Science.gov

Sample records for keratinocytes identifies similarities

  1. Breast cancer resistance protein identifies clonogenic keratinocytes in human interfollicular epidermis.

    PubMed

    Ma, Dongrui; Chua, Alvin Wen Choong; Yang, Ennan; Teo, Peiyun; Ting, Yixin; Song, Colin; Lane, Ellen Birgitte; Lee, Seng Teik

    2015-03-24

    There is a practical need for the identification of robust cell-surface markers that can be used to enrich for living keratinocyte progenitor cells. Breast cancer resistance protein (ABCG2), a member of the ATP binding cassette (ABC) transporter family, is known to be a marker for stem/progenitor cells in many tissues and organs. We investigated the expression of ABCG2 protein in normal human epidermis to evaluate its potential as a cell surface marker for identifying and enriching for clonogenic epidermal keratinocytes outside the pilosebaceous tract. Immunofluorescence and immunoblotting studies of human skin showed that ABCG2 is expressed in a subset of basal layer cells in the epidermis. Flow cytometry analysis showed approximately 2-3% of keratinocytes in non-hair-bearing epidermis expressing ABCG2; this population also expresses p63, β1 and α6 integrins and keratin 14, but not CD34, CD71, C-kit or involucrin. The ABCG2-positive keratinocytes showed significantly higher colony forming efficiency when co-cultured with mouse 3T3 feeder cells, and more extensive long-term proliferation capacity in vitro, than did ABCG2-negative keratinocytes. Upon clonal analysis, most of the freshly isolated ABCG2-positive keratinocytes formed holoclones and were capable of generating a stratified differentiating epidermis in organotypic culture models. These data indicate that in skin, expression of the ABCG2 transporter is a characteristic of interfollicular keratinocyte progentior cells and suggest that ABCG2 may be useful for enriching keratinocyte stem cells in human interfollicular epidermis.

  2. Matrix Metalloproteinase 10 Degradomics in Keratinocytes and Epidermal Tissue Identifies Bioactive Substrates With Pleiotropic Functions.

    PubMed

    Schlage, Pascal; Kockmann, Tobias; Sabino, Fabio; Kizhakkedathu, Jayachandran N; Auf dem Keller, Ulrich

    2015-12-01

    Matrix metalloproteinases (MMPs) are important players in skin homeostasis, wound repair, and in the pathogenesis of skin cancer. It is now well established that most of their functions are related to processing of bioactive proteins rather than components of the extracellular matrix (ECM). MMP10 is highly expressed in keratinocytes at the wound edge and at the invasive front of tumors, but hardly any non-ECM substrates have been identified and its function in tissue repair and carcinogenesis is unclear. To better understand the role of MMP10 in the epidermis, we employed multiplexed iTRAQ-based Terminal Amine Isotopic Labeling of Substrates (TAILS) and monitored MMP10-dependent proteolysis over time in secretomes from keratinocytes. Time-resolved abundance clustering of neo-N termini classified MMP10-dependent cleavage events by efficiency and refined the MMP10 cleavage site specificity by revealing a so far unknown preference for glutamate in the P1 position. Moreover, we identified and validated the integrin alpha 6 subunit, cysteine-rich angiogenic inducer 61 and dermokine as novel direct MMP10 substrates and provide evidence for MMP10-dependent but indirect processing of phosphatidylethanolamine-binding protein 1. Finally, we sampled the epidermal proteome and degradome in unprecedented depth and confirmed MMP10-dependent processing of dermokine in vivo by TAILS analysis of epidermis from transgenic mice that overexpress a constitutively active mutant of MMP10 in basal keratinocytes. The newly identified substrates are involved in cell adhesion, migration, proliferation, and/or differentiation, indicating a contribution of MMP10 to local modulation of these processes during wound healing and cancer development. Data are available via ProteomeXchange with identifier PXD002474.

  3. Matrix Metalloproteinase 10 Degradomics in Keratinocytes and Epidermal Tissue Identifies Bioactive Substrates With Pleiotropic Functions*

    PubMed Central

    Schlage, Pascal; Kockmann, Tobias; Sabino, Fabio; Kizhakkedathu, Jayachandran N.; auf dem Keller, Ulrich

    2015-01-01

    Matrix metalloproteinases (MMPs) are important players in skin homeostasis, wound repair, and in the pathogenesis of skin cancer. It is now well established that most of their functions are related to processing of bioactive proteins rather than components of the extracellular matrix (ECM). MMP10 is highly expressed in keratinocytes at the wound edge and at the invasive front of tumors, but hardly any non-ECM substrates have been identified and its function in tissue repair and carcinogenesis is unclear. To better understand the role of MMP10 in the epidermis, we employed multiplexed iTRAQ-based Terminal Amine Isotopic Labeling of Substrates (TAILS) and monitored MMP10-dependent proteolysis over time in secretomes from keratinocytes. Time-resolved abundance clustering of neo-N termini classified MMP10-dependent cleavage events by efficiency and refined the MMP10 cleavage site specificity by revealing a so far unknown preference for glutamate in the P1 position. Moreover, we identified and validated the integrin alpha 6 subunit, cysteine-rich angiogenic inducer 61 and dermokine as novel direct MMP10 substrates and provide evidence for MMP10-dependent but indirect processing of phosphatidylethanolamine-binding protein 1. Finally, we sampled the epidermal proteome and degradome in unprecedented depth and confirmed MMP10-dependent processing of dermokine in vivo by TAILS analysis of epidermis from transgenic mice that overexpress a constitutively active mutant of MMP10 in basal keratinocytes. The newly identified substrates are involved in cell adhesion, migration, proliferation, and/or differentiation, indicating a contribution of MMP10 to local modulation of these processes during wound healing and cancer development. Data are available via ProteomeXchange with identifier PXD002474. PMID:26475864

  4. Application of Recursive Partitioning to Derive and Validate a Claims-Based Algorithm for Identifying Keratinocyte Carcinoma (Nonmelanoma Skin Cancer).

    PubMed

    Chan, An-Wen; Fung, Kinwah; Tran, Jennifer M; Kitchen, Jessica; Austin, Peter C; Weinstock, Martin A; Rochon, Paula A

    2016-10-01

    Keratinocyte carcinoma (nonmelanoma skin cancer) accounts for substantial burden in terms of high incidence and health care costs but is excluded by most cancer registries in North America. Administrative health insurance claims databases offer an opportunity to identify these cancers using diagnosis and procedural codes submitted for reimbursement purposes. To apply recursive partitioning to derive and validate a claims-based algorithm for identifying keratinocyte carcinoma with high sensitivity and specificity. Retrospective study using population-based administrative databases linked to 602 371 pathology episodes from a community laboratory for adults residing in Ontario, Canada, from January 1, 1992, to December 31, 2009. The final analysis was completed in January 2016. We used recursive partitioning (classification trees) to derive an algorithm based on health insurance claims. The performance of the derived algorithm was compared with 5 prespecified algorithms and validated using an independent academic hospital clinic data set of 2082 patients seen in May and June 2011. Sensitivity, specificity, positive predictive value, and negative predictive value using the histopathological diagnosis as the criterion standard. We aimed to achieve maximal specificity, while maintaining greater than 80% sensitivity. Among 602 371 pathology episodes, 131 562 (21.8%) had a diagnosis of keratinocyte carcinoma. Our final derived algorithm outperformed the 5 simple prespecified algorithms and performed well in both community and hospital data sets in terms of sensitivity (82.6% and 84.9%, respectively), specificity (93.0% and 99.0%, respectively), positive predictive value (76.7% and 69.2%, respectively), and negative predictive value (95.0% and 99.6%, respectively). Algorithm performance did not vary substantially during the 18-year period. This algorithm offers a reliable mechanism for ascertaining keratinocyte carcinoma for epidemiological research in the absence of

  5. Agerarin, identified from Ageratum houstonianum, stimulates circadian CLOCK-mediated aquaporin-3 gene expression in HaCaT keratinocytes.

    PubMed

    Shin, Soon Young; Lee, Da Hyun; Gil, Ha-Na; Kim, Beom Soo; Choe, Jeong-Sook; Kim, Jung-Bong; Lee, Young Han; Lim, Yoongho

    2017-09-11

    The juice of Ageratum houstonianum is used in folk medicine as an external wound healing aid for skin injuries. However, the active component of A. houstonianum and its mode of action in skin wound healing has not been investigated. This study was conducted to investigate the effect of A. houstonianum ethanolnolic extract (AHE) on the expression of aquaporin-3 (AQP3), an integral membrane protein for water and glycerol transport in keratinocytes, and to identify the structure of the A. houstonianum bioactive compound. Here, we show that AHE increased AQP3 gene expression at the transcriptional level through the p38 MAPK pathway in HaCaT cells. Furthermore, AHE ameliorated suppression of AQP3 expression caused by ultraviolet B (UVB) irradiation. Agerarin (6,7-dimethoxy-2,2-dimethyl-2H-chromene) was identified as the bioactive compound responsible for the up-regulation of AQP3 expression by enhancing the expression of the transcription factor circadian locomotor output cycles kaput (CLOCK). In conclusion, agerarin is a bioactive compound in AHE responsible for CLOCK-mediated AQP3 expression in keratinocytes.

  6. Sonicated and stirred copper oxide nanoparticles induce similar toxicity and pro-inflammatory response in N-hTERT keratinocytes and SZ95 sebocytes

    NASA Astrophysics Data System (ADS)

    Piret, Jean-Pascal; Mejia, Jorge; Lucas, Stéphane; Zouboulis, Christos C.; Saout, Christelle; Toussaint, Olivier

    2014-04-01

    The potential toxic and pro-inflammatory effects of rod-shaped copper oxide (CuO) nanoparticles (NPs; 10 ± 3 nm in thickness and 74 ± 17 nm in length) were studied on N-hTERT keratinocytes and SZ95 sebocytes and on reconstructed human epidermis. Non-sonicated and sonicated CuO NPs induced similar cellular toxicity. The toxic effect of CuO NPs (non-sonicated and sonicated) was more pronounced in keratinocytes than in sebocytes. Pro-oxidant effects of CuO NPs were demonstrated by showing increase in the production of reactive oxygen species and decrease of cellular glutathione. In addition, DNA-binding activities suggested that redox-sensitive transcription factors Nrf2 and NF-κB were implicated in the response of keratinocytes to CuO NPs. Transcriptomic analysis showed an increase in the abundance of transcript species coding for pro-inflammatory interleukins (e.g. IL-8 and IL-1α) and chemokines. In reconstituted human epidermis exposed topically to raw CuO NPs, no effect on the integrity, viability and inflammatory response was noticed.

  7. Similarity transformation approach to identifiability analysis of nonlinear compartmental models.

    PubMed

    Vajda, S; Godfrey, K R; Rabitz, H

    1989-04-01

    Through use of the local state isomorphism theorem instead of the algebraic equivalence theorem of linear systems theory, the similarity transformation approach is extended to nonlinear models, resulting in finitely verifiable sufficient and necessary conditions for global and local identifiability. The approach requires testing of certain controllability and observability conditions, but in many practical examples these conditions prove very easy to verify. In principle the method also involves nonlinear state variable transformations, but in all of the examples presented in the paper the transformations turn out to be linear. The method is applied to an unidentifiable nonlinear model and a locally identifiable nonlinear model, and these are the first nonlinear models other than bilinear models where the reason for lack of global identifiability is nontrivial. The method is also applied to two models with Michaelis-Menten elimination kinetics, both of considerable importance in pharmacokinetics, and for both of which the complicated nature of the algebraic equations arising from the Taylor series approach has hitherto defeated attempts to establish identifiability results for specific input functions.

  8. [Peptide-agonist of protease-activated receptor (PAR 1), similar to activated protein C, promotes proliferation in keratinocytes and wound healing of epithelial layer].

    PubMed

    Kiseleva, E V; Sidorova, M V; Gorbacheva, L R; Strukova, S M

    2014-01-01

    Activated protein C (APC) is serine protease hemostasis, independent of its anticoagulant activity, exhibits anti-inflammatory and anti-apoptotic properties that determine the possibility of the protective effects of APC in different diseases, including sepsis and chronic wound healing. APC, binding of endothelial protein C receptor (EPCR) and specifically cleaving PAR1 receptor and releasing peptide agonist PAR1 stabilizes not only endothelial cells, but also many others, including epidermal keratinocytes of the skin. We develop the hypothesis that the cytoprotective effect of APC on the cells, involved in wound healing, seem to imitate peptide - analogous of PAR1 "tethered ligand" that activate PAR1. In our work, we synthesized a peptide (AP9) - analogue of PAR1 tethered ligand, released by APC, and firstly showed that peptide AP9 (0.1-10 мM), like to APC (0.01-100 nM), stimulates the proliferative activity of human primary keratinocytes. Using a model of the formation of epithelial wounds in vitro we found that peptide AP9, as well as protease APC, accelerates wound healing. Using specific antibodies to the receptor PAR1 and EPCR was studied the receptor mechanism of AP9 action in wound healing compared with the action of APС. The necessity of both receptors - PAR1 and EPСR, for proliferative activity of agonists was revealed. Identified in our work imitation by peptide AP9 - PAR1 ligand, APC acts on keratinocytes suggests the possibility of using a peptide AP9 to stimulate tissue repair.

  9. Identifiable Orthographically Similar Word Primes Interfere in Visual Word Identification

    ERIC Educational Resources Information Center

    Burt, Jennifer S.

    2009-01-01

    University students participated in five experiments concerning the effects of unmasked, orthographically similar, primes on visual word recognition in the lexical decision task (LDT) and naming tasks. The modal prime-target stimulus onset asynchrony (SOA) was 350 ms. When primes were words that were orthographic neighbors of the targets, and…

  10. Identifying Similarities in Cognitive Subtest Functional Requirements: An Empirical Approach

    ERIC Educational Resources Information Center

    Frisby, Craig L.; Parkin, Jason R.

    2007-01-01

    In the cognitive test interpretation literature, a Rational/Intuitive, Indirect Empirical, or Combined approach is typically used to construct conceptual taxonomies of the functional (behavioral) similarities between subtests. To address shortcomings of these approaches, the functional requirements for 49 subtests from six individually…

  11. Identifying Similarities in Cognitive Subtest Functional Requirements: An Empirical Approach

    ERIC Educational Resources Information Center

    Frisby, Craig L.; Parkin, Jason R.

    2007-01-01

    In the cognitive test interpretation literature, a Rational/Intuitive, Indirect Empirical, or Combined approach is typically used to construct conceptual taxonomies of the functional (behavioral) similarities between subtests. To address shortcomings of these approaches, the functional requirements for 49 subtests from six individually…

  12. Identifiable Orthographically Similar Word Primes Interfere in Visual Word Identification

    ERIC Educational Resources Information Center

    Burt, Jennifer S.

    2009-01-01

    University students participated in five experiments concerning the effects of unmasked, orthographically similar, primes on visual word recognition in the lexical decision task (LDT) and naming tasks. The modal prime-target stimulus onset asynchrony (SOA) was 350 ms. When primes were words that were orthographic neighbors of the targets, and…

  13. Gene expression profiling to identify markers associated with deregulated hTERT in HPV-transformed keratinocytes and cervical cancer.

    PubMed

    de Wilde, Jillian; Wilting, Saskia M; Meijer, Chris J L M; van de Wiel, Mark A; Ylstra, Bauke; Snijders, Peter J F; Steenbergen, Renske D M

    2008-02-15

    Although high-risk human papillomavirus (HPV) infection plays a major role in the development of cervical cancer, additive oncogenic events are involved as well. One key event involves increased activity of telomerase resulting from a deregulated expression of its catalytic subunit hTERT. Our previous microcell-mediated chromosome transfer studies revealed that introduction of human chromosome 6 in the HPV16-immortalized keratinocyte cell line FK16A and in the HPV16-containing cervical cancer cell line SiHa induced growth arrest, resulting from a repression of hTERT mRNA expression and telomerase activity. Here, this model was used to analyze expression profiles associated with hTERT deregulation in HPV-transformed cells. Microarray expression analysis of 12 FK16A/chromosome 6 hybrids, 4 of which were negative for endogenous hTERT and 8 of which were positive for endogenous hTERT, resulted in the identification of 164 differentially expressed genes. Differential expression of a selection of 5 genes was verified by real-time RT-PCR. Of these 164 genes, 32 were also differentially expressed in other HPV transformed cells with deregulated hTERT. For 2 of these genes, encoding AQP3 and MGP, altered expression in hTERT positive cervical carcinomas was confirmed by real-time RT-PCR and immunohistochemistry, respectively. Moreover, increased MGP protein expression was significantly more frequent in high-grade cervical premalignant lesions with elevated hTERT mRNA expression compared to those without. In summary, we identified 32 candidate biomarkers for deregulated hTERT mRNA expression, which may enable the identification of cervical premalignant lesions that are at highest risk to progress to invasive cancer.

  14. Distinctive molecular responses to ultraviolet radiation between keratinocytes and melanocytes

    PubMed Central

    Sun, Xiaoyun; Kim, Arianna; Nakatani, Masashi; Shen, Yao; Liu, Liang

    2017-01-01

    Solar ultraviolet radiation (UVR) is the major risk factor for skin carcinogenesis. To gain new insights into the molecular pathways mediating UVR effects in the skin, we performed comprehensive transcriptomic analyses to identify shared and distinctive molecular responses to UVR between human keratinocytes and melanocytes. Keratinocytes and melanocytes were irradiated with varying doses of UVB (10, 20 and 30 mJ/cm2) then analysed by RNA-Seq at different time points post-UVB radiation (4, 24 and 72 h). Under basal conditions, keratinocytes and melanocytes expressed similar number of genes, although they each expressed a distinctive subset of genes pertaining to their specific cellular identity. Upon UVB radiation, keratinocytes displayed a clear pattern of time- and dose-dependent changes in gene expression that was different from melanocytes. The early UVB-responsive gene set (4 h post-UVR) differed significantly from delayed UVB-responsive gene sets (24 and 72 h). We also identified multiple novel UVB signature genes including PRSS23, SERPINH1, LCE3D and CNFN, which were conserved between melanocyte and keratinocyte lines from different individuals. Taken together, our findings elucidated both common and distinctive molecular features between melanocytes and keratinocytes and uncovered novel UVB signature genes that might be utilized to predict UVB photobiological effects on the skin. PMID:27119462

  15. Quantitative keratinocyte assay detects two biological activities of human papillomavirus DNA and identifies viral types associated with cervical carcinoma.

    PubMed Central

    Schlegel, R; Phelps, W C; Zhang, Y L; Barbosa, M

    1988-01-01

    Keratinocytes electroporated with human papillomavirus (HPV) DNA (HPV-6, 11, 16 and 18) exhibited an increased cellular proliferation which was quantitated as microcolony and macrocolony formation. However, only macrocolonies induced by HPV-16 or HPV-18 DNA (the two viral types most commonly found in human cervical carcinomas) gave rise to proliferating, poorly-stratified colonies when grown in the presence of serum and calcium. Hydrocortisone increased the frequency of these differentiation-resistant colonies, and studies showed that they were immortalized, contained one copy of viral DNA per cell, expressed three discrete species of viral RNA and synthesized the viral E7 protein. HPV-induced cellular proliferation and altered differentiation are therefore separable events and may represent the activity of different viral genes. Images PMID:2460337

  16. Primary structure of keratinocyte transglutaminase.

    PubMed Central

    Phillips, M A; Stewart, B E; Qin, Q; Chakravarty, R; Floyd, E E; Jetten, A M; Rice, R H

    1990-01-01

    The nucleotide and deduced amino acid sequences of the coding regions of human and rat keratinocyte transglutaminases (protein-glutamine: amine gamma-glutamyltransferase; EC 2.3.2.13) have been determined. These yield proteins of approximately 90 kDa that are 92% identical, indicative of the conservation of important structural features. Alignments of amino acid sequences show substantial similarity among the keratinocyte transglutaminase, human clotting factor XIII catalytic subunit, guinea pig liver tissue transglutaminase, and the human erythrocyte band-4.2 protein. The keratinocyte enzyme is most similar to factor XIII, whereas the band-4.2 protein is most similar to the tissue transglutaminase. A salient feature of the keratinocyte transglutaminase is its 105-residue extension beyond the N terminus of the tissue transglutaminase. This extension and the unrelated activation peptide of factor XIII (a 37-residue extension) appear to be added for specialized functions after divergence of the tissue transglutaminase from their common lineage. Images PMID:1979171

  17. Primary structure of keratinocyte transglutaminase

    SciTech Connect

    Phillips, M.A.; Stewart, B.E.; Qin, Q.; Rice, R.H. ); Chakravarty, R. ); Floyd, E.E.; Jetten, A.M. )

    1990-12-01

    The nucleotide and deduced amino acid sequences of the coding regions of human and rat keratinocyte transglutaminases (protein-glutamine: amine {gamma}-glutamyltransferase; EC 2.3.2.13) have been determined. These yield proteins of {approximately}90 kDa that are 92% identical, indicative of the conservation of important structural features. Alignments of amino acid sequences show substantial similarity among the keratinocyte transglutaminase, human clotting factor XIII catalytic subunit, guinea pig liver tissue transglutaminase, and the human erythrocyte band-4.2 protein. The keratinocyte enzyme is most similar to factor XIII, whereas the band-4.2 protein is most similar to the tissue transglutaminase. A salient feature of the keratinocyte transglutaminase is its 105-residue extension beyond the N terminus of the tissue transglutaminase. This extension and the unreltaed activation peptide of factor XIII (a 37-residue extension) appear to be added for specialized functions after divergence of the tissue transglutaminase from their common lineage.

  18. Similarity

    NASA Technical Reports Server (NTRS)

    Apostol, Tom M. (Editor)

    1990-01-01

    In this 'Project Mathematics! series, sponsored by the California Institute for Technology (CalTech), the mathematical concept of similarity is presented. he history of and real life applications are discussed using actual film footage and computer animation. Terms used and various concepts of size, shape, ratio, area, and volume are demonstrated. The similarity of polygons, solids, congruent triangles, internal ratios, perimeters, and line segments using the previous mentioned concepts are shown.

  19. Similarity

    NASA Technical Reports Server (NTRS)

    Apostol, Tom M. (Editor)

    1990-01-01

    In this 'Project Mathematics! series, sponsored by the California Institute for Technology (CalTech), the mathematical concept of similarity is presented. he history of and real life applications are discussed using actual film footage and computer animation. Terms used and various concepts of size, shape, ratio, area, and volume are demonstrated. The similarity of polygons, solids, congruent triangles, internal ratios, perimeters, and line segments using the previous mentioned concepts are shown.

  20. Human papillomavirus type 16 (HPV-16) genomes integrated in head and neck cancers and in HPV-16-immortalized human keratinocyte clones express chimeric virus-cell mRNAs similar to those found in cervical cancers.

    PubMed

    Lace, Michael J; Anson, James R; Klussmann, Jens P; Wang, Dong Hong; Smith, Elaine M; Haugen, Thomas H; Turek, Lubomir P

    2011-02-01

    Many human papillomavirus (HPV)-positive high-grade lesions and cancers of the uterine cervix harbor integrated HPV genomes expressing the E6 and E7 oncogenes from chimeric virus-cell mRNAs, but less is known about HPV integration in head and neck cancer (HNC). Here we compared viral DNA status and E6-E7 mRNA sequences in HPV-16-positive HNC tumors to those in independent human keratinocyte cell clones derived from primary tonsillar or foreskin epithelia immortalized with HPV-16 genomes. Three of nine HNC tumors and epithelial clones containing unintegrated HPV-16 genomes expressed mRNAs spliced from HPV-16 SD880 to SA3358 and terminating at the viral early gene p(A) signal. In contrast, most integrated HPV genomes in six HNCs and a set of 31 keratinocyte clones expressed HPV-16 major early promoter (MEP)-initiated mRNAs spliced from viral SD880 directly to diverse cellular sequences, with a minority spliced to SA3358 followed by a cellular DNA junction. Sequence analysis of chimeric virus-cell mRNAs from HNC tumors and keratinocyte clones identified viral integration sites in a variety of chromosomes, with some located in or near growth control genes, including the c-myc protooncogene and the gene encoding FAP-1 phosphatase. Taken together, these findings support the hypothesis that HPV integration in cancers is a stochastic process resulting in clonal selection of aggressively expanding cells with altered gene expression of integrated HPV genomes and potential perturbations of cellular genes at or near viral integration sites. Furthermore, our results demonstrate that this selection also takes place and can be studied in primary human keratinocytes in culture.

  1. Human Papillomavirus Type 16 (HPV-16) Genomes Integrated in Head and Neck Cancers and in HPV-16-Immortalized Human Keratinocyte Clones Express Chimeric Virus-Cell mRNAs Similar to Those Found in Cervical Cancers ▿

    PubMed Central

    Lace, Michael J.; Anson, James R.; Klussmann, Jens P.; Wang, Dong Hong; Smith, Elaine M.; Haugen, Thomas H.; Turek, Lubomir P.

    2011-01-01

    Many human papillomavirus (HPV)-positive high-grade lesions and cancers of the uterine cervix harbor integrated HPV genomes expressing the E6 and E7 oncogenes from chimeric virus-cell mRNAs, but less is known about HPV integration in head and neck cancer (HNC). Here we compared viral DNA status and E6-E7 mRNA sequences in HPV-16-positive HNC tumors to those in independent human keratinocyte cell clones derived from primary tonsillar or foreskin epithelia immortalized with HPV-16 genomes. Three of nine HNC tumors and epithelial clones containing unintegrated HPV-16 genomes expressed mRNAs spliced from HPV-16 SD880 to SA3358 and terminating at the viral early gene p(A) signal. In contrast, most integrated HPV genomes in six HNCs and a set of 31 keratinocyte clones expressed HPV-16 major early promoter (MEP)-initiated mRNAs spliced from viral SD880 directly to diverse cellular sequences, with a minority spliced to SA3358 followed by a cellular DNA junction. Sequence analysis of chimeric virus-cell mRNAs from HNC tumors and keratinocyte clones identified viral integration sites in a variety of chromosomes, with some located in or near growth control genes, including the c-myc protooncogene and the gene encoding FAP-1 phosphatase. Taken together, these findings support the hypothesis that HPV integration in cancers is a stochastic process resulting in clonal selection of aggressively expanding cells with altered gene expression of integrated HPV genomes and potential perturbations of cellular genes at or near viral integration sites. Furthermore, our results demonstrate that this selection also takes place and can be studied in primary human keratinocytes in culture. PMID:21123375

  2. Expression of membrane glycoproteins in normal keratinocytes and squamous carcinoma cell lines

    SciTech Connect

    Rayter, Z. ); McIlhinney, R. ); Gusterson, B. )

    1989-08-01

    Con A acceptor glycoproteins were analyzed by 2D-PAGE and {sup 125}I-Con A overlay in three squamous carcinoma cell lines and compared with those in the simian virus (SV40)-transformed keratinocyte cell line SVK-14 and in normal keratinocytes. The majority of the glycoproteins identified by this technique were expressed at similar levels in all of the cells examined, independent of the culture conditions used. A cell surface glycoprotein gp34 was increased in the tumor cells compared with normal keratinocytes and expression varied with the culture density. Another glycoprotein, gp21, was found to be increased in expression in normal keratinocytes and stratified hyperconfluent cultures of squamous carcinoma cell lines. This paper describes the potential of this technique to identify membrane glycoproteins which may be expressed as a function of proliferation or differentiation.

  3. eTBLAST: a web server to identify expert reviewers, appropriate journals and similar publications.

    PubMed

    Errami, Mounir; Wren, Jonathan D; Hicks, Justin M; Garner, Harold R

    2007-07-01

    Authors, editors and reviewers alike use the biomedical literature to identify appropriate journals in which to publish, potential reviewers for papers or grants, and collaborators (or competitors) with similar interests. Traditionally, this process has either relied upon personal expertise and knowledge or upon a somewhat unsystematic and laborious process of manually searching through the literature for trends. To help with these tasks, we report three utilities that parse and summarize the results of an abstract similarity search to find appropriate journals for publication, authors with expertise in a given field, and documents similar to a submitted query. The utilities are based upon a program, eTBLAST, designed to identify similar documents within literature databases such as (but not limited to) MEDLINE. These services are freely accessible through the Internet at http://invention.swmed.edu/etblast/etblast.shtml, where users can upload a file or paste text such as an abstract into the browser interface.

  4. eTBLAST: a web server to identify expert reviewers, appropriate journals and similar publications

    PubMed Central

    Errami, Mounir; Wren, Jonathan D.; Hicks, Justin M.; Garner, Harold R.

    2007-01-01

    Authors, editors and reviewers alike use the biomedical literature to identify appropriate journals in which to publish, potential reviewers for papers or grants, and collaborators (or competitors) with similar interests. Traditionally, this process has either relied upon personal expertise and knowledge or upon a somewhat unsystematic and laborious process of manually searching through the literature for trends. To help with these tasks, we report three utilities that parse and summarize the results of an abstract similarity search to find appropriate journals for publication, authors with expertise in a given field, and documents similar to a submitted query. The utilities are based upon a program, eTBLAST, designed to identify similar documents within literature databases such as (but not limited to) MEDLINE. These services are freely accessible through the Internet at http://invention.swmed.edu/etblast/etblast.shtml, where users can upload a file or paste text such as an abstract into the browser interface. PMID:17452348

  5. Use of state discharge abstract data to identify hospitals performing similar types of operative procedures.

    PubMed

    Wachtel, Ruth E; Dexter, Franklin; Barry, Brian; Applegeet, Carol

    2010-04-01

    A hospital or anesthesia or surgical group that is making decisions to expand its practice benefits from knowledge of the types of surgical procedures performed at other hospitals. Discharge abstract data were used to study 1 hospital in each of 3 states. A similarity index provided information on which other hospitals in each state were competitors and/or peer institutions. To reveal potential growth opportunities, Clinical Classifications Software (CCS) grouping of specific types of procedures into broad categories was combined with the similarity index. The internal Herfindahl index was used to quantify the heterogeneity of procedures within each CCS category. Although the similarity index between many pairs of hospitals was highly influenced by the common orthopedic procedures performed at most hospitals, the similarity index was dominated by a large number of different types of procedures. For some pairs of hospitals, there was considerable overlap between the different types of procedures performed at each institution. For other pairs of hospitals, the overlap was small. Consequently, large hospitals were not always similar to each other because of the wide range of procedures performed. Smaller community hospitals were not always similar to each other either. Some small hospitals were sometimes similar to large metropolitan hospitals. The similarity index is a robust and valid method for quantitatively comparing the numbers and types of inpatient surgical procedures performed at different hospitals. The similarity index, when combined with CCS categories, is useful for identifying opportunities that enable surgeons and anesthesiologists to better meet the needs of their communities.

  6. Epidermal keratinocytes initiate wound healing and pro-inflammatory immune responses following percutaneous schistosome infection.

    PubMed

    Bourke, Claire D; Prendergast, Catriona T; Sanin, David E; Oulton, Tate E; Hall, Rebecca J; Mountford, Adrian P

    2015-03-01

    Keratinocytes constitute the majority of cells in the skin's epidermis, the first line of defence against percutaneous pathogens. Schistosome larvae (cercariae) actively penetrate the epidermis to establish infection, however the response of keratinocytes to invading cercariae has not been investigated. Here we address the hypothesis that cercariae activate epidermal keratinocytes to promote the development of a pro-inflammatory immune response in the skin. C57BL/6 mice were exposed to Schistosoma mansoni cercariae via each pinna and non-haematopoietic cells isolated from epidermal tissue were characterised for the presence of different keratinocyte sub-sets at 6, 24 and 96 h p.i. We identified an expansion of epidermal keratinocyte precursors (CD45(-), CD326(-), CD34(+)) within 24 h of infection relative to naïve animals. Following infection, cells within the precursor population displayed a more differentiated phenotype (α6integrin(-)) than in uninfected skin. Parallel immunohistochemical analysis of pinnae cryosections showed that this expansion corresponded to an increase in the intensity of CD34 staining, specifically in the basal bulge region of hair follicles of infected mice, and a higher frequency of keratinocyte Ki67(+) nuclei in both the hair follicle and interfollicular epidermis. Expression of pro-inflammatory cytokine and stress-associated keratin 6b genes was also transiently upregulated in the epidermal tissue of infected mice. In vitro exposure of keratinocyte precursors isolated from neonatal mouse skin to excretory/secretory antigens released by penetrating cercariae elicited IL-1α and IL-1β production, supporting a role for keratinocyte precursors in initiating cutaneous inflammatory immune responses. Together, these observations indicate that S.mansoni cercariae and their excretory/secretory products act directly upon epidermal keratinocytes, which respond by initiating barrier repair and pro-inflammatory mechanisms similar to those

  7. Epidermal keratinocytes initiate wound healing and pro-inflammatory immune responses following percutaneous schistosome infection

    PubMed Central

    Bourke, Claire D.; Prendergast, Catriona T.; Sanin, David E.; Oulton, Tate E.; Hall, Rebecca J.; Mountford, Adrian P.

    2015-01-01

    Keratinocytes constitute the majority of cells in the skin’s epidermis, the first line of defence against percutaneous pathogens. Schistosome larvae (cercariae) actively penetrate the epidermis to establish infection, however the response of keratinocytes to invading cercariae has not been investigated. Here we address the hypothesis that cercariae activate epidermal keratinocytes to promote the development of a pro-inflammatory immune response in the skin. C57BL/6 mice were exposed to Schistosoma mansoni cercariae via each pinna and non-haematopoietic cells isolated from epidermal tissue were characterised for the presence of different keratinocyte sub-sets at 6, 24 and 96 h p.i. We identified an expansion of epidermal keratinocyte precursors (CD45−, CD326−, CD34+) within 24 h of infection relative to naïve animals. Following infection, cells within the precursor population displayed a more differentiated phenotype (α6integrin−) than in uninfected skin. Parallel immunohistochemical analysis of pinnae cryosections showed that this expansion corresponded to an increase in the intensity of CD34 staining, specifically in the basal bulge region of hair follicles of infected mice, and a higher frequency of keratinocyte Ki67+ nuclei in both the hair follicle and interfollicular epidermis. Expression of pro-inflammatory cytokine and stress-associated keratin 6b genes was also transiently upregulated in the epidermal tissue of infected mice. In vitro exposure of keratinocyte precursors isolated from neonatal mouse skin to excretory/secretory antigens released by penetrating cercariae elicited IL-1α and IL-1β production, supporting a role for keratinocyte precursors in initiating cutaneous inflammatory immune responses. Together, these observations indicate that S.mansoni cercariae and their excretory/secretory products act directly upon epidermal keratinocytes, which respond by initiating barrier repair and pro-inflammatory mechanisms similar to those

  8. Identifying Similar Patterns of Structural Flexibility in Proteins by Disorder Prediction and Dynamic Programming

    PubMed Central

    Petrovich, Aidan; Borne, Adam; Uversky, Vladimir N.; Xue, Bin

    2015-01-01

    Computational methods are prevailing in identifying protein intrinsic disorder. The results from predictors are often given as per-residue disorder scores. The scores describe the disorder propensity of amino acids of a protein and can be further represented as a disorder curve. Many proteins share similar patterns in their disorder curves. The similar patterns are often associated with similar functions and evolutionary origins. Therefore, finding and characterizing specific patterns of disorder curves provides a unique and attractive perspective of studying the function of intrinsically disordered proteins. In this study, we developed a new computational tool named IDalign using dynamic programming. This tool is able to identify similar patterns among disorder curves, as well as to present the distribution of intrinsic disorder in query proteins. The disorder-based information generated by IDalign is significantly different from the information retrieved from classical sequence alignments. This tool can also be used to infer functions of disordered regions and disordered proteins. The web server of IDalign is available at (http://labs.cas.usf.edu/bioinfo/service.html). PMID:26086829

  9. Hyaluronan Does Not Regulate Human Epidermal Keratinocyte Proliferation and Differentiation.

    PubMed

    Malaisse, Jérémy; Pendaries, Valérie; Hontoir, Fanny; De Glas, Valérie; Van Vlaender, Daniel; Simon, Michel; Lambert de Rouvroit, Catherine; Poumay, Yves; Flamion, Bruno

    2016-03-18

    Hyaluronan (HA) is synthesized by three HA synthases (HAS1, HAS2, and HAS3) and secreted in the extracellular matrix. In human skin, large amounts of HA are found in the dermis. HA is also synthesized by keratinocytes in the epidermis, although its epidermal functions are not clearly identified yet. To investigate HA functions, we studied the effects of HA depletion on human keratinocyte physiology within in vitro reconstructed human epidermis. Inhibition of HA synthesis with 4-methylumbelliferone (4MU) did not modify the expression profile of the epidermal differentiation markers involucrin, keratin 10, and filaggrin during tissue reconstruction. In contrast, when keratinocytes were incubated with 4MU, cell proliferation was decreased. In an attempt to rescue the proliferation function, HA samples of various mean molecular masses were added to keratinocyte cultures treated with 4MU. These samples were unable to rescue the initial proliferation rate. Furthermore, treatments with HA-specific hyaluronidase, although removing almost all HA from keratinocyte cultures, did not alter the differentiation or proliferation processes. The differences between 4MU and hyaluronidase effects did not result from differences in intracellular HA, sulfated glycosaminoglycan concentration, apoptosis, or levels of HA receptors, all of which remained unchanged. Similarly, knockdown of UDP-glucose 6-dehydrogenase (UGDH) using lentiviral shRNA effectively decreased HA production but did not affect proliferation rate. Overall, these data suggest that HA levels in the human epidermis are not directly correlated with keratinocyte proliferation and differentiation and that incubation of cells with 4MU cannot equate with HA removal. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Hyaluronan Does Not Regulate Human Epidermal Keratinocyte Proliferation and Differentiation*

    PubMed Central

    Malaisse, Jérémy; Pendaries, Valérie; Hontoir, Fanny; De Glas, Valérie; Van Vlaender, Daniel; Simon, Michel; Lambert de Rouvroit, Catherine; Poumay, Yves; Flamion, Bruno

    2016-01-01

    Hyaluronan (HA) is synthesized by three HA synthases (HAS1, HAS2, and HAS3) and secreted in the extracellular matrix. In human skin, large amounts of HA are found in the dermis. HA is also synthesized by keratinocytes in the epidermis, although its epidermal functions are not clearly identified yet. To investigate HA functions, we studied the effects of HA depletion on human keratinocyte physiology within in vitro reconstructed human epidermis. Inhibition of HA synthesis with 4-methylumbelliferone (4MU) did not modify the expression profile of the epidermal differentiation markers involucrin, keratin 10, and filaggrin during tissue reconstruction. In contrast, when keratinocytes were incubated with 4MU, cell proliferation was decreased. In an attempt to rescue the proliferation function, HA samples of various mean molecular masses were added to keratinocyte cultures treated with 4MU. These samples were unable to rescue the initial proliferation rate. Furthermore, treatments with HA-specific hyaluronidase, although removing almost all HA from keratinocyte cultures, did not alter the differentiation or proliferation processes. The differences between 4MU and hyaluronidase effects did not result from differences in intracellular HA, sulfated glycosaminoglycan concentration, apoptosis, or levels of HA receptors, all of which remained unchanged. Similarly, knockdown of UDP-glucose 6-dehydrogenase (UGDH) using lentiviral shRNA effectively decreased HA production but did not affect proliferation rate. Overall, these data suggest that HA levels in the human epidermis are not directly correlated with keratinocyte proliferation and differentiation and that incubation of cells with 4MU cannot equate with HA removal. PMID:26627828

  11. The waveform similarity approach to identify dependent events in instrumental seismic catalogues

    NASA Astrophysics Data System (ADS)

    Barani, S.; Ferretti, G.; Massa, M.; Spallarossa, D.

    2007-01-01

    In this paper, waveform similarity analysis is adapted and implemented in a declustering procedure to identify foreshocks and aftershocks, to obtain instrumental catalogues that are cleaned of dependent events and to perform an independent check of the results of traditional declustering techniques. Unlike other traditional declustering methods (i.e. windowing techniques), the application of cross-correlation analysis allows definition of groups of dependent events (multiplets) characterized by similar location, fault mechanism and propagation pattern. In this way the chain of intervening related events is led by the seismogenetic features of earthquakes. Furthermore, a time-selection criterion is used to define time-independent seismic episodes eventually joined (on the basis of waveform similarity) into a single multiplet. The results, obtained applying our procedure to a test data set, show that the declustered catalogue is drawn by the Poisson distribution with a degree of confidence higher than using the Gardner and Knopoff method. The declustered catalogues, applying these two approaches, are similar with respect to the frequency-magnitude distribution and the number of earthquakes. Nevertheless, the application of our approach leads to declustered catalogues properly related to the seismotectonic background and the reology of the investigated area and the success of the procedure is ensured by the independence of the results on estimated location errors of the events collected in the raw catalogue.

  12. Pollution trees: identifying similarities among complex pollutant mixtures in water and correlating them to mutagenicity.

    PubMed

    Zheng, Weiwei; Wang, Xia; Tian, Dajun; Zhang, Hao; Tian, Weidong; Andersen, Melvin E; Zheng, Yuxin; Sun, Xin; Jiang, Songhui; Cao, Zhaojin; He, Gengsheng; Qu, Weidong

    2012-07-03

    There are relatively few tools available for computing and visualizing similarities among complex mixtures and in correlating the chemical composition clusters with toxicological clusters of mixtures. Using the "intersection and union ratio (IUR)" and other traditional distance matrices on contaminant profiles of 33 specific water samples, we used "pollution trees" to compare these mixtures. The "pollution trees" constructed by neighbor-joining (NJ), maximum parsimony (MP), and maximum likelihood (ML) methods allowed comparison of similarities among these samples. The mutagenicity of each sample was then mapped to the "pollution tree". The IUR-distance-based measure proved effective in comparing chemical composition and compound level differences between mixtures. We found a robust "pollution tree" containing seven major lineages with certain broad characteristics: treated municipal water samples were different from raw water samples and untreated rural drinking water samples were similar with local water sources. The IUR-distance-based tree was more highly correlated to mutagenicity than were other distance matrices, i.e., MP/ML methods, sampling group, region, or water type. IUR-distance-based "pollution trees" may become important tools for identifying similarities among real mixtures and examining chemical composition clusters in a toxicological context.

  13. Genetic similarity between cancers and comorbid Mendelian diseases identifies candidate driver genes

    PubMed Central

    Melamed, Rachel D.; Emmett, Kevin J.; Madubata, Chioma; Rzhetsky, Andrey; Rabadan, Raul

    2015-01-01

    Despite large-scale cancer genomics studies, key somatic mutations driving cancer, and their functional roles, remain elusive. Here we propose that analysis of comorbidities of Mendelian diseases with cancers provides a novel, systematic way to discover new cancer genes. If germline genetic variation in Mendelian loci predisposes bearers to common cancers, the same loci may harbor cancer-associated somatic variation. Compilations of clinical records spanning over 100 million patients provide an unprecedented opportunity to assess clinical associations between Mendelian diseases and cancers. We systematically compare these comorbidities against recurrent somatic mutations from more than five thousand patients across many cancers. Using multiple measures of genetic similarity, we show that a Mendelian disease and comorbid cancer indeed have genetic alterations of significant functional similarity. This result provides a basis to identify candidate drivers in cancers including melanoma and glioblastoma. Some Mendelian diseases demonstrate “pan-cancer” comorbidity and shared genetics across cancers. PMID:25926297

  14. Identifying Similar Cases in Document Networks Using Cross-Reference Structures.

    PubMed

    Botsis, Taxiarchis; Scott, John; Woo, Emily Jane; Ball, Robert

    2015-11-01

    Our objective was to explore the creation of document networks based on different thresholds of shared information and different clustering algorithms on those networks to identify document clusters describing similar clinical cases. We created networks from vaccine adverse event report sets using seven approaches for linking reports. We then applied three clustering algorithms [visualization of similarities (VOS), Louvain, k-means] to these networks and evaluated their ability to identify known clusters. The report sets included one simulated set and three sets from the Vaccine Adverse Event Reporting System; each was split into training and testing subsets. Training subsets were used to estimate parameter values for the clustering algorithms and testing subsets to evaluate clusters. We created the networks by linking reports based on shared information in the form either of individual Medical Dictionary for Regulatory Activities Preferred Terms (PTs) or of dyads, triplets, quadruplets, quintuplets, and sextuplets of PTs; we created another network by weighting the single PT network connections by Lin's information theoretic approach to similarity. We then repeated this entire process using networks based on text mining output rather than structured data. We evaluated report clustering using recall, precision, and f-measure. The VOS algorithm outperformed Louvain and k-means in general. The best weighting scheme appeared to be related to the complexity of the known cluster. For example, singleton weighting performed best for an intussusception cluster driven by a single PT. We observed marginal differences between the code- and textual-based clustering. In conclusion, our approach supported identification of similar nodes in a document network.

  15. Pathway-specific profiling identifies the NF-kappa B-dependent tumor necrosis factor alpha-regulated genes in epidermal keratinocytes.

    PubMed

    Banno, Tomohiro; Gazel, Alix; Blumenberg, Miroslav

    2005-05-13

    Identification of tumor necrosis factor alpha (TNF alpha) as the key agent in inflammatory disorders led to new therapies specifically targeting TNF alpha and avoiding many side effects of earlier anti-inflammatory drugs. However, because of the wide spectrum of systems affected by TNF alpha, drugs targeting TNF alpha have a potential risk of delaying wound healing, secondary infections, and cancer. Indeed, increased risks of tuberculosis and carcinogenesis have been reported as side effects after anti-TNF alpha therapy. TNF alpha regulates many processes (e.g. immune response, cell cycle, and apoptosis) through several signal transduction pathways that convey the TNF alpha signals to the nucleus. Hypothesizing that specific TNF alpha-dependent pathways control specific processes and that inhibition of a specific pathway may yield even more precisely targeted therapies, we used oligonucleotide microarrays and parthenolide, an NF-kappa B-specific inhibitor, to identify the NF-kappa B-dependent set of the TNF alpha-regulated genes in human epidermal keratinocytes. Expression of approximately 40% of all TNF alpha-regulated genes depends on NF-kappa B; 17% are regulated early (1-4 h post-treatment), and 23% are regulated late (24-48 h). Cytokines and apoptosis-related and cornification proteins belong to the "early" NF-kappa B-dependent group, and antigen presentation proteins belong to the "late" group, whereas most cell cycle, RNA-processing, and metabolic enzymes are not NF-kappa B-dependent. Therefore, inflammation, immunomodulation, apoptosis, and differentiation are on the NF-kappa B pathway, and cell cycle, metabolism, and RNA processing are not. Most early genes contain consensus NF-kappaB binding sites in their promoter DNA and are, presumably, directly regulated by NF-kappa B, except, curiously, the cornification markers. Using siRNA silencing, we identified cFLIP/CFLAR as an essential NF-kappa B-dependent antiapoptotic gene. The results confirm our

  16. A combined assay of hTERT and E6 oncoprotein to identify virus-infected keratinocytes with higher telomerase activity in human papillomaviruses 16 and 18-related bowenoid papulosis.

    PubMed

    Li, Dongsheng; Dong, Bilin; Hu, Zhimin; Chen, Liuqing; Zeng, Xianyu; Chen, Jinbo; Duan, Yiqun

    2012-12-01

    In the present study, we aim to evaluate the application potential of a combined assay of human telomerase reverse transcriptase (hTERT) and E6 oncoprotein in screening the virus-infected keratinocytes with higher telomerase activity in human papillomaviruses (HPV) 16- and 18-related bowenoid papulosis (BP). HPV16/18 DNA in BP (n = 123) was identified by in situ hybridization, the expression of hTERT and E6 in HPV16/18-related BP (n = 68) was determined by immunohistochemistry. We demonstrated that the expression of hTERT correlated well with that of E6 oncoprotein in HPV16/18-related BP lesions (Spearman rho = 0.868, P < 0.01). Furthermore, the majority of keratinocytes with positive nuclear staining for hTERT or E6 in the consecutive sections of each HPV16/18-related BP lesion showed nuclear paleomorphism or nuclear mitosis. In conclusion, we suggested that a combined assay of hTERT and E6 oncoprotein can be used to screen the HPV-infected keratinocytes with higher telomerase activity in HPV16-related and HPV18-related BP lesions.

  17. A novel regulatory relationship between RIPK4 and ELF3 in keratinocytes.

    PubMed

    Scholz, Glen M; Sulaiman, Nur S; Al Baiiaty, Sahar; Kwa, Mei Qi; Reynolds, Eric C

    2016-12-01

    Keratinocytes are central to the barrier functions of surface epithelia, such as the gingiva and epidermis. RIPK4 is a key regulator of keratinocyte differentiation; however, the signalling pathways in which it functions remain poorly defined. In this study, we identified a regulatory relationship between RIPK4 and ELF3, an ETS family transcription factor. RIPK4 was shown to be important for the upregulation of ELF3 gene expression by the PKC agonist PMA in both oral and epidermal keratinocytes. RIPK4 promotes keratinocyte differentiation in part by phosphorylating and thereby activating the IRF6 transcription factor. Significantly, silencing of IRF6 inhibited the PMA-inducible expression of ELF3. A role for the GRHL3 transcription factor, a downstream target gene of IRF6, in the regulation of ELF3 expression was similarly demonstrated. ELF3 has previously been shown to regulate the expression of SPPR1A and SPRR1B, small proline-rich proteins that contribute to the cornification of keratinocytes. Consistently, RIPK4 and IRF6 were important for the PMA-inducible expression of SPRR1A and SPRR1B. They were also important for the upregulation of TGM1, a transglutaminase that catalyses the cross-linking of proteins, including small proline-rich proteins, during keratinocyte cornification. RIPK4 was also shown to upregulate the expression of TGM2 independently of IRF6. Collectively, our findings position RIPK4 upstream of a hierarchal IRF6-GRHL3-ELF3 transcription factor pathway in keratinocytes, as well as provide insight into a potential role for RIPK4 in the regulation of keratinocyte cornification. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Genome-Wide Expression Profiling of Five Mouse Models Identifies Similarities and Differences with Human Psoriasis

    PubMed Central

    Swindell, William R.; Johnston, Andrew; Carbajal, Steve; Han, Gangwen; Wohn, Christian; Lu, Jun; Xing, Xianying; Nair, Rajan P.; Voorhees, John J.; Elder, James T.; Wang, Xiao-Jing; Sano, Shigetoshi; Prens, Errol P.; DiGiovanni, John; Pittelkow, Mark R.; Ward, Nicole L.; Gudjonsson, Johann E.

    2011-01-01

    Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1). While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis. PMID:21483750

  19. Lineage mapping identifies molecular and architectural similarities between the larval and adult Drosophila central nervous system

    PubMed Central

    Lacin, Haluk; Truman, James W

    2016-01-01

    Neurogenesis in Drosophila occurs in two phases, embryonic and post-embryonic, in which the same set of neuroblasts give rise to the distinct larval and adult nervous systems, respectively. Here, we identified the embryonic neuroblast origin of the adult neuronal lineages in the ventral nervous system via lineage-specific GAL4 lines and molecular markers. Our lineage mapping revealed that neurons born late in the embryonic phase show axonal morphology and transcription factor profiles that are similar to the neurons born post-embryonically from the same neuroblast. Moreover, we identified three thorax-specific neuroblasts not previously characterized and show that HOX genes confine them to the thoracic segments. Two of these, NB2-3 and NB3-4, generate leg motor neurons. The other neuroblast is novel and appears to have arisen recently during insect evolution. Our findings provide a comprehensive view of neurogenesis and show how proliferation of individual neuroblasts is dictated by temporal and spatial cues. DOI: http://dx.doi.org/10.7554/eLife.13399.001 PMID:26975248

  20. Interferon regulatory factor 6 regulates keratinocyte migration

    PubMed Central

    Biggs, Leah C.; Naridze, Rachelle L.; DeMali, Kris A.; Lusche, Daniel F.; Kuhl, Spencer; Soll, David R.; Schutte, Brian C.; Dunnwald, Martine

    2014-01-01

    ABSTRACT Interferon regulatory factor 6 (Irf6) regulates keratinocyte proliferation and differentiation. In this study, we tested the hypothesis that Irf6 regulates cellular migration and adhesion. Irf6-deficient embryos at 10.5 days post-conception failed to close their wound compared with wild-type embryos. In vitro, Irf6-deficient murine embryonic keratinocytes were delayed in closing a scratch wound. Live imaging of the scratch showed deficient directional migration and reduced speed in cells lacking Irf6. To understand the underlying molecular mechanisms, cell–cell and cell–matrix adhesions were investigated. We show that wild-type and Irf6-deficient keratinocytes adhere similarly to all matrices after 60 min. However, Irf6-deficient keratinocytes were consistently larger and more spread, a phenotype that persisted during the scratch-healing process. Interestingly, Irf6-deficient keratinocytes exhibited an increased network of stress fibers and active RhoA compared with that observed in wild-type keratinocytes. Blocking ROCK, a downstream effector of RhoA, rescued the delay in closing scratch wounds. The expression of Arhgap29, a Rho GTPase-activating protein, was reduced in Irf6-deficient keratinocytes. Taken together, these data suggest that Irf6 functions through the RhoA pathway to regulate cellular migration. PMID:24777480

  1. Untargeted metabolomic analysis in naturally occurring canine diabetes mellitus identifies similarities to human Type 1 Diabetes.

    PubMed

    O'Kell, Allison L; Garrett, Timothy J; Wasserfall, Clive; Atkinson, Mark A

    2017-08-25

    While predominant as a disease entity, knowledge voids exist regarding the pathogenesis of canine diabetes. To test the hypothesis that diabetic dogs have similar metabolomic perturbations to humans with type 1 diabetes (T1D), we analyzed serum metabolomic profiles of breed- and body weight-matched, diabetic (n = 6) and healthy (n = 6) dogs by liquid chromatography-mass spectrometry (LC-MS) profiling. We report distinct clustering of diabetic and control groups based on heat map analysis of known and unknown metabolites. Random forest classification identified 5/6 dogs per group correctly with overall out of bag error rate = 16.7%. Diabetic dogs demonstrated significant upregulation of glycolysis/gluconeogenesis intermediates (e.g., glucose/fructose, C6H12O6, keto-hexose, deoxy-hexose, (P < 0.01)), with significant downregulation of tryptophan metabolism metabolites (e.g., picolinic acid, indoxyl sulfate, anthranilate, (P < 0.01)). Multiple amino acids (AA), AA metabolites, and bile acids were also significantly lower in diabetic versus healthy dogs (P < 0.05) with the exception of the branched chain AA valine, which was elevated in diabetic animals (P < 0.05). Metabolomic profiles in diabetic versus healthy dogs shared similarities with those reported in human T1D (e.g., alterations in glycolysis/gluconeogensis metabolites, bile acids, and elevated branched chain AA). Further studies are warranted to evaluate the utility of canine diabetes to provide novel mechanistic insights to the human disorder.

  2. Automated identification of epidermal keratinocytes in reflectance confocal microscopy

    NASA Astrophysics Data System (ADS)

    Gareau, Dan

    2011-03-01

    Keratinocytes in skin epidermis, which have bright cytoplasmic contrast and dark nuclear contrast in reflectance confocal microscopy (RCM), were modeled with a simple error function reflectance profile: erf( ). Forty-two example keratinocytes were identified as a training set which characterized the nuclear size a = 8.6+/-2.8 μm and reflectance gradient b = 3.6+/-2.1 μm at the nuclear/cytoplasmic boundary. These mean a and b parameters were used to create a rotationally symmetric erf( ) mask that approximated the mean keratinocyte image. A computer vision algorithm used an erf( ) mask to scan RCM images, identifying the coordinates of keratinocytes. Applying the mask to the confocal data identified the positions of keratinocytes in the epidermis. This simple model may be used to noninvasively evaluate keratinocyte populations as a quantitative morphometric diagnostic in skin cancer detection and evaluation of dermatological cosmetics.

  3. A Hybrid Knowledge-Based and Data-Driven Approach to Identifying Semantically Similar Concepts

    PubMed Central

    Pivovarov, Rimma; Elhadad, Noémie

    2012-01-01

    An open research question when leveraging ontological knowledge is when to treat different concepts separately from each other and when to aggregate them. For instance, concepts for the terms "paroxysmal cough" and "nocturnal cough" might be aggregated in a kidney disease study, but should be left separate in a pneumonia study. Determining whether two concepts are similar enough to be aggregated can help build better datasets for data mining purposes and avoid signal dilution. Quantifying the similarity among concepts is a difficult task, however, in part because such similarity is context-dependent. We propose a comprehensive method, which computes a similarity score for a concept pair by combining data-driven and ontology-driven knowledge. We demonstrate our method on concepts from SNOMED-CT and on a corpus of clinical notes of patients with chronic kidney disease. By combining information from usage patterns in clinical notes and from ontological structure, the method can prune out concepts that are simply related from those which are semantically similar. When evaluated against a list of concept pairs annotated for similarity, our method reaches an AUC (area under the curve) of 92%. PMID:22289420

  4. IgG Autoantibodies Against Desmocollin 3 in Pemphigus Sera Induce Loss of Keratinocyte Adhesion

    PubMed Central

    Rafei, David; Müller, Ralf; Ishii, Norito; Llamazares, Maria; Hashimoto, Takashi; Hertl, Michael; Eming, Rüdiger

    2011-01-01

    Pemphigus is considered an autoimmune bullous skin disorder associated with IgG against the desmosomal components, desmoglein 3 (Dsg3) and desmoglein 1 (Dsg1). This concept is supported by the in vitro and in vivo pathogenicity of anti-Dsg3/Dsg1 IgG and the mucosal blistering phenotype of mice with a genetic deficiency of Dsg3. Mice deficient for another desmosomal adhesion molecule, desmocollin 3 (Dsc3), show a similar pemphigus phenotype, and we investigated the pathogenicity of Dsc3-reactive IgG autoantibodies that were identified previously in a subset of patients with atypical pemphigus. We here demonstrate that IgG against Dsc3 causes loss of adhesion of epidermal keratinocytes. Specifically, IgG against Dsc3 was purified from Dsc3-reactive pemphigus sera by affinity column chromatography using recombinant human Dsc3. Affinity purified IgG was functionally active and did not only react with recombinant Dsc3 but also with epidermis and cultured human keratinocytes. Moreover, Dsc3-reactive IgG induced loss of adhesion of epidermal keratinocytes in a dispase-based keratinocyte dissociation assay that was reversed on pre-adsorption with human Dsc3 but not Dsg3. These findings demonstrate that IgG autoantibodies against an additional component of the desmosomes, Dsc3, induce loss of keratinocyte adhesion and thus may contribute to blister formation in pemphigus. PMID:21281804

  5. Fragment Finder: a web-based software to identify similar three-dimensional structural motif

    PubMed Central

    Ananthalakshmi, P.; Kumar, Ch. Kiran; Jeyasimhan, M.; Sumathi, K.; Sekar, K.

    2005-01-01

    FF (Fragment Finder) is a web-based interactive search engine developed to retrieve the user-desired similar 3D structural fragments from the selected subset of 25 or 90% non-homologous protein chains. The search is based on the comparison of the main chain backbone conformational angles (φ and ϕ). Additionally, the queried motifs can be superimposed to find out how similar the structural fragments are, so that the information can be effectively used in molecular modeling. The engine has facilities to view the resultant superposed or individual 3D structure(s) on the client machine. The proposed web server is made freely accessible at the following URL: or . PMID:15980587

  6. Content-Based Search on a Database of Geometric Models: Identifying Objects of Similar Shape

    SciTech Connect

    XAVIER, PATRICK G.; HENRY, TYSON R.; LAFARGE, ROBERT A.; MEIRANS, LILITA; RAY, LAWRENCE P.

    2001-11-01

    The Geometric Search Engine is a software system for storing and searching a database of geometric models. The database maybe searched for modeled objects similar in shape to a target model supplied by the user. The database models are generally from CAD models while the target model may be either a CAD model or a model generated from range data collected from a physical object. This document describes key generation, database layout, and search of the database.

  7. Similarities and Differences between Children with and without Disabilities on Identified Clinical Findings

    ERIC Educational Resources Information Center

    Reinke, Diane C.

    2005-01-01

    This study was conducted to examine the types and proportions of identified clinical findings among children with and without disabilities. Using data from the Canadian Incidence Study of Reported Child Abuse and Neglect (CIS), this study compared 7672 children aged 0 to 15 years (n=1067 with disabilities and n=6605 without disabilities) who were…

  8. Preferences for Arthritis Interventions: Identifying Similarities and Differences among Blacks and Whites with Osteoarthritis

    PubMed Central

    Mingo, Chivon A.; McIlvane, Jessica M.; Jefferson, Malcolm; Edwards, Lloyd J.; Haley, William E.

    2012-01-01

    Objective To determine if there are differences or similarities in arthritis intervention preferences and barriers to participation between Blacks and Whites with osteoarthritis (OA). Methods Using a needs assessment survey, intervention preferences and barriers to participation in arthritis interventions among Black (n=60) and White (n=55) adults with self-reported doctor-diagnosed OA were examined. T-tests, chi-square tests, and multiple regression analyses adjusting for covariates were examined to determine race effects. Results While there were many similarities, Blacks were more likely to report cost (p<.01), lack of trust (p=.04), fear of being the only person of their race (p<.001), lack of recommendation from their doctor (p=.04), and lack of recommendation of a family member or friend (p=.02) as barriers to participating in a community-based self-management arthritis intervention. After adjusting for covariates, Blacks preferred interventions that provide information on arthritis-related internet sources (p=.04), solving arthritis-related problems (p=.04), and talking to family and friends about their condition (p=.02) in comparison to Whites. Blacks also preferred an intervention with child care services provided (p<.01), instructors and participants of the same race (p<.01; p<.001) or gender (p<.001; p=.03), allows a friend (p=.001) or family (p=.02) to attend, offered at a local church (p=.01), clinic (p<.01) or mailed (p<.01). Conclusion Findings suggest that similar interventions are preferred across racial groups, but some practical adaptations could be made to existing arthritis interventions to minimize barriers, increase cultural sensitivity, and offer programs that would be appealing to Blacks and Whites with arthritis. PMID:22745029

  9. DNAc: A clustering method for identifying kinship relations between DNA profiles using a novel similarity measure.

    PubMed

    Ntwari, Aimé; Kelil, Abdellali; Drouin, Régen; Monga, Ernest; Wang, Shengrui; Brzezinski, Ryszard; Bronsard, Marc; Yan, Ju

    2011-01-01

    After decades of refinement, DNA testing methods have become essential tools in forensic sciences. They are essentially based on likelihood ratio test principle, which is utilized specifically, by using as prior knowledge the allele frequencies in the population, to confirm or refute a given kinship hypothesis made on two genotypes. This makes these methods ill suited when allele frequencies or kinship hypotheses are unavailable. In this paper, we introduce DNAc, a new clustering methodology for DNA testing based on a new similarity measure that allows an accurate retrieval of the degree of relatedness among two or more genotypes, without relying on kinship hypotheses or allele frequencies in the population. We used DNAc in analyzing microsatellite DNA sequences distributed among 12 genotypes from normal individuals from two distinct families. The results show that DNAc accurately determines kinship among genotypes and further gathers them in the appropriate kinship groups.

  10. Identifying promoter features of co-regulated genes with similar network motifs.

    PubMed

    Harari, Oscar; del Val, Coral; Romero-Zaliz, Rocío; Shin, Dongwoo; Huang, Henry; Groisman, Eduardo A; Zwir, Igor

    2009-04-29

    A large amount of computational and experimental work has been devoted to uncovering network motifs in gene regulatory networks. The leading hypothesis is that evolutionary processes independently selected recurrent architectural relationships among regulators and target genes (motifs) to produce characteristic expression patterns of its members. However, even with the same architecture, the genes may still be differentially expressed. Therefore, to define fully the expression of a group of genes, the strength of the connections in a network motif must be specified, and the cis-promoter features that participate in the regulation must be determined. We have developed a model-based approach to analyze proteobacterial genomes for promoter features that is specifically designed to account for the variability in sequence, location and topology intrinsic to differential gene expression. We provide methods for annotating regulatory regions by detecting their subjacent cis-features. This includes identifying binding sites for a transcriptional regulator, distinguishing between activation and repression sites, direct and reverse orientation, and among sequences that weakly reflect a particular pattern; binding sites for the RNA polymerase, characterizing different classes, and locations relative to the transcription factor binding sites; the presence of riboswitches in the 5'UTR, and for other transcription factors. We applied our approach to characterize network motifs controlled by the PhoP/PhoQ regulatory system of Escherichia coli and Salmonella enterica serovar Typhimurium. We identified key features that enable the PhoP protein to control its target genes, and distinct features may produce different expression patterns even within the same network motif. Global transcriptional regulators control multiple promoters by a variety of network motifs. This is clearly the case for the regulatory protein PhoP. In this work, we studied this regulatory protein and demonstrated

  11. Roles of transient receptor potential proteins (TRPs) in epidermal keratinocytes.

    PubMed

    Denda, Mitsuhiro; Tsutsumi, Moe

    2011-01-01

    Epidermal keratinocytes are the epithelial cells of mammalian skin. At the basal layer of the epidermis, these cells proliferate strongly, and as they move towards the skin surface, differentiation proceeds. At the uppermost layer of the epidermis, keratinocytes undergo apoptosis and die, forming a thin, water-impermeable layer called the stratum corneum. Peripheral blood vessels do not reach the epidermis, but peripheral nerve fibers do penetrate into it. Until recently, it was considered that the main role of epidermal keratinocytes was to construct and maintain the water-impermeable barrier function. However, since the functional existence of TRPV1, which is activated by heat and low pH, in epidermal keratinocytes was identified, our understanding of the role of keratinocytes has changed enormously. It has been found that many TRP channels are expressed in epidermal keratinocytes, and play important roles in differentiation, proliferation and barrier homeostasis. Moreover, because TRP channels expressed in keratinocytes have the ability to sense a variety of environmental factors, such as temperature, mechanical stress, osmotic stress and chemical stimuli, epidermal keratinocytes might form a key part of the sensory system of the skin. The present review deals with the potential roles of TRP channels expressed in epidermal keratinocytes and focuses on the concept of the epidermis as an active interface between the body and the environment.

  12. Autoantibody profiles in autoimmune hepatitis and chronic hepatitis C identifies similarities in patients with severe disease

    PubMed Central

    Amin, Kawa; Rasool, Aram H; Hattem, Ali; Al-Karboly, Taha AM; Taher, Taher E; Bystrom, Jonas

    2017-01-01

    AIM To determine how the auto-antibodies (Abs) profiles overlap in chronic hepatitis C infection (CHC) and autoimmune hepatitis (AIH) and correlate to liver disease. METHODS Levels of antinuclear Ab, smooth muscle antibody (SMA) and liver/kidney microsomal-1 (LKM-1) Ab and markers of liver damage were determined in the sera of 50 patients with CHC infection, 20 AIH patients and 20 healthy controls using enzyme linked immunosorbent assay and other immune assays. RESULTS We found that AIH patients had more severe liver disease as determined by elevation of total IgG, alkaline phosphatase, total serum bilirubin and serum transaminases and significantly higher prevalence of the three non-organ-specific autoantibodies (auto-Abs) than CHC patients. Antinuclear Ab, SMA and LKM-1 Ab were also present in 36% of CHC patients and related to disease severity. CHC cases positive for auto-Abs were directly comparable to AIH in respect of most markers of liver damage and total IgG. These cases had longer disease duration compared with auto-Ab negative cases, but there was no difference in gender, age or viral load. KLM-1+ Ab CHC cases showed best overlap with AIH. CONCLUSION Auto-Ab levels in CHC may be important markers of disease severity and positive cases have a disease similar to AIH. Auto-Abs might have a pathogenic role as indicated by elevated markers of liver damage. Future studies will unravel any novel associations between these two diseases, whether genetic or other. PMID:28293081

  13. Phenotype Similarity Regression for Identifying the Genetic Determinants of Rare Diseases

    PubMed Central

    Greene, Daniel; Richardson, Sylvia; Turro, Ernest

    2016-01-01

    Rare genetic disorders, which can now be studied systematically with affordable genome sequencing, are often caused by high-penetrance rare variants. Such disorders are often heterogeneous and characterized by abnormalities spanning multiple organ systems ascertained with variable clinical precision. Existing methods for identifying genes with variants responsible for rare diseases summarize phenotypes with unstructured binary or quantitative variables. The Human Phenotype Ontology (HPO) allows composite phenotypes to be represented systematically but association methods accounting for the ontological relationship between HPO terms do not exist. We present a Bayesian method to model the association between an HPO-coded patient phenotype and genotype. Our method estimates the probability of an association together with an HPO-coded phenotype characteristic of the disease. We thus formalize a clinical approach to phenotyping that is lacking in standard regression techniques for rare disease research. We demonstrate the power of our method by uncovering a number of true associations in a large collection of genome-sequenced and HPO-coded cases with rare diseases. PMID:26924528

  14. Sphingolipid metabolism in organotypic mouse keratinocyte cultures

    SciTech Connect

    Madison, K.C.; Swartzendruber, D.C.; Wertz, P.W.; Downing, D.T. )

    1990-12-01

    Ceramides are the dominant component of the stratum corneum intercellular lipid lamellae, which constitute the epidermal permeability barrier. Only pig and human epidermal ceramides have been extensively characterized and the structures of the ceramides of cultured keratinocytes have not been previously investigated. In the present studies, we have characterized the ceramides synthesized by organotypic lifted mouse keratinocyte cultures for the first time and compared them to the ceramides of intact mouse epidermis. Both mouse epidermis and cultures contained five ceramides, ceramide 1 being the least polar and ceramide 5 the most polar. Ceramide 1 was a group of acylceramides, i.e., very-long-chain omega-hydroxyceramides with an ester-linked nonhydroxy fatty acid. Ceramide 2 contained medium-length saturated nonhydroxy fatty acids. (In culture, the ceramide 2 band was split into two parts with the slightly more polar ceramide 2' containing short-chain saturated nonhydroxy fatty acids.) Ceramide 5 contained short-chain alpha-hydroxy fatty acids. The structures of ceramides 1, 2, and 5 were analagous to those of pig and human epidermis. Mouse epidermal ceramide 3 was quite unusual, containing beta-hydroxy fatty acids, a structure not previously identified among mammalian ceramides. In contrast, culture ceramide 3 was composed of omega-hydroxy fatty acids with a chain-length distribution similar to that of ceramide 1. Mouse ceramide 4 was composed of fatty acids with chromatographic mobility similar to hydroxy fatty acids but with different chemical reactivity; it remains only partially characterized. Culture ceramide 4 was present in quantities too small for analysis. All ceramides in mouse epidermis and cultures contained only sphingosine bases, whereas pig and human ceramides also contain phytosphingosine.

  15. A Model to Predict the Risk of Keratinocyte Carcinomas.

    PubMed

    Whiteman, David C; Thompson, Bridie S; Thrift, Aaron P; Hughes, Maria-Celia; Muranushi, Chiho; Neale, Rachel E; Green, Adele C; Olsen, Catherine M

    2016-06-01

    Basal cell and squamous cell carcinomas of the skin are the commonest cancers in humans, yet no validated tools exist to estimate future risks of developing keratinocyte carcinomas. To develop a prediction tool, we used baseline data from a prospective cohort study (n = 38,726) in Queensland, Australia, and used data linkage to capture all surgically excised keratinocyte carcinomas arising within the cohort. Predictive factors were identified through stepwise logistic regression models. In secondary analyses, we derived separate models within strata of prior skin cancer history, age, and sex. The primary model included terms for 10 items. Factors with the strongest effects were >20 prior skin cancers excised (odds ratio 8.57, 95% confidence interval [95% CI] 6.73-10.91), >50 skin lesions destroyed (odds ratio 3.37, 95% CI 2.85-3.99), age ≥ 70 years (odds ratio 3.47, 95% CI 2.53-4.77), and fair skin color (odds ratio 1.75, 95% CI 1.42-2.15). Discrimination in the validation dataset was high (area under the receiver operator characteristic curve 0.80, 95% CI 0.79-0.81) and the model appeared well calibrated. Among those reporting no prior history of skin cancer, a similar model with 10 factors predicted keratinocyte carcinoma events with reasonable discrimination (area under the receiver operator characteristic curve 0.72, 95% CI 0.70-0.75). Algorithms using self-reported patient data have high accuracy for predicting risks of keratinocyte carcinomas. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Combining molecular fingerprints with multidimensional scaling analyses to identify the source of spilled oil from highly similar suspected oils.

    PubMed

    Zhou, Peiyu; Chen, Changshu; Ye, Jianjun; Shen, Wenjie; Xiong, Xiaofei; Hu, Ping; Fang, Hongda; Huang, Chuguang; Sun, Yongge

    2015-04-15

    Oil fingerprints have been a powerful tool widely used for determining the source of spilled oil. In most cases, this tool works well. However, it is usually difficult to identify the source if the oil spill accident occurs during offshore petroleum exploration due to the highly similar physiochemical characteristics of suspected oils from the same drilling platform. In this report, a case study from the waters of the South China Sea is presented, and multidimensional scaling analysis (MDS) is introduced to demonstrate how oil fingerprints can be combined with mathematical methods to identify the source of spilled oil from highly similar suspected sources. The results suggest that the MDS calculation based on oil fingerprints and subsequently integrated with specific biomarkers in spilled oils is the most effective method with a great potential for determining the source in terms of highly similar suspected oils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Keratinocyte cytogenetics in 10 patients with pigmentary mosaicism: identification of one case of trisomy 20 mosaicism confined to keratinocytes.

    PubMed

    Taibjee, S M; Hall, D; Balderson, D; Larkins, S; Stubbs, T; Moss, C

    2009-10-01

    Hypomelanosis of Ito and linear and whorled hypermelanosis are pigmentary disorders that follow Blaschko's lines and are associated with cytogenetic mosaicism. However, mosaicism cannot always be shown using conventional karyotyping of blood lymphocytes or skin fibroblasts. This may be because these cell lines originate from mesoderm, whereas Blaschko's lines are an ectodermal phenomenon. To investigate the diagnostic value of keratinocyte cytogenetics in patients with pigmentary mosaicism (PM). We undertook a prospective study of 10 patients with clinically suspected PM. Previous karyotyping of blood, and in some cases skin fibroblasts, was normal in all cases. Keratinocytes and fibroblasts were cultured from skin biopsies taken from light and dark skin, and examined for cytogenetic abnormalities. In 9 of 10 cases both keratinocyte and fibroblast cytogenetic analyses were normal. The remaining patient showed trisomy 20 mosaicism confined to keratinocytes from hypopigmented skin. Fluorescent in situ hybridization using a probe for 20q confirmed trisomy 20 mosaicism in keratinocytes but not fibroblasts, with higher signal expression in hypopigmented compared with normal skin. In patients with clinically suspected PM but normal blood cytogenetics, keratinocytes may be more sensitive than skin fibroblasts in identifying cytogenetic mosaicism in selected patients. However, the additional diagnostic yield appears to be insufficient to justify routine keratinocyte cytogenetic investigation. Our findings indirectly support the hypothesis that Blaschko's lines delineate the embryonal migration paths taken by ectodermal cells including keratinocytes and melanocytes.

  18. 1,4-dihydroxy-2-naphthoic Acid Induces Apoptosis in Human Keratinocyte: Potential Application for Psoriasis Treatment

    PubMed Central

    Mok, Chong-Fai; Xie, Chuan-Ming; Sham, Kathy Wai-Yan; Lin, Zhi-Xiu; Cheng, Christopher Hon-Ki

    2013-01-01

    Psoriasis, which affects approximately 1–3% of the population worldwide, is a chronic inflammatory skin disorder characterized by epidermal keratinocytes hyperproliferation, abnormal differentiation, and inflammatory infiltration. Decrease in keratinocyte apoptosis is a specific pathogenic phenomenon in psoriasis. Chinese herbs have been used for the treatment of psoriasis in China showing promising effect in clinical trials. A traditional Chinese medicine has relatively fewer side effects with longer remission time and lower recurrence rate. The extract of Rubia cordifolia L. (EA) was previously found by us to induce HaCaT keratinocytes apoptosis. In this study we identified one of the components in Rubia cordifolia L., the anthraquinone precursor 1,4-dihydroxy-2-naphthoic acid (DHNA), induces HaCaT keratinocytes apoptosis through G0/G1 cell cycle arrest. We have also demonstrated that DHNA acts through both caspase-dependent and caspase-independent pathways. Besides, cytotoxicity and IL-1α release assays indicate that DHNA causes less irritation problems than dithranol, which is commonly employed to treat psoriasis in many countries. Since DHNA possesses similar apoptotic effects on keratinocytes as dithranol but causes less irritation, DHNA therefore constitutes a promising alternative agent for treating psoriasis. Our studies also provide an insight on the potential of using EA and DHNA, alternatively, as a safe and effective treatment modality for psoriasis. PMID:23690852

  19. Keratinocyte stem cells: a commentary.

    PubMed

    Potten, Christopher S; Booth, Catherine

    2002-10-01

    For many years it has been widely accepted that stem cells play a crucial role in adult tissue maintenance. The concept that the renewing tissues of the body contain a small subcompartment of self-maintaining stem cells, upon which the entire tissue is dependent, is also now accepted as applicable to all renewing tissues. Gene therapy and tissue engineering are driving considerable interest in the clinical application of such hierarchically organized cellular compartments. Recent initial observations have provided a tantalizing insight into the large pluripotency of these cells. Indeed, scientists are now beginning to talk about the possible totipotency of some adult tissue stem cells. Such work is currently phenomenologic, but analysis of data derived from genomics and proteomics, identifying the crucial control signals involved, will soon provide a further impetus to stem cell biology with far reaching applications. The epidermis with its relatively simple structure, ease of accessibility, and the ability to grow its cells in vitro is one obvious target tissue for testing stem cell manipulation theories. It is crucial, however, that the normal keratinocyte stem cell is thoroughly characterized prior to attempting to manipulate its pluripotency. This commentary assesses the data generated to date and critically discusses the conclusions that have been drawn. Our current level of understanding, or lack of understanding, of the keratinocyte stem cell is reviewed.

  20. Large-Scale Chemical Similarity Networks for Target Profiling of Compounds Identified in Cell-Based Chemical Screens

    PubMed Central

    Lo, Yu-Chen; Senese, Silvia; Li, Chien-Ming; Hu, Qiyang; Huang, Yong; Damoiseaux, Robert; Torres, Jorge Z.

    2015-01-01

    Target identification is one of the most critical steps following cell-based phenotypic chemical screens aimed at identifying compounds with potential uses in cell biology and for developing novel disease therapies. Current in silico target identification methods, including chemical similarity database searches, are limited to single or sequential ligand analysis that have limited capabilities for accurate deconvolution of a large number of compounds with diverse chemical structures. Here, we present CSNAP (Chemical Similarity Network Analysis Pulldown), a new computational target identification method that utilizes chemical similarity networks for large-scale chemotype (consensus chemical pattern) recognition and drug target profiling. Our benchmark study showed that CSNAP can achieve an overall higher accuracy (>80%) of target prediction with respect to representative chemotypes in large (>200) compound sets, in comparison to the SEA approach (60–70%). Additionally, CSNAP is capable of integrating with biological knowledge-based databases (Uniprot, GO) and high-throughput biology platforms (proteomic, genetic, etc) for system-wise drug target validation. To demonstrate the utility of the CSNAP approach, we combined CSNAP's target prediction with experimental ligand evaluation to identify the major mitotic targets of hit compounds from a cell-based chemical screen and we highlight novel compounds targeting microtubules, an important cancer therapeutic target. The CSNAP method is freely available and can be accessed from the CSNAP web server (http://services.mbi.ucla.edu/CSNAP/). PMID:25826798

  1. Large-scale chemical similarity networks for target profiling of compounds identified in cell-based chemical screens.

    PubMed

    Lo, Yu-Chen; Senese, Silvia; Li, Chien-Ming; Hu, Qiyang; Huang, Yong; Damoiseaux, Robert; Torres, Jorge Z

    2015-03-01

    Target identification is one of the most critical steps following cell-based phenotypic chemical screens aimed at identifying compounds with potential uses in cell biology and for developing novel disease therapies. Current in silico target identification methods, including chemical similarity database searches, are limited to single or sequential ligand analysis that have limited capabilities for accurate deconvolution of a large number of compounds with diverse chemical structures. Here, we present CSNAP (Chemical Similarity Network Analysis Pulldown), a new computational target identification method that utilizes chemical similarity networks for large-scale chemotype (consensus chemical pattern) recognition and drug target profiling. Our benchmark study showed that CSNAP can achieve an overall higher accuracy (>80%) of target prediction with respect to representative chemotypes in large (>200) compound sets, in comparison to the SEA approach (60-70%). Additionally, CSNAP is capable of integrating with biological knowledge-based databases (Uniprot, GO) and high-throughput biology platforms (proteomic, genetic, etc) for system-wise drug target validation. To demonstrate the utility of the CSNAP approach, we combined CSNAP's target prediction with experimental ligand evaluation to identify the major mitotic targets of hit compounds from a cell-based chemical screen and we highlight novel compounds targeting microtubules, an important cancer therapeutic target. The CSNAP method is freely available and can be accessed from the CSNAP web server (http://services.mbi.ucla.edu/CSNAP/).

  2. Geomfinder: a multi-feature identifier of similar three-dimensional protein patterns: a ligand-independent approach.

    PubMed

    Núñez-Vivanco, Gabriel; Valdés-Jiménez, Alejandro; Besoaín, Felipe; Reyes-Parada, Miguel

    2016-01-01

    Since the structure of proteins is more conserved than the sequence, the identification of conserved three-dimensional (3D) patterns among a set of proteins, can be important for protein function prediction, protein clustering, drug discovery and the establishment of evolutionary relationships. Thus, several computational applications to identify, describe and compare 3D patterns (or motifs) have been developed. Often, these tools consider a 3D pattern as that described by the residues surrounding co-crystallized/docked ligands available from X-ray crystal structures or homology models. Nevertheless, many of the protein structures stored in public databases do not provide information about the location and characteristics of ligand binding sites and/or other important 3D patterns such as allosteric sites, enzyme-cofactor interaction motifs, etc. This makes necessary the development of new ligand-independent methods to search and compare 3D patterns in all available protein structures. Here we introduce Geomfinder, an intuitive, flexible, alignment-free and ligand-independent web server for detailed estimation of similarities between all pairs of 3D patterns detected in any two given protein structures. We used around 1100 protein structures to form pairs of proteins which were assessed with Geomfinder. In these analyses each protein was considered in only one pair (e.g. in a subset of 100 different proteins, 50 pairs of proteins can be defined). Thus: (a) Geomfinder detected identical pairs of 3D patterns in a series of monoamine oxidase-B structures, which corresponded to the effectively similar ligand binding sites at these proteins; (b) we identified structural similarities among pairs of protein structures which are targets of compounds such as acarbose, benzamidine, adenosine triphosphate and pyridoxal phosphate; these similar 3D patterns are not detected using sequence-based methods; (c) the detailed evaluation of three specific cases showed the versatility

  3. NCR1 Expression Identifies Canine Natural Killer Cell Subsets with Phenotypic Similarity to Human Natural Killer Cells.

    PubMed

    Foltz, Jennifer A; Somanchi, Srinivas S; Yang, Yanwen; Aquino-Lopez, Arianexys; Bishop, Erin E; Lee, Dean A

    2016-01-01

    Canines spontaneously develop many cancers similar to humans - including osteosarcoma, leukemia, and lymphoma - offering the opportunity to study immune therapies in a genetically heterogeneous and immunocompetent environment. However, a lack of antibodies recognizing canine NK cell markers has resulted in suboptimal characterization and unknown purity of NK cell products, hindering the development of canine models of NK cell adoptive immunotherapy. To this end, we generated a novel antibody to canine NCR1 (NKp46), the putative species-wide marker of NK cells, enabling purification of NK cells for further characterization. We demonstrate that CD3(-)/NKp46(+) cells in healthy and osteosarcoma-bearing canines have phenotypic similarity to human CD3(-)/NKp46(+) NK cells, expressing mRNA for CD16 and the natural cytotoxicity receptors NKp30, NKp44, and NKp80. Functionally, we demonstrate with the calcein release assay that canine CD3(-)/NKp46(+) cells kill canine tumor cell lines without prior sensitization and secrete IFN-γ, TNF-α, IL-8, IL-10, and granulocyte-macrophage colony-stimulating factor as measured by Luminex. Similar to human NK cells, CD3(-)/NKp46(+) cells expand rapidly on feeder cells expressing 4-1BBL and membrane-bound IL-21 (median = 20,283-fold in 21 days). Furthermore, we identify a minor Null population (CD3(-)/CD21(-)/CD14(-)/NKp46(-)) with reduced cytotoxicity against osteosarcoma cells, but similar cytokine secretion as CD3(-)/NKp46(+) cells. Null cells in canines and humans have reduced expression of NKG2D, NKp44, and CD16 compared to NKp46(+) NK cells and can be induced to express NKp46 with further expansion on feeder cells. In conclusion, we have identified and characterized canine NK cells, including an NKp46(-) subset of canine and human NK cells, using a novel anti-canine NKp46 antibody, and report robust ex vivo expansion of canine NK cells sufficient for adoptive immunotherapy.

  4. Identifying spatially similar gene expression patterns in early stage fruit fly embryo images: binary feature versus invariant moment digital representations

    PubMed Central

    Gurunathan, Rajalakshmi; Van Emden, Bernard; Panchanathan, Sethuraman; Kumar, Sudhir

    2004-01-01

    Background Modern developmental biology relies heavily on the analysis of embryonic gene expression patterns. Investigators manually inspect hundreds or thousands of expression patterns to identify those that are spatially similar and to ultimately infer potential gene interactions. However, the rapid accumulation of gene expression pattern data over the last two decades, facilitated by high-throughput techniques, has produced a need for the development of efficient approaches for direct comparison of images, rather than their textual descriptions, to identify spatially similar expression patterns. Results The effectiveness of the Binary Feature Vector (BFV) and Invariant Moment Vector (IMV) based digital representations of the gene expression patterns in finding biologically meaningful patterns was compared for a small (226 images) and a large (1819 images) dataset. For each dataset, an ordered list of images, with respect to a query image, was generated to identify overlapping and similar gene expression patterns, in a manner comparable to what a developmental biologist might do. The results showed that the BFV representation consistently outperforms the IMV representation in finding biologically meaningful matches when spatial overlap of the gene expression pattern and the genes involved are considered. Furthermore, we explored the value of conducting image-content based searches in a dataset where individual expression components (or domains) of multi-domain expression patterns were also included separately. We found that this technique improves performance of both IMV and BFV based searches. Conclusions We conclude that the BFV representation consistently produces a more extensive and better list of biologically useful patterns than the IMV representation. The high quality of results obtained scales well as the search database becomes larger, which encourages efforts to build automated image query and retrieval systems for spatial gene expression patterns

  5. A mammary stem cell population identified and characterized in late embryogenesis reveals similarities to human breast cancer.

    PubMed

    Spike, Benjamin T; Engle, Dannielle D; Lin, Jennifer C; Cheung, Samantha K; La, Justin; Wahl, Geoffrey M

    2012-02-03

    Gene expression signatures relating mammary stem cell populations to breast cancers have focused on adult tissue. Here, we identify, isolate, and characterize the fetal mammary stem cell (fMaSC) state since the invasive and proliferative processes of mammogenesis resemble phases of cancer progression. fMaSC frequency peaks late in embryogenesis, enabling more extensive stem cell purification than achieved with adult tissue. fMaSCs are self-renewing, multipotent, and coexpress multiple mammary lineage markers. Gene expression, transplantation, and in vitro analyses reveal putative autocrine and paracrine regulatory mechanisms, including ErbB and FGF signaling pathways impinging on fMaSC growth. Expression profiles from fMaSCs and associated stroma exhibit significant similarities to basal-like and Her2+ intrinsic breast cancer subtypes. Our results reveal links between development and cancer and provide resources to identify new candidates for diagnosis, prognosis, and therapy.

  6. Genetic ablation of cyclooxygenase-2 in keratinocytes produces a cell-autonomous defect in tumor formation.

    PubMed

    Lao, Huei-Chen; Akunda, Jacqueline K; Chun, Kyung-Soo; Flake, Gordon P; Yuspa, Stuart H; Langenbach, Robert

    2012-11-01

    Using a mouse skin tumor model, we reported previously that cyclooxygenase-2 (COX-2) deficiency reduced papilloma formation. However, this model did not differentiate between the effects of systemic COX-2-deficiency and keratinocyte-specific COX-2 deficiency on tumor formation. To determine whether keratinocyte-specific COX-2 deficiency reduced papilloma formation, v-H-ras-transformed COX-2+/+ and COX-2-/- keratinocytes were grafted onto nude mice and tumor development was compared. Transformed COX-2+/+ and COX-2-/- keratinocytes expressed similar levels of H-ras, epidermal growth factor receptor and phospho-extracellular signal-regulated kinase 1/2 in vitro; and COX-2-deficiency did not reduce uninfected or v-H-ras infected keratinocyte replication. In contrast, tumors arising from grafted transformed COX-2+/+ and COX-2-/- keratinocytes expressed similar levels of H-ras, but COX-2 deficiency reduced phospho-extracellular signal-regulated kinase 1/2 and epidermal growth factor receptor levels 50-60% and tumor volume by 80% at 3 weeks. Two factors appeared to account for the reduced papilloma size. First, papillomas derived from COX-2-/- keratinocytes showed about 70% decreased proliferation, as measured by bromodeoxyuridine incorporation, compared with papillomas derived from COX-2+/+ keratinocytes. Second, keratin 1 immunostaining of papillomas indicated that COX-2-/- keratinocytes prematurely initiated terminal differentiation. Differences in the levels of apoptosis and vascularization did not appear to be contributing factors as their levels were similar in tumors derived from COX-2-/- and COX-2+/+ keratinocytes. Overall, the data are in agreement with our previous observations that decreased papilloma number and size on COX-2-/- mice resulted from reduced keratinocyte proliferation and accelerated keratinocyte differentiation. Furthermore, the data indicate that deficiency/inhibition of COX-2 in the initiated keratinocyte is an important determinant of

  7. Genetic ablation of cyclooxygenase-2 in keratinocytes produces a cell-autonomous defect in tumor formation

    PubMed Central

    Langenbach, Robert

    2012-01-01

    Using a mouse skin tumor model, we reported previously that cyclooxygenase-2 (COX-2) deficiency reduced papilloma formation. However, this model did not differentiate between the effects of systemic COX-2-deficiency and keratinocyte-specific COX-2 deficiency on tumor formation. To determine whether keratinocyte-specific COX-2 deficiency reduced papilloma formation, v-H-ras-transformed COX-2+/+ and COX-2−/− keratinocytes were grafted onto nude mice and tumor development was compared. Transformed COX-2+/+ and COX-2−/− keratinocytes expressed similar levels of H-ras, epidermal growth factor receptor and phospho-extracellular signal-regulated kinase1/2 in vitro; and COX-2-deficiency did not reduce uninfected or v-H-ras infected keratinocyte replication. In contrast, tumors arising from grafted transformed COX-2+/+ and COX-2−/− keratinocytes expressed similar levels of H-ras, but COX-2 deficiency reduced phospho-extracellular signal-regulated kinase 1/2 and epidermal growth factor receptor levels 50–60% and tumor volume by 80% at 3 weeks. Two factors appeared to account for the reduced papilloma size. First, papillomas derived from COX-2−/− keratinocytes showed about 70% decreased proliferation, as measured by bromodeoxyuridine incorporation, compared with papillomas derived from COX-2+/+ keratinocytes. Second, keratin 1 immunostaining of papillomas indicated that COX-2−/− keratinocytes prematurely initiated terminal differentiation. Differences in the levels of apoptosis and vascularization did not appear to be contributing factors as their levels were similar in tumors derived from COX-2−/− and COX-2+/+ keratinocytes. Overall, the data are in agreement with our previous observations that decreased papilloma number and size on COX-2−/− mice resulted from reduced keratinocyte proliferation and accelerated keratinocyte differentiation. Furthermore, the data indicate that deficiency/inhibition of COX-2 in the initiated keratinocyte is an

  8. NCR1 Expression Identifies Canine Natural Killer Cell Subsets with Phenotypic Similarity to Human Natural Killer Cells

    PubMed Central

    Foltz, Jennifer A.; Somanchi, Srinivas S.; Yang, Yanwen; Aquino-Lopez, Arianexys; Bishop, Erin E.; Lee, Dean A.

    2016-01-01

    Canines spontaneously develop many cancers similar to humans – including osteosarcoma, leukemia, and lymphoma – offering the opportunity to study immune therapies in a genetically heterogeneous and immunocompetent environment. However, a lack of antibodies recognizing canine NK cell markers has resulted in suboptimal characterization and unknown purity of NK cell products, hindering the development of canine models of NK cell adoptive immunotherapy. To this end, we generated a novel antibody to canine NCR1 (NKp46), the putative species-wide marker of NK cells, enabling purification of NK cells for further characterization. We demonstrate that CD3−/NKp46+ cells in healthy and osteosarcoma-bearing canines have phenotypic similarity to human CD3−/NKp46+ NK cells, expressing mRNA for CD16 and the natural cytotoxicity receptors NKp30, NKp44, and NKp80. Functionally, we demonstrate with the calcein release assay that canine CD3−/NKp46+ cells kill canine tumor cell lines without prior sensitization and secrete IFN-γ, TNF-α, IL-8, IL-10, and granulocyte-macrophage colony-stimulating factor as measured by Luminex. Similar to human NK cells, CD3−/NKp46+ cells expand rapidly on feeder cells expressing 4-1BBL and membrane-bound IL-21 (median = 20,283-fold in 21 days). Furthermore, we identify a minor Null population (CD3−/CD21−/CD14−/NKp46−) with reduced cytotoxicity against osteosarcoma cells, but similar cytokine secretion as CD3−/NKp46+ cells. Null cells in canines and humans have reduced expression of NKG2D, NKp44, and CD16 compared to NKp46+ NK cells and can be induced to express NKp46 with further expansion on feeder cells. In conclusion, we have identified and characterized canine NK cells, including an NKp46− subset of canine and human NK cells, using a novel anti-canine NKp46 antibody, and report robust ex vivo expansion of canine NK cells sufficient for adoptive immunotherapy. PMID:27933061

  9. A Systematic In Silico Search for Target Similarity Identifies Several Approved Drugs with Potential Activity against the Plasmodium falciparum Apicoplast

    PubMed Central

    Bispo, Nadlla Alves; Culleton, Richard; Silva, Lourival Almeida; Cravo, Pedro

    2013-01-01

    Most of the drugs in use against Plasmodium falciparum share similar modes of action and, consequently, there is a need to identify alternative potential drug targets. Here, we focus on the apicoplast, a malarial plastid-like organelle of algal source which evolved through secondary endosymbiosis. We undertake a systematic in silico target-based identification approach for detecting drugs already approved for clinical use in humans that may be able to interfere with the P. falciparum apicoplast. The P. falciparum genome database GeneDB was used to compile a list of ≈600 proteins containing apicoplast signal peptides. Each of these proteins was treated as a potential drug target and its predicted sequence was used to interrogate three different freely available databases (Therapeutic Target Database, DrugBank and STITCH3.1) that provide synoptic data on drugs and their primary or putative drug targets. We were able to identify several drugs that are expected to interact with forty-seven (47) peptides predicted to be involved in the biology of the P. falciparum apicoplast. Fifteen (15) of these putative targets are predicted to have affinity to drugs that are already approved for clinical use but have never been evaluated against malaria parasites. We suggest that some of these drugs should be experimentally tested and/or serve as leads for engineering new antimalarials. PMID:23555651

  10. Death penalty for keratinocytes: apoptosis versus cornification.

    PubMed

    Lippens, S; Denecker, G; Ovaere, P; Vandenabeele, P; Declercq, W

    2005-11-01

    Homeostasis implies a balance between cell growth and cell death. This balance is essential for the development and maintenance of multicellular organisms. Homeostasis is controlled by several mechanisms including apoptosis, a process by which cells condemned to death are completely eliminated. However, in some cases, total destruction and removal of dead cells is not desirable, as when they fulfil a specific function such as formation of the skin barrier provided by corneocytes, also known as terminally differentiated keratinocytes. In this case, programmed cell death results in accumulation of functional cell corpses. Previously, this process has been associated with apoptotic cell death. In this overview, we discuss differences and similarities in the molecular regulation of epidermal programmed cell death and apoptosis. We conclude that despite earlier confusion, apoptosis and cornification occur through distinct molecular pathways, and that possibly antiapoptotic mechanisms are implicated in the terminal differentiation of keratinocytes.

  11. Colocalization of Kindlin-1, Kindlin-2, and Migfilin at Keratinocyte Focal Adhesion and Relevance to the Pathophysiology of Kindler Syndrome

    PubMed Central

    Lai-Cheong, JE; Ussar, S; Arita, K; Hart, IR; McGrath, JA

    2009-01-01

    Kindler syndrome (KS) results from pathogenic loss-of-function mutations in the KIND1 gene, which encodes kindlin-1, a focal adhesion and actin cytoskeleton-related protein. How and why abnormalities in kindlin-1 disrupt keratinocyte cell biology in KS, however, is not yet known. In this study, we identified two previously unreported binding proteins of kindlin-1: kindlin-2 and migfilin. Co-immunoprecipitation and confocal microscopy studies show that these three proteins bind to each other and colocalize at focal adhesion in HaCaT cells and normal human keratinocytes. Moreover, loss-of-function mutations in KIND1 result in marked variability in kindlin-1 immunolabeling in KS skin, which is mirrored by similar changes in kindlin-2 and migfilin immunoreactivity. Kindlin-1, however, may function independently of kindlin-2 and migfilin, as loss of kindlin-1 expression in HaCaT keratinocytes by RNA interference and in KS keratinocytes does not affect KIND2 or FBLIM1 (migfilin) gene expression or kindlin-2 and migfilin protein localization. In addition to identifying protein-binding partners for kindlin-1, this study also highlights that KIND1 gene expression and kindlin-1 protein labeling are not always reduced in KS, findings that are relevant to the accurate laboratory diagnosis of this genodermatosis by skin immunohistochemistry. PMID:18528435

  12. Colocalization of kindlin-1, kindlin-2, and migfilin at keratinocyte focal adhesion and relevance to the pathophysiology of Kindler syndrome.

    PubMed

    Lai-Cheong, J E; Ussar, S; Arita, K; Hart, I R; McGrath, J A

    2008-09-01

    Kindler syndrome (KS) results from pathogenic loss-of-function mutations in the KIND1 gene, which encodes kindlin-1, a focal adhesion and actin cytoskeleton-related protein. How and why abnormalities in kindlin-1 disrupt keratinocyte cell biology in KS, however, is not yet known. In this study, we identified two previously unreported binding proteins of kindlin-1: kindlin-2 and migfilin. Co-immunoprecipitation and confocal microscopy studies show that these three proteins bind to each other and colocalize at focal adhesion in HaCaT cells and normal human keratinocytes. Moreover, loss-of-function mutations in KIND1 result in marked variability in kindlin-1 immunolabeling in KS skin, which is mirrored by similar changes in kindlin-2 and migfilin immunoreactivity. Kindlin-1, however, may function independently of kindlin-2 and migfilin, as loss of kindlin-1 expression in HaCaT keratinocytes by RNA interference and in KS keratinocytes does not affect KIND2 or FBLIM1 (migfilin) gene expression or kindlin-2 and migfilin protein localization. In addition to identifying protein-binding partners for kindlin-1, this study also highlights that KIND1 gene expression and kindlin-1 protein labeling are not always reduced in KS, findings that are relevant to the accurate laboratory diagnosis of this genodermatosis by skin immunohistochemistry.

  13. Induction of Apoptosis in Human Oral Keratinocyte by Doxorubicin.

    PubMed

    Sakagami, Hiroshi; Okudaira, Noriyuki; Masuda, Yoshiko; Amano, Osamu; Yokose, Satoshi; Kanda, Yumiko; Suguro, Madoka; Natori, Takenori; Oizumi, Hiroshi; Oizumi, Takaaki

    2017-03-01

    We have previously reported that doxorubicin (DXR) showed much higher cytotoxicity against human oral squamous cell carcinoma cell lines compared to normal human mesenchymal normal oral cells (gingival fibroblast, periodontal ligament fibroblast, pulp cell), yielding high tumor-specificity. However, we unexpectedly found that doxorubicin showed potent cytotoxicity against human normal oral keratinocytes and primary gingival epithelial cells. In the present study, we investigated the reproducibility, underlining mechanisms and generality of this unexpected finding. Viable cell number was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method, fine cell structure by transmission electron microscopy and apoptosis induction by western blot analysis. Doxorubicin induced keratinocyte toxicity, regardless of cell density and concentration of FBS in the culture medium. Doxorubicin induced apoptosis (characterized by the loss of cell surface microvilli, chromatin condensation, nuclear fragmentation and caspase-3 activation) in keratinocytes. A total of 11 anticancer drugs showed similar keratinocyte toxicity. Alkaline extract of the leaves of Sasa senanensis Rehder partially alleviated the DXR-induced keratinocyte cytotoxicity by promoting cell growth. The present study suggested that oral keratinocyte toxicity is a novel adverse effect of most anticancer agents. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  14. Cyclic AMP mediates keratinocyte directional migration in an electric field.

    PubMed

    Pullar, Christine E; Isseroff, R Rivkah

    2005-05-01

    Re-epithelialization of wounded skin is necessary for wound closure and restoration of barrier function and requires directional keratinocyte migration towards the center of the wound. The electric field (EF) generated immediately upon wounding could be the earliest signal keratinocytes receive to initiate directional migration and healing. Keratinocytes express many beta2-adrenergic receptors (beta2-ARs), but their role in the epidermis is unknown. We have previously shown that beta-AR agonists decrease keratinocyte migration in a cyclic AMP (cAMP) independent mechanism involving the activation of protein phosphatase 2A (PP2A). Here, we ask whether beta2-ARs play a role in keratinocyte galvanotaxis. We report a bimodal response. When keratinocytes were exposed to higher concentrations of beta-AR agonist (0.1 microM), their tracked migratory speed was inhibited, in both the presence (directional migration) and the absence (random migration) of a 100 mV mm(-1) EF, as expected. At lower agonist concentrations (0.1 pM to 0.1 nM), there was no effect on migratory speed; however, all directionality was lost - essentially, cells were 'blinded' to the directional cue. Preincubating the cells with beta-antagonist restored directional migration, demonstrating that the 'blindness' was beta2-AR mediated. Incubation of keratinocytes with agents known to increase intracellular cAMP levels, such as sp-cAMP, pertussis toxin and forskolin, resulted in similar 'blinding' to the EF, whereas random migration was unaffected. The inactive cAMP analog rp-cAMP had no effect on keratinocyte migration, whether directional or random. However, rp-cAMP pretreatment before beta-agonist addition fully restored galvanotaxis, demonstrating the complete cAMP dependence of the attenuation of keratinocyte directional migration. This is the first report that cAMP is capable of mediating keratinocyte galvanotaxis. beta-AR agonists and antagonists could be valuable tools for modulating re

  15. Hyaluronan-Phosphatidylethanolamine Polymers Form Pericellular Coats on Keratinocytes and Promote Basal Keratinocyte Proliferation

    PubMed Central

    Symonette, Caitlin J.; Tan, Xiao Cherie; Tolg, Cornelia; Ma, Jenny; Perera, Francisco; Turley, Eva A.

    2014-01-01

    Aged keratinocytes have diminished proliferative capacity and hyaluronan (HA) cell coats, which are losses that contribute to atrophic skin characterized by reduced barrier and repair functions. We formulated HA-phospholipid (phosphatidylethanolamine, HA-PE) polymers that form pericellular coats around cultured dermal fibroblasts independently of CD44 or RHAMM display. We investigated the ability of these HA-PE polymers to penetrate into aged mouse skin and restore epidermal function in vivo. Topically applied Alexa647-HA-PE penetrated into the epidermis and dermis, where it associated with both keratinocytes and fibroblasts. In contrast, Alexa647-HA was largely retained in the outer cornified layer of the epidermis and quantification of fluorescence confirmed that significantly more Alexa647-HA-PE penetrated into and was retained within the epidermis than Alexa647-HA. Multiple topical applications of HA-PE to shaved mouse skin significantly stimulated basal keratinocyte proliferation and epidermal thickness compared to HA or vehicle cream alone. HA-PE had no detectable effect on keratinocyte differentiation and did not promote local or systemic inflammation. These effects of HA-PE polymers are similar to those reported for endogenous epidermal HA in youthful skin and show that topical application of HA-PE polymers can restore some of the impaired functions of aged epidermis. PMID:25276814

  16. Hyaluronan-phosphatidylethanolamine polymers form pericellular coats on keratinocytes and promote basal keratinocyte proliferation.

    PubMed

    Symonette, Caitlin J; Kaur Mann, Aman; Tan, Xiao Cherie; Tolg, Cornelia; Ma, Jenny; Perera, Francisco; Yazdani, Arjang; Turley, Eva A

    2014-01-01

    Aged keratinocytes have diminished proliferative capacity and hyaluronan (HA) cell coats, which are losses that contribute to atrophic skin characterized by reduced barrier and repair functions. We formulated HA-phospholipid (phosphatidylethanolamine, HA-PE) polymers that form pericellular coats around cultured dermal fibroblasts independently of CD44 or RHAMM display. We investigated the ability of these HA-PE polymers to penetrate into aged mouse skin and restore epidermal function in vivo. Topically applied Alexa(647)-HA-PE penetrated into the epidermis and dermis, where it associated with both keratinocytes and fibroblasts. In contrast, Alexa(647)-HA was largely retained in the outer cornified layer of the epidermis and quantification of fluorescence confirmed that significantly more Alexa(647)-HA-PE penetrated into and was retained within the epidermis than Alexa(647)-HA. Multiple topical applications of HA-PE to shaved mouse skin significantly stimulated basal keratinocyte proliferation and epidermal thickness compared to HA or vehicle cream alone. HA-PE had no detectable effect on keratinocyte differentiation and did not promote local or systemic inflammation. These effects of HA-PE polymers are similar to those reported for endogenous epidermal HA in youthful skin and show that topical application of HA-PE polymers can restore some of the impaired functions of aged epidermis.

  17. Transcriptional profiling of epidermal keratinocytes: comparison of genes expressed in skin, cultured keratinocytes, and reconstituted epidermis, using large DNA microarrays.

    PubMed

    Gazel, Alix; Ramphal, Patricia; Rosdy, Martin; De Wever, Bart; Tornier, Carine; Hosein, Nadia; Lee, Brian; Tomic-Canic, Marjana; Blumenberg, Miroslav

    2003-12-01

    Epidermal keratinocytes are complex cells that create a unique three-dimensional (3-D) structure, differentiate through a multistage process, and respond to extracellular stimuli from nearby cells. Consequently, keratinocytes express many genes, i.e., have a relatively large "transcriptome." To determine which of the expressed genes are innate to keratinocytes, which are specific for the differentiation and 3-D architecture, and which are induced by other cell types, we compared the transcriptomes of skin from human subjects, differentiating 3-D reconstituted epidermis, cultured keratinocytes, and nonkeratinocyte cell types. Using large oligonucleotide microarrays, we analyzed five or more replicates of each, which yielded statistically consistent data and allowed identification of the differentially expressed genes. Epidermal keratinocytes, unlike other cells, express many proteases and protease inhibitors and genes that protect from UV light. Skin specifically expresses a higher number of receptors, secreted proteins, and transcription factors, perhaps influenced by the presence of nonkeratinocyte cell types. Surprisingly, mitochondrial proteins were significantly suppressed in skin, suggesting a low metabolic rate. Three-dimensional samples, skin and reconstituted epidermis, are similar to each other, expressing epidermal differentiation markers. Cultured keratinocytes express many cell-cycle and DNA replication genes, as well as integrins and extracellular matrix proteins. These results define innate, architecture-specific, and cell-type-regulated genes in epidermis.

  18. Expression and modulation of IL-1 alpha in murine keratinocytes

    SciTech Connect

    Ansel, J.C.; Luger, T.A.; Lowry, D.; Perry, P.; Roop, D.R.; Mountz, J.D.

    1988-04-01

    Murine and human keratinocytes produce an IL-1-like factor that appears to be similar if not identical to monocyte-derived IL-1. IL-1 may be an important mediator in cutaneous inflammatory responses, however, little is currently known concerning factors that may modulate IL-1 expression in keratinocytes. To address this issue we examined the effect of LPS, UV, and the cell differentiation state on murine keratinocyte IL-1 mRNA expression. Our results indicated that as with the murine P388D1 monocyte cell line, PAM 212 keratinocytes constitutively express abundant amounts of IL-1 alpha mRNA. On exposure to LPS (100 micrograms/ml) for 8 h there was more than 10 times the increase in PAM 212 IL-1 alpha mRNA which was accompanied by a sixfold increase in supernatant IL-1 activity. Similarly UV irradiation had a significant effect on keratinocyte IL-1 alpha expression. High dose UV (300 mJ/cm2) inhibited PAM 212 IL-1 alpha expression at 4, 8, 24, 48 h post-UV whereas a lower dose of UV (100 mJ/cm2) inhibited UV at 4 and 8 h post-UV, but induced IL-1 expression at 24 and 48 h post-UV. The expression of IL-1 alpha varied with the differentiation state of the keratinocytes. Freshly removed newborn murine keratinocytes were found to constitutively express IL-1 alpha mRNA. Keratinocytes grown in low (Ca2+) tissue culture media (0.05 mM) for 6 days, functionally and phenotypically become undifferentiated and express increased quantities of IL-1 alpha mRNA, whereas cells grown in high (Ca2+) media (1.2 mM) for 6 days become terminally differentiated and IL-1 expression ceased. Keratinocytes cultured for 3 days in low (Ca2+) conditions expressed an intermediate level of IL-1 alpha. In contrast, little or no IL-1 beta mRNA was detected in either the PAM 212 cells or newborn murine keratinocytes.

  19. Use of cyanoacrylate glue to prepare cultured keratinocyte sheets for grafting.

    PubMed

    Meana, A; Iglesias, J; Madrigal, B; Sanchez, J

    1997-01-01

    We describe a method to prepare keratinocyte cultured sheets for grafting based on the use of an organic glue (n-butyl-2-cyanoacrylate). It is a rapid and easy method in which the cultured layers of keratinocytes remain with a surface area similar to the original cultures.

  20. Automatic Online Educational Game Content Creation by Identifying Similar Chinese Characters with Radical Extraction and Graph Matching Algorithms

    ERIC Educational Resources Information Center

    Lai, Jason Kwong-Hung; Leung, Howard; Hu, Zhi-Hui; Tang, Jeff K. T.; Xu, Yun

    2010-01-01

    One of the difficulties in learning Chinese characters is distinguishing similar characters. This can cause misunderstanding and miscommunication in daily life. Thus, it is important for students learning the Chinese language to be able to distinguish similar characters and understand their proper usage. In this paper, the authors propose a game…

  1. Micronucleus formation in human keratinocytes is dependent on radiation quality and tissue architecture.

    PubMed

    Snijders, Antoine M; Mannion, Brandon J; Leung, Stanley G; Moon, Sol C; Kronenberg, Amy; Wiese, Claudia

    2015-01-01

    The cytokinesis-block micronucleus (MN) assay was used to assess the genotoxicity of low doses of different types of space radiation. Normal human primary keratinocytes and immortalized keratinocytes grown in 2D monolayers each were exposed to graded doses of 0.3 or 1.0 GeV/n silicon ions or similar energies of iron ions. The frequencies of induced MN were determined and compared to γ-ray data. RBE(max) values ranged from 1.6 to 3.9 for primary keratinocytes and from 2.4 to 6.3 for immortalized keratinocytes. At low radiation doses ≤ 0.4 Gy, 0.3 GeV/n iron ions were the most effective at inducing MN in normal keratinocytes. An "over-kill effect" was observed for 0.3 GeV/n iron ions at higher doses, wherein 1.0 GeV/n iron ions were most efficient in inducing MN. In immortalized keratinocytes, 0.3 GeV/n iron ions produced MN with greater frequency than 1.0 GeV/n iron ions, except at the highest dose tested. MN formation was higher in immortalized keratinocytes than in normal keratinocytes for all doses and radiation qualities investigated. MN induction was also assessed in human keratinocytes cultured in 3D to simulate the complex architecture of human skin. RBE values for MN formation in 3D were reduced for normal keratinocytes exposed to iron ions, but were elevated for immortalized keratinocytes. Overall, MN induction was significantly lower in keratinocytes cultured in 3D than in 2D. Together, the results suggest that tissue architecture and immortalization status modulate the genotoxic response to space radiation, perhaps via alterations in DNA repair fidelity. © 2014 Wiley Periodicals, Inc.

  2. Effect of Wnt3a on Keratinocytes Utilizing in Vitro and Bioinformatics Analysis

    PubMed Central

    Nam, Ju-Suk; Chakraborty, Chiranjib; Sharma, Ashish Ranjan; Her, Young; Bae, Kee-Jeong; Sharma, Garima; Doss, George Priya; Lee, Sang-Soo; Hong, Myung-Sun; Song, Dong-Keun

    2014-01-01

    Wingless-type (Wnt) signaling proteins participate in various cell developmental processes. A suppressive role of Wnt5a on keratinocyte growth has already been observed. However, the role of other Wnt proteins in proliferation and differentiation of keratinocytes remains unknown. Here, we investigated the effects of the Wnt ligand, Wnt3a, on proliferation and differentiation of keratinocytes. Keratinocytes from normal human skin were cultured and treated with recombinant Wnt3a alone or in combination with the inflammatory cytokine, tumor necrosis factor α (TNFα). Furthermore, using bioinformatics, we analyzed the biochemical parameters, molecular evolution, and protein–protein interaction network for the Wnt family. Application of recombinant Wnt3a showed an anti-proliferative effect on keratinocytes in a dose-dependent manner. After treatment with TNFα, Wnt3a still demonstrated an anti-proliferative effect on human keratinocytes. Exogenous treatment of Wnt3a was unable to alter mRNA expression of differentiation markers of keratinocytes, whereas an altered expression was observed in TNFα-stimulated keratinocytes. In silico phylogenetic, biochemical, and protein–protein interaction analysis showed several close relationships among the family members of the Wnt family. Moreover, a close phylogenetic and biochemical similarity was observed between Wnt3a and Wnt5a. Finally, we proposed a hypothetical mechanism to illustrate how the Wnt3a protein may inhibit the process of proliferation in keratinocytes, which would be useful for future researchers. PMID:24686518

  3. AMPK regulation of the growth of cultured human keratinocytes

    SciTech Connect

    Saha, Asish K. . E-mail: aksaha@bu.edu; Persons, Kelly; Safer, Joshua D.; Luo Zhijun; Holick, Michael F.; Ruderman, Neil B.

    2006-10-20

    AMP kinase (AMPK) is a fuel sensing enzyme that responds to cellular energy depletion by increasing processes that generate ATP and inhibiting others that require ATP but are not acutely necessary for survival. In the present study, we examined the relationship between AMPK activation and the growth (proliferation) of cultured human keratinocytes and assessed whether the inhibition of keratinocyte growth by vitamin D involves AMPK activation. In addition, we explored whether the inhibition of keratinocyte proliferation as they approach confluence could be AMPK-related. Keratinocytes were incubated for 12 h with the AMPK activator, 5-aminoimidazole-4-carboxamide-1-{beta}-D-ribofuranoside (AICAR). At concentrations of 10{sup -4} and 10{sup -3} M, AICAR inhibited keratinocyte growth by 50% and 95%, respectively, based on measurements of thymidine incorporation into DNA. It also increased AMPK and acetyl CoA carboxylase phosphorylation (P-AMPK and P-ACC) and decreased the concentration of malonyl CoA confirming that AMPK activation had occurred. Incubation with the thiazolidinedione, troglitazone (10{sup -6} M) caused similar alterations in P-AMPK, P-ACC, and cell growth. In contrast, the well known inhibition of keratinocyte growth by 1,25-dihydroxyvitamin D{sub 3} (10{sup -7} and 10{sup -6} M) was not associated with changes in P-AMPK or P-ACC. Like most cells, the growth of keratinocytes diminished as they approached confluence. Thus, it was of note that we found a progressive increase in P-AMPK (1.5- to 2-fold, p < 0.05) as keratinocytes grown in control medium went from 25% to 100% confluence. In conclusion, the data are consistent with the hypothesis that activation of AMPK acts as a signal to diminish the proliferation of cultured keratinocytes as they approach confluence. They also suggest that AMPK activators, such as AICAR and troglitazone, inhibit keratinocyte growth and that the inhibition of cell growth by 1,25-dihydroxyvitamin D{sub 3} is AMPK-independent.

  4. Basal keratinocytes contribute to all strata of the adult zebrafish epidermis.

    PubMed

    Lee, Raymond T H; Asharani, P V; Carney, Thomas J

    2014-01-01

    The epidermis of terrestrial vertebrates is a stratified epithelium and forms an essential protective barrier. It is continually renewed, with dead corneocytes shed from the surface and replaced from a basal keratinocyte stem cell population. Whilst mouse is the prime model system used for epidermal studies, there is increasing employment of the zebrafish to analyse epidermis development and homeostasis, however the architecture and ontogeny of the epidermis in this system are incompletely described. In particular, it is unclear if adult zebrafish epidermis is derived entirely from the basal epidermal stem cell layer, as in the mouse, or if the most superficial keratinocyte layer is a remnant of the embryonic periderm. Furthermore, a relative paucity of cellular markers and genetic reagents to label and manipulate the basal epidermal stem cell compartment has hampered research. Here we show that the type I keratin, krtt1c19e, is a suitable marker of the basal epidermal layer and identify a krtt1c19e promoter fragment able to drive strong and specific expression in this cell type. Use of this promoter to express an inducible Cre recombinase allowed permanent labelling of basal cells during embryogenesis, and demonstrated that these cells do indeed generate keratinocytes of all strata in the adult epidermis. Further deployment of the Cre-Lox system highlighted the transient nature of the embryonic periderm. We thus show that the epidermis of adult zebrafish, as in the mouse, derives from basal stem cells, further expanding the similarities of epidermal ontogeny across vertebrates. Future use of this promoter will assist genetic analysis of basal keratinocyte biology in zebrafish.

  5. Basal Keratinocytes Contribute to All Strata of the Adult Zebrafish Epidermis

    PubMed Central

    Carney, Thomas J.

    2014-01-01

    The epidermis of terrestrial vertebrates is a stratified epithelium and forms an essential protective barrier. It is continually renewed, with dead corneocytes shed from the surface and replaced from a basal keratinocyte stem cell population. Whilst mouse is the prime model system used for epidermal studies, there is increasing employment of the zebrafish to analyse epidermis development and homeostasis, however the architecture and ontogeny of the epidermis in this system are incompletely described. In particular, it is unclear if adult zebrafish epidermis is derived entirely from the basal epidermal stem cell layer, as in the mouse, or if the most superficial keratinocyte layer is a remnant of the embryonic periderm. Furthermore, a relative paucity of cellular markers and genetic reagents to label and manipulate the basal epidermal stem cell compartment has hampered research. Here we show that the type I keratin, krtt1c19e, is a suitable marker of the basal epidermal layer and identify a krtt1c19e promoter fragment able to drive strong and specific expression in this cell type. Use of this promoter to express an inducible Cre recombinase allowed permanent labelling of basal cells during embryogenesis, and demonstrated that these cells do indeed generate keratinocytes of all strata in the adult epidermis. Further deployment of the Cre-Lox system highlighted the transient nature of the embryonic periderm. We thus show that the epidermis of adult zebrafish, as in the mouse, derives from basal stem cells, further expanding the similarities of epidermal ontogeny across vertebrates. Future use of this promoter will assist genetic analysis of basal keratinocyte biology in zebrafish. PMID:24400120

  6. Proliferating cell nuclear antigen/cyclin in cultured human keratinocytes.

    PubMed

    Okada, N; Miyagawa, S; Steinberg, M L; Yoshikawa, K

    1990-09-01

    Expression of proliferating cell nuclear antigen (PCNA)/cyclin in cultured human keratinocytes was studied using an antibody from an SLE patient as the reagent. By indirect immunofluorescence staining, SV40-transformed human keratinocytes expressed PCNA/cyclin in 40-45% of the cells as a nulcear granular fluorescence. After synchronization of these cells, their nuclear distribution pattern during the S phase was sequential and showed a clear correlation with DNA synthesis. Primary cultured keratinocytes grown in high Ca+ medium expressed PCNA/cyclin in 10-15% of the cells with a similar staining pattern. These positively stained cells were confined to the basal and immediate suprabasal layers of the stratified culture sheet. The keratinocytes disaggregated by trypsin were separated according to cell size through a screen of Nitex monofilament cloth. The cells smaller than 15 microns in diameter synthesized abundant PCNA/cyclin, while the larger cells expressed very low levels. These results indicate that the expression of PCNA/cyclin correlates with DNA synthesis in cultured keratinocytes, but is not associated with their differentiation process.

  7. The Protein Deacetylase SIRT3 Prevents Oxidative Stress-induced Keratinocyte Differentiation*

    PubMed Central

    Bause, Alexandra S.; Matsui, Mary S.; Haigis, Marcia C.

    2013-01-01

    Keratinocyte differentiation is a key process in the formation and maintenance of the protective skin barrier. Dysregulation in the balance of reactive oxygen species homeostasis may play a role in keratinocyte differentiation. We have identified the mitochondrial deacetylase SIRT3 as a key regulator of mitochondrial reactive oxygen species in keratinocytes. Our studies demonstrate that SIRT3 expression is down-regulated during keratinocyte differentiation, consistent with an increase in mitochondrial superoxide levels. Importantly, loss of SIRT3 expression in keratinocytes increased superoxide levels and promoted the expression of differentiation markers, whereas overexpression decreased superoxide levels and reduced the expression of differentiation markers. These findings identify a new role for SIRT3 in the suppression of epidermal differentiation via lowering oxidative stress. PMID:24194516

  8. Identifying Potential Protein Targets for Toluene Using a Molecular Similarity Search, in Silico Docking and in Vitro Validation

    DTIC Science & Technology

    2015-01-01

    predicted by AutoDock Vina . The binding energy to similar toxins is presented for comparison Protein name UniProt ID Toluene ΔG (kcal mol−1) para...by AutoDock Vina under- estimate the true affinity of the proteins for toluene. For example, we observed an in vitro binding affinity of 1.9 µM for...was further analysed using the protein–ligand docking program AutoDock and the docking results predicted significant binding of toluene to six proteins

  9. Single Low-Dose Radiation Induced Regulation of Keratinocyte Differentiation in Calcium-Induced HaCaT Cells

    PubMed Central

    Hahn, Hyung Jin; Youn, Hae Jeong; Cha, Hwa Jun; Kim, Karam; An, Sungkwan

    2016-01-01

    Background We are continually exposed to low-dose radiation (LDR) in the range 0.1 Gy from natural sources, medical devices, nuclear energy plants, and other industrial sources of ionizing radiation. There are three models for the biological mechanism of LDR: the linear no-threshold model, the hormetic model, and the threshold model. Objective We used keratinocytes as a model system to investigate the molecular genetic effects of LDR on epidermal cell differentiation. Methods To identify keratinocyte differentiation, we performed western blots using a specific antibody for involucrin, which is a precursor protein of the keratinocyte cornified envelope and a marker for keratinocyte terminal differentiation. We also performed quantitative polymerase chain reaction. We examined whether LDR induces changes in involucrin messenger RNA (mRNA) and protein levels in calcium-induced keratinocyte differentiation. Results Exposure of HaCaT cells to LDR (0.1 Gy) induced p21 expression. p21 is a key regulator that induces growth arrest and represses stemness, which accelerates keratinocyte differentiation. We correlated involucrin expression with keratinocyte differentiation, and examined the effects of LDR on involucrin levels and keratinocyte development. LDR significantly increased involucrin mRNA and protein levels during calcium-induced keratinocyte differentiation. Conclusion These studies provide new evidence for the biological role of LDR, and identify the potential to utilize LDR to regulate or induce keratinocyte differentiation. PMID:27489424

  10. Single Low-Dose Radiation Induced Regulation of Keratinocyte Differentiation in Calcium-Induced HaCaT Cells.

    PubMed

    Hahn, Hyung Jin; Youn, Hae Jeong; Cha, Hwa Jun; Kim, Karam; An, Sungkwan; Ahn, Kyu Joong

    2016-08-01

    We are continually exposed to low-dose radiation (LDR) in the range 0.1 Gy from natural sources, medical devices, nuclear energy plants, and other industrial sources of ionizing radiation. There are three models for the biological mechanism of LDR: the linear no-threshold model, the hormetic model, and the threshold model. We used keratinocytes as a model system to investigate the molecular genetic effects of LDR on epidermal cell differentiation. To identify keratinocyte differentiation, we performed western blots using a specific antibody for involucrin, which is a precursor protein of the keratinocyte cornified envelope and a marker for keratinocyte terminal differentiation. We also performed quantitative polymerase chain reaction. We examined whether LDR induces changes in involucrin messenger RNA (mRNA) and protein levels in calcium-induced keratinocyte differentiation. Exposure of HaCaT cells to LDR (0.1 Gy) induced p21 expression. p21 is a key regulator that induces growth arrest and represses stemness, which accelerates keratinocyte differentiation. We correlated involucrin expression with keratinocyte differentiation, and examined the effects of LDR on involucrin levels and keratinocyte development. LDR significantly increased involucrin mRNA and protein levels during calcium-induced keratinocyte differentiation. These studies provide new evidence for the biological role of LDR, and identify the potential to utilize LDR to regulate or induce keratinocyte differentiation.

  11. Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila.

    PubMed

    Grob, Stefan; Schmid, Marc W; Grossniklaus, Ueli

    2014-09-04

    Chromosomes are folded, spatially organized, and regulated by epigenetic marks. How chromosomal architecture is connected to the epigenome is not well understood. We show that chromosomal architecture of Arabidopsis is tightly linked to the epigenetic state. Furthermore, we show how physical constraints, such as nuclear size, correlate with the folding principles of chromatin. We also describe a nuclear structure, termed KNOT, in which genomic regions of all five Arabidopsis chromosomes interact. These KNOT ENGAGED ELEMENT (KEE) regions represent heterochromatic islands within euchromatin. Similar to PIWI-interacting RNA clusters, such as flamenco in Drosophila, KEEs represent preferred landing sites for transposable elements, which may be part of a transposon defense mechanism in the Arabidopsis nucleus. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Keratinocyte-derived laminin-332 protein promotes melanin synthesis via regulation of tyrosine uptake.

    PubMed

    Chung, Heesung; Jung, Hyejung; Lee, Jung-Hyun; Oh, Hye Yun; Kim, Ok Bin; Han, Inn-Oc; Oh, Eok-Soo

    2014-08-01

    Melanocytes, which produce the pigment melanin, are known to be closely regulated by neighboring keratinocytes. However, how keratinocytes regulate melanin production is unclear. Here we report that melanin production in melanoma cells (B16F10 and MNT-1) was increased markedly on a keratinocyte-derived extracellular matrix compared with a melanoma cell-derived extracellular matrix. siRNA-mediated reduction of keratinocyte-derived laminin-332 expression decreased melanin synthesis in melanoma cells, and laminin-332, but not fibronectin, enhanced melanin content and α-melanocyte-stimulating hormone-regulated melanin production in melanoma cells. Similar effects were observed in human melanocytes. Interestingly, however, laminin-332 did not affect the expression or activity of tyrosinase. Instead, laminin-332 promoted the uptake of extracellular tyrosine and, subsequently, increased intracellular levels of tyrosine in both melanocytes and melanoma cells. Taken together, these data strongly suggest that keratinocyte-derived laminin-332 contributes to melanin production by regulating tyrosine uptake.

  13. Keratinocyte-derived Laminin-332 Protein Promotes Melanin Synthesis via Regulation of Tyrosine Uptake*

    PubMed Central

    Chung, Heesung; Jung, Hyejung; Lee, Jung-hyun; Oh, Hye Yun; Kim, Ok Bin; Han, Inn-Oc; Oh, Eok-Soo

    2014-01-01

    Melanocytes, which produce the pigment melanin, are known to be closely regulated by neighboring keratinocytes. However, how keratinocytes regulate melanin production is unclear. Here we report that melanin production in melanoma cells (B16F10 and MNT-1) was increased markedly on a keratinocyte-derived extracellular matrix compared with a melanoma cell-derived extracellular matrix. siRNA-mediated reduction of keratinocyte-derived laminin-332 expression decreased melanin synthesis in melanoma cells, and laminin-332, but not fibronectin, enhanced melanin content and α-melanocyte-stimulating hormone-regulated melanin production in melanoma cells. Similar effects were observed in human melanocytes. Interestingly, however, laminin-332 did not affect the expression or activity of tyrosinase. Instead, laminin-332 promoted the uptake of extracellular tyrosine and, subsequently, increased intracellular levels of tyrosine in both melanocytes and melanoma cells. Taken together, these data strongly suggest that keratinocyte-derived laminin-332 contributes to melanin production by regulating tyrosine uptake. PMID:24951591

  14. CKD-EPI and cockcroft-gault equations identify similar candidates for neoadjuvant chemotherapy in muscle-invasive bladder cancer.

    PubMed

    Pal, Sumanta K; Ruel, Nora; Villegas, Sergio; Chang, Mark; DeWalt, Kara; Wilson, Timothy G; Vogelzang, Nicholas J; Yuh, Bertram E

    2014-01-01

    Clinical guidelines suggest neoadjuvant cisplatin-based chemotherapy prior to cystectomy in the setting of muscle-invasive bladder cancer (MIBC). A creatinine clearance (CrCl) >60 mL/min is frequently used to characterize cisplatin-eligible patients, and use of the CKD-EPI equation to estimate CrCl has been advocated. From a prospectively maintained institutional database, patients with MIBC who received cystectomy were identified and clinicopathologic information was ascertained. CrCl prior to surgery was computed using three equations: (1) Cockcroft-Gault (CG), (2) CKD-EPI, and (3) MDRD. The primary objective was to determine if the CG and CKD-EPI equations identified a different proportion of patients who were cisplatin-eligible, based on an estimated CrCl of >60 mL/min. Cisplatin-eligibility was also assessed in subsets based on age, CCI score and race. Actuarial rates of neoadjuvant cisplatin-based chemotherapy use were also reported. Of 126 patients, 70% and 71% of patients were found to be cisplatin-eligible by the CKD-EPI and CG equations, respectively (P = 0.9). The MDRD did not result in significantly different characterization of cisplatin-eligibility as compared to the CKD-EPI and CG equations. In the subset of patients age >80, the CKD-EPI equation identified a much smaller proportion of cisplatin-eligible patients (25%) as compared to the CG equation (50%) or the MDRD equation (63%). Only 34 patients (27%) received neoadjuvant cisplatin-based chemotherapy. Of the 92 patients who did not receive neoadjuvant chemotherapy, 64% had a CrCl >60 mL/min by CG. In contrast to previous reports, the CKD-EPI equation does not appear to characterize a broader span of patients as cisplatin-eligible. Older patients (age >80) may less frequently be characterized as cisplatin-eligible by CKD-EPI. The discordance between actual rates of neoadjuvant chemotherapy use and rates of cisplatin eligibility suggest that other factors (e.g., patient and physician preference

  15. Practice of Comparative Effectiveness Research to Identify Treatment Characteristics of Similar Chinese Patent Medicine for Angina Pectoris

    PubMed Central

    Wang, Ping; Li, Nan; Liu, Dan; Ma, Junshao; Fan, Ruihong; Zhou, Zhihuan

    2017-01-01

    Objective Individualized application of TCM is not easy and may lead to undesirable results, such as poor effect or even adverse reactions. This trial aims to compare two common Chinese patent medicines with similar effects. Background of the Research Four hospitals carried out the test at the same time in Tianjin city of China. Participants 144 patients were involved in this study; all patients must meet the diagnostic criteria. Interventions Qishen Yiqi pills, compound danshen pills, and their placebos; an efficacy analysis was conducted after the first medication and after crossover medication. Primary Outcome Measures The primary index of end point includes Seattle Angina Questionnaire score-7 and score of 7-point Likert Scale; the curative effect was compared with minimal clinically important differences value. Result Two drugs have their respective advantages in treating SAP. In practical application, the two drugs shall be discriminated in use based on patients' specific symptoms. Trial Registration Chinese clinical trials register is ChiCTR-TTRCC-14004406 (registered 23 March 2014). PMID:28894471

  16. H(+)/peptide transporter (PEPT2) is expressed in human epidermal keratinocytes and is involved in skin oligopeptide transport.

    PubMed

    Kudo, Michiko; Katayoshi, Takeshi; Kobayashi-Nakamura, Kumiko; Akagawa, Mitsugu; Tsuji-Naito, Kentaro

    2016-07-08

    Peptide transporter 2 (PEPT2) is a member of the proton-coupled oligopeptide transporter family, which mediates the cellular uptake of oligopeptides and peptide-like drugs. Although PEPT2 is expressed in many tissues, its expression in epidermal keratinocytes remains unclear. We investigated PEPT2 expression profile and functional activity in keratinocytes. We confirmed PEPT2 mRNA expression in three keratinocyte lines (normal human epidermal keratinocytes (NHEKs), immortalized keratinocytes, and malignant keratinocytes) by reverse transcription-polymerase chain reaction (RT-PCR) and quantitative real-time RT-PCR. In contrast to PEPT1, PEPT2 expression in the three keratinocytes was similar or higher than that in HepG2 cells, used as PEPT2-positive cells. Immunolocalization analysis using human skin showed epidermal PEPT2 localization. We studied keratinocyte transport function by measuring the oligopeptide content using liquid chromatography/tandem mass spectrometry. Glycylsarcosine uptake in NHEKs was pH-dependent, suggesting that keratinocytes could absorb small peptides in the presence of an inward H(+) gradient. We also performed a skin-permeability test of several oligopeptides using skin substitute, suggesting that di- and tripeptides pass actively through the epidermis. In conclusion, PEPT2 is expressed in keratinocytes and involved in skin oligopeptide uptake. Copyright © 2016 DHC corporation. Published by Elsevier Inc. All rights reserved.

  17. Dynamic Transcriptional and Epigenetic Regulation of Human Epidermal Keratinocyte Differentiation

    PubMed Central

    Cavazza, Alessia; Miccio, Annarita; Romano, Oriana; Petiti, Luca; Malagoli Tagliazucchi, Guidantonio; Peano, Clelia; Severgnini, Marco; Rizzi, Ermanno; De Bellis, Gianluca; Bicciato, Silvio; Mavilio, Fulvio

    2016-01-01

    Summary Human skin is maintained by the differentiation and maturation of interfollicular stem and progenitors cells. We used DeepCAGE, genome-wide profiling of histone modifications and retroviral integration analysis, to map transcripts, promoters, enhancers, and super-enhancers (SEs) in prospectively isolated keratinocytes and transit-amplifying progenitors, and retrospectively defined keratinocyte stem cells. We show that >95% of the active promoters are in common and differentially regulated in progenitors and differentiated keratinocytes, while approximately half of the enhancers and SEs are stage specific and account for most of the epigenetic changes occurring during differentiation. Transcription factor (TF) motif identification and correlation with TF binding site maps allowed the identification of TF circuitries acting on enhancers and SEs during differentiation. Overall, our study provides a broad, genome-wide description of chromatin dynamics and differential enhancer and promoter usage during epithelial differentiation, and describes a novel approach to identify active regulatory elements in rare stem cell populations. PMID:27050947

  18. miR-21 promotes keratinocyte migration and re-epithelialization during wound healing.

    PubMed

    Yang, Xue; Wang, Jun; Guo, Shui-Long; Fan, Kai-Ji; Li, Jun; Wang, You-Liang; Teng, Yan; Yang, Xiao

    2011-01-01

    MicroRNAs involved in keratinocyte migration and wound healing are largely unknown. Here, we revealed the indispensable role of miR-21 in keratinocyte migration and in re-epithelialization during wound healing in mice. In HaCaT cell, miR-21 could be upregulated by TGF-β1. Similar to the effect of TGF-β1, miR-21 overexpression promoted keratinocyte migration. Conversely, miR-21 knockdown attenuated TGF-β1-induced keratinocyte migration, suggesting that miR-21 was essential for TGF-β-driven keratinocyte migration. Furthermore, we found that miR-21 was upregulated during wound healing, coincident with the temporal expression pattern of TGF-β1. Consistently, knockdown of endogenous miR-21 using a specific antagomir dramatically delayed re-epithelialization possibly due to the reduced keratinocyte migration. TIMP3 and TIAM1, direct targets of miR-21, were verified to be regulated by miR-21 in vitro and in vivo, indicating that these two molecules might contribute to miR-21-induced keratinocyte migration. Taken together, our results demonstrate that miR-21 promotes keratinocyte migration and boosts re-epithelialization during skin wound healing.

  19. The signaling involved in autophagy machinery in keratinocytes and therapeutic approaches for skin diseases

    PubMed Central

    Li, Li

    2016-01-01

    Autophagy is responsible for the lysosomal degradation of proteins, organelles, microorganisms and exogenous particles. Epidermis primarily consists of keratinocytes which functions as an extremely important barrier. Investigation on autophagy in keratinocytes has been continuously renewing, but is not so systematic due to the complexity of the autophagy machinery. Here we reviewed recent studies on the autophagy in keratinocyte with a focus on interplay between autophagy machinery and keratinocytes biology, and novel autophagy regulators identified in keratinocytes. In this review, we discussed the roles of autophagy in apoptosis, differentiation, immune response, survival and melanin metabolism, trying to reveal the possible involvement of autophagy in skin aging, skin disorders and skin color formation. Since autophagy routinely plays a double-edged sword role in various conditions, its functions in skin homeostasis and potential application as a therapeutic target for skin diseases remains to be clarified. Furthermore, more investigations are needed on optimizing designed strategies to inhibit or enhance autophagy for clinical efficacy. PMID:27191982

  20. Human melanocytes mitigate keratinocyte-dependent contraction in an in vitro collagen contraction assay.

    PubMed

    Rakar, Jonathan; Krammer, Markus P; Kratz, Gunnar

    2015-08-01

    Scarring is an extensive problem in burn care, and treatment can be especially complicated in cases of hypertrophic scarring. Contraction is an important factor in scarring but the contribution of different cell types remains unclear. We have investigated the contractile behavior of keratinocytes, melanocytes and fibroblasts by using an in vitro collagen gel assay aimed at identifying a modulating role of melanocytes in keratinocyte-mediated contraction. Cells were seeded on a collagen type I gel substrate and the change in gel dimensions were measured over time. Hematoxylin & Eosin-staining and immunohistochemistry against pan-cytokeratin and microphthalmia-associated transcription factor showed that melanocytes integrated between keratinocytes and remained there throughout the experiments. Keratinocyte- and fibroblast-seeded gels contracted significantly over time, whereas melanocyte-seeded gels did not. Co-culture assays showed that melanocytes mitigate the keratinocyte-dependent contraction (significantly slower and 18-32% less). Fibroblasts augmented the contraction in most assays (approximately 6% more). Non-contact co-cultures showed some influence on the keratinocyte-dependent contraction. Results show that mechanisms attributable to melanocytes, but not fibroblasts, can mitigate keratinocyte contractile behavior. Contact-dependent mechanisms are stronger modulators than non-contact dependent mechanisms, but both modes carry significance to the contraction modulation of keratinocytes. Further investigations are required to determine the mechanisms involved and to determine the utility of melanocytes beyond hypopigmentation in improved clinical regimes of burn wounds and wound healing.

  1. Histamine enhances keratinocyte-mediated resolution of inflammation by promoting wound healing and response to infection.

    PubMed

    Gutowska-Owsiak, D; Selvakumar, T A; Salimi, M; Taylor, S; Ogg, G S

    2014-03-01

    The role of the epidermis in the immune response is well known. While multiple cytokines are implicated in keratinocyte-mediated infection clearance and wound healing, little is known about the involvement of keratinocytes in promoting resolution of inflammation. To assess effects of histamine stimulation on keratinocyte function. We performed a combined microarray/Gene Ontology analysis of histamine-stimulated keratinocytes. Functional changes were tested by apoptosis assessment and scratch assays. Histamine receptor involvement was also assessed by blocking wound closure with specific antagonists. Histamine treatment had extensive effects on keratinocytes, including effects on proinflammatory responses and cellular functions promoting wound healing. At the functional level, there was reduced apoptosis and enhancement of wound healing in vitro. At the receptor level, we identified involvement of all keratinocyte-expressed histamine receptors (HRHs), with HRH1 blockage resulting in the most prominent effect. Histamine activates wound healing and infection clearance-related functions of keratinocytes. While enhancement of histamine-mediated wound healing is mediated predominantly via the HRH1 receptor, other keratinocyte-expressed receptors are also involved. These effects could promote resolution of skin inflammation caused by infection or superficial injury. © 2014 British Association of Dermatologists.

  2. DNA repair in cultured keratinocytes

    SciTech Connect

    Liu, S.C.; Parsons, S.; Hanawalt, P.C.

    1983-07-01

    Most of our understanding of DNA repair mechanisms in human cells has come from the study of these processes in cultured fibroblasts. The unique properties of keratinocytes and their pattern of terminal differentiation led us to a comparative examination of their DNA repair properties. The relative repair capabilities of the basal cells and the differentiated epidermal keratinocytes as well as possible correlations of DNA repair capacity with respect to age of the donor have been examined. In addition, since portions of human skin are chronically exposed to sunlight, the repair response to ultraviolet (UV) irradiation (254 nm) when the cells are conditioned by chronic low-level UV irradiation has been assessed. The comparative studies of DNA repair in keratinocytes from infant and aged donors have revealed no significant age-related differences for repair of UV-induced damage to DNA. Sublethal UV conditioning of cells from infant skin had no appreciable effect on either the repair or normal replication response to higher, challenge doses of UVL. However, such conditioning resulted in attenuated repair in keratinocytes from adult skin after UV doses above 25 J/m2. In addition, a surprising enhancement in replication was seen in conditioned cells from adult following challenge UV doses.

  3. Epiprofin orchestrates epidermal keratinocyte proliferation and differentiation.

    PubMed

    Nakamura, Takashi; Yoshitomi, Yasuo; Sakai, Kiyoshi; Patel, Vyomesh; Fukumoto, Satoshi; Yamada, Yoshihiko

    2014-12-15

    The basal layer of the epidermis contains stem cells and transit amplifying cells that rapidly proliferate and differentiate further into the upper layers of the epidermis. A number of molecules have been identified as regulators of this process, including p63 (also known as tumor protein 63) and Notch1. However, little is known about the mechanisms that regulate the transitions from stem cell to proliferating or differentiating transit amplifying cell. Here, we demonstrate that epiprofin (Epfn, also known as Sp6) plays crucial distinct roles in these transition stages as a cell cycle regulator and a transcription factor. Epfn knockout mice have a thickened epidermis, in which p63-expressing basal cells form multiple layers owing to the accumulation of premature transit amplifying cells with reduced proliferation and a reduction in the number of differentiating keratinocytes expressing Notch1. We found that low levels of Epfn expression increased the proliferation of human immortalized keratinocyte (HaCaT) cells by increasing EGF responsiveness and superphosphorylation of Rb. By contrast, high levels of Epfn expression promoted cell cycle exit and differentiation, by reducing E2F transactivation and inducing Notch1 expression. Our findings identify multiple novel functions of Epfn in epidermal development.

  4. Epiprofin orchestrates epidermal keratinocyte proliferation and differentiation

    PubMed Central

    Nakamura, Takashi; Yoshitomi, Yasuo; Sakai, Kiyoshi; Patel, Vyomesh; Fukumoto, Satoshi; Yamada, Yoshihiko

    2014-01-01

    ABSTRACT The basal layer of the epidermis contains stem cells and transit amplifying cells that rapidly proliferate and differentiate further into the upper layers of the epidermis. A number of molecules have been identified as regulators of this process, including p63 (also known as tumor protein 63) and Notch1. However, little is known about the mechanisms that regulate the transitions from stem cell to proliferating or differentiating transit amplifying cell. Here, we demonstrate that epiprofin (Epfn, also known as Sp6) plays crucial distinct roles in these transition stages as a cell cycle regulator and a transcription factor. Epfn knockout mice have a thickened epidermis, in which p63-expressing basal cells form multiple layers owing to the accumulation of premature transit amplifying cells with reduced proliferation and a reduction in the number of differentiating keratinocytes expressing Notch1. We found that low levels of Epfn expression increased the proliferation of human immortalized keratinocyte (HaCaT) cells by increasing EGF responsiveness and superphosphorylation of Rb. By contrast, high levels of Epfn expression promoted cell cycle exit and differentiation, by reducing E2F transactivation and inducing Notch1 expression. Our findings identify multiple novel functions of Epfn in epidermal development. PMID:25344255

  5. Differentiation-dependent p53 regulation of nucleotide excision repair in keratinocytes.

    PubMed Central

    Li, G.; Ho, V. C.; Mitchell, D. L.; Trotter, M. J.; Tron, V. A.

    1997-01-01

    The role of the tumor suppressor p53 in repair of ultraviolet light (UV)-induced DNA damage was evaluated using a host-cell reactivation (HCR) assay. HCR determines a cell's ability to repair UV-damaged DNA through reactivation of a transfected CAT reported plasmid. Most UV damage is removed through nucleotide excision repair (NER). Primary murine keratinocytes isolated from p53-deficient and wild-type p53 mice were used in the HCR assay. The NER was reduced in p53-/- keratinocytes as compared with p53+/+ keratinocytes. The reduced DNA repair in p53-/- mice was confirmed with a radioimmunoassay comparing cyclobutane dimers (CPDs) and (6-4) photoproducts in p53+/+ and p53-/- keratinocytes after the cells were exposed to UV irradiation. Our results demonstrate that wildtype p53 plays a significant role in regulating NER. Furthermore, as there is evidence that p53 protein levels decrease after keratinocytes become differentiated, we sought to determine whether p53 plays a role in NER in differentiated keratinocytes. Differentiation of the keratinocytes by increasing the Ca2+ concentration in the culture media resulted in a marked reduction in NER equally in both p53+/+ and p53-/- groups. This finding suggests that reduced DNA repair after differentiation is p53 independent. A similar reduction in HCR was confirmed in differentiated human keratinocytes. These data, taken together, indicate that p53 or p53-regulated proteins enhance NER in basal undifferentiated keratinocytes but not in differentiated cells. As nonmelanoma skin cancers originate from the basal keratinocytes, our findings suggest that loss of p53 may contribute to the pathogenesis of this common skin cancer. PMID:9095000

  6. Human keratinocytes synthesize and secrete the extracellular matrix protein, thrombospondin.

    PubMed

    Wikner, N E; Dixit, V M; Frazier, W A; Clark, R A

    1987-02-01

    Thrombospondin (TSP) a glycoprotein originally identified as the endogenous lectin of platelets, is also synthesized by fibroblasts, endothelial cells, pneumocytes, smooth muscle cells, and macrophages. Thrombospondin is subdivided into functional domains which bind specifically to heparin, fibronectin, collagen, and to specific cellular receptors. It is found within the basement membranes of kidney, lung, smooth muscle, and skin. Thus TSP may serve as an important link between cells and matrices. Thrombospondin also has been reported at the epidermal-dermal junction. We wished to determine whether human keratinocytes synthesize and secrete TSP. Pure human keratinocytes were grown in defined medium without fibroblast feeder layers. Immunofluorescent staining with either rabbit polyclonal or mouse monoclonal antibodies to human platelet TSP yielded specific granular staining within the cytoplasm of keratinocytes. Culture media and cellular lysates were harvested from cultures metabolically labeled with [35S]methionine. Trichloroacetic acid precipitation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and autoradiography revealed a major labeled band comigrating with purified platelet TSP in both the media and the cellular lysates. Immunoprecipitation with either the polyclonal or the monoclonal anti-TSP antibodies followed by SDS-PAGE and autoradiography identified this band as TSP. Thus keratinocytes in culture synthesize and secrete TSP. Thrombospondin may play an important role in epidermal interactions with extracellular matrix.

  7. A novel emerging virus with indistinguishable symptoms and genome structure similar to citrus leprosis virus C identified by small RNA deep sequencing

    USDA-ARS?s Scientific Manuscript database

    Citrus leprosis disease (CiLD) in Colombia was previously shown to be caused by cytoplasmic Citrus leprosis virus (CiLV-C). In 2011, ELISA and RT-PCR based diagnostic methods failed to identify CiLV-C from CiLD samples, but virions similar to CiLV-C were observed in cytoplasm of the symptomatic leav...

  8. H{sup +}/peptide transporter (PEPT2) is expressed in human epidermal keratinocytes and is involved in skin oligopeptide transport

    SciTech Connect

    Kudo, Michiko; Katayoshi, Takeshi; Kobayashi-Nakamura, Kumiko; Akagawa, Mitsugu; Tsuji-Naito, Kentaro

    2016-07-08

    Peptide transporter 2 (PEPT2) is a member of the proton-coupled oligopeptide transporter family, which mediates the cellular uptake of oligopeptides and peptide-like drugs. Although PEPT2 is expressed in many tissues, its expression in epidermal keratinocytes remains unclear. We investigated PEPT2 expression profile and functional activity in keratinocytes. We confirmed PEPT2 mRNA expression in three keratinocyte lines (normal human epidermal keratinocytes (NHEKs), immortalized keratinocytes, and malignant keratinocytes) by reverse transcription-polymerase chain reaction (RT-PCR) and quantitative real-time RT-PCR. In contrast to PEPT1, PEPT2 expression in the three keratinocytes was similar or higher than that in HepG2 cells, used as PEPT2-positive cells. Immunolocalization analysis using human skin showed epidermal PEPT2 localization. We studied keratinocyte transport function by measuring the oligopeptide content using liquid chromatography/tandem mass spectrometry. Glycylsarcosine uptake in NHEKs was pH-dependent, suggesting that keratinocytes could absorb small peptides in the presence of an inward H{sup +} gradient. We also performed a skin-permeability test of several oligopeptides using skin substitute, suggesting that di- and tripeptides pass actively through the epidermis. In conclusion, PEPT2 is expressed in keratinocytes and involved in skin oligopeptide uptake. -- Highlights: •PEPT2 is expressed in keratinocytes, which are more common than other skin cells. •Immunolocalization analysis using human skin revealed epidermal PEPT2 localization. •Keratinocytes could absorb small peptides in the presence of an inward H{sup +} gradient. •Di- and tripeptide pass actively through the epidermis.

  9. Role of keratin 24 in human epidermal keratinocytes

    PubMed Central

    Min, Min; Chen, Xi-Bei; Wang, Ping; Landeck, Lilla; Chen, Jia-Qi; Li, Wei; Cai, Sui-Qing; Zheng, Min; Man, Xiao-Yong

    2017-01-01

    Keratin 24 (K24) is a new kind of keratin genes, which encodes a novel keratin protein, K24 that bears high similarity to the type I keratins and displays a unique expression profile. However, the role of K24 is incompletely understood. In our study, we investigated the localization of K24 within the epidermis and possible functions. Keratin 24 was found to be modestly overexpressed in senescent keratinocytes and was mainly restricted to the upper stratum spinosum of epidermis. The protein was required for terminal differentiation upon CaCl2-induced differentiation. In vitro results showed that increased K24 in keratinocytes dramatically changed the differentiation of primary keratinocytes. It also inhibited cell survival by G1/S phase cell cycle arrest and induced senescence, autophagy and apoptosis of keratinocytes. In addition, K24 activated PKCδ signal pathway involving in cellular survival. In summary, K24 may be suggested as a potential differentiation marker and anti-proliferative factor in the epidermis. PMID:28362807

  10. Vitiligo patient-derived keratinocytes exhibit characteristics of normal wound healing via epithelial to mesenchymal transition.

    PubMed

    Banerjee, Poulomi; Venkatachalam, Sandhyaa; Mamidi, Murali Krishna; Bhonde, Ramesh; Shankar, Krupa; Pal, Rajarshi

    2015-05-01

    Vitiligo is an autoimmune disorder that leads to depigmentation of skin via melanocyte dysfunction. Keratinocyte-induced toxicity is one among the several etiological factors implicated for vitiligo, and hence, autologous keratinocyte grafting is projected as one of the primary mode of treatment for vitiligo. However, reports indicate that perilesional keratinocytes not only display signatures of apoptosis but also could secrete cytokines and mediators which have antagonistic effect on proliferation or survival. Therefore, we investigated how vitiligo patients' derived keratinocytes respond to surplus amounts of inflammatory cytokines and whether they recapitulate events that take place during conventional wound healing. The primary objective of our study was to determine whether keratinocytes isolated from a vitiligo patient would undergo epithelial-mesenchymal transition similar to their normal counterparts upon induction with inflammatory cytokines such as TGF-b1 and EGF. We found that these keratinocytes undergo EMT during wound repair accompanied with increase in the levels of mesenchymal markers and ECM proteins; decrease in the levels of epithelial markers and enhanced migratory ability. Besides, we also demonstrated that EMT induction leads to activation of SMAD and MAPK pathways via Ras, Raf, PAI 1, Snail, Slug and ZO1. To our knowledge, this is the first report on the characterization of primary keratinocytes isolated from vitiligo patients with respect to their wound healing capacity.

  11. Systemic suppression of delayed-type hypersensitivity by supernatants from UV-irradiated keratinocytes

    SciTech Connect

    Rivas, J.M.; Ullrich, S.E. )

    1992-12-15

    Exposing murine keratinocyte cultures to UV radiation causes the release of a suppressive cytokine that mimics the immunosuppressive effects of total-body UV exposure. Injecting supernatants from UV-irradiated keratinocyte cultures into mice inhibits their ability to generate a delayed-type hypersensitivity reaction against allogeneic histocompatibility Ag, and spleen cells from mice injected with supernatant do not respond to alloantigen in the in vitro MLR. A unique feature of the immunosuppression induced by either total-body UV-exposure or injecting the suppressive cytokine from UV-irradiated keratinocytes is the selectivity of suppression. Although cellular immune reactions such as delayed-type hypersensitivity are suppressed antibody production is unaffected. Because the selective nature to the UV-induced immunosuppression is similar to the biologic activity of IL-10, the authors examined the hypothesis that UV exposure of keratinocytes causes the release of IL-10. Keratinocyte monolayers were exposed to UV radiation and at specific times after exposure mRNA was isolated or the culture supernatant from the cells was collected. These data indicate that activated keratinocytes are capable of secreting IL-10 and suggest that the release of IL-10 by UV-irradiated keratinocytes plays an essential role in the induction of systemic immunosuppression after total-body UV exposure. 44 refs., 3 figs., 2 tabs.

  12. Kindlin-1 Regulates Keratinocyte Electrotaxis.

    PubMed

    Zhang, Gaofeng; Gu, Yu; Begum, Rumena; Chen, Hongduo; Gao, Xinghua; McGrath, John A; Parsons, Maddy; Song, Bing

    2016-11-01

    Kindler syndrome (KS) is an autosomal recessive blistering skin disease resulting from pathogenic mutations in FERMT1. This gene encodes kindlin-1, a focal adhesion protein involved in activation of the integrin family of extracellular matrix receptors. Most cases of KS show a marked reduction or complete absence of the kindlin-1 protein in keratinocytes, resulting in defective cell adhesion and migration. Electric fields also act as intrinsic regulators of adhesion and migration in the skin, but the molecular mechanisms by which this occurs are poorly understood. Here we show that keratinocytes derived from KS patients are unable to undergo electrotaxis, and this defect is restored by overexpression of wild-type kindlin-1 but not a W612A mutation that prevents kindlin-integrin binding. Moreover, deletion of the pleckstrin homology domain of kindlin-1 also failed to rescue electrotaxis in KS cells, indicating that both integrin and lipid binding are required for this function. Kindlin-1 was also required for the maintenance of lamellipodial protrusions during electrotaxis via electric field-activated β1 integrin. Indeed, inhibition of β1 integrins also leads to loss of electrotaxis in keratinocytes. Our data suggest that loss of kindlin-1 function may therefore result in epithelial insensitivity to electric fields and contribute to KS disease pathology. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Canine distemper virus infection: proliferation of canine footpad keratinocytes.

    PubMed

    Gröne, A; Engelhardt, P; Zurbriggen, A

    2003-09-01

    The proliferation of footpad keratinocytes of canine distemper virus (CDV)-infected dogs was investigated. Footpads of 19 dogs inoculated experimentally with a virulent distemper strain (A75/17) and of two noninoculated control dogs were collected at necropsy. Dogs were divided into four groups according to results of the postmortem examination: dogs with severe distemper (group 1), dogs with mild distemper (group 2), inoculated dogs without distemper (group 3) and noninoculated dogs (group 4). There was no distinct difference of epidermal thickness among the four groups. Infection of the footpad epidermis with CDV was demonstrated using immunohistochemistry for viral nucleoprotein and in situ hybridization for nucleoprotein messenger ribonucleic acid (mRNA). Only group 1 dogs had viral antigen and mRNA in the footpad epidermis with the same distribution. Footpad epidermis of group 1 dogs had more mitotic figures in the basal layer, and significantly more basal keratinocytes were positive for the proliferation markers Ki-67 and proliferating cell nuclear antigen. Double-staining for Ki-67 and viral nucleoprotein identified rare double-labeled basal keratinocytes. These findings suggest that the presence of CDV particles in the footpad epidermis is associated with keratinocyte proliferation.

  14. The peanut lectin-binding glycoproteins of human epidermal keratinocytes

    SciTech Connect

    Morrison, A.I. ); Keeble, S.; Watt, F.M. )

    1988-08-01

    The peanut lectin (PNA) is known to bind more strongly to keratinocytes that are undergoing terminal differentiation than to proliferating keratinocytes. In order to investigate the significance of this change in cell-surface carbohydrate authors have identified the PNA-binding glycoproteins of cultured human keratinocytes and antibodies against them. Two heavily glycosylated bands of 110 and 250 kDa were resolved by PAGE of ({sup 14}C)galactose- or ({sup 14}C)mannose- and ({sup 14}C)glucosamine-labeled cell extracts eluted with galactose from PNA affinity columns. The higher molecular weight band was also detected on PNA blots of unlabeled cell extracts transferred to nitrocellulose. Both bands were sensitive to pronase digestion, but only the 250-kDa band was digested with trypsin. A rabbit antiserum that we prepared (anti-PNA-gp) immunoprecipitated both bands from cell extracts. In contrast to PNA, anti-PNA-gp bound equally to proliferating and terminally differentiating cells, indicating that some epitope(s) of the PNA-binding glycoproteins is present on the cell surface prior to terminal differentiation. When keratinocytes grown as a monolayer in low-calcium medium were switched to medium containing 2 mM calcium ions in order to induce desmosome formation and stratification, there was a dramatic redistribution of the PNA-binding glycoproteins, which became concentrated at the boundaries between cells. This may suggest a role for the glycoproteins in cell-cell interactions during stratification.

  15. Prediction of drug-induced liver injury using keratinocytes.

    PubMed

    Hirashima, Rika; Itoh, Tomoo; Tukey, Robert H; Fujiwara, Ryoichi

    2017-01-31

    Drug-induced liver injury (DILI) is one of the most common adverse drug reactions. DILI is often accompanied by skin reactions, including rash and pruritus. However, it is still unknown whether DILI-associated genes such as S100 calcium-binding protein A and interleukin (IL)-1β are involved in drug-induced skin toxicity. In the present study, most of the tested hepatotoxic drugs such as pioglitazone and diclofenac induced DILI-associated genes in human and mouse keratinocytes. Keratinocytes of mice at higher risk for DILI exhibited an increased IL-1β basal expression. They also showed a higher inducibility of IL-1β when treated by pioglitazone. Mice at higher risk for DILI showed even higher sums of DILI-associated gene basal expression levels and induction rates in keratinocytes. Our data suggest that DILI-associated genes might be involved in the onset and progression of drug-induced skin toxicity. Furthermore, we might be able to identify individuals at higher risk of developing DILI less invasively by examining gene expression patterns in keratinocytes. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Connexin43 reduces melanoma growth within a keratinocyte microenvironment and during tumorigenesis in vivo.

    PubMed

    Ableser, Mark J; Penuela, Silvia; Lee, Jack; Shao, Qing; Laird, Dale W

    2014-01-17

    Connexins (Cx) have been identified as tumor suppressors or enhancers, a distinction that appears to be dependent on the type and stage of disease. However, the role of connexins in melanoma tumorigenesis and their status during cancer onset and progression remain controversial and unclear. Here, we show that the aggressive B16-BL6 mouse melanoma cell line expresses low basal levels of Cx26 and Cx43, rendering them gap junctional intercellular communication-deficient as elucidated by immunofluorescence, Western blotting, and dye transfer studies. Following ectopic expression of green fluorescent protein-tagged Cx26 and Cx43 in these connexin-deficient melanomas, punctate gap junction-like plaques were evident at sites of cell-cell apposition, and the incidence of dye transfer was significantly increased similar to connexin-rich keratinocytes. We found that the expression of Cx43, but not Cx26, significantly reduced cellular proliferation and anchorage-independent growth from control melanomas, whereas migration was unaffected. Additionally, melanomas expressing Cx43 displayed significantly reduced growth within the in situ-like microenvironment of keratinocytes, despite a lack of heterocellular gap junctional intercellular communication between the two cell types. Furthermore, when grown in vivo in the chicken chorioallantoic membrane, primary tumors derived from Cx43-expressing melanomas were significantly smaller than controls, whereas Cx26-expressing melanomas produced tumors similar to controls. Collectively, these results suggest that Cx43, and not Cx26, can act as a tumor suppressor during melanoma tumorigenesis.

  17. Altered expression of keratinocyte growth factor and its receptor in psoriasis.

    PubMed

    Finch, P W; Murphy, F; Cardinale, I; Krueger, J G

    1997-12-01

    One of the biological characteristics of psoriasis is excessive flaking of the skin. This is directly related to the marked hyperplasia of epidermal keratinocytes and to incomplete epidermal differentiation. Keratinocyte growth factor (KGF), a potent mitogen for human keratinocytes, is expressed by stromal cells. Alterations in the KGF signaling pathway might account for the epidermal hyperplasia associated with psoriasis. To test this hypothesis, we investigated the expression of KGF and its receptor (KGFR) in psoriasis tissue. KGF and KGFR mRNA levels were found to be frequently elevated in psoriatic skin specimens as compared with normal skin. Increased KGF transcript expression was localized to the dermal layer of the involved skin specimen using in situ hybridization. In contrast, KGFR transcript and protein expression was localized to the basal layer of keratinocytes in normal skin and to the basal and suprabasal layers of the psoriatic epidermis, coincident with the expanded proliferative keratinocyte pool. To identify molecules that might regulate KGFR expression we investigated the effects of various pharmacological agents and cytokines on KGFR synthesis by keratinocytes. Phorbol ester, interleukin-6, interferon-gamma, and ultraviolet B (UVB) treatment all led to substantial down-regulation of KGFR expression. The down-regulation of KGFR synthesis by UVB suggests a possible mechanism for the antiproliferative action of this agent in the treatment of psoriasis. Taken together, these results suggest that increased KGFR-mediated signaling in keratinocytes in the lesional epidermis might account in part for the epidermal hyperplasia in psoriasis.

  18. The protective effects of piceatannol from passion fruit (Passiflora edulis) seeds in UVB-irradiated keratinocytes.

    PubMed

    Maruki-Uchida, Hiroko; Kurita, Ikuko; Sugiyama, Kenkichi; Sai, Masahiko; Maeda, Kazuhisa; Ito, Tatsuhiko

    2013-01-01

    The use of naturally occurring botanicals with substantial antioxidant activity to prevent photoageing is receiving increasing attention. We have previously identified piceatannol and scirpusin B, which is a dimer of piceatannol, as strong antioxidants that are present in passion fruit (Passiflora edulis) seeds. In the present study, the effects of passion fruit seed extract, piceatannol, and scirpusin B on human keratinocytes were investigated. The passion fruit seed extract and piceatannol upregulated the glutathione (GSH) levels in keratinocytes in a dose-dependent manner, indicating that piceatannol is an active component of the passion fruit seed extract in keratinocytes. The pretreatment with piceatannol also suppressed the UVB-induced generation of reactive oxygen species (ROS) in the keratinocytes. In addition, the transfer of the medium from the UVB-irradiated keratinocytes to non-irradiated fibroblasts enhanced matrix-metalloproteinase (MMP)-1 activity, and this MMP-1 induction was reduced when the keratinocytes were pretreated with piceatannol. These results suggest that piceatannol attenuates the UVB-induced activity of MMP-1 along with a reduction of ROS generation in keratinocytes. Thus, piceatannol and passion fruit seed extract containing high amounts of piceatannol are potential anti-photoageing cosmetic ingredients.

  19. Transdifferentiation of Adipose-Derived Stem Cells into Keratinocyte-Like Cells: Engineering a Stratified Epidermis

    PubMed Central

    Chavez-Munoz, Claudia; Nguyen, Khang T.; Xu, Wei; Hong, Seok-Jong; Mustoe, Thomas A.; Galiano, Robert D.

    2013-01-01

    Skin regeneration is an important area of research in the field of tissue-engineering, especially for cases involving loss of massive areas of skin, where current treatments are not capable of inducing permanent satisfying replacements. Human adipose-derived stem cells (ASC) have been shown to differentiate in-vitro into both mesenchymal lineages and non-mesenchymal lineages, confirming their transdifferentiation ability. This versatile differentiation potential, coupled with their ease of harvest, places ASC at the advancing front of stem cell-based therapies. In this study, we hypothesized that ASC also have the capacity to transdifferentiate into keratinocyte-like cells and furthermore are able to engineer a stratified epidermis. ASC were successfully isolated from lipoaspirates and cell sorted (FACS). After sorting, ASC were either co-cultured with human keratinocytes or with keratinocyte conditioned media. After a 14-day incubation period, ASC developed a polygonal cobblestone shape characteristic of human keratinocytes. Western blot and q-PCR analysis showed the presence of specific keratinocyte markers including cytokeratin-5, involucrin, filaggrin and stratifin in these keratinocyte-like cells (KLC); these markers were absent in ASC. To further evaluate if KLC were capable of stratification akin to human keratinocytes, ASC were seeded on top of human decellularized dermis and cultured in the presence or absence of EGF and high Ca2+ concentrations. Histological analysis demonstrated a stratified structure similar to that observed in normal skin when cultured in the presence of EGF and high Ca2+. Furthermore, immunohistochemical analysis revealed the presence of keratinocyte markers such as involucrin, cytokeratin-5 and cytokeratin-10. In conclusion this study demonstrates for the first time that ASC have the capacity to transdifferentiate into KLC and engineer a stratified epidermis. This study suggests that adipose tissue is potentially a readily available

  20. Streptococci-human papilloma virus interaction with ethanol exposure leads to keratinocyte damage.

    PubMed

    Schwartz, Joel; Pavlova, Sylvia; Kolokythas, Antonia; Lugakingira, Mulokozi; Tao, Lin; Miloro, Michael

    2012-08-01

    Ethanol, human papilloma virus (HPV), and poor oral hygiene are risk factors that have been attributed to oral carcinogenesis. Streptococci sp and HPV infections are common in the head and neck, often associated with sexual activity. Although HPV is linked to head and neck squamous cell carcinoma, it is unclear whether there is a similar role for Streptococci sp. This cell study examines whether Streptococci sp and HPV-16 with exposure to ethyl alcohol (ETOH) can act as cofactors in the malignant transformation of oral keratinocytes. ETOH (0.1%-20% vol/vol) was used to investigate Streptococci sp attachment with immortalized E6-expressing HPV/HOK-16B cells, human oral buccal keratinocytes, and foreskin keratinocytes. Streptococci sp (Streptococci mutans [LT11]) and various strains of acetaldehyde (AA) producer and nonproducer Streptococcus salivarius (110-1, 109-2, 101-7, and 107-1) and a lactic acid producer bacterium, Lactobacillus rhamnosus (24-1 and 25-2), were examined for interactions with keratinocytes by use of a green dye (percent of cells with colonies after 24 hours). Carcinogens, AA, malondialdehyde, DNA damage, and proliferation (5'-bromo-2-deoxyuridine) among keratinocytes were also quantified. AA and malondialdehyde production from permissible Streptococci sp significantly increased with attachment to keratinocytes, whereas L rhamnosus did not significantly attach to keratinocytes. This attachment was associated with enhanced levels of AA adduct formation, proliferation (5'-bromo-2-deoxyuridine incorporation), and enhanced migration through integrin-coated basement membrane by HPV oral keratinocytes, which are characteristics of a malignant phenotype. These cell studies suggest that oral Streptococci sp and HPV (HPV-16) cooperate to transform oral keratinocytes after low-level ETOH (1%) exposure. These results appear to suggest a significant clinical interaction, but further validation is warranted. Copyright © 2012 American Association of Oral and

  1. Transdifferentiation of adipose-derived stem cells into keratinocyte-like cells: engineering a stratified epidermis.

    PubMed

    Chavez-Munoz, Claudia; Nguyen, Khang T; Xu, Wei; Hong, Seok-Jong; Mustoe, Thomas A; Galiano, Robert D

    2013-01-01

    Skin regeneration is an important area of research in the field of tissue-engineering, especially for cases involving loss of massive areas of skin, where current treatments are not capable of inducing permanent satisfying replacements. Human adipose-derived stem cells (ASC) have been shown to differentiate in-vitro into both mesenchymal lineages and non-mesenchymal lineages, confirming their transdifferentiation ability. This versatile differentiation potential, coupled with their ease of harvest, places ASC at the advancing front of stem cell-based therapies. In this study, we hypothesized that ASC also have the capacity to transdifferentiate into keratinocyte-like cells and furthermore are able to engineer a stratified epidermis. ASC were successfully isolated from lipoaspirates and cell sorted (FACS). After sorting, ASC were either co-cultured with human keratinocytes or with keratinocyte conditioned media. After a 14-day incubation period, ASC developed a polygonal cobblestone shape characteristic of human keratinocytes. Western blot and q-PCR analysis showed the presence of specific keratinocyte markers including cytokeratin-5, involucrin, filaggrin and stratifin in these keratinocyte-like cells (KLC); these markers were absent in ASC. To further evaluate if KLC were capable of stratification akin to human keratinocytes, ASC were seeded on top of human decellularized dermis and cultured in the presence or absence of EGF and high Ca(2+) concentrations. Histological analysis demonstrated a stratified structure similar to that observed in normal skin when cultured in the presence of EGF and high Ca(2+). Furthermore, immunohistochemical analysis revealed the presence of keratinocyte markers such as involucrin, cytokeratin-5 and cytokeratin-10. In conclusion this study demonstrates for the first time that ASC have the capacity to transdifferentiate into KLC and engineer a stratified epidermis. This study suggests that adipose tissue is potentially a readily

  2. Substrate Stiffness Affects Human Keratinocyte Colony Formation

    PubMed Central

    Zarkoob, Hoda; Bodduluri, Sandeep; Ponnaluri, Sailahari V.; Selby, John C.; Sander, Edward A.

    2015-01-01

    Restoration of epidermal organization and function in response to a variety of pathophysiological insults is critically dependent on coordinated keratinocyte migration, proliferation, and stratification during the process of wound healing. These processes are mediated by the reconfiguration of both cell-cell (desmosomes, adherens junctions) and cell-matrix (focal adhesions, hemidesmosomes) junctions and the cytoskeletal filament networks that they serve to interconnect. In this study, we investigated the role of substrate elasticity (stiffness) on keratinocyte colony formation in vitro during the process of nascent epithelial sheet formation as triggered by the calcium switch model of keratinocyte culture. Keratinocytes cultured on pepsin digested type I collagen coated soft (nominal E = 1.2 kPa) polyacrylamide gels embedded with fluorescent microspheres exhibited (i) smaller spread contact areas, (ii) increased migration velocities, and (iii) increased rates of colony formation with more cells per colony than did keratinocytes cultured on stiff (nominal E = 24 kPa) polyacrylamide gels. As assessed by tracking of embedded microsphere displacements, keratinocytes cultured on soft substrates generated large local substrate deformations that appeared to recruit adjacent keratinocytes into joining an evolving colony. Together with the observed differences in keratinocyte kinematics and substrate deformations, we developed two ad hoc analyses, termed distance rank (DR) and radius of cooperativity (RC), that help to objectively ascribe what we perceive as increasingly cooperative behavior of keratinocytes cultured on soft versus stiff gels during the process of colony formation. We hypothesize that the differences in keratinocyte colony formation observed in our experiments could be due to cell-cell mechanical signaling generated via local substrate deformations that appear to be correlated with the increased expression of β4 integrin within keratinocytes positioned

  3. Vimentin is necessary for colony growth of human diploid keratinocytes.

    PubMed

    Castro-Muñozledo, Federico; Velez-DelValle, Cristina; Marsch-Moreno, Meytha; Hernández-Quintero, Miriam; Kuri-Harcuch, Walid

    2015-01-01

    The role of vimentin (Vim) in diploid epithelial cells is not well known. To understand its biological function, we cultured human epidermal keratinocytes under conditions that support migration, proliferation, stratification and terminal differentiation. We identified a keratinocyte subpopulation that shows a p63(+)/α5β1(bright) phenotype and displays Vim intermediate filaments (IFs) besides their keratin IF network. These cells were mainly located at the proliferative/migratory rim of the growing colonies; but also, they were scarce and scattered or formed small groups of basal cells in confluent stratified epithelia. Stimulation of cells with EGF and wounding experiments in confluent arrested epithelia increased the number of Vim(+) keratinocytes in an extent higher to the expected for a cell population doubling. BrdU labeling demonstrated that most of the proliferative cells located at the migratory border of the colony have Vim, in contrast with proliferative cells located at the basal layer at the center of big colonies which lacked of Vim IFs, suggesting that Vim expression was not solely linked to proliferation. Therefore, we silenced Vim mRNA in the cultured keratinocytes and observed an inhibition of colony growth. Such results, together with long-term cultivation assays which showed that Vim might be associated to pattern formation in cultured epithelia, suggest that Vim expression is essential for a highly motile phenotype, which is necessary for keratinocyte colony growth and possibly for development and wound healing. Vim(+)/p63(+)/α5β1(bright) epithelial cells may play a significant physiological role in embryonic morphogenetic movements; wound healing and other pathologies such as carcinomas and hyperproliferative diseases.

  4. Survival of cultured allogeneic keratinocytes transplanted to deep dermal bed assessed with probe specific for Y chromosome.

    PubMed Central

    Brain, A.; Purkis, P.; Coates, P.; Hackett, M.; Navsaria, H.; Leigh, I.

    1989-01-01

    To determine the survival of cultured allogeneic keratinocytes transplanted to a deep dermal bed 24 tattoos that had been removed by deep shave excision in 19 patients were grafted with sheets of cultured allogeneic keratinocytes from donors of the opposite sex. Cells carrying the Y chromosome were identified in biopsy specimens taken from the graft site by in situ DNA hybridisation with a biotinylated Y probe (pHY 2.1) and visualised with a technique using immunoperoxidase. The cultured allograft sites were biopsied one, two, and three weeks after transplantation. No male cells were identified in any biopsy specimen from female patients who were given transplants of male cultured keratinocytes, and all biopsy specimens from male patients, who received female cultured keratinocytes, showed percentages of male cells within the normal range for male skin. The beneficial effects of cultivated allogeneic keratinocytes result from effects on wound healing other than forming a successful graft that "takes." Images p918-a PMID:2470447

  5. Survival of cultured allogeneic keratinocytes transplanted to deep dermal bed assessed with probe specific for Y chromosome.

    PubMed

    Brain, A; Purkis, P; Coates, P; Hackett, M; Navsaria, H; Leigh, I

    1989-04-08

    To determine the survival of cultured allogeneic keratinocytes transplanted to a deep dermal bed 24 tattoos that had been removed by deep shave excision in 19 patients were grafted with sheets of cultured allogeneic keratinocytes from donors of the opposite sex. Cells carrying the Y chromosome were identified in biopsy specimens taken from the graft site by in situ DNA hybridisation with a biotinylated Y probe (pHY 2.1) and visualised with a technique using immunoperoxidase. The cultured allograft sites were biopsied one, two, and three weeks after transplantation. No male cells were identified in any biopsy specimen from female patients who were given transplants of male cultured keratinocytes, and all biopsy specimens from male patients, who received female cultured keratinocytes, showed percentages of male cells within the normal range for male skin. The beneficial effects of cultivated allogeneic keratinocytes result from effects on wound healing other than forming a successful graft that "takes."

  6. The Effect of Lipoaspirates on Human Keratinocytes.

    PubMed

    Kim, Bong-Sung; Gaul, Charel; Paul, Nora E; Dewor, Manfred; Stromps, Jan-Philipp; Hwang, Soo Seok; Nourbakhsh, Mahtab; Bernhagen, Jürgen; Rennekampff, Hans-Oliver; Pallua, Norbert

    2016-09-01

    One increasingly important trend in plastic, reconstructive, and aesthetic surgery is the use of fat grafts to improve cutaneous wound healing. In clinical practice, lipoaspirates (adipose tissue harvested by liposuction) are re-injected in a procedure called lipofilling. Previous studies, however, mainly evaluated the regenerative effect of isolated adipocytes, adipose-derived stem cells, and excised en bloc adipose tissue on keratinocytes, whereas no study to date has examined the effect of lipoaspirates. The authors aimed to investigate differences in the regenerative property of en bloc adipose tissue and lipoaspirates on keratinocytes. Human keratinocytes, lipoaspirates, and en bloc adipose tissue from 36 healthy donors were isolated. In vitro proliferation, differentiation, migration, stratification, and wound healing of keratinocyte monolayers were measured. Furthermore, secreted levels of VEGF, bFGF, IGF-1, MMP-9, and MIF were detected by ELISA. Migration, proliferation, and wound healing of keratinocytes were increased by lipoaspirates. Interestingly, the effect of lipoaspirates on keratinocyte proliferation was significantly higher than by en bloc adipose tissue after 5 days. The differentiation of keratinocytes was equally attenuated by lipoaspirates and en bloc adipose tissue. Stratification of keratinocyte layers was enhanced by lipoaspirates and en bloc fat when compared to controls. Lipoaspirates secrete higher levels of bFGF, whereas higher levels of VEGF and IGF-1 are released by en bloc adipose tissue. We show that lipoaspirates and en bloc adipose tissue have a regenerative effect on keratinocytes. One reason for the higher effect of lipoaspirates on keratinocyte proliferation may be the secretion of different cytokines. © 2016 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  7. Identifying similar and different factors effecting long-term cardiac exercise rehabilitation behavior modification between New Zealand and the United Kingdom.

    PubMed

    Dunn, Stephanie; Lark, Sally; Fallows, Stephen

    2014-07-01

    Cardiac Rehabilitation (CR) programs are the most cost-effective measure for reducing morbidity associated with Coronary Vascular Disease (CVD). To be more effective there is a need to understand what influences the maintenance of healthy behaviors. This study identifies similar and different influences in CR of the United Kingdom (UK) and New Zealand (NZ). A retrospective study. Participants had previously been discharged from CR for 6 to 12+ months within the UK (n = 22) and NZ (n = 21). Participant's attended a focus group. Discussions were digitally recorded, transcribed then thematically analyzed. The CR programs were observed over 2 months to enable comment on findings relating to 'theory in practice.' Similar positive patient experiences influencing behavior between groups and countries were; support, education, positive attitude, and motivation. Companionship and exercising alongside people with similar health problems was the major determinant for positive exercise behavior. Barriers to maintaining exercise included; physical disabilities, time constraints, and weather conditions. NZ participants were more affected by external factors (eg, opportunity, access, and time). Both CR programs were successful in facilitating the maintenance of healthy lifestyles. Exercising with other cardiac patients for support in a structured environment was the strongest influence in maintaining healthy lifestyles beyond CR programs.

  8. MiR-217 is down-regulated in psoriasis and promotes keratinocyte differentiation via targeting GRHL2

    SciTech Connect

    Zhu, Haigang; Hou, Liyue; Liu, Jingjing; Li, Zhiming

    2016-02-26

    MiR-217 is a well-known tumor suppressor, and its down-regulation has been shown in a wide range of solid and leukaemic cancers. However, the biological role of miR-217 in psoriasis pathogenesis, especially in keratinocyte hyperproliferation and differentiation, is not clearly understood. In this study, we found the expression of miR-217 was markedly down-regulated in psoriasis keratinocytes of psoriatic patients. In addition, overexpression of miR-217 inhibited the proliferation and promoted the differentiation of primary human keratinocytes. On the contrary, inhibition of endogenous miR-217 increased cell proliferation and delayed differentiation. Furthermore, Grainyhead-like 2 (GRHL2) was identified as a direct target of miR-217 by luciferase reporter assay. The expression of miR-217 and GRHL2 was inversely correlated in both transfected keratinocytes and in psoriasis lesional skin. Moreover, knocking down GRHL2 expression by siRNA enhanced keratinocyte differentiation. Taken together, our results demonstrate a role for miR-217 in the regulation of keratinocyte differentiation, partially through the regulation of GRHL2. - Highlights: • miR-217 is down-regulated in psoriasis skin lesions. • miR-217 inhibits the proliferation and promotes differentiation of keratinocytes. • GRHL2 is a novel target of miR-217 in keratinocytes. • GRHL2 is up-regulated and inversely correlated with miR-217 in psoriasis skin lesions.

  9. Lithium Regulates Keratinocyte Proliferation Via Glycogen Synthase Kinase 3 and NFAT2 (Nuclear Factor of Activated T Cells 2)

    PubMed Central

    Hampton, Philip J; Jans, Ralph; Flockhart, Ross J; Parker, Graeme; Reynolds, Nick J

    2012-01-01

    Certain environmental factors including drugs exacerbate or precipitate psoriasis. Lithium is the commonest cause of drug-induced psoriasis but underlying mechanisms are currently unknown. Lithium inhibits glycogen synthase kinase 3 (GSK-3). As lithium does not exacerbate other T-cell-mediated chronic inflammatory diseases, we investigated whether lithium may be acting directly on epidermal keratinocytes by inhibiting GSK-3. We report that lithium-induced keratinocyte proliferation at therapeutically relevant doses (1–2 mM) and increased the proportion of cells in S phase of the cell cycle. Inhibition of GSK-3 in keratinocytes by retroviral transduction of GSK-binding protein (an endogenous inhibitory protein) or through a highly selective pharmacological inhibitor also resulted in increased keratinocyte proliferation. Nuclear factor of activated T cells (NFAT) is an important substrate for GSK-3 and for cyclosporin, an effective treatment for psoriasis that inhibits NFAT activation in keratinocytes as well as in lymphocytes. Both lithium and genetic/pharmacological inhibition of GSK-3 resulted in increased nuclear localization of NFAT2 (NFATc1) and increased NFAT transcriptional activation. Finally, retroviral transduction of NFAT2 increased keratinocyte proliferation whereas siRNA-mediated knockdown of NFAT2 reduced keratinocyte proliferation and decreased epidermal thickness in an organotypic skin equivalent model. Taken together, these data identify GSK-3 and NFAT2 as key regulators of keratinocyte proliferation and as potential molecular targets relevant to lithium-provoked psoriasis. J. Cell. Physiol. 227: 1529–1537, 2012. © 2011 Wiley Periodicals, Inc. PMID:21678407

  10. Crucial role of vinexin for keratinocyte migration in vitro and epidermal wound healing in vivo

    SciTech Connect

    Kioka, Noriyuki; Ito, Takuya; Yamashita, Hiroshi; Uekawa, Natsuko; Umemoto, Tsutomu; Motoyoshi, Soh; Imai, Hiroshi; Takahashi, Kenzo; Watanabe, Hideto; Yamada, Masayasu; Ueda, Kazumitsu

    2010-06-10

    In the process of tissue injury and repair, epithelial cells rapidly migrate and form epithelial sheets. Vinexin is a cytoplasmic molecule of the integrin-containing cell adhesion complex localized at focal contacts in vitro. Here, we investigated the roles of vinexin in keratinocyte migration in vitro and wound healing in vivo. Vinexin knockdown using siRNA delayed migration of both HaCaT human keratinocytes and A431 epidermoid carcinoma cells in scratch assay but did not affect cell proliferation. Induction of cell migration by scratching the confluent monolayer culture of these cells activated both EGFR and ERK, and their inhibitors AG1478 and U0126 substantially suppressed scratch-induced keratinocyte migration. Vinexin knockdown in these cells inhibited the scratch-induced activation of EGFR, but not that of ERK, suggesting that vinexin promotes cell migration via activation of EGFR. We further generated vinexin (-/-) mice and isolated their keratinocytes. They similarly showed slow migration in scratch assay. Furthermore, vinexin (-/-) mice exhibited a delay in cutaneous wound healing in both the back skin and tail without affecting the proliferation of keratinocytes. Together, these results strongly suggest a crucial role of vinexin in keratinocyte migration in vitro and cutaneous wound healing in vivo.

  11. High-glucose environment increased thrombospondin-1 expression in keratinocytes via DNA hypomethylation.

    PubMed

    Lan, Cheng-Che E; Huang, Shu-Mei; Wu, Ching-Shuang; Wu, Chin-Han; Chen, Gwo-Shing

    2016-03-01

    Diabetes is an important health issue because of its increasing prevalence and association with impaired wound healing. Epidermal keratinocytes with overexpressed antiangiogenic molecule thrombospondin-1 (TSP1) have been shown to impair proper wound healing. This study examined the potential involvement of keratinocyte-derived TSP1 on diabetic wound healing. Cultured human keratinocytes and diabetic rat model were used to evaluate the effect of high-glucose environment on TSP1 expression in epidermal keratinocytes, and the molecular mechanisms involved in the process were also studied. We demonstrated that high-glucose environment increased TSP1 expression in keratinocytes. In addition, increased oxidative stress induced DNA hypomethylation at the TSP1 promoter region in keratinocytes exposed to high-glucose environment. Similar findings were found in our diabetic rat model. Early antioxidant administration normalized TSP1 expression and global DNA methylation status in diabetic rat skin and improved wound healing in vivo. Because oxidative stress contributed to TSP1 DNA hypomethylation, early recognition of diabetic condition and timely administration of antioxidant are logical approaches to reduce complications associated with diabetes as alterations in epigenome may not be reversible by controlling glucose levels during the later stages of disease course. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Differentiation of equine induced pluripotent stem cells into a keratinocyte lineage.

    PubMed

    Aguiar, C; Therrien, J; Lemire, P; Segura, M; Smith, L C; Theoret, C L

    2016-05-01

    Skin trauma in horses often leads to the development of chronic nonhealing wounds that lack a keratinocyte cover, vital for healing. Reports in mouse and man confirm the possibility of generating functional keratinocytes from induced pluripotent stem cells (iPSC), thus presenting myriad potential applications for wound management or treatment of skin disease. Similarly, differentiation of equine iPSC (eiPSC) into a keratinocyte lineage should provide opportunities for the advancement of veterinary regenerative medicine. The purpose of this study was to develop an efficient method for the differentiation of eiPSC into a keratinocyte lineage. It was hypothesised that eiPSC can form differentiated keratinocytes (eiPSC-KC) comparable with primary equine keratinocytes (PEK) in their morphological and functional characteristics. Experimental in vitro study. Equine iPSC established using a nonviral system were treated for 30 days with retinoic acid and bone morphogenetic protein-4 to induce directed differentiation into iPSC-KC. Temporospatial gene and protein expression by eiPSC-KC was measured at weekly intervals of differentiation and in response to calcium switch. Proliferative and migratory capacities of eiPSC-KC were compared with those of PEK. Equine iPSC, upon directed differentiation, showed loss of pluripotency genes and progressive increase in pancytokeratin expression indicating ectodermal specification into keratinocytes. High differentiation efficiency was achieved, with 82.5% of eiPSC expressing keratin 14, a marker of epidermal-specific basal stem cells, after 30 days of directed differentiation. Moreover, the proliferative capacity of eiPSC-KC was superior, while the migratory capacity (measured as the ability to epithelise in vitro wounds) was comparable with that of PEK. This proof of concept study suggests that eiPSC can successfully be differentiated into equine keratinocytes (eiPSC-KC) with features that are promising to the development of a stem

  13. Control of keratinocyte proliferation and differentiation by p63.

    PubMed

    Truong, Amy B; Khavari, Paul A

    2007-02-01

    The p53 family member p63 has been implicated in both the development and maintenance of stratified epithelial tissues, including the epidermis. Increasing data support p63 function in the regenerative capacity of basal keratinocytes by maintaining cell proliferation. Recent studies further suggest this regulation relies on inhibition of p53 activity. In addition, p63 appears to exert separate control over epidermal differentiation, which may involve control of such key signaling molecules as IKKalpha and Notch. While studies over the past decade have greatly expanded our knowledge of p63 function, much remains to be understood regarding how p63 regulates epidermal homeostasis. Future efforts to identify and validate direct p63 target genes as well as to understand the expression and function of individual p63 isoforms will be important to further define how p63 functions in the control of keratinocyte proliferation and differentiation.

  14. Single cell mechanics of keratinocyte cells.

    PubMed

    Lulevich, Valentin; Yang, Hsin-ya; Isseroff, R Rivkah; Liu, Gang-yu

    2010-11-01

    Keratinocytes represent the major cell type of the uppermost layer of human skin, the epidermis. Using AFM-based single cell compression, the ability of individual keratinocytes to resist external pressure and global rupturing forces is investigated and compared with various cell types. Keratinocytes are found to be 6-70 times stiffer than other cell types, such as white blood, breast epithelial, fibroblast, or neuronal cells, and in contrast to other cell types they retain high mechanic strength even after the cell's death. The absence of membrane rupturing peaks in the force-deformation profiles of keratinocytes and their high stiffness during a second load cycle suggests that their unique mechanical resistance is dictated by the cytoskeleton. A simple analytical model enables the quantification of Young's modulus of keratinocyte cytoskeleton, as high as 120-340 Pa. Selective disruption of the two major cytoskeletal networks, actin filaments and microtubules, does not significantly affect keratinocyte mechanics. F-actin is found to impact cell deformation under pressure. During keratinocyte compression, the plasma membrane stretches to form peripheral blebs. Instead of blebbing, cells with depolymerized F-actin respond to pressure by detaching the plasma membrane from the cytoskeleton underneath. On the other hand, the compression force of keratinocytes expressing a mutated keratin (cell line, KEB-7) is 1.6-2.2 times less than that for the control cell line that has normal keratin networks. Therefore, we infer that the keratin intermediate filament network is responsible for the extremely high keratinocyte stiffness and resilience. This could manifest into the rugged protective nature of the human epidermis.

  15. Cytokine release and cytotoxicity in human keratinocytes and fibroblasts induced by phenols and sodium dodecyl sulfate.

    PubMed

    Newby, C S; Barr, R M; Greaves, M W; Mallet, A I

    2000-08-01

    Phenolic compounds used in pharmaceutical and industrial products can cause irritant contact dermatitis. We studied the effects of resorcinol, phenol, 3,5-xylenol, chloroxylenol, and 4-hexyl-resorcinol on normal human epidermal keratinocytes and dermal fibroblasts for cytotoxicity and cytokine release, determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide methodology and enzyme-linked immunosorbent assay, respectively. An inverse correlation between phenol concentrations causing a 50% reduction in keratinocyte and fibroblast viability at 24 h and their octanol water-partition coefficients (i.e., hydrophobicity) was observed. 3,5-xylenol, chloroxylenol, hexyl-resorcinol, and sodium dodecyl sulfate, but not resorcinol or phenol, induced release of interleukin-1alpha from keratinocytes at cytotoxic concentrations. Variable release of tumor necrosis factor-alpha and interleukin-8 from keratinocytes occurred only at toxic threshold concentrations of the phenols or sodium dodecyl sulfate. Subtoxic concentrations of phenols or sodium dodecyl sulfate did not induce cytokine release from keratinocytes. Neither the phenols nor sodium dodecyl sulfate induced release of the chemokines interleukin-8, growth-related oncogene-alpha or monocyte chemotactic protein-1 from fibroblasts. Conditioned media from keratinocytes treated with cytotoxic concentrations of 3,5-xylenol, chloroxylenol, hexyl-resorcinol, or sodium dodecyl sulfate stimulated further release of the chemokines from fibroblasts above that obtained with control media. Rabbit anti-interleukin-1alpha serum inhibited keratinocyte-conditioned media induction of chemokine release. We have shown a structure-cytotoxicity relationship for a series of phenols as well as an association of interleukin-1alpha release with a cytotoxic effect. We demonstrated a cytokine cascade amplification step by the actions of stimulated keratinocyte media on cultured dermal fibroblasts, identifying interleukin-1alpha as

  16. Scleroderma keratinocytes promote fibroblast activation independent of transforming growth factor beta.

    PubMed

    McCoy, Sara S; Reed, Tamra J; Berthier, Celine C; Tsou, Pei-Suen; Liu, Jianhua; Gudjonsson, Johann E; Khanna, Dinesh; Kahlenberg, J Michelle

    2017-08-10

    SSc is a devastating disease that results in fibrosis of the skin and other organs. Fibroblasts are a key driver of the fibrotic process through deposition of extracellular matrix. The mechanisms by which fibroblasts are induced to become pro-fibrotic remain unclear. Thus, we examined the ability of SSc keratinocytes to promote fibroblast activation and the source of this effect. Keratinocytes were isolated from skin biopsies of 9 lcSSc, 10 dcSSc and 13 control patients. Conditioned media was saved from the cultures. Normal fresh primary fibroblasts were exposed to healthy control and SSc keratinocyte conditioned media in the presence or absence of neutralizing antibodies for TGF-β. Gene expression was assessed by microarrays and real-time PCR. Immunocytochemistry was performed for α-smooth muscle actin (α-SMA), collagen type 1 (COL1A1) and CCL5 expression. SSc keratinocyte conditioned media promoted fibroblast activation, characterized by increased α-SMA and COL1A1 mRNA and protein expression. This effect was independent of TGF-β. Microarray analysis identified upregulation of nuclear factor κB (NF-κB) and downregulation of peroxisome proliferator-activated receptor γ (PPAR-γ) pathways in both SSc subtypes. Scleroderma keratinocytes exhibited increased expression of NF-κB-regulated cytokines and chemokines and lesional skin staining confirmed upregulation of CCL5 in basal keratinocytes. Scleroderma keratinocytes promote the activation of fibroblasts in a TGF-β-independent manner and demonstrate an imbalance in NF-κB1 and PPAR-γ expression leading to increased cytokine and CCL5 production. Further study of keratinocyte mediators of fibrosis, including CCL5, may provide novel targets for skin fibrosis therapy.

  17. Retinoid-Responsive Transcriptional Changes in Epidermal Keratinocytes

    PubMed Central

    Krzyzanowska, Agata; Vouthounis, Constantinos; Blumenberg, Miroslav; Tomic-Canic, Marjana

    2015-01-01

    Retinoids (RA) have been used as therapeutic agents for numerous skin diseases, from psoriasis to acne and wrinkles. While RA is known to inhibit keratinocyte differentiation, the molecular effects of RA in epidermis have not been comprehensively defined. To identify the transcriptional targets of RA in primary human epidermal keratinocytes, we compared the transcriptional profiles of cells grown in the presence or absence of all-trans retinoic acid for 1, 4, 24, 48 and 72 hours, using large DNA microarrays. As expected, RA suppresses the protein markers of cornification; however the genes responsible for biosynthesis of epidermal lipids, long-chain fatty acids, cholesterol, and sphingolipids, are also suppressed. Importantly, the pathways of RA synthesis, esterification and metabolism are activated by RA; therefore, RA regulates its own bioavailability. Unexpectedly, RA regulates many genes associated with the cell cycle and programmed cell death. This led us to reveal novel effects of RA on keratinocyte proliferation and apoptosis. The response to RA is very fast: 315 genes were regulated already after 1 h. More than one-third of RA-regulated genes function in signal transduction and regulation of transcription. Using in silico analysis, we identified a set of over-represented transcription factor binding sites in the RA-regulated genes. Many psoriasis-related genes are regulated by RA, some induced, others suppressed. These results comprehensively document the transcriptional changes caused by RA in keratinocytes, add new insights into the molecular mechanism influenced by RA in the epidermis and demonstrate the hypothesis-generating power of DNA microarray analysis. PMID:19388012

  18. Identifying the similarities and differences between single nucleotide polymorphism array (SNPa) analysis and karyotyping in acute myeloid leukemia and myelodysplastic syndromes

    PubMed Central

    Noronha, Thiago Rodrigo de; Rohr, Sandra Serson; Chauffaille, Maria de Lourdes Lopes Ferrari

    2014-01-01

    Objective To standardize the single nucleotide polymorphism array (SNPa) method in acute myeloid leukemia/myelodysplastic syndromes, and to identify the similarities and differences between the results of this method and karyotyping. Methods Twenty-two patients diagnosed with acute myeloid leukemia and three with myelodysplastic syndromes were studied. The G-banding karyotyping and single nucleotide polymorphism array analysis (CytoScan® HD) were performed using cells from bone marrow, DNA extracted from mononuclear cells from bone marrow and buccal cells (BC). Results The mean age of the patients studied was 54 years old, and the median age was 55 years (range: 28–93). Twelve (48%) were male and 13 (52%) female. Ten patients showed abnormal karyotypes (40.0%), 11 normal (44.0%) and four had no mitosis (16.0%). Regarding the results of bone marrow single nucleotide polymorphism array analysis: 17 were abnormal (68.0%) and eight were normal (32.0%). Comparing the two methods, karyotyping identified a total of 17 alterations (8 deletions/losses, 7 trissomies/gains, and 2 translocations) and single nucleotide polymorphism array analysis identified a total of 42 alterations (17 losses, 16 gains and 9 copy-neutral loss of heterozygosity). Conclusion It is possible to standardize single nucleotide polymorphism array analysis in acute myeloid leukemia/myelodysplastic syndromes and compare the results with the abnormalities detected by karyotyping. Single nucleotide polymorphism array analysis increased the detection rate of abnormalities compared to karyotyping and also identified a new set of abnormalities that deserve further investigation in future studies. PMID:25638768

  19. Exosomes released by keratinocytes modulate melanocyte pigmentation

    PubMed Central

    Cicero, Alessandra Lo; Delevoye, Cédric; Gilles-Marsens, Floriane; Loew, Damarys; Dingli, Florent; Guéré, Christelle; André, Nathalie; Vié, Katell; van Niel, Guillaume; Raposo, Graça

    2015-01-01

    Cells secrete extracellular vesicles (EVs), exosomes and microvesicles, which transfer proteins, lipids and RNAs to regulate recipient cell functions. Skin pigmentation relies on a tight dialogue between keratinocytes and melanocytes in the epidermis. Here we report that exosomes secreted by keratinocytes enhance melanin synthesis by increasing both the expression and activity of melanosomal proteins. Furthermore, we show that the function of keratinocyte-derived exosomes is phototype-dependent and is modulated by ultraviolet B. In sum, this study uncovers an important physiological function for exosomes in human pigmentation and opens new avenues in our understanding of how pigmentation is regulated by intercellular communication in both healthy and diseased states. PMID:26103923

  20. Intrinsic Differences between Oral and Skin Keratinocytes

    PubMed Central

    Turabelidze, Anna; Guo, Shujuan; Chung, Allison Yen; Chen, Lin; Dai, Yang; Marucha, Phillip T.; DiPietro, Luisa A.

    2014-01-01

    Keratinocytes cover both the skin and some oral mucosa, but the morphology of each tissue and the behavior of the keratinocytes from these two sites are different. One significant dissimilarity between the two sites is the response to injury. Oral mucosal wounds heal faster and with less inflammation than equivalent cutaneous wounds. We hypothesized that oral and skin keratinocytes might have intrinsic differences at baseline as well as in the response to injury, and that such differences would be reflected in gene expression profiles. PMID:25198578

  1. Exosomes released by keratinocytes modulate melanocyte pigmentation.

    PubMed

    Lo Cicero, Alessandra; Delevoye, Cédric; Gilles-Marsens, Floriane; Loew, Damarys; Dingli, Florent; Guéré, Christelle; André, Nathalie; Vié, Katell; van Niel, Guillaume; Raposo, Graça

    2015-06-24

    Cells secrete extracellular vesicles (EVs), exosomes and microvesicles, which transfer proteins, lipids and RNAs to regulate recipient cell functions. Skin pigmentation relies on a tight dialogue between keratinocytes and melanocytes in the epidermis. Here we report that exosomes secreted by keratinocytes enhance melanin synthesis by increasing both the expression and activity of melanosomal proteins. Furthermore, we show that the function of keratinocyte-derived exosomes is phototype-dependent and is modulated by ultraviolet B. In sum, this study uncovers an important physiological function for exosomes in human pigmentation and opens new avenues in our understanding of how pigmentation is regulated by intercellular communication in both healthy and diseased states.

  2. C/EBPalpha and beta couple interfollicular keratinocyte proliferation arrest to commitment and terminal differentiation.

    PubMed

    Lopez, Rodolphe G; Garcia-Silva, Susana; Moore, Susan J; Bereshchenko, Oksana; Martinez-Cruz, Ana B; Ermakova, Olga; Kurz, Elke; Paramio, Jesus M; Nerlov, Claus

    2009-10-01

    The transcriptional regulators that couple interfollicular basal keratinocyte proliferation arrest to commitment and differentiation are yet to be identified. Here we report that the basic region leucine zipper transcription factors C/EBPalpha and C/EBPbeta are co-expressed in basal keratinocytes, and are coordinately upregulated as keratinocytes exit the basal layer and undergo terminal differentiation. Mice lacking both C/EBPalpha and beta in the epidermis showed increased proliferation of basal keratinocytes and impaired commitment to differentiation. This led to ectopic expression of keratin 14 (K14) and DeltaNp63 in suprabasal cells, decreased expression of spinous and granular layer proteins, parakeratosis and defective epidermal water barrier function. Knock-in mutagenesis revealed that C/EBP-E2F interaction was required for control of interfollicular epidermis (IFE) keratinocyte proliferation, but not for induction of spinous and granular layer markers, whereas C/EBP DNA binding was required for DeltaNp63 downregulation and K1/K10 induction. Finally, loss of C/EBPalpha/beta induced stem cell gene expression signatures in the epidermis. C/EBPs, therefore, couple basal keratinocyte cell cycle exit to commitment to differentiation through E2F repression and DNA binding, respectively, and may act to restrict the epidermal stem cell compartment.

  3. Keratinocyte-specific deletion of the receptor RAGE modulates the kinetics of skin inflammation in vivo.

    PubMed

    Leibold, Julia S; Riehl, Astrid; Hettinger, Jan; Durben, Michael; Hess, Jochen; Angel, Peter

    2013-10-01

    The receptor for advanced glycation end products (RAGE) is a pattern recognition receptor causally related to the pathogenesis of acute and chronic inflammation. In a mouse model of inflammation-driven skin carcinogenesis, RAGE deletion conferred protection from the development of skin tumors due to a severely impaired cutaneous inflammation. Although the impact of RAGE expression in immune cells was shown to be essential for the maintenance of a cutaneous inflammatory reaction, the role of RAGE in keratinocytes remained unsolved. Using mice harboring a keratinocyte-specific deletion of RAGE, we analyzed its role in the regulation of an acute inflammatory response that was induced by topical treatment of the back skin with the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA). We show that RAGE expression in cutaneous keratinocytes modulates the strength and kinetics of acute inflammation and supports the maintenance of epidermal keratinocyte activation. To address the underlying molecular mechanism, we isolated interfollicular epidermis by laser microdissection for gene expression analysis, and identified RAGE as a regulator in the temporal control of TPA-induced epidermal tumor necrosis factor alpha transcript levels. In summary, our data demonstrate that RAGE expression in keratinocytes is critically involved in the perpetuation of acute inflammation and support the central role of RAGE in paracrine communication between keratinocytes and stromal immune cells.

  4. Melanosome transfer promoted by keratinocyte growth factor in light and dark skin-derived keratinocytes.

    PubMed

    Cardinali, Giorgia; Bolasco, Giulia; Aspite, Nicaela; Lucania, Giuseppe; Lotti, Lavinia V; Torrisi, Maria R; Picardo, Mauro

    2008-03-01

    The transfer of melanin from melanocytes to keratinocytes is upregulated by UV radiation and modulated by autocrine and paracrine factors. Among them, the keratinocyte growth factor (KGF/FGF7) promotes melanosome transfer acting on the recipient keratinocytes through stimulation of the phagocytic process. To search for possible differences in the melanosome uptake of keratinocytes from different skin color, we analyzed the uptake kinetics and distribution pattern of fluorescent latex beads in primary cultures of light and dark skin-derived keratinocytes stimulated with KGF and we compared the direct effect of KGF on the melanosome transfer in co-cultures of human primary melanocytes with light and dark keratinocytes. KGF-promoted melanosome transfer was more significant in light keratinocytes compared to dark, due to an increased expression of KGF receptor in light skin keratinocytes. Colocalization studies performed by confocal microscopy using FITC-dextran as a phagocytic marker and fluorescent beads as well as inhibition of particle uptake by cytochalasin D, revealed that beads internalization induced by KGF occurs via actin-dependent phagocytosis. 3D image reconstruction by fluorescence microscopy and ultrastructural analysis through transmission electron microscopy showed differences in the distribution pattern of the beads in light and dark keratinocytes, consistent with the different melanosome distribution in human skin.

  5. Melanoma cells influence the differentiation pattern of human epidermal keratinocytes.

    PubMed

    Kodet, Ondřej; Lacina, Lukáš; Krejčí, Eliška; Dvořánková, Barbora; Grim, Miloš; Štork, Jiří; Kodetová, Daniela; Vlček, Čestmír; Šáchová, Jana; Kolář, Michal; Strnad, Hynek; Smetana, Karel

    2015-01-05

    Nodular melanoma is one of the most life threatening tumors with still poor therapeutic outcome. Similarly to other tumors, permissive microenvironment is essential for melanoma progression. Features of this microenvironment are arising from molecular crosstalk between the melanoma cells (MC) and the surrounding cell populations in the context of skin tissue. Here, we study the effect of melanoma cells on human primary keratinocytes (HPK). Presence of MC is as an important modulator of the tumor microenvironment and we compare it to the effect of nonmalignant lowly differentiated cells also originating from neural crest (NCSC). Comparative morphometrical and immunohistochemical analysis of epidermis surrounding nodular melanoma (n = 100) was performed. Data were compared to results of transcriptome profiling of in vitro models, in which HPK were co-cultured with MC, normal human melanocytes, and NCSC, respectively. Differentially expressed candidate genes were verified by RT-qPCR. Biological activity of candidate proteins was assessed on cultured HPK. Epidermis surrounding nodular melanoma exhibits hyperplastic features in 90% of cases. This hyperplastic region exhibits aberrant suprabasal expression of keratin 14 accompanied by loss of keratin 10. We observe that MC and NCSC are able to increase expression of keratins 8, 14, 19, and vimentin in the co-cultured HPK. This in vitro finding partially correlates with pseudoepitheliomatous hyperplasia observed in melanoma biopsies. We provide evidence of FGF-2, CXCL-1, IL-8, and VEGF-A participation in the activity of melanoma cells on keratinocytes. We conclude that the MC are able to influence locally the differentiation pattern of keratinocytes in vivo as well as in vitro. This interaction further highlights the role of intercellular interactions in melanoma. The reciprocal role of activated keratinocytes on biology of melanoma cells shall be verified in the future.

  6. Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions.

    PubMed

    Dombrowski, Yvonne; Peric, Mark; Koglin, Sarah; Kammerbauer, Claudia; Göss, Christine; Anz, David; Simanski, Maren; Gläser, Regine; Harder, Jürgen; Hornung, Veit; Gallo, Richard L; Ruzicka, Thomas; Besch, Robert; Schauber, Jürgen

    2011-05-11

    The proinflammatory cytokine interleukin-1β (IL-1β) plays a central role in the pathogenesis and the course of inflammatory skin diseases, including psoriasis. Posttranscriptional activation of IL-1β is mediated by inflammasomes; however, the mechanisms triggering IL-1β processing remain unknown. Recently, cytosolic DNA has been identified as a danger signal that activates inflammasomes containing the DNA sensor AIM2. In this study, we detected abundant cytosolic DNA and increased AIM2 expression in keratinocytes in psoriatic lesions but not in healthy skin. In cultured keratinocytes, interferon-γ induced AIM2, and cytosolic DNA triggered the release of IL-1β via the AIM2 inflammasome. Moreover, the antimicrobial cathelicidin peptide LL-37, which can interact with DNA in psoriatic skin, neutralized cytosolic DNA in keratinocytes and blocked AIM2 inflammasome activation. Together, these data suggest that cytosolic DNA is an important disease-associated molecular pattern that can trigger AIM2 inflammasome and IL-1β activation in psoriasis. Furthermore, cathelicidin LL-37 interfered with DNA-sensing inflammasomes, which thereby suggests an anti-inflammatory function for this peptide. Thus, our data reveal a link between the AIM2 inflammasome, cathelicidin LL-37, and autoinflammation in psoriasis, providing new potential targets for the treatment of this chronic skin disease.

  7. Inhibition of JNK promotes differentiation of epidermal keratinocytes.

    PubMed

    Gazel, Alix; Banno, Tomohiro; Walsh, Rebecca; Blumenberg, Miroslav

    2006-07-21

    In inflamed tissue, normal signal transduction pathways are altered by extracellular signals. For example, the JNK pathway is activated in psoriatic skin, which makes it an attractive target for treatment. To define comprehensively the JNK-regulated genes in human epidermal keratinocytes, we compared the transcriptional profiles of control and JNK inhibitor-treated keratinocytes, using DNA microarrays. We identified the differentially expressed genes 1, 4, 24, and 48 h after the treatment with SP600125. Surprisingly, the inhibition of JNK in keratinocyte cultures in vitro induces virtually all aspects of epidermal differentiation in vivo: transcription of cornification markers, inhibition of motility, withdrawal from the cell cycle, stratification, and even production of cornified envelopes. The inhibition of JNK also induces the production of enzymes of lipid and steroid metabolism, proteins of the diacylglycerol and inositol phosphate pathways, mitochondrial proteins, histones, and DNA repair enzymes, which have not been associated with differentiation previously. Simultaneously, basal cell markers, including integrins, hemidesmosome and extracellular matrix components, are suppressed. Promoter analysis of regulated genes finds that the binding sites for the forkhead family of transcription factors are over-represented in the SP600125-induced genes and c-Fos sites in the suppressed genes. The JNK-induced proliferation appears to be secondary to inhibition of differentiation. The results indicate that the inhibition of JNK in epidermal keratinocytes is sufficient to initiate their differentiation program and suggest that augmenting JNK activity could be used to delay cornification and enhance wound healing, whereas attenuating it could be a differentiation therapy-based approach for treating psoriasis.

  8. Canine distemper virus infects canine keratinocytes and immune cells by using overlapping and distinct regions located on one side of the attachment protein.

    PubMed

    Langedijk, Johannes P M; Janda, Jozef; Origgi, Francesco C; Örvell, Claes; Vandevelde, Marc; Zurbriggen, Andreas; Plattet, Philippe

    2011-11-01

    The morbilliviruses measles virus (MeV) and canine distemper virus (CDV) both rely on two surface glycoproteins, the attachment (H) and fusion proteins, to promote fusion activity for viral cell entry. Growing evidence suggests that morbilliviruses infect multiple cell types by binding to distinct host cell surface receptors. Currently, the only known in vivo receptor used by morbilliviruses is CD150/SLAM, a molecule expressed in certain immune cells. Here we investigated the usage of multiple receptors by the highly virulent and demyelinating CDV strain A75/17. We based our study on the assumption that CDV-H may interact with receptors similar to those for MeV, and we conducted systematic alanine-scanning mutagenesis on CDV-H throughout one side of the β-propeller documented in MeV-H to contain multiple receptor-binding sites. Functional and biochemical assays performed with SLAM-expressing cells and primary canine epithelial keratinocytes identified 11 residues mutation of which selectively abrogated fusion in keratinocytes. Among these, four were identical to amino acids identified in MeV-H as residues contacting a putative receptor expressed in polarized epithelial cells. Strikingly, when mapped on a CDV-H structural model, all residues clustered in or around a recessed groove located on one side of CDV-H. In contrast, reported CDV-H mutants with SLAM-dependent fusion deficiencies were characterized by additional impairments to the promotion of fusion in keratinocytes. Furthermore, upon transfer of residues that selectively impaired fusion induction in keratinocytes into the CDV-H of the vaccine strain, fusion remained largely unaltered. Taken together, our results suggest that a restricted region on one side of CDV-H contains distinct and overlapping sites that control functional interaction with multiple receptors.

  9. Canine Distemper Virus Infects Canine Keratinocytes and Immune Cells by Using Overlapping and Distinct Regions Located on One Side of the Attachment Protein▿

    PubMed Central

    Langedijk, Johannes P. M.; Janda, Jozef; Origgi, Francesco C.; Örvell, Claes; Vandevelde, Marc; Zurbriggen, Andreas; Plattet, Philippe

    2011-01-01

    The morbilliviruses measles virus (MeV) and canine distemper virus (CDV) both rely on two surface glycoproteins, the attachment (H) and fusion proteins, to promote fusion activity for viral cell entry. Growing evidence suggests that morbilliviruses infect multiple cell types by binding to distinct host cell surface receptors. Currently, the only known in vivo receptor used by morbilliviruses is CD150/SLAM, a molecule expressed in certain immune cells. Here we investigated the usage of multiple receptors by the highly virulent and demyelinating CDV strain A75/17. We based our study on the assumption that CDV-H may interact with receptors similar to those for MeV, and we conducted systematic alanine-scanning mutagenesis on CDV-H throughout one side of the β-propeller documented in MeV-H to contain multiple receptor-binding sites. Functional and biochemical assays performed with SLAM-expressing cells and primary canine epithelial keratinocytes identified 11 residues mutation of which selectively abrogated fusion in keratinocytes. Among these, four were identical to amino acids identified in MeV-H as residues contacting a putative receptor expressed in polarized epithelial cells. Strikingly, when mapped on a CDV-H structural model, all residues clustered in or around a recessed groove located on one side of CDV-H. In contrast, reported CDV-H mutants with SLAM-dependent fusion deficiencies were characterized by additional impairments to the promotion of fusion in keratinocytes. Furthermore, upon transfer of residues that selectively impaired fusion induction in keratinocytes into the CDV-H of the vaccine strain, fusion remained largely unaltered. Taken together, our results suggest that a restricted region on one side of CDV-H contains distinct and overlapping sites that control functional interaction with multiple receptors. PMID:21849439

  10. Conversion from human haematopoietic stem cells to keratinocytes requires keratinocyte secretory factors.

    PubMed

    Fujita, Y; Inokuma, D; Abe, R; Sasaki, M; Nakamura, H; Shimizu, T; Shimizu, H

    2012-08-01

    Recent studies have reported that bone-marrow-derived stem cells (BMSCs), including haematopoietic stem cells (HSCs) and mesenchymal stromal cells, differentiate in order to regenerate various cellular lineages. Based on these findings, it is known that BMSCs can be used clinically to treat various disorders, such as myocardial infarction and neurotraumatic injuries. However, the mechanism of HSC conversion into organ cells is incompletely understood. The mechanism is suspected to involve direct cell-cell interaction between BMSCs, damaged organ cells, and paracrine-regulated soluble factors from the organ, but to date, there have been no investigations into which of these are essential for keratinocyte differentiation from HSCs. To elucidate the mechanism and necessary conditions for HSC differentiation into keratinocytes in vitro. We cultured human (h)HSCs under various conditions to try to elucidate the mechanism and necessary conditions for hHSCs to differentiate into keratinocytes. hHSCs cocultured with mouse keratinocytes induced expression of human keratin 14 and transglutaminase I. Only 0.1% of the differentiated keratinocytes possessed multiple nuclei indicating cell fusion. Coculture of hHSCs with fixed murine keratinocytes (predicted to stabilize cellular components) failed to induce conversion into keratinocytes. Conversely, keratinocyte-conditioned medium from both human and mouse keratinocytes was found to mediate hHSC conversion into keratinocytes. Human HSCs are capable of differentiation into keratinocytes, and cell fusion is extremely rare. This differentiating is mediated by the plasma environment rather than by direct cell-cell interactions. © The Author(s). CED © 2012 British Association of Dermatologists.

  11. FGF receptors 1 and 2 are key regulators of keratinocyte migration in vitro and in wounded skin

    PubMed Central

    Meyer, Michael; Müller, Anna-Katharina; Yang, Jingxuan; Moik, Daniel; Ponzio, Gilles; Ornitz, David M.; Grose, Richard; Werner, Sabine

    2012-01-01

    Summary Efficient wound repair is essential for the maintenance of the integrity of the skin. The repair process is controlled by a variety of growth factors and cytokines, and their abnormal expression or activity can cause healing disorders. Here, we show that wound repair is severely delayed in mice lacking fibroblast growth factor receptors (FGFR) 1 and 2 in keratinocytes. As the underlying mechanism, we identified impaired wound contraction and a delay in re-epithelialization that resulted from impaired keratinocyte migration at the wound edge. Scratch wounding and transwell assays demonstrated that FGFR1/2-deficient keratinocytes had a reduced migration velocity and impaired directional persistence owing to inefficient formation and turnover of focal adhesions. Underlying this defect, we identified a significant reduction in the expression of major focal adhesion components in the absence of FGFR signaling, resulting in a general migratory deficiency. These results identify FGFs as key regulators of keratinocyte migration in wounded skin. PMID:22992463

  12. Arachidonic acid metabolism in cultured mouse keratinocytes

    SciTech Connect

    Kondoh, H.; Sato, Y.; Kanoh, H.

    1985-07-01

    The authors attempted to characterize the general features of arachidonate metabolism in cultured mouse keratinocytes. The cells labeled with (/sup 3/H)arachidonate were stimulated by 12-O-tetradecanoylphorbol-13-acetate (TPA), ionophore A23187, and fetal bovine serum (FBS). Common to the three substances, phosphatidylinositol, phosphatidylethanolamine, and phosphatidylcholine almost equally served as sources of arachidonate liberated by the action of phospholipase A2. The stimulation of phospholipase A2 action was observed in the order of A23187 greater than FBS greater than TPA. When stimulated by TPA or A23187, the radioactivity released into the extracellular medium was mostly found in prostaglandin (PG) E2. Formation of other PGs and hydroxyeicosatetraenoate (HETE) was extremely limited. In the case of stimulation by FBS, however, the released radioactivity was mainly associated with non-converted arachidonate. FBS also inhibited the TPA- and A23187-induced conversion of arachidonate to PGE2. Phospholipid degradation induced by the three stimulators was similarly dependent on extracellular Ca/sup 2 +/. The stimulation by FBS and A23187 was suppressed by calmodulin antagonists, though the effect of A23187 was much more sensitive to the antagonists when compared to that of FBS. The authors observed more than additive effects of the three stimulators when tested together.

  13. Enhanced constitutive invasion activity in human nontumorigenic keratinocytes exposed to a low level of barium for a long time.

    PubMed

    Thang, Nguyen D; Yajima, Ichiro; Ohnuma, Shoko; Ohgami, Nobutaka; Kumasaka, Mayuko Y; Ichihara, Gaku; Kato, Masashi

    2015-02-01

    We have recently demonstrated that exposure to barium for a short time (≤4 days) and at a low level (5 µM = 687 µg/L) promotes invasion of human nontumorigenic HaCaT cells, which have characteristics similar to those of normal keratinocytes, suggesting that exposure to barium for a short time enhances malignant characteristics. Here we examined the effect of exposure to low level of barium for a long time, a condition mimicking the exposure to barium through well water, on malignant characteristics of HaCaT keratinocytes. Constitutive invasion activity, focal adhesion kinase (FAK) protein expression and activity, and matrix metalloproteinase 14 (MMP14) protein expression in primary cultured normal human epidermal keratinocytes, HaCaT keratinocytes, and HSC5 and A431 human squamous cell carcinoma cells were augmented following an increase in malignancy grade of the cells. Constitutive invasion activity, FAK phosphorylation, and MMP14 expression levels of HaCaT keratinocytes after treatment with 5 µM barium for 4 months were significantly higher than those of control untreated HaCaT keratinocytes. Taken together, our results suggest that exposure to a low level of barium for a long time enhances constitutive malignant characteristics of HaCaT keratinocytes via regulatory molecules (FAK and MMP14) for invasion.

  14. Virtual Screening, pharmacophore development and structure based similarity search to identify inhibitors against IdeR, a transcription factor of Mycobacterium tuberculosis.

    PubMed

    Rohilla, Akshay; Khare, Garima; Tyagi, Anil K

    2017-07-05

    ideR, an essential gene of Mycobacterium tuberculosis, is an attractive drug target as its conditional knockout displayed attenuated growth phenotype in vitro and in vivo. To the best of our knowledge, no inhibitors of IdeR are identified. We carried out virtual screening of NCI database against the IdeR DNA binding domain followed by inhibition studies using EMSA. Nine compounds exhibited potent inhibition with NSC 281033 (I-20) and NSC 12453 (I-42) exhibiting IC50 values of 2 µg/ml and 1 µg/ml, respectively. We then attempted to optimize the leads firstly by structure based similarity search resulting in a class of inhibitors based on I-42 containing benzene sulfonic acid, 4-hydroxy-3-[(2-hydroxy-1-naphthalenyl) azo] scaffold with 4 molecules exhibiting IC50 ≤ 10 µg/ml. Secondly, optimization included development of energy based pharmacophore and screening of ZINC database followed by docking studies, yielding a molecule with IC50 of 60 µg/ml. More importantly, a five-point pharmacophore model provided insight into the features essential for IdeR inhibition. Five molecules with promising IC50 values also inhibited M. tuberculosis growth in broth culture with MIC90 ranging from 17.5 µg/ml to 100 µg/ml and negligible cytotoxicity in various cell lines. We believe our work opens up avenues for further optimization studies.

  15. A heat-sensitive TRP channel expressed in keratinocytes.

    PubMed

    Peier, Andrea M; Reeve, Alison J; Andersson, David A; Moqrich, Aziz; Earley, Taryn J; Hergarden, Anne C; Story, Gina M; Colley, Sian; Hogenesch, John B; McIntyre, Peter; Bevan, Stuart; Patapoutian, Ardem

    2002-06-14

    Mechanical and thermal cues stimulate a specialized group of sensory neurons that terminate in the skin. Three members of the transient receptor potential (TRP) family of channels are expressed in subsets of these neurons and are activated at distinct physiological temperatures. Here, we describe the cloning and characterization of a novel thermosensitive TRP channel. TRPV3 has a unique threshold: It is activated at innocuous (warm) temperatures and shows an increased response at noxious temperatures. TRPV3 is specifically expressed in keratinocytes; hence, skin cells are capable of detecting heat via molecules similar to those in heat-sensing neurons.

  16. RoCaSCA: A contour tracing grid-based algorithm to identify similarity regions and clusters in spatial geographical data

    NASA Astrophysics Data System (ADS)

    Hazenberg, P.; Torfs, P. J. J. F.; Leijnse, H.; Uijlenhoet, R.

    2012-04-01

    Over the last decades the amount of spatial geographic data obtained from satellite and radar remote sensing, geographical and other types of spatial information has increased tremendously, making it impossible for a user to examine all in detail. Therefore, a considerable amount of research has focused on smart and efficient solutions to segment a spatial image into its dominant regions, extracting most essential information. The current research presents a new spatial image cluster identification method. The delineation of clusters is performed in two separate steps. First, we identify a regions outer contour using the properties of a rotating carpenter square. Secondly, we define all inner pixels belonging to a cluster based on the same principle, excluding inner contour regions if necessary. As such, a cluster identification method will be presented which has considerable similarity to some of the tracing type and connected component image segmentation algorithms developed in the literature during the last decade. However, since the characteristic shape of a carpenter square can easily be extended, the algorithm presented here does not strictly label neighboring pixels to the same component only. On the contrary, our algorithm is able to connect non-neighboring pixels for varying pixel distances as well. In addition, since our algorithm takes a continuous grid as input, it is possible to define transition pixels, that connect pixels that belong to a given cluster. Therefore, this newly developed algorithm presents a link between the traditional image segmentation methods implemented on binary grids and the partitional density and grid-based cluster identification methods that use continuous datasets. We will demonstrate the impact of this new cluster identification method for a number of typical geophysical cases ranging from global drought identification to weather radar based precipitation cell delineation.

  17. Proteome and metabolome profiling of cytokinin action in Arabidopsis identifying both distinct and similar responses to cytokinin down- and up-regulation

    PubMed Central

    Hoehenwarter, Wolfgang; Brzobohatý, Břetislav

    2013-01-01

    In plants, numerous developmental processes are controlled by cytokinin (CK) levels and their ratios to levels of other hormones. While molecular mechanisms underlying the regulatory roles of CKs have been intensely researched, proteomic and metabolomic responses to CK deficiency are unknown. Transgenic Arabidopsis seedlings carrying inducible barley cytokinin oxidase/dehydrogenase (CaMV35S>GR>HvCKX2) and agrobacterial isopentenyl transferase (CaMV35S>GR>ipt) constructs were profiled to elucidate proteome- and metabolome-wide responses to down- and up-regulation of CK levels, respectively. Proteome profiling identified >1100 proteins, 155 of which responded to HvCKX2 and/or ipt activation, mostly involved in growth, development, and/or hormone and light signalling. The metabolome profiling covered 79 metabolites, 33 of which responded to HvCKX2 and/or ipt activation, mostly amino acids, carbohydrates, and organic acids. Comparison of the data sets obtained from activated CaMV35S>GR>HvCKX2 and CaMV35S>GR>ipt plants revealed unexpectedly extensive overlaps. Integration of the proteomic and metabolomic data sets revealed: (i) novel components of molecular circuits involved in CK action (e.g. ribosomal proteins); (ii) previously unrecognized links to redox regulation and stress hormone signalling networks; and (iii) CK content markers. The striking overlaps in profiles observed in CK-deficient and CK-overproducing seedlings might explain surprising previously reported similarities between plants with down- and up-regulated CK levels. PMID:24064926

  18. Keratinocytes express cytokines and nerve growth factor in response to neuropeptide activation of the ERK1/2 and JNK MAPK transcription pathways.

    PubMed

    Shi, Xiaoyou; Wang, Liping; Clark, J David; Kingery, Wade S

    2013-09-10

    Sensory neurons innervating the skin can release neuropeptides that are believed to modulate cellular proliferation, wound healing, pigmentation, and keratinocyte innate immune responses. While the ability of neuropeptides to stimulate keratinocyte production of inflammatory mediators has been demonstrated, there is no information concerning the mechanisms by which neuropeptide activation of keratinocyte cell surface receptors ultimately leads to the up-regulation of mediator production. In this study we used a keratinocyte cell line to identify the presence of substance P (SP) and calcitonin gene-related peptide (CGRP) receptors on keratinocytes and examined the effects of SP and CGRP stimulation on keratinocyte neuropeptide signaling, cell proliferation, and interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), and nerve growth factor (NGF) expression. Neuropeptide stimulation caused an up-regulation of neuropeptide receptor expression in keratinocytes and a dramatic increase in keratinocyte secretion of SP and CGRP, suggesting possible autocrine or paracrine stimulatory effects and amplification of neuropeptide signaling. Both SP and CGRP concentration-dependently stimulated cellular proliferation and the expression and secretion of inflammatory cytokines and NGF in keratinocytes. SP also activated all 3 families of mitogen activated protein kinase (MAPK) and nuclear factor κB (NFκB) in keratinocytes, while CGRP only activated p38 and extracellular signal related kinase1/2 (ERK1/2) MAPKs. Neuropeptide stimulated inflammatory mediatory production in keratinocytes was reversed by ERK1/2 and JNK inhibitors. The current study is the first to observe; 1) that CGRP stimulates keratinocyte expression of CGRP and its receptor complex, 2) that SP and CGRP stimulate IL-6 and TNF-α secretion in keratinocytes, 3) that SP activated all three MAPK families and the NFκB transcriptional signaling pathway in keratinocytes, and 4) that SP and CGRP

  19. Keratinocytes express cytokines and nerve growth factor in response to neuropeptide activation of the ERK1/2 and JNK MAPK transcription pathways*

    PubMed Central

    Clark, J. David; Kingery, Wade S.

    2013-01-01

    Sensory neurons innervating the skin can release neuropeptides that are believed to modulate cellular proliferation, wound healing, pigmentation, and keratinocyte innate immune responses. While the ability of neuropeptides to stimulate keratinocyte production of inflammatory mediators has been demonstrated, there is no information concerning the mechanism(s) by which neuropeptide activation of keratinocyte cell surface receptors ultimately leads to the up-regulation of mediator production. In this study we used a keratinocyte cell line to identify the presence of substance P (SP) and calcitonin gene-related peptide (CGRP) receptors on keratinocytes and examined the effects of SP and CGRP stimulation on keratinocyte neuropeptide signaling, cell proliferation, and interleukin-1β (IL-1), interleukin-6 (IL-6), tumor necrosis factor α (TNF), and nerve growth factor (NGF) expression. Neuropeptide stimulation caused an up-regulation of neuropeptide receptor expression in keratinocytes and a dramatic increase in keratinocyte secretion of SP and CGRP, suggesting possible autocrine or paracrine stimulatory effects and amplification of neuropeptide signaling. Both SP and CGRP concentration-dependently stimulated cellular proliferation and the expression and secretion of inflammatory cytokines and NGF in keratinocytes. SP also activated all 3 families of mitogen activated protein kinases (MAPK) and nuclear factor κB (NFκB) in keratinocytes, while CGRP only activated p38 and extracellular signal related kinases1/2 (ERK1/2) MAPK. Neuropeptide stimulated inflammatory mediatory production in keratinocytes was reversed by ERK1/2 and JNK inhibitors. The current study is the first to observe; 1) that CGRP stimulates keratinocyte expression of CGRP and its receptor complex, 2) that SP and CGRP stimulate of IL-6 and TNF secretion in keratinocytes, 3) that SP activated all three MAPK families and the NFκB transcriptional signaling pathway in keratinocytes, and 4) that SP and CGRP

  20. A review of the influence of growth factors and cytokines in in vitro human keratinocyte migration.

    PubMed

    Peplow, Philip V; Chatterjee, Marissa P

    2013-04-01

    Keratinocyte migration from the wound edge is a crucial step in the reepithelization of cutaneous wounds. Growth factors and cytokines, released from cells that invade the wound matrix, play an important role, and several in vitro assays have been performed to elucidate this. The purposes of this study were to review in vitro human studies on keratinocyte migration to identify those growth factors or cytokines that stimulate keratinocyte migration and whether these assays might serve as a screening procedure prior to testing combinations of growth factors or cytokines to promote wound closure in vivo. Research papers investigating effect of growth factors and cytokines on human keratinocyte migration in vitro were retrieved from library sources, PubMed databases, reference lists of papers, and searches of relevant journals. Fourteen different growth factors and cytokines enhanced migration in scratch wound assay and HGF together with TGF-β, and IGF-1 with EGF, were more stimulatory than either growth factor alone. HGF with TGF-β1 had a greater chemokinetic effect than either growth factor alone in transmigration assay. TGF-β1, FGF-7, FGF-2 and AGF were chemotactic to keratinocytes. EGF, TGF-α, IL-1α, IGF and MGSA enhanced cell migration on ECM proteins. Many growth factors and cytokines enhanced migration of keratinocytes in vitro, and certain combinations of growth factors were more stimulatory than either alone. These and other combinations that stimulate keratinocyte migration in vitro should be tested for effect on wound closure and repair in vivo. The scratch wound assay provides a useful, inexpensive and easy-to-perform screening method for testing individual or combinations of growth factors or cytokines, or growth factors combined with other modalities such as laser irradiation, prior to performing wound healing studies with laboratory animals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Effect of Absolute From Hibiscus syriacus L. Flower on Wound Healing in Keratinocytes

    PubMed Central

    Yoon, Seok Won; Lee, Kang Pa; Kim, Do-Yoon; Hwang, Dae Il; Won, Kyung-Jong; Lee, Dae Won; Lee, Hwan Myung

    2017-01-01

    Background: Proliferation and migration of keratinocytes are essential for the repair of cutaneous wounds. Hibiscus syriacus L. has been used in Asian medicine; however, research on keratinocytes is inadequate. Objective: To establish the dermatological properties of absolute from Hibiscus syriacus L. flower (HSF) and to provide fundamental research for alternative medicine. Materials and Methods: We identified the composition of HSF absolute using gas chromatography-mass spectrometry analysis. We also examined the effect of HSF absolute in HaCaT cells using the XTT assay, Boyden chamber assay, sprout-out growth assay, and western blotting. We conducted an in-vivo wound healing assay in rat tail-skin. Results: Ten major active compounds were identified from HSF absolute. As determined by the XTT assay, Boyden chamber assay, and sprout-out growth assay results, HSF absolute exhibited similar effects as that of epidermal growth factor on the proliferation and migration patterns of keratinocytes (HaCaT cells), which were significantly increased after HSF absolute treatment. The expression levels of the phosphorylated signaling proteins relevant to proliferation, including extracellular signal-regulated kinase 1/2 (Erk 1/2) and Akt, were also determined by western blot analysis. Conclusion: These results of our in-vitro and ex-vivo studies indicate that HSF absolute induced cell growth and migration of HaCaT cells by phosphorylating both Erk 1/2 and Akt. Moreover, we confirmed the wound-healing effect of HSF on injury of the rat tail-skin. Therefore, our results suggest that HSF absolute is promising for use in cosmetics and alternative medicine. SUMMARY Hisbiscus syriacus L. flower absolute increases HaCaT cell migration and proliferation.Hisbiscus syriacus L. flower absolute regulates phosphorylation of ERK 1/2 and Akt in HaCaT cell.Treatment with Hisbiscus syriacus L. flower induced sprout outgrowth.The wound in the tail-skin of rat was reduced by Hisbiscus syriacus

  2. Effective inhibition of melanosome transfer to keratinocytes by lectins and niacinamide is reversible.

    PubMed

    Greatens, Amanda; Hakozaki, Tomohiro; Koshoffer, Amy; Epstein, Howard; Schwemberger, Sandy; Babcock, George; Bissett, Donald; Takiwaki, Hirotsugu; Arase, Seiji; Wickett, R Randall; Boissy, Raymond E

    2005-07-01

    Skin pigmentation results in part from the transfer of melanized melanosomes synthesized by melanocytes to neighboring keratinocytes. Plasma membrane lectins and their glycoconjugates expressed by these epidermal cells are critical molecules involved in this transfer process. In addition, the derivative of vitamin B(3), niacinamide, can inhibit melanosome transfer and induce skin lightening. We investigated the effects of these molecules on the viability of melanocytes and keratinocytes and on the reversibility of melanosome-transfer inhibition induced by these agents using an in vitro melanocyte-keratinocyte coculture model system. While lectins and neoglycoproteins could induce apoptosis in a dose-dependent manner to melanocytes or keratinocytes in monoculture, similar dosages of the lectins, as opposed to neoglycoproteins, did not induce apoptosis to either cell type when treated in coculture. The dosages of lectins and niacinamide not affecting cell viability produced an inhibitory effect on melanosome transfer, when used either alone or together in cocultures of melanocytes-keratinocytes. Cocultures treated with lectins or niacinamide resumed normal melanosome transfer in 3 days after removal of the inhibitor, while cocultures treated with a combination of lectins and niacinamide demonstrated a lag in this recovery. Subsequently, we assessed the effect of niacinamide on facial hyperpigmented spots using a vehicle-controlled, split-faced design human clinical trial. Topical application of niacinamide resulted in a dose-dependent and reversible reduction in hyperpigmented lesions. These results suggest that lectins and niacinamide at concentrations that do not affect cell viability are reversible inhibitors of melanosome transfer.

  3. Expression and functional role of Sox9 in human epidermal keratinocytes.

    PubMed

    Shi, Ge; Sohn, Kyung-Cheol; Li, Zhengjun; Choi, Dae-Kyoung; Park, Young Min; Kim, Jin-Hwa; Fan, Yi-Ming; Nam, Yong Hee; Kim, Sooyeon; Im, Myung; Lee, Young; Seo, Young-Joon; Kim, Chang Deok; Lee, Jeung-Hoon

    2013-01-01

    In this study, we investigated the expression and putative role of Sox9 in epidermal keratinocyte. Immunohistochemical staining showed that Sox9 is predominantly expressed in the basal layer of normal human skin epidermis, and highly expressed in several skin diseases including psoriasis, basal cell carcinoma, keratoacanthoma and squamous cell carcinoma. In calcium-induced keratinocyte differentiation model, the expression of Sox9 was decreased in a time dependent manner. When Sox9 was overexpressed using a recombinant adenovirus, cell growth was enhanced, while the expression of differentiation-related genes such as loricrin and involucrin was markedly decreased. Similarly, when rat skin was intradermally injected with the adenovirus expressing Sox9, the epidermis was thickened with increase of PCNA positive cells, while the epidermal differentiation was decreased. Finally, UVB irradiation induced Sox9 expression in cultured human epidermal keratinocytes, and keratinocytes are protected from UVB-induced apoptosis by Sox9 overexpression. Together, these results suggest that Sox9 is an important regulator of epidermal keratinocytes with putative pro-proliferation and/or pro-survival functions, and may be related to several cutaneous diseases that are characterized by abnormal differentiation and hyperproliferation.

  4. Human keratinocyte growth and differentiation on acellular porcine dermal matrix in relation to wound healing potential.

    PubMed

    Zajicek, Robert; Mandys, Vaclav; Mestak, Ondrej; Sevcik, Jan; Königova, Radana; Matouskova, Eva

    2012-01-01

    A number of implantable biomaterials derived from animal tissues are now used in modern surgery. Xe-Derma is a dry, sterile, acellular porcine dermis. It has a remarkable healing effect on burns and other wounds. Our hypothesis was that the natural biological structure of Xe-Derma plays an important role in keratinocyte proliferation and formation of epidermal architecture in vitro as well as in vivo. The bioactivity of Xe-Derma was studied by a cell culture assay. We analyzed growth and differentiation of human keratinocytes cultured in vitro on Xe-Derma, and we compared the results with formation of neoepidermis in the deep dermal wounds treated with Xe-Derma. Keratinocytes cultured on Xe-Derma submerged in the culture medium achieved confluence in 7-10 days. After lifting the cultures to the air-liquid interface, the keratinocytes were stratified and differentiated within one week, forming an epidermis with basal, spinous, granular, and stratum corneum layers. Immunohistochemical detection of high-molecular weight cytokeratins (HMW CKs), CD29, p63, and involucrin confirmed the similarity of organization and differentiation of the cultured epidermal cells to the normal epidermis. The results suggest that the firm natural structure of Xe-Derma stimulates proliferation and differentiation of human primary keratinocytes and by this way improves wound healing.

  5. The influence of microtextured basal lamina analog topography on keratinocyte function and epidermal organization.

    PubMed

    Downing, Brett R; Cornwell, Kevin; Toner, Mehmet; Pins, George D

    2005-01-01

    The rational design of future bioengineered skin substitutes requires an understanding of the mechanisms by which the three-dimensional microarchitecture of tissue scaffolds modulates keratinocyte function. Microtextured basal lamina analogs were developed to investigate the relationship between the characteristic topography at the dermal-epidermal interface of native skin and keratinocyte function. Microfabrication techniques were used to create master patterns, negative replicates, and collagen membranes with ridges and channels of length scales (e.g., grooves of 50-200 microm in depth and width) similar to the invaginations found in basal lamina at the dermal-epidermal junction of native skin. Keratinocytes were seeded on the surfaces of basal lamina analogs, and histological analyses were performed after 7 days of tissue culture at the air-liquid interface. The keratinocytes formed a differentiated and stratified epidermis that conformed to the features of the microtextured membranes. Morphometric analyses of immunostained skin equivalents suggest that keratinocyte stratification and differentiation increases as channel depth increases and channel width decreases. This trend was most pronounced in channels with the highest depth-to-width ratios (i.e., 200 microm deep, 50 microm wide). It is anticipated that the findings from these studies will elucidate design parameters to enhance the performance of future bioengineered skin substitutes.

  6. Differentiation of human embryonic stem cells into clinically amenable keratinocytes in an autogenic environment.

    PubMed

    Kidwai, Fahad K; Liu, Hua; Toh, Wei Seong; Fu, Xin; Jokhun, Doorgesh S; Movahednia, Mohammad M; Li, Mingming; Zou, Yu; Squier, Christopher A; Phan, Toan T; Cao, Tong

    2013-03-01

    Human embryonic stem cells (hESCs)-derived keratinocytes hold great clinical and research potential. However, the current techniques are hampered by the use of xenogenic components that limits their clinical application. Here we demonstrated an efficient differentiation of H9 hESCs (H9-hESCs) into keratinocytes (H9-Kert) with the minimum use of animal-derived materials. For differentiation, we established two microenvironment systems originated from H9-hESCs (autogenic microenvironment). These autogenic microenvironment systems consist of an autogenic coculture system (ACC) and an autogenic feeder-free system (AFF). In addition, we showed a stage-specific effect of Activin in promoting keratinocyte differentiation from H9-hESCs while repressing the expression of early neural markers in the ACC system. Furthermore, we also explained the effect of Activin in construction of the AFF system made up of extracellular matrix similar to basement membrane extracted from H9-hESC-derived fibroblasts. H9-Kert differentiated in both systems expressed keratinocyte markers at mRNA and protein levels. H9-Kert were also able to undergo terminal differentiation in high Ca(2+) medium. These findings support the transition toward the establishment of an animal-free microenvironment for successful differentiation of hESCs into keratinocytes for potential clinical application.

  7. RIP4 is an ankyrin repeat-containing kinase essential for keratinocyte differentiation.

    PubMed

    Holland, Pamela; Willis, Cynthia; Kanaly, Suzanne; Glaccum, Moira; Warren, Annjanette; Charrier, Keith; Murison, J; Derry, Jonathan; Virca, G; Bird, Timothy; Peschon, Jacques

    2002-08-20

    The epidermis is a stratified, continually renewing epithelium dependent on a balance among cell proliferation, differentiation, and death for homeostasis. In normal epidermis, a mitotically active basal layer gives rise to terminally differentiating keratinocytes that migrate outward and are ultimately sloughed from the skin surface as enucleated squames. Although many proteins are known to function in maintaining epidermal homeostasis, the molecular coordination of these events is poorly understood. RIP4 is a novel RIP (receptor-interacting protein) family kinase with ankyrin repeats cloned from a keratinocyte cDNA library. RIP4 deficiency in mice results in perinatal lethality associated with abnormal epidermal differentiation. The phenotype of RIP4(-/-) mice in part resembles that of mice lacking IKKalpha, a component of a complex that regulates NF-kappaB. Despite the similar keratinocyte defects in RIP4- and IKKalpha-deficient mice, these kinases function in distinct pathways. RIP4 functions cell autonomously within the keratinocyte lineage. Unlike IKKalpha, RIP4-deficient skin fails to fully differentiate when grafted onto a normal host. Instead, abnormal hair follicle development and epidermal dysplasia, indicative of progression into a more pathologic state, are observed. Thus, RIP4 is a critical component of a novel pathway that controls keratinocyte differentiation.

  8. Modulation of calprotectin in human keratinocytes by keratinocyte growth factor and interleukin-1alpha.

    PubMed

    Bando, Mika; Hiroshima, Yuka; Kataoka, Masatoshi; Herzberg, Mark C; Ross, Karen F; Shinohara, Yasuo; Yamamoto, Takenori; Nagata, Toshihiko; Kido, Jun-ichi

    2010-01-01

    Calprotectin is an antimicrobial complex composed of the S100A8 and S100A9 protein family subunits. Contributing to innate immunity, calprotectin expression is increased by interleukin-1alpha (IL-1alpha), which modulates keratinocyte differentiation. Keratinocyte growth factor (KGF) is produced by mesenchymal cells and has a mitogenic activity for epithelial cells. In this study, we investigated the effect of KGF on calprotectin expression in keratinocytes and modulation by IL-1alpha. Human keratinocytes were cultured with KGF in the presence or absence of a KGF receptor (KGFR) inhibitor or mitogen-activated protein kinase (MAPK) inhibitors. Calprotectin (S100A8/S100A9) expression was determined by northern blotting and enzyme-linked immunosorbent assay, respectively, whereas MAPK phosphorylation was analyzed by western blot analysis. KGF significantly decreased the expression of S100A8/S100A9-specific mRNAs and calprotectin protein. In the presence of KGF, KGFR inhibitor or extracellular-regulated kinase inhibitor restored KGF-downregulated expression of S100A8/S100A9. KGF increased IL-1alpha expression in keratinocytes, whereas IL-1alpha increased KGF expression in fibroblasts. Cocultured fibroblast and keratinocytes showed lower S100A8/S100A9 mRNA expression than keratinocytes alone in the presence or absence of IL-1alpha or KGF. These results suggest that fibroblast-derived KGF reduces or restricts calprotectin expression in keratinocytes, which supports our hypothesis that calprotectin expression in keratinocytes is modulated by factors associated with epithelial-mesenchymal interactions.

  9. Consistency of the Proteome in Primary Human Keratinocytes With Respect to Gender, Age, and Skin Localization*

    PubMed Central

    Sprenger, Adrian; Weber, Sebastian; Zarai, Mostafa; Engelke, Rudolf; Nascimento, Juliana M.; Gretzmeier, Christine; Hilpert, Martin; Boerries, Melanie; Has, Cristina; Busch, Hauke; Bruckner-Tuderman, Leena; Dengjel, Jörn

    2013-01-01

    Keratinocytes account for 95% of all cells of the epidermis, the stratified squamous epithelium forming the outer layer of the skin, in which a significant number of skin diseases takes root. Immortalized keratinocyte cell lines are often used as research model systems providing standardized, reproducible, and homogenous biological material. Apart from that, primary human keratinocytes are frequently used for medical studies because the skin provides an important route for drug administration and is readily accessible for biopsies. However, comparability of these cell systems is not known. Cell lines may undergo phenotypic shifts and may differ from the in vivo situation in important aspects. Primary cells, on the other hand, may vary in biological functions depending on gender and age of the donor and localization of the biopsy specimen. Here we employed metabolic labeling in combination with quantitative mass spectrometry-based proteomics to assess A431 and HaCaT cell lines for their suitability as model systems. Compared with cell lines, comprehensive profiling of the primary human keratinocyte proteome with respect to gender, age, and skin localization identified an unexpected high proteomic consistency. The data were analyzed by an improved ontology enrichment analysis workflow designed for the study of global proteomics experiments. It enables a quick, comprehensive and unbiased overview of altered biological phenomena and links experimental data to literature. We guide through our workflow, point out its advantages compared with other methods and apply it to visualize differences of cell lines compared with primary human keratinocytes. PMID:23722187

  10. Kindlin-1 is a phosphoprotein involved in regulation of polarity, proliferation, and motility of epidermal keratinocytes.

    PubMed

    Herz, Corinna; Aumailley, Monique; Schulte, Carsten; Schlötzer-Schrehardt, Ursula; Bruckner-Tuderman, Leena; Has, Cristina

    2006-11-24

    A novel family of focal adhesion proteins, the kindlins, is involved in attachment of the actin cytoskeleton to the plasma membrane and in integrin-mediated cellular processes. Deficiency of kindlin-1, as a result of loss-of-function mutations in the KIND1 gene, causes Kindler syndrome, an autosomal recessive genodermatosis characterized by skin blistering, progressive skin atrophy, photosensitivity and, occasionally, carcinogenesis. Here we characterized authentic and recombinantly expressed kindlin-1 and show that it is localized in basal epidermal keratinocytes in a polar fashion, close to the cell surface facing the basement membrane, in the areas between the hemidesmosomes. We identified two forms of kindlin-1 in keratinocytes, with apparent molecular masses of 78 and 74 kDa, corresponding to phosphorylated and desphosphorylated forms of the protein. In kindlin-1-deficient skin, basal keratinocytes show multiple abnormalities: cell polarity is lost, proliferation is strongly reduced, and several cells undergo apoptosis. In vitro, deficiency of kindlin-1 in keratinocytes leads to strongly reduced cell proliferation, decreased adhesion, undirected motility, and intense protrusion activity of the plasma membrane. Taken together, these results show that kindlin-1 plays a role in keratinocyte adhesion, polarization, proliferation, and migration. It is involved in organization and anchorage of the actin cytoskeleton to integrin-associated signaling platforms.

  11. Identifying Learning Disabilities through a Cognitive Deficit Framework: Can Verbal Memory Deficits Explain Similarities between Learning Disabled and Low Achieving Students?

    ERIC Educational Resources Information Center

    Callinan, Sarah; Theiler, Stephen; Cunningham, Everarda

    2015-01-01

    Traditionally, students with learning disabilities (LD) have been identified using an aptitude--achievement discrepancy or response to intervention approach. As profiles of the cognitive deficits of discrepancy-defined students with LD have already been developed using these approaches, these deficits can in turn be used to identify LD using the…

  12. A saw is first identified as an object used on wood: ERP evidence for temporal differences between Thematic and Functional similarity relations.

    PubMed

    Wamain, Yannick; Pluciennicka, Ewa; Kalénine, Solène

    2015-05-01

    The role of functional and motor information in manipulable artifact object semantic organization is still poorly understood. In particular, several types of semantic relations involving object functional knowledge may be distinguished. Functional similarity relations group objects with similar functions at relatively specific (e.g. saw-axe, both used to cut wood) or general (saw-knife, both used to cut) levels. Thematic relations group objects based on their complementarity in events (saw used upon/with wood). Recent eye-tracking data showed distinct temporal time courses for the different semantic relations, with fastest processing of thematic relations and slowest processing of general function similarity relations. Behavioral data suggest the involvement of distinct cognitive mechanisms in manipulable artifact object semantic processing. The aim of the present study was to assess the neural correlates of thematic, and specific and general function similarity relation processing. Specifically, we investigated whether time course differences between semantic relations could be highlighted at the neurophysiological level. We used a protocol combining semantic priming with electroencephalography, and manipulated the type of semantic relation and the duration of the interval between prime and target objects. Two consistent and complementary results were shown. On N1 and P3 components, semantic priming was observed for thematic relations only. On N400 component, the type of semantic relation interacted with interval duration, and semantic priming was visible for all 3 relations after the longest interval only. Results revealed graded processing time courses for thematic, specific function similarity, and general function similarity relations at the neural level, and further indicate that thematic relations impact object processing during the early stages of object recognition. Findings suggest a hierarchical organization of three types of semantic relations based on

  13. Synthesis and activity of the salicylic acid ester of bakuchiol in psoriasis-surrogate keratinocytes and skin substitutes.

    PubMed

    Ma, S; Gobis, K; Swindell, W R; Chaudhuri, R; Bojanowski, R; Bojanowski, K

    2017-04-01

    Topical retinoids are effective in retarding skin ageing and restoring homeostasis in skin conditions such as psoriasis. However their adverse effects (AEs), which include irritation (retinoid dermatitis), photosensitivity and teratogenicity, limit their use and patient compliance. Development of retinoid analogues with minimal AEs would allow a broader and more compliant use. To synthesise a novel molecule, bakuchiol salicylate (bakusylan), with a modulatory gene expression profile similar to retinoids, using as reference three prescription retinoids: tretinoin, tazarotene and adapalene. We hypothesized that because bakuchiol salicylate has a structure entirely different from existing retinoids, there would be at least a partial uncoupling of AEs from the skin-normalizing activity of this retinoid. This hypothesis was tested at the transcriptional level in psoriatic cytokine-treated cultures of keratinocytes and organotypic skin substitutes, using DNA microarrays and custom PCR arrays. Evaluation of the gene expression profile of bakuchiol salicylate revealed elimination of several components of the retinoid-like proinflammatory response and teratogenic signature, without a substantial loss of normalizing potential. A possible mechanism of action, consisting of keratinocyte desensitization to psoriatic cytokine signalling through inhibition of the signal transducer and regulator of transcription (STAT)1/3/interferon inflammatory signal transduction axis was also identified. Bipartite materials obtained by merging two skin-active entities with specific, complementary bioactivities, such as bakuchiol and salicylic acid, may yield a new class of functional retinoids. © 2017 British Association of Dermatologists.

  14. Immunomodulatory effects of a set of amygdalin analogues on human keratinocyte cells.

    PubMed

    Baroni, A; Paoletti, I; Greco, R; Satriano, R A; Ruocco, E; Tufano, M A; Perez, J J

    2005-11-01

    Peptide T (PT) is an octapeptide shown to resolve psoriatic lesions. Our previous investigations suggest that keratinocytes play an important role in conditioning the therapeutic effects of the PT in psoriasis. However, peptides are not good therapeutic agents, because they exhibit poor absorption, are easily metabolized and are immunogenic. Using computational methods, the natural product amygdalin was identified as peptidomimetic of PT. However, amygdalin exhibits a toxic profile due to its cyanide group. To overcome this deleterious effect, we synthesized analogues lacking the cyanide group. Human keratinocytes were treated with PT or with three different peptidomimetics of PT. To study its effects on the expression of HSP-70, TGF-beta, alpha-v integrin, ICAM-1 and cytokines, we analysed the protein levels by Western blot and ELISA. Our results show that the different peptidomimetics of PT tested exhibit a similar biological behaviour in regard to the overexpression of HSP-70, TGF-beta and alpha-v integrin than the native peptide. TNF-alpha is overexpressed by PT and SVT-03018; between the other two analogs, SVT-03016 do not produce any significant change in regard to the control, while SVT-03017 shows only a moderate increase in regard to control. SVT-03018 provokes a remarkable upregulation of IL-10, stronger than SVT-03016, SVT-03017 and PT. All the other three analogues reduce comparably to the PT, the expression of ICAM-1 and do not increase the release of proinflammatory cytokines. The results highlighted that the three analogues of amygdalin with the cyanide group removed exhibit the same biological effects of PT. Therefore, they can be considered peptidomimetics, suggesting their possible use in the treatment of psoriasis.

  15. Streptococcus pyogenes M49 plasminogen/plasmin binding facilitates keratinocyte invasion via integrin-integrin-linked kinase (ILK) pathways and protects from macrophage killing.

    PubMed

    Siemens, Nikolai; Patenge, Nadja; Otto, Juliane; Fiedler, Tomas; Kreikemeyer, Bernd

    2011-06-17

    The entry into epithelial cells and the prevention of primary immune responses are a prerequisite for a successful colonization and subsequent infection of the human host by Streptococcus pyogenes (group A streptococci, GAS). Here, we demonstrate that interaction of GAS with plasminogen promotes an integrin-mediated internalization of the bacteria into keratinocytes, which is independent from the serine protease activity of potentially generated plasmin. α(1)β(1)- and α(5)β(1)-integrins were identified as the major keratinocyte receptors involved in this process. Inhibition of integrin-linked kinase (ILK) expression by siRNA silencing or blocking of PI3K and Akt with specific inhibitors, reduced the GAS M49-plasminogen/plasmin-mediated invasion of keratinocytes. In addition, blocking of actin polymerization significantly reduced GAS internalization into keratinocytes. Altogether, these results provide a first model of plasminogen-mediated GAS invasion into keratinocytes. Furthermore, we demonstrate that plasminogen binding protects the bacteria against macrophage killing.

  16. Activation of TLR3 in keratinocytes increases expression of genes involved in formation of the epidermis, lipid accumulation and epidermal organelles

    PubMed Central

    Borkowski, Andrew W.; Park, Kyungho; Uchida, Yoshikazu; Gallo, Richard L.

    2013-01-01

    Injury to the skin, and the subsequent release of non-coding double-stranded RNA from necrotic keratinocytes, has been identified as an endogenous activator of Toll-like receptor 3 (TLR3). Since changes in keratinocyte growth and differentiation follow injury, we hypothesized that TLR3 might trigger some elements of the barrier repair program in keratinocytes. Double-stranded RNA was observed to induce TLR3-dependent increases in human keratinocyte mRNA abundance for ABCA12 (ATP-binding cassette, sub-family A, member 12), glucocerebrosidase, acid sphingomyelinase, and transglutaminase 1. Additionally, treatment with double-stranded RNA resulted in increases in sphingomyelin and morphologic changes including increased epidermal lipid staining by oil-red O and TLR3-dependent increases in lamellar bodies and keratohyalin granules. These observations show that double-stranded RNA can stimulate some events in keratinocytes that are important for skin barrier repair and maintenance. PMID:23353987

  17. Th17 cell-mediated immune responses promote mast cell proliferation by triggering stem cell factor in keratinocytes.

    PubMed

    Cho, Kyung-Ah; Park, Minhwa; Kim, Yu-Hee; Woo, So-Youn

    2017-06-10

    Although mast cells are traditionally thought to function as effector cells in allergic responses, they have increasingly been recognized as important regulators of various immune responses. Mast cells mature locally; thus, tissue-specific influences are important for promoting mast cell accumulation and survival in the skin and the gastrointestinal tract. In this study, we determined the effects of keratinocytes on mast cell accumulation during Th17-mediated skin inflammation. We observed increases in dermal mast cells in imiquimod-induced psoriatic dermatitis in mice accompanied by the expression of epidermal stem cell factor (SCF), a critical mast cell growth factor. Similar to mouse epidermal keratinocytes, SCF was highly expressed in the human HaCaT keratinocyte cell line following stimulation with IL-17. Further, keratinocytes promoted mast cell proliferation following stimulation with IL-17 in vitro. However, the effects of keratinocytes on mast cells were significantly diminished in the presence of anti-CD117 (stem cell factor receptor) blocking antibodies. Taken together, our results revealed that the Th17-mediated inflammatory environment promotes mast cell accumulation through keratinocyte-derived SCF. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The Herbal Bitter Drug Gentiana lutea Modulates Lipid Synthesis in Human Keratinocytes In Vitro and In Vivo

    PubMed Central

    Haarhaus, Birgit; Seiwerth, Jasmin; Cawelius, Anja; Schwabe, Kay; Quirin, Karl-Werner; Schempp, Christoph M.

    2017-01-01

    Gentiana lutea is a herbal bitter drug that is used to enhance gastrointestinal motility and secretion. Recently we have shown that amarogentin, a characteristic bitter compound of Gentiana lutea extract (GE), binds to the bitter taste receptors TAS2R1 and TAS2R38 in human keratinocytes, and stimulates the synthesis of epidermal barrier proteins. Here, we wondered if GE also modulates lipid synthesis in human keratinocytes. To address this issue, human primary keratinocytes were incubated for 6 days with GE. Nile Red labeling revealed that GE significantly increased lipid synthesis in keratinocytes. Similarly, gas chromatography with flame ionization detector indicated that GE increases the amount of triglycerides in keratinocytes. GE induced the expression of epidermal ceramide synthase 3, but not sphingomyelinase. Lipid synthesis, as well as ceramide synthase 3 expression, could be specifically blocked by inhibitors of the p38 MAPK and PPARγ signaling pathway. To assess if GE also modulates lipid synthesis in vivo, we performed a proof of concept half side comparison on the volar forearms of 33 volunteers. In comparison to placebo, GE significantly increased the lipid content of the treated skin areas, as measured with a sebumeter. Thus, GE enhances lipid synthesis in human keratinocytes that is essential for building an intact epidermal barrier. Therefore, GE might be used to improve skin disorders with an impaired epidermal barrier, e.g., very dry skin and atopic eczema. PMID:28829355

  19. Epidermal expression of the truncated prelamin A causing Hutchinson-Gilford progeria syndrome: effects on keratinocytes, hair and skin.

    PubMed

    Wang, Yuexia; Panteleyev, Andrey A; Owens, David M; Djabali, Karima; Stewart, Colin L; Worman, Howard J

    2008-08-01

    Hutchinson-Gilford progeria syndrome (HGPS) is an accelerated aging disorder caused by point mutation in LMNA encoding A-type nuclear lamins. The mutations in LMNA activate a cryptic splice donor site, resulting in expression of a truncated, prenylated prelamin A called progerin. Expression of progerin leads to alterations in nuclear morphology, which may underlie pathology in HGPS. We generated transgenic mice expressing progerin in epidermis under control of a keratin 14 promoter. The mice had severe abnormalities in morphology of skin keratinocyte nuclei, including nuclear envelope lobulation and decreased nuclear circularity not present in transgenic mice expressing wild-type human lamin A. Primary keratinocytes isolated from these mice had a higher frequency of nuclei with abnormal shape compared to those from transgenic mice expressing wild-type human lamin A. Treatment with a farnesyltransferase inhibitor significantly improved nuclear shape abnormalities and induced the formation of intranuclear foci in the primary keratinocytes expressing progerin. Similarly, spontaneous immortalization of progerin-expressing cultured keratinocytes selected for cells with normal nuclear morphology. Despite morphological alterations in keratinocyte nuclei, mice expressing progerin in epidermis had normal hair grown and wound healing. Hair and skin thickness were normal even after crossing to Lmna null mice to reduce or eliminate expression of normal A-type lamins. Although progerin induces significant alterations in keratinocyte nuclear morphology that are reversed by inhibition of farnesyltransferasae, epidermal expression does not lead to alopecia or other skin abnormalities typically seen in human subjects with HGPS.

  20. The Herbal Bitter Drug Gentiana lutea Modulates Lipid Synthesis in Human Keratinocytes In Vitro and In Vivo.

    PubMed

    Wölfle, Ute; Haarhaus, Birgit; Seiwerth, Jasmin; Cawelius, Anja; Schwabe, Kay; Quirin, Karl-Werner; Schempp, Christoph M

    2017-08-22

    Gentiana lutea is a herbal bitter drug that is used to enhance gastrointestinal motility and secretion. Recently we have shown that amarogentin, a characteristic bitter compound of Gentiana lutea extract (GE), binds to the bitter taste receptors TAS2R1 and TAS2R38 in human keratinocytes, and stimulates the synthesis of epidermal barrier proteins. Here, we wondered if GE also modulates lipid synthesis in human keratinocytes. To address this issue, human primary keratinocytes were incubated for 6 days with GE. Nile Red labeling revealed that GE significantly increased lipid synthesis in keratinocytes. Similarly, gas chromatography with flame ionization detector indicated that GE increases the amount of triglycerides in keratinocytes. GE induced the expression of epidermal ceramide synthase 3, but not sphingomyelinase. Lipid synthesis, as well as ceramide synthase 3 expression, could be specifically blocked by inhibitors of the p38 MAPK and PPARγ signaling pathway. To assess if GE also modulates lipid synthesis in vivo, we performed a proof of concept half side comparison on the volar forearms of 33 volunteers. In comparison to placebo, GE significantly increased the lipid content of the treated skin areas, as measured with a sebumeter. Thus, GE enhances lipid synthesis in human keratinocytes that is essential for building an intact epidermal barrier. Therefore, GE might be used to improve skin disorders with an impaired epidermal barrier, e.g., very dry skin and atopic eczema.

  1. The PSORS1 locus gene CCHCR1 affects keratinocyte proliferation in transgenic mice.

    PubMed

    Tiala, Inkeri; Wakkinen, Janica; Suomela, Sari; Puolakkainen, Pauli; Tammi, Raija; Forsberg, Sofi; Rollman, Ola; Kainu, Kati; Rozell, Björn; Kere, Juha; Saarialho-Kere, Ulpu; Elomaa, Outi

    2008-04-01

    The CCHCR1 gene (Coiled-Coil alpha-Helical Rod protein 1) within the major psoriasis susceptibility locus PSORS1 is a plausible candidate gene for the risk effect. We have previously generated transgenic mice overexpressing either the psoriasis-associated risk allele CCHCR1*WWCC or the normal allele of CCHCR1. All transgenic CCHCR1 mice appeared phenotypically normal, but exhibited altered expression of genes relevant to the pathogenesis of psoriasis, including upregulation of hyperproliferation markers keratins 6, 16 and 17. Here, we challenged the skin of CCHCR1 transgenic mice with wounding or 12-O-tetradecanoyl-13-acetate (TPA), treatments able to induce epidermal hyperplasia and proliferation that both are hallmarks of psoriasis. These experiments revealed that CCHCR1 regulates keratinocyte proliferation. Early wound healing on days 1 and 4 was delayed, and TPA-induced epidermal hyperproliferation was less pronounced in mice with the CCHCR1*WWCC risk allele than in mice with the normal allele or in wild-type animals. Finally, we demonstrated that overexpression of CCHCR1 affects basal keratinocyte proliferation in mice; CCHCR1*WWCC mice had less proliferating keratinocytes than the non-risk allele mice. Similarly, keratinocytes isolated from risk allele mice proliferated more slowly in culture than wild-type cells when measured by BrdU labeling and ELISA. Our data show that CCHCR1 may function as a negative regulator of keratinocyte proliferation. Thus, aberrant function of CCHCR1 may lead to abnormal keratinocyte proliferation which is a key feature of psoriatic epidermis.

  2. Methicillin-resistant Staphylococcus aureus adaptation to human keratinocytes.

    PubMed

    Soong, Grace; Paulino, Franklin; Wachtel, Sarah; Parker, Dane; Wickersham, Matthew; Zhang, Dongni; Brown, Armand; Lauren, Christine; Dowd, Margaret; West, Emily; Horst, Basil; Planet, Paul; Prince, Alice

    2015-04-21

    Skin is the most common site of Staphylococcus aureus infection. While most of these infections are self-limited, recurrent infections are common. Keratinocytes and recruited immune cells participate in skin defense against infection. We postulated that S. aureus is able to adapt to the milieu within human keratinocytes to avoid keratinocyte-mediated clearance. From a collection of S. aureus isolated from chronically infected patients with atopic dermatitis, we noted 22% had an agr mutant-like phenotype. Using several models of human skin infection, we demonstrate that toxin-deficient, agr mutants of methicillin-resistant S. aureus (MRSA) USA300 are able to persist within keratinocytes by stimulating autophagy and evading caspase-1 and inflammasome activation. MRSA infection induced keratinocyte autophagy, as evidenced by galectin-8 and LC3 accumulation. Autophagy promoted the degradation of inflammasome components and facilitated staphylococcal survival. The recovery of more than 58% agr or RNAIII mutants (P < 0.0001) of an inoculum of wild-type (WT) MRSA from within wortmannin-treated keratinocytes compared to control keratinocytes reflected the survival advantage for mutants no longer expressing agr-dependent toxins. Our results illustrate the dynamic interplay between S. aureus and keratinocytes that can result in the selection of mutants that have adapted specifically to evade keratinocyte-mediated clearance mechanisms. Human skin is a major site of staphylococcal infection, and keratinocytes actively participate in eradication of these pathogens. We demonstrate that methicillin-resistant Staphylococcus aureus (MRSA) is ingested by keratinocytes and activates caspase-1-mediated clearance through pyroptosis. Toxin-deficient MRSA mutants are selected within keratinocytes that fail to induce caspase-1 activity and keratinocyte-mediated clearance. These intracellular staphylococci induce autophagy that enhances their intracellular survival by diminishing

  3. Keratinocyte detachment-differentiation connection revisited, or anoikis-pityriasi nexus redux.

    PubMed

    Banno, Tomohiro; Blumenberg, Miroslav

    2014-01-01

    Epidermis, a continuously self-renewing and differentiating organ, produces a protective stratum corneum that shields us from external chemical, physical and microbial threats. Epidermal differentiation is a multi-step process regulated by influences, some unknown, others insufficiently explored. Detachment of keratinocytes from the basement membrane is one such pro-differentiation stimulus. Here, we define the transcriptional changes during differentiation, especially those caused by detachment from the substratum. Using comprehensive transcriptional profiling, we revisited the effects of detachment as a differentiation signal to keratinocytes. We identified the genes regulated by detachment, the corresponding ontological categories and, using metaanalysis, compared the genes and categories to those regulated by other pro-differentiating stimuli. We identified 762 genes overexpressed in suspended keratinocyte, including known and novel differentiation markers, and 1427 in attached cells, including basal layer markers. Detachment induced epidermis development, cornification and desmosomal genes, but also innate immunity, proliferation inhibitors, transcription regulators and MAPKs; conversely the attached cells overexpressed cell cycle, anchoring, motility, splicing and mitochondrial genes, and both positive and negative regulators of apoptosis. Metaanalysis identified which detachment-regulated categories overlap with those induced by suprabasal location in vivo, by reaching confluency in vitro, and by inhibition of JUN kinases. Attached and in vivo basal cells shared overexpression of mitochondrial components. Interestingly, melanosome trafficking components were also overexpressed in the attached and in vivo basal keratinocytes. These results suggest that specific pro-differentiation signals induce specific features of the keratinization process, which are in vivo orchestrated into harmonious epidermal homeostasis.

  4. Keratinocyte Detachment-Differentiation Connection Revisited, or Anoikis-Pityriasi Nexus Redux

    PubMed Central

    Banno, Tomohiro; Blumenberg, Miroslav

    2014-01-01

    Epidermis, a continuously self-renewing and differentiating organ, produces a protective stratum corneum that shields us from external chemical, physical and microbial threats. Epidermal differentiation is a multi-step process regulated by influences, some unknown, others insufficiently explored. Detachment of keratinocytes from the basement membrane is one such pro-differentiation stimulus. Here, we define the transcriptional changes during differentiation, especially those caused by detachment from the substratum. Using comprehensive transcriptional profiling, we revisited the effects of detachment as a differentiation signal to keratinocytes. We identified the genes regulated by detachment, the corresponding ontological categories and, using metaanalysis, compared the genes and categories to those regulated by other pro-differentiating stimuli. We identified 762 genes overexpressed in suspended keratinocyte, including known and novel differentiation markers, and 1427 in attached cells, including basal layer markers. Detachment induced epidermis development, cornification and desmosomal genes, but also innate immunity, proliferation inhibitors, transcription regulators and MAPKs; conversely the attached cells overexpressed cell cycle, anchoring, motility, splicing and mitochondrial genes, and both positive and negative regulators of apoptosis. Metaanalysis identified which detachment-regulated categories overlap with those induced by suprabasal location in vivo, by reaching confluency in vitro, and by inhibition of JUN kinases. Attached and in vivo basal cells shared overexpression of mitochondrial components. Interestingly, melanosome trafficking components were also overexpressed in the attached and in vivo basal keratinocytes. These results suggest that specific pro-differentiation signals induce specific features of the keratinization process, which are in vivo orchestrated into harmonious epidermal homeostasis. PMID:24960166

  5. Sphingosine 1-phosphate protects primary human keratinocytes from apoptosis via nitric oxide formation through the receptor subtype S1P₃.

    PubMed

    Schmitz, Elisabeth I; Potteck, Henrik; Schüppel, Melanie; Manggau, Marianti; Wahydin, Elly; Kleuser, Burkhard

    2012-12-01

    Although the lipid mediator sphingosine 1-phosphate (S1P) has been identified to induce cell growth arrest of human keratinocytes, the sphingolipid effectively protects these epidermal cells from apoptosis. The molecular mechanism of the anti-apoptotic action induced by S1P is less characterized. Apart from S1P, endogenously produced nitric oxide (NO•) has been recognized as a potent modulator of apoptosis in keratinocytes. Therefore, it was of great interest to elucidate whether S1P protects human keratinocytes via a NO•-dependent signalling pathway. Indeed, S1P induced an activation of endothelial nitric oxide synthase (eNOS) in human keratinocytes leading to an enhanced formation of NO•. Most interestingly, the cell protective effect of S1P was almost completely abolished in the presence of the eNOS inhibitor L-NAME as well as in eNOS-deficient keratinocytes indicating that the sphingolipid metabolite S1P protects human keratinocytes from apoptosis via eNOS activation and subsequent production of protective amounts of NO•. It is well established that most of the known actions of S1P are mediated by a family of five specific G protein-coupled receptors. Therefore, the involvement of S1P-receptor subtypes in S1P-mediated eNOS activation has been examined. Indeed, this study clearly shows that the S1P(3) is the exclusive receptor subtype in human keratinocytes which mediates eNOS activation and NO• formation in response to S1P. In congruence, when the S1P(3) receptor subtype is abrogated, S1P almost completely lost its ability to protect human keratinocytes from apoptosis.

  6. MicroRNA-191 triggers keratinocytes senescence by SATB1 and CDK6 downregulation

    SciTech Connect

    Lena, A.M.; Mancini, M.; Rivetti di Val Cervo, P. [University of 'Tor Vergata', Department of Experimental Medicine and Biochemical Sciences, Via Montpellier 1, Rome 00133; Istituto Dermopatico dell'Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico , Laboratory of Biochemistry c Saintigny, G.; Mahe, C. [CHANEL Parfums Beaute, 135 av. Charles de Gaulle, F 92521, Neuilly Melino, G. [University of 'Tor Vergata', Department of Experimental Medicine and Biochemical Sciences, Via Montpellier 1, Rome 00133; Istituto Dermopatico dell'Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico , Laboratory of Biochemistry c Association Cell Death and Differentiation c and others

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer miR-191 expression is upregulated in senescencent human epidermal keratinocytes. Black-Right-Pointing-Pointer miR-191 overexpression is sufficient per se to induce senescence in keratinocytes. Black-Right-Pointing-Pointer SATB1 and CDK6 are downregulated in senescence and are direct miR-191 targets. Black-Right-Pointing-Pointer SATB1 and CDK6 silencing by siRNA triggers senescence in HEKn cells. -- Abstract: Keratinocyte replicative senescence has an important role in time-dependent changes of the epidermis, a tissue with high turnover. Senescence encompasses growth arrest during which cells remain metabolically active but acquire a typical enlarged, vacuolar and flattened morphology. It is also accompanied by the expression of endogenous senescence-associated-{beta}-galactosidase and specific gene expression profiles. MicroRNAs levels have been shown to be modulated during keratinocytes senescence, playing key roles in inhibiting proliferation and in the acquisition of senescent markers. Here, we identify miR-191 as an anti-proliferative and replicative senescence-associated miRNA in primary human keratinocytes. Its overexpression is sufficient per se to induce senescence, as evaluated by induction of several senescence-associated markers. We show that SATB1 and CDK6 3 Prime UTRs are two miR-191 direct targets involved in this pathway. Cdk6 and Satb1 protein levels decrease during keratinocytes replicative senescence and their silencing by siRNA is able to induce a G1 block in cell cycle, accompanied by an increase in senescence-associated markers.

  7. MiR-217 is down-regulated in psoriasis and promotes keratinocyte differentiation via targeting GRHL2.

    PubMed

    Zhu, Haigang; Hou, Liyue; Liu, Jingjing; Li, Zhiming

    2016-02-26

    MiR-217 is a well-known tumor suppressor, and its down-regulation has been shown in a wide range of solid and leukaemic cancers. However, the biological role of miR-217 in psoriasis pathogenesis, especially in keratinocyte hyperproliferation and differentiation, is not clearly understood. In this study, we found the expression of miR-217 was markedly down-regulated in psoriasis keratinocytes of psoriatic patients. In addition, overexpression of miR-217 inhibited the proliferation and promoted the differentiation of primary human keratinocytes. On the contrary, inhibition of endogenous miR-217 increased cell proliferation and delayed differentiation. Furthermore, Grainyhead-like 2 (GRHL2) was identified as a direct target of miR-217 by luciferase reporter assay. The expression of miR-217 and GRHL2 was inversely correlated in both transfected keratinocytes and in psoriasis lesional skin. Moreover, knocking down GRHL2 expression by siRNA enhanced keratinocyte differentiation. Taken together, our results demonstrate a role for miR-217 in the regulation of keratinocyte differentiation, partially through the regulation of GRHL2. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. A synthetic sandalwood odorant induces wound-healing processes in human keratinocytes via the olfactory receptor OR2AT4.

    PubMed

    Busse, Daniela; Kudella, Philipp; Grüning, Nana-Maria; Gisselmann, Günter; Ständer, Sonja; Luger, Thomas; Jacobsen, Frank; Steinsträßer, Lars; Paus, Ralf; Gkogkolou, Paraskevi; Böhm, Markus; Hatt, Hanns; Benecke, Heike

    2014-11-01

    As the outermost barrier of the body, the skin is exposed to multiple environmental factors, including temperature, humidity, mechanical stress, and chemical stimuli such as odorants that are often used in cosmetic articles. Keratinocytes, the major cell type of the epidermal layer, express a variety of different sensory receptors that enable them to react to various environmental stimuli and process information in the skin. Here we report the identification of a novel type of chemoreceptors in human keratinocytes, the olfactory receptors (ORs). We cloned and functionally expressed the cutaneous OR, OR2AT4, and identified Sandalore, a synthetic sandalwood odorant, as an agonist of this receptor. Sandalore induces strong Ca(2+) signals in cultured human keratinocytes, which are mediated by OR2AT4, as demonstrated by receptor knockdown experiments using RNA interference. The activation of OR2AT4 induces a cAMP-dependent pathway and phosphorylation of extracellular signal-regulated kinases (Erk1/2) and p38 mitogen-activated protein kinases (p38 MAPK). Moreover, the long-term stimulation of keratinocytes with Sandalore positively affected cell proliferation and migration, and regeneration of keratinocyte monolayers in an in vitro wound scratch assay. These findings combined with our studies on human skin organ cultures strongly indicate that the OR 2AT4 is involved in human keratinocyte re-epithelialization during wound-healing processes.

  9. Lovastatin protects keratinocytes from DNA damage-related pro-apoptotic stress responses stimulated by anticancer therapeutics.

    PubMed

    Ziegler, Verena; Albers, Anne; Fritz, Gerhard

    2016-06-01

    Oral mucositis (OM) is a relevant adverse effect of anticancer therapy involving ionizing radiation (IR) and doxorubicin (Doxo). Because DNA damage of keratinocytes is causative for the pathogenesis of OM, we aim to identify pharmacological measures for geno- and cytoprotection of keratinocytes. We investigated the influence of the lipid-lowering drug lovastatin on cell death, proliferation and DNA damage response (DDR) mechanisms of human keratinocytes following treatment with IR and Doxo. Lovastatin protected keratinocytes from the cytotoxic and genotoxic effects of IR and Doxo as shown by a diminished induction of apoptosis as well as a reduced formation and slightly improved repair of DNA damage following Doxo and IR treatment, respectively. Lovastatin selectively blocked the activation of Chk1 and ATR kinases following treatment with IR, Doxo and the ribonucleotide reductase inhibitor hydroxyurea, indicating that the statin antagonizes ATR/Chk1-regulated replicative stress responses. Part of the cytoprotective activity of lovastatin seems to rest on a delayed entry of lovastatin treated cells into S-phase. Yet, because the statin also protected non-proliferating keratinocytes from IR- and Doxo-induced cytotoxicity, cell cycle independent protective mechanisms are involved, too. Lovastatin attenuates pro-toxic DNA damage-related responses of keratinocytes stimulated by OM-inducing anticancer therapeutics. The data encourage forthcoming in vivo and clinical studies addressing the usefulness of statins in the prevention of OM. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Reprogramming Postnatal Human Epidermal Keratinocytes Toward Functional Neural Crest Fates.

    PubMed

    Bajpai, Vivek K; Kerosuo, Laura; Tseropoulos, Georgios; Cummings, Kirstie A; Wang, Xiaoyan; Lei, Pedro; Liu, Biao; Liu, Song; Popescu, Gabriela K; Bronner, Marianne E; Andreadis, Stelios T

    2017-05-01

    During development, neural crest (NC) cells are induced by signaling events at the neural plate border of all vertebrate embryos. Initially arising within the central nervous system, NC cells subsequently undergo an epithelial to mesenchymal transition to migrate into the periphery, where they differentiate into diverse cell types. Here we provide evidence that postnatal human epidermal keratinocytes (KC), in response to fibroblast growth factor 2 and insulin like growth factor 1 signals, can be reprogrammed toward a NC fate. Genome-wide transcriptome analyses show that keratinocyte-derived NC cells are similar to those derived from human embryonic stem cells. Moreover, they give rise in vitro and in vivo to NC derivatives such as peripheral neurons, melanocytes, Schwann cells and mesenchymal cells (osteocytes, chondrocytes, adipocytes, and smooth muscle cells). By demonstrating that human keratin-14+ KC can form NC cells, even from clones of single cells, our results have important implications in stem cell biology and regenerative medicine. Stem Cells 2017;35:1402-1415. © 2017 AlphaMed Press.

  11. Differential Response of Human Adipose Tissue-Derived Mesenchymal Stem Cells, Dermal Fibroblasts, and Keratinocytes to Burn Wound Exudates: Potential Role of Skin-Specific Chemokine CCL27

    PubMed Central

    van den Broek, Lenie J.; Kroeze, Kim L.; Waaijman, Taco; Breetveld, Melanie; Sampat-Sardjoepersad, Shakun C.; Niessen, Frank B.; Middelkoop, Esther; Scheper, Rik J.

    2014-01-01

    Many cell-based regenerative medicine strategies toward tissue-engineered constructs are currently being explored. Cell–cell interactions and interactions with different biomaterials are extensively investigated, whereas very few studies address how cultured cells will interact with soluble wound-healing mediators that are present within the wound bed after transplantation. The aim of this study was to determine how adipose tissue-derived mesenchymal stem cells (ASC), dermal fibroblasts, and keratinocytes will react when they come in contact with the deep cutaneous burn wound bed. Burn wound exudates isolated from deep burn wounds were found to contain many cytokines, including chemokines and growth factors related to inflammation and wound healing. Seventeen mediators were identified by ELISA (concentration range 0.0006–9 ng/mg total protein), including the skin-specific chemokine CCL27. Burn wound exudates activated both ASC and dermal fibroblasts, but not keratinocytes, to increase secretion of CXCL1, CXCL8, CCL2, and CCL20. Notably, ASC but not fibroblasts or keratinocytes showed significant increased secretion of vascular endothelial growth factor (5-fold) and interleukin-6 (253-fold), although when the cells were incorporated in bi-layered skin substitute (SS) these differences were less pronounced. A similar discrepancy between ASC and dermal fibroblast mono-cultures was observed when recombinant human-CCL27 was used instead of burn wound exudates. Although CCL27 did not stimulate the secretion of any of the wound-healing mediators by keratinocytes, these cells, in contrast to ASC or dermal fibroblasts, showed increased proliferation and migration. Taken together, these results indicate that on transplantation, keratinocytes are primarily activated to promote wound closure. In contrast, dermal fibroblasts and, in particular, ASC respond vigorously to factors present in the wound bed, leading to increased secretion of angiogenesis/granulation tissue

  12. Differential response of human adipose tissue-derived mesenchymal stem cells, dermal fibroblasts, and keratinocytes to burn wound exudates: potential role of skin-specific chemokine CCL27.

    PubMed

    van den Broek, Lenie J; Kroeze, Kim L; Waaijman, Taco; Breetveld, Melanie; Sampat-Sardjoepersad, Shakun C; Niessen, Frank B; Middelkoop, Esther; Scheper, Rik J; Gibbs, Susan

    2014-01-01

    Many cell-based regenerative medicine strategies toward tissue-engineered constructs are currently being explored. Cell-cell interactions and interactions with different biomaterials are extensively investigated, whereas very few studies address how cultured cells will interact with soluble wound-healing mediators that are present within the wound bed after transplantation. The aim of this study was to determine how adipose tissue-derived mesenchymal stem cells (ASC), dermal fibroblasts, and keratinocytes will react when they come in contact with the deep cutaneous burn wound bed. Burn wound exudates isolated from deep burn wounds were found to contain many cytokines, including chemokines and growth factors related to inflammation and wound healing. Seventeen mediators were identified by ELISA (concentration range 0.0006-9 ng/mg total protein), including the skin-specific chemokine CCL27. Burn wound exudates activated both ASC and dermal fibroblasts, but not keratinocytes, to increase secretion of CXCL1, CXCL8, CCL2, and CCL20. Notably, ASC but not fibroblasts or keratinocytes showed significant increased secretion of vascular endothelial growth factor (5-fold) and interleukin-6 (253-fold), although when the cells were incorporated in bi-layered skin substitute (SS) these differences were less pronounced. A similar discrepancy between ASC and dermal fibroblast mono-cultures was observed when recombinant human-CCL27 was used instead of burn wound exudates. Although CCL27 did not stimulate the secretion of any of the wound-healing mediators by keratinocytes, these cells, in contrast to ASC or dermal fibroblasts, showed increased proliferation and migration. Taken together, these results indicate that on transplantation, keratinocytes are primarily activated to promote wound closure. In contrast, dermal fibroblasts and, in particular, ASC respond vigorously to factors present in the wound bed, leading to increased secretion of angiogenesis/granulation tissue formation

  13. Keratinocyte antiviral response to Poly(dA:dT) stimulation and papillomavirus infection in a canine model of X-linked severe combined immunodeficiency.

    PubMed

    Luff, Jennifer A; Yuan, Hang; Kennedy, Douglas; Schlegel, Richard; Felsburg, Peter; Moore, Peter F

    2014-01-01

    X-linked severe combined immunodeficiency (XSCID) is caused by a genetic mutation within the common gamma chain (γc), an essential component of the cytokine receptors for interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15, and IL-21. XSCID patients are most commonly treated with bone marrow transplants (BMT) to restore systemic immune function. However, BMT-XSCID humans and dogs remain at an increased risk for development of cutaneous papillomavirus (PV) infections and their associated neoplasms, most typically cutaneous papillomas. Since basal keratinocytes are the target cell for the initial PV infection, we wanted to determine if canine XSCID keratinocytes have a diminished antiviral cytokine response to poly(dA:dT) and canine papillomavirus-2 (CPV-2) upon initial infection. We performed quantitative RT-PCR for antiviral cytokines and downstream interferon stimulated genes (ISG) on poly(dA:dT) stimulated and CPV-2 infected monolayer keratinocyte cultures derived from XSCID and normal control dogs. We found that XSCID keratinocytes responded similarly to poly(dA:dT) as normal keratinocytes by upregulating antiviral cytokines and ISGs. CPV-2 infection of both XSCID and normal keratinocytes did not result in upregulation of antiviral cytokines or ISGs at 2, 4, or 6 days post infection. These data suggest that the antiviral response to initial PV infection of basal keratinocytes is similar between XSCID and normal patients, and is not the likely source for the remaining immunodeficiency in XSCID patients.

  14. Keratinocyte Antiviral Response to Poly(dA:dT) Stimulation and Papillomavirus Infection in a Canine Model of X-Linked Severe Combined Immunodeficiency

    PubMed Central

    Luff, Jennifer A.; Yuan, Hang; Kennedy, Douglas; Schlegel, Richard; Felsburg, Peter; Moore, Peter F.

    2014-01-01

    X-linked severe combined immunodeficiency (XSCID) is caused by a genetic mutation within the common gamma chain (γc), an essential component of the cytokine receptors for interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15, and IL-21. XSCID patients are most commonly treated with bone marrow transplants (BMT) to restore systemic immune function. However, BMT-XSCID humans and dogs remain at an increased risk for development of cutaneous papillomavirus (PV) infections and their associated neoplasms, most typically cutaneous papillomas. Since basal keratinocytes are the target cell for the initial PV infection, we wanted to determine if canine XSCID keratinocytes have a diminished antiviral cytokine response to poly(dA:dT) and canine papillomavirus-2 (CPV-2) upon initial infection. We performed quantitative RT-PCR for antiviral cytokines and downstream interferon stimulated genes (ISG) on poly(dA:dT) stimulated and CPV-2 infected monolayer keratinocyte cultures derived from XSCID and normal control dogs. We found that XSCID keratinocytes responded similarly to poly(dA:dT) as normal keratinocytes by upregulating antiviral cytokines and ISGs. CPV-2 infection of both XSCID and normal keratinocytes did not result in upregulation of antiviral cytokines or ISGs at 2, 4, or 6 days post infection. These data suggest that the antiviral response to initial PV infection of basal keratinocytes is similar between XSCID and normal patients, and is not the likely source for the remaining immunodeficiency in XSCID patients. PMID:25025687

  15. Keratinocyte dysfunction in vitiligo epidermis: cytokine microenvironment and correlation to keratinocyte apoptosis.

    PubMed

    Moretti, Silvia; Fabbri, Paolo; Baroni, Gianna; Berti, Samantha; Bani, Daniele; Berti, Emilio; Nassini, Romina; Lotti, Torello; Massi, Daniela

    2009-07-01

    Vitiligo is a skin disorder characterized by loss of functional melanocytes. Keratinocytes contribute to melanocyte homeostasis, and keratinocyte alteration may play a role in melanocyte dysfunction in vitiligo. In particular, the release of melanogenic mediators and the level of functioning keratinocytes may affect melanocyte dysfunction in vitiligo epidermis. Keratinocyte-derived mediators involved in pigmentation, analysed by in situ hybridization, and epidermal apoptosis, detected by TUNEL assay and electron microscopy, were evaluated in lesional and perilesional skin biopsies from 15 patients with active vitiligo and in 5 control subjects. Among the melanogenic mediators, stem cell factor (SCF) and endothelin-1 (ET-1) mRNA were significantly reduced in lesional as compared to perilesional epidermis, whereas no difference was observed in mRNA of basic fibroblastic growth factor (bFGF) and granulocyte-monocyte colony stimulating factor (GM-CSF). The expression of mRNA for tumor necrosis factor (TNF)-alpha and interleukin-6 (IL-6), two pro-inflammatory cytokines with an inhibitory effect on pigmentation, was increased in the epidermis from vitiligo biopsies, whereas their expression was practically undetectable in the skin of control subjects. Apoptotic keratinocytes were more abundant in lesional vs. perilesional skin of vitiligo patients and were absent in the epidermis of control subjects. Changes in expression of keratinocyte-derived mediators observed in the present study are consistent with their differential functions in melanocyte regulation. In particular, increased TNF-alpha could contribute to keratinocyte apoptosis, which results in reduced release of melanogenic cytokines and ultimately in melanocyte disappearance.

  16. Enhancement of UVB-induced apoptosis by apigenin in human keratinocytes and organotypic keratinocyte cultures.

    PubMed

    Abu-Yousif, Adnan O; Smith, Kimberly A; Getsios, Spiro; Green, Kathleen J; Van Dross, Rukiyah T; Pelling, Jill C

    2008-04-15

    Topical application of the bioflavonoid 4',5,7-trihydroxyflavone (apigenin) to mouse skin effectively reduces the incidence and size of skin tumors caused by UVB exposure. The ability to act as a chemopreventive compound indicates that apigenin treatment alters the molecular events initiated by UVB exposure; however, the effects of apigenin treatment on UVB-irradiated keratinocytes are not fully understood. In the present study, we have used three models of human keratinocytes to study the effect of apigenin treatment on UVB-induced apoptosis: HaCaT human keratinocyte cells, primary keratinocyte cultures isolated from human neonatal foreskin, and human organotypic keratinocyte cultures. Each keratinocyte model was exposed to a moderate dose of UVB (300-1,000 J/m(2)), then treated with apigenin (0-50 micromol/L), and harvested to assess apoptosis by Western blot analysis for poly(ADP)ribose polymerase cleavage, annexin-V staining by flow cytometry, and/or the presence of sunburn cells. Apigenin treatment enhanced UVB-induced apoptosis >2-fold in each of the models tested. When keratinocytes were exposed to UVB, apigenin treatment stimulated changes in Bax localization and increased the release of cytochrome c from the mitochondria compared with UVB exposure alone. Overexpression of the antiapoptotic protein Bcl-2 and expression of a dominant-negative form of Fas-associated death domain led to a reduction in the ability of apigenin to enhance UVB-induced apoptosis. These results suggest that enhancement of UVB-induced apoptosis by apigenin treatment involves both the intrinsic and extrinsic apoptotic pathways. The ability of apigenin to enhance UVB-induced apoptosis may explain, in part, the photochemopreventive effects of apigenin.

  17. Nicaraguan and US nursing collaborative evaluation study: Identifying similarities and differences between US and Nicaraguan curricula and teaching modalities using the community engagement model.

    PubMed

    Lake, Donna; Engelke, Martha K; Kosko, Debra A; Roberson, Donna W; Jaime, Joba Fany; López, Feliciana Rojas; Rivas, Fidelia Mercedes Poveda; Salazar, Yolanda Matute; Salmeron, Juana Julia

    2017-04-01

    Curricula evaluation is an essential phase of curriculum development. Study describes the implementation of a formative evaluation used by faculty members between Universidad Nacional Autonóma de Nicaragua (UNAN-Leon) Escuela de Enfermeriá, Nicaragua and East Carolina University College of Nursing (ECU CON) in North Carolina, US. Program evaluation study to conduct an assessment, comparison of a medical-surgical adult curriculum and teaching modalities. Also, explore the Community Engagement (CE) Model to build a Central American-US faculty partnership. Methodological evaluation study utilizing a newly developed International Nursing Education Curriculum Evaluation Tool related to adult medical and surgical nursing standards. Also, the CE Model was tested as a facilitation tool in building partnerships between nurse educators. Nicaragua and US nursing faculty teams constructed the curriculum evaluation by utilizing the International Nursing Education Curriculum Evaluation Tool (INECET) by reviewing 57 elements covering 6 Domains related to adult medical and surgical nursing standards. Developed, explored the utilization of the INECET based on a standard of practice framework. The Community Engagement Model, a fivephase cycle, Inform, Consult, Involve, Collaborate, and Empower was utilized to facilitate the collaborative process. Similarities between the US and Nicaraguan curricula and teaching modalities were reflective based on the 57 elements covering 6 Domain assessment tool. Case studies, lecture, and clinical hospital rotations were utilized as teaching modalities. Both schools lacked sufficient time for clinical practicum time. The differences, included UNAN-Leon had a lack of simulation skill lab, equipment, and space, whereas ECU CON had sufficient resources. The ECU school lacked applied case studies from a rural health medical-surgical adult nursing perspective and less time in rural health clinics. The UNAN-Leon nursing standards generalized based on

  18. ADA3: a gene, identified by resistance to GAL4-VP16, with properties similar to and different from those of ADA2.

    PubMed Central

    Piña, B; Berger, S; Marcus, G A; Silverman, N; Agapite, J; Guarente, L

    1993-01-01

    We describe the isolation of a yeast gene, ADA3, mutations in which prevent the toxicity of GAL4-VP16 in vivo. Toxicity was previously proposed to be due to the trapping of general transcription factors required at RNA polymerase II promoters (S. L. Berger, B. Piña, N. Silverman, G. A. Marcus, J. Agapite, J. L. Regier, S. J. Triezenberg, and L. Guarente, Cell 70:251-265, 1992). trans activation by VP16 as well as the acidic activation domain of GCN4 is reduced in the mutant. Other activation domains, such as those of GAL4 and HAP4, are only slightly affected in the mutant. This spectrum is similar to that observed for mutants with lesions in ADA2, a gene proposed to encode a transcriptional adaptor. The ADA3 gene is not absolutely essential for cell growth, but gene disruption mutants grow slowly and are temperature sensitive. Strains doubly disrupted for ada2 and ada3 grow no more slowly than single mutants, providing further evidence that these genes function in the same pathway. Selection of initiation sites by the general transcriptional machinery in vitro is altered in the ada3 mutant, providing a clue that ADA3 could be a novel general transcription factor involved in the response to acidic activators. Images PMID:8413201

  19. Role of solar conditioning in DNA repair response and survival of human epidermal keratinocytes following UV irradiation

    SciTech Connect

    Liu, S.C.; Meagher, K.; Hanawalt, P.C.

    1985-08-01

    The authors have investigated the cumulative effects of sunlight exposure upon the excision-repair of UV radiation damage to DNA in epidermal keratinocytes from human donors of different ages as well as the possible effect on DNA repair of periodic conditioning of the cultured keratinocytes with sublethal UV radiation exposures. The authors have also compared the growth properties of UV-irradiated keratinocytes derived from habitually sun-exposed and nonexposed areas from the bodies of young and aged donors. DNA repair replication in keratinocytes from habitually sun-exposed facial skin and the less sun-exposed abdominal skin of middle-aged adults was found to be similar, with respect to both the UV dose response and the time course of repair after 20 J/m2, 254 nm. Growth and survival (after exposure up to 50 J/m2, 254 nm) were greater for keratinocytes from protected areas of the upper arm of young donors (under 18 years) than for cells from their own sun-exposed areas. Growth and survival were markedly reduced for all keratinocyte cultures from aged donors, especially those cultures developed from sun-exposed areas. Nevertheless, the DNA repair response to UV radiation was similar in all cases. The evident uncoupling of UV sensitivity from DNA repair capacity remains to be understood. These studies confirm that the cumulative effect of sunlight exposure indeed contributes to some skin aging processes. However, the authors have found no indication that an overall reduction in capacity for excision-repair of UV photoproducts in keratinocyte DNA accompanies senescence in human skin.

  20. Rotation is the primary motion of paired human epidermal keratinocytes.

    PubMed

    Tate, Sota; Imai, Matome; Matsushita, Natsuki; Nishimura, Emi K; Higashiyama, Shigeki; Nanba, Daisuke

    2015-09-01

    Collective motion of keratinocytes is involved in morphogenesis, homeostasis, and wound healing of the epidermis. Yet how the collective motion of keratinocytes emerges from the behavior of individual cells is still largely unknown. The aim of this study was to find the cellular behavior that links single and collective motion of keratinocytes. We investigated the behavior of two-cell colonies of HaCaT keratinocytes by a combination of time-lapse imaging and image processing. The two-cell colonies of HaCaT cells were formed as a contacted pair of keratinocyte clones. Image analysis and cell culture experiments revealed that the rotational speed of two-cell colonies was positively associated with their proliferative capacity. α6 integrin was required for the rotational motion of two-cell keratinocyte colonies. We also confirmed that two-cell colonies of keratinocytes predominantly exhibited the rotational, but not translational, motion, two modes of motion in a contact pair of rotating objects. The rotational motion is the primary motion of two-cell keratinocyte colonies and its speed is positively associated with their proliferative capacity. This study suggests that the assembly of rotating keratinocytes generates the collective motion of proliferative keratinocytes during morphogenesis and wound healing of the epidermis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Keratinocyte growth factor protected cultured human keratinocytes exposed to oxidative stress.

    PubMed

    Gragnani, Alfredo; Rossi, Marina Bertelli; Albuquerque, Janne Cely Medeiros; Brito, Gabriela Soares Silva; Aloise, Antonio Carlos; Ferreira, Lydia Masako

    2010-02-01

    To evaluate effects of oxidative stress and supplementation of keratinocyte growth factor (KGF) on cultivated human keratinocytes. Oxidative stress was produced through addition of hydrogen peroxide (H(2)O(2)) to the culture medium. Cultivated human keratinocytes were divided in 4 groups: Group control (G C), Group KGF (G KGF), Group H(2)O(2) (G H(2)O(2)), Group H(2)O(2) and KGF (G H(2)O(2)-KGF). Each experiment was accomplished with the same lineage cultivated keratinocytes, in triplicate. Cell viability was evaluated by trypan blue exclusion assay. The results showed that the culture medium supplemented with KGF presented a small rate of cell viability when compared to cells only in culture medium (p<0,001). It demonstrated that only the growth factor does not have protector effects for cells in vitro. However, in front of the oxidative stress produced by addition of hydrogen peroxide to the medium, KGF showed a beneficial effect, protecting cells when compared to the group that suffered hydrogen peroxide action but had not been exposed to KGF (p<0,001). KGF determined protection to the primary human keratinocytes exposed to oxidative stress.

  2. Melanocytes and keratinocytes have distinct and shared responses to ultraviolet radiation and arsenic.

    PubMed

    Cooper, K L; Yager, J W; Hudson, L G

    2014-01-30

    The rise of melanoma incidence in the United States is a growing public health concern. A limited number of epidemiology studies suggest an association between arsenic levels and melanoma risk. Arsenic acts as a co-carcinogen with ultraviolet radiation (UVR) for the development of squamous cell carcinoma and proposed mechanisms include generation of oxidative stress by arsenic and UVR and inhibition of UVR-induced DNA repair by arsenic. In this study, we investigate similarities and differences in response to arsenic and UVR in keratinocytes and melanocytes. Normal melanocytes are markedly more resistant to UVR-induced cytotoxicity than normal keratinocytes, but both cell types are equally sensitive to arsenite. Melanocytes were more resistant to arsenite and UVR stimulation of superoxide production than keratinocytes, but the concentration of arsenite necessary to inhibit the activity of the DNA repair protein poly(ADP-ribose)polymerase and enhance retention of UVR-induced DNA damage was essentially equivalent in both cell types. These findings suggest that although melanocytes are less sensitive than keratinocytes to initial UVR-mediated DNA damage, both of these important target cells in the skin share a mechanism related to arsenic inhibition of DNA repair. These findings suggest that concurrent chronic arsenic exposure could promote retention of unrepaired DNA damage in melanocytes and act as a co-carcinogen in melanoma.

  3. PP2A activation by beta2-adrenergic receptor agonists: novel regulatory mechanism of keratinocyte migration.

    PubMed

    Pullar, Christine E; Chen, Jin; Isseroff, R Rivkah

    2003-06-20

    Understanding the mechanisms that regulate cell migration is important for devising novel therapies to control metastasis or enhance wound healing. Previously, we demonstrated that beta2-adrenergic receptor (beta2-AR) activation in keratinocytes inhibited their migration by decreasing the phosphorylation of a critical promigratory signaling component, the extracellular signal-related kinase (ERK). Here we demonstrate that beta2-AR-induced inhibition of migration is mediated by the activation of the serine/threonine phosphatase PP2A. Pretreating human keratinocytes with the PP2A inhibitor, okadaic acid, prevented the beta2-AR-induced inhibition of migration, either as isolated cells or as a confluent sheet of cells repairing an in vitro "wound" and also prevented the beta2-AR-induced reduction in ERK phosphorylation. Similar results were obtained with human corneal epithelial cells. In keratinocytes, immunoprecipitation studies revealed that beta2-AR activation resulted in the rapid association of beta2-AR with PP2A as well as a 37% increase in association of PP2A with ERK2. Finally, beta2-AR activation resulted in a rapid and transient 2-fold increase in PP2A activity. Thus, we provide the first evidence that beta2-AR activation in keratinocytes modulates migration via a novel pathway utilizing PP2A to alter the promigratory signaling cascade. Exploiting this pathway may result in novel therapeutic approaches for control of epithelial cell migration.

  4. Vimentin coordinates fibroblast proliferation and keratinocyte differentiation in wound healing via TGF-β-Slug signaling.

    PubMed

    Cheng, Fang; Shen, Yue; Mohanasundaram, Ponnuswamy; Lindström, Michelle; Ivaska, Johanna; Ny, Tor; Eriksson, John E

    2016-07-26

    Vimentin has been shown to be involved in wound healing, but its functional contribution to this process is poorly understood. Here we describe a previously unrecognized function of vimentin in coordinating fibroblast proliferation and keratinocyte differentiation during wound healing. Loss of vimentin led to a severe deficiency in fibroblast growth, which in turn inhibited the activation of two major initiators of epithelial-mesenchymal transition (EMT), TGF-β1 signaling and the Zinc finger transcriptional repressor protein Slug, in vimentin-deficient (VIM(-/-)) wounds. Correspondingly, VIM(-/-) wounds exhibited loss of EMT-like keratinocyte activation, limited keratinization, and slow reepithelialization. Furthermore, the fibroblast deficiency abolished collagen accumulation in the VIM(-/-) wounds. Vimentin reconstitution in VIM(-/-) fibroblasts restored both their proliferation and TGF-β1 production. Similarly, restoring paracrine TGF-β-Slug-EMT signaling reactivated the transdifferentiation of keratinocytes, reviving their migratory properties, a critical feature for efficient healing. Our results demonstrate that vimentin orchestrates the healing by controlling fibroblast proliferation, TGF-β1-Slug signaling, collagen accumulation, and EMT processing, all of which in turn govern the required keratinocyte activation.

  5. Knockdown of filaggrin in a three-dimensional reconstructed human epidermis impairs keratinocyte differentiation.

    PubMed

    Pendaries, Valérie; Malaisse, Jeremy; Pellerin, Laurence; Le Lamer, Marina; Nachat, Rachida; Kezic, Sanja; Schmitt, Anne-Marie; Paul, Carle; Poumay, Yves; Serre, Guy; Simon, Michel

    2014-12-01

    Atopic dermatitis is a chronic inflammatory skin disorder characterized by defects in the epidermal barrier and keratinocyte differentiation. The expression of filaggrin, a protein thought to have a major role in the function of the epidermis, is downregulated. However, the impact of this deficiency on keratinocytes is not really known. This was investigated using lentivirus-mediated small-hairpin RNA interference in a three-dimensional reconstructed human epidermis (RHE) model, in the absence of other cell types than keratinocytes. Similar to what is known for atopic skin, the experimental filaggrin downregulation resulted in hypogranulosis, a disturbed corneocyte intracellular matrix, reduced amounts of natural moisturizing factor components, increased permeability and UV-B sensitivity of the RHE, and impaired keratinocyte differentiation at the messenger RNA and protein levels. In particular, the amounts of two filaggrin-related proteins and one protease involved in the degradation of filaggrin, bleomycin hydrolase, were lower. In addition, caspase-14 activation was reduced. These results demonstrate the importance of filaggrin for the stratum corneum properties/functions. They indicate that filaggrin downregulation in the epidermis of atopic patients, either acquired or innate, may be directly responsible for some of the disease-related alterations in the epidermal differentiation program and epidermal barrier function.

  6. Differential susceptibility to hydrogen sulfide-induced apoptosis between PHLDA1-overexpressing oral cancer cell lines and oral keratinocytes: role of PHLDA1 as an apoptosis suppressor.

    PubMed

    Murata, Takatoshi; Sato, Tsutomu; Kamoda, Takeshi; Moriyama, Hiromitsu; Kumazawa, Yasuo; Hanada, Nobuhiro

    2014-01-15

    Hydrogen sulfide (H2S) is a novel gasotransmitter that plays multiple biological roles in various body systems. In addition to its endogenous production, H2S is produced by bacteria colonizing digestive organs, including the oral cavity. H2S was previously shown to enhance pro-apoptotic effects in cancer cell lines, although the mechanisms involved remain unclear. To properly assess the anti-cancer effects of H2S, however, investigations of apoptotic effects in normal cells are also necessary. The aims of this study were (1) to compare the susceptibility to H2S-induced apoptosis between the oral cancer cell line Ca9-22 and oral keratinocytes that were derived from healthy gingiva, and (2) to identify candidate genes involved in the induction of apoptosis by H2S. The susceptibility to H2S-induced apoptosis in Ca9-22 cells was significantly higher than that in keratinocytes. H2S exposure in Ca9-22 cells, but not keratinocytes, enhanced the expression of pleckstrin homology-like domain, family A, member 1 (PHLDA1), which was identified through a differential display method. In addition, PHLDA1 expression increased during actinomycin D-induced apoptosis in Ca9-22 cells. Knockdown of PHLDA1 expression by small interfering RNA in Ca9-22 cells led to expression of active caspase 3, thus indicating apoptosis induction. The tongue cancer cell line SCC-25, which expresses PHLDA1 at a high level, showed similar effects. Our data indicate that H2S is an anti-cancer compound that may contribute to the low incidence of oral cancer. Furthermore, we demonstrated the role of PHLDA1 as an apoptosis suppressor. © 2013 Elsevier Inc. All rights reserved.

  7. Molecular similarity and property similarity.

    PubMed

    Barbosa, Frédérique; Horvath, Dragos

    2004-01-01

    This paper reviews the main efforts undertaken up to date in order to understand, rationalize and apply the similarity principle (similar compounds=>similar properties) as a computational tool in modern drug discovery. The best suited mathematical expression of this classical working hypothesis of medicinal chemistry needs to be carefully chosen (out of the virtually infinite possible implementations in terms of molecular descriptors and molecular similarity metrics), in order to achieve an optimal validation of the hypothesis that molecules that are neighbors in the Structural Space will also display similar properties. This overview will show why no single "absolute" measure of molecular similarity can be conceived, and why molecular similarity scores should be considered tunable tools that need to be adapted to each problem to solve.

  8. STAT3-dependent effects of IL-22 in human keratinocytes are counterregulated by sirtuin 1 through a direct inhibition of STAT3 acetylation.

    PubMed

    Sestito, Rosanna; Madonna, Stefania; Scarponi, Claudia; Cianfarani, Francesca; Failla, Cristina M; Cavani, Andrea; Girolomoni, Giampiero; Albanesi, Cristina

    2011-03-01

    IL-22 has a pathogenetic role in psoriasis, where it is responsible for the altered proliferation and differentiation of keratinocytes and induces inflammatory molecules. The IL-22-induced effects are mediated by STAT3, whose activity is proportional to acetylation in lysine (Lys)685 and phosphorylation in tyrosine (Tyr)705. Lys 685 acetylation of STAT3 is inhibited by sirtuin (SIRT)1, a class III deacetylase promoting keratinocyte differentiation. Due to the opposite effects of IL-22 and SIRT1, we investigated whether IL-22-induced effects in keratinocytes could be regulated by SIRT1 through control of STAT3. We found that SIRT1 opposes the IL-22-induced STAT3 activity by deacetylating STAT3 and reducing STAT3 Tyr705 phosphorylation. By controlling STAT3, SIRT1 also influences the IL-22-induced expression of molecules involved in proliferation and inflammation as well as proliferation and migration processes in cultured keratinocytes. Although SIRT1 levels were similar in keratinocytes of healthy individuals and patients with psoriasis, they were reduced in psoriatic skin lesions, with the lymphokine IFN-γ inhibiting SIRT1 expression. Concomitantly, IFN-γ enhanced basal acetylation of STAT3 and its phosphorylation induced by IL-22. In conclusion, STAT3-dependent IL-22 signaling and effects in keratinocytes are negatively regulated by SIRT1. In skin affected by psoriasis, SIRT1 is down-regulated by IFN-γ, which thus renders psoriatic keratinocytes more prone to respond to IL-22.

  9. Inflammatory and hyperproliferative skin disease in mice that express elevated levels of the IL-1 receptor (type I) on epidermal keratinocytes. Evidence that IL-1-inducible secondary cytokines produced by keratinocytes in vivo can cause skin disease.

    PubMed

    Groves, R W; Rauschmayr, T; Nakamura, K; Sarkar, S; Williams, I R; Kupper, T S

    1996-07-15

    Interleukin (IL)-1 induces a cascade of secondary cytokines in a large number of cell types in vitro, including monocytes, fibroblasts, synovial cells, and keratinocytes. Although it has been proposed that autocrine or paracrine activation of such cells by IL- 1 in situ could orchestrate a local inflammatory response, formal proof for such an hypothesis has been lacking. In an attempt to lower the threshold for secondary cytokine production in these cells in response to IL-1, we have generated transgenic mice (designated IR10) which overexpress functional type 1 IL-1 receptor in basal layer of epidermis keratinocytes. As predicted, keratinocytes from these animals were substantially more responsive to exogenous IL-1 than nontransgenic keratinocytes when stimulated in vitro. When challenged with known inducers of keratinocyte IL-1 synthesis and release, skin of IR10 mice exhibited an exaggerated inflammatory response, characterized by epidermal hyperplasia and an acute dermal inflammatory cell infiltrate. In this setting, the secondary epidermal cytokines gro-alpha and GM-CSF were strongly induced in transgenic epidermis but not in control skin. To confirm that these changes were indeed related to IL-1 mediated activation pathways, IR10 mice were crossed to a distinct line of transgenic mice that overexpress 17-kD IL-l alpha in basal keratinocytes. Double transgenic mice derived from this cross breeding experiment developed spontaneous inflammation of the skin, similar in appearance to that induced by PMA, both histologically and macroscopically, and distinct from that seen in either parental strain spontaneously. Furthermore, secondary cytokines were more strongly induced in the double transgenic than in either parental strain. These findings conclusively demonstrate the potential for functional autocrine pathways of keratinocyte activation mediated by IL-1 alpha in vivo, and suggest that level of expression of type 1 IL-1 receptor may function as a significant

  10. Differentiation of cultured keratinocytes promotes the adherence of Streptococcus pyogenes.

    PubMed Central

    Darmstadt, G L; Fleckman, P; Jonas, M; Chi, E; Rubens, C E

    1998-01-01

    Based on a consideration of the histopathology of nonbullous impetigo that shows localization of Streptococcus pyogenes to highly differentiated, subcorneal keratinocytes, we hypothesized that adherence of an impetigo strain of S. pyogenes would be promoted by terminal differentiation of keratinocytes. An assay was developed in which S. pyogenes adhered via pilus-like projections from the cell wall to the surface of cultured human keratinocytes in a time- and inoculum-dependent manner suggestive of a receptor-mediated process. Terminal differentiation of keratinocytes was induced by increasing the calcium concentration in the growth medium, and was confirmed by morphologic analysis using electron microscopy. Adherence of S. pyogenes was three and fourfold greater to keratinocytes differentiated in 1.0 and 1.5 mM calcium, respectively, compared with undifferentiated keratinocytes in 0.15 mM calcium. The presence of calcium during the adherence assay further enhanced adherence nearly twofold. Adherence occurred preferentially to sites of contact between adjacent keratinocytes, suggesting that the keratinocyte receptor may be a molecule involved in cell-to-cell adhesion. In contrast, nonpathogenic Streptococcus gordonii adhered poorly to keratinocytes regardless of their state of terminal differentiation, and adherence of a pharyngeal strain of S. pyogenes was twofold greater to undifferentiated than differentiated keratinocytes. This is the first report of in vitro adherence of S. pyogenes to keratinocytes in a manner that emulates human impetigo. Adherence of only the impetigo strain, and not the pharyngeal strain of S. pyogenes or the nonpathogenic S. gorgonii isolate, was promoted by keratinocyte differentiation. This result provides a model system for investigating the molecular pathogenesis of streptococcal skin infections. PMID:9421474

  11. Ultraviolet A radiation transiently disrupts gap junctional communication in human keratinocytes.

    PubMed

    Provost, Nicolas; Moreau, Marielle; Leturque, Armelle; Nizard, Carine

    2003-01-01

    Ultraviolet A (UVA) (320-400 nm) radiation is known to cause cutaneous aging and skin cancer. We studied the effect of UVA (365 nm) radiation on the human epidermis by focusing on keratinocyte gap junction-mediated intercellular communication (GJIC). We observed a dose-dependent 10-fold decrease in GJIC induced by UVA in normal human keratinocytes. This decrease in GJIC was associated with time-dependent internalization of connexin43 (Cx43). UVA radiation also damaged the actin cytoskeleton, as shown by microfilament disappearance. Importantly, the decrease in GJIC was transient when keratinocytes were irradiated with 10 J/cm(2) UVA, with a return to baseline values after 8 h. Concomitantly, Cx43 was relocalized and the actin cytoskeleton was restored. UVA irradiation and 12-O-tetradecanoylphorbol 13-acetate (TPA) treatment activated protein kinase C and reduced GJIC. However, Cx43 localization and phosphorylation were differently regulated by the two treatments. This suggests that at least two different pathways may mediate the observed fall in GJIC. These findings identify keratinocyte GJIC as a new UVA target that might sensitize human skin to photoaging and cancer formation.

  12. p53 and TAp63 promote keratinocyte proliferation and differentiation in breeding tubercles of the zebrafish.

    PubMed

    Fischer, Boris; Metzger, Manuel; Richardson, Rebecca; Knyphausen, Philipp; Ramezani, Thomas; Franzen, Rainer; Schmelzer, Elmon; Bloch, Wilhelm; Carney, Thomas J; Hammerschmidt, Matthias

    2014-01-01

    p63 is a multi-isoform member of the p53 family of transcription factors. There is compelling genetic evidence that ΔNp63 isoforms are needed for keratinocyte proliferation and stemness in the developing vertebrate epidermis. However, the role of TAp63 isoforms is not fully understood, and TAp63 knockout mice display normal epidermal development. Here, we show that zebrafish mutants specifically lacking TAp63 isoforms, or p53, display compromised development of breeding tubercles, epidermal appendages which according to our analyses display more advanced stratification and keratinization than regular epidermis, including continuous desquamation and renewal of superficial cells by derivatives of basal keratinocytes. Defects are further enhanced in TAp63/p53 double mutants, pointing to partially redundant roles of the two related factors. Molecular analyses, treatments with chemical inhibitors and epistasis studies further reveal the existence of a linear TAp63/p53->Notch->caspase 3 pathway required both for enhanced proliferation of keratinocytes at the base of the tubercles and their subsequent differentiation in upper layers. Together, these studies identify the zebrafish breeding tubercles as specific epidermal structures sharing crucial features with the cornified mammalian epidermis. In addition, they unravel essential roles of TAp63 and p53 to promote both keratinocyte proliferation and their terminal differentiation by promoting Notch signalling and caspase 3 activity, ensuring formation and proper homeostasis of this self-renewing stratified epithelium.

  13. 12-hydroxyheptadecatrienoic acid promotes epidermal wound healing by accelerating keratinocyte migration via the BLT2 receptor

    PubMed Central

    Liu, Min; Matsunobu, Takehiko; Okuno, Toshiaki; Koga, Tomoaki; Sugimoto, Yukihiko; Yokoyama, Chieko; Nakamizo, Satoshi; Kabashima, Kenji; Narumiya, Shuh; Shimizu, Takao

    2014-01-01

    Leukotriene B4 (LTB4) receptor type 2 (BLT2) is a G protein–coupled receptor (GPCR) for 12(S)-hydroxyheptadeca-5Z,8E,10E-trienoic acid (12-HHT) and LTB4. Despite the well-defined proinflammatory roles of BLT1, the in vivo functions of BLT2 remain elusive. As mouse BLT2 is highly expressed in epidermal keratinocytes, we investigated the role of the 12-HHT/BLT2 axis in skin wound healing processes. 12-HHT accumulated in the wound fluid in mice, and BLT2-deficient mice exhibited impaired re-epithelialization and delayed wound closure after skin punching. Aspirin administration reduced 12-HHT production and resulted in delayed wound closure in wild-type mice, which was abrogated in BLT2-deficient mice. In vitro scratch assay using primary keratinocytes and a keratinocyte cell line also showed that the 12-HHT/BLT2 axis accelerated wound closure through the production of tumor necrosis factor α (TNF) and matrix metalloproteinases (MMPs). A synthetic BLT2 agonist accelerated wound closure in cultured cells as well as in C57BL/6J and diabetic mice. These results identify a novel mechanism underlying the action of the 12-HHT/BLT2 axis in epidermal keratinocytes and accordingly suggest the use of BLT2 agonists as therapeutic agents to accelerate wound healing, particularly for intractable wounds, such as diabetic ulcers. PMID:24821912

  14. p53 and TAp63 Promote Keratinocyte Proliferation and Differentiation in Breeding Tubercles of the Zebrafish

    PubMed Central

    Fischer, Boris; Metzger, Manuel; Richardson, Rebecca; Knyphausen, Philipp; Ramezani, Thomas; Franzen, Rainer; Schmelzer, Elmon; Bloch, Wilhelm; Carney, Thomas J.; Hammerschmidt, Matthias

    2014-01-01

    p63 is a multi-isoform member of the p53 family of transcription factors. There is compelling genetic evidence that ΔNp63 isoforms are needed for keratinocyte proliferation and stemness in the developing vertebrate epidermis. However, the role of TAp63 isoforms is not fully understood, and TAp63 knockout mice display normal epidermal development. Here, we show that zebrafish mutants specifically lacking TAp63 isoforms, or p53, display compromised development of breeding tubercles, epidermal appendages which according to our analyses display more advanced stratification and keratinization than regular epidermis, including continuous desquamation and renewal of superficial cells by derivatives of basal keratinocytes. Defects are further enhanced in TAp63/p53 double mutants, pointing to partially redundant roles of the two related factors. Molecular analyses, treatments with chemical inhibitors and epistasis studies further reveal the existence of a linear TAp63/p53->Notch->caspase 3 pathway required both for enhanced proliferation of keratinocytes at the base of the tubercles and their subsequent differentiation in upper layers. Together, these studies identify the zebrafish breeding tubercles as specific epidermal structures sharing crucial features with the cornified mammalian epidermis. In addition, they unravel essential roles of TAp63 and p53 to promote both keratinocyte proliferation and their terminal differentiation by promoting Notch signalling and caspase 3 activity, ensuring formation and proper homeostasis of this self-renewing stratified epithelium. PMID:24415949

  15. Human embryonic stem cells derived keratinocyte as an in vitro research model for the study of immune response.

    PubMed

    Kidwai, Fahad Karim; Jokhun, Doorgesh Sharma; Movahednia, Mohammad Mehdi; Yeo, Jin Fei; Tan, Kai Soo; Cao, Tong

    2013-09-01

    The innate immune response (IMR) is critical for the oral mucosa due to their continuous exposure to various oral pathogens. Keratinocytes play important role in IMR. Therefore, to date, keratinocytes from different sources have been used as in vitro research model for the study of IMR. However, current keratinocyte research models are hampered by the limited supply, patients' dependency and batch to batch variation. Therefore, in this study, we demonstrated the use of human embryonic stem cells (hESCs) derived keratinocytes (H9-Kert) as an alternative research model for the study of IMR. The expression kinetics of toll-like receptor (TLR) 2, TLR 4, interleukin (IL) -6, IL-8, inducible nitric oxide synthase (iNOS) and tumour necrosis factor-alpha (TNF-α), in H9-Kert and immortalized human keratinocyte cell line (HaCaT) were analysed at mRNA levels by both reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time RT-PCR. The activation of the inflammatory transcription factor nuclear factor kappa-b (NFĸB) was assayed in these cells by transiently transfecting the cells with NFĸB reporter plasmid. Activation of NFĸB following treatment with heat-killed Porphyromonas gingivalis (P. gingivalis), an oral pathogen, was determined by assaying for the reporter, secreted alkaline phosphatase activity. The expression of TLRs, cytokines and activation of NFĸB following bacterial stimulation showed in both H9-Kert and the widely used HaCaT keratinocyte cell line was similar. Overall, our results support the potential application of hESCs as an alternative limitless cell source for primary keratinocytes which can be used as consistent and dependable research tool with minimum variations and no donor's dependency. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Methicillin-Resistant Staphylococcus aureus Adaptation to Human Keratinocytes

    PubMed Central

    Soong, Grace; Paulino, Franklin; Wachtel, Sarah; Parker, Dane; Wickersham, Matthew; Zhang, Dongni; Brown, Armand; Lauren, Christine; Dowd, Margaret; West, Emily; Horst, Basil; Planet, Paul

    2015-01-01

    ABSTRACT Skin is the most common site of Staphylococcus aureus infection. While most of these infections are self-limited, recurrent infections are common. Keratinocytes and recruited immune cells participate in skin defense against infection. We postulated that S. aureus is able to adapt to the milieu within human keratinocytes to avoid keratinocyte-mediated clearance. From a collection of S. aureus isolated from chronically infected patients with atopic dermatitis, we noted 22% had an agr mutant-like phenotype. Using several models of human skin infection, we demonstrate that toxin-deficient, agr mutants of methicillin-resistant S. aureus (MRSA) USA300 are able to persist within keratinocytes by stimulating autophagy and evading caspase-1 and inflammasome activation. MRSA infection induced keratinocyte autophagy, as evidenced by galectin-8 and LC3 accumulation. Autophagy promoted the degradation of inflammasome components and facilitated staphylococcal survival. The recovery of more than 58% agr or RNAIII mutants (P < 0.0001) of an inoculum of wild-type (WT) MRSA from within wortmannin-treated keratinocytes compared to control keratinocytes reflected the survival advantage for mutants no longer expressing agr-dependent toxins. Our results illustrate the dynamic interplay between S. aureus and keratinocytes that can result in the selection of mutants that have adapted specifically to evade keratinocyte-mediated clearance mechanisms. PMID:25900653

  17. Enhancement of Keratinocyte Differentiation by Rose Absolute Oil

    PubMed Central

    Kim, Jin-Hwa; Choi, Dae-Kyoung; Lee, Sang-Sin; Choi, Sun Ja; Kim, Chang Deok; Yoon, Tae-Jin

    2010-01-01

    Background Through differentiation processes, keratinocytes provide a physical barrier to our bodies and control skin features such as moisturization, wrinkles and pigmentation. Keratinocyte differentiation is disturbed in several skin diseases such as psoriasis and atopic dermatitis. Objective The aim of this study is to evaluate the keratinocyte differentiation-enhancing effect of rose absolute oil (RAO). Methods Primary cultured human normal keratinocytes were treated with RAO, and differentiation then checked by the expression of marker genes. Results RAO did not induce cytotoxicity on cultured keratinocytes at a dose of 10µM. The level of involucrin, an early marker for keratinocyte differentiation, was significantly increased by RAO. Concomitantly, RAO increased involucrin promoter activity, indicating that RAO increased involucrin gene expression at the mRNA level. Furthermore, RAO increased the level of filaggrin in cultured keratinocytes, and in the granular layer of mouse skin. In line with these results, RAO decreased the proliferation of keratinocytes cultured in vitro. When RAO was applied topically on the tape-stripped mouse skins, it accelerated the recovery of disturbed barrier function. Conclusion These results suggest that RAO may be applicable for the control of skin texture and keratinocyte differentiation-related skin diseases. PMID:20711260

  18. Test system for evaluating the influence of polymer properties on primary human keratinocytes and fibroblasts in mono- and coculture.

    PubMed

    Trescher, Karoline; Roch, Toralf; Cui, Jing; Kratz, Karl; Lendlein, Andreas; Jung, Friedrich

    2013-06-20

    Interactions of cells with polymer-based biomaterials are influenced by properties of the substrate. Polymers, which are able to induce cell specific effects, gain increasing importance for biotechnology and regenerative therapies. A test system was developed, which allows studying primary human keratinocytes and fibroblasts in mono- and cocultures to analyze and operate the effect of polymer properties. This system offers to identify polymers for keratinocyte cultivation or wound dressings, since adherence, viability and functionality can be analyzed. Especially the coculture system enables the characterization of potential cell specific effects of polymer-based biomaterials. To establish a coculture test system, it is challenging to find a suitable culture medium, to identify initial seeding densities for comparable cell growth and to develop methods to distinguish and characterize both cell types. Poly(n-butyl acrylate) networks (cPnBAs) as model biomaterials were used to demonstrate the applicability of our newly developed coculture screening system for differential cell growth. The apparent Young's modulus of the cPnBAs differentially regulated fibroblasts and keratinocytes. Particularly, cPnBA73 with an apparent Young's modulus of 930±140 kPa measured in phosphate buffered saline (PBS) solution at ambient temperature seemed to have favoring properties for keratinocyte adhesion, while fibroblast adhesion was not affected. For keratinocytes the concentration of some pro-inflammatory cytokines was lower on cPnBA73 and a decreased deposition of collagen, elastin and fibronectin was observed in the coculture.

  19. Procedures for Identifying Rocks with Similar Features.

    ERIC Educational Resources Information Center

    Powell, William E.

    1984-01-01

    The purpose of this article is to provide college level physical geography and geology teachers with practical and simple techniques to help students classify and understand igneous, sedimentary, and metamorphic rocks. Essential equipment is also discussed, and recommended readings are listed. (RM)

  20. Procedures for Identifying Rocks with Similar Features.

    ERIC Educational Resources Information Center

    Powell, William E.

    1984-01-01

    The purpose of this article is to provide college level physical geography and geology teachers with practical and simple techniques to help students classify and understand igneous, sedimentary, and metamorphic rocks. Essential equipment is also discussed, and recommended readings are listed. (RM)

  1. NOVEL NON-CALCEMIC SECOSTEROIDS THAT ARE PRODUCED BY HUMAN EPIDERMAL KERATINOCYTES PROTECT AGAINST SOLAR RADIATION

    PubMed Central

    Slominski, Andrzej T.; Janjetovic, Zorica; Kim, Tae-Kang; Wasilewski, Piotr; Rosas, Sofia; Hanna, Sherie; Sayre, Robert M.; Dowdy, John C.; Li, Wei; Tuckey, Robert C.

    2015-01-01

    CYP11A1 hydroxylates the side chain of vitamin D3 (D3) in a sequential fashion [D3→20S(OH)D3→20,23(OH)2D3→ 17,20,23(OH)3D3], in an alternative to the classical pathway of activation [D3→25(OH)D3→1,25(OH)2D3]. The products/intermediates of the pathway can be further modified by the action of CYP27B1. The CYP11A1-derived products are biologically active with functions determined by the lineage of the target cells. This pathway can operate in epidermal keratinocytes. To further define the role of these novel secosteroids we tested them for protective effects against UVB-induced damage in human epidermal keratinocytes, melanocytes and HaCaT keratinocytes, cultured in vitro. The secosteroids attenuated ROS, H2O2 and NO production by UVB-irradiated keratinocytes and melanocytes, with an efficacy similar to 1,25(OH)2D3, while 25(OH)D3 had lower efficacy. These attenuations were also seen to some extent for the 20(OH)D3 precursor, 20S-hydroxy-7-dehydrocholesterol. These effects were accompanied by upregulation of genes encoding enzymes responsible for defence against oxidative stress. Using immunofluorescent staining we observed that the secosteroids reduced the generation cyclobutane pyrimidine dimers in response to UVB and enhanced expression of p53 phosphorylated at Ser-15, but not at Ser-46. Additional evidence for protection against DNA damage in cells exposed to UVB and treated with secosteroids was provided by the Comet assay where DNA fragmentation was markedly reduced by 20(OH)D3 and 20,23(OH)2D3. In conclusion, novel secosteroids that can be produced by the action of CYP11A1 in epidermal keratinocytes have protective effects against UVB radiation. PMID:25617667

  2. Distinct Epidermal Keratinocytes Respond to Extremely Low-Frequency Electromagnetic Fields Differently

    PubMed Central

    Huang, Chao-Ying; Chuang, Chun-Yu; Shu, Wun-Yi; Chang, Cheng-Wei; Chen, Chaang-Ray; Fan, Tai-Ching; Hsu, Ian C.

    2014-01-01

    Following an increase in the use of electric appliances that can generate 50 or 60 Hz electromagnetic fields, concerns have intensified regarding the biological effects of extremely low-frequency electromagnetic fields (ELF-EMFs) on human health. Previous epidemiological studies have suggested the carcinogenic potential of environmental exposure to ELF-EMFs, specifically at 50 or 60 Hz. However, the biological mechanism facilitating the effects of ELF-EMFs remains unclear. Cellular studies have yielded inconsistent results regarding the biological effects of ELF-EMFs. The inconsistent results might have been due to diverse cell types. In our previous study, we indicated that 1.5 mT, 60 Hz ELF-EMFs will cause G1 arrest through the activation of the ATM-Chk2-p21 pathway in human keratinocyte HaCaT cells. The aim of the current study was to investigate whether ELF-EMFs cause similar effects in a distinct epidermal keratinocyte, primary normal human epidermal keratinocytes (NHEK), by using the same ELF-EMF exposure system and experimental design. We observed that ELF-EMFs exerted no effects on cell growth, cell proliferation, cell cycle distribution, and the activation of ATM signaling pathway in NHEK cells. We demonstrated that the 2 epidermal keratinocytes responded to ELF-EMFs differently. To further validate this finding, we simultaneously exposed the NHEK and HaCaT cells to ELF-EMFs in the same incubator for 168 h and observed the cell growths. The simultaneous exposure of the two cell types results showed that the NHEK and HaCaT cells exhibited distinct responses to ELF-EMFs. Thus, we confirmed that the biological effects of ELF-EMFs in epidermal keratinocytes are cell type specific. Our findings may partially explain the inconsistent results of previous studies when comparing results across various experimental models. PMID:25409520

  3. Distinct epidermal keratinocytes respond to extremely low-frequency electromagnetic fields differently.

    PubMed

    Huang, Chao-Ying; Chuang, Chun-Yu; Shu, Wun-Yi; Chang, Cheng-Wei; Chen, Chaang-Ray; Fan, Tai-Ching; Hsu, Ian C

    2014-01-01

    Following an increase in the use of electric appliances that can generate 50 or 60 Hz electromagnetic fields, concerns have intensified regarding the biological effects of extremely low-frequency electromagnetic fields (ELF-EMFs) on human health. Previous epidemiological studies have suggested the carcinogenic potential of environmental exposure to ELF-EMFs, specifically at 50 or 60 Hz. However, the biological mechanism facilitating the effects of ELF-EMFs remains unclear. Cellular studies have yielded inconsistent results regarding the biological effects of ELF-EMFs. The inconsistent results might have been due to diverse cell types. In our previous study, we indicated that 1.5 mT, 60 Hz ELF-EMFs will cause G1 arrest through the activation of the ATM-Chk2-p21 pathway in human keratinocyte HaCaT cells. The aim of the current study was to investigate whether ELF-EMFs cause similar effects in a distinct epidermal keratinocyte, primary normal human epidermal keratinocytes (NHEK), by using the same ELF-EMF exposure system and experimental design. We observed that ELF-EMFs exerted no effects on cell growth, cell proliferation, cell cycle distribution, and the activation of ATM signaling pathway in NHEK cells. We demonstrated that the 2 epidermal keratinocytes responded to ELF-EMFs differently. To further validate this finding, we simultaneously exposed the NHEK and HaCaT cells to ELF-EMFs in the same incubator for 168 h and observed the cell growths. The simultaneous exposure of the two cell types results showed that the NHEK and HaCaT cells exhibited distinct responses to ELF-EMFs. Thus, we confirmed that the biological effects of ELF-EMFs in epidermal keratinocytes are cell type specific. Our findings may partially explain the inconsistent results of previous studies when comparing results across various experimental models.

  4. Keratinocyte growth factor and the expression of wound-healing-related genes in primary human keratinocytes from burn patients.

    PubMed

    Chomiski, Verônica; Gragnani, Alfredo; Bonucci, Jéssica; Correa, Silvana Aparecida Alves; Noronha, Samuel Marcos Ribeiro de; Ferreira, Lydia Masako

    2016-08-01

    To evaluate the effect of keratinocyte growth factor (KGF) treatment on the expression of wound-healing-related genes in cultured keratinocytes from burn patients. Keratinocytes were cultured and divided into 4 groups (n=4 in each group): TKB (KGF-treated keratinocytes from burn patients), UKB (untreated keratinocytes from burn patients), TKC (KGF-treated keratinocytes from controls), and UKC (untreated keratinocytes from controls). Gene expression analysis using quantitative polymerase chain reaction (qPCR) array was performed to compare (1) TKC versus UKC, (2) UKB versus UKC, (3) TKB versus UKC, (4) TKB versus UKB, (5) TKB versus TKC, and (6) UKB versus TKC. Comparison 1 showed one down-regulated and one up-regulated gene; comparisons 2 and 3 resulted in the same five down-regulated genes; comparison 4 had no significant difference in relative gene expression; comparison 5 showed 26 down-regulated and 7 up-regulated genes; and comparison 6 showed 25 down-regulated and 11 up-regulated genes. There was no differential expression of wound-healing-related genes in cultured primary keratinocytes from burn patients treated with keratinocyte growth factor.

  5. Hyaluronic acid inhibits the adherence and growth of monolayer keratinocytes but does not affect the growth of keratinocyte epithelium.

    PubMed

    Harvima, Ilkka T; Heikura, Hanna; Hyttinen, Mika; Naukkarinen, Anita

    2006-10-01

    Hyaluronic acid (HA) is involved in epidermal biology but evidence for its functional significance is sparse. In this study, low-calcium monolayer and high-calcium epithelium cultures of human keratinocytes were used to study the effect of up to four different HA preparations on keratinocyte growth and on the adherence of proliferating keratinocytes onto the plastic surface coated with different matrix proteins. In suboptimally growing monolayer culture, up to 1,000 microg/ml rooster comb HA and streptococcus equi HA inhibited keratinocyte growth. Instead, all HA preparations tested did not affect the growth and migration of keratinocyte epithelium using optimal or suboptimal growth conditions. In the cell adherence assays, up to 1,000 microg/ml rooster comb HA and streptococcus equi HA inhibited the keratinocyte adherence onto the fibronectin- and collagen-coated substratum. In contrast to other HA preparations, HA from human umbilical cord did not affect the growth of monolayer keratinocytes and it increased markedly the cell adherence onto the collagen-coated substratum. This increase, however, can be attributed to chonroitin sulphate proteoglycan contaminant present in this HA preparation. In conclusion, HA can inhibit the growth and adherence of proliferating monolayer keratinocytes, but it has no apparent effect on the growth and migration of keratinocyte epithelium.

  6. UVB Radiation-Induced β-catenin Signaling is Enhanced by COX-2 Expression in Keratinocytes

    PubMed Central

    Smith, Kimberly A.; Tong, Xin; Abu-Yousif, Adnan O.; Mikulec, Carol C.; Gottardi, Cara J.; Fischer, Susan M.; Pelling, Jill C.

    2014-01-01

    UVB radiation is the major carcinogen responsible for skin carcinogenesis, thus elucidation of the molecular pathways altered in skin in response to UVB would reveal novel targets for therapeutic intervention. It is well established that UVB leads to upregulation of cyclooxygenase 2 (COX-2) in the skin which contributes to skin carcinogenesis. Overexpression of COX-2 has been shown to promote colon cancer cell growth through β-catenin signaling, however, little is known about the connection between UVB, COX-2 and β-catenin in the skin. In the present study, we have identified a novel pathway in which UVB induces β-catenin signaling in keratinocytes, which is modulated by COX-2 expression. Exposure of the mouse 308 keratinocyte cell line (308 cells) and primary normal human epidermal keratinocytes (NHEKs) to UVB resulted in increased protein levels of both N-terminally unphosphorylated and total β-catenin. In addition, we found that UVB enhanced β-catenin-dependent TOPflash reporter activity and expression of a downstream β-catenin target gene. We demonstrated that UVB-induced β-catenin signaling is modulated by COX-2, as treatment of keratinocytes with the specific COX-2 inhibitor NS398 blocked UVB induction of β-catenin. Additionally, β-catenin target gene expression was reduced in UVB-treated COX-2 knockout (KO) MEFs compared to wild-type (WT) MEFs. Furthermore, epidermis from UVB-exposed SKH-1 mice exhibited increased N-terminally unphosphorylated and total β-catenin protein levels and increased staining for total β-catenin, and both responses were reduced in COX-2 heterozygous mice. Taken together, these results suggest a novel pathway in which UVB induces β-catenin signaling in keratinocytes which is enhanced by COX-2 expression. PMID:21853475

  7. Cryopreservation of dermal fibroblasts and keratinocytes in hydroxyethyl starch-based cryoprotectants.

    PubMed

    Naaldijk, Yahaira; Johnson, Adiv A; Friedrich-Stöckigt, Annett; Stolzing, Alexandra

    2016-12-01

    Preservation of human skin fibroblasts and keratinocytes is essential for the creation of skin tissue banks. For successful cryopreservation of cells, selection of an appropriate cryoprotectant agent (CPA) is imperative. The aim of this study was to identify CPAs that minimize toxic effects and allow for the preservation of human fibroblasts and keratinocytes in suspension and in monolayers. We cryopreserved human fibroblasts and keratinocytes with different CPAs and compared them to fresh, unfrozen cells. Cells were frozen in the presence and absence of hydroxyethyl starch (HES) or dimethyl sulfoxide (DMSO), the latter of which is a commonly used CPA known to exert toxic effects on cells. Cell numbers were counted immediately post-thaw as well as three days after thawing. Cellular structures were analyzed and counted by labeling nuclei, mitochondria, and actin filaments. We found that successful cryopreservation of suspended or adherent keratinocytes can be accomplished with a 10% HES or a 5% HES, 5% DMSO solution. Cell viability of fibroblasts cryopreserved in suspension was maintained with 10% HES or 5% HES, 5% DMSO solutions. Adherent, cryopreserved fibroblasts were successfully maintained with a 5% HES, 5% DMSO solution. We conclude that skin tissue cells can be effectively cryopreserved by substituting all or a portion of DMSO with HES. Given that DMSO is the most commonly used CPA and is believed to be more toxic than HES, these findings are of clinical significance for tissue-based replacement therapies. Therapies that require the use of keratinocyte and fibroblast cells, such as those aimed at treating skin wounds or skin burns, may be optimized by substituting a portion or all of DMSO with HES during cryopreservation protocols.

  8. Wnt-3a-activated human fibroblasts promote human keratinocyte proliferation and matrix destruction.

    PubMed

    Sobel, Katrin; Tham, Marius; Stark, Hans-Jürgen; Stammer, Hermann; Prätzel-Wunder, Silke; Bickenbach, Jackie R; Boukamp, Petra

    2015-06-15

    Aberrant Wnt regulation, detectable by nuclear translocation of beta-catenin, is a hallmark of many cancers including skin squamous cell carcinomas (SCCs). By analyzing primary human skin SCCs, we demonstrate that nuclear beta-catenin is not restricted to SCC cells but also detected in stromal fibroblasts, suggesting an important role for aberrant Wnt regulation also in the tumor microenvironment. When human keratinocytes and fibroblasts were treated with Wnt-3a, fibroblasts proved to be more responsive. Accordingly, Wnt-3a did not alter HaCaT cell functions in a cell-autonomous manner. However, when organotypic cultures (OTCs) were treated with Wnt-3a, HaCaT keratinocytes responded with increased proliferation. As nuclear beta-catenin was induced only in the fibroblasts, this argued for a Wnt-dependent, paracrine keratinocyte stimulation. Global gene expression analysis of Wnt-3a-stimulated fibroblasts identified genes encoding interleukin-8 (IL-8) and C-C motif chemokine 2 (CCL-2) as well as matrix metalloproteinase-1 (MMP-1) as Wnt-3a targets. In agreement, we show that IL-8 and CCL-2 were secreted in high amounts by Wnt-3a-stimulated fibroblasts also in OTCs. The functional role of IL-8 and CCL-2 as keratinocyte growth regulators was confirmed by directly stimulating HaCaT cell proliferation in conventional cultures. Most important, neutralizing antibodies against IL-8 and CCL-2 abolished the Wnt-dependent HaCaT cell hyperproliferation in OTCs. Additionally, MMP-1 was expressed in high amounts in Wnt-3a-stimulated OTCs and degraded the stromal matrix. Thus, our data show that Wnt-3a stimulates fibroblasts to secrete both keratinocyte proliferation-inducing cytokines and stroma-degrading metalloproteinases, thereby providing evidence for a novel Wnt deregulation in the tumor-stroma directly contributing to skin cancer progression.

  9. α6 Integrin and CD44 enrich for a primary keratinocyte population that displays resistance to UV-induced apoptosis.

    PubMed

    Wray, Helen; Mackenzie, Ian C; Storey, Alan; Navsaria, Harshad

    2012-01-01

    Epidermal human keratinocytes are exposed to a wide range of environmental genotoxic insults, including the UV component of solar radiation. Epidermal homeostasis in response to cellular or tissue damage is maintained by a population of keratinocyte stem cells (KSC) that reside in the basal layer of the epithelium. Using cell sorting based on cell-surface markers, we have identified a novel α6 integrin(high+)/CD44(+) sub-population of basal keratinocytes. These α6 integrin(high+)/CD44(+) keratinocytes have both high proliferative potential, form colonies in culture that have characteristics of holoclones and have a unique pattern of resistance to apoptosis induced by UVB radiation or by agents that induce single- or double strand DNA breaks. Resistance to UVB induced apoptosis in the α6 integrin(high+)/CD44(+) cells involved increased expression of TAp63 and was overcome by PI-3 kinase inhibition. In marked contrast, the α6 integrin(high+)/CD44(+) cells were sensitive to apoptosis induced by the cross-linking agent cisplatin, and imatinib inhibition of c-Abl blocked the ability of cisplatin to kill α6 integrin(high+)/CD44(+) cells. Our findings reveal a population of basal keratinocytes with long-term proliferative properties that display specific patterns of apoptotic resistance that is dependent upon the genotoxic stimulus, and provide insights into how these cells can be targeted with chemotherapeutic agents.

  10. In vivo relative quantitative proteomics reveals HMGB1 as a downstream mediator of oestrogen-stimulated keratinocyte migration.

    PubMed

    Shin, Jung U; Noh, Ji Yeon; Lee, Ju Hee; Lee, Won Jai; Yoo, Jong Shin; Kim, Jin Young; Kim, Hyeran; Jung, Inhee; Jin, Shan; Lee, Kwang Hoon

    2015-06-01

    It is known that oestrogen influences skin wound healing by modulating the inflammatory response, cytokine expression and extracellular matrix deposition; accelerating re-epithelialization; and stimulating angiogenesis. To identify novel proteins associated with effects of oestrogen on keratinocyte, stable isotope labelling by amino acids in cell culture (SILAC)-based mass spectrometry was performed. Using SILAC, quantification of 1085 proteins was achieved. Among these proteins, 60 proteins were upregulated and 32 proteins were downregulated. Among significantly upregulated proteins, high-mobility group protein B1 (HMGB1) has been further evaluated for its role in the effect of oestrogen on keratinocytes. HMGB1 expression was strongly induced in oestrogen-treated keratinocytes in dose- and time-dependent manner. Further, HMGB1 was able to significantly accelerate the rate of HaCaT cell migration. To determine whether HMGB1 is involved in E2-induced HaCaT cell migration, cells were transfected with HMGB1 siRNA. Knockdown of HMGB1 blocked oestrogen-induced keratinocyte migration. Collectively, these experiments demonstrate that HMGB1 is a novel downstream mediator of oestrogen-stimulated keratinocyte migration. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Decorin gene expression and its regulation in human keratinocytes

    SciTech Connect

    Velez-DelValle, Cristina; Marsch-Moreno, Meytha; Castro-Munozledo, Federico; Kuri-Harcuch, Walid

    2011-07-22

    Highlights: {yields} We showed that cultured human diploid epidermal keratinocytes express and synthesize decorin. {yields} Decorin is found intracytoplasmic in suprabasal cells of cultures and in human epidermis. {yields} Decorin mRNA expression in cHEK is regulated by pro-inflammatory and proliferative cytokines. {yields} Decorin immunostaining of psoriatic lesions showed a lower intensity and altered intracytoplasmic arrangements. -- Abstract: In various cell types, including cancer cells, decorin is involved in regulation of cell attachment, migration and proliferation. In skin, decorin is seen in dermis, but not in keratinocytes. We show that decorin gene (DCN) is expressed in the cultured keratinocytes, and the protein is found in the cytoplasm of differentiating keratinocytes and in suprabasal layers of human epidermis. RT-PCR experiments showed that DCN expression is regulated by pro-inflammatory and proliferative cytokines. Our data suggest that decorin should play a significant role in keratinocyte terminal differentiation, cutaneous homeostasis and dermatological diseases.

  12. Comparison of different cooling rates for fibroblast and keratinocyte cryopreservation.

    PubMed

    Naaldijk, Yahaira; Friedrich-Stöckigt, Annett; Sethe, Sebastian; Stolzing, Alexandra

    2016-10-01

    Easy, cost-effective and reliable cryopreservation protocols are crucial for the successful and effective application of tissue engineering. Several different protocols are in use, but no comprehensive comparisons across different machine-based and manual methods have been made. Here, we compare the effects of different cooling rates on the post-thaw survival and proliferative capacity of two basic cell lines for skin tissue engineering fibroblasts and keratinocytes, cultured and frozen in suspension or as a monolayer. We demonstrate that effectiveness of cryopreservation cannot be reliably determined immediately after thawing: the results at this stage were not indicative of cell growth in culture 3 days post-thaw. Cryopreservation of fibroblasts in an adherent state greatly diminishes their subsequent growth potential. This was not observed when freezing in suspension. In keratinocytes, however, adherent freezing is as effective as freezing in suspension, which could lead to significant cost and labour savings in a tissue-engineering environment. The 'optimal' cryopreservation protocol depends on cell type and intended use. Where time, ease and cost are dominant factors, the direct freezing into a nitrogen tank (straight freeze) approach remains a viable method. The most effective solution across the board, as measured by viability 3 days post-thaw, was the commonly used, freezing container method. Where machine-controlled cryopreservation is deemed important for tissue-engineering Good Manufacturing Practice, we present results using a portfolio of different cooling rates, identifying the 'optimal' protocol depending on cell type and culture method. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.

  13. A new strategy of using keratinocytes for skin graft: animal experimental study of keratinocyte suspension combined with the dermal substitutes.

    PubMed

    Xiao, S C; Zhu, S H; Li, H Y; Yang, J; Xia, Z F

    2009-01-01

    To provide a new and simple strategy for keratinocyte transplantation. Keratinocyte suspension and dermal substitutes including acellular dermal matrix (ADM) and collagen membrane were prepared. Full-thickness skin defect wounds of Balb/c-nu mice were created and the mice were assigned into 5 groups: the control group, where the wound was grafted with keratinocyte suspension only; the one-step ADM and collagen membrane groups, where the wound was grafted with ADM or collagen membrane plus dripping of keratinocyte suspension; the two-step ADM and collagen membrane groups, where keratinocyte suspension was dripped 2 weeks after ADM or collagen membrane grafting. The percentage of epithelium was observed. Two weeks after grafting, no evidence of re-epithelialization was seen in the one-step ADM group, and the re-epithelialization rate in the one-step collagen membrane group, two-step ADM group and two-step collagen membrane group was 54.1, 41.8 and 76.8%, respectively, indicating that the re-epithelialization rate in the two-step collagen membrane group was higher than that in the other two groups (p < 0.01). Keratinocyte suspension combined with dermal substitutes grafting offers a more flexible way of making use of keratinocytes. Compared with ADM, microporous collagen membrane is a more preferable option for combined use with keratinocyte suspension for skin grafting. Copyright (c) 2009 S. Karger AG, Basel.

  14. Melanocytes expressing MC1R polymorphisms associated with red hair color have altered MSH-ligand activated pigmentary responses in coculture with keratinocytes.

    PubMed

    Roberts, Donald W; Newton, Richard A; Leonard, J Helen; Sturm, Richard A

    2008-05-01

    The occurrence of red hair and pale skin in individuals, which is associated with UV-radiation sensitivity and increased skin cancer risk, is mainly due to polymorphisms in the melanocortin-1 receptor (MC1R) expressed in melanocytes. We have established a serum free human melanocyte-keratinocyte coculture system to study the behavior and functional abilities of melanocytes expressing MC1R red hair color (RHC) variants in order to identify differences from their wild type (WT) counterparts. This model revealed the importance of elevated calcium levels in promoting strong melanocyte interaction with the surrounding keratinocytes and resulted in a dendritic melanocyte morphology similar to that in skin. However, the dendricity response following agonist activation of the MC1R receptor by NDP-MSH peptide, was markedly enhanced in WT melanocytes in comparison to RHC strains. Analysis of mRNA expression and protein levels of the major pigmentation markers following NDP-MSH treatment distinguished the enzyme dopachrome tautomerase as preferentially upregulated in cocultures of WT strains, with negligible or a much reduced response in melanocytes with RHC variant alleles. These results highlight the use of the coculture system in determining fundamental differences in the physiology of melanocytes expressing RHC MC1R receptors and those of WT genotype, which are likely to contribute to the increased skin cancer risk for individuals that carry these variants.

  15. Phlorizin, an Active Ingredient of Eleutherococcus senticosus, Increases Proliferative Potential of Keratinocytes with Inhibition of MiR135b and Increased Expression of Type IV Collagen.

    PubMed

    Choi, Hye-Ryung; Nam, Kyung-Mi; Lee, Hyun-Sun; Yang, Seung-Hye; Kim, Young-Soo; Lee, Jongsung; Date, Akira; Toyama, Kazumi; Park, Kyoung-Chan

    2016-01-01

    E. senticosus extract (ESE), known as antioxidant, has diverse pharmacologic effects. It is also used as an antiaging agent for the skin and phlorizin (PZ) is identified as a main ingredient. In this study, the effects of PZ on epidermal stem cells were investigated. Cultured normal human keratinocytes and skin equivalents are used to test whether PZ affects proliferative potential of keratinocytes and how it regulates these effects. Skin equivalents (SEs) were treated with ESE and the results showed that the epidermis became slightly thickened on addition of 0.002% ESE. The staining intensity of p63 as well as proliferating cell nuclear antigen (PCNA) is increased, and integrin α6 was upregulated. Analysis of ESE confirmed that PZ is the main ingredient. When SEs were treated with PZ, similar findings were observed. In particular, the expression of integrin α6, integrin β1, and type IV collagen was increased. Levels of mRNA for type IV collagen were increased and levels of miR135b were downregulated. All these findings suggested that PZ can affect the proliferative potential of epidermal cells in part by microenvironment changes via miR135b downregulation and following increased expression of type IV collagen.

  16. Phlorizin, an Active Ingredient of Eleutherococcus senticosus, Increases Proliferative Potential of Keratinocytes with Inhibition of MiR135b and Increased Expression of Type IV Collagen

    PubMed Central

    Choi, Hye-Ryung; Nam, Kyung-Mi; Lee, Hyun-Sun; Yang, Seung-Hye; Kim, Young-Soo; Lee, Jongsung; Date, Akira; Toyama, Kazumi; Park, Kyoung-Chan

    2016-01-01

    E. senticosus extract (ESE), known as antioxidant, has diverse pharmacologic effects. It is also used as an antiaging agent for the skin and phlorizin (PZ) is identified as a main ingredient. In this study, the effects of PZ on epidermal stem cells were investigated. Cultured normal human keratinocytes and skin equivalents are used to test whether PZ affects proliferative potential of keratinocytes and how it regulates these effects. Skin equivalents (SEs) were treated with ESE and the results showed that the epidermis became slightly thickened on addition of 0.002% ESE. The staining intensity of p63 as well as proliferating cell nuclear antigen (PCNA) is increased, and integrin α6 was upregulated. Analysis of ESE confirmed that PZ is the main ingredient. When SEs were treated with PZ, similar findings were observed. In particular, the expression of integrin α6, integrin β1, and type IV collagen was increased. Levels of mRNA for type IV collagen were increased and levels of miR135b were downregulated. All these findings suggested that PZ can affect the proliferative potential of epidermal cells in part by microenvironment changes via miR135b downregulation and following increased expression of type IV collagen. PMID:27042261

  17. Mathematical Modeling of Calcium Waves Induced by Mechanical Stimulation in Keratinocytes

    PubMed Central

    Kobayashi, Yasuaki; Sanno, Yumi; Sakai, Akihiko; Sawabu, Yusuke; Tsutsumi, Moe; Goto, Makiko; Kitahata, Hiroyuki; Nakata, Satoshi; Kumamoto, Junichi; Denda, Mitsuhiro; Nagayama, Masaharu

    2014-01-01

    Recent studies have shown that the behavior of calcium in the epidermis is closely related to the conditions of the skin, especially the differentiation of the epidermal keratinocytes and the permeability barrier function, and therefore a correct understanding of the calcium dynamics is important in explaining epidermal homeostasis. Here we report on experimental observations of in vitro calcium waves in keratinocytes induced by mechanical stimulation, and present a mathematical model that can describe the experimentally observed wave behavior that includes finite-range wave propagation and a ring-shaped pattern. A mechanism of the ring formation hypothesized by our model may be related to similar calcium propagation patterns observed during the wound healing process in the epidermis. We discuss a possible extension of our model that may serve as a tool for investigating the mechanisms of various skin diseases. PMID:24663805

  18. Spatial Distribution of Stem Cell-Like Keratinocytes in Dissected Compound Hair Follicles of the Dog

    PubMed Central

    Wiener, Dominique J.; Doherr, Marcus G.; Müller, Eliane J.; Welle, Monika M.

    2016-01-01

    Hair cycle disturbances are common in dogs and comparable to some alopecic disorders in humans. A normal hair cycle is maintained by follicular stem cells which are predominately found in an area known as the bulge. Due to similar morphological characteristics of the bulge area in humans and dogs, the shared particularity of compound hair follicles as well as similarities in follicular biomarker expression, the dog is a promising model to study human hair cycle and stem cell disorders. To gain insight into the spatial distribution of follicular keratinocytes with stem cell potential in canine compound follicles, we microdissected hair follicles in anagen and telogen from skin samples of freshly euthanized dogs. The keratinocytes isolated from different locations were investigated for their colony forming efficiency, growth and differentiation potential as well as clonal growth. Our results indicate that i) compound and single hair follicles exhibit a comparable spatial distribution pattern with respect to cells with high growth potential and stem cell-like characteristics, ii) the lower isthmus (comprising the bulge) harbors most cells with high growth potential in both, the anagen and the telogen hair cycle stage, iii) unlike in other species, colonies with highest growth potential are rather small with an irregular perimeter and iv) the keratinocytes derived from the bulbar region exhibit characteristics of actively dividing transit amplifying cells. Our results now provide the basis to conduct comparative studies of normal dogs and those with hair cycle disorders with the possibility to extend relevant findings to human patients. PMID:26788850

  19. Ultraviolet B, melanin and mitochondrial DNA: Photo-damage in human epidermal keratinocytes and melanocytes modulated by alpha-melanocyte-stimulating hormone

    PubMed Central

    Böhm, Markus; Hill, Helene Z.

    2016-01-01

    Alpha-melanocyte-stimulating hormone (alpha-MSH) increases melanogenesis and protects from UV-induced DNA damage. However, its effect on mitochondrial DNA (mtDNA) damage is unknown. We have addressed this issue in a pilot study using human epidermal keratinocytes and melanocytes incubated with alpha-MSH and irradiated with UVB. Real-time touchdown PCR was used to quantify total and deleted mtDNA. The deletion detected encompassed the common deletion but was more sensitive to detection. There were 4.4 times more mtDNA copies in keratinocytes than in melanocytes. Irradiation alone did not affect copy numbers. Alpha-MSH slightly increased copy numbers in both cell types in the absence of UVB and caused a similar small decrease in copy number with dose in both cell types. Deleted copies were nearly twice as frequent in keratinocytes as in melanocytes. Alpha-MSH reduced the frequency of deleted copies by half in keratinocytes but not in melanocytes. UVB dose dependently led to an increase in the deleted copy number in alpha-MSH-treated melanocytes. UVB irradiation had little effect on deleted copy number in alpha-MSH-treated keratinocytes. In summary, alpha-MSH enhances mtDNA damage in melanocytes presumably by increased melanogenesis, while α-MSH is protective in keratinocytes, the more so in the absence of irradiation. PMID:27303631

  20. Ultraviolet B, melanin and mitochondrial DNA: Photo-damage in human epidermal keratinocytes and melanocytes modulated by alpha-melanocyte-stimulating hormone.

    PubMed

    Böhm, Markus; Hill, Helene Z

    2016-01-01

    Alpha-melanocyte-stimulating hormone (alpha-MSH) increases melanogenesis and protects from UV-induced DNA damage. However, its effect on mitochondrial DNA (mtDNA) damage is unknown. We have addressed this issue in a pilot study using human epidermal keratinocytes and melanocytes incubated with alpha-MSH and irradiated with UVB. Real-time touchdown PCR was used to quantify total and deleted mtDNA. The deletion detected encompassed the common deletion but was more sensitive to detection. There were 4.4 times more mtDNA copies in keratinocytes than in melanocytes. Irradiation alone did not affect copy numbers. Alpha-MSH slightly increased copy numbers in both cell types in the absence of UVB and caused a similar small decrease in copy number with dose in both cell types. Deleted copies were nearly twice as frequent in keratinocytes as in melanocytes. Alpha-MSH reduced the frequency of deleted copies by half in keratinocytes but not in melanocytes. UVB dose dependently led to an increase in the deleted copy number in alpha-MSH-treated melanocytes. UVB irradiation had little effect on deleted copy number in alpha-MSH-treated keratinocytes. In summary, alpha-MSH enhances mtDNA damage in melanocytes presumably by increased melanogenesis, while α-MSH is protective in keratinocytes, the more so in the absence of irradiation.

  1. Sodium arsenite-induced stress-related gene expression in normal human epidermal, HaCaT, and HEL30 keratinocytes.

    PubMed Central

    Trouba, Kevin J; Geisenhoffer, Kristen M; Germolec, Dori R

    2002-01-01

    Arsenic is a carcinogen that poses a significant health risk in humans. Based on evidence that arsenic has differential effects on human, rodent, normal, and transformed cells, these studies addressed the relative merits of using normal human epidermal keratinocytes (NHEK) and immortalized human (HaCaT) and mouse (HEL30) keratinocytes when examining stress-induced gene expression that may contribute to carcinogenesis. We hypothesize that redox-related gene expression is differentially modulated by arsenic in normal versus immortalized keratinocytes. To test the hypothesis, we exposed keratinocytes to sodium arsenite for 4 or 24 hr, at which time serine threonine kinase-25 (stk25) and nicotine adenine dinucleotide phosphate [nad(p)h] quinone oxidoreductase gene expression were measured. The effect of glutathione reduction on arsenite-induced cytotoxicity and gene expression in NHEK also was evaluated by addition of l-buthionine-[S,R]-sulfoximine (BSO) to culture media. Results indicate the term LC(50) for arsenite is approximately 10-15 microM in NHEK and HEL30 keratinocytes and 30 microM in HaCaT keratinocytes. Compared with HaCaT and HEL30 keratinocytes, a nontoxic concentration of arsenite (2.5 microM) increases stk25 and nad(p)h quinone oxidoreductase gene expression in NHEK, an effect partially attenuated by BSO. These data indicate that NHEK and HaCaT/HEL30 keratinocytes have similar sensitivities toward arsenite-induced cytotoxicity but unique gene expression responses. They also suggest that arsenite modulates gene expression in NHEK involved in cellular signaling and other aspects of intermediary metabolism that may contribute to the carcinogenic process. PMID:12426128

  2. HPV8 Field Cancerization in a Transgenic Mouse Model Is due to Lrig1+ Keratinocyte Stem Cell Expansion.

    PubMed

    Lanfredini, Simone; Olivero, Carlotta; Borgogna, Cinzia; Calati, Federica; Powell, Kathryn; Davies, Kelli-Jo; De Andrea, Marco; Harries, Sarah; Tang, Hiu Kwan Carolyn; Pfister, Herbert; Gariglio, Marisa; Patel, Girish K

    2017-10-01

    β-Human papillomaviruses (HPVs) cause near ubiquitous latent skin infection within long-lived hair follicle (HF) keratinocyte stem cells. In patients with epidermodysplasia verruciformis, β-HPV viral replication is associated with skin keratosis and cutaneous squamous cell carcinoma. To determine the role of HF keratinocyte stem cells in β-HPV-induced skin carcinogenesis, we utilized a transgenic mouse model in which the keratin 14 promoter drives expression of the entire HPV8 early region (HPV8tg). HPV8tg mice developed thicker skin in comparison with wild-type littermates consistent with a hyperproliferative epidermis. HF keratinocyte proliferation was evident within the Lrig1+ keratinocyte stem cell population (69 vs. 55%, P < 0.01, n = 7), and not in the CD34+, LGR5+, and LGR6+ keratinocyte stem cell populations. This was associated with a 2.8-fold expansion in Lrig1+ keratinocytes and 3.8-fold increased colony-forming efficiency. Consistent with this, we observed nuclear p63 expression throughout this population and the HF infundibulum and adjoining interfollicular epidermis, associated with a switch from p63 transcriptional activation isoforms to ΔNp63 isoforms in HPV8tg skin. Epidermodysplasia verruciformis keratosis and in some cases actinic keratoses demonstrated similar histology associated with β-HPV reactivation and nuclear p63 expression within the HF infundibulum and perifollicular epidermis. These findings would suggest that β-HPV field cancerization arises from the HF junctional zone and predispose to squamous cell carcinoma. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Stathmin regulates keratinocyte proliferation and migration during cutaneous regeneration.

    PubMed

    Schmitt, Sabrina; Safferling, Kai; Westphal, Kathi; Hrabowski, Manuel; Müller, Ute; Angel, Peter; Wiechert, Lars; Ehemann, Volker; Müller, Benedikt; Holland-Cunz, Stefan; Stichel, Damian; Harder, Nathalie; Rohr, Karl; Germann, Günter; Matthäus, Franziska; Schirmacher, Peter; Grabe, Niels; Breuhahn, Kai

    2013-01-01

    Cutaneous regeneration utilizes paracrine feedback mechanisms to fine-tune the regulation of epidermal keratinocyte proliferation and migration. However, it is unknown how fibroblast-derived hepatocyte growth factor (HGF) affects these mutually exclusive processes in distinct cell populations. We here show that HGF stimulates the expression and phosphorylation of the microtubule-destabilizing factor stathmin in primary human keratinocytes. Quantitative single cell- and cell population-based analyses revealed that basal stathmin levels are important for the migratory ability of keratinocytes in vitro; however, its expression is moderately induced in the migration tongue of mouse skin or organotypic multi-layered keratinocyte 3D cultures after full-thickness wounding. In contrast, clearly elevated stathmin expression is detectable in hyperproliferative epidermal areas. In vitro, stathmin silencing significantly reduced keratinocyte proliferation. Automated quantitative and time-resolved analyses in organotypic cocultures demonstrated a high correlation between Stathmin/phospho-Stathmin and Ki67 positivity in epidermal regions with proliferative activity. Thus, activation of stathmin may stimulate keratinocyte proliferation, while basal stathmin levels are sufficient for keratinocyte migration during cutaneous regeneration.

  4. Acute and chronic wound fluids influence keratinocyte function differently.

    PubMed

    Thamm, Oliver C; Koenen, Paola; Bader, Nicola; Schneider, Alina; Wutzler, Sebastian; Neugebauer, Edmund A M; Spanholtz, Timo A

    2015-04-01

    Wound healing requires a proper functioning of keratinocytes that migrate, proliferate and lead to a competent wound closure. Impaired wound healing might be due to a disturbed keratinocyte function caused by the wound environment. Basically, chronic wound fluid (CWF) differs from acute wound fluid (AWF). The aim of this study was to analyse the effects of AWF and CWF on keratinocyte function. We therefore investigated keratinocyte migration and proliferation under the influence of AWF and CWF using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] test and scratch assay. We further measured the gene expression by qRT-PCR regarding growth factors and matrixmetalloproteinases (MMPs) involved in regeneration processes. AWF had a positive impact on keratinocyte proliferation over time, whereas CWF had an anti-proliferative effect. Keratinocyte migration was significantly impaired by CWF in contrast to an undisturbed wound closure under the influence of AWF. MMP-9 expression was strongly upregulated by CWF compared with AWF. Keratinocyte function was significantly impaired by CWF. An excessive induction of MMP-9 by CWF might lead to a permanent degradation of extracellular matrix and thereby prevent wounds from healing. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  5. Lipin-1 expression is critical for keratinocyte differentiation.

    PubMed

    Chae, Minjung; Jung, Ji-Yong; Bae, Il-Hong; Kim, Hyoung-June; Lee, Tae Ryong; Shin, Dong Wook

    2016-04-01

    Lipin-1 is an Mg(2+)-dependent phosphatidate phosphatase that facilitates the dephosphorylation of phosphatidic acid to generate diacylglycerol. Little is known about the expression and function of lipin-1 in normal human epidermal keratinocytes (NHEKs). Here, we demonstrate that lipin-1 is present in basal and spinous layers of the normal human epidermis, and lipin-1 expression is gradually downregulated during NHEK differentiation. Interestingly, lipin-1 knockdown (KD) inhibited keratinocyte differentiation and caused G1 arrest by upregulating p21 expression. Cell cycle arrest by p21 is required for commitment of keratinocytes to differentiation, but must be downregulated for the progress of keratinocyte differentiation. Therefore, reduced keratinocyte differentiation results from sustained upregulation of p21 by lipin-1 KD. Lipin-1 KD also decreased the phosphorylation/activation of protein kinase C (PKC)α, whereas lipin-1 overexpression increased PKCα phosphorylation. Treatment with PKCα inhibitors, like lipin-1 KD, stimulated p21 expression, while lipin-1 overexpression reduced p21 expression, implicating PKCα in lipin-1-induced regulation of p21 expression. Taken together, these results suggest that lipin-1-mediated downregulation of p21 is critical for the progress of keratinocyte differentiation after the initial commitment of keratinocytes to differentiation induced by p21, and that PKCα is involved in p21 expression regulation by lipin-1. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  6. Stathmin Regulates Keratinocyte Proliferation and Migration during Cutaneous Regeneration

    PubMed Central

    Schmitt, Sabrina; Safferling, Kai; Westphal, Kathi; Hrabowski, Manuel; Müller, Ute; Angel, Peter; Wiechert, Lars; Ehemann, Volker; Müller, Benedikt; Holland-Cunz, Stefan; Stichel, Damian; Harder, Nathalie; Rohr, Karl; Germann, Günter; Matthäus, Franziska; Schirmacher, Peter; Grabe, Niels; Breuhahn, Kai

    2013-01-01

    Cutaneous regeneration utilizes paracrine feedback mechanisms to fine-tune the regulation of epidermal keratinocyte proliferation and migration. However, it is unknown how fibroblast-derived hepatocyte growth factor (HGF) affects these mutually exclusive processes in distinct cell populations. We here show that HGF stimulates the expression and phosphorylation of the microtubule-destabilizing factor stathmin in primary human keratinocytes. Quantitative single cell- and cell population-based analyses revealed that basal stathmin levels are important for the migratory ability of keratinocytes in vitro; however, its expression is moderately induced in the migration tongue of mouse skin or organotypic multi-layered keratinocyte 3D cultures after full-thickness wounding. In contrast, clearly elevated stathmin expression is detectable in hyperproliferative epidermal areas. In vitro, stathmin silencing significantly reduced keratinocyte proliferation. Automated quantitative and time-resolved analyses in organotypic cocultures demonstrated a high correlation between Stathmin/phospho-Stathmin and Ki67 positivity in epidermal regions with proliferative activity. Thus, activation of stathmin may stimulate keratinocyte proliferation, while basal stathmin levels are sufficient for keratinocyte migration during cutaneous regeneration. PMID:24066165

  7. Prolonged Integration Site Selection of a Lentiviral Vector in the Genome of Human Keratinocytes

    PubMed Central

    Qian, Wei; Wang, Yong; Li, Rui-fu; Zhou, Xin; Liu, Jing; Peng, Dai-zhi

    2017-01-01

    Background Lentiviral vectors have been successfully used for human skin cell gene transfer studies. Defining the selection of integration sites for retroviral vectors in the host genome is crucial in risk assessment analysis of gene therapy. However, genome-wide analyses of lentiviral integration sites in human keratinocytes, especially after prolonged growth, are poorly understood. Material/Methods In this study, 874 unique lentiviral vector integration sites in human HaCaT keratinocytes after long-term culture were identified and analyzed with the online tool GTSG-QuickMap and SPSS software. Results The data indicated that lentiviral vectors showed integration site preferences for genes and gene-rich regions. Conclusions This study will likely assist in determining the relative risks of the lentiviral vector system and in the design of a safe lentiviral vector system in the gene therapy of skin diseases. PMID:28255155

  8. Heavy metals chromium and neodymium reduced phosphorylation level of heat shock protein 27 in human keratinocytes.

    PubMed

    Zhang, Qihao; Zhang, Lei; Xiao, Xue; Su, Zhijian; Zou, Ping; Hu, Hao; Huang, Yadong; He, Qing-Yu

    2010-06-01

    Heavy metals may exert their acute and chronic effects on the human skin through stress signals. In the present study, 2DE-based proteomics was used to analyze the protein expression in human keratinocytes exposed to heavy metals, chromium and neodymium, and 10 proteins with altered expression were identified. Among these proteins, small heat shock protein 27 (HSP27) was up-regulated significantly and the up-regulation was validated by Western blot and immunofluorescence. In addition, the mRNA expression level of HSP27 markedly increased as detected by quantitative PCR. More interestingly, the ratio of phosphorylated HSP27 and total HSP27 significantly decreased in keratinocytes treated with the heavy metals. These findings suggested that heavy metals reduced the phosphorylation level of HSP27, and that the ratio of p-HSP27 and HSP27 may represent a potential marker or additional endpoint for the hazard assessment of skin irritation caused by chemical products.

  9. Induction of senescence pathways in Kindler syndrome primary keratinocytes.

    PubMed

    Piccinni, E; Di Zenzo, G; Maurelli, R; Dellambra, E; Teson, M; Has, C; Zambruno, G; Castiglia, D

    2013-05-01

    Individuals with Kindler syndrome (KS) have loss-of-function mutations in the FERMT1 gene that encodes the focal adhesion component kindlin-1. The major clinical manifestation of KS is epidermal atrophy (premature skin ageing). This phenotypic feature is thought to be related to the decreased proliferation rate of KS keratinocytes; nevertheless, molecular mediators of such abnormal behaviour have not been fully elucidated. To investigate how kindlin-1 deficiency affects the proliferative potential of primary human keratinocytes. We serially cultivated nine primary KS keratinocyte strains until senescence and determined their lifespan and colony-forming efficiency (CFE) at each serial passage. The expression of molecular markers of stemness and cellular senescence were investigated by immunoblotting using cell extracts of primary keratinocyte cultures from patients with KS and healthy donors. In another set of experiments, kindlin-1 downregulation in normal keratinocytes was obtained by small interfering RNA (siRNA) technology. We found that KS keratinocytes exhibited a precocious senescence and strongly reduced clonogenic potential. Moreover, KS cultures showed a strikingly increased percentage of aborted colonies (paraclones) already at early passages indicating an early depletion of stem cells. Immunoblotting analysis of KS keratinocyte extracts showed reduced levels of the stemness markers p63 and Bmi-1, upregulation of p16 and scant amounts of hypophosphorylated Rb protein, which indicated cell cycle-arrested status. Treatment of normal human primary keratinocytes with siRNA targeting kindlin-1 proved that its deficiency was directly responsible for p63, Bmi-1 and pRb downregulation and p16 induction. Our data directly implicate kindlin-1 in preventing premature senescence of keratinocytes. © 2013 The Authors. BJD © 2013 British Association of Dermatologists.

  10. Constitutive and UV-induced metabolism of melatonin in keratinocytes and cell-free systems.

    PubMed

    Fischer, Tobias W; Sweatman, Trevor W; Semak, Igor; Sayre, Robert M; Wortsman, Jacobo; Slominski, Andrzej

    2006-07-01

    Melatonin, which can be produced in the skin, exerts a protective effect against damage induced by UV radiation (UVR). We have investigated the effect of UVB, the most damaging component of UVR, on melatonin metabolism in HaCaT keratinocytes and in a cell-free system. Four metabolites were identified by HPLC and LC-MS: 6-hydroxymelatonin, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK), 2-hydroxymelatonin (the main intermediate between melatonin and AFMK), and 4-hydroxymelatonin. Concentrations of these photoproducts were directly proportional to UVR-dose and to melatonin substrate content, and their accumulation was time-dependent. The UVR-dependent increase of AFMK and 2-hydroxymelatonin was also detected in keratinocytes, where it was accompanied by simultaneous consumption of intracellular melatonin. Of note, melatonin and its two major metabolites, 2-hydroxymelatonin and AFMK, were also detected in untreated keratinocytes, neither irradiated nor preincubated with melatonin. Thus, intracellular melatonin metabolism is enhanced under exposure to UVR. The additional biological activity of these individual melatonin metabolites increases the spectrum of potential actions of the recently identified cutaneous melatoninergic system.

  11. A new mass-spectrometric C-terminal sequencing technique finds a similarity between gamma-interferon and alpha 2-interferon and identifies a proteolytically clipped gamma-interferon that retains full antiviral activity.

    PubMed Central

    Rose, K; Simona, M G; Offord, R E; Prior, C P; Otto, B; Thatcher, D R

    1983-01-01

    A novel mass-spectrometric technique is described that permits the identification of the C-terminal peptide of a protein. The technique involves the incorporation of 18O into all alpha-carboxy groups liberated during enzyme-catalysed partial hydrolysis of the protein, followed by mass spectrometry to identify as the C-terminal peptide the only peptide that did not incorporate any 18O. The technique has been used to identify the true C-terminal tryptic peptide of a bacterially produced gamma-interferon and to distinguish it from a peptide produced by anomalous tryptic cleavage. It was found that a closely similar sequence segment of bacterially produced alpha 2-interferon undergoes an analogous cleavage. The technique was also used to identify the C-terminus of a clipped gamma-interferon that retains full antiviral activity. PMID:6418141

  12. Transient receptor potential vanilloid 4 (TRPV4)-dependent calcium influx and ATP release in mouse oesophageal keratinocytes.

    PubMed

    Mihara, Hiroshi; Boudaka, Ammar; Sugiyama, Toshiro; Moriyama, Yoshinori; Tominaga, Makoto

    2011-07-15

    Gastro-oesophageal reflux disease (GERD) is a multi-factorial disease that may involve oesophageal hypersensitivity to mechanical or heat stimulus as well as acids. Intraganglionic laminar endings (IGLEs) are the most prominent terminal structures of oesophageal vagal mechanosensitive afferents and may modulate mechanotransduction via purinergic receptors. Transient receptor potential channel vanilloid 4 (TRPV4) can detect various stimuli such as warm temperature, stretch and some chemicals, including 4α-phorbol 12,13-didecanoate (4α-PDD) and GSK1016790A. TRPV4 is expressed in many tissues, including renal epithelium, skin keratinocytes and urinary bladder epithelium, but its expression and function in the oesophagus is poorly understood. Here, we show anatomical and functional TRPV4 expression in mouse oesophagus and its involvement in ATP release. TRPV4 mRNA and protein were detected in oesophageal keratinocytes. Several known TRPV4 activators (chemicals, heat and stretch stimulus) increased cytosolic Ca2+ concentrations in cultured WT keratinocytes but not in TRPV4 knockout (KO) cells. Moreover, the TRPV4 agonist GSK1016790A and heat stimulus evoked TRPV4-like current responses in isolated WT keratinocytes, but not in TRPV4KO cells. GSK1016790A and heat stimulus also significantly increased ATP release from WT oesophageal keratinocytes compared to TRPV4KO cells. The vesicle-trafficking inhibitor brefeldin A (BFA) inhibited the ATP release. This ATP release could be mediated by the newly identified vesicle ATP transporter, VNUT, which is expressed by oesophageal keratinocytes at the mRNA and protein levels. In conclusion, in response to heat, chemical and possibly mechanical stimuli, TRPV4 contributes to ATP release in the oesophagus. Thus, TRPV4 could be involved in oesophageal mechano- and heat hypersensitivity.

  13. SOCS3 inhibits the pathological effects of IL-22 in non-melanoma skin tumor-derived keratinocytes.

    PubMed

    Madonna, Stefania; Scarponi, Claudia; Morelli, Martina; Sestito, Rosanna; Scognamiglio, Pasqualina Liana; Marasco, Daniela; Albanesi, Cristina

    2017-04-11

    Basal cell carcinomas (BCC) and squamous-cell carcinomas (SCC) are common malignancies in humans, caused by neoplastic transformation of keratinocytes of the basal or suprabasal layers of epidermis, respectively. Tumor-infiltrating lymphocytes (TILs) are frequently found in BCC and SCC, and functionally promote epithelial carcinogenesis. TILs secreting IL-22, in particular, participate to BCC and SCC growth by inducing keratinocyte proliferation and migration, as well as the expression of inflammatory, anti-apoptotic and pro-angiogenic genes.In this study, we identified SOCS3 as a valid candidate to be manipulated for suppressing tumorigenic functions in BCC and SCC. We found that SOCS3 and SOCS1 expression was reduced in vivo, in tumor lesions of BCC and SCC, as compared to other skin inflammatory conditions such as psoriasis, despite the high number of IL-22-secreting TILs. Moreover, IL-22 was not able to induce in vitro the transcriptional expression of SOCS3 in BCC-or SCC-derived keratinocytes, contrarily to healthy cells. Aimed at rescuing SOCS3 activity in these tumor contexts, a SOCS3-derived peptide, named KIR-ESS, was synthesized, and its ability in suppressing IL-22-induced responses was evaluated in healthy and transformed keratinocytes. We found that KIR-ESS peptide efficiently suppressed the IL-22 molecular signaling in keratinocytes, by acting on STAT3 and Erk1/2 cascade, as well as on the expression of STAT3-dependent downstream genes. Interestingly, after treatment with peptide, both healthy and transformed keratinocytes could no longer aberrantly proliferate and migrate in response to IL-22. Finally, treatment of athymic nude mice bearing SCC xenografts with KIR-ESS peptide concomitantly reduced tumor growth and activated STAT3 levels. As a whole, these data provides the rationale for the use in BCC and SCC skin tumors of SOCS3 mimetics, being able to inhibit the deleterious effects of IL-22 in these contexts.

  14. SOCS3 inhibits the pathological effects of IL-22 in non-melanoma skin tumor-derived keratinocytes

    PubMed Central

    Madonna, Stefania; Scarponi, Claudia; Morelli, Martina; Sestito, Rosanna; Scognamiglio, Pasqualina Liana; Marasco, Daniela; Albanesi, Cristina

    2017-01-01

    Basal cell carcinomas (BCC) and squamous-cell carcinomas (SCC) are common malignancies in humans, caused by neoplastic transformation of keratinocytes of the basal or suprabasal layers of epidermis, respectively. Tumor-infiltrating lymphocytes (TILs) are frequently found in BCC and SCC, and functionally promote epithelial carcinogenesis. TILs secreting IL-22, in particular, participate to BCC and SCC growth by inducing keratinocyte proliferation and migration, as well as the expression of inflammatory, anti-apoptotic and pro-angiogenic genes. In this study, we identified SOCS3 as a valid candidate to be manipulated for suppressing tumorigenic functions in BCC and SCC. We found that SOCS3 and SOCS1 expression was reduced in vivo, in tumor lesions of BCC and SCC, as compared to other skin inflammatory conditions such as psoriasis, despite the high number of IL-22-secreting TILs. Moreover, IL-22 was not able to induce in vitro the transcriptional expression of SOCS3 in BCC-or SCC-derived keratinocytes, contrarily to healthy cells. Aimed at rescuing SOCS3 activity in these tumor contexts, a SOCS3-derived peptide, named KIR-ESS, was synthesized, and its ability in suppressing IL-22-induced responses was evaluated in healthy and transformed keratinocytes. We found that KIR-ESS peptide efficiently suppressed the IL-22 molecular signaling in keratinocytes, by acting on STAT3 and Erk1/2 cascade, as well as on the expression of STAT3-dependent downstream genes. Interestingly, after treatment with peptide, both healthy and transformed keratinocytes could no longer aberrantly proliferate and migrate in response to IL-22. Finally, treatment of athymic nude mice bearing SCC xenografts with KIR-ESS peptide concomitantly reduced tumor growth and activated STAT3 levels. As a whole, these data provides the rationale for the use in BCC and SCC skin tumors of SOCS3 mimetics, being able to inhibit the deleterious effects of IL-22 in these contexts. PMID:28445952

  15. Oral keratinocyte stem/progenitor cells: specific markers, molecular signaling pathways and potential uses.

    PubMed

    Calenic, Bogdan; Greabu, Maria; Caruntu, Constantin; Tanase, Cristiana; Battino, Maurizio

    2015-10-01

    Oral keratinocyte stem cells reside in the basal layers of the oral epithelium, representing a minor population of cells with a great potential to self-renew and proliferate over the course of their lifetime. As a result of the potential uses of oral keratinocyte stem cells in regenerative medicine and the key roles they play in tissue homeostasis, inflammatory conditions, wound healing and tumor initiation and progression, intense scientific efforts are currently being undertaken to identify, separate and reprogram these cells. Although currently there is no specific marker that can characterize and isolate oral keratinocyte stem cells, several suggestions have been made. Thus, different stem/progenitor-cell subpopulations have been categorized based on combinations of positive and/or negative membrane-surface markers, which include integrins, clusters of differentiation and cytokeratins. Important advances have also been made in understanding the molecular pathways that govern processes such as self-renewal, differentiation, proliferation, wound healing and programmed cell death. A thorough understanding of stem-cell biology and the molecular players that govern cellular fate is paramount in the quest for using stem-cell-derived therapies in the treatment of various oral pathologies. The current review focuses on recent advances in understanding the molecular signaling pathways coordinating the behavior of these cells and in identifying suitable markers used for their isolation and characterization. Special emphasis will also be placed on the roles played by oral keratinocyte stem and progenitor cells in normal and diseased oral tissues and on their potential uses in the fields of general medicine and dentistry.

  16. Stereotyped distribution of proliferating keratinocytes in disorders affecting the epidermis

    SciTech Connect

    Pierard-Franchimont, C.; Pierard, G.E.

    1989-06-01

    We used the technique of autoradiography after incorporation of tritiated thymidine (/sup 3/H-TdR) to evaluate keratinocyte proliferation in basal, epibasal, and other epidermal layers in 30 diseases affecting the epidermis. The number and proportion of /sup 3/H-TdR-labeled keratinocytes were counted in the different layers of the epidermis. Significant correlations were found between the proliferative indices of the different epidermal layers. Such links indicate that the epidermis responds in a rather stereotyped way to various pathological conditions. There exists some regulation in the distribution, number, and proportion of /sup 3/H-TdR-labeled keratinocytes in the various layers of the epidermis.

  17. Evaluation of microRNA expression in head and neck squamous cell carcinoma cell lines and in primary culture of oral keratinocytes.

    PubMed

    Andreghetto, Flavia Maziero; Klingbeil, Maria Fatima Guarizo; Soares, Renata Machado; Sitnik, Roberta; Pinto Junior, Décio Dos Santos; Mathor, Monica Beatriz; Nunes, Fabio Daumas; Severino, Patricia

    2011-12-01

    Functional in vitro studies are fundamental to understand the role of microRNAs, small non coding RNA molecules that function as post-transcriptional regulators, in cancer. The objective of this study was to determine the applicability of head and neck squamous cell carcinoma cell lines and human oral keratinocytes as models for functional studies on microRNAs previously identified as deregulated in head and neck squamous cell carcinomas. The expression level of four microRNAs was assessed in cell lines and in primary cultures of oral keratinocytes using specific real-time polymerase chain reactions. The identity of oral squamous cell carcinoma cell lines was confirmed by means of STR (short tandem repeats) profiling. The possible impact of feeder-layer gene expression in global microRNA expression results from keratinocyte primary culture was also evaluated. Significant differences in microRNA gene expression were observed among squamous cell carcinoma cell lines, particularly among cells lines from distinct subsites, as well as between primary culture of human keratinocytes and immortalized keratinocyte cell lines. Primary cultures of human keratinocytes and diverse tumor cell lines are relatively easy to obtain. However, each cell model possesses a characteristic phenotype; whereas one may be useful for a specific study, it may be inappropriate for another. Therefore, it is imperative that suitable cell lines are cautiously selected for functional studies in cancer.

  18. A decorin-deficient matrix affects skin chondroitin/dermatan sulfate levels and keratinocyte function

    PubMed Central

    Nikolovska, Katerina; Renke, Jana K.; Jungmann, Oliver; Grobe, Kay; Iozzo, Renato V.; Zamfir, Alina D.; Seidler, Daniela G.

    2016-01-01

    Decorin is a small leucine-rich proteoglycan harboring a single glycosaminoglycan chain, which, in skin, is mainly composed of dermatan sulfate (DS). Mutant mice with targeted disruption of the decorin gene (Dcn−/−) exhibit an abnormal collagen architecture in the dermis and reduced tensile strength, collectively leading to a skin fragility phenotype. Notably, Ehlers-Danlos patients with mutations in enzymes involved in the biosynthesis of DS display a similar phenotype, and recent studies indicate that DS is involved in growth factor binding and signaling. To determine the impact of the loss of DS-decorin in the dermis, we analyzed the glycosaminoglycan content of Dcn−/− and wild-type mouse skin. The total amount of chondroitin/dermatan sulfate (CS/DS) was increased in the Dcn−/− skin, but was overall less sulfated with a significant reduction in bisulfated ΔDiS2,X (X=4 or 6) disaccharide units, due to the reduced expression of uronyl 2-O sulfotransferase (Ust). With increasing age, sulfation declined; however, Dcn−/− CS/DS was constantly undersulfated vis-à-vis wild-type. Functionally, we found altered fibroblast growth factor (Fgf)-7 and -2 binding due to changes in the micro-heterogeneity of skin Dcn−/− CS/DS. To better delineate the role of decorin, we used a 3D Dcn−/− fibroblast cell culture model. We found that the CS/DS extracts of wild-type and Dcn−/− fibroblasts were similar to the skin sugars, and this correlated with the lack of uronyl 2-O sulfotransferase in the Dcn−/− fibroblasts. Moreover, Ffg7 binding to total CS/DS was attenuated in the Dcn−/− samples. Surprisingly, wild-type CS/DS significantly reduced the binding of Fgf7 to keratinocytes in concentration dependent manner unlike the Dcn−/− CS/DS that only affected the binding at higher concentrations. Although binding to cell-surfaces was quite similar at higher concentrations, keratinocyte proliferation was differentially affected. Higher concentration of

  19. Gene network dynamics controlling keratinocyte migration

    PubMed Central

    Busch, Hauke; Camacho-Trullio, David; Rogon, Zbigniew; Breuhahn, Kai; Angel, Peter; Eils, Roland; Szabowski, Axel

    2008-01-01

    Translation of large-scale data into a coherent model that allows one to simulate, predict and control cellular behavior is far from being resolved. Assuming that long-term cellular behavior is reflected in the gene expression kinetics, we infer a dynamic gene regulatory network from time-series measurements of DNA microarray data of hepatocyte growth factor-induced migration of primary human keratinocytes. Transferring the obtained interactions to the level of signaling pathways, we predict in silico and verify in vitro the necessary and sufficient time-ordered events that control migration. We show that pulse-like activation of the proto-oncogene receptor Met triggers a responsive state, whereas time sequential activation of EGF-R is required to initiate and maintain migration. Context information for enhancing, delaying or stopping migration is provided by the activity of the protein kinase A signaling pathway. Our study reveals the complex orchestration of multiple pathways controlling cell migration. PMID:18594517

  20. Aldose reductase in keratinocytes attenuates cellular apoptosis and senescence induced by UV radiation.

    PubMed

    Kang, Eun Sil; Iwata, Kazumi; Ikami, Kanako; Ham, Sun Ah; Kim, Hye Jung; Chang, Ki Churl; Lee, Jae Heun; Kim, Jae-Hwan; Park, Soo-Bong; Kim, Jin-Hoi; Yabe-Nishimura, Chihiro; Seo, Han Geuk

    2011-03-15

    Although aldose reductase (AR) has been implicated in the cellular response to oxidative stress, the role of AR in ultraviolet-B (UVB)-induced cellular injury has not been investigated. Here, we show that an increased expression of AR in human keratinocytes modulates UVB-induced apoptotic cell death and senescence. Overexpression of AR in HaCaT cells significantly attenuated UVB-induced cellular damage and apoptosis, with a decreased generation of reactive oxygen species (ROS) and aldehydes. Ablation of AR with small interfering RNA or inhibition of AR activity abolished these effects. We also show that increased AR activity suppressed UVB-induced activation of the p38 and c-Jun N-terminal kinases, but did not affect the extracellular signal-regulated kinase and phosphatidylinositol 3-kinase pathways. Similarly, UVB-induced translocation of Bax and Bcl-2 to mitochondria and cytosol, respectively, was markedly attenuated in cells overexpressing AR. Knockdown or inhibition of AR activity in primary cultured keratinocytes enhanced UVB-induced cellular senescence and increased the level of a cell-cycle regulatory protein, p53. Finally, cellular apoptosis induced by UVB radiation was significantly reduced in the epidermis of transgenic mice overexpressing human AR. These findings suggest that AR plays an important role in the cellular response to oxidative stress by sequestering ROS and reactive aldehydes generated in keratinocytes. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Scanning Ion Conductance Microscopy of Live Keratinocytes

    NASA Astrophysics Data System (ADS)

    Hegde, V.; Mason, A.; Saliev, T.; Smith, F. J. D.; McLean, W. H. I.; Campbell, P. A.

    2012-07-01

    Scanning ion conductance microscopy (SICM) is perhaps the least well known technique from the scanning probe microscopy (SPM) family of instruments. As with its more familiar counterpart, atomic force microscopy (AFM), the technique provides high-resolution topographic imaging, with the caveat that target structures must be immersed in a conducting solution so that a controllable ion current may be utilised as the basis for feedback. In operation, this non-contact characteristic of SICM makes it ideal for the study of delicate structures, such as live cells. Moreover, the intrinsic architecture of the instrument, incorporating as it does, a scanned micropipette, lends itself to combination approaches with complementary techniques such as patch-clamp electrophysiology: SICM therefore boasts the capability for both structural and functional imaging. For the present observations, an ICnano S system (Ionscope Ltd., Melbourn, UK) operating in 'hopping mode' was used, with the objective of assessing the instrument's utility for imaging live keratinocytes under physiological buffers. In scans employing cultured HaCaT cells (spontaneously immortalised, human keratinocytes), we compared the qualitative differences of live cells imaged with SICM and AFM, and also with their respective counterparts after chemical fixation in 4% paraformaldehyde. Characteristic surface microvilli were particularly prominent in live cell imaging by SICM. Moreover, time lapse SICM imaging on live cells revealed that changes in the pattern of microvilli could be tracked over time. By comparison, AFM imaging on live cells, even at very low contact forces (

  2. The impact of extracellular syntaxin4 on HaCaT keratinocyte behavior

    SciTech Connect

    Kadono, Nanako; Miyazaki, Takafumi; Okugawa, Yoji; Nakajima, Kiichiro; Hirai, Yohei

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer A subpopulation of syntaxin4 localizes extracellularly in the keratinocytes. Black-Right-Pointing-Pointer Epimorphin and syntaxin4 confer the resistance to the oxidative stress. Black-Right-Pointing-Pointer Epimorphin suppresses and syntaxin4 accelerates the CCE formation. Black-Right-Pointing-Pointer The antagonistic peptide to syntaxin4 blocks the syntaxin4-dependent CCE formation. -- Abstract: Syntaxin4 belongs to t-SNARE protein family and functions as a vesicular fusion mediator in the plasma membrane in a wide variety of cell types. This protein resembles another family member, epimorphin, a subpopulation of which has been shown to be secreted extracellularly in order to exert signaling functions. Here, we demonstrate the secretion of syntaxin4 via a non-classical pathway and its extracellular functions by using the functionally normal keratinocyte HaCaT. Extracellularly presented syntaxin4 appeared to elicit many cell responses similar to epimorphin with an important exception: it clearly facilitated keratinocyte cornification. The circularized peptide ST4n1 was synthesized from the putative functional core of syntaxin4 (a.a. 103-108), which is equivalent to the previously generated antagonist of epimorphin, and neutralized this contradictory effect. Intriguingly, an epimorphin mutant (EP4M) in which the functional core was replaced by that of syntaxin4 behaved like epimorphin, which was again antagonized by ST4n1. Electrophoresis-based analyses demonstrated the distinct structure of syntaxin4 compared to epimorphin or EP4M. These results revealed, for the first time, the extracellular role of syntaxin4 and shed light on the division of the extracellular effects exerted by epimorphin and syntaxin4 on keratinocyte cornification.

  3. Modeling keratinocyte wound healing dynamics: Cell-cell adhesion promotes sustained collective migration.

    PubMed

    Nardini, John T; Chapnick, Douglas A; Liu, Xuedong; Bortz, David M

    2016-07-07

    The in vitro migration of keratinocyte cell sheets displays behavioral and biochemical similarities to the in vivo wound healing response of keratinocytes in animal model systems. In both cases, ligand-dependent Epidermal Growth Factor Receptor (EGFR) activation is sufficient to elicit collective cell migration into the wound. Previous mathematical modeling studies of in vitro wound healing assays assume that physical connections between cells have a hindering effect on cell migration, but biological literature suggests a more complicated story. By combining mathematical modeling and experimental observations of collectively migrating sheets of keratinocytes, we investigate the role of cell-cell adhesion during in vitro keratinocyte wound healing assays. We develop and compare two nonlinear diffusion models of the wound healing process in which cell-cell adhesion either hinders or promotes migration. Both models can accurately fit the leading edge propagation of cell sheets during wound healing when using a time-dependent rate of cell-cell adhesion strength. The model that assumes a positive role of cell-cell adhesion on migration, however, is robust to changes in the leading edge definition and yields a qualitatively accurate density profile. Using RNAi for the critical adherens junction protein, α-catenin, we demonstrate that cell sheets with wild type cell-cell adhesion expression maintain migration into the wound longer than cell sheets with decreased cell-cell adhesion expression, which fails to exhibit collective migration. Our modeling and experimental data thus suggest that cell-cell adhesion promotes sustained migration as cells pull neighboring cells into the wound during wound healing.

  4. Treatment with low-dose cytokines reduces oxidative-mediated injury in perilesional keratinocytes from vitiligo skin.

    PubMed

    Barygina, Victoria; Becatti, Matteo; Lotti, Torello; Moretti, Silvia; Taddei, Niccolò; Fiorillo, Claudia

    2015-08-01

    Vitiligo is a systemic dermatological disorder characterized by the loss of skin pigmentation due to melanocyte injury or aberrant functioning. Recent data underline its multifactorial etiology with significant involvement of autoimmune and redox alterations. The major role in vitiligo cellular immunity is displayed by augmented Th1 and Th17 and suppressed TREGs and Th2 lymphocyte populations. Our previous studies indicate a marked redox imbalance in perilesional ("PL", i.e. obtained from visibly unaffected skin surrounding the depigmented area in vitiligo patients) keratinocytes where the massive infiltration of inflammatory cells takes place. No defined therapy exists for vitiligo. Although a number of approaches have been used for the induction of TREGs and Th2 cells, they may be associated with significant off-target effects. In order to identify a targeted approach for vitiligo treatment we, first, aimed to investigate the possible source of ROS overproduction in PL keratinocytes. Second, we tested the effect of low-dose selected cytokines, on intra- and extracellular ROS production, cell viability and cell cycle of PL keratinocytes. The in vitro study was conducted on primary PL keratinocytes obtained from the skin of vitiligo patients in our previous studies. The activity of NADPH oxidase was measured on intact PL and control keratinocytes, treated or not with cytokines, by luminometric assay. The following cytokines were selected for PL keratinocytes treatment: IL-10 and IL-4 (produced by TREGs and Th2, respectively), basic fibroblasts growth factor (bFGF) and neuropeptide β-endorphin (modulating the cellular resistance to oxidative stress and the immune response, respectively). All cytokines were used at concentration of 10fg/ml and were prepared by sequential-kinetic-activation (SKA). Intracellular ROS production and cell cycle were analyzed by flow cytometry using H2DCFDA and propidium iodide dyes, respectively. Cell viability was measured by

  5. EphA2 proteomics in human keratinocytes reveals a novel association with afadin and epidermal tight junctions.

    PubMed

    Perez White, Bethany E; Ventrella, Rosa; Kaplan, Nihal; Cable, Calvin J; Thomas, Paul M; Getsios, Spiro

    2017-01-01

    EphA2 is a receptor tyrosine kinase that helps to maintain epidermal tissue homeostasis. A proximity-dependent biotin identification (BioID) approach was used to identify proteins in close proximity to EphA2 within primary human keratinocytes and three-dimensional (3D) reconstituted human epidermis (RHE) cultures to map a putative protein interaction network for this membrane receptor that exhibits a polarized distribution in stratified epithelia. Although a subset of known EphA2 interactors were identified in the BioID screen, >97% were uniquely detected in keratinocytes with over 50% of these vicinal proteins only present in 3D human epidermal culture. Afadin (AFDN), a cytoskeletal and junction-associated protein, was present in 2D and 3D keratinocyte cultures, and validated as a so-far-unknown EphA2-interacting protein. Loss of EphA2 protein disrupted the subcellular distribution of afadin and occludin in differentiated keratinocytes, leading to impairment of tight junctions. Collectively, these studies illustrate the use of the BioID approach in order to map receptor interaction networks in 3D human epithelial cultures, and reveal a positive regulatory role for EphA2 in the organization of afadin and epidermal tight junctions. © 2017. Published by The Company of Biologists Ltd.

  6. Advances in keratinocyte delivery in burn wound care.

    PubMed

    Ter Horst, Britt; Chouhan, Gurpreet; Moiemen, Naiem S; Grover, Liam M

    2017-06-28

    This review gives an updated overview on keratinocyte transplantation in burn wounds concentrating on application methods and future therapeutic cell delivery options with a special interest in hydrogels and spray devices for cell delivery. To achieve faster re-epithelialisation of burn wounds, the original autologous keratinocyte culture and transplantation technique was introduced over 3 decades ago. Application types of keratinocytes transplantation have improved from cell sheets to single-cell solutions delivered with a spray system. However, further enhancement of cell culture, cell viability and function in vivo, cell carrier and cell delivery systems remain themes of interest. Hydrogels such as chitosan, alginate, fibrin and collagen are frequently used in burn wound care and have advantageous characteristics as cell carriers. Future approaches of keratinocyte transplantation involve spray devices, but optimisation of application technique and carrier type is necessary. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. A synthetic isoflavone, DCMF, promotes human keratinocyte migration by activating Src/FAK signaling pathway.

    PubMed

    Sophors, Phorl; Kim, Young Mee; Seo, Ga Young; Huh, Jung-Sik; Lim, Yoongho; Koh, Dong Soo; Cho, Moonjae

    2016-04-01

    Flavonoids are plant secondary compounds with various pharmacological properties. We previously showed that one flavonoid, trimethoxyisoflavone (TMF), could promote wound healing by inducing keratinocyte migration. Here, we screened TMF derivatives for enhanced activity and identified one compound, 2',6 Dichloro-7-methoxyisoflavone (DCMF), as most effective at promoting migration in a scratch wound assay. Using the HaCaT keratinocyte cell line, we found DCMF treatment induced phosphorylation of both FAK and Src, and increased keratinocyte migration. DCMF-induced Src kinase could promote activation of ERK, AKT, and p38 signaling pathways, and DCMF-induced secretion of matrix metalloproteinase (MMP)-2 and MMP-9 and partial epithelial-mesenchymal transition (EMT), whereas Src inhibition abolished DCMF-induced EMT. Using an in vivo excisional wound model, we observed improved wound closure and re-epithelialization in DCMF-treated mice, as compared to controls. Collectively, our data demonstrate that DCMF induces cell migration and promotes wound healing through activation of Src/FAK, ERK, AKT, and p38 MAPK signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. An alternatively spliced IL-15 isoform modulates abrasion-induced keratinocyte activation.

    PubMed

    Lee, Tsung-Lin; Chang, Mei-Ling; Lin, Yu-Jei; Tsai, Ming-Hsun; Chang, Yi-Hsuan; Chuang, Che-Ming; Chien, Yun; Sosinowski, Tomasz; Wang, Chih-Hsiu; Chen, Yi-Yuan; Lee, Chien-Kuo; Chen, Jau-Shiuh; Wang, Li-Fang; Kung, John T; Ku, Chia-Chi

    2015-05-01

    In a routine phenotype-driven screen, we identified a point mutation in exon 7 of the IL-15 gene in Pedigree 191 (deficient memory (DM)) of N-ethyl-N-nitrosourea mutagenized mice. The DM epidermis expressed an alternatively spliced IL-15 mRNA isoform, IL-15ΔE7, and a wild-type (WT) IL-15 isoform at comparable levels. Mechanical stimulation of DM skin or DM skin graft transplanted onto the WT host resulted in reduced keratinocyte activation and inhibition of neutrophil infiltration into the dermis, demonstrating that DM keratinocytes produced less inflammatory response to external stimulation. Ectopic expression of IL-15ΔE7 in WT skin prevented abrasion-induced epidermal thickening, blocked the accumulation of nuclear antigen Ki67(+) cells in the basal and the suprabasal cell layers, increased loricrin expression, and also increased keratinocyte CXCL1 and G-CSF production. IL-15ΔE7 also profoundly blocked neutrophil infiltration in SDS- or immiquimod (IMQ)-treated WT skin. Recombinant IL-15ΔE7 failed to activate STAT-5 and its downstream target bcl-2 expression. Our study points to IL-15ΔE7 as a potential therapeutic agent for treating neutrophilia-associated inflammatory skin disorders.

  9. Confluence switch signaling regulates ECM composition and the plasmin proteolytic cascade in keratinocytes.

    PubMed

    Botta, Adrien; Delteil, Frédéric; Mettouchi, Amel; Vieira, Andhira; Estrach, Soline; Négroni, Luc; Stefani, Caroline; Lemichez, E; Meneguzzi, Guerrino; Gagnoux-Palacios, Laurent

    2012-09-15

    In culture, cell confluence generates signals that commit actively growing keratinocytes to exit the cell cycle and differentiate to form a stratified epithelium. Using a comparative proteomic approach, we studied this 'confluence switch' and identified a new pathway triggered by cell confluence that regulates basement membrane (BM) protein composition by suppressing the uPA-uPAR-plasmin pathway. Indeed, confluence triggers adherens junction maturation and enhances TGF-β and activin A activity, resulting in increased deposition of PAI-1 and perlecan in the BM. Extracellular matrix (ECM)-accumulated PAI-1 suppresses the uPA-uPAR-plasmin pathway and further enhances perlecan deposition by inhibiting its plasmin-dependent proteolysis. We show that perlecan deposition in the ECM strengthens cell adhesion, inhibits keratinocyte motility and promotes additional accumulation of PAI-1 in the ECM at confluence. In agreement, during wound-healing, perlecan concentrates at the wound-margin, where BM matures to stabilize keratinocyte adhesion. Our results demonstrate that confluence-dependent signaling orchestrates not only growth inhibition and differentiation, but also controls ECM proteolysis and BM formation. These data suggest that uncontrolled integration of confluence-dependent signaling, might favor skin disorders, including tumorigenesis, not only by promoting cell hyperproliferation, but also by altering protease activity and deposition of ECM components.

  10. The M4 muscarinic receptor-selective effects on keratinocyte crawling locomotion.

    PubMed

    Chernyavsky, Alex I; Nguyen, Vu Thuong; Arredondo, Juan; Ndoye, Assane; Zia, Shaheen; Wess, Jürgen; Grando, Sergei A

    2003-03-28

    We have investigated how the cholinergic system of epidermal keratinocytes (KC) controls migratory function of these cells. Several molecular subtypes of muscarinic acetylcholine receptors (mAChRs) have been detected in KC. Early results suggested that M(4) is the predominant mAChR regulating cell motility. To determine muscarinic effects on lateral migration of KC, we used an agarose gel keratinocyte outgrowth system (AGKOS) which provides for measurements of the response of large cell populations (> 10(4) cells). Muscarine produced a dose-dependent stimulatory effect on cell migration (p < 0.05). This activity was abolished by atropine, which decreased migration distance when given alone. To identify the mAChR subtype(s) mediating these muscarinic effects, we substituted atropine with subtype-selective antagonists. Tropicamide (M(4)-selective) was more effective at decreasing the migration distance than pirenzepine and 4-DAMP at nanomolar concentrations. We then compared lateral migration of KC obtained from M(4) mAChR knockout mice with that of wild-type murine KC, using AGKOS. In the absence of M(4) mAChR, the migration distance of KC was significantly (p < 0.05) decreased. These results indicate that the M(4) mAChR plays a central role in mediating cholinergic control of keratinocyte migration by endogenous acetylcholine produced by these cells.

  11. In vitro differences of neonatal and later postnatal keratinocytes and dermal fibroblasts.

    PubMed

    Krejčí, E; Kodet, O; Szabo, P; Borský, J; Smetana, K; Grim, M; Dvořánková, B

    2015-01-01

    Skin healing process is postnatally always associated with scarring of various extent. Based on the clinical experience of plastic surgeons, the healing after lip cleft reconstruction is surprisingly almost scar-less when it is carried out within a few first days after birth. This phenomenon is not seen in delayed cases. In order to decipher causative mechanism, we have isolated and studied principal cell populations, keratinocytes and fibroblast, from residual tissue samples after reconstructive operation (N=39) performed at various age (0-9 years). These cells play the pivotal role in the healing and that is why we focused on description of their phenotype and also functionality with respect to age. We have identified a population of remarkably small cells in explants from newborns (day 0-10). These small cells were strongly positive for markers of low differentiated keratinocytes, keratin-8 and -19, and moreover also for vimentin. In the explants cultures from older babies this population was missing. Fibroblasts from newborns and older patients differed namely in terms of nestin expression and also in the production of extracellular matrix components. We conclude that in vitro described properties of keratinocytes and fibroblasts in newborns could participate on the almost scar-less wound healing in earliest neonatal period.

  12. Focal Contact and Hemidesmosomal Proteins in Keratinocyte Migration and Wound Repair

    PubMed Central

    Hopkinson, Susan B.; Hamill, Kevin J.; Wu, Yvonne; Eisenberg, Jessica L.; Hiroyasu, Sho; Jones, Jonathan C.R.

    2014-01-01

    Significance: During wound healing of the skin, keratinocytes should move over while still adhering to their underlying matrix. Thus, mechanistic insights into the wound-healing process require an understanding of the forms and functions of keratinocyte matrix adhesions, specifically focal contacts and hemidesmosomes, and their components. Recent Advances: Although the structure and composition of focal contacts and hemidesmosomes are relatively well defined, the functions of their components are only now being delineated using mouse genetic models and knockdown approaches in cell culture systems. Remarkably, both focal contact and hemidesmosomal proteins appear involved in determining the speed and directional migration of epidermal cells by modulating several signal transduction pathways. Critical Issues: Although many publications are centered on focal contacts, their existence in tissues such as the skin is controversial. Nonetheless, focal contact proteins are central to mechanisms that regulate skin cell motility. Conversely, hemidesmosomes have been identified in intact skin but whether hemidesmosomal components play a positive regulatory function in keratinocyte motility remains debated in the field. Future Directions: Defective wound healing is a developing problem in the aged, hospitalized and diabetic populations. Hence, deriving new insights into the molecular roles of matrix adhesion proteins in wound healing is a prerequisite to the development of novel therapeutics to enhance tissue repair and regeneration. PMID:24669360

  13. Caspase-1 activity is required for UVB-induced apoptosis of human keratinocytes.

    PubMed

    Sollberger, Gabriel; Strittmatter, Gerhard E; Grossi, Serena; Garstkiewicz, Martha; Auf dem Keller, Ulrich; French, Lars E; Beer, Hans-Dietmar

    2015-05-01

    Caspase-1 has a crucial role in innate immunity as the protease activates the proinflammatory cytokine prointerleukin(IL)-1β. Furthermore, caspase-1 induces pyroptosis, a lytic form of cell death that supports inflammation. Activation of caspase-1 occurs in multi-protein complexes termed inflammasomes, which assemble upon sensing of stress signals. In the skin and in skin-derived keratinocytes, UVB irradiation induces inflammasome-dependent IL-1 secretion and sunburn. Here we present evidence that caspase-1 and caspase-4 are required for UVB-induced apoptosis. In UVB-irradiated human primary keratinocytes, apoptosis occurs significantly later than inflammasome activation but depends on caspase-1 activity. However, it proceeds independently of inflammasome activation. By a proteomics approach, we identified the antiapoptotic Bap31 as a putative caspase-1 substrate. Caspase-1-dependent apoptosis is possibly a recent process in evolution as it was not detected in mice. These results suggest a protective role of caspase-1 in keratinocytes during UVB-induced skin cancer development through the induction of apoptosis.

  14. Using hierarchical cluster models to systematically identify groups of jobs with similar occupational questionnaire response patterns to assist rule-based expert exposure assessment in population-based studies.

    PubMed

    Friesen, Melissa C; Shortreed, Susan M; Wheeler, David C; Burstyn, Igor; Vermeulen, Roel; Pronk, Anjoeka; Colt, Joanne S; Baris, Dalsu; Karagas, Margaret R; Schwenn, Molly; Johnson, Alison; Armenti, Karla R; Silverman, Debra T; Yu, Kai

    2015-05-01

    Rule-based expert exposure assessment based on questionnaire response patterns in population-based studies improves the transparency of the decisions. The number of unique response patterns, however, can be nearly equal to the number of jobs. An expert may reduce the number of patterns that need assessment using expert opinion, but each expert may identify different patterns of responses that identify an exposure scenario. Here, hierarchical clustering methods are proposed as a systematic data reduction step to reproducibly identify similar questionnaire response patterns prior to obtaining expert estimates. As a proof-of-concept, we used hierarchical clustering methods to identify groups of jobs (clusters) with similar responses to diesel exhaust-related questions and then evaluated whether the jobs within a cluster had similar (previously assessed) estimates of occupational diesel exhaust exposure. Using the New England Bladder Cancer Study as a case study, we applied hierarchical cluster models to the diesel-related variables extracted from the occupational history and job- and industry-specific questionnaires (modules). Cluster models were separately developed for two subsets: (i) 5395 jobs with ≥1 variable extracted from the occupational history indicating a potential diesel exposure scenario, but without a module with diesel-related questions; and (ii) 5929 jobs with both occupational history and module responses to diesel-relevant questions. For each subset, we varied the numbers of clusters extracted from the cluster tree developed for each model from 100 to 1000 groups of jobs. Using previously made estimates of the probability (ordinal), intensity (µg m(-3) respirable elemental carbon), and frequency (hours per week) of occupational exposure to diesel exhaust, we examined the similarity of the exposure estimates for jobs within the same cluster in two ways. First, the clusters' homogeneity (defined as >75% with the same estimate) was examined compared

  15. Using Hierarchical Cluster Models to Systematically Identify Groups of Jobs With Similar Occupational Questionnaire Response Patterns to Assist Rule-Based Expert Exposure Assessment in Population-Based Studies

    PubMed Central

    Friesen, Melissa C.; Shortreed, Susan M.; Wheeler, David C.; Burstyn, Igor; Vermeulen, Roel; Pronk, Anjoeka; Colt, Joanne S.; Baris, Dalsu; Karagas, Margaret R.; Schwenn, Molly; Johnson, Alison; Armenti, Karla R.; Silverman, Debra T.; Yu, Kai

    2015-01-01

    Objectives: Rule-based expert exposure assessment based on questionnaire response patterns in population-based studies improves the transparency of the decisions. The number of unique response patterns, however, can be nearly equal to the number of jobs. An expert may reduce the number of patterns that need assessment using expert opinion, but each expert may identify different patterns of responses that identify an exposure scenario. Here, hierarchical clustering methods are proposed as a systematic data reduction step to reproducibly identify similar questionnaire response patterns prior to obtaining expert estimates. As a proof-of-concept, we used hierarchical clustering methods to identify groups of jobs (clusters) with similar responses to diesel exhaust-related questions and then evaluated whether the jobs within a cluster had similar (previously assessed) estimates of occupational diesel exhaust exposure. Methods: Using the New England Bladder Cancer Study as a case study, we applied hierarchical cluster models to the diesel-related variables extracted from the occupational history and job- and industry-specific questionnaires (modules). Cluster models were separately developed for two subsets: (i) 5395 jobs with ≥1 variable extracted from the occupational history indicating a potential diesel exposure scenario, but without a module with diesel-related questions; and (ii) 5929 jobs with both occupational history and module responses to diesel-relevant questions. For each subset, we varied the numbers of clusters extracted from the cluster tree developed for each model from 100 to 1000 groups of jobs. Using previously made estimates of the probability (ordinal), intensity (µg m−3 respirable elemental carbon), and frequency (hours per week) of occupational exposure to diesel exhaust, we examined the similarity of the exposure estimates for jobs within the same cluster in two ways. First, the clusters’ homogeneity (defined as >75% with the same estimate

  16. Cellular and molecular facets of keratinocyte reepithelization during wound healing

    SciTech Connect

    Santoro, Massimo M. . E-mail: msantoro@unipmn.it; Gaudino, Giovanni

    2005-03-10

    Cutaneous wound healing is a highly coordinated physiological process that rapidly and efficiently restores skin integrity. Reepithelization is a crucial step during wound healing, which involves migration and proliferation of keratinocytes to cover the denuded dermal surface. Recent advances in wound biology clarified the molecular pathways governing keratinocyte reepithelization at wound sites. These new findings point towards novel therapeutic targets and provide suitable methods to promote faster tissue regeneration in vivo.

  17. Knockdown of PKD1 in normal human epidermal keratinocytes increases mRNA expression of keratin 10 and involucrin: early markers of keratinocyte differentiation.

    PubMed

    Ivanova, Petya; Atanasova, Ganka; Poumay, Yves; Mitev, Vanyo

    2008-03-01

    Subconfluent normal human keratinocytes exhibit autonomous (autocrine growth factor driven) proliferation and express the specific markers for keratinocyte proliferation K5 (keratin 5) and K14 (keratin 14). Utilizing this model the effects of PKD1 (Protein kinase D1) knockdown on activation of differentiation was studied. siRNA approach was applied to achieve specific knockdown of PKD1 and the mRNA levels of different keratinocyte markers -- K14 and PCNA (markers of basal proliferating keratinocytes), involucrin and K10 (early differentiation markers) were analyzed. Treatment of cultured keratinocytes with siRNA for PKD1 resulted in reduction of mRNA levels of PKD1, altered cell phenotype and promotion of keratinocyte differentiation, demonstrated by increased expression of involucrin and K10 mRNAs. No significant changes in K14 mRNA expression levels were detected, but the expression of PCNA mRNA was markedly diminished. This study was the first to show that mRNA expression of PKD1 in subconfluent normal human keratinocytes is very low, the PKD1 mRNA levels were more than 8-fold lower than the same ones in hTert keratinocytes. These findings suggest antidifferentiative role of PKD1 in normal human keratinocytes, contrary to the prodiferentiative role of PKD1 in human hTert keratinocytes. We came to the conclusion that there are differences between transduction pathways involving PKD1 in primary human keratinocyte cultures and these in immortalized hTert keratinocytes.

  18. Polarized Integrin Mediates Human Keratinocyte Adhesion to Basal Lamina

    NASA Astrophysics Data System (ADS)

    de Luca, Michele; Tamura, Richard N.; Kajiji, Shama; Bondanza, Sergio; Rossino, Paola; Cancedda, Ranieri; Carlo Marchisio, Pier; Quaranta, Vito

    1990-09-01

    Epithelial cell interactions with matrices are critical to tissue organization. Indirect immunofluorescence and immunoprecipitations of cell lysates prepared from stratified cultures of human epidermal cells showed that the major integrins expressed by keratinocytes are α_Eβ_4 (also called α_6β_4) and α_2β_1/α_3β_1. The α_Eβ_4 integrin is localized at the surface of basal cells in contact with the basement membrane, whereas α_2β_1/ α_3β_1 integrins are absent from the basal surface and are localized only on the lateral surface of basal and spinous keratinocytes. Anti-β_4 antibodies potently inhibited keratinocyte adhesion to matrigel or purified laminin, whereas anti-β_1 antibodies were ineffective. Only anti-β_4 antibodies were able to detach established keratinocyte colonies. These data suggest that α_Eβ_4 mediates keratinocyte adhesion to basal lamina, whereas the β_1 subfamily is involved in cell-cell adhesion of keratinocytes.

  19. Functional differences between neonatal and adult fibroblasts and keratinocytes: Donor age affects epithelial-mesenchymal crosstalk in vitro

    PubMed Central

    Mateu, Rosana; Živicová, Veronika; Krejčí, Eliška Drobná; Grim, Miloš; Strnad, Hynek; Vlček, Čestmír; Kolář, Michal; Lacina, Lukáš; Gál, Peter; Borský, Jiří; Smetana, Karel; Dvořánková, Barbora

    2016-01-01

    Clinical evidence suggests that healing is faster and almost scarless at an early neonatal age in comparison with that in adults. In this study, the phenotypes of neonatal and adult dermal fibroblasts and keratinocytes (nestin, smooth muscle actin, keratin types 8, 14 and 19, and fibronectin) were compared. Furthermore, functional assays (proliferation, migration, scratch wound closure) including mutual epithelial-mesenchymal interactions were also performed to complete the series of experiments. Positivity for nestin and α smooth muscle actin was higher in neonatal fibroblasts (NFs) when compared with their adult counterparts (adult fibroblasts; AFs). Although the proliferation of NFs and AFs was similar, they significantly differed in their migration potential. The keratinocyte experiments revealed small, poorly differentiated cells (positive for keratins 8, 14 and 19) in primary cultures isolated from neonatal tissues. Moreover, the neonatal keratinocytes exhibited significantly faster rates of healing the experimentally induced in vitro defects in comparison with adult cells. Notably, the epithelial/mesenchymal interaction studies showed that NFs in co-culture with adult keratinocytes significantly stimulated the adult epithelial cells to acquire the phenotype of small, non-confluent cells expressing markers of poor differentiation. These results indicate the important differences between neonatal and adult cells that may be associated with improved wound healing during the early neonatal period. PMID:27513730

  20. Human allogeneic keratinocytes cultured on acellular xenodermis: the use in healing of burns and other skin defects.

    PubMed

    Matousková, Eva; Broz, Ludomír; Stolbová, Vlasta; Klein, Leo; Konigová, Radana; Veselý, Pavel

    2006-01-01

    The tissue engineered skin should be composed of both dermal and epidermal layers. We combined cultured human allogeneic keratinocytes with acellular xenodermis prepared from pig xenografts. The resulting composite skin was termed recombined human/pig skin (RHPS), and could be cultured in both, undifferentiated and differentiated phenotype. The undifferentiated RHPS was grown submerged and formed 1-2 layers of keratinocytes. The differentiated phenotype (D-RHPS) was grown at the air-liquid interface and formed 5-20 cell layers similar to the normal epidermis, including the granular and horny layers. Undifferentiated RHPS has skin-like consistency and has been successfully used for treatment of burns and skin defects using "upside-down" application. Donor sites and deep dermal burn wounds prepared by tangential excision or deep dermabrasion grafted with RHPS healed in the course of about one week after keratinocyte transplantation. Simple acellular xenodermis without keratinocytes can also be used as temporary cover for donor sites, small to medium leg ulcers and other skin defects. Xenodermis can be fully sterilized and stored at the room temperature.

  1. Functional differences between neonatal and adult fibroblasts and keratinocytes: Donor age affects epithelial-mesenchymal crosstalk in vitro.

    PubMed

    Mateu, Rosana; Živicová, Veronika; Krejčí, Eliška Drobná; Grim, Miloš; Strnad, Hynek; Vlček, Čestmír; Kolář, Michal; Lacina, Lukáš; Gál, Peter; Borský, Jiří; Smetana, Karel; Dvořánková, Barbora

    2016-10-01

    Clinical evidence suggests that healing is faster and almost scarless at an early neonatal age in comparison with that in adults. In this study, the phenotypes of neonatal and adult dermal fibroblasts and keratinocytes (nestin, smooth muscle actin, keratin types 8, 14 and 19, and fibronectin) were compared. Furthermore, functional assays (proliferation, migration, scratch wound closure) including mutual epithelial‑mesenchymal interactions were also performed to complete the series of experiments. Positivity for nestin and α smooth muscle actin was higher in neonatal fibroblasts (NFs) when compared with their adult counterparts (adult fibroblasts; AFs). Although the proliferation of NFs and AFs was similar, they significantly differed in their migration potential. The keratinocyte experiments revealed small, poorly differentiated cells (positive for keratins 8, 14 and 19) in primary cultures isolated from neonatal tissues. Moreover, the neonatal keratinocytes exhibited significantly faster rates of healing the experimentally induced in vitro defects in comparison with adult cells. Notably, the epithelial/mesenchymal interaction studies showed that NFs in co-culture with adult keratinocytes significantly stimulated the adult epithelial cells to acquire the phenotype of small, non-confluent cells expressing markers of poor differentiation. These results indicate the important differences between neonatal and adult cells that may be associated with improved wound healing during the early neonatal period.

  2. Vimentin coordinates fibroblast proliferation and keratinocyte differentiation in wound healing via TGF-β–Slug signaling

    PubMed Central

    Cheng, Fang; Shen, Yue; Mohanasundaram, Ponnuswamy; Lindström, Michelle; Ivaska, Johanna; Ny, Tor; Eriksson, John E.

    2016-01-01

    Vimentin has been shown to be involved in wound healing, but its functional contribution to this process is poorly understood. Here we describe a previously unrecognized function of vimentin in coordinating fibroblast proliferation and keratinocyte differentiation during wound healing. Loss of vimentin led to a severe deficiency in fibroblast growth, which in turn inhibited the activation of two major initiators of epithelial–mesenchymal transition (EMT), TGF-β1 signaling and the Zinc finger transcriptional repressor protein Slug, in vimentin-deficient (VIM−/−) wounds. Correspondingly, VIM−/− wounds exhibited loss of EMT-like keratinocyte activation, limited keratinization, and slow reepithelialization. Furthermore, the fibroblast deficiency abolished collagen accumulation in the VIM−/− wounds. Vimentin reconstitution in VIM−/− fibroblasts restored both their proliferation and TGF-β1 production. Similarly, restoring paracrine TGF-β–Slug–EMT signaling reactivated the transdifferentiation of keratinocytes, reviving their migratory properties, a critical feature for efficient healing. Our results demonstrate that vimentin orchestrates the healing by controlling fibroblast proliferation, TGF-β1–Slug signaling, collagen accumulation, and EMT processing, all of which in turn govern the required keratinocyte activation. PMID:27466403

  3. Human eccrine sweat gland cells turn into melanin-uptaking keratinocytes in dermo-epidermal skin substitutes.

    PubMed

    Böttcher-Haberzeth, Sophie; Biedermann, Thomas; Pontiggia, Luca; Braziulis, Erik; Schiestl, Clemens; Hendriks, Bart; Eichhoff, Ossia M; Widmer, Daniel S; Meuli-Simmen, Claudia; Meuli, Martin; Reichmann, Ernst

    2013-02-01

    Recently, Biedermann et al. (2010) have demonstrated that human eccrine sweat gland cells can develop a multilayered epidermis. The question still remains whether these cells can fulfill exclusive and very specific functional properties of epidermal keratinocytes, such as the incorporation of melanin, a feature absent in sweat gland cells. We added human melanocytes to eccrine sweat gland cells to let them develop into an epidermal analog in vivo. The interaction between melanocytes and sweat gland-derived keratinocytes was investigated. The following results were gained: (1) macroscopically, a pigmentation of the substitutes was seen 2-3 weeks after transplantation; (2) we confirmed the development of a multilayered, stratified epidermis with melanocytes distributed evenly throughout the basal layer; (3) melanocytic dendrites projected to suprabasal layers; and (4) melanin was observed to be integrated into former eccrine sweat gland cells. These skin substitutes were similar or equal to skin substitutes cultured from human epidermal keratinocytes. The only differences observed were a delay in pigmentation and less melanin uptake. These data suggest that eccrine sweat gland cells can form a functional epidermal melanin unit, thereby providing striking evidence that they can assume one of the most characteristic keratinocyte properties.

  4. The lysosomal cysteine protease cathepsin L regulates keratinocyte proliferation by control of growth factor recycling.

    PubMed

    Reinheckel, Thomas; Hagemann, Sascha; Dollwet-Mack, Susanne; Martinez, Elke; Lohmüller, Tobias; Zlatkovic, Gordana; Tobin, Desmond J; Maas-Szabowski, Nicole; Peters, Christoph

    2005-08-01

    Mice deficient for cathepsin L (CTSL) show epidermal hyperplasia due to a hyperproliferation of basal keratinocytes. Here we show that the critical function of CTSL in the skin is keratinocyte specific. This is revealed by transgenic re-expression of CTSL in the keratinocytes of ctsl-/- mice, resulting in a rescue of the ctsl-/- skin phenotype. Cultivation of primary mouse keratinocytes with fibroblast- and keratinocyte-conditioned media, as well as heterologous organotypic co-cultures of mouse fibroblasts and human keratinocytes, showed that the altered keratinocyte proliferation is caused primarily by CTSL-deficiency in keratinocytes. In the absence of EGF, wild type and CTSL-knockout keratinocytes proliferate with the same rates, while in presence of EGF, ctsl-/- keratinocytes showed enhanced proliferation compared with controls. Internalization and degradation of radioactively labeled EGF was identical in both ctsl-/- and ctsl+/+ keratinocytes. However, ctsl-/- keratinocytes recycled more EGF to the cell surface, where it is bound to the EGF-receptor, which is also more abundant in ctsl-/- cells. We conclude that the hyperproliferation of keratinocytes in CTSL-knockout mice is caused by an enhanced recycling of growth factors and growth factor receptors from the endosomes to the keratinocyte plasma membrane, which result in sustained growth stimulation.

  5. Actin filament dynamics impacts keratinocyte stem cell maintenance

    PubMed Central

    Nanba, Daisuke; Toki, Fujio; Matsushita, Natsuki; Matsushita, Sachi; Higashiyama, Shigeki; Barrandon, Yann

    2013-01-01

    Cultured human epidermal keratinocyte stem cells (holoclones) are crucial for regenerative medicine for burns and genetic disorders. In serial culture, holoclones progressively lose their proliferative capacity to become transient amplifying cells with limited growth (paraclones), a phenomenon termed clonal conversion. Although it negatively impacts the culture lifespan and the success of cell transplantation, little is known on the molecular mechanism underlying clonal conversion. Here, we show that holoclones and paraclones differ in their actin filament organization, with actin bundles distributed radially in holoclones and circumferentially in paraclones. Moreover, actin organization sets the stage for a differing response to epidermal growth factor (EGF), since EGF signalling induces a rapid expansion of colony size in holoclones and a significant reduction in paraclones. Furthermore, inhibition of PI3K or Rac1 in holoclones results in the reorganization of actin filaments in a pattern that is similar to that of paraclones. Importantly, continuous Rac1 inhibition in holoclones results in clonal conversion and reduction of growth potential. Together, our data connect loss of stem cells to EGF-induced colony dynamics governed by Rac1. PMID:23554171

  6. Human Keratinocytes have two interconvertible modes of proliferation

    PubMed Central

    Roshan, Amit; Murai, Kasumi; Fowler, Joanna; Simons, Benjamin D; Nikolaidou-Neokosmidou, Varvara; Jones, Philip H

    2016-01-01

    Summary Single stem cells, including those in human epidermis, have a remarkable ability to reconstitute tissues in vitro, but the cellular mechanisms that enable this are ill defined. We used live imaging to track the outcome of thousands of divisions in clonal cultures of primary human epidermal keratinocytes. Two modes of proliferation were seen. In ‘balanced’ mode, similar proportions of proliferating and differentiating cells were generated, achieving the ‘population asymmetry’ that sustains epidermal homeostasis in vivo. In ‘expanding’ mode, an excess of cycling cells was produced, generating large expanding colonies. Cells in expanding mode switched their behaviour to balanced mode once local confluence was attained. However when a confluent area is wounded in a scratch assay, cells near the scratch switch back to expanding mode until the defect is closed. We conclude that the ability of a single epidermal stem cell to reconstitute an epithelium is explained by two interconvertible modes of proliferation regulated by confluence. PMID:26641719

  7. Increase developmental plasticity of human keratinocytes with gene suppression

    PubMed Central

    Li, Shengwen Calvin; Jin, Yangsun; Loudon, William G.; Song, Yahui; Ma, Zhiwei; Weiner, Leslie P.; Zhong, Jiang F.

    2011-01-01

    Recent evidence indicates that p53 suppression increased the efficiency of induced pluripotent stem cell (iPSC) generation. This occurred even with the enforced expression of as few as two canonical transcription factors, Oct4 and Sox2. In this study, primary human keratinocytes were successfully induced into a stage of plasticity by transient inactivation of p53, without enforced expression of any of the transcription factors previously used in iPSC generation. These cells were later redifferentiated into neural lineages. The gene suppression plastic cells were morphologically indistinguishable from human ES cells. Gene suppression plastic cells were alkaline phosphatase-positive, had normal karyotypes, and expressed p53. Together with the accumulating evidence of similarities and overlapping mechanisms between iPSC generation and cancer formation, this finding sheds light on the emerging picture of p53 sitting at the crossroads between two intricate cellular potentials: stem cell vs. cancer cell generation. This finding further supports the crucial role played by p53 in cellular reprogramming and suggests an alternative method to switch the lineage identity of human cells. This reported method offers the potential for directed lineage switching with the goal of generating autologous cell populations for novel clinical applications for neurodegenerative diseases. PMID:21768375

  8. Ryanodine receptors are expressed in epidermal keratinocytes and associated with keratinocyte differentiation and epidermal permeability barrier homeostasis.

    PubMed

    Denda, Sumiko; Kumamoto, Junichi; Takei, Kentaro; Tsutsumi, Moe; Aoki, Hirofumi; Denda, Mitsuhiro

    2012-01-01

    Ryanodine receptors (RyRs) have an important role as calcium channels in the regulation of intracellular calcium levels in the nervous system and muscle. In the present study, we investigated the expression of RyR in human epidermis. Immunohistochemical studies and reverse transcription-PCR indicated the expression of RyR type 1, 2, and 3 proteins in epidermal keratinocytes. The expression level of each RyR subtype was higher in differentiating keratinocytes than in proliferative cells. We also demonstrated the functional expression of RyR by calcium imaging. In cultured human keratinocytes, application of the RyR agonist 4-chloro-m-cresol (CMC) induced elevation of the intracellular calcium concentration, and co-application of the RyR antagonist 1,1'-diheptyl-4,4'-bipyridinium dibromide (DHBP) blocked the elevation. Application of CMC accelerated keratinocyte differentiation in vitro. On the other hand, topical application of CMC after tape-stripping of hairless mouse skin delayed barrier recovery, whereas application of an RyR antagonist, dantrolene or DHBP, accelerated the barrier recovery. These results suggest that RyR expressed in epidermal keratinocytes is associated with both differentiation of keratinocytes and epidermal barrier homeostasis.

  9. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: An in vitro study of fibroblast and keratinocyte scratch assays

    SciTech Connect

    Walter, M.N.M.; Wright, K.T.; Fuller, H.R.; MacNeil, S.; Johnson, W.E.B.

    2010-04-15

    We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditions significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-{beta}1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix.

  10. cDNA microarray analysis of human keratinocytes cells of patients submitted to chemoradiotherapy and oral photobiomodulation therapy: pilot study.

    PubMed

    Antunes, Heliton S; Wajnberg, Gabriel; Pinho, Marcos B; Jorge, Natasha Andressa Nogueira; de Moraes, Joyce Luana Melo; Stefanoff, Claudio Gustavo; Herchenhorn, Daniel; Araújo, Carlos M M; Viégas, Celia Maria Pais; Rampini, Mariana P; Dias, Fernando L; de Araujo-Souza, Patricia Savio; Passetti, Fabio; Ferreira, Carlos G

    2017-08-24

    Oral mucositis is an acute toxicity that occurs in patients submitted to chemoradiotherapy to treat head and neck squamous cell carcinoma. In this study, we evaluated differences in gene expression in the keratinocytes of the oral mucosa of patients treated with photobiomodulation therapy and tried to associate the molecular mechanisms with clinical findings. From June 2009 to December 2010, 27 patients were included in a randomized double-blind pilot study. Buccal smears from 13 patients were obtained at days 1 and 10 of chemoradiotherapy, and overall gene expression of samples from both dates were analyzed by complementary DNA (cDNA) microarray. In addition, samples from other 14 patients were also collected at D1 and D10 of chemoradiotherapy for subsequent validation of cDNA microarray findings by qPCR. The expression array analysis identified 105 upregulated and 60 downregulated genes in our post-treatment samples when compared with controls. Among the upregulated genes with the highest fold change, it was interesting to observe the presence of genes related to keratinocyte differentiation. Among downregulated genes were observed genes related to cytotoxicity and immune response. The results indicate that genes known to be induced during differentiation of human epidermal keratinocytes were upregulated while genes associated with cytotoxicity and immune response were downregulated in the laser group. These results support previous clinical findings indicating that the lower incidence of oral mucositis associated with photobiomodulation therapy might be correlated to the activation of genes involved in keratinocyte differentiation.

  11. The effect of two endogenous retinoids on the mRNA expression profile in human primary keratinocytes, focusing on genes causing autosomal recessive congenital ichthyosis.

    PubMed

    Törmä, H; Bergström, A; Ghiasifarahani, G; Berne, B

    2014-10-01

    Retinoids (natural forms and synthetic derivatives of vitamin A) are used as therapeutic agents for numerous skin diseases such as keratinization disorders (e.g. ichthyoses) and psoriasis. Two endogenous ligands for retinoic acid receptors exist, retinoic acid (atRA) and 3,4-didehydroretinoic acid (ddRA). In primary human epidermal keratinocytes many transcriptional targets for atRA are known, whereas the targets for ddRA are unknown. In an attempt to determine the targets, we compared the effect of atRA and ddRA on transcriptional profiles in undifferentiated and differentiating human primary keratinocytes. First, as expected, many genes were induced or suppressed in response to keratinocyte differentiation. Furthermore, the two retinoids affected substantially more genes in differentiated keratinocytes (>350) than in proliferating keratinocytes (≈20). In differentiating keratinocytes markers of cornification were suppressed suggesting a de-differentiating effect by the two retinoids. When comparing the expression profile of atRA to that of ddRA, no differently regulated genes were found. The array analysis also found that a minor number of miRNAs and a large number of non-coding transcripts were changed during differentiation and in response to the two retinoids. Furthermore, the expression of all, except one, genes known to cause autosomal recessive congenital ichthyosis (ARCI) were found to be induced by differentiation. These results comprehensively document that atRA and ddRA exert similar transcriptional changes in keratinocytes and also add new insights into the molecular mechanism influenced by retinoids in the epidermis. Furthermore, it suggests which ARCI patients could benefit from therapy with retinoids.

  12. IL-33 is secreted by psoriatic keratinocytes and induces pro-inflammatory cytokines via keratinocyte and mast cell activation.

    PubMed

    Balato, Anna; Lembo, Serena; Mattii, Martina; Schiattarella, Maria; Marino, Rita; De Paulis, Amato; Balato, Nicola; Ayala, Fabio

    2012-11-01

    IL-33 is a novel pro-inflammatory cytokine and ligand for the orphan receptor ST2. Although originally defined as an inducer of Th2-mediated responses, IL-33 was recently found to be involved in arthritis, a Th1/Th17-mediated disease. Here, we assessed the ability of IL-33 to promote inflammation via mast cells (MCs) and keratinocytes (KCs) activation in psoriasis. IL-33 resulted elevated in the skin but not in the serum of psoriasis patients. IL-33 was secreted by psoriasis KCs and HaCaT cells after TNF-α stimulation. In HMC-1, TNF-α, but not IL-17, could induce a robust increase in IL-33 expression. In HaCaT cells, TNF-α was able to induce IL-6, MCP-1 and VEGF, and the addition of IL-33 reinforced these increases. TNF-α + IL-33 combination showed similar results in primary KCs and ex vivo skin organ culture. In conclusion, our study suggests that IL-33 may be involved in psoriasis biology via MCs and KCs. © 2012 John Wiley & Sons A/S.

  13. Induction of PDGF-B in TCA-treated epidermal keratinocytes.

    PubMed

    Yonei, Nozomi; Kanazawa, Nobuo; Ohtani, Toshio; Furukawa, Fukumi; Yamamoto, Yuki

    2007-11-01

    Trichloroacetic acid (TCA) is one of the most widely used peeling agents, and induces full necrosis of the whole epidermis, followed by reconstitution of the epidermis and the matrix of the papillary dermis. The cytotoxic effects of TCA, such as suppressing proliferation of keratinocytes and fibroblasts and protein synthesis by fibroblasts, have already been reported. However, the entire biological mechanism responsible for TCA peeling has yet to be determined. Hypothetical activation effects of TCA treatment on epidermal cells to induce production of growth factors and cytokines are examined, and are compared with its cytotoxic effects in terms of time course and applied TCA concentrations. After various periods of incubation with TCA, viability of Pam212 murine keratinocytes was investigated with MTT assay and dye exclusion assay, and production of growth factors and cytokines with reverse transcription-polymerase chain reaction (RT-PCR). Changes in platelet-derived growth factor (PDGF)-B mRNA expression and protein production in the human skin specimens after TCA application were then examined by RT-PCR and immunohistochemistry, respectively. Incubation with TCA showed cytotoxicity and induced death of Pam212 cells, depending on the incubation period and the TCA concentration. In addition, expressions of PDGF-B, tumor growth factor (TGF)-alpha, TGF- beta1 and vascular endothelial growth factor, which are the growth factors reportedly secreted from keratinocytes during wound healing, were all detected in Pam212 cells after short-term treatment with TCA. Expressions of inflammatory cytokines such as interleukin (IL)-1 and IL-10 were also induced. In TCA-treated NIH-3T3 fibroblasts, in contrast, observed was upregulation of only keratinocyte growth factor, which is reportedly secreted from fibroblasts, as well as the similar cytotoxic effect. In human skin, PDGF-B mRNA expression became significantly upregulated after TCA application, and then immediately

  14. Bisphosphonates Inhibit Expression of p63 by Oral Keratinocytes

    PubMed Central

    Scheller, E.L.; Baldwin, C.M.; Kuo, S.; D’Silva, N.J.; Feinberg, S.E.; Krebsbach, P.H.; Edwards, P.C.

    2011-01-01

    Osteonecrosis of the jaw (ONJ), a side-effect of bisphosphonate therapy, is characterized by exposed bone that fails to heal within eight weeks. Healing time of oral epithelial wounds is decreased in the presence of amino-bisphosphonates; however, the mechanism remains unknown. We examined human tissue from individuals with ONJ and non-bisphosphonate-treated controlindividuals to identify changes in oral epithelium and connective tissue. Oral and intravenous bisphosphonate-treated ONJ sites had reduced numbers of basal epithelial progenitor cells, as demonstrated by a 13.8 ± 1.1% and 31.9 ± 5.8% reduction of p63 expression, respectively. No significant differences in proliferation rates, vessel density, or macrophage number were noted. In vitro treatment of clonal and primary oral keratinocytes with zoledronic acid (ZA) inhibited p63, and expression was rescued by the addition of mevalonate pathway intermediates. In addition, both ZA treatment and p63 shRNA knock-down impaired formation of 3D Ex Vivo Produced Oral Mucosa Equivalents (EVPOME) and closure of an in vitro scratch assay. Analysis of our data suggests that bisphosphonate treatment may delay oral epithelial healing by interfering with p63-positive progenitor cells in the basal layer of the oral epithelium in a mevalonate-pathway-dependent manner. This delay in healing may increase the likelihood of osteonecrosis developing in already-compromised bone. PMID:21551338

  15. Niacin restriction upregulates NADPH oxidase and ROS in human keratinocytes

    PubMed Central

    Benavente, Claudia A.; Jacobson, Elaine L.

    2008-01-01

    NAD+ is a substrate for many enzymes, including poly(ADP-ribose) polymerases and sirtuins, which are involved in fundamental cellular processes including DNA repair, stress responses, signaling, transcription, apoptosis, metabolism, differentiation, chromatin structure, and life span. Because these molecular processes are important early in cancer development, we developed a model to identify critical NAD-dependent pathways potentially important in early skin carcinogenesis. Removal of niacin from the cell culture medium allowed control of intracellular NAD. Unlike many non-immortalized human cells, HaCaT keratinocytes, which are immortalized and have a mutant p53 and aberrant NF-kB activity, become severely NAD depleted but divide indefinitely under these conditions. Niacin deficient HaCaTs develop a decreased growth rate due to an increase in apoptotic cells and an arrest in the G2/M phase of the cell cycle. Long- term survival mechanisms in niacin deficient HaCats involve accumulation of reactive oxygen species and increased DNA damage. These alterations result, at least in part, from increased expression and activity of NADPH oxidase, whose downstream effects can be reversed by nicotinamide or NADPH oxidase inhibitors. Our data support the hypothesis that glutamine is a likely alternative energy source during niacin deficiency and we suggest a model for NADPH generation important in ROS production. PMID:17997992

  16. Human Keratinocytes Radioprotection with Mentha Longifolia

    NASA Astrophysics Data System (ADS)

    Rizzo, Angela Maria; Berselli, P.; Zava, S.; Negroni, M.; Corsetto, P.; Montorfano, G.; Bertolotti, A.; Ranza, E.; Ottolenghi, A.; Berra, B.

    Antioxidants are suggested to act as radioprotectors, and dietary supplements based on antiox-idants have been proposed for astronauts involved in long-term space missions. Plant extracts with antioxidant properties may be used in dietetic supplements for astronauts; in fact recent nutritional guidelines suggest that "fruits and vegetables may become as important on space-going vessels as limes were on the sea-going vessels of old". Mint presents a large variety of biological properties, such as antiallergenic, antibacterial, anti-inflammatory, antitumor, an-tiviral, gastrointestinal protective, hepatoprotective, chemopreventive activities, most of which are attributable to its antioxidant activity. The aim of the present study is to evaluate the antioxidant properties and protective bio-efficacy of a phenol enriched Mentha longifolia ex-tract on gamma rays stressed human keratinocytes (NCTC2544). We assessed first the in vitro antioxidant activity (ABTS and DPPH), and then evaluated different stress markers in order to investigate various oxidative stress targets: cell viability (MTT); retained proliferating ca-pability (CA); DNA damage (histone H2AX) and protein damage (HSP70 induction). Results indicate that this Mint extract has a higher antioxidant activity respect to fresh extracts, that could be responsible of its really interesting radio-protective effects.

  17. CRISPR-assisted receptor deletion reveals distinct roles for ERBB2 and ERBB3 in skin keratinocytes.

    PubMed

    Dahlhoff, Maik; Gaborit, Nadège; Bultmann, Sebastian; Leonhardt, Heinrich; Yarden, Yosef; Schneider, Marlon R

    2017-10-01

    While the epidermal growth factor receptor (EGFR) is an established regulator of skin development and homeostasis, the functions of the related tyrosine kinase receptors ERBB2 and ERBB3 in this tissue have only recently been examined. Previously reported, skin-specific deletion of each of these receptors in mice resulted in similar defects in keratinocyte proliferation and migration, resulting in impaired wound healing and tumorigenesis. Because both ERBB2 and ERBB3 are targets for treating an array of cancer types, it is important to examine the consequences of receptor inhibition in human keratinocytes. Here, we employed the CRISPR/Cas9 technology to generate HaCaT cells (an established human keratinocyte cell line) lacking ERBB2 or ERBB3. HaCaT clones lacking ERBB2 or ERBB3 showed comparable reductions in cell proliferation as assessed by BrdU staining. Apoptosis, in contrast, was reduced in ERBB3-deficient HaCaT cells only. Assessment of cell migration using a wound healing (scratch) assay showed that the closure of the wound gaps was completed by 48 h in mock and in ERBB3 knockout clones. In contrast, this process was considerably delayed in ERBB2 knockout clones, and a complete closure of the gap in the latter cells did not occur before 72 h. In conclusion, both ERBB2 and ERBB3 are essential for normal proliferation of skin keratinocytes, but in contrast to ERBB3, ERBB2 is essential for migration of human keratinocytes. These observations might bear significance to patient adverse effects of therapeutic agents targeting ERBB2 and ERBB3. © 2017 Federation of European Biochemical Societies.

  18. A new high-throughput sequencing method for determining diversity and similarity of T cell receptor (TCR) α and β repertoires and identifying potential new invariant TCR α chains.

    PubMed

    Kitaura, Kazutaka; Shini, Tadasu; Matsutani, Takaji; Suzuki, Ryuji

    2016-10-11

    High-throughput sequencing of T cell receptor (TCR) genes is a powerful tool for analyses of antigen specificity, clonality and diversity of T lymphocytes. Here, we developed a new TCR repertoire analysis method using 454 DNA sequencing technology in combination with an adaptor-ligation mediated polymerase chain reaction (PCR). This method allows the amplification of all TCR genes without PCR bias. To compare gene usage, diversity and similarity of expressed TCR repertoires among individuals, we conducted next-generation sequencing (NGS) of TRA and TRB genes in peripheral blood mononuclear cells from 20 healthy human individuals. From a total of 267,037 sequence reads from 20 individuals, 149,216 unique sequence reads were identified. Preferential usage of several V and J genes were observed while some recombinations of TRAV with TRAJ appeared to be restricted. The extent of TCR diversity was not significantly different between TRA and TRB, while TRA repertoires were more similar between individuals than TRB repertoires were. The interindividual similarity of TRA depended largely on the frequent presence of shared TCRs among two or more individuals. A publicly available TRA had a near-germline TCR with a shorter CDR3. Notably, shared TRA sequences, especially those shared among a large number of individuals', often contained TCRα related with invariant TCRα derived from invariant natural killer T cells and mucosal-associated invariant T cells. These results suggest that retrieval of shared TCRs by NGS would be useful for the identification of potential new invariant TCRα chains. This NGS method will enable the comprehensive quantitative analysis of TCR repertoires at a clonal level.

  19. Kinetics of growth and differentiation of cultured human epidermal keratinocytes

    SciTech Connect

    Albers, K.M.

    1985-01-01

    A study was made of the interrelationship between replication and differentiation in cultures of human epidermal keratinocytes. Measures of both parameters were made using newly developed methods to quantify the rate at which keratinocytes replicate and the rate at which they withdraw from the cell cycle. Keratinocyte replication was measured by determining the cell doubling time, labeling index, and cell cycle duration. Cell cycle length was measured using a double label assay that determines the length of time between two successive phases of DNA synthesis. The first DNA synthesis phase was marked by labeling keratinocytes with /sup 14/C-thymidine. At the next round of DNA synthesis, cells were labeled with bromodeoxyuridine, a heavy analog of thymidine. The cell cycle length is given by the time required for the /sup 14/C-labeled DNA to become double labeled. To measure keratinocyte differentiation, the rate at which cells withdraw from the cell cycle was determined. To measure withdrawal, the percentage of cells labeled by a pulse of /sup 14/C-thymidine that failed to undergo a second cycle of DNA synthesis, as measured by bromodeoxyuridine incorporation, was determined. Cells which failed to undergo a second cycle of synthesis were considered to have differentiated and withdrawn from the cell cycle.

  20. Chemosensory Information Processing between Keratinocytes and Trigeminal Neurons

    PubMed Central

    Sondersorg, Anna Christina; Busse, Daniela; Kyereme, Jessica; Rothermel, Markus; Neufang, Gitta; Gisselmann, Günter; Hatt, Hanns; Conrad, Heike

    2014-01-01

    Trigeminal fibers terminate within the facial mucosa and skin and transmit tactile, proprioceptive, chemical, and nociceptive sensations. Trigeminal sensations can arise from the direct stimulation of intraepithelial free nerve endings or indirectly through information transmission from adjacent cells at the peripheral innervation area. For mechanical and thermal cues, communication processes between skin cells and somatosensory neurons have already been suggested. High concentrations of most odors typically provoke trigeminal sensations in vivo but surprisingly fail to activate trigeminal neuron monocultures. This fact favors the hypothesis that epithelial cells may participate in chemodetection and subsequently transmit signals to neighboring trigeminal fibers. Keratinocytes, the major cell type of the epidermis, express various receptors that enable reactions to multiple environmental stimuli. Here, using a co-culture approach, we show for the first time that exposure to the odorant chemicals induces a chemical communication between human HaCaT keratinocytes and mouse trigeminal neurons. Moreover, a supernatant analysis of stimulated keratinocytes and subsequent blocking experiments with pyrodoxalphosphate-6-azophenyl-2′,4′-disulfonate revealed that ATP serves as the mediating transmitter molecule released from skin cells after odor stimulation. We show that the ATP release resulting from Javanol® stimulation of keratinocytes was mediated by pannexins. Consequently, keratinocytes act as chemosensors linking the environment and the trigeminal system via ATP signaling. PMID:24790106

  1. Polymeric membranes modulate human keratinocyte differentiation in specific epidermal layers.

    PubMed

    Salerno, Simona; Morelli, Sabrina; Giordano, Francesca; Gordano, Amalia; Bartolo, Loredana De

    2016-10-01

    In vitro models of human bioengineered skin substitutes are an alternative to animal experimentation for testing the effects and toxicity of drugs, cosmetics and pollutants. For the first time specific and distinct human epidermal strata were engineered by using membranes and keratinocytes. To this purpose, biodegradable membranes of chitosan (CHT), polycaprolactone (PCL) and a polymeric blend of CHT-PCL were prepared by phase-inversion technique and characterized in order to evaluate their morphological, physico-chemical and mechanical properties. The capability of membranes to modulate keratinocyte differentiation inducing specific interactions in epidermal membrane systems was investigated. The overall results demonstrated that the membrane properties strongly influence the cell morpho-functional behaviour of human keratinocytes, modulating their terminal differentiation, with the creation of specific epidermal strata or a fully proliferative epidermal multilayer system. In particular, human keratinocytes adhered on CHT and CHT-PCL membranes, forming the structure of the epidermal top layers, such as the corneum and granulosum strata, characterized by withdrawal or reduction from the cell cycle and cell proliferation. On the PCL membrane, keratinocytes developed an epidermal basal lamina, with high proliferating cells that stratified and migrated over time to form a complete differentiating epidermal multilayer system.

  2. Wound re-epithelialization: modulating keratinocyte migration in wound healing.

    PubMed

    Raja; Sivamani, K; Garcia, Miki Shirakawa; Isseroff, R Rivkah

    2007-05-01

    An essential feature of a healed wound is the restoration of an intact epidermal barrier through wound epithelialization, also known as re-epithelialization. The directed migration of keratinocytes is critical to wound epithelialization and defects in this function are associated with the clinical phenotype of chronic non-healing wounds. A complex balance of signaling factors and surface proteins are expressed and regulated in a temporospatial manner that promote keratinocyte motility and survival to activate wound re-epithelialization. The majority of this review focuses on the mechanisms that regulate keratinocyte migration in the re-epithelialization process. This includes a review of cell attachments via desmosomes, hemidesmosomes, and integrins, the expression of keratins, the role of growth factors, cytokines and chemokines, eicosanoids, oxygen tension, antimicrobial peptides, and matrix metalloproteinases. Also reviewed are recently emerging novel mediators of keratinocyte motility including the role of electric fields, and signaling via the acetylcholine and beta-adrenergic receptors. These multiple regulators impact the ability of keratinocytes to migrate from the wound edge or other epidermal reservoirs to efficiently re-epithelialize a breach in the integrity of the epidermis. New discoveries will continue to uncover the elegant network of events that result in restoration of epidermal integrity and complete the wound repair process.

  3. miR-24 and miR-205 expression is dependent on HPV onco-protein expression in keratinocytes

    SciTech Connect

    McKenna, Declan J.; Patel, Daksha; McCance, Dennis J.

    2014-01-05

    A screen of microRNA (miRNA) expression following differentiation in human foreskin keratinocytes (HFKs) identified changes in several miRNAs, including miR-24 and miR-205. We investigated how expression of Human Papilloma Virus Type-16 (HPV16) onco-proteins E6 and E7 affected expression of miR-24 and miR-205 during proliferation and differentiation of HFKs. We show that the induction of both miR-24 and miR-205 observed during differentiation of HFKs is lost in HFKs expressing E6 and E7. We demonstrate that the effect on miR-205 is due to E7 activity, as miR-205 expression is dependent on pRb expression. Finally, we provide evidence that miR-24 effects in the cell may be due to targeting of cyclin dependent kinase inhibitor p27. In summary, these results indicate that expression of both miR-24 and miR-205 are impacted by E6 and/or E7 expression, which may be one mechanism by which HPV onco-proteins can disrupt the balance between proliferation and differentiation in keratinocytes. - Highlights: • miR-24 and miR-205 are induced during keratinocyte differentiation. • This induction is lost in keratinocytes expressing HPV onco-proteins E6 and E7. • miR-205 is dependent upon pRb expression. • miR-24 targets p27 in cycling keratinocytes.

  4. Genetic and pharmacological analysis identifies a physiological role for the AHR in epidermal differentiation

    PubMed Central

    van den Bogaard, Ellen; Podolsky, Michael; Smits, Jos; Cui, Xiao; John, Christian; Gowda, Krishne; Desai, Dhimant; Amin, Shantu; Schalkwijk, Joost; Perdew, Gary H.

    2015-01-01

    Stimulation of the aryl hydrocarbon receptor (AHR) by xenobiotics is known to affect epidermal differentiation and skin barrier formation. The physiological role of endogenous AHR signaling in keratinocyte differentiation is not known. We used murine and human skin models to address the hypothesis that AHR activation is required for normal keratinocyte differentiation. Using transcriptome analysis of Ahr-/- and Ahr+/+ murine keratinocytes, we found significant enrichment of differentially expressed genes linked to epidermal differentiation. Primary Ahr-/- keratinocytes showed a significant reduction in terminal differentiation gene and protein expression, similar to Ahr+/+ keratinocytes treated with AHR antagonists GNF351 and CH223191, or the selective AHR modulator (SAhRM), SGA360. In vitro keratinocyte differentiation led to increased AHR levels and subsequent nuclear translocation, followed by induced CYP1A1 gene expression. Monolayer cultured primary human keratinocytes treated with AHR antagonists also showed an impaired terminal differentiation program. Inactivation of AHR activity during human skin equivalent development severely impaired epidermal stratification, terminal differentiation protein expression and stratum corneum formation. As disturbed epidermal differentiation is a main feature of many skin diseases, pharmacological agents targeting AHR signaling or future identification of endogenous keratinocyte-derived AHR ligands should be considered as potential new drugs in dermatology. PMID:25602157

  5. Spectrum of Immune-Related Conditions Associated with Risk of Keratinocyte Cancers among Elderly Adults in the United States.

    PubMed

    Yanik, Elizabeth L; Pfeiffer, Ruth M; Freedman, D Michal; Weinstock, Martin A; Cahoon, Elizabeth K; Arron, Sarah T; Chaloux, Matthew; Connolly, M Kari; Nagarajan, Priyadharsini; Engels, Eric A

    2017-07-01

    Background: Elevated keratinocyte carcinoma risk is present with several immune-related conditions, e.g., solid organ transplantation and non-Hodgkin lymphoma. Because many immune-related conditions are rare, their relationships with keratinocyte carcinoma have not been studied.Methods: We used Medicare claims to identify cutaneous squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) cases in 2012, and controls matched on sex and age. All subjects were aged 65 to 95 years, of white race, and had attended ≥1 dermatologist visit in 2010-2011. Immune-related conditions were identified during 1999-2011 using Medicare claims. Associations were estimated with logistic regression, with statistical significance determined after Bonferroni correction for multiple comparisons.Results: We included 258,683 SCC and 304,903 BCC cases. Of 47 immune-related conditions, 21 and 9 were associated with increased SCC and BCC risk, respectively. We identified strongly elevated keratinocyte carcinoma risk with solid organ transplantation (SCC OR = 5.35; BCC OR = 1.94) and non-Hodgkin lymphoma (SCC OR = 1.62; BCC OR = 1.25). We identified associations with common conditions, e.g., rheumatoid arthritis [SCC OR = 1.06, 95% confidence interval (95% CI), 1.04-1.09] and Crohn's disease (SCC OR = 1.33, 95% CI, 1.27-1.39; BCC OR = 1.10, 95% CI, 1.05-1.15), and rare or poorly characterized conditions, e.g., granulomatosis with polyangiitis (SCC OR = 1.88; 95% CI, 1.61-2.19), autoimmune hepatitis (SCC OR = 1.81; 95% CI, 1.52-2.16), and deficiency of humoral immunity (SCC OR = 1.51, 95% CI, 1.41-1.61; BCC OR = 1.22, 95% CI, 1.14-1.31). Most conditions were more positively associated with SCC than BCC. Associations were generally consistent regardless of prior keratinocyte carcinoma history.Conclusions: Many immune-related conditions are associated with elevated keratinocyte carcinoma risk and appear more tightly linked to SCC.Impact: Immunosuppression or immunosuppressive treatment may

  6. Genome-Wide Association Studies of Multiple Keratinocyte Cancers

    PubMed Central

    Verkouteren, Joris A. C.; Hofman, Albert; Uitterlinden, André G.; Kraft, Peter; Turman, Constance; Han, Jiali; Cho, Eunyoung; Murabito, Joanne M.; Levy, Daniel; Qureshi, Abrar A.; Nijsten, Tamar

    2017-01-01

    There is strong evidence for a role of environmental risk factors involved in susceptibility to develop multiple keratinocyte cancers (mKCs), but whether genes are also involved in mKCs susceptibility has not been thoroughly investigated. We investigated whether single nucleotide polymorphisms (SNPs) are associated with susceptibility for mKCs. A genome-wide association study (GWAS) of 1,666 cases with mKCs and 1,950 cases with single KC (sKCs; controls) from Harvard cohorts (the Nurses' Health Study [NHS], NHS II, and the Health Professionals Follow-Up Study) and the Framingham Heart Study was carried-out using over 8 million SNPs (stage-1). We sought to replicate the most significant statistical associations (p-value≤ 5.5x10-6) in an independent cohort of 574 mKCs and 872 sKCs from the Rotterdam Study. In the discovery stage, 40 SNPs with suggestive associations (p-value ≤5.5x10-6) were identified, with eight independent SNPs tagging all 40 SNPs. The most significant SNP was located at chromosome 9 (rs7468390; p-value = 3.92x10-7). In stage-2, none of these SNPs replicated and only two of them were associated with mKCs in the same direction in the combined meta-analysis. We tested the associations for 19 previously reported basal cell carcinoma-related SNPs (candidate gene association analysis), and found that rs1805007 (MC1R locus) was significantly associated with risk of mKCs (p-value = 2.80x10-4). Although the suggestive SNPs with susceptibility for mKCs were not replicated, we found that previously identified BCC variants may also be associated with mKC, which the most significant association (rs1805007) located at the MC1R gene. PMID:28081215

  7. Concentration of fibrin and presence of plasminogen affect proliferation, fibrinolytic activity, and morphology of human fibroblasts and keratinocytes in 3D fibrin constructs.

    PubMed

    Reinertsen, Erik; Skinner, Michael; Wu, Benjamin; Tawil, Bill

    2014-11-01

    Fibrin is a hemostatic protein found in the clotting cascade. It is used in the operating room to stop bleeding and deliver cells and growth factors to heal wounds. However, formulations of clinically approved fibrin are optimized for hemostasis, and the extent to which biochemical and physical cues in fibrin mediate skin cell behavior is not fully understood nor utilized in the design of biomaterials. To determine if the concentration of fibrinogen and the presence of plasminogen affect cell behavior relevant to wound healing, we fabricated three-dimensional fibrin constructs made from 5, 10, or 20 mg/mL of clinical fibrin or plasminogen-depleted (PD) fibrin. We cultured dermal fibroblasts or epidermal keratinocytes in these constructs. Fibroblasts proliferated similarly in both types of fibrin, but keratinocytes proliferated more in low concentrations of clinical fibrin and less in PD fibrin. Clinical fibrin constructs with fibroblasts were less stiff and degraded faster than PD fibrin constructs with fibroblasts. Similarly, keratinocytes degraded clinical fibrin, but not PD fibrin. Fibroblast spreading varied with fibrin concentration in both types of fibrin. In conclusion, the concentration of fibrinogen and the presence of plasminogen affect fibroblast and keratinocyte proliferation, morphology, and fibrin degradation. Creating materials with heterogeneous regions of fibrin formulations and concentrations could be a novel strategy for controlling the phenotype of encapsulated fibroblasts and keratinocytes, and the subsequent biomechanical properties of the construct. However, other well-investigated aspects of wound healing remain to be utilized in the design of fibrin biomaterials, such as autocrine and paracrine signaling between fibroblasts, keratinocytes, and immune cells.

  8. Optimal differentiation of in vitro keratinocytes requires multifactorial external control.

    PubMed

    Borowiec, Anne-Sophie; Delcourt, Philippe; Dewailly, Etienne; Bidaux, Gabriel

    2013-01-01

    For almost 30 years, keratinocyte differentiation has been studied in numerous cell models including keratinocyte primary culture with various supplemented culture media. In this respect, it has become quite difficult to draw comparisons between studies using such a variety of culture conditions. Serum-free condition with low calcium has been used to culture basal proliferating cells, though differentiation is induced by various procedures. These latter include the addition of calcium at mM concentration and a concomitant addition of serum and calcium. Lowering the incubation temperature of cells has also been reported to induce a premature differentiation of keratinocytes in organotypic skin culture. This effect of temperature on keratinocyte differentiation has been poorly depicted, although average human skin temperature has been shown to be about 32 °C. However, studying differentiation and quantifying shifts in the differentiation rate of a cell population implies to precisely know i) the proportion of differentiated cells in the whole population, and ii) to which extent and to which level of expression, the induction of a gene or a protein might be considered as a marker of differentiation. This lack has rarely been taken into consideration and has surely led to over-interpretations of single protein induction and to consequent extrapolations to real differentiation processes. By means of paralleled analyses with immunocytofluorescence, flow cytometry, and with multiple differentiation markers quantify by qPCR and western-blot, we studied the paradoxical connection between calcium, serum, multilayer culture and incubation temperature on the differentiation of in vitro keratinocytes. Conversely to previous reports, we have shown that calcium switch is indeed a potent model for inducing calcium-dependent genes, but is not an efficient procedure when one wishes to assess the keratinocyte differentiation rate. Moreover, we have demonstrated that a synergic

  9. Twist1 regulates keratinocyte proliferation and skin tumor promotion.

    PubMed

    Srivastava, Jaya; Rho, Okkyung; Youssef, Ronnie M; DiGiovanni, John

    2016-05-01

    In the present study, we evaluated the effect of deleting Twist1 on keratinocyte proliferation and on skin tumor development using the two-stage chemical carcinogenesis model. BK5.Cre × Twist1(flox/flox) mice, which have a keratinocyte-specific Twist1 knockout (Twist1 KO), developed significantly reduced numbers of papilloma (70% reduction) and squamous cell carcinoma (75% reduction) as well as delayed tumor latency compared to wild-type (WT) mice. Interestingly, knockdown of Twist1 in primary keratinocytes impeded cell cycle progression at the G1/S transition that coincided with reduced levels of the cell cycle proteins c-Myc, Cyclin E1, and E2F1 and increased levels of p53 and p21. Furthermore, ChIP analyses revealed that Twist1 bound to the promoter regions of Cyclin E1, E2F1, and c-Myc at the canonical E-box binding motif suggesting a direct transcriptional regulation. Further analyses of Twist1 KO mice revealed a significant reduction in the number of label-retaining cells as well as the number of α6-integrin(+) /CD34(+) cells in the hair follicles of untreated mice compared to WT mice. These mice also exhibited significantly reduced epidermal proliferation in response to TPA treatment that again correlated with reduced levels of cell cycle regulators and increased levels of p53 and p21. Finally, Twist1 deficiency in keratinocytes led to an upregulation of p53 via its stabilization and nuclear localization, which is responsible for the increased expression of p21 in these cells. Collectively, these findings indicate that Twist1 has a novel role in epithelial carcinogenesis by regulating proliferation of keratinocytes, including keratinocyte stem cells during tumor promotion. © 2015 Wiley Periodicals, Inc.

  10. Analysis of Global Sumoylation Changes Occurring during Keratinocyte Differentiation

    PubMed Central

    Heaton, Phillip R.; Santos, Andres; Rosas-Acosta, Germán; Wilson, Van G.

    2012-01-01

    Sumoylation is a highly dynamic process that plays a role in a multitude of processes ranging from cell cycle progression to mRNA processing and cancer. A previous study from our lab demonstrated that SUMO plays an important role in keratinocyte differentiation. Here we present a new method of tracking the sumoylation state of proteins by creating a stably transfected HaCaT keratinocyte cell line expressing an inducible SNAP-SUMO3 protein. The SNAP-tag allows covalent fluorescent labeling that is denaturation resistant. When combined with two-dimensional gel electrophoresis, the SNAP-tag technology provides direct visualization of sumoylated targets and can be used to follow temporal changes in the global cohort of sumoylated proteins during dynamic processes such as differentiation. HaCaT keratinocyte cells expressing SNAP-SUMO3 displayed normal morphological and biochemical features that are consistent with typical keratinocyte differentiation. SNAP-SUMO3 also localized normally in these cells with a predominantly nuclear signal and some minor cytoplasmic staining, consistent with previous reports for untagged SUMO2/3. During keratinocyte differentiation the total number of proteins modified by SNAP-SUMO3 was highest in basal cells, decreased abruptly after induction of differentiation, and slowly rebounded beginning between 48 and 72 hours as differentiation progressed. However, within this overall trend the pattern of change for individual sumoylated proteins was highly variable with both increases and decreases in amount over time. From these results we conclude that sumoylation of proteins during keratinocyte differentiation is a complex process which likely reflects and contributes to the biochemical changes that drive differentiation. PMID:22291911

  11. The Role of Focal Adhesion Kinase in Keratinocyte Fibrogenic Gene Expression

    PubMed Central

    Januszyk, Michael; Kwon, Sun Hyung; Wong, Victor W.; Padmanabhan, Jagannath; Maan, Zeshaan N.; Whittam, Alexander J.; Major, Melanie R.; Gurtner, Geoffrey C.

    2017-01-01

    Abnormal skin scarring causes functional impairment, psychological stress, and high socioeconomic cost. Evidence shows that altered mechanotransduction pathways have been linked to both inflammation and fibrosis, and that focal adhesion kinase (FAK) is a key mediator of these processes. We investigated the importance of keratinocyte FAK at the single cell level in key fibrogenic pathways critical for scar formation. Keratinocytes were isolated from wildtype and keratinocyte-specific FAK-deleted mice, cultured, and sorted into single cells. Keratinocytes were evaluated using a microfluidic-based platform for high-resolution transcriptional analysis. Partitive clustering, gene enrichment analysis, and network modeling were applied to characterize the significance of FAK on regulating keratinocyte subpopulations and fibrogenic pathways important for scar formation. Considerable transcriptional heterogeneity was observed within the keratinocyte populations. FAK-deleted keratinocytes demonstrated increased expression of genes integral to mechanotransduction and extracellular matrix production, including Igtbl, Mmpla, and Col4a1. Transcriptional activities upon FAK deletion were not identical across all single keratinocytes, resulting in higher frequency of a minor subpopulation characterized by a matrix-remodeling profile compared to wildtype keratinocyte population. The importance of keratinocyte FAK signaling gene expression was revealed. A minor subpopulation of keratinocytes characterized by a matrix-modulating profile may be a keratinocyte subset important for mechanotransduction and scar formation. PMID:28880199

  12. Eucalyptus increases ceramide levels in keratinocytes and improves stratum corneum function.

    PubMed

    Ishikawa, J; Shimotoyodome, Y; Chen, S; Ohkubo, K; Takagi, Y; Fujimura, T; Kitahara, T; Takema, Y

    2012-02-01

    The objectives of this study were to identify a plant extract that would improve stratum corneum functions and to elucidate the mechanism(s) involved. Based on the information that stratum corneum functions depend on the level of ceramide in the stratum corneum, we identified a Eucalyptus extract that was able to increase the level of ceramide in human keratinocytes in culture and in human stratum corneum and that improves the stratum corneum water holding and barrier functions. Addition of the Eucalyptus extract to human keratinocytes in culture increased the level of ceramide in a dose-dependent manner and also increased the biosynthesis of ceramide, glucosylceramide and sphingomyelin. Topical application of the Eucalyptus extract on the dry skin of human subjects induced by acetone and diethylether treatment resulted in a significant increase in ceramide level in the stratum corneum, a significant improvement in its water-holding function and an improvement in its barrier function. The addition of macrocarpal A, one of the main components of the Eucalyptus extract, to human keratinocytes in culture increased the level of ceramide and the mRNA expression of serine palmitoyltransferase, acid sphingomyelinase, neutral sphingomyelinase, glucosylceramide synthase and glucocerebrosidase in a dose-dependent manner. Our results indicate that the increased content of ceramides in the stratum corneum may underlie the therapeutic effect of the Eucalyptus extract. Our results also indicate the possibility that macrocarpal A is the key component that stimulates the synthesis of ceramide in the stratum corneum. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  13. Study of HLA-DR synthesis in cultured human keratinocytes.

    PubMed

    Wikner, N E; Huff, J C; Norris, D A; Boyce, S T; Cary, M; Kissinger, M; Weston, W L

    1986-11-01

    Within the normal human epidermis only Langerhans and indeterminate cells express HLA-DR. Human keratinocytes (HK), however, may also express HLA-DR in certain disease states characterized by mononuclear cell infiltrates. Previous studies have shown that HK synthesize HLA-DR in response to stimulation by interferon gamma (INF-gamma). The purposes of this study were to define conditions under which cultured HK might express HLA-DR and to compare the HLA-DR synthesis of HK with that of monocytes. HLA-DR expression by HK as determined by indirect immunofluorescence of HK cultures was absent under standard low calcium conditions and remained absent with the addition of calcium, serum, mitogens, and supernatants from Pam-212 cells containing epidermal thymocyte-activating factor. HLA-DR expression in HK was induced by cocultivation with concanavalin A-stimulated peripheral blood mononuclear cells (PBMC), but not unstimulated PBMC. This effect was time-dependent and directly related to the number of PBMC. HLA-DR expression was also induced in a time- and dose-dependent manner by addition of supernatant from stimulated PBMC (SS) or by addition of recombinant INF-gamma but not by addition of interleukin (IL)-1 or IL-2. Induction by either SS or INF-gamma was blocked by an antiserum to INF-gamma. As determined by a semiquantitative immunoprecipitation technique, HLA-DR synthesis by HK was directly related to INF-gamma concentration. The pattern of HLA-DR peptides produced by HK was similar to that of monocytes, but the relative quantity synthesized was far less than that of monocytes.

  14. Reliability of the histopathologic diagnosis of keratinocyte carcinomas.

    PubMed

    Jagdeo, Jared; Weinstock, Martin A; Piepkorn, Michael; Bingham, Stephen F

    2007-08-01

    We sought to determine the interobserver reliability of the histopathologic diagnosis of basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) (keratinocyte carcinomas) in the setting of a Department of Veteran Affairs multicenter chemoprevention study. Interobserver concordance was assessed by blinded review of histopathologic slides by study dermatopathologists. Overall interobserver agreement between the two dermatopathogists was kappa = 0.69 (95% confidence interval [CI] 0.67-0.69). The dermatopathologists' interobserver agreement was highest for basal cell carcinoma at kappa = 0.88 (95% CI 0.84-0.91) and for a diagnostic category in the SCC-actinic keratosis spectrum at kappa = 0.80 (95% CI 0.73-0.86). The largest disagreements between the two reference dermatopathologists were regarding the categories of invasive SCC at kappa = 0.62 (95% CI 0.52-0.72), SCC in situ at kappa = 0.42 (95% CI 0.29-0.56), and actinic keratosis at kappa = 0.51 (95% CI 0.40-0.62). Agreement between the local pathologists and central reference dermatopathologists were similar to the agreement between the central dermatopathologists. The morphea subtype of basal cell carcinoma was the only reliably diagnosed subtype (kappa = 0.79, 95% CI 0.51-1.00), and tumor depth was reliably measured. A limitation of this study was the use of only two reference dermatopathologists. Because of the impact on physician decision making and patient care, researchers and clinicians need to be aware of reliability of histopathology results, particularly pertaining to the SCC and actinic keratosis spectrum.

  15. Angiopoietin-related growth factor (AGF) supports adhesion, spreading, and migration of keratinocytes, fibroblasts, and endothelial cells through interaction with RGD-binding integrins

    SciTech Connect

    Zhang Yueqing; Hu Xiaobo; Tian Ruiyang; Wei Wangui; Hu Wei; Chen Xia; Han Wei; Chen Huayou; Gong Yi . E-mail: ygong@sibs.ac.cn

    2006-08-18

    Angiopoietin-related growth factor (AGF) is a newly identified member of angiopoietin-related proteins (ARPs)/angiopoietin-like proteins (Angptls). AGF has been considered as a novel growth factor in accelerating cutaneous wound healing, as it is capable of stimulating keratinocytes proliferation as well as angiogenesis. But in our paper, we demonstrate that AGF stimulates keratinocytes proliferation only at high protein concentration, however, it can potently promote adhesion, spreading, and migration of keratinocytes, fibroblasts, and endothelial cells. Furthermore, we confirm that the adhesion and migration cellular events are mediated by RGD-binding integrins, most possibly the {alpha}{sub v}-containing integrins, by in vitro inhibition assays using synthetic competitive peptides. Our results strongly suggest that AGF is an integrin ligand as well as a mitogenic growth factor and theoretically participates in cutaneous wound healing in a more complex mechanism.

  16. Characterization of primary human keratinocytes transformed by human papillomavirus type 18

    SciTech Connect

    Kaur, P.; McDougall, J.K. )

    1988-06-01

    Primary human epithelial cells were cotransfected with pHPV-18 and pSV2neo, and cell strains were generated by selecting in G418. Southern blot analysis revealed the presence of at least one intact, integrated viral genome in these cells. FE-A cells showed altered growth properties, characterized by a change in morphology, and clonal density. Differentiation markers analyzed by Western blotting (immunoblotting), such as cytokeratins and involucrin, indicated that the cells resembled a partially differentiated epithelial population. Increased expression of the 40-kilodalton cytokeratin was observed in FE-A cells, similar to that observed in simian virus 40-immortalized human keratinocytes. Calcium and 12-O-tetradecanoyl-phorbol-13-acetate treatment induced normal epithelial cells to differentiate, whereas the human papillomavirus 18 (HPV-18)-containing keratinocytes were resistant to these signals, indicating their partially transformed nature. These cells were not able to induce tumors in nude mice over a period of up to 8 months. A second cell strain, FE-H18L, also generated by transfecting HPV-18, also exhibited an extended life span and similar alterations in morphology. Viral RNA transcribed from the early region of HPV-18 was detected in both cell strains by Northern (RNA) blot analysis. These cell strains should provide a useful model for determining the role of HPV in carcinogenesis.

  17. Activation of Nrf2 in keratinocytes causes chloracne (MADISH)-like skin disease in mice

    PubMed Central

    Schäfer, Matthias; Willrodt, Ann-Helen; Kurinna, Svitlana; Link, Andrea S; Farwanah, Hany; Geusau, Alexandra; Gruber, Florian; Sorg, Olivier; Huebner, Aaron J; Roop, Dennis R; Sandhoff, Konrad; Saurat, Jean-Hilaire; Tschachler, Erwin; Schneider, Marlon R; Langbein, Lutz; Bloch, Wilhelm; Beer, Hans-Dietmar; Werner, Sabine

    2014-01-01

    The transcription factor Nrf2 is a key regulator of the cellular stress response, and pharmacological Nrf2 activation is a promising strategy for skin protection and cancer prevention. We show here that prolonged Nrf2 activation in keratinocytes causes sebaceous gland enlargement and seborrhea in mice due to upregulation of the growth factor epigen, which we identified as a novel Nrf2 target. This was accompanied by thickening and hyperkeratosis of hair follicle infundibula. These abnormalities caused dilatation of infundibula, hair loss, and cyst development upon aging. Upregulation of epigen, secretory leukocyte peptidase inhibitor (Slpi), and small proline-rich protein 2d (Sprr2d) in hair follicles was identified as the likely cause of infundibular acanthosis, hyperkeratosis, and cyst formation. These alterations were highly reminiscent to the phenotype of chloracne/“metabolizing acquired dioxin-induced skin hamartomas” (MADISH) patients. Indeed, SLPI, SPRR2, and epigen were strongly expressed in cysts of MADISH patients and upregulated by dioxin in human keratinocytes in an NRF2-dependent manner. These results identify novel Nrf2 activities in the pilosebaceous unit and point to a role of NRF2 in MADISH pathogenesis. PMID:24503019

  18. Effect of nifedipine on the expression of keratinocyte growth factor and its receptor in cocultured/monocultured fibroblasts and keratinocytes.

    PubMed

    Di, C-P; Sun, Y; Zhao, L; Li, L; Ding, C; Xu, Y; Fan, Y

    2013-12-01

    Keratinocyte growth factor (KGF) and its receptor (KGFR) are involved in hyperplastic diseases. This study explored the effect of intercellular communication on KGF and KGFR in cocultured/monocultured gingival fibroblasts and keratinocytes following treatment with nifedipine. Human gingival fibroblasts and keratinocytes were monocultured and cocultured, respectively. MTT was used to investigate the effects of nifedipine on the proliferation of gingival fibroblasts and keratinocytes. Monoculture and coculture systems were treated with different concentrations (0, 0.2 or 20 μg/mL) of nifedipine, and the expression of KGF and KGFR mRNAs was examined by RT-PCR, whilst the secretion of KGF and the expression of KGFR on the membrane were analyzed using ELISA and flow cytometry, respectively. Nifedipine (0, 0.2 and 20 μg/mL) had no influence on cell proliferation within 3 d. KGF and KGFR mRNAs were up-regulated, but only in the cocultures. In coculture, the secretion of KGF was significantly increased by nifedipine, while it was only significantly up-regulated by 20 μg/mL of nifedipine in monoculture. Moreover, the level of KGFR protein in the membrane was significantly increased by 20 μg/mL of nifedipine in monocultures, while it was significantly down-regulated by 20 μg/mL of nifedipine in cocultures. The expression of KGF and KGFR are influenced by the interplay of gingival keratinocytes and fibroblasts. Epithelial keratinocytes and mesenchymal fibroblasts may interplay to dynamically regulate gene expression, which may have an effect on the gingival condition following treatment with nifedipine. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Cyclooxygenases in human and mouse skin and cultured human keratinocytes: association of COX-2 expression with human keratinocyte differentiation

    NASA Technical Reports Server (NTRS)

    Leong, J.; Hughes-Fulford, M.; Rakhlin, N.; Habib, A.; Maclouf, J.; Goldyne, M. E.

    1996-01-01

    Epidermal expression of the two isoforms of the prostaglandin H-generating cyclooxygenase (COX-1 and COX-2) was evaluated both by immunohistochemistry performed on human and mouse skin biopsy sections and by Western blotting of protein extracts from cultured human neonatal foreskin keratinocytes. In normal human skin, COX-1 immunostaining is observed throughout the epidermis whereas COX-2 immunostaining increases in the more differentiated, suprabasilar keratinocytes. Basal cell carcinomas express little if any COX-1 or COX-2 immunostaining whereas both isozymes are strongly expressed in squamous cell carcinomas deriving from a more differentiated layer of the epidermis. In human keratinocyte cultures, raising the extracellular calcium concentration, a recognized stimulus for keratinocyte differentiation, leads to an increased expression of both COX-2 protein and mRNA; expression of COX-1 protein, however, shows no significant alteration in response to calcium. Because of a recent report that failed to show COX-2 in normal mouse epidermis, we also looked for COX-1 and COX-2 immunostaining in sections of normal and acetone-treated mouse skin. In agreement with a previous report, some COX-1, but no COX-2, immunostaining is seen in normal murine epidermis. However, following acetone treatment, there is a marked increase in COX-1 expression as well as the appearance of significant COX-2 immunostaining in the basal layer. These data suggest that in human epidermis as well as in human keratinocyte cultures, the expression of COX-2 occurs as a part of normal keratinocyte differentiation whereas in murine epidermis, its constitutive expression is absent, but inducible as previously published.

  20. Cyclooxygenases in human and mouse skin and cultured human keratinocytes: association of COX-2 expression with human keratinocyte differentiation

    NASA Technical Reports Server (NTRS)

    Leong, J.; Hughes-Fulford, M.; Rakhlin, N.; Habib, A.; Maclouf, J.; Goldyne, M. E.

    1996-01-01

    Epidermal expression of the two isoforms of the prostaglandin H-generating cyclooxygenase (COX-1 and COX-2) was evaluated both by immunohistochemistry performed on human and mouse skin biopsy sections and by Western blotting of protein extracts from cultured human neonatal foreskin keratinocytes. In normal human skin, COX-1 immunostaining is observed throughout the epidermis whereas COX-2 immunostaining increases in the more differentiated, suprabasilar keratinocytes. Basal cell carcinomas express little if any COX-1 or COX-2 immunostaining whereas both isozymes are strongly expressed in squamous cell carcinomas deriving from a more differentiated layer of the epidermis. In human keratinocyte cultures, raising the extracellular calcium concentration, a recognized stimulus for keratinocyte differentiation, leads to an increased expression of both COX-2 protein and mRNA; expression of COX-1 protein, however, shows no significant alteration in response to calcium. Because of a recent report that failed to show COX-2 in normal mouse epidermis, we also looked for COX-1 and COX-2 immunostaining in sections of normal and acetone-treated mouse skin. In agreement with a previous report, some COX-1, but no COX-2, immunostaining is seen in normal murine epidermis. However, following acetone treatment, there is a marked increase in COX-1 expression as well as the appearance of significant COX-2 immunostaining in the basal layer. These data suggest that in human epidermis as well as in human keratinocyte cultures, the expression of COX-2 occurs as a part of normal keratinocyte differentiation whereas in murine epidermis, its constitutive expression is absent, but inducible as previously published.

  1. Role of plasma-derived fibrin on keratinocyte and fibroblast wound healing.

    PubMed

    Law, Jia Xian; Chowdhury, Shiplu Roy; Aminuddin, Bin Saim; Ruszymah, Binti Haji Idrus

    2017-07-26

    Fibrin has excellent biocompatibility and biological properties to support tissue regeneration and promote wound healing. However, the role of diluted fibrin in wound healing has yet to be elucidated as it is commonly used in high concentration. This study was aimed to examine the effects of diluted plasma-derived fibrin (PDF) on keratinocyte and fibroblast wound healing in term of cell proliferation, migration, extracellular matrix (ECM) production and soluble factor secretion. Two PDF concentrations, 10 and 20% (v/v) were tested on keratinocytes and fibroblasts indirectly co-cultured in the transwell system. The control group was cultured with 5% FBS. Results showed that PDF reduced the keratinocyte growth rate and fibroblast migration, and increased the fibroblast ECM gene expression whereby significant differences were found between the 20% PDF group and the 5% FBS group. Similar trend was seen for the 10% PDF group but the differences were not significant. Comparison of the soluble factors between the PDF groups demonstrated that the level of growth-related oncogene alpha, interleukin-8 and epithelial neutrophil-activating peptide-78 were significantly higher in the 10% PDF group, whilst interleukin-1 alpha and granulocyte-macrophage colony stimulating factor were significantly more concentrated in the 20% PDF group. Our results suggested that PDF selectively elevated the expression of collagen type 1 and collagen type 3 in fibroblasts but slowed down the migration in concentration-dependent manner. These novel findings provide new insight into the role of PDF in wound healing and may have important implications for the use of fibrin in skin tissue engineering.

  2. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line

    PubMed Central

    1988-01-01

    In contrast to mouse epidermal cells, human skin keratinocytes are rather resistant to transformation in vitro. Immortalization has been achieved by SV40 but has resulted in cell lines with altered differentiation. We have established a spontaneously transformed human epithelial cell line from adult skin, which maintains full epidermal differentiation capacity. This HaCaT cell line is obviously immortal (greater than 140 passages), has a transformed phenotype in vitro (clonogenic on plastic and in agar) but remains nontumorigenic. Despite the altered and unlimited growth potential, HaCaT cells, similar to normal keratinocytes, reform an orderly structured and differentiated epidermal tissue when transplanted onto nude mice. Differentiation- specific keratins (Nos. 1 and 10) and other markers (involucrin and filaggrin) are expressed and regularly located. Thus, HaCaT is the first permanent epithelial cell line from adult human skin that exhibits normal differentiation and provides a promising tool for studying regulation of keratinization in human cells. On karyotyping this line is aneuploid (initially hypodiploid) with unique stable marker chromosomes indicating monoclonal origin. The identity of the HaCaT line with the tissue of origin was proven by DNA fingerprinting using hypervariable minisatellite probes. This is the first demonstration that the DNA fingerprint pattern is unaffected by long- term cultivation, transformation, and multiple chromosomal alterations, thereby offering a unique possibility for unequivocal identification of human cell lines. The characteristics of the HaCaT cell line clearly document that spontaneous transformation of human adult keratinocytes can occur in vitro and is associated with sequential chromosomal alterations, though not obligatorily linked to major defects in differentiation. PMID:2450098

  3. Identification of an epidermal keratinocyte AMPA glutamate receptor involved in dermatopathies associated with sensory abnormalities

    PubMed Central

    Cabañero, David; Irie, Takeshi; Celorrio, Marta; Trousdale, Christopher; Owens, David M.; Virley, David; Albrecht, Phillip J.; Caterina, Michael J.; Rice, Frank L.; Morón, Jose A.

    2016-01-01

    Introduction Epidermal keratinocytes are increasingly recognized as active participants in the sensory transduction of itch and pain, processes known to involve primary afferent glutamatergic neurons. However the role of keratinocyte glutamate signaling in sensory functioning is not fully understood. Here, we present the observation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid type glutamate receptors (AMPAR) in epidermal keratinocytes. Methods Immunohistochemical and in situ hybridization analyses were conducted to assess the expression of AMPAR subunits in epidermal keratinocytes in mouse and human skin samples, and in organotypic cultures of human keratinocytes. In addition, RTPCR further confirmed the expression of GluA4-containing AMPAR in epidermal keratinocytes. Results We found prominent immunolabeling (IL) for the GluA4 subunit of AMPAR in keratinocytes of glabrous and hairy skin of mouse epidermis, as well as in human epidermal keratinocytes. RTPCR confirmed Gria4 transcript expression in epidermal mouse keratinocytes. In addition, expression of GRIA4 mRNA was confirmed in epidermal human keratinocytes by in situ hybridization. Immunohistochemical studies conducted in human skin biopsies from patients with atopic dermatitis (AD) and postherpetic neuralgia (PHN) demonstrate that keratinocyte expression of GluA4 can be altered under pathological conditions. Moreover, a decrease of GluA4 expression was observed in organotypic cultures of human keratinocytes after direct application of algogenic agents. Conclusions We provide evidence that GluA4-containing AMPAR are expressed in epidermal keratinocytes, that human pruritic and painful dermatopathologies have alterations in the keratinocyte expression levels of GluA4-containing AMPAR, and that itch and pain producing substances can directly regulate their production in keratinocytes. PMID:28210712

  4. Differential gene expression analysis of Paracoccidioides brasiliensis during keratinocyte infection.

    PubMed

    Peres da Silva, Roberta; Matsumoto, Marcelo Teruyuki; Braz, Jaqueline Derissi; Voltan, Aline Raquel; de Oliveira, Haroldo Cesar; Soares, Christiane Pienna; Mendes Giannini, Maria José Soares

    2011-03-01

    Paracoccidioides brasiliensis is the agent of paracoccidioidomycosis, one of the most important systemic fungal diseases in Latin America. This initiates in lung tissue and can subsequently disseminate to other tissues. Clinical manifestations range from localized forms to disseminated disease that can progress to lethality, probably depending on the relationships among the virulence of the fungus, the immune response and the ability to interact with the surface structures and invade epithelial cells and mononuclear cells of the host. It is generally regarded as a multifocal disease, with oral lesions as the prominent feature. The aim of this study was to evaluate P. brasiliensis yeast infection in normal oral keratinocytes (NOKs). The differential expression of mRNAs and proteins was also determined when the fungus was placed in contact with the cell in order to characterize differentially expressed genes and proteins during P. brasiliensis infection. After contact with NOKs, the fungus appeared to induce alterations in the cells, which showed cellular extensions and cavitations, probably resulting from changes in the actin cytoskeleton seen at 5 and 8 h after infection. Levels of protein expression were higher after reisolation of the fungus from infected NOK culture compared with culture of the fungus in medium. The analysis identified transcripts related to 19 proteins involved in different biological processes. Transcripts were found with multiple functions including induction of cytokines, protein metabolism, alternative carbon metabolism, zinc transport and the stress response during contact with NOKs. The proteins found suggested that the yeast was in a stress situation, as indicated by the presence of RDS1. Nevertheless, the yeast seemed to be proliferating and metabolically active, as shown by the presence of a proteasome, short-chain acetylator, glucosamine-6-phosphate isomerase and ADP/ATP carrier transcripts. Additionally, metabolic pathways may

  5. Mechanisms of Mitochondrial Damage in Keratinocytes by Pemphigus Vulgaris Antibodies*

    PubMed Central

    Kalantari-Dehaghi, Mina; Chen, Yumay; Deng, Wu; Chernyavsky, Alex; Marchenko, Steve; Wang, Ping H.; Grando, Sergei A.

    2013-01-01

    The development of nonhormonal treatment of pemphigus vulgaris (PV) has been hampered by a lack of clear understanding of the mechanisms leading to keratinocyte (KC) detachment and death in pemphigus. In this study, we sought to identify changes in the vital mitochondrial functions in KCs treated with the sera from PV patients and healthy donors. PV sera significantly increased proton leakage from KCs, suggesting that PV IgGs increase production of reactive oxygen species. Indeed, measurement of intracellular reactive oxygen species production showed a drastic increase of cell staining in response to treatment by PV sera, which was confirmed by FACS analysis. Exposure of KCs to PV sera also caused dramatic changes in the mitochondrial membrane potential detected with the JC-1 dye. These changes can trigger the mitochondria-mediated intrinsic apoptosis. Although sera from different PV patients elicited unique patterns of mitochondrial damage, the mitochondria-protecting drugs nicotinamide (also called niacinamide), minocycline, and cyclosporine A exhibited a uniform protective effect. Their therapeutic activity was validated in the passive transfer model of PV in neonatal BALB/c mice. The highest efficacy of mitochondrial protection of the combination of these drugs found in mitochondrial assay was consistent with the ability of the same drug combination to abolish acantholysis in mouse skin. These findings provide a theoretical background for clinical reports of the efficacy of mitochondria-protecting drugs in PV patients. Pharmacological protection of mitochondria and/or compensation of an altered mitochondrial function may therefore become a novel approach to development of personalized nonhormonal therapies of patients with this potentially lethal autoimmune blistering disease. PMID:23599429

  6. Mechanisms of mitochondrial damage in keratinocytes by pemphigus vulgaris antibodies.

    PubMed

    Kalantari-Dehaghi, Mina; Chen, Yumay; Deng, Wu; Chernyavsky, Alex; Marchenko, Steve; Wang, Ping H; Grando, Sergei A

    2013-06-07

    The development of nonhormonal treatment of pemphigus vulgaris (PV) has been hampered by a lack of clear understanding of the mechanisms leading to keratinocyte (KC) detachment and death in pemphigus. In this study, we sought to identify changes in the vital mitochondrial functions in KCs treated with the sera from PV patients and healthy donors. PV sera significantly increased proton leakage from KCs, suggesting that PV IgGs increase production of reactive oxygen species. Indeed, measurement of intracellular reactive oxygen species production showed a drastic increase of cell staining in response to treatment by PV sera, which was confirmed by FACS analysis. Exposure of KCs to PV sera also caused dramatic changes in the mitochondrial membrane potential detected with the JC-1 dye. These changes can trigger the mitochondria-mediated intrinsic apoptosis. Although sera from different PV patients elicited unique patterns of mitochondrial damage, the mitochondria-protecting drugs nicotinamide (also called niacinamide), minocycline, and cyclosporine A exhibited a uniform protective effect. Their therapeutic activity was validated in the passive transfer model of PV in neonatal BALB/c mice. The highest efficacy of mitochondrial protection of the combination of these drugs found in mitochondrial assay was consistent with the ability of the same drug combination to abolish acantholysis in mouse skin. These findings provide a theoretical background for clinical reports of the efficacy of mitochondria-protecting drugs in PV patients. Pharmacological protection of mitochondria and/or compensation of an altered mitochondrial function may therefore become a novel approach to development of personalized nonhormonal therapies of patients with this potentially lethal autoimmune blistering disease.

  7. Canine keratinocytes upregulate type I interferons and proinflammatory cytokines in response to poly(dA:dT) but not to canine papillomavirus.

    PubMed

    Luff, Jennifer A; Yuan, Hang; Suter, Maja M; Müller, Eliane J; Schlegel, Richard; Moore, Peter F

    2013-06-15

    Papillomaviruses (PV) are double stranded (ds) DNA viruses that infect epithelial cells within the skin or mucosa, most often causing benign neoplasms that spontaneously regress. The immune system plays a key role in the defense against PVs. Since these viruses infect keratinocytes, we wanted to investigate the role of the keratinocyte in initiating an immune response to canine papillomavirus-2 (CPV-2) in the dog. Keratinocytes express a variety of pattern recognition receptors (PRR) to distinguish different cutaneous pathogens and initiate an immune response. We examined the mRNA expression patterns for several recently described cytosolic nucleic acid sensing PRRs in canine monolayer keratinocyte cultures using quantitative reverse transcription-polymerase chain reaction. Unstimulated normal cells were found to express mRNA for melanoma differentiation associated gene 5 (MDA5), retinoic acid-inducible gene I (RIG-I), DNA-dependent activation of interferon regulatory factors, leucine rich repeat flightless interacting protein 1, and interferon inducible gene 16 (IFI16), as well as their adaptor molecules myeloid differentiation primary response gene 88, interferon-β promoter stimulator 1, and endoplasmic reticulum-resident transmembrane protein stimulator of interferon genes. When stimulated with synthetic dsDNA [poly(dA:dT)] or dsRNA [poly(I:C)], keratinocytes responded with increased mRNA expression levels for interleukin-6, tumor necrosis factor-α, interferon-β, RIG-I, IFI16, and MDA5. There was no detectable increase in mRNA expression, however, in keratinocytes infected with CPV-2. Furthermore, CPV-2-infected keratinocytes stimulated with poly(dA:dT) and poly(I:C) showed similar mRNA expression levels for these gene products when compared with expression levels in uninfected cells. These results suggest that although canine keratinocytes contain functional PRRs that can recognize and respond to dsDNA and dsRNA ligands, they do not appear to recognize or

  8. Co-culture of healthy human keratinocytes and T-cells promotes keratinocyte chemokine production and RORγt-positive IL-17 producing T-cell populations.

    PubMed

    Peters, Jorieke H; Tjabringa, Geuranne S; Fasse, Esther; de Oliveira, Vivian L; Schalkwijk, Joost; Koenen, Hans J P M; Joosten, Irma

    2013-01-01

    Both keratinocytes and T-cells are crucial players in cutaneous immune responses. We hypothesized that direct interactions between keratinocytes and T-cell subsets could shape the nature or strength of the local immune response. We investigated direct interactions between keratinocytes and T-cell subsets, focused on keratinocyte chemokine production and T-cell phenotype and cytokine production. A newly developed in vitro serum free co-culture model using primary keratinocytes and T-cells subsets from healthy human donors was used. Keratinocyte chemokine production was analyzed with luminex, T-cell phenotype and cytokine production were analyzed with flow cytometry. Our data show that upon co-culture with CD4(pos) or CD8(pos) T-cells primary human keratinocytes increased production of functionally active chemokines CCL2, CCL20 and CXCL10 and that regulatory T-cells did not regulate keratinocyte chemokine production. Next to that, we found that keratinocytes skewed CD4(pos) and CD8(pos) T-cell populations toward an IL-17(pos) CCR6(pos) RORγt(pos) phenotype in a cell-cell contact independent manner, and that Treg were able to decrease the absolute number of IL-17 producing T-cells in keratinocyte/T-cell co-cultures. Correspondingly, freshly isolated skin-derived T-cell populations contained relatively high percentages of IL-17(pos) cells. We provide evidence that keratinocyte/T-cell communication may regulate leukocyte influx in the skin, and that keratinocytes enrich T-cell populations for Th17/Tc17 cells. Accumulation of Th17/Tc17 cells, but not chemokine production, appears under the control of regulatory T-cells. Dysregulation of these processes may well contribute to the pathophysiology of inflammatory skin diseases. Copyright © 2012. Published by Elsevier Ireland Ltd.

  9. Evidence supporting a role for dihydroorotate dehydrogenase, bioenergetics, and p53 in selective teriflunomide-induced apoptosis in transformed versus normal human keratinocytes.

    PubMed

    Hail, Numsen; Chen, Ping; Kepa, Jadwiga J; Bushman, Lane R

    2012-03-01

    We have demonstrated previously that the dihydroorotate dehydrogenase (DHODH) inhibitor teriflunomide (TFN) encourages apoptosis in transformed human keratinocytes. Here we sought to determine if this cytotoxic effect could be restricted to transformed keratinocytes relative to their normal human epidermal keratinocyte (NHEK) counterparts, and ascertain a potential mechanistic basis for the selectivity. The NHEK cells proliferated much slower than the premalignant HaCaT and malignant COLO 16 keratinocytes, and exogenous uridine added to the culture medium did not affect this growth. Similarly, DHODH expression and the bioenergetic characteristics of the normal cells were markedly dissimilar from those observed in the transformed cells indicating that de novo pyrimidine synthesis was involved with keratinocyte proliferation. Moreover, a short-term exposure to TFN caused a wild-type p53 response in the NHEK cells illustrating that pyrimidine metabolic stress could regulate this tumor suppressor protein in the normal cells. TFN-induced apoptosis occurred primarily in S phase HaCaT cells. This cell death was sensitive to uridine, an antioxidant, and a caspase inhibitor, and the suppression of Bcl-X(L) and the induction of Mn superoxide dismutase preceded it. These events suggested that mitochondrial/redox stress was involved with the cytotoxic effect of TFN. Conversely, a long-term exposure to TFN caused G(0)/G(1) arrest in the NHEK cells, which supported a cytoprotective role for p53 against TFN-induced apoptosis. Together, these results propose that TFN could be useful in the prevention or therapy of non-melanoma skin cancers and possibly other hyperproliferative keratinocytic diseases.

  10. KIND1 Loss Sensitizes Keratinocytes to UV-Induced Inflammatory Response and DNA Damage.

    PubMed

    Zhang, Xiaoling; Luo, Suju; Wu, Joseph; Zhang, Long; Wang, Wen-Hui; Degan, Simone; Erdmann, Detlev; Hall, Russell; Zhang, Jennifer Y

    2017-02-01

    Loss of function of KIND1, a cytoskeletal protein involved in β1-integrin function, causes Kindler syndrome, a genetic disease characterized by skin fragility, photosensitivity, and increased risk of squamous cell carcinoma. Dysregulation of β1-integrin underlies Kindler syndrome skin fragility. However, the mechanisms underlying squamous cell carcinoma susceptibility are unclear. Here, we demonstrate that gene silencing of KIND1 decreased keratinocyte proliferation and increased apoptosis in vitro and in skin grafts regenerated on mice, which was correlated with reduced cyclinB1. In addition, KIND1 loss sensitized keratinocytes to cytokine and UV-induced NF-κB and c-Jun N-terminal kinase activation and upregulation of CXCL10 and tumor necrosis factor-α. Moreover, KIND1 loss impaired DNA repair, as indicated by the increased detection of γH2AX and cyclobutane pyrimidine dimers 24 hours after UVB radiation. Genetic or pharmacological c-Jun N-terminal kinase inhibition and NF-κB inhibition markedly reduced cyclobutane pyrimidine dimers-positive cells. Further, we show that KIND1 was regulated by JunB at the transcriptional level and, like JunB, it was downregulated in human squamous cell carcinoma cells. Together, these results indicate that KIND1 is important not only for keratinocyte proliferation but also for the suppression of UV-induced inflammation and DNA damage. These latter findings support a tumor suppressor function for KIND1, and identify c-Jun N-terminal kinase and NF-κB as potential therapeutic targets for prevention of squamous cell carcinoma in patients with Kindler syndrome. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. The Galvanotactic Migration of Keratinocytes is Enhanced by Hypoxic Preconditioning

    PubMed Central

    Guo, Xiaowei; Jiang, Xupin; Ren, Xi; Sun, Huanbo; Zhang, Dongxia; Zhang, Qiong; Zhang, Jiaping; Huang, Yuesheng

    2015-01-01

    The endogenous electric field (EF)-directed migration of keratinocytes (galvanotaxis) into wounds is an essential step in wound re-epithelialization. Hypoxia, which occurs immediately after injury, acts as an early stimulus to initiate the healing process; however, the mechanisms for this effect, remain elusive. We show here that the galvanotactic migration of keratinocytes was enhanced by hypoxia preconditioning as a result of the increased directionality rather than the increased motility of keratinocytes. This enhancement was both oxygen tension- and preconditioning time-dependent, with the maximum effects achieved using 2% O2 preconditioning for 6 hours. Hypoxic preconditioning (2% O2, 6 hours) decreased the threshold voltage of galvanotaxis to < 25 mV/mm, whereas this value was between 25 and 50 mV/mm in the normal culture control. In a scratch-wound monolayer assay in which the applied EF was in the default healing direction, hypoxic preconditioning accelerated healing by 1.38-fold compared with the control conditions. Scavenging of the induced ROS by N-acetylcysteine (NAC) abolished the enhanced galvanotaxis and the accelerated healing by hypoxic preconditioning. Our data demonstrate a novel and unsuspected role of hypoxia in supporting keratinocyte galvanotaxis. Enhancing the galvanotactic response of cells might therefore be a clinically attractive approach to induce improved wound healing. PMID:25988491

  12. Keratinocytes in the treatment of severe burn injury: an update.

    PubMed

    Lootens, Liesbeth; Brusselaers, Nele; Beele, Hilde; Monstrey, Stan

    2013-02-01

    Burns are among the most life-threatening physical injuries, in which fast wound closure is crucial. The surgical burn care has evolved considerably throughout the past decennia resulting in a shift of therapeutic goals. Therapies aiming to provide coverage of the burn have been replaced by treatments that have both functional as aesthetic outcomes. The standard in treating severe burns is still early excision followed by skin grafting. The use of cultured keratinocytes to cover extensive burn wounds appeared very promising at first, but the technique still has several limitations of which the long time to culture, the major costs, the risk of infection and the need for an adequate dermal layer limit clinical application. The introduction of dermal substitutes, composite grafts, tissue engineering based on stem cell application have been advocated. The aim of this review is to assess the use of cultured keratinocytes in terms of technical aspects, clinical application, limitations and future perspectives. Cultured keratinocytes are expected to keep playing a role in wound healing, especially in the field of chronic wounds. In severe burns, despite its limitations, keratinocytes can be beneficial if implemented as one of the elements in a broader wound management. © 2012 The Authors. International Wound Journal © 2012 Blackwell Publishing Ltd and Medicalhelplines.com Inc.

  13. FOXO1 expression in keratinocytes promotes connective tissue healing

    PubMed Central

    Zhang, Chenying; Lim, Jason; Liu, Jian; Ponugoti, Bhaskar; Alsadun, Sarah; Tian, Chen; Vafa, Rameen; Graves, Dana T.

    2017-01-01

    Wound healing is complex and highly orchestrated. It is well appreciated that leukocytes, particularly macrophages, are essential for inducing the formation of new connective tissue, which requires the generation of signals that stimulate mesenchymal stem cells (MSC), myofibroblasts and fibroblasts. A key role for keratinocytes in this complex process has yet to be established. To this end, we investigated possible involvement of keratinocytes in connective tissue healing. By lineage-specific deletion of the forkhead box-O 1 (FOXO1) transcription factor, we demonstrate for the first time that keratinocytes regulate proliferation of fibroblasts and MSCs, formation of myofibroblasts and production of collagen matrix in wound healing. This stimulation is mediated by a FOXO1 induced TGFβ1/CTGF axis. The results provide direct evidence that epithelial cells play a key role in stimulating connective tissue healing through a FOXO1-dependent mechanism. Thus, FOXO1 and keratinocytes may be an important therapeutic target where healing is deficient or compromised by a fibrotic outcome. PMID:28220813

  14. Recovery and Cultivation of Keratinocytes From Shipped Mouse Skin.

    PubMed

    Yang, Hsin-Ya; La, Thi Dinh; Gurenko, Zhanna; Steenhuis, Pieter; Liu, Wei; Isseroff, R Rivkah

    2015-02-01

    Murine keratinocyte culture from neonatal skin is an important tool for studying the functional role of specific genes in epithelial biology. However, when the transgenic animal is only available in a geographically distant local, obtaining viable keratinocytes can be problematic. A method for transferring the isolated murine skin from collaborating labs could decrease the cost of shipping live animals, and would allow the efficient use of the tissues from the transgenic animals. Here we optimized shipping conditions and characterized the cells retrieved and cultured from mouse skin shipped for 48 h at 0 °C. The cultured keratinocytes from the control, non-shipped skin and the 2-day shipped skin were 43.6 +/- 7.8% viable, doubled every 2 days, and expressed comparable amounts of heat shock proteins and CD29/integrin beta-1. However, under the same shipping conditions, the 3-day shipped tissue failed to establish colonies in the culture. Therefore, this 2-day shipping technique allows the transfer mouse skin from distant locations with recovery of viable, propagatable keratinocytes, facilitating long-distance collaborations.

  15. Desmoglein 3-Dependent Signaling Regulates Keratinocyte Migration and Wound Healing.

    PubMed

    Rötzer, Vera; Hartlieb, Eva; Winkler, Julia; Walter, Elias; Schlipp, Angela; Sardy, Miklós; Spindler, Volker; Waschke, Jens

    2016-01-01

    The desmosomal transmembrane adhesion molecules desmoglein 3 (Dsg3) and desmocollin 3 (Dsc3) are required for strong keratinocyte cohesion. Recently, we have shown that Dsg3 associates with p38 mitogen-activated protein kinase (p38MAPK) and suppresses its activity. Here, we further investigated the role of Dsg3-dependent control of p38MAPK function. Dsg3-deficient mice display recurrent spontaneously healing skin erosions. In lesional and perilesional biopsies, p38MAPK activation was detectable compared with control animals. This led us to speculate that Dsg3 regulates wound repair in a p38MAPK-dependent manner. Indeed, scratch-wounded keratinocyte monolayers exhibited p38MAPK activation and loss of Dsg3 in cells lining the wound edge. Human keratinocytes after silencing of Dsg3 as well as primary cells isolated from Dsg3 knockout animals exhibited accelerated migration, which was further corroborated in an ex vivo skin outgrowth assay. Importantly, migration was efficiently blocked by inhibition of p38MAPK, indicating that p38MAPK mediates the effects observed upon loss of Dsg3. In line with this, we show that levels of active p38MAPK associated with Dsc3 are increased in Dsg3-deficient cells. These data indicate that Dsg3 controls a switch from an adhesive to a migratory keratinocyte phenotype via p38MAPK inhibition. Thus, loss of Dsg3 adhesion may foster wound closure by allowing p38MAPK-dependent migration.

  16. Oxidative damage in keratinocytes exposed to cigarette smoke and aldehydes.

    PubMed

    Avezov, Katia; Reznick, Abraham Z; Aizenbud, Dror

    2014-06-01

    Cigarette smoke (CS) is a significant environmental source of human exposure to chemically active saturated (acetaldehyde) and α,β-unsaturated aldehydes (acrolein) inducing protein carbonylation and dysfunction. The exposure of oral tissues to environmental hazards is immense, especially in smokers. The objectives of the current study were to examine the effect of aldehydes originating from CS on intracellular proteins of oral keratinocytes and to observe the antioxidant response in these cells. Intracellular protein carbonyl modification under CS, acrolein and acetaldehyde exposure in the HaCaT keratinocyte cell line, representing oral keratinocytes was examined by Western blot. Possible intracellular enzymatic dysfunction under the above conditions was examined by lactate dehydrogenase (LDH) activity assay. Oxidative stress response was investigated, by DCF (2,7-dichlorodihydrofluorescein) assay and GSH (glutathione) oxidation. Intracellular protein carbonyls increased 5.2 times after CS exposure and 2.7 times after exposure to 1 μmol of acrolein. DCF assay revealed an increase of fluorescence intensity 3.2 and 3.1 times after CS and acrolein exposure, respectively. CS caused a 72.5% decrease in intracellular GSH levels compared to controls. Activity of intracellular LDH was preserved. α,β-Unsaturated aldehydes from CS are capable of intracellular protein carbonylation and have a role in intracellular oxidative stress elevation in keratinocytes, probably due to the reduction in GSH levels.

  17. Keratinocytes can modulate and directly initiate nociceptive responses

    PubMed Central

    Baumbauer, Kyle M; DeBerry, Jennifer J; Adelman, Peter C; Miller, Richard H; Hachisuka, Junichi; Lee, Kuan Hsien; Ross, Sarah E; Koerber, H Richard; Davis, Brian M; Albers, Kathryn M

    2015-01-01

    How thermal, mechanical and chemical stimuli applied to the skin are transduced into signals transmitted by peripheral neurons to the CNS is an area of intense study. Several studies indicate that transduction mechanisms are intrinsic to cutaneous neurons and that epidermal keratinocytes only modulate this transduction. Using mice expressing channelrhodopsin (ChR2) in keratinocytes we show that blue light activation of the epidermis alone can produce action potentials (APs) in multiple types of cutaneous sensory neurons including SA1, A-HTMR, CM, CH, CMC, CMH and CMHC fiber types. In loss of function studies, yellow light stimulation of keratinocytes that express halorhodopsin reduced AP generation in response to naturalistic stimuli. These findings support the idea that intrinsic sensory transduction mechanisms in epidermal keratinocytes can directly elicit AP firing in nociceptive as well as tactile sensory afferents and suggest a significantly expanded role for the epidermis in sensory processing. DOI: http://dx.doi.org/10.7554/eLife.09674.001 PMID:26329459

  18. Cell shape controls terminal differentiation of human epidermal keratinocytes.

    PubMed Central

    Watt, F M; Jordan, P W; O'Neill, C H

    1988-01-01

    Cultures of human epidermal keratinocytes provide a useful experimental model with which to study the factors that regulate cell proliferation and terminal differentiation. One situation that is known to trigger premature terminal differentiation is suspension culture, when keratinocytes are deprived of substratum and intercellular contact. We have now investigated whether area of substratum contact, and hence cell shape, can regulate terminal differentiation. Keratinocytes were grown on circular adhesive islands that prevented cell-cell contact. By varying island area we could vary cell shape from fully spread to almost spherical. We found that when substratum contact was restricted, DNA synthesis was inhibited and expression of involucrin, a marker of terminal differentiation, was stimulated. Inhibition of proliferation was not a sufficient stimulus for involucrin synthesis in fully spread cells. When DNA synthesis and involucrin expression were plotted against contact area, classic dose-response curves were obtained. Thus cell shape acts as a signal for the terminal differentiation of keratinocytes in culture. Images PMID:2456572

  19. Gamma Interferon Reduces the Synthesis of Fibronectin by Human Keratinocytes

    DTIC Science & Technology

    1988-10-06

    mmm mm m m m m mmm• m 13. Wikner NE, Dixit VM, Frazier WA, Clark RAF: Human keratinocytes synthesize and secrete the extracellular matrix protein...keratinoctye-derived lymphocyte inhibitory factor. J Investig Dermatol 90:592A, 1988 18. Wikner NE, Baskin JB, Nielsen LD, McPherson JM, Clark RAF

  20. Efficient expansion of human keratinocyte stem/progenitor cells carrying a transgene with lentiviral vector.

    PubMed

    Nanba, Daisuke; Matsushita, Natsuki; Toki, Fujio; Higashiyama, Shigeki

    2013-10-18

    The development of an appropriate procedure for lentiviral gene transduction into keratinocyte stem cells is crucial for stem cell biology and regenerative medicine for genetic disorders of the skin. However, there is little information available on the efficiency of lentiviral transduction into human keratinocyte stem/progenitor cells and the effects of gene transduction procedures on growth potential of the stem cells by systematic assessment. In this study, we explored the conditions for efficient expansion of human keratinocyte stem/progenitor cells carrying a transgene with a lentiviral vector, by using the culture of keratinocytes on a feeder layer of 3 T3 mouse fibroblasts. The gene transduction and expansion of keratinocytes carrying a transgene were analyzed by Western blotting, quantitative PCR, and flow cytometry. Polybrene (hexadiamine bromide) markedly enhanced the efficiency of lentiviral gene transduction, but negatively affected the maintenance of the keratinocyte stem/progenitor cells at a concentration higher than 5 μg/ml. Rho-assiciated kinase (ROCK) inhibitor Y-27632, a small molecule which enhanced keratinocyte proliferation, significantly interfered with the lentiviral transduction into cultured human keratinocytes. However, a suitable combination of polybrene and Y-27632 effectively expanded keratinocytes carrying a transgene. This study provides information for effective expansion of cultured human keratinocyte stem/progenitor cells carrying a transgene. This point is particularly significant for the application of genetically modified keratinocyte stem/progenitor stem cells in regenerative medicine.

  1. Efficient expansion of human keratinocyte stem/progenitor cells carrying a transgene with lentiviral vector

    PubMed Central

    2013-01-01

    Introduction The development of an appropriate procedure for lentiviral gene transduction into keratinocyte stem cells is crucial for stem cell biology and regenerative medicine for genetic disorders of the skin. However, there is little information available on the efficiency of lentiviral transduction into human keratinocyte stem/progenitor cells and the effects of gene transduction procedures on growth potential of the stem cells by systematic assessment. Methods In this study, we explored the conditions for efficient expansion of human keratinocyte stem/progenitor cells carrying a transgene with a lentiviral vector, by using the culture of keratinocytes on a feeder layer of 3 T3 mouse fibroblasts. The gene transduction and expansion of keratinocytes carrying a transgene were analyzed by Western blotting, quantitative PCR, and flow cytometry. Results Polybrene (hexadiamine bromide) markedly enhanced the efficiency of lentiviral gene transduction, but negatively affected the maintenance of the keratinocyte stem/progenitor cells at a concentration higher than 5 μg/ml. Rho-assiciated kinase (ROCK) inhibitor Y-27632, a small molecule which enhanced keratinocyte proliferation, significantly interfered with the lentiviral transduction into cultured human keratinocytes. However, a suitable combination of polybrene and Y-27632 effectively expanded keratinocytes carrying a transgene. Conclusions This study provides information for effective expansion of cultured human keratinocyte stem/progenitor cells carrying a transgene. This point is particularly significant for the application of genetically modified keratinocyte stem/progenitor stem cells in regenerative medicine. PMID:24406242

  2. EMILIN1-α4/α9 integrin interaction inhibits dermal fibroblast and keratinocyte proliferation.

    PubMed

    Danussi, Carla; Petrucco, Alessandra; Wassermann, Bruna; Pivetta, Eliana; Modica, Teresa Maria Elisa; Del Bel Belluz, Lisa; Colombatti, Alfonso; Spessotto, Paola

    2011-10-03

    EMILIN1 promotes α4β1 integrin-dependent cell adhesion and migration and reduces pro-transforming growth factor-β processing. A knockout mouse model was used to unravel EMILIN1 functions in skin where the protein was abundantly expressed in the dermal stroma and where EMILIN1-positive fibrils reached the basal keratinocyte layer. Loss of EMILIN1 caused dermal and epidermal hyperproliferation and accelerated wound closure. We identified the direct engagement of EMILIN1 to α4β1 and α9β1 integrins as the mechanism underlying the homeostatic role exerted by EMILIN1. The lack of EMILIN1-α4/α9 integrin interaction was accompanied by activation of PI3K/Akt and Erk1/2 pathways as a result of the reduction of PTEN. The down-regulation of PTEN empowered Erk1/2 phosphorylation that in turn inhibited Smad2 signaling by phosphorylation of residues Ser245/250/255. These results highlight the important regulatory role of an extracellular matrix component in skin proliferation. In addition, EMILIN1 is identified as a novel ligand for keratinocyte α9β1 integrin, suggesting prospective roles for this receptor-ligand pair in skin homeostasis.

  3. Atypical Diabetic Foot Ulcer Keratinocyte Protein Signaling Correlates with Impaired Wound Healing

    PubMed Central

    Hoke, Glenn D.; Ramos, Corrine; Hoke, Nicholas N.; Crossland, Mary C.; Shawler, Lisa G.

    2016-01-01

    Diabetes mellitus is associated with chronic diabetic foot ulcers (DFUs) and wound infections often resulting in lower extremity amputations. The protein signaling architecture of the mechanisms responsible for impaired DFU healing has not been characterized. In this preliminary clinical study, the intracellular levels of proteins involved in signal transduction networks relevant to wound healing were non-biasedly measured using reverse-phase protein arrays (RPPA) in keratinocytes isolated from DFU wound biopsies. RPPA allows for the simultaneous documentation and assessment of the signaling pathways active in each DFU. Thus, RPPA provides for the accurate mapping of wound healing pathways associated with apoptosis, proliferation, senescence, survival, and angiogenesis. From the study data, we have identified potential diagnostic, or predictive, biomarkers for DFU wound healing derived from the ratios of quantified signaling protein expressions within interconnected pathways. These biomarkers may allow physicians to personalize therapeutic strategies for DFU management on an individual basis based upon the signaling architecture present in each wound. Additionally, we have identified altered, interconnected signaling pathways within DFU keratinocytes that may help guide the development of therapeutics to modulate these dysregulated pathways, many of which parallel the therapeutic targets which are the hallmarks of molecular therapies for treating cancer. PMID:27840833

  4. Transcriptional Profiling of Ectoderm Specification to Keratinocyte Fate in Human Embryonic Stem Cells

    PubMed Central

    Tadeu, Ana Mafalda Baptista; Lin, Samantha; Hou, Lin; Chung, Lisa; Zhong, Mei; Zhao, Hongyu; Horsley, Valerie

    2015-01-01

    In recent years, several studies have shed light into the processes that regulate epidermal specification and homeostasis. We previously showed that a broad-spectrum γ–secretase inhibitor DAPT promoted early keratinocyte specification in human embryonic stem cells triggered to undergo ectoderm specification. Here, we show that DAPT accelerates human embryonic stem cell differentiation and induces expression of the ectoderm protein AP2. Furthermore, we utilize RNA sequencing to identify several candidate regulators of ectoderm specification including those involved in epithelial and epidermal development in human embryonic stem cells. Genes associated with transcriptional regulation and growth factor activity are significantly enriched upon DAPT treatment during specification of human embryonic stem cells to the ectoderm lineage. The human ectoderm cell signature identified in this study contains several genes expressed in ectodermal and epithelial tissues. Importantly, these genes are also associated with skin disorders and ectodermal defects, providing a platform for understanding the biology of human epidermal keratinocyte development under diseased and homeostatic conditions. PMID:25849374

  5. Novel method for proliferation of oral keratinocyte stem cells.

    PubMed

    Calenic, B; Paun, I A; van Staden, R I; Didilescu, A; Petre, A; Dinescu, M; Greabu, M

    2014-12-01

    Stem cell-based tissue engineering offers clear advantages over conventional normal cell approaches. Owing to their specific characteristics, oral keratinocyte stem cells represent an attractive solution for therapeutic applications. However, when cultured in vitro, these cells lose their unique properties, acquiring a limited capacity for self-renewal, and differentiate rapidly into normal functional keratinocytes. The main aim of the present study was to develop an in-vitro method for the expansion of oral keratinocyte stem cells using a biomaterial approach. Oral keratinocyte stem cells were isolated based on the identification of two surface markers - integrin α6β4 and CD71 - using a magnetic method. The cells were cultured on specific substrates formed from blends of polymers: poly(lactide-co-glycolide) (PLGA); poly(lactide-co-glycolide) + polyurethane (PLGA + PU); and poly(lactide-co-glycolide) + extracellular matrix (PLGA + ECM). The polymers were deposited using a laser-based technique - matrix-assisted pulsed laser evaporation. The cells were analyzed for cell size, cell proliferation, colony-forming efficiency, cell adhesion markers (such as E-cadherin and beta 1 integrin), keratinocyte stem cells and differentiation markers. The methods included ELISAs, immunofluorescence and atomic force microscopy imaging. After 14 d in culture, cells seeded on PLGA + PU stained positive for p63, cd44H, cytokeratin 19 and integrin α6β4 and negative for involucrin, cytokeratin 14 and cytokeratin 10. The levels of adhesion molecules were significantly increased in cells grown on PLGA + PU: at 14 d the E-cadherin levels were 5.4 ± 0.2 ng/mL (for cells grown on PLGA + PU) vs. 4.1 ± 0.4 ng/mL (for cells grown on control medium) (n = 5, p < 0.05 Bonferroni). Oral keratinocyte stem cells grown on PLGA + PU had the highest colony-forming efficiency and proliferation rate, together with the smallest cell size, compared with cells grown on

  6. Partial loss of epithelial phenotype in kindlin-1-deficient keratinocytes.

    PubMed

    Qu, Haiyan; Wen, Tingting; Pesch, Monika; Aumailley, Monique

    2012-04-01

    Kindlin-1 is an adaptor protein that is expressed by most epithelial cells and has been implicated in integrin bidirectional signaling. Mutations in the gene encoding kindlin-1 are associated with Kindler syndrome, a recessively inherited disorder that is characterized by fragile skin. Functionally, a loss of kindlin-1 impairs the adhesion of basal keratinocytes to the extracellular matrix both in vivo and in vitro. In this study, we show that the phenotype of mutant keratinocytes deficient in kindlin-1 is characterized by the modification of the cortical actin network and increased plasticity of the plasma membrane. At the molecular level, expression of several proteins associated with an epithelial phenotype, such as α6β4 integrin, collagen XVII, E-cadherin, and desmoglein-3, is strongly reduced, whereas, surprisingly, laminin 332 is synthesized in larger amounts than in control keratinocytes. In contrast, mesenchymal markers such as vimentin and fibronectin are increased in keratinocytes lacking kindlin-1. The switch in cell plasticity and protein expression was confirmed by siRNA-mediated down-regulation of kindlin-1 in HaCaT epithelial cells. Furthermore, there was up-regulation of matrix metalloproteinases and pro-inflammatory cytokines in kindlin-1-deficient keratinocytes. These results provide new insights into the pathogenic mechanisms that take place in Kindler syndrome. Moreover, the constellation of molecular defects associated with the loss of kindlin-1 may explain the higher incidence of skin cancer observed in patients affected with this disorder. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  7. Hypoxia enhances the wound-healing potential of adipose-derived stem cells in a novel human primary keratinocyte-based scratch assay

    PubMed Central

    Riis, Simone; Newman, Rhonda; Ipek, Hilal; Andersen, Jens I.; Kuninger, David; Boucher, Shayne; Vemuri, Mohan C.; Pennisi, Cristian P.; Zachar, Vladimir; Fink, Trine

    2017-01-01

    Preclinical studies have suggested that paracrine factors from adipose-derived stem cells (ASCs) promote the healing of chronic wounds, and that the exposure of ASCs to hypoxia enhances their wound healing effect. To aid the translation of these findings into clinical use, robust wound models are necessary to explore each aspect of wound healing. The aspect of re-epithelization is often studied in a scratch assay based on transformed keratinocytes. However, there are concerns regarding the validity of this model, since these cell lines differ from normal keratinocytes, both in terms of proliferative capacity and differentiation, and sensitivity to environmental cues. In this study, the main challenge of using primary keratinocytes to examine the effects of ASCs was identified to be their different requirements for calcium in the culture media. We confirmed that a high calcium content led to morphological and cytoskeletal changes in primary keratinocytes, and demonstrated that a low calcium content compromised the growth of ASCs. We found that it is possible to perform the wound healing assay with primary keratinocytes, if the conditioned media from the ASCs is dialyzed to reduce the calcium concentration. Additionally, using this model of re-epithelization, conditioned media from normoxic ASCs was shown to markedly increase the rate of wound closure by primary keratinocytes, and this effect was significantly enhanced with media from the hypoxia-exposed ASCs. These findings, which are in line with the observations from previous in vivo studies, highlight the validity of this modified assay to investigate the wound healing properties of ASCs in vitro. PMID:28204820

  8. Hypoxia enhances the wound-healing potential of adipose-derived stem cells in a novel human primary keratinocyte-based scratch assay.

    PubMed

    Riis, Simone; Newman, Rhonda; Ipek, Hilal; Andersen, Jens I; Kuninger, David; Boucher, Shayne; Vemuri, Mohan C; Pennisi, Cristian P; Zachar, Vladimir; Fink, Trine

    2017-03-01

    Preclinical studies have suggested that paracrine factors from adipose-derived stem cells (ASCs) promote the healing of chronic wounds, and that the exposure of ASCs to hypoxia enhances their wound healing effect. To aid the translation of these findings into clinical use, robust wound models are necessary to explore each aspect of wound healing. The aspect of re-epithelization is often studied in a scratch assay based on transformed keratinocytes. However, there are concerns regarding the validity of this model, since these cell lines differ from normal keratinocytes, both in terms of proliferative capacity and differentiation, and sensitivity to environmental cues. In this study, the main challenge of using primary keratinocytes to examine the effects of ASCs was identified to be their different requirements for calcium in the culture media. We confirmed that a high calcium content led to morphological and cytoskeletal changes in primary keratinocytes, and demonstrated that a low calcium content compromised the growth of ASCs. We found that it is possible to perform the wound healing assay with primary keratinocytes, if the conditioned media from the ASCs is dialyzed to reduce the calcium concentration. Additionally, using this model of re-epithelization, conditioned media from normoxic ASCs was shown to markedly increase the rate of wound closure by primary keratinocytes, and this effect was significantly enhanced with media from the hypoxia-exposed ASCs. These findings, which are in line with the observations from previous in vivo studies, highlight the validity of this modified assay to investigate the wound healing properties of ASCs in vitro.

  9. A truncating mutation in the laminin-332α chain highlights the role of the LG45 proteolytic domain in regulating keratinocyte adhesion and migration.

    PubMed

    Di Zenzo, G; El Hachem, M; Diociaiuti, A; Boldrini, R; Calabresi, V; Cianfarani, F; Fortugno, P; Piccinni, E; Zambruno, G; Castiglia, D

    2014-05-01

    Altered function of laminin-332 (α3β3γ2) consequent to mutations in the LAMA3, LAMB3 and LAMC2 genes causes junctional epidermolysis bullosa non-Herlitz (JEB-nH). JEB-nH patients suffer from skin blistering and have an increased risk of developing aggressive skin carcinomas in adulthood. Laminin-332 is proteolytically processed and its extracellular mature form lacks the α3 chain C-terminal globules 4 and 5 (LG45). The LG45 tandem has cell adhesion and protumorigenic properties. However, mutations that affect this domain are very rare and their functional effects in patients have not been explored to date. To characterize molecularly an adult patient with JEB-nH and altered laminin-332 expression presenting multiple skin carcinomas, and to analyse LG45-mediated biological functions using keratinocytes from the patient. A mutational search in laminin-332 genes was performed by hetero-duplex analysis. LAMA3 mRNA and laminin-332 protein levels in patient keratinocytes were investigated by real-time reverse transcriptase polymerase chain reaction and radioimmunoprecipitation assay, respectively. Keratinocyte migration was examined by scratch and Boyden chamber assays. We identified a homozygous LAMA3 mutation, p.Leu1648TrpfsX32, which truncates the last 45 amino acids of the carboxyl terminal LG5 subdomain. Gene expression studies revealed that the mutant transcripts were stable and even increased, precursor laminin-332 molecules were retained intracellularly and the amount of mature extracellular heterotrimers was reduced to about 50%. Finally, the patient's keratinocytes migrated faster than normal keratinocytes. Structural disruption of LG5 highlights the critical functions of the LG45 proteolytic region in precursor laminin-332 secretion and keratinocyte adhesion and migration. Perturbation of LG45 function might explain the non-aggressive behaviour of carcinomas in this patient. © 2014 British Association of Dermatologists.

  10. Basal and stress-inducible expression of HSPA6 in human keratinocytes is regulated by negative and positive promoter regions.

    PubMed

    Ramirez, Vincent P; Stamatis, Michael; Shmukler, Anastasia; Aneskievich, Brian J

    2015-01-01

    Epidermal keratinocytes serve as the primary barrier between the body and environmental stressors. They are subjected to numerous stress events and are likely to respond with a repertoire of heat shock proteins (HSPs). HSPA6 (HSP70B') is described in other cell types with characteristically low to undetectable basal expression, but is highly stress induced. Despite this response in other cells, little is known about its control in keratinocytes. We examined endogenous human keratinocyte HSPA6 expression and localized some responsible transcription factor sites in a cloned HSPA6 3 kb promoter. Using promoter 5' truncations and deletions, negative and positive regulatory regions were found throughout the 3 kb promoter. A region between -346 and -217 bp was found to be crucial to HSPA6 basal expression and stress inducibility. Site-specific mutations and DNA-binding studies show that a previously uncharacterized AP1 site contributes to the basal expression and maximal stress induction of HSPA6. Additionally, a new heat shock element (HSE) within this region was defined. While this element mediates increased transcriptional response in thermally stressed HaCaT keratinocytes, it preferentially binds a stress-inducible factor other than heat shock factor (HSF)1 or HSF2. Intriguingly, this newly characterized HSPA6 HSE competes HSF1 binding a consensus HSE and binds both HSF1 and HSF2 from other epithelial cells. Taken together, our results demonstrate that the HSPA6 promoter contains essential negative and positive promoter regions and newly identified transcription factor targets, which are key to the basal and stress-inducible expression of HSPA6. Furthermore, these results suggest that an HSF-like factor may preferentially bind this newly identified HSPA6 HSE in HaCaT cells.

  11. Effects of the Novel Compound DK223 ([1E,2E-1,2-Bis(6-methoxy-2H-chromen-3-yl)methylene]hydrazine) on Migration and Proliferation of Human Keratinocytes and Primary Dermal Fibroblasts

    PubMed Central

    Ho, Manh Tin; Kang, Hyun Sik; Huh, Jung Sik; Kim, Young Mee; Lim, Yoongho; Cho, Moonjae

    2014-01-01

    Wound healing plays an important role in protecting the human body from external infection. Cell migration and proliferation of keratinocytes and dermal fibroblasts are essential for proper wound healing. Recently, several studies have demonstrated that secondary compounds produced in plants could affect skin cells migration and proliferation. In this study, we identified a novel compound DK223 ([1E,2E-1,2-bis(6-methoxy-2H-chromen-3-yl)methylene]hydrazine) that concomitantly induced human keratinocyte migration and dermal fibroblast proliferation. We evaluated the regulation of epithelial and mesenchymal protein markers, such as E-cadherin and Vimentin, in human keratinocytes, as well as extracellular matrix (ECM) secretion and metalloproteinase families in dermal fibroblasts. DK223 upregulated keratinocyte migration and significantly increased the epithelial marker E-cadherin in a time-dependent manner. We also found that reactive oxygen species (ROS) increased significantly in keratinocytes after 2 h of DK223 exposure, returning to normal levels after 24 h, which indicated that DK223 had an early shock effect on ROS production. DK223 also stimulated fibroblast proliferation, and induced significant secretion of ECM proteins, such as collagen I, III, and fibronectin. In dermal fibroblasts, DK223 treatment induced TGF-β1, which is involved in a signaling pathway that mediates proliferation. In conclusion, DK223 simultaneously induced both keratinocyte migration via ROS production and fibroblast proliferation via TGF-β1 induction. PMID:25056546

  12. Effects of the novel compound DK223 ([1E,2E-1,2-Bis(6-methoxy-2H-chromen-3-yl)methylene]hydrazine) on migration and proliferation of human keratinocytes and primary dermal fibroblasts.

    PubMed

    Ho, Manh Tin; Kang, Hyun Sik; Huh, Jung Sik; Kim, Young Mee; Lim, Yoongho; Cho, Moonjae

    2014-07-23

    Wound healing plays an important role in protecting the human body from external infection. Cell migration and proliferation of keratinocytes and dermal fibroblasts are essential for proper wound healing. Recently, several studies have demonstrated that secondary compounds produced in plants could affect skin cells migration and proliferation. In this study, we identified a novel compound DK223 ([1E,2E-1,2-bis(6-methoxy-2H-chromen-3-yl)methylene]hydrazine) that concomitantly induced human keratinocyte migration and dermal fibroblast proliferation. We evaluated the regulation of epithelial and mesenchymal protein markers, such as E-cadherin and Vimentin, in human keratinocytes, as well as extracellular matrix (ECM) secretion and metalloproteinase families in dermal fibroblasts. DK223 upregulated keratinocyte migration and significantly increased the epithelial marker E-cadherin in a time-dependent manner. We also found that reactive oxygen species (ROS) increased significantly in keratinocytes after 2 h of DK223 exposure, returning to normal levels after 24 h, which indicated that DK223 had an early shock effect on ROS production. DK223 also stimulated fibroblast proliferation, and induced significant secretion of ECM proteins, such as collagen I, III, and fibronectin. In dermal fibroblasts, DK223 treatment induced TGF-β1, which is involved in a signaling pathway that mediates proliferation. In conclusion, DK223 simultaneously induced both keratinocyte migration via ROS production and fibroblast proliferation via TGF-β1 induction.

  13. Differential miRNA expression profiles in proliferating or differentiated keratinocytes in response to gamma irradiation

    PubMed Central

    2013-01-01

    Background MicroRNAs (miRNAs), a group of short non-coding RNAs that negatively regulate gene expression, have recently emerged as potential modulators of cellular response to ionizing radiations both in vitro and in vivo in various cell types and tissues. However, in epidermal cells, the involvement of the miRNA machinery in the cellular response to ionizing radiations remains to be clarified. Indeed, understanding the mechanisms of cutaneous radiosensitivity is an important issue since skin is the most exposed organ to ionizing radiations and among the most sensitive. Results We settled up an expression study of miRNAs in primary human skin keratinocytes using a microfluidic system of qPCR assay, which permits to assess the expression of almost 700 annotated miRNAs. The keratinocytes were cultured to a proliferative or a differentiated state mimicking basal or suprabasal layers of human epidermis. These cells were irradiated at 10 mGy or 6 Gy and RNA was extracted 3 hours after irradiation. We found that proliferative cells irradiated at 6 Gy display a global fall of miRNA expression whereas differentiated cells exposed to the same dose display a global increase of miRNAs expression. We identified twenty miRNAs weakly but significantly modulated after 6 Gy irradiation, whereas only 2 miRNAs were modulated after low-dose irradiation in proliferating cells. To go further into the biological meaning of this miRNA response, we over-expressed some of the responding miRNA in proliferating cells: we observed a significant decrease of cell viability 72 hours after irradiation. Functional annotation of their predicted targets revealed that G-protein related pathways might be regulated by these responding miRNAs. Conclusions Our results reveal that human primary keratinocytes exposed to ionizing irradiation expressed a miRNA pattern strongly related to the differentiation status of irradiated cells. We also demonstrate that some miRNAs play a role in the radiation

  14. Use of a geographic information system to identify differences in automated external defibrillator installation in urban areas with similar incidence of public out-of-hospital cardiac arrest: a retrospective registry-based study.

    PubMed

    Fredman, David; Haas, Jan; Ban, Yifang; Jonsson, Martin; Svensson, Leif; Djarv, Therese; Hollenberg, Jacob; Nordberg, Per; Ringh, Mattias; Claesson, Andreas

    2017-06-02

    Early defibrillation in out-of-hospital cardiac arrest (OHCA) is of importance to improve survival. In many countries the number of automated external defibrillators (AEDs) is increasing, but the use is low. Guidelines suggest that AEDs should be installed in densely populated areas and in locations with many visitors. Attempts have been made to identify optimal AED locations based on the incidence of OHCA using geographical information systems (GIS), but often on small datasets and the studies are seldom reproduced. The aim of this paper is to investigate if the distribution of public AEDs follows the incident locations of public OHCAs in urban areas of Stockholm County, Sweden. OHCA data were obtained from the Swedish Register for Cardiopulmonary Resuscitation and AED data were obtained from the Swedish AED Register. Urban areas in Stockholm County were objectively classified according to the pan-European digital mapping tool, Urban Atlas (UA). Furthermore, we reclassified and divided the UA land cover data into three classes (residential, non-residential and other areas). GIS software was used to spatially join and relate public AED and OHCA data and perform computations on relations and distance. Between 1 January 2012 and 31 December 2014 a total of 804 OHCAs occurred in public locations in Stockholm County and by December 2013 there were 1828 AEDs available. The incidence of public OHCAs was similar in residential (47.3%) and non-residential areas (43.4%). Fewer AEDs were present in residential areas than in non-residential areas (29.4% vs 68.8%). In residential areas the median distance between OHCAs and AEDs was significantly greater than in non-residential areas (288 m vs 188 m, p<0.001). The majority of public OHCAs occurred in areas classified in UA as 'residential areas' with limited AED accessibility. These areas need to be targeted for AED installation and international guidelines need to take geographical location into account when suggesting

  15. Transcriptome analysis of airborne PM2.5-induced detrimental effects on human keratinocytes.

    PubMed

    Kim, Hyoung-June; Bae, Il-Hong; Son, Eui Dong; Park, Juyearl; Cha, Nari; Na, Hye-Won; Jung, Changjo; Go, You-Seak; Kim, Dae-Yong; Lee, Tae Ryong; Shin, Dong Wook

    2017-03-21

    Ambient air pollution is becoming more severe worldwide, posing a serious threat to human health. Fine airborne particles of particulate matter (PM2.5) show higher cytotoxicity than other coarse fractions. Indeed, PM2.5 induces cardiovascular or respiratory damage; however, few studies have evaluated the detrimental effect of PM2.5 to normal human skin. We used a next-generation sequencing-based (RNA-Seq) method with transcriptome and Gene Ontology (GO) enrichment analysis to determine the harmful influences of PM2.5 on human normal epidermal keratinocytes. DAVID analysis showed that the most significantly enriched GO terms were associated with epidermis-related biological processes such as "epidermis development (GO: 0008544)" and "keratinocyte differentiation (GO: 0030216)", suggesting that PM2.5 has some deleterious effects to the human epidermis. In addition, Ingenuity Pathway Analysis predicted inflammation-related signaling as one of the major PM2.5-induced signaling pathways, and pro-inflammatory cytokines as upstream regulators with symptoms similar to psoriasis as downstream effects. PM2.5 caused considerable changes in the expression of pro-inflammatory cytokines and psoriatic skin disease-related genes, might lead to epidermal dysfunctions. Our results might help to understand the mechanism of air pollution-induced skin barrier perturbation and contribute to the development of a new strategy for the prevention or recovery of the consequent damage.

  16. Cdk4 deficiency inhibits skin tumor development but does not affect normal keratinocyte proliferation.

    PubMed

    Rodriguez-Puebla, Marcelo L; Miliani de Marval, Paula L; LaCava, Margaret; Moons, David S; Kiyokawa, Hiroaki; Conti, Claudio J

    2002-08-01

    Most human tumors have mutations that result in deregulation of the cdk4/cyclin-Ink4-Rb pathway. Overexpression of D-type cyclins or cdk4 and inactivation of Ink4 inhibitors are common in human tumors. Conversely, lack of cyclin D1 expression results in significant reduction in mouse skin and mammary tumor development. However, complete elimination of tumor development was not observed in these models, suggesting that other cyclin/cdk complexes play an important role in tumorigenesis. Here we described the effects of cdk4 deficiency on mouse skin proliferation and tumor development. Cdk4 deficiency resulted in a 98% reduction in the number of tumors generated through the two-stage carcinogenesis model. The absence of cdk4 did not affect normal keratinocyte proliferation and both wild-type and cdk4 knockout epidermis are equally affected after topical treatment with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), resulting in epidermal hyperplasia. In similar fashion, cdk4 knockout keratinocytes proliferated well in an in vivo model of wound-induced proliferation. Biochemical studies in mouse epidermis showed that cdk6 activity increased twofold in cdk4-deficient mice compared to wild-type siblings. These results suggest that therapeutic approaches to inhibit cdk4 activity could provide a target to inhibit tumor development with minimal or no effect in normal tissue.

  17. Epithelial mesenchymal transition traits in honey-driven keratinocyte wound healing: comparison among different honeys.

    PubMed

    Ranzato, Elia; Martinotti, Simona; Burlando, Bruno

    2012-01-01

    Honey has been used since ancient times for wound repair, but the subjacent mechanisms are almost unknown. We have tried to elucidate the modulatory role of honey in an in vitro model of HaCaT keratinocyte re-epithelialization by using acacia, buckwheat, and manuka honeys. Scratch wound and migration assays showed similar increases of re-epithelialization rates and chemoattractant effects in the presence of different types of honey (0.1%, v/v). However, the use of kinase and calcium inhibitors suggested the occurrence of different mechanisms. All honeys activated cyclin-dependent kinase 2, focal adhesion kinase, and rasGAP SH3 binding protein 1. However, vasodilator-stimulated phosphoprotein, integrin-β3, cdc25C, and p42/44 mitogen activated protein kinase showed variable activation pattern. Re-epithelialization recapitulates traits of epithelial-mesenchymal transition (EMT) and the induction of this process was evaluated by a polymerase chain reaction array, revealing marked differences among honeys. Manuka induced few significant changes in the expression of EMT-regulatory genes, while the other two honeys acted on a wider number of genes and partially showed a common profile of up- and down-regulation. In conclusion, our findings have shown that honey-driven wound repair goes through the activation of keratinocyte re-epithelialization, but the ability of inducing EMT varies sensibly among honeys, according to their botanical origin.

  18. Growth regulation of primary human keratinocytes by prostaglandin E receptor EP2 and EP3 subtypes.

    PubMed

    Konger, R L; Malaviya, R; Pentland, A P

    1998-02-04

    We examined the contribution of specific EP receptors in regulating cell growth. By RT-PCR and northern hybridization, adult human keratinocytes express mRNA for three PGE2 receptor subtypes associated with cAMP signaling (EP2, EP3, and small amounts of EP4). In actively growing, non-confluent primary keratinocyte cultures, the EP2 and EP4 selective agonists, 11-deoxy PGE1 and 1-OH PGE1, caused complete reversal of indomethacin-induced growth inhibition. The EP3/EP2 agonist (misoprostol), and the EP1/EP2 agonist (17-phenyl trinor PGE2), showed less activity. Similar results were obtained with agonist-induced cAMP formation. The ability of exogenous dibutyryl cAMP to completely reverse indomethacin-induced growth inhibition support the conclusion that growth stimulation occurs via an EP2 and/or EP4 receptor-adenylyl cyclase coupled response. In contrast, activation of EP3 receptors by sulprostone, which is virtually devoid of agonist activity at EP2 or EP4 receptors, inhibited bromodeoxyuridine uptake in indomethacin-treated cells up to 30%. Although human EP3 receptor variants have been shown in other cell types to markedly inhibit cAMP formation via a pertussis toxin sensitive mechanisms, EP3 receptor activation and presumably growth inhibition was independent of adenylyl cyclase, suggesting activation of other signaling pathways.

  19. Dermal-epidermal membrane systems by using human keratinocytes and mesenchymal stem cells isolated from dermis.

    PubMed

    Salerno, Simona; Messina, Antonietta; Giordano, Francesca; Bader, Augustinus; Drioli, Enrico; De Bartolo, Loredana

    2017-02-01

    Dermal-epidermal membrane systems were developed by co-culturing human keratinocytes with Skin derived Stem Cells (SSCs), which are Mesenchymal Stem Cells (MSCs) isolated from dermis, on biodegradable membranes of chitosan (CHT), polycaprolactone (PCL) and a polymeric blend of CHT and PCL. The membranes display physico-chemical, morphological, mechanical and biodegradation properties that could satisfy and fulfil specific requirements in skin tissue engineering. CHT membrane exhibits an optimal biodegradation rate for acute wounds; CHT-PCL for the chronic ones. On the other hand, PCL membrane in spite of its very slow biodegradation rate exhibits mechanical properties similar to in vivo dermis, a lower hydrophilic character, and a surface roughness, all properties that make it able to sustain cell adhesion and proliferation for in vitro skin models. Both CHT-PCL and PCL membranes guided epidermal and dermal differentiation of SSCs as pointed out by the expression of cytokeratins and the deposition of the ECM protein fibronectin, respectively. In the dermal-epidermal membrane systems, a more suitable microenvironment for the SSCs differentiation was promoted by the interactions and the mutual interplay with keratinocytes. Being skin tissue-biased stem cells committed to their specific final dermal and/or epidermal cell differentiation, SSCs are more suitable for skin tissue engineering than other adult MSCs with different origin. For this reason, they represent a useful autologous cell source for engineering skin substitutes for both in vivo and in vitro applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Gamma Interferon-Induced Expression of Class II MHC Antigens by Human Keratinocytes: Effects of Conditions of Culture

    DTIC Science & Technology

    1987-01-01

    adding appropriate amounts of CaCI2 ( high calcium medium). Using the third method, adult keratinocytes were grown in KDM (Clonetics), which is a fully...in KGM at the high calcium ion concentration (1.8 mM) showed HLA-DR expression by 90. of the cells on day 2 after addition of rIFN-jr(100 U/ml...similar experiments were repeated using KGM without additional calcium. The results were similar to those found in high calcium KGM. In the low calcium

  1. Incorporation and distribution of dihomo-gamma-linolenic acid, arachidonic acid, and eicosapentaenoic acid in cultured human keratinocytes

    SciTech Connect

    Punnonen, K.; Puustinen, T.; Jansen, C.T.

    1986-02-01

    Human keratinocytes in culture were labelled with /sup 14/C-dihomo-gamma-linolenic acid, /sup 14/C-arachidonic acid or /sup 14/C-eicosapentaenoic acid. All three eicosanoid precursor fatty acids were effectively incorporated into the cells. In phospholipids most of the radioactivity was recovered, in neutral lipids a substantial amount, and as free unesterified fatty acids only a minor amount. Most of the radioactivity was found in phosphatidylethanolamine which was also the major phospholipid as measured by phosphorous assay. The incorporation of dihomo-gamma-linolenic acid and arachidonic acid into lipid subfractions was essentially similar. Eicosapentaenoic acid was, however, much less effectively incorporated into phosphatidylinositol + phosphatidylserine and, correspondingly, more effectively into triacylglycerols as compared to the two other precursor fatty acids. Once incorporated, the distribution of all three precursor fatty acids was relatively stable, and only minor amounts of fatty acids were released into the culture medium during short term culture (two days). Our study demonstrates that eicosanoid precursor fatty acids are avidly taken up by human keratinocytes and esterified into membrane lipids. The clinical implication of this finding is that dietary manipulations might be employed to cause changes in the fatty acid composition of keratinocytes.

  2. Selective peroxidation and externalization of phosphatidylserine in normal human epidermal keratinocytes during oxidative stress induced by cumene hydroperoxide.

    PubMed

    Shvedova, Anna A; Tyurina, Julia Y; Kawai, Kazuaki; Tyurin, Vladimir A; Kommineni, Choudari; Castranova, Vincent; Fabisiak, James P; Kagan, Valerian E

    2002-06-01

    Reactive oxygen species not only modulate important signal transduction pathways, but also induce DNA damage and cytotoxicity in keratinocytes. Hydrogen peroxide and organic peroxides are particularly important as these chemicals are widely used in dermally applied cosmetics and pharmaceuticals, and also represent endogenous metabolic intermediates. Lipid peroxidation is of fundamental interest in the cellular response to peroxides, as lipids are extremely sensitive to oxidation and lipid-based signaling systems have been implicated in a number of cellular processes, including apoptosis. Oxidation of specific phospholipid classes was measured in normal human epidermal keratinocytes exposed to cumene hydroperoxide after metabolic incorporation of the fluorescent oxidation-sensitive fatty acid, cis-parinaric acid, using a fluorescence high-performance liquid chromatography assay. In addition, lipid oxidation was correlated with changes in membrane phospholipid asymmetry and other markers of apoptosis. Although cumene hydroperoxide produced significant oxidation of cis-parinaric acid in all phospholipid classes, one phospholipid, phosphatidylserine, appeared to be preferentially oxidized above all other species. Using fluorescamine derivatization and annexin V binding it was observed that specific oxidation of phosphatidylserine was accompanied by phosphatidylserine translocation from the inner to the outer plasma membrane surface where it may serve as a recognition signal for interaction with phagocytic macrophages. These effects occurred much earlier than any detectable changes in other apoptotic markers such as caspase-3 activation, DNA fragmentation, or changes in nuclear morphology. Thus, normal human epidermal keratinocytes undergo profound lipid oxidation with preference for phosphatidylserine followed by phosphatidylserine externalization upon exposure to cumene hydroperoxide. It is therefore likely that normal human epidermal keratinocytes exposed to similar

  3. Epidermal ADAM17 maintains the skin barrier by regulating EGFR ligand–dependent terminal keratinocyte differentiation

    PubMed Central

    Cobzaru, Cristina; Triantafyllopoulou, Antigoni; Löffek, Stefanie; Horiuchi, Keisuke; Threadgill, David W.; Kurz, Thomas; van Rooijen, Nico; Bruckner-Tuderman, Leena

    2012-01-01

    ADAM17 (a disintegrin and metalloproteinase 17) is ubiquitously expressed and cleaves membrane proteins, such as epidermal growth factor receptor (EGFR) ligands, l-selectin, and TNF, from the cell surface, thus regulating responses to tissue injury and inflammation. However, little is currently known about its role in skin homeostasis. We show that mice lacking ADAM17 in keratinocytes (A17ΔKC) have a normal epidermal barrier and skin architecture at birth but develop pronounced defects in epidermal barrier integrity soon after birth and develop chronic dermatitis as adults. The dysregulated expression of epidermal differentiation proteins becomes evident 2 d after birth, followed by reduced transglutaminase (TGM) activity, transepidermal water loss, up-regulation of the proinflammatory cytokine IL-36α, and inflammatory immune cell infiltration. Activation of the EGFR was strongly reduced in A17ΔKC skin, and topical treatment of A17ΔKC mice with recombinant TGF-α significantly improved TGM activity and decreased skin inflammation. Finally, we show that mice lacking the EGFR in keratinocytes (EgfrΔKC) closely resembled A17ΔKC mice. Collectively, these results identify a previously unappreciated critical role of the ADAM17–EGFR signaling axis in maintaining the homeostasis of the postnatal epidermal barrier and suggest that this pathway could represent a good target for treatment of epidermal barrier defects. PMID:22565824

  4. Acute wounding alters the beta2-adrenergic signaling and catecholamine synthetic pathways in keratinocytes.

    PubMed

    Sivamani, Raja K; Shi, Biao; Griffiths, Elizabeth; Vu, Shirley M; Lev-Tov, Hadar A; Dahle, Sara; Chigbrow, Marianne; La, Thi Dinh; Mashburn, Chelcy; Peavy, Thomas R; Rivkah Isseroff, R

    2014-08-01

    Keratinocyte migration is critical for wound re-epithelialization. Previous studies showed that epinephrine activates the beta2-adrenergic receptor (B2AR), impairing keratinocyte migration. Here, we investigated the keratinocyte catecholamine synthetic pathway in response to acute trauma. Cultured keratinocytes were scratch wounded and expression levels of the B2AR and catecholamine synthetic enzymes tyrosine hydroxylase and phenylethanolamine-N-methyltransferase were assayed. The binding affinity of the B2AR was measured. Wounding downregulated B2AR, tyrosine hydroxylase, and phenylethanolamine-N-methyltransferase expression, but pre-exposure to timolol, a beta-adrenergic receptor antagonist, delayed this effect. In wounded keratinocytes, B2AR-binding affinity remained depressed even after its expression returned to prewounding levels. Keratinocyte-derived norepinephrine increased after wounding. Norepinephrine impaired keratinocyte migration; this effect was abrogated with B2AR-selective antagonist ICI-118,551 but not with B1AR-selective antagonist bisoprolol. Finally, for clinical relevance, we determined that norepinephrine was present in freshly wounded skin, thus providing a potential mechanism for impaired healing by local B2AR activation in wound-edge keratinocytes. Taken together, the data show that keratinocytes modulate catecholamine synthetic enzymes and release norepinephrine after scratch wounding. Norepinephrine appears to be a stress-related mediator that impairs keratinocyte migration through activation of the B2AR. Future therapeutic strategies evaluating modulation of norepinephrine-related effects in the wound are warranted.

  5. Identification of glucocorticoid-induced TNF receptor-related protein ligand on keratinocytes: ligation by GITR induces keratinocyte chemokine production and augments T-cell proliferation.

    PubMed

    Byrne, Aideen M; Goleva, Elena; Leung, Donald Y M

    2009-12-01

    Glucocorticoid-induced tumor necrosis factor (TNF) receptor-related protein ligand (GITRL) is a recently described co-stimulatory molecule expressed by antigen-presenting cells (APCs). Activated keratinocytes are known to engage intraepithelial T cells through co-stimulatory molecules. This study investigated the expression and function of GITRL in resting keratinocytes. We showed by immunofluorescence and flow cytometry that keratinocytes from Balb/C and C57Bl/6 mice, as well as PAM 212 murine cell line keratinocytes and human epidermal keratinocytes (HEK), express cell-surface GITRL. Stimulation of murine skin biopsies and HEK with GITR fusion protein (GITR: Fc FP) resulted in mRNA induction for chemoattractants: cutaneous T-cell-attracting chemokine (CTACK), thymus and activation-regulated chemokine (TARC), IL-8, monocyte chemoattractant protein-1 (MCP-1), and murine beta-defensin 3 (MBD3). Immunofluorescent studies on mouse biopsies treated with GITR: Fc FP confirmed corresponding TARC and MCP-1 protein production by keratinocytes. Chemokine induction was shown to be NF-kappaB-mediated. T-cell proliferation was enhanced by the addition of keratinocytes. This was reversed by pretreatment with an anti-GITRL antibody. We conclude that keratinocytes express GITRL, and that through this important co-stimulatory molecule, they have the potential to influence T-cell numbers in the skin through chemokine production and through a direct cell-cell effect on T-cell proliferation.

  6. CCN2 is transiently expressed by keratinocytes during re-epithelialization and regulates keratinocyte migration in vitro by the ras-MEK-ERK signaling pathway.

    PubMed

    Kiwanuka, Elizabeth; Hackl, Florian; Caterson, Edward J; Nowinski, Daniel; Junker, Johan P E; Gerdin, Bengt; Eriksson, Elof

    2013-12-01

    CCN2 (previously known as connective tissue growth factor) is a multifunctional matricellular protein that has numerous effects on cell life and cell interactions with the connective tissue. Although the importance of CCN2 for the fibrotic process in wound healing has been well studied, the involvement of CCN2 in keratinocyte function has not yet been explored. Therefore, the aim of the present study was to investigate the role of CCN2 in the epidermis during wound healing. Immunohistochemistry was done on sections from full-thickness porcine wounds. The effect of CCN2 on the migration of cultured human keratinocytes exposed to scratch wounds, the effect on phosphorylation of extracellular signal-related kinases (ERK), and the effect of adding inhibitors to the ERK/mitogen-activated protein kinase pathway to human keratinocytes were studied. The CCN2 protein was transiently expressed in vivo at the leading keratinocyte edge during re-epithelialization of full-thickness porcine wounds. In vitro, exogenous addition of CCN2 to human keratinocyte cultures regulated keratinocyte migration and resulted in phosphorylation of ERK. The addition of inhibitors of ERK/mitogen-activated protein kinase counteracted the effect of CCN2 on migration. CCN2 was transiently expressed at the leading keratinocyte edge in vivo. The biologic importance of this was supported in vitro, because CCN2 regulated human keratinocyte migration through activation of the Ras-mitogen-activated protein kinase kinase-ERK signal transduction pathway. Published by Elsevier Inc.

  7. Diacerein inhibits the pro-atherogenic & pro-inflammatory effects of IL-1 on human keratinocytes & endothelial cells

    PubMed Central

    Bao, Lei; Many, Benjamin; Chan, Lawrence S.

    2017-01-01

    We investigated IL-1-induced regulation of genes related to inflammation and atherogenesis in human keratinocytes and endothelial cells, and if ‘diacerein’, an oral IL-1 inhibiting drug currently approved for use in osteoarthritis, would reverse IL-1’s effects on these cells. Primary human keratinocytes and coronary artery endothelial cells were treated with either IL-1α or IL-1β, with and without diacerein. Using PCR-array, we assessed differential gene-expression regulated by IL-1 and diacerein. We identified 34 pro-atherogenic genes in endothelial cells and 68 pro-inflammatory genes in keratinocytes significantly (p<0.05) regulated at least 2-fold by IL-1, in comparison to control. Diacerein completely or partially reversed this regulation on almost all genes. Using ELISA, we confirmed diacerein’s ability to reverse IL-1-driven gene-regulation of 11 selected factors, at the protein level. The results support a novel idea that diacerein acts as an inhibitor of the pro-atherogenic and pro-inflammatory effects of IL-1. Diacerein may have therapeutic applications to diminish IL-1-induced skin inflammation in psoriasis and attenuate IL-1-induced development of atherosclerosis. Further investigation into diacerein’s effect on skin inflammation, atherogenesis and cardiovascular risk in animal models or humans is warranted. PMID:28323859

  8. Kaempferol-3-O-rutinoside from Afgekia mahidoliae promotes keratinocyte migration through FAK and Rac1 activation.

    PubMed

    Petpiroon, Nareerat; Suktap, Chalermlat; Pongsamart, Sunanta; Chanvorachote, Pithi; Sukrong, Suchada

    2015-07-01

    The restoration of the epidermal epithelium through re-epithelialization is a critical process in wound healing. Directed keratinocyte migration to the wound is required, and the retardation of this process may result in a chronic, non-healing wound. The present study contributes to research aiming to identify promising compounds that promote wound healing using a human keratinocyte model. The effects of three kaempferol glycosides from an Afgekia mahidoliae leaf extract, kaempferol-3-O-arabinoside, kaempferol-3-O-glucoside, and kaempferol-3-O-rutinoside, on keratinocyte migration were determined. Interestingly, kaempferol-3-O-rutinoside exhibited a pronounced effect on wound closure in comparison to the parental kaempferol and other glycosides. The mechanism by which kaempferol-3-O-rutinoside enhances cell migration involves the induction of filopodia and lamellipodia formation, increased cellular levels of phosphorylated FAK (Tyr 397) and phosphorylated Akt (Ser 473), and up-regulation of active Rac1-GTP. The data obtained in this study may support the development of this compound for use in wound healing therapies.

  9. XPC silencing in normal human keratinocytes triggers metabolic alterations that drive the formation of squamous cell carcinomas.

    PubMed

    Rezvani, Hamid Reza; Kim, Arianna L; Rossignol, Rodrigue; Ali, Nsrein; Daly, Meaghan; Mahfouf, Walid; Bellance, Nadège; Taïeb, Alain; de Verneuil, Hubert; Mazurier, Frédéric; Bickers, David R

    2011-01-01

    DNA damage is a well-known initiator of tumorigenesis. Studies have shown that most cancer cells rely on aerobic glycolysis for their bioenergetics. We sought to identify a molecular link between genomic mutations and metabolic alterations in neoplastic transformation. We took advantage of the intrinsic genomic instability arising in xeroderma pigmentosum C (XPC). The XPC protein plays a key role in recognizing DNA damage in nucleotide excision repair, and patients with XPC deficiency have increased incidence of skin cancer and other malignancies. In cultured human keratinocytes, we showed that lentivirus-mediated knockdown of XPC reduced mitochondrial oxidative phosphorylation and increased glycolysis, recapitulating cancer cell metabolism. Accumulation of unrepaired DNA following XPC silencing increased DNA-dependent protein kinase activity, which subsequently activated AKT1 and NADPH oxidase-1 (NOX1), resulting in ROS production and accumulation of specific deletions in mitochondrial DNA (mtDNA) over time. Subcutaneous injection of XPC-deficient keratinocytes into immunodeficient mice led to squamous cell carcinoma formation, demonstrating the tumorigenic potential of transduced cells. Conversely, simultaneous knockdown of either NOX1 or AKT1 blocked the neoplastic transformation induced by XPC silencing. Our results demonstrate that genomic instability resulting from XPC silencing results in activation of AKT1 and subsequently NOX1 to induce ROS generation, mtDNA deletions, and neoplastic transformation in human keratinocytes.

  10. High-throughput, high-content screening for novel pigmentation regulators using a keratinocyte/melanocyte co-culture system.

    PubMed

    Lee, Ju Hee; Chen, Hongxiang; Kolev, Vihren; Aull, Katherine H; Jung, Inhee; Wang, Jun; Miyamoto, Shoko; Hosoi, Junichi; Mandinova, Anna; Fisher, David E

    2014-02-01

    Skin pigmentation is a complex process including melanogenesis within melanocytes and melanin transfer to the keratinocytes. To develop a comprehensive screening method for novel pigmentation regulators, we used immortalized melanocytes and keratinocytes in co-culture to screen large numbers of compounds. High-throughput screening plates were subjected to digital automated microscopy to quantify the pigmentation via brightfield microscopy. Compounds with pigment suppression were secondarily tested for their effects on expression of microphthalmia transcription factor (MITF) and several pigment regulatory genes, and further validated in terms of non-toxicity to keratinocytes/melanocytes and dose-dependent activity. The results demonstrate a high-throughput, high-content screening approach, which is applicable to the analysis of large chemical libraries using a co-culture system. We identified candidate pigmentation inhibitors from 4000 screened compounds including zoxazolamine, 3-methoxycatechol and alpha-mangostin, which were also shown to modulate expression of MITF and several key pigmentation factors and are worthy of further evaluation for potential translation to clinical use.

  11. XPC silencing in normal human keratinocytes triggers metabolic alterations that drive the formation of squamous cell carcinomas

    PubMed Central

    Rezvani, Hamid Reza; Kim, Arianna L.; Rossignol, Rodrigue; Ali, Nsrein; Daly, Meaghan; Mahfouf, Walid; Bellance, Nadège; Taïeb, Alain; de Verneuil, Hubert; Mazurier, Frédéric; Bickers, David R.

    2010-01-01

    DNA damage is a well-known initiator of tumorigenesis. Studies have shown that most cancer cells rely on aerobic glycolysis for their bioenergetics. We sought to identify a molecular link between genomic mutations and metabolic alterations in neoplastic transformation. We took advantage of the intrinsic genomic instability arising in xeroderma pigmentosum C (XPC). The XPC protein plays a key role in recognizing DNA damage in nucleotide excision repair, and patients with XPC deficiency have increased incidence of skin cancer and other malignancies. In cultured human keratinocytes, we showed that lentivirus-mediated knockdown of XPC reduced mitochondrial oxidative phosphorylation and increased glycolysis, recapitulating cancer cell metabolism. Accumulation of unrepaired DNA following XPC silencing increased DNA-dependent protein kinase activity, which subsequently activated AKT1 and NADPH oxidase-1 (NOX1), resulting in ROS production and accumulation of specific deletions in mitochondrial DNA (mtDNA) over time. Subcutaneous injection of XPC-deficient keratinocytes into immunodeficient mice led to squamous cell carcinoma formation, demonstrating the tumorigenic potential of transduced cells. Conversely, simultaneous knockdown of either NOX1 or AKT1 blocked the neoplastic transformation induced by XPC silencing. Our results demonstrate that genomic instability resulting from XPC silencing results in activation of AKT1 and subsequently NOX1 to induce ROS generation, mtDNA deletions, and neoplastic transformation in human keratinocytes. PMID:21123941

  12. The HIV-1 viral synapse signals human foreskin keratinocytes to secrete thymic stromal lymphopoietin facilitating HIV-1 foreskin entry.

    PubMed

    Zhou, Z; Xu, L; Sennepin, A; Federici, C; Ganor, Y; Tudor, D; Damotte, D; Barry Delongchamps, N; Zerbib, M; Bomsel, M

    2017-04-26

    The complexity of signal transduction resulting from the contact of human immunodeficiency virus type 1 (HIV-1)-infected cells and mucosal cells has hampered our comprehension of HIV-1 mucosal entry. Such process is driven efficiently only by viral synapse contacts, whereas cell-free HIV-1 remains poorly infectious. Using CD4(+) T-cells expressing only HIV-1 envelope inoculated on human adult foreskin tissues, we designed methodologies to identify the signals transduced in foreskin keratinocytes following HIV-1-envelope-dependent viral synapse formation. We find that the viral synapse activates the MyD88-independent TLR-4-nuclear factor (NfκB) signaling pathway in keratinocytes and the subsequent secretion of cytokines including thymic stromal lymphopoietin (TSLP), a cytokine linking innate and T-helper type 2-adaptive immune responses. Moreover, the viral synapse upregulates the non-coding microRNA miR-375, known to control TSLP, and transfection of keratinocytes with anti-miR-375 blocks significantly TSLP secretion. Thus, the secretion of TSLP by keratinocytes is induced by the viral synapse in a miR-375 controlled manner. At the tissue level, these signals translate into the epidermal redistribution of Langerhans cells and formation of conjugates with T-cells, recapitulating the initial events observed in human foreskin infection by HIV-1. These results open new possibilities for designing strategies to block mucosal HIV-1 transmission, the major pathway by which HIV-1 spreads worldwide.Mucosal Immunology advance online publication 26 April 2017; doi:10.1038/mi.2017.23.

  13. Signal transduction and nuclear responses in Staphylococcus aureus-induced expression of human beta-defensin 3 in skin keratinocytes.

    PubMed

    Menzies, Barbara E; Kenoyer, Aimee

    2006-12-01

    The human beta-defensin 3 (hBD-3) is an inducible epithelial peptide antibiotic that has potent antistaphylococcal activity. Infection of skin epithelial cells with viable Staphylococcus aureus, a common skin pathogen, induces increased gene expression of hBD-3 and other antimicrobial peptides. The aim of this study was to identify signaling pathways and nuclear responses that contribute to the gene expression of hBD-3 in primary human keratinocytes upon contact with S. aureus. Increased hBD-3 peptide was observed by immunofluorescence microscopy in keratinocytes exposed to S. aureus and to lipoteichoic acid (LTA). Both are ligands for the cell surface Toll-like receptor 2 (TLR2), and thus the contribution of TLR2 signaling in hBD-3 expression was examined. Functional inhibition of TLR2 prior to S. aureus stimulation significantly decreased hBD-3 mRNA levels by 37%, attesting to the involvement of this surface receptor in the initial recognition and downstream signaling for hBD-3 expression. Treatment of keratinocytes with a p38 mitogen-activated protein kinase (MAPK) inhibitor prior to either S. aureus or LTA stimulation was associated with reduced hBD-3 mRNA transcripts and peptide. We also propose a role for the MAPK-regulated transcriptional activating protein 1 in S. aureus-induced hBD-3 gene expression. Combined, these studies indicate a role for TLR2 signaling and MAPK activation in the upregulation of hBD-3 and demonstrate the innate immune capacity of skin keratinocytes under conditions of S. aureus challenge to enhance the local expression of this antistaphylococcal peptide antibiotic.

  14. Functional interplay between p63 and p53 controls RUNX1 function in the transition from proliferation to differentiation in human keratinocytes.

    PubMed

    Masse, I; Barbollat-Boutrand, L; Molina, M; Berthier-Vergnes, O; Joly-Tonetti, N; Martin, M T; Caron de Fromentel, C; Kanitakis, J; Lamartine, J

    2012-06-07

    The interfollicular epidermis is continuously renewed, thanks to a regulated balance between proliferation and differentiation. The ΔNp63 transcription factor has a key role in the control of this process. It has been shown that ΔNp63 directly regulates Runt-related transcription factor 1 (RUNX1) transcription factor expression in mouse keratinocytes. The present study showed for the first time that RUNX1 is expressed in normal human interfollicular epidermis and that its expression is tightly regulated during the transition from proliferation to differentiation. It demonstrated that ΔNp63 directly binds two different RUNX1 regulatory DNA sequences and modulates RUNX1 expression differentially in proliferative or differentiated human keratinocytes. It also showed that the regulation of RUNX1 expression by ΔNp63 is dependent on p53 and that this coregulation relies on differential binding and activation of RUNX1 regulatory sequences by ΔNp63 and p53. We also found that RUNX1 inhibits keratinocyte proliferation and activates directly the expression of KRT1, a critical actor in early keratinocyte differentiation. Finally, we described that RUNX1 expression, similar to ΔNp63 and p53, was strongly expressed and downregulated in basal cell carcinomas and squamous cell carcinomas respectively. Taken together, these data shed light on the importance of tight control of the functional interplay between ΔNp63 and p53 in regulating RUNX1 transcription factor expression for proper regulation of interfollicular epidermal homeostasis.

  15. Transcriptional responses of human epidermal keratinocytes to Oncostatin-M.

    PubMed

    Finelt, Nika; Gazel, Alix; Gorelick, Steven; Blumenberg, Miroslav

    2005-08-21

    Oncostatin-M (OsM) plays an important role in inflammatory and oncogenic processes in skin, including psoriasis and Kaposi sarcoma. However, the molecular responses to OsM in keratinocytes have not been explored in depth. Here we show the results of transcriptional profiling in OsM-treated primary human epidermal keratinocytes, using high-density DNA microarrays. We find that OsM strongly and specifically affects the expression of many genes, in particular those involved with innate immunity, angiogenesis, adhesion, motility, tissue remodeling, cell cycle and transcription. The timing of the responses to OsM comprises two waves, early at 1h, and late at 48 h, with much fewer genes regulated in the intervening time points. Secreted cytokines and growth factors and their receptors, as well as nuclear transcription factors, are primary targets of OsM regulation, and these, in turn, effect the secondary changes.

  16. Complementation assays adapted for DNA repair-deficient keratinocytes.

    PubMed

    Fréchet, Mathilde; Bergoglio, Valérie; Chevallier-Lagente, Odile; Sarasin, Alain; Magnaldo, Thierry

    2006-01-01

    Genetic alterations affecting nucleotide excision repair, the most versatile DNA-repair mechanism responsible for removal of bulky DNA adducts including ultraviolet (UV) light-induced DNA lesions, may result in the rare, recessively inherited autosomal syndromes xeroderma pigmentosum (XP), Cockayne syndrome (CS), or trichothiodystrophy (TTD). Classical approaches such as somatic cell fusions or microinjection assays have formalized the genetic complexity of these related but clinically distinct syndromes, and contributed to the determination of seven, five, and three complementation groups for XP, CS, and TTD, respectively. XP patients are highly susceptible to photoinduced cutaneous cancers of epidermal origin. To better study the responses to UV irradiation of XP keratinocytes, and to objectively determine the extent to which cutaneous gene therapy may be realized, we set up experimental procedures adapted to ex vivo genetic complementation of keratinocytes from XP patients. We provide here detailed rationales and procedures for these approaches.

  17. Protective Effects of Triphala on Dermal Fibroblasts and Human Keratinocytes

    PubMed Central

    Varma, Sandeep R.; Sivaprakasam, Thiyagarajan O.; Mishra, Abheepsa; Kumar, L. M. Sharath; Prakash, N. S.; Prabhu, Sunil; Ramakrishnan, Shyam

    2016-01-01

    Human skin is body’s vital organ constantly exposed to abiotic oxidative stress. This can have deleterious effects on skin such as darkening, skin damage, and aging. Plant-derived products having skin-protective effects are well-known traditionally. Triphala, a formulation of three fruit products, is one of the most important rasayana drugs used in Ayurveda. Several skin care products based on Triphala are available that claim its protective effects on facial skin. However, the skin protective effects of Triphala extract (TE) and its mechanistic action on skin cells have not been elucidated in vitro. Gallic acid, ellagic acid, and chebulinic acid were deduced by LC-MS as the major constituents of TE. The identified key compounds were docked with skin-related proteins to predict their binding affinity. The IC50 values for TE on human dermal fibroblasts (HDF) and human keratinocytes (HaCaT) were 204.90 ± 7.6 and 239.13 ± 4.3 μg/mL respectively. The antioxidant capacity of TE was 481.33 ± 1.5 mM Trolox equivalents in HaCaT cells. Triphala extract inhibited hydrogen peroxide (H2O2) induced RBC haemolysis (IC50 64.95 μg/mL), nitric oxide production by 48.62 ± 2.2%, and showed high reducing power activity. TE also rescued HDF from H2O2-induced damage; inhibited H2O2 induced cellular senescence and protected HDF from DNA damage. TE increased collagen-I, involucrin and filaggrin synthesis by 70.72 ± 2.3%, 67.61 ± 2.1% and 51.91 ± 3.5% in HDF or HaCaT cells respectively. TE also exhibited anti-tyrosinase and melanin inhibition properties in a dose-dependent manner. TE increased the mRNA expression of collagen-I, elastin, superoxide dismutase (SOD-2), aquaporin-3 (AQP-3), filaggrin, involucrin, transglutaminase in HDF or HaCaT cells, and decreased the mRNA levels of tyrosinase in B16F10 cells. Thus, Triphala exhibits protective benefits on skin cells in vitro and can be used as a potential ingredient in skin care formulations. PMID:26731545

  18. Hypoxia induces an undifferentiated phenotype of oral keratinocytes in vitro.

    PubMed

    Kato, Hiroko; Izumi, Kenji; Uenoyama, Atsushi; Shiomi, Aki; Kuo, Shiuhyang; Feinberg, Stephen E

    2014-01-01

    The aim of this study was to determine the effects of hypoxia on the proliferating potential and phenotype of primary human oral keratinocytes cultured at ambient oxygen tension (20%) or at different levels of hypoxia (2 and 0.5% O2). The effects of oxygen tensions on cellular metabolic activity, cell proliferation, clonogenicity and proliferation heterogeneity were measured. Cell cycle profiles were analyzed by a fluorescent-activated cell sorter, and p21(WAF1/CIP1) expression in the G0/G1 phase was also concomitantly quantitated. The expression levels of cell cycle regulatory proteins were examined by immunoblotting, and the cellular senescence was assessed by senescence-associated β-galactosidase staining. Basal and suprabasal keratinocyte phenotypes were determined by the expression levels of 14-3-3σ, p75(NTR) and α6 integrin. Despite having a lower metabolism, the proliferation rate and clonogenic potential were remarkably enhanced in hypoxic cells. The significantly higher percentage of cells in the G0/G1 phase under hypoxia and the expression patterns of cell cycle regulatory proteins in hypoxic cells were indicative of a state of cell cycle arrest in hypoxia. Furthermore, a decrease in the expression of p21(WAF1/CIP1) and p16(INK4A) and fewer β-galactosidase-positive cells suggested a quiescent phenotype rather than a senescent one in hypoxic cells. Compared with normoxic cells, the differential expression patterns of keratinocyte phenotypic markers suggest that hypoxic cells that generate minimal reactive oxygen species, suppress the mammalian target of rapamycin activity and express hypoxia-inducible factor-1α favor a basal cell phenotype. Thus, regardless of the predisposition to the state of cell cycle arrest, hypoxic conditions can maintain oral keratinocytes in vitro in an undifferentiated and quiescent state.

  19. Climbazole increases expression of cornified envelope proteins in primary keratinocytes.

    PubMed

    Pople, J E; Moore, A E; Talbot, D C S; Barrett, K E; Jones, D A; Lim, F L

    2014-10-01

    Dandruff is a troubling consumer problem characterized by flaking and pruritus of the scalp and is considered a multifactorial condition with sebum, individual susceptibility and the fungus Malassezia all thought to play a part. The condition is commonly treated with shampoo products containing antifungal ingredients such as zinc pyrithione and climbazole. It is hypothesized that these ingredients may be delivering additional scalp skin benefits besides their antifungal activity helping to relieve dandruff effectively. The objective of this study was to evaluate the anti-dandruff ingredient climbazole for potential skin benefits using genomics and in vitro assays. Microarray analysis was performed to profile gene expression changes in climbazole-treated primary human keratinocyte cells. Results were independently validated using qPCR and analysis of protein expression using ELISA and immunocytochemistry. Microarray analysis of climbazole-treated keratinocytes showed statistically significant expression changes in genes associated with the gene ontology groups encompassing epidermal differentiation, keratinization, cholesterol biosynthesis and immune response. Upregulated genes included a number encoding cornified envelope proteins such as group 3 late-cornified envelope proteins, LCE3 and group 2 small-proline-rich proteins, SPRR2. Protein analysis studies of climbazole-treated primary keratinocytes using ELISA and immunocytochemistry were able to demonstrate that the increase in gene transcripts translated into increased protein expression of these cornified envelope markers. Climbazole treatment of primary keratinocytes results in an upregulation in expression of a number of genes including those encoding proteins involved in cornified envelope formation with further studies demonstrating this did translate into increased protein expression. A climbazole-driven increase in cornified envelope proteins may improve the scalp skin barrier, which is known to be weaker

  20. Keratinocytes at the uppermost layer of epidermis might act as sensors of atmospheric pressure change.

    PubMed

    Denda, Mitsuhiro

    2016-01-01

    It has long been suggested that climate, especially atmospheric pressure change, can cause health problems ranging from migraine to myocardial infarction. Here, I hypothesize that the sensory system of epidermal keratinocytes mediates the influence of atmospheric pressure change on the human physiological condition. We previously demonstrated that even subtle changes of atmospheric pressure (5-20 hPa) induce elevation of intracellular calcium level in cultured human keratinocytes (excitation of keratinocytes). It is also established that communication occurs between epidermal keratinocytes and peripheral nerve systems. Moreover, various neurotransmitters and hormones that influence multiple systems (nervous, cardiovascular, endocrine, and immune systems) are generated and released from epidermal keratinocytes in response to various external stimuli. Thus, I suggest that pathophysiological phenomena induced by atmospheric pressure changes might be triggered by epidermal keratinocytes.

  1. Protective effect of geranylgeranylacetone against radiation-induced delayed effects on human keratinocytes.

    PubMed

    Isoir, Muriel; Roque, Telma; Squiban, Claire; Milliat, Fabien; Mondon, Philippe; Mas-Chamberlin, Claire; Benderitter, Marc; Guipaud, Olivier; Tamarat, Radia

    2013-02-01

    Skin exposure to ionizing radiation affects the normal wound healing process. We investigated the beneficial effects of a pharmacological treatment with geranylgeranylacetone (GGA) on keratinocytes using in vitro scratch wound injury assay in nonirradiated and irradiated conditions. Irradiation affected the wound closure of keratinocytes 24 h after scratch injury, whereas re-epithelialization was markedly accelerated after GGA treatment when compared to nontreated keratinocytes. We demonstrated that GGA treatment increased migration of human epidermal keratinocytes and this migratory property was not related to RhoA signaling. Interestingly, Western blot analysis revealed that GGA treatment down-regulated caspase 3 active form expression and up-regulated the activated phenotype by inducing both keratin 6 (K6) expression and interleukin-1β (IL-1β) release without modification of the differentiate phenotype. Finally, the proteomic profiling was performed on keratinocytes, showing that global protein changes occurred after irradiation of keratinocytes treated or untreated with GGA.

  2. Potassium channel in the mitochondria of human keratinocytes.

    PubMed

    Toczyłowska-Mamińska, Renata; Olszewska, Anna; Laskowski, Michał; Bednarczyk, Piotr; Skowronek, Krzysztof; Szewczyk, Adam

    2014-03-01

    The activation of mitochondrial potassium channels induces cytoprotection in various cell types. Hence, the identification of ion channels present in the inner mitochondrial membrane of keratinocytes is important in distinguishing possible protective mechanisms in these cells. In this paper, inner membrane mitochondrial ion channels of the human keratinocyte HaCaT cell line were investigated using a patch-clamp technique. We observed potassium-selective channel activity with a conductance of 83 pS at positive voltages. The I-V curve indicates that the observed channel has rectifying properties. Moreover, the channel activity was inhibited by acidic pH and 1 mM lidocaine. Using reverse transcriptase-PCR, we found an mRNA transcript for the TASK-3 (tandem pore domain acid-sensitive K channels) channel. We observed co-localization of the TASK-3 protein and a mitochondrial marker in the mitochondria of HaCaT cells. Additionally, we showed that TASK-3 knockdown HaCaT cells markedly decreased viability after UVB radiation exposure compared with control cells. In summary, the single-channel activity and properties of a mitochondrial potassium channel in a keratinocyte HaCaT cell line have been described.

  3. Staphylococcus aureus Induces Increased Serine Protease Activity in Keratinocytes.

    PubMed

    Williams, Michael R; Nakatsuji, Teruaki; Sanford, James A; Vrbanac, Alison F; Gallo, Richard L

    2017-02-01

    Bacteria that reside on the skin can influence the behavior of the cutaneous immune system, but the mechanisms responsible for these effects are incompletely understood. Colonization of the skin by Staphylococcus aureus (S. aureus) is increased in atopic dermatitis and can result in increased severity of the disease. In this study, we show that S. aureus stimulates human keratinocytes to increase their endogenous protease activity, including specific increases in trypsin activity. This increased protease activity coincided with increased expression of mRNA for kallikreins (KLKs), with KLK6, 13, and 14 showing the greatest induction after exposure to S. aureus. Suppression of mRNA for these KLKs in keratinocytes by targeted small interfering RNA silencing before S. aureus exposure blocked the increase in protease activity. Keratinocytes exposed to S. aureus showed enhanced degradation of desmoglein-1 and filaggrin, whereas small interfering RNA for KLK6, KLK13, and KLK14 partially blocked this degradation. These data illustrate how S. aureus directly influences the skin barrier integrity by stimulating endogenous proteolytic activity and defines a previously unknown mechanism by which S. aureus may influence skin diseases. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. High molecular weight plant heteropolysaccharides stimulate fibroblasts but inhibit keratinocytes.

    PubMed

    Shahbuddin, Munira; Shahbuddin, Dahlia; Bullock, Anthony J; Ibrahim, Halijah; Rimmer, Stephen; MacNeil, Sheila

    2013-06-28

    Konjac glucomannan (KGM) is a natural polysaccharide of β(1-4)-D-glucomannopyranosyl backbone of D-mannose and D-glucose derived from the tuber of Amorphophallus konjac C. Koch. KGM has been reported to have a wide range of activities including wound healing. In this study we examined KGM extracts prepared from five plant species, (Amorphophallus konjac Koch, Amorphophallus oncophyllus, Amorphophallus prainii, Amorphophallus paeoniifolius and Amorphophallus elegans) for their effects on cultured human keratinocytes and fibroblasts. Extracts from A. konjac Koch, A. oncophyllus and A. prainii (but not from A. paeoniifolius or A. elegans) stimulated fibroblast proliferation both in the absence and presence of serum. However, these materials inhibited keratinocyte proliferation. The fibroblast stimulatory activity was associated with high molecular weight fractions of KGM and was lost following ethanol extraction or enzyme digestion with β-mannanase. It was also reduced by the addition of concanavalin A but not mannose suggesting that these heteropolysaccharides are acting on lectins but not via receptors specific to mannose. The most dramatic effect of KGM was seen in its ability to support fibroblasts for 3weeks under conditions of deliberate media starvation. This effect did not extend to supporting keratinocytes under conditions of media starvation but KGM did significantly help support adipose derived stem cells under media starvation conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Candida albicans-induced inflammatory response in human keratinocytes.

    PubMed

    Wollina, U; Künkel, W; Bulling, L; Fünfstück, C; Knöll, B; Vennewald, I; Hipler, U-C

    2004-06-01

    Candida albicans strains 3153a, ATCC 48867, CBS 2730, DSM 70014, and Vir 13 were cultivated and sterile C. albicans filtrates were produced. The interaction of soluble Candida factors of these infiltrates with human HaCaT keratinocytes was assayed in vitro. The following parameters were analyzed: cell proliferation, protein synthesis, nuclear matrix protein (NMP) 41 release, cytokine release (IL-1beta, soluble IL-2 receptor, IL-6, and IL-8), and reactive oxygen species (ROS). Cell counts at 1, 12, and 24 h were significantly lower for C. albicans strains CBS 2730 and VIR 13 (P < 0.05). There was no significant change for the remaining strains. Neither the protein synthesis nor the NMP-41 release was significantly affected. IL-6 and IL-8 were stimulated by C. albicans filtrates to different amounts with higher levels in strains of low virulence. There was no effect on the other cytokines. The production of ROS by HaCaT keratinocytes was suppressed. The induction of an inflammatory keratinocyte response by soluble C. albicans factors may play a role among the host-yeast interactions.

  6. Membrane-Tethered Intracellular Domain of Amphiregulin Promotes Keratinocyte Proliferation

    PubMed Central

    Stoll, Stefan W.; Stuart, Philip E.; Lambert, Sylviane; Gandarillas, Alberto; Rittié, Laure; Johnston, Andrew; Elder, James T.

    2016-01-01

    The EGF receptor (EGFR) and its ligands are essential regulators of epithelial biology, which are often amplified in cancer cells. We have previously shown that shRNA-mediated silencing of one of these ligands, amphiregulin (AREG), results in keratinocyte growth arrest that cannot be rescued by soluble extracellular EGFR ligands. To further explore the functional importance of specific AREG domains, we stably transduced keratinocytes expressing tetracycline-inducible AREG-targeted shRNA with lentiviruses expressing silencing-proof, membrane-tethered AREG cytoplasmic and extracellular domains (AREG-CTD and AREG-ECD), as well as full-length AREG precursor (proAREG). Here we show that growth arrest of AREG-silenced keratinocytes occurs in G2/M and is significantly restored by proAREG and AREG-CTD, but not by AREG-ECD. Moreover, the AREG-CTD was sufficient to normalize cell cycle distribution profiles and expression of mitosis-related genes. Our findings uncover an important role of the AREG-CTD in regulating cell division, which may be relevant to tumor resistance to EGFR-directed therapies. PMID:26802239

  7. Enhanced Keratinocyte Proliferation and Migration in Co-culture with Fibroblasts

    PubMed Central

    Wang, Zhenxiang; Wang, Ying; Farhangfar, Farhang; Zimmer, Monica; Zhang, Yongxin

    2012-01-01

    Wound healing is primarily controlled by the proliferation and migration of keratinocytes and fibroblasts as well as the complex interactions between these two cell types. To investigate the interactions between keratinocytes and fibroblasts and the effects of direct cell-to-cell contact on the proliferation and migration of keratinocytes, keratinocytes and fibroblasts were stained with different fluorescence dyes and co-cultured with or without transwells. During the early stage (first 5 days) of the culture, the keratinocytes in contact with fibroblasts proliferated significantly faster than those not in contact with fibroblasts, but in the late stage (11th to 15th day), keratinocyte growth slowed down in all cultures unless EGF was added. In addition, keratinocyte migration was enhanced in co-cultures with fibroblasts in direct contact, but not in the transwells. Furthermore, the effects of the fibroblasts on keratinocyte migration and growth at early culture stage correlated with heparin-binding EGF-like growth factor (HB-EGF), IL-1α and TGF-β1 levels in the cultures where the cells were grown in direct contact. These effects were inhibited by anti-HB-EGF, anti-IL-1α and anti-TGF-β1 antibodies and anti-HB-EGF showed the greatest inhibition. Co-culture of keratinocytes and IL-1α and TGF-β1 siRNA-transfected fibroblasts exhibited a significant reduction in HB-EGF production and keratinocyte proliferation. These results suggest that contact with fibroblasts stimulates the migration and proliferation of keratinocytes during wound healing, and that HB-EGF plays a central role in this process and can be up-regulated by IL-1α and TGF-β1, which also regulate keratinocyte proliferation differently during the early and late stage. PMID:22911722

  8. Accumulation of C-reactive protein in basal keratinocytes of normal skins.

    PubMed

    Ono, Koji; Fujimoto, Norihiro; Akiyama, Minoru; Satoh, Takahiro; Tajima, Shingo

    2016-07-01

    C-reactive protein (CRP) is a prototypic acute phase protein which increases dramatically in the blood during the first 48h of tissue inflammation and has been recognized as a risk factor for atherosclerosis. CRP interacts with a variety of proteins. To know the role of accumulated CRP in the skin. Interaction of CRP with basal keratinocytes was studied using immunohistochemical method and keratinocyte culture system. We found an immunohistochemical deposition of CRP on the basal keratinocyte membrane in some normal human skins (23 out of 46 skins). When added to cultured keratinocytes, heat-denatured but not native CRP was found to adhere to keratinocyte cell membrane after 1h, then internalized into cytoplasm after 24h. The heat-denatured CRP recognized at least four keratinocyte polypeptides with the molecular weights of 56, 42, 32 and 24kDa. Ligand binding assays suggested that multiple populations of receptor-ligand interactions were involved in the binding between CRP and keratinocyte. Cultured dermal microvascular endothelial cells were found to express CRP of which expression was greatly induced by interleukin-1β (IL-1β) treatment, suggesting that the deposited CRP in the basal keratinocytes can be derived from local dermal microvasculatures as well as from systemic circulation (serum). Treatment of cultured keratinocytes with heat-denatured CRP induced interleukin-8 (IL-8) expression, a potent leukocyte chemotactic cytokine. CRP in the medium (liquid phase) and CRP-coated dishes (solid phase) both inhibited the adhesion of keratinocytes in culture. Accumulation of CRP may regulate the skin inflammation and keratinocyte proliferation by modulating keratinocyte cytokine expression and adhesion to substrate. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Enhanced keratinocyte proliferation and migration in co-culture with fibroblasts.

    PubMed

    Wang, Zhenxiang; Wang, Ying; Farhangfar, Farhang; Zimmer, Monica; Zhang, Yongxin

    2012-01-01

    Wound healing is primarily controlled by the proliferation and migration of keratinocytes and fibroblasts as well as the complex interactions between these two cell types. To investigate the interactions between keratinocytes and fibroblasts and the effects of direct cell-to-cell contact on the proliferation and migration of keratinocytes, keratinocytes and fibroblasts were stained with different fluorescence dyes and co-cultured with or without transwells. During the early stage (first 5 days) of the culture, the keratinocytes in contact with fibroblasts proliferated significantly faster than those not in contact with fibroblasts, but in the late stage (11(th) to 15(th) day), keratinocyte growth slowed down in all cultures unless EGF was added. In addition, keratinocyte migration was enhanced in co-cultures with fibroblasts in direct contact, but not in the transwells. Furthermore, the effects of the fibroblasts on keratinocyte migration and growth at early culture stage correlated with heparin-binding EGF-like growth factor (HB-EGF), IL-1α and TGF-β1 levels in the cultures where the cells were grown in direct contact. These effects were inhibited by anti-HB-EGF, anti-IL-1α and anti-TGF-β1 antibodies and anti-HB-EGF showed the greatest inhibition. Co-culture of keratinocytes and IL-1α and TGF-β1 siRNA-transfected fibroblasts exhibited a significant reduction in HB-EGF production and keratinocyte proliferation. These results suggest that contact with fibroblasts stimulates the migration and proliferation of keratinocytes during wound healing, and that HB-EGF plays a central role in this process and can be up-regulated by IL-1α and TGF-β1, which also regulate keratinocyte proliferation differently during the early and late stage.

  10. Histamine induces proliferation in keratinocytes from patients with atopic dermatitis through the histamine 4 receptor.

    PubMed

    Glatzer, Franziska; Gschwandtner, Maria; Ehling, Sarah; Rossbach, Kristine; Janik, Katrin; Klos, Andreas; Bäumer, Wolfgang; Kietzmann, Manfred; Werfel, Thomas; Gutzmer, Ralf

    2013-12-01

    Epidermal hyperproliferation resulting in acanthosis is an important clinical observation in patients with atopic dermatitis, and its underlying mechanisms are not completely understood. Because increased levels of histamine are present in lesional skin, we investigated the effect of histamine, especially with regard to histamine 4 receptor (H4R) activation, on the proliferation of human and murine keratinocytes. The expression of H4R on human and murine keratinocytes was detected by using real-time PCR. Keratinocyte proliferation was evaluated by using different in vitro cell proliferation assays, scratch assays, and measurement of the epidermal thickness of murine skin. We detected H4R mRNA on foreskin keratinocytes and on outer root sheath keratinocytes; H4R mRNA was more abundant in keratinocytes from patients with atopic dermatitis compared with those from nonatopic donors. Stimulation of foreskin keratinocytes, atopic dermatitis outer root sheath keratinocytes, and H4R-transfected HaCaT cells with histamine and H4R agonist resulted in an increase in proliferation, which was blocked with the H4R-specific antagonist JNJ7777120. Abdominal epidermis of H4R-deficient mice was significantly thinner, and the in vitro proliferation of keratinocytes derived from H4R-deficient mice was lower compared with that seen in control mice. Interestingly, we only detected H4R expression on murine keratinocytes after stimulation with LPS and peptidoglycan. H4R is highly expressed on keratinocytes from patients with atopic dermatitis, and its stimulation induces keratinocyte proliferation. This might represent a mechanism that contributes to the epidermal hyperplasia observed in patients with atopic dermatitis. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  11. Exposure to Carbon Nanotube Material: Assessment of Nanotube Cytotoxicity Using Human Keratinocyte Cells

    NASA Technical Reports Server (NTRS)

    Shvedova, Anna A.; Castranova, Vincent; Kisin, Elena R.; Schwegler-Berry, Diane; Murray, Ashley R.; Gandelsman, Vadim Z.; Maynard, Andrew; Baron, Paul

    2003-01-01

    Carbon nanotubes are new members of carbon allotropes similar to fullerenes and graphite. Because of their unique electrical, mechanical, and thermal properties, carbon nanotubes are important for novel applications in the electronics, aerospace, and computer industries. Exposure to graphite and carbon materials has been associated with increased incidence of skin diseases, such as carbon fiber dermatitis, hyperkeratosis, and naevi. We investigated adverse effects of single-wall carbon nanotubes (SWCNT) using a cell culture of immortalized human epidermal keratinocytes (HaCaT). After 18 h of exposure of HaCaT to SWCNT, oxidative stress and cellular toxicity were indicated by formation of free radicals, accumulation of peroxidative products, antioxidant depletion, and loss of cell viability. Exposure to SWCNT also resulted in ultrastructural and morphological changes in cultured skin cells. These data indicate that dermal exposure to unrefined SWCNT may lead to dermal toxicity due to accelerated oxidative stress in the skin of exposed workers.

  12. Exposure to Carbon Nanotube Material: Assessment of Nanotube Cytotoxicity Using Human Keratinocyte Cells

    NASA Technical Reports Server (NTRS)

    Shvedova, Anna A.; Castranova, Vincent; Kisin, Elena R.; Schwegler-Berry, Diane; Murray, Ashley R.; Gandelsman, Vadim Z.; Maynard, Andrew; Baron, Paul

    2003-01-01

    Carbon nanotubes are new members of carbon allotropes similar to fullerenes and graphite. Because of their unique electrical, mechanical, and thermal properties, carbon nanotubes are important for novel applications in the electronics, aerospace, and computer industries. Exposure to graphite and carbon materials has been associated with increased incidence of skin diseases, such as carbon fiber dermatitis, hyperkeratosis, and naevi. We investigated adverse effects of single-wall carbon nanotubes (SWCNT) using a cell culture of immortalized human epidermal keratinocytes (HaCaT). After 18 h of exposure of HaCaT to SWCNT, oxidative stress and cellular toxicity were indicated by formation of free radicals, accumulation of peroxidative products, antioxidant depletion, and loss of cell viability. Exposure to SWCNT also resulted in ultrastructural and morphological changes in cultured skin cells. These data indicate that dermal exposure to unrefined SWCNT may lead to dermal toxicity due to accelerated oxidative stress in the skin of exposed workers.

  13. Subcellular localisation of BAG-1 and its regulation of vitamin D receptor-mediated transactivation and involucrin expression in oral keratinocytes: Implications for oral carcinogenesis

    SciTech Connect

    Lee, San San; Crabb, Simon J.; Janghra, Nari; Carlberg, Carsten; Williams, Ann C.; Cutress, Ramsey I.; Packham, Graham; Hague, Angela

    2007-09-10

    In oral cancers, cytoplasmic BAG-1 overexpression is a marker of poor prognosis. BAG-1 regulates cellular growth, differentiation and survival through interactions with diverse proteins, including the vitamin D receptor (VDR), a key regulator of keratinocyte growth and differentiation. BAG-1 is expressed ubiquitously in human cells as three major isoforms of 50 kDa (BAG-1L), 46 kDa (BAG-1M) and 36 kDa (BAG-1S) from a single mRNA. In oral keratinocytes BAG-1L, but not BAG-1M and BAG-1S, enhanced VDR transactivation in response to 1{alpha},25-dihydroxyvitamin D{sub 3.} BAG-1L was nucleoplasmic and nucleolar, whereas BAG-1S and BAG-1M were cytoplasmic and nucleoplasmic in localisation. Having identified the nucleolar localisation sequence in BAG-1L, we showed that mutation of this sequence did not prevent BAG-1L from potentiating VDR activity. BAG-1L also potentiated transactivation of known vitamin-D-responsive gene promoters, osteocalcin and 24-hydroxylase, and enhanced VDR-dependent transcription and protein expression of the keratinocyte differentiation marker, involucrin. These results demonstrate endogenous gene regulation by BAG-1L by potentiating nuclear hormone receptor function and suggest a role for BAG-1L in 24-hydroxylase regulation of vitamin D metabolism and the cellular response of oral keratinocytes to 1{alpha},25-dihydroxyvitamin D{sub 3}. By contrast to the cytoplasmic BAG-1 isoforms, BAG-1L may act to suppress tumorigenesis.

  14. Binding of antibodies to the extractable nuclear antigens SS-A/Ro and SS-B/La is induced on the surface of human keratinocytes by ultraviolet light (UVL): Implications for the pathogenesis of photosensitive cutaneous lupus

    SciTech Connect

    Furukawa, F.; Kashihara-Sawami, M.; Lyons, M.B.; Norris, D.A. )

    1990-01-01

    Autoantibodies to the non-histone nucleoprotein antigens SS-A/Ro, SS-B/La, and RNP are highly associated with photosensitive cutaneous lupus erythematosus (LE). In order to better understand the potential mechanisms of ultraviolet (UV) light on photosensitivity in patients with cutaneous LE, we designed immunopathologic in vitro and in vivo experiments to evaluate the effects of UV on the binding of such autoantibodies to the surface of human keratinocytes, one major target of immunologic damage in photosensitive LE. Short-term 2% paraformaldehyde fixation of suspensions of cultured human keratinocytes previously incubated with monospecific antiserum probes enabled the detection of ENA expression on the cell surface by flow-cytometry analysis. UVB light (280-320 nm) induced the binding of monospecific antibody probes for SS-A/Ro and SS-B/La on keratinocytes in a dose-dependent pattern with maximal induction observed at the dose of 200 mJ/cm2 UVB. Binding of SS-A/Ro, SS-B/La, and RNP antibody was augmented strongly, but binding of anti-Sm was very weak. In contrast, UVA (320-400 nm) light had no effect on the induction of binding of these antibody probes. Identical results were seen by standard immunofluorescence techniques. Hydroxyurea-treated keratinocytes showed similar induction of those antigens by UVB irradiation, which suggested that ENA expression on cultured keratinocytes by UVB were cell-cycle independent. Tunicamycin, an inhibitor of glycosylation of proteins, reduced UVB light effect on the SS-A/Ro and SS-B/La antigen's expression. These in vitro FACS analyses revealed that ENA augmentation on the keratinocyte cell surface was dose dependent, UVB dependent, glycosylation dependent, and cell-cycle independent. In vivo ENA augmentation on the keratinocyte surface was examined in suction blister epidermal roofs.

  15. Effect of different alcohols on stratum corneum kallikrein 5 and phospholipase A2 together with epidermal keratinocytes and skin irritation.

    PubMed

    Cartner, T; Brand, N; Tian, K; Saud, A; Carr, T; Stapleton, P; Lane, M E; Rawlings, A V

    2017-04-01

    The aim of this exploratory study was to investigate the effect of ethanol, isopropanol and n-propanol on stratum corneum (SC) enzymes and keratinocytes in vitro together with their effects on skin condition and function. Activities of kallikrein 5 (KLK5) and phospholipase A2 (PLA2) as well as keratinocyte metabolic activity, interleukin-1α (IL-1α) and tumor necrosis factor-α (TNF-α) were measured in vitro in the presence and absence of the different alcohols. We also measured transepidermal water loss (TEWL), skin capacitance, visual dryness and visual redness on the volar forearms of 25 Caucasian women following application of the alcohols 20 and 100 times per day over a period of 14 days in a clinical study. Reduced activities of KLK5 and PLA2 were observed in the presence of the alcohols. The greatest denaturing effect was always observed for n-propanol (P < 0.001), and in the case of PLA2, the effect of isopropanol was greater than ethanol (P < 0.001). Equally, ethanol had the mildest effects on keratinocyte metabolic activity and cytokine secretion (P < 0.001) and n-propanol always produced the most severe changes in normal and differentiated keratinocytes. These in vitro findings supported the clinical results where the major effects were on the induction of skin irritation (increased dropout rates) and ranked the intolerance of the different alcohols as follows: n-propanol > isopropanol > ethanol. At the high application frequencies, the effect of the different alcohols on transepidermal water loss (TEWL) and skin capacitance was similar, but at the low application frequencies, n-propanol had a significant effect on TEWL and capacitance values (P < 0.05). Equally, n-propanol and isopropanol produced significantly more skin redness at the low application frequencies. Clearly, isopropanol and n-propanol caused significant SC and keratinocyte perturbation in vitro together with damage to skin condition and function in vivo whereas ethanol

  16. Newly discovered olfactory receptors in epidermal keratinocytes are associated with proliferation, migration, and re-epithelialization of keratinocytes.

    PubMed

    Denda, Mitsuhiro

    2014-11-01

    Skin contains receptors for various environmental factors. In this issue of the Journal, Busse et al. cloned a new olfactory receptor, OR2AT4, in keratinocytes. They show that the activation of OR2AT4 induces phosphorylation of extracellular signal-regulated kinases and p38 mitogen-activated protein kinases, and that it accelerates wound healing. OR2AT4 may be a promising candidate as a target in clinical drug development.

  17. Arecoline and oral keratinocytes may affect the collagen metabolism of fibroblasts.

    PubMed

    Xia, Li; Tian-You, Ling; Yi-Jun, Gao; Dong-Sheng, Tang; Wen-Hui, Li

    2009-05-01

    The characteristic of oral submucous fibrosis (OSF) is related with the disturbance of synthesis and degradation of extracellular matrix. Arecoline, the areca nut (betel nut) component of betel quid, plays a major role in pathogenesis of OSF. But the exact mechanism how arecoline influences the collagen metabolism is unclear. Oral keratinocytes and fibroblasts were cocultured and keratinocytes were pre-treated by arecoline. Fibroblasts alone, fibroblasts stimulated by arecoline, fibroblasts cocultured with keratinocytes and fibroblasts cocultured with keratinocyte pre-treated by arecoline were included as the four groups in the present study. The concentration of collagen, the content and activity of matrix metalloproteinase (MMP) and the concentration of tissue inhibitor of metalloproteinase (TIMP) were assessed. The collagen production of fibroblasts decreased when cocultured with keratinocytes; when cocultured with keratinocytes pre-treated by arecoline, fibroblasts produced more soluble collagen than non-pretreated coculture group. MMP-9 was produced only in coculture groups. There was no significant difference in the two coculture groups. The activation ratio of pro-MMP-2 in arecoline pre-treated keratinocytes-fibroblasts coculture group was significantly higher than that of non-coculture groups, but no significant difference existed in the two coculture groups. TIMP-1 produced by arecoline pre-treated keratinocytes-fibroblasts coculture group was significantly higher than those by the other three groups. TIMP-1 and the interaction of oral keratinocytes and fibroblasts play important role in pathogenesis of OSF.

  18. Study of proliferation and 3D epidermal reconstruction from foreskin, auricular and trunk keratinocytes in children.

    PubMed

    Mcheik, Jiad N; Barrault, Christine; Pedretti, Nathalie; Garnier, Julien; Juchaux, Franck; Levard, Guillaume; Morel, Frank; Bernard, François-Xavier; Lecron, Jean-Claude

    2015-03-01

    Severe burns in children are conventionally treated with split-thickness skin autografts or epidermal sheets. An alternative approach is to graft isolated keratinocytes. We evaluated foreskin and other anatomic sites as donor sources for autologous keratinocyte graft in children. We studied in vitro capacities of isolated keratinocytes to divide and reconstitute epidermal tissue. Keratinocytes were isolated from foreskin, auricular skin, chest and abdominal skin by enzymatic digestion. Living cell recovery, in vitro proliferation, epidermal reconstruction capacities and differentiation status were analyzed. In vitro studies revealed the higher yield of living keratinocyte recovery from foreskin and higher potential in terms of proliferative capacity, regeneration and differentiation. Cultured keratinocytes from foreskin express lower amounts of differentiation markers than those isolated from trunk and ear. Histological analysis of reconstituted human epidermis derived from foreskin and inguinal keratinocytes showed a structured multilayered epithelium, whereas those obtained from ear pinna-derived keratinocytes were unstructured. Our studies highlight the potential of foreskin tissue for autograft applications in boys. A suitable alternative donor site for autologous cell transplantation in female paediatric burn patients remains an open question in our department. We tested the hypothesis that in vitro studies and RHE reconstructive capacities of cells from different body sites can be helpful to select an optimal site for keratinocyte isolation before considering graft protocols for girls. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  19. Fibrotic remodeling of tissue-engineered skin with deep dermal fibroblasts is reduced by keratinocytes.

    PubMed

    Varkey, Mathew; Ding, Jie; Tredget, Edward E

    2014-02-01

    Two-thirds of burn patients with deep dermal injuries are affected by hypertrophic scars, and currently, there are no clinically effective therapies. Tissue-engineered skin is a very promising model for the elucidation of the role of matrix microenvironment and biomechanical characteristics and could help in the identification of new therapeutic targets for hypertrophic scars. Conventionally, tissue-engineered skin is made of heterogeneous dermal fibroblasts and keratinocytes; however, recent work has shown that superficial and deep dermal fibroblasts are antifibrotic and profibrotic, respectively. Furthermore, keratinocytes are believed to regulate the development and remodeling of fibrosis in skin. This study aimed to assess the influence of keratinocytes and layered fibroblasts on the characteristics of tissue-engineered skin. Layered fibroblasts and keratinocytes isolated from superficial and deep dermis and epidermis, respectively, of the lower abdominal tissue were independently co-cultured on collagen-glycosaminoglycan scaffolds, and the resulting tissue-engineered skin was assessed for differences in tissue remodeling based on the underlying specific dermal fibroblast subpopulation. Collagen production by deep fibroblasts but not by superficial fibroblasts was significantly reduced upon co-culture with keratinocytes. Also, keratinocytes in the tissue-engineered skin resulted in significantly reduced expression of profibrotic connective tissue growth factor and fibronectin, and increased expression of the antifibrotic matrix metalloproteinase-1 by deep fibroblasts but not by superficial fibroblasts. Tissue-engineered skin made of deep fibroblasts and keratinocytes had lower levels of small proteoglycans, decorin, and fibromodulin, and higher levels of large proteoglycan, versican, compared to tissue-engineered skin made of superficial fibroblasts and keratinocytes. Tissue-engineered skin made of deep fibroblasts and keratinocytes had lower expression of

  20. Keratinocyte growth factor induces proliferation of hepatocytes and epithelial cells throughout the rat gastrointestinal tract.

    PubMed

    Housley, R M; Morris, C F; Boyle, W; Ring, B; Biltz, R; Tarpley, J E; Aukerman, S L; Devine, P L; Whitehead, R H; Pierce, G F

    1994-11-01

    Keratinocyte growth factor (KGF), a member of the fibroblast growth factor (FGF) family, was identified as a specific keratinocyte mitogen after isolation from a lung fibroblast line. Recently, recombinant (r)KGF was found to influence proliferation and differentiation patterns of multiple epithelial cell lineages within skin, lung, and the reproductive tract. In the present study, we designed experiments to identify additional target tissues, and focused on the rat gastrointestinal (GI) system, since a putative receptor, K-sam, was originally identified in a gastric carcinoma. Expression of KGF receptor and KGF mRNA was detected within the entire GI tract, suggesting the gut both synthesized and responded to KGF. Therefore, rKGF was administered to adult rats and was found to induce markedly increased proliferation of epithelial cells from the foregut to the colon, and of hepatocytes, one day after systemic treatment. Daily treatment resulted in the marked selective induction of mucin-producing cell lineages throughout the GI tract in a dose-dependent fashion. Other cell lineages were either unaffected (e.g., Paneth cells), or relatively decreased (e.g., parietal cells, enterocytes) in rKGF-treated rats. The direct effect of rKGF was confirmed by demonstrating markedly increased carcinoembryonic antigen production in a human colon carcinoma cell line, LIM1899. Serum levels of albumin were specifically and significantly elevated after daily treatment. These results demonstrate rKGF can induce epithelial cell activation throughout the GI tract and liver. Further, endogenous KGF may be a normal paracrine mediator of growth within the gut.

  1. Biallelic ATM alterations detected at diagnosis identify a subset of treatment-naïve chronic lymphocytic leukemia patients with reduced overall survival similar to patients with p53 deletion.

    PubMed

    Lozano-Santos, Carol; García-Vela, José A; Pérez-Sanz, Nuria; Nova-Gurumeta, Sara; Fernandez-Cuevas, Belen; Gomez-Lozano, Natalia; Sánchez-Beato, Margarita; Sanchez-Godoy, Pedro; Bueno, José Luis; Garcia-Marco, José A

    2017-04-01

    The prognostic impact of biallelic ATM abnormalities (ATM mutation and concurrent 11q deletion) remains unknown. We studied ATM, BIRC3, SF3B1, and NOTCH1 genes in 118 treatment-naïve CLL patients at diagnosis. Patients with biallelic ATM alteration had a similar time to first treatment (TTFT) and shorter overall survival (OS) compared with patients with isolated 11q deletion and shorter TTFT and OS when compared to patients with wild-type ATM. Furthermore, biallelic ATM alteration (HR: 6.4; p ≤ 0.007) was significantly associated with an increased risk of death similar to p53 deletion (HR: 6.1; p ≤ 0.004), superior to 11q deletion alone (HR: 2.8; p ≤ 0.022) and independent of other significant parameters such as age, advanced clinical stage, and complex karyotype. Our results suggest the identification of ATM mutations in CLL patients with 11q deletion at diagnosis is clinically relevant and predicts disease progression, poor response to the treatment, and reduced OS independent of other molecular prognostic factors.

  2. Matrix metalloproteinase-19 expression in keratinocytes is repressed by transcription factors Tst-1 and Skn-1a: implications for keratinocyte differentiation.

    PubMed

    Beck, Inken M; Müller, Matthias; Mentlein, Rolf; Sadowski, Thorsten; Mueller, Markus S; Paus, Ralf; Sedlacek, Radislav

    2007-05-01

    Matrix metalloproteinase-19 (MMP-19), unlike other members of the MMP family, is expressed in basal keratinocytes of intact epidermis whereas keratinocytes in suprabasal and higher epidermal layers express this enzyme only during cutaneous disorders. As the activity of MMP-19 effects proliferation, migration, and adhesion of keratinocytes we examined whether transcription factors involved in keratinocyte differentiation repress the expression of MMP-19. Using luciferase reporter assays, POU transcription factors Tst-1 (Oct-6) and Skn-1a (Oct-11) markedly downregulated the activity of MMP-19 promoter in COS-7 cells and HaCaT keratinocytes. Tst-1 alone was able to inhibit 85% of the promoter activity. Skn-1a exhibited a weak inhibitory effect although it synergistically increased effects of Tst-1. HaCaT cells stably transfected with Tst-1 showed a strong decrease of activity of MMP-19 promoter that correlated with suppression of MMP-19, cytokeratin 14 and 5, decreased cell proliferation, and altered expression of involucrin and loricrin. The expression of MMP-9 was also significantly reduced in Tst-1 expressing keratinocytes. MMP-2 was substantially affected during its activation whereas the expression of MMP-28 was unchanged. Our results suggest that Tst-1 and Skn-1a regulate expression of MMPs in keratinocytes and effect both the expression and activation of these proteolytic enzymes.

  3. Effect of tumour-cell-derived or recombinant keratinocyte growth factor (KGF) on proliferation and radioresponse of human epithelial tumour cells (HNSCC) and normal keratinocytes in vitro.

    PubMed

    Hille, Andrea; Grüger, Susanne; Christiansen, Hans; Wolff, Hendrik A; Volkmer, Beate; Lehmann, Jörg; Dörr, Wolfgang; Rave-Fränk, Margret

    2010-05-01

    Purpose of this work was to test the effect of tumour-cell-derived keratinocyte growth factor (KGF) or recombinant KGF (palifermin) on cell proliferation and radiation response of human HNSCC cells and normal keratinocytes in vitro. Four tumour cell cultures derived from head and neck squamous cell carcinomas, primary keratinocytes, and immortalized keratinocytes were analysed. Fibroblasts, the natural source of KGF protein, served as controls. KGF expression was observed in primary and immortalized keratinocytes, fibroblasts, and in tumour cells, while significant KGF receptor expression was only found in keratinocytes. Recombinant KGF as well as tumour-cell-derived KGF caused a significant growth stimulation and radioprotection in keratinocytes, which was abolished by a neutralizing anti-KGF antibody. This indicates that tumour-cell-derived KGF is biologically active. In the tumour cell lines, no significant growth stimulation was induced by recombinant KGF, and the neutralizing antibody did not influence tumour cell growth or radiation response. Our results indicate that the normal, paracrine KGF regulatory mechanisms, which are based on KGF receptor expression, are lost in malignant cells, with the consequence of irresponsiveness of the tumour cells to exogenous KGF. In face of the amelioration of the radiation response of normal epithelia, demonstrated in various clinical and various preclinical animal studies, recombinant KGF represents a candidate for the selective protection of normal epithelia during radio(chemo) therapy of squamous cell carcinoma.

  4. Chronic oxidative stress increases the integration frequency of foreign DNA and human papillomavirus 16 in human keratinocytes

    PubMed Central

    Chen Wongworawat, Yan; Filippova, Maria; Williams, Vonetta M; Filippov, Valery; Duerksen-Hughes, Penelope J

    2016-01-01

    Cervical cancer is the second most common cancer, and the fourth most common cause of cancer death in women worldwide. Nearly all of these cases are caused by high-risk HPVs (HR HPVs), of which HPV16 is the most prevalent type. In most cervical cancer specimens, HR HPVs are found integrated into the human genome, indicating that integration is a key event in cervical tumor development. An understanding of the mechanisms that promote integration may therefore represent a unique opportunity to intercept carcinogenesis. To begin identifying these mechanisms, we tested the hypothesis that chronic oxidative stress (OS) induced by virus- and environmentallymediated factors can induce DNA damage, and thereby increase the frequency with which HPV integrates into the host genome. We found that virus-mediated factors are likely involved, as expression of E6*, a splice isoform of HPV16 E6, increased the levels of reactive oxygen species (ROS), caused oxidative DNA damage, and increased the frequency of plasmid DNA integration as assessed by colony formation assays. To assess the influence of environmentally induced chronic OS, we used L-Buthionine-sulfoximine (BSO) to lower the level of the intracellular antioxidant glutathione. Similar to our observations with E6*, glutathione depletion by BSO also increased ROS levels, caused oxidative DNA damage and increased the integration frequency of plasmid DNA. Finally, under conditions of chronic OS, we were able to induce and characterize a few independent events in which episomal HPV16 integrated into the host genome of cervical keratinocytes. Our results support a chain of events leading from induction of oxidative stress, to DNA damage, to viral integration, and ultimately to carcinogenesis. PMID:27186429

  5. HSP70 and EndoG modulate cell death by heat in human skin keratinocytes in vitro.

    PubMed

    Chinnathambi, Sathivel; Tomanek-Chalkley, Ann; Bickenbach, Jackie R

    2008-01-01

    We examined how young and old keratinocytes died from heat stress in vitro. We found that keratinocyte cell death was not due to oxidative stress as neither Mn-SOD nor Cu-Zn-SOD was produced in either young or old heated keratinocytes. Instead, analysis of the anti-apoptotic factors, Bcl2 and HSP70, and the pro-apoptotic factors, caspase 3, caspase 8, Apaf-1, cytochrome c, AIF, and EndoG, indicated that keratinocyte cell death occurred via the caspase-independent EndoG apoptotic pathway. We found that both young and old keratinocytes died via the same pathway, and that we could specifically reduce both young and old keratinocyte death by addition of the EndoG inhibitor NEM. Further analysis suggested that the difference between young and old keratinocyte death was due to the synthesis of HSP70 protein, with the increase in response to heat more pronounced in young keratinocytes than in old keratinocytes. When we inhibited HSP70 by adding quercetin, death was increased in both young and old keratinocytes, but more so in old keratinocytes. These data suggest that old keratinocytes may die more readily than young keratinocytes when heated because they synthesize HSP70 at a lower efficiency. Such findings suggest that HSP70 production may be age-dependent.

  6. Chromosomal loci of 50 human keratinocyte cDNAs assigned by fluorescence in situ hybridization

    SciTech Connect

    Morishima, Yohich; Ariyama, Takeshi; Yamanishi, Kiyofumi

    1995-07-20

    The chromosomal loci of expressed genes provide useful information for a candidate gene approach to the genes responsible for genetic diseases. A large set of randomly isolated cDNAs catalogued by partial sequencing can serve as a resource for accessing and isolating these disease genes. Using fluorescence in situ hybridization, we examined the chromosomal loci of 217 human keratinocyte-derived cDNAs, with independent novel sequence tags at the 3{prime} end region. Among them, we determined the loci of 50 cDNAs. Single-pass sequencing of these from the 5{prime} ends indicated that 39 cDNAs still can be produced for new genes. These cDNAs with identified chromosomal loci are powerful tools that can be used to help elucidate the genes responsible for hereditary skin disorders. 42 refs., 3 figs., 2 tabs.

  7. Keratinocyte-targeted overexpression of the glucocorticoid receptor delays cutaneous wound healing.

    PubMed

    Sanchis, Ana; Alba, Lorena; Latorre, Víctor; Sevilla, Lisa M; Pérez, Paloma

    2012-01-01

    Delayed wound healing is one of the most common secondary adverse effects associated to the therapeutic use of glucocorticoid (GC) analogs, which act through the ligand-dependent transcription factor GC-receptor (GR). GR function is exerted through DNA-binding-dependent and -independent mechanisms, classically referred to as transactivation (TA) and transrepression (TR). Currently both TA and TR are thought to contribute to the therapeutical effects mediated by GR; however their relative contribution to unwanted side effects such as delayed wound healing is unknown. We evaluated skin wound healing in transgenic mice with keratinocyte-restricted expression of either wild type GR or a mutant GR that is TA-defective but efficient in TR (K5-GR and K5-GR-TR mice, respectively). Our data show that at days (d) 4 and 8 following wounding, healing in K5-GR mice was delayed relative to WT, with reduced recruitment of granulocytes and macrophages and diminished TNF-α and IL-1β expression. TGF-β1 and Kgf expression was repressed in K5-GR skin whereas TGF-β3 was up-regulated. The re-epithelialization rate was reduced in K5-GR relative to WT, as was formation of granulation tissue. In contrast, K5-GR-TR mice showed delays in healing at d4 but re-established the skin breach at d8 concomitant with decreased repression of pro-inflammatory cytokines and growth factors relative to K5-GR mice. Keratinocytes from both transgenic mice closed in vitro wounds slower relative to WT, consistent with the in vivo defects in cell migration. Overall, the delay in the early stages of wound healing in both transgenic models is similar to that elicited by systemic treatment with dexamethasone. Wound responses in the transgenic keratinocytes correlated with reduced ERK activity both in vivo and in vitro. We conclude that the TR function of GR is sufficient for negatively regulating early stages of wound closure, while TA by GR is required for delaying later stages of healing.

  8. Keratinocyte-Targeted Overexpression of the Glucocorticoid Receptor Delays Cutaneous Wound Healing

    PubMed Central

    Sanchis, Ana; Alba, Lorena; Latorre, Víctor; Sevilla, Lisa M.; Pérez, Paloma

    2012-01-01

    Delayed wound healing is one of the most common secondary adverse effects associated to the therapeutic use of glucocorticoid (GC) analogs, which act through the ligand-dependent transcription factor GC-receptor (GR). GR function is exerted through DNA-binding-dependent and –independent mechanisms, classically referred to as transactivation (TA) and transrepression (TR). Currently both TA and TR are thought to contribute to the therapeutical effects mediated by GR; however their relative contribution to unwanted side effects such as delayed wound healing is unknown. We evaluated skin wound healing in transgenic mice with keratinocyte-restricted expression of either wild type GR or a mutant GR that is TA-defective but efficient in TR (K5-GR and K5-GR-TR mice, respectively). Our data show that at days (d) 4 and 8 following wounding, healing in K5-GR mice was delayed relative to WT, with reduced recruitment of granulocytes and macrophages and diminished TNF-α and IL-1β expression. TGF-β1 and Kgf expression was repressed in K5-GR skin whereas TGF-β3 was up-regulated. The re-epithelialization rate was reduced in K5-GR relative to WT, as was formation of granulation tissue. In contrast, K5-GR-TR mice showed delays in healing at d4 but re-established the skin breach at d8 concomitant with decreased repression of pro-inflammatory cytokines and growth factors relative to K5-GR mice. Keratinocytes from both transgenic mice closed in vitro wounds slower relative to WT, consistent with the in vivo defects in cell migration. Overall, the delay in the early stages of wound healing in both transgenic models is similar to that elicited by systemic treatment with dexamethasone. Wound responses in the transgenic keratinocytes correlated with reduced ERK activity both in vivo and in vitro. We conclude that the TR function of GR is sufficient for negatively regulating early stages of wound closure, while TA by GR is required for delaying later stages of healing. PMID:22235328

  9. The effect of Rho kinase inhibition on long-term keratinocyte proliferation is rapid and conditional

    PubMed Central

    2014-01-01

    Introduction We previously demonstrated that the lifespan of primary human keratinocytes could be extended indefinitely by culture in the presence of the Rho kinase (ROCK) inhibitor Y-27632. This technique has proven to be very useful in diverse areas of basic and clinical research. Methods In this follow-up study we determine whether the continual presence of Y-27632 is required for sustained proliferation. We also test whether different ROCK inhibitors can be used for this technique and whether it can also promote indefinite proliferation of animal keratinocytes. We measure keratinocyte gene expression, proliferation, behaviour and lifespan in the presence and absence of Y-27632. Results We demonstrate that the extension of lifespan observed by culture of keratinocytes in the presence of fibroblast feeders and a ROCK inhibitor is reversible and that cells senesce gradually when the inhibitor is removed from the medium. Conversely, keratinocytes that are close to the end of their replicative life span can be revived by ROCK inhibition. We demonstrate that different inhibitors of ROCK can also efficiently extend the lifespan of human keratinocytes and that ROCK inhibition extends the lifespan of animal keratinocytes derived from mouse and bovine epithelia. Gene expression analysis of human epidermal keratinocytes cells grown in the presence of Y-27632 demonstrates that ROCK inhibition primarily inhibits keratinocyte differentiation. Live-imaging of keratinocytes cultured with ROCK inhibitors show that the effect of ROCK inhibition on cellular proliferation is immediate and ROCK inhibited cells proliferate rapidly without differentiation or stratification. Conclusions ROCK inhibition rapidly and conditionally induces indefinite proliferation of keratinocytes. This method has far-reaching applications for basic research, as well as for regenerative and personalized medicine. PMID:24774536

  10. The effect of Rho kinase inhibition on long-term keratinocyte proliferation is rapid and conditional.

    PubMed

    Chapman, Sandra; McDermott, David H; Shen, Kui; Jang, Moon Kyoo; McBride, Alison A

    2014-04-28

    We previously demonstrated that the lifespan of primary human keratinocytes could be extended indefinitely by culture in the presence of the Rho kinase (ROCK) inhibitor Y-27632. This technique has proven to be very useful in diverse areas of basic and clinical research. In this follow-up study we determine whether the continual presence of Y-27632 is required for sustained proliferation. We also test whether different ROCK inhibitors can be used for this technique and whether it can also promote indefinite proliferation of animal keratinocytes. We measure keratinocyte gene expression, proliferation, behaviour and lifespan in the presence and absence of Y-27632. We demonstrate that the extension of lifespan observed by culture of keratinocytes in the presence of fibroblast feeders and a ROCK inhibitor is reversible and that cells senesce gradually when the inhibitor is removed from the medium. Conversely, keratinocytes that are close to the end of their replicative life span can be revived by ROCK inhibition. We demonstrate that different inhibitors of ROCK can also efficiently extend the lifespan of human keratinocytes and that ROCK inhibition extends the lifespan of animal keratinocytes derived from mouse and bovine epithelia. Gene expression analysis of human epidermal keratinocytes cells grown in the presence of Y-27632 demonstrates that ROCK inhibition primarily inhibits keratinocyte differentiation. Live-imaging of keratinocytes cultured with ROCK inhibitors show that the effect of ROCK inhibition on cellular proliferation is immediate and ROCK inhibited cells proliferate rapidly without differentiation or stratification. ROCK inhibition rapidly and conditionally induces indefinite proliferation of keratinocytes. This method has far-reaching applications for basic research, as well as for regenerative and personalized medicine.

  11. Agent Based Modelling Helps in Understanding the Rules by Which Fibroblasts Support Keratinocyte Colony Formation

    PubMed Central

    Sun, Tao; McMinn, Phil; Holcombe, Mike; Smallwood, Rod; MacNeil, Sheila

    2008-01-01

    Background Autologous keratincoytes are routinely expanded using irradiated mouse fibroblasts and bovine serum for clinical use. With growing concerns about the safety of these xenobiotic materials, it is desirable to culture keratinocytes in media without animal derived products. An improved understanding of epithelial/mesenchymal interactions could assist in this. Methodology/Principal Findings A keratincyte/fibroblast o-culture model was developed by extending an agent-based keratinocyte colony formation model to include the response of keratinocytes to both fibroblasts and serum. The model was validated by comparison of the in virtuo and in vitro multicellular behaviour of keratinocytes and fibroblasts in single and co-culture in Greens medium. To test the robustness of the model, several properties of the fibroblasts were changed to investigate their influence on the multicellular morphogenesis of keratinocyes and fibroblasts. The model was then used to generate hypotheses to explore the interactions of both proliferative and growth arrested fibroblasts with keratinocytes. The key predictions arising from the model which were confirmed by in vitro experiments were that 1) the ratio of fibroblasts to keratinocytes would critically influence keratinocyte colony expansion, 2) this ratio needed to be optimum at the beginning of the co-culture, 3) proliferative fibroblasts would be more effective than irradiated cells in expanding keratinocytes and 4) in the presence of an adequate number of fibroblasts, keratinocyte expansion would be independent of serum. Conclusions A closely associated computational and biological approach is a powerful tool for understanding complex biological systems such as the interactions between keratinocytes and fibroblasts. The key outcome of this study is the finding that the early addition of a critical ratio of proliferative fibroblasts can give rapid keratinocyte expansion without the use of irradiated mouse fibroblasts and bovine

  12. Association of CDKN2A/p16INK4A with human head and neck keratinocyte replicative senescence: relationship of dysfunction to immortality and neoplasia.

    PubMed

    Loughran, O; Malliri, A; Owens, D; Gallimore, P H; Stanley, M A; Ozanne, B; Frame, M C; Parkinson, E K

    1996-08-01

    We have previously suggested that a gene mapping to chromosome 9p21 could contribute to replicative senescence and suppress cullular immortality in squamous neoplasia. Two candidate genes, the cyclin D1/cyclindependent kinase inhibitors CDKN2A/p16INK4A (p16) and CDKN2B/p15INK4B (p15) have now been identified in this region and we show here that p16 is upregulated when normal human keratinocytes undergo replicative senescence but not when they undergo differentiation. Furthermore, all of 19 immortal neoplastic keratinocyte head and neck lines, including nine showing loss of heterozygosity (LOH) at 9p21, showed undetectable p16 expression, whereas five of six senscent neoplastic cultures showed normal levels of expression. The retinoblastoma protein (pRb) appeared functional in all the cell lines and cultures examined. The mechanism of p16 inactivation appeared to be transcriptional silencing in 10 of 18 lines and homozygous deletions in the rest. Treatment of two of the immortal cell lines which had transcriptionally silent wild type p16 genes with 5aza-2deoxycytidine resulted in the re-expression of p16, thus implicating DNA methylation as one mechanism of transcriptional silencing in the immortal SCC-HN lines. We observed no cases of p16 point mutation. In contrast, the p15 gene was rarely transcriptionally silent and was not deleted in any of the cell lines which showed p16 deletions. Our results show that p16 dysfunction correlates strongly with keratinocyte immortalisation but less strongly with the stage of tumour progression. P16 dysfunction was not related to the neoplastic state or the length of time spent in vitro. The results also suggest that p16 but not p15 is involved in the keratinocyte replicative senescence programme. However, two neoplastic cell cultures which lacked p16 expression were still mortal, suggesting that the loss of p16 is a necessary but insufficient condition for human keratinocyte immortality.

  13. Serum amyloid A induces interleukin-1β secretion from keratinocytes via the NACHT, LRR and PYD domains-containing protein 3 inflammasome

    PubMed Central

    Yu, N; Liu, S; Yi, X; Zhang, S; Ding, Y

    2015-01-01

    Interleukin (IL)-1β is now emerging as a critical cytokine in the pathogenesis of T helper type 17 (Th17)-mediated skin diseases, including psoriasis. Psoriatic keratinocytes are a major source of IL-1β; however, the mechanisms triggering IL-1β processing remain unknown. Recently, an acute-phase protein serum amyloid A (SAA) has been identified as a danger signal that triggers inflammasome activation and IL-1β secretion. In this study, we detected increased SAA mRNA and protein expression in psoriatic epidermis. In cultured keratinocytes, SAA up-regulated the expression of pro-IL-1β and secretion of mature IL-1β. On the transcriptional level, blocking Toll-like receptor-2 (TLR-2), TLR-4 or nuclear factor kappa B (NF-κB) attenuated SAA-induced expression of IL-1β mRNA. SAA up-regulated caspase-1 and NACHT, LRR and PYD domains-containing protein 3 (NLRP3) expression in keratinocytes. Inhibiting caspase-1 activity and silencing NLRP3 decreased IL-1β secretion, confirming NLRP3 as the SAA-responsive inflammasome on the post-transcriptional level. The mechanism of SAA-triggered NLRP3 activation and subsequent IL-1β secretion was found to involve the generation of reactive oxygen species. Finally, the expression of SAA by keratinocytes was up-regulated by IL-17A. Taken together, our results indicate that keratinocyte-derived SAA triggers a key inflammatory mediator, IL-1β, via NLRP3 inflammasome activation, providing new potential targets for the treatment of this chronic skin disease. PMID:25231464

  14. Modulation of UVB-induced and basal cyclooxygenase-2 (COX-2) expression by apigenin in mouse keratinocytes: role of USF transcription factors.

    PubMed

    Van Dross, Rukiyah T; Hong, Xiaoman; Essengue, Suzanne; Fischer, Susan M; Pelling, Jill C

    2007-04-01

    Apigenin is a bioflavonoid with chemopreventive activity against UV- or chemically-induced mouse skin tumors. To further explore the mechanism of apigenin's chemopreventive activity, we determined whether apigenin inhibited UVB-mediated induction of cyclooxygenase-2 (COX-2) expression in mouse and human keratinocytes. Apigenin suppressed the UVB-induced increase in COX-2 protein and mRNA in mouse and human keratinocyte cell lines. UVB radiation of keratinocytes transfected with a mouse COX-2 promoter/luciferase reporter plasmid resulted in a threefold increase in transcription from the promoter, and apigenin inhibited the UV-induced promoter activity at doses of 5-50 microM. Transient transfections with COX-2 promoter deletion constructs and COX-2 promoter constructs containing mutations in specific enhancer elements indicated that the effects of UVB required intact Ebox and ATF/CRE response elements. Electrophoretic mobility shift assays with supershifting antibodies were used to identify USF-1, USF-2, and CREB as proteins binding to the ATF/CRE-Ebox responsive element of the COX-2 promoter. Keratinocytes co-transfected with the COX-2 luciferase reporter and a USF-2 expression vector, alone or in combination with a USF-1 expression vector, exhibited enhanced promoter activity in both UVB-irradiated and nonirradiated cultures. However, COX-2 promoter activity was inhibited in keratinocytes co-transfected with USF-1 alone. Finally, we present data showing that the suppressive effect of apigenin on COX-2 expression could be reversed by co-expression of USF-1 and USF-2. These results suggest that one pathway by which apigenin inhibits COX-2 expression is through modulation of USF transcriptional activity.

  15. Members of the src and ras oncogene families supplant the epidermal growth factor requirement of BALB/MK-2 keratinocytes and induce distinct alterations in their terminal differentiation program.

    PubMed Central

    Weissman, B; Aaronson, S A

    1985-01-01

    BALB-/MK-2 mouse epidermal keratinocytes required epidermal growth factor for proliferation and terminally differentiated in response to high Ca2+ concentration. Infection with retroviruses containing transforming genes of the src and ras oncogene families led to rapid loss of epidermal growth factor dependence, in some cases, accompanied by alterations in cellular morphology. The virus-altered cells continued to proliferate in the presence of high levels of extracellular calcium but exhibited alterations in normal keratinocyte terminal differentiation that appear to be specific to the particular oncogene. These alterations bore similarities to abnormalities in differentiation observed in naturally occurring squamous epithelial malignancies. Images PMID:2427928

  16. Arsenite suppression of BMP signaling in human keratinocytes

    SciTech Connect

    Phillips, Marjorie A.; Qin, Qin; Hu, Qin; Zhao, Bin; Rice, Robert H.

    2013-06-15

    Arsenic, a human skin carcinogen, suppresses differentiation of cultured keratinocytes. Exploring the mechanism of this suppression revealed that BMP-6 greatly increased levels of mRNA for keratins 1 and 10, two of the earliest differentiation markers expressed, a process prevented by co-treatment with arsenite. BMP also stimulated, and arsenite suppressed, mRNA for FOXN1, an important transcription factor driving early keratinocyte differentiation. Keratin mRNAs increased slowly after BMP-6 addition, suggesting they are indirect transcriptional targets. Inhibition of Notch1 activation blocked BMP induction of keratins 1 and 10, while FOXN1 induction was largely unaffected. Supporting a requirement for Notch1 signaling in keratin induction, BMP increased levels of activated Notch1, which was blocked by arsenite. BMP also greatly decreased active ERK, while co-treatment with arsenite maintained active ERK. Inhibition of ERK signaling mimicked BMP by inducing keratin and FOXN1 mRNAs and by increasing active Notch1, effects blocked by arsenite. Of 6 dual-specificity phosphatases (DUSPs) targeting ERK, two were induced by BMP unless prevented by simultaneous exposure to arsenite and EGF. Knockdown of DUSP2 or DUSP14 using shRNAs greatly reduced FOXN1 and keratins 1 and 10 mRNA levels and their induction by BMP. Knockdown also decreased activated Notch1, keratin 1 and keratin 10 protein levels, both in the presence and absence of BMP. Thus, one of the earliest effects of BMP is induction of DUSPs, which increases FOXN1 transcription factor and activates Notch1, both required for keratin gene expression. Arsenite prevents this cascade by maintaining ERK signaling, at least in part by suppressing DUSP expression. - Highlights: • BMP induces FOXN1 transcription. • BMP induces DUSP2 and DUSP14, suppressing ERK activation. • Arsenite suppresses levels of phosphorylated Smad1/5 and FOXN1 and DUSP mRNA. • These actions rationalize arsenite suppression of keratinocyte

  17. The p53 status of cultured human premalignant oral keratinocytes.

    PubMed Central

    Burns, J. E.; Clark, L. J.; Yeudall, W. A.; Mitchell, R.; Mackenzie, K.; Chang, S. E.; Parkinson, E. K.

    1994-01-01

    Around 60% of oral squamous cell carcinomas (SCCs) have been shown to harbour p53 mutations, and other studies have demonstrated mutant p53 genes in normal and dysplastic squamous epithelium adjacent to these SCCs. In line with these earlier studies we show here that DOK, a keratinocyte cell line derived from a dysplasia, displays elevated levels of p53 protein and harbours a 12 bp in-frame deletion of the p53 gene spanning codons 188-191. In contrast, the coding region of the p53 gene was normal in a series of six benign recurrent laryngeal papillomas and a series of four premalignant oral erythroplakia biopsies and their cell cultures. All but one of these lesions were free of malignancy at the time of biopsy, in contrast to the premalignant lesions studied by previous investigators, but keratinocytes cultured from these lesions all displayed a partially transformed phenotype that was less pronounced than that of DOK. Since three out of four of the erythroplakia patients developed SCC within 1 year of biopsy, these lesions were by definition premalignant. The availability of strains of partially transformed keratinocytes from premalignant erythroplakias which possess normal p53 genes should enable us to test the role of mutant p53 in the progression of erythroplakia to SCC. The premalignant tissues and cultures were also tested for the presence of human papillomavirus (HPV), which is known to inactivate p53 function in some cases. Only the benign papillomas were shown to contain high levels of either HPV 6 or HPV 11 E6 DNA, but not both, and none of the samples contained detectable levels of HPV 16, HPV 18 or HPV 33 E6 DNA or L1 DNA of several other HPV types. There was therefore no evidence to suggest that p53 was being inactivated by a highly oncogenic HPV in these samples. Images Figure 1 Figure 2 Figure 3 PMID:7917902

  18. Regulation of interleukin 1 and its receptor in human keratinocytes

    SciTech Connect

    Blanton, R.A.; McDougall, J.K. ); Kupper, T.S. ); Dower, S. )

    1989-02-01

    Keratinocytes in culture synthesize and respond to interleukin 1 (IL-1). The authors have measured surface IL-1 receptor (IL-1R) on keratinocytes in culture using radiolabeled IL-1 binding assays. Surface IL-1R levels are <2,000 receptors per cell in postconfluent cultures but increase 9- to 20-fold 24 hr after treatment with phorbol 12-myristate 13-acetate (PMA) at 10 ng/ml or after raising the extracellular Ca{sup 2+} concentration to 2 mM. This induction of surface IL-1R can be blocked by the addition of retinoic acid and parallels induction of squamous differentiation markers. These results imply that IL-1R levels may be related to the degree of differentiation of these cells. In parallel studies IL-1 protein levels were determined by bioassay and by Western blotting (immunoblots). All detectable IL-1 protein and essentially all IL-1 activity was cell-associated. Although constitutive levels of IL-1 biological activity and protein are significant in these cultures, IL-1 levels increase when either PMA or retinoic acid alone are added to cultures. IL-1 does not increase when PMA and retinoic acid are added simultaneously to cultures; nor is it induced when extracellular Ca{sup 2+} concentrations are raised to 2 mM. Thus, cell-associated IL-1 levels do not necessarily parallel surface IL-1R levels in these cultures. Taken together, these results demonstrate that IL-1 and surface IL-1R levels are differentially and complexly regulated in keratinocyte cultures. Possible implications of these results in terms of normal and abnormal regulation of proliferation and differentiation are discussed.

  19. Stanniocalcin-1 regulates re-epithelialization in human keratinocytes.

    PubMed

    Yeung, Bonnie H Y; Wong, Chris K C

    2011-01-01

    Stanniocalcin-1 (STC1), a glycoprotein hormone, is believed to be involved in various biological processes such as inflammation, oxidative responses and cell migration. Riding on these emerging evidences, we hypothesized that STC1 may participate in the re-epithelialization during wound healing. Re-epithelialization is a critical step that involves keratinocyte lamellipodia (e-lam) formation, followed by cell migration. In this study, staurosporine (STS) treatment induced human keratinocyte (HaCaT) e-lam formation on fibronectin matrix and migration via the activation of focal adhesion kinase (FAK), the surge of intracellular calcium level [Ca²⁺]i and the inactivation of Akt. In accompanied with these migratory features, a time- and dose-dependent increase in STC1 expression was detected. STC1 gene expression was found not the downstream target of FAK-signaling as illustrated by FAK inhibition using PF573228. The reduction of [Ca²⁺]i by BAPTA/AM blocked the STS-mediated keratinocyte migration and STC1 gene expression. Alternatively the increase of [Ca²⁺]i by ionomycin exerted promotional effect on STS-induced STC1 gene expression. The inhibition of Akt by SH6 and GSK3β by lithium chloride (LiCl) could respectively induce and inhibit the STS-mediated e-lam formation, cell migration and STC1 gene expression. The STS-mediated e-lam formation and cell migration were notably hindered or induced respectively by STC1 knockdown or overexpression. This notion was further supported by the scratched wound assay. Collectively the findings provide the first evidence that STC1 promotes re-epithelialization in wound healing.

  20. Distinct roles for ROCK1 and ROCK2 in the regulation of keratinocyte differentiation.

    PubMed

    Lock, Frances E; Hotchin, Neil A

    2009-12-04

    The human epidermis is comprised of several layers of specialized epithelial cells called keratinocytes. Normal homoeostasis of the epidermis requires that the balance between keratinocyte proliferation and terminal differentiation be tightly regulated. The mammalian serine/threonine kinases (ROCK1 and ROCK2) are well-characterised downstream effectors of the small GTPase RhoA. We have previously demonstrated that the RhoA/ROCK signalling pathway plays an important role in regulation of human keratinocyte proliferation and terminal differentiation. In this paper we addressed the question of which ROCK isoform was involved in regulation of keratinocyte differentiation. We used RNAi to specifically knockdown ROCK1 or ROCK2 expression in cultured human keratinocytes. ROCK1 depletion results in decreased keratinocyte adhesion to fibronectin and an increase in terminal differentiation. Conversely, ROCK2 depletion results in increased keratinocyte adhesion to fibronectin and inhibits terminal differentiation. These data suggest that ROCK1 and ROCK2 play distinct roles in regulating keratinocyte adhesion and terminal differentiation.

  1. Foreskin-isolated keratinocytes provide successful extemporaneous autologous paediatric skin grafts.

    PubMed

    Mcheik, Jiad N; Barrault, Christine; Pedretti, Nathalie; Garnier, Julien; Juchaux, Franck; Levard, Guillaume; Morel, Franck; Lecron, Jean-Claude; Bernard, François-Xavier

    2016-03-01

    Severe burns in children are conventionally treated with split-thickness skin autografts or epidermal sheets. However, neither early complete healing nor quality of epithelialization is satisfactory. An alternative approach is to graft isolated keratinocytes. We evaluated paediatric foreskin and auricular skin as donor sources, autologous keratinocyte transplantation, and compared the graft efficiency to the in vitro capacities of isolated keratinocytes to divide and reconstitute epidermal tissue. Keratinocytes were isolated from surgical samples by enzymatic digestion. Living cell recovery, in vitro proliferation and epidermal reconstruction capacities were evaluated. Differentiation status was analysed, using qRT-PCR and immunolabelling. Eleven children were grafted with foreskin-derived (boys) or auricular (girls) keratinocyte suspensions dripped onto deep severe burns. The aesthetic and functional quality of epithelialization was monitored in a standardized way. Foreskin keratinocyte graft in male children provides for the re-epithelialization of partial deep severe burns and accelerates wound healing, thus allowing successful wound closure, and improves the quality of scars. In accordance, in vitro studies have revealed a high yield of living keratinocyte recovery from foreskin and their potential in terms of regeneration and differentiation. We report a successful method for grafting paediatric males presenting large severe burns through direct spreading of autologous foreskin keratinocytes. This alternative method is easy to implement, improves the quality of skin and minimizes associated donor site morbidity. In vitro studies have highlighted the potential of foreskin tissue for graft applications and could help in tissue selection with the prospect of grafting burns for girls.

  2. Keratinocyte cultures from involved skin in vitiligo patients show an impaired in vitro behaviour.

    PubMed

    Bondanza, Sergio; Maurelli, Riccardo; Paterna, Patrizia; Migliore, Eleonora; Giacomo, Fabio Di; Primavera, Giovanni; Paionni, Emanuel; Dellambra, Elena; Guerra, Liliana

    2007-08-01

    Vitiligo depigmentation is considered a consequence of either melanocyte disappearance or loss of functioning melanocytes in the involved areas. However, it has been reported that keratinocytes in involved vitiligo skin are damaged too. Based on this evidence, we evaluated the in vitro behaviour, in life span cultures, of involved and uninvolved vitiligo keratinocytes and their expression of proliferation, differentiation and senescence markers. An additional purpose was to investigate whether vitiligo keratinocytes from depigmented skin are able to sustain survival and growth of normal melanocytes (when added in co-culture experiments), as normal human