzheimer disease (AD). Since the gene on chromosome 21 encoding the {beta}AP precursor ({beta}APP) is not known to be altered in AD, transcriptional or posttranslational changes may underlie accelerated {beta}AP deposition. Using two antibodies to the predicted carboxyl terminus of {beta}APP, the authors have identified the native {beta}APP in brain and nonneural human tissues as a 110- to 135-kDa protein complex that is insoluble in buffer and found in various membrane-rich subcellular fractions. These proteins are relatively uniformly distributed in adult brain, abundantmore » in fetal brain, and detected in nonneural tissues that contain {beta}APP mRNA. Similarly sized proteins occur in rat, cow, and monkey brain and in cultured human HL-60 and HeLa cells; the precise patterns in the 110- to 135-kDa range are heterogeneous among various tissues and cell lines. They conclude that the highly conserved {beta}APP molecule occurs in mammalian tissues as a heterogeneous group of membrane-associated proteins of {approx} 120 kDa. Detection of the nonamyloidogenic carboxyl terminus within plaques suggests that proteolytic processing of the {beta}APP into insoluble filaments occurs locally in cortical regions that develop {beta}-amyloid deposits with age.« less

  1. Intermediate filament structure in fully differentiated (oxidised) trichocyte keratin.

    PubMed

    Fraser, R D Bruce; Parry, David A D

    2017-10-01

    For the past 50years there has been considerable debate over the sub-structure of the fully differentiated (oxidised) trichocyte keratin intermediate filament. Depending on the staining and preparative procedures employed, IF observed in transverse section in the transmission electron microscope have varied in appearance between that of a "ring" and a "ring-core" structure, corresponding to the so-called (8+0) and (7+1) protofilament arrangements. In a new analysis of the fine structure of the 1nm equatorial region of the X-ray diffraction pattern of quill we show that the observed pattern is consistent with the (8+0) model and we are also able to assign values to the various parameters. In contrast, we show that the observed X-ray pattern is inconsistent with a (7+1) arrangement. Furthermore, in the (7+1) model steric hindrance would be encountered between the core protofilament and those constituting the ring. The appearance of a central "core" in transverse TEM sections, previously attributed to a central protofilament, is explained in terms of portions of the apolar, disulfide-bonded head and/or tail domains of the trichocyte keratin IF molecules, including the conserved H subdomains, lying along the axis of the IF, thereby decreasing the efficacy of the reducing agents used prior to staining. The H1 subdomain, previously shown to be important in the assembly of epidermal IF molecules at the two- to four-molecule level, is likely to have a similar role for the trichocyte keratins and may form part of a central scaffold on which the molecules assemble into fully functional IF. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Beta-propellers: associated functions and their role in human diseases.

    PubMed

    Pons, Tirso; Gómez, Raú; Chinea, Glay; Valencia, Alfonso

    2003-03-01

    The beta-propeller fold appears as a very fascinating architecture based on four-stranded antiparallel and twisted beta-sheets, radially arranged around a central tunnel. Similar to the alpha/beta-barrel (TIM-barrel) fold, the beta-propeller has a wide range of different functions, and is gaining substantial attention. Some proteins containing beta-propeller domains have been implicated in the pathogenesis of a variety of diseases such as cancer, Alzheimer, Huntington, arthritis, familial hypercholesterolemia, retinitis pigmentosa, osteogenesis, hypertension, and microbial and viral infections. This article reviews some aspects of 3D structure, amino acids sequence regularities, and biological functions of the proteins containing beta-propeller domains. Major emphasis has been laid on beta-propellers whose functions are associated to human diseases. Recent research efforts reported in the fields of protein engineering, drug design, and protein structure-function relationship studies, concerning the beta-propeller architecture, have also been discussed.

  3. Proteome analysis reveals that de novo regenerated mucosa over fibula flap-reconstructed mandibles resembles mature keratinized oral mucosa.

    PubMed

    Kumar, Vinay V; James, Bonney L; Ruß, Manuela; Mikkat, Stefan; Suresh, Amritha; Kämmerer, Peer W; Glocker, Michael O

    2018-03-01

    The aim of this study was to determine whether intra-oral de novo regenerated mucosa (D) that grew over free fibula flap reconstructed-mandibles resembled the donor tissue i.e. external skin (S) of the lateral leg, or the recipient site tissue, i.e. keratinized oral mucosa (K). Differential proteome analysis was performed with ten tissue samples from each of the three groups: de novo regenerated mucosa (D), external skin (S), and keratinized oral mucosa (K). Expression differences of cornulin and involucrin were validated by Western blot analysis and their spatial distributions in the respective tissues were ascertained by immunohistochemistry. From all three investigated tissue types a total of 1188 proteins were identified, 930 of which were reproducibly and robustly quantified by proteome analysis. The best differentiating proteins were assembled in an oral mucosa proteome signature that encompasses 56 differentially expressed proteins. Principal component analysis of both, the 930 quantifiable proteins and the 56 oral mucosa signature proteins revealed that the de novo regenerated mucosa resembles keratinized oral mucosa much closer than extra-oral skin. Differentially expressed cornification-related proteins comprise proteins from all subclasses of the cornified cell envelope. Prominently expressed in intra-oral mucosa tissues were (i) cornifin-A, cornifin-B, SPRR3, and involucrin from the cornified-cell-envelope precursor group, (ii) S100A9, S100A8 and S100A2 from the S100 group, and (iii) cornulin which belongs to the fused-gene-protein group. According to its proteome signature de novo regenerated mucosa over the free fibula flap not only presents a passive structural surface layer but has adopted active tissue function. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Keratin hydrogel carrier system for simultaneous delivery of exogenous growth factors and muscle progenitor cells1,2,3

    PubMed Central

    Tomblyn, Seth; Kneller, Elizabeth Pettit; Walker, Stephen J.; Ellenburg, Mary D.; Kowalczewski, Christine J.; Van Dyke, Mark; Burnett, Luke; Saul, Justin M.

    2017-01-01

    Ideal material characteristics for tissue engineering or regenerative medicine approaches to volumetric muscle loss (VML) include the ability to deliver cells, growth factors and molecules that support tissue formation from a system with a tunable degradation profile. Two different types of human hair-derived keratins were tested as options to fulfill these VML design requirements: (1) oxidatively extracted keratin (keratose) characterized by a lack of covalent crosslinking between cysteine residues, and (2) reductively extracted keratin (kerateine) characterized by disulfide crosslinks. Human skeletal muscle myoblasts cultured on coatings of both types of keratin had increased numbers of multinucleated cells compared to collagen or Matrigel™ and adhesion levels greater than collagen. Rheology showed elastic moduli from 102 – 105 Pa and viscous moduli from 101 – 104 Pa depending on gel concentration and keratin type. Kerateine and keratose showed differing rates of degradation due to the presence or absence of disulfide crosslinks, which likely contributed to observed differences in release profiles of several growth factors. In vivo testing in a subcutaneous mouse model showed that keratose hydrogels can be used to deliver mouse muscle progenitor cells and growth factors. Histological assessment showed minimal inflammatory responses and an increase in markers of muscle formation. PMID:25953729

  5. Increasing protein stability by improving beta-turns.

    PubMed

    Fu, Hailong; Grimsley, Gerald R; Razvi, Abbas; Scholtz, J Martin; Pace, C Nick

    2009-11-15

    Our goal was to gain a better understanding of how protein stability can be increased by improving beta-turns. We studied 22 beta-turns in nine proteins with 66-370 residues by replacing other residues with proline and glycine and measuring the stability. These two residues are statistically preferred in some beta-turn positions. We studied: Cold shock protein B (CspB), Histidine-containing phosphocarrier protein, Ubiquitin, Ribonucleases Sa2, Sa3, T1, and HI, Tryptophan synthetase alpha-subunit, and Maltose binding protein. Of the 15 single proline mutations, 11 increased stability (Average = 0.8 +/- 0.3; Range = 0.3-1.5 kcal/mol), and the stabilizing effect of double proline mutants was additive. On the basis of this and our previous work, we conclude that proteins can generally be stabilized by replacing nonproline residues with proline residues at the i + 1 position of Type I and II beta-turns and at the i position in Type II beta-turns. Other turn positions can sometimes be used if the phi angle is near -60 degrees for the residue replaced. It is important that the side chain of the residue replaced is less than 50% buried. Identical substitutions in beta-turns in related proteins give similar results. Proline substitutions increase stability mainly by decreasing the entropy of the denatured state. In contrast, the large, diverse group of proteins considered here had almost no residues in beta-turns that could be replaced by Gly to increase protein stability. Improving beta-turns by substituting Pro residues is a generally useful way of increasing protein stability. 2009 Wiley-Liss, Inc.

  6. Epidermal differentiation during ontogeny and after hatching in the snake Liasis fuscus (Pythonidae, Serpentes, Reptilia), with emphasis on the formation of the shedding complex.

    PubMed

    Alibardi, L; Thompson, M B

    2003-04-01

    Differentiation and localization of keratin in the epidermis during embryonic development and up to 3 months posthatching in the Australian water python, Liasis fuscus, was studied by ultrastructural and immunocytochemical methods. Scales arise from dome-like folds in the skin that produce tightly imbricating scales. The dermis of these scales is completely differentiated before any epidermal differentiation begins, with a loose dermis made of mesenchymal cells beneath the differentiating outer scale surface. At this stage (33) the embryo is still unpigmented and two layers of suprabasal cells contain abundant glycogen. At Stage 34 (beginning of pigmentation) the first layers of cells beneath the bilayered periderm (presumptive clear and oberhautchen layers) have not yet formed a shedding complex, within which prehatching shedding takes place. At Stage 35 the shedding complex, consisting of the clear and oberhautchen layers, is discernible. The clear layer contains a fine fibrous network that faces the underlying oberhautchen, where the spinulae initially contain a core of fibrous material and small beta-keratin packets. Differentiation continues at Stage 36 when the beta-layer forms and beta-keratin packets are deposited both on the fibrous core of the oberhautchen and within beta-cells. Mesos cells are produced from the germinal layer but remain undifferentiated. At Stage 37, before hatching, the beta-layer is compact, the mesos layer contains mesos granules, and cells of the alpha-layer are present but are not yet keratinized. They are still only partially differentiated a few hours after hatching, when a new shedding complex is forming underneath. Using antibodies against chick scale beta-keratin resolved at high magnification with immunofluorescent or immunogold conjugates, we offer the first molecular confirmation that in snakes only the oberhautchen component of the shedding complex and the underlying beta cells contain beta-keratin. Initially, there is

  7. Keratin 17 is overexpressed and predicts poor survival in estrogen receptor-negative/human epidermal growth factor receptor-2-negative breast cancer.

    PubMed

    Merkin, Ross D; Vanner, Elizabeth A; Romeiser, Jamie L; Shroyer, A Laurie W; Escobar-Hoyos, Luisa F; Li, Jinyu; Powers, Robert S; Burke, Stephanie; Shroyer, Kenneth R

    2017-04-01

    Clinicopathological features of breast cancer have limited accuracy to predict survival. By immunohistochemistry (IHC), keratin 17 (K17) expression has been correlated with triple-negative status (estrogen receptor [ER]/progesterone receptor/human epidermal growth factor receptor-2 [HER2] negative) and decreased survival, but K17 messenger RNA (mRNA) expression has not been evaluated in breast cancer. K17 is a potential prognostic cancer biomarker, targeting p27, and driving cell cycle progression. This study compared K17 protein and mRNA expression to ER/progesterone receptor/HER2 receptor status and event-free survival. K17 IHC was performed on 164 invasive breast cancers and K17 mRNA was evaluated in 1097 breast cancers. The mRNA status of other keratins (16/14/9) was evaluated in 113 ER - /HER2 - ductal carcinomas. IHC demonstrated intense cytoplasmic and membranous K17 localization in myoepithelial cells of benign ducts and lobules and tumor cells of ductal carcinoma in situ. In ductal carcinomas, K17 protein was detected in most triple-negative tumors (28/34, 82%), some non-triple-negative tumors (52/112, 46%), but never in lobular carcinomas (0/15). In ductal carcinomas, high K17 mRNA was associated with reduced 5-year event-free survival in advanced tumor stage (n = 149, hazard ratio [HR] = 3.68, P = .018), and large (n = 73, HR = 3.95, P = .047), triple-negative (n = 103, HR = 2.73, P = .073), and ER - /HER2 - (n = 113, HR = 2.99, P = .049) tumors. There were significant correlations among keratins 17, 16, 14, and 9 mRNA levels suggesting these keratins (all encoded on chromosome 17) could be coordinately expressed in breast cancer. Thus, K17 is expressed in a subset of triple-negative breast cancers, and is a marker of poor prognosis in patients with advanced stage and ER - /HER2 - breast cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Wear resistance of Polymethyl Methacrylate (PMMA) with the Addition of Bone Ash, Hydroxylapatite and Keratin

    NASA Astrophysics Data System (ADS)

    Emre, G.; Akkus, A.; Karamış, M. B.

    2018-01-01

    In this study mechanichal and tribological properties of keratin, bone ash and hydroxylapatite by adding to PMMA ( known as the main prosthesis material) were investigated. Hydroxylapatite, bone ash, and keratin materials were added as PMMA in to the content of PMMA, in the proportions of %1, %3 and %5, respectively. The resulting mixtures were put into the molds and solidified in order to obtain samples to be used in the wear experiments. Each experiment was conducted by preparing three experimental samples. The wear data were compared according to the average values of the experimental samples. In the wear test, the results were also evaluated according to the average values obtained from each group and the results of the control group. It was observed that, the wear resistance of the PMMA including 3%, 5% bone ash and PMMA including 5% keratin flour were higher than the values of the control group.

  9. Epithelial Keratins Modulate cMet Expression and Signaling and Promote InlB-Mediated Listeria monocytogenes Infection of HeLa Cells.

    PubMed

    Cruz, Rui; Pereira-Castro, Isabel; Almeida, Maria T; Moreira, Alexandra; Cabanes, Didier; Sousa, Sandra

    2018-01-01

    The host cytoskeleton is a major target for bacterial pathogens during infection. In particular, pathogens usurp the actin cytoskeleton function to strongly adhere to the host cell surface, to induce plasma membrane remodeling allowing invasion and to spread from cell to cell and disseminate to the whole organism. Keratins are cytoskeletal proteins that are the major components of intermediate filaments in epithelial cells however, their role in bacterial infection has been disregarded. Here we investigate the role of the major epithelial keratins, keratins 8 and 18 (K8 and K18), in the cellular infection by Listeria monocytogenes . We found that K8 and K18 are required for successful InlB/cMet-dependent L. monocytogenes infection, but are dispensable for InlA/E-cadherin-mediated invasion. Both K8 and K18 accumulate at InlB-mediated internalization sites following actin recruitment and modulate actin dynamics at those sites. We also reveal the key role of K8 and K18 in HGF-induced signaling which occurs downstream the activation of cMet. Strikingly, we show here that K18, and at a less extent K8, controls the expression of cMet and other surface receptors such TfR and integrin β1, by promoting the stability of their corresponding transcripts. Together, our results reveal novel functions for major epithelial keratins in the modulation of actin dynamics at the bacterial entry sites and in the control of surface receptors mRNA stability and expression.

  10. Multicenter Clinical Trial of Keratin Biomaterial for Peripheral Nerve Regeneration

    DTIC Science & Technology

    2012-10-01

    Drug Evaluation Research (CDER), the Center for Biologics E valuation Research (CBER), and the Center for Devices and Radiological Health ( CDRH ) on May...Research (CBER) , and the Center for Devices and Radiological Health ( CDRH ) to clar ify the designation of the keratin hydrogel. During this m eeting

  11. Keratin-based products for effective wound care management in superficial and partial thickness burns injuries.

    PubMed

    Loan, Fiona; Cassidy, Sharon; Marsh, Clive; Simcock, Jeremy

    2016-05-01

    This n=40 cohort study on superficial and partial thickness burns compares novel keratin-based products with the standard products used at our facility. The keratin products are found to facilitate healing with minimal scarring, be well tolerated with minimal pain and itch, be easy to use for the health professional and be cost effective for the health care provider. For these reasons they are being adopted into use at our facility. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  12. α-keratin/Alginate Biosorbent for Removal of Methylene Blue on Aqueous Solution in a Batch System

    NASA Astrophysics Data System (ADS)

    Fadillah, G.; Putri, E. N. K.; Febrianastuti, S.; Munawaroh, H.; Purnawan, C.; Wahyuningsih, S.

    2018-03-01

    Methylene Blue (MB) is a cationic dyes which is commonly used in textile industries for coloring agent. The precence of MB in water caused some negative effect on the environment and human health. Many common technologies such as membrane filtration, electrophoresis and adsorption have been widely empolyed for removal of MB in water, but the adsorption technique still has advantages than the others. In this study, removal of MB used a biosorbent α-keratin/alginate (KA). The biosorbent KA was prepared by using the encapsulation technique in CaCl2 2 % (w/v) solution. The biosorbent was characterized by Fourier Transform Infrared (FTIR) and Scanning Electron Microscope (SEM). The effect of composition of α-keratin and alginate, the pH of solution and contact time on the adsorption were investigated. The optimum adsorption of MB in aqueous solution was found at the composition of α-keratin and alginate of 1:2 (w/w), the pH at 5.0 and contact time at 4 hours. The adsorption of MB on KA biosorbent was comparatively higher than α-keratin and alginate only. Adsorption of MB dyes in aqueous solution followed the Langmuir adsorption isotherm, and the dynamic adsorption model could be described through a pseudo-second order kinetics.

  13. Enucleation of facial sebaceous cyst by creating a minimal elliptical incision through a keratin-filled orifice.

    PubMed

    Chen, Wei-Liang

    2016-12-01

    A facial sebaceous cyst is a common benign epithelial tumor and surgical excision is frequently performed but may cause obvious scarring and may be esthetically troubling. This study evaluated the clinical outcomes of the patients with facial sebaceous cyst enucleated by creating minimal elliptical incisions through a keratin-filled orifice. Eleven patients with facial sebaceous cyst enucleated by creating minimal elliptical incisions through a keratin-filled orifice. We treated nine male and two female patients aged 25-52 years. The mean cyst size was 1.85 × 1.56 cm. All cysts were successfully enucleated. The mean wound length was 0.93 cm. The mean operative time was 15.2 min. The mean follow-up duration was 41.5 months. No recurrence was noted, and all patients were very satisfied with their esthetic outcomes. All cysts were successfully enucleated. The mean elliptical wound length was 0.93 cm (range, 0.8-1.1 cm). The mean operative time was 15.2 min. We found no evidence of wound infection, or nerve or vascular injury. Enucleation of facial sebaceous cyst via a minimal elliptical incision through the keratin-filled orifice was associated with high-level patient satisfaction, and the method is safe and useful for treating facial epidermoid cysts. © 2016 Wiley Periodicals, Inc.

  14. Self-organization of oligopeptides obtained on dissolution of feather keratins in superheated water.

    PubMed

    Yin, Jie; Rastogi, Sanjay; Terry, Ann E; Popescu, Crisan

    2007-03-01

    Keratins are self-organized proteins that are abundantly available in wool, feather, human hair, etc., making them a potential cheap feedstock for the modification of amino acids. This paper explores the hydrolysis of keratin in water under specific pressure-temperature conditions where the hydrolysis through scission of the protein chain yields oligopeptides. Here we report for the first time that, under appropriate conditions, these oligopeptides self-assemble into a hierarchical architecture, the process being followed in time by optical microscopy. Birefringent needle-like crystals are observed which tend to nucleate heterogeneously. When given sufficient time, these needles become tens of microns in length and act as further nuclei, developing a highly repetitive structure of several hundreds of microns in size. Micro-focus X-ray diffraction studies supported by in situ microscopy reveal that these needles have a crystal structure similar to that of the native protein, although better organized along the ab-plane. Spectroscopic studies on these structures show crystalline bands that disappear above 150 degrees C, coinciding with an endothermic peak in DSC. Amino acid analysis shows that the self-assembled birefringent entities are indeed oligopeptides, consisting of sequences of approximately 40 amino acids. The proposed ecofriendly route provides an effective route for obtaining oligopeptides that can be used as important building blocks for the synthesis of a range of novel polymers. The oligopeptides obtained from the sustainable source can be used as important building blocks for the synthesis of a range of novel polymers.

  15. Extensive keratinized tissue augmentation during implant rehabilitation after Le Fort I osteotomy: using a new porcine collagen membrane (Mucoderm).

    PubMed

    Nocini, Pier Francesco; Castellani, Roberto; Zanotti, Guglielmo; Gelpi, Federico; Covani, Ugo; Marconcini, Simone; de Santis, Daniele

    2014-05-01

    The aim of this study was to test a new collagen matrix (Mucoderm) positioned during oral implant abutment connection. A patient previously treated with Le Fort I for bone augmentation and 8 implants showing minimal amount of keratinized tissue was selected for an extensive keratinized tissue augmentation and deepening of the oral vestibule by apically positioning a split palatal flap and palatal grafting with Mucoderm. Clinical data at 9 and 14 days and 1 and 2 months showed resorption of the collagen graft, augmentation of the keratinized tissue around the implants, and deepening of the vestibule, with minimal morbidity and reduced surgical treatment time. However, some vestibular keratinized tissue contraction was evident. The new collagen matrix may be a promising material as a substitute for an autologous gingival/connective tissue graft. Despite the preliminary results of this innovative article, before drawing any general conclusion, the benefit of the procedure should be further evaluated by prospective clinical trials.

  16. A novel mutation of the Keratin 12 gene responsible for a severe phenotype of Meesmann's corneal dystrophy

    PubMed Central

    Sullivan, Lori S.; Baylin, Eric B.; Font, Ramon; Daiger, Stephen P.; Pepose, Jay S.; Clinch, Thomas E.; Nakamura, Hisashi; Zhao, Xinping C.

    2007-01-01

    Purpose To determine if a mutation within the coding region of the keratin 12 gene (KRT12) is responsible for a severe form of Meesmann's corneal dystrophy. Methods A family with clinically identified Meesmann's corneal dystrophy was recruited and studied. Electron microscopy was performed on scrapings of corneal epithelial cells from the proband. Mutations in the KRT12 gene were sought using direct genomic sequencing of leukocyte DNA from two affected and two unaffected family members. Subsequently, the observed mutation was screened in all available family members using polymerase chain reaction and direct sequencing. Results A heterozygous missense mutation (Arg430Pro) was found in exon 6 of KRT12 in all 14 affected individuals studied. Unaffected family members and 100 normal controls were negative for this mutation. Conclusions We have identified a novel mutation in the KRT12 gene that is associated with a symptomatic phenotype of Meesmann's corneal dystrophy. This mutation results in a substitution of proline for arginine in the helix termination motif that may disrupt the normal helix, leading to a dramatic structural change of the keratin 12 protein. PMID:17653038

  17. Novel Picornavirus Associated with Avian Keratin Disorder in Alaskan Birds.

    PubMed

    Zylberberg, Maxine; Van Hemert, Caroline; Dumbacher, John P; Handel, Colleen M; Tihan, Tarik; DeRisi, Joseph L

    2016-07-26

    Avian keratin disorder (AKD), characterized by debilitating overgrowth of the avian beak, was first documented in black-capped chickadees (Poecile atricapillus) in Alaska. Subsequently, similar deformities have appeared in numerous species across continents. Despite the widespread distribution of this emerging pathology, the cause of AKD remains elusive. As a result, it is unknown whether suspected cases of AKD in the afflicted species are causally linked, and the impacts of this pathology at the population and community levels are difficult to evaluate. We applied unbiased, metagenomic next-generation sequencing to search for candidate pathogens in birds affected with AKD. We identified and sequenced the complete coding region of a novel picornavirus, which we are calling poecivirus. Subsequent screening of 19 AKD-affected black-capped chickadees and 9 control individuals for the presence of poecivirus revealed that 19/19 (100%) AKD-affected individuals were positive, while only 2/9 (22%) control individuals were infected with poecivirus. Two northwestern crows (Corvus caurinus) and two red-breasted nuthatches (Sitta canadensis) with AKD-consistent pathology also tested positive for poecivirus. We suggest that poecivirus is a candidate etiological agent of AKD. Avian keratin disorder (AKD) is an increasingly common disease of wild birds. This disease, characterized by beak overgrowth, was first described in the late 1990s and has been spreading rapidly both geographically and in terms of host species affected. AKD decreases host fitness and can be fatal. However, the cause of the disease has remained elusive, and its impact on host populations is poorly understood. We found a novel and divergent picornavirus in 19/19 AKD-affected black-capped chickadees that we examined but in only 2/9 control cases. We also found this virus in 4 individuals of 2 other passerine species that exhibited symptoms consistent with AKD. Our data suggest that this novel picornavirus

  18. Identification of functional domains within the alpha and beta subunits of beta-hexosaminidase A through the expression of alpha-beta fusion proteins.

    PubMed

    Tse, R; Wu, Y J; Vavougios, G; Hou, Y; Hinek, A; Mahuran, D J

    1996-08-20

    There are three human beta-hexosaminidase isozymes which are composed of all possible dimeric combinations of an alpha and/or a beta subunit; A (alpha beta), and B (beta beta), and S (alpha alpha). The amino acid sequences of the two subunits are 60% identical. The homology between the two chains varies with the middle > the carboxy-terminal > > the amino-terminal portions. Although dimerization is required for activity, each subunit contains its own active site and differs in its substrate specificity and thermal stability. The presence of the beta subunit in hexosaminidase A also influences the substrate specificity of the alpha subunit; e.g., in vivo only the A heterodimer can hydrolyze GM2 ganglioside. In this report, we localize functional regions in the two subunits by cellular expression of alpha/beta fusion proteins joined at adjacently aligned residues. First, a chimeric alpha/beta chain was made by replacing the least well-conserved amino-terminal section of the beta chain with the corresponding alpha section. The biochemical characteristics of this protein were nearly identical to hexosaminidase B. Therefore, the most dissimilar regions in the subunits are not responsible for their dissimilar biochemical properties. A second fusion protein was made that also included the more homologous middle section of the alpha chain. This protein expressed the substrate specificity unique to isozymes containing an alpha subunit (A and S). We conclude that the region responsible for the ability of the alpha subunit to bind negatively charged substrates is located within residues alpha 132-283. Interestingly, the remaining carboxy-terminal section from the beta chain, beta 316-556, was sufficient to allow this chimera to hydrolyze GM2 ganglioside with 10% the specific activity of heterodimeric hexosaminidase A. Thus, the carboxy-terminal section of each subunit is likely involved in subunit-subunit interactions.

  19. Calmodulin is a phospholipase C-beta interacting protein.

    PubMed

    McCullar, Jennifer S; Larsen, Shana A; Millimaki, Ryan A; Filtz, Theresa M

    2003-09-05

    Phospholipase C-beta 3 (PLC beta 3) is an important effector enzyme in G protein-coupled signaling pathways. Activation of PLC beta 3 by G alpha and G beta gamma subunits has been fairly well characterized, but little is known about other protein interactions that may also regulate PLC beta 3 function. A yeast two-hybrid screen of a mouse brain cDNA library with the amino terminus of PLC beta 3 has yielded potential PLC beta 3 interacting proteins including calmodulin (CaM). Physical interaction between CaM and PLC beta 3 is supported by a positive secondary screen in yeast and the identification of a CaM binding site in the amino terminus of PLC beta 3. Co-precipitation of in vitro translated and transcribed amino- and carboxyl-terminal PLC beta 3 revealed CaM binding at a putative amino-terminal binding site. Direct physical interaction of PLC beta 3 and PLC beta 1 isoforms with CaM is supported by pull-down of both isoenzymes with CaM-Sepharose beads from 1321N1 cell lysates. CaM inhibitors reduced M1-muscarinic receptor stimulation of inositol phospholipid hydrolysis in 1321N1 astrocytoma cells consistent with a physiologic role for CaM in modulation of PLC beta activity. There was no effect of CaM kinase II inhibitors, KN-93 and KN-62, on M1-muscarinic receptor stimulation of inositol phosphate hydrolysis, consistent with a direct interaction between PLC beta isoforms and CaM.

  20. Preservation of keratinized mucosa around implants using a prefabricated implant-retained stent: a case-control study

    PubMed Central

    2016-01-01

    Purpose The aim of this study was to clinically assess the impact of a prefabricated implant-retained stent clipped over healing abutments on the preservation of keratinized mucosa around implants after implant surgery, and to compare it with horizontal external mattress sutures. Methods A total of 50 patients were enrolled in this study. In the test group, a prefabricated implant-retained stent was clipped on the healing abutment after implant surgery to replace the keratinized tissue bucco-apically. In the control group, horizontal external mattress sutures were applied instead of using a stent. After the surgical procedure, the width of the buccal keratinized mucosa was measured at the mesial, middle, and distal aspects of the healing abutment. The change in the width of the buccal keratinized mucosa was assessed at 1 and 3 months. Results Healing was uneventful in both groups. The difference of width between baseline and 1 month was −0.26±0.85 mm in the test group, without any statistical significance (P=0.137). Meanwhile, the corresponding difference in the control group was −0.74±0.73 mm and it showed statistical significance (P<0.001). The difference of width between baseline and 3 months was −0.57±0.97 mm in the test group and −0.86±0.71 mm in the control group. These reductions were statistically significant (P<0.05); however, there was no difference between the 2 groups. Conclusions Using a prefabricated implant-retained stent was shown to be effective in the preservation of the keratinized mucosa around implants and it was simple and straightforward in comparison to the horizontal external mattress suture technique. PMID:27800215

  1. Selective biodegradation of keratin matrix in feather rachis reveals classic bioengineering

    PubMed Central

    Lingham-Soliar, Theagarten; Bonser, Richard H. C.; Wesley-Smith, James

    2010-01-01

    Flight necessitates that the feather rachis is extremely tough and light. Yet, the crucial filamentous hierarchy of the rachis is unknown—study hindered by the tight chemical bonding between the filaments and matrix. We used novel microbial biodegradation to delineate the fibres of the rachidial cortex in situ. It revealed the thickest keratin filaments known to date (factor >10), approximately 6 µm thick, extending predominantly axially but with a small outer circumferential component. Near-periodic thickened nodes of the fibres are staggered with those in adjacent fibres in two- and three-dimensional planes, creating a fibre–matrix texture with high attributes for crack stopping and resistance to transverse cutting. Close association of the fibre layer with the underlying ‘spongy’ medulloid pith indicates the potential for higher buckling loads and greater elastic recoil. Strikingly, the fibres are similar in dimensions and form to the free filaments of the feather vane and plumulaceous and embryonic down, the syncitial barbules, but, identified for the first time in 140+ years of study in a new location—as a major structural component of the rachis. Early in feather evolution, syncitial barbules were consolidated in a robust central rachis, definitively characterizing the avian lineage of keratin. PMID:20018788

  2. Immunohistochemical demonstration of keratins in the epidermal layers of the Malayan pangolin (Manis javanica), with remarks on the evolution of the integumental scale armour.

    PubMed

    Meyer, W; Liumsiricharoen, M; Suprasert, A; Fleischer, L G; Hewicker-Trautwein, M

    2013-09-16

    Using immunohistochemistry, the study demonstrates the distribution of keratins (pan-keratin with CK1-8, 10, 14-16, 19; keratins CK1, 5, 6, 9, 10; hair keratins AE13, AE14) in the epidermis of the Malayan pangolin (Manis javanica). A varying reaction spectrum was observed for pan-keratin, with body region-dependent negative to very strong reaction intensities. The dorsolateral epidermis exhibited positive reactions only in its vital layers, whereas the abdominal epidermis showed strong positive reactions in the soft two outer strata. The single acidic and basic-to-neutral (cyto)keratins produced clear variations compared to the pan-keratin tinging. E.g., CK1 appeared in all epidermal layers of both body regions, except for the ventral stratum corneum, whereas CK5, 6, 9, 10 were restricted to the soft ventral epidermis. Here, distinctly positive reactions were confined to the stratum granulosum, except for CK6 that appeared in the soft stratum corneum. A different staining pattern was obvious for the hair keratins, i.e., positive reactions of AE13 concentrated only in the granular layer of the dorsal epidermis. In the abdominal epidermis, remarkable tinging for AE14 was visible in the stratum basale, decreasing toward the corneal layer, but was also found in the outer root sheath cells of the hair follicles in the ventral body part. Our findings are discussed related to the evolution of the horny dorsal scales of the pangolin, which may have started from the tail root, projecting forward to the head.

  3. Bidirectional binding property of high glycine-tyrosine keratin-associated protein contributes to the mechanical strength and shape of hair.

    PubMed

    Matsunaga, Ryo; Abe, Ryota; Ishii, Daisuke; Watanabe, Shun-Ichi; Kiyoshi, Masato; Nöcker, Bernd; Tsuchiya, Masaru; Tsumoto, Kouhei

    2013-09-01

    Since their first finding in wool 50years ago, keratin-associated proteins (KAPs), which are classified into three groups; high sulfur (HS) KAPs, ultra high sulfur (UHS) KAPs, and high glycine-tyrosine (HGT) KAPs, have been the target of curiosity for scientists due to their characteristic amino acid sequences. While HS and UHS KAPs are known to function in disulfide bond crosslinking, the function of HGT KAPs remains unknown. To clarify the function as well as the binding partners of HGT KAPs, we prepared KAP8.1 and other KAP family proteins, the trichocyte intermediate filament proteins (IFP) K85 and K35, the head domain of K85, and the C subdomain of desmoplakin C-terminus (DPCT-C) and investigated the interactions between them in vitro. Western blot analysis and isothermal titration calorimetry (ITC) indicate that KAP8.1 binds to the head domain of K85, which is helically aligned around the axis of the intermediate filament (IF). From these results and transmission electron microscopy (TEM) observations of bundled filament complex in vitro, we propose that the helical arrangement of IFs found in the orthocortex, which is uniquely distributed on the convex fiber side of the hair, is regulated by KAP8.1. Structure-dependent binding of DPCT-C to trichocyte IFP was confirmed by Western blotting, ITC, and circular dichroism. Moreover, DPCT-C also binds to some HGT KAPs. It is probable that such bidirectional binding property of HGT KAPs contribute to the mechanical robustness of hair. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. A clinical and histologic evaluation of gingival fibroblasts seeding on a chitosan-based scaffold and its effect on the width of keratinized gingiva in dogs.

    PubMed

    Lotfi, Ghogha; Shokrgozar, Mohammad Ali; Mofid, Rasoul; Abbas, Fatemeh Mashhadi; Ghanavati, Farzin; Bagheban, Alireza Akbarzadeh; Shariati, Ramin Pajoum

    2011-09-01

    Finding biocompatible matrix materials capable of enhancing the procedures of gingival augmentation is a major concern in periodontal research. This has prompted the investigation of a safe grafting technique by means of synthetic or natural polymers. The objective of this study is to examine the effect of a gingival fibroblast cultured on a naturally derived (i.e., chitosan-based) scaffold on the width of keratinized gingiva in dogs. Gingival fibroblasts were cultured from a small portion of hard palates of five dogs. A bilayered chitosan scaffold was seeded with the gingival fibroblasts and transferred to dogs. Surgery was performed bilaterally, and the regions were randomly divided into two groups: chitosan only (control site) and chitosan + fibroblast (test site). Periodontal parameters, including probing depth and width of keratinized and attached gingiva, were measured at baseline and 3 months after surgery. A histologic evaluation was also performed on the healed grafted sites. Comparison of width of keratinized and attached gingiva in control and test sites showed that the mean width of keratinized and attached gingiva increased in each group after surgery. However, the difference between control and test groups was not statistically significant. Concerning the existence of the keratinized epithelium, exocytosis, and epithelium thickness, no significant difference was observed in test and control sites. The difference was significant in relation to rete ridge formation. The tissue-engineered graft consisting of chitosan + fibroblast was applied to gingival augmentation procedures and generated keratinized tissue without any complications usually associated with donor-site surgery.

  5. Effects of scalp dermatitis on chemical property of hair keratin

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Sook; Shin, Min Kyung; Park, Hun-Kuk

    2013-05-01

    The effects of scalp dermatitis (seborrheic dermatitis (SD), psoriasis, and atopic dermatitis (AD)) on chemical properties of hair keratin were investigated by Fourier transform infrared (FT-IR) spectroscopy. Hairs were collected from lesional regions affected by SD, psoriasis, and AD and non-lesional regions separately. The hairs with SD were taken from patients with ages of 16-80 years. The ages of patients with psoriasis ranged from 8 to 67 years, and all patients exhibited moderate disease. Hairs with AD were taken from the patients with ages of 24-45 years and the average SCORing atopic dermatitis (SCORAD) was 48.75. Hairs from 20 normal adults were collected as a control. The FT-IR absorbance bands were analyzed by the Gaussian model to obtain the center frequency, half width, height, and area of each band. The height and area of all bands in the spectra were normalized to the amide I centered at 1652 cm-1 to quantitatively analyze the chemical composition of keratin. The spectra of hair with scalp dermatitis were different with that of control, the amide A components centered at 3278 cm-1 were smaller than those of the control. The psoriasis hair showed a large difference in the IR absorbance band between lesional and non-lesional hairs indicating good agreement with the morphological changes. The hairs with diseases did not show differences in the content of cystine, which was centered at 1054 cm-1, from the control. The chemical properties of keratin were not significantly different between the hairs affected by SD, psoriasis, and AD. However, the changes induced by scalp dermatitis were different with weathering. Therefore, FT-IR analysis could be used to screen differences between the physiological and pathological conditions of scalp hair.

  6. Clinical evaluation of a new collagen matrix (Mucograft prototype) to enhance the width of keratinized tissue in patients with fixed prosthetic restorations: a randomized prospective clinical trial.

    PubMed

    Sanz, Mariano; Lorenzo, Ramón; Aranda, Juan J; Martin, Conchita; Orsini, Marco

    2009-10-01

    The aim of this study was to test a new collagen matrix (CM) aimed to increase keratinized gingiva/mucosa when compared with the free connective tissue graft (CTG). This randomized longitudinal parallel controlled clinical trial studied 20 patients with at least one location with minimal keratinized tissue (keratinized tissue. As secondary outcomes, the aesthetic outlook, the maintenance of periodontal health and the patient morbidity were assessed pre-operatively at 1, 3 and 6 months. At 6 months, the CTG attained a mean width of keratinized tissue of 2.6 (0.9) mm, while the CM was 2.5 (0.9) mm, these differences being insignificant. In both groups, there was a marked contraction (60% and 67%, respectively) although the periodontal parameters were not affected. The CM group had a significantly lower patient morbidity (pain and medication intake) as well as reduced surgery time. These results prove that this new CM was as effective and predictable as the CTG for attaining a band of keratinized tissue, but its use was associated with a significantly lower patient morbidity.

  7. Lymphotoxin beta receptor (Lt betaR): dual roles in demyelination and remyelination and successful therapeutic intervention using Lt betaR-Ig protein.

    PubMed

    Plant, Sheila R; Iocca, Heather A; Wang, Ying; Thrash, J Cameron; O'Connor, Brian P; Arnett, Heather A; Fu, Yang-Xin; Carson, Monica J; Ting, Jenny P-Y

    2007-07-11

    Inflammation mediated by macrophages is increasingly found to play a central role in diseases and disorders that affect a myriad of organs, prominent among these are diseases of the CNS. The neurotoxicant-induced, cuprizone model of demyelination is ideally suited for the analysis of inflammatory events. Demyelination on exposure to cuprizone is accompanied by predictable microglial activation and astrogliosis, and, after cuprizone withdrawal, this activation reproducibly diminishes during remyelination. This study demonstrates enhanced expression of lymphotoxin beta receptor (Lt betaR) during the demyelination phase of this model, and Lt betaR is found in areas enriched with microglial and astroglial cells. Deletion of the Lt betaR gene (Lt betaR-/-) resulted in a significant delay in demyelination but also a slight delay in remyelination. Inhibition of Lt betaR signaling by an Lt betaR-Ig fusion decoy protein successfully delayed demyelination in wild-type mice. Unexpectedly, this Lt betaR-Ig decoy protein dramatically accelerated the rate of remyelination, even after the maximal pathological disease state had been reached. This strongly indicates the beneficial role of Lt betaR-Ig in the delay of demyelination and the acceleration of remyelination. The discrepancy between remyelination rates in these systems could be attributed to developmental abnormalities in the immune systems of Lt betaR-/- mice. These findings bode well for the use of an inhibitory Lt betaR-Ig as a candidate biological therapy in demyelinating disorders, because it is beneficial during both demyelination and remyelination.

  8. Identification of beta-Lactamases and beta-Lactam-Related Proteins in Human Pathogenic Bacteria using a Computational Search Approach.

    PubMed

    Brambila-Tapia, Aniel Jessica Leticia; Perez-Rueda, Ernesto; Barrios, Humberto; Dávalos-Rodríguez, Nory Omayra; Dávalos-Rodríguez, Ingrid Patricia; Cardona-Muñoz, Ernesto Germán; Salazar-Páramo, Mario

    2017-08-01

    A systematic analysis of beta-lactamases based on comparative proteomics has not been performed thus far. In this report, we searched for the presence of beta-lactam-related proteins in 591 bacterial proteomes belonging to 52 species that are pathogenic to humans. The amino acid sequences for 19 different types of beta-lactamases (ACT, CARB, CifA, CMY, CTX, FOX, GES, GOB, IMP, IND, KPC, LEN, OKP, OXA, OXY, SHV, TEM, NDM, and VIM) were obtained from the ARG-ANNOT database and were used to construct 19 HMM profiles, which were used to identify potential beta-lactamases in the completely sequenced bacterial proteomes. A total of 2877 matches that included the word "beta-lactamase" and/or "penicillin" in the functional annotation and/or in any of its regions were obtained. These enzymes were mainly described as "penicillin-binding proteins," "beta-lactamases," and "metallo-beta-lactamases" and were observed in 47 of the 52 species studied. In addition, proteins classified as "beta-lactamases" were observed in 39 of the species included. A positive correlation between the number of beta-lactam-related proteins per species and the proteome size was observed (R 0.78, P < 0.00001). This correlation partially explains the high presence of beta-lactam-related proteins in large proteomes, such as Nocardia brasiliensis, Bacillus anthracis, and Mycobacterium tuberculosis, along with their absence in small proteomes, such as Chlamydia spp. and Mycoplasma spp. We detected only five types of beta-lactamases (TEM, SHV, CTX, IMP, and OXA) and other related proteins in particular species that corresponded with those reported in the literature. We additionally detected other potential species-specific beta-lactamases that have not yet been reported. In the future, better results will be achieved due to more accurate sequence annotations and a greater number of sequenced genomes.

  9. Vesicle-associated membrane protein 2 mediates trafficking of {alpha}5{beta}1 integrin to the plasma membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, Nazarul; Hu, Chuan, E-mail: chuan.hu@louisville.edu

    2010-01-01

    Integrins are major receptors for cell adhesion to the extracellular matrix (ECM). As transmembrane proteins, the levels of integrins at the plasma membrane or the cell surface are ultimately determined by the balance between two vesicle trafficking events: endocytosis of integrins at the plasma membrane and exocytosis of the vesicles that transport integrins. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, is involved in the trafficking of {alpha}5{beta}1 integrin. VAMP2 was present on vesicles containing endocytosed {beta}1 integrin. Small interfering RNA (siRNA) silencing of VAMP2 markedly reduced cellmore » surface {alpha}5{beta}1 and inhibited cell adhesion and chemotactic migration to fibronectin, the ECM ligand of {alpha}5{beta}1, without altering cell surface expression of {alpha}2{beta}1 integrin or {alpha}3{beta}1 integrin. By contrast, silencing of VAMP8, another SNARE protein, had no effect on cell surface expression of the integrins or cell adhesion to fibronectin. In addition, VAMP2-mediated trafficking is involved in cell adhesion to collagen but not to laminin. Consistent with disruption of integrin functions in cell proliferation and survival, VAMP2 silencing diminished proliferation and triggered apoptosis. Collectively, these data indicate that VAMP2 mediates the trafficking of {alpha}5{beta}1 integrin to the plasma membrane and VAMP2-dependent integrin trafficking is critical in cell adhesion, migration and survival.« less

  10. Interaction with beta-arrestin determines the difference in internalization behavor between beta1- and beta2-adrenergic receptors.

    PubMed

    Shiina, T; Kawasaki, A; Nagao, T; Kurose, H

    2000-09-15

    The beta(1)-adrenergic receptor (beta(1)AR) shows the resistance to agonist-induced internalization. As beta-arrestin is important for internalization, we examine the interaction of beta-arrestin with beta(1)AR with three different methods: intracellular trafficking of beta-arrestin, binding of in vitro translated beta-arrestin to intracellular domains of beta(1)- and beta(2)ARs, and inhibition of betaAR-stimulated adenylyl cyclase activities by beta-arrestin. The green fluorescent protein-tagged beta-arrestin 2 translocates to and stays at the plasma membrane by beta(2)AR stimulation. Although green fluorescent protein-tagged beta-arrestin 2 also translocates to the plasma membrane, it returns to the cytoplasm 10-30 min after beta(1)AR stimulation. The binding of in vitro translated beta-arrestin 1 and beta-arrestin 2 to the third intracellular loop and the carboxyl tail of beta(1)AR is lower than that of beta(2)AR. The fusion protein of beta-arrestin 1 with glutathione S-transferase inhibits the beta(1)- and beta(2)AR-stimulated adenylyl cyclase activities, although inhibition of the beta(1)AR-stimulated activity requires a higher concentration of the fusion protein than that of the beta(2)AR-stimulated activity. These results suggest that weak interaction of beta(1)AR with beta-arrestins explains the resistance to agonist-induced internalization. This is further supported by the finding that beta-arrestin can induce internalization of beta(1)AR when beta-arrestin 1 does not dissociate from beta(1)AR by fusing to the carboxyl tail of beta(1)AR.

  11. Microscopic and immunohistochemical analyses of the claw of the nesting dinosaur, Citipati osmolskae

    PubMed Central

    Zheng, Wenxia; Schweitzer, Mary H.

    2016-01-01

    One of the most well-recognized Cretaceous fossils is Citipati osmolskae (MPC-D 100/979), an oviraptorid dinosaur discovered in brooding position on a nest of unhatched eggs. The original description refers to a thin lens of white material extending from a manus ungual, which was proposed to represent original keratinous claw sheath that, in life, would have covered it. Here, we test the hypothesis that this exceptional morphological preservation extends to the molecular level. The fossil sheath was compared with that of extant birds, revealing similar morphology and microstructural organization. In living birds, the claw sheath consists primarily of two structural proteins; alpha-keratin, expressed in all vertebrates, and beta-keratin, found only in reptiles and birds (sauropsids). We employed antibodies raised against avian feathers, which comprise almost entirely of beta-keratin, to demonstrate that fossil tissues respond with the same specificity, though less intensity, as those from living birds. Furthermore, we show that calcium chelation greatly increased antibody reactivity, suggesting a role for calcium in the preservation of this fossil material. PMID:28120795

  12. Microscopic and immunohistochemical analyses of the claw of the nesting dinosaur, Citipati osmolskae.

    PubMed

    Moyer, Alison E; Zheng, Wenxia; Schweitzer, Mary H

    2016-11-16

    One of the most well-recognized Cretaceous fossils is Citipati osmolskae (MPC-D 100/979), an oviraptorid dinosaur discovered in brooding position on a nest of unhatched eggs. The original description refers to a thin lens of white material extending from a manus ungual, which was proposed to represent original keratinous claw sheath that, in life, would have covered it. Here, we test the hypothesis that this exceptional morphological preservation extends to the molecular level. The fossil sheath was compared with that of extant birds, revealing similar morphology and microstructural organization. In living birds, the claw sheath consists primarily of two structural proteins; alpha-keratin, expressed in all vertebrates, and beta-keratin, found only in reptiles and birds (sauropsids). We employed antibodies raised against avian feathers, which comprise almost entirely of beta-keratin, to demonstrate that fossil tissues respond with the same specificity, though less intensity, as those from living birds. Furthermore, we show that calcium chelation greatly increased antibody reactivity, suggesting a role for calcium in the preservation of this fossil material. © 2016 The Author(s).

  13. Self-assembly of keratin peptides: Its implication on the performance of electrospun PVA nanofibers

    PubMed Central

    Kadirvelu, Kavitha; Fathima, Nishter Nishad

    2016-01-01

    Drawing inspiration from the field of designer self-assembling materials, this work is aimed to focus on the self-assembling nature of extracted peptides. Hair keratin, a proteinacious reject in tanning industry has been chosen since they have been extracted and used for wide range of applications. Keratin source was subjected to five hydrolysis treatments (viz., sulphitolysis, β-mercaptoethanol, ionic liquid, thioglycolic acid and alkali) and assayed for functional groups. This was followed by the prediction of secondary structure using circular dichroism, determining the microstructural level to which the extracted peptide has self-assembled. Sulphitolysis and thioglycolic acid based hydrolysates exist in monomeric conformation, whereas β-mercaptoethanol based hydrolysate exhibited dimeric conformation. The subsequent part of the study is to incorporate these peptides into the nanofibers to study the structural implication of keratin peptides on its characteristics. Accordingly, the peptides were electrospun with PVA and subjected to morphological, mechanical, thermal and biological characterizations. Monomeric nanofiber mat has high tensile strength of around 5.5 MPa and offered lower mass transport resistance, whereas dimeric mat has high Tm of around 290 °C and was more biocompatible. These results help in understanding the extraction-structure-function aspect of the hydrolysates stressing the role of extraction methods on the choice of application. PMID:27812004

  14. Molecular evolution of the keratin associated protein gene family in mammals, role in the evolution of mammalian hair.

    PubMed

    Wu, Dong-Dong; Irwin, David M; Zhang, Ya-Ping

    2008-08-23

    Hair is unique to mammals. Keratin associated proteins (KRTAPs), which contain two major groups: high/ultrahigh cysteine and high glycine-tyrosine, are one of the major components of hair and play essential roles in the formation of rigid and resistant hair shafts. The KRTAP family was identified as being unique to mammals, and near-complete KRTAP gene repertoires for eight mammalian genomes were characterized in this study. An expanded KRTAP gene repertoire was found in rodents. Surprisingly, humans have a similar number of genes as other primates despite the relative hairlessness of humans. We identified several new subfamilies not previously reported in the high/ultrahigh cysteine KRTAP genes. Genes in many subfamilies of the high/ultrahigh cysteine KRTAP genes have evolved by concerted evolution with frequent gene conversion events, yielding a higher GC base content for these gene sequences. In contrast, the high glycine-tyrosine KRTAP genes have evolved more dynamically, with fewer gene conversion events and thus have a lower GC base content, possibly due to positive selection. Most of the subfamilies emerged early in the evolution of mammals, thus we propose that the mammalian ancestor should have a diverse KRTAP gene repertoire. We propose that hair content characteristics have evolved and diverged rapidly among mammals because of rapid divergent evolution of KRTAPs between species. In contrast, subfamilies of KRTAP genes have been homogenized within each species due to concerted evolution.

  15. Multi-layered bird beaks: a finite-element approach towards the role of keratin in stress dissipation

    PubMed Central

    Soons, Joris; Herrel, Anthony; Genbrugge, Annelies; Adriaens, Dominique; Aerts, Peter; Dirckx, Joris

    2012-01-01

    Bird beaks are layered structures, which contain a bony core and an outer keratin layer. The elastic moduli of this bone and keratin were obtained in a previous study. However, the mechanical role and interaction of both materials in stress dissipation during seed crushing remain unknown. In this paper, a multi-layered finite-element (FE) model of the Java finch's upper beak (Padda oryzivora) is established. Validation measurements are conducted using in vivo bite forces and by comparing the displacements with those obtained by digital speckle pattern interferometry. Next, the Young modulus of bone and keratin in this FE model was optimized in order to obtain the smallest peak von Mises stress in the upper beak. To do so, we created a surrogate model, which also allows us to study the impact of changing material properties of both tissues on the peak stresses. The theoretically best values for both moduli in the Java finch are retrieved and correspond well with previous experimentally obtained values, suggesting that material properties are tuned to the mechanical demands imposed during seed crushing. PMID:22337628

  16. Pin1 down-regulates transforming growth factor-beta (TGF-beta) signaling by inducing degradation of Smad proteins.

    PubMed

    Nakano, Ayako; Koinuma, Daizo; Miyazawa, Keiji; Uchida, Takafumi; Saitoh, Masao; Kawabata, Masahiro; Hanai, Jun-ichi; Akiyama, Hirotada; Abe, Masahiro; Miyazono, Kohei; Matsumoto, Toshio; Imamura, Takeshi

    2009-03-06

    Transforming growth factor-beta (TGF-beta) is crucial in numerous cellular processes, such as proliferation, differentiation, migration, and apoptosis. TGF-beta signaling is transduced by intracellular Smad proteins that are regulated by the ubiquitin-proteasome system. Smad ubiquitin regulatory factor 2 (Smurf2) prevents TGF-beta and bone morphogenetic protein signaling by interacting with Smads and inducing their ubiquitin-mediated degradation. Here we identified Pin1, a peptidylprolyl cis-trans isomerase, as a novel protein binding Smads. Pin1 interacted with Smad2 and Smad3 but not Smad4; this interaction was enhanced by the phosphorylation of (S/T)P motifs in the Smad linker region. (S/T)P motif phosphorylation also enhanced the interaction of Smad2/3 with Smurf2. Pin1 reduced Smad2/3 protein levels in a manner dependent on its peptidyl-prolyl cis-trans isomerase activity. Knockdown of Pin1 increased the protein levels of endogenous Smad2/3. In addition, Pin1 both enhanced the interaction of Smurf2 with Smads and enhanced Smad ubiquitination. Pin1 inhibited TGF-beta-induced transcription and gene expression, suggesting that Pin1 negatively regulates TGF-beta signaling by down-regulating Smad2/3 protein levels via induction of Smurf2-mediated ubiquitin-proteasomal degradation.

  17. Changes in nail keratin observed by Raman spectroscopy after Nd:YAG laser treatment.

    PubMed

    Shin, Min Kyung; Kim, Tae In; Kim, Wan Sun; Park, Hun-Kuk; Kim, Kyung Sook

    2017-04-01

    Lasers and photodynamic therapy have been considered a convergence treatment for onychomycosis, which is a fungal infection on the nail bed and nail plate. Laser therapies have shown satisfactory results without significant complications for onychomycosis; however, the mechanism of clearing remains unknown. In this work, we investigated changes in the chemical structure of nail keratin induced by Nd:YAG laser using Raman spectroscopy. Toe nails with onychomycosis were treated with 1064 nm Nd:YAG laser. After laser treatment, the disulfide band (490-590 cm -1 ) of nail keratin was rarely observed or was reduced in intensity. The amide I band (1500-1700 cm -1 ) also showed changes induced by the laser. The α-helical (1652 cm -1 ) structures dominated the β-sheet (1673 cm -1 ) in nontreated nail, but the opposite phenomenon was observed after laser treatment. © 2016 Wiley Periodicals, Inc.

  18. Clinical efficacy of a xenogeneic collagen matrix in augmenting keratinized mucosa around implants: a randomized controlled prospective clinical trial.

    PubMed

    Lorenzo, Ramón; García, Virginia; Orsini, Marco; Martin, Conchita; Sanz, Mariano

    2012-03-01

    The aim of this controlled randomized clinical trial was to evaluate the efficacy of a xenogeneic collagen matrix (CM) to augment the keratinized tissue around implants supporting prosthetic restorations at 6 months when compared with the standard treatment, the connective tissue autograft, CTG). This randomized longitudinal parallel controlled clinical trial studied 24 patients with at least one location with minimal keratinized tissue (≤1 mm). The 6-month width of keratinized tissue. As secondary outcomes the esthetic outlook, the maintenance of peri-implant mucosal health and the patient morbidity were assessed pre-operatively and 1, 3, and 6 months post-operatively. At 6 months, Group CTG attained a mean width of keratinized tissue of 2.75 (1.5) mm, while the corresponding figure in Group CM was 2.8 (0.4) mm, the inter-group differences not being statistically significant. The surgical procedure in both groups did not alter significantly the mucosal health in the affected abutments. There was a similar esthetic result and significant increase in the vestibular depth in both groups as a result of the surgery. In the CM group it changed from 2.2 (3.3) to 5.1 (2.5) mm at 6 months. The patients treated with the CM referred less pain, needed less pain medication, and the surgical time was shorter, although these differences were not statistically significant when compared with the CTG group. These results prove that this new CM was as effective and predictable as the CTG for attaining a band of keratinized tissue. © 2011 John Wiley & Sons A/S.

  19. Macroscopic, histologic, and ultrastructural lesions associated with avian keratin disorder in Black-capped Chickadees (Poecile atricapillus)

    USGS Publications Warehouse

    Van Hemert, C.; Armién, A. G.; Blake, J.E.; Handel, Colleen M.; O'Hara, T. M.

    2013-01-01

    An epizootic of beak abnormalities (avian keratin disorder) was recently detected among wild birds in Alaska. Here we describe the gross, histologic, and ultrastructural features of the disease in 30 affected adult black-capped chickadees (Poecile atricapillus). Grossly, there was elongation of the rhamphotheca, with varying degrees of lateral deviation, crossing, and gapping between the upper and lower beak. Not uncommonly, the claws were overgrown, and there was alopecia, scaling, and crusting of the skin. The most prominent histopathologic features in the beak included epidermal hyperplasia, hyperkeratosis, and core-like intrusions of necrotic debris. In affected birds, particularly those with moderate to severe beak overgrowth, there was remodeling of premaxillary and mandibular bones and various dermal lesions. Lesions analogous to those found in beaks were present in affected claws, indicating that this disorder may target both of these similar tissues. Mild to moderate hyperkeratosis occurred in other keratinized tissues, including skin, feather follicles, and, occasionally, sinus epithelium, but typically only in the presence of microbes. We did not find consistent evidence of a bacterial, fungal, or viral etiology for the beak lesions. The changes observed in affected birds did not correspond with any known avian diseases, suggesting a potentially novel hyperkeratotic disorder in wild birds.

  20. Genomic regression of claw keratin, taste receptor and light-associated genes provides insights into biology and evolutionary origins of snakes.

    PubMed

    Emerling, Christopher A

    2017-10-01

    Regressive evolution of anatomical traits often corresponds with the regression of genomic loci underlying such characters. As such, studying patterns of gene loss can be instrumental in addressing questions of gene function, resolving conflicting results from anatomical studies, and understanding the evolutionary history of clades. The evolutionary origins of snakes involved the regression of a number of anatomical traits, including limbs, taste buds and the visual system, and by analyzing serpent genomes, I was able to test three hypotheses associated with the regression of these features. The first concerns two keratins that are putatively specific to claws. Both genes that encode these keratins are pseudogenized/deleted in snake genomes, providing additional evidence of claw-specificity. The second hypothesis is that snakes lack taste buds, an issue complicated by conflicting results in the literature. I found evidence that different snakes have lost one or more taste receptors, but all snakes examined retained at least one gustatory channel. The final hypothesis addressed is that the earliest snakes were adapted to a dim light niche. I found evidence of deleted and pseudogenized genes with light-associated functions in snakes, demonstrating a pattern of gene loss similar to other dim light-adapted clades. Molecular dating estimates suggest that dim light adaptation preceded the loss of limbs, providing some bearing on interpretations of the ecological origins of snakes. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Solo and keratin filaments regulate epithelial tubule morphology.

    PubMed

    Nishimura, Ryosuke; Kato, Kagayaki; Fujiwara, Sachiko; Ohashi, Kazumasa; Mizuno, Kensaku

    2018-04-28

    Epithelial tubules, consisting of the epithelial cell sheet with a central lumen, are the basic structure of many organs. Mechanical forces play an important role in epithelial tubulogenesis; however, little is known about the mechanisms controlling the mechanical forces during epithelial tubule morphogenesis. Solo (also known as ARHGEF40) is a RhoA-targeting guanine-nucleotide exchange factor that is involved in mechanical force-induced RhoA activation and stress fiber formation. Solo binds to keratin-8/keratin-18 (K8/K18) filaments, and this interaction plays a crucial role in mechanotransduction. In this study, we examined the roles of Solo and K8/K18 filaments in epithelial tubulogenesis using MDCK cells cultured in 3D collagen gels. Knockdown of either Solo or K18 resulted in rounder tubules with increased lumen size, indicating that Solo and K8/K18 filaments play critical roles in forming the elongated morphology of epithelial tubules. Moreover, knockdown of Solo or K18 decreased the level of diphosphorylated myosin light chain (a marker of contractile force) at the luminal and outer surfaces of tubules, suggesting that Solo and K8/K18 filaments are involved in the generation of the myosin II-mediated contractile force during epithelial tubule morphogenesis. In addition, K18 filaments were normally oriented along the long axis of the tubule, but knockdown of Solo perturbed their orientation. These results suggest that Solo plays crucial roles in forming the elongated morphology of epithelial tubules and in regulating myosin II activity and K18 filament organization during epithelial tubule formation.

  2. The Chicken Frizzle Feather Is Due to an α-Keratin (KRT75) Mutation That Causes a Defective Rachis

    PubMed Central

    Foley, John; Foley, Anne; McDonald, Merry-Lynn; Juan, Wen-Tau; Huang, Chih-Jen; Lai, Yu-Ting; Lo, Wen-Sui; Chen, Chih-Feng; Leal, Suzanne M.; Zhang, Huanmin; Widelitz, Randall B.; Patel, Pragna I.; Li, Wen-Hsiung; Chuong, Cheng-Ming

    2012-01-01

    Feathers have complex forms and are an excellent model to study the development and evolution of morphologies. Existing chicken feather mutants are especially useful for identifying genetic determinants of feather formation. This study focused on the gene F, underlying the frizzle feather trait that has a characteristic curled feather rachis and barbs in domestic chickens. Our developmental biology studies identified defects in feather medulla formation, and physical studies revealed that the frizzle feather curls in a stepwise manner. The frizzle gene is transmitted in an autosomal incomplete dominant mode. A whole-genome linkage scan of five pedigrees with 2678 SNPs revealed association of the frizzle locus with a keratin gene-enriched region within the linkage group E22C19W28_E50C23. Sequence analyses of the keratin gene cluster identified a 69 bp in-frame deletion in a conserved region of KRT75, an α-keratin gene. Retroviral-mediated expression of the mutated F cDNA in the wild-type rectrix qualitatively changed the bending of the rachis with some features of frizzle feathers including irregular kinks, severe bending near their distal ends, and substantially higher variations among samples in comparison to normal feathers. These results confirmed KRT75 as the F gene. This study demonstrates the potential of our approach for identifying genetic determinants of feather forms. PMID:22829773

  3. Sequence swapping does not result in conformation swapping for the beta4/beta5 and beta8/beta9 beta-hairpin turns in human acidic fibroblast growth factor.

    PubMed

    Kim, Jaewon; Lee, Jihun; Brych, Stephen R; Logan, Timothy M; Blaber, Michael

    2005-02-01

    The beta-turn is the most common type of nonrepetitive structure in globular proteins, comprising ~25% of all residues; however, a detailed understanding of effects of specific residues upon beta-turn stability and conformation is lacking. Human acidic fibroblast growth factor (FGF-1) is a member of the beta-trefoil superfold and contains a total of five beta-hairpin structures (antiparallel beta-sheets connected by a reverse turn). beta-Turns related by the characteristic threefold structural symmetry of this superfold exhibit different primary structures, and in some cases, different secondary structures. As such, they represent a useful system with which to study the role that turn sequences play in determining structure, stability, and folding of the protein. Two turns related by the threefold structural symmetry, the beta4/beta5 and beta8/beta9 turns, were subjected to both sequence-swapping and poly-glycine substitution mutations, and the effects upon stability, folding, and structure were investigated. In the wild-type protein these turns are of identical length, but exhibit different conformations. These conformations were observed to be retained during sequence-swapping and glycine substitution mutagenesis. The results indicate that the beta-turn structure at these positions is not determined by the turn sequence. Structural analysis suggests that residues flanking the turn are a primary structural determinant of the conformation within the turn.

  4. Hard alpha-keratin degradation inside a tissue under high flux X-ray synchrotron micro-beam: a multi-scale time-resolved study.

    PubMed

    Leccia, Emilie; Gourrier, Aurélien; Doucet, Jean; Briki, Fatma

    2010-04-01

    X-rays interact strongly with biological organisms. Synchrotron radiation sources deliver very intense X-ray photon fluxes within micro- or submicro cross-section beams, resulting in doses larger than the MGy. The relevance of synchrotron radiation analyses of biological materials is therefore questionable since such doses, million times higher than the ones used in radiotherapy, can cause huge damages in tissues, with regard to not only DNA, but also proteic and lipid organizations. Very few data concerning the effect of very high X-ray doses in tissues are available in the literature. We present here an analysis of the structural phenomena which occur when the model tissue of human hair is irradiated by a synchrotron X-ray micro-beam. The choice of hair is supported by its hierarchical and partially ordered keratin structure which can be analysed inside the tissue by X-ray diffraction. To assess the damages caused by hard X-ray micro-beams (1 microm(2) cross-section), short exposure time scattering SAXS/WAXS patterns have been recorded at beamline ID13 (ESRF) after various irradiation times. Various modifications of the scattering patterns are observed, they provide fine insight of the radiation damages at various hierarchical levels and also unexpectedly provide information about the stability of the various hierarchical structural levels. It appears that the molecular level, i.e. the alpha helices which are stabilized by hydrogen bonds and the alpha-helical coiled coils which are stabilized by hydrophobic interactions, is more sensitive to radiation than the supramolecular architecture of the keratin filament and the filament packing within the keratin associated proteins matrix, which is stabilized by disulphide bonds. (c) 2009 Elsevier Inc. All rights reserved.

  5. Multicenter Clinical Trial of Keratin Biomaterial for Peripheral Nerve Regeneration

    DTIC Science & Technology

    2015-12-01

    Radiological Health ( CDRH ) to clarify the designation of the hydrogel. As a result of this meeting, steps required for an IND for the keratin...the Center for Biologics Evaluation Research (CBER), and the Center for Devices and Radiological Health 8 ( CDRH ) to clarify the designation of the...application to the CDRH for a new product. This new product is the material that is produced in the validated manufacturing facility at KeraNetics. This

  6. Keratin, luminal epithelial antigen and carcinoembryonic antigen in human urinary bladder carcinomas. An immunohistochemical study.

    PubMed

    Nathrath, W B; Arnholdt, H; Wilson, P D

    1982-01-01

    14 urinary bladder carcinomas of all main types were investigated with antisera to "broad spectrum keratin" (aK), "luminal epithelial antigen" (aLEA) and carcinoembryonic antigen (aCEA), using an indirect immunoperoxidase method on formalin fixed paraffin embedded sections. Keratin and LEA were both present in normal transitional epithelium, papilloma and carcinoma in situ whereas CEA was absent. Transitional cell carcinomas reacted with both aK and aLEA whereas CEA was seen only in a few foci. In squamous metaplasia and squamous carcinoma reaction with aK was particularly strong, while LEA was almost lacking and CEA was present in necrotic centres. In adenocarcinomas aK and aLEA reacted equally while aCEA reacted only on the surface.

  7. Colour-producing β-keratin nanofibres in blue penguin (Eudyptula minor) feathers

    PubMed Central

    D'Alba, Liliana; Saranathan, Vinodkumar; Clarke, Julia A.; Vinther, Jakob A.; Prum, Richard O.; Shawkey, Matthew D.

    2011-01-01

    The colours of living organisms are produced by the differential absorption of light by pigments (e.g. carotenoids, melanins) and/or by the physical interactions of light with biological nanostructures, referred to as structural colours. Only two fundamental morphologies of non-iridescent nanostructures are known in feathers, and recent work has proposed that they self-assemble by intracellular phase separation processes. Here, we report a new biophotonic nanostructure in the non-iridescent blue feather barbs of blue penguins (Eudyptula minor) composed of parallel β-keratin nanofibres organized into densely packed bundles. Synchrotron small angle X-ray scattering and two-dimensional Fourier analysis of electron micrographs of the barb nanostructure revealed short-range order in the organization of fibres at the appropriate size scale needed to produce the observed colour by coherent scattering. These two-dimensional quasi-ordered penguin nanostructures are convergent with similar arrays of parallel collagen fibres in avian and mammalian skin, but constitute a novel morphology for feathers. The identification of a new class of β-keratin nanostructures adds significantly to the known mechanisms of colour production in birds and suggests additional complexity in their self-assembly. PMID:21307042

  8. Association of keratin 8/18 variants with non-alcoholic fatty liver disease and insulin resistance in Chinese patients: A case-control study.

    PubMed

    Li, Rui; Liao, Xian-Hua; Ye, Jun-Zhao; Li, Min-Rui; Wu, Yan-Qin; Hu, Xuan; Zhong, Bi-Hui

    2017-06-14

    To test the hypothesis that K8/K18 variants predispose humans to non-alcoholic fatty liver disease (NAFLD) progression and its metabolic phenotypes. We selected a total of 373 unrelated adult subjects from our Physical Examination Department, including 200 unrelated NAFLD patients and 173 controls of both genders and different ages. Diagnoses of NAFLD were established according to ultrasonic signs of fatty liver. All subjects were tested for population characteristics, lipid profile, liver tests, as well as glucose tests. Genomic DNA was obtained from peripheral blood with a DNeasy Tissue Kit. K8/K18 coding regions were analyzed, including 15 exons and exon-intron boundaries. Among 200 NAFLD patients, 10 (5%) heterozygous carriers of keratin variants were identified. There were 5 amino-acid-altering heterozygous variants and 6 non-coding heterozygous variants. One novel amino-acid-altering heterozygous variant (K18 N193S) and three novel non-coding variants were observed (K8 IVS5-9A→G, K8 IVS6+19G→A, K18 T195T). A total of 9 patients had a single variant and 1 patient had compound variants (K18 N193S+K8 IVS3-15C→G). Only one R341H variant was found in the control group (1 of 173, 0.58%). The frequency of keratin variants in NAFLD patients was significantly higher than that in the control group (5% vs 0.58%, P = 0.015). Notably, the keratin variants were significantly associated with insulin resistance (IR) in NAFLD patients (8.86% in NAFLD patients with IR vs 2.5% in NAFLD patients without IR, P = 0.043). K8/K18 variants are overrepresented in Chinese NAFLD patients and might accelerate liver fat storage through IR.

  9. [Study of beta-turns in globular proteins].

    PubMed

    Amirova, S R; Milchevskiĭ, Iu V; Filatov, I V; Esipova, N G; Tumanian, V G

    2005-01-01

    The formation of beta-turns in globular proteins has been studied by the method of molecular mechanics. Statistical method of discriminant analysis was applied to calculate energy components and sequences of oligopeptide segments, and after this prediction of I type beta-turns has been drawn. The accuracy of true positive prediction is 65%. Components of conformational energy considerably affecting beta-turn formation were delineated. There are torsional energy, energy of hydrogen bonds, and van der Waals energy.

  10. The utility of naphthyl-keratin adducts as biomarkers for jet-fuel exposure

    PubMed Central

    Kang-Sickel, Juei-Chuan C.; Butler, Mary Ann; Frame, Lynn; Serdar, Berrin; Chao, Yi-Chun E.; Egeghy, Peter; Rappaport, Stephen M.; Toennis, Christine A.; Li, Wang; Borisova, Tatyana; French, John E.; Nylander-French, Leena A.

    2014-01-01

    We investigated the association between biomarkers of dermal exposure, naphthyl-keratin adducts (NKA), and urine naphthalene biomarker levels in 105 workers routinely exposed to jet-fuel. A moderate correlation was observed between NKA and urine naphthalene levels (p = 0.061). The NKA, post-exposure breath naphthalene, and male gender were associated with an increase, while CYP2E1*6 DD and GSTT1-plus (++/+−) genotypes were associated with a decrease in urine naphthalene level (p < 0.0001). The NKA show great promise as biomarkers for dermal exposure to naphthalene. Further studies are warranted to characterize the relationship between NKA, other exposure biomarkers, and/or biomarkers of biological effects due to naphthalene and/or PAH exposure. PMID:21961652

  11. The utility of naphthyl-keratin adducts as biomarkers for jet-fuel exposure.

    PubMed

    Kang-Sickel, Juei-Chuan C; Butler, Mary Ann; Frame, Lynn; Serdar, Berrin; Chao, Yi-Chun E; Egeghy, Peter; Rappaport, Stephen M; Toennis, Christine A; Li, Wang; Borisova, Tatyana; French, John E; Nylander-French, Leena A

    2011-11-01

    We investigated the association between biomarkers of dermal exposure, naphthyl-keratin adducts (NKA), and urine naphthalene biomarker levels in 105 workers routinely exposed to jet-fuel. A moderate correlation was observed between NKA and urine naphthalene levels (p = 0.061). The NKA, post-exposure breath naphthalene, and male gender were associated with an increase, while CYP2E1*6 DD and GSTT1-plus (++/+-) genotypes were associated with a decrease in urine naphthalene level (p < 0.0001). The NKA show great promise as biomarkers for dermal exposure to naphthalene. Further studies are warranted to characterize the relationship between NKA, other exposure biomarkers, and/or biomarkers of biological effects due to naphthalene and/or PAH exposure.

  12. Cellulose nanocrystal-reinforced keratin bioadsorbent for effective removal of dyes from aqueous solution.

    PubMed

    Song, Kaili; Xu, Helan; Xu, Lan; Xie, Kongliang; Yang, Yiqi

    2017-05-01

    High-efficiency and recyclable three-dimensional bioadsorbents were prepared by incorporating cellulose nanocrystal (CNC) as reinforcements in keratin sponge matrix to remove dyes from aqueous solution. Adsorption performance of dyes by CNC-reinforced keratin bioadsorbent was improved significantly as a result of adding CNC as filler. Batch adsorption results showed that the adsorption capacities for Reactive Black 5 and Direct Red 80 by the bioadsorbent were 1201 and 1070mgg -1 , respectively. The isotherms and kinetics for adsorption of both dyes on bioadsorbent followed the Langmuir isotherm model and pseudo-second order model, respectively. Desorption and regeneration experiments showed that the removal efficiencies of the bioadsorbent for both dyes could remain above 80% at the fifth recycling cycles. Moreover, the bioadsorbent possessed excellent packed-bed column operation performance. Those results suggested that the adsorbent could be considered as a high-performance and promising candidate for dye wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Mitochondrial ribosomal protein S18-2 is highly expressed in endometrial cancers along with free E2F1

    PubMed Central

    Iurchenko, Natalia; Kovalevska, Larysa; Stip, Maria C; Budnikova, Daria; Andersson, Sonia; Polischuk, Ludmila; Buchynska, Lubov; Kashuba, Elena

    2016-01-01

    Endometrial cancer (EC) is one of the most frequent causes of cancer death among women in developed countries. Histopathological diagnosis and imaging techniques for EC are limited, thus new prognostic markers are needed to offer patients the best treatment and follow-up. In the present paper we showed that the level of mitochondrial ribosomal protein MRPS18-2 (S18-2) increased in EC compared with the normal endometrium and hyperplasia, based on a study of 42 patient biopsies. Importantly, high expression of free E2F1 in EC correlates well with high S18-2 expression. The EC cell line HEC-1-A, which overexpresses S18-2 constitutively, showed an increased proliferation capacity in vitro and in vivo (in SCID mice). Moreover, pan-keratin, beta-catenin and E-cadherin signals are diminished in these cells, compared to the parental HEC-1-A line, in contrast to vimentin signal that is increased. This may be associated with epithelial-mesenchymal cell transition (EMT). We conclude that high expression of S18-2 and free E2F1, and low pan-keratin, beta-catenin, and E-cadherin signals might be a good set of prognostic markers for EC. PMID:26959119

  14. The hepta-beta-glucoside elicitor-binding proteins from legumes represent a putative receptor family.

    PubMed

    Mithöfer, A; Fliegmann, J; Neuhaus-Url, G; Schwarz, H; Ebel, J

    2000-08-01

    The ability of legumes to recognize and respond to beta-glucan elicitors by synthesizing phytoalexins is consistent with the existence of a membrane-bound beta-glucan-binding site. Related proteins of approximately 75 kDa and the corresponding mRNAs were detected in various species of legumes which respond to beta-glucans. The cDNAs for the beta-glucan-binding proteins of bean and soybean were cloned. The deduced 75-kDa proteins are predominantly hydrophilic and constitute a unique class of glucan-binding proteins with no currently recognizable functional domains. Heterologous expression of the soybean beta-glucan-binding protein in tomato cells resulted in the generation of a high-affinity binding site for the elicitor-active hepta-beta-glucoside conjugate (Kd = 4.5 nM). Ligand competition experiments with the recombinant binding sites demonstrated similar ligand specificities when compared with soybean. In both soybean and transgenic tomato, membrane-bound, active forms of the glucan-binding proteins coexist with immunologically detectable, soluble but inactive forms of the proteins. Reconstitution of a soluble protein fraction into lipid vesicles regained beta-glucoside-binding activity but with lower affinity (Kd = 130 nM). We conclude that the beta-glucan elicitor receptors of legumes are composed of the 75 kDa glucan-binding proteins as the critical components for ligand-recognition, and of an as yet unknown membrane anchor constituting the plasma membrane-associated receptor complex.

  15. Improved thermal-stability and mechanical properties of type I collagen by crosslinking with casein, keratin and soy protein isolate using transglutaminase.

    PubMed

    Wu, Xiaomeng; Liu, Yaowei; Liu, Anjun; Wang, Wenhang

    2017-05-01

    The inferior thermal- stability of collagen hinders its extensive application in food industry, including edible packaging. To improve the thermal- stability and mechanical properties of collagen, we attempted to crosslink collagen with some proteins possessing excellent thermal stability (i. e., casein, keratin and soy protein isolate (SPI)). Observed from the SDS- PAGE and particle size distribution, some complexes with higher molecule weight and relative bigger size particle occurred in the protein mixture, especially after TGase crosslinking. Importantly, the crosslinking greatly improved the thermal- stable property of protein complex, especially that of the collagen- casein complex judged from differential scanning calorimetric (DSC). Moreover, the crosslinking enhanced the mechanical properties of the combined films in terms of tensile strength (TS) and elongation at break (EAB). Also, some obvious differences in morphology of proteins before and after TGase crosslinking were observed by scanning electron microscopy (SEM). These impacts of TGase crosslinking with heat- resistant proteins on collagen features were associated with the conformational changes of the protein complex analyzed by Fourier transform infrared spectroscopy (FTIR). In conclusion, TGase crosslinking with higher thermally stable proteins could be an effective method to contribute to collagen' application in food packaging field. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Clinical evaluation of a collagen matrix to enhance the width of keratinized gingiva around dental implants

    PubMed Central

    Lee, Kang-Ho; Kim, Byung-Ock

    2010-01-01

    Purpose The purpose of this study was to evaluate the effect of collagen matrix with apically positioned flap (APF) on the width of keratinized gingiva, comparing to the results of APF only and APF combined with free gingival graft (FGG) at the second implant surgery. Methods Nine patients were selected from those who had received treatments at the Department of Periodontics, Chosun University Dental Hospital, Gwangju, Korea. We performed APF, APF combined with FGG, and APF combined with collagen matrix coverage respectively. Clinical evaluation of keratinized gingival was performed by measuring the distance from the gingival crest to the mucogingival junction at the mid-buccal point, using a periodontal probe before and after the surgery. Results The ratio of an increase was 0.3, 0.6, and 0.6 for the three subjects in the APF cases, 3, 5, and 7 for the three in the APF combined with FGG case, and 1.5, 0.5, and 3 for the three in the APF combined with collagen matrix coverage case. Conclusions This study suggests that the collagen matrix when used as a soft tissue substitute with the aim of increasing the width of keratinized tissue or mucosa, was as effective and predictable as the FGG. PMID:20498767

  17. Protein synthesis in skeletal muscle of neonatal pigs is enhanced by administration of Beta-hydroxy-Beta-methylbutyrate

    USDA-ARS?s Scientific Manuscript database

    Many low-birth-weight infants experience failure to thrive. The amino acid leucine stimulates protein synthesis in skeletal muscle of the neonate, but less is known about the effects of the leucine metabolite Beta-hydroxy-Beta-methylbutyrate (HMB). To determine the effects of HMB on protein synthesi...

  18. Protein synthesis in skeletal muscle of neonatal pigs is enhanced by administration of beta-hydroxy-beta-methylbutyrate

    USDA-ARS?s Scientific Manuscript database

    Many low-birth-weight infants experience failure to thrive. The amino acid leucine stimulates protein synthesis in skeletal muscle of the neonate, but less is known about the effects of the leucine metabolite beta-hydroxy-beta-methylbutyrate (HMB). To determine the effects of HMB on protein synthesi...

  19. A novel autosomal partially dominant mutation designated G476D in the keratin 5 gene causing epidermolysis bullosa simplex Weber-Cockayne type: a family study with a genetic twist.

    PubMed

    Kowalewski, Cezary; Hamada, Takahiro; Wozniak, Katarzyna; Kawano, Yuko; Szczecinska, Weronika; Yasumoto, Shinichiro; Schwartz, Robert A; Hashimoto, Takashi

    2007-07-01

    Epidermolysis bullosa simplex Weber-Cockayne type (EBS-WC) is a genetically inherited skin disease characterized by blistering restricted to the palms and soles. Its inheritance in nearly all kindreds is caused by a dominant-negative mutation in either KRT5 or KRT14, the genes encoding keratin 5 and keratin 14 proteins, respectively. Rarely, recessive mutations have also been found. We described a family with EBS-WC caused by a novel autosomal dominant mutation (G476D) in the keratin 5 gene. One family member was first seen with mucosal erosions and generalized blisters localized on the anogenital area, trunk, face and sites of mechanical trauma. Molecular analysis in this patient showed the presence of an additional mutation, an autosomal recessive (G183E) one, in the same gene. This observation suggests an additional effect of a recessively inherited mutation modulating the phenotypic expression of EBS caused by a partially dominant mutation and is important for accurate genetic counseling.

  20. The Molecular Architecture for the Intermediate Filaments of Hard α -Keratin Based on the Superlattice Data Obtained from a Study of Mammals Using Synchrotron Fibre Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Veronica

    High- and low-angle X-ray diffraction studies of hard α -keratin have been studied, and various models have been proposed over the last 70 years. Most of these studies have been confined to one or two forms of alpha keratin. This high- and low-angle synchrotron fibre diffraction study extends the study to cover all available data for all known forms of hard α -keratin including hairs, fingernails, hooves, horn, and quills from mammals, marsupials, and a monotreme, and it confirms that the model proposed is universally acceptable for all mammals. A complete Bragg analysis of the meridional diffraction patterns, including multiple-timemore » exposures to verify any weak reflections, verified the existence of a superlattice consisting of two infinite lattices and three finite lattices. An analysis of the equatorial patterns establishes the radii of the oligomeric levels of dimers, tetramers, and intermediate filaments (IFs) together with the centre to centre distance for the IFs, thus confirming the proposed helices within helices molecular architecture for hard α -keratin. The results verify that the structure proposed by Feughelman and James meets the criteria for a valid α -keratin structure.« less

  1. The Molecular Architecture for the Intermediate Filaments of Hard α -Keratin Based on the Superlattice Data Obtained from a Study of Mammals Using Synchrotron Fibre Diffraction

    DOE PAGES

    James, Veronica

    2011-01-01

    High- and low-angle X-ray diffraction studies of hard α -keratin have been studied, and various models have been proposed over the last 70 years. Most of these studies have been confined to one or two forms of alpha keratin. This high- and low-angle synchrotron fibre diffraction study extends the study to cover all available data for all known forms of hard α -keratin including hairs, fingernails, hooves, horn, and quills from mammals, marsupials, and a monotreme, and it confirms that the model proposed is universally acceptable for all mammals. A complete Bragg analysis of the meridional diffraction patterns, including multiple-timemore » exposures to verify any weak reflections, verified the existence of a superlattice consisting of two infinite lattices and three finite lattices. An analysis of the equatorial patterns establishes the radii of the oligomeric levels of dimers, tetramers, and intermediate filaments (IFs) together with the centre to centre distance for the IFs, thus confirming the proposed helices within helices molecular architecture for hard α -keratin. The results verify that the structure proposed by Feughelman and James meets the criteria for a valid α -keratin structure.« less

  2. The Molecular Architecture for the Intermediate Filaments of Hard [alpha]-Keratin Based on the Superlattice Data Obtained from a Study ofMammals Using Synchrotron Fibre Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Veronica

    2014-09-24

    High- and low-angle X-ray diffraction studies of hard {alpha}-keratin have been studied, and various models have been proposed over the last 70 years. Most of these studies have been confined to one or two forms of alpha keratin. This high- and low-angle synchrotron fibre diffraction study extends the study to cover all available data for all known forms of hard {alpha}-keratin including hairs, fingernails, hooves, horn, and quills from mammals, marsupials, and a monotreme, and it confirms that the model proposed is universally acceptable for all mammals. A complete Bragg analysis of the meridional diffraction patterns, including multiple-time exposures tomore » verify any weak reflections, verified the existence of a superlattice consisting of two infinite lattices and three finite lattices. An analysis of the equatorial patterns establishes the radii of the oligomeric levels of dimers, tetramers, and intermediate filaments (IFs) together with the centre to centre distance for the IFs, thus confirming the proposed helices within helices molecular architecture for hard {alpha}-keratin. The results verify that the structure proposed by Feughelman and James meets the criteria for a valid {alpha}-keratin structure.« less

  3. Plastin 1 Binds to Keratin and Is Required for Terminal Web Assembly in the Intestinal Epithelium

    PubMed Central

    Grimm-Günter, Eva-Maria S.; Revenu, Céline; Ramos, Sonia; Hurbain, Ilse; Smyth, Neil; Ferrary, Evelyne; Louvard, Daniel; Robine, Sylvie

    2009-01-01

    Plastin 1 (I-plastin, fimbrin) along with villin and espin is a prominent actin-bundling protein of the intestinal brush border microvilli. We demonstrate here that plastin 1 accumulates in the terminal web and interacts with keratin 19, possibly contributing to anchoring the rootlets to the keratin network. This prompted us to investigate the importance of plastin 1 in brush border assembly. Although in vivo neither villin nor espin is required for brush border structure, plastin 1-deficient mice have conspicuous ultrastructural alterations: microvilli are shorter and constricted at their base, and, strikingly, their core actin bundles lack true rootlets. The composition of the microvilli themselves is apparently normal, whereas that of the terminal web is profoundly altered. Although the plastin 1 knockout mice do not show any overt gross phenotype and present a normal intestinal microanatomy, the alterations result in increased fragility of the epithelium. This is seen as an increased sensitivity of the brush border to biochemical manipulations, decreased transepithelial resistance, and increased sensitivity to dextran sodium sulfate-induced colitis. Plastin 1 thus emerges as an important regulator of brush border morphology and stability through a novel role in the organization of the terminal web, possibly by connecting actin filaments to the underlying intermediate filament network. PMID:19321664

  4. Keratin 5 overexpression is associated with serous ovarian cancer recurrence and chemotherapy resistance.

    PubMed

    Ricciardelli, Carmela; Lokman, Noor A; Pyragius, Carmen E; Ween, Miranda P; Macpherson, Anne M; Ruszkiewicz, Andrew; Hoffmann, Peter; Oehler, Martin K

    2017-03-14

    This study investigated the clinical significance of keratin 5 and 6 expression in serous ovarian cancer progression and chemotherapy resistance. KRT5 and KRT6 (KRT6A, KRT6B & KRT6C) gene expression was assessed in publically available serous ovarian cancer data sets, ovarian cancer cell lines and primary serous ovarian cancer cells. Monoclonal antibodies which detect both K5/6 or only K5 were used to assess protein expression in ovarian cancer cell lines and a cohort of high grade serous ovarian carcinomas at surgery (n = 117) and after neoadjuvant chemotherapy (n = 21). Survival analyses showed that high KRT5 mRNA in stage III/IV serous ovarian cancers was significantly associated with reduced progression-free (HR 1.38, P < 0.0001) and overall survival (HR 1.28, P = 0.013) whilst high KRT6 mRNA was only associated with reduced progression-free survival (HR 1.2, P = 0.031). Both high K5/6 (≥ 10%, HR 1.78 95% CI; 1.03-2.65, P = 0.017) and high K5 (≥ 10%, HR 1.90, 95% CI; 1.12-3.19, P = 0.017) were associated with an increased risk of disease recurrence. KRT5 but not KRT6C mRNA expression was increased in chemotherapy resistant primary serous ovarian cancer cells compared to chemotherapy sensitive cells. The proportion of serous ovarian carcinomas with high K5/6 or high K5 immunostaining was significantly increased following neoadjuvant chemotherapy. K5 can be used to predict serous ovarian cancer prognosis and identify cancer cells that are resistant to chemotherapy. Developing strategies to target K5 may therefore improve serous ovarian cancer survival.

  5. Minimalist design of water-soluble cross-beta architecture.

    PubMed

    Biancalana, Matthew; Makabe, Koki; Koide, Shohei

    2010-02-23

    Demonstrated successes of protein design and engineering suggest significant potential to produce diverse protein architectures and assemblies beyond those found in nature. Here, we describe a new class of synthetic protein architecture through the successful design and atomic structures of water-soluble cross-beta proteins. The cross-beta motif is formed from the lamination of successive beta-sheet layers, and it is abundantly observed in the core of insoluble amyloid fibrils associated with protein-misfolding diseases. Despite its prominence, cross-beta has been designed only in the context of insoluble aggregates of peptides or proteins. Cross-beta's recalcitrance to protein engineering and conspicuous absence among the known atomic structures of natural proteins thus makes it a challenging target for design in a water-soluble form. Through comparative analysis of the cross-beta structures of fibril-forming peptides, we identified rows of hydrophobic residues ("ladders") running across beta-strands of each beta-sheet layer as a minimal component of the cross-beta motif. Grafting a single ladder of hydrophobic residues designed from the Alzheimer's amyloid-beta peptide onto a large beta-sheet protein formed a dimeric protein with a cross-beta architecture that remained water-soluble, as revealed by solution analysis and x-ray crystal structures. These results demonstrate that the cross-beta motif is a stable architecture in water-soluble polypeptides and can be readily designed. Our results provide a new route for accessing the cross-beta structure and expanding the scope of protein design.

  6. Beta.-glucosidase coding sequences and protein from orpinomyces PC-2

    DOEpatents

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong; Ximenes, Eduardo A.

    2001-02-06

    Provided is a novel .beta.-glucosidase from Orpinomyces sp. PC2, nucleotide sequences encoding the mature protein and the precursor protein, and methods for recombinant production of this .beta.-glucosidase.

  7. Increased neuronal beta-amyloid precursor protein expression in human temporal lobe epilepsy: association with interleukin-1 alpha immunoreactivity.

    PubMed

    Sheng, J G; Boop, F A; Mrak, R E; Griffin, W S

    1994-11-01

    Levels of immunoreactive beta-amyloid precursor protein and interleukin-1 alpha were found to be elevated in surgically resected human temporal lobe tissue from patients with intractable epilepsy compared with postmortem tissue from neurologically unaffected patients (controls). In tissue from epileptics, the levels of the 135-kDa beta-amyloid precursor protein isoform were elevated to fourfold (p < 0.05) those of controls and those of the 130-kDa isoform to threefold (p < 0.05), whereas those of the 120-kDa isoform (p > 0.05) were not different from control values. beta-Amyloid precursor protein-immunoreactive neurons were 16 times more numerous, and their cytoplasm and proximal processes were more intensely immunoreactive in tissue sections from epileptics than controls (133 +/- 12 vs. 8 +/- 3/mm2; p < 0.001). However, neither beta-amyloid precursor protein-immunoreactive dystrophic neurites nor beta-amyloid deposits were found in this tissue. Interleukin-1 alpha-immunoreactive cells (microglia) were three times more numerous in epileptics than in controls (80 +/- 8 vs. 25 +/- 5/mm2; p < 0.001), and these cells were often found adjacent to beta-amyloid precursor protein-immunoreactive neuronal cell bodies. Our findings, together with functions established in vitro for interleukin-1, suggest that increased expression of this protein contributes to the increased levels of beta-amyloid precursor protein in epileptics, thus indicating a potential role for both of these proteins in the neuronal dysfunctions, e.g., hyperexcitability, characteristic of epilepsy.

  8. The ESR signals in silk fibroin and wool keratin under both the effect of UV-irradiation and without any external effects and the formation of free radicals.

    PubMed

    Mamedov, Sh V; Aktas, B; Cantürk, M; Aksakal, B; Alekperov, V; Bülbül, F; Yilgin, R; Aslanov, R B

    2002-08-01

    ESR studies have been done on natural and UV-irradiated silk fibroins and wool keratins at the temperature range of -196 degrees C to 20 C. The intensities of ESR signals obtained from the irradiated samples at -196 C remarkably increase with respect to those of natural samples. While the signals mainly consist of triplet peaks at -196 C. a doublet arises around the room temperatures. For the first time, at room temperature without any external effect the complicated ESR spectra of fibrous proteins (wool keratin and silk fibroin) whose components are as follows have been observed: (1) (for white wool keratin) a central doublet with deltaHm = 1.1 mT and g = 2.0075; deltaHm = 5mT and g = 2.1911; (2) a wide peak with deltaHm approximately 66 mT and g approximately 2.1575; (3) the 'sulfur' peak given in the literature with deltaHm = 2.2 mT and g = 2.0218; (4) the signal with deltaHm = 0.6 mT and g = 2.0065, and for silk fibroin, (a) a very wide signal with deltaHm approximately 70 mT and g approximately 2.084; (b) a very sharp signal with deltaHm approximately 1.1 mT and g approximately 2.01; and (c) relatively narrower signal with deltaHm approximately 5 mT and g approximately 2.336. It has been shown by recombination kinetic method that 30-50% of the free radicals formed by UV-irradiation do not undergo recombination up to 220 degrees C and 15 degrees C for silk libroin and wool keratin, respectively, even they keep their concentration constant for long period of time (weeks, months, even longer). In this article, considering above-mentioned results, the mechanism of signals observed in natural wool keratin and silk fibroin without any external effects is examined. We can briefly explain the role of the subject of the article, by considering fibrous proteins and some applications of the reactions by free radical occurring in these proteins tinder the effects of different factors in medicine and biology and the important role of oxidation and the other kinds of

  9. ERK2-mediated C-terminal serine phosphorylation of p300 is vital to the regulation of epidermal growth factor-induced keratin 16 gene expression.

    PubMed

    Chen, Yun-Ju; Wang, Ying-Nai; Chang, Wen-Chang

    2007-09-14

    We previously reported that the epidermal growth factor (EGF) regulates the gene expression of keratin 16 by activating the extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling which in turn enhances the recruitment of p300 to the keratin 16 promoter. The recruited p300 functionally cooperates with Sp1 and c-Jun to regulate the gene expression of keratin 16. This study investigated in detail the molecular events incurred upon p300 whereby EGF caused an enhanced interaction between p300 and Sp1. EGF apparently induced time- and dose-dependent phosphorylation of p300, both in vitro and in vivo, through the activation of ERK2. The six potential ERK2 phosphorylation sites, including three threonine and three serine residues as revealed by sequential analysis, were first identified in vitro. Confirmation of these six sites in vivo indicated that these three serine residues (Ser-2279, Ser-2315, and Ser-2366) on the C terminus of p300 were the major signaling targets of EGF. Furthermore, the C-terminal serine phosphorylation of p300 stimulated its histone acetyltransferase activity and enhanced its interaction with Sp1. These serine phosphorylation sites on p300 controlled the p300 recruitment to the keratin 16 promoter. When all three serine residues on p300 were replaced by alanine, EGF could no longer induce the gene expression of keratin 16. Taken together, these results strongly suggested that the ERK2-mediated C-terminal serine phosphorylation of p300 was a key event in the regulation of EGF-induced keratin 16 expression. These results also constituted the first report identifying the unique p300 phosphorylation sites induced by ERK2 in vivo.

  10. Effects of tissue fixation conditions and protease pretreatment on immunohistochemical performance of a large series of new anti-keratin monoclonal antibodies: value in oncopathology.

    PubMed

    Bártková, J; Bártek, J; Lukás, Z; Vojtĕsek, B; Stasková, Z; Bursová, H; Pavlovská, R; Rejthar, A; Kovarík, J

    1991-01-01

    A comparative study with 21 recently raised monoclonal antibodies (3 of which are reported here for the first time) to human keratin polypeptides was performed on a wide range of paraffin-embedded tissues and tumors, aimed at the examination of effects of four different fixatives and protease pretreatment on the immunohistochemical detection of keratins. Our data demonstrated that: (a) formaldehyde-based fixatives modified by acidification and/or addition of methanol gave results superior to those achieved by routinely used formol saline; (b) relatively rare antibodies (4 out of 21) could be identified which gave reliable immunostaining patterns even on routine formalin-fixed material; (c) a proteolytic digestion step preceding the immunostaining was beneficial for the performance of the majority of antibodies in our panel. Additional options which could potentially lead to further improvement of keratin immunohistochemistry in paraffin embedded specimens are also suggested. This work provides the necessary basis for wider application of the anti-keratin antibodies of the C-series in both routine oncopathology and research-oriented retrospective studies.

  11. Microarray analysis identifies keratin loci as sensitive biomarkers for thyroid hormone disruption in the salamander Ambystoma mexicanum.

    PubMed

    Page, Robert B; Monaghan, James R; Samuels, Amy K; Smith, Jeramiah J; Beachy, Christopher K; Voss, S Randal

    2007-02-01

    Ambystomatid salamanders offer several advantages for endocrine disruption research, including genomic and bioinformatics resources, an accessible laboratory model (Ambystoma mexicanum), and natural lineages that are broadly distributed among North American habitats. We used microarray analysis to measure the relative abundance of transcripts isolated from A. mexicanum epidermis (skin) after exogenous application of thyroid hormone (TH). Only one gene had a >2-fold change in transcript abundance after 2 days of TH treatment. However, hundreds of genes showed significantly different transcript levels at days 12 and 28 in comparison to day 0. A list of 123 TH-responsive genes was identified using statistical, BLAST, and fold level criteria. Cluster analysis identified two groups of genes with similar transcription patterns: up-regulated versus down-regulated. Most notably, several keratins exhibited dramatic (1000 fold) increases or decreases in transcript abundance. Keratin gene expression changes coincided with morphological remodeling of epithelial tissues. This suggests that keratin loci can be developed as sensitive biomarkers to assay temporal disruptions of larval-to-adult gene expression programs. Our study has identified the first collection of loci that are regulated during TH-induced metamorphosis in a salamander, thus setting the stage for future investigations of TH disruption in the Mexican axolotl and other salamanders of the genus Ambystoma.

  12. Effects of physiological versus pharmacological beta-carotene supplementation on cell proliferation and histopathological changes in the lungs of cigarette smoke-exposed ferrets.

    PubMed

    Liu, C; Wang, X D; Bronson, R T; Smith, D E; Krinsky, N I; Russell, R M

    2000-12-01

    There remains a remarkable discordance between the results of observational epidemiological studies and intervention trials using beta-carotene as a potential chemopreventive agent. One question that needs to be examined is whether the adverse outcomes of human beta-carotene trials are related to the large doses of beta-carotene that were administered. In the present study, ferrets were given a physiological (low) dose or a pharmacological (high) dose of beta-carotene supplementation (0.43 mg versus 2.4 mg/kg body wt/day, which is equivalent to 6 mg versus 30 mg/day in humans) and exposed to cigarette smoke for 6 months. We investigated the effects of these doses of beta-carotene on retinoid concentrations, expression of retinoic acid receptors (RARs), activator protein 1 (AP-1; c-Jun and c-Fos), cyclin D1, proliferating cellular nuclear antigen (PCNA), and histopathological changes in the lungs of both normal and cigarette smoke-exposed ferrets. Thirty-six male ferrets were treated in six groups-control, smoke-exposed (SM), low-dose beta-carotene (LBC), high-dose beta-carotene (HBC), low-dose beta-carotene plus smoke exposure (LBC+SM) or high-dose beta-carotene plus smoke exposure (HBC+SM)-for 6 months. Retinoic acid concentration and RAR beta gene expression, but not expression of RAR alpha and RAR gamma, was reduced in the lung tissue of HBC+SM, HBC, SM and LBC+SM ferrets, but not in that of LBC ferrets, as compared with the control group. Expression of AP-1 and PCNA was greater in HBC+SM, HBC, SM and LBC+SM ferrets, but not in the LBC ferrets, as compared with the control group. Increased amounts of cyclin D1 and keratinized squamous metaplasia were observed in the lung tissue of HBC+SM, HBC and SM groups but not in that of the LBC+SM, LBC or control groups. These data suggest that, in contrast with a pharmacological dose of beta-carotene, a physiological dose of beta-carotene in smoke-exposed ferrets has no potentially detrimental effects and may afford weak

  13. Novel picornavirus associated with avian keratin disorder in Alaskan birds

    USGS Publications Warehouse

    Zylberberg, Maxine; Van Hemert, Caroline R.; Dumbacher, John P.; Handel, Colleen M.; Tihan, Tarik; DeRisi, Joseph L.

    2016-01-01

    Avian keratin disorder (AKD), characterized by debilitating overgrowth of the avian beak, was first documented in black-capped chickadees (Poecile atricapillus) in Alaska. Subsequently, similar deformities have appeared in numerous species across continents. Despite the widespread distribution of this emerging pathology, the cause of AKD remains elusive. As a result, it is unknown whether suspected cases of AKD in the afflicted species are causally linked, and the impacts of this pathology at the population and community levels are difficult to evaluate. We applied unbiased, metagenomic next-generation sequencing to search for candidate pathogens in birds affected with AKD. We identified and sequenced the complete coding region of a novel picornavirus, which we are calling poecivirus. Subsequent screening of 19 AKD-affected black-capped chickadees and 9 control individuals for the presence of poecivirus revealed that 19/19 (100%) AKD-affected individuals were positive, while only 2/9 (22%) control individuals were infected with poecivirus. Two northwestern crows (Corvus caurinus) and two red-breasted nuthatches (Sitta canadensis) with AKD-consistent pathology also tested positive for poecivirus. We suggest that poecivirus is a candidate etiological agent of AKD.

  14. Cartilage acidic protein 1, a new member of the beta-propeller protein family with amyloid propensity.

    PubMed

    Anjos, Liliana; Morgado, Isabel; Guerreiro, Marta; Cardoso, João C R; Melo, Eduardo P; Power, Deborah M

    2017-02-01

    Cartilage acidic protein1 (CRTAC1) is an extracellular matrix protein of chondrogenic tissue in humans and its presence in bacteria indicate it is of ancient origin. Structural modeling of piscine CRTAC1 reveals it belongs to the large family of beta-propeller proteins that in mammals have been associated with diseases, including amyloid diseases such as Alzheimer's. In order to characterize the structure/function evolution of this new member of the beta-propeller family we exploited the unique characteristics of piscine duplicate genes Crtac1a and Crtac1b and compared their structural and biochemical modifications with human recombinant CRTAC1. We demonstrate that CRTAC1 has a beta-propeller structure that has been conserved during evolution and easily forms high molecular weight thermo-stable aggregates. We reveal for the first time the propensity of CRTAC1 to form amyloid-like structures, and hypothesize that the aggregating property of CRTAC1 may be related to its disease-association. We further contribute to the general understating of CRTAC1's and beta-propeller family evolution and function. Proteins 2017; 85:242-255. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Keratins 8 and 18 are type II acute-phase responsive genes overexpressed in human liver disease.

    PubMed

    Guldiken, Nurdan; Usachov, Valentyn; Levada, Kateryna; Trautwein, Christian; Ziol, Marianne; Nahon, Pierre; Strnad, Pavel

    2015-04-01

    Keratins (Ks) 7, 8, 18 and 19 constitute important markers and modifiers of liver disease. In mice, K8 and K18 are stress inducible and a dysregulated K8 > K18 stoichiometry predisposes to formation of Mallory-Denk bodies (MDBs), i.e. aggregates characteristic of chronic liver disorders such as alcoholic liver disease (ALD). In our study, we analyse the expression and the regulation of keratins in context of human liver disease. K7, K8, K18 and K19 mRNA levels were determined in liver biopsies from patients with ALD, non-alcoholic steatohepatitis (NASH), chronic hepatitis B (HBV), hepatitis C (HCV) and from control subjects. HepG2 and Hep3B cells were treated with IL-1β, IL-6 and TNF-α. Mice were injected with turpentine, an established IL-6 inducer. K7, K8 and K18 were 1.5- to 3-fold upregulated in livers of ALD and HCV patients with a more active disease, but not in HBV/NASH subjects, while K19 was significantly elevated in all analysed disorders. K8 and K18 expression displayed a strong correlation (r = 0.89), but dysregulated levels with the K8 > K18 state were seen in ALD. All keratins were overexpressed in subjects with moderate vs. minimal inflammation, while K7, K8 and K18 were upregulated in patients with advanced liver fibrosis. In HepG2/Hep3B cells, IL-6 treatment but not IL-1β or TNF-α significantly increased K8 and K18 expression and elevated K18 levels were seen after turpentine injection. Keratins represent type II acute-phase responsive genes overexpressed in specific human liver disorders. A K8 > K18 state occurs in ALD and predisposes to MDB formation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Molecular cloning of a small prostate protein, known as beta-microsemenoprotein, PSP94 or beta-inhibin, and demonstration of transcripts in non-genital tissues.

    PubMed

    Ulvsbäck, M; Lindström, C; Weiber, H; Abrahamsson, P A; Lilja, H; Lundwall, A

    1989-11-15

    In order to study the gene expression of the seminal plasma protein beta-microseminoprotein, also known as PSP94 and beta-inhibin, clones encoding this protein were isolated from a cDNA library constructed in lambda gt11. Nucleotide sequencing confirmed the structure of a previously cloned cDNA. By northern blot analysis identical sized transcripts were demonstrated in the prostate, the respiratory (tracheal, bronchial and lung) tissues and the antrum part of the gastric mucosa. Thus, the protein is not primarily associated with male reproductive function. Although probably of no physiological significance, a slight structural similarity to the ovarian inhibin beta-chains was identified in the C-terminal half of the molecule.

  17. Minimalist design of water-soluble cross-[beta] architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biancalana, Matthew; Makabe, Koki; Koide, Shohei

    Demonstrated successes of protein design and engineering suggest significant potential to produce diverse protein architectures and assemblies beyond those found in nature. Here, we describe a new class of synthetic protein architecture through the successful design and atomic structures of water-soluble cross-{beta} proteins. The cross-{beta} motif is formed from the lamination of successive {beta}-sheet layers, and it is abundantly observed in the core of insoluble amyloid fibrils associated with protein-misfolding diseases. Despite its prominence, cross-{beta} has been designed only in the context of insoluble aggregates of peptides or proteins. Cross-{beta}'s recalcitrance to protein engineering and conspicuous absence among the knownmore » atomic structures of natural proteins thus makes it a challenging target for design in a water-soluble form. Through comparative analysis of the cross-{beta} structures of fibril-forming peptides, we identified rows of hydrophobic residues ('ladders') running across {beta}-strands of each {beta}-sheet layer as a minimal component of the cross-{beta} motif. Grafting a single ladder of hydrophobic residues designed from the Alzheimer's amyloid-{beta} peptide onto a large {beta}-sheet protein formed a dimeric protein with a cross-{beta} architecture that remained water-soluble, as revealed by solution analysis and x-ray crystal structures. These results demonstrate that the cross-{beta} motif is a stable architecture in water-soluble polypeptides and can be readily designed. Our results provide a new route for accessing the cross-{beta} structure and expanding the scope of protein design.« less

  18. Analysis of internal structure changes in black human hair keratin fibers resulting from bleaching treatments using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kuzuhara, Akio

    2013-09-01

    In order to investigate in detail the internal structure changes in virgin black human hair keratin fibers resulting from bleaching treatments, the structure of cross-sections at various depths of black human hair, which had been impossible due to high melanin grande content, was directly analyzed using Raman spectroscopy. The gauche-gauche-gauche (GGG) content of the sbnd SSsbnd groups existing from the cuticle region to the center of cortex region of the virgin black human hair remarkably decreased, while the gauche-gauche-trans and trans-gauche-trans contents were not changed by performing the excessive bleaching treatment. In particular, it was found that not only the β-sheet and/or random coil content, but also the α-helix content existing throughout the cortex region of virgin black human hair decreased. In addition, the transmission electron microscope observation shows that the proteins in the cell membrane complex, the cuticle and cortex of the virgin black human hair were remarkably eluted by performing the excessive bleaching treatment. From these experiments, the author concluded that the sbnd SSsbnd groups, which have a GGG conformation were decomposed and finally converted to cysteic acid, and the α-helix structure of some of the proteins existing in the keratin was changed to the random coil structure, or eluted from the cortex region, thereby leading to the reduction in the protein density of the virgin human hair after the excessive bleaching treatment.

  19. 17-Beta-estradiol inhibits transforming growth factor-beta signaling and function in breast cancer cells via activation of extracellular signal-regulated kinase through the G protein-coupled receptor 30.

    PubMed

    Kleuser, Burkhard; Malek, Daniela; Gust, Ronald; Pertz, Heinz H; Potteck, Henrik

    2008-12-01

    Breast cancer development and breast cancer progression involves the deregulation of growth factors leading to uncontrolled cellular proliferation, invasion and metastasis. Transforming growth factor (TGF)-beta plays a crucial role in breast cancer because it has the potential to act as either a tumor suppressor or a pro-oncogenic chemokine. A cross-communication between the TGF-beta signaling network and estrogens has been postulated, which is important for breast tumorigenesis. Here, we provide evidence that inhibition of TGF-beta signaling is associated with a rapid estrogen-dependent nongenomic action. Moreover, we were able to demonstrate that estrogens disrupt the TGF-beta signaling network as well as TGF-beta functions in breast cancer cells via the G protein-coupled receptor 30 (GPR30). Silencing of GPR30 in MCF-7 cells completely reduced the ability of 17-beta-estradiol (E2) to inhibit the TGF-beta pathway. Likewise, in GPR30-deficient MDA-MB-231 breast cancer cells, E2 achieved the ability to suppress TGF-beta signaling only after transfection with GPR30-encoding plasmids. It is most interesting that the antiestrogen fulvestrant (ICI 182,780), which possesses agonistic activity at the GPR30, also diminished TGF-beta signaling. Further experiments attempted to characterize the molecular mechanism by which activated GPR30 inhibits the TGF-beta pathway. Our results indicate that GPR30 induces the stimulation of the mitogen-activated protein kinases (MAPKs), which interferes with the activation of Smad proteins. Inhibition of MAPK activity prevented the ability of E2 from suppressing TGF-beta signaling. These findings are of great clinical relevance, because down-regulation of TGF-beta signaling is associated with the development of breast cancer resistance in response to antiestrogens.

  20. Loss of function of ATXN1 increases amyloid beta-protein levels by potentiating beta-secretase processing of beta-amyloid precursor protein.

    PubMed

    Zhang, Can; Browne, Andrew; Child, Daniel; Divito, Jason R; Stevenson, Jesse A; Tanzi, Rudolph E

    2010-03-19

    Alzheimer disease (AD) is a devastating neurodegenerative disease with complex and strong genetic inheritance. Four genes have been established to either cause familial early onset AD (APP, PSEN1, and PSEN2) or to increase susceptibility for late onset AD (APOE). To date approximately 80% of the late onset AD genetic variance remains elusive. Recently our genome-wide association screen identified four novel late onset AD candidate genes. Ataxin 1 (ATXN1) is one of these four AD candidate genes and has been indicated to be the disease gene for spinocerebellar ataxia type 1, which is also a neurodegenerative disease. Mounting evidence suggests that the excessive accumulation of Abeta, the proteolytic product of beta-amyloid precursor protein (APP), is the primary AD pathological event. In this study, we ask whether ATXN1 may lead to AD pathogenesis by affecting Abeta and APP processing utilizing RNA interference in a human neuronal cell model and mouse primary cortical neurons. We show that knock-down of ATXN1 significantly increases the levels of both Abeta40 and Abeta42. This effect could be rescued with concurrent overexpression of ATXN1. Moreover, overexpression of ATXN1 decreased Abeta levels. Regarding the underlying molecular mechanism, we show that the effect of ATXN1 expression on Abeta levels is modulated via beta-secretase cleavage of APP. Taken together, ATXN1 functions as a genetic risk modifier that contributes to AD pathogenesis through a loss-of-function mechanism by regulating beta-secretase cleavage of APP and Abeta levels.

  1. Compost biodegradation of recalcitrant hoof keratin by bacteria and fungi.

    PubMed

    Reuter, T; Gilroyed, B H; Xu, W; McAllister, T A; Stanford, K

    2015-08-01

    Compost activities efficiently break down a wide range of organic substances over time. In this study, bovine hoof was used as recalcitrant protein model to gain so far cryptic information on biodegradation during livestock mortalities composting. Bovine hooves (black and white), containing different amounts of melanin, placed into nylon bags were monitored during composting of cattle mortalities for up to 230 days. Besides physiochemical analysis, bacterial 16S and fungal 18S DNA fragments were amplified by PCR and profiles were separated by DGGE. Sequence analysis of separated fragments revealed various bacterial and fungal identities during composting. The microbial diversity was affected by a time-temperature interaction and by the hoof colour. Our molecular data, supported by electron microscopy, suggest hoof colonization by shifting bacteria and fungi communities. During composting, microbial communities work collaboratively in the degradation of recalcitrant organic matter such as keratin over time. A number of biomolecules including recalcitrant proteins may persist in environmental reservoirs, but breakdown can occur during composting. A combination of bioactivity and physiochemical conditions appear to be decisive for the fate of persistent biomolecules. © 2015 The Society for Applied Microbiology.

  2. Variation of Keratin 7 Expression and Other Phenotypic Characteristics of Independent Isolates of Cadmium Transformed Human Urothelial Cells (UROtsa)

    PubMed Central

    Somji, Seema; Zhou, Xu Dong; Mehus, Aaron; Sens, Mary Ann; Garrett, Scott H.; Lutz, Krista L.; Dunlevy, Jane R.; Zheng, Yun; Sens, Donald. A.

    2009-01-01

    This laboratory has shown that a human urothelial cell line (UROtsa) transformed by cadmium (Cd+2) produced subcutaneous tumor heterotransplants that resemble human transitional cell carcinoma (TCC). In the present study, additional Cd+2 transformed cell lines were isolated to determine if independent exposures of the cell line to Cd+2 would result in malignantly transformed cell lines possessing similar phenotypic properties. Seven independent isolates were isolated and assessed for their doubling times, morphology, ability to heterotransplant subcutaneously and in the peritoneal cavity of nude mice and for the expression keratin 7. The 7 cell lines all displayed an epithelial morphology with no evidence of squamous differentiation. Doubling times were variable among the isolates, being significantly reduced or similar to the parental cells. All 7 isolates were able to form subcutaneous tumor heterotransplants with a TCC morphology and all heterotransplants displayed areas of squamous differentiation of the transitional cells. The degree of squamous differentiation varied among the isolates. In contrast to subcutaneous tumor formation, only 1 isolate of the Cd+2 transformed cells (UTCd#1) was able to effectively colonize multiple sites within the peritoneal cavity. An analysis of keratin 7 expression showed no correlation with squamous differentiation for the subcutaneous heterotransplants generated from the 7 cell lines. Keratin 7 was expressed in 6 of the 7 cell lines and their subcutaneous tumor heterotransplants. Keratin 7 was not expressed in the cell line that was able to form tumors within the peritoneal cavity. These results show that individual isolates of Cd+2 transformed cells have both similarities and differences in their phenotype. PMID:19921857

  3. Highly differentiated keratinizing squamous cell cancer of the cervix: a rare, locally aggressive tumor not associated with human papillomavirus or squamous intraepithelial lesions.

    PubMed

    Morrison, C; Catania, F; Wakely, P; Nuovo, G J

    2001-10-01

    The purpose of this study is to report an unusual variant of cervical squamous cell carcinoma, not associated with either human papillomavirus infection or antecedent squamous intraepithelial lesions. Five women had a diagnosis of invasive cervical cancer discovered at hysterectomy performed for prolapse (two cases), leiomyoma (one case), or a vaginal fistula (two cases). The women ranged in age from 47 to 78 years (mean 59 years). Four of the five had a history of normal Papanicolaou (Pap) smears; the other had a Pap smear diagnosis of atypical squamous cells of undetermined significance (ASCUS). All had large cervical tumors (two with parametrial involvement and one with vaginal involvement) that showed extensive keratin formation, an inverted pattern of growth, and, except for one case, minimal cytologic atypia. There was extensive hyperkeratosis and parakeratosis adjacent to each tumor; none had evidence of squamous intraepithelial lesion. Human papillomavirus testing by polymerase chain reaction in situ hybridization and reverse-transcribed polymerase chain reaction in situ was negative in each case, compared with a detection rate of 107 of 108 (99%) for squamous intraepithelial lesion-associated cervical squamous cell and adenocarcinomas. Two of the women died of extensive local recurrence; two other women were recently diagnosed. We conclude that highly differentiated keratinizing squamous cell carcinoma of the cervix is a rare entity not associated with human papillomavirus infection or squamous intraepithelial lesion and thus difficult to detect on routine cervical cancer screening.

  4. A Novel Di-Leucine Motif at the N-Terminus of Human Organic Solute Transporter Beta Is Essential for Protein Association and Membrane Localization.

    PubMed

    Xu, Shuhua; Soroka, Carol J; Sun, An-Qiang; Backos, Donald S; Mennone, Albert; Suchy, Frederick J; Boyer, James L

    2016-01-01

    The heteromeric membrane protein Organic Solute Transporter alpha/beta is the major bile acid efflux transporter in the intestine. Physical association of its alpha and beta subunits is essential for their polarized basolateral membrane localization and function in the transport of bile acids and other organic solutes. We identified a highly conserved acidic dileucine motif (-EL20L21EE) at the extracellular amino-tail of organic solute transporter beta from multiple species. To characterize the role of this protein interacting domain in the association of the human beta and alpha subunits and in membrane localization of the transporter, Leu20 and Leu21 on the amino-tail of human organic solute transporter beta were replaced with alanines by site-directed mutagenesis. Co-immunoprecipitation study in HEK293 cells demonstrated that substitution of the leucine residues with alanines prevented the interaction of the human beta mutant with the alpha subunit. Membrane biotinylation demonstrated that the LL/AA mutant eliminated membrane expression of both subunits. Computational-based modelling of human organic solute transporter beta suggested that the LL/AA mutation substantially alters both the structure and lipophilicity of the surface, thereby not only affecting the interaction with the alpha subunit but also possibly impacting the capacity of the beta subunit to traffick through the cell and interact with the membrane. In summary, our findings indicate that the dileucine motif in the extracellular N-terminal region of human organic solute transporter beta subunit plays a critical role in the association with the alpha subunit and in its polarized plasma membrane localization.

  5. Beta genus papillomaviruses and skin cancer.

    PubMed

    Howley, Peter M; Pfister, Herbert J

    2015-05-01

    A role for the beta genus HPVs in keratinocyte carcinoma (KC) remains to be established. In this article we examine the potential role of the beta HPVs in cancer revealed by the epidemiology associating these viruses with KC and supported by oncogenic properties of the beta HPV proteins. Unlike the cancer associated alpha genus HPVs, in which transcriptionally active viral genomes are invariably found associated with the cancers, that is not the case for the beta genus HPVs and keratinocyte carcinomas. Thus a role for the beta HPVs in KC would necessarily be in the carcinogenesis initiation and not in the maintenance of the tumor. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Molecular markers in keratins from Mysticeti whales for species identification of baleen in museum and archaeological collections.

    PubMed

    Solazzo, Caroline; Fitzhugh, William; Kaplan, Susan; Potter, Charles; Dyer, Jolon M

    2017-01-01

    Baleen has been harvested by indigenous people for thousands of years, as well as collected by whalers as an additional product of commercial whaling in modern times. Baleen refers to the food-filtering system of Mysticeti whales; a full baleen rack consists of dozens of plates of a tough and flexible keratinous material that terminate in bristles. Due to its properties, baleen was a valuable raw material used in a wide range of artefacts, from implements to clothing. Baleen is not widely used today, however, analyses of this biomolecular tissue have the potential to contribute to conservation efforts, studies of genetic diversity and a better understanding of the exploitation and use of Mysticeti whales in past and recent times. Fortunately, baleen is present in abundance in museum natural history collections. However, it is often difficult or impossible to make a species identification of manufactured or old baleen. Here, we propose a new tool for biomolecular identification of baleen based on its main structural component alpha-keratin (the same protein that makes up hair and fingernails). With the exception of minke whales, alpha-keratin sequences are not yet known for baleen whales. We therefore used peptide mass fingerprinting to determine peptidic profiles in well documented baleen and evaluated the possibility of using this technique to differentiate species in baleen samples that are not adequately identified or are unidentified. We examined baleen from ten different species of whales and determined molecular markers for each species, including species-specific markers. In the case of the Bryde's whales, differences between specimens suggest distinct species or sub-species, consistent with the complex phylogeny of the species. Finally, the methodology was applied to 29 fragments of baleen excavated from archaeological sites in Labrador, Canada (representing 1500 years of whale use by prehistoric people), demonstrating a dominance of bowhead whale (Balaena

  7. Molecular markers in keratins from Mysticeti whales for species identification of baleen in museum and archaeological collections

    PubMed Central

    Fitzhugh, William; Kaplan, Susan; Potter, Charles; Dyer, Jolon M.

    2017-01-01

    Baleen has been harvested by indigenous people for thousands of years, as well as collected by whalers as an additional product of commercial whaling in modern times. Baleen refers to the food-filtering system of Mysticeti whales; a full baleen rack consists of dozens of plates of a tough and flexible keratinous material that terminate in bristles. Due to its properties, baleen was a valuable raw material used in a wide range of artefacts, from implements to clothing. Baleen is not widely used today, however, analyses of this biomolecular tissue have the potential to contribute to conservation efforts, studies of genetic diversity and a better understanding of the exploitation and use of Mysticeti whales in past and recent times. Fortunately, baleen is present in abundance in museum natural history collections. However, it is often difficult or impossible to make a species identification of manufactured or old baleen. Here, we propose a new tool for biomolecular identification of baleen based on its main structural component alpha-keratin (the same protein that makes up hair and fingernails). With the exception of minke whales, alpha-keratin sequences are not yet known for baleen whales. We therefore used peptide mass fingerprinting to determine peptidic profiles in well documented baleen and evaluated the possibility of using this technique to differentiate species in baleen samples that are not adequately identified or are unidentified. We examined baleen from ten different species of whales and determined molecular markers for each species, including species-specific markers. In the case of the Bryde’s whales, differences between specimens suggest distinct species or sub-species, consistent with the complex phylogeny of the species. Finally, the methodology was applied to 29 fragments of baleen excavated from archaeological sites in Labrador, Canada (representing 1500 years of whale use by prehistoric people), demonstrating a dominance of bowhead whale

  8. Curcumin decreases amyloid-beta peptide levels by attenuating the maturation of amyloid-beta precursor protein.

    PubMed

    Zhang, Can; Browne, Andrew; Child, Daniel; Tanzi, Rudolph E

    2010-09-10

    Alzheimer disease (AD) is a devastating neurodegenerative disease with no cure. The pathogenesis of AD is believed to be driven primarily by amyloid-beta (Abeta), the principal component of senile plaques. Abeta is an approximately 4-kDa peptide generated via cleavage of the amyloid-beta precursor protein (APP). Curcumin is a compound in the widely used culinary spice, turmeric, which possesses potent and broad biological activities, including anti-inflammatory and antioxidant activities, chemopreventative effects, and effects on protein trafficking. Recent in vivo studies indicate that curcumin is able to reduce Abeta-related pathology in transgenic AD mouse models via unknown molecular mechanisms. Here, we investigated the effects of curcumin on Abeta levels and APP processing in various cell lines and mouse primary cortical neurons. We show for the first time that curcumin potently lowers Abeta levels by attenuating the maturation of APP in the secretory pathway. These data provide a mechanism of action for the ability of curcumin to attenuate amyloid-beta pathology.

  9. The PDZ protein tax-interacting protein-1 inhibits beta-catenin transcriptional activity and growth of colorectal cancer cells.

    PubMed

    Kanamori, Mutsumi; Sandy, Peter; Marzinotto, Stefania; Benetti, Roberta; Kai, Chikatoshi; Hayashizaki, Yoshihide; Schneider, Claudio; Suzuki, Harukazu

    2003-10-03

    Wnt signaling is essential during development while deregulation of this pathway frequently leads to the formation of various tumors including colorectal carcinomas. A key component of the pathway is beta-catenin that, in association with TCF-4, directly regulates the expression of Wnt-responsive genes. To identify novel binding partners of beta-catenin that may control its transcriptional activity, we performed a mammalian two-hybrid screen and isolated the Tax-interacting protein (TIP-1). The in vivo complex formation between beta-catenin and TIP-1 was verified by coimmunoprecipitation, and a direct physical association was revealed by glutathione S-transferase pull-down experiments in vitro. By using a panel of deletion mutants of both proteins, we demonstrate that the interaction is mediated by the PDZ (PSD-95/DLG/ZO-1 homology) domain of TIP-1 and requires primarily the last four amino acids of beta-catenin. TIP-1 overexpression resulted in a dose-dependent decrease in the transcriptional activity of beta-catenin when tested on the TOP/FOPFLASH reporter system. Conversely, siRNA-mediated knock-down of endogenous TIP-1 slightly increased endogenous beta-catenin transactivation function. Moreover, we show that overexpression of TIP-1 reduced the proliferation and anchorage-independent growth of colorectal cancer cells. These data suggest that TIP-1 may represent a novel regulatory element in the Wnt/beta-catenin signaling pathway.

  10. On the so-called membrane coating granules in keratinized lichen planus lesions of the buccal mucosa.

    PubMed

    El-Labban, N G; Wood, R D

    1982-11-01

    Serial sections of the so-called membrane-coating granules have been examined in keratinized oral epithelium of lichen planus lesions. As with 'granules' apparent in non-keratinized epithelium, it is found they do not represent specialized intra-cytoplasmic organelles, but are the result of sectioning at different areas, levels and planes through the plasma membrane of interdigitating cell processes. Such 'granules' appear mostly in the superficial, but not deep, part of the cytoplasm of the upper prickle cells. This is considered to be due to topographic differences between the upper and under surfaces of these cells and the presence of narrower intercellular spaces than those between deeper epithelial cells. Such arrangement often results in cell processes in sections appearing free in the superficial part of the cell below. The appearance of 'granules' arises when the plane of section is not at right angles to the two plasma membranes surrounding these processes.

  11. The dipole moment of membrane proteins: potassium channel protein and beta-subunit.

    PubMed

    Takashima, S

    2001-12-25

    The mechanism of ion channel opening is one of the most fascinating problems in membrane biology. Based on phenomenological studies, early researchers suggested that the elementary process of ion channel opening may be the intramembrane charge movement or the orientation of dipolar proteins in the channel. In spite of the far reaching significance of these hypotheses, it has not been possible to formulate a comprehensive molecular theory for the mechanism of channel opening. This is because of the lack of the detailed knowledge on the structure of channel proteins. In recent years, however, the research on the structure of channel proteins made marked advances and, at present, we are beginning to have sufficient information on the structure of some of the channel proteins, e.g. potassium-channel protein and beta-subunits. With these new information, we are now ready to have another look at the old hypothesis, in particular, the dipole moment of channel proteins being the voltage sensor for the opening and closing of ion channels. In this paper, the dipole moments of potassium channel protein and beta-subunit, are calculated using X-ray diffraction data. A large dipole moment was found for beta-subunits while the dipole moment of K-channel protein was found to be considerably smaller than that of beta-subunits. These calculations were conducted as a preliminary study of the comprehensive research on the dipolar structure of channel proteins in excitable membranes, above all, sodium channel proteins.

  12. Keratin 17 Mutations in Four Families from India with Pachyonychia Congenita

    PubMed Central

    Agarwala, Manoj; Salphale, Pankaj; Peter, Dincy; Wilson, Neil J; Pulimood, Susanne; Schwartz, Mary E; Smith, Frances J D

    2017-01-01

    Pachyonychia congenita (PC) is a rare autosomal dominant genetic skin disorder due to a mutation in any one of the five keratin genes, KRT6A, KRT6B, KRT6C, KRT16, or KRT17. The main features are palmoplantar keratoderma, plantar pain, and nail dystrophy. Cysts of various types, follicular hyperkeratosis, oral leukokeratosis, hyperhidrosis, and natal teeth may also be present. Four unrelated Indian families presented with a clinical diagnosis of PC. This was confirmed by genetic testing; mutations in KRT17 were identified in all affected individuals. PMID:28794556

  13. Membrane protein GARP is a receptor for latent TGF-beta on the surface of activated human Treg.

    PubMed

    Stockis, Julie; Colau, Didier; Coulie, Pierre G; Lucas, Sophie

    2009-12-01

    Human Treg and Th clones secrete the latent form of TGF-beta, in which the mature TGF-beta protein is bound to the latency-associated peptide (LAP), and is thereby prevented from binding to the TGF-beta receptor. We previously showed that upon TCR stimulation, human Treg clones but not Th clones produce active TGF-beta and bear LAP on their surface. Here, we show that latent TGF-beta, i.e. both LAP and mature TGF-beta, binds to glycoprotein A repetitions predominant (GARP), a transmembrane protein containing leucine rich repeats, which is present on the surface of stimulated Treg clones but not on Th clones. Membrane localization of latent TGF-beta mediated by binding to GARP may be necessary for the ability of Treg to activate TGF-beta upon TCR stimulation. However, it is not sufficient as lentiviral-mediated expression of GARP in human Th cells induces binding of latent TGF-beta to the cell surface, but does not result in the production of active TGF-beta upon stimulation of these Th cells.

  14. Regulation of the mRNA-binding protein AUF1 by activation of the beta-adrenergic receptor signal transduction pathway.

    PubMed

    Pende, A; Tremmel, K D; DeMaria, C T; Blaxall, B C; Minobe, W A; Sherman, J A; Bisognano, J D; Bristow, M R; Brewer, G; Port, J

    1996-04-05

    In both cell culture based model systems and in the failing human heart, beta-adrenergic receptors ( beta-AR) undergo agonist-mediated down-regulation. This decrease correlates closely with down-regulation of its mRNA, an effect regulated in part by changes in mRNA stability. Regulation of mRNA stability has been associated with mRNA-binding proteins that recognize A + U-rich elements within the 3'-untranslated regions of many mRNAs encoding proto-oncogene and cytokine mRNAs. We demonstrate here that the mRNA-binding protein, AUF1, is present in both human heart and in hamster DDT1-MF2 smooth muscle cells and that its abundance is regulated by beta-AR agonist stimulation. In human heart, AUF1 mRNA and protein was significantly increased in individuals with myocardial failure, a condition associated with increases in the beta-adrenergic receptor agonist norepinephrine. In the same hearts, there was a significant decrease (approximately 50%) in the abundance of beta1-AR mRNA and protein. In DDT1-MF2 cells, where agonist-mediated destabilization of beta2-AR mRNA was first described, exposure to beta-AR agonist resulted in a significant increase in AUF1 mRNA and protein (approximately 100%). Conversely, agonist exposure significantly decreased (approximately 40%) beta2-adrenergic receptor mRNA abundance. Last, we demonstrate that AUF1 can be immunoprecipitated from polysome-derived proteins following UV cross-linking to the 3'-untranslated region of the human beta1-AR mRNA and that purified, recombinant p37AUF1 protein also binds to beta1-AR 3'-untranslated region mRNA.

  15. Prediction and analysis of beta-turns in proteins by support vector machine.

    PubMed

    Pham, Tho Hoan; Satou, Kenji; Ho, Tu Bao

    2003-01-01

    Tight turn has long been recognized as one of the three important features of proteins after the alpha-helix and beta-sheet. Tight turns play an important role in globular proteins from both the structural and functional points of view. More than 90% tight turns are beta-turns. Analysis and prediction of beta-turns in particular and tight turns in general are very useful for the design of new molecules such as drugs, pesticides, and antigens. In this paper, we introduce a support vector machine (SVM) approach to prediction and analysis of beta-turns. We have investigated two aspects of applying SVM to the prediction and analysis of beta-turns. First, we developed a new SVM method, called BTSVM, which predicts beta-turns of a protein from its sequence. The prediction results on the dataset of 426 non-homologous protein chains by sevenfold cross-validation technique showed that our method is superior to the other previous methods. Second, we analyzed how amino acid positions support (or prevent) the formation of beta-turns based on the "multivariable" classification model of a linear SVM. This model is more general than the other ones of previous statistical methods. Our analysis results are more comprehensive and easier to use than previously published analysis results.

  16. Neutrophil chemotaxis in response to TGF-beta isoforms (TGF-beta 1, TGF-beta 2, TGF-beta 3) is mediated by fibronectin.

    PubMed

    Parekh, T; Saxena, B; Reibman, J; Cronstein, B N; Gold, L I

    1994-03-01

    TGF-beta isoforms regulate numerous cellular functions including cell growth and differentiation, the cellular synthesis and secretion of extracellular matrix proteins, such as fibronectin (Fn), and the immune response. We have previously shown that TGF-beta 1 is the most potent chemoattractant described for human peripheral blood neutrophils (PMNs), suggesting that TGF-beta s may play a role in the recruitment of PMNs during the initial phase of the inflammatory response. In our current studies, we demonstrate that the maximal chemotactic response was attained near 40 fM for all mammalian TGF-beta isoforms. However, there was a statistically significant difference in migratory distance of the PMNs: TGF-beta 2 (556 microM) > TGF-beta 3 (463 microM) > TGF-beta 1 (380 microM) (beta 2: beta 3, p < or = 0.010; beta 3: beta 1, p < or = 0.04; beta 2: beta 1, p < or = 0.0012). A mAb to the cell binding domain (CBD) of Fn inhibited the chemotactic response to TGF-beta 1 and TGF-beta 3 by 63% and to TGF-beta 2 by 70%, whereas the response to FMLP, a classic chemoattractant, was only inhibited by 18%. In contrast, a mAb to a C-terminal epitope of Fn did not retard migration (< 1.5%). The Arg-gly-Asp-ser tetrapeptide inhibited chemotaxis by approximately the same extent as the anti-CBD (52 to 83%). Furthermore, a mAb against the VLA-5 integrin (VLA-5; Fn receptor) also inhibited TGF-beta-induced chemotaxis. These results indicate that chemotaxis of PMNs in response to TGF-beta isoforms is mediated by the interaction of the Arg-gly-Asp-ser sequence in the CBD of Fn with an integrin on the PMN cell surface, primarily the VLA-5 integrin. TGF-beta isoforms also elicited the release of cellular Fn from PMNs; we observed a 2.3-fold increase in Fn (389 to 401 ng/ml) in the supernatants of TGF-beta-stimulated PMNs compared with unstimulated cells (173.6 ng/ml). The concentration of TGF-beta required to cause maximal release of Fn from PMNs (4000 fM) is a concentration at which TGF-beta

  17. Molecular analysis of the beta-thalassemia phenotype associated with inheritance of hemoglobin E (alpha 2 beta2(26)Glu leads to Lys).

    PubMed Central

    Benz, E J; Berman, B W; Tonkonow, B L; Coupal, E; Coates, T; Boxer, L A; Altman, A; Adams, J G

    1981-01-01

    Inheritance of the gene for betaE-globin is associated with hypochromia and microcytosis, reminiscent of typical heterozygous beta-thalassemia. Patients with hemoglobin (Hb)E-beta-thalassemia exhibit clinical phenotypes of severe beta-thalassemia, a circumstance not encountered in other compound heterozygous states for structural beta-chain mutations and beta-thalassemia. We have analyzed the kinetics of globin synthesis and the levels of globin messenger (m) RNA accumulation in patients with Hb E-beta-thalassemia and Hb E trait. The initial rate of beta-globin synthesis (betaE/alpha=0.20-0.34) was less than expected on the basis of gene dosage, or comparable studies of other compound heterozygous states for beta-thalassemia and structurally abnormal beta-chains. betaE-globin synthesis was not only reduced during short-term incubations (1-5 min), but also remained relatively unchanged during long-term pulse or chase incubations up to 5h. Analysis of globin mRNA by cell-free translation and molecular hybridization confirmed that the unexpectedly low levels of betaE-globin synthesis were associated with comparable reduction in the levels of beta-globin mRNA. In Hb E-beta-thalassemia the betaA + betaE (alpha globin nRNA ratio observed were substantially lower than those obtained from reticulocytes of patients with heterozygous beta-thalassemia, or Hb S-betaO-thalassemia, while in Hb E trait, the betaA + betaE/alpha mRNA ratio was in the ranged observed for beta-thalassemia trait. The betaE-globin gene specifies reduced accumulation of betaE-globin mRNA, a property characteristic of other forms of beta-thalassemia. The beta-thalassemia phenotype associated with inheritance of Hb E is thus determined at the level of beta-globin mRNA metabolism. PMID:6166632

  18. Preparation of keratin-based microcapsules for encapsulation of hydrophilic molecules.

    PubMed

    Rajabinejad, Hossein; Patrucco, Alessia; Caringella, Rosalinda; Montarsolo, Alessio; Zoccola, Marina; Pozzo, Pier Davide

    2018-01-01

    The interest towards microcapsules based on non-toxic, biodegradable and biocompatible polymers, such as proteins, is increasing considerably. In this work, microcapsules were prepared using water soluble keratin, known as keratoses, with the aim of encapsulating hydrophilic molecules. Keratoses were obtained via oxidizing extraction of pristine wool, previously degreased by Soxhlet. In order to better understand the shell part of microcapsules, pristine wool and obtained keratoses were investigated by FT-IR, gel-electrophoresis and HPLC. Production of the microcapsules was carried out by a sonication method. Thermal properties of microcapsules were investigated by DSC. Microencapsulation and dye encapsulation yields were obtained by UV-spectroscopy. Morphological structure of microcapsules was studied by light microscopy, SEM, and AFM. The molecular weights of proteins analyzed using gel-electrophoresis resulted in the range of 38-62kDa. The results confirmed that the hydrophilic dye (Telon Blue) was introduced inside the keratoses shells by sonication and the final microcapsules diameter ranged from 0.5 to 4µm. Light microscope investigation evidenced the presence of the dye inside the keratoses vesicles, confirming their capability of encapsulating hydrophilic molecules. The microcapsule yield and dye encapsulation yield were found to be 28.87±3% and 83.62±5% respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Adenomatous polyposis coli protein (APC)-independent regulation of beta-catenin/Tcf-4 mediated transcription in intestinal cells.

    PubMed Central

    Baulida, J; Batlle, E; García De Herreros, A

    1999-01-01

    Alterations in the transcriptional activity of the beta-catenin-Tcf complex have been associated with the earlier stages of colonic transformation. We show here that the activation of protein kinase C by the phorbol ester PMA in several intestinal cell lines increases the levels of beta-catenin detected in the nucleus and augments the transcriptional activity mediated by beta-catenin. The response to PMA was not related to modifications in the cytosolic levels of beta-catenin and was observed not only in cells with wild-type adenomatous polyposis coli protein (APC) but also in APC-deficient cells. Binding assays in vitro revealed that PMA facilitates the interaction of the beta-catenin with the nuclear structure. Our results therefore show that beta-catenin-mediated transcription can be regulated independently of the presence of APC. PMID:10567241

  20. Using support vector machine to predict beta- and gamma-turns in proteins.

    PubMed

    Hu, Xiuzhen; Li, Qianzhong

    2008-09-01

    By using the composite vector with increment of diversity, position conservation scoring function, and predictive secondary structures to express the information of sequence, a support vector machine (SVM) algorithm for predicting beta- and gamma-turns in the proteins is proposed. The 426 and 320 nonhomologous protein chains described by Guruprasad and Rajkumar (Guruprasad and Rajkumar J. Biosci 2000, 25,143) are used for training and testing the predictive model of the beta- and gamma-turns, respectively. The overall prediction accuracy and the Matthews correlation coefficient in 7-fold cross-validation are 79.8% and 0.47, respectively, for the beta-turns. The overall prediction accuracy in 5-fold cross-validation is 61.0% for the gamma-turns. These results are significantly higher than the other algorithms in the prediction of beta- and gamma-turns using the same datasets. In addition, the 547 and 823 nonhomologous protein chains described by Fuchs and Alix (Fuchs and Alix Proteins: Struct Funct Bioinform 2005, 59, 828) are used for training and testing the predictive model of the beta- and gamma-turns, and better results are obtained. This algorithm may be helpful to improve the performance of protein turns' prediction. To ensure the ability of the SVM method to correctly classify beta-turn and non-beta-turn (gamma-turn and non-gamma-turn), the receiver operating characteristic threshold independent measure curves are provided. (c) 2008 Wiley Periodicals, Inc.

  1. The PDGFRα-laminin B1-keratin 19 cascade drives tumor progression at the invasive front of human hepatocellular carcinoma

    PubMed Central

    Govaere, O; Petz, M; Wouters, J; Vandewynckel, Y-P; Scott, E J; Topal, B; Nevens, F; Verslype, C; Anstee, Q M; Van Vlierberghe, H; Mikulits, W; Roskams, T

    2017-01-01

    Human hepatocellular carcinomas (HCCs) expressing the biliary/hepatic progenitor cell marker keratin 19 (K19) have been linked with a poor prognosis and exhibit an increase in platelet-derived growth factor receptor α (PDGFRα) and laminin beta 1 (LAMB1) expression. PDGFRα has been reported to induce de novo synthesis of LAMB1 protein in a Sjogren syndrome antigen B (La/SSB)-dependent manner in a murine metastasis model. However, the role of this cascade in human HCC remains unclear. This study focused on the functional role of the PDGFRα-La/SSB-LAMB1 pathway and its molecular link to K19 expression in human HCC. In surgical HCC specimens from a cohort of 136 patients, PDGFRα expression correlated with K19 expression, microvascular invasion and metastatic spread. In addition, PDGFRα expression in pre-operative needle biopsy specimens predicted poor overall survival during a 5-year follow-up period. Consecutive histological staining demonstrated that the signaling components of the PDGFRα-La/SSB-LAMB1 pathway were strongly expressed at the invasive front. K19-positive HCC cells displayed high levels of α2β1 integrin (ITG) receptor, both in vitro and in vivo. In vitro activation of PDGFRα signaling triggered the translocation of nuclear La/SSB into the cytoplasm, enhanced the protein synthesis of LAMB1 by activating its internal ribosome entry site, which in turn led to increased secretion of laminin-111. This effect was abrogated by the PDGFRα-specific inhibitor crenolanib. Importantly LAMB1 stimulated ITG-dependent focal adhesion kinase/Src proto-oncogene non-receptor tyrosine kinase signaling. It also promoted the ITG-specific downstream target Rho-associated coiled-coil containing protein kinase 2, induced K19 expression in an autocrine manner, invadopodia formation and cell invasion. Finally, we showed that the knockdown of LAMB1 or K19 in subcutaneous xenograft mouse models resulted in significant loss of cells invading the surrounding stromal tissue

  2. A review of terrestrial, aerial and aquatic keratins: the structure and mechanical properties of pangolin scales, feather shafts and baleen plates.

    PubMed

    Wang, Bin; Sullivan, Tarah N

    2017-12-01

    Keratinous materials, omnipresent as the hard and durable epidermal appendages of animals, are among the toughest biological materials. They exhibit diverse morphologies and structures that serve a variety of amazing and inspiring mechanical functions. In this work, we provide a review of representative terrestrial, aerial and aquatic keratinous materials, pangolin scales, feather shafts and baleen plates, and correlate their hierarchical structures to respective functions of dermal armor, flight material and undersea filter. The overlapping pattern of pangolin scales provides effective body coverage, and the solid scales show transverse isotropy and strain-rate sensitivity, both important for armor function. The feather shaft displays a distinct shape factor, hierarchical fibrous structure within the cortex, and a solid shell-over-foam design, which enables synergistic stiffening and toughening with exceptional lightness to fulfill flight. Baleen plates exhibit a sandwich-tubular structure that features anisotropic flexural properties to sustain forces from water flow and remarkable fracture toughness that ensures reliable undersea functioning. The latest findings regarding the structural design principles and mechanical properties are presented in order to advance current understanding of keratinous materials and to stimulate the development of new bioinspired materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Integrin Beta 1 Suppresses Multilayering of a Simple Epithelium

    PubMed Central

    Chen, Jichao; Krasnow, Mark A.

    2012-01-01

    Epithelia are classified as either simple, a single cell layer thick, or stratified (multilayered). Stratified epithelia arise from simple epithelia during development, and transcription factor p63 functions as a key positive regulator of epidermal stratification. Here we show that deletion of integrin beta 1 (Itgb1) in the developing mouse airway epithelium abrogates airway branching and converts this monolayer epithelium into a multilayer epithelium with more than 10 extra layers. Mutant lung epithelial cells change mitotic spindle orientation to seed outer layers, and cells in different layers become molecularly and functionally distinct, hallmarks of normal stratification. However, mutant lung epithelial cells do not activate p63 and do not switch to the stratified keratin profile of epidermal cells. These data, together with previous data implicating Itgb1 in regulation of epidermal stratification, suggest that the simple-versus-stratified developmental decision may involve not only stratification inducers like p63 but suppressors like Itgb1 that prevent simple epithelia from inappropriately activating key steps in the stratification program. PMID:23285215

  4. Perlecan expression influences the keratin 15‐positive cell population fate in the epidermis of aging skin

    PubMed Central

    Dos Santos, Morgan; Michopoulou, Anna; André‐Frei, Valérie; Boulesteix, Sophie; Guicher, Christine; Dayan, Guila; Whitelock, John; Damour, Odile; Rousselle, Patricia

    2016-01-01

    The epidermis is continuously renewed by stem cell proliferation and differentiation. Basal keratinocytes append the dermal‐epidermal junction, a cell surface‐associated, extracellular matrix that provides structural support and influences their behaviour. It consists of laminins, type IV collagen, nidogens, and perlecan, which are necessary for tissue organization and structural integrity. Perlecan is a heparan sulfate proteoglycan known to be involved in keratinocyte survival and differentiation. Aging affects the dermal epidermal junction resulting in decreased contact with keratinocytes, thus impacting epidermal renewal and homeostasis. We found that perlecan expression decreased during chronological skin aging. Our in vitro studies revealed reduced perlecan transcript levels in aged keratinocytes. The production of in vitro skin models revealed that aged keratinocytes formed a thin and poorly organized epidermis. Supplementing these models with purified perlecan reversed the phenomenon allowing restoration of a well‐differentiated multi‐layered epithelium. Perlecan down‐regulation in cultured keratinocytes caused depletion of the cell population that expressed keratin 15. This phenomenon depended on the perlecan heparan sulphate moieties, which suggested the involvement of a growth factor. Finally, we found defects in keratin 15 expression in the epidermis of aging skin. This study highlighted a new role for perlecan in maintaining the self‐renewal capacity of basal keratinocytes. PMID:26996820

  5. Design of beta-domain swapping, alpha/beta-protein, environmentally sensitive coiled coil and peptide functionalized titania materials

    NASA Astrophysics Data System (ADS)

    Nagarkar, Radhika P.

    2009-12-01

    The objective of this dissertation is to apply rational peptide design to fabricate nanomaterials via self-assembly. This has been demonstrated in structurally diverse systems with an aim of deciphering the underlying principles governing how sequence affects the peptide's ability to adopt a specific secondary structure and ultimate material properties that are realized from the association of these secondary structural elements. Several amyloidogenic proteins have been shown to self-assemble into fibrils using a mechanism known as domain swapping. Here, discreet units of secondary structure are exchanged among discreet proteins during self-assembly to form extended networks with precise three dimensional organization. The possibility of using these mechanisms to design peptides capable of controlled assembly and fibril formation leading to materials with targeted properties is explored. By altering the placement of a beta-turn sequence that varies the size and location of the exchanged strand, twisting, non-twisting and laminated fibrillar nanostructures are obtained. Hydrogels prepared from these strand swapping beta-hairpins have varied rheological properties due to differences in their fibrillar nanostructures. In a second distinct design, alpha/beta-proteins are used to prepare environmentally sensitive hydrogels. Here, multiple distinct motifs for structural integrity and dynamic response within a single self-assembling peptide allow the amyloid-like fibrils formed to controllably alter their nano-topography in response to an external stimulus such as temperature. The development of these self-assembling alpha/beta-protein motifs also necessitated the design of pH sensitive antiparallel coiled coils. Exploring the basic principles responsible for pH dependent conformational changes in coiled coils can lead to new insights in the control of protein structure and function. Lastly, this dissertation discusses the interface between biomolecules and inorganic

  6. Detergent-associated solution conformations of helical and beta-barrel membrane proteins.

    PubMed

    Mo, Yiming; Lee, Byung-Kwon; Ankner, John F; Becker, Jeffrey M; Heller, William T

    2008-10-23

    Membrane proteins present major challenges for structural biology. In particular, the production of suitable crystals for high-resolution structural determination continues to be a significant roadblock for developing an atomic-level understanding of these vital cellular systems. The use of detergents for extracting membrane proteins from the native membrane for either crystallization or reconstitution into model lipid membranes for further study is assumed to leave the protein with the proper fold with a belt of detergent encompassing the membrane-spanning segments of the structure. Small-angle X-ray scattering was used to probe the detergent-associated solution conformations of three membrane proteins, namely bacteriorhodopsin (BR), the Ste2p G-protein coupled receptor from Saccharomyces cerevisiae, and the Escherichia coli porin OmpF. The results demonstrate that, contrary to the traditional model of a detergent-associated membrane protein, the helical proteins BR and Ste2p are not in the expected, compact conformation and associated with detergent micelles, while the beta-barrel OmpF is indeed embedded in a disk-like micelle in a properly folded state. The comparison provided by the BR and Ste2p, both members of the 7TM family of helical membrane proteins, further suggests that the interhelical interactions between the transmembrane helices of the two proteins differ, such that BR, like other rhodopsins, can properly refold to crystallize, while Ste2p continues to prove resistant to crystallization from an initially detergent-associated state.

  7. Vitamin K3 (menadione)-induced oncosis associated with keratin 8 phosphorylation and histone H3 arylation.

    PubMed

    Scott, Gary K; Atsriku, Christian; Kaminker, Patrick; Held, Jason; Gibson, Brad; Baldwin, Michael A; Benz, Christopher C

    2005-09-01

    The vitamin K analog menadione (K3), capable of both redox cycling and arylating nucleophilic substrates by Michael addition, has been extensively studied as a model stress-inducing quinone in both cell culture and animal model systems. Exposure of keratin 8 (k-8) expressing human breast cancer cells (MCF7, T47D, SKBr3) to K3 (50-100 microM) induced rapid, sustained, and site-specific k-8 serine phosphorylation (pSer73) dependent on signaling by a single mitogen activated protein kinase (MAPK) pathway, MEK1/2. Normal nuclear morphology and k-8 immunofluorescence coupled with the lack of DNA laddering or other features of apoptosis indicated that K3-induced cytotoxicity, evident within 4 h of treatment and delayed but not prevented by MEK1/2 inhibition, was due to a form of stress-activated cell death known as oncosis. Independent of MAPK signaling was the progressive appearance of K3-induced cellular fluorescence, principally nuclear in origin and suggested by in vitro fluorimetry to have been caused by K3 thiol arylation. Imaging by UV transillumination of protein gels containing nuclear extracts from K3-treated cells revealed a prominent 17-kDa band shown to be histone H3 by immunoblotting and mass spectrometry (MS). K3 arylation of histones in vitro followed by electrospray ionization-tandem MS analyses identified the unique Cys110 residue within H3, exposed only in the open chromatin of transcriptionally active genes, as a K3 arylation target. These findings delineate new pathways associated with K3-induced stress and suggest a potentially novel role for H3 Cys110 as a nuclear stress sensor.

  8. Intermediate filament proteins of digestive organs: physiology and pathophysiology.

    PubMed

    Omary, M Bishr

    2017-06-01

    Intermediate filament proteins (IFs), such as cytoplasmic keratins in epithelial cells and vimentin in mesenchymal cells and the nuclear lamins, make up one of the three major cytoskeletal protein families. Whether in digestive organs or other tissues, IFs share several unique features including stress-inducible overexpression, abundance, cell-selective and differentiation state expression, and association with >80 human diseases when mutated. Whereas most IF mutations cause disease, mutations in simple epithelial keratins 8, 18, or 19 or in lamin A/C predispose to liver disease with or without other tissue manifestations. Keratins serve major functions including protection from apoptosis, providing cellular and subcellular mechanical integrity, protein targeting to subcellular compartments, and scaffolding and regulation of cell-signaling processes. Keratins are essential for Mallory-Denk body aggregate formation that occurs in association with several liver diseases, whereas an alternate type of keratin and lamin aggregation occurs upon liver involvement in porphyria. IF-associated diseases have no known directed therapy, but high-throughput drug screening to identify potential therapies is an appealing ongoing approach. Despite the extensive current knowledge base, much remains to be discovered regarding IF physiology and pathophysiology in digestive and nondigestive organs. Copyright © 2017 the American Physiological Society.

  9. Blood serum chemistry of wild Alaskan Black-capped Chickadees (Poecile atricapillus) with avian keratin disorder

    USGS Publications Warehouse

    Van Hemert, Caroline R.; Handel, Colleen M.

    2016-01-01

    We measured serum chemistries in wild Black-capped Chickadees (Poecile atricapillus) from Alaska to test for potential differences associated with beak deformities characteristic of avian keratin disorder. Lower uric acid in affected birds was the only difference detected between groups, although sample sizes were small. This difference could be associated with fasting or malnutrition in birds with beak deformities, but it is challenging to interpret its biologic significance without reference values. Black-capped Chickadees had high levels of aspartate aminotransferase, lactate dehydrogenase, and creatine kinase relative to reference values for companion birds. However, all serum chemistry parameters from our study were within the range of values reported from other apparently healthy wild-caught birds.

  10. Interaction of the sliding clamp beta-subunit and Hda, a DnaA-related protein.

    PubMed

    Kurz, Mareike; Dalrymple, Brian; Wijffels, Gene; Kongsuwan, Kritaya

    2004-06-01

    In Escherichia coli, interactions between the replication initiation protein DnaA, the beta subunit of DNA polymerase III (the sliding clamp protein), and Hda, the recently identified DnaA-related protein, are required to convert the active ATP-bound form of DnaA to an inactive ADP-bound form through the accelerated hydrolysis of ATP. This rapid hydrolysis of ATP is proposed to be the main mechanism that blocks multiple initiations during cell cycle and acts as a molecular switch from initiation to replication. However, the biochemical mechanism for this crucial step in DNA synthesis has not been resolved. Using purified Hda and beta proteins in a plate binding assay and Ni-nitrilotriacetic acid pulldown analysis, we show for the first time that Hda directly interacts with beta in vitro. A new beta-binding motif, a hexapeptide with the consensus sequence QL[SP]LPL, related to the previously identified beta-binding pentapeptide motif (QL[SD]LF) was found in the amino terminus of the Hda protein. Mutants of Hda with amino acid changes in the hexapeptide motif are severely defective in their ability to bind beta. A 10-amino-acid peptide containing the E. coli Hda beta-binding motif was shown to compete with Hda for binding to beta in an Hda-beta interaction assay. These results establish that the interaction of Hda with beta is mediated through the hexapeptide sequence. We propose that this interaction may be crucial to the events that lead to the inactivation of DnaA and the prevention of excess initiation of rounds of replication.

  11. Bisindoylmaleimide I suppresses adipocyte differentiation through stabilization of intracellular {beta}-catenin protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Munju; Park, Seoyoung; Gwak, Jungsug

    2008-02-29

    The Wnt/{beta}-catenin signaling pathway plays important roles in cell differentiation. Activation of this pathway, likely by Wnt-10b, has been shown to inhibit adipogenesis in cultured 3T3-L1 preadipocytes and mice. Here we revealed that bisindoylmaleimide I (BIM), which is widely used as a specific inhibitor of protein kinase C (PKC), inhibits adipocyte differentiation through activation of the Wnt/{beta}-catenin signaling pathway. BIM increased {beta}-catenin responsive transcription (CRT) and up-regulated intracellular {beta}-catenin levels in HEK293 cells and 3T3-L1 preadipocytes. BIM significantly decreased intracellular lipid accumulation and reduced expression of important adipocyte marker genes including peroxisome-proliferator-activated receptor {gamma} (PPAR{gamma}) and CAATT enhancer-binding protein {alpha}more » (C/EBP{alpha}) in 3T3-L1 preadipocytes. Taken together, our findings indicate that BIM inhibits adipogenesis by increasing the stability of {beta}-catenin protein in 3T3-L1 preadipocyte cells.« less

  12. Inhibin/activin-betaC and -betaE subunits in the Ishikawa human endometrial adenocarcinoma cell line.

    PubMed

    Kimmich, Tanja; Brüning, Ansgar; Käufl, Stephanie D; Makovitzky, Josef; Kuhn, Christina; Jeschke, Udo; Friese, Klaus; Mylonas, Ioannis

    2010-08-01

    Inhibins and activins are important regulators of the female reproductive system. Recently, two novel inhibin subunits, named betaC and betaE, have been identified and shown to be expressed in several human tissues. However, only limited data on the expression of these novel inhibin subunits in normal human endometrial tissue and endometrial adenocarcinoma cell lines exist. Samples of proliferative and secretory human endometrium were obtained from five premenopausal, non-pregnant patients undergoing gynecological surgery for benign diseases. Normal endometrial tissue and Ishikawa endometrial adenocarcinoma cell lines were analyzed by immunohistochemistry, immunofluorescence and RT-PCR. Expression of the inhibin betaC and betaE subunits could be demonstrated at the protein level by means of immunohistochemical evaluation and at the transcriptional level by establishing a betaC- and betaE-specific RT-PCR analysis in normal human endometrial tissue and the parental Ishikawa cell line. Interestingly, in a highly de-differentiated subclone of the Ishikawa cell line lacking estrogen receptor expression, the expression of the inhibin-betaC subunit appeared strongly reduced. Here, we show for the first time that the novel inhibin/activin-betaC and -betaE subunits are expressed in normal human endometrium and the estrogen receptor positive human endometrial carcinoma cell line Ishikawa using RT-PCR and immunohistochemical detection methods. Interestingly, the Ishikawa minus cell line (lacking estrogen receptor expression) demonstrated no to minimal expression of the betaC subunit as observed with immunofluorescence and RT-PCR, suggesting a possible hormone- dependency of this subunit in human endometrial cancer cells. Moreover, because the Ishikawa cell line minus is thought to be a more malignant endometrial cell line than its estrogen receptor positive counterpart, inhibin-betaC subunit might be substantially involved in the pathogenesis and malignant transformation in

  13. Mercury Exposure: Protein Biomarkers of Mercury Exposure in Jaraqui Fish from the Amazon Region.

    PubMed

    Vieira, José Cavalcante Souza; Braga, Camila Pereira; de Oliveira, Grasieli; Padilha, Cilene do Carmo Federici; de Moraes, Paula Martin; Zara, Luiz Fabricio; Leite, Aline de Lima; Buzalaf, Marília Afonso Rabelo; Padilha, Pedro de Magalhães

    2018-05-01

    This study presents data on the extraction and characterization of proteins associated with mercury in the muscle and liver tissues of jaraqui (Semaprochilodus spp.) from the Madeira River in the Brazilian Amazon. Protein fractionation was carried out by two-dimensional electrophoresis (2D-PAGE). Mercury determination in tissues, pellets, and protein spots was performed by graphite furnace atomic absorption spectrometry (GFAAS). Proteins in the spots that showed mercury were characterized by electrospray ionization tandem mass spectrometry (ESI-MS/MS). The highest mercury concentrations were found in liver tissues and pellets (426 ± 6 and 277 ± 4 μg kg -1 ), followed by muscle tissues and pellets (132 ± 4 and 86 ± 1 μg kg -1 , respectively). Mercury quantification in the protein spots allowed us to propose stoichiometric ratios in the range of 1-4 mercury atoms per molecule of protein in the protein spots. The proteins characterized in the analysis by ESI-MS/MS were keratin, type II cytoskeletal 8, parvalbumin beta, parvalbumin-2, ubiquitin-40S ribosomal S27a, 39S ribosomal protein L36 mitochondrial, hemoglobin subunit beta, and hemoglobin subunit beta-A/B. The results suggest that proteins such as ubiquitin-40S ribosomal protein S27a, which have specific domains, possibly zinc finger, can be used as biomarkers of mercury, whereas mercury and zinc present characteristics of soft acids.

  14. Activation of beta-major globin gene transcription is associated with recruitment of NF-E2 to the beta-globin LCR and gene promoter.

    PubMed

    Sawado, T; Igarashi, K; Groudine, M

    2001-08-28

    The mouse beta-globin gene locus control region (LCR), located upstream of the beta-globin gene cluster, is essential for the activated transcription of genes in the cluster. The LCR contains multiple binding sites for transactivators, including Maf-recognition elements (MAREs). However, little is known about the specific proteins that bind to these sites or the time at which they bind during erythroid differentiation. We have performed chromatin immunoprecipitation experiments to determine the recruitment of the erythroid-specific transactivator p45 NF-E2/MafK (p18 NF-E2) heterodimer and small Maf proteins to various regions in the globin gene locus before and after the induction of murine erythroleukemia (MEL) cell differentiation. We report that, before induction, the LCR is occupied by small Maf proteins, and, on erythroid maturation, the NF-E2 complex is recruited to the LCR and the active globin promoters, even though the promoters do not contain MAREs. This differentiation-coupled recruitment of NF-E2 complex correlates with a greater than 100-fold increase in beta-major globin transcription, but is not associated with a significant change in locus-wide histone H3 acetylation. These findings suggest that the beta-globin gene locus exists in a constitutively open chromatin conformation before terminal differentiation, and we speculate that recruitment of NF-E2 complex to the LCR and active promoters may be a rate-limiting step in the activation of beta-globin gene expression.

  15. Automatic and objective oral cancer diagnosis by Raman spectroscopic detection of keratin with multivariate curve resolution analysis

    NASA Astrophysics Data System (ADS)

    Chen, Po-Hsiung; Shimada, Rintaro; Yabumoto, Sohshi; Okajima, Hajime; Ando, Masahiro; Chang, Chiou-Tzu; Lee, Li-Tzu; Wong, Yong-Kie; Chiou, Arthur; Hamaguchi, Hiro-O.

    2016-01-01

    We have developed an automatic and objective method for detecting human oral squamous cell carcinoma (OSCC) tissues with Raman microspectroscopy. We measure 196 independent Raman spectra from 196 different points of one oral tissue sample and globally analyze these spectra using a Multivariate Curve Resolution (MCR) analysis. Discrimination of OSCC tissues is automatically and objectively made by spectral matching comparison of the MCR decomposed Raman spectra and the standard Raman spectrum of keratin, a well-established molecular marker of OSCC. We use a total of 24 tissue samples, 10 OSCC and 10 normal tissues from the same 10 patients, 3 OSCC and 1 normal tissues from different patients. Following the newly developed protocol presented here, we have been able to detect OSCC tissues with 77 to 92% sensitivity (depending on how to define positivity) and 100% specificity. The present approach lends itself to a reliable clinical diagnosis of OSCC substantiated by the “molecular fingerprint” of keratin.

  16. Anchorage mediated by integrin alpha6beta4 to laminin 5 (epiligrin) regulates tyrosine phosphorylation of a membrane-associated 80-kD protein

    PubMed Central

    1996-01-01

    Detachment of basal keratinocytes from basement membrane signals a differentiation cascade. Two integrin receptors alpha6beta4 and alpha3beta1 mediate adhesion to laminin 5 (epiligrin), a major extracellular matrix protein in the basement membrane of epidermis. By establishing a low temperature adhesion system at 4 degrees C, we were able to examine the exclusive role of alpha6beta4 in adhesion of human foreskin keratinocyte (HFK) and the colon carcinoma cell LS123. We identified a novel 80-kD membrane-associated protein (p80) that is tyrosine phosphorylated in response to dissociation of alpha6beta4 from laminin 5. The specificity of p80 phosphorylation for laminin 5 and alpha6beta4 was illustrated by the lack of regulation of p80 phosphorylation on collagen, fibronectin, or poly-L-lysine surfaces. We showed that blocking of alpha3beta1 function using inhibitory mAbs, low temperature, or cytochalasin D diminished tyrosine phosphorylation of focal adhesion kinase but not p80 phosphorylation. Therefore, under our assay conditions, p80 phosphorylation is regulated by alpha6beta4, while motility via alpha3beta1 causes phosphorylation of focal adhesion kinase. Consistent with a linkage between p80 dephosphorylation and alpha6beta4 anchorage to laminin 5, we found that phosphatase inhibitor sodium vanadate, which blocked the p80 dephosphorylation, prevented the alpha6beta4-dependent cell anchorage to laminin 5 at 4degreesC. In contrast, adhesion at 37 degrees C via alpha3beta1 was unaffected. Furthermore, by in vitro kinase assay, we identified a kinase activity for p80 phosphorylation in suspended HFKs but not in attached cells. The kinase activity, alpha6beta4, and its associated adhesion structure stable anchoring contacts were all cofractionated in the Triton- insoluble cell fraction that lacks alpha3beta1. Thus, regulation of p80 phosphorylation, through the activities of p80 kinase and phosphatase, correlates with alpha6beta4-SAC anchorage to laminin 5 at 4

  17. Dual role for the latent transforming growth factor-beta binding protein in storage of latent TGF-beta in the extracellular matrix and as a structural matrix protein

    PubMed Central

    1995-01-01

    The role of the latent TGF-beta binding protein (LTBP) is unclear. In cultures of fetal rat calvarial cells, which form mineralized bonelike nodules, both LTBP and the TGF-beta 1 precursor localized to large fibrillar structures in the extracellular matrix. The appearance of these fibrillar structures preceded the appearance of type I collagen fibers. Plasmin treatment abolished the fibrillar staining pattern for LTBP and released a complex containing both LTBP and TGF-beta. Antibodies and antisense oligonucleotides against LTBP inhibited the formation of mineralized bonelike nodules in long-term fetal rat calvarial cultures. Immunohistochemistry of fetal and adult rat bone confirmed a fibrillar staining pattern for LTBP in vivo. These findings, together with the known homology of LTBP to the fibrillin family of proteins, suggest a novel function for LTBP, in addition to its role in matrix storage of latent TGF-beta, as a structural matrix protein that may play a role in bone formation. PMID:7593177

  18. The effect of culture medium and carrier on explant culture of human limbal epithelium: A comparison of ultrastructure, keratin profile and gene expression.

    PubMed

    Pathak, Meeta; Olstad, O K; Drolsum, Liv; Moe, Morten C; Smorodinova, Natalia; Kalasova, Sarka; Jirsova, Katerina; Nicolaissen, Bjørn; Noer, Agate

    2016-12-01

    expression than cells cultured on the same carrier (HAM or PL). When each condition was compared to HAM/COM, no statistical difference was found in the transcription level of the selected genes associated with keratin expression, stemness, proliferation, differentiation, apoptosis, corneal wound healing or autophagy. In conclusion, the results indicate that ex vivo cultures of LECs on HAM and PL, using culture media supplemented with COM or HS, yield tissues with similar morphology and keratin staining. The gene expression appears to be more similar in cells cultured in the same medium (COM or HS) compared to cells cultured on the same carrier (HAM or PL). Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A Case of Beta-propeller Protein-associated Neurodegeneration due to a Heterozygous Deletion of WDR45.

    PubMed

    Hermann, Andreas; Kitzler, Hagen H; Pollack, Tobias; Biskup, Saskia; Krüger, Stefanie; Funke, Claudia; Terrile, Caterina; Haack, Tobias B

    2017-01-01

    Static encephalopathy of childhood with neurodegeneration in adulthood is a phenotypically distinctive, X-linked dominant subtype of neurodegeneration with brain iron accumulation (NBIA). WDR45 mutations were recently identified as causal. WDR45 encodes a beta-propeller scaffold protein with a putative role in autophagy, and the disease has been renamed beta-propeller protein-associated neurodegeneration (BPAN). Here we describe a female patient suffering from a classical BPAN phenotype due to a novel heterozygous deletion of WDR45 . An initial gene panel and Sanger sequencing approach failed to uncover the molecular defect. Based on the typical clinical and neuroimaging phenotype, quantitative polymerase chain reaction of the WDR45 coding regions was undertaken, and this showed a reduction of the gene dosage by 50% compared with controls. An extended search for deletions should be performed in apparently WDR45- negative cases presenting with features of NBIA and should also be considered in young patients with predominant intellectual disabilities and hypertonia/parkinsonism/dystonia.

  20. A Patient with Beta-Propeller Protein-Associated Neurodegeneration: Treatment with Iron Chelation Therapy.

    PubMed

    Lim, Shen-Yang; Tan, Ai Huey; Ahmad-Annuar, Azlina; Schneider, Susanne A; Bee, Ping Chong; Lim, Jia Lun; Ramli, Norlisah; Idris, Mohamad Imran

    2018-05-01

    We present a case of beta-propeller protein-associated neurodegeneration, a form of neurodegeneration with brain iron accumulation. The patient harbored a novel mutation in the WDR45 gene. A detailed video and description of her clinical condition are provided. Her movement disorder phenomenology was characterized primarily by limb stereotypies and gait dyspraxia. The patient's disability was advanced by the time iron-chelating therapy with deferiprone was initiated, and no clinical response in terms of cognitive function, behavior, speech, or movements were observed after one year of treatment.

  1. Physical association and functional interaction between beta1 integrin and CD98 on human T lymphocytes

    NASA Technical Reports Server (NTRS)

    Miyamoto, Yuko J.; Mitchell, Jason S.; McIntyre, Bradley W.

    2003-01-01

    CD98 is a cell surface protein previously characterized as a cell activation marker, an amino acid transporter, and has recently been implicated in integrin-related functions. Integrins are cell surface proteins, important for homotypic cell aggregation, cell adhesion, and coactivation of T lymphocytes. We have previously shown that the anti-CD98 mAb 80A10, when coimmobilized with anti-CD3 mAb OKT3, is able to mediate human T cell coactivation that is inhibited by anti-beta1 integrin specific mAb 18D3. These results indicated a functional association of CD98 and beta1 integrin signaling but left open the question of a physical association. We now show the induction of homotypic aggregation through CD98 among human T cells and this aggregation was inhibited by anti-beta1 integrin mAb. Therefore, CD98-dependent lymphocyte proliferation and adhesion may involve integrins. Competitive binding assays and fluorescence colocalization analysis suggested that CD98 and beta1 integrin were physically associated. Differential extraction techniques and immunoprecipitations provided the first evidence that the alpha4beta1 integrin and CD98 are specifically associated on human T lymphocytes.

  2. [Role of Ski/SnoN protein in the regulation of TGF-beta signal pathway].

    PubMed

    Lu, Zhao-hui; Chen, Jie

    2003-04-01

    TGF-beta signal pathway plays an important role in the cell growth, differentiation, formation of extracellular matrix, embryo development and carcinogenesis, etc. However, the regulation of TGF-beta pathway is not totally understood. In 1999, three independent research groups found that Ski/SnoN protein could inhibit the TGF-beta mediated transcription by recruiting N-CoR, a transcription co-repressor. Later studies suggested that TGF-beta and SMADs degraded the Ski/SnoN protein by mediating ubiquitin linkage, showing negative feedback regulation. The important findings in Ski/SnoN laid the theoretical foundation for demonstrating the function of TGF-beta signal pathway.

  3. Heat shock protein 90{beta}: A novel mediator of vitamin D action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angelo, Giana; Mineral Bioavailability Laboratory, 711 Washington Street, Boston, MA 02111; Lamon-Fava, Stefania

    2008-03-14

    We investigated the role of Heat shock protein 90 (Hsp90) in vitamin D action in Caco-2 cells using geldanamycin (GA) to block Hsp90 function and RNA interference to reduce Hsp90{beta} expression. When cells were exposed to GA, vitamin D-mediated gene expression and transcriptional activity were inhibited by 69% and 54%, respectively. Gel shift analysis indicated that GA reduced vitamin D-mediated DNA binding activity of the vitamin D receptor (VDR). We tested the specific role of Hsp90{beta} by knocking down its expression with stably expressed short hairpin RNA. Vitamin D-induced gene expression and transcriptional activity were reduced by 90% and 80%,more » respectively, in Hsp90{beta}-deficient cells. Nuclear protein for VDR and RXR{alpha}, its heterodimer partner, were not reduced in Hsp90{beta}-deficient cells. These findings indicate that Hsp90{beta} is needed for optimal vitamin D responsiveness in the enterocyte and demonstrate a specific role for Hsp90{beta} in VDR signaling.« less

  4. Milk Intolerance, Beta-Casein and Lactose.

    PubMed

    Pal, Sebely; Woodford, Keith; Kukuljan, Sonja; Ho, Suleen

    2015-08-31

    True lactose intolerance (symptoms stemming from lactose malabsorption) is less common than is widely perceived, and should be viewed as just one potential cause of cows' milk intolerance. There is increasing evidence that A1 beta-casein, a protein produced by a major proportion of European-origin cattle but not purebred Asian or African cattle, is also associated with cows' milk intolerance. In humans, digestion of bovine A1 beta-casein, but not the alternative A2 beta-casein, releases beta-casomorphin-7, which activates μ-opioid receptors expressed throughout the gastrointestinal tract and body. Studies in rodents show that milk containing A1 beta-casein significantly increases gastrointestinal transit time, production of dipeptidyl peptidase-4 and the inflammatory marker myeloperoxidase compared with milk containing A2 beta-casein. Co-administration of the opioid receptor antagonist naloxone blocks the myeloperoxidase and gastrointestinal motility effects, indicating opioid signaling pathway involvement. In humans, a double-blind, randomized cross-over study showed that participants consuming A1 beta-casein type cows' milk experienced statistically significantly higher Bristol stool values compared with those receiving A2 beta-casein milk. Additionally, a statistically significant positive association between abdominal pain and stool consistency was observed when participants consumed the A1 but not the A2 diet. Further studies of the role of A1 beta-casein in milk intolerance are needed.

  5. Milk Intolerance, Beta-Casein and Lactose

    PubMed Central

    Pal, Sebely; Woodford, Keith; Kukuljan, Sonja; Ho, Suleen

    2015-01-01

    True lactose intolerance (symptoms stemming from lactose malabsorption) is less common than is widely perceived, and should be viewed as just one potential cause of cows’ milk intolerance. There is increasing evidence that A1 beta-casein, a protein produced by a major proportion of European-origin cattle but not purebred Asian or African cattle, is also associated with cows’ milk intolerance. In humans, digestion of bovine A1 beta-casein, but not the alternative A2 beta-casein, releases beta-casomorphin-7, which activates μ-opioid receptors expressed throughout the gastrointestinal tract and body. Studies in rodents show that milk containing A1 beta-casein significantly increases gastrointestinal transit time, production of dipeptidyl peptidase-4 and the inflammatory marker myeloperoxidase compared with milk containing A2 beta-casein. Co-administration of the opioid receptor antagonist naloxone blocks the myeloperoxidase and gastrointestinal motility effects, indicating opioid signaling pathway involvement. In humans, a double-blind, randomized cross-over study showed that participants consuming A1 beta-casein type cows’ milk experienced statistically significantly higher Bristol stool values compared with those receiving A2 beta-casein milk. Additionally, a statistically significant positive association between abdominal pain and stool consistency was observed when participants consumed the A1 but not the A2 diet. Further studies of the role of A1 beta-casein in milk intolerance are needed. PMID:26404362

  6. Avian malaria in a boreal resident species: long-term temporal variability, and increased prevalence in birds with avian keratin disorder

    USGS Publications Warehouse

    Wilkinson, Laura C.; Handel, Colleen M.; Van Hemert, Caroline R.; Loiseau, Claire; Sehgal, Ravinder N. M.

    2016-01-01

    The prevalence of vector-borne parasitic diseases is widely influenced by biological and ecological factors. Environmental conditions such as temperature and precipitation can have a marked effect on haemosporidian parasites (Plasmodium spp.) that cause malaria and those that cause other malaria-like diseases in birds. However, there have been few long-term studies monitoring haemosporidian infections in birds in northern latitudes, where weather conditions can be highly variable and the effects of climate change are becoming more pronounced. We used molecular methods to screen more than 2,000 blood samples collected from black-capped chickadees (Poecile atricapillus), a resident passerine bird. Samples were collected over a 10 year period, mostly during the non-breeding season, at seven sites in Alaska, USA. We tested for associations between Plasmodium prevalence and local environmental conditions including temperature, precipitation, site, year and season. We also evaluated the relationship between parasite prevalence and individual host factors of age, sex and presence or absence of avian keratin disorder. This disease, which causes accelerated keratin growth in the beak, provided a natural study system in which to test the interaction between disease state and malaria prevalence. Prevalence of Plasmodium infection varied by year, site, age and individual disease status but there was no support for an effect of sex or seasonal period. Significantly, birds with avian keratin disorder were 2.6 times more likely to be infected by Plasmodium than birds without the disorder. Interannual variation in the prevalence of Plasmodium infection at different sites was positively correlated with summer temperatures at the local but not statewide scale. Sequence analysis of the parasite cytochrome b gene revealed a single Plasmodiumspp. lineage, P43. Our results demonstrate associations between prevalence of avian malaria and a variety of biological and

  7. Genetic background effects of keratin 8 and 18 in a DDC-induced hepatotoxicity and Mallory-Denk body formation mouse model.

    PubMed

    Haybaeck, Johannes; Stumptner, Cornelia; Thueringer, Andrea; Kolbe, Thomas; Magin, Thomas M; Hesse, Michael; Fickert, Peter; Tsybrovskyy, Oleksiy; Müller, Heimo; Trauner, Michael; Zatloukal, Kurt; Denk, Helmut

    2012-06-01

    Keratin 8 (K8) and keratin 18 (K18) form the major hepatocyte cytoskeleton. We investigated the impact of genetic loss of either K8 or K18 on liver homeostasis under toxic stress with the hypothesis that K8 and K18 exert different functions. krt8⁻/⁻ and krt18⁻/⁻ mice crossed into the same 129-ola genetic background were treated by acute and chronic administration of 3,5-diethoxy-carbonyl-1,4-dihydrocollidine (DDC). In acutely DDC-intoxicated mice, macrovesicular steatosis was more pronounced in krt8⁻/⁻ and krt18⁻/⁻ compared with wild-type (wt) animals. Mallory-Denk bodies (MDBs) appeared in krt18⁻/⁻ mice already at an early stage of intoxication in contrast to krt8⁻/⁻ mice that did not display MDB formation when fed with DDC. Keratin-deficient mice displayed significantly lower numbers of apoptotic hepatocytes than wt animals. krt8⁻/⁻, krt18⁻/⁻ and control mice displayed comparable cell proliferation rates. Chronically DDC-intoxicated krt18⁻/⁻ and wt mice showed a similarly increased degree of steatohepatitis with hepatocyte ballooning and MDB formation. In krt8⁻/⁻ mice, steatosis was less, ballooning, and MDBs were absent. krt18⁻/⁻ mice developed MDBs whereas krt8⁻/⁻ mice on the same genetic background did not, highlighting the significance of different structural properties of keratins. They are independent of the genetic background as an intrinsic factor. By contrast, toxicity effects may depend on the genetic background. krt8⁻/⁻ and krt18⁻/⁻ mice on the same genetic background show similar sensitivity to DDC intoxication and almost resemble wt animals regarding survival, degree of porphyria, liver-to-body weight ratio, serum bilirubin and liver enzyme levels. This stands in contrast to previous work where krt8⁻/⁻ and krt18⁻/⁻ mice on different genetic backgrounds were investigated.

  8. Skn-1a/Oct-11 and {Delta}Np63{alpha} exert antagonizing effects on human keratin expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lena, Anna Maria; Cipollone, Rita; Amelio, Ivano

    2010-10-29

    Research highlights: {yields} Skn-1a markedly downregulates {Delta}Np63-driven K14 expression. {yields} {Delta}Np63 inhibits Skn-1a-mediated K10 expression. {yields} {Delta}Np63, mutated in SAM domain, is less effecting in K10 downregulation. {yields} Immunolocalization in human skin of the two transcription factors is partially overlapping. {yields} The antagonistic effects of Skn-1a and p63 is through competition for overlapping responsive elements or through an indirect interaction. -- Abstract: The formation of a stratified epidermis requires a carefully controlled balance between keratinocyte proliferation and differentiation. Here, we report the reciprocal effect on keratin expression of {Delta}Np63, pivotal in normal epidermal morphogenesis and maintenance, and Skn-1a/Oct-11, a POUmore » transcription factor that triggers and regulates the differentiation of keratinocytes. The expression of Skn-1a markedly downregulated {Delta}Np63-driven K14 expression in luciferase reporter assays. The extent of downregulation was comparable to the inhibition of Skn-1a-mediated K10 expression upon expression of {Delta}Np63. {Delta}Np63, mutated in the protein-protein interaction domain (SAM domain; mutated in human ectodermal dysplasia syndrome), was significantly less effecting in downregulating K10, raising the possibility of a direct interaction among Skn-1a and {Delta}Np63. Immunolocalization in human skin biopsies revealed that the expression of the two transcription factors is partially overlapping. Co-immunoprecipitation experiments did not, however, demonstrate a direct interaction between {Delta}Np63 and Skn-1a, suggesting that the antagonistic effects of Skn-1a and p63 on keratin promoter transactivation is probably through competition for overlapping binding sites on target gene promoter or through an indirect interaction.« less

  9. Support vector machines for prediction and analysis of beta and gamma-turns in proteins.

    PubMed

    Pham, Tho Hoan; Satou, Kenji; Ho, Tu Bao

    2005-04-01

    Tight turns have long been recognized as one of the three important features of proteins, together with alpha-helix and beta-sheet. Tight turns play an important role in globular proteins from both the structural and functional points of view. More than 90% tight turns are beta-turns and most of the rest are gamma-turns. Analysis and prediction of beta-turns and gamma-turns is very useful for design of new molecules such as drugs, pesticides, and antigens. In this paper we investigated two aspects of applying support vector machine (SVM), a promising machine learning method for bioinformatics, to prediction and analysis of beta-turns and gamma-turns. First, we developed two SVM-based methods, called BTSVM and GTSVM, which predict beta-turns and gamma-turns in a protein from its sequence. When compared with other methods, BTSVM has a superior performance and GTSVM is competitive. Second, we used SVMs with a linear kernel to estimate the support of amino acids for the formation of beta-turns and gamma-turns depending on their position in a protein. Our analysis results are more comprehensive and easier to use than the previous results in designing turns in proteins.

  10. Structural and biological mimicry of protein surface recognition by [alpha/beta]-peptide foldamers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horne, W. Seth; Johnson, Lisa M.; Ketas, Thomas J.

    Unnatural oligomers that can mimic protein surfaces offer a potentially useful strategy for blocking biomedically important protein-protein interactions. Here we evaluate an approach based on combining {alpha}- and {beta}-amino acid residues in the context of a polypeptide sequence from the HIV protein gp41, which represents an excellent testbed because of the wealth of available structural and biological information. We show that {alpha}/{beta}-peptides can mimic structural and functional properties of a critical gp41 subunit. Physical studies in solution, crystallographic data, and results from cell-fusion and virus-infectivity assays collectively indicate that the gp41-mimetic {alpha}/{beta}-peptides effectively block HIV-cell fusion via a mechanism comparablemore » to that of gp41-derived {alpha}-peptides. An optimized {alpha}/{beta}-peptide is far less susceptible to proteolytic degradation than is an analogous {alpha}-peptide. Our findings show how a two-stage design approach, in which sequence-based {alpha} {yields} {beta} replacements are followed by site-specific backbone rigidification, can lead to physical and biological mimicry of a natural biorecognition process.« less

  11. Microphase Separation Controlled Beta Sheet Crystallization Kinetics in Silk Fibroin Protein.

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Lu, Qiang; Kaplan, David; Cebe, Peggy

    2009-03-01

    We investigate the mechanism of isothermal crystallization kinetics of beta-sheet crystals in silk multiblock fibrous proteins. The Avrami analysis kinetic theory, for studies of synthetic polymer crystal growth, is for the first time extended to investigate protein self-assembly in beta-sheet rich Bombyx mori silk fibroin samples, using time-resolved Fourier transform infrared spectroscopy, differential scanning calorimetry and synchrotron real-time wide-angle X-ray scattering. Results indicate formation of beta sheet crystals in silk proteins is different from the 3-D spherulitic crystal growth found in synthetic homopolymers. Observations by scanning electron microscopy support the view that the protein structures vary during the different stages of crystal growth, and show a microphase separation pattern after chymotrypsin enzyme biodegradation. We present a model to explain the crystallization of the multiblock silk fibroin protein, by analogy to synthetic block copolymers. This model could be widely applicable in other proteins with multiblock (i.e., crystallizable and non-crystallizable) domains.

  12. Fabrication of human hair keratin/jellyfish collagen/eggshell-derived hydroxyapatite osteoinductive biocomposite scaffolds for bone tissue engineering: From waste to regenerative medicine products.

    PubMed

    Arslan, Yavuz Emre; Sezgin Arslan, Tugba; Derkus, Burak; Emregul, Emel; Emregul, Kaan C

    2017-06-01

    In the present study, we aimed at fabricating an osteoinductive biocomposite scaffold using keratin obtained from human hair, jellyfish collagen and eggshell-derived nano-sized spherical hydroxyapatite (nHA) for bone tissue engineering applications. Keratin, collagen and nHA were characterized with the modified Lowry method, free-sulfhydryl groups and hydroxyproline content analysis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR) and thermal gravimetric analysis (TGA) which confirmed the success of the extraction and/or isolation processes. Human adipose mesenchymal stem cells (hAMSCs) were isolated and the cell surface markers were characterized via flow cytometry analysis in addition to multilineage differentiation capacity. The undifferentiated hAMSCs were highly positive for CD29, CD44, CD73, CD90 and CD105, but were not seen to express hematopoietic cell surface markers such as CD14, CD34 and CD45. The cells were successfully directed towards osteogenic, chondrogenic and adipogenic lineages in vitro. The microarchitecture of the scaffolds and cell attachment were evaluated using scanning electron microscopy (SEM). The cell viability on the scaffolds was assessed by the MTT assay which revealed no evidence of cytotoxicity. The osteogenic differentiation of hAMSCs on the scaffolds was determined histologically using alizarin red S, osteopontin and osteonectin stainings. Early osteogenic differentiation markers of hAMSCs were significantly expressed on the collagen-keratin-nHA scaffolds. In conclusion, it is believed that collagen-keratin-nHA osteoinductive biocomposite scaffolds have the potential of being used in bone tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. MOON for neutrino-less {beta}{beta} decays and {beta}{beta} nuclear matrix elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ejiri, H.

    2009-11-09

    The MOON project aims at spectroscopic 0v{beta}{beta} studies with the v-mass sensitivity of 100-30 meV by measuring two beta rays from {sup 100}Mo and/or {sup 82}Se. The detector is a compact super-module of multi-layer PL scintillator plates. R and D works made by the pro to-type MOON-1 and the small PL plate show the possible energy resolution of around {sigma}{approx}2.2%, as required for the mass sensitivity. Nuclear matrix elements M{sup 2v} for 2v{beta}{beta} are shown to be given by the sum {sigma}{sub L}M{sub k} of the 2v{beta}{beta} matrix elements M{sub k} through intermediate quasi-particle states in the Fermi-surface, where Mimore » is obtained experimentally by using the GT(J{sup {pi}} = 1{sup +}) matrix elements of M{sub i}(k) and M{sub f}(k) for the successive single-{beta} transitions through the k-th intermediate state.« less

  14. Genus Beta Human Papillomavirus E6 Proteins Vary in Their Effects on the Transactivation of p53 Target Genes

    PubMed Central

    White, Elizabeth A.; Walther, Johanna; Javanbakht, Hassan

    2014-01-01

    ABSTRACT The genus beta human papillomaviruses (beta HPVs) cause cutaneous lesions and are thought to be involved in the initiation of some nonmelanoma skin cancers (NMSCs), particularly in patients with the genetic disorder epidermodysplasia verruciformis (EV). We have previously reported that at least two of the genus beta HPV E6 proteins bind to and/or increase the steady-state levels of p53 in squamous epithelial cells. This is in contrast to a well-characterized ability of the E6 proteins of cancer-associated HPVs of genus alpha HPV, which inactivate p53 by targeting its ubiquitin-mediated proteolysis. In this study, we have investigated the ability of genus beta E6 proteins from eight different HPV types to block the transactivation of p53 target genes following DNA damage. We find that the E6 proteins from diverse beta HPV species and types vary in their capacity to block the induction of MDM2, p21, and proapoptotic genes after genotoxic stress. We conclude that some genus beta HPV E6 proteins inhibit at least some p53 target genes, although perhaps not by the same mechanism or to the same degree as the high-risk genus alpha HPV E6 proteins. IMPORTANCE This study addresses the ability of various human papillomavirus E6 proteins to block the activation of p53-responsive cellular genes following DNA damage in human keratinocytes, the normal host cell for HPVs. The E6 proteins encoded by the high-risk, cancer-associated HPV types of genus alpha HPV have a well-established activity to target p53 degradation and thereby inhibit the response to DNA damage. In this study, we have investigated the ability of genus beta HPV E6 proteins from eight different HPV types to block the ability of p53 to transactivate downstream genes following DNA damage. We find that some, but not all, genus beta HPV E6 proteins can block the transactivation of some p53 target genes. This differential response to DNA damage furthers the understanding of cutaneous HPV biology and may help

  15. In situ identification of keratin-hydrolyzing organisms in swine manure inoculated anaerobic digesters.

    PubMed

    Xia, Yun; Massé, Daniel I; McAllister, Tim A; Beaulieu, Carole; Talbot, Guylaine; Kong, Yunhong; Seviour, Robert

    2011-12-01

    Feathers, a poultry byproduct, are composed of > 90% keratin which is resistant to degradation during anaerobic digestion. In this study, four 42-L anaerobic digesters inoculated with adapted swine manure were used to investigate feather digestion. Ground feathers were added into two anaerobic digesters for biogas production, whereas another two without feathers were used as negative control. Feather degradation and enhanced methane production were recorded. Keratin-hydrolyzing organisms (KHOs) were visualized in the feather bag fluids after boron-dipyrromethene (BODIPY) fluorescence casein staining. Their abundances correlated (R(2)  = 0.96) to feather digestion rates. A 16S rRNA clone library was constructed for the bacterial populations attached to the feather particles. Ninety-three clones (> 1300 bp) were retrieved and 57 (61%) belonged to class Clostridia in the phylum Firmicutes, while 34 (37%) belonged to class Bacteroidia in the phylum Bacteroidetes. Four oligonucleotide FISH probes were designed for the major Clostridia clusters and used with other FISH probes to identify the KHOs. Probe FIMs1029 hybridized with most (> 80%) of the KHOs. Its targeted sequence perfectly matches that possessed by 10 Clostridia 16S rRNA gene clones belonging to a previously uncharacterized new genus closely related to Alkaliphilus in the subfamily Clostridiaceae 2 of family Clostridiaceae. © 2011 Her Majesty the Queen in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada. Published by Blackwell Publishing Ltd.

  16. {beta}-Catenin regulates airway smooth muscle contraction.

    PubMed

    Jansen, Sepp R; Van Ziel, Anna M; Baarsma, Hoeke A; Gosens, Reinoud

    2010-08-01

    beta-Catenin is an 88-kDa member of the armadillo family of proteins that is associated with the cadherin-catenin complex in the plasma membrane. This complex interacts dynamically with the actin cytoskeleton to stabilize adherens junctions, which play a central role in force transmission by smooth muscle cells. Therefore, in the present study, we hypothesized a role for beta-catenin in the regulation of smooth muscle force production. beta-Catenin colocalized with smooth muscle alpha-actin (sm-alpha-actin) and N-cadherin in plasma membrane fractions and coimmunoprecipitated with sm-alpha-actin and N-cadherin in lysates of bovine tracheal smooth muscle (BTSM) strips. Moreover, immunocytochemistry of cultured BTSM cells revealed clear and specific colocalization of sm-alpha-actin and beta-catenin at the sites of cell-cell contact. Treatment of BTSM strips with the pharmacological beta-catenin/T cell factor-4 (TCF4) inhibitor PKF115-584 (100 nM) reduced beta-catenin expression in BTSM whole tissue lysates and in plasma membrane fractions and reduced maximal KCl- and methacholine-induced force production. These changes in force production were not accompanied by changes in the expression of sm-alpha-actin or sm-myosin heavy chain (MHC). Likewise, small interfering RNA (siRNA) knockdown of beta-catenin in BTSM strips reduced beta-catenin expression and attenuated maximal KCl- and methacholine-induced contractions without affecting sm-alpha-actin or sm-MHC expression. Conversely, pharmacological (SB-216763, LiCl) or insulin-induced inhibition of glycogen synthase kinase-3 (GSK-3) enhanced the expression of beta-catenin and augmented maximal KCl- and methacholine-induced contractions. We conclude that beta-catenin is a plasma membrane-associated protein in airway smooth muscle that regulates active tension development, presumably by stabilizing cell-cell contacts and thereby supporting force transmission between neighboring cells.

  17. The Golgi localization of phosphatidylinositol transfer protein beta requires the protein kinase C-dependent phosphorylation of serine 262 and is essential for maintaining plasma membrane sphingomyelin levels.

    PubMed

    van Tiel, Claudia M; Westerman, Jan; Paasman, Marten A; Hoebens, Martha M; Wirtz, Karel W A; Snoek, Gerry T

    2002-06-21

    Recombinant mouse phosphatidylinositol transfer protein (PI-TP)beta is a substrate for protein kinase C (PKC)-dependent phosphorylation in vitro. Based on site-directed mutagenesis and two-dimensional tryptic peptide mapping, Ser(262) was identified as the major site of phosphorylation and Ser(165) as a minor phosphorylation site. The phospholipid transfer activities of wild-type PI-TP beta and PI-TP beta(S262A) were identical, whereas PI-TP beta(S165A) was completely inactive. PKC-dependent phosphorylation of Ser(262) also had no effect on the transfer activity of PI-TP beta. To investigate the role of Ser(262) in the functioning of PI-TP beta, wtPI-TP beta and PI-TP beta(S262A) were overexpressed in NIH3T3 fibroblast cells. Two-dimensional PAGE analysis of cell lysates was used to separate PI-TP beta from its phosphorylated form. After Western blotting, wtPI-TP beta was found to be 85% phosphorylated, whereas PI-TP beta(S262A) was not phosphorylated. In the presence of the PKC inhibitor GF 109203X, the phosphorylated form of wtPI-TP beta was strongly reduced. Immunolocalization showed that wtPI-TP beta was predominantly associated with the Golgi membranes. In the presence of the PKC inhibitor, wtPI-TP beta was distributed throughout the cell similar to what was observed for PI-TP beta(S262A). In contrast to wtPI-TP beta overexpressors, cells overexpressing PI-TP beta(S262A) were unable to rapidly replenish sphingomyelin in the plasma membrane upon degradation by sphingomyelinase. This implies that PKC-dependent association with the Golgi complex is a prerequisite for PI-TP beta to express its effect on sphingomyelin metabolism.

  18. Structure of a Trypanosoma Brucei Alpha/Beta--Hydrolase Fold Protein With Unknown Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merritt, E.A.; Holmes, M.; Buckner, F.S.

    2009-05-26

    The structure of a structural genomics target protein, Tbru020260AAA from Trypanosoma brucei, has been determined to a resolution of 2.2 {angstrom} using multiple-wavelength anomalous diffraction at the Se K edge. This protein belongs to Pfam sequence family PF08538 and is only distantly related to previously studied members of the {alpha}/{beta}-hydrolase fold family. Structural superposition onto representative {alpha}/{beta}-hydrolase fold proteins of known function indicates that a possible catalytic nucleophile, Ser116 in the T. brucei protein, lies at the expected location. However, the present structure and by extension the other trypanosomatid members of this sequence family have neither sequence nor structural similaritymore » at the location of other active-site residues typical for proteins with this fold. Together with the presence of an additional domain between strands {beta}6 and {beta}7 that is conserved in trypanosomatid genomes, this suggests that the function of these homologs has diverged from other members of the fold family.« less

  19. Autosomal Recessive Hypotrichosis with Woolly Hair Caused by a Mutation in the Keratin 25 Gene Expressed in Hair Follicles.

    PubMed

    Zernov, Nikolay V; Skoblov, Mikhail Y; Marakhonov, Andrey V; Shimomura, Yutaka; Vasilyeva, Tatyana A; Konovalov, Fedor A; Abrukova, Anna V; Zinchenko, Rena A

    2016-06-01

    Hypotrichosis is an abnormal condition characterized by decreased hair density and various defects in hair structure and growth patterns. In particular, in woolly hair, hypotrichosis is characterized by a tightly curled structure and abnormal growth. In this study, we present a detailed comparative examination of individuals affected by autosomal-recessive hypotrichosis (ARH), which distinguishes two types of ARH. Earlier, we demonstrated that exon 4 deletion in the lipase H gene caused an ARH (hypotrichosis 7; MIM: 604379) in populations of the Volga-Ural region of Russia. Screening for this mutation in all affected individuals revealed its presence only in the group with the hypotrichosis 7 phenotype. Other patients formed a separate group of woolly hair-associated ARH, with a homozygous missense mutation c.712G>T (p.Val238Leu) in a highly conserved position of type I keratin KRT25 (K25). Haplotype analysis indicated a founder effect. An expression study in the HaCaT cell line demonstrated a deleterious effect of the p.Val238Leu mutation on the formation of keratin intermediate filaments. Hence, we have identified a previously unreported missense mutation in the KRT25 gene causing ARH with woolly hair. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. An acellular dermal matrix allograft (Alloderm®) for increasing keratinized attached gingiva: A case series

    PubMed Central

    Agarwal, Chitra; Kumar, Baron Tarun; Mehta, Dhoom Singh

    2015-01-01

    Context: Adequate amount of keratinized gingiva is necessary to keep gingiva healthy and free of inflammation. Autografts have been used for years with great success to increase the width of attached gingiva. Autografts, however, have the disadvantage of increasing postoperative morbidity and improper color match with the adjacent tissues. Alloderm® allograft has been introduced as an alternative to autografts to overcome these disadvantages. Aim: In this study, the efficacy of alloderm® in increasing the width of attached gingiva and the stability of gained attached gingiva was evaluated clinically. Materials and Methods: Five patients with sites showing inadequate width of attached gingiva (≤1 mm) were enrolled for the study. The width of keratinized gingiva and other clinical parameters were recorded at baseline and 9th month postoperatively. Result: In all cases, there is the average increase of about 2.5 mm of attached gingiva and was maintained for 9-month. Percentage shrinkage of the graft is about 75% at the end of 3rd month in all cases. Excellent colors match with adjacent tissue has been obtained. Conclusion: The study signifies that Alloderm® results in an adequate increase in the amount of attached gingiva and therefore can be used successfully in place of autografts. PMID:26015676

  1. Mechanisms of A beta plaque clearance following passive A beta immunization.

    PubMed

    Morgan, Dave

    2005-01-01

    Alzheimer's disease is a major health problem with limited available medical treatment options. Immunotherapy is one approach with the potential to slow or reverse the disease process. In transgenic mouse models of amyloid deposition, anti-A beta immunotherapy is remarkably effective at diminishing the amyloid burden and reversing the memory deficiency phenotype present in these mice. Three distinct mechanisms of antibody action have been proposed to mediate these benefits of anti-A beta immunotherapy. The first is a catalytic dissolution of the A beta fibrils, proposed by Beka Solomon and colleagues. A second mechanism is opsonization of the amyloid by the antibody and subsequent phagocytosis by macrophages proposed by Dale Schenk and the Elan group. A third mechanism proposed by DeMattos, Holtzman and colleagues is the peripheral sink hypothesis, arguing that circulating antibodies sequester A beta and favor efflux of A beta from the CNS over influx to the CNS. None of these mechanisms are mutually exclusive. Our research group has evaluated these mechanisms using intracranial injection and systemic administration of anti-A beta antibodies. We found evidence supporting all three mechanisms, and suggest they may act synergistically to achieve the large effect size of the immunotherapeutic approach. However, in aged amyloid precursor protein transgenic mice administered anti-A beta antibodies systemically, there is a redistribution of the amyloid from the parenchyma to vascular elements. This increase in congophilic angiopathy is associated with increased risk of microhemorrhage. Thus, although we favor continued testing of the immunotherapy to treat Alzheimer's disease, we believe caution should be taken to minimize the risk of vascular leakage. Copyright 2005 S. Karger AG, Basel.

  2. Beta-catenin is required for memory consolidation.

    PubMed

    Maguschak, Kimberly A; Ressler, Kerry J

    2008-11-01

    beta-catenin has been implicated in neuronal synapse regulation and remodeling. Here we have examined beta-catenin expression in the adult mouse brain and its role in amygdala-dependent learning and memory. We found alterations in beta-catenin mRNA and protein phosphorylation during fear-memory consolidation. Such alterations correlated with a change in the association of beta-catenin with cadherin. Pharmacologically, this consolidation was enhanced by lithium-mediated facilitation of beta-catenin. Genetically, the role of beta-catenin was confirmed with site-specific deletions of loxP-flanked Ctnnb1 (encoding beta-catenin) in the amygdala. Baseline locomotion, anxiety-related behaviors and acquisition or expression of conditioned fear were normal. However, amygdala-specific deletion of Ctnnb1 prevented the normal transfer of newly formed fear learning into long-term memory. Thus, beta-catenin may be required in the amygdala for the normal consolidation, but not acquisition, of fear memory. This suggests a general role for beta-catenin in the synaptic remodeling and stabilization underlying long-term memory in adults.

  3. GLP-1 mediates antiapoptotic effect by phosphorylating Bad through a beta-arrestin 1-mediated ERK1/2 activation in pancreatic beta-cells.

    PubMed

    Quoyer, Julie; Longuet, Christine; Broca, Christophe; Linck, Nathalie; Costes, Safia; Varin, Elodie; Bockaert, Joël; Bertrand, Gyslaine; Dalle, Stéphane

    2010-01-15

    Strategies based on activating GLP-1 receptor (GLP-1R) are intensively developed for the treatment of type 2 diabetes. The exhaustive knowledge of the signaling pathways linked to activated GLP-1R within the beta-cells is of major importance. In beta-cells, GLP-1 activates the ERK1/2 cascade by diverse pathways dependent on either Galpha(s)/cAMP/cAMP-dependent protein kinase (PKA) or beta-arrestin 1, a scaffold protein. Using pharmacological inhibitors, beta-arrestin 1 small interfering RNA, and islets isolated from beta-arrestin 1 knock-out mice, we demonstrate that GLP-1 stimulates ERK1/2 by two temporally distinct pathways. The PKA-dependent pathway mediates rapid and transient ERK1/2 phosphorylation that leads to nuclear translocation of the activated kinases. In contrast, the beta-arrestin 1-dependent pathway produces a late ERK1/2 activity that is restricted to the beta-cell cytoplasm. We further observe that GLP-1 phosphorylates the cytoplasmic proapoptotic protein Bad at Ser-112 but not at Ser-155. We find that the beta-arrestin 1-dependent ERK1/2 activation engaged by GLP-1 mediates the Ser-112 phosphorylation of Bad, through p90RSK activation, allowing the association of Bad with the scaffold protein 14-3-3, leading to its inactivation. beta-Arrestin 1 is further found to mediate the antiapoptotic effect of GLP-1 in beta-cells through the ERK1/2-p90RSK-phosphorylation of Bad. This new regulatory mechanism engaged by activated GLP-1R involving a beta-arrestin 1-dependent spatiotemporal regulation of the ERK1/2-p90RSK activity is now suspected to participate in the protection of beta-cells against apoptosis. Such signaling mechanism may serve as a prototype to generate new therapeutic GLP-1R ligands.

  4. Ten tandem repeats of {beta}-hCG 109-118 enhance immunogenicity and anti-tumor effects of {beta}-hCG C-terminal peptide carried by mycobacterial heat-shock protein HSP65

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yankai; Yan Rong; He Yi

    2006-07-14

    The {beta}-subunit of human chorionic gonadotropin ({beta}-hCG) is secreted by many kinds of tumors and it has been used as an ideal target antigen to develop vaccines against tumors. In view of the low immunogenicity of this self-peptide,we designed a method based on isocaudamer technique to repeat tandemly the 10-residue sequence X of {beta}-hCG (109-118), then 10 tandemly repeated copies of the 10-residue sequence combined with {beta}-hCG C-terminal 37 peptides were fused to mycobacterial heat-shock protein 65 to construct a fusion protein HSP65-X10-{beta}hCGCTP37 as an immunogen. In this study, we examined the effect of the tandem repeats of this 10-residuemore » sequence in eliciting an immune by comparing the immunogenicity and anti-tumor effects of the two immunogens, HSP65-X10-{beta}hCGCTP37 and HSP65-{beta}hCGCTP37 (without the 10 tandem repeats). Immunization of mice with the fusion protein HSP65-X10-{beta}hCGCTP37 elicited much higher levels of specific anti-{beta}-hCG antibodies and more effectively inhibited the growth of Lewis lung carcinoma (LLC) in vivo than with HSP65-{beta}hCGCTP37, which should suggest that HSP65-X10-{beta}hCGCTP37 may be an effective protein vaccine for the treatment of {beta}-hCG-dependent tumors and multiple tandem repeats of a certain epitope are an efficient method to overcome the low immunogenicity of self-peptide antigens.« less

  5. Beta-thalassemia intermedia associated with moyamoya syndrome.

    PubMed

    Göksel, Basak Karakurum; Ozdogu, Hakan; Yildirim, Tulin; Oğuzkurt, Levent; Asma, Suheyl

    2010-07-01

    Moyamoya syndrome (MMS) is a progressive disorder. We report a 19-year-old boy with beta-thalassemia who presented with a left hemiparesis. Brain MRI showed old middle cerebral artery and left frontal subcortical white matter infarcts. Brain magnetic resonance angiography and digital subtraction angiography revealed occlusion of the bilateral internal carotid arteries with a rich network of basal collateral vessels. To our knowledge this is the third report of beta-thalassemia intermedia and MMS, and the first report of a patient in Turkey. It emphasizes the potential for cerebral infarct due to anemia, protein S and thrombocytosis.

  6. A radioimmunoassay for ependymins beta and gamma: two goldfish brain proteins involved in behavioral plasticity.

    PubMed

    Schmidt, R; Shashoua, V E

    1981-04-01

    A radioimmunoassay (RIA) using 125I-labeled antigen was developed for the quantitative determination of two goldfish brain proteins (ependymins beta and gamma). The proteins were isolated from the cerebrospinal fluid (CSF) and cells of the ependymal zone surrounding goldfish brain ventricles. The turnover rates of beta and gamma were previously shown to be specifically enhanced after the animals successfully acquired a new pattern of swimming behavior. Femtomole quantities of ependymin beta were measurable by the RIA. In applications of the assay, beta and gamma ependymins were found to have common immunological properties, since 125I-beta-antigen bound to antibody could be displaced by unlabeled ependymin gamma as well as ependymin beta but not by a variety of other proteins including several purified glycoproteins isolated from goldfish brain. The ependymins were shown to constitute 14% of the total protein content of the brain extracellular fluid and also to be present as a minor component of the serum proteins (0.3%). Ependymins beta and gamma have an immunological reactivity in these fractions that can be increased by a factor of 30 on heating. The data suggest that the antigenicity of the molecules is highly masked, and that it may require some unraveling of the quaternary structure of the proteins before maximal interaction with the antisera becomes possible.

  7. Determining Beta Sheet Crystallinity in Fibrous Proteins by Thermal Analysis and Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Kaplan, David; Cebe, Peggy

    2007-03-01

    We report a study of self-assembled beta pleated sheets in Bombyx mori silk fibroin films using thermal analysis and infrared spectroscopy. Crystallization of beta pleated sheets was effected either by heating the films above the glass transition temperature (Tg) and holding isothermally, or by exposure to methanol. The fractions of secondary structural components including random coils, alpha helices, beta pleated sheets, turns, and side chains, were evaluated using Fourier self-deconvolution (FSD) of the infrared absorbance spectra. As crystalline beta sheets form, the heat capacity increment from the TMDSC trace at Tg is systematically decreased and is linearly well correlated with beta sheet content determined from FSD. This analysis of beta sheet content can serve as an alternative to X-ray methods and may have wide applicability to other crystalline beta sheet forming proteins.

  8. The receptor protein tyrosine phosphatase (RPTP){beta}/{zeta} is expressed in different subtypes of human breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Pinera, Pablo; Garcia-Suarez, Olivia; Instituto Universitario de Oncologia del Principado de Asturias, Oviedo

    2007-10-12

    Increasing evidence suggests mutations in human breast cancer cells that induce inappropriate expression of the 18-kDa cytokine pleiotrophin (PTN, Ptn) initiate progression of breast cancers to a more malignant phenotype. Pleiotrophin signals through inactivating its receptor, the receptor protein tyrosine phosphatase (RPTP){beta}/{zeta}, leading to increased tyrosine phosphorylation of different substrate proteins of RPTP{beta}/{zeta}, including {beta}-catenin, {beta}-adducin, Fyn, GIT1/Cat-1, and P190RhoGAP. PTN signaling thus has wide impact on different important cellular systems. Recently, PTN was found to activate anaplastic lymphoma kinase (ALK) through the PTN/RPTP{beta}/{zeta} signaling pathway; this discovery potentially is very important, since constitutive ALK activity of nucleophosmin (NPM)-ALK fusionmore » protein is causative of anaplastic large cell lymphomas, and, activated ALK is found in other malignant cancers. Recently ALK was identified in each of 63 human breast cancers from 22 subjects. We now demonstrate that RPTP{beta}/{zeta} is expressed in each of these same 63 human breast cancers that previously were found to express ALK and in 10 additional samples of human breast cancer. RPTP{beta}/{zeta} furthermore was localized not only in its normal association with the cell membrane but also scattered in cytoplasm and in nuclei in different breast cancer cells and, in the case of infiltrating ductal carcinomas, the distribution of RPTP{beta}/{zeta} changes as the breast cancer become more malignant. The data suggest that the PTN/RPTP{beta}/{zeta} signaling pathway may be constitutively activated and potentially function to constitutively activate ALK in human breast cancer.« less

  9. Neutralizing Antibodies against IFN-[Beta] in Multiple Sclerosis: Antagonization of IFN-[Beta] Mediated Suppression of MMPs

    ERIC Educational Resources Information Center

    Gilli, Francesca; Bertolotto, Antonio; Sala, Arianna; Hoffmann, Francine; Capobianco, Marco; Malucchi, Simona; Glass, Tracy; Kappos, Ludwig; Lindberg, Raija L. P.; Leppert, David

    2004-01-01

    Neutralizing antibodies (NAb) against interferon-[Beta] (IFN-Beta) develop in about a third of treated multiple sclerosis patients and are believed to reduce therapeutic efficacy of IFN-[Beta] on clinical and MRI measures. The expression of the interferon acute-response protein, myxovirus resistance protein A (MxA) is a sensitive measure of the…

  10. Cytoskeleton changes following differentiation of N1E-115 neuroblastoma cell line.

    PubMed

    Oh, J-E; Karlmark Raja, K; Shin, J-H; Pollak, A; Hengstschläger, M; Lubec, G

    2006-10-01

    No systematic approach to detect expression of differentiation-related elements was published so far. The undifferentiated N1E-115 neuroblastoma cell line was switched into a neuronal phenotype by DMSO treatment and used for proteomic experiments. We used two-dimensional gel electrophoresis followed by unambiguous mass spectrometrical identification of proteins to generate a map of cytoskeleton proteins (CPs), i.e., to search for differentiation-related structures. Alpha-actin, actin-like protein 6A, gamma-tubulin complex component 2, tubulin alpha 3/alpha 7, CLIP associating protein 2, B4 integrin interactor homolog were detectable in the undifferentiated cell line exclusively and neuron-specific CPs drebrin and presynaptic density protein 95, actin-related protein 2/3, alpha and beta-centractin, PDZ-domain actin binding protein, actinin alpha 1, profilin II, ezrin, coactosin-like protein, transgelin 2, myosin light polypeptide 6, tubulin alpha 2, 6 and 7, beta tubulin (94% similar with tubulin beta-2), tubulin beta 3, tubulin tyrosine ligase-like protein 1, lamin B1 and keratin 20 were observed in the differentiated cell line only. We herein identified differentiation-related expressional patterns thus providing new evidence for the role of CPs in the process of neuronal differentiation.

  11. Trafficking of cell surface beta-amyloid precursor protein: retrograde and transcytotic transport in cultured neurons

    PubMed Central

    1995-01-01

    Amyloid beta-protein (A beta), the principal constituent of senile plaques seen in Alzheimer's disease (AD), is derived by proteolysis from the beta-amyloid precursor protein (beta PP). The mechanism of A beta production in neurons, which are hypothesized to be a rich source of A beta in brain, remains to be defined. In this study, we describe a detailed localization of cell surface beta PP and its subsequent trafficking in primary cultured neurons. Full-length cell surface beta PP was present primarily on perikarya and axons, the latter with a characteristic discontinuous pattern. At growth cones, cell surface beta PP was inconsistently detected. By visualizing the distribution of beta PP monoclonal antibodies added to intact cultures, beta PP was shown to be internalized from distal axons or terminals and retrogradely transported back to perikarya in organelles which colocalized with fluid-phase endocytic markers. Retrograde transport of beta PP was shown in both hippocampal and peripheral sympathetic neurons, the latter using a compartment culture system that isolated cell bodies from distal axons and terminals. In addition, we demonstrated that beta PP from distal axons was transcytotically transported to the surface of perikarya from distal axons in sympathetic neurons. Indirect evidence of this transcytotic pathway was obtained in hippocampal neurons using antisense oligonucleotide to the kinesin heavy chain to inhibit anterograde beta PP transport. Taken together, these results demonstrate novel aspects of beta PP trafficking in neurons, including retrograde axonal transport and transcytosis. Moreover, the axonal predominance of cell surface beta PP is unexpected in view of the recent report of polarized sorting of beta PP to the basolateral domain of MDCK cells. PMID:7721945

  12. Amyloid formation and inhibition of an all-beta protein: A study on fungal polygalacturonase

    NASA Astrophysics Data System (ADS)

    Chinisaz, Maryam; Ghasemi, Atiyeh; Larijani, Bagher; Ebrahim-Habibi, Azadeh

    2014-02-01

    Theoretically, all proteins can adopt the nanofibrillar structures known as amyloid, which contain cross-beta structures. The all-beta folded proteins are particularly interesting in this regard, since they appear to be naturally more predisposed toward this structural arrangement. In this study, methanol has been used to drive the beta-helix protein polygalacturonase (PG), toward amyloid fibril formation. Congo red absorbance, thioflavin T fluorescence, circular dichroism (CD) and transmission electron microscopy have been used to characterize this process. Similar to other all-beta proteins, PG shows a non-cooperative fibrillation mechanism, but the structural changes that are monitored by CD indicate a different pattern. Furthermore, several compounds containing aromatic components were tested as potential inhibitors of amyloid formation. Another protein predominantly composed of alpha-helices (human serum albumin) was also targeted by these ligands, in order to get an insight into their potential anti-aggregation property toward structurally different proteins. Among tested compounds, silibinin and chlorpropamide were able to considerably affect both proteins fibrillation process.

  13. Serum levels of keratin-18 fragments [tissue polypeptide-specific antigen (TPS)] are correlated with hepatocyte apoptosis in alcoholic hepatitis.

    PubMed

    Gonzalez-Quintela, A; Abdulkader, I; Campos, J; Fernandez-Hernandez, L; Lojo, S

    2009-03-01

    Apoptosis is a major feature in alcoholic hepatitis. During apoptosis, the M30 neoepitope becomes exposed after keratin-18 cleavage. The tissue polypeptide-specific antigen (TPS) is a keratin-18 fragment that is routinely used as a tumor marker. Serum TPS levels are increased in patients with alcoholic hepatitis. The aim of this study was to investigate the possible relationship of TPS levels with hepatocyte apoptosis in alcoholic hepatitis. Thirty-one patients with alcoholic hepatitis and 22 with fatty liver were included. Hepatocyte apoptosis was evaluated by M30 immunostaining. Serum TPS levels were measured by a commercial immunoassay. The apoptotic score was higher in patients with alcoholic hepatitis than in patients with fatty liver. There was a significant correlation between the apoptotic score and TPS levels. The correlation of the apoptotic score with TPS levels was stronger than with standard liver tests. Serum TPS may be a marker of apoptosis in alcoholic hepatitis.

  14. Expression and structural features of endoglin (CD105), a transforming growth factor beta1 and beta3 binding protein, in human melanoma.

    PubMed Central

    Altomonte, M.; Montagner, R.; Fonsatti, E.; Colizzi, F.; Cattarossi, I.; Brasoveanu, L. I.; Nicotra, M. R.; Cattelan, A.; Natali, P. G.; Maio, M.

    1996-01-01

    Human endoglin (CD105) is a member of the transforming growth factor beta (TGF-beta) receptor family that binds TGF-beta1 and -beta3, but not TGF-beta2, on human endothelial cells. Immunohistochemical analyses demonstrated that CD105 is expressed on normal and neoplastic cells of the melanocytic lineage. The anti-CD105 MAb, MAEND3, stained 50, 25 and 34% of intradermal naevi, primary and metastatic melanomas investigated, respectively, and nine out of 12 melanoma cell lines. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that CD105 expressed by melanoma cells consists of a homodimeric protein with an apparent molecular weight of 180 and 95 kDa under non-reducing and reducing conditions. Cross-linking of 125I-labelled TGF-beta1 to melanoma cells, Mel 97, by disuccinimidyl suberate (DSS) demonstrated that CD105 expressed on pigmented cells binds TGF-beta1; the pattern of binding of TGF-beta1 to melanoma cells was found to be similar to that of human umbilical vein endothelial cells. The addition of exogenous, bioactive TGF-beta1 significantly (P<0.05) inhibited the growth of CD105-positive melanoma cells, Mel 97, but did not affect that of CD105-negative melanoma cells, F0-1. These data, altogether, demonstrate that CD105 is expressed on pigmented cells and might play a functionally relevant role in the biology of human melanoma cells by regulating their sensitivity to TGF-betas. Images Figure 1 Figure 3 Figure 4 PMID:8932339

  15. Spectrofluorimetric determination of stoichiometry and association constants of the complexes of harmane and harmine with beta-cyclodextrin and chemically modified beta-cyclodextrins.

    PubMed

    Martín, L; León, A; Olives, A I; Del Castillo, B; Martín, M A

    2003-06-13

    The association characteristics of the inclusion complexes of the beta-carboline alkaloids harmane and harmine with beta-cyclodextrin (beta-CD) and chemically modified beta-cyclodextrins such as hydroxypropyl-beta-cyclodextrin (HPbeta-CD), 2,3-di-O-methyl-beta-cyclodextrin (DMbeta-CD) and 2,3,6-tri-O-methyl-beta-cyclodextrin (TMbeta-CD) are described. The association constants vary from 112 for harmine/DMbeta-CD to 418 for harmane/HPbeta-CD. The magnitude of the interactions between the host and the guest molecules depends on the chemical and geometrical characteristics of the guest molecules and therefore the association constants vary for the different cyclodextrin complexes. The steric hindrance is higher in the case of harmine due to the presence of methoxy group on the beta-carboline ring. The association obtained for the harmane complexes is stronger than the one observed for harmine complexes except in the case of harmine/TMbeta-CD. Important differences in the association constants were observed depending on the experimental variable used in the calculations (absolute value of fluorescence intensity or the ratio between the fluorescence intensities corresponding to the neutral and cationic forms). When fluorescence intensity values were considered, the association constants were higher than when the ratio of the emission intensity for the cationic and neutral species was used. These differences are a consequence of the co-existence of acid-base equilibria in the ground and in excited states together with the complexation equilibria. The existence of a proton transfer reaction in the excited states of harmane or harmine implies the need for the experimental dialysis procedure for separation of the complexes from free harmane or harmine. Such methodology allows quantitative results for stoichiometry determinations to be obtained, which show the existence of both 1:1 and 1:2 beta-carboline alkaloid:CD complexes with different solubility properties.

  16. Targeted deletion of Atg5 reveals differential roles of autophagy in keratin K5-expressing epithelia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukseree, Supawadee; Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok; Rossiter, Heidemarie

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer We generated mice lacking Atg5 and autophagy in keratin K5-positive epithelia. Black-Right-Pointing-Pointer Suppression of autophagy in thymic epithelium was not associated with signs of autoimmunity. Black-Right-Pointing-Pointer Autophagy was required for normal terminal differentiation of preputial gland cells. Black-Right-Pointing-Pointer Autophagy-deficient cells of the preputial glands degraded nuclear DNA prematurely. -- Abstract: Autophagy contributes to the homeostasis of many tissues, yet its role in epithelia is incompletely understood. A recent report proposed that Atg5-dependent autophagy in thymic epithelial cells is essential for their function in the negative selection of self-reactive T-cells and, thus, for the suppression of tissue inflammation. Heremore » we crossed mice carrying floxed alleles of the Atg5 gene with mice expressing the Cre recombinase under the control of the keratin K5 promoter to suppress autophagy in all K5-positive epithelia. The efficiency of autophagy abrogation was confirmed by immunoanalyses of LC3, which was converted to the autophagy-associated LC3-II form in normal but not Atg5-deficient cells, and of p62, which accumulated in Atg5-deficient cells. Mice carrying the epithelium-specific deletion of Atg5 showed normal weight gain, absence of tissue inflammation, and a normal morphology of the thymic epithelium. By contrast, autophagy-deficient epithelial cells of the preputial gland showed aberrant eosinophilic staining in histology and premature degradation of nuclear DNA during terminal differentiation. Taken together, the results of this study suggest that autophagy is dispensable for the suppression of autoimmunity by thymic epithelial cells but essential for normal differentiation of the preputial gland in mice.« less

  17. Bioinformatics Knowledge Map for Analysis of Beta-Catenin Function in Cancer

    PubMed Central

    Arighi, Cecilia N.; Wu, Cathy H.

    2015-01-01

    Given the wealth of bioinformatics resources and the growing complexity of biological information, it is valuable to integrate data from disparate sources to gain insight into the role of genes/proteins in health and disease. We have developed a bioinformatics framework that combines literature mining with information from biomedical ontologies and curated databases to create knowledge “maps” of genes/proteins of interest. We applied this approach to the study of beta-catenin, a cell adhesion molecule and transcriptional regulator implicated in cancer. The knowledge map includes post-translational modifications (PTMs), protein-protein interactions, disease-associated mutations, and transcription factors co-activated by beta-catenin and their targets and captures the major processes in which beta-catenin is known to participate. Using the map, we generated testable hypotheses about beta-catenin biology in normal and cancer cells. By focusing on proteins participating in multiple relation types, we identified proteins that may participate in feedback loops regulating beta-catenin transcriptional activity. By combining multiple network relations with PTM proteoform-specific functional information, we proposed a mechanism to explain the observation that the cyclin dependent kinase CDK5 positively regulates beta-catenin co-activator activity. Finally, by overlaying cancer-associated mutation data with sequence features, we observed mutation patterns in several beta-catenin PTM sites and PTM enzyme binding sites that varied by tissue type, suggesting multiple mechanisms by which beta-catenin mutations can contribute to cancer. The approach described, which captures rich information for molecular species from genes and proteins to PTM proteoforms, is extensible to other proteins and their involvement in disease. PMID:26509276

  18. Ca2+-dependent dephosphorylation of kinesin heavy chain on beta-granules in pancreatic beta-cells. Implications for regulated beta-granule transport and insulin exocytosis

    NASA Technical Reports Server (NTRS)

    Donelan, Matthew J.; Morfini, Gerardo; Julyan, Richard; Sommers, Scott; Hays, Lori; Kajio, Hiroshi; Briaud, Isabelle; Easom, Richard A.; Molkentin, Jeffery D.; Brady, Scott T.; hide

    2002-01-01

    The specific biochemical steps required for glucose-regulated insulin exocytosis from beta-cells are not well defined. Elevation of glucose leads to increases in cytosolic [Ca2+]i and biphasic release of insulin from both a readily releasable and a storage pool of beta-granules. The effect of elevated [Ca2+]i on phosphorylation of isolated beta-granule membrane proteins was evaluated, and the phosphorylation of four proteins was found to be altered by [Ca2+]i. One (a 18/20-kDa doublet) was a Ca2+-dependent increase in phosphorylation, and, surprisingly, three others (138, 42, and 36 kDa) were Ca2+-dependent dephosphorylations. The 138-kDa beta-granule phosphoprotein was found to be kinesin heavy chain (KHC). At low levels of [Ca2+]i KHC was phosphorylated by casein kinase 2, but KHC was rapidly dephosphorylated by protein phosphatase 2B beta (PP2Bbeta) as [Ca2+]i increased. Inhibitors of PP2B specifically reduced the second, microtubule-dependent, phase of insulin secretion, suggesting that dephosphorylation of KHC was required for transport of beta-granules from the storage pool to replenish the readily releasable pool of beta-granules. This is distinct from synaptic vesicle exocytosis, because neurotransmitter release from synaptosomes did not require a Ca2+-dependent KHC dephosphorylation. These results suggest a novel mechanism for regulating KHC function and beta-granule transport in beta-cells that is mediated by casein kinase 2 and PP2B. They also implicate a novel regulatory role for PP2B/calcineurin in the control of insulin secretion downstream of a rise in [Ca2+]i.

  19. The diagnostic performance of recombinant Trypanosoma cruzi ribosomal P2beta protein is influenced by its expression system.

    PubMed

    Marcipar, Iván S; Olivares, María Laura; Robles, Lucía; Dekanty, Andrés; Marcipar, Alberto; Silber, Ariel M

    2004-03-01

    In the present work, we have determined the effect of expression vectors and their corresponding host bacteria on the antigenic performance of Trypanosoma cruzi P2beta (TcP2beta) full-length recombinant protein. The gene encoding the TcP2beta ribosomal protein was cloned in pMAL-c2 and pET-32a vectors that allow the expression of high levels of soluble fusion proteins. A panel of 32 positive and 32 negative sera was assayed with the purified proteins expressed using pMal-c2 (TcP2beta-MBP) and pET-32a (TcP2beta-TRX) vectors and with MBP and TRX purified from pMAL-c2 and pET-32a vectors, respectively. The antigenic behavior of each TcP2beta recombinant protein differed in the diagnostic performance in terms of DI(+) (93.7 for TcP2beta-MBP vs 100% for TcP2beta-TRX), in DI(-) (90.5 for TcP2beta-MBP vs 100% for TcP2beta-TRX) and in cross-reaction with negative sera. To determine if the higher reactivity of expressed pMAL-c2 protein was due to folding during protein expression or to a steric effect related to the protein adsorption at the titration plate, the reactivity of sera against soluble proteins was assessed by ELISA inhibition assays. As each soluble protein preserved its level of reactivity, we concluded that differences in reactivity were due to intrinsic characteristics of the proteins and not to differences in patterns of adsorption to the plates.

  20. Inclusion bodies as potential vehicles for recombinant protein delivery into epithelial cells

    PubMed Central

    2012-01-01

    Background We present the potential of inclusion bodies (IBs) as a protein delivery method for polymeric filamentous proteins. We used as cell factory a strain of E. coli, a conventional host organism, and keratin 14 (K14) as an example of a complex protein. Keratins build the intermediate filament cytoskeleton of all epithelial cells. In order to build filaments, monomeric K14 needs first to dimerize with its binding partner (keratin 5, K5), which is then followed by heterodimer assembly into filaments. Results K14 IBs were electroporated into SW13 cells grown in culture together with a “reporter” plasmid containing EYFP labeled keratin 5 (K5) cDNA. As SW13 cells do not normally express keratins, and keratin filaments are built exclusively of keratin heterodimers (i.e. K5/K14), the short filamentous structures we obtained in this study can only be the result of: a) if both IBs and plasmid DNA are transfected simultaneously into the cell(s); b) once inside the cells, K14 protein is being released from IBs; c) released K14 is functional, able to form heterodimers with EYFP-K5. Conclusions Soluble IBs may be also developed for complex cytoskeletal proteins and used as nanoparticles for their delivery into epithelial cells. PMID:22624805

  1. Escherichia coli FtsH (HflB) degrades a membrane-associated TolAI-II-beta-lactamase fusion protein under highly denaturing conditions.

    PubMed

    Cooper, K W; Baneyx, F

    2001-03-01

    TolAI--II--beta-lactamase, a fusion protein consisting of the inner membrane and transperiplasmic domains of TolA followed by TEM--beta-lactamase associated with the inner membrane but remained confined to the cytoplasm when expressed at high level in Escherichia coli. Although the fusion protein was resistant to proteolysis in vivo, it was hydrolyzed during preparative SDS-polyacrylamide electrophoresis and when insoluble cellular fractions unfolded with 5 M urea were subjected to microdialysis. Inhibitor profiling studies revealed that both a metallo- and serine protease were involved in TolAI--II--beta-lactamase degradation under denaturing conditions. The in vitro degradation rates of the fusion protein were not affected when insoluble fractions were harvested from a strain lacking protease IV, but were significantly reduced when microdialysis experiments were conducted with material isolated from an isogenic ftsH1 mutant. Adenine nucleotides were not required for degradation, and ATP supplementation did not accelerate the apparent rate of TolAI--II--beta-lactamase hydrolysis under denaturing conditions. Our results indicate that the metalloprotease active site of FtsH remains functional in the presence of 3--5 M urea and suggest that the ATPase and proteolytic activities of FtsH can be uncoupled if the substrate is sufficiently unstructured. Thus, a key role of the FtsH AAA module appears to be the net unfolding of bound substrates so that they can be efficiently engaged by the protease active site. Copyright 2001 Academic Press.

  2. AE activity during transient beta drops in high poloidal beta discharges

    NASA Astrophysics Data System (ADS)

    Huang, J.; Gong, X. Z.; Ren, Q. L.; Ding, S. Y.; Qian, J. P.; Pan, C. K.; Li, G. Q.; Heidbrink, W. W.; Garofalo, A. M.; McClenaghan, J.

    2016-10-01

    Enhanced AE activity has been observed during transient beta drops in high poloidal beta DIII-D discharges with internal transport barriers (ITBs). These drops in beta are believed to be caused by n=1 external kink modes. In some discharges, beta recovers within 200 ms but, in others, beta stays suppressed. A typical discharge has βP 3, qmin 3, and q95 12. The drop in beta affects both fast ions and thermal particles, and a drop is also observed in the density and rotation. The enhanced AE activity follows the instability that causes the beta drop, is largest at the lowest beta, and subsides as beta recovers. MHD stability analysis is planned. A database study of the plasma conditions associated with the collapse will be also presented. Supported in part by the US Department of Energy under DE-FC02-04ER54698, DE-AC05-06OR23100, and by the National Natural Science Foundation of China 11575249, and the National Magnetic Confinement Fusion Program of China No. 2015GB110005.

  3. First demonstration of cerebrospinal fluid and plasma A beta lowering with oral administration of a beta-site amyloid precursor protein-cleaving enzyme 1 inhibitor in nonhuman primates.

    PubMed

    Sankaranarayanan, Sethu; Holahan, Marie A; Colussi, Dennis; Crouthamel, Ming-Chih; Devanarayan, Viswanath; Ellis, Joan; Espeseth, Amy; Gates, Adam T; Graham, Samuel L; Gregro, Allison R; Hazuda, Daria; Hochman, Jerome H; Holloway, Katharine; Jin, Lixia; Kahana, Jason; Lai, Ming-tain; Lineberger, Janet; McGaughey, Georgia; Moore, Keith P; Nantermet, Philippe; Pietrak, Beth; Price, Eric A; Rajapakse, Hemaka; Stauffer, Shaun; Steinbeiser, Melissa A; Seabrook, Guy; Selnick, Harold G; Shi, Xiao-Ping; Stanton, Matthew G; Swestock, John; Tugusheva, Katherine; Tyler, Keala X; Vacca, Joseph P; Wong, Jacky; Wu, Guoxin; Xu, Min; Cook, Jacquelynn J; Simon, Adam J

    2009-01-01

    beta-Site amyloid precursor protein (APP)-cleaving enzyme (BACE) 1 cleavage of amyloid precursor protein is an essential step in the generation of the potentially neurotoxic and amyloidogenic A beta 42 peptides in Alzheimer's disease. Although previous mouse studies have shown brain A beta lowering after BACE1 inhibition, extension of such studies to nonhuman primates or man was precluded by poor potency, brain penetration, and pharmacokinetics of available inhibitors. In this study, a novel tertiary carbinamine BACE1 inhibitor, tertiary carbinamine (TC)-1, was assessed in a unique cisterna magna ported rhesus monkey model, where the temporal dynamics of A beta in cerebrospinal fluid (CSF) and plasma could be evaluated. TC-1, a potent inhibitor (IC(50) approximately 0.4 nM), has excellent passive membrane permeability, low susceptibility to P-glycoprotein transport, and lowered brain A beta levels in a mouse model. Intravenous infusion of TC-1 led to a significant but transient lowering of CSF and plasma A beta levels in conscious rhesus monkeys because it underwent CYP3A4-mediated metabolism. Oral codosing of TC-1 with ritonavir, a potent CYP3A4 inhibitor, twice daily over 3.5 days in rhesus monkeys led to sustained plasma TC-1 exposure and a significant and sustained reduction in CSF sAPP beta, A beta 40, A beta 42, and plasma A beta 40 levels. CSF A beta 42 lowering showed an EC(50) of approximately 20 nM with respect to the CSF [TC-1] levels, demonstrating excellent concordance with its potency in a cell-based assay. These results demonstrate the first in vivo proof of concept of CSF A beta lowering after oral administration of a BACE1 inhibitor in a nonhuman primate.

  4. TGF-.beta. antagonists as mitigators of radiation-induced tissue damage

    DOEpatents

    Barcellos-Hoff, Mary H.

    1997-01-01

    A method for treating tissue damage caused by radiation is described by use of a TGF-.beta. antagonist, such as an anti-TGF-.beta. antibody or a TGF-.beta. latency associated protein. It is administered not more than a week after exposure, and is particularly useful in mitigating the side effects of breast cancer therapy.

  5. TGF-{beta} antagonists as mitigators of radiation-induced tissue damage

    DOEpatents

    Barcellos-Hoff, M.H.

    1997-04-01

    A method for treating tissue damage caused by radiation is described by use of a TGF-{beta} antagonist, such as an anti-TGF-{beta} antibody or a TGF-{beta} latency associated protein. It is administered not more than a week after exposure, and is particularly useful in mitigating the side effects of breast cancer therapy.

  6. A fully human anti-Ep-CAM scFv-beta-glucuronidase fusion protein for selective chemotherapy with a glucuronide prodrug.

    PubMed

    de Graaf, M; Boven, E; Oosterhoff, D; van der Meulen-Muileman, I H; Huls, G A; Gerritsen, W R; Haisma, H J; Pinedo, H M

    2002-03-04

    Monoclonal antibodies against tumour-associated antigens could be useful to deliver enzymes selectively to the site of a tumour for activation of a non-toxic prodrug. A completely human fusion protein may be advantageous for repeated administration, as host immune responses may be avoided. We have constructed a fusion protein consisting of a human single chain Fv antibody, C28, against the epithelial cell adhesion molecule and the human enzyme beta-glucuronidase. The sequences encoding C28 and human enzyme beta-glucuronidase were joined by a sequence encoding a flexible linker, and were preceded by the IgGkappa signal sequence for secretion of the fusion protein. A CHO cell line was engineered to secrete C28-beta-glucuronidase fusion protein. Antibody specificity and enzyme activity were retained in the secreted fusion protein that had an apparent molecular mass of 100 kDa under denaturing conditions. The fusion protein was able to convert a non-toxic prodrug of doxorubicin, N-[4-doxorubicin-N-carbonyl(oxymethyl)phenyl]-O-beta-glucuronyl carbamate to doxorubicin, resulting in cytotoxicity. A bystander effect was demonstrated, as doxorubicin was detected in all cells after N-[4-doxorubicin-N-carbonyl(oxymethyl)phenyl]-O-beta-glucuronyl carbamate administration when only 10% of the cells expressed the fusion protein. This is the first fully human and functional fusion protein consisting of an scFv against epithelial cell adhesion molecule and human enzyme beta-glucuronidase for future use in tumour-specific activation of a non-toxic glucuronide prodrug. Copyright 2002 Cancer Research UK

  7. The Promiscuity of [beta]-Strand Pairing Allows for Rational Design of [beta]-Sheet Face Inversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makabe, Koki; Koide, Shohei

    2009-06-17

    Recent studies suggest the dominant role of main-chain H-bond formation in specifying {beta}-sheet topology. Its essentially sequence-independent nature implies a large degree of freedom in designing {beta}-sheet-based nanomaterials. Here we show rational design of {beta}-sheet face inversions by incremental deletions of {beta}-strands from the single-layer {beta}-sheet of Borrelia outer surface protein A. We show that a {beta}-sheet structure can be maintained when a large number of native contacts are removed and that one can design large-scale conformational transitions of a {beta}-sheet such as face inversion by exploiting the promiscuity of strand-strand interactions. High-resolution X-ray crystal structures confirmed the success ofmore » the design and supported the importance of main-chain H-bonds in determining {beta}-sheet topology. This work suggests a simple but effective strategy for designing and controlling nanomaterials based on {beta}-rich peptide self-assemblies.« less

  8. Cracks in the beta-can: fluorescent proteins from Anemonia sulcata (Anthozoa, Actinaria).

    PubMed

    Wiedenmann, J; Elke, C; Spindler, K D; Funke, W

    2000-12-19

    We characterize two green fluorescent proteins (GFPs), an orange fluorescent protein, and a nonfluorescent red protein isolated from the sea anemone Anemonia sulcata. The orange fluorescent protein and the red protein seem to represent two different states of the same protein. Furthermore, we describe the cloning of a GFP and a nonfluorescent red protein. Both proteins are homologous to the GFP from Aequorea victoria. The red protein is significantly smaller than other GFP homologues, and the formation of a closed GFP-like beta-can is not possible. Nevertheless, the primary structure of the red protein carries all features necessary for orange fluorescence. We discuss a type of beta-can that could be formed in a multimerization process.

  9. Keratin 8/18 regulation of glucose metabolism in normal versus cancerous hepatic cells through differential modulation of hexokinase status and insulin signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathew, Jasmin; Loranger, Anne; Gilbert, Stéphane

    2013-02-15

    As differentiated cells, hepatocytes primarily metabolize glucose for ATP production through oxidative phosphorylation of glycolytic pyruvate, whereas proliferative hepatocellular carcinoma (HCC) cells undergo a metabolic shift to aerobic glycolysis despite oxygen availability. Keratins, the intermediate filament (IF) proteins of epithelial cells, are expressed as pairs in a lineage/differentiation manner. Hepatocyte and HCC (hepatoma) cell IFs are made solely of keratins 8/18 (K8/K18), thus providing models of choice to address K8/K18 IF functions in normal and cancerous epithelial cells. Here, we demonstrate distinctive increases in glucose uptake, glucose-6-phosphate formation, lactate release, and glycogen formation in K8/K18 IF-lacking hepatocytes and/or hepatoma cellsmore » versus their respective IF-containing counterparts. We also show that the K8/K18-dependent glucose uptake/G6P formation is linked to alterations in hexokinase I/II/IV content and localization at mitochondria, with little effect on GLUT1 status. In addition, we find that the insulin-stimulated glycogen formation in normal hepatocytes involves the main PI-3 kinase-dependent signaling pathway and that the K8/K18 IF loss makes them more efficient glycogen producers. In comparison, the higher insulin-dependent glycogen formation in K8/K18 IF-lacking hepatoma cells is associated with a signaling occurring through a mTOR-dependent pathway, along with an augmentation in cell proliferative activity. Together, the results uncover a key K8/K18 regulation of glucose metabolism in normal and cancerous hepatic cells through differential modulations of mitochondrial HK status and insulin-mediated signaling.« less

  10. Modulators and inhibitors of gamma- and beta-secretases.

    PubMed

    Schmidt, Boris; Baumann, Stefanie; Narlawar, Rajeshwar; Braun, Hannes A; Larbig, Gregor

    2006-01-01

    Most gene mutations associated with Alzheimer's disease point to the metabolism of amyloid precursor protein as a potential cause. The beta- and gamma-secretases are two executioners of amyloid precursor protein processing resulting in amyloid-beta. Significant progress has been made in the selective inhibition of both proteases, regardless of structural information for gamma-secretase. Several peptidic and nonpeptidic leads were identified for both targets. Copyright 2006 S. Karger AG, Basel.

  11. Substance P-induced trafficking of beta-arrestins. The role of beta-arrestins in endocytosis of the neurokinin-1 receptor.

    PubMed

    McConalogue, K; Déry, O; Lovett, M; Wong, H; Walsh, J H; Grady, E F; Bunnett, N W

    1999-06-04

    Agonist-induced redistribution of G-protein-coupled receptors (GPCRs) and beta-arrestins determines the subsequent cellular responsiveness to agonists and is important for signal transduction. We examined substance P (SP)-induced trafficking of beta-arrestin1 and the neurokinin-1 receptor (NK1R) in KNRK cells in real time using green fluorescent protein. Green fluorescent protein did not alter function or localization of the NK1R or beta-arrestin1. SP induced (a) striking and rapid (<1 min) translocation of beta-arrestin1 from the cytosol to the plasma membrane, which preceded NK1R endocytosis; (b) redistribution of the NK1R and beta-arrestin1 into the same endosomes containing SP and the transferrin receptor (2-10 min); (c) prolonged colocalization of the NK1R and beta-arrestin1 in endosomes (>60 min); (d) gradual resumption of the steady state distribution of the NK1R at the plasma membrane and beta-arrestin1 in the cytosol (4-6 h). SP stimulated a similar redistribution of immunoreactive beta-arrestin1 and beta-arrestin2. In contrast, SP did not affect Galphaq/11 distribution, which remained at the plasma membrane. Expression of the dominant negative beta-arrestin319-418 inhibited SP-induced endocytosis of the NK1R. Thus, SP induces rapid translocation of beta-arrestins to the plasma membrane, where they participate in NK1R endocytosis. beta-Arrestins colocalize with the NK1R in endosomes until the NK1R recycles and beta-arrestins return to the cytosol.

  12. Testosterone regulates keratin 33B expression in rat penis growth through androgen receptor signaling

    PubMed Central

    Ma, Yan-Min; Wu, Kai-Jie; Dang, Qiang; Shi, Qi; Gao, Yang; Guo, Peng; Xu, Shan; Wang, Xin-Yang; He, Da-Lin; Gong, Yong-Guang

    2014-01-01

    Androgen therapy is the mainstay of treatment for the hypogonadotropic hypogonadal micropenis because it obviously enhances penis growth in prepubescent microphallic patients. However, the molecular mechanisms of androgen treatment leading to penis growth are still largely unknown. To clarify this well-known phenomenon, we successfully generated a castrated male Sprague Dawley rat model at puberty followed by testosterone administration. Interestingly, compared with the control group, testosterone treatment stimulated a dose-dependent increase of penis weight, length, and width in castrated rats accompanied with a dramatic recovery of the pathological changes of the penis. Mechanistically, testosterone administration substantially increased the expression of androgen receptor (AR) protein. Increased AR protein in the penis could subsequently initiate transcription of its target genes, including keratin 33B (Krt33b). Importantly, we demonstrated that KRT33B is generally expressed in the rat penis and that most KRT33B expression is cytoplasmic. Furthermore, AR could directly modulate its expression by binding to a putative androgen response element sequence of the Krt33b promoter. Overall, this study reveals a novel mechanism facilitating penis growth after testosterone treatment in precastrated prepubescent animals, in which androgen enhances the expression of AR protein as well as its target genes, such as Krt33b. PMID:24994782

  13. Testosterone regulates keratin 33B expression in rat penis growth through androgen receptor signaling.

    PubMed

    Ma, Yan-Min; Wu, Kai-Jie; Dang, Qiang; Shi, Qi; Gao, Yang; Guo, Peng; Xu, Shan; Wang, Xin-Yang; He, Da-Lin; Gong, Yong-Guang

    2014-01-01

    Androgen therapy is the mainstay of treatment for the hypogonadotropic hypogonadal micropenis because it obviously enhances penis growth in prepubescent microphallic patients. However, the molecular mechanisms of androgen treatment leading to penis growth are still largely unknown. To clarify this well-known phenomenon, we successfully generated a castrated male Sprague Dawley rat model at puberty followed by testosterone administration. Interestingly, compared with the control group, testosterone treatment stimulated a dose-dependent increase of penis weight, length, and width in castrated rats accompanied with a dramatic recovery of the pathological changes of the penis. Mechanistically, testosterone administration substantially increased the expression of androgen receptor (AR) protein. Increased AR protein in the penis could subsequently initiate transcription of its target genes, including keratin 33B (Krt33b). Importantly, we demonstrated that KRT33B is generally expressed in the rat penis and that most KRT33B expression is cytoplasmic. Furthermore, AR could directly modulate its expression by binding to a putative androgen response element sequence of the Krt33b promoter. Overall, this study reveals a novel mechanism facilitating penis growth after testosterone treatment in precastrated prepubescent animals, in which androgen enhances the expression of AR protein as well as its target genes, such as Krt33b.

  14. Expression of the barley stripe mosaic virus RNA beta "triple gene block".

    PubMed

    Zhou, H; Jackson, A O

    1996-02-15

    Genomic RNA beta of barley strip mosaic virus (BSMV) contains four defined open reading frames (ORFs). These include the coat protein (beta a) and a "triple gene block" consisting of the beta b, beta c, and beta d ORFs that overlap one another. Two subgenomic beta RNAs (sgRNA beta 1 and sgRNA beta 2) with sizes of 2.5 and 0.96 kb were identified in BSMV-infected protoplasts, and their transcription initiation sites were mapped to nucleotides 789 and 2327, respectively, of RNA beta by primer extension experiments. In a cell-free wheat germ translation system, genomic RNA beta served as a mRNA only for the 22-kDa coat protein, and sgRNA beta 1 directed synthesis of only the 58-kDA beta b protein. However, with sgRNA beta 2, three proteins with sizes of 14, 17, and 23 kDa were synthesized. Both the 14- and the 23-kDa proteins were recognized by the beta d antibodies in vitro and in vivo. These results demonstrated that the 14-kDa protein was encoded by the beta d ORF and suggested that the 23-kDa protein, designated beta d', is a readthrough product of the amber stop codon of the beta d ORF. Mutagenesis of sgRNA beta 2 revealed that the 17-kDa protein was a product of the beta c ORF. Expression of sgRNA beta 1 and sgRNA beta 2 was also investigated with the chloramphenicol acetyl transferase (CAT) reporter gene in protoplasts coinfected with RNAs alpha and gamma plus chimeric RNA beta derivatives containing the CAT gene in-frame with the beta b, beta c, beta d, or beta d' ORFs. Elimination of the sgRNA beta 1 promoter abolished CAT expression from the beta b-CAT chimeric RNA, and removal of the sgRNA beta 2 promoter prevented CAT expression from the beta c-CAT, beta d-CAT, and beta d'-CAT chimeric RNAs. Taken together, these results demonstrate that the BSMV coat protein is the sole translation product of the genomic RNA beta, whereas sgRNA beta 1 serves as a messenger for translation of the beta b protein, and sgRNA beta 2 functions as a messenger for translation of

  15. Evaluating the clinical and esthetic outcome of apically positioned flap technique in augmentation of keratinized gingiva around dental implants

    PubMed Central

    Reddy, Vineela Katam; Parthasarathy, Harinath; Lochana, Priya

    2013-01-01

    Purpose: Dental implants though a successful treatment modality there exists controversies regarding the relationship between the adequacy of the keratinized gingiva (KG) and peri-implant health. The presence of an adequate amount of peri-implant KG reduces gingival inflammation and hence soft-tissue augmentation should be frequently considered. Among the various periodontal plastic surgical procedures, the apically displaced flap increases the width of keratinized tissue with reduced patient morbidity. The current study aims at evaluating the esthetic improvement in KG around dental implants applying apically positioned flap (APF) technique. Materials and Methods: A total of 10 endosseous dental implants were placed in eight systemically healthy patients. APF surgery was performed at the implant site on the buccal aspect either at the time of implant placement (one stage surgical protocol) or during the implant recovery stage (two stage surgical protocols) for increasing the width of KG and reviewed until 12 weeks post-operatively. The width of KG was evaluated at baseline and at the end of 12 weeks after surgery. Paired t-test was performed to evaluate the changes in the width of KG at baseline and at 12 weeks post-operatively. In addition, soft-tissue esthetic outcome was assessed by using visual analog scale (VAS). Results: The mean width of KG at baseline was 1.47 mm and 12 weeks post-operatively was 5.42 mm. The gain in KG from baseline was 3.95 mm with the P value of 0.000, which was highly statistically significant. The assessment of esthetic outcome using VAS gave an average score of 7.1 indicating good esthetics. Conclusion: The technique of APF yielded a significant improvement in keratinized tissue, which is both functionally and esthetically acceptable. PMID:24124297

  16. IGF-binding proteins mediate TGF-beta 1-induced apoptosis in bovine mammary epithelial BME-UV1 cells.

    PubMed

    Gajewska, Małgorzata; Motyl, Tomasz

    2004-10-01

    TGF-beta 1 is an antiproliferative and apoptogenic factor for mammary epithelial cells (MEC) acting in an auto/paracrine manner and thus considered an important local regulator of mammary tissue involution. However, the apoptogenic signaling pathway induced by this cytokine in bovine MEC remains obscure. The present study was focused on identification of molecules involved in apoptogenic signaling of transforming growth factor-beta 1 (TGF-beta 1) in the model of bovine mammary epithelial cell line (BME-UV1). Laser scanning cytometry (LSC), Western blot and electrophoretic mobility shift assay (EMSA) were used for analysis of expression and activity of TGF-beta 1-related signaling molecules. The earliest response occurring within 1-2 h after TGF-beta 1 administration was an induction and activation of R-Smads (Smad2 and Smad3) and Co-Smad (Smad4). An evident formation of Smad-DNA complexes began from 2nd hour after MEC exposure to TGF-beta 1. Similarly to Smads, proteins of AP1 complex: phosphorylated c-Jun and JunD appeared to be early reactive molecules; however, an increase in their expression was detected only in cytosolic fraction. In the next step, an increase of IGF binding protein-3 (IGFBP-3) and IGFBP-4 expression was observed from 6th hour followed by a decrease in the activity of protein kinase B (PKB/Akt), which occurred after 24 h of MEC exposure to TGF-beta 1. The decrease in PKB/Akt activity coincided in time with the decline of phosphorylated Bad expression (inactive form). Present study supported additional evidence that stimulation of insulin-like growth factor I (IGF-I) was associated with complete abrogation of TGF-beta 1-induced activation of Bad and Bax and in the consequence protection against apoptosis. In conclusion, apoptotic effect of TGF-beta 1 in bovine MEC is mediated by IGFBPs and occurs through IGF-I sequestration, resulting in inhibition of PKB/Akt-dependent survival pathway.

  17. Association of T-cell reactivity with beta-cell function in recent onset type 1 diabetes patients.

    PubMed

    Pfleger, Christian; Meierhoff, Guido; Kolb, Hubert; Schloot, Nanette C

    2010-03-01

    The aim of the current study was to investigate whether autoantigen directed T-cell reactivity relates to beta-cell function during the first 78 weeks after diagnosis of type 1 diabetes. 50 adults and 49 children (mean age 27.3 and 10.9 years respectively) with recent onset type 1 diabetes who participated in a placebo-controlled trial of immune intervention with DiaPep277 were analyzed. Secretion of interferon (IFN)-gamma, interleukin (IL)-5, IL-13 and IL-10 by single peripheral mononuclear cells (PBMC) upon stimulation with islet antigens GAD65, heat shock protein 60 (Hsp60) protein-tyrosine-phosphatase-like-antigen (pIA2) or tetanus toxoid (TT) was determined applying ELISPOT; beta-cell function was evaluated by glucagon stimulated C-peptide. Multivariate regression analysis was applied. In general, number of islet antigen-reactive cells decreased over 78 weeks in both adults and children, whereas reactivity to TT was not reduced. In addition, there was an association between the quality of immune cell responses and beta-cell function. Overall, increased responses by IFN-gamma secreting cells were associated with lower beta-cell function whereas IL-5, IL-13 and IL-10 cytokine responses were positively associated with beta-cell function in adults and children. Essentially, the same results were obtained with three different models of regression analysis. The number of detectable islet-reactive immune cells decreases within 1-2 years after diagnosis of type 1 diabetes. Cytokine production by antigen-specific PBMC reactivity is related to beta-cell function as measured by stimulated C-peptide. Cellular immunity appears to regress soon after disease diagnosis and begin of insulin therapy. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Beta2- and beta3-adrenergic receptor polymorphisms and exercise hemodynamics in postmenopausal women.

    PubMed

    McCole, Steve D; Shuldiner, Alan R; Brown, Michael D; Moore, Geoffrey E; Ferrell, Robert E; Wilund, Kenneth R; Huberty, Andrea; Douglass, Larry W; Hagberg, James M

    2004-02-01

    We sought to determine whether common genetic variations at the beta2 (beta2-AR, Gln27Glu) and beta3 (beta3-AR, Trp64Arg) adrenergic receptor gene loci were associated with cardiovascular (CV) hemodynamics during maximal and submaximal exercise. CV hemodynamics were assessed in 62 healthy postmenopausal women (20 sedentary, 22 physically active, and 20 endurance athletes) during treadmill exercise at 40, 60, 80, and 100% maximal O2 uptake using acetylene rebreathing to quantify cardiac output. The beta2-AR genotype and habitual physical activity (PA) levels interacted to significantly associate with arteriovenous O2 difference (a-vDO2) during submaximal exercise (P = 0.05), with the highest submaximal exercise a-vDO2 in sedentary women homozygous for the beta2-AR Gln allele and no genotype-dependent differences in submaximal exercise a-vDO2 in physically active and athletic women. The beta2-AR genotype also was independently associated with a-vDO2 during submaximal (P = 0.004) and approximately 100% maximal O2 uptake exercise (P = 0.006), with a 1.2-2 ml/100 ml greater a-vDO2 in the Gln/Gln than in the Glu/Glu genotype women. The beta3-AR genotype, independently or interacting with habitual PA levels, was not significantly associated with any CV hemodynamic variables during submaximal or maximal exercise. Thus it appears that the beta2-AR genotype, both independently and interacting with habitual PA levels, is significantly associated with a-vDO2 during exercise in postmenopausal women, whereas the beta3-AR genotype does not appear to be associated with any maximal or submaximal exercise CV hemodynamic responses in postmenopausal women.

  19. 3-Phosphoinositide-dependent PDK1 negatively regulates transforming growth factor-beta-induced signaling in a kinase-dependent manner through physical interaction with Smad proteins.

    PubMed

    Seong, Hyun-A; Jung, Haiyoung; Kim, Kyong-Tai; Ha, Hyunjung

    2007-04-20

    We have reported previously that PDK1 physically interacts with STRAP, a transforming growth factor-beta (TGF-beta) receptor-interacting protein, and enhances STRAP-induced inhibition of TGF-beta signaling. In this study we show that PDK1 coimmunoprecipitates with Smad proteins, including Smad2, Smad3, Smad4, and Smad7, and that this association is mediated by the pleckstrin homology domain of PDK1. The association between PDK1 and Smad proteins is increased by insulin treatment but decreased by TGF-beta treatment. Analysis of the interacting proteins shows that Smad proteins enhance PDK1 kinase activity by removing 14-3-3, a negative regulator of PDK1, from the PDK1-14-3-3 complex. Knockdown of endogenous Smad proteins, including Smad3 and Smad7, by transfection with small interfering RNA produced the opposite trend and decreased PDK1 activity, protein kinase B/Akt phosphorylation, and Bad phosphorylation. Moreover, coexpression of Smad proteins and wild-type PDK1 inhibits TGF-beta-induced transcription, as well as TGF-beta-mediated biological functions, such as apoptosis and cell growth arrest. Inhibition was dose-dependent on PDK1, but no inhibition was observed in the presence of an inactive kinase-dead PDK1 mutant. In addition, confocal microscopy showed that wild-type PDK1 prevents translocation of Smad3 and Smad4 from the cytoplasm to the nucleus, as well as the redistribution of Smad7 from the nucleus to the cytoplasm in response to TGF-beta. Taken together, our results suggest that PDK1 negatively regulates TGF-beta-mediated signaling in a PDK1 kinase-dependent manner via a direct physical interaction with Smad proteins and that Smad proteins can act as potential positive regulators of PDK1.

  20. Analysis of betaS and betaA genes in a Mexican population with African roots.

    PubMed

    Magaña, María Teresa; Ongay, Zoyla; Tagle, Juan; Bentura, Gilberto; Cobián, José G; Perea, F Javier; Casas-Castañeda, Maricela; Sánchez-López, Yoaly J; Ibarra, Bertha

    2002-01-01

    To investigate the origin of the beta(A) and beta(S) genes in a Mexican population with African roots and a high frequency of hemoglobin S, we analyzed 467 individuals (288 unrelated) from different towns in the states of Guerrero and Oaxaca in the Costa Chica region. The frequency of the sickle-cell trait was 12.8%, which may represent a public health problem. The frequencies of the beta-haplotypes were determined from 350 nonrelated chromosomes (313 beta(A) and 37 beta(S)). We observed 15 different beta(A) haplotypes, the most common of which were haplotypes 1 (48.9%), 2 (13.4%), and 3 (13.4%). The calculation of pairwise distributions and Nei's genetic distance analysis using 32 worldwide populations showed that the beta(A) genes are more closely related to those of Mexican Mestizos and North Africans. Bantu and Benin haplotypes and haplotype 9 were related to the beta(S) genes, with frequencies of 78.8, 18.2, and 3.0%, respectively. Comparison of these haplotypes with 17 other populations revealed a high similitude with the population of the Central African Republic. These data suggest distinct origins for the beta(A) and beta(S) genes in Mexican individuals from the Costa Chica region.

  1. Effect of beta-hydroxy-beta-methylbutyrate (HMB) on protein metabolism in whole body and in selected tissues.

    PubMed

    Holecek, M; Muthny, T; Kovarik, M; Sispera, L

    2009-01-01

    Beta-hydroxy-beta-methylbutyrate (HMB) is a leucine metabolite with protein anabolic effect. The aim of the study was to examine the role of exogenous HMB on leucine and protein metabolism in whole body and selected tissues. Rats were administered by HMB (0.1 g/kg b.w.) or by saline. The parameters of whole-body protein metabolism were evaluated 24 h later using L-[1-14C]leucine and L-[3,4,5-3H]phenylalanine. Changes in proteasome dependent proteolysis and protein synthesis were determined according the "chymotrypsin-like" enzyme activity and labeled leucine and phenylalanine incorporation into the protein. A decrease in leucine clearance and whole-body protein turnover (i.e., a decrease in whole-body proteolysis and protein synthesis) was observed in HMB treated rats. Proteasome-dependent proteolysis decreased significantly in skeletal muscle, changes in heart, liver, jejunum, colon, kidney, and spleen were insignificant. Decrease in protein synthesis was observed in the heart, colon, kidney, and spleen, while an increase was observed in the liver. There were no significant changes in leucine oxidation. We conclude that protein anabolic effect of HMB in skeletal muscle is related to inhibition of proteolysis in proteasome. Alterations in protein synthesis in visceral tissues may affect several important functions and the metabolic status of the whole body.

  2. Chromosome mapping of the human arrestin (SAG), {beta}-arrestin 2 (ARRB2), and {beta}-adrenergic receptor kinase 2 (ADRBK2) genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calabrese, G.; Sallese, M.; Stornaiuolo, A.

    1994-09-01

    Two types of proteins play a major role in determining homologous desensitization of G-coupled receptors: {beta}-adrenergic receptor kinase ({beta}ARK), which phosphorylates the agonist-occupied receptor and its functional cofactor, {beta}-arrestin. Both {beta}ARK and {beta}-arrestin are members of multigene families. The family of G-protein-coupled receptor kinases includes rhodopsin kinase, {beta}ARK1, {beta}ARK2, IT11-A (GRK4), GRK5, and GRK6. The arrestin/{beta}-arrestin gene family includes arrestin (also known as S-antigen), {beta}-arrestin 1, and {beta}-arrestin 2. Here we report the chromosome mapping of the human genes for arrestin (SAG), {beta}arrestin 2 (ARRB2), and {beta}ARK2 (ADRBK2) by fluorescence in situ hybridization (FISH). FISH results confirmed the assignment ofmore » the gene coding for arrestin (SAG) to chromosome 2 and allowed us to refine its localization to band q37. The gene coding for {beta}-arrestin 2 (ARRB2) was mapped to chromosome 17p13 and that coding for {beta}ARK2 (ADRBK2) to chromosome 22q11. 17 refs., 1 fig.« less

  3. Folding dynamics of a family of beta-sheet proteins

    NASA Astrophysics Data System (ADS)

    Rousseau, Denis

    2008-03-01

    Fatty acid binding proteins (FABP) consist of ten anti-parallel beta strands and two small alpha helices. The beta strands are arranged into two nearly orthogonal five-strand beta sheets that surround the interior cavity, which binds unsaturated long-chain fatty acids. In the brain isoform (BFABP), these are very important for the development of the central nervous system and neuron differentiation. Furthermore, BFABP is implicated in the pathogenesis of a variety of human diseases including cancer and neuronal degenerative disorders. In this work, site-directed spin labeling combined with EPR techniques have been used to study the folding mechanism of BFABP. In the first series of studies, we labeled the two Cys residues at position 5 and 80 in the wild type protein with an EPR spin marker; in addition, two singly labeled mutants at positions 5 and 80 in the C80A and C5A mutants, respectively, were also produced and used as controls. The changes in the distances between the two residues were examined by a pulsed EPR method, DEER (Double Electron Electron Resonance), as a function of guanidinium hydrochloride concentration. The results were compared with those from CW EPR, circular dichroism and fluorescence measurements, which provide the information regarding sidechain mobility, secondary structure and tertiary structure, respectively. The results will be discussed in the context of the folding mechanism of the family of fatty acid binding proteins.

  4. Effect of beta-lactoglobulin polymorphism and seasonality on bovine milk composition.

    PubMed

    Botaro, Bruno G; Lima, Ygor V R; Aquino, Adriana A; Fernandes, Raquel H R; Garcia, José F; Santos, Marcos V

    2008-05-01

    The objective was to evaluate the effect of beta-lactoglobulin (beta-lg) polymorphism and seasonality on milk composition (fat, lactose, total solids, milk urea nitrogen, total protein, true protein, casein and somatic cell counts) of Holstein and Girolando cows. Milk and blood samples from 278 Holsteins cows and 156 Girolando cows were taken during two dry seasons and two rainy seasons, for milk composition analysis and to determine beta-lg genotypes, respectively. BB genotype was the most frequent for both breeds, followed by AA genotype for Holstein (BB>AA>AB) and by AB for Girolando cows (BB>AB>AA). No differences were found in milk compositional characteristics among genetic variants of beta-lg (AA, AB and BB) either between Holstein or Girolando cows. No association between milk composition and beta-lg genetic polymorphism was observed. During the dry season, independently of the breed considered, higher contents of lactose, true protein, casein and casein:true protein ratio were found.

  5. Production of Proteolytic Enzymes by a Keratin-Degrading Aspergillus niger

    PubMed Central

    Lopes, Fernanda Cortez; Silva, Lucas André Dedavid e; Tichota, Deise Michele; Daroit, Daniel Joner; Velho, Renata Voltolini; Pereira, Jamile Queiroz; Corrêa, Ana Paula Folmer; Brandelli, Adriano

    2011-01-01

    A fungal isolate with capability to grow in keratinous substrate as only source of carbon and nitrogen was identified as Aspergillus niger using the sequencing of the ITS region of the rDNA. This strain produced a slightly acid keratinase and an acid protease during cultivation in feather meal. The peak of keratinolytic activity occurred in 48 h and the maximum proteolytic activity in 96 h. These enzymes were partly characterized as serine protease and aspartic protease, respectively. The effects of feather meal concentration and initial pH on enzyme production were evaluated using a central composite design combined with response surface methodology. The optimal conditions were determined as pH 5.0 for protease and 7.8 for keratinase and 20 g/L of feather meal, showing that both models were predictive. Production of keratinases by A. niger is a less-exploited field that might represent a novel and promising biotechnological application for this microorganism. PMID:22007293

  6. Amyloid fibril formation from sequences of a natural beta-structured fibrous protein, the adenovirus fiber.

    PubMed

    Papanikolopoulou, Katerina; Schoehn, Guy; Forge, Vincent; Forsyth, V Trevor; Riekel, Christian; Hernandez, Jean-François; Ruigrok, Rob W H; Mitraki, Anna

    2005-01-28

    Amyloid fibrils are fibrous beta-structures that derive from abnormal folding and assembly of peptides and proteins. Despite a wealth of structural studies on amyloids, the nature of the amyloid structure remains elusive; possible connections to natural, beta-structured fibrous motifs have been suggested. In this work we focus on understanding amyloid structure and formation from sequences of a natural, beta-structured fibrous protein. We show that short peptides (25 to 6 amino acids) corresponding to repetitive sequences from the adenovirus fiber shaft have an intrinsic capacity to form amyloid fibrils as judged by electron microscopy, Congo Red binding, infrared spectroscopy, and x-ray fiber diffraction. In the presence of the globular C-terminal domain of the protein that acts as a trimerization motif, the shaft sequences adopt a triple-stranded, beta-fibrous motif. We discuss the possible structure and arrangement of these sequences within the amyloid fibril, as compared with the one adopted within the native structure. A 6-amino acid peptide, corresponding to the last beta-strand of the shaft, was found to be sufficient to form amyloid fibrils. Structural analysis of these amyloid fibrils suggests that perpendicular stacking of beta-strand repeat units is an underlying common feature of amyloid formation.

  7. Inhibitors and modulators of beta- and gamma-secretase.

    PubMed

    Schmidt, Boris; Baumann, Stefanie; Braun, Hannes A; Larbig, Gregor

    2006-01-01

    Most gene mutations associated with Alzheimer's disease point to the metabolism of amyloid precursor protein as potential cause. The beta- and gamma-secretases are two executioners of amyloid precursor protein processing resulting in amyloid beta. Significant progress has been made in the selective inhibition of both proteases, regardless of structural information for gamma-secretase. Several peptidic and non-peptidic leads were identified and first drug candidates are in clinical trials. This review focuses on the developments since 2003.

  8. Structural Aspects for Evolution of [beta]-Lactamases from Penicillin-Binding Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meroueh, Samy O.; Minasov, George; Lee, Wenlin

    Penicillin-binding proteins (PBPs), biosynthetic enzymes of bacterial cell wall assembly, and {beta}-lactamases, resistance enzymes to {beta}-lactam antibiotics, are related to each other from an evolutionary point of view. Massova and Mobashery (Antimicrob. Agents Chemother. 1998, 42, 1-17) have proposed that for {beta}-lactamases to have become effective at their function as antibiotic resistance enzymes, they would have had to undergo structure alterations such that they would not interact with the peptidoglycan, which is the substrate for PBPs. A cephalosporin analogue, 7{beta}-[N-Acetyl-L-alanyl-{gamma}-D-glutamyl-L-lysine]-3-acetoxymethyl-3-cephem-carboxylic acid (compound 6), was conceived and synthesized to test this notion. The X-ray structure of the complex of this cephalosporinmore » bound to the active site of the deacylation-deficient Q120L/Y150E variant of the class C AmpC {beta}-lactamase from Escherichia coli was solved at 1.71 {angstrom} resolution. This complex revealed that the surface for interaction with the strand of peptidoglycan that acylates the active site, which is present in PBPs, is absent in the {beta}-lactamase active site. Furthermore, insertion of a peptide in the {beta}-lactamase active site at a location where the second strand of peptidoglycan in some PBPs binds has effectively abolished the possibility for such interaction with the {beta}-lactamase. A 2.6 ns dynamics simulation was carried out for the complex, which revealed that the peptidoglycan surrogate (i.e., the active-site-bound ligand) undergoes substantial motion and is not stabilized for binding within the active site. These factors taken together disclose the set of structure modifications in the antibiotic resistance enzyme that prevent it from interacting with the peptidoglycan, en route to achieving catalytic proficiency for their intended function.« less

  9. Towards Alzheimer's beta-amyloid vaccination.

    PubMed

    Frenkel, D; Solomon, B

    2001-01-01

    Beta-amyloid pathology, the main hallmark of Alzheimer's disease (AD), has been linked to its conformational status and aggregation. We recently showed that site-directed monoclonal antibodies (mAbs) towards the N-terminal region of the human beta-amyloid peptide bind to preformed beta-amyloid fibrils (Abeta), leading to disaggregation and inhibition of their neurotoxic effect. Here we report the development of a novel immunization procedure to raise effective anti-aggregating amyloid beta-protein (AbetaP) antibodies, using as antigen filamentous phages displaying the only EFRH peptide found to be the epitope of these antibodies. Due to the high antigenicity of the phage no adjuvant is required to obtain high affinity anti-aggregating IgG antibodies in animals model, that exhibit identity to human AbetaP. Such antibodies are able to sequester peripheral AbetaP, thus avoiding passage through the blood brain barrier (BBB) and, as recently shown in a transgenic mouse model, to cross the BBB and dissolve already formed beta-amyloid plaques. To our knowledge, this is the first attempt to use as a vaccine a self-anti-aggregating epitope displayed on a phage, and this may pave the way to treat abnormal accumulation-peptide diseases, such as Alzheimer's disease or other amyloidogenic diseases. Copyright 2001 The International Association for Biologicals.

  10. A fitness cost associated with the antibiotic resistance enzyme SME-1 beta-lactamase.

    PubMed

    Marciano, David C; Karkouti, Omid Y; Palzkill, Timothy

    2007-08-01

    The bla(TEM-1) beta-lactamase gene has become widespread due to the selective pressure of beta-lactam use and its stable maintenance on transferable DNA elements. In contrast, bla(SME-1) is rarely isolated and is confined to the chromosome of carbapenem-resistant Serratia marcescens strains. Dissemination of bla(SME-1) via transfer to a mobile DNA element could hinder the use of carbapenems. In this study, bla(SME-1) was determined to impart a fitness cost upon Escherichia coli in multiple genetic contexts and assays. Genetic screens and designed SME-1 mutants were utilized to identify the source of this fitness cost. These experiments established that the SME-1 protein was required for the fitness cost but also that the enzyme activity of SME-1 was not associated with the fitness cost. The genetic screens suggested that the SME-1 signal sequence was involved in the fitness cost. Consistent with these findings, exchange of the SME-1 signal sequence for the TEM-1 signal sequence alleviated the fitness cost while replacing the TEM-1 signal sequence with the SME-1 signal sequence imparted a fitness cost to TEM-1 beta-lactamase. Taken together, these results suggest that fitness costs associated with some beta-lactamases may limit their dissemination.

  11. Polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morant, Marc

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  12. Beta-1,4-glucanase-like protein from the cyanobacterium Synechocystis PCC6803 is a beta-1,3-1,4-glucanase and functions in salt stress tolerance.

    PubMed

    Tamoi, Masahiro; Kurotaki, Hideki; Fukamizo, Tamo

    2007-07-01

    In the present study, we characterized the gene (Cyanobase accession number slr0897) designated Ssglc encoding a beta-1,4-glucanase-like protein (SsGlc) from Synechocystis PCC6803. The deduced amino acid sequence for Ssglc showed a high degree of similarity to sequences of GH (glycoside hydrolase) family 9 beta-1,4-glucanases (cellulases) from various sources. Surprisingly, the recombinant protein obtained from the Escherichia coli expression system was able to hydrolyse barley beta-glucan and lichenan (beta-1,3-1,4-glucan), but not cellulose (beta-1,4-glucan), curdlan (beta-1,3-glucan), or laminarin (beta-1,3-1,6-glucan). A 1H-NMR analysis of the enzymatic products revealed that the enzyme hydrolyses the beta-1,4-glycosidic linkage of barley beta-glucan through an inverting mechanism. The data indicated that SsGlc was a novel type of GH9 glucanase which could specifically hydrolyse the beta-1,3-1,4-linkage of glucan. The growth of mutant Synechocystis cells in which the Ssglc gene was disrupted by a kanamycin-resistance cartridge gene was almost the same as that of the wild-type cells under continuous light (40 micromol of photons/m2 per s), a 12 h light (40 micromol of photons/m2 per s)/12 h dark cycle, cold stress (4 degrees C), and high light stress (200 micromol of photons/m2 per s). However, under salt stress (300-450 mM NaCl), growth of the Ssglc-disrupted mutant cells was significantly inhibited as compared with that of the wild-type cells. The Ssglc-disrupted mutant cells showed a decreased rate of O2 consumption and NaHCO3-dependent O2 evolution as compared with the wild-type cells under salt stress. Under osmotic stress (100-400 mM sorbitol), there was no difference in growth between the wild-type and the Ssglc-disrupted mutant cells. These results suggest that SsGlc functions in salt stress tolerance in Synechocystis PCC6803.

  13. Nanoscale organization of {beta}{sub 2}-adrenergic receptor-Venus fusion protein domains on the surface of mammalian cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vobornik, Dusan; Rouleau, Yanouchka; Haley, Jennifer

    2009-04-24

    Adrenergic receptors are a key component of nanoscale multiprotein complexes that are responsible for controlling the beat rate in a mammalian heart. We demonstrate the ability of near-field scanning optical microscopy (NSOM) to visualize {beta}{sub 2}-adrenergic receptors ({beta}{sub 2}AR) fused to the GFP analogue Venus at the nanoscale on HEK293 cells. The expression of the {beta}{sub 2}AR-Venus fusion protein was tightly controlled using a tetracycline-induced promoter. Both the size and density of the observed nanoscale domains are dependent on the level of induction and thus the level of protein expression. At concentrations between 100 and 700 ng/ml of inducer doxycycline,more » the size of domains containing the {beta}{sub 2}AR-Venus fusion protein appears to remain roughly constant, but the number of domains per cell increase. At 700 ng/ml doxycycline the functional receptors are organized into domains with an average diameter of 150 nm with a density similar to that observed for the native protein on primary murine cells. By contrast, larger micron-sized domains of {beta}{sub 2}AR are observed in the membrane of the HEK293 cells that stably overexpress {beta}{sub 2}AR-GFP and {beta}{sub 2}AR-eYFP. We conclude that precise chemical control of gene expression is highly advantageous for the use {beta}{sub 2}AR-Venus fusion proteins as models for {beta}{sub 2}AR function. These observations are critical for designing future cell models and assays based on {beta}{sub 2}AR, since the receptor biology is consistent with a relatively low density of nanoscale receptor domains.« less

  14. Apparent inhibition of. beta. -fructosidase secretion by tunicamycin may be explained by breakdown of the unglycosylated protein during secretion. [Daucus carota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faye, L.; Chrispeels, M.J.

    1989-03-01

    Suspension-cultured carrot (Daucus carota) cells synthesize and secrete {beta}-fructosidase, a glycoprotein with asparagine-linked glycans. Treatment of the cells with tunicamycin completely inhibits the apparent secretion of {beta}-fructosidase as measured by the accumulation of the {sup 35}S-labelled protein in the cell wall or the culture medium. In the past, such a result has been interpreted as an inhibition of secretion by tunicamycin, but we suggest another explanation based on the following results. In the presence of tunicamycin, unglycosylated {beta}-fructosidase is synthesized and is associated with an endoplasmic-reticulum-rich microsomal fraction. Pulse-chase experiments show that the unglycosylated {beta}-fructosidase does not remain in themore » cells and appears to be secreted in the same way as glycosylated {beta}-fructosidase; however, no radioactive, unglycosylated {beta}-fructosidase accumulates extracellularly (cell wall or medium). Protoplasts obtained from carrot cells secrete {beta}-fructosidase protein and activity, and treatment of the protoplasts with tunicamycin results in the synthesis of unglycosylated {beta}-fructosidase. In the presence of tunicamycin, there is no accumulation of {beta}-fructosidase activity or unglycosylated {beta}-fructosidase polypeptide in the protoplast incubation medium. These results are consistent with the interpretation that the glycans of {beta}-fructosidase are necessary for its stability, and that in these suspension-cultured cells, the unglycosylated enzyme is degraded during the last stage(s) of secretion, or immediately after its arrival in the wall.« less

  15. Procollagen C-proteinase enhancer-1 (PCPE-1) interacts with beta2-microglobulin (beta2-m) and may help initiate beta2-m amyloid fibril formation in connective tissues.

    PubMed

    Morimoto, Hisanori; Wada, Jun; Font, Bernard; Mott, Joni D; Hulmes, David J S; Ookoshi, Tadakazu; Naiki, Hironobu; Yasuhara, Akihiro; Nakatsuka, Atsuko; Fukuoka, Kousuke; Takatori, Yuji; Ichikawa, Haruo; Akagi, Shigeru; Nakao, Kazushi; Makino, Hirofumi

    2008-04-01

    Dialysis related amyloidosis (DRA) is a progressive and serious complication in patients under long-term hemodialysis and mainly leads to osteo-articular diseases. Although beta(2)-microglobulin (beta2-m) is the major structural component of beta2-m amyloid fibrils, the initiation of amyloid formation is not clearly understood. Here, we have identified procollagen C-proteinase enhancer-1 (PCPE-1) as a new interacting protein with beta2-m by screening a human synovium cDNA library. The interaction of beta2-m with full-length PCPE-1 was confirmed by immunoprecipitation, solid-phase binding and pull-down assays. By yeast two-hybrid analysis and pull-down assay, beta2-m appeared to interact with PCPE-1 via the NTR (netrin-like) domain and not via the CUB (C1r/C1s, Uegf and BMP-1) domain region. In synovial tissues derived from hemodialysis patients with DRA, beta2-m co-localized and formed a complex with PCPE-1. beta2-m did not alter the basal activity of bone morphogenetic protein-1/procollagen C-proteinase (BMP-1/PCP) nor BMP-1/PCP activity enhanced by PCPE-1. PCPE-1 did not stimulate beta2-m amyloid fibril formation from monomeric beta2-m in vitro under acidic and neutral conditions as revealed by thioflavin T fluorescence spectroscopy and electron microscopy. Since PCPE-1 is abundantly expressed in connective tissues rich in type I collagen, it may be involved in the initial accumulation of beta2-m in selected tissues such as tendon, synovium and bone. Furthermore, since such preferential deposition of beta2-m may be linked to subsequent beta2-m amyloid fibril formation, the disruption of the interaction between beta2-m and PCPE-1 may prevent beta2-m amyloid fibril formation and therefore PCPE-1 could be a new target for the treatment of DRA.

  16. Non-B-DNA structures on the interferon-beta promoter?

    PubMed

    Robbe, K; Bonnefoy, E

    1998-01-01

    The high mobility group (HMG) I protein intervenes as an essential factor during the virus induced expression of the interferon-beta (IFN-beta) gene. It is a non-histone chromatine associated protein that has the dual capacity of binding to a non-B-DNA structure such as cruciform-DNA as well as to AT rich B-DNA sequences. In this work we compare the binding affinity of HMGI for a synthetic cruciform-DNA to its binding affinity for the HMGI-binding-site present in the positive regulatory domain II (PRDII) of the IFN-beta promoter. Using gel retardation experiments, we show that HMGI protein binds with at least ten times more affinity to the synthetic cruciform-DNA structure than to the PRDII B-DNA sequence. DNA hairpin sequences are present in both the human and the murine PRDII-DNAs. We discuss in this work the presence of, yet putative, non-B-DNA structures in the IFN-beta promoter.

  17. Keratin 17 in premalignant and malignant squamous lesions of the cervix: proteomic discovery and immunohistochemical validation as a diagnostic and prognostic biomarker

    PubMed Central

    Escobar-Hoyos, Luisa F; Yang, Jie; Zhu, Jiawen; Cavallo, Julie-Ann; Zhai, Haiyan; Burke, Stephanie; Koller, Antonius; Chen, Emily I; Shroyer, Kenneth R

    2014-01-01

    Most previously described immunohistochemical markers of cervical high-grade squamous intraepithelial lesion (HSIL) and squamous cell carcinoma may help to improve diagnostic accuracy but have a minimal prognostic value. The goals of the current study were to identify and validate novel candidate biomarkers that could potentially improve diagnostic and prognostic accuracy for cervical HSIL and squamous cell carcinoma. Microdissected tissue sections from formalin-fixed paraffin-embedded normal ectocervical squamous mucosa, low-grade squamous intraepithelial lesion (LSIL), HSIL and squamous cell carcinoma sections were analyzed by mass spectrometry-based shotgun proteomics for biomarker discovery. The diagnostic specificity of candidate biomarkers was subsequently evaluated by immunohistochemical analysis of tissue microarrays. Among 1750 proteins identified by proteomic analyses, keratin 4 (KRT4) and keratin 17 (KRT17) showed reciprocal patterns of expression in the spectrum of cases ranging from normal ectocervical squamous mucosa to squamous cell carcinoma. Immunohistochemical studies confirmed that KRT4 expression was significantly decreased in squamous cell carcinoma compared with the other diagnostic categories. By contrast, KRT17 expression was significantly increased in HSIL and squamous cell carcinoma compared with normal ectocervical squamous mucosa and LSIL. KRT17 was also highly expressed in immature squamous metaplasia and in endocervical reserve cells but was generally not detected in mature squamous metaplasia. Furthermore, high levels of KRT17 expression were significantly associated with poor survival of squamous cell carcinoma patients (Hazard ratio = 14.76, P = 0.01). In summary, both KRT4 and KRT17 expressions are related to the histopathology of the cervical squamous mucosa; KRT17 is highly overexpressed in immature squamous metaplasia, in HSIL, and in squamous cell carcinoma and the level of KRT17 in squamous cell carcinoma may help to identify

  18. Autophagy and KRT8/keratin 8 protect degeneration of retinal pigment epithelium under oxidative stress.

    PubMed

    Baek, Ahruem; Yoon, Soojin; Kim, Jean; Baek, Yu Mi; Park, Hanna; Lim, Daehan; Chung, Hyewon; Kim, Dong-Eun

    2017-02-01

    Contribution of autophagy and regulation of related proteins to the degeneration of retinal pigment epithelium (RPE) in age-related macular degeneration (AMD) remain unknown. We report that upregulation of KRT8 (keratin 8) as well as its phosphorylation are accompanied with autophagy and attenuated with the inhibition of autophagy in RPE cells under oxidative stress. KRT8 appears to have a dual role in RPE pathophysiology. While increased expression of KRT8 following autophagy provides a cytoprotective role in RPE, phosphorylation of KRT8 induces pathologic epithelial-mesenchymal transition (EMT) of RPE cells under oxidative stress, which is mediated by MAPK1/ERK2 (mitogen-activated protein kinase 1) and MAPK3/ERK1. Inhibition of autophagy further promotes EMT, which can be reversed by inhibition of MAPK. Thus, regulated enhancement of autophagy with concurrent increased expression of KRT8 and the inhibition of KRT8 phosphorylation serve to inhibit oxidative stress-induced EMT of RPE cells as well as to prevent cell death, suggesting that pharmacological manipulation of KRT8 upregulation through autophagy with combined inhibition of the MAPK1/3 pathway may be attractive therapeutic strategies for the treatment of AMD.

  19. Beta-blocker use is associated with improved outcomes in adult trauma patients.

    PubMed

    Arbabi, Saman; Campion, Eric M; Hemmila, Mark R; Barker, Melissa; Dimo, Mary; Ahrns, Karla S; Niederbichler, Andreas D; Ipaktchi, Kyros; Wahl, Wendy L

    2007-01-01

    Beta-adrenoreceptor blocker (beta-blocker) therapy may improve outcomes in surgical patients by decreasing cardiac oxygen consumption and hypermetabolism. Because beta-blockers can lower the systemic blood pressure and cerebral perfusion pressure, there is concern regarding their use in patients with head injury. However, beta-blockers may protect beta-receptor rich brain cells by attenuating cerebral oxygen consumption and metabolism. We hypothesized that beta-blockers are safe in trauma patients, even if they have suffered a significant head injury. Using pharmacy and trauma registry data of a Level I trauma center, we identified a cohort of trauma patients who received beta-blockers during their hospital stay (beta-cohort). Trauma admissions who did not receive beta-blockers were in the control cohort. beta-blocker status, in combination with other variables associated with mortality, were placed in a stepwise multivariate logistic regression to identify independent predictors of fatal outcome. In all, 303 (7%) of 4,117 trauma patients received beta-blockers. In the beta-cohort, 45% of patients were on beta-blockers preinjury. The most common reason to initiate beta-blocker therapy was blood pressure (60%) and heart rate (20%) control. The overall mortality rate was 5.6% and head injury was considered to be the major cause of death. After adjusting for age, Injury Severity Scale score, blood pressure, Glasgow Coma Scale score, respiratory status, and mechanism of injury, the odds ratio for fatal outcome was 0.3 (p < 0.001) for beta-cohort as compared with control. Decreased risk of fatal outcome was more pronounced in patients with a significant head injury. beta-blocker therapy is safe and may be beneficial in selected trauma patients with or without head injury. Further studies looking at beta-blocker therapy in trauma patients and their effect on cerebral metabolism are warranted.

  20. Neuroligin trafficking deficiencies arising from mutations in the alpha/beta-hydrolase fold protein family.

    PubMed

    De Jaco, Antonella; Lin, Michael Z; Dubi, Noga; Comoletti, Davide; Miller, Meghan T; Camp, Shelley; Ellisman, Mark; Butko, Margaret T; Tsien, Roger Y; Taylor, Palmer

    2010-09-10

    Despite great functional diversity, characterization of the alpha/beta-hydrolase fold proteins that encompass a superfamily of hydrolases, heterophilic adhesion proteins, and chaperone domains reveals a common structural motif. By incorporating the R451C mutation found in neuroligin (NLGN) and associated with autism and the thyroglobulin G2320R (G221R in NLGN) mutation responsible for congenital hypothyroidism into NLGN3, we show that mutations in the alpha/beta-hydrolase fold domain influence folding and biosynthetic processing of neuroligin3 as determined by in vitro susceptibility to proteases, glycosylation processing, turnover, and processing rates. We also show altered interactions of the mutant proteins with chaperones in the endoplasmic reticulum and arrest of transport along the secretory pathway with diversion to the proteasome. Time-controlled expression of a fluorescently tagged neuroligin in hippocampal neurons shows that these mutations compromise neuronal trafficking of the protein, with the R451C mutation reducing and the G221R mutation virtually abolishing the export of NLGN3 from the soma to the dendritic spines. Although the R451C mutation causes a local folding defect, the G221R mutation appears responsible for more global misfolding of the protein, reflecting their sequence positions in the structure of the protein. Our results suggest that disease-related mutations in the alpha/beta-hydrolase fold domain share common trafficking deficiencies yet lead to discrete congenital disorders of differing severity in the endocrine and nervous systems.

  1. Hypothermia blocks beta-catenin degradation after focal ischemia in rats.

    PubMed

    Zhang, Hanfeng; Ren, Chuancheng; Gao, Xuwen; Takahashi, Tetsuya; Sapolsky, Robert M; Steinberg, Gary K; Zhao, Heng

    2008-03-10

    Dephosphorylated and activated glycogen synthase kinase (GSK) 3beta hyperphosphorylates beta-catenin, leading to its ubiquitin-proteosome-mediated degradation. beta-catenin-knockdown increases while beta-catenin overexpression prevents neuronal death in vitro; in addition, protein levels of beta-catenin are reduced in the brain of Alzheimer's patients. However, whether beta-catenin degradation is involved in stroke-induced brain injury is unknown. Here we studied activities of GSK 3beta and beta-catenin, and the protective effect of moderate hypothermia (30 degrees C) on these activities after focal ischemia in rats. The results of Western blot showed that GSK 3beta was dephosphorylated at 5 and 24 h after stroke in the normothermic (37 degrees C) brain; hypothermia augmented GSK 3beta dephosphorylation. Because hypothermia reduces infarction, these results contradict with previous studies showing that GSK 3beta dephosphorylation worsens neuronal death. Nevertheless, hypothermia blocked degradation of total GSK 3beta protein. Corresponding to GSK 3beta activity in normothermic rats, beta-catenin phosphorylation transiently increased at 5 h in both the ischemic penumbra and core, and the total protein level of beta-catenin degraded after normothermic stroke. Hypothermia did not inhibit beta-catenin phosphorylation, but it blocked beta-catenin degradation in the ischemic penumbra. In conclusion, moderate hypothermia can stabilize beta-catenin, which may contribute to the protective effect of moderate hypothermia.

  2. Cleavage of beta,beta-carotene to flavor compounds by fungi.

    PubMed

    Zorn, H; Langhoff, S; Scheibner, M; Berger, R G

    2003-09-01

    More than 50 filamentous fungi and yeasts, known for de novo synthesis or biotransformation of mono-, sesqui-, tri-, or tetraterpenes, were screened for their ability to cleave beta,beta-carotene to flavor compounds. Ten strains discolored a beta,beta-carotene-containing growth agar, indicating efficient degradation of beta,beta-carotene. Dihydroactinidiolide was formed as the sole conversion product of beta,beta-carotene in submerged cultures of Ganoderma applanatum, Hypomyces odoratus, Kuehneromyces mutabilis, and Trametes suaveolens. When mycelium-free culture supernatants from five species were applied for the conversions, nearly complete degradation of beta,beta-carotene was observed after 12 h. Carotenoid-derived volatile products were detected in the media of Ischnoderma benzoinum, Marasmius scorodonius, and Trametes versicolor. beta-Ionone proved to be the main metabolite in each case, whereas beta-cyclocitral, dihydroactinidiolide, and 2-hydroxy-2,6,6-trimethylcyclohexanone were formed in minor quantities. Using a photometric bleaching test, the beta,beta-carotene cleaving enzyme activities of M. scorodonius were partially characterized.

  3. Transcriptomic Analysis Reveals Wound Healing of Morus alba Root Extract by Up-Regulating Keratin Filament and CXCL12/CXCR4 Signaling.

    PubMed

    Kim, Kang-Hoon; Chung, Won-Seok; Kim, Yoomi; Kim, Ki-Suk; Lee, In-Seung; Park, Ji Young; Jeong, Hyeon-Soo; Na, Yun-Cheol; Lee, Chang-Hun; Jang, Hyeung-Jin

    2015-08-01

    Facilitation of the wound healing process is important because a prolonged wound site increases pain and the risk of infection. In oriental medicine, an extract of Morus alba root (MA) has usually been prescribed as traditional treatment for accelerating wound healing, and it has been proven to be safe for centuries. To study the molecular mechanism of MA-mediated skin wound healing, we performed a primary cell culture and a skin explant culture and observed significant difference between the groups with and without MA extract. In the cellular system, a real-time cell analysis and real-time quantitative PCR were performed. It was found that MA extract enhanced proliferation in a dose-dependent manner on Kera-308 cell line, and up-regulated keratin expression including wound-induced Krt6a. In skin explant culture, the mRNA level derived from cell outgrowth displayed a tendency toward more up-regulated mRNA associated keratin filaments and toward a more up-regulated mRNA level of C-X-C motif chemokine 12 (CXCL12) and a chemokine receptor 4 (CXCR4) axis signaling pathway downstream. In this process, we concluded that MA extract had a scientific possibility of wound repair by increasing intracellular and extracellular supports and by inducing a CXCL12/CXCR4 signaling pathway. Copyright © 2015 John Wiley & Sons, Ltd.

  4. A novel NADP(+)-dependent dehydrogenase activity for 7alpha/beta- and 11beta-hydroxysteroids in human liver nuclei: A third 11beta-hydroxysteroid dehydrogenase.

    PubMed

    Robinzon, B; Prough, R A

    2009-06-15

    Human tissue from uninvolved liver of cancer patients was fractionated using differential centrifugation and characterized for 11betaHSD enzyme activity against corticosterone, dehydrocorticosterone, 7alpha- and 7beta-hydroxy-dehydroepiandrosterone, and 7-oxo-dehydroepiandrosterone. An enzyme activity was observed in nuclear protein fractions that utilized either NADP(+) or NAD(+), but not NADPH and NADH, as pyridine nucleotide cofactor with K(m) values of 12+/-2 and 390+/-2microM, compared to the K(m) for microsomal 11betaHSD1 of 43+/-8 and 264+/-24microM, respectively. The K(m) for corticosterone in the NADP(+)-dependent nuclear oxidation reaction was 102+/-16nM, compared to 4.3+/-0.8microM for 11betaHSD1. The K(cat) values for nuclear activity with NADP(+) was 1687nmol/min/mg/micromol, compared to 755nmol/min/mg/micromol for microsomal 11betaHSD1 activity. Inhibitors of 11betaHSD1 decreased both nuclear and microsomal enzyme activities, suggesting that the nuclear activity may be due to an enzyme similar to 11betaHSD Type 1 and 2.

  5. beta-Hexachlorocyclohexane (beta-HCH)

    Integrated Risk Information System (IRIS)

    beta - Hexachlorocyclohexane ( beta - HCH ) ; CASRN 319 - 85 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Asses

  6. Beta-Catenin and Epithelial Tumors: A Study Based on 374 Oropharyngeal Cancers

    PubMed Central

    Santoro, Angela; Pannone, Giuseppe; Papagerakis, Silvana; McGuff, H. Stan; Cafarelli, Barbara; Lepore, Silvia; De Maria, Salvatore; Rubini, Corrado; Mattoni, Marilena; Staibano, Stefania; Mezza, Ernesto; De Rosa, Gaetano; Aquino, Gabriella; Losito, Simona; Loreto, Carla; Crimi, Salvatore; Bufo, Pantaleo

    2014-01-01

    Introduction. Although altered regulation of the Wnt pathway via beta-catenin is a frequent event in several human cancers, its potential implications in oral/oropharyngeal squamous cell carcinomas (OSCC/OPSCC) are largely unexplored. Work purpose was to define association between beta-catenin expression and clinical-pathological parameters in 374 OSCCs/OP-SCCs by immunohistochemistry (IHC). Materials and Methods. Association between IHC detected patterns of protein expression and clinical-pathological parameters was assessed by statistical analysis and survival rates by Kaplan-Meier curves. Beta-catenin expression was also investigated in OSCC cell lines by Real-Time PCR. An additional analysis of the DNA content was performed on 22 representative OSCCs/OPSCCs by DNA-image-cytometric analysis. Results and Discussion. All carcinomas exhibited significant alterations of beta-catenin expression (P < 0.05). Beta-catenin protein was mainly detected in the cytoplasm of cancerous cells and only focal nuclear positivity was observed. Higher cytoplasmic expression correlated significantly with poor histological differentiation, advanced stage, and worst patient outcome (P < 0.05). By Real-Time PCR significant increase of beta-catenin mRNA was detected in OSCC cell lines and in 45% of surgical specimens. DNA ploidy study demonstrated high levels of aneuploidy in beta-catenin overexpressing carcinomas. Conclusions. This is the largest study reporting significant association between beta-catenin expression and clinical-pathological factors in patients with OSCCs/OPSCCs. PMID:24511551

  7. Evaluation of human recession defects treated with coronally advanced flaps and either purified recombinant human platelet-derived growth factor-BB with beta tricalcium phosphate or connective tissue: a histologic and microcomputed tomographic examination.

    PubMed

    McGuire, Michael K; Scheyer, Todd; Nevins, Myron; Schupbach, Peter

    2009-02-01

    The current study examined the histologic and microcomputed tomographic (micro CT) outcomes of the treatment of gingival recession defects with either a subepithelial connective tissue graft (CTG) or 0.3 mg/mL recombinant human platelet-derived growth factor (rhPDGF-BB) on a beta tricalcium phosphate (beta-TCP) matrix. Gingival recession defects were surgically created in six premolar teeth with no more than 3 mm of keratinized marginal tissue, an osseous crest 2 to 3 mm apical to the newly created gingival margin, and recession depth of at least 3 mm. The defects were left untouched for 2 months; then, four defects were grafted with rhPDGF-BB + beta-TCP + a wound healing dressing, and two defects received CTGs. A coronally advanced flap covered each grafted site. Nine months later, sections were obtained for examination. All four sites treated with rhPDGF-BB + beta-TCP showed connective tissue fibers (Sharpey fibers) perpendicularly inserting into newly formed cementum and alveolar bone. In the two sites treated with CTGs, a long junctional epithelium was seen coronal to the osseous crest and connective tissue fibers ran parallel to the adjacent root surfaces, with no evidence of insertion into cementum or bone. There was no evidence of regeneration of cementum, inserting connective tissue fibers, or supporting alveolar bone. Regeneration of the periodontium in gingival recession defects is possible through growth factor-mediated therapy.

  8. Beta-catenin interacts with low-molecular-weight protein tyrosine phosphatase leading to cadherin-mediated cell-cell adhesion increase.

    PubMed

    Taddei, Maria Letizia; Chiarugi, Paola; Cirri, Paolo; Buricchi, Francesca; Fiaschi, Tania; Giannoni, Elisa; Talini, Doriana; Cozzi, Giacomo; Formigli, Lucia; Raugei, Giovanni; Ramponi, Giampietro

    2002-11-15

    Beta-catenin plays a dual role as a major constituent of cadherin-based adherens junctions and also as a transcriptional coactivator. In normal ephitelial cells, at adherens junction level, beta-catenin links cadherins to the actin cytoskeleton. The structure of adherens junctions is dynamically regulated by tyrosine phosphorylation. In particular, cell-cell adhesion can be negatively regulated through the tyrosine phosphorylation of beta-catenin. Furthermore, the loss of beta-catenin-cadherin association has been correlated with the transition from a benign tumor to an invasive, metastatic cancer. Low-molecular-weight protein tyrosine phosphatase (LMW-PTP) is a ubiquitous PTP implicated in the regulation of mitosis and cytoskeleton rearrangement. Here we demonstrate that the amount of free cytoplasmic beta-catenin is decreased in NIH3T3, which overexpresses active LMW-PTP, and this results in a stronger association between cadherin complexes and the actin-based cytoskeleton with respect to control cells. Confocal microscopy analysis shows that beta-catenin colocalizes with LMW-PTP at the plasma membrane. Furthermore, we provide evidence that beta-catenin is able to associate with LMW-PTP both in vitro and in vivo. Moreover, overexpression of active LMW-PTP strongly potentiates cadherin-mediated cell-cell adhesion, whereas a dominant-negative form of LMW-PTP induces the opposite phenotype, both in NIH3T3 and in MCF-7 carcinoma cells. On the basis of these results, we propose that the stability of cell-cell contacts at the adherens junction level is positively influenced by LMW-PTP expression, mainly because of the beta-catenin and LMW-PTP interaction at the plasma membrane level with consequent dephosphorylation.

  9. Expression of the leukemia-associated CBF{beta}/SMMHC chimeric gene causes transformation of 3T3 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hajra, A.; Liu, P.; Collins, E.S.

    1994-09-01

    A pericentric inversion of chromosome 16 (inv(16)(p13;q22)) is consistently seen in acute myeloid leukemia of the M4Eo subtype. This inversion fuses almost the entire coding region of the gene encoding of the {beta} subunit of the heterodimeric transcription factor CBF/PEBP2 to the region of the MYH11 gene encoding the rod domain for the smooth muscle myosin heavy chain (SMMHC). To investigate the biological properties of the CBF{beta}/SMMHC fusion protein, we have generated 3T3 cell lines that stably express the CBF{beta}/SMMHC chimeric cDNA or the normal, nonchimeric CBF{beta} and SMMHC cDNAs. 3T3 cells expressing CBF{beta}/SMMHC acquire a transformed phenotype, as indicatedmore » by altered cell morphology, formation of foci, and growth in soft agar. Cells constitutively overexpressing the normal CBF{beta} cDNA or the rod region of SMMHC remain nontransformed. Western blot analysis using antibodies to CBF{beta} and the SMMHC rod demonstrates that stably transfected cells express the appropriate chimeric or normal protein. Electrophoretic mobility shift assays reveal that cells transformed by the chimeric cDNA do not have a CBF-DNA complex of the expected mobility, but instead contain a large complex with CBF DNA-binding activity that fails to migrate out of the gel wells. In order to define the regions of CBF{beta}/SMMHC necessary for 3T3 transformation, we have stably transfected cells with mutant CBF{beta}/SMMHC cDNAs containing various deletions of the coding region. Analysis of these cell lines indicates that the transformation property of CBF{beta}/SMMHC requires regions of CBF{beta} known to be necessary for association with the DNA-binding CBF{alpha} subunit, and also requires an intact SMMHC carboxyl terminus, which is necessary for formation of the coiled coil domain of the myosin rod.« less

  10. Differential regulation of amyloid-. beta. -protein mRNA expression within hippocampal neuronal subpopulations in Alzheimer disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, G.A.; Lewis, D.A.; Bahmanyar, S.

    1988-02-01

    The authors have mapped the neuroanatomical distribution of amyloid-..beta..-protein mRNA within neuronal subpopulations of the hippocampal formation in the cynomolgus monkey (Macaca fascicularis), normal aged human, and patients with Alzheimer disease. Amyloid-..beta..-protein mRNA appears to be expressed in all hippocampal neurons, but at different levels of abundance. In the central nervous system of monkey and normal aged human, image analysis shows that neurons of the dentate gyrus and cornu Ammonis fields contain a 2.5-times-greater hybridization signal than is present in neurons of the subiculum and entorhinal cortex. In contrast, in the Alzheimer disease hippocampal formation, the levels of amyloid-..beta..-protein mRNAmore » in the cornu Ammonis field 3 and parasubiculum are equivalent. These findings suggest that within certain neuronal subpopulations cell type-specific regulation of amyloid-..beta..-protein gene expression may be altered in Alzheimer disease.« less

  11. Assignment of the {beta}-arrestin 1 gene (ARRB1) to human chromosome 11q13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calabrese, G.; Morizio, E.; Palka, G.

    1994-11-01

    Two types of proteins play a major role in determining homologous desensitization of G-coupled receptors: {beta}-adrenergic receptor kinase ({beta}ARK), which phosphorylates the agonist-occupied receptor, and its functional cofactor, {beta}-arrestin. {beta}ARK is a member of a multigene family, consisting of six known subtypes, which have also been named G-protein-coupled receptor kinases (GRK 1 to 6) due to the apparently unique functional association of such kinases with this receptor family. The gene for {beta}ARK1 has been localized to human chromosome 11q13. The four members of the arrestin/{beta}-arrestin gene family identified so far are arrestin, X-arrestin, {beta}-arrestin 1, and {beta}-arrestin 2. Here themore » authors report the chromosome mapping of the human gene for {beta}-arrestin 1 (ARRB1) to chromosome 11q13 by fluorescence in situ hybridization (FISH). Two-color FISH confirmed that the two genes coding for the functionally related proteins {beta}ARK1 and {beta}arrestin 1 both map to 11q13. 16 refs., 1 fig., 1 tab.« less

  12. IGF-1-dependent subunit communication of the IGF-1 holoreceptor: Interactions between. alpha. beta. heterodimeric receptor halves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilden, P.A.; Treadway, J.L.; Morrison, B.D.

    1989-12-12

    Examination of {sup 125}I-IGF-1 affinity cross-linking and {beta}-subunit autophosphorylation has indicated that IGF-1 induces a covalent association of isolated {alpha}{beta} heterodimeric IGF-1 receptors into an {alpha}{sub 2}{beta}{sub 2} heterotetrameric state, in a similar manner to that observed for the insulin receptor. The formation of the {alpha}{sub 2}{beta}{sub 2} heterotetrameric IGF-1 receptor complex from the partially purified {alpha}{beta} heterodimers was time dependent with half-maximal formation in approximately 30 min at saturating IGF-1 concentrations. The IGF-1-dependent association of the partially purified {alpha}{beta} heterodimers into an {alpha}{sub 2}{beta}{sub 2} heterotetrameric state was specific for the IGF-1 receptors since IGF-1 was unable to stimulatemore » the protein kinase activity of the purified {alpha}{beta} heterodimeric insulin receptor complex. Incubation of the {alpha}{sub 2}{beta}{sub 2} heterotetrameric IGF-1 holoreceptor with the specific sulfhydryl agent iodoacetamide (IAN) did not alter {sup 125}I-IGF-1 binding or IGF-1 stimulation of protein kinase activity. However, IAN treatment of the {alpha}{beta} heterodimeric IGF-1 receptors inhibited the IGF-1 dependent covalent formation of the disulfide-linked {alpha}{sub 2}{beta}{sub 2} heterotetrameric complex. These data indicate that IGF-1 induces the covalent association of isolated {alpha}{beta} heterodimeric IGF-1 receptor complexes into a disulfide-linked {alpha}{sub 2}{beta}{sub 2} heterotetrameric state whereas Mn/MgATP induces a noncovalent association. Therefore, unlike the insulin receptor in which noncovalent association is sufficient for kinase activation, only the covalent assembly of the IGF-1 receptor {alpha}{beta} heterodimers into the {alpha}{sub 2}{beta}{sub 2} heterotetrameric holoreceptor complex is associated with ligand-stimulated protein kinase activation.« less

  13. Screening of Israeli Holstein-Friesian cattle for restriction fragment length polymorphisms using homologous and heterologous deoxyribonucleic acid probes.

    PubMed

    Hallerman, E M; Nave, A; Soller, M; Beckmann, J S

    1988-12-01

    Genomic DNA of Israeli Holstein-Friesian dairy cattle were screened with a battery of 17 cloned or subcloned DNA probes in an attempt to document restriction fragment length polymorphisms at a number of genetic loci. Restriction fragment length polymorphisms were observed at the chymosin, oxytocin-neurophysin I, lutropin beta, keratin III, keratin VI, keratin VII, prolactin, and dihydrofolate reductase loci. Use of certain genomic DNA fragments as probes produced hybridization patterns indicative of satellite DNA at the respective loci. Means for distinguishing hybridizations to coding sequences for unique genes from those to satellite DNA were developed. Results of this study are discussed in terms of strategy for the systematic development of large numbers of bovine genomic polymorphisms.

  14. Association of a beta-2 adrenoceptor (ADRB2) gene variant with a blunted in vivo lipolysis and fat oxidation.

    PubMed

    Jocken, J W E; Blaak, E E; Schiffelers, S; Arner, P; van Baak, M A; Saris, W H M

    2007-05-01

    Obesity is associated with a blunted beta-adrenoceptor-mediated lipolysis and fat oxidation. We investigated whether polymorphisms in codon 16, 27 and 164 of the beta (2)-adrenoceptor gene (ADRB2) and exon 10 of the G protein beta (3)-subunit gene (GNB3) are associated with alterations in in vivo lipolysis and fat oxidation. Sixty-five male and 43 female overweight and obese subjects (body mass index (BMI) range: 26.1-48.4 kg/m(2)) were included. Energy expenditure (EE), respiratory quotient (RQ), circulating free fatty acid (FFA) and glycerol levels were determined after stepwise infusion of increasing doses of the non-selective beta-agonist isoprenaline (ISO). In women, the Arg16 allele of the ADRB2 gene was associated with a blunted increase in circulating FFA, glycerol and a decreased fat oxidation during ISO stimulation. In men, the Arg16 allele was significantly associated with a blunted increase in FFA but not in glycerol or fat oxidation. These results suggest that genetic variation in the ADRB2 gene is associated with disturbances in in vivo beta-adrenoceptor-mediated lipolysis and fat oxidation during beta-adrenergic stimulation in overweight and obese subjects; these effects are influenced by gene-gender interactions.

  15. In vivo measurement of non-keratinized squamous epithelium using a spectroscopic microendoscope with multiple source-detector separations

    NASA Astrophysics Data System (ADS)

    Greening, Gage J.; Rajaram, Narasimhan; Muldoon, Timothy J.

    2016-03-01

    In the non-keratinized epithelia, dysplasia typically arises near the basement membrane and proliferates into the upper epithelial layers over time. We present a non-invasive, multimodal technique combining high-resolution fluorescence imaging and broadband sub-diffuse reflectance spectroscopy (sDRS) to monitor health at various tissue layers. This manuscript focuses on characterization of the sDRS modality, which contains two source-detector separations (SDSs) of 374 μm and 730 μm, so that it can be used to extract in vivo optical parameters from human oral mucosa at two tissue thicknesses. First, we present empirical lookup tables (LUTs) describing the relationship between reduced scattering (μs') and absorption coefficients (μa) and absolute reflectance. LUTS were shown to extract μs' and μa with accuracies of approximately 4% and 8%, respectively. We then present LUTs describing the relationship between μs', μa and sampling depth. Sampling depths range between 210-480 and 260-620 μm for the 374 and 730 μm SDSs, respectively. We then demonstrate the ability to extract in vivo μs', μa, hemoglobin concentration, bulk tissue oxygen saturation, scattering exponent, and sampling depth from the inner lip of thirteen healthy volunteers to elucidate the differences in the extracted optical parameters from each SDS (374 and 730 μm) within non-keratinized squamous epithelia.

  16. Biodegradation of a keratin waste and the concomitant production of detergent stable serine proteases from Paecilomyces lilacinus.

    PubMed

    Cavello, I A; Cavalitto, S F; Hours, R A

    2012-07-01

    Paecilomyces lilacinus (LPS 876) efficiently degraded keratin in chicken feather during submerged cultivation producing extracellular proteases. Characterization of crude protease activity was done including its compatibility in commercial detergents. Optimum pH and temperature were 10.0 and 60 °C, respectively. Protease activity was enhanced by Ca²⁺ but was strongly inhibited by PMSF and by Hg²⁺ suggesting the presence of thiol-dependent serine proteases. The crude protease showed extreme stability toward non-ionic (Tween 20, Tween 85, and Triton X-100) and anionic (SDS) surfactants, and relative stability toward oxidizing agent (H₂O₂ and sodium perborate). In addition, it showed excellent stability and compatibility with various solid and liquid commercial detergents from 30 to 50 °C. The enzyme preparation retained more than 95% of its initial activity with solid detergents (Ariel™ and Drive™) and 97% of its original activity with a liquid detergent (Ace™) after pre-incubation at 40 °C. The protective effect of polyols (propylene glycol, PEG 4000, and glycerol) on the heat inactivation was also examined and the best results were obtained with glycerol from 50 to 60 °C. Considering its promising properties, P. lilacinus enzymatic preparation may be considered as a candidate for use in biotechnological processes (i.e., as detergent additive) and in the processing of keratinous wastes.

  17. Medium Calcium Concentration Determines Keratin Intermediate Filament Density and Distribution in Immortalized Cultured Thymic Epithelial Cells (TECs)

    NASA Astrophysics Data System (ADS)

    Sands, Sandra S.; Meek, William D.; Hayashi, Jun; Ketchum, Robert J.

    2005-08-01

    Isolation and culture of thymic epithelial cells (TECs) using conventional primary tissue culture techniques under conditions employing supplemented low calcium medium yielded an immortalized cell line derived from the LDA rat (Lewis [Rt1l] cross DA [Rt1a]) that could be manipulated in vitro. Thymi were harvested from 4 5-day-old neonates, enzymically digested using collagenase (1 mg/ml, 37°C, 1 h) and cultured in low calcium WAJC404A medium containing cholera toxin (20 ng/ml), dexamethasone (10 nM), epidermal growth factor (10 ng/ml), insulin (10 [mu]g/ml), transferrin (10 [mu]g/ml), 2% calf serum, 2.5% Dulbecco's Modified Eagle's Medium (DMEM), and 1% antibiotic/antimycotic. TECs cultured in low calcium displayed round to spindle-shaped morphology, distinct intercellular spaces (even at confluence), and dense reticular-like keratin patterns. In high calcium (0.188 mM), TECs formed cobblestone-like confluent monolayers that were resistant to trypsinization (0.05%) and displayed keratin intermediate filaments concentrated at desmosomal junctions between contiguous cells. Changes in cultured TEC morphology were quantified by an analysis of desmosome/membrane relationships in high and low calcium media. Desmosomes were significantly increased in the high calcium medium. These studies may have value when considering the growth conditions of cultured primary cell lines like TECs.

  18. Determinants of binding affinity and specificity for the interaction of TEM-1 and SME-1 beta-lactamase with beta-lactamase inhibitory protein.

    PubMed

    Zhang, Zhen; Palzkill, Timothy

    2003-11-14

    The hydrolysis of beta-lactam antibiotics by class A beta-lactamases is a common cause of bacterial resistance to these agents. The beta-lactamase inhibitory protein (BLIP) is able to bind and inhibit several class A beta-lactamases, including TEM-1 beta-lactamase and SME-1 beta-lactamase. Although the TEM-1 and SME-1 enzymes share 33% amino acid sequence identity and a similar fold, they differ substantially in surface electrostatic properties and the conformation of a loop-helix region that BLIP binds. Alanine-scanning mutagenesis was performed to identify the residues on BLIP that contribute to its binding affinity for each of these enzymes. The results indicate that the sequence requirements for binding are similar for both enzymes with most of the binding free energy provided by two patches of aromatic residues on the surface of BLIP. Polar residues such as several serines in the interface do not make significant contributions to affinity for either enzyme. In addition, the specificity of binding is significantly altered by mutation of two charged residues, Glu73 and Lys74, that are buried in the structure of the TEM-1.BLIP complex as well as by residues located on two loops that insert into the active site pocket. Based on the results, a E73A/Y50A double mutant was constructed that exhibited a 220,000-fold change in binding specificity for the TEM-1 versus SME-1 enzymes.

  19. 17Beta-hydroxysteroid dehydrogenase (17beta-HSD) in scleractinian corals and zooxanthellae.

    PubMed

    Blomquist, Charles H; Lima, P H; Tarrant, A M; Atkinson, M J; Atkinson, S

    2006-04-01

    Steroid metabolism studies have yielded evidence of 17beta-hydroxysteroid dehydrogenase (17beta-HSD) activity in corals. This project was undertaken to clarify whether there are multiple isoforms of 17beta-HSD, whether activity levels vary seasonally, and if zooxanthellae contribute to activity. 17Beta-HSD activity was characterized in zooxanthellate and azooxanthellate coral fragments collected in summer and winter and in zooxanthellae cultured from Montipora capitata. More specifically, 17beta-HSD activity was characterized with regard to steroid substrate and inhibitor specificity, coenzyme specificity, and Michaelis constants for estradiol (E2) and NADP+. Six samples each of M. capitata and Tubastrea coccinea (three summers, three winters) were assayed with E2 and NADP+. Specific activity levels (pmol/mg protein) varied 10-fold among M. capitata samples and 6-fold among T. coccinea samples. There was overlap of activity levels between summer and winter samples. NADP+/NAD+ activity ratios varied from 1.6 to 22.2 for M. capatita, 2.3 to 3.8 for T. coccinea and 0.7 to 1.1 for zooxanthellae. Coumestrol was the most inhibitory of the steroids and phytoestrogens tested. Our data confirm that corals and zooxanthellae contain 17beta-HSD and are consistent with the presence of more than one isoform of the enzyme.

  20. Glycation induces formation of amyloid cross-beta structure in albumin.

    PubMed

    Bouma, Barend; Kroon-Batenburg, Loes M J; Wu, Ya-Ping; Brünjes, Bettina; Posthuma, George; Kranenburg, Onno; de Groot, Philip G; Voest, Emile E; Gebbink, Martijn F B G

    2003-10-24

    Amyloid fibrils are components of proteinaceous plaques that are associated with conformational diseases such as Alzheimer's disease, transmissible spongiform encephalopathies, and familial amyloidosis. Amyloid polypeptides share a specific quarternary structure element known as cross-beta structure. Commonly, fibrillar aggregates are modified by advanced glycation end products (AGE). In addition, AGE formation itself induces protein aggregation. Both amyloid proteins and protein-AGE adducts bind multiligand receptors, such as receptor for AGE, CD36, and scavenger receptors A and B type I, and the serine protease tissue-type plasminogen activator (tPA). Based on these observations, we hypothesized that glycation induces refolding of globular proteins, accompanied by formation of cross-beta structure. Using transmission electron microscopy, we demonstrate here that glycated albumin condensates into fibrous or amorphous aggregates. These aggregates bind to amyloid-specific dyes Congo red and thioflavin T and to tPA. In contrast to globular albumin, glycated albumin contains amino acid residues in beta-sheet conformation, as measured with circular dichroism spectropolarimetry. Moreover, it displays cross-beta structure, as determined with x-ray fiber diffraction. We conclude that glycation induces refolding of initially globular albumin into amyloid fibrils comprising cross-beta structure. This would explain how glycated ligands and amyloid ligands can bind to the same multiligand "cross-beta structure" receptors and to tPA.

  1. Diversity and phylogeography of begomovirus-associated beta satellites of okra in India

    PubMed Central

    2011-01-01

    Background Okra (Abelmoschus esculentus; family Malvaceae) is grown in temperate as well as subtropical regions of the world, both for human consumption as a vegetable and for industrial uses. Okra yields are affected by the diseases caused by phyopathogenic viruses. India is the largest producer of okra and in this region a major biotic constraint to production are viruses of the genus Begomovirus. Begomoviruses affecting okra across the Old World are associated with specific, symptom modulating satellites (beta satellites). We describe a comprehensive analysis of the diversity of beta satellites associated with okra in India. Results The full-length sequences of 36 beta satellites, isolated from okra exhibiting typical begomovirus symptoms (leaf curl and yellow vein), were determined. The sequences segregated in to four groups. Two groups correspond to the beta satellites Okra leaf curl beta satellite (OLCuB) and Bhendi yellow vein beta satellite (BYVB) that have previously been identified in okra from the sub-continent. One sequence was distinct from all other, previously isolated beta satellites and represents a new species for which we propose the name Bhendi yellow vein India beta satellite (BYVIB). This new beta satellite was nevertheless closely related to BYVB and OLCuB. Most surprising was the identification of Croton yellow vein mosaic beta satellite (CroYVMB) in okra; a beta satellite not previously identified in a malvaceous plant species. The okra beta satellites were shown to have distinct geographic host ranges with BYVB occurring across India whereas OLCuB was only identified in northwestern India. Okra infections with CroYVMB were only identified across the northern and eastern central regions of India. A more detailed analysis of the sequences showed that OLCuB, BYVB and BYVIB share highest identity with respect βC1 gene. βC1 is the only gene encoded by beta satellites, the product of which is the major pathogenicity determinant of begomovirus-beta

  2. Beta-1-Selective Beta-Blockers and Cognitive Functions in Patients With Coronary Artery Disease: A Cross-Sectional Study.

    PubMed

    Burkauskas, Julius; Noreikaite, Aurelija; Bunevicius, Adomas; Brozaitiene, Julija; Neverauskas, Julius; Mickuviene, Narseta; Bunevicius, Robertas

    2016-01-01

    The association between current beta-1-selective beta-blocker use and cognitive function was evaluated in 722 patients with coronary artery disease without dementia. Beta-1-selective beta-blocker use was associated with worse incidental learning independently of sociodemographic characteristics, clinical coronary artery disease severity, and depression/anxiety.

  3. NCAM (CD56) expression in keratin-producing odontogenic cysts: aberrant expression in KCOT.

    PubMed

    Vera-Sirera, Beatriz; Forner-Navarro, Leopoldo; Vera-Sempere, Francisco

    2015-02-12

    To investigate immunohistochemically the expression of neural cell adhesion molecule (NCAM), which has been identified as a signaling receptor with frequent reactivity in ameloblastomas (AB), in a series of keratin-producing odontogenic cysts (KPOCs). Immunohistochemical expression of NCAM, using a monoclonal antibody, was determined in a series of 58 KPOCs comprising 12 orthokeratinized odontogenic cysts (OOCs) and 46 keratocystic odontogenic tumors (KCOTs), corresponding to 40 non-syndromic KCOT (NS-KCOTs) and 6 syndromic KCOT (S-KCOTs), associated with nevic basocellular syndrome (NBCS). NCAM expression was negative in all OOCs, but 36.45% of KCOTs exhibited focal and heterogeneous expression at the basal cell level, as well as in basal budding areas and the basal cells of daughter cysts. The latter two locations were especially applicable to S-KCOTs, with focal NCAM reactivity occurring in 66.66% of cases. Aberrant NCAM expression, in KCOTs but especially in S-KCOTs, together with its immunomorphological location, suggests that this adhesion molecule and signaling receptor plays a role in the pathogenesis of KCOTs, with a probable impact on lesional recurrence.

  4. Protein degradation in skeletal muscle during experimental hyperthyroidism in rats and the effect of beta-blocking agents.

    PubMed

    Angerås, U; Hasselgren, P O

    1987-04-01

    beta-Blocking agents are increasingly used in the management of hyperthyroid patients. The effect of this treatment on increased muscle protein breakdown in the hyperthyroid state is not known. In the present study, experimental hyperthyroidism was induced in rats by daily ip injections of T3 (100 micrograms/100 g BW) during a 10-day period. Control animals received corresponding volumes of solvent. In groups of rats the selective beta-1-blocking agent metoprolol or the nonselective beta-blocker propranolol was infused by miniosmotic pumps implanted sc on the backs of the animals. Protein degradation was measured in incubated intact soleus and extensor digitorum longus muscles by determining tyrosine release into the incubation medium. The protein degradation rate in incubated extensor digitorum longus and soleus muscles was increased by 50-60% during T3 treatment. Metoprolol or propranolol did not influence muscle protein breakdown in either T3-treated or control animals. The results suggest that T3-induced increased muscle proteolysis is not mediated by beta-receptors, and muscle weakness and wasting in hyperthyroidism might not be affected by beta-blockers.

  5. Beta-glucans in the treatment of diabetes and associated cardiovascular risks

    PubMed Central

    Chen, Jiezhong; Raymond, Kenneth

    2008-01-01

    Diabetes mellitus is characterized by high blood glucose level with typical manifestations of thirst, polyuria, polydipsia, and weight loss. It is caused by defects in insulin-mediated signal pathways, resulting in decreased glucose transportation from blood into muscle and fat cells. The major risk is vascular injury leading to heart disease, which is accelerated by increased lipid levels and hypertension. Management of diabetes includes: control of blood glucose level and lipids; and reduction of hypertension. Dietary intake of beta-glucans has been shown to reduce all these risk factors to benefit the treatment of diabetes and associated complications. In addition, beta-glucans also promote wound healing and alleviate ischemic heart injury. However, the mechanisms behind the effect of beta-glucans on diabetes and associated complications need to be further studied using pure beta-glucan. PMID:19337540

  6. Avian keratin disorder of Alaska black-capped chickadees is associated with Poecivirus infection

    USGS Publications Warehouse

    Zylberberg, Maxine; Van Hemert, Caroline R.; Handel, Colleen M.; DeRisi, Joseph L.

    2018-01-01

    BackgroundAvian keratin disorder (AKD) is an epizootic of debilitating beak deformities, first documented in black-capped chickadees (Poecile atricapillus) in Alaska during the late 1990s. Similar deformities have now been recorded in dozens of species of birds across multiple continents. Despite this, the etiology of AKD has remained elusive, making it difficult to assess the impacts of this disease on wild populations. We previously identified an association between infection with a novel picornavirus, Poecivirus, and AKD in a small cohort of black-capped chickadees.MethodsTo test if the association between Poecivirus and AKD holds in a larger study population, we used targeted PCR followed by Sanger sequencing to screen 124 symptomatic and asymptomatic black-capped chickadees for Poecivirus infection. We further compared the efficacy of multiple non-terminal field sampling methods (buccal swabs, cloacal swabs, fecal samples, and blood samples) for Poecivirus screening. Finally, we used both in situ hybridization and a strand-specific expression assay to localize Poecivirus to beak tissue of AKD-positive individuals and to determine if virus is actively replicating in beak tissue.ResultsPoecivirus was detected in 28/28 (100%) individuals with AKD, but only 9/96 (9.4%) asymptomatic individuals with apparently normal beaks (p < 0.0001). We found that cloacal swabs are the most sensitive of these sample types for detecting Poecivirus in birds with AKD, but that buccal swabs should be combined with cloacal swabs in evaluating the infection status of asymptomatic birds. Finally, we used both in situ hybridization and a strand-specific expression assay to localize Poecivirus to beak tissue of AKD-positive individuals and to provide evidence of active viral replication.ConclusionThe data presented here show a strong, statistically significant relationship between Poecivirus infection and AKD, and provide evidence that Poecivirus is indeed an avian virus, infecting

  7. Dynamics of beta-cell turnover: evidence for beta-cell turnover and regeneration from sources of beta-cells other than beta-cell replication in the HIP rat.

    PubMed

    Manesso, Erica; Toffolo, Gianna M; Saisho, Yoshifumi; Butler, Alexandra E; Matveyenko, Aleksey V; Cobelli, Claudio; Butler, Peter C

    2009-08-01

    Type 2 diabetes is characterized by hyperglycemia, a deficit in beta-cells, increased beta-cell apoptosis, and islet amyloid derived from islet amyloid polypeptide (IAPP). These characteristics are recapitulated in the human IAPP transgenic (HIP) rat. We developed a mathematical model to quantify beta-cell turnover and applied it to nondiabetic wild type (WT) vs. HIP rats from age 2 days to 10 mo to establish 1) whether beta-cell formation is derived exclusively from beta-cell replication, or whether other sources of beta-cells (OSB) are present, and 2) to what extent, if any, there is attempted beta-cell regeneration in the HIP rat and if this is through beta-cell replication or OSB. We conclude that formation and maintenance of adult beta-cells depends largely ( approximately 80%) on formation of beta-cells independent from beta-cell duplication. Moreover, this source adaptively increases in the HIP rat, implying attempted beta-cell regeneration that substantially slows loss of beta-cell mass.

  8. FT-Raman spectroscopic study of keratotic materials: horn, hoof and tortoiseshell.

    PubMed

    Edwards, H G; Hunt, D E; Sibley, M G

    1998-05-01

    The Fourier-Transform Raman spectra of some mammalian and reptilian keratins, horn, hoof and tortoiseshell, have been analysed and used for the construction of a database for the identification of highly keratotic samples. The samples investigated were; bovine keratin and hoof, Texas Longhorn cattle horn, kudu horn, tortoiseshell and human finger nail. Significant spectral differences were observed in the 1000-400 cm-1 wavenumber range, which included the conformationally important v(SS) and v(CS) features around 500 and 640 cm-1, respectively. The amide I (1650 cm-1) and amide III (1260 cm-1) bands confirmed that the reptilian keratin studied exists in the beta-sheet conformation, whilst mammalian keratins are predominantly laid down in an alpha-helical conformation. The FT-Raman spectral differences particularly between the horn and hoof specimens are very useful for the non-destructive characterisation of artefacts and provides a novel application of the technique.

  9. Inhibition of Interferon-beta Responses in Multiple Sclerosis Immune Cells Associated With High-Dose Statins

    PubMed Central

    Feng, Xuan; Han, Diana; Kilaru, Bharat K.; Franek, Beverly S.; Niewold, Timothy B.; Reder, Anthony T.

    2014-01-01

    Objective To determine whether statins affect type 1 interferon responses in relapsing-remitting multiple sclerosis (RRMS). Design Study effects of atorvastatin on type 1 interferon responses in Jurkat cells, mononuclear cells (MNCs) from therapy-naive patients with RRMS in vitro, and MNCs from interferon-treated RRMS patients in vivo in 4 conditions: no drug, statin only, interferon-beta only, and statin added on to interferon-beta therapy. Patients The study examined clinically stable patients with RRMS: 21 therapy-naive patients and 14 patients receiving interferon-beta with a statin. Interventions Statin effects on in vitro and in vivo interferon-beta–induced STAT1 transcription factor activation, expression of interferon-stimulated proteins in MNCs, and serum type 1 interferon activity. Results In vitro, atorvastatin dose dependently inhibited expression of interferon-stimulated P-Y-STAT1 by 44% (P< .001), interferon regulatory factor 1 protein by 30% (P= .006), and myxovirus resistance 1 protein by 32% (P=.004) compared with no-statin control in MNCs from therapy-naive RRMS patients. In vivo, 9 of 10 patients who received high-dose statins (80 mg) had a significant reduction in interferon-beta therapy–induced serum interferon-α/β activity, whereas only 2 of 4 patients who received medium-dose statins (40 mg) had reductions. High-dose add-on statin therapy significantly blocked interferon-beta function, with less P-Y-STAT1 transcription factor activation, and reduced myxovirus resistance 1 protein and viperin protein production. Medium doses of statins did not change STAT1 activation. Conclusions High-dose add-on statin therapy significantly reduces interferon-beta function and type 1 interferon responses in RRMS patients. These data provide a putative mechanism for how statins could counteract the beneficial effects of interferon-beta and worsen disease. PMID:22801747

  10. Tumor-produced, active Interleukin-1 {beta} regulates gene expression in carcinoma-associated fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudas, Jozsef, E-mail: Jozsef.Dudas@i-med.ac.at; Fullar, Alexandra, E-mail: fullarsz@gmail.com; 1st Institute of Pathology and Experimental Cancer Research, Semmelweis University, Ulloei ut 26, H-1085 Budapest

    2011-09-10

    Recently we described a co-culture model of periodontal ligament (PDL) fibroblasts and SCC-25 lingual squamous carcinoma cells, which resulted in conversion of normal fibroblasts into carcinoma-associated fibroblasts (CAFs), and in epithelial-mesenchymal transition (EMT) of SCC-25 cells. We have found a constitutive high interleukin-1{beta} (IL1-{beta}) expression in SCC-25 cells in normal and in co-cultured conditions. In our hypothesis a constitutive IL1-{beta} expression in SCC-25 regulates gene expression in fibroblasts during co-culture. Co-cultures were performed between PDL fibroblasts and SCC-25 cells with and without dexamethasone (DEX) treatment; IL1-{beta} processing was investigated in SCC-25 cells, tumor cells and PDL fibroblasts were treated withmore » IL1-{beta}. IL1-{beta} signaling was investigated by western blot and immunocytochemistry. IL1-{beta}-regulated genes were analyzed by real-time qPCR. SCC-25 cells produced 16 kD active IL1-{beta}, its receptor was upregulated in PDL fibroblasts during co-culture, which induced phosphorylation of interleukin-1 receptor-associated kinase-1 (IRAK-1), and nuclear translocalization of NF{kappa}B{alpha}. Several genes, including interferon regulatory factor 1 (IRF1) interleukin-6 (IL-6) and prostaglandin-endoperoxide synthase 2 (COX-2) were induced in CAFs during co-culture. The most enhanced induction was found for IL-6 and COX-2. Treatment of PDL fibroblasts with IL1-{beta} reproduced a time- and dose-dependent upregulation of IL1-receptor, IL-6 and COX-2. A further proof was achieved by DEX inhibition for IL1-{beta}-stimulated IL-6 and COX-2 gene expression. Constitutive expression of IL1-{beta} in the tumor cells leads to IL1-{beta}-stimulated gene expression changes in tumor-associated fibroblasts, which are involved in tumor progression. -- Graphical abstract: SCC-25 cells produce active, processed IL1-{beta}. PDL fibroblasts possess receptor for IL1-{beta}, and its expression is increased 4.56-times

  11. Molecular modelling indicates that the pathological conformations of prion proteins might be beta-helical.

    PubMed Central

    Downing, D T; Lazo, N D

    1999-01-01

    Creutzfeldt-Jakob disease, kuru, scrapie and bovine spongiform encephalopathy are diseases of the mammalian central nervous system that involve the conversion of a cellular protein into an insoluble extracellular isoform. Spectroscopic studies have shown that the precursor protein contains mainly alpha-helical and random-coil conformations, whereas the prion isoform is largely in the beta conformation. The pathogenic prion is resistant to denaturation and protease digestion and can promote the conversion of the precursor protein to the pathogenic form. These properties have yet to be explained in terms of the structural conformations of the proteins. In the present study, molecular modelling showed that prion proteins could adopt the beta-helical conformation, which has been established for a number of fibrous proteins and has been suggested previously as the basis of amyloid fibrils. The beta-helical conformation provides explanations for the biophysical and biochemical stability of prions, their ability to form templates for the transmission of pathological conformation, and the existence of phenotypical strains of the prion diseases. PMID:10510313

  12. Transforming growth factor-{beta} inhibits CCAAT/enhancer-binding protein expression and PPAR{gamma} activity in unloaded bone marrow stromal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahdjoudj, S.; Kaabeche, K.; Holy, X.

    2005-02-01

    The molecular mechanisms regulating the adipogenic differentiation of bone marrow stromal cells in vivo remain largely unknown. In this study, we investigated the regulatory effects of transforming growth factor beta-2 (TGF-{beta}2) on transcription factors involved in adipogenic differentiation induced by hind limb suspension in rat bone marrow stromal cells in vivo. Time course real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis of gene expression showed that skeletal unloading progressively increases the expression of CCAAT/enhancer-binding protein (C/EBP){alpha} and C/EBP{beta} {alpha} at 5 days in bone marrow stromal cells resulting in increased peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}2) transcripts at 7 days. TGF-{beta}2more » administration in unloaded rats corrected the rise in C/EBP{alpha} and C/EBP{beta} transcripts induced by unloading in bone marrow stromal cells. This resulted in inhibition of PPAR{gamma}2 expression that was associated with increased Runx2 expression. Additionally, the inhibition of C/EBP{alpha} and C/EBP{beta} expression by TGF-{beta}2 was associated with increased PPAR{gamma} serine phosphorylation in bone marrow stromal cells, a mechanism that inhibits PPAR{gamma} transactivating activity. The sequential inhibitory effect of TGF-{beta}2 on C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma}2 resulted in reduced LPL expression and abolition of bone marrow stromal cell adipogenic differentiation, which contributed to prevent bone loss induced by skeletal unloading. We conclude that TGF-{beta}2 inhibits the excessive adipogenic differentiation of bone marrow stromal cells induced by skeletal unloading by inhibiting C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma} expression and activity, which provides a sequential mechanism by which TGF-{beta}2 regulates adipogenic differentiation of bone marrow stromal cells in vivo.« less

  13. Adenovirus E1A functions as a cofactor for retinoic acid receptor beta (RAR beta) through direct interaction with RAR beta.

    PubMed

    Folkers, G E; van der Saag, P T

    1995-11-01

    Transcription regulation by DNA-bound activators is thought to be mediated by a direct interaction between these proteins and TATA-binding protein (TBP), TFIIB, or TBP-associated factors, although occasionally cofactors or adapters are required. For ligand-induced activation by the retinoic acid receptor-retinoid X receptor (RAR-RXR) heterodimer, the RAR beta 2 promoter is dependent on the presence of E1A or E1A-like activity, since this promoter is activated by retinoic acid only in cells expressing such proteins. The mechanism underlying this E1A requirement is largely unknown. We now show that direct interaction between RAR and E1A is a requirement for retinoic acid-induced RAR beta 2 activation. The activity of the hormone-dependent activation function 2 (AF-2) of RAR beta is upregulated by E1A, and an interaction between this region and E1A was observed, but not with AF-1 or AF-2 of RXR alpha. This interaction is dependent on conserved region III (CRIII), the 13S mRNA-specific region of E1A. Deletion analysis within this region indicated that the complete CRIII is needed for activation. The putative zinc finger region is crucial, probably as a consequence of interaction with TBP. Furthermore, the region surrounding amino acid 178, partially overlapping with the TBP binding region, is involved in both binding to and activation by AF-2. We propose that E1A functions as a cofactor by interacting with both TBP and RAR, thereby stabilizing the preinitiation complex.

  14. Expression of transforming growth factor-beta1, -beta2 and -beta3 in normal and diseased canine mitral valves.

    PubMed

    Aupperle, H; März, I; Thielebein, J; Schoon, H-A

    2008-01-01

    The pathogenesis of chronic valvular disease (CVD) in dogs remains unclear, but activation and proliferation of valvular stromal cells (VSC) and their transdifferentiation into myofibroblast-like cells has been described. These alterations may be influenced by transforming growth factor-beta (TGF-beta), a cytokine involved in extracellular matrix (ECM) regulation and mesenchymal cell differentiation. The present study investigates immunohistochemically the expression of TGF-beta1, -beta2, -beta3 and smooth muscle alpha actin (alpha-SMA) in normal canine mitral valves (MVs) (n=10) and in the valves of dogs with mild (n=7), moderate (n=14) and severe (n=9) CVD. In normal mitral valves there was no expression of alpha-SMA but VSC displayed variable expression of TGF-beta1 (10% of VSC labelled), TGF-beta2 (1-5% labelled) and TGF-beta3 (50% labelled). In mild CVD the affected atrialis contain activated and proliferating alpha-SMA-positive VSC, which strongly expressed TGF-beta1 and -beta3, but only 10% of these cells expressed TGF-beta2. In unaffected areas of the leaflet there was selective increase in expression of TGF-beta1 and -beta3. In advanced CVD the activated subendothelial VSC strongly expressed alpha-SMA, TGF-beta1 and -beta3. Inactive VSC within the centre of the nodules had much less labelling for TGF-beta1 and -beta3. TGF-beta1 labelling was strong within the ECM. These data suggest that TGF-beta plays a role in the pathogenesis of CVD by inducing myofibroblast-like differentiation of VSC and ECM secretion. Changed haemodynamic forces and expression of matrix metalloproteinases (MMPs) may in turn regulate TGF-beta expression.

  15. Selective regulation of beta 1- and beta 2-adrenoceptors in the human heart by chronic beta-adrenoceptor antagonist treatment.

    PubMed Central

    Michel, M. C.; Pingsmann, A.; Beckeringh, J. J.; Zerkowski, H. R.; Doetsch, N.; Brodde, O. E.

    1988-01-01

    1. In 44 patients undergoing coronary artery bypass grafting, the effect of chronic administration of the beta-adrenoceptor antagonists sotalol, propranolol, pindolol, metoprolol and atenolol on beta-adrenoceptor density in right atria (containing 70% beta 1- and 30% beta 2-adrenoceptors) and in lymphocytes (having only beta 2-adrenoceptors) was studied. 2. beta-Adrenoceptor density in right atrial membranes and in intact lymphocytes was assessed by (-)-[125I]-iodocyanopindolol (ICYP) binding; the relative amount of right atrial beta 1- and beta 2-adrenoceptors was determined by inhibition of ICYP binding by the selective beta 2-adrenoceptor antagonist ICI 118,551 and analysis of the resulting competition curves by the iterative curve fitting programme LIGAND. 3. With the exception of pindolol, all beta-adrenoceptor antagonists increased right atrial beta-adrenoceptor density compared to that observed in atria from patients not treated with beta-adrenoceptor antagonists. 4. All beta-adrenoceptor antagonists increased right atrial beta 1-adrenoceptor density; on the other hand, only sotalol and propranolol also increased right atrial beta 2-adrenoceptor density, whereas metoprolol and atenolol did not affect it and pindolol decreased it. 5. Similarly, in corresponding lymphocytes, only sotalol or propranolol increased beta 2-adrenoceptor density, while metoprolol and atenolol did not affect it and pindolol decreased it. 6. It is concluded that beta-adrenoceptor antagonists subtype-selectively regulate cardiac and lymphocyte beta-adrenoceptor subtypes. The selective increase in cardiac beta 1-adrenoceptor density evoked by metoprolol and atenolol may be one of the reasons for the beneficial effects observed in patients with end-stage congestive cardiomyopathy following intermittent treatment with low doses of selective beta 1-adrenoceptor antagonists. PMID:2902891

  16. Quasiparticle random phase approximation uncertainties and their correlations in the analysis of 0{nu}{beta}{beta} decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faessler, Amand; Rodin, V.; Fogli, G. L.

    2009-03-01

    The variances and covariances associated to the nuclear matrix elements of neutrinoless double beta decay (0{nu}{beta}{beta}) are estimated within the quasiparticle random phase approximation. It is shown that correlated nuclear matrix elements uncertainties play an important role in the comparison of 0{nu}{beta}{beta} decay rates for different nuclei, and that they are degenerate with the uncertainty in the reconstructed Majorana neutrino mass.

  17. Annurca Apple Nutraceutical Formulation Enhances Keratin Expression in a Human Model of Skin and Promotes Hair Growth and Tropism in a Randomized Clinical Trial.

    PubMed

    Tenore, Gian Carlo; Caruso, Domenico; Buonomo, Giuseppe; D'Avino, Maria; Santamaria, Rita; Irace, Carlo; Piccolo, Marialuisa; Maisto, Maria; Novellino, Ettore

    2018-01-01

    Several pharmaceutical products have been formulated over the past decades for the treatment of male and female alopecia, and pattern baldness, but relatively few metadata on their efficacy have been published. For these reasons, the pharmaceutical and medical attention has recently focused on the discovery of new and safer remedies. Particularly, great interest has been attracted by oligomeric procyanidin bioactivity, able to promote hair epithelial cell growth as well as to induce the anagen phase. Specifically, the procyanidin B2, a dimeric derivative extracted from apples, has demonstrated to be one of the most effective and safest natural compounds in promoting hair growth, both in vitro and in humans by topical applications. By evaluating the polyphenolic content of different apple varieties, we have recently found in the apple fruits of cv Annurca (AFA), native to Southern Italy, one of the highest contents of oligomeric procyanidins, and, specifically, of procyanidin B2. Thus, in the present work we explored the in vitro bioactivity of AFA polyphenolic extract as a nutraceutical formulation, named AppleMets (AMS), highlighting its effects on the cellular keratin expression in a human experimental model of adult skin. Successively, testing the effects of AMS on hair growth and tropism in healthy subjects, we observed significant results in terms of increased hair growth, density, and keratin content, already after 2 months. This study proves for the first time the impact of apple procyanidin B2 on keratin biosynthesis in vitro, and highlights its effect as a nutraceutical on human hair growth and tropism.

  18. Integrins beta 5, beta 3 and alpha v are apically distributed in endometrial epithelium.

    PubMed

    Aplin, J D; Spanswick, C; Behzad, F; Kimber, S J; Vićovac, L

    1996-07-01

    Several adhesion molecules have been shown to occur at the surface of endometrial cells. One of these is the integrin alpha v subunit which associates with various beta chains including beta 5. We demonstrate the presence of integrin beta 5 polypeptide in human endometrial epithelial cells throughout the menstrual cycle using immunocytochemistry with monospecific antibodies, and at the mRNA level by thermal amplification from endometrial cDNA. Integrin beta 5 is also found in a population of bone marrow-derived cells. A notable feature of the distribution of the beta 5 subunit in the glandular and luminal epithelium is its apical localization, which may suggest an involvement in implantation. However, no evidence was found for regulated expression of epithelial beta 5. In mouse, the beta 5 subunit is found at both the apical and basal surface of epithelial cells and expression is essentially oestrous cycle-independent. Comparisons are made in both species with the distribution of the alpha v and beta 3 subunits which also localize to the apical epithelium.

  19. The effect of human hair keratin hydrogel on early cellular response to sciatic nerve injury in a rat model.

    PubMed

    Pace, Lauren A; Plate, Johannes F; Smith, Thomas L; Van Dyke, Mark E

    2013-08-01

    Peripheral nerve injuries requiring surgery can be repaired by autograft, the clinical "gold standard", allograft, or nerve conduits. Most published clinical studies show the effectiveness of nerve conduits in small size defects in sensory nerves. Many preclinical studies suggest that peripheral nerve regeneration through conduits can be enhanced and repair lengths increased with the use of a biomaterial filler in the conduit lumen. We have previously shown that a luminal hydrogel filler derived from human hair keratin (HHK) can improve electrophysiological and histological outcomes in mouse, rabbit, and non-human primate nerve injury models, but insight into potential mechanisms has been lacking. Based on the premise that a keratin biomaterial (KOS) hydrogel provides an instantaneous structural matrix within the lumen, the current study compares the cellular behavior elicited by KOS hydrogel to Matrigel (MAT) and saline (SAL) conduit fillers in a 1 cm rat sciatic nerve injury model at early stages of regeneration. While there was little difference in initial cellular influx, the KOS group showed earlier migration of dedifferentiated Schwann cells (SC) from the proximal nerve end compared to the other groups. The KOS group also showed faster SC dedifferentiation and myelin debris clearance, and decreased macrophage infiltration during Wallerian degeneration of the distal nerve tissue. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Repression of TGF-beta signaling by the oncogenic protein SKI in human melanomas: consequences for proliferation, survival, and metastasis.

    PubMed

    Medrano, Estela E

    2003-05-19

    Transforming growth factor-beta (TGF-beta ) has dual and paradoxical functions as a tumor suppressor and promoter of tumor progression and metastasis. TGF-Ji-mediated growth inhibition is gradually lost during melanoma tumor progression, but there are no measurable defects at the receptor level. Furthermore, melanoma cells release high levels of TGF-beta to the microenvironment, which upon activation induces matrix deposition, angiogenesis, survival, and transition to more aggressive phenotypes. The SKI and SnoN protein family associate with and repress the activity of Smad2, Smad3, and Smad4, three members of the TGF-fl signaling pathway. SKI also facilitates cell-cycle progression by targeting the RB pathway by at least two ways: it directly associates with RB and represses its activity when expressed at high levels, and indirectly, it represses Smad-mediated induction of p21(Waf-1) This results in increased CDK2 activity, RB phosphorylation,and inactivation. Therefore, high levels of SKI result in lesions to the RB pathway in a manner similar to p16 (INK4a) loss. SKI mRNA and protein levels dramatically increase during human melanoma tumor progression. In addition,the SKI protein shifts from nuclear localization in intraepidermal melanoma cells to nuclear and cytoplasmic in invasive and metastatic melanomas. Here, I discuss the basis for repression of intracellular TGF-beta signaling by SKI, some additional activities of this protein, and propose that by disrupting multiple tumor suppressor pathways, SKI functions as a melanoma oncogene.

  1. Analysis of interleukin (IL)-1 beta and transforming growth factor (TGF)-beta-induced signal transduction pathways in IL-2 and TGF-beta secretion and proliferation in the thymoma cell line EL4.NOB-1.

    PubMed

    Siese, A; Jaros, P P; Willig, A

    1999-02-01

    In the present study we investigated the interleukin (IL)-1beta and transforming growth factor-beta1 (TGF-beta1)-mediated proliferation, and production of IL-2 and TGF-beta, in the murine T-cell line, EL4.NOB-1. This cell line is resistant to TGF-beta concerning growth arrest but not autoinduction or suppression of IL-1-induced IL-2 production. When cocultured with IL-1beta, TGF-beta showed growth-promoting activity that could be antagonized by adding the phosphatidyl choline-dependent phospholipase C (PC-PLC) inhibitor, D609. Using specific enzyme inhibitors of protein kinases (PK) C and A, mitogen-activated protein kinase (MAPK), phospholipase A2 (PLA2), phosphatidylinositol-dependent (PI)-PLC and PC-PLC, we showed that IL-1beta-induced IL-2 synthesis was dependent on all investigated kinases and phospholipases, except PC-PLC. TGF-beta1 was able to inhibit IL-2 synthesis by the activation of PKA and MAPK. The same kinases are involved in TGF-beta autoinduction that is accompanied by a secretion of the active but not the latent growth factor and is antagonized by IL-1beta. Addition of the PI-PLC inhibitor, ET 18OCH3, or the PLA2 inhibitor (quinacrine) alone, resulted in secretion of latent TGF-beta and, in the case of ET 18OCH3, active TGF-beta. These data implicate a role for PI-PLC and PLA2 in the control of latency and secretion. Analysis of specific tyrosine activity and c-Fos expression showed synergistic but no antagonistic effects. These events are therefore not involved in IL- and TGF-beta-regulated IL-2 and TGF-beta production, but might participate in IL-1/TGF-beta-induced growth promotion.

  2. Integrin {alpha}{beta}1, {alpha}{sub v}{beta}, {alpha}{sub 6}{beta} effectors p130Cas, Src and talin regulate carcinoma invasion and chemoresistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sansing, Hope A.; Sarkeshik, Ali; Yates, John R.

    2011-03-11

    Research highlights: {yields} Proteomics of clustered integrin {alpha}{beta}1, {alpha}{sub v}{beta}, {alpha}{sub 6}{beta} receptors in oral carcinoma. {yields} p130Cas, Dek, Src and talin regulate oral carcinoma invasion. {yields} p130Cas, talin, Src and zyxin regulate oral carcinoma resistance to cisplatin. -- Abstract: Ligand engagement by integrins induces receptor clustering and formation of complexes at the integrin cytoplasmic face that controls cell signaling and cytoskeletal dynamics critical for adhesion-dependent processes. This study searches for a subset of integrin effectors that coordinates both tumor cell invasion and resistance to the chemotherapeutic drug cisplatin in oral carcinomas. Candidate integrin effectors were identified in a proteomicsmore » screen of proteins recruited to clustered integrin {alpha}{beta}1, {alpha}{sub v}{beta} or {alpha}{sub 6}{beta} receptors in oral carcinomas. Proteins with diverse functions including microtubule and actin binding proteins, and factors involved in trafficking, transcription and translation were identified in oral carcinoma integrin complexes. Knockdown of effectors in the oral carcinoma HN12 cells revealed that p130Cas, Dek, Src and talin were required for invasion through Matrigel. Disruption of talin or p130Cas by RNA interference increased resistance to cisplatin, whereas targeting Dek, Src or zyxin reduced HN12 resistance to cisplatin. Analysis of the spreading of HN12 cells on collagen I and laminin I revealed that a decrease in p130Cas or talin expression inhibited spreading on both matrices. Interestingly, a reduction in zyxin expression enhanced spreading on laminin I and inhibited spreading on collagen I. Reduction of Dek, Src, talin or zyxin expression reduced HN12 proliferation by 30%. Proliferation was not affected by a reduction in p130Cas expression. We conclude that p130Cas, Src and talin function in both oral carcinoma invasion and resistance to cisplatin.« less

  3. Delta-catenin/NPRAP: A new member of the glycogen synthase kinase-3beta signaling complex that promotes beta-catenin turnover in neurons.

    PubMed

    Bareiss, Sonja; Kim, Kwonseop; Lu, Qun

    2010-08-15

    Through a multiprotein complex, glycogen synthase kinase-3beta (GSK-3beta) phosphorylates and destabilizes beta-catenin, an important signaling event for neuronal growth and proper synaptic function. delta-Catenin, or NPRAP (CTNND2), is a neural enriched member of the beta-catenin superfamily and is also known to modulate neurite outgrowth and synaptic activity. In this study, we investigated the possibility that delta-catenin expression is also affected by GSK-3beta signaling and participates in the molecular complex regulating beta-catenin turnover in neurons. Immunofluorescent light microscopy revealed colocalization of delta-catenin with members of the molecular destruction complex: GSK-3beta, beta-catenin, and adenomatous polyposis coli proteins in rat primary neurons. GSK-3beta formed a complex with delta-catenin, and its inhibition resulted in increased delta-catenin and beta-catenin expression levels. LY294002 and amyloid peptide, known activators of GSK-3beta signaling, reduced delta-catenin expression levels. Furthermore, delta-catenin immunoreactivity increased and protein turnover decreased when neurons were treated with proteasome inhibitors, suggesting that the stability of delta-catenin, like that of beta-catenin, is regulated by proteasome-mediated degradation. Coimmunoprecipitation experiments showed that delta-catenin overexpression promoted GSK-3beta and beta-catenin interactions. Primary cortical neurons and PC12 cells expressing delta-catenin treated with proteasome inhibitors showed increased ubiquitinated beta-catenin forms. Consistent with the hypothesis that delta-catenin promotes the interaction of the destruction complex molecules, cycloheximide treatment of cells overexpressing delta-catenin showed enhanced beta-catenin turnover. These studies identify delta-catenin as a new member of the GSK-3beta signaling pathway and further suggest that delta-catenin is potentially involved in facilitating the interaction, ubiquitination, and

  4. Enzymatic synthesis of S-phenyl-L-cysteine from keratin hydrolysis industries wastewater with tryptophan synthase.

    PubMed

    Xu, Lisheng; Wang, Zhiyuan; Mao, Pingting; Liu, Junzhong; Zhang, Hongjuan; Liu, Qian; Jiao, Qing-Cai

    2013-04-01

    An economical method for production of S-phenyl-L-cysteine from keratin acid hydrolysis wastewater (KHW) containing L-serine was developed by recombinant tryptophan synthase. This study provides us with an alternative KHW utilization strategy to synthesize S-phenyl-L-cysteine. Tryptophan synthase could efficiently convert L-serine contained in KHW to S-phenyl-L-cysteine at pH 9.0, 40°C and Trion X-100 of 0.02%. In a scale up study, L-serine conversion rate reach 97.1% with a final S-phenyl-L-cysteine concentration of 38.6 g l(-1). Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Amyloid Beta Mediates Memory Formation

    ERIC Educational Resources Information Center

    Garcia-Osta, Ana; Alberini, Cristina M.

    2009-01-01

    The amyloid precursor protein (APP) undergoes sequential cleavages to generate various polypeptides, including the amyloid [beta] (1-42) peptide (A[beta][1-42]), which is believed to play a major role in amyloid plaque formation in Alzheimer's disease (AD). Here we provide evidence that, in contrast with its pathological role when accumulated,…

  6. Bucindolol, a nonselective beta 1- and beta 2-adrenergic receptor antagonist, decreases beta-adrenergic receptor density in cultured embryonic chick cardiac myocyte membranes.

    PubMed

    Asano, K; Zisman, L S; Yoshikawa, T; Headley, V; Bristow, M R; Port, J D

    2001-06-01

    Bucindolol and carvedilol, nonselective beta1- and beta2-adrenergic receptor antagonists, have been widely used in clinical therapeutic trials of congestive heart failure. The aim of the current study was to investigate long-term effects of bucindolol or carvedilol on beta-adrenergic receptor protein and gene expression in cardiac myocytes. Embryonic chick cardiac myocytes were cultured and incubated with bucindolol (1 microM), carvedilol (1 microM), or norepinephrine (1 microM) for 24 h. 125I-iodocyanopindolol binding assays demonstrated that incubation with norepinephrine or bucindolol, but not carvedilol, significantly decreased beta-adrenergic receptor density in crude membranes prepared from the myocytes. Neither bucindolol nor carvedilol significantly stimulated adenylyl cyclase activity in membranes from drug-untreated cells. Unlike by norepinephrine, the receptor density reduction by bucindolol incubation was not accompanied by a change in beta1-adrenergic receptor messenger RNA abundance. A decrease in membrane beta-adrenergic receptor density without a change in cognate messenger RNA abundance was also observed in hamster DDT1 MF2 cell line incubated with bucindolol (1 microM, 24 h). We conclude that incubation with bucindolol, but not carvedilol, results in true reduction of beta-adrenergic receptor density in chick cardiac myocyte membranes by mechanisms that are distinct from those responsible for receptor density reduction by the agonist norepinephrine.

  7. Keratin14 mRNA expression in human pneumocytes during quiescence, repair and disease

    PubMed Central

    Confalonieri, Marco; Buratti, Emanuele; Grassi, Gabriele; Bussani, Rossana; Chilosi, Marco; Farra, Rossella; Abrami, Michela; Stuani, Cristiana; Salton, Francesco; Ficial, Miriam; Confalonieri, Paola; Zandonà, Lorenzo; Romano, Maurizio

    2017-01-01

    The lung alveoli slowly self-renew pneumocytes, but their facultative regeneration capacity is rapidly efficient after an injury, so fibrosis infrequently occurs. We recently observed Keratin 14 (KRT14) expression during diffuse alveolar damage (DAD), but not in controls. We wonder if KRT14 may be a marker of pneumocyte transition from quiescence to regeneration. Quantitative PCR and Western blot analyses highlighted the presence of KRT14 (mRNA and protein) only in human lung samples with DAD or interstitial lung disease (ILD). In the exponentially growing cell lines A549 and H441, the mRNA and protein levels of KRT14 peaked at day one after cell seeding and decreased at day two, opposite to what observed for the proliferation marker E2F1. The inverse relation of KRT14 versus E2F1 expression holds true also for other proliferative markers, such as cyclin E1 and cyclin D1. Of interest, we also found that E2F1 silencing caused cell cycle arrest and increased KRT14 expression, whilst E2F1 stimulation induced cell cycle progression and decreased KRT14. KRT14 also increased in proliferative pneumocytes (HPAEpiC) just before transdifferentiation. Overall, our results suggest that KRT14 is a viable biomarker of pneumocyte activation, and repair/regeneration. The involvement of KRT14 in regenerative process may suggest a novel pharmaceutical target to accelerate lung repair. PMID:28199407

  8. Keratin14 mRNA expression in human pneumocytes during quiescence, repair and disease.

    PubMed

    Confalonieri, Marco; Buratti, Emanuele; Grassi, Gabriele; Bussani, Rossana; Chilosi, Marco; Farra, Rossella; Abrami, Michela; Stuani, Cristiana; Salton, Francesco; Ficial, Miriam; Confalonieri, Paola; Zandonà, Lorenzo; Romano, Maurizio

    2017-01-01

    The lung alveoli slowly self-renew pneumocytes, but their facultative regeneration capacity is rapidly efficient after an injury, so fibrosis infrequently occurs. We recently observed Keratin 14 (KRT14) expression during diffuse alveolar damage (DAD), but not in controls. We wonder if KRT14 may be a marker of pneumocyte transition from quiescence to regeneration. Quantitative PCR and Western blot analyses highlighted the presence of KRT14 (mRNA and protein) only in human lung samples with DAD or interstitial lung disease (ILD). In the exponentially growing cell lines A549 and H441, the mRNA and protein levels of KRT14 peaked at day one after cell seeding and decreased at day two, opposite to what observed for the proliferation marker E2F1. The inverse relation of KRT14 versus E2F1 expression holds true also for other proliferative markers, such as cyclin E1 and cyclin D1. Of interest, we also found that E2F1 silencing caused cell cycle arrest and increased KRT14 expression, whilst E2F1 stimulation induced cell cycle progression and decreased KRT14. KRT14 also increased in proliferative pneumocytes (HPAEpiC) just before transdifferentiation. Overall, our results suggest that KRT14 is a viable biomarker of pneumocyte activation, and repair/regeneration. The involvement of KRT14 in regenerative process may suggest a novel pharmaceutical target to accelerate lung repair.

  9. Competition between Ski and CREB-binding protein for binding to Smad proteins in transforming growth factor-beta signaling.

    PubMed

    Chen, Weijun; Lam, Suvana S; Srinath, Hema; Schiffer, Celia A; Royer, William E; Lin, Kai

    2007-04-13

    The family of Smad proteins mediates transforming growth factor-beta (TGF-beta) signaling in cell growth and differentiation. Smads repress or activate TGF-beta signaling by interacting with corepressors (e.g. Ski) or coactivators (e.g. CREB-binding protein (CBP)), respectively. Specifically, Ski has been shown to interfere with the interaction between Smad3 and CBP. However, it is unclear whether Ski competes with CBP for binding to Smads and whether they can interact with Smad3 at the same binding surface on Smad3. We investigated the interactions among purified constructs of Smad, Ski, and CBP in vitro by size-exclusion chromatography, isothermal titration calorimetry, and mutational studies. Here, we show that Ski-(16-192) interacted directly with a homotrimer of receptor-regulated Smad protein (R-Smad), e.g. Smad2 or Smad3, to form a hexamer; Ski-(16-192) interacted with an R-Smad.Smad4 heterotrimer to form a pentamer. CBP-(1941-1992) was also found to interact directly with an R-Smad homotrimer to form a hexamer and with an R-Smad.Smad4 heterotrimer to form a pentamer. Moreover, these domains of Ski and CBP competed with each other for binding to Smad3. Our mutational studies revealed that domains of Ski and CBP interacted with Smad3 at a portion of the binding surface of the Smad anchor for receptor activation. Our results suggest that Ski negatively regulates TGF-beta signaling by replacing CBP in R-Smad complexes. Our working model suggests that Smad protein activity is delicately balanced by Ski and CBP in the TGF-beta pathway.

  10. Orientation determination of interfacial beta-sheet structures in situ.

    PubMed

    Nguyen, Khoi Tan; King, John Thomas; Chen, Zhan

    2010-07-01

    Structural information such as orientations of interfacial proteins and peptides is important for understanding properties and functions of such biological molecules, which play crucial roles in biological applications and processes such as antimicrobial selectivity, membrane protein activity, biocompatibility, and biosensing performance. The alpha-helical and beta-sheet structures are the most widely encountered secondary structures in peptides and proteins. In this paper, for the first time, a method to quantify the orientation of the interfacial beta-sheet structure using a combined attenuated total reflectance Fourier transformation infrared spectroscopic (ATR-FTIR) and sum frequency generation (SFG) vibrational spectroscopic study was developed. As an illustration of the methodology, the orientation of tachyplesin I, a 17 amino acid peptide with an antiparallel beta-sheet, adsorbed to polymer surfaces as well as associated with a lipid bilayer was determined using the regular and chiral SFG spectra, together with polarized ATR-FTIR amide I signals. Both the tilt angle (theta) and the twist angle (psi) of the beta-sheet at interfaces are determined. The developed method in this paper can be used to obtain in situ structural information of beta-sheet components in complex molecules. The combination of this method and the existing methodology that is currently used to investigate alpha-helical structures will greatly broaden the application of optical spectroscopy in physical chemistry, biochemistry, biophysics, and structural biology.

  11. Can penicillins and other beta-lactam antibiotics be used to treat tuberculosis?

    PubMed Central

    Chambers, H F; Moreau, D; Yajko, D; Miick, C; Wagner, C; Hackbarth, C; Kocagöz, S; Rosenberg, E; Hadley, W K; Nikaido, H

    1995-01-01

    An increase in the number of tuberculosis cases caused by multiple-drug-resistant strains of Mycobacterium tuberculosis has stimulated search for new antituberculous agents. Beta-lactam antibiotics, traditionally regarded as ineffective against tuberculosis, merit consideration. Four major penicillin-binding proteins (PBPs) with approximate molecular sizes of 94, 82, 52, and 37 kDa were detected by fluorography of [3H]penicillin-radiolabeled membrane proteins prepared from M. tuberculosis H37Ra. The presence of membrane-associated beta-lactamase precluded the use of membranes for assaying the binding affinities of beta-lactam antibiotics. Therefore, ampicillin affinity chromatography was used to purify these four PBPs from crude membranes in order to assay the binding affinities of beta-lactam antibiotics. Ampicillin, amoxicillin, and imipenem, beta-lactam antibiotics previously reported to be active in vitro against M. tuberculosis, bound to M. tuberculosis PBPs at therapeutically achievable concentrations. Binding of the 94-, 82-, and 52-kDa PBPs, but not the 37-kDa PBP, was associated with antibacterial activity, suggesting that these PBPs are the critical targets. Studies of mycobacterial cell wall permeability, which was assayed with a panel of reference cephalosporins and penicillins with different charge positivities, indicated that the rate of penetration of beta-lactam antibiotics to the target PBPs could not account for resistance. Resistance could be reversed with the beta-lactamase inhibitors clavulanate or sulbactam or could be circumvented by the use of a beta-lactamase-stable drug, imipenem, indicating that mycobacterial beta-lactamase, probably in conjunction with slow penetration, is a major determinant of M. tuberculosis resistance to beta-lactam antibiotics. These findings confirm in vitro data that M. tuberculosis is susceptible to some beta-lactam antibiotics. Further evaluation of these drugs for the treatment of tuberculosis in animal models

  12. Human APC sequesters beta-catenin even in the absence of GSK-3beta in a Drosophila model.

    PubMed

    Rao, P R; Makhijani, K; Shashidhara, L S

    2008-04-10

    There have been conflicting reports on the requirement of GSK-3beta-mediated phosphorylation of the tumor suppressor adenomatous polyposis coli (APC) vis-à-vis its ability to bind and degrade beta-catenin. Using a unique combination of loss of function for Shaggy/GSK-3beta and a gain of function for human APC in Drosophila, we show that misexpressed human APC (hAPC) can still sequester Armadillo/beta-catenin. In addition, human APC could suppress gain of Wnt/Wingless phenotypes associated with loss of Shaggy/GSK-3beta activity, suggesting that sequestered Armadillo/beta-catenin is non-functional. Based on these studies, we propose that binding per se of beta-catenin by APC does not require phosphorylation by GSK-3beta.

  13. Amino Acid Distribution Rules Predict Protein Fold: Protein Grammar for Beta-Strand Sandwich-Like Structures

    PubMed Central

    Kister, Alexander

    2015-01-01

    We present an alternative approach to protein 3D folding prediction based on determination of rules that specify distribution of “favorable” residues, that are mainly responsible for a given fold formation, and “unfavorable” residues, that are incompatible with that fold, in polypeptide sequences. The process of determining favorable and unfavorable residues is iterative. The starting assumptions are based on the general principles of protein structure formation as well as structural features peculiar to a protein fold under investigation. The initial assumptions are tested one-by-one for a set of all known proteins with a given structure. The assumption is accepted as a “rule of amino acid distribution” for the protein fold if it holds true for all, or near all, structures. If the assumption is not accepted as a rule, it can be modified to better fit the data and then tested again in the next step of the iterative search algorithm, or rejected. We determined the set of amino acid distribution rules for a large group of beta sandwich-like proteins characterized by a specific arrangement of strands in two beta sheets. It was shown that this set of rules is highly sensitive (~90%) and very specific (~99%) for identifying sequences of proteins with specified beta sandwich fold structure. The advantage of the proposed approach is that it does not require that query proteins have a high degree of homology to proteins with known structure. So long as the query protein satisfies residue distribution rules, it can be confidently assigned to its respective protein fold. Another advantage of our approach is that it allows for a better understanding of which residues play an essential role in protein fold formation. It may, therefore, facilitate rational protein engineering design. PMID:25625198

  14. Uterine leiomyoma is associated with a polymorphism in the interleukin 1-beta gene.

    PubMed

    Pietrowski, Detlef; Thewes, Roberta; Sator, Michael; Denschlag, Dominik; Keck, Christoph; Tempfer, Clemens

    2009-08-01

    To investigate whether polymorphisms in the interleukin-1beta (IL-1beta) gene are associated with uterine leiomyoma. Case-control study in a collective of 131 patients and 280 controls. Genotyping of the IL-1beta-511 and IL-1beta-3954 polymorphism was performed by PCR amplification and subsequent RFLP analysis. A significant difference in the allele frequencies of the IL-1beta-511 Cbeta-511 Cbeta-3954 polymorphism. The IL-1beta-511 promoter polymorphism is related to an increased susceptibility to uterine leiomyoma, suggesting that this polymorphism does contribute to the development of this disease.

  15. Tyrosine residues 654 and 670 in {beta}-cat enin are crucial in regulation of Met-{beta}-catenin interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Gang; Apte, Udayan; Micsenyi, Amanda

    2006-11-01

    {beta}-catenin, a key component of the canonical Wnt pathway, is also regulated by tyrosine phosphorylation that regulates its association to E-cadherin. Previously, we reported its association with the hepatocyte growth factor (HGF) receptor Met at the membrane. HGF induced Met-{beta}-catenin dissociation and nuclear translocation of {beta}-catenin, which was tyrosine-phosphorylation-dependent. Here, we further investigate the Met-{beta}-catenin interaction by selectively mutating several tyrosine residues, alone or in combination, in {beta}-catenin. The mutants were subcloned into FLAG-CMV vector and stably transfected into rat hepatoma cells, which were treated with HGF. All single or double-mutant-transfected cells continued to show HGF-induced nuclear translocation of FLAG-{beta}-cateninmore » except the mutations affecting 654 and 670 simultaneously (Y654/670F), which coincided with the lack of formation of {beta}-catenin-TCF complex and DNA synthesis, in response to the HGF treatment. In addition, the Y654/670F-transfected cells also showed no phosphorylation of {beta}-catenin or dissociation from Met in response to HGF. Thus, intact 654 and 670 tyrosine residues in {beta}-catenin are crucial in HGF-mediated {beta}-catenin translocation, activation and mitogenesis.« less

  16. Rab-coupling protein coordinates recycling of alpha5beta1 integrin and EGFR1 to promote cell migration in 3D microenvironments.

    PubMed

    Caswell, Patrick T; Chan, May; Lindsay, Andrew J; McCaffrey, Mary W; Boettiger, David; Norman, Jim C

    2008-10-06

    Here we show that blocking the adhesive function of alphavbeta3 integrin with soluble RGD ligands, such as osteopontin or cilengitide, promoted association of Rab-coupling protein (RCP) with alpha5beta1 integrin and drove RCP-dependent recycling of alpha5beta1 to the plasma membrane and its mobilization to dynamic ruffling protrusions at the cell front. These RCP-driven changes in alpha5beta1 trafficking led to acquisition of rapid/random movement on two-dimensional substrates and to a marked increase in fibronectin-dependent migration of tumor cells into three-dimensional matrices. Recycling of alpha5beta1 integrin did not affect its regulation or ability to form adhesive bonds with substrate fibronectin. Instead, alpha5beta1 controlled the association of EGFR1 with RCP to promote the coordinate recycling of these two receptors. This modified signaling downstream of EGFR1 to increase its autophosphorylation and activation of the proinvasive kinase PKB/Akt. We conclude that RCP provides a scaffold that promotes the physical association and coordinate trafficking of alpha5beta1 and EGFR1 and that this drives migration of tumor cells into three-dimensional matrices.

  17. Milk composition and lactation of beta-casein-deficient mice.

    PubMed Central

    Kumar, S; Clarke, A R; Hooper, M L; Horne, D S; Law, A J; Leaver, J; Springbett, A; Stevenson, E; Simons, J P

    1994-01-01

    beta-Casein is a major protein component of milk and, in conjunction with the other caseins, it is assembled into micelles. The casein micelles determine many of the physical characteristics of milk, which are important for stability during storage and for milk-processing properties. There is evidence that suggests that beta-casein may also possess other, nonnutritional functions. To address the function of beta-casein, the mouse beta-casein gene was disrupted by gene targeting in embryonic stem cells. Homozygous beta-casein mutant mice are viable and fertile; females can lactate and successfully rear young. beta-Casein was expressed at a reduced level in heterozygotes and was completely absent from the milk of homozygous mutant mice. Despite the deficiency of beta-casein, casein micelles were assembled in heterozygous and homozygous mutants, albeit with reduced diameters. The absence of beta-casein expression was reflected in a reduced total protein concentration in milk, although this was partially compensated for by an increased concentration of other proteins. The growth of pups feeding on the milk of homozygous mutants was reduced relative to those feeding on the milk of wild-type mice. Various genetic manipulations of caseins have been proposed for the qualitative improvement of cow's milk composition. The results presented here demonstrate that beta-casein has no essential function and that the casein micelle is remarkably tolerant of changes in composition. Images PMID:8016126

  18. Natural triple beta-stranded fibrous folds.

    PubMed

    Mitraki, Anna; Papanikolopoulou, Katerina; Van Raaij, Mark J

    2006-01-01

    A distinctive family of beta-structured folds has recently been described for fibrous proteins from viruses. Virus fibers are usually involved in specific host-cell recognition. They are asymmetric homotrimeric proteins consisting of an N-terminal virus-binding tail, a central shaft or stalk domain, and a C-terminal globular receptor-binding domain. Often they are entirely or nearly entirely composed of beta-structure. Apart from their biological relevance and possible gene therapy applications, their shape, stability, and rigidity suggest they may be useful as blueprints for biomechanical design. Folding and unfolding studies suggest their globular C-terminal domain may fold first, followed by a "zipping-up" of the shaft domains. The C-terminal domains appear to be important for registration because peptides corresponding to shaft domains alone aggregate into nonnative fibers and/or amyloid structures. C-terminal domains can be exchanged between different fibers and the resulting chimeric proteins are useful as a way to solve structures of unknown parts of the shaft domains. The following natural triple beta-stranded fibrous folds have been discovered by X-ray crystallography: the triple beta-spiral, triple beta-helix, and T4 short tail fiber fold. All have a central longitudinal hydrophobic core and extensive intermonomer polar and nonpolar interactions. Now that a reasonable body of structural and folding knowledge has been assembled about these fibrous proteins, the next challenge and opportunity is to start using this information in medical and industrial applications such as gene therapy and nanotechnology.

  19. Beta-blocking agents in patients with insulin resistance: effects of vasodilating beta-blockers.

    PubMed

    Jacob, S; Balletshofer, B; Henriksen, E J; Volk, A; Mehnert, B; Löblein, K; Häring, H U; Rett, K

    1999-01-01

    Essential hypertension is--at least in many subjects--associated with a decrease in insulin sensitivity, while glycaemic control is (still) normal. It seems that in hypertensive patients, two major functions of insulin are impaired: there is insulin resistance of peripheral glucose uptake (primarily skeletal muscle) and insulin resistance of insulin-stimulated vasodilation. In view of some retrospective data and meta-analyses, which showed a less than expected reduction in coronary events (coronary paradox), the metabolic side effects of the antihypertensive treatment have received more attention. Many groups have shown that conventional antihypertensive treatment, both with beta-blockers and/or diuretics, decreases insulin sensitivity by various mechanisms. While low-dose diuretics seem to be free of these metabolic effects, there is no evidence for this in the beta-adrenergic blockers. However, recent metabolic studies evaluated the effects of vasodilating beta-blockers, such as dilevalol, carvedilol and celiprolol, on insulin sensitivity and the atherogenic risk factors. None of them decreased insulin sensitivity, as has been described for the beta-blockers with and without beta1 selectivity. This supports the idea that peripheral vascular resistance and peripheral blood flow play a central role in mediating the metabolic side effects of the beta-blocking agents, as the vasodilating action (either via beta2 stimulation or alpha1-blockade) seems to more than offset the detrimental effects of the blockade of beta (or beta1) receptors. Further studies are needed to elucidate the relevance of the radical scavenging properties of these agents and their connection to their metabolic effects. Therefore, the beneficial characteristics of these newer beta-adrenoreceptor blockers suggest that the vasodilating beta-blocking agents could be advantageous for hypertensive patients with insulin resistance or type 2 diabetes.

  20. Beta-catenin phosphorylated at serine 45 is spatially uncoupled from beta-catenin phosphorylated in the GSK3 domain: implications for signaling.

    PubMed

    Maher, Meghan T; Mo, Rigen; Flozak, Annette S; Peled, Ofra N; Gottardi, Cara J

    2010-04-16

    C. elegans and Drosophila generate distinct signaling and adhesive forms of beta-catenin at the level of gene expression. Whether vertebrates, which rely on a single beta-catenin gene, generate unique adhesive and signaling forms at the level of protein modification remains unresolved. We show that beta-catenin unphosphorylated at serine 37 (S37) and threonine 41 (T41), commonly referred to as transcriptionally Active beta-Catenin (ABC), is a minor nuclear-enriched monomeric form of beta-catenin in SW480 cells, which express low levels of E-cadherin. Despite earlier indications, the superior signaling activity of ABC is not due to reduced cadherin binding, as ABC is readily incorporated into cadherin contacts in E-cadherin-restored cells. Beta-catenin phosphorylated at serine 45 (S45) or threonine 41 (T41) (T41/S45) or along the GSK3 regulatory cassette S33, S37 or T41 (S33/37/T41), however, is largely unable to associate with cadherins. Beta-catenin phosphorylated at T41/S45 and unphosphorylated at S37 and T41 is predominantly nuclear, while beta-catenin phosphorylated at S33/37/T41 is mostly cytoplasmic, suggesting that beta-catenin hypophosphorylated at S37 and T41 may be more active in transcription due to its enhanced nuclear accumulation. Evidence that phosphorylation at T41/S45 can be spatially separated from phosphorylations at S33/37/T41 suggests that these phosphorylations may not always be coupled, raising the possibility that phosphorylation at S45 serves a distinct nuclear function.

  1. Right ventricular beneficial effects of beta adrenergic receptor kinase inhibitor (betaARKct) gene transfer in a rat model of severe pressure overload.

    PubMed

    Molina, Ezequiel J; Gupta, Dipin; Palma, Jon; Gaughan, John P; Macha, Mahender

    2009-06-01

    Heart failure is associated with abnormalities in betaAR cascade regulation, calcium cycling, expression of inflammatory mediators and apoptosis. Adenoviral mediated gene transfer of betaARKct has beneficial indirect effects on these pathologic processes upon the left ventricular myocardium. The concomitant biochemical changes that occur in the right ventricle have not been well characterized. Sprague-Dawley rats underwent aortic banding and were followed by echocardiography. After a decrease in fractional shortening of 25% from baseline, intracoronary injection of adenoviral-betaARKct (n=14) or adenoviral-beta-galactosidase (control, n=13) was performed. Rats were randomly euthanized on post-operative day 7, 14 or 21. Protein analysis including RV myocardial levels of betaARKct, betaARK1, SERCA(2a), inflammatory tissue mediators (IL-1, IL-6 and TNF-alpha), apoptotic markers (bax and bak), and MAP kinases (jnk, p38 and erk) was performed. ANOVA was employed for group comparison. Adenoviral-betaARKct treated animals showed increased expression of betaARKct and decreased levels of betaARK1 compared with controls. This treatment group also demonstrated normalization of SERCA(2a) expression and decreased levels of the inflammatory markers IL-1, IL-6 and TNF-alpha. The pro-apoptotic markers bax and bak were similarly improved. Ventricular levels of the MAP kinase jnk were increased. Differences were most significant 7 days after gene transfer, but the majority of these changes persisted at 21 days. These results suggest that attenuation of the pathologic mechanisms of beta adrenergic receptor desensitization, SERCA(2a) expression, inflammation and apoptosis, not only occur in the left ventricle but also in the right ventricular myocardium after intracoronary gene transfer of betaARKct during heart failure.

  2. Up-regulated transcriptional repressors SnoN and Ski bind Smad proteins to antagonize transforming growth factor-beta signals during liver regeneration.

    PubMed

    Macias-Silva, Marina; Li, Wei; Leu, Julia I; Crissey, Mary Ann S; Taub, Rebecca

    2002-08-09

    Transforming growth factor-beta (TGF-beta) functions as an antiproliferative factor for hepatocytes. However, for unexplained reasons, hepatocytes become resistant to TGF-beta signals and can proliferate despite the presence of TGF-beta during liver regeneration. TGF-beta is up-regulated during liver regeneration, although it is not known whether it is active or latent. TGF-beta activity may be examined by assessing Smad activation, a downstream signaling pathway. Smad pathway activation during liver regeneration induced by partial hepatectomy or CC4 injury was examined by assessing the levels of phospho-Smad2 and Smad2-Smad4 complexes. We found that Smad proteins were slightly activated in quiescent liver, but that their activation was further enhanced in regenerating liver. Interestingly, TGF-beta/Smad pathway inhibitors (SnoN and Ski) were up-regulated during regeneration, and notably, SnoN was induced mainly in hepatocytes. SnoN and Ski are transcriptional repressors that may render some cells resistant to TGF-beta via binding Smad proteins. Complexes between SnoN, Ski, and the activated Smad proteins were detected from 2 to 120 h during the major proliferative phase in regenerating liver. Inhibitory complexes decreased after liver mass restitution (5-15 days), suggesting that persistently activated Smad proteins might participate in returning the liver to a quiescent state. Our data show that active TGF-beta/Smad signals are present during regeneration and suggest that SnoN/Ski induction might explain hepatocyte resistance to TGF-beta during the proliferative phase.

  3. Transforming growth factor-beta and nitrates in epithelial ovarian cancer.

    PubMed

    Khalifa, A; Kassim, S K; Ahmed, M I; Fayed, S T

    1999-12-01

    The role of transforming growth factor-beta (TGF-beta) and nitric oxide (NO) in ovarian neoplasia is still not clear. We studied the expression of TGF-beta by enzyme immunoassay, and nitrates (as a stable end product of NO) in 127 ovarian tissues (36 normal, 37 benign, and 54 malignant). Ploidy status and synthetic phase fraction (SPF) were also assessed by flow cytometry. Mean ranks of TGF-beta, nitrate, and SPF were significant among different groups (X2 = 12.01, P = 0.0025, X2 = 67.42, P = 0.000, X2 = 9.06, P = 0.011 respectively). Nitrate mean ranks were significant among different FIGO stages of the disease (X2 = 17.6, P = 0.000). A significant correlation was shown between TGF-beta, and nitrate levels in all tissues (r = 0.24, P = 0.01), as well as in malignant tissues (r = 0.3, P = 0.026). Cutoff values were determined for both TGF-beta (290 pg/mg protein), and nitrates (310 nmole/mg non protein nitrogenous substances). At these cut-offs, nitrates showed a sensitivity of 93% and 84% specificity for malignant versus normal cases, while TGF-beta had 76% sensitivity, and 82.4% specificity for poor versus good outcome. Patients with epithelial ovarian cancer were followed up for a total of 40 months. Survival analysis showed that patients with TGF-beta above the cut-off had worse prognosis (X2 = 12.69, P = 0.004). The present results suggest that malignant transformation of ovarian tissues is associated with increased TGF-beta and NO production. NO level is related to the development and progression of epithelial ovarian cancer, while high levels of TGF-beta could be of prognostic significance.

  4. Rat leucine-rich protein binds and activates the promoter of the beta isoform of Ca2+/calmodulin-dependent protein kinase II gene.

    PubMed

    Ochiai, Nagahiro; Masumoto, Shuji; Sakagami, Hiroyuki; Yoshimura, Yoshiyuki; Yamauchi, Takashi

    2007-05-01

    We previously found the neuronal cell-type specific promoter and binding partner of the beta isoform of Ca(2+)/calmodulin-dependent protein kinase II (beta CaM kinase II) in rat brain [Donai, H., Morinaga, H., Yamauchi, T., 2001. Genomic organization and neuronal cell type specific promoter activity of beta isoform of Ca(2+)/calmodulin-dependent protein kinase II of rat brain. Mol. Brain Res. 94, 35-47]. In the present study, we purified a protein that binds specifically a promoter region of beta CaM kinase II gene from a nuclear extract of the rat cerebellum using DEAE-cellulose column chromatography, ammonium sulfate fractionation, gel filtration and polyacrylamide gel electrophoresis. The purified protein was identified as rat leucine-rich protein 157 (rLRP157) using tandem mass spectrometry. Then, we prepared its cDNA by reverse transcriptase-polymerase chain reaction (RT-PCR) from poly(A)(+)RNA of rat cerebellum. The rLRP157 cDNA was introduced into mouse neuroblastomaxrat glioma hybrid NG108-15 cells, and cells stably expressing rLRP157 (NG/LRP cells) were isolated. Binding of rLRP157 with the promoter sequence was confirmed by electrophoretic mobility shift assay using nuclear extract of NG/LRP cells. A luciferase reporter gene containing a promoter of beta CaM kinase II was transiently expressed in NG/LRP cells. Under the conditions, the promoter activity was enhanced about 2.6-fold in NG/LRP cells as compared with wild-type cells. The expression of rLRP157 mRNA was paralleled with that of beta CaM kinase II in the adult and embryo rat brain detected by in situ hybridization. Nuclear localization of rLRP157 was confirmed using GFP-rLRP157 fusion protein investigated under a confocal microscope. These results indicate that rLRP157 is one of the proteins binding to, and regulating the activity of, the promoter of beta CaM kinase II.

  5. Molecular architecture of human prion protein amyloid: a parallel, in-register beta-structure.

    PubMed

    Cobb, Nathan J; Sönnichsen, Frank D; McHaourab, Hassane; Surewicz, Witold K

    2007-11-27

    Transmissible spongiform encephalopathies (TSEs) represent a group of fatal neurodegenerative diseases that are associated with conformational conversion of the normally monomeric and alpha-helical prion protein, PrP(C), to the beta-sheet-rich PrP(Sc). This latter conformer is believed to constitute the main component of the infectious TSE agent. In contrast to high-resolution data for the PrP(C) monomer, structures of the pathogenic PrP(Sc) or synthetic PrP(Sc)-like aggregates remain elusive. Here we have used site-directed spin labeling and EPR spectroscopy to probe the molecular architecture of the recombinant PrP amyloid, a misfolded form recently reported to induce transmissible disease in mice overexpressing an N-terminally truncated form of PrP(C). Our data show that, in contrast to earlier, largely theoretical models, the con formational conversion of PrP(C) involves major refolding of the C-terminal alpha-helical region. The core of the amyloid maps to C-terminal residues from approximately 160-220, and these residues form single-molecule layers that stack on top of one another with parallel, in-register alignment of beta-strands. This structural insight has important implications for understanding the molecular basis of prion propagation, as well as hereditary prion diseases, most of which are associated with point mutations in the region found to undergo a refolding to beta-structure.

  6. Role of estrogen receptors alpha, beta and GPER1/GPR30 in pancreatic beta-cells.

    PubMed

    Nadal, Angel; Alonso-Magdalena, Paloma; Soriano, Sergi; Ripoll, Cristina; Fuentes, Esther; Quesada, Ivan; Ropero, Ana Belen

    2011-01-01

    Estrogen receptors (ER) are emerging as important molecules involved in the adaptation of beta-cells to insulin resistance. The onset of type 2 diabetes is marked by insulin secretory dysfunction and decreased beta-cell mass. During pregnancy, puberty and obesity there is increased metabolic demand and insulin resistance is developed. This metabolic state increases the demand on beta-cells to augment insulin biosynthesis and release. In this respect, ERalpha is directly implicated in the E2-regulation of insulin content and secretion, while ERbeta is in the E2-potentiation of glucose-induced insulin release. Both receptors develop their actions within the physiological range of E2. In addition, the G protein-coupled estrogen receptor (GPER1/GPR30) seems to be implicated in the E2-regulation of stimulus-secretion coupling in the three cell types of the islet. The increased demand of insulin production for long time may lead to beta-cell stress and apoptosis. ERalpha, ERbeta and GPER1/GPR30 are involved in preventing beta-cell apoptosis, impeding the loss of critical beta-cell mass. Therefore, estrogen receptors may play an essential role in the adaptation of the pancreas to insulin resistant periods.

  7. Inflammatory stress of pancreatic beta cells drives release of extracellular heat-shock protein 90α.

    PubMed

    Ocaña, Gail J; Pérez, Liliana; Guindon, Lynette; Deffit, Sarah N; Evans-Molina, Carmella; Thurmond, Debbie C; Blum, Janice S

    2017-06-01

    A major obstacle in predicting and preventing the development of autoimmune type 1 diabetes (T1D) in at-risk individuals is the lack of well-established early biomarkers indicative of ongoing beta cell stress during the pre-clinical phase of disease. Recently, serum levels of the α cytoplasmic isoform of heat-shock protein 90 (hsp90) were shown to be elevated in individuals with new-onset T1D. We therefore hypothesized that hsp90α could be released from beta cells in response to cellular stress and inflammation associated with the earliest stages of T1D. Here, human beta cell lines and cadaveric islets released hsp90α in response to stress induced by treatment with a combination of pro-inflammatory cytokines including interleukin-1β, tumour necrosis factor-α and interferon-γ. Mechanistically, hsp90α release was found to be driven by cytokine-induced endoplasmic reticulum stress mediated by c-Jun N-terminal kinase (JNK), a pathway that can eventually lead to beta cell apoptosis. Cytokine-induced beta cell hsp90α release and JNK activation were significantly reduced by pre-treating cells with the endoplasmic reticulum stress-mitigating chemical chaperone tauroursodeoxycholic acid. The hsp90α release by cells may therefore be a sensitive indicator of stress during inflammation and a useful tool in assessing therapeutic mitigation of cytokine-induced cell damage linked to autoimmunity. © 2017 John Wiley & Sons Ltd.

  8. Sequence specificity, statistical potentials, and three-dimensional structure prediction with self-correcting distance geometry calculations of beta-sheet formation in proteins.

    PubMed Central

    Zhu, H.; Braun, W.

    1999-01-01

    A statistical analysis of a representative data set of 169 known protein structures was used to analyze the specificity of residue interactions between spatial neighboring strands in beta-sheets. Pairwise potentials were derived from the frequency of residue pairs in nearest contact, second nearest and third nearest contacts across neighboring beta-strands compared to the expected frequency of residue pairs in a random model. A pseudo-energy function based on these statistical pairwise potentials recognized native beta-sheets among possible alternative pairings. The native pairing was found within the three lowest energies in 73% of the cases in the training data set and in 63% of beta-sheets in a test data set of 67 proteins, which were not part of the training set. The energy function was also used to detect tripeptides, which occur frequently in beta-sheets of native proteins. The majority of native partners of tripeptides were distributed in a low energy range. Self-correcting distance geometry (SECODG) calculations using distance constraints sets derived from possible low energy pairing of beta-strands uniquely identified the native pairing of the beta-sheet in pancreatic trypsin inhibitor (BPTI). These results will be useful for predicting the structure of proteins from their amino acid sequence as well as for the design of proteins containing beta-sheets. PMID:10048326

  9. Beating the Heat - Fast Scanning Melts Silk Beta Sheet Crystals

    NASA Astrophysics Data System (ADS)

    Cebe, Peggy; Hu, Xiao; Kaplan, David L.; Zhuravlev, Evgeny; Wurm, Andreas; Arbeiter, Daniela; Schick, Christoph

    2013-01-01

    Beta-pleated-sheet crystals are among the most stable of protein secondary structures, and are responsible for the remarkable physical properties of many fibrous proteins, such as silk, or proteins forming plaques as in Alzheimer's disease. Previous thinking, and the accepted paradigm, was that beta-pleated-sheet crystals in the dry solid state were so stable they would not melt upon input of heat energy alone. Here we overturn that assumption and demonstrate that beta-pleated-sheet crystals melt directly from the solid state to become random coils, helices, and turns. We use fast scanning chip calorimetry at 2,000 K/s and report the first reversible thermal melting of protein beta-pleated-sheet crystals, exemplified by silk fibroin. The similarity between thermal melting behavior of lamellar crystals of synthetic polymers and beta-pleated-sheet crystals is confirmed. Significance for controlling beta-pleated-sheet content during thermal processing of biomaterials, as well as towards disease therapies, is envisioned based on these new findings.

  10. Psoriasis is associated with increased beta-defensin genomic copy number

    PubMed Central

    Hollox, Edward J.; Huffmeier, Ulrike; Zeeuwen, Patrick L.J.M.; Palla, Raquel; Lascorz, Jesús; Rodijk-Olthuis, Diana; van de Kerkhof, Peter C.M.; Traupe, Heiko; de Jongh, Gys; den Heijer, Martin; Reis, André; Armour, John A.L.; Schalkwijk, Joost

    2008-01-01

    Psoriasis is a common inflammatory skin disease with a strong genetic component. We have analysed the genomic copy number polymorphism of the beta-defensin region on human chromosome 8 in 179 Dutch psoriasis patients and 272 controls, and in 319 German psoriasis patients and 305 controls. Comparisons in both cohorts show a significant association between higher genomic copy number for beta-defensin genes and the risk of psoriasis. PMID:18059266

  11. 5Beta,6beta-epoxy-17-oxoandrostan-3beta-yl acetate and 5beta,6beta-epoxy-20-oxopregnan-3beta-yl acetate.

    PubMed

    Pinto, Rui M A; Salvador, Jorge A R; Paixão, José A

    2008-05-01

    In the title compounds, C(21)H(30)O(4), (I), and C(23)H(34)O(4), (II), respectively, which are valuable intermediates in the synthesis of important steroid derivatives, rings A and B are cis-(5beta,10beta)-fused. The two molecules have similar conformations of rings A, B and C. The presence of the 5beta,6beta-epoxide group induces a significant twist of the steroid nucleus and a strong flattening of the B ring. The different C17 substituents result in different conformations for ring D. Cohesion of the molecular packing is achieved in both compounds only by weak intermolecular interactions. The geometries of the molecules in the crystalline environment are compared with those of the free molecules as given by ab initio Roothan Hartree-Fock calculations. We show in this work that quantum mechanical ab initio methods reproduce well the details of the conformation of these molecules, including a large twist of the steroid nucleus. The calculated twist values are comparable, but are larger than the observed values, indicating a possible small effect of the crystal packing on the twist angles.

  12. Nonessential role of beta3 and beta5 integrin subunits for efficient clearance of cellular debris after light-induced photoreceptor degeneration.

    PubMed

    Joly, Sandrine; Samardzija, Marijana; Wenzel, Andreas; Thiersch, Markus; Grimm, Christian

    2009-03-01

    During light-induced photoreceptor degeneration, large amounts of cellular debris are formed that must be cleared from the subretinal space. The integrins alphavbeta5 and alphavbeta3 are involved in the normal physiological process of phagocytosis in the retina. This study was conducted to investigate the question of whether the lack of beta5 and/or beta3 integrin subunits might influence the course of retinal degeneration and/or clearance of photoreceptor debris induced by acute exposure to light. Wild-type, beta5(-/-) and beta3(-/-) single-knockout, and beta3(-/-)/beta5(-/-) Ccl2(-/-)/beta5(-/-) double-knockout mice were exposed to 13,000 lux of white light for 2 hours to induce severe photoreceptor degeneration. Real-time PCR and Western blot analysis were used to analyze gene and protein expression, light- and electron microscopy to judge retinal morphology, and immunofluorescence to study retinal distribution of proteins. Individual or combined deletion of beta3 and beta5 integrin subunits did not affect the pattern of photoreceptor cell loss or the clearance of photoreceptor debris in mice compared with that in wild-type mice. Invading macrophages may contribute to efficient phagocytosis. However, ablation of the MCP-1 gene did not prevent macrophage recruitment. Several chemokines in addition to MCP-1 were induced after light-induced damage that may have compensated for the deletion of MCP-1. Acute clearance of a large amount of cellular debris from the subretinal space involves invading macrophages and does not depend on beta3 and beta5 integrins.

  13. Topological switching between an alpha-beta parallel protein and a remarkably helical molten globule.

    PubMed

    Nabuurs, Sanne M; Westphal, Adrie H; aan den Toorn, Marije; Lindhoud, Simon; van Mierlo, Carlo P M

    2009-06-17

    Partially folded protein species transiently exist during folding of most proteins. Often these species are molten globules, which may be on- or off-pathway to native protein. Molten globules have a substantial amount of secondary structure but lack virtually all the tertiary side-chain packing characteristic of natively folded proteins. These ensembles of interconverting conformers are prone to aggregation and potentially play a role in numerous devastating pathologies, and thus attract considerable attention. The molten globule that is observed during folding of apoflavodoxin from Azotobacter vinelandii is off-pathway, as it has to unfold before native protein can be formed. Here we report that this species can be trapped under nativelike conditions by substituting amino acid residue F44 by Y44, allowing spectroscopic characterization of its conformation. Whereas native apoflavodoxin contains a parallel beta-sheet surrounded by alpha-helices (i.e., the flavodoxin-like or alpha-beta parallel topology), it is shown that the molten globule has a totally different topology: it is helical and contains no beta-sheet. The presence of this remarkably nonnative species shows that single polypeptide sequences can code for distinct folds that swap upon changing conditions. Topological switching between unrelated protein structures is likely a general phenomenon in the protein structure universe.

  14. Polymorphisms of the IL-1beta and IL-1beta-inducible genes in ulcerative colitis.

    PubMed

    Nohara, Hiroaki; Saito, Yuki; Higaki, Singo; Okayama, Naoko; Hamanaka, Yuichiro; Okita, Kiwamu; Hinoda, Yuji

    2002-11-01

    Ulcerative colitis (UC) is a chronic disorder of undetermined etiology, but a genetic predisposition to UC is well recognized. Among cytokines induced in UC, interleukin 1 (IL-1) appears to have a central role because of its immunological upregulatory and proinflammatory activities. The aim of this study was to assess whether UC is associated with polymorphisms of the IL-1beta gene and three additional genes inducible with IL-1beta in Japanese subjects. A total of 96 patients with UC and 106 ethnically matched controls were genotyped at polymorphic sites in IL-1beta, matrix metalloproteinase 1 (MMP-1), matrix metalloproteinase 3 (MMP-3), and inducible nitric oxide synthase (iNOS) genes, using polymerase chain reaction (PCR)-based methods. There was no significant difference in genotype distributions of IL-1beta, MMP-1, MMP-3, and iNOS genes between controls and UC patients in a Japanese population. Also, no significant association of those polymorphisms with various clinical parameters of the patients was found. However, concerning association of age at onset with clinical factors in UC, the frequency of pancolitis was significantly higher in UC patients with age at onset being less than 30 years than in those more than 30 years of age (P = 0.049). No association of the IL-1beta and three IL-1beta-inducible gene polymorphisms with UC was observed in a Japanese population.

  15. Insights into positive and negative requirements for protein-protein interactions by crystallographic analysis of the beta-lactamase inhibitory proteins BLIP, BLIP-I, and BLP.

    PubMed

    Gretes, Michael; Lim, Daniel C; de Castro, Liza; Jensen, Susan E; Kang, Sung Gyun; Lee, Kye Joon; Strynadka, Natalie C J

    2009-06-05

    Beta-lactamase inhibitory protein (BLIP) binds a variety of beta-lactamase enzymes with wide-ranging specificity. Its binding mechanism and interface interactions are a well-established model system for the characterization of protein-protein interactions. Published studies have examined the binding of BLIP to diverse target beta-lactamases (e.g., TEM-1, SME-1, and SHV-1). However, apart from point mutations of amino acid residues, variability on the inhibitor side of this enzyme-inhibitor interface has remained unexplored. Thus, we present crystal structures of two likely BLIP relatives: (1) BLIP-I (solved alone and in complex with TEM-1), which has beta-lactamase inhibitory activity very similar to that of BLIP; and (2) beta-lactamase-inhibitory-protein-like protein (BLP) (in two apo forms, including an ultra-high-resolution structure), which is unable to inhibit any tested beta-lactamase. Despite categorical differences in species of origin and function, BLIP-I and BLP share nearly identical backbone conformations, even at loop regions differing in BLIP. We describe interacting residues and provide a comparative structural analysis of the interactions formed at the interface of BLIP-I.TEM-1 versus those formed at the interface of BLIP.TEM-1. Along with initial attempts to functionally characterize BLP, we examine its amino acid residues that structurally correspond to BLIP/BLIP-I binding hotspots to explain its inability to bind and inhibit TEM-1. We conclude that the BLIP family fold is a robust and flexible scaffold that permits the formation of high-affinity protein-protein interactions while remaining highly selective. Comparison of the two naturally occurring, distinct binding interfaces built upon this scaffold (BLIP and BLIP-I) shows that there is substantial variation possible in the subnanomolar binding interaction with TEM-1. The corresponding (non-TEM-1-binding) BLP surface shows that numerous favorable backbone

  16. Relationship between subclinical rejection and genotype, renal messenger RNA, and plasma protein transforming growth factor-beta1 levels.

    PubMed

    Hueso, Miguel; Navarro, Estanis; Moreso, Francesc; Beltrán-Sastre, Violeta; Ventura, Francesc; Grinyó, Josep M; Serón, Daniel

    2006-05-27

    Transforming growth factor (TGF)-beta(1) is increased in allograft rejection and its production is associated with single nucleotide polymorphisms (SNPs). The contribution of SNPs at codons 10 and 25 of the TGF-beta(1) gene to renal allograft damage was assessed in 6-month protocol biopsies and their association with TGF-beta(1) production. TGF-beta(1) genotypes were evaluated by polymerase chain reaction (PCR)/restriction fragment length polymorphism. Intragraft TGF-beta(1) messenger RNA (mRNA) was measured by real-time PCR and TGF-beta(1) plasma levels were assessed by enzyme-linked immunosorbent assay. Eighty consecutive patients were included. Allele T at codon 10 (risk ratio, 6.7; P = 0.02) and an episode of acute rejection before protocol biopsy (risk ratio, 6.2; P = 0.01) were independent predictors of subclinical rejection (SCR). TGF-beta(1) plasma levels, but not those of TGF-beta(1) mRNA, were increased in patients with SCR (2.59 ng/mL +/- 0.91 [n = 22] vs. 2.05 ng/mL +/- 0.76 [n = 43]; P = 0.01). There was no association between allele T and TGF-beta(1) plasma or intragraft levels. Allele T at codon 10 of the TGF-beta(1) gene is associated with a higher incidence of SCR.

  17. Invariant glycines and prolines flanking in loops the strand beta 2 of various (alpha/beta)8-barrel enzymes: a hidden homology?

    PubMed Central

    Janecek, S.

    1996-01-01

    The question of parallel (alpha/beta)8-barrel fold evolution remains unclear, owing mainly to the lack of sequence homology throughout the amino acid sequences of (alpha/beta)8-barrel enzymes. The "classical" approaches used in the search for homologies among (alpha/beta)8-barrels (e.g., production of structurally based alignments) have yielded alignments perfect from the structural point of view, but the approaches have been unable to reveal the homologies. These are proposed to be "hidden" in (alpha/beta)8-barrel enzymes. The term "hidden homology" means that the alignment of sequence stretches proposed to be homologous need not be structurally fully satisfactory. This is due to the very long evolutionary history of all (alpha/beta)8-barrels. This work identifies so-called hidden homology around the strand beta 2 that is flanked by loops containing invariant glycines and prolines in 17 different (alpha/beta)8-barrel enzymes, i.e., roughly in half of all currently known (alpha/beta)8-barrel proteins. The search was based on the idea that a conserved sequence region of an (alpha/beta)8-barrel enzyme should be more or less conserved also in the equivalent part of the structure of the other enzymes with this folding motif, given their mutual evolutionary relatedness. For this purpose, the sequence region around the well-conserved second beta-strand of alpha-amylase flanked by the invariant glycine and proline (56_GFTAIWITP, Aspergillus oryzae alpha-amylase numbering), was used as the sequence-structural template. The proposal that the second beta-strand of (alpha/beta)8-barrel fold is important from the evolutionary point of view is strongly supported by the increasing trend of the observed beta 2-strand structural similarity for the pairs of (alpha/beta)8-barrel enzymes: alpha-amylase and the alpha-subunit of tryptophan synthase, alpha-amylase and mandelate racemase, and alpha-amylase and cyclodextrin glycosyltransferase. This trend is also in agreement with the

  18. Invariant glycines and prolines flanking in loops the strand beta 2 of various (alpha/beta)8-barrel enzymes: a hidden homology?

    PubMed

    Janecek, S

    1996-06-01

    The question of parallel (alpha/beta)8-barrel fold evolution remains unclear, owing mainly to the lack of sequence homology throughout the amino acid sequences of (alpha/beta)8-barrel enzymes. The "classical" approaches used in the search for homologies among (alpha/beta)8-barrels (e.g., production of structurally based alignments) have yielded alignments perfect from the structural point of view, but the approaches have been unable to reveal the homologies. These are proposed to be "hidden" in (alpha/beta)8-barrel enzymes. The term "hidden homology" means that the alignment of sequence stretches proposed to be homologous need not be structurally fully satisfactory. This is due to the very long evolutionary history of all (alpha/beta)8-barrels. This work identifies so-called hidden homology around the strand beta 2 that is flanked by loops containing invariant glycines and prolines in 17 different (alpha/beta)8-barrel enzymes, i.e., roughly in half of all currently known (alpha/beta)8-barrel proteins. The search was based on the idea that a conserved sequence region of an (alpha/beta)8-barrel enzyme should be more or less conserved also in the equivalent part of the structure of the other enzymes with this folding motif, given their mutual evolutionary relatedness. For this purpose, the sequence region around the well-conserved second beta-strand of alpha-amylase flanked by the invariant glycine and proline (56_GFTAIWITP, Aspergillus oryzae alpha-amylase numbering), was used as the sequence-structural template. The proposal that the second beta-strand of (alpha/beta)8-barrel fold is important from the evolutionary point of view is strongly supported by the increasing trend of the observed beta 2-strand structural similarity for the pairs of (alpha/beta)8-barrel enzymes: alpha-amylase and the alpha-subunit of tryptophan synthase, alpha-amylase and mandelate racemase, and alpha-amylase and cyclodextrin glycosyltransferase. This trend is also in agreement with the

  19. [Association between polymorphism in DVWA and IL-1beta and Kashin-Beck disease].

    PubMed

    Y U, Min; Guo, Xiong; Gao, Xiao-Yun; Lai, Jiang-Hua; Tu, Qian-Qian

    2010-07-01

    To investigate the association between IL-1beta and DVWA gene and Kashin-Beck disease (KBD). Peripheral genomic DNA were extracted from 105 patients with KBD and 98 healthy controls. PCR-RFLP were performed to detect SNP loci of IL-1beta gene and DVWA gene. The patients with KBD had significantly higher frequency of rs16944 (IL-1beta) locus (chi2 = 24.28, P < 0.001) and single allele frequency of rs16944 (chi2 = 5.683, P = 0.0171) than the healthy controls. There were no significant differences in genotype frequencies,single allele frequencies and haplotypes in rs4685241 and rs1143627 between the patients with KBD and the healthy controls. rs16944 (IL-1beta) is associated with KBD.

  20. Reactivation of larval keratin gene (krt62.L) in blastema epithelium during Xenopus froglet limb regeneration.

    PubMed

    Satoh, Akira; Mitogawa, Kazumasa; Saito, Nanami; Suzuki, Miyuki; Suzuki, Ken-Ichi T; Ochi, Haruki; Makanae, Aki

    2017-12-15

    Limb regeneration is considered a form of limb redevelopment because of the molecular and morphological similarities. Forming a regeneration blastema is, in essence, creating a developing limb bud in an adult body. This reactivation of a developmental process in a mature body is worth studying. Xenopus laevis has a biphasic life cycle that involves distinct larval and adult stages. These distinct developmental stages are useful for investigating the reactivation of developmental processes in post-metamorphic frogs (froglets). In this study, we focused on the re-expression of a larval gene (krt62.L) during Xenopus froglet limb regeneration. Recently renamed krt62.L, this gene was known as the larval keratin (xlk) gene, which is specific to larval-tadpole stages. During limb regeneration in a froglet, krt62.L was re-expressed in a basal layer of blastema epithelium, where adult-specific keratin (Krt12.6.S) expression was also observable. Nerves produce important regulatory factors for amphibian limb regeneration, and also play a role in blastema formation and maintenance. The effect of nerve function on krt62.L expression could be seen in the maintenance of krt62.L expression, but not in its induction. When an epidermis-stripped limb bud was grafted in a froglet blastema, the grafted limb bud could reach the digit-forming stage. This suggests that krt62.L-positive froglet blastema epithelium is able to support the limb development process. These findings imply that the developmental process is locally reactivated in an postmetamorphic body during limb regeneration. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Folding thermodynamics of model four-strand antiparallel beta-sheet proteins.

    PubMed Central

    Jang, Hyunbum; Hall, Carol K; Zhou, Yaoqi

    2002-01-01

    The thermodynamic properties for three different types of off-lattice four-strand antiparallel beta-strand protein models interacting via a hybrid Go-type potential have been investigated. Discontinuous molecular dynamic simulations have been performed for different sizes of the bias gap g, an artificial measure of a model protein's preference for its native state. The thermodynamic transition temperatures are obtained by calculating the squared radius of gyration R(g)(2), the root-mean-squared pair separation fluctuation Delta(B), the specific heat C(v), the internal energy of the system E, and the Lindemann disorder parameter Delta(L). Despite these models' simplicity, they exhibit a complex set of protein transitions, consistent with those observed in experimental studies on real proteins. Starting from high temperature, these transitions include a collapse transition, a disordered-to-ordered globule transition, a folding transition, and a liquid-to-solid transition. The high temperature transitions, i.e., the collapse transition and the disordered-to-ordered globule transition, exist for all three beta-strand proteins, although the native-state geometry of the three model proteins is different. However the low temperature transitions, i.e., the folding transition and the liquid-to-solid transition, strongly depend on the native-state geometry of the model proteins and the size of the bias gap. PMID:11806908

  2. 5-Fluoroindole Resistance Identifies Tryptophan Synthase Beta Subunit Mutants in Arabidopsis Thaliana

    PubMed Central

    Barczak, A. J.; Zhao, J.; Pruitt, K. D.; Last, R. L.

    1995-01-01

    A study of the biochemical genetics of the Arabidopsis thaliana tryptophan synthase beta subunit was initiated by characterization of mutants resistant to the inhibitor 5-fluoroindole. Thirteen recessive mutations were recovered that are allelic to trp2-1, a mutation in the more highly expressed of duplicate tryptophan synthase beta subunit genes (TSB1). Ten of these mutations (trp2-2 through trp2-11) cause a tryptophan requirement (auxotrophs), whereas three (trp2-100 through trp2-102) remain tryptophan prototrophs. The mutations cause a variety of changes in tryptophan synthase beta expression. For example, two mutations (trp2-5 and trp2-8) cause dramatically reduced accumulation of TSB mRNA and immunologically detectable protein, whereas trp2-10 is associated with increased mRNA and protein. A correlation exists between the quantity of mutant beta and wild-type alpha subunit levels in the trp2 mutant plants, suggesting that the synthesis of these proteins is coordinated or that the quantity or structure of the beta subunit influences the stability of the alpha protein. The level of immunologically detectable anthranilate synthase alpha subunit protein is increased in the trp2 mutants, suggesting the possibility of regulation of anthranilate synthase levels in response to tryptophan limitation. PMID:7635295

  3. Functional overload increases beta-MHC promoter activity in rodent fast muscle via the proximal MCAT (betae3) site.

    PubMed

    Giger, Julia M; Haddad, Fadia; Qin, Anqi X; Baldwin, Kenneth M

    2002-03-01

    Functional overload (OL) of the rat plantaris muscle by the removal of synergistic muscles induces a shift in the myosin heavy chain (MHC) isoform expression profile from the fast isoforms toward the slow type I, or, beta-MHC isoform. Different length rat beta-MHC promoters were linked to a firefly luciferase reporter gene and injected in control and OL plantaris muscles. Reporter activities of -3,500, -914, -408, and -215 bp promoters increased in response to 1 wk of OL. The smallest -171 bp promoter was not responsive to OL. Mutation analyses of putative regulatory elements within the -171 and -408 bp region were performed. The -408 bp promoters containing mutations of the betae1, distal muscle CAT (MCAT; betae2), CACC, or A/T-rich (GATA), were still responsive to OL. Only the proximal MCAT (betae3) mutation abolished the OL response. Gel mobility shift assays revealed a significantly higher level of complex formation of the betae3 probe with nuclear protein from OL plantaris compared with control plantaris. These results suggest that the betae3 site functions as a putative OL-responsive element in the rat beta-MHC gene promoter.

  4. [S632A3 promotes LPS-induced IFN-beta production through inhibiting the activation of GSK-3beta].

    PubMed

    Zhang, Na; Yang, Xin; Xu, Rong; Wang, Zhen; Song, Dan-Qing; Li, Dian-Dong; Deng, Hong-Bin

    2013-07-01

    LPS stimulation of macrophages production of IFN-beta plays a key role in innate immunity defending the microbial invasion. In this study, the effect of S632A3 promoting LPS-induced IFN-beta production and the underlying mechanism were investigated, mRNA level was measured by real-time PCR, cytokine production was determined by ELISA, GSK-3beta activity was investigated by kinase assay, protein phosphorylation and expression were evaluated by Western blotting. The results revealed that S632A3 significantly augmented IFN-beta production by LPS-stimulated macrophages. S632A3 inhibition of the activation of GSK-3beta, reduced the threonine 239 phosphorylation of transcription factor c-Jun but increased the total level of c-Jun in LPS-stimulated macrophages. Moreover, small interfering RNA-mediated knockdown of c-Jun level abrogated the ability of S632A3 to augment IFN-beta. The study thus demonstrates S632A3 being a new anti-inflammation lead compound and provides a molecular mechanism by which S632A3 promoted LPS-induced IFN-beta production in macrophages through inhibiting the activation of GSK-3beta.

  5. Association of Beta-Glucan Endogenous Production with Increased Stress Tolerance of Intestinal Lactobacilli▿

    PubMed Central

    Stack, Helena M.; Kearney, Niamh; Stanton, Catherine; Fitzgerald, Gerald F.; Ross, R. Paul

    2010-01-01

    The exopolysaccharide beta-glucan has been reported to be associated with many health-promoting and prebiotic properties. The membrane-associated glycosyltransferase enzyme (encoded by the gtf gene), responsible for microbial beta-glucan production, catalyzes the conversion of sugar nucleotides into beta-glucan. In this study, the gtf gene from Pediococcus parvulus 2.6 was heterologously expressed in Lactobacillus paracasei NFBC 338. When grown in the presence of glucose (7%, wt/vol), the recombinant strain (pNZ44-GTF+) displayed a “ropy” phenotype, while scanning electron microscopy (SEM) revealed strands of polysaccharide-linking neighboring cells. Beta-glucan biosynthesis was confirmed by agglutination tests carried out with Streptococcus pneumoniae type 37-specific antibodies, which specifically detect glucan-producing cells. Further analysis showed a ∼2-fold increase in viscosity in broth media for the beta-glucan-producing strain over 24 h compared to the control strain, which did not show any significant increase in viscosity. In addition, we analyzed the ability of beta-glucan-producing Lactobacillus paracasei NFBC 338 to survive both technological and gastrointestinal stresses. Heat stress assays revealed that production of the polysaccharide was associated with significantly increased protection during heat stress (60-fold), acid stress (20-fold), and simulated gastric juice stress (15-fold). Bile stress assays revealed a more modest but significant 5.5-fold increase in survival for the beta-glucan-producing strain compared to that of the control strain. These results suggest that production of a beta-glucan exopolysaccharide by strains destined for use as probiotics may afford them greater performance/protection during cultivation, processing, and ingestion. As such, expression of the gtf gene may prove to be a straightforward approach to improve strains that might otherwise prove sensitive in such applications. PMID:19933353

  6. Immunohistochemical detection of active transforming growth factor-beta in situ using engineered tissue

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Ehrhart, E. J.; Kalia, M.; Jirtle, R.; Flanders, K.; Tsang, M. L.; Chatterjee, A. (Principal Investigator)

    1995-01-01

    The biological activity of transforming growth factor-beta 1 (TGF-beta) is governed by dissociation from its latent complex. Immunohistochemical discrimination of active and latent TGF-beta could provide insight into TGF-beta activation in physiological and pathological processes. However, evaluation of immunoreactivity specificity in situ has been hindered by the lack of tissue in which TGF-beta status is known. To provide in situ analysis of antibodies to differentiate between these functional forms, we used xenografts of human tumor cells modified by transfection to overexpress latent TGF-beta or constitutively active TGF-beta. This comparison revealed that, whereas most antibodies did not differentiate between TGF-beta activation status, the immunoreactivity of some antibodies was activation dependent. Two widely used peptide antibodies to the amino-terminus of TGF-beta, LC(1-30) and CC(1-30) showed marked preferential immunoreactivity with active TGF-beta versus latent TGF-beta in cryosections. However, in formalin-fixed, paraffin-embedded tissue, discrimination of active TGF-beta by CC(1-30) was lost and immunoreactivity was distinctly extracellular, as previously reported for this antibody. Similar processing-dependent extracellular localization was found with a neutralizing antibody raised to recombinant TGF-beta. Antigen retrieval recovered cell-associated immunoreactivity of both antibodies. Two antibodies to peptides 78-109 showed mild to moderate preferential immunoreactivity with active TGF-beta only in paraffin sections. LC(1-30) was the only antibody tested that discriminated active from latent TGF-beta in both frozen and paraffin-embedded tissue. Thus, in situ discrimination of active versus latent TGF-beta depends on both the antibody and tissue preparation. We propose that tissues engineered to express a specific form of a given protein provide a physiological setting in which to evaluate antibody reactivity with specific functional forms of a

  7. Prediction of beta-turns with learning machines.

    PubMed

    Cai, Yu-Dong; Liu, Xiao-Jun; Li, Yi-Xue; Xu, Xue-biao; Chou, Kuo-Chen

    2003-05-01

    The support vector machine approach was introduced to predict the beta-turns in proteins. The overall self-consistency rate by the re-substitution test for the training or learning dataset reached 100%. Both the training dataset and independent testing dataset were taken from Chou [J. Pept. Res. 49 (1997) 120]. The success prediction rates by the jackknife test for the beta-turn subset of 455 tetrapeptides and non-beta-turn subset of 3807 tetrapeptides in the training dataset were 58.1 and 98.4%, respectively. The success rates with the independent dataset test for the beta-turn subset of 110 tetrapeptides and non-beta-turn subset of 30,231 tetrapeptides were 69.1 and 97.3%, respectively. The results obtained from this study support the conclusion that the residue-coupled effect along a tetrapeptide is important for the formation of a beta-turn.

  8. TGF-beta signaling proteins and the Protein Ontology.

    PubMed

    Arighi, Cecilia N; Liu, Hongfang; Natale, Darren A; Barker, Winona C; Drabkin, Harold; Blake, Judith A; Smith, Barry; Wu, Cathy H

    2009-05-06

    The Protein Ontology (PRO) is designed as a formal and principled Open Biomedical Ontologies (OBO) Foundry ontology for proteins. The components of PRO extend from a classification of proteins on the basis of evolutionary relationships at the homeomorphic level to the representation of the multiple protein forms of a gene, including those resulting from alternative splicing, cleavage and/or post-translational modifications. Focusing specifically on the TGF-beta signaling proteins, we describe the building, curation, usage and dissemination of PRO. PRO is manually curated on the basis of PrePRO, an automatically generated file with content derived from standard protein data sources. Manual curation ensures that the treatment of the protein classes and the internal and external relationships conform to the PRO framework. The current release of PRO is based upon experimental data from mouse and human proteins wherein equivalent protein forms are represented by single terms. In addition to the PRO ontology, the annotation of PRO terms is released as a separate PRO association file, which contains, for each given PRO term, an annotation from the experimentally characterized sub-types as well as the corresponding database identifiers and sequence coordinates. The annotations are added in the form of relationship to other ontologies. Whenever possible, equivalent forms in other species are listed to facilitate cross-species comparison. Splice and allelic variants, gene fusion products and modified protein forms are all represented as entities in the ontology. Therefore, PRO provides for the representation of protein entities and a resource for describing the associated data. This makes PRO useful both for proteomics studies where isoforms and modified forms must be differentiated, and for studies of biological pathways, where representations need to take account of the different ways in which the cascade of events may depend on specific protein modifications. PRO provides

  9. Association of GSK3beta polymorphisms with brain structural changes in major depressive disorder.

    PubMed

    Inkster, Becky; Nichols, Thomas E; Saemann, Philipp G; Auer, Dorothee P; Holsboer, Florian; Muglia, Pierandrea; Matthews, Paul M

    2009-07-01

    Indirect evidence suggests that the glycogen synthase kinase-3beta (GSK3beta) gene might be implicated in major depressive disorder (MDD). We evaluated 15 GSK3beta single-nucleotide polymorphisms (SNPs) to test for associations with regional gray matter (GM) volume differences in patients with recurrent MDD. We then used the defined regions of interest based on significant associations to test for MDD x genotype interactions by including a matched control group without any psychiatric disorder, including MDD. General linear model with nonstationary cluster-based inference. Munich, Germany. Patients with recurrent MDD (n = 134) and age-, sex-, and ethnicity-matched healthy controls (n = 143). Associations between GSK3beta polymorphisms and regional GM volume differences. Variation in GM volume was associated with GSK3beta polymorphisms; the most significant associations were found for rs6438552, a putative functional intronic SNP that showed 3 significant GM clusters in the right and left superior temporal gyri and the right hippocampus (P < .001, P = .02, and P = .02, respectively, corrected for multiple comparisons across the whole brain). Similar results were obtained with rs12630592, an SNP in high linkage disequilibrium. A significant SNP x MDD status interaction was observed for the effect on GM volumes in the right hippocampus and superior temporal gyri (P < .001 and P = .01, corrected, respectively). The GSK3beta gene may have a role in determining regional GM volume differences of the right hippocampus and bilateral superior temporal gyri. The association between genotype and brain structure was specific to the patients with MDD, suggesting that GSK3beta genotypes might interact with MDD status. We speculate that this is a consequence of regional neocortical, glial, or neuronal growth or survival. In considering core cognitive features of MDD, the association of GSK3beta polymorphisms with structural variation in the temporal lobe and hippocampus is of

  10. Interleukin-1 beta induced synthesis of protein kinase C-delta and protein kinase C-epsilon in EL4 thymoma cells: possible involvement of phosphatidylinositol 3-kinase.

    PubMed

    Varley, C L; Royds, J A; Brown, B L; Dobson, P R

    2001-01-01

    We present evidence here that the proinflammatory cytokine, interleukin-1 beta (IL-1 beta) stimulates a significant increase in protein kinase C (PKC)-epsilon and PKC-delta protein levels and increases PKC-epsilon, but not PKC-delta, transcripts in EL4 thymoma cells. Incubation of EL4 cells with IL-1 beta induced protein synthesis of PKC-epsilon (6-fold increase) by 7 h and had a biphasic effect on PKC-delta levels with peaks at 4 h (2-fold increase) and 24 h (4-fold increase). At the level of mRNA, PKC-epsilon, but not PKC-delta levels, were induced after incubation of EL4 cells with IL-1 beta. The signalling mechanisms utilized by IL-1 beta to induce the synthesis of these PKC isoforms were investigated. Two phosphatidylinositol (PI) 3-kinase-specific inhibitors, wortmannin and LY294002, inhibited IL-1 beta-induced synthesis of PKC-epsilon. However, the PI 3-kinase inhibitors had little effect on the IL-1 beta-induced synthesis of PKC-delta in these cells. Our results indicate that IL-1 beta induced both PKC-delta and PKC-epsilon expression over different time periods. Furthermore, our evidence suggests that IL-1 beta induction of PKC-epsilon, but not PKC-delta, may occur via the PI 3-kinase pathway. Copyright 2001 S. Karger AG, Basel

  11. A single mutation near the C-terminus in alpha/beta hydrolase fold protein family causes a defect in protein processing.

    PubMed

    De Jaco, Antonella; Kovarik, Zrinka; Comoletti, Davide; Jennings, Lori L; Gaietta, Guido; Ellisman, Mark H; Taylor, Palmer

    2005-12-15

    An Arg to Cys mutation in the extracellular domain of neuroligin-3 (NL3) was recently found in a twin set with autism [S. Jamain, H. Quach, C. Betancur, M. Rastam, C. Colineaux, I.C. Gillberg, H. Soderstrom, B. Giros, M. Leboyer, C. Gillberg, T. Bourgeron, Paris Autism Research International Sibpair Study, mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism, Nat. Genet. 34 (2003) 27-29]. The Cys substitution in NL3 causes altered intracellular protein trafficking, intracellular retention and diminished association with its cognate partner, beta-neurexin [D. Comoletti, A. De Jaco, L.L. Jennings, R.E. Flynn, G. Gaietta, I. Tsigelny, M.H. Ellisman, P. Taylor, The R451C-neuroligin-3 mutation associated with autism reveals a defect in protein processing, J. Neurosci. 24 (2004) 4889-4893]. NL3, butyrylcholinesterase (BuChE), and acetylcholinesterase (AChE), as members of the (/(-hydrolase fold family of proteins, share over 30% of amino acid identity in their extracellular domains. In particular, Arg451 in NL3 is conserved in the alpha/beta-hydrolase fold family being homologous to Arg386 in BuChE and Arg395 in AChE. A Cys substitution at the homologous Arg in the BuChE was found studying post-succinylcholine apnea in an Australian population [T. Yen, B.N. Nightingale, J.C. Burns, D.R. Sullivan, P.M. Stewart, Butyrylcholinesterase (BCHE) genotyping for post-succinylcholine apnea in an Australian population, Clin. Chem. 49 (2003) 1297-308]. We have made the homologous mutation in the mouse AChE and BuChE genes and showed that the Arg to Cys mutations resulted in identical alterations in the cellular phenotype for the various members of the alpha/beta-hydrolase fold family proteins.

  12. beta-Endorphin-induced analgesia is inhibited by synthetic analogs of beta-endorphin.

    PubMed

    Nicolas, P; Hammonds, R G; Li, C H

    1984-05-01

    Competitive antagonism of human beta-endorphin (beta h-EP)-induced analgesia by synthetic beta h-EP analogs with high in vitro opiate receptor binding to in vivo analgesic potency ratio has been demonstrated. A parallel shift of the dose-response curve for analgesia to the right was observed when either beta h-EP or [ Trp27 ] -beta h-EP was coinjected with various doses of [Gln8, Gly31 ]-beta h-EP-Gly-Gly-NH2, [Arg9,19,24,28,29]-beta h-EP, or [ Cys11 ,26, Phe27 , Gly31 ]-beta h-EP. It was estimated that the most potent antagonist, [Gln8, Gly31 ]-beta h-EP-Gly-NH2, is at least 200 times more potent than naloxone.

  13. beta-Endorphin-induced analgesia is inhibited by synthetic analogs of beta-endorphin.

    PubMed Central

    Nicolas, P; Hammonds, R G; Li, C H

    1984-01-01

    Competitive antagonism of human beta-endorphin (beta h-EP)-induced analgesia by synthetic beta h-EP analogs with high in vitro opiate receptor binding to in vivo analgesic potency ratio has been demonstrated. A parallel shift of the dose-response curve for analgesia to the right was observed when either beta h-EP or [ Trp27 ] -beta h-EP was coinjected with various doses of [Gln8, Gly31 ]-beta h-EP-Gly-Gly-NH2, [Arg9,19,24,28,29]-beta h-EP, or [ Cys11 ,26, Phe27 , Gly31 ]-beta h-EP. It was estimated that the most potent antagonist, [Gln8, Gly31 ]-beta h-EP-Gly-NH2, is at least 200 times more potent than naloxone. PMID:6328494

  14. Economic benefits associated with beta blocker persistence in the treatment of hypertension: a retrospective database analysis.

    PubMed

    Chen, Stephanie; Swallow, Elyse; Li, Nanxin; Faust, Elizabeth; Kelley, Caroline; Xie, Jipan; Wu, Eric

    2015-04-01

    To assess the association between medical costs and persistence with beta blockers among hypertensive patients, and to quantify persistence related medical cost differences with nebivolol, which is associated with improved tolerability, versus other beta blockers. Adults who initiated hypertension treatment with a beta blocker were identified from the MarketScan * claims database (2008-2012). Patients were classified based on their first beta blocker use: nebivolol, atenolol, carvedilol, metoprolol, and other beta blockers. Patients with compelling indications for atenolol, carvedilol or metoprolol (acute coronary syndrome and congestive heart failure) were excluded. Patients enrolled in health maintenance organization or capitated point of service insurance plans were also excluded. Persistence was defined as continuous use of the index drug (<60 day gap). The average effect of persistence on medical costs (2012 USD) was estimated using generalized linear models (GLMs). Regression estimates were used to predict medical cost differences associated with persistence between nebivolol and the other cohorts. A total of 587,424 hypertensive patients met the inclusion criteria. Each additional month of persistence with any one beta blocker was associated with $152.51 in all-cause medical cost savings; continuous treatment for 1 year was associated with $1585.98 in all-cause medical cost savings. Patients treated with nebivolol had longer persistence during the 1 year study period (median: 315 days) than all other beta blockers (median: 156-292 days). Longer persistence with nebivolol translated into $305.74 all-cause medical cost savings relative to all other beta blockers. The results may not be generalizable to hypertensive patients with acute coronary syndrome or congestive heart failure. Longer persistence with beta blockers for the treatment of hypertension was associated with lower medical costs. There may be greater cost savings due to better persistence with

  15. Current status and clinical association of beta-catenin with juvenile nasopharyngeal angiofibroma.

    PubMed

    Mishra, A; Singh, V; Verma, V; Pandey, S; Trivedi, R; Singh, H P; Kumar, S; Dwivedi, R C; Mishra, S C

    2016-10-01

    A possible role of the APC/beta-catenin pathway in the pathogenesis of sporadic juvenile nasopharyngeal angiofibroma has been suggested. This paper presents its current status and clinical association in our patients. A prospective observational study was conducted at King George Medical University and Central Drug Research Institute, in Lucknow, India. Western blot analysis was undertaken in 16 cases to examine beta-catenin expression. The clinical details were recorded along with follow up observations, to determine associations. Up-regulation of beta-catenin expression was seen in 69 per cent of cases. The clinical variables did not reveal significant differences between patients with extremes of expression (extreme under- vs over-expression). However, absent expression was shown exclusively in young adults aged over 18 years, while enhanced expression was associated with an altered facial profile. Although a beta-catenin association was seen in a subset of our sporadic juvenile nasopharyngeal angiofibroma cases, its expression was not homogeneous. This is in contrast to the Western literature that suggests a universal (homogenous) enhanced expression in the majority. Hence, further research is required to better define its molecular cascade.

  16. Beta blocker therapy is associated with reduced depressive symptoms 12 months post percutaneous coronary intervention.

    PubMed

    Battes, Linda C; Pedersen, Susanne S; Oemrawsingh, Rohit M; van Geuns, Robert J; Al Amri, Ibtihal; Regar, Evelyn; de Jaegere, Peter P T; Serruys, Patrick; van Domburg, Ron T

    2012-02-01

    Beta blocker therapy may induce depressive symptoms, although current evidence is conflicting. We examined the association between beta blocker therapy and depressive symptoms in percutaneous coronary intervention (PCI) patients and the extent to which there is a dose-response relationship between beta blocker dose and depressive symptoms. Patients treated with PCI (N=685) completed the depression scale of the Hospital Anxiety and Depression Scale 1 and 12 months post PCI. Information about type and dose of beta blocker use was extracted from medical records. Of all patients, 68% (466/685) were on beta blocker therapy at baseline. In adjusted analysis, beta blocker use at 1 month post PCI (OR: 0.82; 95% CI: 0.53-1.26) was not significantly associated with depressive symptoms. At 12 months post PCI, there was a significant relationship between beta blocker use and depressive symptoms (OR: 0.51; 95% CI: 0.31-0.84), with beta blocker therapy associated with a 49% risk reduction in depressive symptoms. There was a dose-response relationship between beta blocker dose and depressive symptoms 12 months post PCI, with the risk reduction in depressive symptoms in relation to a low dose being 36% (OR: 0.64; 95% CI: 0.37-1.10) and 58% (OR: 0.42; 95% CI: 0.24-0.76) in relation to a high dose. Patients treated with beta blocker therapy were less likely to experience depressive symptoms 12 months post PCI, with there being a dose-response relationship with a higher dose providing a more pronounced protective effect. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. A recipe for designing water-soluble, beta-sheet-forming peptides.

    PubMed Central

    Mayo, K. H.; Ilyina, E.; Park, H.

    1996-01-01

    Based on observations of solubility and folding properties of peptide 33-mers derived from the beta-sheet domains of platelet factor-4 (PF4), interleukin-8 (IL-8), and growth related protein (Gro-alpha), as well as other beta-sheet-forming peptides, general guidelines have been developed to aid in the design of water soluble, self-association-induced beta-sheet-forming peptides. CD, 1H-NMR, and pulsed field gradient NMR self-diffusion measurements have been used to assess the degree of folding and state of aggregation. PF4 peptide forms native-like beta-sheet tetramers and is sparingly soluble above pH 6. IL-8 peptide is insoluble between pH 4.5 and pH 7.5, yet forms stable, native-like beta-sheet dimers at higher pH. Gro-alpha peptide is soluble at all pH values, yet displays no discernable beta-sheet structure even when diffusion data indicate dimer-tetramer aggregation. A recipe used in the de novo design of water-soluble beta-sheet-forming peptides calls for the peptide to contain 40-50% hydrophobic residues, usually aliphatic ones (I, L, V, A, M) (appropriately paired and mostly but not always alternating with polar residues in the sheet sequence), a positively charged (K, R) to negatively charged (E, D) residue ratio between 4/2 and 6/2, and a noncharged polar residue (N, Q, T, S) composition of about 20% or less. Results on four de novo designed, 33-residue peptides are presented supporting this approach. Under near physiologic conditions, all four peptides are soluble, form beta-sheet structures to varying degrees, and self-associate. One peptide folds as a stable, compact beta-sheet tetramer, whereas the others are transient beta-sheet-containing aggregates. PMID:8819163

  18. Conformational interconversions in peptide beta-turns: analysis of turns in proteins and computational estimates of barriers.

    PubMed

    Gunasekaran, K; Gomathi, L; Ramakrishnan, C; Chandrasekhar, J; Balaram, P

    1998-12-18

    The two most important beta-turn features in peptides and proteins are the type I and type II turns, which differ mainly in the orientation of the central peptide unit. Facile conformational interconversion is possible, in principle, by a flip of the central peptide unit. Homologous crystal structures afford an opportunity to structurally characterize both possible conformational states, thus allowing identification of sites that are potentially stereochemically mobile. A representative data set of 250 high-resolution (protein crystal structures and corresponding variant and homologous entries, obtained from the Brookhaven Protein Data Bank, was examined to identify turns that are assigned different conformational types (type I/type II) in related structures. A total of 55 examples of beta-turns were identified as possible candidates for a stereochemically mobile site. Of the 55 examples, 45 could be classified as a potential site for interconversion between type I and type II beta-turns, while ten correspond to flips from type I' to type II' structures. As a further check, the temperature factors of the central peptide unit carbonyl oxygen atom of the 55 examples were examined. The analysis reveals that the turn assignments are indeed reliable. Examination of the secondary structures at the flanking positions of the flippable beta-turns reveals that seven examples occur in the loop region of beta-hairpins, indicating that the formation of ordered secondary structures on either side of the beta-turn does not preclude local conformational variations. In these beta-turns, Pro (11 examples), Lys (nine examples) and Ser (seven examples) were most often found at the i+1 position. Glycine was found to occur overwhelmingly at position i+2 (28 examples), while Ser (seven examples) and Asn (six examples) were amongst the most frequent residues. Activation energy barriers for the interconversion between type I and type II beta-turns were computed

  19. Unraveling the contribution of pancreatic beta-cell suicide in autoimmune type 1 diabetes✩

    PubMed Central

    Jaberi-Douraki, Majid; Schnell, Santiago; Pietropaolo, Massimo; Khadra, Anmar

    2014-01-01

    In type 1 diabetes, an autoimmune disease mediated by autoreactive T-cells that attack insulin-secreting pancreatic beta-cells, it has been suggested that disease progression may additionally require protective mechanisms in the target tissue to impede such auto-destructive mechanisms. We hypothesize that the autoimmune attack against beta-cells causes endoplasmic reticulum stress by forcing the remaining beta-cells to synthesize and secrete defective insulin. To rescue beta-cell from the endoplasmic reticulum stress, beta-cells activate the unfolded protein response to restore protein homeostasis and normal insulin synthesis. Here we investigate the compensatory role of unfolded protein response by developing a multi-state model of type 1 diabetes that takes into account beta-cell destruction caused by pathogenic autoreactive T-cells and apoptosis triggered by endoplasmic reticulum stress. We discuss the mechanism of unfolded protein response activation and how it counters beta-cell extinction caused by an autoimmune attack and/or irreversible damage by endoplasmic reticulum stress. Our results reveal important insights about the balance between beta-cell destruction by autoimmune attack (beta-cell homicide) and beta-cell apoptosis by endoplasmic reticulum stress (beta-cell suicide). It also provides an explanation as to why the unfolded protein response may not be a successful therapeutic target to treat type 1 diabetes. PMID:24831415

  20. Free energy determinants of secondary structure formation: III. beta-turns and their role in protein folding.

    PubMed

    Yang, A S; Hitz, B; Honig, B

    1996-06-21

    The stability of beta-turns is calculated as a function of sequence and turn type with a Monte Carlo sampling technique. The conformational energy of four internal hydrogen-bonded turn types, I, I', II and II', is obtained by evaluating their gas phase energy with the CHARMM force field and accounting for solvation effects with the Finite Difference Poisson-Boltzmann (FDPB) method. All four turn types are found to be less stable than the coil state, independent of the sequence in the turn. The free-energy penalties associated with turn formation vary between 1.6 kcal/mol and 7.7 kcal/mol, depending on the sequence and turn type. Differences in turn stability arise mainly from intraresidue interactions within the two central residues of the turn. For each combination of the two central residues, except for -Gly-Gly-, the most stable beta-turn type is always found to occur most commonly in native proteins. The fact that a model based on local interactions accounts for the observed preference of specific sequences suggests that long-range tertiary interactions tend to play a secondary role in determining turn conformation. In contrast, for beta-hairpins, long-range interactions appear to dominate. Specifically, due to the right-handed twist of beta-strands, type I' turns for -Gly-Gly- are found to occur with high frequency, even when local energetics would dictate otherwise. The fact that any combination of two residues is found able to adopt a relatively low-energy turn structure explains why the amino acid sequence in turns is highly variable. The calculated free-energy cost of turn formation, when combined with related numbers obtained for alpha-helices and beta-sheets, suggests a model for the initiation of protein folding based on metastable fragments of secondary structure.

  1. Nitrosative stress mediated misfolded protein aggregation mitigated by Na-D-{beta}-hydroxybutyrate intervention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabiraj, Parijat; Pal, Rituraj; Varela-Ramirez, Armando

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer Rotenone is a model for inducing apoptosis and synphilin-1 accumulation in Parkinson Prime s studies. Black-Right-Pointing-Pointer The metabolite sodium betahydroxybutryate mitigates these effects in SHSY5Y cell lines. Black-Right-Pointing-Pointer Results reveal a novel and innate mechanism to prevent neurodegeneration/cell death. -- Abstract: Mitochondrial dysfunction, leading to elevated levels of reactive oxygen species, is associated with the pathogenesis of neurodegenerative disorders. Rotenone, a mitochondrial stressor induces caspase-9 and caspase-3 activation leading proteolytic cleavage of substrate nuclear poly(ADP-ribose) polymerase (PARP). PARP cleavage is directly related to apoptotic cell death. In this study, we have monitored the aggregation of green-fluorescent protein (GFP)-taggedmore » synphilin-1, as a rotenone-induced Parkinsonia-onset biomarker. We report that the innate ketone body, Na-D-{beta}-hydroxybutyrate (Na{beta}HB) reduces markedly the incidence of synphilin-1 aggregation. Furthermore, our data reveal that the metabolic byproduct also prevents rotenone-induced caspase-activated apoptotic cell death in dopaminergic SH-SY5Y cells. Together, these results suggest that Na{beta}HB is neuroprotective; it attenuates effects originating from mitochondrial insult and can serve as a scaffold for the design and development of sporadic neuropathies.« less

  2. TGF-{beta}-stimulated aberrant expression of class III {beta}-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Eun Jee; Chun, Ji Na; Jung, Sun-Ah

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer TGF-{beta} induces aberrant expression of {beta}III in RPE cells via the ERK pathway. Black-Right-Pointing-Pointer TGF-{beta} increases O-GlcNAc modification of {beta}III in RPE cells. Black-Right-Pointing-Pointer Mature RPE cells have the capacity to express a neuron-associated gene by TGF-{beta}. -- Abstract: The class III {beta}-tubulin isotype ({beta}{sub III}) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III {beta}-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology inmore » pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-{beta} (TGF-{beta}) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-{beta} on the aberrant expression of class III {beta}-tubulin and the intracellular signaling pathway mediating these changes. TGF-{beta}-induced aberrant expression and O-linked-{beta}-N-acetylglucosamine (O-GlcNac) modification of class III {beta}-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-{beta} also stimulated phosphorylation of ERK. TGF-{beta}-induced aberrant expression of class III {beta}-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-{beta} stimulated aberrant expression of class III {beta}-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-{beta} stimulation and provide useful

  3. Structural and sequence features of two residue turns in beta-hairpins.

    PubMed

    Madan, Bharat; Seo, Sung Yong; Lee, Sun-Gu

    2014-09-01

    Beta-turns in beta-hairpins have been implicated as important sites in protein folding. In particular, two residue β-turns, the most abundant connecting elements in beta-hairpins, have been a major target for engineering protein stability and folding. In this study, we attempted to investigate and update the structural and sequence properties of two residue turns in beta-hairpins with a large data set. For this, 3977 beta-turns were extracted from 2394 nonhomologous protein chains and analyzed. First, the distribution, dihedral angles and twists of two residue turn types were determined, and compared with previous data. The trend of turn type occurrence and most structural features of the turn types were similar to previous results, but for the first time Type II turns in beta-hairpins were identified. Second, sequence motifs for the turn types were devised based on amino acid positional potentials of two-residue turns, and their distributions were examined. From this study, we could identify code-like sequence motifs for the two residue beta-turn types. Finally, structural and sequence properties of beta-strands in the beta-hairpins were analyzed, which revealed that the beta-strands showed no specific sequence and structural patterns for turn types. The analytical results in this study are expected to be a reference in the engineering or design of beta-hairpin turn structures and sequences. © 2014 Wiley Periodicals, Inc.

  4. Beta 1D integrin displaces the beta 1A isoform in striated muscles: localization at junctional structures and signaling potential in nonmuscle cells.

    PubMed

    Belkin, A M; Zhidkova, N I; Balzac, F; Altruda, F; Tomatis, D; Maier, A; Tarone, G; Koteliansky, V E; Burridge, K

    1996-01-01

    The cytoplasmic domains of integrins provide attachment of these extracellular matrix receptors to the cytoskeleton and play a critical role in integrin-mediated signal transduction. In this report we describe the identification, expression, localization, and initial functional characterization of a novel form of beta 1 integrin, termed beta 1D. This isoform contains a unique alternatively spliced cytoplasmic domain of 50 amino acids, with the last 24 amino acids encoded by an additional exon. Of these 24 amino acids, 11 are conserved when compared to the beta 1A isoform, but 13 are unique (Zhidkova, N. I., A. M. Belkin, and R. Mayne. 1995. Biochem. Biophys. Res. Commun. 214:279-285; van der Flier, A., I. Kuikman, C. Baudoin, R, van der Neuf, and A. Sonnenberg. 1995. FEBS Lett. 369:340-344). Using an anti-peptide antibody against the beta 1D integrin subunit, we demonstrated that the beta 1D isoform is synthesized only in skeletal and cardiac muscles, while very low amounts of beta 1A were detected by immunoblot in striated muscles. Whereas beta 1A could not be detected in adult skeletal muscle fibers and cardiomyocytes by immunofluorescence, beta 1D was localized to the sarcolemma of both cell types. In skeletal muscle, beta 1D was concentrated in costameres, myotendinous, and neuromuscular junctions. In cardiac muscle this beta 1 isoform was found in costamers and intercalated discs. beta 1D was associated with alpha 7A and alpha 7B in adult skeletal muscle. In cardiomyocytes of adult heart, alpha 7B was the major partner for the beta 1D isoform. beta 1D could not be detected in proliferating C2C12 myoblasts, but it appeared immediately after myoblast fusion and its amount continued to rise during myotube growth and maturation. In contrast, expression of the beta 1A isoform was downregulated during myodifferentiation in culture and it was completely displaced by beta 1D in mature differentiated myotubes. We also analyzed some functional properties of the beta 1D

  5. Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum.

    PubMed Central

    Arispe, N; Rojas, E; Pollard, H B

    1993-01-01

    Amyloid beta protein (A beta P) is the 40- to 42-residue polypeptide implicated in the pathogenesis of Alzheimer disease. We have incorporated this peptide into phosphatidylserine liposomes and then fused the liposomes with a planar bilayer. When incorporated into bilayers the A beta P forms channels, which generate linear current-voltage relationships in symmetrical solutions. A permeability ratio, PK/PCl, of 11 for the open A beta P channel was estimated from the reversal potential of the channel current in asymmetrical KCl solutions. The permeability sequence for different cations, estimated from the reversal potential of the A beta P-channel current for each system of asymmetrical solutions, is Pcs > PLi > PCa > or = PK > PNa. A beta P-channel current (either CS+ or Ca2+ as charge carriers) is blocked reversibly by tromethamine (millimolar range) and irreversibly by Al3+ (micromolar range). The inhibition of the A beta P-channel current by these two substances depends on transmembrane potential, suggesting that the mechanism of blockade involves direct interaction between tromethamine (or Al3+) and sites within the A beta P channel. Hitherto, A beta P has been presumed to be neurotoxic. On the basis of the present data we suggest that the channel activity of the polypeptide may be responsible for some or all of its neurotoxic effects. We further propose that a useful strategy for drug discovery for treatment of Alzheimer disease may include screening compounds for their ability to block or otherwise modify A beta P channels. PMID:8380642

  6. Inhibition of GSK-3beta ameliorates hepatic ischemia-reperfusion injury through GSK-3beta/beta-catenin signaling pathway in mice.

    PubMed

    Xia, Yong-Xiang; Lu, Ling; Wu, Zheng-Shan; Pu, Li-Yong; Sun, Bei-Cheng; Wang, Xue-Hao

    2012-06-01

    Glycogen synthase kinase (GSK)-3beta/beta-catenin signaling regulates ischemia-reperfusion (I/R)-induced apoptosis and proliferation, and inhibition of GSK-3beta has beneficial effects on I/R injury in the heart and the central nervous system. However, the role of this signaling in hepatic I/R injury remains unclear. The present study aimed to investigate the effects and mechanism of GSK-3beta/beta-catenin signaling in hepatic I/R injury. Male C57BL/6 mice (weighing 22-25 g) were pretreated with either SB216763, an inhibitor of GSK-3beta, or vehicle. These mice were subjected to partial hepatic I/R. Blood was collected for test of alanine aminotransferase (ALT), and liver specimen for assays of phosphorylation at the Ser9 residue of GSK-3beta, GSK-3beta activity, axin 2 and the anti-apoptotic factors Bcl-2 and survivin, as well as the proliferative factors cyclin D1 and proliferating cell nuclear antigen, and apoptotic index (TUNEL). Real-time PCR, Western blotting and immunohistochemical staining were used. SB216763 increased phospho-GSK-3beta levels and suppressed GSK-3beta activity (1880+/-229 vs 3280+/-272 cpm, P<0.01). ALT peaked at 6 hours after reperfusion. Compared with control, SB216763 decreased ALT after 6 hours of reperfusion (4451+/-424 vs 7868+/-845 IU/L, P<0.01), and alleviated hepatocyte necrosis and vacuolization. GSK-3beta inhibition led to the accumulation of beta-catenin in the cytosol (0.40+/-0.05 vs 1.31+/-0.11, P<0.05) and nucleus (0.62+/-0.14 vs 1.73+/-0.12, P<0.05), beta-catenin further upregulated the expression of axin 2. Upregulation of GSK-3beta/beta-catenin signaling increased Bcl-2, survivin and cyclin D1. Serological and histological analyses showed that SB216763 alleviated hepatic I/R-induced injury by reducing apoptosis (1.4+/-0.2% vs 3.6+/-0.4%, P<0.05) and enhanced liver proliferation (56+/-8% vs 19+/-4%, P<0.05). Inhibition of GSK-3beta ameliorates hepatic I/R injury through the GSK-3beta/beta-catenin signaling pathway.

  7. Characterization and inhibition of beta-adrenergic receptor kinase in intact myocytes.

    PubMed

    Laugwitz, K L; Kronsbein, K; Schmitt, M; Hoffmann, K; Seyfarth, M; Schömig, A; Ungerer, M

    1997-08-01

    beta-Adrenergic receptor kinase (beta ARK) phosphorylates and thereby inactivates agonist-occupied beta-adrenergic receptors (beta AR). beta ARK is thought to play an important role in the regulation of cardiac function. Therefore, we studied beta ARK activation and its inhibition in intact smooth muscle cells and in cardiomyoblasts. beta AR agonist-stimulated translocation of beta ARK was monitored by immunofluorescence labelling with specific antibodies and confocal laser scanning microscopy in DDT-MF 2 hamster smooth muscle cells and in H9c2 rat cardiomyoblasts. In unstimulated cells. beta ARK was mainly located in the cytosol. After beta AR agonist stimulation, the beta ARK signal was partially translocated to the membranes. Liposomal gene transfer of the COOH-terminus of beta ARK ('beta ARKmini') as a beta ARK inhibitor led to functional expression of this protein in both cell lines with high efficiency. Western blots with beta ARK antibodies showed a gene concentration-dependent immunoreactivity of the 'beta ARKmini' protein. 'beta ARKmini'-transfected myocytes demonstrated reduced membrane targeting of the beta ARK immuno-fluorescence signal. Additionally, the effect of 'beta ARKmini' on beta AR-induced desensitization of myocytic cAMP accumulation was investigated. In control cells, desensitization with isoproterenol led to a subsequent reduction of beta AR-induced cAMP accumulation. In 'beta ARKmini'-transfected myocytes, this beta AR-induced desensitization was significantly diminished, whereas normal beta AR-induced cAMP accumulation was unaffected. A gene concentration of 2 micrograms 'beta ARKmini' DNA/100,000 cardiomyoblasts, and of 0.7 microgram 'beta ARKmini' DNA/100,000 DDT-MF2 smooth muscle cells led to approximately 5.9- and approximately 5.6-fold overexpressions of 'beta ARKmini' vs. native beta ARK, respectively. These gene doses proved sufficient to attenuate beta-adrenergic desensitization significantly. (1) beta ARK translocation was

  8. Interactions of Plakoglobin and [beta]-Catenin with Desmosomal Cadherins BASIS OF SELECTIVE EXCLUSION OF [alpha]- AND [beta]-CATENIN FROM DESMOSOMES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Hee-Jung; Gross, Julia C.; Pokutta, Sabine

    2009-11-18

    Plakoglobin and {beta}-catenin are homologous armadillo repeat proteins found in adherens junctions, where they interact with the cytoplasmic domain of classical cadherins and with {alpha}-catenin. Plakoglobin, but normally not {beta}-catenin, is also a structural constituent of desmosomes, where it binds to the cytoplasmic domains of the desmosomal cadherins, desmogleins and desmocollins. Here, we report structural, biophysical, and biochemical studies aimed at understanding the molecular basis of selective exclusion of {beta}-catenin and {alpha}-catenin from desmosomes. The crystal structure of the plakoglobin armadillo domain bound to phosphorylated E-cadherin shows virtually identical interactions to those observed between {beta}-catenin and E-cadherin. Trypsin sensitivity experimentsmore » indicate that the plakoglobin arm domain by itself is more flexible than that of {beta}-catenin. Binding of plakoglobin and {beta}-catenin to the intracellular regions of E-cadherin, desmoglein1, and desmocollin1 was measured by isothermal titration calorimetry. Plakoglobin and {beta}-catenin bind strongly and with similar thermodynamic parameters to E-cadherin. In contrast, {beta}-catenin binds to desmoglein-1 more weakly than does plakoglobin. {beta}-Catenin and plakoglobin bind with similar weak affinities to desmocollin-1. Full affinity binding of desmoglein-1 requires sequences C-terminal to the region homologous to the catenin-binding domain of classical cadherins. Although pulldown assays suggest that the presence of N- and C-terminal {beta}-catenin 'tails' that flank the armadillo repeat region reduces the affinity for desmosomal cadherins, calorimetric measurements show no significant effects of the tails on binding to the cadherins. Using purified proteins, we show that desmosomal cadherins and {alpha}-catenin compete directly for binding to plakoglobin, consistent with the absence of {alpha}-catenin in desmosomes.« less

  9. beta'-COP, a novel subunit of coatomer.

    PubMed Central

    Stenbeck, G; Harter, C; Brecht, A; Herrmann, D; Lottspeich, F; Orci, L; Wieland, F T

    1993-01-01

    Several lines of evidence favour the hypothesis that intracellular biosynthetic protein transport in eukaryotes is mediated by non-clathrin-coated vesicles (for a review see Rothman and Orci, 1992). The vesicles have been isolated and a set of their surface proteins has been characterized as coat proteins (COPs). These COPs exist in the cytosol as a preformed complex, the coatomer, which was prior to this study known to contain six subunits: four (alpha-, beta-, gamma- and delta-COP) with molecular weights between 160 and 58 kDa, and two additional proteins of approximately 36 and 20 kDa, epsilon- and xi-COP. Here we describe a novel subunit of the coatomer complex, beta'-COP. This subunit occurs in amounts stoichiometric to the established COPs both in the coatomer and in nonclathrin-coated vesicles and shows homology to the beta-subunits of trimeric G proteins. Images PMID:8334999

  10. Phosphatidic acid regulates signal output by G protein coupled receptors through direct interaction with phospholipase C-beta(1).

    PubMed

    Litosch, Irene; Pujari, Rajeshree; Lee, Shawn J

    2009-09-01

    Phosphatidic acid (PA), generated downstream of monomeric Rho GTPases via phospholipase D (PLD) and additionally by diacylglycerol kinases (DGK), both stimulates phospholipase C-beta(1) (PLC-beta(1)) and potentiates stimulation of PLC-beta(1) activity by Galpha(q) in vitro. PA is a potential candidate for integrating signaling by monomeric and heterotrimeric G proteins to regulate signal output by G protein coupled receptors (GPCR), and we have sought to understand the mechanisms involved. We previously identified the region spanning residues 944-957, lying within the PLC-beta(1) C-terminus alphaA helix and flexible loop of the Galpha(q) binding domain, as required for stimulation of lipase activity by PA in vitro. Regulation by PA does not require residues essential for stimulation by Galpha(q) or GTPase activating activity. The present studies evaluated shorter alanine/glycine replacement mutants and finally point mutations to identify Tyr(952) and Ile(955) as key determinants for regulation by PA, assessed by both in vitro enzymatic and cell-based co-transfection assays. Replacement of Tyr(952) and Ile(955), PLC-beta(1) (Y952G/I955G), results in an 85% loss in stimulation by PA relative to WT-PLC-beta(1) in vitro. COS 7 cells co-transfected with PLC-beta(1) (Y952G/I955G) demonstrate a 10-fold increase in the EC(50) for stimulation and a 60% decrease in maximum stimulation by carbachol via Galpha(q) linked m1 muscarinic receptors, relative to cells co-transfected with WT-PLC-beta(1) but otherwise similar conditions. Residues required for regulation by PA are not essential for stimulation by G protein subunits. WT-PLC-beta(1) and PLC-beta(1) (Y952G/I955G) activity is increased comparably by co-transfection with Galpha(q) and neither is markedly affected by co-transfection with Gbeta(1)gamma(2). Inhibiting PLD-generated PA production by 1-butanol has little effect on maximum stimulation, but shifts the EC(50) for agonist stimulation of WT-PLC-beta(1) by 10-fold

  11. beta-Arrestin 2: a Negative Regulator of Inflammatory Responses in Polymorphonuclear Leukocytes.

    PubMed

    Basher, Fahmin; Fan, Hongkuan; Zingarelli, Basilia; Borg, Keith T; Luttrell, Lou M; Tempel, George E; Halushka, Perry V; Cook, James A

    2008-01-01

    Heterotrimeric Gi proteins have been previously implicated in signaling leading to inflammatory mediator production induced by bacterial lipopolysaccharide (LPS). beta-arrestins are ubiquitously expressed proteins that alter G-protein-coupled receptors signaling. beta-arrestin 2 plays a multifaceted role as a scaffold protein in regulating cellular inflammatory responses. Polymorphonuclear leukocytes (PMNs) activated by LPS induce inflammatory responses resulting in organ injury during sepsis. We hypothesized that beta-arrestin 2 is a critical modulator of inflammatory responses in PMNs. To examine the potential role of beta-arrestin 2 in LPS-induced cellular activation, we studied homozygous beta-arrestin 2 (-/-), heterozygous (+/-), and wildtype (+/+) mice. PMNs were stimulated with LPS for 16h. There was increased basal TNFalpha and IL-6 production in the beta-arrestin 2 (-/-) compared to both beta-arrestin 2 (+/-) and (+/+) cells. LPS failed to stimulate TNFalpha production in the beta-arrestin 2 (-/-) PMNs. However, LPS stimulated IL-6 production was increased in the beta-arrestin 2 (-/-) cells compared to (+/+) cells. In subsequent studies, peritoneal PMN recruitment was increased 81% in the beta-arrestin 2 (-/-) mice compared to (+/+) mice (p<0.05). beta-arrestin 2 deficiency resulted in an augmented expression of CD18 and CD62L (p<0.05). In subsequent studies, beta-arrestin 2 (-/-) and (+/+) mice were subjected to cecal ligation and puncture (CLP) and lung was collected and analyzed for myeloperoxidase activity (MPO) as index of PMNs infiltrate. CLP-induced MPO activity was significantly increased (p<0.05) in the beta-arrestin 2 (-/-) compared to (+/+) mice. These studies demonstrate that beta-arrestin 2 is a negative regulator of PMN activation and pulmomary leukosequestration in response to polymicrobial sepsis.

  12. A new compound heterozygous frameshift mutation in the type II 3{beta}-hydroxysteroid dehydrogenase 3{beta}-HSD gene causes salt-wasting 3{beta}-HSD deficiency congenital adrenal hyperplasia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, L.; Sakkal-Alkaddour, S.; Chang, Ying T.

    1996-01-01

    We report a new compound heterozygous frameshift mutation in the type II 3{Beta}-hydroxysteroid dehydrogenase (3{beta}-HSD) gene in a Pakistanian female child with the salt-wasting form of 3{Beta}-HSD deficiency congenital adrenal hyperplasia. The etiology for her congenital adrenal hyperplasia was not defined. Although the family history suggested possible 3{beta}-HSd deficiency disorder, suppressed adrenal function caused by excess glucocorticoid therapy in this child at 7 yr of age did not allow hormonal diagnosis. To confirm 3{beta}-HSD deficiency, we sequenced the type II 3{beta}-HSD gene in the patient, her family, and the parents of her deceased paternal cousins. The type II 3{beta}-HSD genemore » region of a putative promotor, exons I, II, III, and IV, and exon-intron boundaries were amplified by PCR and sequenced in all subjects. The DNA sequence of the child revealed a single nucleotide deletion at codon 318 [ACA(Thr){r_arrow}AA] in exon IV in one allele, and two nucleotide deletions at codon 273 [AAA(Lys){r_arrow}A] in exon IV in the other allele. The remaining gene sequences were normal. The codon 318 mutation was found in one allele from the father, brother, and parents of the deceased paternal cousins. The codon 273 mutation was found in one allele of the mother and a sister. These findings confirmed inherited 3{beta}-HSD deficiency in the child caused by the compound heterozygous type II 3{beta}-HSD gene mutation. Both codons at codons 279 and 367, respectively, are predicted to result in an altered and truncated type II 3{beta}-HSD protein, thereby causing salt-wasting 3{beta}-HSD deficiency in the patient. 21 refs., 2 figs., 1 tab.« less

  13. Inhibition of glycogen synthase kinase-3beta downregulates total tau proteins in cultured neurons and its reversal by the blockade of protein phosphatase-2A.

    PubMed

    Martin, Ludovic; Magnaudeix, Amandine; Esclaire, Françoise; Yardin, Catherine; Terro, Faraj

    2009-02-03

    In tauopathies such as Alzheimer's disease (AD), the molecular mechanisms of tau protein aggregation into neurofibrillary tangles (NFTs) and their contribution to neurodegeneration remain not understood. It was recently demonstrated that tau, regardless of its aggregation, might represent a key mediator of neurodegeneration. Therefore, reduction of tau levels might represent a mechanism of neuroprotection. Glycogen synthase kinase-3beta (GSK3beta) and protein phosphatase-2A (PP2A) are key enzymes involved in the regulation of tau phosphorylation, and have been suggested to be involved in the abnormal tau phosphorylation and aggregation in AD. Connections between PP2A and GSK3beta signaling have been reported. We have previously demonstrated that exposure of cultured cortical neurons to lithium decreased tau protein expression and provided neuroprotection against Abeta. Since lithium is not a specific inhibitor of GSK3beta (ID50=2.0 mM), whether or not the lithium-induced tau decrease involves GSK3beta remained to be determined. For that purpose, cultured cortical neurons were exposed to 6-bromo-indirubin-3'-oxime (6-BIO), a more selective and potent GSK3beta inhibitor (ID50=1.5 microM) or to lithium. Analysis of tau levels and phosphorylation by western-blot assays showed that lithium and 6-BIO dose-dependently decreased both tau protein levels and tau phosphorylation. Conversely, inhibition of cyclin-dependent kinase-5 (CDK5) by roscovitine decreased phosphorylated tau but failed to alter tau protein levels. These data indicate that GSK3beta might be selectively involved in the regulation of tau protein levels. Moreover, inhibition of PP2A by okadaic acid, but not that of PP2B (protein phosphatase-2B)/calcineurin by FK506, dose-dependently reversed lithium-induced tau decrease. These data indicate that GSK3beta regulates both tau phosphorylation and total tau levels through PP2A.

  14. Cellulose, Chitosan, and Keratin Composite Materials. Controlled Drug Release

    PubMed Central

    2015-01-01

    A method was developed in which cellulose (CEL) and/or chitosan (CS) were added to keratin (KER) to enable [CEL/CS+KER] composites to have better mechanical strength and wider utilization. Butylmethylimmidazolium chloride ([BMIm+Cl–]), an ionic liquid, was used as the sole solvent, and because the [BMIm+Cl–] used was recovered, the method is green and recyclable. Fourier transform infrared spectroscopy results confirm that KER, CS, and CEL remain chemically intact in the composites. Tensile strength results expectedly show that adding CEL or CS into KER substantially increases the mechanical strength of the composites. We found that CEL, CS, and KER can encapsulate drugs such as ciprofloxacin (CPX) and then release the drug either as a single or as two- or three-component composites. Interestingly, release rates of CPX by CEL and CS either as a single or as [CEL+CS] composite are faster and independent of concentration of CS and CEL. Conversely, the release rate by KER is much slower, and when incorporated into CEL, CS, or CEL+CS, it substantially slows the rate as well. Furthermore, the reducing rate was found to correlate with the concentration of KER in the composites. KER, a protein, is known to have secondary structure, whereas CEL and CS exist only in random form. This makes KER structurally denser than CEL and CS; hence, KER releases the drug slower than CEL and CS. The results clearly indicate that drug release can be controlled and adjusted at any rate by judiciously selecting the concentration of KER in the composites. Furthermore, the fact that the [CEL+CS+KER] composite has combined properties of its components, namely, superior mechanical strength (CEL), hemostasis and bactericide (CS), and controlled drug release (KER), indicates that this novel composite can be used in ways which hitherto were not possible, e.g., as a high-performance bandage to treat chronic and ulcerous wounds. PMID:25548871

  15. VISA is an adapter protein required for virus-triggered IFN-beta signaling.

    PubMed

    Xu, Liang-Guo; Wang, Yan-Yi; Han, Ke-Jun; Li, Lian-Yun; Zhai, Zhonghe; Shu, Hong-Bing

    2005-09-16

    Viral infection or stimulation of TLR3 triggers signaling cascades, leading to activation of the transcription factors IRF-3 and NF-kappaB, which collaborate to induce transcription of type I interferon (IFN) genes. In this study, we identified a protein termed VISA (for virus-induced signaling adaptor) as a critical component in the IFN-beta signaling pathways. VISA recruits IRF-3 to the cytoplasmic viral dsRNA sensor RIG-I. Depletion of VISA inhibits virus-triggered and RIG-I-mediated activation of IRF-3, NF-kappaB, and the IFN-beta promoter, suggesting that VISA plays a central role in virus-triggered TLR3-independent IFN-beta signaling. Our data also indicate that VISA interacts with TRIF and TRAF6 and mediates bifurcation of the TLR3-triggered NF-kappaB and IRF-3 activation pathways. These findings suggest that VISA is critically involved in both virus-triggered TLR3-independent and TLR3-mediated antiviral IFN signaling.

  16. Identification and comparative analysis of the epidermal differentiation complex in snakes

    PubMed Central

    Brigit Holthaus, Karin; Mlitz, Veronika; Strasser, Bettina; Tschachler, Erwin; Alibardi, Lorenzo; Eckhart, Leopold

    2017-01-01

    The epidermis of snakes efficiently protects against dehydration and mechanical stress. However, only few proteins of the epidermal barrier to the environment have so far been identified in snakes. Here, we determined the organization of the Epidermal Differentiation Complex (EDC), a cluster of genes encoding protein constituents of cornified epidermal structures, in snakes and compared it to the EDCs of other squamates and non-squamate reptiles. The EDC of snakes displays shared synteny with that of the green anole lizard, including the presence of a cluster of corneous beta-protein (CBP)/beta-keratin genes. We found that a unique CBP comprising 4 putative beta-sheets and multiple cysteine-rich EDC proteins are conserved in all snakes and other squamates investigated. Comparative genomics of squamates suggests that the evolution of snakes was associated with a gene duplication generating two isoforms of the S100 fused-type protein, scaffoldin, the origin of distinct snake-specific EDC genes, and the loss of other genes that were present in the EDC of the last common ancestor of snakes and lizards. Taken together, our results provide new insights into the evolution of the skin in squamates and a basis for the characterization of the molecular composition of the epidermis in snakes. PMID:28345630

  17. Proteomic profiling of bone marrow mesenchymal stem cells upon TGF-beta stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Daojing; Park, Jennifer S.; Chu, Julia S.F.

    Bone marrow mesenchymal stem cells (MSCs) can differentiate into different types of cells, and have tremendous potential for cell therapy and tissue engineering. Transforming growth factor {beta}1 (TGF-{beta}) plays an important role in cell differentiation and vascular remodeling. We showed that TGF-{beta} induced cell morphology change and an increase in actin fibers in MSCs. To determine the global effects of TGF-{beta} on MSCs, we employed a proteomic strategy to analyze the effect of TGF-{beta} on the human MSC proteome. By using two-dimensional gel electrophoresis and electrospray ionization coupled to Quadrupole/time-of-flight tandem mass spectrometers, we have generated a proteome reference mapmore » of MSCs, and identified {approx}30 proteins with an increase or decrease in expression or phosphorylation in response to TGF-{beta}. The proteins regulated by TGF-{beta} included cytoskeletal proteins, matrix synthesis proteins, membrane proteins, metabolic enzymes, etc. TGF-{beta} increased the expression of smooth muscle (SM) {alpha}-actin and decreased the expression of gelsolin. Over-expression of gelsolin inhibited TGF-{beta}-induced assembly of SM {alpha}-actin; on the other hand, knocking down gelsolin expression enhanced the assembly of {alpha}-actin and actin filaments without significantly affecting {alpha}-actin expression. These results suggest that TGF-{beta} coordinates the increase of {alpha}-actin and the decrease of gelsolin to promote MSC differentiation. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.« less

  18. Release of IL-1beta via IL-1beta-converting enzyme in a skin dendritic cell line exposed to 2,4-dinitrofluorobenzene.

    PubMed

    Matos, Teresa J; Jaleco, Sara P; Gonçalo, Margarida; Duarte, Carlos B; Lopes, M Celeste

    2005-08-14

    We used a mouse fetal skin dendritic cell line (FSDC) to study the effect of the strong allergen 2,4-dinitrofluorobenzene (DNFB) on interleukin (IL)-1beta release and IL-1beta receptor immunoreactivity. Stimulation with DNFB (30 minutes) increased IL-1 release without changing the mRNA levels of the protein. Furthermore, DNFB increased transiently the interleukin-1beta-converting enzyme (ICE) activity, as measured with its fluorogenic substrate Z-Tyr-Val-Ala-Asp-AFC. The ICE inhibitor Z-YVAD-FMK prevented the release of IL-1beta evoked by DNFB. Incubation of the cells with DNFB (30 minutes) strongly increased IL-1beta receptor immunoreactivity. The rapid effect of DNFB on the release of mature IL-1beta, without inducing an increase of IL-1beta mRNA in FSDC, suggests a posttranslational modification of pro-IL-1beta by ICE activity.

  19. The corepressor CtBP interacts with Evi-1 to repress transforming growth factor beta signaling.

    PubMed

    Izutsu, K; Kurokawa, M; Imai, Y; Maki, K; Mitani, K; Hirai, H

    2001-05-01

    Evi-1 is a zinc finger nuclear protein whose inappropriate expression leads to leukemic transformation of hematopoietic cells in mice and humans. This was previously shown to block the antiproliferative effect of transforming growth factor beta (TGF-beta). Evi-1 represses TGF-beta signaling by direct interaction with Smad3 through its first zinc finger motif. Here, it is demonstrated that Evi-1 represses Smad-induced transcription by recruiting C-terminal binding protein (CtBP) as a corepressor. Evi-1 associates with CtBP1 through one of the consensus binding motifs, and this association is required for efficient inhibition of TGF-beta signaling. A specific inhibitor for histone deacetylase (HDAc) alleviates Evi-1-mediated repression of TGF-beta signaling, suggesting that HDAc is involved in the transcriptional repression by Evi-1. This identifies a novel function of Evi-1 as a member of corepressor complexes and suggests that aberrant recruitment of corepressors is one of the mechanisms for Evi-1-induced leukemogenesis.

  20. Regulation of 11 beta-hydroxysteroid dehydrogenase enzymes in the rat kidney by estradiol.

    PubMed

    Gomez-Sanchez, Elise P; Ganjam, Venkataseshu; Chen, Yuan Jian; Liu, Ying; Zhou, Ming Yi; Toroslu, Cigdem; Romero, Damian G; Hughson, Michael D; de Rodriguez, Angela; Gomez-Sanchez, Celso E

    2003-08-01

    The 11beta-hydroxysteroid dehydrogenase (11betaHSD) type 1 (11betaHSD1) enzyme is an NADP+-dependent oxidoreductase, usually reductase, of major glucocorticoids. The NAD+-dependent type 2 (11betaHSD2) enzyme is an oxidase that inactivates cortisol and corticosterone, conferring extrinsic specificity of the mineralocorticoid receptor for aldosterone. We reported that addition of a reducing agent to renal homogenates results in the monomerization of 11betaHSD2 dimers and a significant increase in NAD+-dependent corticosterone conversion. Estrogenic effects on expression, dimerization, and activity of the kidney 11betaHSD1 and -2 enzymes are described herein. Renal 11betaHSD1 mRNA and protein expressions were decreased to very low levels by estradiol (E2) treatment of both intact and castrated male rats; testosterone had no effect. NADP+-dependent enzymatic activity of renal homogenates from E2-treated rats measured under nonreducing conditions was less than that of homogenates from intact animals. Addition of 10 mM DTT to aliquots from these same homogenates abrogated the difference in NADP+-dependent activity between E2-treated and control rats. In contrast, 11betaHSD2 mRNA and protein expressions were significantly increased by E2 treatment. There was a marked increase in the number of juxtamedullary proximal tubules stained by the antibody against 11betaHSD2 after the administration of E2. Notwithstanding, neither the total corticosterone and 11-dehydrocorticosterone excreted in the urine nor their ratio differed between E2- and vehicle-treated rats. NAD+-dependent enzymatic activity in the absence or presence of a reducing agent demonstrated that the increase in 11betaHSD2 protein was not associated with an increase in in vitro activity unless the dimers were reduced to monomers.