Sample records for keratomileusis interface surfaces

  1. Interface Fluid Syndrome After Laser In Situ Keratomileusis (LASIK) Because of Fuchs Endothelial Dystrophy Reversed by Descemet Membrane Endothelial Keratoplasty (DMEK).

    PubMed

    Luceri, Salvatore; Baksoellah, Zainab; Ilyas, Abbas; Baydoun, Lamis; Melles, Gerrit R J

    2016-12-01

    To describe a case that developed "interface fluid syndrome" after previous laser in situ keratomileusis (LASIK) because of Fuchs endothelial dystrophy (FED), which was reversed by Descemet membrane endothelial keratoplasty (DMEK). A 58-year-old male patient presented with bilateral visual impairment owing to FED and visually significant cataract. Cataract surgery was carried out in both eyes followed by DMEK in his left eye. After cataract surgery, visual acuity did not improve sufficiently because corneal thickness increased and a fine cleft with interface fluid developed between the LASIK-flap and the residual stromal bed. After uneventful DMEK in his left eye, the fluid resolved within a week and visual acuity improved rapidly. This case demonstrates that "interface fluid syndrome" after LASIK caused by concomitant endothelial dysfunction may be reversed by DMEK allowing fast visual recovery.

  2. Myopic keratomileusis by excimer laser on a lathe.

    PubMed

    Ganem, S; Aron-Rosa, D; Gross, M; Rosolen, S

    1994-01-01

    We designed an excimer laser keratomileusis delivery system to increase the regularity of the refractive cut surface and allow greater precision in the level and shape of the ablated zone. A parallel faced corneal disc was produced by microkeratectomy from six human eyes and surgical keratectomy in 12 beagle corneas. A 193-nanometer excimer laser that was used to project an oval beam onto the corneal disc was rotated on a flat surface to ensure overlapping of the ovally ablated areas between pulses. Electron microscopy of eye bank lenticules demonstrated a circular smooth regularly concave ablation zone. Histological examination of nine clear corneas confirmed thinning of the stroma without fibroblastic reaction and no epithelial hypertrophy. Mean preoperative corneal power of 43.15 +/- 2.18 decreased postoperatively to 33.61 +/- 2.34. The new technique of excimer laser keratomileusis has the advantage of a cut surface smoother and the clear zone is devoid of the stepwise concavity and irregularity seen in diaphragm based photoablation delivery systems.

  3. Fine lattice lines on the corneal surface after laser in situ keratomileusis (LASIK).

    PubMed

    Carpel, E F; Carlson, K H; Shannon, S

    2000-03-01

    To present an example of a pattern of lines resembling fine lattice on the corneal surface subsequent to laser in situ keratomileusis (LASIK). This subtle phenomenon may be relatively common and may affect visual outcome. Case report. A 41-year-old year old man with high myopia and best-corrected visual acuity of 20/20 +2 in each eye underwent laser in situ keratomileusis (LASIK). No operative or postoperative complications occurred. No striae were evident on slit-lamp examination with direct illumination and retroillumination at the time of surgery or in the postoperative period. Postoperative uncorrected visual acuity was 20/25 with a best-corrected spectacle correction of 20/25 in both eyes. Fine lines in a lattice pattern were seen only with fluorescein dye in the precorneal tear film as areas of "negative stain" within the LASIK flap. With tear film supplementation, the lines were less evident and visual acuity improved. One year postoperatively, his uncorrected visual acuity was 20/25 in both eyes. The best-corrected spectacle visual acuity was RE: 20/20 -2, LE: 20/25. The fine lines were still present within the flap. A soft contact lens improved visual acuity to 20/20 in both eyes. Although all four puncta were occluded, he had no epiphora. Fine lines in a lattice pattern that may represent folds in the epithelium or Bowman layer may be present within the flap after LASIK and may adversely affect visual acuity. They may be visible as areas of negative stain with fluorescein dye in the precorneal tear film in the absence of any striae visible in the flap. These superficial lines have been seen more in patients with high degrees of correction and in patients with dry eye. If visual acuity is affected, it may be improved with punctal occlusion, tear supplements, or a contact lens.

  4. Complications of femtosecond-assisted laser in-situ keratomileusis flaps.

    PubMed

    Shah, Deepika N; Melki, Samir

    2014-01-01

    Femtosecond-assisted laser in-situ keratomileusis flaps have revolutionized refractive surgery since their introduction. Although these lasers are exceedingly safe, complications still do occur. This review focuses specifically on examining the literature and evidence for flap complications during femtosecond-assisted laser in-situ keratomileusis as well as their management.

  5. Management of the ocular surface and tear film before, during, and after laser in situ keratomileusis.

    PubMed

    Albietz, Julie M; Lenton, Lee M

    2004-01-01

    To identify evidence-based, best practice strategies for managing the ocular surface and tear film before, during, and after laser in situ keratomileusis (LASIK). After a comprehensive review of relevant published literature, evidence-based recommendations for best practice management strategies are presented. Symptoms of ocular irritation and signs of dysfunction of the integrated lacrimal gland/ocular surface functional gland unit are common before and after LASIK. The status of the ocular surface and tear film before LASIK can impact surgical outcomes in terms of potential complications during and after surgery, refractive outcome, optical quality, patient satisfaction, and the severity and duration of dry eye after LASIK. Before LASIK, the health of the ocular surface should be optimized and patients selected appropriately. Dry eye before surgery and female gender are risk factors for developing chronic dry eye after LASIK. Management of the ocular surface during LASIK can minimize ocular surface damage and the risk of adverse outcomes. Long-term management of the tear film and ocular surface after LASIK can reduce the severity and duration of dry eye symptoms and signs. Strategies to manage the integrated ocular surface/lacrimal gland functional unit before, during, and after LASIK can optimize outcomes. As problems with the ocular surface and tear film are relatively common, attention should focus on the use and improvement of evidence-based management strategies.

  6. Peripheral Ulcerative Keratitis following Laser in situ Keratomileusis.

    PubMed

    Burkholder, Bryn M; Kuo, Irene C

    2016-01-01

    We report a case of a patient with a history of glomerulonephropathy, not disclosed prior to laser in situ keratomileusis (LASIK), who developed severe postoperative peripheral ulcerative keratitis (PUK) soon after surgery. Case report. Within a week of surgery, the patient, who had no blepharitis or ocular surface disease, also developed diffuse lamellar keratitis (DLK) that was not contiguous with the PUK. Microbiologic evaluation of the flap interface disclosed no organisms, and no epithelial ingrowth was found. Both PUK and DLK resolved with topical and oral steroid therapy, and the patient's induced refractive error improved over the 12 months following LASIK. Necrotizing keratitis has been described after LASIK surgery in patients with or without autoimmune disease. However, to our knowledge, there has been no case of PUK following LASIK. As shown by our patient's clinical course and the typical association of PUK with systemic conditions, patients with a history of atypical postinfectious sequelae may require additional preoperative counseling, vigilant postoperative monitoring, and possibly additional intervention. Because patients do not always divulge medical details, especially if an extraocular site was involved or illness occurred many years prior, this case demonstrates the importance of performing a diligent history that excludes autoimmune disorders or atypical postinfectious sequelae prior to proceeding with keratorefractive intervention.

  7. [Keratitis after laser in situ keratomileusis (LASIK). A different entity and treatment management].

    PubMed

    Ahmed, Shakil; Ahmed, Hassan Javed; Holm, Lars Morten

    2014-12-15

    Keratitis after laser in situ keratomileusis (LASIK) is rare and challenging as patients may present with mild symptoms and initial management differs significantly. Post-LASIK keratitis is usually due to gram-positive bacteria or opportunistic/atypical microorganisms located beneath the corneal flap. Due to relative protective interface location it is necessary to lift the corneal flap for cultures and antibiotic irrigation. The case report demonstrates that post-LASIK keratitis requires prompt referral to ophthalmology department as correct initial management is pivotal for good visual outcome.

  8. Use of a hydrogel sealant in epithelial ingrowth removal after laser in situ keratomileusis.

    PubMed

    Ramsook, Sandhya S; Hersh, Peter S

    2015-12-01

    We describe 2 cases in which clinically significant epithelial ingrowth was removed by debridement and followed by the use of a hydrogel sealant (Resure) to seal the flap edge. In both cases, the epithelial ingrowth was seen after otherwise uneventful laser in situ keratomileusis retreatment. The visual outcomes were good with no recrudescence of interface epithelium. Neither author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  9. Longitudinal comparison of outcomes after sub-Bowman keratomileusis and laser in situ keratomileusis: randomized, double-masked study.

    PubMed

    Wong, Rachel Chung Yin; Yu, Marco; Chan, Tommy C Y; Chong, Kelvin K L; Jhanji, Vishal

    2015-05-01

    To compare the outcomes of sub-Bowman keratomileusis (100-μm flap) and laser in situ keratomileusis (LASIK) (120-μm flap) using 150-kHz femtosecond laser. Randomized, double-masked, contralateral clinical trial. One hundred patients (200 eyes) with myopia or myopic astigmatism were included. Postoperative examinations were performed at week 1 and months 1, 3, 6, and 12. Main outcome measures included postoperative uncorrected (UCVA) and best-corrected distance visual acuity (BCVA); manifest refraction spherical equivalent; efficacy and safety indices; corneal thickness; and complications. The mean age of patients was 33.9 ± 7.9 years. Overall, the preoperative UCVA, BCVA, and manifest refraction spherical equivalent were 1.349 ± 0.332, -0.022 ± 0.033, and -5.81 ± 1.61 diopters, respectively. No significant difference was observed in preoperative (P ≥ .226) or intraoperative parameters (P ≥ .452) between both groups, except residual stromal thickness (P < .001). The UCVA, manifest refraction spherical equivalent, and central corneal thickness stabilized by 1 week, while the thinnest corneal thickness stabilized by 3 months postoperatively. There was no significant difference between both groups for any parameter during all follow-up visits (P ≥ .132) except the 3-month safety index, which was better in the sub-Bowman keratomileusis group (P = .007). Soft opaque bubble layer was noted intraoperatively in 12 cases (7, 100-μm group; 5, 120-μm group; P = .577). No postoperative complications were observed. Our study did not find any differences in the visual and refractive outcomes between femtosecond-assisted sub-Bowman keratomileusis and LASIK. Both surgeries resulted in quick visual recovery as early as 1 week postoperatively. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Peripheral Ulcerative Keratitis following Laser in situ Keratomileusis

    PubMed Central

    Burkholder, Bryn M.; Kuo, Irene C.

    2016-01-01

    Purpose We report a case of a patient with a history of glomerulonephropathy, not disclosed prior to laser in situ keratomileusis (LASIK), who developed severe postoperative peripheral ulcerative keratitis (PUK) soon after surgery. Method Case report. Results Within a week of surgery, the patient, who had no blepharitis or ocular surface disease, also developed diffuse lamellar keratitis (DLK) that was not contiguous with the PUK. Microbiologic evaluation of the flap interface disclosed no organisms, and no epithelial ingrowth was found. Both PUK and DLK resolved with topical and oral steroid therapy, and the patient's induced refractive error improved over the 12 months following LASIK. Conclusions Necrotizing keratitis has been described after LASIK surgery in patients with or without autoimmune disease. However, to our knowledge, there has been no case of PUK following LASIK. As shown by our patient's clinical course and the typical association of PUK with systemic conditions, patients with a history of atypical postinfectious sequelae may require additional preoperative counseling, vigilant postoperative monitoring, and possibly additional intervention. Because patients do not always divulge medical details, especially if an extraocular site was involved or illness occurred many years prior, this case demonstrates the importance of performing a diligent history that excludes autoimmune disorders or atypical postinfectious sequelae prior to proceeding with keratorefractive intervention. PMID:26889153

  11. Ablation depth and its effects on corneal biomechanical changes in laser in situ keratomileusis and epipolis laser in situ keratomileusis.

    PubMed

    Zhang, Lin; Wang, Yan; Yang, Xiaoyan

    2014-04-01

    To assess the corneal biomechanical parameters prior to and following laser in situ keratomileusis (LASIK) and epipolis laser in situ keratomileusis (epi-LASIK) and evaluate the probable correlative factors. Corneal hysteresis (CH), corneal resistance factor (CRF) and other biomechanical metrics were measured and evaluated with an ocular response analyzer preoperatively and 1 month postoperatively. Compared with preoperative values, CH and CRF decreased significantly after surgery in both groups (P = 0.000). The LASIK group exhibited a positive correlation between ablation depth (AD) and ∆CH/∆CRF with a strong r value (r = 0.543, P = 0.000; r = 0.574, P = 0.000). In the epi-LASIK group, however, the correlation was much weaker (r = -0.090, P = 0.682; r = 0.093, P = 0.673), although there were no significant differences between LASIK and epi-LASIK groups in postoperative CH (P = 0.730) and CRF (P = 0.736), and in the changes between CH (P = 0.539) and CRF (P = 0.881). Corneal biomechanical changes correlated with AD in LASIK but not in epi-LASIK, and it appeared that patients with identical demographics and similar attempted corrections are more likely to face a greater danger when undergoing LASIK than epi-LASIK. Therefore, the surface ablation procedure was recommended instead of lamellar ablation especially for correcting high myopia from a biomechanical viewpoint.

  12. All-femtosecond laser-assisted in situ keratomileusis

    NASA Astrophysics Data System (ADS)

    Gabryte, Egle; Danieliene, Egle; Vaiceliunaite, Agne; Ruksenas, Osvaldas; Vengris, Mikas; Danielius, Romualdas

    2013-03-01

    We present a femtosecond solid-state Yb:KGW laser system capable of performing the complete laser-assisted in situ keratomileusis (LASIK) ophthalmic procedure. The fundamental infrared radiation (IR) is used to create the corneal flap, and subsequently the corneal stromal ablation is performed using the ultraviolet (UV) pulses of the fifth harmonic. The heating of cornea, ablated surface quality, and healing outcomes of the surgeries performed using the femtosecond laser system are investigated by both ex vivo and in vivo experiments and compared to the results of conventional clinical ArF excimer laser application. The results of this research indicate the feasibility of clinical application of femtosecond UV lasers for LASIK procedure.

  13. Effects of silicone hydrogel contact lenses on ocular surface after Sub-Bowman's Keratomileusis.

    PubMed

    Gao, Shaohui; Wu, Junshu; Li, Lili; Wang, Yong; Zhong, Xingwu

    2013-11-01

    To evaluate the efficacy of silicone hydrogel contact lenses on ocular surface after Sub-Bowman Keratomileusis (SBK). Forty-six patients suffered from myopia underwent a bilateral SBK. Post-operatively, one eye of each patient wore a PureVision contact lens for 24 h as a treated eye and the contralateral eye was as a blank control. Afterwards, corneal fluorescein (FL) staining, tear break-up time (TBUT), schirmer I test (SIT), central corneal thickness (CCT), ocular surface disease index (OSDI), corneal hysteresis (CH), corneal resistance factor (CRF) and corneal flap complications were assessed 1 d (except for CH and CRF), 1 week, 1 month and 3 months postoperatively. Following SBK, in contrast to the control, corneal fluorescein staining of treated eyes were significantly reduced and tear break-up time of treated eyes were significantly improved at 1 d and 1 week after SBK. However, Schirmer I test of treated and control eyes were not different after SBK. Central corneal thickness of treated eyes were significantly thinner than that of control at 1 d after SBK, however, there were no differences at other time points. Ocular surface disease index of treated eyes were obviously alleviated more than that of control at 1 d after SBK, but no differences were found at other visits. Moreover, Corneal hysteresis and corneal resistance factor of treated and un-treated eyes were not different after surgery. And also the rate of corneal flap complications were not different between treated and control eyes after SBK. Silicone hydrogel contact lenses played a positive role in accelerating corneal epithelial healing, enhancing tear film stability and reducing discomfort of patients in the early stage after SBK.

  14. Recent advances in laser in situ keratomileusis-associated dry eye.

    PubMed

    Xie, Wenjia

    2016-03-01

    Dry eye is the most common complication after laser in situ keratomileusis (LASIK). The major cause of LASIK-associated dry eye is corneal nerve damage. Early identification and treatment of post-operative dry eye are essential to prevent further ocular surface damage. This article reviews the recent studies of LASIK-associated dry eye, including clinical features, aetiology, risk factors, evaluations and treatment. The applications of novel technologies in LASIK-associated dry eye evaluation like anterior segment spectral-domain optical coherence tomography (SD-OCT) and corneal confocal microscopy are also introduced in this review. © 2016 Optometry Australia.

  15. Activation of Cytomegalovirus corneal endotheliitis following laser in situ keratomileusis.

    PubMed

    Tan, Tien-En; Cheung, Chui Ming Gemmy; Mehta, Jodhbir S

    2016-11-29

    A case of Cytomegalovirus (CMV) corneal endotheliitis following laser in-situ keratomileusis (LASIK) is presented. A 32-year-old man presented 3 weeks after uncomplicated myopic LASIK with unilateral LASIK flap oedema, interface fluid accumulation, keratic precipitates, anterior uveitis and raised intraocular pressure. Despite treatment with topical corticosteroids, he had 3 further recurrent episodes. Specular microscopy showed decreased endothelial cell density and aqueous humour. Polymerase chain reaction (PCR) testing was positive for CMV DNA. He was treated with topical ganciclovir and ketorolac, and the inflammation and oedema resolved. Repeat aqueous humour PCR testing was negative for CMV DNA, and he remained well at last follow-up (3 months after stopping all medications). CMV corneal endotheliitis can be reactivated after LASIK, and CMV DNA PCR of aqueous humour samples can help in definitive diagnosis. Early recognition and treatment of this condition is important to prevent permanent endothelial cell loss and corneal decompensation. 2016 BMJ Publishing Group Ltd.

  16. Surface conservation laws at microscopically diffuse interfaces.

    PubMed

    Chu, Kevin T; Bazant, Martin Z

    2007-11-01

    In studies of interfaces with dynamic chemical composition, bulk and interfacial quantities are often coupled via surface conservation laws of excess surface quantities. While this approach is easily justified for microscopically sharp interfaces, its applicability in the context of microscopically diffuse interfaces is less theoretically well-established. Furthermore, surface conservation laws (and interfacial models in general) are often derived phenomenologically rather than systematically. In this article, we first provide a mathematically rigorous justification for surface conservation laws at diffuse interfaces based on an asymptotic analysis of transport processes in the boundary layer and derive general formulae for the surface and normal fluxes that appear in surface conservation laws. Next, we use nonequilibrium thermodynamics to formulate surface conservation laws in terms of chemical potentials and provide a method for systematically deriving the structure of the interfacial layer. Finally, we derive surface conservation laws for a few examples from diffusive and electrochemical transport.

  17. Surface tension and long range corrections of cylindrical interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourasseau, E.; Malfreyt, P.; Ghoufi, A., E-mail: aziz.ghoufi@univ-rennes1.fr

    2015-12-21

    The calculation of the surface tension of curved interfaces has been deeply investigated from molecular simulation during this last past decade. Recently, the thermodynamic Test-Area (TA) approach has been extended to the calculation of surface tension of curved interfaces. In the case of the cylindrical vapour-liquid interfaces of water and Lennard-Jones fluids, it was shown that the surface tension was independent of the curvature of the interface. In addition, the surface tension of the cylindrical interface is higher than that of the planar interface. Molecular simulations of cylindrical interfaces have been so far performed (i) by using a shifted potential,more » (ii) by means of large cutoff without periodic boundary conditions, or (iii) by ignoring the long range corrections to the surface tension due to the difficulty to estimate them. Indeed, unlike the planar interfaces there are no available operational expressions to consider the tail corrections to the surface tension of cylindrical interfaces. We propose here to develop the long range corrections of the surface tension for cylindrical interfaces by using the non-exponential TA (TA2) method. We also extend the formulation of the Mecke-Winkelmann corrections initially developed for planar surfaces to cylindrical interfaces. We complete this study by the calculation of the surface tension of cylindrical surfaces of liquid tin and copper using the embedded atom model potentials.« less

  18. Increased preference of surface ablation over laser in situ keratomileusis between 2008–2011 is correlated to risk of ecatasia

    PubMed Central

    Moisseiev, Elad; Sela, Tzahi; Minkev, Liza; Varssano, David

    2013-01-01

    Purpose To evaluate the trends in corneal refractive procedure selection for the correction of myopia, focusing on the relative proportions of laser in situ keratomileusis (LASIK) and surface ablation procedures. Methods Only eyes that underwent LASIK or surface ablation for the correction of myopia between 2008–2011 were included in this retrospective study. Additional recorded parameters included patient age, preoperative manifest refraction, corneal thickness, and calculated residual corneal bed thickness. A risk score was given to each eye, based on these parameters, according to the Ectasia Risk Factor Score System (ERFSS), without the preoperative corneal topography. Results This study included 16,163 eyes, of which 38.4% underwent LASIK and 61.6% underwent surface ablation. The risk score correlated with procedure selection, with LASIK being preferred in eyes with a score of 0 and surface ablation in eyes with a score of 2 or higher. When controlling for age, preoperative manifest refraction, corneal thickness, and all parameters, the relative proportion of surface ablation compared with LASIK was found to have grown significantly during the study period. Conclusions Our results indicate that with time, surface ablation tended to be performed more often than LASIK for the correction of myopia in our cohort. Increased awareness of risk factors and preoperative risk assessment tools, such as the ERFSS, have shifted the current practice of refractive surgery from LASIK towards surface ablation despite the former’s advantages, especially in cases in which the risk for ectasia is more than minimal (risk score 2 and higher). PMID:23345963

  19. Epithelial ingrowth following laser in situ keratomileusis (LASIK): prevalence, risk factors, management and visual outcomes

    PubMed Central

    Srinivasan, Sathish; Danjoux, Jean-Pierre

    2018-01-01

    The number of laser in situ keratomileusis (LASIK) procedures is continuing to rise. Since its first application for correcting simple refractive errors over 25 years ago, the role of LASIK has extended to treat other conditions, including postkeratoplasty astigmatism/ametropia, postcataract surgery refractive error and presbyopia, among others. The long-term effectiveness, predictability and safety have been well established by many large studies. However, due to the creation of a potential interface between the flap and the underlying stroma, interface complications such as infectious keratitis, diffuse lamellar keratitis and epithelial ingrowth may occur. Post-LASIK epithelial ingrowth (PLEI) is an uncommon complication that usually arises during the early postoperative period. The reported incidence of PLEI ranged from 0%–3.9% in primary treatment to 10%–20% in retreatment cases. It can cause a wide spectrum of clinical presentations, ranging from asymptomatic interface changes to severe visual impairment and flap melt requiring keratoplasty. PLEI can usually be treated with mechanical debridement of the affected interface; however, additional interventions, such as alcohol, mitomycin C, fibrin glue, ocular hydrogel sealant, neodymium:yttriumaluminum garnet laser and amniotic membrane graft, may be required for recurrent or refractory cases. The aims of this review are to determine the prevalence and risk factors of PLEI; to describe its pathogenesis and clinical features and to summarise the therapeutic armamentarium and the visual outcome of PLEI. PMID:29657982

  20. Epithelial ingrowth following laser in situ keratomileusis (LASIK): prevalence, risk factors, management and visual outcomes.

    PubMed

    Ting, Darren Shu Jeng; Srinivasan, Sathish; Danjoux, Jean-Pierre

    2018-01-01

    The number of laser in situ keratomileusis (LASIK) procedures is continuing to rise. Since its first application for correcting simple refractive errors over 25 years ago, the role of LASIK has extended to treat other conditions, including postkeratoplasty astigmatism/ametropia, postcataract surgery refractive error and presbyopia, among others. The long-term effectiveness, predictability and safety have been well established by many large studies. However, due to the creation of a potential interface between the flap and the underlying stroma, interface complications such as infectious keratitis, diffuse lamellar keratitis and epithelial ingrowth may occur. Post-LASIK epithelial ingrowth (PLEI) is an uncommon complication that usually arises during the early postoperative period. The reported incidence of PLEI ranged from 0%-3.9% in primary treatment to 10%-20% in retreatment cases. It can cause a wide spectrum of clinical presentations, ranging from asymptomatic interface changes to severe visual impairment and flap melt requiring keratoplasty. PLEI can usually be treated with mechanical debridement of the affected interface; however, additional interventions, such as alcohol, mitomycin C, fibrin glue, ocular hydrogel sealant, neodymium:yttriumaluminum garnet laser and amniotic membrane graft, may be required for recurrent or refractory cases. The aims of this review are to determine the prevalence and risk factors of PLEI; to describe its pathogenesis and clinical features and to summarise the therapeutic armamentarium and the visual outcome of PLEI.

  1. Photonic surface waves on metamaterial interfaces

    NASA Astrophysics Data System (ADS)

    Takayama, O.; Bogdanov, A. A.; Lavrinenko, A. V.

    2017-11-01

    A surface wave (SW) in optics is a light wave, which is supported at an interface of two dissimilar media and propagates along the interface with its field amplitude exponentially decaying away from the boundary. Research on surface waves has been flourishing in the last few decades due to their unique properties of surface sensitivity and field localization. These features have resulted in applications in nano-guiding, sensing, light-trapping and imaging based on near-field techniques, contributing to the establishment of nanophotonics as a field of research. Up to now, a wide variety of surface waves has been investigated in numerous material and structure settings. This article reviews the recent progress and development in the physics of SWs localized at metamaterial interfaces, as well as bulk media in order to provide broader perspectives on optical surface waves in general. For each type of surface wave, we discuss the material and structural platforms. We mainly focus on experimental realizations in the visible and near-infrared wavelength ranges. We also address existing and potential application of SWs in chemical and biological sensing, and experimental excitation and characterization methods.

  2. Photonics surface waves on metamaterials interfaces.

    PubMed

    Takayama, Osamu; Bogdanov, Andrey; Lavrinenko, Andrei V

    2017-09-12

    A surface wave (SW) in optics is a light wave, which is supported at an interface of two dissimilar media and propagates along the interface with its field amplitude exponentially decaying away from the boundary. The research on surface waves has been flourishing in last few decades thanks to their unique properties of surface sensitivity and field localization. These features have resulted in applications in nano-guiding, sensing, light-trapping and imaging based on the near-field techniques, contributing to the establishment of the nanophotonics as a field of research. Up to present, a wide variety of surface waves has been investigated in numerous material and structure settings. This paper reviews the recent progress and development in the physics of SWs localized at metamaterial interfaces, as well as bulk media in order to provide broader perspectives on optical surface waves in general. For each type of the surface waves, we discuss material and structural platforms. We mainly focus on experimental realizations in the visible and near-infrared wavelength ranges. We also address existing and potential application of SWs in chemical and biological sensing, and experimental excitation and characterization methods. © 2017 IOP Publishing Ltd.

  3. Femtosecond laser-assisted sub-Bowman keratomileusis versus laser-assisted subepithelial keratomileusis to correct myopic astigmatism.

    PubMed

    Gros-Otero, Juan; Garcia-Gonzalez, Montserrat; Teus, Miguel A; Iglesias-Iglesias, MariLuz; Gimenez-Vallejo, Carlos

    To compare femtosecond laser-assisted sub-Bowman keratomileusis (FSBK) versus laser-assisted subepithelial keratomileusis (LASEK) to correct moderate to high myopic astigmatism. Retrospective, nonrandomized, interventional, comparative case series. A total of eight hundred and fifty-two eyes with myopic astigmatism of -1.5 diopters (D) or higher were included in the study. We compared 427 eyes treated with FSBK versus 425 eyes treated with LASEK with or without mitomycin C. Visual and refractive results were evaluated 1 day, 1 week, 3 and 6 months postoperatively. Six months postoperatively, the residual spherical defect was slightly but significantly higher in the LASEK group (+0.15±0.62D) than in the FSBK group (+0.09±0.35D) (P=0.05). The postoperative residual astigmatism was also slightly but significantly higher in the LASEK group (-0.38±0.52D) than in the FSBK group (-0.26±0.45D) (P=0.0005). No significant differences were found in the efficacy (0.98±0.17 versus 0.98±0.36, P=0.6) and safety indexes (1.04±0.16 versus 1.05±0.37, P=0.1) between FSBK and LASEK. The enhancement rate was significantly higher in the FSBK group (22.6%) than in the LASEK group (15.5%) (P=0.01). Both FSBK and LASEK are safe and effective procedures to correct moderate to high myopic astigmatism. Slightly better visual and refractive results were observed in FSBK-treated eyes in a 6-month follow-up. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  4. Laser in situ keratomileusis in 2012: a review.

    PubMed

    Sutton, Gerard; Lawless, Michael; Hodge, Christopher

    2014-01-01

    Laser in situ keratomileusis (LASIK) is a safe and effective treatment for refractive error. A combination of technological advances and increasing surgeon experience has served to further refine refractive outcomes and reduce complication rates. In this article, we review LASIK as it stands in late 2012: the procedure, indications, technology, complications and refractive outcomes. © 2013 The Authors. Clinical and Experimental Optometry © 2013 Optometrists Association Australia.

  5. Enhanced perfume surface delivery to interfaces using surfactant surface multilayer structures.

    PubMed

    Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig

    2016-01-01

    Enhanced surface delivery and retention of perfumes at interfaces are the keys to their more effective and efficient deployment in a wide range of home and personal care related formulations. It has been previously demonstrated that the addition of multivalent counterions, notably Ca(2+), induces multilayer adsorption at the air-water interface for the anionic surfactant, sodium dodecyl-6-benzenesulfonate, LAS-6. Neutron reflectivity, NR, measurements are reported here which demonstrate that such surfactant surface multilayer structures are a potentially promising vehicle for enhanced delivery of perfumes to interfaces. The data show that the incorporation of the model perfumes, phenylethanol, PE, and linalool, LL, into the surface multilayer structure formed by LAS-6/Ca(2+) results in the surface structures being retained up to relatively high perfume mole fractions. Furthermore the amount of perfume at the surface is enhanced by at least an order of magnitude, compared to that co-adsorbed with a surfactant monolayer. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Femtosecond laser in laser in situ keratomileusis

    PubMed Central

    Salomão, Marcella Q.; Wilson, Steven E.

    2014-01-01

    Flap creation is a critical step in laser in situ keratomileusis (LASIK). Efforts to improve the safety and predictability of the lamellar incision have fostered the development of femtosecond lasers. Several advantages of the femtosecond laser over mechanical microkeratomes have been reported in LASIK surgery. In this article, we review common considerations in management and complications of this step in femtosecond laser–LASIK and concentrate primarily on the IntraLase laser because most published studies relate to this instrument. PMID:20494777

  7. Corneal scarring from laser in situ keratomileusis after epikeratoplasty: Clinical and histopathologic analysis

    PubMed Central

    Khandelwal, Sumitra S.; Randleman, J. Bradley; Grossniklaus, Hans E.

    2015-01-01

    A 47-year-old woman required penetrating keratoplasty in the right eye after developing delayed visually significant corneal scarring bilaterally after laser in situ keratomileusis (LASIK) in 1997 following epikeratoplasty in 1987. Spectral domain ocular coherence tomography of the left cornea showed a 100 μm lenticule with a LASIK flap posterior to the host Bowman layer at 250 μm. Histopathology and electron microscopy of the right corneal button showed a 120 μm lenticule with a LASIK flap within the lenticule at 100 μm. Clinically significant scarring was present within the LASIK flap interface, within the lenticule stroma, and within the area of the underlying host Bowman layer. There were keratocytes at the junction between the LASIK flap and lenticule stromal bed. Although epikeratoplasty is no longer practiced, post-epikeratoplasty patients may present for refractive surgical options and LASIK carries significant risks for corneal scarring in these individuals, especially when using flap-creating devices that may create thin LASIK flaps. PMID:23506924

  8. Facet‐Engineered Surface and Interface Design of Photocatalytic Materials

    PubMed Central

    Wang, Lili; Li, Zhengquan

    2016-01-01

    The facet‐engineered surface and interface design for photocatalytic materials has been proven as a versatile approach to enhance their photocatalytic performance. This review article encompasses some recent advances in the facet engineering that has been performed to control the surface of mono‐component semiconductor systems and to design the surface and interface structures of multi‐component heterostructures toward photocatalytic applications. The review begins with some key points which should receive attention in the facet engineering on photocatalytic materials. We then discuss the synthetic approaches to achieve the facet control associated with the surface and interface design. In the following section, the facet‐engineered surface design on mono‐component photocatalytic materials is introduced, which forms a basis for the discussion on more complex systems. Subsequently, we elucidate the facet‐engineered surface and interface design of multi‐component photocatalytic materials. Finally, the existing challenges and future prospects are discussed. PMID:28105398

  9. Posterior corneal surface differences between non-laser in situ keratomileusis (LASIK) and 10-year post-LASIK myopic eyes.

    PubMed

    Dai, Ma-Li; Wang, Qin-Mei; Lin, Zu-Shun; Yu, Ye; Huang, Jin-Hai; Savini, Giacomo; Zhang, Jia; Wang, Ling; Xu, Chen-Chen

    2018-03-01

    To evaluate the posterior corneal surface differences between non-laser in situ keratomileusis (LASIK) and 10-year post-LASIK myopic eyes. The study included 130 eyes from 65 patients, who were treated with myopic LASIK 10 years ago. In addition, 130 eyes from 65 unoperated myopic patients of matching present age and preoperative refraction were divided into control group. Data on the posterior corneal surface and anterior chamber were obtained from Pentacam software and compared between the groups. Postoperative visual acuity (VA) and refractive error were also analysed. The mean preoperative spherical equivalent (SE) was -6.99 ± 1.78 dioptre (D) in the LASIK group. Ten years after surgery, the mean SE was -0.45 ± 1.22 D, the efficacy index was 0.98, and the safety index was 1.01. The posterior corneal elevations of the LASIK group at 2 mm corneal diameter were significantly lower than those of the control group. However, posterior corneal elevations at 6 mm corneal diameter were higher in the LASIK group than the controls (p < 0.01 for all). The mean Q-values of posterior corneal surface demonstrated significant positive direction compared to that of control eyes at 6 and 7 mm corneal diameters (p < 0.05 for both). At the thinnest point of the cornea, the anterior chamber depths were shallower in the LASIK group than in controls. Meanwhile, the anterior chamber volumes (ACV) were smaller in the LASIK group than in the control group. Our results demonstrated that the posterior corneal surface tends to show signs of central flattening and peripheral steepening 10 years after myopic LASIK surgery compared to that of non-operated myopic eyes. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  10. Incidence of corneal infections after laser in situ keratomileusis and surface ablation when moxifloxacin and tobramycin are used as postoperative treatment.

    PubMed

    Ortega-Usobiaga, Julio; Llovet-Osuna, Fernando; Djodeyre, Mohammad Reza; Llovet-Rausell, Andrea; Beltran, Jaime; Baviera, Julio

    2015-06-01

    To assess the incidence, culture results, and visual outcomes of infectious keratitis after laser in situ keratomileusis (LASIK) and surface ablation when topical moxifloxacin was added to postoperative prophylaxis with tobramycin. Clínica Baviera, Instituto Oftalmológico Europeo, Bilbao, Spain. Retrospective case series review. The medical records of 55 255 patients (108 014 eyes) who had LASIK and surface ablation were reviewed to identify cases of infectious keratitis. The incidence, risk factors, clinical course, days to diagnosis, treatment, and final visual outcomes were recorded. These data were compared with previously published data of 221 437 eyes that received postoperative tobramycin alone. Post-LASIK infectious keratitis was diagnosed in 10 eyes (9 patients) and post-surface ablation infectious keratitis in 11 eyes (10 patients). The onset of infection was early in 40.00% of cases after LASIK and in 36.36% after surface ablation. Cultures were positive in 2 cases after surface ablation. Immediate flap lifting and irrigation with antibiotics were performed in all eyes after LASIK. The final corrected distance visual acuity was 20/20 or better in 7 cases after LASIK (70.00%) and 7 cases after surface ablation (63.64%) and 20/40 or better in all cases after LASIK or surface ablation. The incidence of infectious keratitis decreased from 0.025% to 0.011% (P < .001) per procedure after LASIK and from 0.200% to 0.066% (P < .001) after surface ablation. Infectious keratitis was less frequent after LASIK than after surface ablation. The frequency of infection, mainly early-onset infection, was lower when the postoperative treatment was tobramycin and moxifloxacin rather than tobramycin alone. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  11. Dry eye after laser in-situ keratomileusis.

    PubMed

    Raoof, Duna; Pineda, Roberto

    2014-01-01

    Laser-assisted in-situ keratomileusis (LASIK) is one of the most commonly performed refractive procedures with excellent visual outcomes. Dry eye syndrome is one of the most frequently seen complications after LASIK, with most patients developing at least some mild dry eye symptoms postoperatively. To achieve improved visual outcomes and greater patient satisfaction, it is essential to identify patients prone to dry eyes preoperatively, and initiate treatment early in the course. Enhanced understanding of the pathophysiology of post-LASIK dry eye will help advance our approach to its management.

  12. Manipulating Ferroelectrics through Changes in Surface and Interface Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balke, Nina; Ramesh, Ramamoorthy; Yu, Pu

    Ferroelectric materials are used in many applications of modern technologies including information storage, transducers, sensors, tunable capacitors, and other novel device concepts. In many of these applications, the ferroelectric properties, such as switching voltages, piezoelectric constants, or stability of nanodomains, are crucial. For any application, even for material characterization, the material itself needs to be interfaced with electrodes. On the basis of the structural, chemical, and electronic properties of the interfaces, the measured material properties can be determined by the interface. This is also true for surfaces. However, the importance of interfaces and surfaces and their effect on experiments aremore » often neglected, which results in many dramatically different experimental results for nominally identical samples. Therefore, it is crucial to understand the role of the interface and surface properties on internal bias fields and the domain switching process. Here, the nanoscale ferroelectric switching process and the stability of nanodomains for Pb(Zr,Ti)O 3 thin films are investigated by using scanning probe microscopy. Interface and surface properties are modulated through the selection/redesign of electrode materials as well as tuning the surface-near oxygen vacancies, which both can result in changes of the electric fields acting across the sample, and consequently this controls the measured ferroelectric and domain retention properties. By understanding the role of surfaces and interfaces, ferroelectric properties can be tuned to eliminate the problem of asymmetric domain stability by combining the effects of different electrode materials. Lastly, this study forms an important step toward integrating ferroelectric materials in electronic devices.« less

  13. Manipulating Ferroelectrics through Changes in Surface and Interface Properties

    DOE PAGES

    Balke, Nina; Ramesh, Ramamoorthy; Yu, Pu

    2017-10-23

    Ferroelectric materials are used in many applications of modern technologies including information storage, transducers, sensors, tunable capacitors, and other novel device concepts. In many of these applications, the ferroelectric properties, such as switching voltages, piezoelectric constants, or stability of nanodomains, are crucial. For any application, even for material characterization, the material itself needs to be interfaced with electrodes. On the basis of the structural, chemical, and electronic properties of the interfaces, the measured material properties can be determined by the interface. This is also true for surfaces. However, the importance of interfaces and surfaces and their effect on experiments aremore » often neglected, which results in many dramatically different experimental results for nominally identical samples. Therefore, it is crucial to understand the role of the interface and surface properties on internal bias fields and the domain switching process. Here, the nanoscale ferroelectric switching process and the stability of nanodomains for Pb(Zr,Ti)O 3 thin films are investigated by using scanning probe microscopy. Interface and surface properties are modulated through the selection/redesign of electrode materials as well as tuning the surface-near oxygen vacancies, which both can result in changes of the electric fields acting across the sample, and consequently this controls the measured ferroelectric and domain retention properties. By understanding the role of surfaces and interfaces, ferroelectric properties can be tuned to eliminate the problem of asymmetric domain stability by combining the effects of different electrode materials. Lastly, this study forms an important step toward integrating ferroelectric materials in electronic devices.« less

  14. High Speed Surface Thermocouples Interface to Wireless Transmitters

    DTIC Science & Technology

    2017-03-15

    Government and/or Private Sector Use Being able to measure high-speed surface temperatures in hostile environments where wireless transmission of the data...09/16/2016 See Item 16 Draft Reg Repro 16. REMARKS Eric Gingrich, COR I Item 0: High Speed Surface Thermocouples Interface to Wireless ...Speed Surface Thermocouples Interface to Wireless Transmitters W56HZV-16-C-0149 Sb. GRANT NUMBER Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd. PROJECT

  15. One year follow-up of contrast sensitivity following conventional laser in situ keratomileusis and laser epithelial keratomileusis.

    PubMed

    Townley, Deirdre; Kirwan, Caitriona; O'Keefe, Michael

    2012-02-01

    To determine the effect of conventional laser in situ keratomileusis (LASIK) and laser epithelial keratomileusis (LASEK) for myopia on contrast sensitivity (CS) using the Pelli-Robson and Vector Vision CSV-1000E CS tests. A prospective, comparative study was conducted on 36 eyes of 36 patients with myopia undergoing LASIK (18 eyes) and LASEK (18 eyes). Surgery was performed using the Technolas 217z laser (Bausch & Lomb). CS was recorded preoperatively and at 3, 6 and 12 months postoperatively. No statistically significant difference was found in LogMAR uncorrected visual acuity post-LASIK (-0.02 ± 0.16) and LASEK (-0.04 ± 0.14). Using the Pelli-Robson, CS was significantly lower in the LASIK group 3 and 6 months postoperatively. No significant postoperative reduction in CS was observed in either treatment group. Using the CSV-1000E test, CS was significantly reduced post-LASIK at 3 (p = 0.05) and 6 (p = 0.05) cycles/degree under photopic conditions. No significant postoperative change occurred in the LASEK group under photopic or scotopic conditions. There was no significant difference in postoperative CS between the LASIK and LASEK groups at 3, 6, 12 or 18 cycles/degree using the CSV-1000E test. One year postoperatively, there was no difference in CS between both treatment groups using the Pelli-Robson and CSV-1000E tests. CS was reduced postoperatively in the LASIK group at the lower spatial frequencies under photopic conditions. No postoperative change was detected in CS following LASIK or LASEK using the Pelli-Robson test. © 2010 The Authors. Journal compilation © 2010 Acta Ophthalmol.

  16. Surface and interface modification science and technology.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.-H.

    1999-07-19

    Surface modification of solids is of scientific and technological interest due to its significant benefits in a wide variety of applications. Various coatings applications such as corrosion protection and electrical insulators and conductors are required for proper engineering design based on geometrical relationships between interfaces and on thermodynamic/kinetic considerations for the development of surface modifications. This paper will explore three basic examples: the proton conductor BaCeO{sub 3}, high-temperature protective coatings, and epitaxial relationships between interfaces.

  17. Effect of insulin-like growth factor-1 on corneal surface ultrastructure and nerve regeneration of rabbit eyes after laser in situ keratomileusis.

    PubMed

    Wang, Chunyan; Peng, Yanli; Pan, Shuling; Li, Li

    2014-01-13

    To explore the effect of insulin-like growth factor-1 (IGF-1) on corneal surface ultrastructure and nerve regeneration in rabbit models after laser in situ keratomileusis (LASIK). Forty-two healthy New Zealand white rabbits were divided into two groups, the IGF-1 group and the control group, and LASIK surgery was performed. The corneal surface ultrastructure was observed by transmission electron microscopy, and the nerve regeneration was evaluated by counting the newly regenerated nerves at 1 d, 1 w, 2 w, 1 m, 3 m and 6 m after surgery. Dry eye parameters, including the Schirmer I test and tear break-up time, were examined at all time points. The examination of corneal ultrastructure showed that the number of corneal epithelial microvilli in the IGF-1 group was significantly higher than that in the normal saline (NS) group except in the second postoperative week (p<0.05). The observation of corneal nerve regeneration showed that the number of regenerated nerve fibers in the IGF-1 group was higher than the control group at all time points (p<0.05). The parameters of dry eye were significantly higher in the IGF-1 group compared to the control group at all time points except at 1d and 6m after LASIK. IGF-1 can effectively accelerate the early repair of corneal surface ultrastructure and nerve regeneration after LASIK and relieve dry eye symptoms in rabbit eyes. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Surface and interface sciences of Li-ion batteries. -Research progress in electrode-electrolyte interface-

    NASA Astrophysics Data System (ADS)

    Minato, Taketoshi; Abe, Takeshi

    2017-12-01

    The application potential of Li-ion batteries is growing as demand increases in different fields at various stages in energy systems, in addition to their conventional role as power sources for portable devices. In particular, applications in electric vehicles and renewable energy storage are increasing for Li-ion batteries. For these applications, improvements in battery performance are necessary. The Li-ion battery produces and stores electric power from the electrochemical redox reactions between the electrode materials. The interface between the electrodes and electrolyte strongly affects the battery performance because the charge transfer causing the electrode redox reaction begins at this interface. Understanding of the surface structure, electronic structure, and chemical reactions at the electrode-electrolyte interface is necessary to improve battery performance. However, the interface is located between the electrode and electrolyte materials, hindering the experimental analysis of the interface; thus, the physical properties and chemical processes have remained poorly understood until recently. Investigations of the physical properties and chemical processes at the interface have been performed using advanced surface science techniques. In this review, current knowledge and future research prospects regarding the electrode-electrolyte interface are described for the further development of Li-ion batteries.

  19. Goldmann tonometry after hyperopic laser in situ keratomileusis: comparison between retreated and nonretreated patients.

    PubMed

    Sanchis-Gimeno, Juan A; Lleó-Pérez, Antonio; Rahhal, Saleh M; Alonso, Luis

    2004-10-01

    To identify differences in applanation tonometry between retreated and nonretreated eyes (primary LASIK eyes) 6 months after hyperopic laser in situ keratomileusis. In a prospective study 100 eyes (100 patients) underwent conventional hyperopic laser in situ keratomileusis under a 160-microm flap. Central Goldmann applanation tonometry was determined before and 6 months after surgery in 78 (78%) primary LASIK eyes and before surgery and 6 months after the retreatment date in 22 (22%) retreated eyes. Preoperative mean tonometry was 14.96 +/- 1.96 mm Hg and 15.30 +/- 1.95 mm Hg in primary LASIK and retreated eyes, respectively. Six months after surgery it was 12.99 +/- 2.03 mm Hg (P < 0.001) and 12.67 +/- 2.20 mm Hg (P < 0.001), respectively. No significant differences in mean tonometry were found between retreated and primary LASIK eyes 6 months after surgery (P = 0.537). Decreased tonometric values were found in 20 retreated eyes (90.91%) and in 62 primary LASIK eyes (79.48%). Increased tonometric values higher than 1 mm Hg were found in 3 primary LASIK eyes (3.84%), but no retreated eyes showed increased values 6 months after surgery. Two retreated eyes (9.09%) and 10 primary LASIK eyes (79.49%) presented the same tonometric values before surgery and at the end of the study. After hyperopic laser in situ keratomileusis there was no significant difference in Goldmann applanation tonometry between retreated and primary LASIK eyes.

  20. EDITORIAL: Focus on Advances in Surface and Interface Science 2008 FOCUS ON ADVANCES IN SURFACE AND INTERFACE SCIENCE 2008

    NASA Astrophysics Data System (ADS)

    Scheffler, Matthias; Schneider, Wolf-Dieter

    2008-12-01

    Basic research in surface and interface science is highly interdisciplinary, covering the fields of physics, chemistry, biophysics, geo-, atmospheric and environmental sciences, material science, chemical engineering, and more. The various phenomena are interesting by themselves, and they are most important in nearly all modern technologies, as for example electronic, magnetic, and optical devices, sensors, catalysts, lubricants, hard and thermal-barrier coatings, protection against corrosion and crack formation under harsh environments. In fact, detailed understanding of the elementary processes at surfaces is necessary to support and to advance the high technology that very much founds the prosperity and lifestyle of our society. Current state-of-the-art experimental studies of elementary processes at surfaces, of surface properties and functions employ a variety of sophisticated tools. Some are capable of revealing the location and motion of individual atoms. Others measure excitations (electronic, magnetic and vibronic), employing, for example, special light sources such as synchrotrons, high magnetic fields, or free electron lasers. The surprising variety of intriguing physical phenomena at surfaces, interfaces, and nanostructures also pose a persistent challenge for the development of theoretical descriptions, methods, and even basic physical concepts. This second focus issue on the topic of 'Advances in Surface and Interface Science' in New Journal of Physics, following on from last year's successful collection, provides an exciting synoptic view on the latest pertinent developments in the field. Focus on Advances in Surface and Interface Science 2008 Contents Organic layers at metal/electrolyte interfaces: molecular structure and reactivity of viologen monolayers Stephan Breuer, Duc T Pham, Sascha Huemann, Knud Gentz, Caroline Zoerlein, Ralf Hunger, Klaus Wandelt and Peter Broekmann Spin polarized d surface resonance state of fcc Co/Cu(001) K Miyamoto, K

  1. Amino acids at water-vapor interfaces: surface activity and orientational ordering.

    PubMed

    Vöhringer-Martinez, Esteban; Toro-Labbé, Alejandro

    2010-10-14

    The surface activity and orientational ordering of amino acids at water-vapor interfaces were studied with molecular dynamics simulations in combination with thermodynamic integration and umbrella sampling. Asparagine, representing amino acids with polar side chains, displays no surface activity. Tryptophan, in contrast, with its hydrophobic indole ring as side chain unveils a free energy minimum at the water-vapor interface, which lies 6 kJ/mol under the hydration free energy. To study the orientational ordering of tryptophan along the interface, the order parameter was calculated. At the free energy minimum and at the Gibbs dividing surface, the order parameter reveals a parallel alignment of the indole ring with the water surface exposing the π-system to electrophiles in the hydrophobic phase and indicating polarization dependent spectroscopy. In the vicinity of this position a perpendicular orientation is obtained. The surface excess, calculated from the potential of mean force along the interface, is in excellent agreement with experimental measurements.

  2. Surface currents on the plasma-vacuum interface in MHD equilibria

    NASA Astrophysics Data System (ADS)

    Hanson, James

    2017-10-01

    The VMEC non-axisymmetric MHD equilibrium code can compute free-boundary equilibria. Since VMEC assumes that magnetic fields within the plasma form closed and nested flux surfaces, the plasma-vacuum interface is a flux surface, and the total magnetic field there has no normal component. VMEC imposes this condition of zero normal field using the potential formulation of Merkel, and solves a Neumann problem for the magnetic potential in the exterior region. This boundary condition necessarily admits the possibility of a surface current on the interface. While this surface current may be small in MHD equilibrium, it is readily computed in terms of the magnetic potentials in both the interior and exterior regions, evaluated on the surface. If only the external magnetic potential is known (as in VMEC), then the surface current can be computed from the discontinuity of the tangential field across the interface. Examples of the surface current for VMEC equilibria will be shown for a zero-pressure stellarator equilibrium. Field-line following of the vacuum magnetic field shows magnetic islands within the plasma region.

  3. Surface tension dominates insect flight on fluid interfaces

    PubMed Central

    Mukundarajan, Haripriya; Bardon, Thibaut C.; Kim, Dong Hyun; Prakash, Manu

    2016-01-01

    ABSTRACT Flight on the 2D air–water interface, with body weight supported by surface tension, is a unique locomotion strategy well adapted for the environmental niche on the surface of water. Although previously described in aquatic insects like stoneflies, the biomechanics of interfacial flight has never been analysed. Here, we report interfacial flight as an adapted behaviour in waterlily beetles (Galerucella nymphaeae) which are also dexterous airborne fliers. We present the first quantitative biomechanical model of interfacial flight in insects, uncovering an intricate interplay of capillary, aerodynamic and neuromuscular forces. We show that waterlily beetles use their tarsal claws to attach themselves to the interface, via a fluid contact line pinned at the claw. We investigate the kinematics of interfacial flight trajectories using high-speed imaging and construct a mathematical model describing the flight dynamics. Our results show that non-linear surface tension forces make interfacial flight energetically expensive compared with airborne flight at the relatively high speeds characteristic of waterlily beetles, and cause chaotic dynamics to arise naturally in these regimes. We identify the crucial roles of capillary–gravity wave drag and oscillatory surface tension forces which dominate interfacial flight, showing that the air–water interface presents a radically modified force landscape for flapping wing flight compared with air. PMID:26936640

  4. Comparison of visual acuity of the patients on the first day after sub-Bowman keratomileusis or laser in situ keratomileusis

    PubMed Central

    Zhao, Wei; Wu, Ting; Dong, Ze-Hong; Feng, Jie; Ren, Yu-Feng; Wang, Yu-Sheng

    2016-01-01

    AIM To compare recovery of the visual acuity in patients one day after sub-Bowman keratomileusis (SBK) or laser in situ keratomileusis (LASIK). METHODS Data from 5923 eyes in 2968 patients that received LASIK (2755 eyes) or SBK (3168 eyes) were retrospectively analyzed. The eyes were divided into 4 groups according to preoperative spherical equivalent: between -12.00 to -9.00 D, extremely high myopia (n=396, including 192 and 204 in SBK and LASIK groups, respectively); -9.00 to -6.00 D, high myopia (n=1822, including 991 and 831 in SBK and LASIK groups, respectively), -6.00 to -3.00 D, moderate myopia (n=3071, including 1658 and 1413 in SBK and LASIK groups, respectively), and -3.00 to 0.00 D, low myopia (n=634, including 327 and 307 in SBK and LASIK groups, respectively). Uncorrected logMAR visual acuity values of patients were assessed under standard natural light. Analysis of variance was used for comparisons among different groups. RESULTS Uncorrected visual acuity values were 0.0115±0.1051 and 0.0466±0.1477 at day 1 after operation for patients receiving SBK and LASIK, respectively (P<0.01); visual acuity values of 0.1854±0.1842, 0.0615±0.1326, -0.0033±0.0978, and -0.0164±0.0972 were obtained for patients in the extremely high, high, moderate, and low myopia groups, respectively (P<0.01). In addition, significant differences in visual acuity at day 1 after operation were found between patients receiving SBK and LASIK in each myopia subgroup. CONCLUSION Compared with LASIK, SBK is safer and more effective, with faster recovery. Therefore, SBK is more likely to be accepted by patients than LASIK for better uncorrected visual acuity the day following operation. PMID:27158619

  5. Comparison of visual acuity of the patients on the first day after sub-Bowman keratomileusis or laser in situ keratomileusis.

    PubMed

    Zhao, Wei; Wu, Ting; Dong, Ze-Hong; Feng, Jie; Ren, Yu-Feng; Wang, Yu-Sheng

    2016-01-01

    To compare recovery of the visual acuity in patients one day after sub-Bowman keratomileusis (SBK) or laser in situ keratomileusis (LASIK). Data from 5923 eyes in 2968 patients that received LASIK (2755 eyes) or SBK (3168 eyes) were retrospectively analyzed. The eyes were divided into 4 groups according to preoperative spherical equivalent: between -12.00 to -9.00 D, extremely high myopia (n=396, including 192 and 204 in SBK and LASIK groups, respectively); -9.00 to -6.00 D, high myopia (n=1822, including 991 and 831 in SBK and LASIK groups, respectively), -6.00 to -3.00 D, moderate myopia (n=3071, including 1658 and 1413 in SBK and LASIK groups, respectively), and -3.00 to 0.00 D, low myopia (n=634, including 327 and 307 in SBK and LASIK groups, respectively). Uncorrected logMAR visual acuity values of patients were assessed under standard natural light. Analysis of variance was used for comparisons among different groups. Uncorrected visual acuity values were 0.0115±0.1051 and 0.0466±0.1477 at day 1 after operation for patients receiving SBK and LASIK, respectively (P<0.01); visual acuity values of 0.1854±0.1842, 0.0615±0.1326, -0.0033±0.0978, and -0.0164±0.0972 were obtained for patients in the extremely high, high, moderate, and low myopia groups, respectively (P<0.01). In addition, significant differences in visual acuity at day 1 after operation were found between patients receiving SBK and LASIK in each myopia subgroup. Compared with LASIK, SBK is safer and more effective, with faster recovery. Therefore, SBK is more likely to be accepted by patients than LASIK for better uncorrected visual acuity the day following operation.

  6. Early changes in ocular surface and tear inflammatory mediators after small-incision lenticule extraction and femtosecond laser-assisted laser in situ keratomileusis.

    PubMed

    Gao, Shaohui; Li, Saiqun; Liu, Liangping; Wang, Yong; Ding, Hui; Li, Lili; Zhong, Xingwu

    2014-01-01

    To characterize the early ocular-surface changes or tear inflammatory-mediators levels following small-incision lenticule extraction (ReLEx smile) and femtosecond laser-assisted laser in situ keratomileusis (FS-LASIK). Forty-seven myopic subjects were recruited for this prospective study. Fifteen underwent ReLEx smile and thirty-two underwent FS-LASIK. Corneal fluorescein (FL) staining, tear break-up time (TBUT), Schirmer I test (SIT), ocular surface disease index (OSDI) and central corneal sensitivity were evaluated in all participants. Tears were collected and analyzed for interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), nerve growth factor (NGF) and intercellular adhesion molecule-1 (ICAM-1) levels using multiplex magnetic beads. All measurements were preformed preoperatively and 1 day, 1 week, 1 month and 3 months postoperatively. FL scores in ReLEx smile group were lower than those of FS-LASIK group 1 week postoperatively (P = 0.010). Compared to the FS-LASIK group, longer TBUT were observed in ReLEx smile group 1 month (P = 0.029) and 3 months (P = 0.045) postoperatively. No significant differences were found in tear secretion for the two groups (P>0.05). OSDI scores were higher in FS-LASIK group 1 month after surgery (P = 0.020). Higher central corneal sensitivity was observed in ReLEx smile group 1 week, 1 month and 3 months (P<0.05) postoperatively. Compared to FS-LASIK group, lower and faster recovery of IL-6 and NGF levels in tears was observed in ReLEx smile group postoperatively (P<0.05). Tears TNF-α and ICAM-1 concentrations were not significantly different between the two groups at any follow-up time (P>0.05). Moreover, IL-6 and NGF levels correlated with ocular surface changes after ReLEx smile or FS-LASIK. In the early postoperative period, ReLEx smile results in milder ocular surface changes than FS-LASIK. Furthermore, the tear inflammatory mediators IL-6 and NGF may play a crucial role in the ocular surface healing process following Re

  7. Surface tension dominates insect flight on fluid interfaces.

    PubMed

    Mukundarajan, Haripriya; Bardon, Thibaut C; Kim, Dong Hyun; Prakash, Manu

    2016-03-01

    Flight on the 2D air-water interface, with body weight supported by surface tension, is a unique locomotion strategy well adapted for the environmental niche on the surface of water. Although previously described in aquatic insects like stoneflies, the biomechanics of interfacial flight has never been analysed. Here, we report interfacial flight as an adapted behaviour in waterlily beetles (Galerucella nymphaeae) which are also dexterous airborne fliers. We present the first quantitative biomechanical model of interfacial flight in insects, uncovering an intricate interplay of capillary, aerodynamic and neuromuscular forces. We show that waterlily beetles use their tarsal claws to attach themselves to the interface, via a fluid contact line pinned at the claw. We investigate the kinematics of interfacial flight trajectories using high-speed imaging and construct a mathematical model describing the flight dynamics. Our results show that non-linear surface tension forces make interfacial flight energetically expensive compared with airborne flight at the relatively high speeds characteristic of waterlily beetles, and cause chaotic dynamics to arise naturally in these regimes. We identify the crucial roles of capillary-gravity wave drag and oscillatory surface tension forces which dominate interfacial flight, showing that the air-water interface presents a radically modified force landscape for flapping wing flight compared with air. © 2016. Published by The Company of Biologists Ltd.

  8. Competitive Adsorption between Nanoparticles and Surface Active Ions for the Oil-Water Interface.

    PubMed

    Hua, Xiaoqing; Bevan, Michael A; Frechette, Joelle

    2018-04-24

    Nanoparticles (NPs) can add functionality (e.g., catalytic, optical, rheological) to an oil-water interface. Adsorption of ∼10 nm NPs can be reversible; however, the mechanisms for adsorption and its effects on surface pressure remain poorly understood. Here we demonstrate how the competitive reversible adsorption of NPs and surfactants at fluid interfaces can lead to independent control of both the adsorbed amount and surface pressure. In contrast to prior work, both species investigated (NPs and surfactants) interact reversibly with the interface and without the surface active species binding to NPs. Independent measurements of the adsorption and surface pressure isotherms allow determination of the equation of state (EOS) of the interface under conditions where the NPs and surfactants are both in dynamic equilibrium with the bulk phase. The adsorption and surface pressure measurements are performed with gold NPs of two different sizes (5 and 10 nm), at two pH values, and across a wide concentration range of surfactant (tetrapentylammonium, TPeA + ) and NPs. We show that free surface active ions compete with NPs for the interface and give rise to larger surface pressures upon the adsorption of NPs. Through a competitive adsorption model, we decouple the contributions of NPs wetting at the interface and their surface activity on the measured surface pressure. We also demonstrate reversible control of adsorbed amount via changes in the surfactant concentration or the aqueous phase pH.

  9. Refractive regression after laser in situ keratomileusis.

    PubMed

    Yan, Mabel K; Chang, John Sm; Chan, Tommy Cy

    2018-04-26

    Uncorrected refractive errors are a leading cause of visual impairment across the world. In today's society, laser in situ keratomileusis (LASIK) has become the most commonly performed surgical procedure to correct refractive errors. However, regression of the initially achieved refractive correction has been a widely observed phenomenon following LASIK since its inception more than two decades ago. Despite technological advances in laser refractive surgery and various proposed management strategies, post-LASIK regression is still frequently observed and has significant implications for the long-term visual performance and quality of life of patients. This review explores the mechanism of refractive regression after both myopic and hyperopic LASIK, predisposing risk factors and its clinical course. In addition, current preventative strategies and therapies are also reviewed. © 2018 Royal Australian and New Zealand College of Ophthalmologists.

  10. From coherent to incoherent mismatched interfaces: A generalized continuum formulation of surface stresses

    NASA Astrophysics Data System (ADS)

    Dingreville, Rémi; Hallil, Abdelmalek; Berbenni, Stéphane

    2014-12-01

    The equilibrium of coherent and incoherent mismatched interfaces is reformulated in the context of continuum mechanics based on the Gibbs dividing surface concept. Two surface stresses are introduced: a coherent surface stress and an incoherent surface stress, as well as a transverse excess strain. The coherent surface stress and the transverse excess strain represent the thermodynamic driving forces of stretching the interface while the incoherent surface stress represents the driving force of stretching one crystal while holding the other fixed and thereby altering the structure of the interface. These three quantities fully characterize the elastic behavior of coherent and incoherent interfaces as a function of the in-plane strain, the transverse stress and the mismatch strain. The isotropic case is developed in detail and particular attention is paid to the case of interfacial thermo-elasticity. This exercise provides an insight on the physical significance of the interfacial elastic constants introduced in the formulation and illustrates the obvious coupling between the interface structure and its associated thermodynamics quantities. Finally, an example based on atomistic simulations of Cu/Cu2O interfaces is given to demonstrate the relevance of the generalized interfacial formulation and to emphasize the dependence of the interfacial thermodynamic quantities on the incoherency strain with an actual material system.

  11. Accelerated corneal crosslinking concurrent with laser in situ keratomileusis.

    PubMed

    Celik, H Ugur; Alagöz, Nese; Yildirim, Yusuf; Agca, Alper; Marshall, John; Demirok, Ahmet; Yilmaz, Omer Faruk

    2012-08-01

    To assess accelerated corneal collagen crosslinking (CXL) applied concurrently with laser in situ keratomileusis (LASIK) in a small group of patients. Beyoglu Eye Research and Training Hospital, Istanbul, Turkey. Prospective pilot interventional case series. In May 2010, patients had LASIK with concurrent accelerated CXL in 1 eye and LASIK only in the fellow eye to treat myopia or myopic astigmatism. The follow-up was 12 months. The attempted correction (spherical equivalent) ranged from -5.00 to -8.50 diopters (D) in the LASIK-CXL group and from -3.00 to -7.25 D in the LASIK-only group. Main outcome measures were manifest refraction, uncorrected (UDVA) and corrected (CDVA) distance visual acuities, and the endothelial cell count. Eight eyes of 3 women and 1 man (age 22 to 39 years old) were enrolled. At the 12-month follow-up, the LASIK-CXL group had a UDVA and manifest refraction equal to or better than those in the LASIK-only group. No eye lost 1 or more lines of CDVA at the final visit. The endothelial cell loss in the LASIK-CXL eye was not greater than in the fellow eye. No side effects were associated with either procedure. Laser in situ keratomileusis with accelerated CXL appears to be a promising modality for future applications to prevent corneal ectasia after LASIK treatment. The results in this pilot series suggest that evaluation of a larger study cohort is warranted. Drs. Yilmaz and Marshall are paid consultants to Avedro, Inc. No other author has a financial or proprietary interest in any material or method mentioned. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  12. Characterizing water-metal interfaces and machine learning potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Ryczko, Kevin

    In this thesis, we first discuss the fundamentals of ab initio electronic structure theory and density functional theory (DFT). We also discuss statistics related to computing thermodynamic averages of molecular dynamics (MD). We then use this theory to analyze and compare the structural, dynamical, and electronic properties of liquid water next to prototypical metals including platinum, graphite, and graphene. Our results are built on Born-Oppenheimer molecular dynamics (BOMD) generated using density functional theory (DFT) which explicitly include van der Waals (vdW) interactions within a first principles approach. All calculations reported use large simulation cells, allowing for an accurate treatment of the water-electrode interfaces. We have included vdW interactions through the use of the optB86b-vdW exchange correlation functional. Comparisons with the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional are also shown. We find an initial peak, due to chemisorption, in the density profile of the liquid water-Pt interface not seen in the liquid water-graphite interface, liquid watergraphene interface, nor interfaces studied previously. To further investigate this chemisorption peak, we also report differences in the electronic structure of single water molecules on both Pt and graphite surfaces. We find that a covalent bond forms between the single water molecule and the platinum surface, but not between the single water molecule and the graphite surface. We also discuss the effects that defects and dopants in the graphite and graphene surfaces have on the structure and dynamics of liquid water. Lastly, we introduce artificial neural networks (ANNs), and demonstrate how they can be used to machine learn electronic structure calculations. As a proof of principle, we show the success of an ANN potential energy surfaces for a dimer molecule with a Lennard-Jones potential.

  13. Classification Order of Surface-Confined Intermixing at Epitaxial Interface

    NASA Astrophysics Data System (ADS)

    Michailov, M.

    The self-organization phenomena at epitaxial interface hold special attention in contemporary material science. Being relevant to the fundamental physical problem of competing, long-range and short-range atomic interactions in systems with reduced dimensionality, these phenomena have found exacting academic interest. They are also of great technological importance for their ability to bring spontaneous formation of regular nanoscale surface patterns and superlattices with exotic properties. The basic phenomenon involved in this process is surface diffusion. That is the motivation behind the present study which deals with important details of diffusion scenarios that control the fine atomic structure of epitaxial interface. Consisting surface imperfections (terraces, steps, kinks, and vacancies), the interface offers variety of barriers for surface diffusion. Therefore, the adatoms and clusters need a certain critical energy to overcome the corresponding diffusion barriers. In the most general case the critical energies can be attained by variation of the system temperature. Hence, their values define temperature limits of system energy gaps associated with different diffusion scenarios. This systematization imply classification order of surface alloying: blocked, incomplete, and complete. On that background, two diffusion problems, related to the atomic-scale surface morphology, will be discussed. The first problem deals with diffusion of atomic clusters on atomically smooth interface. On flat domains, far from terraces and steps, we analyzed the impact of size, shape, and cluster/substrate lattice misfit on the diffusion behavior of atomic clusters (islands). We found that the lattice constant of small clusters depends on the number N of building atoms at 1 < N ≤ 10. In heteroepitaxy, this effect of variable lattice constant originates from the enhanced charge transfer and the strong influence of the surface potential on cluster atomic arrangement. At constant

  14. Oxide surfaces and metal/oxide interfaces studied by grazing incidence X-ray scattering

    NASA Astrophysics Data System (ADS)

    Renaud, Gilles

    Experimental determinations of the atomic structure of insulating oxide surfaces and metal/oxide interfaces are scarce, because surface science techniques are often limited by the insulating character of the substrate. Grazing incidence X-ray scattering (GIXS), which is not subject to charge effects, can provide very precise information on the atomic structure of oxide surfaces: roughness, relaxation and reconstruction. It is also well adapted to analyze the atomic structure, the registry, the misfit relaxation, elastic or plastic, the growth mode and the morphology of metal/oxide interfaces during their growth, performed in situ. GIXS also allows the analysis of thin films and buried interfaces, in a non-destructive way, yielding the epitaxial relationships, and, by variation of the grazing incidence angle, the lattice parameter relaxation along the growth direction. On semi-coherent interfaces, the existence of an ordered network of interfacial misfit dislocations can be demonstrated, its Burger's vector determined, its ordering during in situ annealing cycles followed, and sometimes even its atomic structure can be addressed. Careful analysis during growth allows the modeling of the dislocation nucleation process. This review emphasizes the new information that GIXS can bring to oxide surfaces and metal/oxide interfaces by comparison with other surface science techniques. The principles of X-ray diffraction by surfaces and interfaces are recalled, together with the advantages and properties of grazing angles. The specific experimental requirements are discussed. Recent results are presented on the determination of the atomic structure of relaxed or reconstructed oxide surfaces. A description of results obtained during the in situ growth of metal on oxide surfaces is also given, as well as investigations of thick metal films on oxide surfaces, with lattice parameter misfit relaxed by an array of dislocations. Recent work performed on oxide thin films having

  15. From coherent to incoherent mismatched interfaces. A generalized continuum formulation of surface stresses

    DOE PAGES

    Dingreville, Rémi; Hallil, Abdelmalek; Berbenni, Stéphane

    2014-08-19

    The equilibrium of coherent and incoherent mismatched interfaces is reformulated in the context of continuum mechanics based on the Gibbs dividing surface concept. Two surface stresses are introduced: a coherent surface stress and an incoherent surface stress, as well as a transverse excess strain. Additionally, the coherent surface stress and the transverse excess strain represent the thermodynamic driving forces of stretching the interface while the incoherent surface stress represents the driving force of stretching one crystal while holding the other fixed and thereby altering the structure of the interface. These three quantities fully characterize the elastic behavior of coherent andmore » incoherent interfaces as a function of the in-plane strain, the transverse stress and the mismatch strain. The isotropic case is developed in detail and particular attention is paid to the case of interfacial thermo-elasticity. This exercise provides an insight on the physical significance of the interfacial elastic constants introduced in the formulation and illustrates the obvious coupling between the interface structure and its associated thermodynamics quantities. Finally, an example based on atomistic simulations of Cu/Cu 2O interfaces is given to demonstrate the relevance of the generalized interfacial formulation and to emphasize the dependence of the interfacial thermodynamic quantities on the incoherency strain with an actual material system.« less

  16. Dependence of surface tension on curvature obtained from a diffuse-interface approach

    NASA Astrophysics Data System (ADS)

    Badillo, Arnoldo; Lafferty, Nathan; Matar, Omar K.

    2017-11-01

    From a sharp-interface viewpoint, the surface tension force is f = σκδ (x -xi) n , where σ is the surface tension, κ the local interface curvature, δ the delta function, and n the unit normal vector. The numerical implementation of this force on discrete domains poses challenges that arise from the calculation of the curvature. The continuous surface tension force model, proposed by Brackbill et al. (1992), is an alternative, used commonly in two-phase computational models. In this model, δ is replaced by the gradient of a phase indicator field, whose integral across a diffuse-interface equals unity. An alternative to the Brackbill model are Phase-Field models, which do not require an explicit calculation of the curvature. However, and just as in Brackbill's approach, there are numerical errors that depend on the thickness of the diffuse interface, the grid spacing, and the curvature. We use differential geometry to calculate the leading errors in this force when obtained from a diffuse-interface approach, and outline possible routes to eliminate them. Our results also provide a simple geometrical explanation to the dependence of surface tension on curvature, and to the problem of line tension.

  17. Surface State Density Determines the Energy Level Alignment at Hybrid Perovskite/Electron Acceptors Interfaces.

    PubMed

    Zu, Fengshuo; Amsalem, Patrick; Ralaiarisoa, Maryline; Schultz, Thorsten; Schlesinger, Raphael; Koch, Norbert

    2017-11-29

    Substantial variations in the electronic structure and thus possibly conflicting energetics at interfaces between hybrid perovskites and charge transport layers in solar cells have been reported by the research community. In an attempt to unravel the origin of these variations and enable reliable device design, we demonstrate that donor-like surface states stemming from reduced lead (Pb 0 ) directly impact the energy level alignment at perovskite (CH 3 NH 3 PbI 3-x Cl x ) and molecular electron acceptor layer interfaces using photoelectron spectroscopy. When forming the interfaces, it is found that electron transfer from surface states to acceptor molecules occurs, leading to a strong decrease in the density of ionized surface states. As a consequence, for perovskite samples with low surface state density, the initial band bending at the pristine perovskite surface can be flattened upon interface formation. In contrast, for perovskites with a high surface state density, the Fermi level is strongly pinned at the conduction band edge, and only minor changes in surface band bending are observed upon acceptor deposition. Consequently, depending on the initial perovskite surface state density, very different interface energy level alignment situations (variations over 0.5 eV) are demonstrated and rationalized. Our findings help explain the rather dissimilar reported energy levels at interfaces with perovskites, refining our understanding of the operating principles in devices comprising this material.

  18. Monitoring of Water and Contaminant Migration at the Groundwater-Surface Water Interface

    DTIC Science & Technology

    2008-08-01

    seepage is occurring in a freshwater lake environment and to map the lateral extent of any subsurface contamination at the groundwater –surface water ...and Contaminant Migration at the Groundwater -Surface Water Interface August 2008 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...4. TITLE AND SUBTITLE Monitoring of Water and Contaminant Migration at the Groundwater -Surface Water Interface 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  19. Early Changes in Ocular Surface and Tear Inflammatory Mediators after Small-Incision Lenticule Extraction and Femtosecond Laser-Assisted Laser In Situ Keratomileusis

    PubMed Central

    Gao, Shaohui; Li, Saiqun; Liu, Liangping; Wang, Yong; Ding, Hui; Li, Lili; Zhong, Xingwu

    2014-01-01

    Purpose To characterize the early ocular-surface changes or tear inflammatory-mediators levels following small-incision lenticule extraction (ReLEx smile) and femtosecond laser-assisted laser in situ keratomileusis (FS-LASIK). Methods Forty-seven myopic subjects were recruited for this prospective study. Fifteen underwent ReLEx smile and thirty-two underwent FS-LASIK. Corneal fluorescein (FL) staining, tear break-up time (TBUT), Schirmer I test (SIT), ocular surface disease index (OSDI) and central corneal sensitivity were evaluated in all participants. Tears were collected and analyzed for interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), nerve growth factor (NGF) and intercellular adhesion molecule-1 (ICAM-1) levels using multiplex magnetic beads. All measurements were preformed preoperatively and 1 day, 1 week, 1 month and 3 months postoperatively. Results FL scores in ReLEx smile group were lower than those of FS-LASIK group 1 week postoperatively (P = 0.010). Compared to the FS-LASIK group, longer TBUT were observed in ReLEx smile group 1 month (P = 0.029) and 3 months (P = 0.045) postoperatively. No significant differences were found in tear secretion for the two groups (P>0.05). OSDI scores were higher in FS-LASIK group 1 month after surgery (P = 0.020). Higher central corneal sensitivity was observed in ReLEx smile group 1 week, 1 month and 3 months (P<0.05) postoperatively. Compared to FS-LASIK group, lower and faster recovery of IL-6 and NGF levels in tears was observed in ReLEx smile group postoperatively (P<0.05). Tears TNF-α and ICAM-1 concentrations were not significantly different between the two groups at any follow-up time (P>0.05). Moreover, IL-6 and NGF levels correlated with ocular surface changes after ReLEx smile or FS-LASIK. Conclusions In the early postoperative period, ReLEx smile results in milder ocular surface changes than FS-LASIK. Furthermore, the tear inflammatory mediators IL-6 and NGF may play a crucial role

  20. Effect of a surface tension gradient on the slip flow along a superhydrophobic air-water interface

    NASA Astrophysics Data System (ADS)

    Song, Dong; Song, Baowei; Hu, Haibao; Du, Xiaosong; Du, Peng; Choi, Chang-Hwan; Rothstein, Jonathan P.

    2018-03-01

    Superhydrophobic surfaces have been shown to produce significant drag reduction in both laminar and turbulent flows by introducing an apparent slip velocity along an air-water interface trapped within the surface roughness. In the experiments presented within this study, we demonstrate the existence of a surface tension gradient associated with the resultant Marangoni flow along an air-water interface that causes the slip velocity and slip length to be significantly reduced. In this study, the slip velocity along a millimeter-sized air-water interface was investigated experimentally. This large-scale air-water interface facilitated a detailed investigation of the interfacial velocity profiles as the flow rate, interfacial curvature, and interface geometry were varied. For the air-water interfaces supported above continuous grooves (concentric rings within a torsional shear flow) where no surface tension gradient exists, a slip velocity as high as 30% of the bulk velocity was observed. However, for the air-water interfaces supported above discontinuous grooves (rectangular channels in a Poiseuille flow), the presence of a surface tension gradient reduced the slip velocity and in some cases resulted in an interfacial velocity that was opposite to the main flow direction. The curvature of the air-water interface in the spanwise direction was found to dictate the details of the interfacial flow profile with reverse flow in the center of the interface for concave surfaces and along the outside of the interface for convex surfaces. The deflection of the air-water interface was also found to greatly affect the magnitude of the slip. Numerical simulations imposed with a relatively small surface tension gradient along the air-water interface were able to predict both the reduced slip velocity and back flow along the air-water interface.

  1. Surfactant-Influenced Gas-Liquid Interfaces: Nonlinear Equation of State and Finite Surface Viscosities.

    PubMed

    Lopez; Hirsa

    2000-09-15

    A canonical flow geometry was utilized for a fundamental study of the coupling between bulk flow and a Newtonian gas-liquid interface in the presence of an insoluble surfactant. We develop a Navier-Stokes numerical model of the flow in the deep-channel surface viscometer geometry, which consists of stationary inner and outer cylinders, a floor rotating at a constant angular velocity, and an interface covered initially by a uniformly distributed surfactant. Here, the floor of the annular channel is rotated fast enough so the flow is nonlinear and drives the film toward the inner cylinder. The boundary conditions at the interface are functions of the surface tension, surface shear viscosity, and surface dilatational viscosity, as described by the Boussinesq-Scriven surface model. A physical surfactant system, namely hemicyanine, an insoluble monolayer on an air-water interface, with measured values of surface tension and surface shear viscosity versus concentration, was used in this study. We find that a surfactant front can form, depending on the Reynolds number and the initial surfactant concentration. The stress balance in the radial direction was found to be dominated by the Marangoni stress, but the azimuthal stress was only due to the surface shear viscosity. Numerical studies are presented comparing results of surfactant-influenced interface cases implementing the derived viscoelastic interfacial stress balance with those using a number of idealized stress balances, as well as a rigid no-slip surface, providing added insight into the altered dynamics that result from the presence of a surfactant monolayer. Copyright 2000 Academic Press.

  2. Study of Surface States at the Semiconductor/electrolyte Interface of Liquid-Junction Solar Cells.

    NASA Astrophysics Data System (ADS)

    Siripala, Withana P.

    The existence of surface states at the semiconductor electrolyte interface of photoelectrochemical (PEC) cells plays a major role in determining the performance of the device in regard to the potential distribution and transport mechanisms of photogenerated carriers at the interface. We have investigated the n-TiO(,2)/electrolyte interface using three experimental techniques: relaxation spectrum analysis, photocurrent spectroscopy, and electrolyte electroreflectance (EER) spectroscopy. The effect of Fermi level pinning at the CdIn(,2)SE(,4)/aqueous-polysulfide interface was also studied using EER. Three distinct surface states were observed at the n-TiO(,2)/aqueous-electrolyte interface. The dominant state, which tails from the conduction band edge, is primarily responsible for the surface recombination of photocarriers at the interface. The second surface state, observed at 0.8 eV below the conduction band of TiO(,2), originates in the dark charge transfer intermediates (TiO(,2)-H). It is proposed that the sub-bandgap (SBG) photocurrent-potential behavior is a result of the mechanism of dynamic formation and annihilation of these surface states. The third surface state was at 1.3 eV below the conduction band of TiO(,2), and the SBG EER measurements show this state is "intrinsic" to the surface. These states were detected with SBG EER and impedance measurements in the presence of electrolytes that can adsorb on the surface of TiO(,2). Surface concentration of these states was evaluated with impedance measurements. EER measurements on a CdIn(,2)Se(,4)/polysulfide system have shown that the EER spectrum is sensitive to the surface preparation of the sample. The EER signal was quenched as the surface was driven to strong depletion, owing to Fermi level pinning at the interface in the presence of a high density of surface states. The full analysis of this effect enables us to measure the change in the flatband potential, as a function of the electrode potential, and

  3. Geophysical characterisation of the groundwater-surface water interface

    NASA Astrophysics Data System (ADS)

    McLachlan, P. J.; Chambers, J. E.; Uhlemann, S. S.; Binley, A.

    2017-11-01

    Interactions between groundwater (GW) and surface water (SW) have important implications for water quantity, water quality, and ecological health. The subsurface region proximal to SW bodies, the GW-SW interface, is crucial as it actively regulates the transfer of nutrients, contaminants, and water between GW systems and SW environments. However, geological, hydrological, and biogeochemical heterogeneity in the GW-SW interface makes it difficult to characterise with direct observations. Over the past two decades geophysics has been increasingly used to characterise spatial and temporal variability throughout the GW-SW interface. Geophysics is a powerful tool in evaluating structural heterogeneity, revealing zones of GW discharge, and monitoring hydrological processes. Geophysics should be used alongside traditional hydrological and biogeochemical methods to provide additional information about the subsurface. Further integration of commonly used geophysical techniques, and adoption of emerging techniques, has the potential to improve understanding of the properties and processes of the GW-SW interface, and ultimately the implications for water quality and environmental health.

  4. Affinity of the interface between hydroxyapatite (0001) and titanium (0001) surfaces: a first-principles investigation.

    PubMed

    Sun, Jin P; Dai, Jianhong; Song, Yan; Wang, You; Yang, Rui

    2014-12-10

    A basic understanding of the affinity between the hydroxyapatite (HA) and α-Ti surfaces is obtained through electronic structure calculations by first-principles method. The surface energies of HA(0001), HA (011̅0), HA (101̅1), and Ti(0001) surfaces have been calculated. The HA(0001) presents the most thermodynamically stable of HA. The HA/Ti interfaces were constructed by two kinds of interface models, the single interface (denoted as SI) and the double-interface (denoted as DI). Two methods, the full relaxation and the UBER, were applied to determine the interfacial separation and the atomic arrangement in the interfacial zone. The works of adhesion of interfaces with various stoichiometric HA surfaces were evaluated. For the HA(0001)/Ti(0001) interfaces, the work of adhesion is strongly dependent on the chemical environment of the HA surface. The values are -2.33, -1.52, and -0.80 J/m(2) for the none-, single-, and double-Ca terminated HA/Ti interfaces, respectively. The influence of atomic relaxation on the work of adhesion and interface separation is discussed. Full relaxation results include -1.99 J/m(2) work of adhesion and 0.220 nm separation between HA and Ti for the DI of 1-Ca-HA/Ti interface, while they are -1.14 J/m(2) and 0.235 nm by partial relaxation. Analysis of electronic structure reveals that charge transfer between HA and Ti slabs occurs during the formation of the HA/Ti interface. The transfer generates the Ti-O or Ti-Ca bonds across the interface and drives the HA/Ti interface system to metallic characteristic. The energetically favorable interfaces are formed when the outmost layer of HA comprises more O atoms at the interface.

  5. Interaction of poly(ethylene-glycols) with air-water interfaces and lipid monolayers: investigations on surface pressure and surface potential.

    PubMed Central

    Winterhalter, M; Bürner, H; Marzinka, S; Benz, R; Kasianowicz, J J

    1995-01-01

    We have characterized the surface activity of different-sized poly(ethylene-glycols) (PEG; M(r) 200-100,000 Da) in the presence or absence of lipid monolayers and over a wide range of bulk PEG concentrations (10(-8)-10% w/v). Measurements of the surface potential and surface pressure demonstrate that PEGs interact with the air-water and lipid-water interfaces. Without lipid, PEG added either to the subphase or to the air-water interface forms relatively stable monolayers. Except for very low molecular weight polymers (PEGs < 1000 Da), low concentrations of PEG in the subphase (between 10(-5) and 10(-4)% w/v) increase the surface potential from zero (with respect to the potential of a pure air-water interface) to a plateau value of approximately 440 mV. At much higher polymer concentrations, > 10(-1)% (w/v), depending on the molecular weight of the PEG and corresponding to the concentration at which the polymers in solution are likely to overlap, the surface potential decreases. High concentrations of PEG in the subphase cause a similar decrease in the surface potential of densely packed lipid monolayers spread from either diphytanoyl phosphatidylcholine (DPhPC), dipalmitoyl phosphatidylcholine (DPPC), or dioleoyl phosphatidylserine (DOPS). Adding PEG as a monolayer at the air-water interface also affects the surface activity of DPhPC or DPPC monolayers. At low lipid concentration, the surface pressure and potential are determined by the polymer. For intermediate lipid concentrations, the surface pressure-area and surface potential-area isotherms show that the effects due to lipid and PEG are not always additive and that the polymer's effect is distinct for the two lipids. When PEG-lipid-mixed monolayers are compressed to surface pressures greater than the collapse pressure for a PEG monolayer, the surface pressure-area and surface potential-area isotherms approach that of the lipid alone, suggesting that for this experimental condition PEG is expelled from the

  6. Application of interface waves for near surface damage detection in hybrid structures

    NASA Astrophysics Data System (ADS)

    Jahanbin, M.; Santhanam, S.; Ihn, J.-B.; Cox, A.

    2017-04-01

    Guided waves are acoustic waves that are guided by boundaries. Depending on the structural geometry, guided waves can either propagate between boundaries, known as plate waves, or propagate on the surface of the objects. Many different types of surface waves exist based on the material property of the boundary. For example Rayleigh wave in solid - air, Scholte wave in solid - liquid, Stoneley in solid - solid interface and many other different forms like Love wave on inhomogeneous surfaces, creeping waves, etc. This research work is demonstrating the application of surface and interface waves for detection of interfacial damages in hybrid bonded structures.

  7. Microbes at Surface-Air Interfaces: The Metabolic Harnessing of Relative Humidity, Surface Hygroscopicity, and Oligotrophy for Resilience

    PubMed Central

    Stone, Wendy; Kroukamp, Otini; Korber, Darren R.; McKelvie, Jennifer; Wolfaardt, Gideon M.

    2016-01-01

    The human environment is predominantly not aqueous, and microbes are ubiquitous at the surface-air interfaces with which we interact. Yet microbial studies at surface-air interfaces are largely survival-oriented, whilst microbial metabolism has overwhelmingly been investigated from the perspective of liquid saturation. This study explored microbial survival and metabolism under desiccation, particularly the influence of relative humidity (RH), surface hygroscopicity, and nutrient availability on the interchange between these two phenomena. The combination of a hygroscopic matrix (i.e., clay or 4,000 MW polyethylene glycol) and high RH resulted in persistent measurable microbial metabolism during desiccation. In contrast, no microbial metabolism was detected at (a) hygroscopic interfaces at low RH, and (b) less hygroscopic interfaces (i.e., sand and plastic/glass) at high or low RH. Cell survival was conversely inhibited at high RH and promoted at low RH, irrespective of surface hygroscopicity. Based on this demonstration of metabolic persistence and survival inhibition at high RH, it was proposed that biofilm metabolic rates might inversely influence whole-biofilm resilience, with ‘resilience’ defined in this study as a biofilm’s capacity to recover from desiccation. The concept of whole-biofilm resilience being promoted by oligotrophy was supported in desiccation-tolerant Arthrobacter spp. biofilms, but not in desiccation-sensitive Pseudomonas aeruginosa biofilms. The ability of microbes to interact with surfaces to harness water vapor during desiccation was demonstrated, and potentially to harness oligotrophy (the most ubiquitous natural condition facing microbes) for adaptation to desiccation. PMID:27746774

  8. Comparison of the effects of cylindrical correction with and without iris recognition technology in wavefront laser-assisted in situ keratomileusis.

    PubMed

    Wang, Tsung-Jen; Lin, Yu-Huang; Chang, David C-K; Chou, Hsiu-Chu; Wang, I-Jong

    2012-04-01

      To analyse the magnitude of cylindrical corrections over which cyclotorsion compensation with iris recognition (IR) technology is beneficial during wavefront laser-assisted in situ keratomileusis.   A retrospectively comparative case series.   Fifty-four eyes that underwent wavefront laser-assisted in situ keratomileusis without IR (non-IR group) and 53 eyes that underwent wavefront laser-assisted in situ keratomileusis with IR (IR group) were recruited.   Subgroup analysis based on baseline astigmatism were: a low degree of astigmatism (≥1.00 D to <2.00 D), a moderate degree of astigmatism (≥2.00 D to <3.00 D) and a high degree of astigmatism (≥3.00 D).   Vector and non-vector analyses were used for comparison.   The mean cylinder was -1.89 ± 0.76 D in the non-IR group and -2.00 ± 0.77 D in the IR group. Postoperatively, 38 eyes (74.50%) in the IR group and 31 eyes (57.50%) in the non-IR group were within ± 0.50 D of the target induced astigmatism vector (P = 0.063). The difference vector was 0.49 ± 0.28 in the IR group and 0.63 ± 0.40 in the non-IR group (P = 0.031). In the analysis of subgroups, the magnitude of error was significantly lower in the moderate IR subgroup than that of the moderate non-IR subgroup (P = 0.034). Furthermore, the moderate IR subgroup had a lower mean difference vector (P = 0.0078) and a greater surgically induced astigmatism (P = 0.036) than those of the moderate non-IR group.   Wavefront laser-assisted in situ keratomileusis for the treatment of astigmatism using IR technology was effective and accurate for the treatment of myopic astigmatism. © 2011 The Authors. Clinical and Experimental Ophthalmology © 2011 Royal Australian and New Zealand College of Ophthalmologists.

  9. [Hyperopic Laser-in-situ-Keratomileusis after trifocal intraocular lens implantation : Aberration-free femto-Laser-in-situ-Keratomileusis treatment after implantation of a diffractive, multifocal, toric intraocular lens-case analysis].

    PubMed

    Hemkeppler, E; Böhm, M; Kohnen, T

    2018-05-29

    A 52-year-old highly myopic female patient was implanted with a multifocal, diffractive, toric intraocular lens because of the wish to be independent of eyeglasses. Despite high-quality, extensive preoperative examinations, a hyperopic refractive error remained postoperatively, which led to the patient's dissatisfaction. This error was treated with Laser-in-situ-Keratomileusis (LASIK). After corneal LASIK treatment and implantation of a diffractive toric multifocal intraocular lens the patient showed a good postoperative visual result without optical phenomena.

  10. Dust Tolerant Commodity Transfer Interface Mechanisms for Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Townsend, Ivan I.; Mueller, Robert P.; Tamasy, Gabor J.

    2014-01-01

    Regolith is present on most planetary surfaces such as Earth's moon, Mars, and Asteroids. If human crews and robotic machinery are to operate on these regolith covered surfaces, they must face the consequences of interacting with regolith fines which consist of particles below 100 microns in diameter down to as small as submicron scale particles. Such fine dust will intrude into mechanisms and interfaces causing a variety of problems such as contamination of clean fluid lines, jamming of mechanisms and damaging connector seals and couplings. Since multiple elements must be assembled in space for system level functionality, it will be inevitable that interfaces will be necessary for structural connections, and to pass commodities such as cryogenic liquid propellants, purge and buffer gases, water, breathing air, pressurizing gases, heat exchange fluids, power and data. When fine regolith dust is present in the environment it can be lofted into interfaces where it can compromise the utility of the interface by preventing the connections from being successfully mated, or by inducing fluid leaks or degradation of power and data transmission. A dust tolerant, hand held "quick-disconnect" cryogenic fluids connector housing has been developed at NASA KSC which can be used by astronaut crews to connect flex lines that will transfer propellants and other useful fluids to the end user. In addition, a dust tolerant, automated, cryogenic fluid, multiple connector, power and data interface mechanism prototype has been developed, fabricated and demonstrated by NASA at Kennedy Space Center (KSC). The design and operation of these prototypes are explained and discussed.

  11. Effects of surface hydroxylation on adhesion at zinc/silica interfaces.

    PubMed

    Le, Ha-Linh Thi; Goniakowski, Jacek; Noguera, Claudine; Koltsov, Alexey; Mataigne, Jean-Michel

    2018-06-06

    The weak interaction between zinc and silica is responsible for the poor performance of anti-corrosive galvanic zinc coatings on modern advanced high-strength steels, which are fundamental in the automotive industry, and important for rail transport, shipbuilding, and aerospace. With the goal of identifying possible methods for its improvement, we report an ab initio study of the effect of surface hydroxylation on the adhesion characteristics of model zinc/β-cristobalite interfaces, representative of various surface hydroxylation/hydrogenation conditions. We show that surface silanols resulting from dissociative water adsorption at the most stable stoichiometric (001) and (111) surfaces prevent strong zinc-silica interactions. However, dehydrogenation of such interfaces produces oxygen-rich zinc/silica contacts with excellent adhesion characteristics. These are due to partial zinc oxidation and the formation of strong iono-covalent Zn-O bonds between zinc atoms and the under-coordinated excess anions, remnant of the hydroxylation layer. Interestingly, these interfaces appear as the most thermodynamically stable in a wide range of realistic oxygen-rich and hydrogen-lean environments. We also point out that the partial oxidation of zinc atoms in direct contact with the oxide substrate may somewhat weaken the cohesion in the zinc deposit itself. This fundamental analysis of the microscopic mechanisms responsible for the improved zinc wetting on pre-hydroxylated silica substrates provides useful guidelines towards practical attempts to improve adhesion.

  12. Surface currents on the plasma-vacuum interface in MHD equilibria

    NASA Astrophysics Data System (ADS)

    Hanson, James D.

    2016-10-01

    The VMEC non-axisymmetric MHD equilibrium code can compute free-boundary equilibria. Since VMEC assumes that magnetic fields within the plasma form closed and nested flux surfaces, the plasma-vacuum interface is a flux surface, and the total magnetic field there has no normal component. VMEC imposes this condition of zero normal field using the potential formulation of Merkel, and solves a Neumann problem for the magnetic potential in the exterior region. This boundary condition necessarily admits the possibility of a surface current on the plasma-vacuum interface. While this current may be small in MHD equilibrium, this current may be readily computed in terms of a magnetic potential in both the interior and exterior regions. Examples of the surface current for VMEC equilibria will be shown. This material is based upon work supported by Auburn University and the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Number DE-FG02-03ER54692.

  13. Goblet cell response after photorefractive keratectomy and laser in situ keratomileusis

    PubMed Central

    Ryan, Denise S.; Bower, Kraig S.; Sia, Rose K.; Shatos, Marie A.; Howard, Robin S.; Mines, Michael J.; Stutzman, Richard D.; Dartt, Darlene A.

    2017-01-01

    PURPOSE To determine whether patients without dry eye preoperatively have an altered conjunctival goblet cell density and mucin secretion postoperatively and to explore what factors affect changes in goblet cell density and mucin secretion. SETTING The former Walter Reed Army Medical Center, Washington, DC, USA. DESIGN Prospective nonrandomized clinical study. METHODS Impression cytology was used to determine conjunctival goblet cell density before and 1 week, 1 month, and 3 months after photorefractive keratectomy (PRK) or laser in situ keratomileusis (LASIK). The McMonnies questionnaire, Schirmer test, tear breakup time, corneal sensitivity, rose bengal staining, and computerized videokeratoscopy were also performed to assess tear-film and ocular-surface health. RESULTS The ratio of goblet cell to total cells changed postoperatively from baseline in both groups (P < .001). The most significant change was a median 29% decrease 1 month postoperatively. However, there were no significant differences between groups over time (P = .772). The ratio of filled goblet cell to total goblet cell did not change significantly over the same time period (P = .128), and there were no significant differences between the PRK group and the LASIK group over time (P = .282). CONCLUSIONS Patients without apparent dry eye had altered conjunctival goblet cell population after PRK or LASIK. The conjunctival goblet cell population tended to decrease in the early postoperative period after either surgery and was most affected by preoperative goblet cell density. The changes in the tear film and ocular surface did not seem to affect goblet cell mucin secretion after either procedure. PMID:27531295

  14. Surface- and interface-engineered heterostructures for solar hydrogen generation

    NASA Astrophysics Data System (ADS)

    Chen, Xiangyan; Li, Yanrui; Shen, Shaohua

    2018-04-01

    Photoelectrochemical (PEC) water splitting based on semiconductor photoelectrodes provides a promising platform for reducing environmental pollution and solving the energy crisis by developing clean, sustainable and environmentally friendly hydrogen energy. In this context, metal oxides with their advantages including low cost, good chemical stability and environmental friendliness, have attracted extensive attention among the investigated candidates. However, the large bandgap, poor charge transfer ability and high charge recombination rate limit the PEC performance of metal oxides as photoelectrodes. To solve this limitation, many approaches toward enhanced PEC water splitting performance, which focus on surface and interface engineering, have been presented. In this topical review, we concentrate on the heterostructure design of some typical metal oxides with narrow bandgaps (e.g. Fe2O3, WO3, BiVO4 and Cu2O) as photoelectrodes. An overview of the surface- and interface-engineered heterostructures, including semiconductor heterojunctions, surface protection, surface passivation and cocatalyst decoration, will be given to introduce the recent advances in metal oxide heterostructures for PEC water splitting. This article aims to provide fundamental references and principles for designing metal oxide heterostructures with high activity and stability as photoelectrodes for PEC solar hydrogen generation.

  15. Outcomes of Retreatment after Aborted Laser In Situ Keratomileusis due to Flap Complications

    PubMed Central

    Al-Mezaine, Hani S.; Al-Amro, Saleh A.; Al-Fadda, Abdulaziz; Al-Obeidan, Saleh

    2011-01-01

    Purpose: To determine the refractive outcomes and complications of retreatment after aborted primary laser in situ keratomileusis (LASIK) due to flap complications. Materials and Methods: This retrospective study evaluated 50 retreated eyes that had flap complications during primary LASIK at the Eye Consultants Center in Riyadh, Saudi Arabia. Data were analyzed for patients with at least 3 months follow-up post retreatment. Results: Thirty-three eyes of 31 consecutive patients with 3 months follow-up or later post retreatment were included. The primary LASIK was aborted due to incomplete flaps in 22 eyes (66.7%), buttonhole flaps in 7 eyes (21.2%), free partial flaps in 3 eyes (9.1%), and a free complete flap in 1 eye (3.0%). Twenty-two eyes (66.7%) were retreated with LASIK, and 11 eyes (33.3%) were retreated with surface ablation. The mean spherical equivalent (SE) was –0.23 ± 0.72 D, the mean astigmatism was –0.65 ± 0.89 D, and the mean loss of the best corrected visual acuity (BCVA) was 0.78 lines at the final postoperative visit. At the last postoperative visit, 20/30 or better BCVA was achieved in 90.1% of eyes that underwent retreatment with LASIK and in 91% of eyes that were retreated with surface ablation. There was no statistical difference in postoperative SE between eyes retreated with LASIK and eyes retreated with surface ablation (P = 0.610). There was no statistical difference in postoperative BCVA between eyes retreated with LASIK and those retreated with surface ablation (P = 0.756). There were no intraoperative complications and no eyes required a second retreatment. Conclusion: Creation of a flap after a previous intraoperative flap complication was not associated with any complications. The refractive outcomes of retreatment with LASIK or surface ablation were comparable and reasonably favorable. PMID:21887080

  16. Outcomes of Retreatment after Aborted Laser In Situ Keratomileusis due to Flap Complications.

    PubMed

    Al-Mezaine, Hani S; Al-Amro, Saleh A; Al-Fadda, Abdulaziz; Al-Obeidan, Saleh

    2011-07-01

    To determine the refractive outcomes and complications of retreatment after aborted primary laser in situ keratomileusis (LASIK) due to flap complications. This retrospective study evaluated 50 retreated eyes that had flap complications during primary LASIK at the Eye Consultants Center in Riyadh, Saudi Arabia. Data were analyzed for patients with at least 3 months follow-up post retreatment. Thirty-three eyes of 31 consecutive patients with 3 months follow-up or later post retreatment were included. The primary LASIK was aborted due to incomplete flaps in 22 eyes (66.7%), buttonhole flaps in 7 eyes (21.2%), free partial flaps in 3 eyes (9.1%), and a free complete flap in 1 eye (3.0%). Twenty-two eyes (66.7%) were retreated with LASIK, and 11 eyes (33.3%) were retreated with surface ablation. The mean spherical equivalent (SE) was -0.23 ± 0.72 D, the mean astigmatism was -0.65 ± 0.89 D, and the mean loss of the best corrected visual acuity (BCVA) was 0.78 lines at the final postoperative visit. At the last postoperative visit, 20/30 or better BCVA was achieved in 90.1% of eyes that underwent retreatment with LASIK and in 91% of eyes that were retreated with surface ablation. There was no statistical difference in postoperative SE between eyes retreated with LASIK and eyes retreated with surface ablation (P = 0.610). There was no statistical difference in postoperative BCVA between eyes retreated with LASIK and those retreated with surface ablation (P = 0.756). There were no intraoperative complications and no eyes required a second retreatment. Creation of a flap after a previous intraoperative flap complication was not associated with any complications. The refractive outcomes of retreatment with LASIK or surface ablation were comparable and reasonably favorable.

  17. Thermodynamics of surface defects at the aspirin/water interface

    NASA Astrophysics Data System (ADS)

    Schneider, Julian; Zheng, Chen; Reuter, Karsten

    2014-09-01

    We present a simulation scheme to calculate defect formation free energies at a molecular crystal/water interface based on force-field molecular dynamics simulations. To this end, we adopt and modify existing approaches to calculate binding free energies of biological ligand/receptor complexes to be applicable to common surface defects, such as step edges and kink sites. We obtain statistically accurate and reliable free energy values for the aspirin/water interface, which can be applied to estimate the distribution of defects using well-established thermodynamic relations. As a show case we calculate the free energy upon dissolving molecules from kink sites at the interface. This free energy can be related to the solubility concentration and we obtain solubility values in excellent agreement with experimental results.

  18. Surface vibrational structure at alkane liquid/vapor interfaces

    NASA Astrophysics Data System (ADS)

    Esenturk, Okan; Walker, Robert A.

    2006-11-01

    Broadband vibrational sum frequency spectroscopy (VSFS) has been used to examine the surface structure of alkane liquid/vapor interfaces. The alkanes range in length from n-nonane (C9H20) to n-heptadecane (C17H36), and all liquids except heptadecane are studied at temperatures well above their bulk (and surface) freezing temperatures. Intensities of vibrational bands in the CH stretching region acquired under different polarization conditions show systematic, chain length dependent changes. Data provide clear evidence of methyl group segregation at the liquid/vapor interface, but two different models of alkane chain structure can predict chain length dependent changes in band intensities. Each model leads to a different interpretation of the extent to which different chain segments contribute to the anisotropic interfacial region. One model postulates that changes in vibrational band intensities arise solely from a reduced surface coverage of methyl groups as alkane chain length increases. The additional methylene groups at the surface must be randomly distributed and make no net contribution to the observed VSF spectra. The second model considers a simple statistical distribution of methyl and methylene groups populating a three dimensional, interfacial lattice. This statistical picture implies that the VSF signal arises from a region extending several functional groups into the bulk liquid, and that the growing fraction of methylene groups in longer chain alkanes bears responsibility for the observed spectral changes. The data and resulting interpretations provide clear benchmarks for emerging theories of molecular structure and organization at liquid surfaces, especially for liquids lacking strong polar ordering.

  19. Laser-assisted subepithelial keratectomy versus epipolis laser in situ keratomileusis for myopia: a meta-analysis of clinical outcomes.

    PubMed

    Wen, Daizong; Huang, Jinhai; Li, Xuexi; Savini, Giacomo; Feng, Yifan; Lin, Qiaoya; Wang, Qinmei

    2014-01-01

    To identify possible differences between laser-assisted subepithelial keratectomy and epipolis laser in situ keratomileusis for myopia. Meta-analysis. Patients from previously reported comparative studies treated by laser-assisted subepithelial keratectomy versus epipolis laser in situ keratomileusis. A systematic literature retrieval was conducted in the MEDLINE, EMBASE and Cochrane Library, up to January 2013. The included studies were subject to a meta-analysis using a RevMan 5.1 version software. The differences in efficacy, predictability, safety, epithelial healing time, pain perception and corneal haze formation. A total of six studies involving 517 eyes were included. There were no statistically significant differences in the final proportion of eyes with uncorrected visual acuity of 6/6 or better (P = 0.43), mean postoperative uncorrected visual acuity (P = 0.53), final proportion of eyes with refraction within ± 0.50 D (P = 0.62) and ± 1.00 D (P = 0.16) of target, final proportion of eyes losing two or more lines of best spectacle-corrected visual acuity (P = 1.00), healing time of corneal epithelium (P = 0.58), final proportion of eyes with corneal haze grade 0.5 or higher (P = 0.26), and corneal haze levels (P = 0.36). There were no significant differences in efficacy, predictability, safety, epithelial healing time and corneal haze formation between laser-assisted subepithelial keratectomy and epipolis laser in situ keratomileusis, but the result was limited. Future more data are required to detect the potential differences between the two procedures. © 2013 Royal Australian and New Zealand College of Ophthalmologists.

  20. Development of a Graphical User Interface to Visualize Surface Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckley, R.L.

    1998-07-13

    Thousands of worldwide observing stations provide meteorological information near the earth's surface as often as once each hour. This surface data may be plotted on geographical maps to provide the meteorologist useful information regarding weather patterns for a region of interest. This report describes the components and applications of a graphical user interface which have been developed to visualize surface observations at any global location and time of interest.

  1. Effect of surface charge density on the affinity of oxide nanoparticles for the vapor-water interface.

    PubMed

    Brown, Matthew A; Duyckaerts, Nicolas; Redondo, Amaia Beloqui; Jordan, Inga; Nolting, Frithjof; Kleibert, Armin; Ammann, Markus; Wörner, Hans Jakob; van Bokhoven, Jeroen A; Abbas, Zareen

    2013-04-23

    Using in-situ X-ray photoelectron spectroscopy at the vapor-water interface, the affinity of nanometer-sized silica colloids to adsorb at the interface is shown to depend on colloid surface charge density. In aqueous suspensions at pH 10 corrected Debye-Hückel theory for surface complexation calculations predict that smaller silica colloids have increased negative surface charge density that originates from enhanced screening of deprotonated silanol groups (≡Si-O(-)) by counterions in the condensed ion layer. The increased negative surface charge density results in an electrostatic repulsion from the vapor-water interface that is seen to a lesser extent for larger particles that have a reduced charge density in the XPS measurements. We compare the results and interpretation of the in-situ XPS and corrected Debye-Hückel theory for surface complexation calculations with traditional surface tension measurements. Our results show that controlling the surface charge density of colloid particles can regulate their adsorption to the interface between two dielectrics.

  2. Technique for converting non-conforming hexahedral-to-hexahedral interfaces into conforming interfaces

    DOEpatents

    Staten, Matthew L.; Shepherd, Jason F.; Ledoux, Frank; Shimada, Kenji; Merkley, Karl G.; Carbonera, Carlos

    2013-03-05

    A technique for conforming an interface between a first mesh and a second mesh is disclosed. A first interface surface in the first mesh and a second interface surface in the second mesh residing along the interface are identified. The first and second interface surfaces are initially non-conforming along the interface. Chords within the first and second interface surfaces that fall within a threshold separation distance of each other are paired. Sheets having chords that reside within the first or second interface surfaces are recursively inserted into or extracted from one or both of the first and second meshes until all remaining chords within the first interface surface are paired with corresponding chords in the second interface surface and all remaining chords within the second interface surface are paired with corresponding chords in the first interface surface.

  3. Mobile interfaces: Liquids as a perfect structural material for multifunctional, antifouling surfaces

    DOE PAGES

    Grinthal, Alison; Aizenberg, Joanna

    2013-10-14

    Life creates some of its most robust, extreme surface materials not from solids but from liquids: a purely liquid interface, stabilized by underlying nanotexture, makes carnivorous plant leaves ultraslippery, the eye optically perfect and dirt-resistant, our knees lubricated and pressure-tolerant, and insect feet reversibly adhesive and shape-adaptive. Novel liquid surfaces based on this idea have recently been shown to display unprecedented omniphobic, self-healing, anti-ice, antifouling, optical, and adaptive properties. In this Perspective, we present a framework and a path forward for developing and designing such liquid surfaces into sophisticated, versatile multifunctional materials. Drawing on concepts from solid materials design andmore » fluid dynamics, we outline how the continuous dynamics, responsiveness, and multiscale patternability of a liquid surface layer can be harnessed to create a wide range of unique, active interfacial functions-able to operate in harsh, changing environments-not achievable with static solids. We discuss how, in partnership with the underlying substrate, the liquid surface can be programmed to adaptively and reversibly reconfigure from a defect-free, molecularly smooth, transparent interface through a range of finely tuned liquid topographies in response to environmental stimuli. In conclusion, with nearly unlimited design possibilities and unmatched interfacial properties, liquid materials-as long-term stable interfaces yet in their fully liquid state-may potentially transform surface design everywhere from medicine to architecture to energy infrastructure.« less

  4. Dry Eye Post-Laser-Assisted In Situ Keratomileusis: Major Review and Latest Updates

    PubMed Central

    Spierer, Oriel

    2018-01-01

    Dry eye is one of the most common complications occurring after laser-assisted in situ keratomileusis (LASIK), with virtually all patients experiencing some degree of postoperative dry eye symptoms. Enhanced understanding of the pathophysiology and mechanism of dry eye development in addition to preoperative screening of patients who are prone to dry eye is essential for better patient satisfaction and for improving short-term visual outcome postoperatively. This article reviews the latest studies published on LASIK-associated dry eye, including epidemiology, pathophysiology, risk factors, preoperative assessment, and management. PMID:29619255

  5. Surface Cracking and Interface Reaction Associated Delamination Failure of Thermal and Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Eldridge, Jeffrey I.; Lee, Kang N.; Miller, Robert A.

    2003-01-01

    In this paper, surface cracking and interface reactions of a BSAS coating and a multi-layer ZTO2-8wt%Y2O3 and mullite/BSAS/Si thermal and environmental barrier coating system on SiC/SiC ceramic matrix composites were characterized after long-term combined laser thermal gradient and furnace cyclic tests in a water vapor containing environment. The surface cracking was analyzed based on the coating thermal gradient sintering behavior and thermal expansion mismatch stress characteristics under the thermal cyclic conditions. The interface reactions, which were largely enhanced by the coating surface cracking in the water vapor environment, were investigated in detail, and the reaction phases were identified for the coating system after the long- term exposure. The accelerated coating delamination failure was attributed to the increased delamination driving force under the thermal gradient cyclic loading and the reduced interface adhesion due to the detrimental interface reactions.

  6. Chronic dry eye in photorefractive keratectomy and laser in situ keratomileusis: Manifestations, incidence, and predictive factors.

    PubMed

    Bower, Kraig S; Sia, Rose K; Ryan, Denise S; Mines, Michael J; Dartt, Darlene A

    2015-12-01

    To evaluate dry-eye manifestations after photorefractive keratectomy (PRK) and laser in situ keratomileusis (LASIK) and determine the incidence and predictive factors of chronic dry eye using a set of dry-eye criteria. Walter Reed Army Medical Center, Washington, DC, USA. Prospective, non-randomized clinical study. Dry-eye evaluation was performed before and after surgery. Main outcome measures included dry-eye manifestations, incidence, and predictive factors of chronic dry eye. This study comprised 143 active-duty U.S. Army personnel, ages 29.9 ± 5.2 years, with myopia or myopic astigmatism (manifest spherical equivalent -3.83 ± 1.96 diopters) having PRK or LASIK. Schirmer scores, corneal sensitivity, ocular surface staining, surface regularity index, and responses to dry-eye questionnaire significantly changed over time after PRK. After LASIK, significant changes were observed in tear breakup time, corneal sensitivity, ocular surface staining, and responses to questionnaire. Twelve months postoperatively, 5.0% of PRK and 0.8% of LASIK participants developed chronic dry eye. Regression analysis showed that pre-operatively lower Schirmer score will significantly influence development of chronic dry eye after PRK, whereas preoperatively, lower Schirmer score or higher ocular surface staining score will significantly influence the occurrence of chronic dry eye after LASIK. Chronic dry eye was uncommon after PRK and LASIK. Ocular surface and tear-film characteristics during pre-operative examination might help to predict chronic dry-eye development in PRK and LASIK. The authors have no financial interest in any product, drug, instrument, or equipment discussed in this manuscript. Copyright © 2015 ASCRS and ESCRS. All rights reserved.

  7. Surface Cracking and Interface Reaction Associated Delamination Failure of Thermal and Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Choi, Sung R.; Eldridge, Jeffrey I.; Lee, Kang N.; Miller, Robert A.

    2003-01-01

    In this paper, surface cracking and interface reactions of a BSAS coating and a multi-layer ZrO2-8wt%Y2O3 and mullite/BSAS/Si thermal and environmental barrier coating system on SiC/SiC ceramic matrix composites were characterized after long-term combined laser thermal gradient and furnace cyclic tests in a water vapor containing environment. The surface cracking was analyzed based on the coating thermal gradient sintering behavior and thermal expansion mismatch stress characteristics under the thermal cyclic conditions. The interface reactions, which were largely enhanced by the coating surface cracking in the water vapor environment, were investigated in detail, and the reaction phases were identified for the coating system after the long-term exposure. The accelerated coating delamination failure was attributed to the increased delamination driving force under the thermal gradient cyclic loading and the reduced interface adhesion due to the detrimental interface reactions.

  8. Design of high strength polymer metal interfaces by laser microstructured surfaces

    NASA Astrophysics Data System (ADS)

    Steinert, P.; Dittes, A.; Schimmelpfennig, R.; Scharf, I.; Lampke, T.; Schubert, A.

    2018-06-01

    In the areas of automotive, aeronautics and civil structures, lightweight construction is a current and a future need. Thus, multi material design has rapidly grown in importance, especially hybrid materials based on fiber reinforced plastics and aluminum offer great potential. Therefore, mechanical interlocking is a convenient way of designing the interface. Laser structuring is already used to generate a variety of surface topographies leading to high bond strengths. This paper investigates different laser structures aiming on highest joint strengths for aluminum and glass fiber reinforced polyamide 6 interfaces. Self-organizing pin structures comprised by additional micro/nano features as well as drilled hole structures, both ranging on the micrometer range, are compared to corundum blasting as a standard method for surface conditioning. For the presented surface structures, thermal joining and ultrasonic assisted joining are regarded towards their potential for an optimum joint design.

  9. Effect of surface roughness of hydroxyapatite-coated titanium on the bone-implant interface shear strength.

    PubMed

    Hayashi, K; Inadome, T; Tsumura, H; Nakashima, Y; Sugioka, Y

    1994-11-01

    We have investigated the bone-implant interface shear strength of hydroxyapatite (HA)-coated Ti-6Al-4V (HA-coating A) (roughness average, Ra = 3.4 +/- 0.5 microns) and HA-coated Ti-6Al-4V with a rougher surface (HA-coating B) (Ra = 8.4 +/- 1.8 microns). There was no significant difference between HA-coating A and HA-coating B implants with respect to the bone-implant interface shear strength as determined in push-out tests using the transcortical model in adult dogs. The bone-implant interface shear strength of bead-coated porous Ti-6Al-4V was significantly greater than that of both HA-coating A and HA-coating B implants. The failure site, as determined by scanning electron microscopy, was the coating-substrate interface, not the coating-bone interface. This indicates a need to protect the HA coating from the direct shear forces. HA coating enhances early bone growth into the porous surface of the implant. Long-term fixation should depend on bone anchoring to this porous surface. Hydroxyapatite coatings must be developed which do not obstruct the pores of the surface of the implant.

  10. Diplopia after laser in situ keratomileusis (LASIK) in a patient with a history of strabismus.

    PubMed

    Heinmiller, Laura J; Wasserman, Barry N

    2013-02-01

    In patients with a history of strabismus, refractive surgery can result in decompensation of ocular alignment, with subsequent diplopia. Refractive surgery in the management of strabismus has been described, although it remains controversial. We present a young adult with past history of strabismus surgery and new-onset diplopia after refractive surgery. Binocular diplopia was treated surgically with laser in situ keratomileusis. Copyright © 2013 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.

  11. Polar Value Analysis of Low to Moderate Astigmatism with Wavefront-Guided Sub-Bowman Keratomileusis

    PubMed Central

    Zhang, Yu

    2017-01-01

    Purpose To evaluate the astigmatic outcomes of wavefront-guided sub-Bowman keratomileusis (WFG-SBK) for low to moderate myopic astigmatism. Methods This study enrolled 100 right eyes from 100 patients who underwent WFG-SBK for the correction of myopia and astigmatism. The polar value method was performed with anterior and posterior corneal astigmatism measured with Scheimpflug camera combined with Placido corneal topography (Sirius, CSO) and refractive astigmatism preoperatively and 1 month, 3 months, and 6 months postoperatively. Results Similar results for surgically induced astigmatism (SIA) and error of the procedure in both anterior corneal astigmatism (ACA) and total ocular astigmatism (TOA). There was a minor undercorrection of the cylinder in both ACA and TOA. Posterior corneal astigmatism (PCA) showed no significant change. Conclusions Wavefront-guided SBK could provide good astigmatic outcomes for the correction of low to moderate myopic astigmatism. The surgical effects were largely attributed to the astigmatic correction of the anterior corneal surface. Posterior corneal astigmatism remained unchanged even after WFG-SBK for myopic astigmatism. Polar value analysis can be used to guide adjustments to the treatment cylinder alongside a nomogram designed to optimize postoperative astigmatic outcomes in myopic WFG-SBK. PMID:28831306

  12. Incorporating contact angles in the surface tension force with the ACES interface curvature scheme

    NASA Astrophysics Data System (ADS)

    Owkes, Mark

    2017-11-01

    In simulations of gas-liquid flows interacting with solid boundaries, the contact line dynamics effect the interface motion and flow field through the surface tension force. The surface tension force is directly proportional to the interface curvature and the problem of accurately imposing a contact angle must be incorporated into the interface curvature calculation. Many commonly used algorithms to compute interface curvatures (e.g., height function method) require extrapolating the interface, with defined contact angle, into the solid to allow for the calculation of a curvature near a wall. Extrapolating can be an ill-posed problem, especially in three-dimensions or when multiple contact lines are near each other. We have developed an accurate methodology to compute interface curvatures that allows for contact angles to be easily incorporated while avoiding extrapolation and the associated challenges. The method, known as Adjustable Curvature Evaluation Scale (ACES), leverages a least squares fit of a polynomial to points computed on the volume-of-fluid (VOF) representation of the gas-liquid interface. The method is tested by simulating canonical test cases and then applied to simulate the injection and motion of water droplets in a channel (relevant to PEM fuel cells).

  13. Efficacy of punctal occlusion in management of dry eyes after laser in situ keratomileusis for myopia.

    PubMed

    Alfawaz, Abdullah M; Algehedan, Saeed; Jastaneiah, Sabah S; Al-Mansouri, Samir; Mousa, Ahmed; Al-Assiri, Abdullah

    2014-03-01

    To evaluate the effect of punctal plug use in preventing dry eye after laser in situ keratomileusis (LASIK). A randomized clinical trial at a tertiary eye care center, Riyadh, Saudi Arabia. Participants underwent LASIK for myopia in both eyes and a lower punctal occlusion in one eye only while the other eye served as control. Both eyes received the same postoperative medications except for lubricant duration (subject eye: four times per day for one week; control eye: four times per day for 6 months). Participants were evaluated at 1 week, 2, and 6 months after surgery for signs and symptoms of dry eye. The main outcome measures were visual acuity; ocular surface parameters; and Ocular Surface Disease Index questionnaire. Seventy-eight eyes of 39 patients were included in this study. The Ocular Surface Disease Index scores of eyes with punctal plugs were better at all follow-up visits, and the differences between both eyes were statistically significant (1 week, p < 0.0001; 2 months, p < 0.0001; 6 months, p = 0.008). At the final follow-up visit, the percentage of normal eyes was higher in eyes with punctal plugs for all ocular surface parameters (Schirmer 1 test, 94.9%; tear breakup time, 77.8%; punctate epithelial keratitis score, 71.8%) compared to eyes without occlusion (Schirmer 1 test, 92.3%; tear breakup time, 58.3%; punctate epithelial keratitis score, 53.8%); however, such differences were not statistically significant. Punctal plug insertion after LASIK surgeries may minimize the need for frequent lubricant application and hence improve patient satisfaction.

  14. Femtosecond-assisted laser in situ keratomileusis for consecutive hyperopia after radial keratotomy.

    PubMed

    Leccisotti, Antonio; Fields, Stefania V

    2015-08-01

    To evaluate femtosecond-assisted laser in situ keratomileusis (LASIK) for the treatment of hyperopic shift after radial keratotomy (RK). Private practice, Siena, Italy. Prospective case series. Eyes with a spherical equivalent (SE) of +1.0 diopters (D) to +4.0 D after RK with 6 or 8 incisions had LASIK. The flap (nominal thickness 130 μm) was created with a femtosecond laser (LDV Z2); the refractive ablation was performed with an excimer laser (217P). The flap was dissected in a centrifugal fashion along previous RK cuts. Eighteen eyes of 10 patients were treated. Preoperatively, the mean defocus equivalent was 3.13 diopters (D) ± 0.71 (SD); the corrected distance visual acuity (CDVA) was 0.09 ± 0.06 logMAR. At 9 months, the mean defocus equivalent was 0.51 ± 0.47 D (P < .05), with 13 eyes (72%) having 0.50 D or less of defocus equivalent and 16 eyes (89%) having 1.0 D or less of defocus equivalent. The mean CDVA was 0.04 ± 0.06 logMAR (P < .05). No lines of logMAR CDVA were lost. The mean uncorrected distance visual acuity was 0.11 ± 0.10 logMAR. The safety index was 1.11; the efficacy index was 0.97. No retreatments were performed. Flap complications were limited to an RK incision opening larger than 2 mm in 3 eyes and 1 case of a small, self-limiting epithelial ingrowth. Laser in situ keratomileusis with a low-energy femtosecond laser was a safe and effective approach to treat post-RK hyperopia, causing no relevant inflammation. Neither author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  15. Investigation of surface charge density on solid-liquid interfaces by modulating the electrical double layer.

    PubMed

    Moon, Jong Kyun; Song, Myung Won; Pak, Hyuk Kyu

    2015-05-20

    A solid surface in contact with water or aqueous solution usually carries specific electric charges. These surface charges attract counter ions from the liquid side. Since the geometry of opposite charge distribution parallel to the solid-liquid interface is similar to that of a capacitor, it is called an electrical double layer capacitor (EDLC). Therefore, there is an electrical potential difference across an EDLC in equilibrium. When a liquid bridge is formed between two conducting plates, the system behaves as two serially connected EDLCs. In this work, we propose a new method for investigating the surface charge density on solid-liquid interfaces. By mechanically modulating the electrical double layers and simultaneously applying a dc bias voltage across the plates, an ac electric current can be generated. By measuring the voltage drop across a load resistor as a function of bias voltage, we can study the surface charge density on solid-liquid interfaces. Our experimental results agree very well with the simple equivalent electrical circuit model proposed here. Furthermore, using this method, one can determine the polarity of the adsorbed state on the solid surface depending on the material used. We expect this method to aid in the study of electrical phenomena on solid-liquid interfaces.

  16. Angle-resolved photoemission spectroscopy studies of metallic surface and interface states of oxide insulators

    NASA Astrophysics Data System (ADS)

    Plumb, Nicholas C.; Radović, Milan

    2017-11-01

    Over the last decade, conducting states embedded in insulating transition metal oxides (TMOs) have served as gateways to discovering and probing surprising phenomena that can emerge in complex oxides, while also opening opportunities for engineering advanced devices. These states are commonly realized at thin film interfaces, such as the well-known case of LaAlO3 (LAO) grown on SrTiO3 (STO). In recent years, the use of angle-resolved photoemission spectroscopy (ARPES) to investigate the k-space electronic structure of such materials led to the discovery that metallic states can also be formed on the bare surfaces of certain TMOs. In this topical review, we report on recent studies of low-dimensional metallic states confined at insulating oxide surfaces and interfaces as seen from the perspective of ARPES, which provides a direct view of the occupied band structure. While offering a fairly broad survey of progress in the field, we draw particular attention to STO, whose surface is so far the best-studied, and whose electronic structure is probably of the most immediate interest, given the ubiquitous use of STO substrates as the basis for conducting oxide interfaces. The ARPES studies provide crucial insights into the electronic band structure, orbital character, dimensionality/confinement, spin structure, and collective excitations in STO surfaces and related oxide surface/interface systems. The obtained knowledge increases our understanding of these complex materials and gives new perspectives on how to manipulate their properties.

  17. Solid State Surfaces and Interfaces VIII

    NASA Astrophysics Data System (ADS)

    Pincik, Emil

    2014-09-01

    The conference SSSI VIII (November 25-28, 2013) was the 8th continuation of the series of the Solid State Surfaces and Interfaces conferences taking place usually in the Smolenice castle in the western part of the Slovak Republic. The event was organized by the following institutions of Slovak Republic: Institute of Physics of SAS Bratislava, Institute of Aurel Stodola of University of Žilina, and Faculty of Mathematics, Physics and Informatics of Comenius University Bratislava. More than 150 scientists of the three continents (Europe, Asia and Africa) participated on the event with almost 100 poster presentations. The representatives of all organizing institutions consider this event as very important for Middle Europe region.

  18. Synchrotron radiation and free-electron laser surface and interface spectroscopy and spectromicroscopy

    NASA Astrophysics Data System (ADS)

    Margaritondo, G.

    1994-07-01

    Experimental breakthroughs are having a big impact on surface and interface science. We review two series of results: first, photoemission experiments performed with high (0.1 micron) lateral resolution on the scanning instrument MAXIMUM at Wisconsin. These experiments revealed, in particular, core-level shifts from place to place on cleaved semiconductor surfaces, raising serious questions about a whole class of interface formation experiments. The second series of results applied for the first time a free-electron laser (the world's brightest Vanderbilt University infrared facility) to surface and interface physics. Using the FELIPE (FEL Internal PhotoEmission) technique, we measured heterojunction band discontinuities with a few meV accuracy. Much of the progress in surface and interface research has been both stimulated and made possible by parallel progress in instrumentation. From this point of view, I believe that we are witnessing a truly extraordinary period. Many of the experimental techniques in this field are based on synchrotron radiation: and we are seeing an increase in brightness of 4-5 orders of magnitude in this kind of sources, over a period of a few years! In a different spectral range, the free-electron laser is finally finding its way to applications, and with its unmprecedented infrared intensity opens up new research oppurtunities, complementary to those of synchrotron radiation. These developments have been analyzed by several recent reviews as far as instrumentation and potential applications are concerned.[1-3] It is now time to show that one can go beyond promises; my short review concentrates on real results, to show that the promises of the past are fast becoming reality. This is important, in particular, in light of the recent initial commissioning of the Advanced Light Source (ALS) in Berkeley, and of the forthcoming commissioning of ELETTRA in Trieste.

  19. Photochemically modified diamond-like carbon surfaces for neural interfaces.

    PubMed

    Hopper, A P; Dugan, J M; Gill, A A; Regan, E M; Haycock, J W; Kelly, S; May, P W; Claeyssens, F

    2016-01-01

    Diamond-like carbon (DLC) was modified using a UV functionalization method to introduce surface-bound amine and aldehyde groups. The functionalization process rendered the DLC more hydrophilic and significantly increased the viability of neurons seeded to the surface. The amine functionalized DLC promoted adhesion of neurons and fostered neurite outgrowth to a degree indistinguishable from positive control substrates (glass coated with poly-L-lysine). The aldehyde-functionalized surfaces performed comparably to the amine functionalized surfaces and both additionally supported the adhesion and growth of primary rat Schwann cells. DLC has many properties that are desirable in biomaterials. With the UV functionalization method demonstrated here it may be possible to harness these properties for the development of implantable devices to interface with the nervous system. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  20. A sharp interface method for compressible liquid–vapor flow with phase transition and surface tension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fechter, Stefan, E-mail: stefan.fechter@iag.uni-stuttgart.de; Munz, Claus-Dieter, E-mail: munz@iag.uni-stuttgart.de; Rohde, Christian, E-mail: Christian.Rohde@mathematik.uni-stuttgart.de

    The numerical approximation of non-isothermal liquid–vapor flow within the compressible regime is a difficult task because complex physical effects at the phase interfaces can govern the global flow behavior. We present a sharp interface approach which treats the interface as a shock-wave like discontinuity. Any mixing of fluid phases is avoided by using the flow solver in the bulk regions only, and a ghost-fluid approach close to the interface. The coupling states for the numerical solution in the bulk regions are determined by the solution of local two-phase Riemann problems across the interface. The Riemann solution accounts for the relevantmore » physics by enforcing appropriate jump conditions at the phase boundary. A wide variety of interface effects can be handled in a thermodynamically consistent way. This includes surface tension or mass/energy transfer by phase transition. Moreover, the local normal speed of the interface, which is needed to calculate the time evolution of the interface, is given by the Riemann solution. The interface tracking itself is based on a level-set method. The focus in this paper is the description of the two-phase Riemann solver and its usage within the sharp interface approach. One-dimensional problems are selected to validate the approach. Finally, the three-dimensional simulation of a wobbling droplet and a shock droplet interaction in two dimensions are shown. In both problems phase transition and surface tension determine the global bulk behavior.« less

  1. Cox proportional hazards model of myopic regression for laser in situ keratomileusis flap creation with a femtosecond laser and with a mechanical microkeratome.

    PubMed

    Lin, Meng-Yin; Chang, David C K; Hsu, Wen-Ming; Wang, I-Jong

    2012-06-01

    To compare predictive factors for postoperative myopic regression between laser in situ keratomileusis (LASIK) with a femtosecond laser and LASIK with a mechanical microkeratome. Nobel Eye Clinic, Taipei, Taiwan. Retrospective comparative study. Refractive outcomes were recorded 1 day, 1 week, and 1, 3, 6, 9, and 12 months after LASIK. A Cox proportional hazards model was used to evaluate the impact of the 2 flap-creating methods and other covariates on postoperative myopic regression. The femtosecond group comprised 409 eyes and the mechanical microkeratome group, 377 eyes. For both methods, significant predictors for myopic regression after LASIK included preoperative manifest spherical equivalent (P=.0001) and central corneal thickness (P=.027). Laser in situ keratomileusis with a mechanical microkeratome had a higher probability of postoperative myopic regression than LASIK with a femtosecond laser (P=.0002). After adjusting for other covariates in the Cox proportional hazards model, the cumulative risk for myopic regression with a mechanical microkeratome was higher than with a femtosecond laser 12 months postoperatively (P=.0002). With the definition of myopic regression as a myopic shift of 0.50 diopter (D) or more and residual myopia of -0.50 D or less, the risk estimate based on the mean covariates in all eyes in the femtosecond group and mechanical microkeratome group at 12 months was 43.6% and 66.9%, respectively. Laser in situ keratomileusis with a mechanical microkeratome had a higher risk for myopic regression than LASIK with a femtosecond laser through 12 months postoperatively. Copyright © 2012. Published by Elsevier Inc.

  2. The effect of multiple layers of linens on surface interface pressure: results of a laboratory study.

    PubMed

    Williamson, Rachel; Lachenbruch, Charlie; Vangilder, Catherine

    2013-06-01

    Underpads and layers of linens are frequently placed under patients who are incontinent, have other moisture-related issues, and/or are immobile and cannot reposition independently. Many of these patients are also at risk for pressure ulcers and placed on pressure-redistribution surfaces. The purpose of this study was to measure the effects of linens and incontinence pads on interface pressure. Interface sacral pressures were measured (mm Hg) using a mannequinlike pelvic indenter that has pressure transducers integrated into the unit and is covered with a soft flesh-like elastomer. The indenter was loaded to simulate a median-weight male (80 kg/176 lb), and the testing was performed at head-of bed (HOB) angles of 0°, 30°, and 45°. Two different surfaces, a high performance low-air-loss support (LAL) surface and a standard foam support surface, were used and covered with a fitted sheet (FS) only or a combination of the FS and various incontinence pads and transfer sheets. Linen combinations typically used for relatively immobile patients (n = 4), moisture management (n = 4), and moisture management and immobility (n = 1) were tested, as was the heavy use of linens/pads (nine layers, n = 1). All combinations were tested 10 times at HOB angles of 0°, 30°, and 45°. The highest pressure observed was recorded (peak pressure). Ninety five percent (95%) confidence interval (CI) surrounding the mean of the 10 trials for each combination was calculated using the t-distribution; differences between means for all surface combinations were determined using one-way ANOVA with follow-up Fisher Hayter test. Results indicated that each incontinence pad, transfer sheet, or combination of linens significantly increased the mean peak sacral pressure when compared to a single FS on both the low-air-loss surface and the foam surface, regardless of the head-of-bed angle. The magnitude of peak sacral interface pressure increase for the LAL surface at 30° head-of-bed angle was 20

  3. Extensive ionic partitioning in interfaces that membranous and biomimetic surfaces form with electrolytes: Antitheses of the gold-electrolyte interface

    NASA Astrophysics Data System (ADS)

    Chilcott, Terry; Guo, Chuan; Coster, Hans

    2013-04-01

    Maxwell-Wagner modeling of electrical impedance measurements of tetradecane-electrolyte systems yielded three interfacial layers between the tetradecane layer and the bulk electrolytes of concentration ranging from 1-300 mM KCl whereas the gold-electrolyte system yielded only one layer. The conductivity and thickness for the surface layer were orders of magnitude different from that expected for the Gouy-Chapman layer and did not reflect dependencies of the Debye length on concentration. Conductivity values for the three layers were less than those of the bulk electrolyte but exhibited a dependency on concentration similar to that expected for the bulk. Thickness values for the layers indicate an interface extending ~106 Å into the bulk electrolyte, which contrasts with the gold-electrolyte interface that extended only 20-30 Å into the bulk. Maxwell-Wagner characterizations of both interfaces were consistent with spatial distributions of ionic partitioning arising from the Born energy as determined by the dielectric properties of the substrates and electrolyte. The distributions for the membranous and silicon interfaces were similar but the antitheses of that for the gold interface.

  4. Soil Moisture: The Hydrologic Interface Between Surface and Ground Waters

    NASA Technical Reports Server (NTRS)

    Engman, Edwin T.

    1997-01-01

    A hypothesis is presented that many hydrologic processes display a unique signature that is detectable with microwave remote sensing. These signatures are in the form of the spatial and temporal distributions of surface soil moisture. The specific hydrologic processes that may be detected include groundwater recharge and discharge zones, storm runoff contributing areas, regions of potential and less than potential evapotranspiration (ET), and information about the hydrologic properties of soils. In basin and hillslope hydrology, soil moisture is the interface between surface and ground waters.

  5. Nerve growth factor concentration and implications in photorefractive keratectomy vs laser in situ keratomileusis.

    PubMed

    Lee, Hyung Keun; Lee, Kyung Sub; Kim, Hyeon Chang; Lee, Sung Ho; Kim, Eung Kweon

    2005-06-01

    To determine whether tear nerve growth factor (NGF) concentration correlates with corneal sensation and ocular surface dryness after photorefractive keratectomy (PRK) and laser in situ keratomileusis (LASIK). Prospective, nonrandomized comparative clinical trial. Seventy eyes of 35 patients and 76 eyes of 38 patients underwent PRK and LASIK procedures to correct myopia and myopic astigmatism, respectively. Total tear protein level, tear NGF concentration, tear film breakup time (BUT) and Schirmer values were measured before and 1 day, 1 week, 1 month, 3 months, and 6 months after surgery. The postoperative mean tear NGF/total tear protein (NGF/tP) ratio increased in both PRK and LASIK patients compared with preoperative levels (P < .0001). At 1 week and 1 month postoperatively, the NGF/tP ratio was higher in PRK than in LASIK subjects (P < .0001). Before 6 months postoperatively, the mean corneal sensation after LASIK in the ablated zone was lower than the preoperative sensation (P < .0001), but this was not the case in PRK subjects. Mean BUT and Schirmer values were significantly lower in LASIK-treated eyes compared with PRK-treated eyes up to 6 months postoperatively (P < .0001). The early postoperative tear NGF/tP ratio correlated with the postoperative 6-month value of corneal sensation, BUT, and Schirmer values. The difference in the postoperative corneal sensation and ocular surface dryness between PRK-treated and LASIK-treated eyes might be related to the difference in the early postoperative levels of NGF, which is a potent nerve growth stimulator.

  6. From density to interface fluctuations: The origin of wavelength dependence in surface tension

    NASA Astrophysics Data System (ADS)

    Hiester, Thorsten

    2008-12-01

    The height-height correlation function for a fluctuating interface between two coexisting bulk phases is derived by means of general equilibrium properties of the corresponding density-density correlation function. A wavelength-dependent surface tension γ(q) can be defined and expressed in terms of the direct correlation function c(r,r') , the equilibrium density profile ρ0(r) , and an operator which relates density to surface configurations. Neither the concept of an effective interface Hamiltonian nor the difference in pressure is needed to determine the general structure of the height-height correlations or γ(q) , respectively. This result generalizes the Mecke-Dietrich surface tension γMD(q) [Phys. Rev. E 59, 6766 (1999)] and modifies recently published criticism concerning γMD(q) [Tarazona, Checa, and Chacón, Phys. Rev. Lett. 99, 196101 (2007)].

  7. Wedge disclination dipole in an embedded nanowire within the surface/interface elasticity

    NASA Astrophysics Data System (ADS)

    Shodja, Hossein M.; Rezazadeh-Kalehbasti, Shaghayegh; Gutkin, Mikhail Yu

    2013-12-01

    The elastic behavior of an arbitrary oriented wedge disclination dipole located inside a nanowire, which in turn is embedded in an infinite matrix, is studied within the surface/interface theory of elasticity. The corresponding boundary value problem is provided using complex potential functions. The potential functions are defined through modeling the wedge disclination in terms of an equivalent distribution of edge dislocations. The interface effects on the stress field and strain energy of the disclination dipole and image forces acting on it, the influence of relative shear moduli of the nanowire and the matrix, as well as the different characteristics of the interface are studied thoroughly. It is shown that the positive interface modulus leads to increased strain energy and extra repulsive forces on the disclination dipole. The noticeable effect of the negative interface modulus is the non-classical oscillations in the stress field of the disclination dipole and an extra attractive image force on it.

  8. Reverse Non-Equilibrium Molecular Dynamics Demonstrate That Surface Passivation Controls Thermal Transport at Semiconductor-Solvent Interfaces.

    PubMed

    Hannah, Daniel C; Gezelter, J Daniel; Schaller, Richard D; Schatz, George C

    2015-06-23

    We examine the role played by surface structure and passivation in thermal transport at semiconductor/organic interfaces. Such interfaces dominate thermal transport in semiconductor nanomaterials owing to material dimensions much smaller than the bulk phonon mean free path. Utilizing reverse nonequilibrium molecular dynamics simulations, we calculate the interfacial thermal conductance (G) between a hexane solvent and chemically passivated wurtzite CdSe surfaces. In particular, we examine the dependence of G on the CdSe slab thickness, the particular exposed crystal facet, and the extent of surface passivation. Our results indicate a nonmonotonic dependence of G on ligand-grafting density, with interfaces generally exhibiting higher thermal conductance for increasing surface coverage up to ∼0.08 ligands/Å(2) (75-100% of a monolayer, depending on the particular exposed facet) and decreasing for still higher coverages. By analyzing orientational ordering and solvent penetration into the ligand layer, we show that a balance of competing effects is responsible for this nonmonotonic dependence. Although the various unpassivated CdSe surfaces exhibit similar G values, the crystal structure of an exposed facet nevertheless plays an important role in determining the interfacial thermal conductance of passivated surfaces, as the density of binding sites on a surface determines the ligand-grafting densities that may ultimately be achieved. We demonstrate that surface passivation can increase G relative to a bare surface by roughly 1 order of magnitude and that, for a given extent of passivation, thermal conductance can vary by up to a factor of ∼2 between different surfaces, suggesting that appropriately tailored nanostructures may direct heat flow in an anisotropic fashion for interface-limited thermal transport.

  9. Oral Omega-3 Fatty Acid Supplementation for Laser In Situ Keratomileusis-Associated Dry Eye.

    PubMed

    Goyal, Parul; Jain, Arun K; Malhotra, Chintan

    2017-02-01

    To determine the effect of oral omega-3 fatty acid (ω3FA) supplementation in laser in situ keratomileusis (LASIK)-associated dry eye. In this prospective, open-label study, patients undergoing LASIK were randomized to receive either 1.2 g/d of a triglyceride formulation of oral ω3FA (treatment group) or 400 mg/d vitamin E (control group) for 1 week before and continued for 12 weeks after surgery. Ocular surface disease index, tear breakup time, ocular surface staining, and Schirmer scores were evaluated and compared preoperatively and at 3 months after LASIK. The study included 30 patients in each group. All parameters were comparable at baseline. Ocular surface disease index scores increased comparably in both groups (1.9 ± 0.6 increase in the treatment group; 2.8 ± 0.5 in the control group) (P = 0.267). Compared with baseline levels, tear breakup time decreased significantly (P < 0.01) but comparably in both treatment (-2.3 ± 0.4 seconds decrease) and control (-3.5 ± 0.7 seconds decrease) groups (P = 0.105). More eyes in the control group (43.4%) had conjunctival staining with Lissamine green at 3 months compared with the treatment group (14%) (P = 0.009). The Schirmer score at 3 months was higher (P = 0.003) in the treatment group (30.5 ± 0.90 mm) than in the control group (25.7 ± 1.3 mm) with a increase of 5.9 ± 1.3 mm from baseline in the treatment group and a decrease of 1.5 ± 1.2 mm in the control group. Supplementation with ω3FA in patients undergoing LASIK had a positive influence on tear secretion, whereas tear film stability remained unaffected when compared with the control group.

  10. Interface Trap Density Reduction for Al2O3/GaN (0001) Interfaces by Oxidizing Surface Preparation prior to Atomic Layer Deposition.

    PubMed

    Zhernokletov, Dmitry M; Negara, Muhammad A; Long, Rathnait D; Aloni, Shaul; Nordlund, Dennis; McIntyre, Paul C

    2015-06-17

    We correlate interfacial defect state densities with the chemical composition of the Al2O3/GaN interface in metal-oxide-semiconductor (MOS) structures using synchrotron photoelectron emission spectroscopy (PES), cathodoluminescence and high-temperature capacitance-voltage measurements. The influence of the wet chemical pretreatments involving (1) HCl+HF etching or (2) NH4OH(aq) exposure prior to atomic layer deposition (ALD) of Al2O3 were investigated on n-type GaN (0001) substrates. Prior to ALD, PES analysis of the NH4OH(aq) treated surface shows a greater Ga2O3 component compared to either HCl+HF treated or as-received surfaces. The lowest surface concentration of oxygen species is detected on the acid etched surface, whereas the NH4OH treated sample reveals the lowest carbon surface concentration. Both surface pretreatments improve electrical characteristics of MOS capacitors compared to untreated samples by reducing the Al2O3/GaN interface state density. The lowest interfacial trap density at energies in the upper band gap is detected for samples pretreated with NH4OH. These results are consistent with cathodoluminescence data indicating that the NH4OH treated samples show the strongest band edge emission compared to as-received and acid etched samples. PES results indicate that the combination of reduced carbon contamination while maintaining a Ga2O3 interfacial layer by NH4OH(aq) exposure prior to ALD results in fewer interface traps after Al2O3 deposition on the GaN substrate.

  11. Flexible microelectrode array for interfacing with the surface of neural ganglia

    NASA Astrophysics Data System (ADS)

    Sperry, Zachariah J.; Na, Kyounghwan; Parizi, Saman S.; Chiel, Hillel J.; Seymour, John; Yoon, Euisik; Bruns, Tim M.

    2018-06-01

    Objective. The dorsal root ganglia (DRG) are promising nerve structures for sensory neural interfaces because they provide centralized access to primary afferent cell bodies and spinal reflex circuitry. In order to harness this potential, new electrode technologies are needed which take advantage of the unique properties of DRG, specifically the high density of neural cell bodies at the dorsal surface. Here we report initial in vivo results from the development of a flexible non-penetrating polyimide electrode array interfacing with the surface of ganglia. Approach. Multiple layouts of a 64-channel iridium electrode (420 µm2) array were tested, with pitch as small as 25 µm. The buccal ganglia of invertebrate sea slug Aplysia californica were used to develop handling and recording techniques with ganglionic surface electrode arrays (GSEAs). We also demonstrated the GSEA’s capability to record single- and multi-unit activity from feline lumbosacral DRG related to a variety of sensory inputs, including cutaneous brushing, joint flexion, and bladder pressure. Main results. We recorded action potentials from a variety of Aplysia neurons activated by nerve stimulation, and units were observed firing simultaneously on closely spaced electrode sites. We also recorded single- and multi-unit activity associated with sensory inputs from feline DRG. We utilized spatial oversampling of action potentials on closely-spaced electrode sites to estimate the location of neural sources at between 25 µm and 107 µm below the DRG surface. We also used the high spatial sampling to demonstrate a possible spatial sensory map of one feline’s DRG. We obtained activation of sensory fibers with low-amplitude stimulation through individual or groups of GSEA electrode sites. Significance. Overall, the GSEA has been shown to provide a variety of information types from ganglia neurons and to have significant potential as a tool for neural mapping and interfacing.

  12. Dual analyzer system for surface analysis dedicated for angle-resolved photoelectron spectroscopy at liquid surfaces and interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niedermaier, Inga; Kolbeck, Claudia; Steinrück, Hans-Peter

    The investigation of liquid surfaces and interfaces with the powerful toolbox of ultra-high vacuum (UHV)-based surface science techniques generally has to overcome the issue of liquid evaporation within the vacuum system. In the last decade, however, new classes of liquids with negligible vapor pressure at room temperature—in particular, ionic liquids (ILs)—have emerged for surface science studies. It has been demonstrated that particularly angle-resolved X-ray Photoelectron Spectroscopy (ARXPS) allows for investigating phenomena that occur at gas-liquid and liquid-solid interfaces on the molecular level. The results are not only relevant for IL systems but also for liquids in general. In all ofmore » these previous ARXPS studies, the sample holder had to be tilted in order to change the polar detection angle of emitted photoelectrons, which restricted the liquid systems to very thin viscous IL films coating a flat solid support. We now report on the concept and realization of a new and unique laboratory “Dual Analyzer System for Surface Analysis (DASSA)” which enables fast ARXPS, UV photoelectron spectroscopy, imaging XPS, and low-energy ion scattering at the horizontal surface plane of macroscopically thick non-volatile liquid samples. It comprises a UHV chamber equipped with two electron analyzers mounted for simultaneous measurements in 0° and 80° emission relative to the surface normal. The performance of DASSA on a first macroscopic liquid system will be demonstrated.« less

  13. Conformable actively multiplexed high-density surface electrode array for brain interfacing

    DOEpatents

    Rogers, John; Kim, Dae-Hyeong; Litt, Brian; Viventi, Jonathan

    2015-01-13

    Provided are methods and devices for interfacing with brain tissue, specifically for monitoring and/or actuation of spatio-temporal electrical waveforms. The device is conformable having a high electrode density and high spatial and temporal resolution. A conformable substrate supports a conformable electronic circuit and a barrier layer. Electrodes are positioned to provide electrical contact with a brain tissue. A controller monitors or actuates the electrodes, thereby interfacing with the brain tissue. In an aspect, methods are provided to monitor or actuate spatio-temporal electrical waveform over large brain surface areas by any of the devices disclosed herein.

  14. Polycaprolactone nanowire surfaces as interfaces for cardiovascular applications

    NASA Astrophysics Data System (ADS)

    Leszczak, Victoria

    Cardiovascular disease is the leading killer of people worldwide. Current treatments include organ transplants, surgery, metabolic products and mechanical/synthetic implants. Of these, mechanical and synthetic implants are the most promising. However, rejection of cardiovascular implants continues to be a problem, eliciting a need for understanding the mechanisms behind tissue-material interaction. Recently, bioartificial implants, consisting of synthetic tissue engineering scaffolds and cells, have shown great promise for cardiovascular repair. An ideal cardiovascular implant surface must be capable of adhering cells and providing appropriate physiological responses while the native tissue integrates with the scaffold. However, the success of these implants is not only dependent on tissue integration but also hemocompatibility (interaction of material with blood components), a property that depends on the surface of the material. A thorough understanding of the interaction of cardiovascular cells and whole blood and its components with the material surface is essential in order to have a successful application which promotes healing as well as native tissue integration and regeneration. The purpose of this research is to study polymeric nanowire surfaces as potential interfaces for cardiovascular applications by investigating cellular response as well as hemocompatibility.

  15. The stability and half-metallicity of (001) surface and (001) interface based on zinc blende MnAs

    NASA Astrophysics Data System (ADS)

    Han, Hongpei; Feng, Tuanhui; Zhang, Chunli; Feng, Zhibo; Li, Ming; Yao, K. L.

    2018-06-01

    Motivated by the growth of MnAs/GaAs thin films in many experimental researches, we investigate the electronic and magnetic properties of bulk, (001) surfaces and (001) interfaces for zinc blende MnAs by means of first-principle calculations. It is confirmed that zinc blende MnAs is a nearly half-metallic ferromagnet with 4.00 μB magnetic moment. The calculated density of states show that the half-metallicity exists in As-terminated (001) surface while it is lost in Mn-terminated (001) surface. For the (001) interfaces of MnAs with semiconductor GaAs, it is found that As-Ga and Mn-As interfaces not only have higher spin polarization but also are more stable among the four considered interfaces. Our results would be helpful to grow stable and high polarized thin films or multilayers for the practical applications of spintronic devices.

  16. On the physics of both surface overcharging and charge reversal at heterophase interfaces.

    PubMed

    Wang, Zhi-Yong; Zhang, Pengli; Ma, Zengwei

    2018-02-07

    The conventional paradigm for characterizing surface overcharging and charge reversal is based on the so-called Stern layer, in which surface dissociation reaction and specific chemical adsorption are assumed to take place. In this article, a series of Monte Carlo simulations have been applied to obtain useful insights into the underlying physics responsible for these two kinds of anomalous phenomena at the interface of two dielectrics, with special emphasis on the case of divalent counterions that are more relevant in natural and biological environments. At a weakly charged surface, it is found that independent of the type of surface charge distribution and the dielectric response of the solution, the overcharging event is universally driven by the ion size-asymmetric effect. Exceptionally, the overcharging still persists when the surface is highly charged but is only restricted to the case of discrete surface charge in a relatively low dielectric medium. As compared to the adsorption onto the homogeneously smeared charge surface that has the same average affinity for counterions, on the other hand, charge reversal under the action of a dielectric response can be substantially enhanced in the discrete surface charge representation due to strong association of counterions with interfacial groups, and the degree of enhancement depends in a nontrivial way on the reduction of the medium dielectric constant and the steric effects of finite ion size. Rather interestingly, the charge reversal is of high relevance to the overcharging of interfaces because the overwhelming interfacial association forces the coions closer to the surface due to their smaller size than the counterions. Upon the addition of a monovalent salt to the solution, the interfacial association with divalent counterions makes surface overcharging and charge reversal widely unaffected, in contrast to the prevailing notion that screening of surface charge of a homogeneous nature is determined by the

  17. The surface diffusion coefficient for an arbitrarily curved fluid-fluid interface. (I). General expression

    NASA Astrophysics Data System (ADS)

    M. C. Sagis, Leonard

    2001-03-01

    In this paper, we develop a theory for the calculation of the surface diffusion coefficient for an arbitrarily curved fluid-fluid interface. The theory is valid for systems in hydrodynamic equilibrium, with zero mass-averaged velocities in the bulk and interfacial regions. We restrict our attention to systems with isotropic bulk phases, and an interfacial region that is isotropic in the plane parallel to the dividing surface. The dividing surface is assumed to be a simple interface, without memory effects or yield stresses. We derive an expression for the surface diffusion coefficient in terms of two parameters of the interfacial region: the coefficient for plane-parallel diffusion D (AB)aa(ξ) , and the driving force d(B)I||(ξ) . This driving force is the parallel component of the driving force for diffusion in the interfacial region. We derive an expression for this driving force using the entropy balance.

  18. Dispersion relation of a surface wave at a rough metal-air interface

    DOE PAGES

    Kotelnikov, Igor; Stupakov, Gennady

    2016-11-28

    Here, we derived a dispersion relation of a surface wave at a rough metal-air interface. In contrast to previous publications, we assumed that an intrinsic surface impedance due to a finite electric conductivity of the metal can be of the same order as the roughness-induced impedance. We then applied our results to the analysis of a long-standing problem of the discrepancy between the experimental data on the propagation of surface waves in the terahertz range of frequencies and the classical Drude theory.

  19. The Impact of Solid Surface Features on Fluid-Fluid Interface Configuration

    NASA Astrophysics Data System (ADS)

    Araujo, J. B.; Brusseau, M. L. L.

    2017-12-01

    Pore-scale fluid processes in geological media are critical for a broad range of applications such as radioactive waste disposal, carbon sequestration, soil moisture distribution, subsurface pollution, land stability, and oil and gas recovery. The continued improvement of high-resolution image acquisition and processing have provided a means to test the usefulness of theoretical models developed to simulate pore-scale fluid processes, through the direct quantification of interfaces. High-resolution synchrotron X-ray microtomography is used in combination with advanced visualization tools to characterize fluid distributions in natural geologic media. The studies revealed the presence of fluid-fluid interface associated with macroscopic features on the surfaces of the solids such as pits and crevices. These features and respective fluid interfaces, which are not included in current theoretical or computational models, may have a significant impact on accurate simulation and understanding of multi-phase flow, energy, heat and mass transfer processes.

  20. Engineering the Surface/Interface Structures of Titanium Dioxide Micro and Nano Architectures towards Environmental and Electrochemical Applications

    PubMed Central

    Wang, Xiaoliang; Zhao, Yanyan; Mølhave, Kristian

    2017-01-01

    Titanium dioxide (TiO2) materials have been intensively studied in the past years because of many varied applications. This mini review article focuses on TiO2 micro and nano architectures with the prevalent crystal structures (anatase, rutile, brookite, and TiO2(B)), and summarizes the major advances in the surface and interface engineering and applications in environmental and electrochemical applications. We analyze the advantages of surface/interface engineered TiO2 micro and nano structures, and present the principles and growth mechanisms of TiO2 nanostructures via different strategies, with an emphasis on rational control of the surface and interface structures. We further discuss the applications of TiO2 micro and nano architectures in photocatalysis, lithium/sodium ion batteries, and Li–S batteries. Throughout the discussion, the relationship between the device performance and the surface/interface structures of TiO2 micro and nano structures will be highlighted. Then, we discuss the phase transitions of TiO2 nanostructures and possible strategies of improving the phase stability. The review concludes with a perspective on the current challenges and future research directions. PMID:29120393

  1. Photometric model of diffuse surfaces described as a distribution of interfaced Lambertian facets.

    PubMed

    Simonot, Lionel

    2009-10-20

    The Lambertian model for diffuse reflection is widely used for the sake of its simplicity. Nevertheless, this model is known to be inaccurate in describing a lot of real-world objects, including those that present a matte surface. To overcome this difficulty, we propose a photometric model where the surfaces are described as a distribution of facets where each facet consists of a flat interface on a Lambertian background. Compared to the Lambertian model, it includes two additional physical parameters: an interface roughness parameter and the ratio between the refractive indices of the background binder and of the upper medium. The Torrance-Sparrow model--distribution of strictly specular facets--and the Oren-Nayar model--distribution of strictly Lambertian facets--appear as special cases.

  2. Thermal transport study across interface “nanostructured solid surface / fluid” by photoacoustic technique

    NASA Astrophysics Data System (ADS)

    Voitenko, K.; Isaiev, M.; Pastushenko, A.; Andrusenko, D.; Kuzmich, A.; Lysenko, V.; Burbelo, R.

    2017-01-01

    In the paper the experimental study of heat transport across the interface “porous silicon/liquid” by photoacoustic technique is reported. Two cases with and without liquid covering of porous silicon surface were considered. Thermal perturbations were excited at the surface of porous silicon as a result of absorption of the light with modulated intensity. The resulting thermal-elastic stresses arising in the system were registered with piezoelectric transducer. The amplitude-frequency dependencies of the voltage on the piezoelectric electrodes were measured. The presence of the liquid film leads to decreasing of the amplitude of photoacoustic signal as a result of the thermal energy evacuation from the porous silicon into the liquid. The experimental dependencies were fitted with the results of simulation that takes into account heat fluxes separation at the porous silicon/liquid interface. With the presented method one can precisely measure heat fluxes transferred from the solid into contacting fluid. Moreover, the presented approach can be easily adopted for the thermal conductivity study of the different nanofluids as well as thermal resistance at the interface nanostructured solid/fluid.

  3. Nonarteritic ischemic optic neuropathy secondary to severe ocular hypertension masked by interface fluid in a post-LASIK eye.

    PubMed

    Pham, Mai T; Peck, Rachel E; Dobbins, Kendall R B

    2013-06-01

    We report a case of ischemic optic neuropathy arising from elevated intraocular pressure (IOP) masked by interface fluid in a post-laser in situ keratomileusis (LASIK) eye. A 51-year-old man, who had had LASIK 6 years prior to presentation, sustained blunt trauma to the left eye that resulted in a hyphema and ocular hypertension. Elevated IOP resulted in accumulation of fluid in the stromal bed-LASIK flap interface, leading to underestimation of IOP when measured centrally over the flap. After days of unrecognized ocular hypertension, ischemic optic neuropathy developed. To our knowledge, this is the first reported case of ischemic optic neuropathy resulting from underestimated IOP measurements in a post-LASIK patient. It highlights the inaccuracy of IOP measurements in post-LASIK eyes and a vision-threatening potential complication. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  4. Surface and interface analysis of poly-hydroxyethylmethacrylate-coated anodic aluminium oxide membranes

    NASA Astrophysics Data System (ADS)

    Ali, Nurshahidah; Duan, Xiaofei; Jiang, Zhong-Tao; Goh, Bee Min; Lamb, Robert; Tadich, Anton; Poinern, Gérrard Eddy Jai; Fawcett, Derek; Chapman, Peter; Singh, Pritam

    2014-01-01

    The surface and interface of poly (2-hydroxyethylmethacrylate) (PHEMA) and anodic aluminium oxide (AAO) membranes were comprehensively investigated using Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. It was found that 1s→π* (Cdbnd O) and 1s→σ* (Csbnd O) transitions were dominant on the surface of both bulk PHEMA polymer and PHEMA-surface coated AAO (AAO-PHEMA) composite. Findings from NEXAFS, Fourier-Transform Infrared (FTIR) and X-ray Photoelectron Spectroscopy (XPS) analyses suggest the possibility of chemical interaction between carbon from the ester group of polymer and AAO membrane.

  5. Review of current indications for combined very high fluence collagen cross-linking and laser in situ keratomileusis surgery

    PubMed Central

    Kanellopoulos, Anastasios John; Pamel, Gregory J

    2013-01-01

    In this brief review we will discuss the reasoning and evolution of our current use of combined very high-fluence collagen crosslinking and laser in situ keratomileusis. Several presentations and pertinent publications are reviewed, along with the key steps of the enhanced LASIK procedure. Long term outcome data support the safety and efficacy of LASIK Xtra in stabilizing myopic but also hyperopic LASIK results. In conclusion, we have compelling evidence that LASIK Xtra is a safe and effective adjunct. PMID:23925331

  6. Light-Induced Surface Reactions at the Bismuth Vanadate/Potassium Phosphate Interface.

    PubMed

    Favaro, Marco; Abdi, Fatwa F; Lamers, Marlene; Crumlin, Ethan J; Liu, Zhi; van de Krol, Roel; Starr, David E

    2018-01-18

    Bismuth vanadate has recently drawn significant research attention as a light-absorbing photoanode due to its performance for photoelectrochemical water splitting. In this study, we use in situ ambient pressure X-ray photoelectron spectroscopy with "tender" X-rays (4.0 keV) to investigate a polycrystalline bismuth vanadate (BiVO 4 ) electrode in contact with an aqueous potassium phosphate (KPi) solution at open circuit potential under both dark and light conditions. This is facilitated by the creation of a 25 to 30 nm thick electrolyte layer using the "dip-and-pull" method. We observe that under illumination bismuth phosphate forms on the BiVO 4 surface leading to an increase of the surface negative charge. The bismuth phosphate layer may act to passivate surface states observed in photoelectrochemical measurements. The repulsive interaction between the negatively charged surface under illumination and the phosphate ions in solution causes a shift in the distribution of ions in the thin aqueous electrolyte film, which is observed as an increase in their photoelectron signals. Interestingly, we find that such changes at the BiVO 4 /KPi electrolyte interface are reversible upon returning to dark conditions. By measuring the oxygen 1s photoelectron peak intensities from the phosphate ions and liquid water as a function of time under dark and light conditions, we determine the time scales for the forward and reverse reactions. Our results provide direct evidence for light-induced chemical modification of the BiVO 4 /KPi electrolyte interface.

  7. Surface functionalization of thin-film diamond for highly stable and selective biological interfaces

    PubMed Central

    Stavis, Courtney; Clare, Tami Lasseter; Butler, James E.; Radadia, Adarsh D.; Carr, Rogan; Zeng, Hongjun; King, William P.; Carlisle, John A.; Aksimentiev, Aleksei; Bashir, Rashid; Hamers, Robert J.

    2011-01-01

    Carbon is an extremely versatile family of materials with a wide range of mechanical, optical, and mechanical properties, but many similarities in surface chemistry. As one of the most chemically stable materials known, carbon provides an outstanding platform for the development of highly tunable molecular and biomolecular interfaces. Photochemical grafting of alkenes has emerged as an attractive method for functionalizing surfaces of diamond, but many aspects of the surface chemistry and impact on biological recognition processes remain unexplored. Here we report investigations of the interaction of functionalized diamond surfaces with proteins and biological cells using X-ray photoelectron spectroscopy (XPS), atomic force microscopy, and fluorescence methods. XPS data show that functionalization of diamond with short ethylene glycol oligomers reduces the nonspecific binding of fibrinogen below the detection limit of XPS, estimated as > 97% reduction over H-terminated diamond. Measurements of different forms of diamond with different roughness are used to explore the influence of roughness on nonspecific binding onto H-terminated and ethylene glycol (EG)-terminated surfaces. Finally, we use XPS to characterize the chemical stability of Escherichia coli K12 antibodies on the surfaces of diamond and amine-functionalized glass. Our results show that antibody-modified diamond surfaces exhibit increased stability in XPS and that this is accompanied by retention of biological activity in cell-capture measurements. Our results demonstrate that surface chemistry on diamond and other carbon-based materials provides an excellent platform for biomolecular interfaces with high stability and high selectivity. PMID:20884854

  8. Endophthalmitis due to inadvertent globe penetration during retrobulbar injection of saline solution for laser in situ keratomileusis.

    PubMed

    Han, Ying; Lam, Har Hiu; Stewart, Jay M

    2009-06-01

    A 31-year-old woman presented with visual acuity of counting fingers and presumed bacterial endophthalmitis in the left eye 10 days after refractive surgery. During the procedure, a retrobulbar injection of balanced salt solution had been performed to assist with globe suction by the microkeratome. A perforation site was identified in the inferonasal retina. Following intravitreal antibiotic injection and surgical intervention, the visual acuity returned to 20/20. Retrobulbar injection to facilitate laser in situ keratomileusis carries risks. Careful monitoring for signs of infection is recommended if globe perforation is recognized.

  9. Surface and Interface Study of PdCr/SiC Schottky Diode Gas Sensor Annealed at 425 C

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Knight, Dak

    1998-01-01

    The surface and interface properties of Pd(sub 0.9)Cr(sub 0.1/SiC Schottky diode gas sensor both before and after annealing are investigated using Auger Electron Spectroscopy (AES), Scanning Electron Microscopy (SEM), and Energy Dispersive Spectroscopy (EDS). At room temperature the alloy reacted with SiC and formed Pd(sub x)Si only in a very narrow interfacial region. After annealing for 250 hours at 425 deg. C, the surface of the Schottky contact area has much less silicon and carbon contamination than that found on the surface of an annealed Pd/SiC structure. Pd(sub x)Si formed at a broadened interface after annealing, but a significant layer of alloy film is still free of silicon and carbon. The chromium concentration with respect to palladium is quite uniform down to the deep interface region. A stable catalytic surface and a clean layer of Pd(sub 0.9)Cr(sub 0.1) film are likely responsible for significantly improved device sensitivity.

  10. Surface and Interface Properties of PdCr/SiC Schottky Diode Gas Sensor Annealed at 425 C

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Knight, Dak

    1998-01-01

    The surface and interface properties of Pd(0.9,)Cr(0.1)/SiC Schottky diode gas sensors both before and after annealing are investigated using Auger electron spectroscopy (AES), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). At room temperature the alloy reacted with SiC and formed Pd,Si only in a very narrow interfacial region. After annealing for 250 h ,It 425 C, the surface of the Schottky contact area his much less silicon and carbon contamination than that found on the surface of an annealed Pd/SiC structure. Palladium silicides (Pd(x)Si) formed at a broadened interface after annealing, but a significant layer of alloy film is still free of silicon and carbon. The chromium concentration with respect to palladium is quite uniform down to the deep interface region. A stable catalytic surface and a clean layer of Pd(0.9)Cr(0.1) film are likely responsible for significantly improved device sensitivity.

  11. Surface and Interface Properties of PdCr/SiC Schottky Diode Gas Sensor Annealed at 425 C

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Knight, Dak

    1998-01-01

    The surface and interface properties of Pd(0.9)Cr(0.1)/SiC Schottky diode gas sensors both before and after annealing are investigated using Auger Electron Spectroscopy (AES), Scanning Electron Microscopy (SEM), and Energy Dispersive Spectroscopy (EDS). At room temperature the alloy reacted with SiC and formed Pd(x)Si only in a very narrow interfacial region. After annealing for 250 hours at 425 C, the surface of the Schottky contact area has much less silicon and carbon contamination than that found on the surface of an annealed Pd/SiC structure. Palladium silicides (Pd(x)Si) formed at a broadened interface after annealing, but a significant layer of alloy film is still free of silicon and carbon. The chromium concentration with respect to palladium is quite uniform down to the deep interface region. A stable catalytic surface and a clean layer of Pd(0.9)Cr(0.1) film are likely responsible for significantly improved device sensitivity.

  12. Comparison of retina damage thresholds simulating the femtosecond-laser in situ keratomileusis (fs-LASIK) process with two laser systems in the CW- and fs-regime

    NASA Astrophysics Data System (ADS)

    Sander, M.; Minet, O.; Zabarylo, U.; Müller, M.; Tetz, M. R.

    2012-04-01

    The femtosecond-laser in situ keratomileusis procedure affords the opportunity to correct ametropia by cutting transparent corneal tissue with ultra-short laser pulses. Thereby the tissue cut is generated by a laser-induced optical breakdown in the cornea with ultra-short laser pulses in the near-infrared range. Compared to standard procedures such as photorefractive keratectomy and laser in-situ keratomileusis with the excimer laser, where the risk potential for the eye is low due to the complete absorption of ultraviolet irradiation from corneal tissue, only a certain amount of the pulse energy is deposited in the cornea during the fs-LASIK process. The remaining energy propagates through the eye and interacts with the retina and the strong absorbing tissue layers behind. The objective of the presented study was to determine and compare the retina damage thresholds during the fs-LASIK process simulated with two various laser systems in the CW- and fs-regime.

  13. Effect of PECVD SiNx/SiOyNx-Si interface property on surface passivation of silicon wafer

    NASA Astrophysics Data System (ADS)

    Jia, Xiao-Jie; Zhou, Chun-Lan; Zhu, Jun-Jie; Zhou, Su; Wang, Wen-Jing

    2016-12-01

    It is studied in this paper that the electrical characteristics of the interface between SiOyNx/SiNx stack and silicon wafer affect silicon surface passivation. The effects of precursor flow ratio and deposition temperature of the SiOyNx layer on interface parameters, such as interface state density Dit and fixed charge Qf, and the surface passivation quality of silicon are observed. Capacitance-voltage measurements reveal that inserting a thin SiOyNx layer between the SiNx and the silicon wafer can suppress Qf in the film and Dit at the interface. The positive Qf and Dit and a high surface recombination velocity in stacks are observed to increase with the introduced oxygen and minimal hydrogen in the SiOyNx film increasing. Prepared by deposition at a low temperature and a low ratio of N2O/SiH4 flow rate, the SiOyNx/SiNx stacks result in a low effective surface recombination velocity (Seff) of 6 cm/s on a p-type 1 Ω·cm-5 Ω·cm FZ silicon wafer. The positive relationship between Seff and Dit suggests that the saturation of the interface defect is the main passivation mechanism although the field-effect passivation provided by the fixed charges also make a contribution to it. Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA050302) and the National Natural Science Foundation of China (Grant No. 61306076).

  14. Ion irradiation of the native oxide/silicon surface increases the thermal boundary conductance across aluminum/silicon interfaces

    NASA Astrophysics Data System (ADS)

    Gorham, Caroline S.; Hattar, Khalid; Cheaito, Ramez; Duda, John C.; Gaskins, John T.; Beechem, Thomas E.; Ihlefeld, Jon F.; Biedermann, Laura B.; Piekos, Edward S.; Medlin, Douglas L.; Hopkins, Patrick E.

    2014-07-01

    The thermal boundary conductance across solid-solid interfaces can be affected by the physical properties of the solid boundary. Atomic composition, disorder, and bonding between materials can result in large deviations in the phonon scattering mechanisms contributing to thermal boundary conductance. Theoretical and computational studies have suggested that the mixing of atoms around an interface can lead to an increase in thermal boundary conductance by creating a region with an average vibrational spectra of the two materials forming the interface. In this paper, we experimentally demonstrate that ion irradiation and subsequent modification of atoms at solid surfaces can increase the thermal boundary conductance across solid interfaces due to a change in the acoustic impedance of the surface. We measure the thermal boundary conductance between thin aluminum films and silicon substrates with native silicon dioxide layers that have been subjected to proton irradiation and post-irradiation surface cleaning procedures. The thermal boundary conductance across the Al/native oxide/Si interfacial region increases with an increase in proton dose. Supported with statistical simulations, we hypothesize that ion beam mixing of the native oxide and silicon substrate within ˜2.2nm of the silicon surface results in the observed increase in thermal boundary conductance. This ion mixing leads to the spatial gradation of the silicon native oxide into the silicon substrate, which alters the acoustic impedance and vibrational characteristics at the interface of the aluminum film and native oxide/silicon substrate. We confirm this assertion with picosecond acoustic analyses. Our results demonstrate that under specific conditions, a "more disordered and defected" interfacial region can have a lower resistance than a more "perfect" interface.

  15. Tracker-assisted versus manual ablation zone centration in laser in situ keratomileusis for myopia and astigmatism.

    PubMed

    Pineros, Oscar E

    2002-01-01

    Eye tracker systems have been developed concomitantly with small scanning beams to theoretically reduce ablation zone decentration and for accurate registration of all the laser pulses on the cornea. The purpose of the study was to compare the tracker-assisted with the manual centration method. Twenty-five patients (48 eyes) with myopia and/or astigmatism had laser in situ keratomileusis (LASIK) between August 1998 and February 1999 with the Technolas 117C laser. Twenty patients (38 eyes, 80%) were available for follow-up at 3 months after surgery. Eyes were assigned randomly to one of two ablation zone centration methods: Group 1: Tracker-assisted (20 eyes), Group 2: Manual (18 eyes). Mean distance between the ablation zone center and the pupillary center in the tracker-assisted centration group was 0.55 +/- 0.30 mm (range, 0.10 to 1.4 mm), and in the manual centration group, 0.43 +/- 0.23 mm (range, 0.10 to 1.0 mm) (P = .177). There was no statistically significant difference in postoperative contrast sensitivity, glare, and Topographical Corneal Surface Regularity Index (SRI) between the two groups. We obtained good results with both centration methods. We did not find superiority of the tracker-assisted over manual regarding ablation zone centration, vision quality, or regularity of the ablation.

  16. Energy level shifts at the silica/Ru(0001) heterojunction driven by surface and interface dipoles

    DOE PAGES

    Wang, Mengen; Zhong, Jian -Qiang; Kestell, John; ...

    2016-09-12

    Charge redistribution at heterogeneous interfaces is a fundamental aspect of surface chemistry. Manipulating the amount of charges and the magnitude of dipole moments at the interface in a controlled way has attracted tremendous attention for its potential to modify the activity of heterogeneous catalysts in catalyst design. Two-dimensional ultrathin silica films with well-defined atomic structures have been recently synthesized and proposed as model systems for heterogeneous catalysts studies. R. Wlodarczyk et al. (Phys. Rev. B, 85, 085403 (2012)) have demonstrated that the electronic structure of silica/Ru(0001) can be reversibly tuned by changing the amount of interfacial chemisorbed oxygen. Here wemore » carried out systematic investigations to understand the underlying mechanism through which the electronic structure at the silica/Ru(0001) interface can be tuned. As corroborated by both in situ X-ray photoelectron spectroscopy and density functional theory calculations, the observed interface energy level alignments strongly depend on the surface and interfacial charge transfer induced dipoles at the silica/Ru(0001) heterojunction. These observations may help to understand variations in catalytic performance of the model system from the viewpoint of the electronic properties at the confined space between the silica bilayer and the Ru(0001) surface. As a result, the same behavior is observed for the aluminosilicate bilayer, which has been previously proposed as a model system for zeolites.« less

  17. Laser in situ keratomileusis surgery is not safe for military personnel.

    PubMed

    Xiao, Jian-He; Zhang, Mao-Nian; Jiang, Cai-Hui; Zhang, Ying; Qiu, Huai-Yu

    2012-01-01

    To investigate the relationship between eye injury and laser in-situ keratomileusis (LASIK) surgery in military personnel. This retrospective study collected the data from 27 evacuation hospitals of Chinese army. All medical records of eye injuries in military personnel admitted to the 27 hospitals between January 2006 and December 2010 were reviewed. Patients'detailed information was analyzed, including the injury time, place, type, cause, as well as examination, treatment and outcome. There were 72 eye-injured patients who had been treated by LASIK before. The incidence was rising year by year. Among them, 69 patients were diagnosed with mechanical ocular injury and 3 with non-mechanical ocular injury; 29 patients had traumatic flap-related complications and 21 patients need surgery. There was statistical difference when compared with those having no refractive surgery history. Visual acuity recovered well at discharge. There is a high risk of potential traumatic flap problems after LASIK and it is not recommended in army service.

  18. The surface activity of purified ocular mucin at the air-liquid interface and interactions with meibomian lipids.

    PubMed

    Millar, Thomas J; Tragoulias, Sophia T; Anderton, Philip J; Ball, Malcolm S; Miano, Fausto; Dennis, Gary R; Mudgil, Poonam

    2006-01-01

    Ocular mucins are thought to contribute to the stability of the tear film by reducing surface tension. The purpose of this study was to compare the effect of different mucins and hyaluronic acid (HA) alone and mixed with meibomian lipids on the surface pressure at an air-liquid interface. A Langmuir trough and Wilhelmy balance were used to measure and compare the surface activity of bovine submaxillary gland mucin (BSM), purified BSM, purified bovine ocular mucin and HA, and mixtures of these with meibomian lipids, phosphatidylcholine, and phosphatidylglycerol. Their appearance at the surface of an air-buffer interface was examined using epifluorescence microscopy. Purified ocular mucin had no surface activity even at concentrations that were 100 times more than normally occur in tears. By contrast, commercial BSM caused changes to surface pressure that were concentration dependent. The surface pressure-area profiles showed surface activity with maximum surface pressures of 12.3-22.5 mN/m depending on the concentration. Purified BSM showed no surface activity at low concentrations, whereas higher concentrations reached a maximum surface pressure of 25 mN/m. HA showed no surface activity, at low or high concentrations. Epifluorescence showed that the mucins were located at the air-buffer interface and changed the appearance of lipid films. Purified bovine ocular mucin and HA have no surface activity. However, despite having no surface activity in their own right, ocular mucins are likely to be present at the surface of the tear film, where they cause an increase in surface pressure by causing a compression of the lipids (a reorganization of the lipids) and alter the viscoelastic properties at the surface.

  19. Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface- phase-field-crystal model.

    PubMed

    Aland, Sebastian; Lowengrub, John; Voigt, Axel

    2012-10-01

    Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid.

  20. Stereoacuity changes after laser in situ keratomileusis.

    PubMed

    Singh, Digvijay; Saxena, Rohit; Sinha, Rajesh; Titiyal, Jeewan S

    2015-02-01

    To study changes in near and distance stereoacuity after laser in situ keratomileusis (LASIK). A prospective interventional study was conducted at an apex tertiary care ophthalmology center in India. Near and distance stereoacuity was tested in 40 patients (80 eyes) who underwent LASIK for myopic correction and got unaided vision of 0.67 or better in each eye. Stereoacuity was tested with best spectacle correction before LASIK, and post-LASIK stereoacuity was tested with unaided eye near and distance Randot tests. Forty patients (80 eyes) had a mean (±SD) pre-LASIK refractive error of -4.70 (±1.72) DS OD and -4.59 (±1.58) DS OS and a mean (±SD) anisometropia of 0.55 (±0.51) DS. The median pre-LASIK near stereoacuity was 70 arcsec and distance stereoacuity was 200 arcsec, both of which improved after LASIK to 30 and 60 arcsec, respectively (p < 0.001, both). Amount of refractive error was not associated with stereoacuity but anisometropia of greater than or equal to 1 diopter had significantly worse distance stereoacuity in both the pre-LASIK and post-LASIK period. The post-LASIK near stereoacuity and distance stereoacuity were strongly associated (r = 0.706, p < 0.001) unlike the change in stereoacuity. Near and distance stereoacuity shows significant improvement after LASIK. Stereoacuity is associated with the degree of anisometropia but not the amount of refractive error corrected.

  1. Defect states at organic-inorganic interfaces: Insight from first principles calculations for pentaerythritol tetranitrate on MgO surface

    NASA Astrophysics Data System (ADS)

    Tsyshevsky, Roman V.; Rashkeev, Sergey N.; Kuklja, Maija M.

    2015-07-01

    Light-responsive organic-inorganic interfaces offer experimental opportunities that are otherwise difficult to achieve. Since laser light can be manipulated very precisely, it becomes possible to engineer selective, predictive, and highly controlled interface properties. Photochemistry of organic-inorganic energetic interfaces is a rapidly emerging research field in which energy absorption and interface stability mechanisms have yet to be established. To explore the interaction of the laser irradiation with molecular materials, we performed first principle calculations of a prototype organic-inorganic interface between a nitroester (pentaerythritol tetranitrate, PETN, C5H8N4O12) and a magnesium oxide (MgO) surface. We found that the light absorption is defined by the band alignment between interface components and interfacial charge transfer coupled with electronic states in the band gap, generated by oxide surface defects. Hence the choice of an oxide substrate and its morphology makes the optical absorption tunable and governs both the energy accumulation and energy release at the interface. The obtained results offer a possible consistent interpretation of experiments on selective laser initiation of energetic materials, which reported that the presence of metal oxide additives triggered the photoinitiation by excitation energy much lower than the band gap. We suggest that PETN photodecomposition is catalyzed by oxygen vacancies (F0 centers) at the MgO surface. Our conclusions predict ways for a complete separation of thermo- and photo-stimulated interface chemistry of molecular materials, which is imperative for highly controllable fast decomposition and was not attainable before. The methodology described here can be applied to any type of molecular material/wide band gap dielectric interfaces. It provides a solid basis for novel design and targeted improvements of organic-inorganic interfaces with desired properties that promise to enable vastly new concepts

  2. GEOPHYSICAL CHARACTERIZATION, REDOX ZONATION, AND CONTAMINANT DISTRIBUTION AT A GROUNDWATER/SURFACE WATER INTERFACE

    EPA Science Inventory

    Three transects along a groundwater/surface water interface were characterized for spatial distributions of chlorinated aliphatic hydrocarbons and geochemical conditions to evaluate the natural bioremediation potential of this environmental system. Partly on the basis of ground p...

  3. XPS and SIMS study of the surface and interface of aged C + implanted uranium

    DOE PAGES

    Donald, Scott B.; Siekhaus, Wigbert J.; Nelson, Art J.

    2016-09-08

    X-ray photoelectron spectroscopy in combination with secondary ion mass spectrometry depth profiling were used to investigate the surface and interfacial chemistry of C + ion implanted polycrystalline uranium subsequently oxidized in air for over 10 years at ambient temperature. The original implantation of 33 keV C + ions into U 238 with a dose of 4.3 × 10 17 cm –3 produced a physically and chemically modified surface layer that was characterized and shown to initially prevent air oxidation and corrosion of the uranium after 1 year in air at ambient temperature. The aging of the surface and interfacial layersmore » were examined by using the chemical shift of the U 4f, C 1s, and O 1s photoelectron lines. In addition, valence band spectra were used to explore the electronic structure of the aged carbide surface and interface layer. Moreover, the time-of-flight secondary ion mass spectrometry depth profiling results for the aged sample confirmed an oxidized uranium carbide layer over the carbide layer/U metal interface.« less

  4. DETECTION OF A GROUND-WATER/SURFACE-WATER INTERFACE WITH DIRECT-PUSH EQUIPMENT

    EPA Science Inventory

    A ground-water/surface-water interface (GSI) was documented at the Thermo Chem CERCLA Site in Muskegon, MI via direct-push (DP) sampling. At that time, contaminated ground water flowed from the upland area of the site into the Black Creek floodplain. DP rods equipped with a 1.5...

  5. Visualization of an air-water interface on superhydrophobic surfaces in turbulent channel flows

    NASA Astrophysics Data System (ADS)

    Kim, Hyunseok; Park, Hyungmin

    2017-11-01

    In the present study, three-dimensional deformation of air-water interface on superhydrophobic surfaces in turbulent channel flows at the Reynolds numbers of Re = 3000 and 10000 is measured with RICM (Reflection Interference Contrast Microscopy) technique. Two different types of roughness feature of circular hole and rectangular grate are considered, whose depth is 20 μm and diameter (or width) is varied between 20-200 μm. Since the air-water interface is always at de-pinned state at the considered condition, air-water interface shape and its sagging velocity is maintained to be almost constant as time goes one. In comparison with the previous results under the laminar flow, due to turbulent characteristics of the flow, sagging velocity is much faster. Based on the measured sagging profiles, a modified model to describe the air-water interface dynamics under turbulent flows is suggested. Supported by City of Seoul through Seoul Urban Data Science Laboratory Project (Grant No 0660-20170004) administered by SNU Big Data Institute.

  6. Surface and interface analysis of nanomaterials at microfocus beamline (BL-16) of Indus-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Gangadhar, E-mail: rnrrsgangadhar@gmail.com; Tiwari, M. K., E-mail: mktiwati@rrcat.gov.in; Homi Bhabha National Institute, RRCAT

    2016-05-06

    Analysis of chemical nature and electronic structure at the interface of a thin film medium is important in many technological applications as well as to understand overall efficiency of a thin film device. Synchrotron radiation based x-ray spectroscopy is a promising technique to study interface nature of the nanomaterials with atomic resolutions. A combined x-ray reflectivity and grazing incidence x-ray fluorescence measurement facility has been recently constructed at the BL-16 microfocus beamline of Indus-2 synchrotron facility to accomplish surface-interface microstructural characterization of thin layered materials. It is also possible to analyze contaminates or adsorbed ad-atoms on the surface of themore » thin nanostructure materials. The BL-16 beamline also provides an attractive platform to perform a variety of analytical research activities especially in the field of micro x-ray fluorescence and ultra-trace elements analysis using Synchrotron radiation. We describe various salient features of the BL-16 reflectometer experimental station and the detailed description of its capabilities through the measured results, obtained for various thin layered nanomaterials.« less

  7. Electronic properties of Al xGa 1- xAs surface passivated by ultrathin silicon interface control layer

    NASA Astrophysics Data System (ADS)

    Adamowicz, B.; Miczek, M.; Ikeya, K.; Mutoh, M.; Saitoh, T.; Fujikura, H.; Hasegawa, H.

    1999-03-01

    The photoluminescence surface state spectroscopy (PLS 3) method was applied to a study of the surface state distribution ( NSS), effective surface recombination velocity ( Seff), electron ( EFn) and hole ( EFp) quasi-Fermi levels and band bending ( VS) on the Al 0.33Ga 0.67As surface air-exposed and passivated by the Si interface control layer (ICL) technique. Using the detailed measurements of the PL quantum efficiency for different excitation intensities, combined with the rigorous computer simulations of the bulk and surface recombination processes, the behavior and correlation among the surface characteristics under photo-excitation was determined. The present analysis indicated that forming of a Si 3N 4/Si ICL double layer (with a monolayer level control) on AlGaAs surface reduces the minimum interface state density down to 10 10 cm -2 eV -1 and surface recombination velocity to the range of 10 4 cm/s under low excitations.

  8. Iron oxidation kinetics and phosphorus immobilization at the groundwater-surface water interface

    NASA Astrophysics Data System (ADS)

    van der Grift, Bas; Rozemeijer, Joachim; Griffioen, Jasper; van der Velde, Ype

    2014-05-01

    Eutrophication of freshwater environments following diffuse nutrient loads is a widely recognized water quality problem in catchments. Fluxes of non-point P sources to surface waters originate from surface runoff and flow from soil water and groundwater into surface water. The availability of P in surface waters is controlled strongly by biogeochemical nutrient cycling processes at the soil-water interface. The mechanisms and rates of the iron oxidation process with associated binding of phosphate during exfiltration of anaerobic Fe(II) bearing groundwater are among the key unknowns in P retention processes in surface waters in delta areas where the shallow groundwater is typically pH-neutral to slightly acid, anoxic, iron-rich. We developed an experimental field set-up to study the dynamics in Fe(II) oxidation and mechanisms of P immobilization at the groundwater-surface water interface in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. The exfiltrating groundwater was captured in in-stream reservoirs constructed in the ditch. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and ditch water, we quantified Fe(II) oxidation kinetics and P immobilization processes across the seasons. This study showed that seasonal changes in climatic conditions affect the Fe(II) oxidation process. In winter time the dissolved iron concentrations in the in-stream reservoirs reached the levels of the anaerobic groundwater. In summer time, the dissolved iron concentrations of the water in the reservoirs are low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into the reservoirs. Higher discharges, lower temperatures and lower pH of the exfiltrated groundwater in winter compared to summer shifts the location of the redox transition zone

  9. Computer modelling of the surface tension of the gas-liquid and liquid-liquid interface.

    PubMed

    Ghoufi, Aziz; Malfreyt, Patrice; Tildesley, Dominic J

    2016-03-07

    This review presents the state of the art in molecular simulations of interfacial systems and of the calculation of the surface tension from the underlying intermolecular potential. We provide a short account of different methodological factors (size-effects, truncation procedures, long-range corrections and potential models) that can affect the results of the simulations. Accurate calculations are presented for the calculation of the surface tension as a function of the temperature, pressure and composition by considering the planar gas-liquid interface of a range of molecular fluids. In particular, we consider the challenging problems of reproducing the interfacial tension of salt solutions as a function of the salt molality; the simulations of spherical interfaces including the calculation of the sign and size of the Tolman length for a spherical droplet; the use of coarse-grained models in the calculation of the interfacial tension of liquid-liquid surfaces and the mesoscopic simulations of oil-water-surfactant interfacial systems.

  10. Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface-phase-field-crystal model

    PubMed Central

    Aland, Sebastian; Lowengrub, John; Voigt, Axel

    2013-01-01

    Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid. PMID:23214691

  11. FAST TRACK COMMUNICATION Spectral signatures of the surface reconstructions of Au(110)/electrolyte interfaces

    NASA Astrophysics Data System (ADS)

    Smith, C. I.; Bowfield, A.; Almond, N. J.; Mansley, C. P.; Convery, J. H.; Weightman, P.

    2010-10-01

    It is demonstrated that the (1 × 1) structure and the (1 × 2) and (1 × 3) surface reconstructions that occur at Au(110)/electrolyte interfaces have unique optical fingerprints. The optical fingerprints are potential, pH and anion dependent and have potential for use in monitoring dynamic changes at this interface. We also observe a specific reflection anisotropy spectroscopy signature that may arise from anions adsorbed on the (1 × 1) structure of Au(110).

  12. Posterior corneal topographic changes after partial flap during laser in situ keratomileusis

    PubMed Central

    Sharma, N; Rani, A; Balasubramanya, R; Vajpayee, R B; Pandey, R M

    2003-01-01

    Aim: To study the posterior corneal topographic changes in eyes with partial flaps during laser assisted in situ keratomileusis (LASIK). Methods: Case records of 16 patients, who had partial flap in one eye during LASIK (group 1) and uncomplicated surgery in the other eye (group 2), were studied. Following occurrence of partial flap intraoperatively, laser ablation was abandoned in all the eyes. A 160/180 μm flap was attempted during the initial procedure using the Hansatome microkeratome (Bausch & Lomb Surgicals, Munich, Germany). LASIK surgery in all cases was performed using a 180 μm plate, at the mean interval of 4.16 (SD 1.5) months following the initial procedure. None of the eyes had intraoperative complication during LASIK. Relative posterior corneal surface elevation above the best fit sphere (BFS) before the initial procedure, before, and after LASIK were compared using the Orbscan slit scanning corneal topography/pachymetry system. Results: Posterior corneal elevation was comparable in the two groups, both preoperatively (group 1; 16.4 (4.8) μm, group 2; 16.1 (4.8) μm) and after final surgery (group 1; 57.2 (15.6) μm, group 2; 54.3 (13.1) μm). In group 1 after occurrence of partial flap, the posterior corneal elevation was 16.9 (4.4) μm, and this increase was not significant statistically (p=0.4). On multiple linear regression analysis, residual bed thickness (p<0.001) was independently the significant determinant of final posterior corneal elevation in both groups. Conclusion: The inadvertent occurrence of partial flap during LASIK procedure does not contribute to the increase in posterior corneal elevation. PMID:12543743

  13. Laser in situ keratomileusis for -6.00 to -18.00 diopters of myopia and up to -5.00 diopters of astigmatism: 15-year follow-up.

    PubMed

    Alió, Jorge L; Soria, Felipe; Abbouda, Alessandro; Peña-García, Pablo

    2015-01-01

    To evaluate the long-term outcomes of laser in situ keratomileusis (LASIK) for high myopia with or without astigmatism. Vissum Instituto Oftalmologico de Alicante and Miguel Hernandez University, Alicante, Spain. Retrospective-prospective case series. Laser in situ keratomileusis was performed using the Visx 20/20 excimer laser. The minimum follow-up was 15 years. The main outcome measures were uncorrected (UDVA) and corrected (CDVA) distance visual acuities, manifest refraction, and corneal topography. This study included 40 patients (40 eyes) with a mean age of 51.08 years ± 6.67 (SD) (range 41 to 60 years) with high myopia (-6.00 to -18.00 diopters [D]). At 15 years, the safety index was 1.23 and the efficacy index, 0.95. During the follow-up, a significant increase in the dioptric power of all keratometric variables was detected (P≤.028, Friedman test), the most notable increase occurring between 3 months and 1 year (P≤.005). At 15 years, 46.15% of the eyes were within ±1.00 D of the attempted spherical equivalent and 64.10% were within ±2.00 D. The UDVA at 15 years was 20/25 or better in 43.59% of eyes and 20/40 or better in 64.10% of eyes. The postoperative CDVA was significantly better than preoperatively (P<.001). The postoperative complications were minor except in 1 eye in which ectasia occurred. Laser in situ keratomileusis for high myopia was safe over the long term. However, significant myopic regression with time was detected. Low preoperative pachymetry and low residual stromal bed were predictors of keratometric regression. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  14. The effect of surface topography on the micellisation of hexadecyltrimethylammonium chloride at the silicon-aqueous interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darkins, Robert; Sushko, Maria L.; Liu, Jun

    2015-02-11

    Amphiphilic aggregation at solid-liquid interfaces can generate mesostructured micelles that can serve as soft templates. In this study we have simulated the self-assembly of hexadecyltrimethylammonium chloride (C16TAC) surfactants at the Si(100)- and Si(111)-aqueous interfaces. The surfactants are found to form semicylindrical micelles on Si(100) but hemispherical micelles on Si(111). This difference in micelle structure is shown to be a consequence of the starkly different surface topographies that result from the reconstruction of the two silicon surfaces. This reveals that micelle structure can be governed by epitaxial matching even with non-polar substrates.

  15. Laser in situ keratomileusis for high hyperopia with corneal vertex centration and asymmetric offset.

    PubMed

    de Ortueta, Diego; Arba-Mosquera, Sam

    2017-03-10

    To investigate refractive outcomes and induction of corneal higher order aberrations (HOA) in eyes that underwent laser-assisted in situ keratomileusis (LASIK) for high hyperopia correction using an aberration neutral profile with corneal vertex centration and asymmetric offset. A total of 24 consecutive patients (38 eyes) who underwent LASIK by one surgeon using AMARIS 750S excimer laser and a Carriazo-Pendular microkeratome for flap creation were retrospectively analyzed. Eyes targeted for plano and with correction in the maximum hyperopic meridian strictly higher than +4D were included in the retrospective analysis. Patients were reviewed at 1, 3, and 6 months postoperatively. Postoperative monocular corrected distance visual acuity (CDVA) and uncorrected distance visual acuity (UDVA), manifest refraction, and corneal wavefront aberrations were compared with respective preoperative metrics. Mean preoperative spherical equivalent and refractive astigmatism was +4.07 ± 0.90 D and 1.37 ± 1.26 D, respectively, reducing to +0.28 ± 0.58D (p<0.0001) and 0.49 ± 0.47 D (p = 0.0001) at the last postoperative visit. Six months postoperatively, 78% of eyes achieved a UDVA of 20/25 or better. No eye lost more than 2 Snellen lines of CDVA at any follow-up. There was a statistically significant induction of vertical trefoil (+0.104 ± 0.299 µm, p<0.05), vertical coma (-0.181 ± 0.463 µm, p<0.01), horizontal coma (+0.198 ± 0.663 µm, p<0.05), spherical aberration (-0.324 ± 0.281 µm, p<0.0001), secondary vertical trefoil (+0.018 ± 0.044 µm, p<0.01), and secondary horizontal coma (+0.026 ± 0.083 µm, p<0.05). Laser-assisted in situ keratomileusis for high hyperopia using corneal vertex centration with asymmetric offset results in significant improvement in refraction and visual acuity although affected by significant induction of some higher order aberrations.

  16. Role of surfaces and interfaces in controlling the mechanical properties of metallic alloys.

    PubMed

    Lee, Won-Jong; Chia, Wen-Jui; Wang, Jinliu; Chen, Yanfeng; Vaynman, Semyon; Fine, Morris E; Chung, Yip-Wah

    2010-11-02

    This article explores the subtle effects of surfaces and interfaces on the mechanical properties of bulk metallic alloys using three examples: environmental effects on fatigue life, hydrogen embrittlement effects on the ductility of intermetallics, and the role of coherent precipitates in the toughness of steels. It is demonstrated that the marked degradation of the fatigue life of metals is due to the strong chemisorption of adsorbates on exposed slip steps that are formed during fatigue deformation. These adsorbates reduce the reversibility of slip, thus accelerating fatigue damage in a chemically active gas environment. For certain intermetallic alloys such as Ni(3)Al and Ni(3)Fe, the ductility depends on the ambient gas composition and the atomic ordering in these alloys, both of which govern the complex surface chemical reactions taking place in the vicinity of crack tips. Finally, it is shown that local stresses at a coherent precipitate-matrix interface can activate dislocation motion at low temperatures, thus improving the fracture toughness of bulk alloys such as steels at cryogenic temperatures. These examples illustrate the complex interplay between surface chemistry and mechanics, often yielding unexpected results.

  17. Night firing range performance following photorefractive keratectomy and laser in situ keratomileusis.

    PubMed

    Bower, Kraig S; Burka, Jenna M; Subramanian, Prem S; Stutzman, Richard D; Mines, Michael J; Rabin, Jeff C

    2006-06-01

    To investigate the effect of laser refractive surgery on night weapons firing. Firing range performance was measured at baseline and postoperatively following photorefractive keratectomy and laser in situ keratomileusis. Subjects fired the M-16A2 rifle with night vision goggles (NVG) at starlight, and with iron sight (simulated dusk). Scores, before and after surgery, were compared for both conditions. No subject was able to acquire the target using iron sight without correction before surgery. After surgery, the scores without correction (95.9 +/- 4.7) matched the preoperative scores with correction (94.3 +/- 4.0; p = 0.324). Uncorrected NVG scores after surgery (96.4 +/- 3.1) exceeded the corrected scores before surgery (91.4 +/- 10.2), but this trend was not statistically significant (p = 0.063). Night weapon firing with both the iron sight and the NVG sight improved after surgery. This study supports the operational benefits of refractive surgery in the military.

  18. The effect of surface and interface on Neel transition temperature of low-dimensional antiferromagnetic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wen; Zhou, Zhaofeng, E-mail: zfzhou@xtu.edu.cn; Zhong, Yuan

    2015-11-15

    Incorporating the bond order-length-strength (BOLS) notion with the Ising premise, we have modeled the size dependence of the Neel transition temperature (T{sub N}) of antiferromagnetic nanomaterials. Reproduction of the size trends reveals that surface atomic undercoordination induces bond contraction, and interfacial hetero-coordination induces bond nature alteration. Both surface and interface of nanomaterials modulate the T{sub N} by adjusting the atomic cohesive energy. The T{sub N} is related to the atomic cohesive/exchange energy that is lowered by the coordination number (CN) imperfection of the undercoordinated atoms near the surface and altered by the changed bond nature of epitaxial interface. A numericalmore » match between predictions and measurements reveals that the T{sub N} of antiferromagnetic nanomaterials declines with reduced size and increases with both the strengthening of heterogeneous bond and the increase of the bond number.« less

  19. Anomalous water dynamics at surfaces and interfaces: synergistic effects of confinement and surface interactions

    NASA Astrophysics Data System (ADS)

    Biswas, Rajib; Bagchi, Biman

    2018-01-01

    In nature, water is often found in contact with surfaces that are extended on the scale of molecule size but small on a macroscopic scale. Examples include lipid bilayers and reverse micelles as well as biomolecules like proteins, DNA and zeolites, to name a few. While the presence of surfaces and interfaces interrupts the continuous hydrogen bond network of liquid water, confinement on a mesoscopic scale introduces new features. Even when extended on a molecular scale, natural and biological surfaces often have features (like charge, hydrophobicity) that vary on the scale of the molecular diameter of water. As a result, many new and exotic features, which are not seen in the bulk, appear in the dynamics of water close to the surface. These different behaviors bear the signature of both water-surface interactions and of confinement. In other words, the altered properties are the result of the synergistic effects of surface-water interactions and confinement. Ultrafast spectroscopy, theoretical modeling and computer simulations together form powerful synergistic approaches towards an understanding of the properties of confined water in such systems as nanocavities, reverse micelles (RMs), water inside and outside biomolecules like proteins and DNA, and also between two hydrophobic walls. We shall review the experimental results and place them in the context of theory and simulations. For water confined within RMs, we discuss the possible interference effects propagating from opposite surfaces. Similar interference is found to give rise to an effective attractive force between two hydrophobic surfaces immersed and kept fixed at a separation of d, with the force showing an exponential dependence on this distance. For protein and DNA hydration, we shall examine a multitude of timescales that arise from frustration effects due to the inherent heterogeneity of these surfaces. We pay particular attention to the role of orientational correlations and modification of the

  20. Wave turbulence in a two-layer fluid: Coupling between free surface and interface waves

    NASA Astrophysics Data System (ADS)

    Falcon, Eric; Issenmann, Bruno; Laroche, Claude

    2017-11-01

    We experimentally study gravity-capillary wave turbulence on the interface between two immiscible fluids of close density with free upper surface. We locally measure the wave height at the interface between both fluids by means of a highly sensitive laser Doppler vibrometer. We show that the inertial range of the capillary wave turbulence regime is significantly extended when the upper fluid depth is increased: The crossover frequency between the gravity and capillary wave turbulence regimes is found to decrease whereas the dissipative cut-off frequency of the spectrum is found to increase. We explain these observations by the progressive decoupling between waves propagating at the interface and the ones at the free surface, using the full dispersion relation of gravity-capillary waves in a two-layer fluid of finite depths. The cut-off evolution is due to the disappearance of parasitic capillaries responsible for the main wave dissipation for a single fluid. B. Issenmann, C. Laroche & E. Falcon, EPL 116, 64005 (2016) published online 16 feb. 2017. This work has been partially supported by CNRS (1-year postdoctoral funding), ANR Turbulon 12-BS04-0005, and ANR Dysturb 2017.

  1. PREFACE: Exploring surfaces and buried interfaces of functional materials by advanced x-ray and neutron techniques Exploring surfaces and buried interfaces of functional materials by advanced x-ray and neutron techniques

    NASA Astrophysics Data System (ADS)

    Sakurai, Kenji

    2010-12-01

    This special issue is devoted to describing recent applications of x-ray and neutron scattering techniques to the exploration of surfaces and buried interfaces of various functional materials. Unlike many other surface-sensitive methods, these techniques do not require ultra high vacuum, and therefore, a variety of real and complicated surfaces fall within the scope of analysis. It must be particularly emphasized that the techniques are capable of seeing even buried function interfaces as well as the surface. Furthermore, the information, which ranges from the atomic to mesoscopic scale, is highly quantitative and reproducible. The non-destructive nature of the techniques is another important advantage of using x-rays and neutrons, when compared with other atomic-scale analyses. This ensures that the same specimen can be measured by other techniques. Such features are fairly attractive when exploring multilayered materials with nanostructures (dots, tubes, wires, etc), which are finding applications in electronic, magnetic, optical and other devices. The Japan Applied Physics Society has established a group to develop the research field of studying buried function interfaces with x-rays and neutrons. As the methods can be applied to almost all types of materials, from semiconductor and electronic devices to soft materials, participants have fairly different backgrounds but share a common interest in state-of-the-art x-ray and neutron techniques and sophisticated applications. A series of workshops has been organized almost every year since 2001. Some international interactions have been continued intensively, although the community is part of a Japanese society. This special issue does not report the proceedings of the recent workshop, although all the authors are in some way involved in the activities of the above society. Initially, we intended to collect quite long overview papers, including the authors' latest and most important original results, as well as

  2. The Air-Sea Interface and Surface Stress under Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexander; Lukas, Roger; Donelan, Mark; Ginis, Isaac

    2013-04-01

    of the drag coefficient wind speed dependence around 65 m/s. This minimum may contribute to the rapid intensification of storms to major tropical cyclones. The subsequent slow increase of the drag coefficient with wind above 65 m/s serves as an obstacle for further intensification of tropical cyclones. Such dependence may explain the observed bi-modal distribution of tropical cyclone intensity. Implementation of the new parameterization into operational models is expected to improve predictions of tropical cyclone intensity and the associated wave field. References: Donelan, M. A., B. K. Haus, N. Reul, W. Plant, M. Stiassnie, H. Graber, O. Brown, and E. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds, Farrell, B.F, and P.J. Ioannou, 2008: The stochastic parametric mechanism for growth of wind-driven surface water waves. Journal of Physical Oceanography 38, 862-879. Kelly, R.E., 1965: The stability of an unsteady Kelvin-Helmholtz flow. J. Fluid Mech. 22, 547-560. Koga, M., 1981: Direct production of droplets from breaking wind-waves-Its observation by a multi-colored overlapping exposure technique, Tellus 33, 552-563. Miles, J.W., 1959: On the generation of surface waves by shear flows, part 3. J. Fluid. Mech. 6, 583-598. Soloviev, A.V. and R. Lukas, 2010: Effects of bubbles and sea spray on air-sea exchanges in hurricane conditions. Boundary-Layer Meteorology 136, 365-376. Soloviev, A., A. Fujimura, and S. Matt, 2012: Air-sea interface in hurricane conditions. J. Geophys. Res. 117, C00J34.

  3. New mechanism of surface polariton resonance at an isolated interface between transparent dielectric media (non-Tamm quasistationary surface polariton states)

    NASA Astrophysics Data System (ADS)

    Tarasenko, S. V.; Shavrov, V. G.

    2017-07-01

    A pseudochiral mechanism of the formation of non-Tamm quasistationary surface polariton states, as well as surface polariton waves inside the light cone, has been proposed for an isolated interface between spatially uniform transparent dielectric media. The resonance excitation of these states by a quasimonochromatic plane wave incident from vacuum results in a sharp change in the group delay time of the reflected pulse. The effect is enhanced in the presence of an electromagnetic metasurface.

  4. Adsorption of Egg-PC to an Air/Water and Triolein/Water Bubble Interface: Use of the 2-Dimensional Phase Rule to Estimate the Surface Composition of a Phospholipid/Triolein/Water Surface as a Function of Surface Pressure

    PubMed Central

    Mitsche, Matthew A.; Wang, Libo; Small, Donald M.

    2010-01-01

    Phospholipid monolayers play a critical role in the structure and stabilization of biological interfaces including all membranes, the alveoli of the lung, fat droplets in adipose tissue, and lipoproteins. The behavior of phospholipids in bilayers and at an air-water interface is well understood. However, the study of phospholipids at oil-water interfaces is limited due to technical challenges. In this study, egg-phosphatidylcholine (EPC) was deposited from small unilamellar vesicles onto a bubble of either air or triolein (TO) formed in a low salt buffer. The surface tension (γ) was measured using a drop tensiometer. We observed that EPC binds irreversibly to both interfaces and at equilibrium exerts ~12 and 15 mN/m of pressure (Π) at an air and TO interface, respectively. After EPC was bound to the interface, the unbound EPC was washed out of the cuvette and the surface was compressed to study the Π/area relationship. To determine the surface concentration (Γ), which cannot be measured directly, compression isotherms from a Langmuir trough and drop tensiometer were compared. The air-water interfaces had identical characteristics using both techniques, thus Γ on the bubble can be determined by overlaying the two isotherms. TO and EPC are both surface active so in a mixed TO/EPC monolayer both molecules will be exposed to water. Since TO is less surface active than EPC, as Π increases the TO is progressively ejected. To understand the Π/area isotherm of EPC on a TO bubble, a variety of TO-EPC mixtures were spread at the air-water interface. The isotherms show an abrupt break in the curve caused by the ejection of TO from the monolayer into a new bulk phase. By overlaying the compression isotherm above the ejection point with a TO bubble compression isotherm, Γ can be estimated. This allows determination of Γ of EPC on a TO bubble as a function of Π. PMID:20151713

  5. Adsorption of egg phosphatidylcholine to an air/water and triolein/water bubble interface: use of the 2-dimensional phase rule to estimate the surface composition of a phospholipid/triolein/water surface as a function of surface pressure.

    PubMed

    Mitsche, Matthew A; Wang, Libo; Small, Donald M

    2010-03-11

    Phospholipid monolayers play a critical role in the structure and stabilization of biological interfaces, including all membranes, the alveoli of the lungs, fat droplets in adipose tissue, and lipoproteins. The behavior of phospholipids in bilayers and at an air-water interface is well understood. However, the study of phospholipids at oil-water interfaces is limited due to technical challenges. In this study, egg phosphatidylcholine (EPC) was deposited from small unilamellar vesicles onto a bubble of either air or triolein (TO) formed in a low-salt buffer. The surface tension (gamma) was measured using a drop tensiometer. We observed that EPC binds irreversibly to both interfaces and at equilibrium exerts approximately 12 and 15 mN/m of pressure (Pi) at an air and TO interface, respectively. After EPC was bound to the interface, the unbound EPC was washed out of the cuvette, and the surface was compressed to study the Pi/area relationship. To determine the surface concentration (Gamma), which cannot be measured directly, compression isotherms from a Langmuir trough and drop tensiometer were compared. The air-water interfaces had identical characteristics using both techniques; thus, Gamma on the bubble can be determined by overlaying the two isotherms. Both TO and EPC are surface-active, so in a mixed TO/EPC monolayer, both molecules will be exposed to water. Since TO is less surface-active than EPC, as Pi increases, the TO is progressively ejected. To understand the Pi/area isotherm of EPC on a TO bubble, a variety of TO-EPC mixtures were spread at the air-water interface. The isotherms show an abrupt break in the curve caused by the ejection of TO from the monolayer into a new bulk phase. By overlaying the compression isotherm above the ejection point with a TO bubble compression isotherm, Gamma can be estimated. This allows determination of Gamma of EPC on a TO bubble as a function of Pi.

  6. Nitrogen dynamics at the groundwater-surface water interface of a degraded urban stream (journal)

    EPA Science Inventory

    Urbanization degrades stream ecosystems by altering hydrology and nutrient dynamics, yet relatively little effort has been devoted to understanding biogeochemistry of urban streams at the ground water-surface water interface. This zone may be especially important for nitrogen re...

  7. Multiple Bloch surface waves in visible region of light at the interfaces between rugate filter/rugate filter and rugate filter/dielectric slab/rugate filter

    NASA Astrophysics Data System (ADS)

    Ullah Manzoor, Habib; Manzoor, Tareq; Hussain, Masroor; Manzoor, Sanaullah; Nazar, Kashif

    2018-04-01

    Surface electromagnetic waves are the solution of Maxwell’s frequency domain equations at the interface of two dissimilar materials. In this article, two canonical boundary-value problems have been formulated to analyze the multiplicity of electromagnetic surface waves at the interface between two dissimilar materials in the visible region of light. In the first problem, the interface between two semi-infinite rugate filters having symmetric refractive index profiles is considered and in the second problem, to enhance the multiplicity of surface electromagnetic waves, a homogeneous dielectric slab of 400 nm is included between two semi-infinite symmetric rugate filters. Numerical results show that multiple Bloch surface waves of different phase speeds, different polarization states, different degrees of localization and different field profiles are propagated at the interface between two semi-infinite rugate filters. Having two interfaces when a homogeneous dielectric layer is placed between two semi-infinite rugate filters has increased the multiplicity of electromagnetic surface waves.

  8. Filamentation of a surface plasma wave over a semiconductor-free space interface

    NASA Astrophysics Data System (ADS)

    Kumar, Gagan; Tripathi, V. K.

    2007-12-01

    A large amplitude surface plasma wave (SPW), propagating over a semiconductor-free space interface, is susceptible to filamentation instability. A small perturbation in the amplitude of the SPW across the direction of propagation exerts a ponderomotive force on free electrons and holes, causing spatial modulation in free carrier density and hence the effective permittivity ɛeff of the semiconductor. The regions with higher ɛeff attract more power from the nieghborhood, leading to the growth of the perturbation. The growth rate increases with the intensity of the surface wave. It decreases with the frequency of the SPW.

  9. Kinetic model of mass transfer through gas liquid interface in laser surface alloying

    NASA Astrophysics Data System (ADS)

    Gnedovets, A. G.; Portnov, O. M.; Smurov, I.; Flamant, G.

    1997-02-01

    In laser surface alloying from gas atmosphere neither surface concentration nor the flux of the alloying elements are known beforehand. They should be determined from the combined solution of heat and mass transfer equations with an account for the kinetics of interaction of a gas with a melt. Kinetic theory description of mass transfer through the gas-liquid interface is applied to the problem of laser surface alloying of iron from the atmosphere of molecular nitrogen. The activation nature of gas molecules dissociation at the surface is considered. It is shown that under pulsed-periodic laser action the concentration profiles of the alloying element have maxima situated close to the surface of the metal. The efficiency of surface alloying increases steeply under laser-plasma conditions which results in the formation of highly supersaturated gas solutions in the metal.

  10. pH-Dependent Surface Chemistry from First Principles: Application to the BiVO4(010)-Water Interface.

    PubMed

    Ambrosio, Francesco; Wiktor, Julia; Pasquarello, Alfredo

    2018-03-28

    We present a theoretical formulation for studying the pH-dependent interfacial coverage of semiconductor-water interfaces through ab initio electronic structure calculations, molecular dynamics simulations, and the thermodynamic integration method. This general methodology allows one to calculate the acidity of the individual adsorption sites on the surface and consequently the pH at the point of zero charge, pH PZC , and the preferential adsorption mode of water molecules, either molecular or dissociative, at the semiconductor-water interface. The proposed method is applied to study the BiVO 4 (010)-water interface, yields a pH PZC in excellent agreement with the experimental characterization. Furthermore, from the calculated p K a values of the individual adsorption sites, we construct an ab initio concentration diagram of all adsorbed species at the interface as a function of the pH of the aqueous solution. The diagram clearly illustrates the pH-dependent coverage of the surface and indicates that protons are found to be significantly adsorbed (∼1% of available sites) only in highly acidic conditions. The surface is found to be mostly covered by molecularly adsorbed water molecules in a wide interval of pH values ranging from 2 to 8. Hydroxyl ions are identified as the dominant adsorbed species at pH larger than 8.2.

  11. Retinal Detachment After Laser In Situ Keratomileusis

    PubMed Central

    Al-Rashaed, Saba; Al-Halafi, Ali M

    2011-01-01

    Purpose: To report characteristics and outcome of rhegmatogenous retinal detachment (RRD) after laser in situ keratomileusis (LASIK) for myopia. Materials and Methods: A retrospective chart review of patients who presented with RRD after myopic LASIK over a 10-year period. Results: Fourteen eyes were identified with RRD. Of these, two of 6112 LASIK procedures were from our center. The mean age of patients with RRD was 35.43 years. The mean interval of RRD after LASIK was 37.71 months (range, 4 months to 10 years). The macula was involved in eight eyes and spared in six eyes. Retinal breaks included a macular hole in two eyes, and giant tear in two eyes. Multiple breaks (>2 breaks) occurred in 6 cases. Pars plana vitrectomy (PPV) was performed in 3 (21.4%) eyes, a scleral buckle (SB) was performed in 4 (28.5%) eyes and 7 (50%) eyes underwent combined PPV and SB. Mean follow-up was 15.18 months (range, 1 month to 7 years). The retina was successfully attached in all cases. The final visual acuity was 20/40 or better in 7 (50%) eyes, 20/40 to 20/60 in 4 (28.5%) eyes, and 20/200 or less in 3 (21.4%) eyes. Poor visual outcome was secondary to proliferative vitreoretinopathy, epiretinal membrane, macular scar and amblyopia. Conclusion: The prevalence of RRD after LASIK was low at our institute. Anatomical and visual outcomes were acceptable in eyes that were managed promptly. Although there is no cause-effect relationship between LASIK and RRD, a dilated fundus examination is highly recommended before and after LASIK for myopia. PMID:21887078

  12. Field Evaluation Of Arsenic Speciation In Sediments At The Ground Water/Surface Water Interface

    EPA Science Inventory

    The speciation and mineralogy of sediments contaminated with arsenic at the ground water/surface water interface of the Ft. Devens Super Fund Site in Ft. Devens, MA were determined using X-ray absorption fine structure and X-ray diffraction spectroscopy. Speciation and mineralog...

  13. Non-equilibrium surface tension of the vapour-liquid interface of active Lennard-Jones particles

    NASA Astrophysics Data System (ADS)

    Paliwal, Siddharth; Prymidis, Vasileios; Filion, Laura; Dijkstra, Marjolein

    2017-08-01

    We study a three-dimensional system of self-propelled Brownian particles interacting via the Lennard-Jones potential. Using Brownian dynamics simulations in an elongated simulation box, we investigate the steady states of vapour-liquid phase coexistence of active Lennard-Jones particles with planar interfaces. We measure the normal and tangential components of the pressure tensor along the direction perpendicular to the interface and verify mechanical equilibrium of the two coexisting phases. In addition, we determine the non-equilibrium interfacial tension by integrating the difference of the normal and tangential components of the pressure tensor and show that the surface tension as a function of strength of particle attractions is well fitted by simple power laws. Finally, we measure the interfacial stiffness using capillary wave theory and the equipartition theorem and find a simple linear relation between surface tension and interfacial stiffness with a proportionality constant characterized by an effective temperature.

  14. Charge-transfer excitons at organic semiconductor surfaces and interfaces.

    PubMed

    Zhu, X-Y; Yang, Q; Muntwiler, M

    2009-11-17

    When a material of low dielectric constant is excited electronically from the absorption of a photon, the Coulomb attraction between the excited electron and the hole gives rise to an atomic H-like quasi-particle called an exciton. The bound electron-hole pair also forms across a material interface, such as the donor/acceptor interface in an organic heterojunction solar cell; the result is a charge-transfer (CT) exciton. On the basis of typical dielectric constants of organic semiconductors and the sizes of conjugated molecules, one can estimate that the binding energy of a CT exciton across a donor/acceptor interface is 1 order of magnitude greater than k(B)T at room temperature (k(B) is the Boltzmann constant and T is the temperature). How can the electron-hole pair escape this Coulomb trap in a successful photovoltaic device? To answer this question, we use a crystalline pentacene thin film as a model system and the ubiquitous image band on the surface as the electron acceptor. We observe, in time-resolved two-photon photoemission, a series of CT excitons with binding energies < or = 0.5 eV below the image band minimum. These CT excitons are essential solutions to the atomic H-like Schrodinger equation with cylindrical symmetry. They are characterized by principal and angular momentum quantum numbers. The binding energy of the lowest lying CT exciton with 1s character is more than 1 order of magnitude higher than k(B)T at room temperature. The CT(1s) exciton is essentially the so-called exciplex and has a very low probability of dissociation. We conclude that hot CT exciton states must be involved in charge separation in organic heterojunction solar cells because (1) in comparison to CT(1s), hot CT excitons are more weakly bound by the Coulomb potential and more easily dissociated, (2) density-of-states of these hot excitons increase with energy in the Coulomb potential, and (3) electronic coupling from a donor exciton to a hot CT exciton across the D

  15. Surface charge dynamics and OH and H number density distributions in near-surface nanosecond pulse discharges at a liquid / vapor interface

    NASA Astrophysics Data System (ADS)

    Winters, Caroline; Petrishchev, Vitaly; Yin, Zhiyao; Lempert, Walter R.; Adamovich, Igor V.

    2015-10-01

    The present work provides insight into surface charge dynamics and kinetics of radical species reactions in nanosecond pulse discharges sustained at a liquid-vapor interface, above a distilled water surface. The near-surface plasma is sustained using two different discharge configurations, a surface ionization wave discharge between two exposed metal electrodes and a double dielectric barrier discharge. At low discharge pulse repetition rates (~100 Hz), residual surface charge deposition after the discharge pulse is a minor effect. At high pulse repetition rates (~10 kHz), significant negative surface charge accumulation over multiple discharge pulses is detected, both during alternating polarity and negative polarity pulse trains. Laser induced fluorescence (LIF) and two-photon absorption LIF (TALIF) line imaging are used for in situ measurements of spatial distributions of absolute OH and H atom number densities in near-surface, repetitive nanosecond pulse discharge plasmas. Both in a surface ionization wave discharge and in a double dielectric barrier discharge, peak measured H atom number density, [H] is much higher compared to peak OH number density, due to more rapid OH decay in the afterglow between the discharge pulses. Higher OH number density was measured near the regions with higher plasma emission intensity. Both OH and especially H atoms diffuse out of the surface ionization wave plasma volume, up to several mm from the liquid surface. Kinetic modeling calculations using a quasi-zero-dimensional H2O vapor / Ar plasma model are in qualitative agreement with the experimental data. The results demonstrate the experimental capability of in situ radical species number density distribution measurements in liquid-vapor interface plasmas, in a simple canonical geometry that lends itself to the validation of kinetic models.

  16. From face to interface recognition: a differential geometric approach to distinguish DNA from RNA binding surfaces.

    PubMed

    Shazman, Shula; Elber, Gershon; Mandel-Gutfreund, Yael

    2011-09-01

    Protein nucleic acid interactions play a critical role in all steps of the gene expression pathway. Nucleic acid (NA) binding proteins interact with their partners, DNA or RNA, via distinct regions on their surface that are characterized by an ensemble of chemical, physical and geometrical properties. In this study, we introduce a novel methodology based on differential geometry, commonly used in face recognition, to characterize and predict NA binding surfaces on proteins. Applying the method on experimentally solved three-dimensional structures of proteins we successfully classify double-stranded DNA (dsDNA) from single-stranded RNA (ssRNA) binding proteins, with 83% accuracy. We show that the method is insensitive to conformational changes that occur upon binding and can be applicable for de novo protein-function prediction. Remarkably, when concentrating on the zinc finger motif, we distinguish successfully between RNA and DNA binding interfaces possessing the same binding motif even within the same protein, as demonstrated for the RNA polymerase transcription-factor, TFIIIA. In conclusion, we present a novel methodology to characterize protein surfaces, which can accurately tell apart dsDNA from an ssRNA binding interfaces. The strength of our method in recognizing fine-tuned differences on NA binding interfaces make it applicable for many other molecular recognition problems, with potential implications for drug design.

  17. Surfaces and Interfaces of Magnetoelectric Oxide Systems

    NASA Astrophysics Data System (ADS)

    Cao, Shi

    Magnetoelectric materials Cr2O3, hexagonal LuFeO 3 and YbFeO3 are studied in this thesis. The surface of chromia (Cr2O3) has a surface electronic structure distinct from the bulk. Our work shows that placing a Cr2O3 single crystal into a single domain state will result in net Cr2O 3 spin polarization at the boundary, even in the presence of a gold overlayer. From the Cr 2p3/2 X-ray magnetic circular dichroism signal, there is clear evidence of interface polarization with overlayers of both Pd and Pt on chromia. Cobalt thin films on Cr2O3(0001) show larger magnetic contrast in magnetic force microscopy indicating enhancement of perpendicular anisotropy induced by Cr2O3. The interfacial charge transfer between mechanically exfoliated few-layer graphene and Cr2O3(0001) surfaces has been investigated showing hole doping of few-layer graphene. Density functional theory calculations furthermore confirm the p-type nature of the graphene on top of chromia, and suggest that the chromia is able to induce a significant carrier spin polarization in the graphene layer. The surface termination and the nominal valence states for hexagonal LuFeO3 thin films were characterized. The stable surface terminates in a Fe-O layer. This is consistent wit the results of density functional calculations. The structural transition at about 1000 °C, from the hexagonal to the orthorhombic phase of LuFeO3, has been investigated in thin films of LuFeO3. The electronic structure for the conduction bands of both hexagonal and orthorhombic LuFeO3 thin films have been measured. Dramatic differences in both the spectral features and the linear dichroism are observed. We have also studied the ferrimagnetism in h-YbFeO3 by measuring the magnetization of Fe and Yb separately. The results directly show antialignment of magnetization of Yb and Fe ions in h-YbFeO3 at low temperature, with an exchange field on Yb of about 17 kOe. All ferrimagnets, by default, are magnetoelectrics. These findings directly

  18. Surface pressure affects B-hordein network formation at the air-water interface in relation to gastric digestibility.

    PubMed

    Yang, Jingqi; Huang, Jun; Zeng, Hongbo; Chen, Lingyun

    2015-11-01

    Protein interfacial network formation under mechanical pressure and its influence on degradation was investigated at molecular level using Langmuir-Blodgett B-hordein monolayer as a 2D model. Surface properties, such as surface pressure, dilatational and shear rheology and the surface pressure--area (π-A) isotherm, of B-hordein at air-water interface were analyzed by tensiometer, rheometer and a Langmuir-Blodgett trough respectively. B-Hordein conformation and orientation under different surface pressures were determined by polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS). The interfacial network morphology was observed by atomic force microscopy (AFM). B-Hordein could reduce the air-water surface tension rapidly to ∼ 45 mN/m and form a solid-like network with high rheological elasticity and compressibility at interface, which could be a result of interactions developed by intermolecular β-sheets. The results also revealed that B-hordein interfacial network switched from an expanded liquid phase to a solid-like film with increasing compression pressure. The orientation of B-hordein was parallel to the surface when in expended liquid phase, whereas upon compression, the hydrophobic repetitive region tilted away from water phase. When compressed to 30 mN/m, a strong elastic network was formed at the interface, and it was resistant to a harsh gastric-like environment of low pH and pepsin. This work generated fundamental knowledge, which suggested the potential to design B-hordein stabilized emulsions and encapsulations with controllable digestibility for small intestine targeted delivery of bioactive compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. SFG analysis of the molecular structures at the surfaces and buried interfaces of PECVD ultralow-dielectric constant pSiCOH

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxian; Myers, John N.; Huang, Huai; Shobha, Hosadurga; Chen, Zhan; Grill, Alfred

    2016-02-01

    PECVD deposited porous SiCOH with ultralow dielectric constant has been successfully integrated as the insulator in advanced interconnects to decrease the RC delay. The effects of NH3 plasma treatment and the effectiveness of the dielectric repair on molecular structures at the surface and buried interface of a pSiCOH film deposited on top of a SiCNH film on a Si wafer were fully characterized using sum frequency generation vibrational spectroscopy (SFG), supplemented by X-ray photoelectron spectroscopy. After exposure to NH3 plasma for 18 s, about 40% of the methyl groups were removed from the pSiCOH surface, and the average orientation of surface methyl groups tilted more towards the surface. The repair method used here effectively repaired the molecular structures at the pSiCOH surface but did not totally recover the entire plasma-damaged layer. Additionally, simulated SFG spectra with various average orientations of methyl groups at the SiCNH/pSiCOH buried interface were compared with the experimental SFG spectra collected using three different laser input angles to determine the molecular structural information at the SiCNH/pSiCOH buried interface after NH3 plasma treatment and repair. The molecular structures including the coverage and the average orientation of methyl groups at the buried interface were found to be unchanged by NH3 plasma treatment and repair.

  20. Strain transfer through film-substrate interface and surface curvature evolution during a tensile test

    NASA Astrophysics Data System (ADS)

    He, Wei; Han, Meidong; Goudeau, Philippe; Bourhis, Eric Le; Renault, Pierre-Olivier; Wang, Shibin; Li, Lin-an

    2018-03-01

    Uniaxial tensile tests on polyimide-supported thin metal films are performed to respectively study the macroscopic strain transfer through an interface and the surface curvature evolution. With a dual digital image correlation (DIC) system, the strains of the film and the substrate can be simultaneously measured in situ during the tensile test. For the true strains below 2% (far beyond the films' elastic limit), a complete longitudinal strain transfer is present irrespective of the film thickness, residual stresses and microstructure. By means of an optical surface profiler, the three-dimensional (3D) topography of film surface can be obtained during straining. As expected, the profile of the specimen center remains almost flat in the tensile direction. Nevertheless, a relatively significant curvature evolution (of the same order with the initial curvature induced by residual stresses) is observed along the transverse direction as a result of a Poisson's ratio mismatch between the film and the substrate. Furthermore, finite element method (FEM) has been performed to simulate the curvature evolution considering the geometric nonlinearity and the perfect strain transfer at the interface, which agrees well with the experimental results.

  1. Dyakonov surface waves at the interface between hexagonal-boron-nitride and isotropic material

    NASA Astrophysics Data System (ADS)

    Zhu, B.; Ren, G.; Gao, Y.; Wang, Q.; Wan, C.; Wang, J.; Jian, S.

    2016-12-01

    In this paper we analyze the propagation of Dyakonov surface waves (DSWs) at the interface between hexagonal-boron-nitride (h-BN) and isotropic dielectric material. Various properties of DSWs supported at the dielectric-elliptic and dielectric-hyperbolic types of interfaces have been theoretically investigated, including the real effective index, propagation length, the angular existence domain (AED) and the composition ratio of evanescent field components in an h-BN crystal and isotropic dielectric material, respectively. The analysis in this paper reveals that h-BN could be a promising anisotropic material to observe the propagation of DSWs and may have potential diverse applications, such as high sensitivity stress sensing or optical sensing of analytes infiltrating dielectric materials.

  2. Surface/Interface Carrier-Transport Modulation for Constructing Photon-Alternative Ultraviolet Detectors Based on Self-Bending-Assembled ZnO Nanowires.

    PubMed

    Guo, Zhen; Zhou, Lianqun; Tang, Yuguo; Li, Lin; Zhang, Zhiqi; Yang, Hongbo; Ma, Hanbin; Nathan, Arokia; Zhao, Dongxu

    2017-09-13

    Surface/interface charge-carrier generation, diffusion, and recombination/transport modulation are especially important in the construction of photodetectors with high efficiency in the field of nanoscience. In the paper, a kind of ultraviolet (UV) detector is designed based on ZnO nanostructures considering photon-trapping, surface plasmonic resonance (SPR), piezophototronic effects, interface carrier-trapping/transport control, and collection. Through carefully optimized surface/interface carrier-transport modulation, a designed device with detectivity as high as 1.69 × 10 16 /1.71 × 10 16 cm·Hz 1/2 /W irradiating with 380 nm photons under ultralow bias of 0.2 V is realized by alternating nanoparticle/nanowire active layers, respectively, and the designed UV photodetectors show fast and slow recovery processes of 0.27 and 4.52 ms, respectively, which well-satisfy practical needs. Further, it is observed that UV photodetection could be performed within an alternative response by varying correlated key parameters, through efficient surface/interface carrier-transport modulation, spectrally resolved photoresponse of the detector revealing controlled detection in the UV region based on the ZnO nanomaterial, photodetection allowed or limited by varying the active layers, irradiation distance from one of the electrodes, standing states, or electric field. The detailed carrier generation, diffusion, and recombination/transport processes are well illustrated to explain charge-carrier dynamics contributing to the photoresponse behavior.

  3. Detecting Nasal Vowels in Speech Interfaces Based on Surface Electromyography

    PubMed Central

    Freitas, João; Teixeira, António; Silva, Samuel; Oliveira, Catarina; Dias, Miguel Sales

    2015-01-01

    Nasality is a very important characteristic of several languages, European Portuguese being one of them. This paper addresses the challenge of nasality detection in surface electromyography (EMG) based speech interfaces. We explore the existence of useful information about the velum movement and also assess if muscles deeper down in the face and neck region can be measured using surface electrodes, and the best electrode location to do so. The procedure we adopted uses Real-Time Magnetic Resonance Imaging (RT-MRI), collected from a set of speakers, providing a method to interpret EMG data. By ensuring compatible data recording conditions, and proper time alignment between the EMG and the RT-MRI data, we are able to accurately estimate the time when the velum moves and the type of movement when a nasal vowel occurs. The combination of these two sources revealed interesting and distinct characteristics in the EMG signal when a nasal vowel is uttered, which motivated a classification experiment. Overall results of this experiment provide evidence that it is possible to detect velum movement using sensors positioned below the ear, between mastoid process and the mandible, in the upper neck region. In a frame-based classification scenario, error rates as low as 32.5% for all speakers and 23.4% for the best speaker have been achieved, for nasal vowel detection. This outcome stands as an encouraging result, fostering the grounds for deeper exploration of the proposed approach as a promising route to the development of an EMG-based speech interface for languages with strong nasal characteristics. PMID:26069968

  4. High-density stretchable microelectrode arrays: An integrated technology platform for neural and muscular surface interfacing

    NASA Astrophysics Data System (ADS)

    Guo, Liang

    2011-12-01

    Numerous applications in neuroscience research and neural prosthetics, such as retinal prostheses, spinal-cord surface stimulation for prosthetics, electrocorticogram (ECoG) recording for epilepsy detection, etc., involve electrical interaction with soft excitable tissues using a surface stimulation and/or recording approach. These applications require an interface that is able to set up electrical communications with a high throughput between electronics and the excitable tissue and that can dynamically conform to the shape of the soft tissue. Being a compliant and biocompatible material with mechanical impedance close to that of soft tissues, polydimethylsiloxane (PDMS) offers excellent potential as the substrate material for such neural interfaces. However, fabrication of electrical functionalities on PDMS has long been very challenging. This thesis work has successfully overcome many challenges associated with PDMS-based microfabrication and achieved an integrated technology platform for PDMS-based stretchable microelectrode arrays (sMEAs). This platform features a set of technological advances: (1) we have fabricated uniform current density profile microelectrodes as small as 10 mum in diameter; (2) we have patterned high-resolution (feature as small as 10 mum), high-density (pitch as small as 20 mum) thin-film gold interconnects on PDMS substrate; (3) we have developed a multilayer wiring interconnect technology within the PDMS substrate to further boost the achievable integration density of such sMEA; and (4) we have invented a bonding technology---via-bonding---to facilitate high-resolution, high-density integration of the sMEA with integrated circuits (ICs) to form a compact implant. Taken together, this platform provides a high-resolution, high-density integrated system solution for neural and muscular surface interfacing. sMEAs of example designs are evaluated through in vitro and in vivo experimentations on their biocompatibility, surface conformability

  5. Photoinduced surface plasmon switching at VO2/Au interface.

    PubMed

    Kumar, Nardeep; Rúa, Armando; Aldama, Jennifer; Echeverría, Karla; Fernández, Félix E; Lysenko, Sergiy

    2018-05-28

    Angle-resolved reflection, light scattering and ultrafast pump-probe spectroscopy combined with a surface plasmon-polariton (SPP) resonance technique in attenuated total reflection geometry was used to investigate the light-induced plasmonic switching in a photorefractive VO 2 /Au hybrid structure. Measurements of SPP scattering and reflection shows that the optically-induced formation of metallic state in a vanadium dioxide layer deposited on a gold film significantly alters the electromagnetic field enhancement and SPP propagation length at the VO 2 /Au interface. The ultrafast optical manipulation of SPP resonance is shown on a picosecond timescale. Obtained results demonstrate high potential of photorefractive vanadium oxides as efficient plasmonic modulating materials for ultrafast optoelectronic devices.

  6. Multi-modal cockpit interface for improved airport surface operations

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J. (Inventor); Bailey, Randall E. (Inventor); Prinzel, III, Lawrence J. (Inventor); Kramer, Lynda J. (Inventor); Williams, Steven P. (Inventor)

    2010-01-01

    A system for multi-modal cockpit interface during surface operation of an aircraft comprises a head tracking device, a processing element, and a full-color head worn display. The processing element is configured to receive head position information from the head tracking device, to receive current location information of the aircraft, and to render a virtual airport scene corresponding to the head position information and the current aircraft location. The full-color head worn display is configured to receive the virtual airport scene from the processing element and to display the virtual airport scene. The current location information may be received from one of a global positioning system or an inertial navigation system.

  7. Magnetic field dependent measurement techniques of surface tension of magnetic fluid at an air interface

    NASA Astrophysics Data System (ADS)

    Nair, Nishant; Virpura, Hiral; Patel, Rajesh

    2015-06-01

    We describe here two measurement techniques to determine surface tension of magnetic fluid. (i) magneti c field dependent capillary rise method and (ii) Taylor wavelength method in which the distance between the consecutive stable spikes was measured and then surface tension was calculated. The surface tension measurements from both the methods are compared. It is observed that surface tension of magnetic fluid increases with increase in magnetic field due to field dependent structure formation in magnetic fluid at an air interface. We have also measured magnetic susceptibility and surface tension for different volume fractions. The measurement of magnetic susceptibility is carried out using Quincke's experimental techniques.

  8. Surface characterization of imidazolium-based ionic liquids with cyano-functionalized anions at the gas-liquid interface using sum frequency generation spectroscopy.

    PubMed

    Peñalber, Chariz Y; Grenoble, Zlata; Baker, Gary A; Baldelli, Steven

    2012-04-21

    Advancement in the field of ionic liquid technology requires a comprehensive understanding of their surface properties, as a wide range of chemical reactions occur mainly at interfaces. As essential media currently used in several technological applications, their accurate molecular level description at the gas-liquid interface is of utmost importance. Due to the high degree of chemical information provided in the vibrational spectrum, vibrational spectroscopy gives the most detailed model for molecular structure. The inherently surface-sensitive technique, sum frequency generation (SFG) spectroscopy, in combination with bulk-sensitive vibrational spectroscopic techniques such as FTIR and Raman, has been used in this report to characterize the surface of cyano-containing ionic liquids, such as [BMIM][SCN], [BMIM][DCA], [BMIM][TCM] and [EMIM][TCB] at the gas-liquid interface. By structural variation of the anion while keeping the cation constant, emphasis on the molecular arrangement of the anion at the gas-liquid interface is reported, and its subsequent role (if any) in determining the surface molecular orientation of the cation. Vibrational modes seen in the C-H stretching region revealed the presence of the cation at the gas-liquid interface. The cation orientation is independent of the type of cyano-containing anion, however, a similar arrangement at the surface as reported in previous studies was found, with the imidazolium ring lying flat at the surface, and the alkyl chains pointing towards the gas phase. SFG results show that all three anions of varying symmetry, namely, [DCA](-) (C(2v)), [TCM](-)(D(3h)) and [TCB](-) (T(d)) in ionic liquids [BMIM]DCA], [BMIM][TCM] and [EMIM][TCB] are significantly tilted from the surface plane, while the linear [SCN](-) in [BMIM][SCN] exhibited poor ordering, as seen in the absence of its C-N stretching mode in the SFG vibrational spectra. This journal is © the Owner Societies 2012

  9. Improvement of the GaSb/Al2O3 interface using a thin InAs surface layer

    NASA Astrophysics Data System (ADS)

    Greene, Andrew; Madisetti, Shailesh; Nagaiah, Padmaja; Yakimov, Michael; Tokranov, Vadim; Moore, Richard; Oktyabrsky, Serge

    2012-12-01

    The highly reactive GaSb surface was passivated with a thin InAs layer to limit interface trap state density (Dit) at the III-V/high-k oxide interface. This InAs surface was subjected to various cleaning processes to effectively reduce native oxides before atomic layer deposition (ALD). Ammonium sulfide pre-cleaning and trimethylaluminum/water ALD were used in conjunction to provide a clean interface and annealing in forming gas (FG) at 350 °C resulted in an optimized fabrication for n-GaSb/InAs/high-k gate stacks. Interface trap density, Dit ≈ 2-3 × 1012 cm-2eV-1 resided near the n-GaSb conductance band which was extracted and compared with three different methods. Conductance-voltage-frequency plots showed efficient Fermi level movement and a sub-threshold slope of 200 mV/dec. A composite high-k oxide process was also developed using ALD of Al2O3 and HfO2 resulting in a Dit ≈ 6-7 × 1012 cm-2eV-1. Subjecting these samples to a higher (450 °C) processing temperature results in increased oxidation and a thermally unstable interface. p-GaSb displayed very fast minority carrier generation/recombination likely due to a high density of bulk traps in GaSb.

  10. Lamina Cribrosa Changes after Laser In Situ Keratomileusis in Myopic Eyes

    PubMed Central

    Lee, Soomin; Choi, Da-Ye Diana; Lim, Dong Hui; Chung, Tae Young; Han, Jong Chul

    2018-01-01

    Purpose To determine deep optic nerve head structure changes after transient intraocular pressure elevation during laser in situ keratomileusis (LASIK) for myopia. Methods Enhanced depth imaging-optical coherence tomography was performed in each myopic eye that underwent LASIK surgery. Enhanced depth imaging-optical coherence tomography images were created at postoperative 1 day, 1 week, 2 weeks, and 1 month. Lamina cribrosa (LC) thickness, LC depth and prelaminar thickness at the superior, middle and inferior portions of the optic nerve head were measured by two investigators. Results Forty eyes in 40 patients were included in the present study. During follow-up, there were no significant differences in prelaminar thickness or LC depth. The LC demonstrated increased thickness at postoperative 1 day at all three locations (superior, middle, and inferior) (p < 0.001, p < 0.001, p < 0.001, respectively). However, no significant changes were observed at postoperative 1 week, 2 weeks, and 1 month. Conclusions The LC thickness could increase at 1 day after LASIK surgery. However, the thickness will gradually return to baseline morphology. Temporary intraocular pressure increase during LASIK does not appear to induce irreversible LC thickness changes. PMID:29611373

  11. Lamina Cribrosa Changes after Laser In Situ Keratomileusis in Myopic Eyes.

    PubMed

    Lee, Soomin; Choi, Da Ye Diana; Lim, Dong Hui; Chung, Tae Young; Han, Jong Chul; Kee, Changwon

    2018-04-01

    To determine deep optic nerve head structure changes after transient intraocular pressure elevation during laser in situ keratomileusis (LASIK) for myopia. Enhanced depth imaging-optical coherence tomography was performed in each myopic eye that underwent LASIK surgery. Enhanced depth imaging-optical coherence tomography images were created at postoperative 1 day, 1 week, 2 weeks, and 1 month. Lamina cribrosa (LC) thickness, LC depth and prelaminar thickness at the superior, middle and inferior portions of the optic nerve head were measured by two investigators. Forty eyes in 40 patients were included in the present study. During follow-up, there were no significant differences in prelaminar thickness or LC depth. The LC demonstrated increased thickness at postoperative 1 day at all three locations (superior, middle, and inferior) (p < 0.001, p < 0.001, p < 0.001, respectively). However, no significant changes were observed at postoperative 1 week, 2 weeks, and 1 month. The LC thickness could increase at 1 day after LASIK surgery. However, the thickness will gradually return to baseline morphology. Temporary intraocular pressure increase during LASIK does not appear to induce irreversible LC thickness changes. © 2018 The Korean Ophthalmological Society.

  12. Dynamics of Defects and Dopants in Complex Systems: Si and Oxide Surfaces and Interfaces

    NASA Astrophysics Data System (ADS)

    Kirichenko, Taras; Yu, Decai; Banarjee, Sanjay; Hwang, Gyeong

    2004-10-01

    Fabrication of forthcoming nanometer scale electronic devices faces many difficulties including formation of extremely shallow and highly doped junctions. At present, ultra-low-energy ion implantation followed by high-temperature thermal annealing is most widely used to fabricate such ultra-shallow junctions. In the process, a great challenge lies in achieving precise control of redistribution and electrical activation of dopant impurities. Native defects (such as vacancies and interstitials) generated during implantation are known to be mainly responsible for the TED and also influence significantly the electrical activation/deactivation. Defect-dopant dynamics is rather well understood in crystalline Si and SiO2. However, little is known about their diffusion and annihilation (or precipitation) at the surfaces and interfaces, despite its growing importance in determining junction profiles as device dimensions get smaller. In this talk, we will present our density functional theory calculation results on the atomic and electronic structure and dynamical behavior of native defects and dopant-defect complexes in disordered/strained Si and oxide systems, such as i) clean and absorbent-modified Si(100) surface and subsurface layers, ii) amorphous-crystalline Si interfaces and iii) amorphous SiO2/Si interfaces. The fundamental understanding and data is essential in developing a comprehensive kinetic model for junction formation, which would contribute greatly in improving current process technologies.

  13. Surface-subsurface turbulent interaction at the interface of a permeable bed: influence of the wall permeability

    NASA Astrophysics Data System (ADS)

    Kim, T.; Blois, G.; Best, J.; Christensen, K. T.

    2017-12-01

    Coarse-gravel river beds possess a high degree of permeability. Flow interactions between surface and subsurface flow across the bed interface is key to a number of natural processes occurring in the hyporheic zone. In fact, it is increasingly recognized that these interactions drive mass, momentum and energy transport across the interface, and consequently control biochemical processes as well as stability of sediments. The current study explores the role of the wall permeability in surface and subsurface flow interaction under controlled experimental conditions on a physical model of a gravel bed. The present wall model was constructed by five layers of cubically arranged spheres (d=25.4mm, where d is a diameter) providing 48% of porosity. Surface topography was removed by cutting half of a diameter on the top layer of spheres to render the flow surface smooth and highlight the impact of the permeability on the overlying flow. An impermeable smooth wall was also considered as a baseline of comparison for the permeable wall flow. To obtain basic flow statistics, low-frame-rate high-resolution PIV measurements were performed first in the streamwise-wall-normal (x-y) plane and refractive-index matching was employed to optically access the flow within the permeable wall. Time-resolved PIV experiments in the same facility were followed to investigate the flow interaction across the wall interface in sptaio-temporal domain. In this paper, a detailed analysis of the first and second order velocity statistics as well as the amplitude modulation for the flow overlying the permeable smooth wall will be presented.

  14. From face to interface recognition: a differential geometric approach to distinguish DNA from RNA binding surfaces

    PubMed Central

    Shazman, Shula; Elber, Gershon; Mandel-Gutfreund, Yael

    2011-01-01

    Protein nucleic acid interactions play a critical role in all steps of the gene expression pathway. Nucleic acid (NA) binding proteins interact with their partners, DNA or RNA, via distinct regions on their surface that are characterized by an ensemble of chemical, physical and geometrical properties. In this study, we introduce a novel methodology based on differential geometry, commonly used in face recognition, to characterize and predict NA binding surfaces on proteins. Applying the method on experimentally solved three-dimensional structures of proteins we successfully classify double-stranded DNA (dsDNA) from single-stranded RNA (ssRNA) binding proteins, with 83% accuracy. We show that the method is insensitive to conformational changes that occur upon binding and can be applicable for de novo protein-function prediction. Remarkably, when concentrating on the zinc finger motif, we distinguish successfully between RNA and DNA binding interfaces possessing the same binding motif even within the same protein, as demonstrated for the RNA polymerase transcription-factor, TFIIIA. In conclusion, we present a novel methodology to characterize protein surfaces, which can accurately tell apart dsDNA from an ssRNA binding interfaces. The strength of our method in recognizing fine-tuned differences on NA binding interfaces make it applicable for many other molecular recognition problems, with potential implications for drug design. PMID:21693557

  15. Proceedings of the first workshop on Peripheral Machine Interfaces: going beyond traditional surface electromyography

    PubMed Central

    Castellini, Claudio; Artemiadis, Panagiotis; Wininger, Michael; Ajoudani, Arash; Alimusaj, Merkur; Bicchi, Antonio; Caputo, Barbara; Craelius, William; Dosen, Strahinja; Englehart, Kevin; Farina, Dario; Gijsberts, Arjan; Godfrey, Sasha B.; Hargrove, Levi; Ison, Mark; Kuiken, Todd; Marković, Marko; Pilarski, Patrick M.; Rupp, Rüdiger; Scheme, Erik

    2014-01-01

    One of the hottest topics in rehabilitation robotics is that of proper control of prosthetic devices. Despite decades of research, the state of the art is dramatically behind the expectations. To shed light on this issue, in June, 2013 the first international workshop on Present and future of non-invasive peripheral nervous system (PNS)–Machine Interfaces (MI; PMI) was convened, hosted by the International Conference on Rehabilitation Robotics. The keyword PMI has been selected to denote human–machine interfaces targeted at the limb-deficient, mainly upper-limb amputees, dealing with signals gathered from the PNS in a non-invasive way, that is, from the surface of the residuum. The workshop was intended to provide an overview of the state of the art and future perspectives of such interfaces; this paper represents is a collection of opinions expressed by each and every researcher/group involved in it. PMID:25177292

  16. Surface adsorption behaviour of milk whey protein and pectin mixtures under conditions of air-water interface saturation.

    PubMed

    Perez, Adrián A; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Rubiolo, Amelia C; Santiago, Liliana G

    2011-07-01

    Milk whey proteins (MWP) and pectins (Ps) are biopolymer ingredients commonly used in the manufacture of colloidal food products. Therefore, knowledge of the interfacial characteristics of these biopolymers and their mixtures is very important for the design of food dispersion formulations (foams and/or emulsions). In this paper, we examine the adsorption and surface dilatational behaviour of MWP/Ps systems under conditions in which biopolymers can saturate the air-water interface on their own. Experiments were performed at constant temperature (20 °C), pH 7 and ionic strength 0.05 M. Two MWP samples, β-lactoglobulin (β-LG) and whey protein concentrate (WPC), and two Ps samples, low-methoxyl pectin (LMP) and high-methoxyl pectin (HMP) were evaluated. The contribution of biopolymers (MWP and Ps) to the interfacial properties of mixed systems was evaluated on the basis of their individual surface molecular characteristics. Biopolymer bulk concentration capable of saturating the air-water interface was estimated from surface pressure isotherms. Under conditions of interfacial saturation, dynamic adsorption behaviour (surface pressure and dilatational rheological characteristics) of MWP/Ps systems was discussed from a kinetic point of view, in terms of molecular diffusion, penetration and configurational rearrangement at the air-water interface. The main adsorption mechanism in MWP/LMP mixtures might be the MWP interfacial segregation due to the thermodynamic incompatibility between MWP and LMP (synergistic mechanism); while the interfacial adsorption in MWP/HMP mixtures could be characterized by a competitive mechanism between MWP and HMP at the air-water interface (antagonistic mechanism). The magnitude of these phenomena could be closely related to differences in molecular composition and/or aggregation state of MWP (β-LG and WPC). Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Direct Determination of the Dependence of the Surface Shear and Dilatational Viscosities on the Thermodynamic State of the Interface: Theoretical Foundations.

    PubMed

    Lopez; Hirsa

    1998-10-01

    Recent developments in nonlinear optical techniques for noninvasive probing of a surfactant influenced gas/liquid interface allow for the measurement of the surfactant surface concentration, c, and thus provide new opportunities for the direct determination of its intrinsic viscosities. Here, we present the theoretical foundations, based on the Boussinesq-Scriven surface model without the usual simplification of constant viscosities, for an experimental technique to directly measure the surface shear (µs) and dilatational (kappas) viscosities of a Newtonian interface as functions of the surfactant surface concentration. This ability to directly measure the surfactant concentration permits the use of a simple surface flow for the measurement of the surface viscosities. The requirements are that the interface must be nearly flat, and the flow steady, axisymmetric, and swirling; these flow conditions can be achieved in the deep-channel viscometer driven at relatively fast rates. The tangential stress balance on such an interface leads to two equations; the balance in the azimuthal direction involves only µs and its gradients, and the balance in the radial direction involves both µs and kappas and their gradients. By further exploiting recent developments in laser-based flow measuring techniques, the surface velocities and their gradients which appear in the two equations can be measured directly. The surface tension gradient, which appears in the radial balance equation, is incorporated from the equation of state for the surfactant system and direct measurements of the surfactant surface concentration distribution. The stress balance equations are then ordinary differential equations in the surface viscosities as functions of radial position, which can be readily integrated. Since c is measured as a function of radial position, we then have a direct measurement of µs and kappas as functions of c. Numerical computations of the Navier-Stokes equations are performed

  18. Geometric and energetic considerations of surface fluctuations during ion transfer across the water-immiscible organic liquid interface

    NASA Astrophysics Data System (ADS)

    Karnes, John J.; Benjamin, Ilan

    2016-07-01

    Molecular dynamics simulations and umbrella sampling free energy calculations are used to examine the thermodynamics, energetics, and structural fluctuations that accompany the transfer of a small hydrophilic ion (Cl-) across the water/nitrobenzene interface. By examining several constrained interface structures, we isolate the energetic costs of interfacial deformation and co-transfer of hydration waters during the ion transfer. The process is monitored using both energy-based solvation coordinates and a geometric coordinate recently introduced by Morita and co-workers to describe surface fluctuations. Our simulations show that these coordinates provide a complimentary description of the water surface fluctuations during the transfer and are necessary for elucidating the mechanism of the ion transfer.

  19. A genetic algorithm approach in interface and surface structure optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jian

    The thesis is divided into two parts. In the first part a global optimization method is developed for the interface and surface structures optimization. Two prototype systems are chosen to be studied. One is Si[001] symmetric tilted grain boundaries and the other is Ag/Au induced Si(111) surface. It is found that Genetic Algorithm is very efficient in finding lowest energy structures in both cases. Not only existing structures in the experiments can be reproduced, but also many new structures can be predicted using Genetic Algorithm. Thus it is shown that Genetic Algorithm is a extremely powerful tool for the materialmore » structures predictions. The second part of the thesis is devoted to the explanation of an experimental observation of thermal radiation from three-dimensional tungsten photonic crystal structures. The experimental results seems astounding and confusing, yet the theoretical models in the paper revealed the physics insight behind the phenomena and can well reproduced the experimental results.« less

  20. Elucidating Complex Surface Reconstructions with Atomic-Resolution Scanning Tunneling Microscopy: Au(100)-Aqueous Electrochemical Interface

    DTIC Science & Technology

    1992-05-01

    that unusually high-quality STM data of this type 5-7can be obtained at ordered gold -aqueous interfaces. Reconstruction is seen 2 to be triggered on...all three low-index gold surfaces by altering the potential to values corresponding to small (10-15 pC cm-2 ) negative surface electronic 5-7 charges...connections. The former was platinum and the latter was a freshly electrooxidized gold wire. All electrode potentials quoted here, however, are

  1. Laser in situ keratomileusis using optimized aspheric profiles and cyclotorsion control to treat compound myopic astigmatism with high cylinder.

    PubMed

    Alió, Jorge L; Plaza-Puche, Ana B; Martinez, Lorena M; Torky, Magda; Brenner, Luis F

    2013-01-01

    To evaluate the visual outcomes after laser in situ keratomileusis (LASIK) surgery to correct primary compound myopic astigmatism with high cylinder performed using a fast-repetition-rate excimer laser platform with optimized aspheric profiles and cyclotorsion control. Vissum Corporation and Division of Ophthalmology, Universidad Miguel Hernández, Alicante, Spain. Retrospective consecutive observational nonrandomized noncomparative case series. Eyes with primary compound myopic astigmatism and a cylinder power over 3.00 diopters (D) had uneventful LASIK with femtosecond flap creation and fast-repetition-rate excimer laser ablation with aspheric profiles and cyclotorsion control. Visual, refractive, and aberrometric outcomes were evaluated at the 6-month follow-up. The astigmatic correction was evaluated using the Alpins method and Assort software. The study enrolled 37 eyes (29 patients; age range 19 to 55 years). The significant reduction in refractive sphere and cylinder 3 months and 6 months postoperatively (P<.01) was associated with improved uncorrected distance visual acuity (P<.01). Eighty-seven percent of eyes had a spherical equivalent within ±0.50 D; 7.5% of eyes were retreated. There was no significant induction of higher-order aberrations (HOAs). The targeted and surgically induced astigmatism magnitudes were 3.23 D and 2.96 D, respectively, and the correction index was 0.91. The safety and efficacy indices were 1.05 and 0.95, respectively. Laser in situ keratomileusis for primary compound myopic astigmatism with high cylinder (>3.00 D) performed using a fast-repetition-rate excimer laser with optimized aspheric profiles and cyclotorsion control was safe, effective, and predictable and did not cause significant induction of HOAs. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  2. Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces.

    PubMed

    Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin

    2017-05-30

    For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ∼26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad.

  3. Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces

    NASA Astrophysics Data System (ADS)

    Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin

    2017-05-01

    For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ˜26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad.

  4. Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces

    PubMed Central

    Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin

    2017-01-01

    For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ∼26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad. PMID:28507143

  5. Continuum elastic theory for dynamics of surfaces and interfaces

    NASA Astrophysics Data System (ADS)

    Pykhtin, Michael V.

    This thesis is divided into three parts, different by problems they deal with, but similar by underlying assumptions (crystals are treated as classical elastic anisotropic media) and methods of solving (vibrational Green's functions). (i) In the first part we compute the density of vibrational modes for a vicinal Ni(977) surface. In the spectrum we find new step induced modes which are compared with recently reported experimental data for Ni(977) surface obtained by inelastic atom scattering. (ii) In the second part we study damping of low-frequency adsorbate vibrations via resonant coupling to the substrate phonons. Our theory provides a general expression for the vibrational damping rate which can be applied to widely varying coverages and arbitrary overlayer structures. The damping rates predicted by our theory for CO on Cu(100) are in excellent quantitative agreement with available experimental data. (iii) In the third part we develop a theory for the density of vibrational modes at the surface of a thin film of one anisotropic solid an on top of the other. We compute the density of modes for a GaN film on a sapphire substrate for a wide range of wavevector and frequency, and obtain dispersion maps which contain waves trapped between the surface of the film and the interface. Two families of the trapped modes were observed: Love waves and generalized Lamb waves. We also study the effect of threading edge dislocations (majority of defects in the GaN film) on the trapped modes. At the experimental dislocation density the effect is negligible.

  6. Scale separation for multi-scale modeling of free-surface and two-phase flows with the conservative sharp interface method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, L.H., E-mail: Luhui.Han@tum.de; Hu, X.Y., E-mail: Xiangyu.Hu@tum.de; Adams, N.A., E-mail: Nikolaus.Adams@tum.de

    In this paper we present a scale separation approach for multi-scale modeling of free-surface and two-phase flows with complex interface evolution. By performing a stimulus-response operation on the level-set function representing the interface, separation of resolvable and non-resolvable interface scales is achieved efficiently. Uniform positive and negative shifts of the level-set function are used to determine non-resolvable interface structures. Non-resolved interface structures are separated from the resolved ones and can be treated by a mixing model or a Lagrangian-particle model in order to preserve mass. Resolved interface structures are treated by the conservative sharp-interface model. Since the proposed scale separationmore » approach does not rely on topological information, unlike in previous work, it can be implemented in a straightforward fashion into a given level set based interface model. A number of two- and three-dimensional numerical tests demonstrate that the proposed method is able to cope with complex interface variations accurately and significantly increases robustness against underresolved interface structures.« less

  7. Fatigue Debonding of the Roughened Stem–Cement Interface: Effects of Surface Roughness and Stem Heating Conditions

    PubMed Central

    Damron, Leatha A.; Kim, Do-Gyoon; Mann, Kenneth A.

    2007-01-01

    The aim of this study was to determine the effects of cyclic loading on the debond process of a roughened stem– cement interface used in total hip arthroplasty. The specific goals were to assess the effects of two surgeon-controlled variables (stem heating and degree of stem surface roughness) and to determine if an independent finite element-based fracture mechanics model could be used to predict the debond response. A clamped cantilever beam geometry was used to determine the fatigue debond response of the stem– cement interface and was created using an experimental mold that simulated in vivo cementing conditions. A second experiment was performed using a torsion-loading model representative of the stem– cement–bone composite. For both experiments, two stem heating (room temperature and 50°C) and surface roughness conditions (grit blasted: Ra = 2.3 and 5.1 μm) were used. Finally, a finite element model of the torsion experiment with provision for crack growth was developed and compared with the experimental results. Results from both experiments revealed that neither stem preheating nor use of a stem with a greater surface roughness had a marked effect on the fatigue debond response. There was substantial variability in the debond response for all cases; this may be due to microscopic gaps at the interface for all interface conditions. The debond rate from the finite element simulation (10−7.31 m/cycle) had a magnitude similar to the experimental torsion model (10− (6.77 ± 1.25) m/cycle). This suggests that within the context of the experimental conditions studied here that the debond response could be assessed using a linear elastic fracture mechanics-type approach. PMID:16292769

  8. Surface and Interface Chemistry for Gate Stacks on Silicon

    NASA Astrophysics Data System (ADS)

    Frank, M. M.; Chabal, Y. J.

    This chapter addresses the fundamental silicon surface science associated with the continued progress of nanoelectronics along the path prescribed by Moore's law. Focus is on hydrogen passivation layers and on ultrathin oxide films encountered during silicon cleaning and gate stack formation in the fabrication of metal-oxide-semiconductor field-effect transistors (MOSFETs). Three main topics are addressed. (i) First, the current practices and understanding of silicon cleaning in aqueous solutions are reviewed, including oxidizing chemistries and cleans leading to a hydrogen passivation layer. The dependence of the final surface termination and morphology/roughness on reactant choice and pH and the influence of impurities such as dissolved oxygen or metal ions are discussed. (ii) Next, the stability of hydrogen-terminated silicon in oxidizing liquid and gas phase environments is considered. In particular, the remarkable stability of hydrogen-terminated silicon surface in pure water vapor is discussed in the context of atomic layer deposition (ALD) of high-permittivity (high-k) gate dielectrics where water is often used as an oxygen precursor. Evidence is also provided for co-operative action between oxygen and water vapor that accelerates surface oxidation in humid air. (iii) Finally, the fabrication of hafnium-, zirconium- and aluminum-based high-k gate stacks is described, focusing on the continued importance of the silicon/silicon oxide interface. This includes a review of silicon surface preparation by wet or gas phase processing and its impact on high-k nucleation during ALD growth, and the consideration of gate stack capacitance and carrier mobility. In conclusion, two issues are highlighted: the impact of oxygen vacancies on the electrical characteristics of high-k MOS devices, and the way alloyed metal ions (such as Al in Hf-based gate stacks) in contact with the interfacial silicon oxide layer can be used to control flatband and threshold voltages.

  9. Numerical studies of singularity formation at free surfaces and fluid interfaces in two-dimensional Stokes flow

    NASA Astrophysics Data System (ADS)

    Pozrikidis, C.

    1997-01-01

    We consider the analytic structure of interfaces in several families of steady and unsteady two-dimensional Stokes flows, focusing on the formation of corners and cusps. Previous experimental and theoretical studies have suggested that, without surface tension, the interfaces spontaneously develop such singular points. We investigate whether and how corners and cusps actually develop in a time-dependent flow, and assess the stability of stationary cusped shapes predicted by previous authors. The motion of the interfaces is computed with high resolution using a boundary integral method for three families of flows. In the case of a bubble that is subjected to the family of straining flows devised by Antanovskii, we find that a stationary cusped shape is not likely to occur as the asymptotic limit of a transient deformation. Instead, the pointed ends of the bubble disintegrate in a process that is reminiscent of tip streaming. In the case of the flow due to an array of point-source dipoles immersed beneath a free surface, which is the periodic version of a flow proposed by Jeong & Moffatt, we find evidence that a cusped shape indeed arises as the result of a transient deformation. In the third part of the numerical study, we show that, under certain conditions, the free surface of a liquid film that is levelling under the action of gravity on a horizontal or slightly inclined surface develops an evolving corner or cusp. In certain cases, the film engulfs a small air bubble of ambient fluid to obtain a composite shape. The structure of a corner or a cusp in an unsteady flow does not have a unique shape, as it does at steady state. In all cases, a small amount of surface tension is able to prevent the formation of a singularity, but replacing the inviscid gas with a viscous liquid does not have a smoothing effect. The ability of the thin-film lubrication equation to produce mathematical singularities at the free surface of a levelling film is also discussed.

  10. Hyperbolic Interfaces

    NASA Astrophysics Data System (ADS)

    Giomi, Luca

    2012-09-01

    Fluid interfaces, such as soap films, liquid droplets, or lipid membranes, are known to give rise to several special geometries, whose complexity and beauty continue to fascinate us, as observers of the natural world, and challenge us as scientists. Here I show that a special class of surfaces of constant negative Gaussian curvature can be obtained in fluid interfaces equipped with an orientational ordered phase. These arise in various soft and biological materials, such as nematic liquid crystals, cytoskeletal assemblies, or hexatic colloidal suspensions. The purely hyperbolic morphology originates from the competition between surface tension, that reduces the area of the interface at the expense of increasing its Gaussian curvature, and the orientational elasticity of the ordered phase, that in turn suffers for the distortion induced by the underlying curvature.

  11. Corneal Densitometry as a Tool to Measure Epithelial Ingrowth After Laser In Situ Keratomileusis.

    PubMed

    Adran, Daniel; Vaillancourt, Louis; Harissi-Dagher, Mona; Kruh, Jonathan N; Syed, Zeba A; Robinson, Steven; Melki, Samir

    2017-04-01

    This study evaluates the correlation between corneal densitometry and epithelial ingrowth (EI) after laser in situ keratomileusis (LASIK). Corneal densitometry of 3 patients who developed EI after LASIK was measured with the Oculus Pentacam. Corneal densitometry readings of each patient were obtained preoperatively and postoperatively after ingrowth was discovered. Densitometry was recorded at the central nest of opacity and at the leading edges of EI. For all patients, the most severe stages of EI observed on slit-lamp photographs correlated with the highest densitometry readings, with peak densitometry ranging from 73.3 to 95.1. These values were much higher than preoperative densitometry readings, which ranged from 21.8 to 27.2. In 2 cases, the Pentacam densitometry map revealed progression of EI toward the visual axis that was only faintly detectable or not detectable at all on the corresponding slit-lamp photographs. Corneal densitometry seems to be an objective measure of the severity and progression of EI after LASIK.

  12. Femtosecond Laser in situ Keratomileusis Flap Creation in Narrow Palpebral Fissure Eyes without Suction.

    PubMed

    Chang, John S M; Law, Antony K P; Ng, Jack C M; Cheng, May S Y

    2017-01-01

    To evaluate a surgical technique used in eyes with narrow palpebral fissure undergoing femtosecond laser flap creation without suction during laser in situ keratomileusis (LASIK). All data of 2 patient groups were collected through chart review. Group 1 consisted of 6 eyes with narrow palpebral fissure in which the suction ring was manually fixated and femtosecond laser was applied accordingly. Thirty comparison cases were randomly drawn from among eyes that underwent a standard LASIK procedure matched for age and preoperative refraction (group 2). Only 1 eye of each patient was selected to compare the refractive and visual outcomes between groups. In all group 1 eyes, the flaps were created successfully with manual fixation of the suction ring without suction. No eyes lost 2 or more lines of vision. No significant difference was found in the safety and refractive outcomes between groups. Manual fixation of the suction ring in eyes with narrow palpebral fissure without suction was feasible for flap creation during LASIK.

  13. The advantages of the surface Laplacian in brain-computer interface research.

    PubMed

    McFarland, Dennis J

    2015-09-01

    Brain-computer interface (BCI) systems frequently use signal processing methods, such as spatial filtering, to enhance performance. The surface Laplacian can reduce spatial noise and aid in identification of sources. In BCI research, these two functions of the surface Laplacian correspond to prediction accuracy and signal orthogonality. In the present study, an off-line analysis of data from a sensorimotor rhythm-based BCI task dissociated these functions of the surface Laplacian by comparing nearest-neighbor and next-nearest neighbor Laplacian algorithms. The nearest-neighbor Laplacian produced signals that were more orthogonal while the next-nearest Laplacian produced signals that resulted in better accuracy. Both prediction and signal identification are important for BCI research. Better prediction of user's intent produces increased speed and accuracy of communication and control. Signal identification is important for ruling out the possibility of control by artifacts. Identifying the nature of the control signal is relevant both to understanding exactly what is being studied and in terms of usability for individuals with limited motor control. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Interfacial Dzyaloshinskii-Moriya interaction, surface anisotropy energy, and spin pumping at spin orbit coupled Ir/Co interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Nam-Hui; Jung, Jinyong; Cho, Jaehun

    2016-04-04

    The interfacial Dzyaloshinskii-Moriya interaction (iDMI), surface anisotropy energy, and spin pumping at the Ir/Co interface are experimentally investigated by performing Brillouin light scattering. Contrary to previous reports, we suggest that the sign of the iDMI at the Ir/Co interface is the same as in the case of the Pt/Co interface. We also find that the magnitude of the iDMI energy density is relatively smaller than in the case of the Pt/Co interface, despite the large strong spin-orbit coupling (SOC) of Ir. The saturation magnetization and the perpendicular magnetic anisotropy (PMA) energy are significantly improved due to a strong SOC. Ourmore » findings suggest that an SOC in an Ir/Co system behaves in different ways for iDMI and PMA. Finally, we determine the spin pumping effect at the Ir/Co interface, and it increases the Gilbert damping constant from 0.012 to 0.024 for 1.5 nm-thick Co.« less

  15. Interface electronic structures of reversible double-docking self-assembled monolayers on an Au(111) surface

    PubMed Central

    Zhang, Tian; Ma, Zhongyun; Wang, Linjun; Xi, Jinyang; Shuai, Zhigang

    2014-01-01

    Double-docking self-assembled monolayers (DDSAMs), namely self-assembled monolayers (SAMs) formed by molecules possessing two docking groups, provide great flexibility to tune the work function of metal electrodes and the tunnelling barrier between metal electrodes and the SAMs, and thus offer promising applications in both organic and molecular electronics. Based on the dispersion-corrected density functional theory (DFT) in comparison with conventional DFT, we carry out a systematic investigation on the dual configurations of a series of DDSAMs on an Au(111) surface. Through analysing the interface electronic structures, we obtain the relationship between single molecular properties and the SAM-induced work-function modification as well as the level alignment between the metal Fermi level and molecular frontier states. The two possible conformations of one type of DDSAM on a metal surface reveal a strong difference in the work-function modification and the electron/hole tunnelling barriers. Fermi-level pinning is found to be a key factor to understand the interface electronic properties. PMID:24615153

  16. Tuning the Seebeck effect in C60-based hybrid thermoelectric devices through temperature-dependent surface polarization and thermally-modulated interface dipoles.

    PubMed

    Liu, Yuchun; Xu, Ling; Zhao, Chen; Shao, Ming; Hu, Bin

    2017-06-07

    Fullerene (C 60 ) is an important n-type organic semiconductor with high electron mobility and low thermal conductivity. In this work, we report the experimental results on the tunable Seebeck effect of C 60 hybrid thin-film devices by adopting different oxide layers. After inserting n-type high-dielectric constant titanium oxide (TiO x ) and zinc oxide (ZnO) layers, we observed a significantly enhanced n-type Seebeck effect in oxide/C 60 hybrid devices with Seebeck coefficients of -5.8 mV K -1 for TiO x /C 60 and -2.08 mV K -1 for ZnO/C 60 devices at 100 °C, compared with the value of -400 μV K -1 for the pristine C 60 device. However, when a p-type nickel oxide (NiO) layer is inserted, the C 60 hybrid devices show a p-type to n-type Seebeck effect transition when the temperature increases. The remarkable Seebeck effect and change in Seebeck coefficient in different oxide/C 60 hybrid devices can be attributed to two reasons: the temperature-dependent surface polarization difference and thermally-dependent interface dipoles. Firstly, the surface polarization difference due to temperature-dependent electron-phonon coupling can be enhanced by inserting an oxide layer and functions as an additional driving force for the Seebeck effect development. Secondly, thermally-dependent interface dipoles formed at the electrode/oxide interface play an important role in modifying the density of interface states and affecting the charge diffusion in hybrid devices. The surface polarization difference and interface dipoles function in the same direction in hybrid devices with TiO x and ZnO dielectric layers, leading to enhanced n-type Seebeck effect, while the surface polarization difference and interface dipoles generate the opposite impact on electron diffusion in ITO/NiO/C 60 /Al, leading to a p-type to n-type transition in the Seebeck effect. Therefore, inserting different oxide layers could effectively modulate the Seebeck effect of C 60 -based hybrid devices through the

  17. Propagation of high frequency electrostatic surface waves along the planar interface between plasma and dusty plasma

    NASA Astrophysics Data System (ADS)

    Mishra, Rinku; Dey, M.

    2018-04-01

    An analytical model is developed that explains the propagation of a high frequency electrostatic surface wave along the interface of a plasma system where semi-infinite electron-ion plasma is interfaced with semi-infinite dusty plasma. The model emphasizes that the source of such high frequency waves is inherent in the presence of ion acoustic and dust ion acoustic/dust acoustic volume waves in electron-ion plasma and dusty plasma region. Wave dispersion relation is obtained for two distinct cases and the role of plasma parameters on wave dispersion is analyzed in short and long wavelength limits. The normalized surface wave frequency is seen to grow linearly for lower wave number but becomes constant for higher wave numbers in both the cases. It is observed that the normalized frequency depends on ion plasma frequencies when dust oscillation frequency is neglected.

  18. Laser-assisted in situ keratomileusis with optimized, fast-repetition, and cyclotorsion control excimer laser to treat hyperopic astigmatism with high cylinder.

    PubMed

    Alió Del Barrio, Jorge L; Tiveron, Mauro; Plaza-Puche, Ana B; Amesty, María A; Casanova, Laura; García, María J; Alió, Jorge L

    2017-10-18

    To evaluate the visual outcomes after femtosecond laser-assisted laser in situ keratomileusis (LASIK) surgery to correct primary compound hyperopic astigmatism with high cylinder using a fast repetition rate excimer laser platform with optimized aspheric profiles and cyclotorsion control. Eyes with primary simple or compound hyperopic astigmatism and a cylinder power ≥3.00 D had uneventful femtosecond laser-assisted LASIK with a fast repetition rate excimer laser ablation, aspheric profiles, and cyclotorsion control. Visual, refractive, and aberrometric results were evaluated at the 3- and 6-month follow-up. The astigmatic outcome was evaluated using the Alpins method and ASSORT software. This study enrolled 80 eyes at 3 months and 50 eyes at 6 months. The significant reduction in refractive sphere and cylinder 3 and 6 months postoperatively (p<0.01) was associated with an improved uncorrected distance visual acuity (p<0.01). A total of 23.75% required retreatment 3 months after surgery. Efficacy and safety indices at 6 months were 0.90 and 1.00, respectively. At 6 months, 80% of eyes had an SE within ±0.50 D and 96% within ±1.00 D. No significant differences were detected between the third and the sixth postoperative months in refractive parameters. A significant increase in the spherical aberration was detected, but not in coma. The correction index was 0.94 at 3 months. Laser in situ keratomileusis for primary compound hyperopic astigmatism with high cylinder (>3.00 D) using the latest excimer platforms with cyclotorsion control, fast repetition rate, and optimized aspheric profiles is safe, moderately effective, and predictable.

  19. Electronic structure of metals and semiconductors: bulk, surface, and interface properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louie, S.G.S.

    1976-09-01

    A theoretical study of the electronic structure of various metals and semiconductors is presented with the emphasis on understanding the properties of these materials when they are subjected to extreme conditions and in various different configurations. Among the bulk systems studied, the properties of cesium under high pressure are discussed in terms of the electronic structure calculated at various cell volumes using the pseudopotential method. Local fields or umklapp processes in semiconductors are studied within the random phase approximation (RPA). Specifically the dielectric response matrix epsilon/sub GG'/ (q = 0,omega) is evaluated numerically to determine the effects of local-field correctionsmore » in the optical spectrum of Si. Also, some comments on the excitonic mechanism of superconductivity are presented and the role of local fields is discussed. The pseudo-potential method is next extended to calculate the electronic structure of a transition metal Nb. The calculation is performed self-consistently with the use of a non-local ionic potential determined from atomic spectra. Finally the theory of the superconducting transition temperature T/sub c/ is discussed in the strong-coupling formulation of the BCS theory. The Eliashberg equations in the Matsubara representation are solved analytically and a general T/sub c/ equation is obtained. A new method is developed using pseudopotentials in a self-consistent manner to describe non-periodic systems. The method is applicable to localized configurations such as molecules, surfaces, impurities, vacancies, finite chains of atoms, adsorbates, and solid interfaces. Specific applications to surfaces, metal-semiconductor interfaces and vacancies are presented.« less

  20. Effect of adsorption on the surface tensions of solid-fluid interfaces.

    PubMed

    Ward, C A; Wu, Jiyu

    2007-04-12

    A method is proposed for determining the surface tensions of a solid in contact with either a liquid or a vapor. Only an equilibrium adsorption isotherm at the solid-vapor interface needs to be added to Gibbsian thermodynamics to obtain the expressions for the solid-vapor and the solid-liquid surface tensions, gamma[1](SV) and gamma[1](SL), respectively. An equilibrium adsorption isotherm relation is formulated that has the essential property of not predicting an infinite amount adsorbed when the pressure is equal to the saturation-vapor pressure. Five different solid-vapor systems from the literature are examined, and found to be well described by the new isotherm relation. The surface-tension expressions obtained from the isotherm relation are examined by determining the surface tension of the solid in the absence of adsorption, gamma[1](S0), a material property of a solid surface. The value of gamma[1](S0) can be determined by adsorbing different vapors on the same solid, determining the isotherm parameters in each case, and then from the expression for gamma[1](SV) taking the limit of the pressure vanishing to determine gamma[1](S0). From previously reported measurements of benzene and of n-hexane adsorbing on graphitized carbon, the same value of gamma[1](S0) is obtained.

  1. First principles calculations of ceramics surfaces and interfaces: Examples from beta-silicon nitride and alpha-alumina

    NASA Astrophysics Data System (ADS)

    Dunn, Jennifer Synowczynski

    The goal of this thesis was to use first principles calculations to provide a fundamental understanding at the atomistic level of the mechanisms (e.g. structural relaxations of ceramic surfaces/interfaces, charge transfer reactions, adsorption and dissociation phenomena, localized debonding) behind macroscopic behavior in ceramics (e.g. fracture toughness, corrosion, catalysis). This thesis includes the results from three independent Density Functional Theory (DFT) studies of beta-Si3N4 and alpha-Al2O 3. Due to the computational complexity of first principles calculations, the models in this thesis do not consider temperature or pressure effects and are limited to describing the behavior of systems containing less than 200 atoms. In future studies, these calculations can be used to train a reactive molecular dynamics force field (REAXFF) so that larger scale phenomena including temperature effects can be explicitly simulated. In the first study, the effect of over 30 dopants on the stability of the interface between beta-Si3N4 grains and the intergranular glassy SiON film (IGF) was investigated. The dopants chosen not only represented commonly known glass modifiers and sintering aides but also enabled us to search for dependencies based on atomic size and electronic orbital configuration. To ensure that the approximations used in our model captured the key physical phenomena occurring on the beta-Si3N4 (100) surface and at the Si3N4/ IGF interface, we compared to experimental data (i.e. High Angle Annual Dark Field-Scanning Transmission Electron Microscopy atomic positions and fracture toughness values (Mikijelj B., 2009)). We identified a computational metric (the interfacial stability factor S) which correlates with experimentally measured fracture toughness values. The interfacial stability factor S is defined as the binding energy of the doped system minus the binding energy of the undoped system, where the binding energy is the total energy of the system minus

  2. Electrical properties of surface and interface layers of the N- and In-polar undoped and Mg-doped InN layers grown by PA MBE

    NASA Astrophysics Data System (ADS)

    Komissarova, T. A.; Kampert, E.; Law, J.; Jmerik, V. N.; Paturi, P.; Wang, X.; Yoshikawa, A.; Ivanov, S. V.

    2018-01-01

    Electrical properties of N-polar undoped and Mg-doped InN layers and In-polar undoped InN layers grown by plasma-assisted molecular beam epitaxy (PA MBE) were studied. Transport parameters of the surface and interface layers were determined from the measurements of the Hall coefficient and resistivity as well as the Shubnikov-de Haas oscillations at magnetic fields up to 60 T. Contributions of the 2D surface, 3D near-interface, and 2D interface layers to the total conductivity of the InN films were defined and discussed to be dependent on InN surface polarity, Mg doping, and PA MBE growth conditions.

  3. Combined laser in-situ keratomileusis and accelerated corneal cross-linking: an update.

    PubMed

    Tomita, Minoru

    2016-07-01

    The purpose is to review the literature of combined laser in-situ keratomileusis (LASIK) and accelerated corneal collagen cross-linking (CXL) in context of its indications-contraindications, kerato-refractive, visual and safety outcomes, particularly with reference to preventing the development of post-LASIK ectasia. LASIK + accelerated CXL has been developed with the rationale that the addition of CXL after LASIK may strengthen the LASIK compromised corneal biomechanics and minimize the complications such as post-LASIK ectasia. Different clinical studies have documented the safety and efficacy of LASIK + accelerated CXL for the correction of myopia or hyperopia and in the patients with low predicted residual bed thickness. Available literature shows that refractive and keratometric outcomes of LASIK + accelerated CXL are comparable or better than LASIK alone. Less regression has been observed after LASIK + accelerated CXL compared with LASIK alone and no case of post-LASIK ectasia development has been reported among 673 eyes with the follow-up ranging from 3 months to 4.5 years. Future studies with large numbers of patients and longer postoperative follow-ups are needed to establish the efficacy of LASIK + accelerated CXL in preventing the development of post-LASIK ectasia.

  4. Sum frequency generation vibrational spectroscopy (SFG-VS) for complex molecular surfaces and interfaces: Spectral lineshape measurement and analysis plus some controversial issues

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Fei

    2016-12-01

    Sum-frequency generation vibrational spectroscopy (SFG-VS) was first developed in the 1980s and it has been proven a uniquely sensitive and surface/interface selective spectroscopic probe for characterization of the structure, conformation and dynamics of molecular surfaces and interfaces. In recent years, there have been many progresses in the development of methodology and instrumentation in the SFG-VS toolbox that have significantly broadened the application to complex molecular surfaces and interfaces. In this review, after presenting a unified view on the theory and methodology focusing on the SFG-VS spectral lineshape, as well as the new opportunities in SFG-VS applications with such developments, some of the controversial issues that have been puzzling the community are discussed. The aim of this review is to present to the researchers and students interested in molecular surfaces and interfacial sciences up-to-date perspectives complementary to the existing textbooks and reviews on SFG-VS.

  5. Sum frequency generation vibrational spectroscopy (SFG-VS) for complex molecular surfaces and interfaces: Spectral lineshape measurement and analysis plus some controversial issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hong-Fei

    Sum-frequency generation vibrational spectroscopy (SFG-VS) was first developed in the 1980s and it has been proven a uniquely sensitive and surface/interface selective spectroscopic probe for characterization of the structure, conformation and dynamics of molecular surfaces and interfaces. In recent years, there has been significant progress in the development of methodology and instrumentation in the SFG-VS toolbox that has significantly broadened the application to complex molecular surfaces and interfaces. In this review, after presenting a unified view on the theory and methodology focusing on the SFG-VS spectral lineshape, as well as the new opportunities in SFG-VS applications with such developments, somemore » of the controversial issues that have been puzzling the community are to be discussed. The aim of this review is to present to the researchers and students interested in molecular surfaces and interfacial sciences up-to-date perspectives complementary to the existing textbooks and reviews on SFG-VS.« less

  6. Two-phase damping and interface surface area in tubes with vertical internal flow

    NASA Astrophysics Data System (ADS)

    Béguin, C.; Anscutter, F.; Ross, A.; Pettigrew, M. J.; Mureithi, N. W.

    2009-01-01

    Two-phase flow is common in the nuclear industry. It is a potential source of vibration in piping systems. In this paper, two-phase damping in the bubbly flow regime is related to the interface surface area and, therefore, to flow configuration. Experiments were performed with a vertical tube clamped at both ends. First, gas bubbles of controlled geometry were simulated with glass spheres let to settle in stagnant water. Second, air was injected in stagnant alcohol to generate a uniform and measurable bubble flow. In both cases, the two-phase damping ratio is correlated to the number of bubbles (or spheres). Two-phase damping is directly related to the interface surface area, based on a spherical bubble model. Further experiments were carried out on tubes with internal two-phase air-water flows. A strong dependence of two-phase damping on flow parameters in the bubbly flow regime is observed. A series of photographs attests to the fact that two-phase damping in bubbly flow increases for a larger number of bubbles, and for smaller bubbles. It is highest immediately prior to the transition from bubbly flow to slug or churn flow regimes. Beyond the transition, damping decreases. It is also shown that two-phase damping increases with the tube diameter.

  7. Water at Interfaces.

    PubMed

    Björneholm, Olle; Hansen, Martin H; Hodgson, Andrew; Liu, Li-Min; Limmer, David T; Michaelides, Angelos; Pedevilla, Philipp; Rossmeisl, Jan; Shen, Huaze; Tocci, Gabriele; Tyrode, Eric; Walz, Marie-Madeleine; Werner, Josephina; Bluhm, Hendrik

    2016-07-13

    The interfaces of neat water and aqueous solutions play a prominent role in many technological processes and in the environment. Examples of aqueous interfaces are ultrathin water films that cover most hydrophilic surfaces under ambient relative humidities, the liquid/solid interface which drives many electrochemical reactions, and the liquid/vapor interface, which governs the uptake and release of trace gases by the oceans and cloud droplets. In this article we review some of the recent experimental and theoretical advances in our knowledge of the properties of aqueous interfaces and discuss open questions and gaps in our understanding.

  8. Calculation of surface potentials at the silica–water interface using molecular dynamics: Challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Lowe, Benjamin M.; Skylaris, Chris-Kriton; Green, Nicolas G.; Shibuta, Yasushi; Sakata, Toshiya

    2018-04-01

    Continuum-based methods are important in calculating electrostatic properties of interfacial systems such as the electric field and surface potential but are incapable of providing sufficient insight into a range of fundamentally and technologically important phenomena which occur at atomistic length-scales. In this work a molecular dynamics methodology is presented for interfacial electric field and potential calculations. The silica–water interface was chosen as an example system, which is highly relevant for understanding the response of field-effect transistors sensors (FET sensors). Detailed validation work is presented, followed by the simulated surface charge/surface potential relationship. This showed good agreement with experiment at low surface charge density but at high surface charge density the results highlighted challenges presented by an atomistic definition of the surface potential. This methodology will be used to investigate the effect of surface morphology and biomolecule addition; both factors which are challenging using conventional continuum models.

  9. Measuring the surface tension of a liquid-gas interface by automatic stalagmometer

    NASA Astrophysics Data System (ADS)

    Molina, C.; Victoria, L.; Arenas, A.

    2000-06-01

    We present a variation of the stalagmometer method for automatically determining the surface tension of a liquid-gas interface using a pressure sensor to measure the pressure variation per drop. The presented method does not depend on a knowledge of the density of the problem liquid and obtains values with a measurement error in the range of 1%-2%. Its low cost and simplicity mean that the technique can be used in the teaching and instrumentation laboratory in the same way as other methods.

  10. Section-constrained local geological interface dynamic updating method based on the HRBF surface

    NASA Astrophysics Data System (ADS)

    Guo, Jiateng; Wu, Lixin; Zhou, Wenhui; Li, Chaoling; Li, Fengdan

    2018-02-01

    Boundaries, attitudes and sections are the most common data acquired from regional field geological surveys, and they are used for three-dimensional (3D) geological modelling. However, constructing topologically consistent 3D geological models from rapid and automatic regional modelling with convenient local modifications remains unresolved. In previous works, the Hermite radial basis function (HRBF) surface was introduced for the simulation of geological interfaces from geological boundaries and attitudes, which allows 3D geological models to be automatically extracted from the modelling area by the interfaces. However, the reasonability and accuracy of non-supervised subsurface modelling is limited without further modifications generated through explanations and analyses performed by geology experts. In this paper, we provide flexible and convenient manual interactive manipulation tools for geologists to sketch constraint lines, and these tools may help geologists transform and apply their expert knowledge to the models. In the modified modelling workflow, the geological sections were treated as auxiliary constraints to construct more reasonable 3D geological models. The geometric characteristics of section lines were abstracted to coordinates and normal vectors, and along with the transformed coordinates and vectors from boundaries and attitudes, these characteristics were adopted to co-calculate the implicit geological surface function parameters of the HRBF equations and form constrained geological interfaces from topographic (boundaries and attitudes) and subsurface data (sketched sections). Based on this new modelling method, a prototype system was developed, in which the section lines could be imported from databases or interactively sketched, and the models could be immediately updated after the new constraints were added. Experimental comparisons showed that all boundary, attitude and section data are well represented in the constrained models, which are

  11. Quantification of Hydrogen Concentrations in Surface and Interface Layers and Bulk Materials through Depth Profiling with Nuclear Reaction Analysis.

    PubMed

    Wilde, Markus; Ohno, Satoshi; Ogura, Shohei; Fukutani, Katsuyuki; Matsuzaki, Hiroyuki

    2016-03-29

    Nuclear reaction analysis (NRA) via the resonant (1)H((15)N,αγ)(12)C reaction is a highly effective method of depth profiling that quantitatively and non-destructively reveals the hydrogen density distribution at surfaces, at interfaces, and in the volume of solid materials with high depth resolution. The technique applies a (15)N ion beam of 6.385 MeV provided by an electrostatic accelerator and specifically detects the (1)H isotope in depths up to about 2 μm from the target surface. Surface H coverages are measured with a sensitivity in the order of ~10(13) cm(-2) (~1% of a typical atomic monolayer density) and H volume concentrations with a detection limit of ~10(18) cm(-3) (~100 at. ppm). The near-surface depth resolution is 2-5 nm for surface-normal (15)N ion incidence onto the target and can be enhanced to values below 1 nm for very flat targets by adopting a surface-grazing incidence geometry. The method is versatile and readily applied to any high vacuum compatible homogeneous material with a smooth surface (no pores). Electrically conductive targets usually tolerate the ion beam irradiation with negligible degradation. Hydrogen quantitation and correct depth analysis require knowledge of the elementary composition (besides hydrogen) and mass density of the target material. Especially in combination with ultra-high vacuum methods for in-situ target preparation and characterization, (1)H((15)N,αγ)(12)C NRA is ideally suited for hydrogen analysis at atomically controlled surfaces and nanostructured interfaces. We exemplarily demonstrate here the application of (15)N NRA at the MALT Tandem accelerator facility of the University of Tokyo to (1) quantitatively measure the surface coverage and the bulk concentration of hydrogen in the near-surface region of a H2 exposed Pd(110) single crystal, and (2) to determine the depth location and layer density of hydrogen near the interfaces of thin SiO2 films on Si(100).

  12. Quantification of Hydrogen Concentrations in Surface and Interface Layers and Bulk Materials through Depth Profiling with Nuclear Reaction Analysis

    PubMed Central

    Wilde, Markus; Ohno, Satoshi; Ogura, Shohei; Fukutani, Katsuyuki; Matsuzaki, Hiroyuki

    2016-01-01

    Nuclear reaction analysis (NRA) via the resonant 1H(15N,αγ)12C reaction is a highly effective method of depth profiling that quantitatively and non-destructively reveals the hydrogen density distribution at surfaces, at interfaces, and in the volume of solid materials with high depth resolution. The technique applies a 15N ion beam of 6.385 MeV provided by an electrostatic accelerator and specifically detects the 1H isotope in depths up to about 2 μm from the target surface. Surface H coverages are measured with a sensitivity in the order of ~1013 cm-2 (~1% of a typical atomic monolayer density) and H volume concentrations with a detection limit of ~1018 cm-3 (~100 at. ppm). The near-surface depth resolution is 2-5 nm for surface-normal 15N ion incidence onto the target and can be enhanced to values below 1 nm for very flat targets by adopting a surface-grazing incidence geometry. The method is versatile and readily applied to any high vacuum compatible homogeneous material with a smooth surface (no pores). Electrically conductive targets usually tolerate the ion beam irradiation with negligible degradation. Hydrogen quantitation and correct depth analysis require knowledge of the elementary composition (besides hydrogen) and mass density of the target material. Especially in combination with ultra-high vacuum methods for in-situ target preparation and characterization, 1H(15N,αγ)12C NRA is ideally suited for hydrogen analysis at atomically controlled surfaces and nanostructured interfaces. We exemplarily demonstrate here the application of 15N NRA at the MALT Tandem accelerator facility of the University of Tokyo to (1) quantitatively measure the surface coverage and the bulk concentration of hydrogen in the near-surface region of a H2 exposed Pd(110) single crystal, and (2) to determine the depth location and layer density of hydrogen near the interfaces of thin SiO2 films on Si(100). PMID:27077920

  13. Atomic Scale Structure-Chemistry Relationships at Oxide Catalyst Surfaces and Interfaces

    NASA Astrophysics Data System (ADS)

    McBriarty, Martin E.

    Oxide catalysts are integral to chemical production, fuel refining, and the removal of environmental pollutants. However, the atomic-scale phenomena which lead to the useful reactive properties of catalyst materials are not sufficiently understood. In this work, the tools of surface and interface science and electronic structure theory are applied to investigate the structure and chemical properties of catalytically active particles and ultrathin films supported on oxide single crystals. These studies focus on structure-property relationships in vanadium oxide, tungsten oxide, and mixed V-W oxides on the surfaces of alpha-Al2O3 and alpha-Fe2O 3 (0001)-oriented single crystal substrates, two materials with nearly identical crystal structures but drastically different chemical properties. In situ synchrotron X-ray standing wave (XSW) measurements are sensitive to changes in the atomic-scale geometry of single crystal model catalyst surfaces through chemical reaction cycles, while X-ray photoelectron spectroscopy (XPS) reveals corresponding chemical changes. Experimental results agree with theoretical calculations of surface structures, allowing for detailed electronic structure investigations and predictions of surface chemical phenomena. The surface configurations and oxidation states of V and W are found to depend on the coverage of each, and reversible structural shifts accompany chemical state changes through reduction-oxidation cycles. Substrate-dependent effects suggest how the choice of oxide support material may affect catalytic behavior. Additionally, the structure and chemistry of W deposited on alpha-Fe 2O3 nanopowders is studied using X-ray absorption fine structure (XAFS) measurements in an attempt to bridge single crystal surface studies with real catalysts. These investigations of catalytically active material surfaces can inform the rational design of new catalysts for more efficient and sustainable chemistry.

  14. Surface Raman spectroscopy of the interface of tris-(8-hydroxyquinoline) aluminum with Mg.

    PubMed

    Davis, Robert J; Pemberton, Jeanne E

    2009-07-29

    Surface Raman spectroscopy in ultrahigh vacuum is used to interrogate interfaces formed between tris-(8-hydroxyquinoline) aluminum (Alq(3)) and vapor-deposited Mg. The Raman spectral results for deposition of Mg mass thicknesses between 5 and 20 A indicate formation of a complex interfacial region composed primarily of Mg-Alq(3) adducts and small-grained amorphous or nanocrystalline graphite, the presence of which may have a significant effect on the electronic properties of this metal-organic interface. The observed shifts in nu(ring), nu(C-N), nu(Al-N), and nu(Al-O) modes along with the appearance of nu(Mg-C) and nu(Mg-O) modes suggest a structure for the Mg-Alq(3) adduct in which Mg is bound to the O and C atoms of Alq(3). In addition, several intense, broad modes are observed that are consistent with partial graphitization of the Alq(3) film.

  15. A Huygens immersed-finite-element particle-in-cell method for modeling plasma-surface interactions with moving interface

    NASA Astrophysics Data System (ADS)

    Cao, Huijun; Cao, Yong; Chu, Yuchuan; He, Xiaoming; Lin, Tao

    2018-06-01

    Surface evolution is an unavoidable issue in engineering plasma applications. In this article an iterative method for modeling plasma-surface interactions with moving interface is proposed and validated. In this method, the plasma dynamics is simulated by an immersed finite element particle-in-cell (IFE-PIC) method, and the surface evolution is modeled by the Huygens wavelet method which is coupled with the iteration of the IFE-PIC method. Numerical experiments, including prototypical engineering applications, such as the erosion of Hall thruster channel wall, are presented to demonstrate features of this Huygens IFE-PIC method for simulating the dynamic plasma-surface interactions.

  16. Delayed onset Mycobacterium intracellulare keratitis after laser in situ keratomileusis

    PubMed Central

    Ko, JaeSang; Kim, Se Kyung; Yong, Dong Eun; Kim, Tae-im; Kim, Eung Kweon

    2017-01-01

    Abstract Rationale: Infectious keratitis is a relatively uncommon but potentially sight-threatening complication of laser in situ keratomileusis (LASIK). Mycobacterial keratitis is usually regarded as late onset keratitis among post-LASIK keratitis. There has been no documented case of Mycobacterium intracellulare post-LASIK keratitis of a long-latent period. Patient concerns: A 36-year-old man was referred to our out-patient clinic, for persistent corneal epithelial defect with intrastromal infiltration. He had undergone uneventful bilateral LASIK procedure 4 years before. He complained decreased vision, accompanied by ocular pain, photophobia, and redness in his left eye for 7 months. Diagnosis: Lamellar keratectomy was taken using femtosecond laser. Bacterial culture with sequenced bacterial 16s ribosomal DNA confirmed the organism to be M intracellulare. Interventions: After 3 months of administration of topical clarithromycin, amikacin, and moxifloxacin, the corneal epithelial defect was resolved and the infiltration was much improved. However, newly developed diffuse haziness with surrounding granular infiltration in the central cornea was noted. Drug toxicity was suspected and topical moxifloxacin was discontinued, resulting in resolution of the diffuse haze with infiltration. Outcome: The patient was followed up regularly without medication thereafter and recurrence was not found for 7 years. Lessons: This case presents the first case of M intracellulare keratitis after LASIK. LASIK surgeons should aware that post-LASIK keratitis can develop long after the operation and careful suspicion of infectious disease with meticulous diagnostic test is needed. PMID:29390522

  17. Discrete structural features among interface residue-level classes.

    PubMed

    Sowmya, Gopichandran; Ranganathan, Shoba

    2015-01-01

    Protein-protein interaction (PPI) is essential for molecular functions in biological cells. Investigation on protein interfaces of known complexes is an important step towards deciphering the driving forces of PPIs. Each PPI complex is specific, sensitive and selective to binding. Therefore, we have estimated the relative difference in percentage of polar residues between surface and the interface for each complex in a non-redundant heterodimer dataset of 278 complexes to understand the predominant forces driving binding. Our analysis showed ~60% of protein complexes with surface polarity greater than interface polarity (designated as class A). However, a considerable number of complexes (~40%) have interface polarity greater than surface polarity, (designated as class B), with a significantly different p-value of 1.66E-45 from class A. Comprehensive analyses of protein complexes show that interface features such as interface area, interface polarity abundance, solvation free energy gain upon interface formation, binding energy and the percentage of interface charged residue abundance distinguish among class A and class B complexes, while electrostatic visualization maps also help differentiate interface classes among complexes. Class A complexes are classical with abundant non-polar interactions at the interface; however class B complexes have abundant polar interactions at the interface, similar to protein surface characteristics. Five physicochemical interface features analyzed from the protein heterodimer dataset are discriminatory among the interface residue-level classes. These novel observations find application in developing residue-level models for protein-protein binding prediction, protein-protein docking studies and interface inhibitor design as drugs.

  18. Discrete structural features among interface residue-level classes

    PubMed Central

    2015-01-01

    Background Protein-protein interaction (PPI) is essential for molecular functions in biological cells. Investigation on protein interfaces of known complexes is an important step towards deciphering the driving forces of PPIs. Each PPI complex is specific, sensitive and selective to binding. Therefore, we have estimated the relative difference in percentage of polar residues between surface and the interface for each complex in a non-redundant heterodimer dataset of 278 complexes to understand the predominant forces driving binding. Results Our analysis showed ~60% of protein complexes with surface polarity greater than interface polarity (designated as class A). However, a considerable number of complexes (~40%) have interface polarity greater than surface polarity, (designated as class B), with a significantly different p-value of 1.66E-45 from class A. Comprehensive analyses of protein complexes show that interface features such as interface area, interface polarity abundance, solvation free energy gain upon interface formation, binding energy and the percentage of interface charged residue abundance distinguish among class A and class B complexes, while electrostatic visualization maps also help differentiate interface classes among complexes. Conclusions Class A complexes are classical with abundant non-polar interactions at the interface; however class B complexes have abundant polar interactions at the interface, similar to protein surface characteristics. Five physicochemical interface features analyzed from the protein heterodimer dataset are discriminatory among the interface residue-level classes. These novel observations find application in developing residue-level models for protein-protein binding prediction, protein-protein docking studies and interface inhibitor design as drugs. PMID:26679043

  19. Imaging the molecular dimensions and oligomerization of protein molecules at the solid-liquid interface by surface oriented molecular sizing (SOMS) microscopy

    NASA Astrophysics Data System (ADS)

    Waner, Mark Joseph

    The structure and behavior of proteins at the solid/liquid interface is of great scientific interest. It has application both to fundamental biochemical understanding, as well as to biotechnological purposes. Interfaces play a critical role in many physiological processes. The mechanism of protein adsorption to surfaces is not very well understood. The current model put forth in much of the literature assumes a two step model. In the first step of this model the protein collides with the surface and adsorbs if its energy is sufficient to overcome the free energy of desorption of surface adsorbed solvent. The second step is often assumed to involve significant conformational change of the secondary and tertiary structure of the protein or enzyme, akin to denaturation. This unfolding of the protein would tend to indicate that loss of function would occur concomitantly, but studies have found very little loss in activity upon adsorption for a number of different protein systems. The recent development of the atomic force microscope (AFM) offers another tool for the examination of protein structure at liquid/solid interfaces. For atomically flat crystals the AFM has been used to determine atomic positions to <1 A resolution. In the case of samples with topographic features larger than atoms, the probe tip of the AFM 'convolutes' with the size and shape of surface features. This has hindered the use of AFM for molecular level structural determination of proteins at the liquid/solid interface. The work presented in this dissertation covers the development of the surface oriented molecular sizing (SOMS) technique which makes use of the angstrom height resolution of the AFM and a physically based mathematical framework for the analysis of the height distribution of adsorbed protein molecules. The surface adsorption and orientation (SAO) model is developed using statistical thermodynamics to model the expected height distributions for molecules adsorbed on a surface. The

  20. Surface/interface effects on high-performance thin-film all-solid-state Li-ion batteries

    DOE PAGES

    Gong, Chen; Ruzmetov, Dmitry; Pearse, Alexander; ...

    2015-10-05

    The further development of all-solid-state batteries is still limited by the understanding/engineering of the interfaces formed upon cycling. Here, we correlate the morphological, chemical, and electrical changes of the surface of thin-film devices with Al negative electrodes. The stable Al–Li–O alloy formed at the stress-free surface of the electrode causes rapid capacity fade, from 48.0 to 41.5 μAh/cm 2 in two cycles. Surprisingly, the addition of a Cu capping layer is insufficient to prevent the device degradation. Furthermore, Si electrodes present extremely stable cycling, maintaining >92% of its capacity after 100 cycles, with average Coulombic efficiency of 98%.

  1. Continuous versus Arrested Spreading of Biofilms at Solid-Gas Interfaces: The Role of Surface Forces

    NASA Astrophysics Data System (ADS)

    Trinschek, Sarah; John, Karin; Lecuyer, Sigolène; Thiele, Uwe

    2017-08-01

    We introduce and analyze a model for osmotically spreading bacterial colonies at solid-air interfaces that includes wetting phenomena, i.e., surface forces. The model is based on a hydrodynamic description for liquid suspensions which is supplemented by bioactive processes. We show that surface forces determine whether a biofilm can expand laterally over a substrate and provide experimental evidence for the existence of a transition between continuous and arrested spreading for Bacillus subtilis biofilms. In the case of arrested spreading, the lateral expansion of the biofilm is confined, albeit the colony is biologically active. However, a small reduction in the surface tension of the biofilm is sufficient to induce spreading. The incorporation of surface forces into our hydrodynamic model allows us to capture this transition in biofilm spreading behavior.

  2. Test-area surface tension calculation of the graphene-methane interface: Fluctuations and commensurability

    NASA Astrophysics Data System (ADS)

    d'Oliveira, H. D.; Davoy, X.; Arche, E.; Malfreyt, P.; Ghoufi, A.

    2017-06-01

    The surface tension (γ) of methane on a graphene monolayer is calculated by using the test-area approach. By using a united atom model to describe methane molecules, strong fluctuations of surface tension as a function of the surface area of the graphene are evidenced. In contrast with the liquid-vapor interfaces, the use of a larger cutoff does not fully erase the fluctuations in the surface tension. Counterintuitively, the description of methane and graphene from the Optimized Potentials for Liquid Simulations all-atom model and a flexible model, respectively, led to a lessening in the surface tension fluctuations. This result suggests that the origin of fluctuations in γ is due to a model-effect rather than size-effects. We show that the molecular origin of these fluctuations is the result of a commensurable organization between both graphene and methane. This commensurable structure can be avoided by describing methane and graphene from a flexible force field. Although differences in γ with respect to the model have been often reported, it is the first time that the model drastically affects the physics of a system.

  3. Femtosecond Laser in situ Keratomileusis Flap Creation in Narrow Palpebral Fissure Eyes without Suction

    PubMed Central

    Chang, John S.M.; Law, Antony K.P.; Ng, Jack C.M.; Cheng, May S.Y.

    2017-01-01

    Purpose To evaluate a surgical technique used in eyes with narrow palpebral fissure undergoing femtosecond laser flap creation without suction during laser in situ keratomileusis (LASIK). Methods All data of 2 patient groups were collected through chart review. Group 1 consisted of 6 eyes with narrow palpebral fissure in which the suction ring was manually fixated and femtosecond laser was applied accordingly. Thirty comparison cases were randomly drawn from among eyes that underwent a standard LASIK procedure matched for age and preoperative refraction (group 2). Only 1 eye of each patient was selected to compare the refractive and visual outcomes between groups. Results In all group 1 eyes, the flaps were created successfully with manual fixation of the suction ring without suction. No eyes lost 2 or more lines of vision. No significant difference was found in the safety and refractive outcomes between groups. Conclusion Manual fixation of the suction ring in eyes with narrow palpebral fissure without suction was feasible for flap creation during LASIK. PMID:28690535

  4. Nd:YAG laser for epithelial ingrowth after laser in situ keratomileusis.

    PubMed

    Mohammed, Osama Ali; Mounir, Amr; Hassan, Amin Aboali; Alsmman, Alahmady Hamad; Mostafa, Engy Mohamed

    2018-05-04

    To evaluate the efficacy of neodymium:yttrium-aluminum-garnet (Nd:YAG) laser for treatment of epithelial ingrowth after laser in situ keratomileusis (LASIK). Fifty-eight patients with epithelial ingrowth presented to Sohag refractive center, Sohag, Egypt, between January 2015 and March 2017. Only 41 patients (18 females and 23 males, mean age: 33.4 years) involving 41 eyes were indicated for treatment by Nd:YAG laser as the rest of the eyes were only under observation. Patients with epithelial ingrowth were recognized at a mean of 6 months after primary LASIK procedure (range: 2-16 months). Four eyes had undergone previous LASIK enhancements. Four eyes had the epithelial ingrowth removed by flap lift and scrapping. The mean intensity of the spots used was 0.8 mJ with variable number of shots depending on the size and density of the epithelial ingrowth area. Twenty-eight eyes showed complete regression after one session, while the rest necessitated 2-3 sessions for complete resolution. Mean follow-up period was 8 months (range 5-12 months). Epithelial ingrowth was treated successfully in all 41 eyes. The uncorrected visual acuities were 20/20, and there was no evidence of recurrent epithelial ingrowth after 6 months with no complications reported. YAG laser is a simple, effective outpatient procedure for the management of epithelial ingrowth after LASIK.

  5. Role of surface defects on the formation of the 2-dimensional electron gas at polar interfaces

    NASA Astrophysics Data System (ADS)

    Artacho, Emilio; Aguado-Puente, Pablo

    2014-03-01

    The discovery of a 2-dimensional electron gas (2DEG) at the interface between two insulators, LaAlO3 and SrTiO3, has fuelled a great research activity on this and similar systems in the last years. The electronic reconstruction model, typically invoked to explain the formation of the 2DEG, while being intuitive and successful on predicting fundamental aspects of this phenomenon like the critical thickness of LaAlO3, fails to explain many other experimental observations. Oxygen vacancies, on the other hand, are known to dramatically affect the physical behaviour of this system, but their role at the atomic level is far from well understood. Here we perform ab initio simulations in order to assess whether the formation of oxygen vacancies at the surface of the polar material can account for various recent experimental results that defy the current theoretical understanding of these interfaces. We simulate SrTiO3/LaAlO3 slabs with various concentrations of surface oxygen vacancies and analyze the role of the defects on the formation of the metallic interface, their electrostatic coupling with the 2DEG and the interplay with the different instabilities of the materials involved. Financial support from Spanish MINECO under grant FIS2012-37549-C05-01. Computational resources provided by the Red Espñola de Supercomputación and DIPC.

  6. Molecular dynamics study of salt-solution interface: solubility and surface charge of salt in water.

    PubMed

    Kobayashi, Kazuya; Liang, Yunfeng; Sakka, Tetsuo; Matsuoka, Toshifumi

    2014-04-14

    The NaCl salt-solution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl salt-solution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a salt-solution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemical potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules.

  7. Early Career. Harnessing nanotechnology for fusion plasma-material interface research in an in-situ particle-surface interaction facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allain, Jean Paul

    2014-08-08

    This project consisted of fundamental and applied research of advanced in-situ particle-beam interactions with surfaces/interfaces to discover novel materials able to tolerate intense conditions at the plasma-material interface (PMI) in future fusion burning plasma devices. The project established a novel facility that is capable of not only characterizing new fusion nanomaterials but, more importantly probing and manipulating materials at the nanoscale while performing subsequent single-effect in-situ testing of their performance under simulated environments in fusion PMI.

  8. Femtosecond lasers for laser in situ keratomileusis: a systematic review and meta-analysis

    PubMed Central

    Huhtala, Anne; Pietilä, Juhani; Mäkinen, Petri; Uusitalo, Hannu

    2016-01-01

    Purpose The aim of this study was to review and meta-analyze whether there are differences between reported femtosecond (FS) lasers for laser-assisted in situ keratomileusis (LASIK) in terms of efficacy, predictability, and safety as primary outcomes and corneal flap thickness measurements and pre- and postoperative complications as secondary outcomes. Methods A comprehensive literature search of PubMed, Science Direct, Scopus, and Cochrane CENTRAL Trials Library databases was conducted to identify the relevant prospective randomized controlled trials of FS lasers for LASIK. Thirty-one articles describing a total of 5,404 eyes were included. Results Based on efficacy, IntraLase FS 10 and 30 kHz gave the best results. Based on predictability and safety, there were no differences between various FS lasers. FEMTO LDV and IntraLase FS 60 kHz produced the most accurate flap thicknesses. IntraLase and Wavelight SF200 had the fewest intraoperative complications. IntraLase, Visumax, and Wavelight FS200 had the most seldom postoperative complications. Conclusion There were dissimilarities between different FS lasers based on efficacy and intraoperative and postoperative complications. All FS lasers were predictable and safe for making corneal flaps in LASIK. PMID:27022236

  9. [Clinical Results of Diffractive Multifocal Intraocular Lens Implantation after Laser In Situ Keratomileusis].

    PubMed

    Yoshino, Mami; Minami, Keiichiro; Hirasawa, Manabu; Oki, Shinichi; Bissen-Miyajima, Hiroko

    2015-09-01

    To evaluate the visual performance in eyes with diffractive intraocular lenses (IOLs) after laser in situ keratomileusis (LASIK). This single-center retrospective study evaluated eyes that had diffractive multifocal IOL implantation after previous LASIK or not treated with LASIK (controls). The outcomes' measures were the visual acuities (VAs) at distance and near, spherical equivalent (SE) and contrast sensitivity at one month postoperatively. The study evaluated 40 eyes of 33 patients. The mean uncorrected logMAR VAs were -0.05 ± 0.13/0.00 ± 0.14 (LASIK group/control group) at distance and 0.10 ± 0.13/0.16 ± 0.18 at near. There was no statistically significant difference between the 2 groups at the VAs. The SE of the LASIK group was -0.06 ± 0.39 D, significantly lower than the control group (0.22 ± 0.45 D) (p < 0.05). The contrast sensitivity of the LASIK group at high spatial frequency was lower than the control group (p < 0.05). After LASIK, the diffractive multifocal IOL provided good uncorrected distance and near VAs. However, decrease in contrast sensitivity should be considered.

  10. Outcomes of laser in situ keratomileusis and photorefractive keratectomy in patients taking isotretinoin.

    PubMed

    Ortega-Usobiaga, Julio; Llovet-Osuna, Fernando; Djodeyre, Mohammad Reza; Bilbao-Calabuig, Rafael; González-López, Félix; Llovet-Rausell, Andrea; Druchkiv, Vasyl

    2018-05-14

    To determine the functional outcomes of laser in situ keratomileusis (LASIK) and photorefractive keratectomy (PRK) in patients taking isotretinoin, which is contraindicated for these procedures. Multicentre, retrospective, interventional case series METHODS: All patients taking isotretinoin who underwent LASIK or PRK from January 2003 to September 2017 were included (group 1). Patients were compared with those undergoing LASIK or PRK who had taken isotretinoin previously but not in the previous 6 months (group 2). Patients were included consecutively. A total of 113 patients (219 eyes) were included. No significant intraoperative or postoperative complications were found. There were no significant differences between the groups in terms of visual acuity, postoperative spherical equivalent, efficacy index, predictability, or safety index. When only PRK patients were taken into account, the efficacy index (p: 0.017), postoperative sphere (p: 0.041), and postoperative astigmatism (p<0.001) were better in group 2, although the difference was not clinically relevant. In our experience, LASIK and PRK can be performed effectively and safely in selected patients taking isotretinoin. The absolute exclusion of certain systemic medications should be reconsidered. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Femtosecond lasers for laser in situ keratomileusis: a systematic review and meta-analysis.

    PubMed

    Huhtala, Anne; Pietilä, Juhani; Mäkinen, Petri; Uusitalo, Hannu

    2016-01-01

    The aim of this study was to review and meta-analyze whether there are differences between reported femtosecond (FS) lasers for laser-assisted in situ keratomileusis (LASIK) in terms of efficacy, predictability, and safety as primary outcomes and corneal flap thickness measurements and pre- and postoperative complications as secondary outcomes. A comprehensive literature search of PubMed, Science Direct, Scopus, and Cochrane CENTRAL Trials Library databases was conducted to identify the relevant prospective randomized controlled trials of FS lasers for LASIK. Thirty-one articles describing a total of 5,404 eyes were included. Based on efficacy, IntraLase FS 10 and 30 kHz gave the best results. Based on predictability and safety, there were no differences between various FS lasers. FEMTO LDV and IntraLase FS 60 kHz produced the most accurate flap thicknesses. IntraLase and Wavelight SF200 had the fewest intraoperative complications. IntraLase, Visumax, and Wavelight FS200 had the most seldom postoperative complications. There were dissimilarities between different FS lasers based on efficacy and intraoperative and postoperative complications. All FS lasers were predictable and safe for making corneal flaps in LASIK.

  12. Management of long-standing partially torn and flipped laser in situ keratomileusis flaps.

    PubMed

    Kim, Jin Sun; Chung, Byunghoon; Lee, Taekjune; Kim, Woon Cho; Kim, Tae-im; Kim, Eung Kweon

    2015-02-01

    We describe 2 cases of traumatized and torn laser in situ keratomileusis (LASIK) flaps, partially flipped anteriorly or posteriorly, fixed for 8 months or 4 months, and accompanied by epithelial ingrowth. The 2 patients had had uneventful bilateral LASIK 6 years and 1 year before the trauma. In Case 1, the anteriorly flipped flap was removed with transepithelial phototherapeutic keratectomy. Next, mitomycin-C 0.04% was applied for 30 seconds. In Case 2, the portion of the flap that was flipped posteriorly and buried under the remaining intact LASIK flap was restored to its original normal position and epithelial ingrowth was removed mechanically with a microcurette. Irrigation with 20% ethanol was performed to inhibit the recurrence of interfacial epithelial ingrowth. The stretched amniotic membrane overlay over the cornea and sclera was sutured tightly to the episclera as the biologic pressure patch for the inhibition of epithelial re-ingrowth. Good visual acuity was restored in both cases. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  13. Young-Laplace equation for liquid crystal interfaces

    NASA Astrophysics Data System (ADS)

    Rey, Alejandro D.

    2000-12-01

    This letter uses the classical theories of liquid crystal physics to derive the Young-Laplace equation of capillary hydrostatics for interfaces between viscous isotropic (I) fluids and nematic liquid crystals (NLC's), and establishes the existence of four energy contributions to pressure jumps across these unusual anisotropic interfaces. It is shown that in addition to the usual curvature contribution, bulk and surface gradient elasticity, elastic stress, and anchoring energy contribute to pressure differentials across the interface. The magnitude of the effect is proportional to the elastic moduli of the NLC, and to the bulk and surface orientation gradients that may be present in the nematic phase. In contrast to the planar interface between isotropic fluids, flat liquid crystal interfaces support pressure jumps if elastic stresses, bulk and surface gradient energy, and/or anchoring energies are finite.

  14. Charge interaction between particle-laden fluid interfaces.

    PubMed

    Xu, Hui; Kirkwood, John; Lask, Mauricio; Fuller, Gerald

    2010-03-02

    Experiments are described where two oil/water interfaces laden with charged particles move at close proximity relative to one another. The particles on one of the interfaces were observed to be attracted toward the point of closest approach, forming a denser particle monolayer, while the particles on the opposite interface were repelled away from this point, forming a particle depletion zone. Such particle attraction/repulsion was observed even if one of the interfaces was free of particles. This phenomenon can be explained by the electrostatic interaction between the two interfaces, which causes surface charges (charged particles and ions) to redistribute in order to satisfy surface electric equipotential at each interface. In a forced particle oscillation experiment, we demonstrated the control of charged particle positions on the interface by manipulating charge interaction between interfaces.

  15. Theory of Interface States at Silicon / Transition - - Silicide Interfaces.

    NASA Astrophysics Data System (ADS)

    Lim, Hunhwa

    The Si/NiSi(,2)(111) interface is of both fundamental and techno- logical interest: From the fundamental point of view, it is the best characterized of all semiconductor/metal interfaces, with two well-determined geometries (A and B) involving nearly perfect bonding. (This is because Si and NiSi(,2) have nearly the same lattice spacing.) Consequently, a theoretical treatment of this system makes sense--as it would not for messier systems--and one can have some confidence that the theoretical predictions are relevant to experimental observa- tions. From the technological point of view, Si/NiSi(,2) is representative of the class of semiconductor/metal interfaces that are currently of greatest interest in regard to electronic devices--Si/transition -metal-silicide interfaces. The calculations of this dissertation are for the intrinsic interface states of Si/NiSi(,2)-A geometry. These calculations also provide a foundation for later studies of defects at this interface, and for studies of other related systems, such as CoSi(,2). The calculations employ empirical tight-binding Hamiltonians for both Si and NiSi(,2) (with the parameters fitted to prior calculations of the bulk band structures, which appear to be in agreement with the available experimental data on bulk Si and NiSi(,2)). They also employ Green's function techniques--in particular, the subspace Hamiltonian technique. Our principal results are the following: (1) Interface state disper- sion curves are predicted along the symmetry lines (')(GAMMA)(')M, (')M(')K and (')K(')(GAMMA) of the surface Brillouin zone. (2) A prominent band of interface states is found which disperses downward from an energy within the Si band gap to an energy below the Si valence band edge E(,(upsilon)) as the planar wavevector (')k increases from (')(GAMMA) ((')k = 0) to (')M or (')K (symmetry points at boundary of the surface Brillouin zone). This band of inter- face states should be observable. It produces a peak in the surface

  16. Etude de L'interface Or/silicium Par Analyse de Surface et Microscopie Electronique

    NASA Astrophysics Data System (ADS)

    Lamontagne, Boris

    In order to start with the cleanest c-Si surface achievable, two cleaning procedures have been used and compared: aqueous chemical cleaning with HF, and sputter cleaning followed by high temperature annealing; the former is found to be the most efficient of the two. We have observed the formation of Si-C bonds induced by energetic particles associated to sputtering and sputter deposition. One of the main objectives of this work was to compare the Au/Si interfaces obtained by e-beam evaporation and by sputter deposition; Ag/Si, Cu/Si and Al/Si interfaces have also been examined. X-ray photoelectron diffraction has allowed us to judge the quality of the substrate crystallinity under the metallic overlayer, a method which readily showed the amorphisation of the c-Si substrate induced by sputter deposition. Moreover, XPD has indicated the Au overlayer to be amorphous, while the Ag and Cu appear to grow heteroepitaxially on c-Si(100). A new XPS parameter has been developed to characterize the metal/Si interface state, in particular, broadening of the interface induced by the sputter deposition. For the case of evaporated layers, it indicates that Au/Si and Cu/Si interfaces are diffuse, while Ag/Si and Al/Si interfaces are abrupt. Atomic force microscopy has revealed that sputter deposition reduces the tendency to form metal islands, characteristic of some overlayer/substrate systems such as Ag/Si. Our experiments have illustrated the role of two "new" parameters which lead to better knowledge and control of the sputter deposition process, namely the ion masses and the sample position relative to that of the target position. In the scientific literature, the value of the critical thickness, d_{rm c} , for reaction between Au and Si is still a controversial issue, probably on account of calibration problems. By using newly observed XPS discontinuities, corresponding to the completion of the first and second Au monolayers, we have been able to resolve this problem, and

  17. On the Hofmeister effect: fluctuations at the protein-water interface and the surface tension.

    PubMed

    Bogár, Ferenc; Bartha, Ferenc; Násztor, Zoltán; Fábián, László; Leitgeb, Balázs; Dér, András

    2014-07-24

    We performed molecular dynamics simulations on the tryptophane-cage miniprotein using a nonpolarizable force field, in order to model the effect of concentrated water solutions of neutral salts on protein conformation, which is a manifestation of Hofmeister effects. From the equilibrium values and the fluctuations of the solvent accessible surface area of the miniprotein, the salt-induced changes of the mean value of protein-water interfacial tension were determined. At 300 K, the chaotropic ClO4(-) and NO3(-) decreased the interfacial tension according to their position in the Hofmeister series (by approximately 5 and 2.7 mN/m, respectively), while the kosmotropic F(-) increased it (by 1 mN/m). These values were compared to those obtained from the Gibbs equation using the excess surface adsorption calculated from the probability distribution of the water molecules and ions around the miniprotein, and the two sets were found to be very close to each other. Our results present a direct evidence for the central role of interfacial tension and fluctuations at the protein-water interface in Hofmeister phenomena, and provide a computational method for the determination of the protein-water interfacial tension, establishing a link between the phenomenological and microscopic description of protein-water interfaces.

  18. Analysis of Bacterial Detachment from Substratum Surfaces by the Passage of Air-Liquid Interfaces

    PubMed Central

    Gómez-Suárez, Cristina; Busscher, Henk J.; van der Mei, Henny C.

    2001-01-01

    A theoretical analysis of the detachment of bacteria adhering to substratum surfaces upon the passage of an air-liquid interface is given, together with experimental results for bacterial detachment in the absence and presence of a conditioning film on different substratum surfaces. Bacteria (Streptococcus sobrinus HG1025, Streptococcus oralis J22, Actinomyces naeslundii T14V-J1, Bacteroides fragilis 793E, and Pseudomonas aeruginosa 974K) were first allowed to adhere to hydrophilic glass and hydrophobic dimethyldichlorosilane (DDS)-coated glass in a parallel-plate flow chamber until a density of 4 × 106 cells cm−2 was reached. For S. sobrinus HG1025, S. oralis J22, and A. naeslundii T14V-J1, the conditioning film consisted of adsorbed salivary components, while for B. fragilis 793E and P. aeruginosa 974K, the film consisted of adsorbed human plasma components. Subsequently, air bubbles were passed through the flow chamber and the bacterial detachment percentages were measured. For some experimental conditions, like with P. aeruginosa 974K adhering to DDS-coated glass and an air bubble moving at high velocity (i.e., 13.6 mm s−1), no bacteria detached upon passage of an air-liquid interface, while for others, detachment percentages between 80 and 90% were observed. The detachment percentage increased when the velocity of the passing air bubble decreased, regardless of the bacterial strain and substratum surface hydrophobicity involved. However, the variation in percentages of detachment by a passing air bubble depended greatly upon the strain and substratum surface involved. At low air bubble velocities the hydrophobicity of the substratum had no influence on the detachment, but at high air bubble velocities all bacterial strains were more efficiently detached from hydrophilic glass substrata. Furthermore, the presence of a conditioning film could either inhibit or stimulate detachment. The shape of the bacterial cell played a major role in detachment at high

  19. Analysis of bacterial detachment from substratum surfaces by the passage of air-liquid interfaces.

    PubMed

    Gómez-Suárez, C; Busscher, H J; van der Mei, H C

    2001-06-01

    A theoretical analysis of the detachment of bacteria adhering to substratum surfaces upon the passage of an air-liquid interface is given, together with experimental results for bacterial detachment in the absence and presence of a conditioning film on different substratum surfaces. Bacteria (Streptococcus sobrinus HG1025, Streptococcus oralis J22, Actinomyces naeslundii T14V-J1, Bacteroides fragilis 793E, and Pseudomonas aeruginosa 974K) were first allowed to adhere to hydrophilic glass and hydrophobic dimethyldichlorosilane (DDS)-coated glass in a parallel-plate flow chamber until a density of 4 x 10(6) cells cm(-2) was reached. For S. sobrinus HG1025, S. oralis J22, and A. naeslundii T14V-J1, the conditioning film consisted of adsorbed salivary components, while for B. fragilis 793E and P. aeruginosa 974K, the film consisted of adsorbed human plasma components. Subsequently, air bubbles were passed through the flow chamber and the bacterial detachment percentages were measured. For some experimental conditions, like with P. aeruginosa 974K adhering to DDS-coated glass and an air bubble moving at high velocity (i.e., 13.6 mm s(-1)), no bacteria detached upon passage of an air-liquid interface, while for others, detachment percentages between 80 and 90% were observed. The detachment percentage increased when the velocity of the passing air bubble decreased, regardless of the bacterial strain and substratum surface hydrophobicity involved. However, the variation in percentages of detachment by a passing air bubble depended greatly upon the strain and substratum surface involved. At low air bubble velocities the hydrophobicity of the substratum had no influence on the detachment, but at high air bubble velocities all bacterial strains were more efficiently detached from hydrophilic glass substrata. Furthermore, the presence of a conditioning film could either inhibit or stimulate detachment. The shape of the bacterial cell played a major role in detachment at high

  20. Effect of electronic structure of the diamond surface on the strength of the diamond-metal interface

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1981-01-01

    A diamond surface undergoes a transformation in its electronic structure by a vacuum anneal at approximately 900 C. The polished surface has no electronic states in the band gap, whereas the annealed surface has both occupied and unoccupied states in the and gap and exhibits some electrical conductivity. The effect of this transformation on the strength of the diamond metal interface was investigated by measuring the static friction force of an atomically clean meta sphere on a diamond flat in ultrahigh vacuum. It was found that low friction (weak bonding) is associated with the diamond surface devoid of gap states whereas high friction (strong bonding) is associated with the diamond surface with gap states. Exposure of the annealed surface to excited hydrogen also leads to weak bonding. The interfacial bond is discussed in terms of interaction of the metal conduction band electrons with the band gap states on the diamond surface. Effects of surface electrical conductivity on the interfacial bond are also be considered.

  1. Spin-Polarized Hybridization at the interface between different 8-hydroxyquinolates and the Cr(001) surface

    NASA Astrophysics Data System (ADS)

    Wang, Jingying; Deloach, Andrew; Dougherty, Daniel B.; Dougherty Lab Team

    Organic materials attract a lot of attention due to their promising applications in spintronic devices. It is realized that spin-polarized metal/organic interfacial hybridization plays an important role to improve efficiency of organic spintronic devices. Hybridized interfacial states help to increase spin injection at the interface. Here we report spin-resolved STM measurements of single tris(8-hydroxyquinolinato) aluminum molecules adsorbed on the antiferromagnetic Cr(001). Our observations show a spin-polarized interface state between Alq3 and Cr(001). Tris(8-hydroxyquinolinato) chromium has also been studied and compared with Alq3, which exhibits different spin-polarized hybridization with the Cr(001) surface state than Alq3. We attribute the differences to different character of molecular orbitals in the two different quinolates.

  2. Anisotropic surface melting in lyotropic cubic crystals: part 2: facet-by-facet melting at Ia3d/vapor interfaces.

    PubMed

    Leroy, S; Grenier, J; Rohe, D; Even, C; Pieranski, P

    2006-05-01

    From experiments with metal crystals, in the vicinity of their crystal/liquid/vapor triple points, it is known that melting of crystals starts on their surfaces and is anisotropic. Recently, we have shown that anisotropic surface melting occurs also in lyotropic systems. In our previous paper (Eur. Phys. J. E 19, 223 (2006)), we have focused on the case of poor faceting at the Pn3m/L1 interface in C12EO2/water binary mixtures. There anisotropic melting occurs in the vicinity of a Pn3m/L3/L1 triple point. In the present paper, we focus on the opposite case of a rich devil's-staircase-type faceting at Ia3d/vapor interfaces in monoolein/water and phytantriol/water mixtures. We show that anisotropic surface melting takes place in these systems in a narrow humidity range close to the Ia3d-L2 transition. As whole (hkl) sets of facets disappear one after another when the transition is approached, surface melting occurs in a facet-by-facet type.

  3. Coal-shale interface detector

    NASA Technical Reports Server (NTRS)

    Reid, H., Jr. (Inventor)

    1980-01-01

    A coal-shale interface detector for use with coal cutting equipment is described. The detector consists of a reciprocating hammer with an accelerometer to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. Additionally, a pair of reflectometers simultaneously view the same surface, and the outputs from the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through.

  4. Polymers and biopolymers at interfaces

    NASA Astrophysics Data System (ADS)

    Hall, A. R.; Geoghegan, M.

    2018-03-01

    This review updates recent progress in the understanding of the behaviour of polymers at surfaces and interfaces, highlighting examples in the areas of wetting, dewetting, crystallization, and ‘smart’ materials. Recent developments in analysis tools have yielded a large increase in the study of biological systems, and some of these will also be discussed, focussing on areas where surfaces are important. These areas include molecular binding events and protein adsorption as well as the mapping of the surfaces of cells. Important techniques commonly used for the analysis of surfaces and interfaces are discussed separately to aid the understanding of their application.

  5. Surface and interface of epitaxial CdTe film on CdS buffered van der Waals mica substrate

    NASA Astrophysics Data System (ADS)

    Yang, Y.-B.; Seewald, L.; Mohanty, Dibyajyoti; Wang, Y.; Zhang, L. H.; Kisslinger, K.; Xie, Weiyu; Shi, J.; Bhat, I.; Zhang, Shengbai; Lu, T.-M.; Wang, G.-C.

    2017-08-01

    Single crystal CdTe films are desirable for optoelectronic device applications. An important strategy of creating films with high crystallinity is through epitaxial growth on a proper single crystal substrate. We report the metalorganic chemical vapor deposition of epitaxial CdTe films on the CdS/mica substrate. The epitaxial CdS film was grown on a mica surface by thermal evaporation. Due to the weak van der Waals forces, epitaxy is achieved despite the very large interface lattice mismatch between CdS and mica (∼21-55%). The surface morphology of mica, CdS and CdTe were quantified by atomic force microscopy. The near surface structures, orientations and texture of CdTe and CdS films were characterized by the unique reflection high-energy electron diffraction surface pole figure technique. The interfaces of CdTe and CdS films and mica were characterized by X-ray pole figure technique and transmission electron microscopy. The out-of-plane and in-plane epitaxy of the heteroepitaxial films stack are determined to be CdTe(111)//CdS(0001)//mica(001) and [1 bar2 1 bar]CdTe//[ 1 bar100]CdS//[010]mica, respectively. The measured photoluminescence (PL), time resolved PL, photoresponse, and Hall mobility of the CdTe/CdS/mica indicate quality films. The use of van der Waals surface to grow epitaxial CdTe/CdS films offers an alternative strategy towards infrared imaging and solar cell applications.

  6. Interface bonding of NiCrAlY coating on laser modified H13 tool steel surface

    NASA Astrophysics Data System (ADS)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2016-06-01

    Bonding strength of thermal spray coatings depends on the interfacial adhesion between bond coat and substrate material. In this paper, NiCrAlY (Ni-164/211 Ni22 %Cr10 %Al1.0 %Y) coatings were developed on laser modified H13 tool steel surface using atmospheric plasma spray (APS). Different laser peak power, P p, and duty cycle, DC, were investigated in order to improve the mechanical properties of H13 tool steel surface. The APS spraying parameters setting for coatings were set constant. The coating microstructure near the interface was analyzed using IM7000 inverted optical microscope. Interface bonding of NiCrAlY was investigated by interfacial indentation test (IIT) method using MMT-X7 Matsuzawa Hardness Tester Machine with Vickers indenter. Diffusion of atoms along NiCrAlY coating, laser modified and substrate layers was investigated by energy-dispersive X-ray spectroscopy (EDXS) using Hitachi Tabletop Microscope TM3030 Plus. Based on IIT method results, average interfacial toughness, K avg, for reference sample was 2.15 MPa m1/2 compared to sample L1 range of K avg from 6.02 to 6.96 MPa m1/2 and sample L2 range of K avg from 2.47 to 3.46 MPa m1/2. Hence, according to K avg, sample L1 has the highest interface bonding and is being laser modified at lower laser peak power, P p, and higher duty cycle, DC, prior to coating. The EDXS analysis indicated the presence of Fe in the NiCrAlY coating layer and increased Ni and Cr composition in the laser modified layer. Atomic diffusion occurred in both coating and laser modified layers involved in Fe, Ni and Cr elements. These findings introduce enhancement of coating system by substrate surface modification to allow atomic diffusion.

  7. Synthesis of Stable Interfaces on SnO2 Surfaces for Charge-Transfer Applications

    NASA Astrophysics Data System (ADS)

    Benson, Michelle C.

    The commercial market for solar harvesting devices as an alternative energy source requires them to be both low-cost and efficient to replace or reduce the dependence on fossil fuel burning. Over the last few decades there has been promising efforts towards improving solar devices by using abundant and non-toxic metal oxide nanomaterials. One particular metal oxide of interest has been SnO2 due to its high electron mobility, wide-band gap, and aqueous stability. However SnO2 based solar cells have yet to reach efficiency values of other metal oxides, like TiO2. The advancement of SnO2 based devices is dependent on many factors, including improved methods of surface functionalization that can yield stable interfaces. This work explores the use of a versatile functionalization method through the use of the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The CuAAC reaction is capable of producing electrochemically, photochemically, and electrocatalytically active surfaces on a variety of SnO2 materials. The resulting charge-transfer characteristics were investigated as well as an emphasis on understanding the stability of the resulting molecular linkage. We determined the CuAAC reaction is able to proceed through both azide-modified and alkyne-modified surfaces. The resulting charge-transfer properties showed that the molecular tether was capable of supporting charge separation at the interface. We also investigated the enhancement of electron injection upon the introduction of an ultra-thin ZrO2 coating on SnO2. Several complexes were used to fully understand the charge-transfer capabilities, including model systems of ferrocene and a ruthenium coordination complex, a ruthenium mononuclear water oxidation catalyst, and a commercial ruthenium based dye.

  8. Nonlinear fractional waves at elastic interfaces

    NASA Astrophysics Data System (ADS)

    Kappler, Julian; Shrivastava, Shamit; Schneider, Matthias F.; Netz, Roland R.

    2017-11-01

    We derive the nonlinear fractional surface wave equation that governs compression waves at an elastic interface that is coupled to a viscous bulk medium. The fractional character of the differential equation comes from the fact that the effective thickness of the bulk layer that is coupled to the interface is frequency dependent. The nonlinearity arises from the nonlinear dependence of the interface compressibility on the local compression, which is obtained from experimental measurements and reflects a phase transition at the interface. Numerical solutions of our nonlinear fractional theory reproduce several experimental key features of surface waves in phospholipid monolayers at the air-water interface without freely adjustable fitting parameters. In particular, the propagation distance of the surface wave abruptly increases at a threshold excitation amplitude. The wave velocity is found to be of the order of 40 cm/s in both experiments and theory and slightly increases as a function of the excitation amplitude. Nonlinear acoustic switching effects in membranes are thus shown to arise purely based on intrinsic membrane properties, namely, the presence of compressibility nonlinearities that accompany phase transitions at the interface.

  9. Combined application of prophylactic corneal cross-linking and laser in-situ keratomileusis - a review of literature.

    PubMed

    Chan, Tommy C Y; Ng, Alex L K; Chan, Karen K W; Cheng, George P M; Wong, Ian Y H; Jhanji, Vishal

    2017-11-01

    Laser in-situ keratomileusis (LASIK) is safe and effective laser refractive procedures in treating refractive errors. However, regression of treatment and iatrogenic keratectasia remain to be a major concern, especially in treating thin cornea with high ametropia. Collagen cross-linking (CXL) is an effective method in stopping keratoconus progression through increasing the biomechanical strength of the cornea. Adjuvant cross-linking to refractive procedures can theoretically help prevent regression and reduce the risk of keratectasia development by increasing the mechanical stability of cornea. During the procedure, riboflavin is directly applied to the corneal stroma, thereby reducing the need of de-epithelialization as in the conventional protocol for keratoconus. Currently, there is still no consensus regarding the indication of CXL during refractive procedure, nor any standardized treatment protocol. This article aims to summarize the current evidence regarding the use of adjuvant CXL in LASIK. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  10. Coal-shale interface detection

    NASA Technical Reports Server (NTRS)

    Broussard, P. H.; Burch, J. L.; Drost, E. J.; Stein, R. J. (Inventor)

    1979-01-01

    A penetrometer for coal-shale interface detection is presented. It is used with coal cutting equipment consisting of a reciprocating hammer, having an accelerometer mounted thereon to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. Additionally, a pair of reflectometers simultaneously view the same surface, and the outputs from the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through.

  11. Dynamics and Instabilities of Acoustically Stressed Interfaces

    NASA Astrophysics Data System (ADS)

    Shi, William Tao

    An intense sound field exerts acoustic radiation pressure on a transitional layer between two continuous fluid media, leading to the unconventional dynamical behavior of the interface in the presence of the sound field. An understanding of this behavior has applications in the study of drop dynamics and surface rheology. Acoustic fields have also been utilized in the generation of interfacial instability, which may further encourage the dispersion or coalescence of liquids. Therefore, the study of the dynamics of the acoustically stressed interfaces is essential to infer the mechanism of the various phenomena related to interfacial dynamics and to acquire the properties of liquid surfaces. This thesis studies the dynamics of acoustically stressed interfaces through a theoretical model of surface interactions on both closed and open interfaces. Accordingly, a boundary integral method is developed to simulate the motions of a stressed interface. The method has been employed to determine the deformation, oscillation and instability of acoustically levitated drops. The generalized computations are found to be in good agreement with available experimental results. The linearized theory is also derived to predict the instability threshold of the flat interface, and is then compared with experiments conducted to observe and measure the unstable motions of the horizontal interface. This thesis is devoted to describing and classifying the simplest mechanisms by which acoustic fields provide a surface interaction with a fluid. A physical picture of the competing processes introduced by the evolution of an interface in a sound field is presented. The development of an initial small perturbation into a sharp form is observed on either a drop surface or a horizontal interface, indicating a strong focusing of acoustic energy at certain spots of the interface. Emphasis is placed on understanding the basic coupling mechanisms, rather than on particular applications that may

  12. Molecular dynamics study of salt–solution interface: Solubility and surface charge of salt in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Kazuya; Liang, Yunfeng, E-mail: y-liang@earth.kumst.kyoto-u.ac.jp, E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp; Matsuoka, Toshifumi, E-mail: y-liang@earth.kumst.kyoto-u.ac.jp, E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp

    2014-04-14

    The NaCl salt–solution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl salt–solution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a salt–solution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemicalmore » potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules.« less

  13. Shock wave-free interface interaction

    NASA Astrophysics Data System (ADS)

    Frolov, Roman; Minev, Peter; Krechetnikov, Rouslan

    2016-11-01

    The problem of shock wave-free interface interaction has been widely studied in the context of compressible two-fluid flows using analytical, experimental, and numerical techniques. While various physical effects and possible interaction patterns for various geometries have been identified in the literature, the effects of viscosity and surface tension are usually neglected in such models. In our study, we apply a novel numerical algorithm for simulation of viscous compressible two-fluid flows with surface tension to investigate the influence of these effects on the shock-interface interaction. The method combines together the ideas from Finite Volume adaptation of invariant domains preserving algorithm for systems of hyperbolic conservation laws by Guermond and Popov and ADI parallel solver for viscous incompressible NSEs by Guermond and Minev. This combination has been further extended to a two-fluid flow case, including surface tension effects. Here we report on a quantitative study of how surface tension and viscosity affect the structure of the shock wave-free interface interaction region.

  14. Davisson-Germer Prize in Atomic or Surface Physics Talk: Soft X-Ray Studies of Surfaces, Interfaces and Thin Films: From Spectroscopy to Ultrafast Nanoscale Movies

    NASA Astrophysics Data System (ADS)

    Stöhr, Joachim

    2011-03-01

    My talk will review the development of soft x-ray spectroscopy and microscopy and its impact on our understanding of chemical bonding, magnetism and dynamics at surfaces and interfaces. I will first outline important soft x-ray spectroscopy and microscopy techniques that have been developed over the last 30 years and their key strengths such as elemental and chemical specificity, sensitivity to small atomic concentrations, separation of charge and spin properties, spatial resolution down to the nanometer scale, and temporal resolution down to the intrinsic femtosecond timescale of atomic and electronic motions. I will then present scientific breakthroughs based on soft x-ray studies in three selected areas: the nature of molecular bonding and reactivity on metal surfaces, the molecular origin of liquid crystal alignment on surfaces, and the microscopic origin of interface-mediated spin alignments in modern magnetic devices. My talk will also cover the use of soft x-rays for revealing the temporal evolution of electronic structure, addressing the key problem of ``function,'' down to the intrinsic femtosecond time scale of charge and spin configuration changes. As examples I will present the formation and breaking of chemical bonds in surface complexes and the motion of the magnetization in magnetic devices. Work supported by the Office of Basic Energy Science of the US Department of Energy.

  15. Pair correlation functions and the wavevector-dependent surface tension in a simple density functional treatment of the liquid-vapour interface.

    PubMed

    Parry, A O; Rascón, C; Willis, G; Evans, R

    2014-09-03

    We study the density-density correlation function G(r, r') in the interfacial region of a fluid (or Ising-like magnet) with short-ranged interactions using square gradient density functional theory. Adopting a simple double parabola approximation for the bulk free-energy density, we first show that the parallel Fourier transform G(z, z'; q) and local structure factor S(z; q) separate into bulk and excess contributions. We attempt to account for both contributions by deriving an interfacial Hamiltonian, characterised by a wavevector dependent surface tension σ(q), and then reconstructing density correlations from correlations in the interface position. We show that the standard crossing criterion identification of the interface, as a surface of fixed density (or magnetization), does not explain the separation of G(z, z'; q) and the form of the excess contribution. We propose an alternative definition of the interface position based on the properties of correlations between points that 'float' with the surface and show that this describes the full q and z dependence of the excess contributions to both G and S. However, neither the 'crossing-criterion' nor the new 'floating interface' definition of σ(q) are quantities directly measurable from the total structure factor S(tot)(q) which contains additional q dependence arising from the non-local relation between fluctuations in the interfacial position and local density. Since it is the total structure factor that is measured experimentally or in simulations, our results have repercussions for earlier attempts to extract and interpret σ(q).

  16. Spiers Memorial Lecture. Ions at aqueous interfaces.

    PubMed

    Jungwirth, Pavel

    2009-01-01

    Studies of aqueous interfaces and of the behavior of ions therein have been profiting from a recent remarkable progress in surface selective spectroscopies, as well as from developments in molecular simulations. Here, we summarize and place in context our investigations of ions at aqueous interfaces employing molecular dynamics simulations and electronic structure methods, performed in close contact with experiment. For the simplest of these interfaces, i.e. the open water surface, we demonstrate that the traditional picture of an ion-free surface is not valid for large, soft (polarizable) ions such as the heavier halides. Both simulations and spectroscopic measurements indicate that these ions can be present and even enhanced at surface of water. In addition we show that the ionic product of water exhibits a peculiar surface behavior with hydronium but not hydroxide accumulating at the air/water and alkane/water interfaces. This result is supported by surface-selective spectroscopic experiments and surface tension measurements. However, it contradicts the interpretation of electrophoretic and titration experiments in terms of strong surface adsorption of hydroxide; an issue which is further discussed here. The applicability of the observed behavior of ions at the water surface to investigations of their affinity for the interface between proteins and aqueous solutions is explored. Simulations show that for alkali cations the dominant mechanism of specific interactions with the surface of hydrated proteins is via ion pairing with negatively charged amino acid residues and with the backbone amide groups. As far as halide anions are concerned, the lighter ones tend to pair with positively charged amino acid residues, while heavier halides exhibit affinity to the amide group and to non-polar protein patches, the latter resembling their behavior at the air/water interface. These findings, together with results for more complex molecular ions, allow us to formulate a

  17. Electro-optic investigation of the n-alkanethiol GaAs(001) interface: Surface phenomena and applications to photoluminescence-based biosensing

    NASA Astrophysics Data System (ADS)

    Marshall, Gregory M.

    Semiconductor surfaces coupled to molecular structures derived from organic chemistry form the basis of an emerging class of field-effect devices. In addition to molecular electronics research, these interfaces are developed for a variety of sensor applications in the electronic and optical domains. Of practical interest are self-assembled monolayers (SAMs) comprised of n-alkanethiols [HS(CH2)n], which couple to the GaAs(001) surface through S-GaAs covalent bond formation. These SAMs offer potential functionality in terms of the requisite sensor chemistry and the passivation effect such coupling is known to afford. In this thesis, the SAM-GaAs interface is investigated in the context of a photonic biosensor based on photoluminescence (PL) variation. The scope of the work is categorized into three parts: i) the structural and compositional analysis of the surface using X-ray photoelectron spectroscopy (XPS), ii) the investigation of electronic properties at the interface under equilibrium conditions using infrared (IR) spectroscopy, the Kelvin probe method, and XPS, and iii) the analysis of the electro-optic response under steady-state photonic excitation, specifically, the surface photovoltage (SPV) and PL intensity. Using a partial overlayer model of angle-resolved XPS spectra in which the component assignments are shown to be quantitatively valid, the coverage fraction of methyl-terminated SAMs is shown to exceed 90%. Notable among the findings are a low-oxide, Ga-rich surface with elemental As present in sub-monolayer quantities consistent with theoretical surface morphologies. Modal analysis of transmission IR spectra show that the SAM molecular order is sufficient to support a Beer-Lambert determination of the IR optical constants, which yields the observation of a SAM-specific absorbance enhancement. By correlation of the IR absorbance with the SAM dipole layer potential, the enhancement mechanism is attributed to the vibrational moments added by the

  18. Weakly bound water structure, bond valence saturation and water dynamics at the goethite (100) surface/aqueous interface: ab initio dynamical simulations

    DOE PAGES

    Chen, Ying; Bylaska, Eric J.; Weare, John H.

    2017-03-31

    Many important geochemical and biogeochemical reactions occur in the mineral/formation water interface of the highly abundant mineral, goethite (α-Fe(OOH). Ab-initio molecular dynamics (AIMD) simulations of the goethite α-FeOOH (100) surface and the structure, water bond formation and dynamics of water molecules in the mineral/aqueous interface are presented. Here, several exchange correlation functionals were employed (PBE96, PBE96+Grimme, and PBE0) in the simulations of a (3 x 2) goethite surface with 65 absorbed water molecules in a 3D-periodic supercell (a=30 Å, FeOOH slab ~12 Å thick, solvation layer ~18 Å thick).

  19. Weakly bound water structure, bond valence saturation and water dynamics at the goethite (100) surface/aqueous interface: ab initio dynamical simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ying; Bylaska, Eric J.; Weare, John H.

    Many important geochemical and biogeochemical reactions occur in the mineral/formation water interface of the highly abundant mineral, goethite (α-Fe(OOH). Ab-initio molecular dynamics (AIMD) simulations of the goethite α-FeOOH (100) surface and the structure, water bond formation and dynamics of water molecules in the mineral/aqueous interface are presented. Here, several exchange correlation functionals were employed (PBE96, PBE96+Grimme, and PBE0) in the simulations of a (3 x 2) goethite surface with 65 absorbed water molecules in a 3D-periodic supercell (a=30 Å, FeOOH slab ~12 Å thick, solvation layer ~18 Å thick).

  20. Combinatorial Nano-Bio Interfaces.

    PubMed

    Cai, Pingqiang; Zhang, Xiaoqian; Wang, Ming; Wu, Yun-Long; Chen, Xiaodong

    2018-06-08

    Nano-bio interfaces are emerging from the convergence of engineered nanomaterials and biological entities. Despite rapid growth, clinical translation of biomedical nanomaterials is heavily compromised by the lack of comprehensive understanding of biophysicochemical interactions at nano-bio interfaces. In the past decade, a few investigations have adopted a combinatorial approach toward decoding nano-bio interfaces. Combinatorial nano-bio interfaces comprise the design of nanocombinatorial libraries and high-throughput bioevaluation. In this Perspective, we address challenges in combinatorial nano-bio interfaces and call for multiparametric nanocombinatorics (composition, morphology, mechanics, surface chemistry), multiscale bioevaluation (biomolecules, organelles, cells, tissues/organs), and the recruitment of computational modeling and artificial intelligence. Leveraging combinatorial nano-bio interfaces will shed light on precision nanomedicine and its potential applications.

  1. Electrostatic complementarity at protein/protein interfaces.

    PubMed

    McCoy, A J; Chandana Epa, V; Colman, P M

    1997-05-02

    Calculation of the electrostatic potential of protein-protein complexes has led to the general assertion that protein-protein interfaces display "charge complementarity" and "electrostatic complementarity". In this study, quantitative measures for these two terms are developed and used to investigate protein-protein interfaces in a rigorous manner. Charge complementarity (CC) was defined using the correlation of charges on nearest neighbour atoms at the interface. All 12 protein-protein interfaces studied had insignificantly small CC values. Therefore, the term charge complementarity is not appropriate for the description of protein-protein interfaces when used in the sense measured by CC. Electrostatic complementarity (EC) was defined using the correlation of surface electrostatic potential at protein-protein interfaces. All twelve protein-protein interfaces studied had significant EC values, and thus the assertion that protein-protein association involves surfaces with complementary electrostatic potential was substantially confirmed. The term electrostatic complementarity can therefore be used to describe protein-protein interfaces when used in the sense measured by EC. Taken together, the results for CC and EC demonstrate the relevance of the long-range effects of charges, as described by the electrostatic potential at the binding interface. The EC value did not partition the complexes by type such as antigen-antibody and proteinase-inhibitor, as measures of the geometrical complementarity at protein-protein interfaces have done. The EC value was also not directly related to the number of salt bridges in the interface, and neutralisation of these salt bridges showed that other charges also contributed significantly to electrostatic complementarity and electrostatic interactions between the proteins. Electrostatic complementarity as defined by EC was extended to investigate the electrostatic similarity at the surface of influenza virus neuraminidase where the

  2. Method for determining optimal supercell representation of interfaces

    NASA Astrophysics Data System (ADS)

    Stradi, Daniele; Jelver, Line; Smidstrup, Søren; Stokbro, Kurt

    2017-05-01

    The geometry and structure of an interface ultimately determines the behavior of devices at the nanoscale. We present a generic method to determine the possible lattice matches between two arbitrary surfaces and to calculate the strain of the corresponding matched interface. We apply this method to explore two relevant classes of interfaces for which accurate structural measurements of the interface are available: (i) the interface between pentacene crystals and the (1 1 1) surface of gold, and (ii) the interface between the semiconductor indium-arsenide and aluminum. For both systems, we demonstrate that the presented method predicts interface geometries in good agreement with those measured experimentally, which present nontrivial matching characteristics and would be difficult to guess without relying on automated structure-searching methods.

  3. Coal-shale interface detection system

    NASA Technical Reports Server (NTRS)

    Campbell, R. A.; Hudgins, J. L.; Morris, P. W.; Reid, H., Jr.; Zimmerman, J. E. (Inventor)

    1979-01-01

    A coal-shale interface detection system for use with coal cutting equipment consists of a reciprocating hammer on which an accelerometer is mounted to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. A pair of reflectometers simultaneously view the same surface. The outputs of the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through.

  4. Surface and interface of epitaxial CdTe film on CdS buffered van der Waals mica substrate

    DOE PAGES

    Yang, Y. -B.; Seewald, L.; Mohanty, Dibyajyoti; ...

    2017-03-31

    We report single crystal CdTe films are desirable for optoelectronic device applications. An important strategy of creating films with high crystallinity is through epitaxial growth on a proper single crystal substrate. We report the metalorganic chemical vapor deposition of epitaxial CdTe films on the CdS/mica substrate. The epitaxial CdS film was grown on a mica surface by thermal evaporation. Due to the weak van der Waals forces, epitaxy is achieved despite the very large interface lattice mismatch between CdS and mica (~21–55%). The surface morphology of mica, CdS and CdTe were quantified by atomic force microscopy. The near surface structures, orientations and texture of CdTe and CdS films were characterized by the unique reflection high-energy electron diffraction surface pole figure technique. The interfaces of CdTe and CdS films and mica were characterized by X-ray pole figure technique and transmission electron microscopy. The out-of-plane and in-plane epitaxy of the heteroepitaxial films stack are determined to be CdTe(111)//CdS(0001)//mica(001) and [more » $$\\overline{1}2\\overline{1}$$] CdTe//[$$\\overline{1}100$$] CdS//[010] mica, respectively. The measured photoluminescence (PL), time resolved PL, photoresponse, and Hall mobility of the CdTe/CdS/mica indicate quality films. Finally, the use of van der Waals surface to grow epitaxial CdTe/CdS films offers an alternative strategy towards infrared imaging and solar cell applications.« less

  5. Surface and interface of epitaxial CdTe film on CdS buffered van der Waals mica substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y. -B.; Seewald, L.; Mohanty, Dibyajyoti

    We report single crystal CdTe films are desirable for optoelectronic device applications. An important strategy of creating films with high crystallinity is through epitaxial growth on a proper single crystal substrate. We report the metalorganic chemical vapor deposition of epitaxial CdTe films on the CdS/mica substrate. The epitaxial CdS film was grown on a mica surface by thermal evaporation. Due to the weak van der Waals forces, epitaxy is achieved despite the very large interface lattice mismatch between CdS and mica (~21–55%). The surface morphology of mica, CdS and CdTe were quantified by atomic force microscopy. The near surface structures, orientations and texture of CdTe and CdS films were characterized by the unique reflection high-energy electron diffraction surface pole figure technique. The interfaces of CdTe and CdS films and mica were characterized by X-ray pole figure technique and transmission electron microscopy. The out-of-plane and in-plane epitaxy of the heteroepitaxial films stack are determined to be CdTe(111)//CdS(0001)//mica(001) and [more » $$\\overline{1}2\\overline{1}$$] CdTe//[$$\\overline{1}100$$] CdS//[010] mica, respectively. The measured photoluminescence (PL), time resolved PL, photoresponse, and Hall mobility of the CdTe/CdS/mica indicate quality films. Finally, the use of van der Waals surface to grow epitaxial CdTe/CdS films offers an alternative strategy towards infrared imaging and solar cell applications.« less

  6. Light-Sharing Interface for dMiCE Detectors Using Sub-Surface Laser Engraving

    PubMed Central

    Hunter, William C. J.; Miyaoka, Robert S.; MacDonald, Lawrence; McDougald, Wendy; Lewellen, Thomas K.

    2015-01-01

    We have previously reported on dMiCE, a method of resolving depth or interaction (DOI) in a pair of discrete crystals by encoding light sharing properties as a function of depth in the interface of a crystal-element pair. A challenge for this method is the cost and repeatability of interface treatment for each crystal pair. In this work, we report our preliminary results on using sub-surface laser engraving (SSLE) as a means of forming this depth-dependent interface in a dMiCE detector. A surplus first-generation SSLE system was used to create a partially reflective layer 100-microns thick at the boundary between two halves of a 1.4-by-2.9-by-20 mm3 LYSO crystal. The boundary of these paired crystal elements was positioned between two 3-mm wide Silicon photomultiplier arrays. The responses of these two photodetectors were acquired for an ensemble of 511-keV photons collimated to interact at a fixed depth in just one crystal element. Interaction position was then varied to measure detector response as a function of depth, which was then used to maximum-likelihood positions. Despite use of sub-optimal SSLE processing we found an average DOI resolution of 3.4 mm for front-sided readout and 3.9 mm for back-sided readout while obtaining energy resolutions on the order of 10%. We expect DOI resolution can be improved significantly by optimizing the SSLE process and pattern. PMID:25914421

  7. Light-Sharing Interface for dMiCE Detectors using Sub-Surface Laser Engraving.

    PubMed

    Hunter, William C J; Miyaoka, Robert S; MacDonald, Lawrence; McDougald, Wendy; Lewellen, Thomas K

    2013-10-01

    We have previously reported on dMiCE, a method of resolving depth or interaction (DOI) in a pair of discrete crystals by encoding light sharing properties as a function of depth in the interface of this crystal-element pair. A challenge for this method is the cost and repeatability of interface treatment for a crystal pair. In this work, we report our preliminary results on using sub-surface laser engraving (SSLE) as a means of forming this depth-dependent interface in a dMiCE detector. A surplus first-generation SSLE system was used to create a partially reflective layer 100-microns thick at the boundary between two halves of a 1.4-by-2.9-by-20 mmˆ3 LYSO crystal. The boundary of these paired crystal elements was positioned between two 3-mm wide Geiger-Müller avalanche photodiodes from Hamamatsu. The responses of these two photodetectors were acquired for an ensemble of 511-keV photons collimated to interact at a fixed depth in just one crystal element. Interaction position was then varied to measure detector response as a function of depth, which was then used to maximum-likelihood positions events. Despite use of sub-optimal SSLE processing we found an average DOI resolution of 3.4 mm for front-sided readout and 3.9 mm for back-sided readout. We expect DOI resolution can be improved significantly by optimizing the SSLE process and pattern.

  8. Light-Sharing Interface for dMiCE Detectors using Sub-Surface Laser Engraving

    PubMed Central

    Hunter, William C.J.; Miyaoka, Robert S.; MacDonald, Lawrence; McDougald, Wendy; Lewellen, Thomas K.

    2014-01-01

    We have previously reported on dMiCE, a method of resolving depth or interaction (DOI) in a pair of discrete crystals by encoding light sharing properties as a function of depth in the interface of this crystal-element pair. A challenge for this method is the cost and repeatability of interface treatment for a crystal pair. In this work, we report our preliminary results on using sub-surface laser engraving (SSLE) as a means of forming this depth-dependent interface in a dMiCE detector. A surplus first-generation SSLE system was used to create a partially reflective layer 100-microns thick at the boundary between two halves of a 1.4-by-2.9-by-20 mmˆ3 LYSO crystal. The boundary of these paired crystal elements was positioned between two 3-mm wide Geiger-Müller avalanche photodiodes from Hamamatsu. The responses of these two photodetectors were acquired for an ensemble of 511-keV photons collimated to interact at a fixed depth in just one crystal element. Interaction position was then varied to measure detector response as a function of depth, which was then used to maximum-likelihood positions events. Despite use of sub-optimal SSLE processing we found an average DOI resolution of 3.4 mm for front-sided readout and 3.9 mm for back-sided readout. We expect DOI resolution can be improved significantly by optimizing the SSLE process and pattern. PMID:25506194

  9. Light-Sharing Interface for dMiCE Detectors Using Sub-Surface Laser Engraving.

    PubMed

    Hunter, William C J; Miyaoka, Robert S; MacDonald, Lawrence; McDougald, Wendy; Lewellen, Thomas K

    2015-02-06

    We have previously reported on dMiCE, a method of resolving depth or interaction (DOI) in a pair of discrete crystals by encoding light sharing properties as a function of depth in the interface of a crystal-element pair. A challenge for this method is the cost and repeatability of interface treatment for each crystal pair. In this work, we report our preliminary results on using sub-surface laser engraving (SSLE) as a means of forming this depth-dependent interface in a dMiCE detector. A surplus first-generation SSLE system was used to create a partially reflective layer 100-microns thick at the boundary between two halves of a 1.4-by-2.9-by-20 mm 3 LYSO crystal. The boundary of these paired crystal elements was positioned between two 3-mm wide Silicon photomultiplier arrays. The responses of these two photodetectors were acquired for an ensemble of 511-keV photons collimated to interact at a fixed depth in just one crystal element. Interaction position was then varied to measure detector response as a function of depth, which was then used to maximum-likelihood positions. Despite use of sub-optimal SSLE processing we found an average DOI resolution of 3.4 mm for front-sided readout and 3.9 mm for back-sided readout while obtaining energy resolutions on the order of 10%. We expect DOI resolution can be improved significantly by optimizing the SSLE process and pattern.

  10. Nanoscale Structure at Mineral-Fluid Interfaces

    NASA Astrophysics Data System (ADS)

    Sturchio, N. C.; Sturchio, N. C.; Fenter, P.; Cheng, L.; Park, C.; Zhang, Z.; Zhang, Z.; Nagy, K. L.; Schlegel, M. L.

    2001-12-01

    The nature of nanoparticles and their role in the natural environment is currently a subject of renewed interest. The high surface area (and surface area-to-volume ratio) of nanoparticles exerts a widespread influence on geochemical reactions and transport processes. A thorough understanding of the nanoscale world remains largely hypothetical, however, because of the challenges associated with characterizing nanoscale structures and processes. Recent insights gained from high-resolution synchrotron x-ray reflectivity measurements at the solid-fluid interfaces of macroscopic (i.e., mm-scale) mineral particles may provide relevant guidelines for expected nanoparticle surface structures. For example, at calcite-water and barite-water interfaces, undercoordinated surface cations bond with water species of variable protonation, and modest relaxations (to several hundredths of a nanometer) affect the outermost unit cells [1,2]. Undercoordinated tetrahedral ions at aluminosilicate surfaces also bond with water species, whereas interstitial or interlayer alkali or alkaline earth ions at the surface may readily exchange with hydronium or other ions; modest relaxations also affect the outermost unit cells [3,4]. Modulation of liquid water structure out to about one nanometer has been observed at the (001) cleavage surface of muscovite in deionized water, and may be present at other mineral-fluid interfaces [4]. Dissolution mechanisms at the orthoclase-water interface have been clarified by combining x-ray reflectivity and scanning force microscopy measurements [5]. Further progress in understanding nanoscale structures and processes at macroscopic mineral-water interfaces is likely to benefit nanoparticle studies. [1] Fenter et al. (2000) Geochim. Cosmochim. Acta 64, 1221-1228. [2] Fenter et al. (2001) J. Phys. Chem. B 105(34), 8112-8119. [3] Fenter et al. (2000) Geochim. Cosmochim. Acta 64, 3663-3673. [4] Cheng et al. (2001) Phys. Rev. Lett., (in press). [5] Teng et al

  11. Nanoporous Gold as a Neural Interface Coating: Effects of Topography, Surface Chemistry, and Feature Size

    DOE PAGES

    Chapman, Christopher A. R.; Chen, Hao; Stamou, Marianna; ...

    2015-02-23

    We report that designing neural interfaces that maintain close physical coupling of neurons to an electrode surface remains a major challenge for both implantable and in vitro neural recording electrode arrays. Typically, low-impedance nanostructured electrode coatings rely on chemical cues from pharmaceuticals or surface-immobilized peptides to suppress glial scar tissue formation over the electrode surface (astrogliosis), which is an obstacle to reliable neuron–electrode coupling. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a promising candidate to reduce astrogliosis solely through topography by taking advantage of its tunable length scale. In the present in vitro study on np-Au’s interactionmore » with cortical neuron–glia co-cultures, we demonstrate that the nanostructure of np-Au achieves close physical coupling of neurons by maintaining a high neuron-to-astrocyte surface coverage ratio. Atomic layer deposition-based surface modification was employed to decouple the effect of morphology from surface chemistry. Additionally, length scale effects were systematically studied by controlling the characteristic feature size of np-Au through variations in the dealloying conditions. In conclusion, our results show that np-Au nanotopography, not surface chemistry, reduces astrocyte surface coverage while maintaining high neuronal coverage and may enhance neuron–electrode coupling through nanostructure-mediated suppression of scar tissue formation.« less

  12. Doped and codoped silicon nanocrystals: The role of surfaces and interfaces

    NASA Astrophysics Data System (ADS)

    Marri, Ivan; Degoli, Elena; Ossicini, Stefano

    2017-12-01

    Si nanocrystals have been extensively studied because of their novel properties and their potential applications in electronic, optoelectronic, photovoltaic, thermoelectric and biological devices. These new properties are achieved through the combination of the quantum confinement of carriers and the strong influence of surface chemistry. As in the case of bulk Si the tuning of the electronic, optical and transport properties is related to the possibility of doping, in a controlled way, the nanocrystals. This is a big challenge since several studies have revealed that doping in Si nanocrystals differs from the one of the bulk. Theory and experiments have underlined that doping and codoping are influenced by a large number of parameters such as size, shape, passivation and chemical environment of the silicon nanocrystals. However, the connection between these parameters and dopant localization as well as the occurrence of self-purification effects are still not clear. In this review we summarize the latest progress in this fascinating research field considering free-standing and matrix-embedded Si nanocrystals both from the theoretical and experimental point of view, with special attention given to the results obtained by ab-initio calculations and to size-, surface- and interface-induced effects.

  13. Coupling device with improved thermal interface

    NASA Astrophysics Data System (ADS)

    Milam, Malcolm Bruce

    1992-04-01

    The primary object of the present invention is to provide a simple, reliable, and lightweight coupling that will also have an efficient thermal interface. A further object of the invention is to provide a coupling that is capable of blind mating with little or no insertion forces. Another object of the invention is to provide a coupling that acts as a thermal regulator to maintain a constant temperature on one side of the coupling. Another object of the invention is to increase the available surface area of a coupling thus providing a larger area for the conduction of heat across the thermal interface. Another object of the invention is to provide a fluidic coupling that has no fluid passing across the interface, thus reducing the likelihood of leaks and contamination. The foregoing objects are achieved by utilizing, as in the prior art, a hot area (at an elevated temperature as compared to a cold area) with a need to remove excess heat from the hot area to a cold area. In this device, the thermal interface will occur not on a planar horizontal surface, but along a non-planar vertical surface, which will reduce the reaction forces and increase the thermal conductivity of the device. One non-planar surface is a surface on a cold pin extending from the cold area and the other non-planar surface is a surface on a hot pin extending from the hot area. The cold pin is fixed and does not move while the hot pin is a flexible member and its movement towards the cold pin will bring the two non-planar surfaces together forming the thermal interface. The actuating member for the device is a shape-memory actuation wire which is attached through an aperture to the hot pin and through another aperture to an actuation wire retainer. By properly programming the actuation wire, heat from the hot area will cause the actuation wire to bend the hot wire. Heat from the hot area will cause the actuation wire to bend the hot pin towards the cold pin forming the coupling and the desired

  14. Dry eyes and corneal sensation after laser in situ keratomileusis with femtosecond laser flap creation Effect of hinge position, hinge angle, and flap thickness.

    PubMed

    Mian, Shahzad I; Li, Amy Y; Dutta, Satavisha; Musch, David C; Shtein, Roni M

    2009-12-01

    To determine whether corneal sensation and dry-eye signs and symptoms after myopic laser in situ keratomileusis (LASIK) surgery with a femtosecond laser are affected by varying hinge position, hinge angle, or flap thickness. University-based academic practice, Ann Arbor, Michigan, USA. This prospective randomized contralateral-eye study evaluated eyes after bilateral myopic LASIK with a femtosecond laser (IntraLase). Superior and temporal hinge positions, 45-degree and 90-degree hinge angles, and 100 microm and 130 microm corneal flap thicknesses were compared. Postoperative follow-up at 1 week and 1, 3, 6, and 12 months included central Cochet-Bonnet esthesiometry, the Ocular Surface Disease Index questionnaire, a Schirmer test with anesthesia, tear breakup time (TBUT), corneal fluorescein staining, and conjunctival lissamine green staining. The study evaluated 190 consecutive eyes (95 patients). Corneal sensation was reduced at all postoperative visits, with improvement over 12 months (P<.001). There was no difference in corneal sensation between the different hinge positions, angles, or flap thicknesses at any time point. The overall ocular surface disease index score was increased at 1 week, 1 month, and 3 months (P<.0001, P<.0001, and P = .046, respectively). The percentage of patients with a TBUT longer than 10 seconds was significantly lower at 1 week and 1 month (P<.0001). Dry-eye syndrome after myopic LASIK with a femtosecond laser was mild and improved after 3 months. Corneal flap hinge position, hinge angle, and thickness had no effect on corneal sensation or dry-eye syndrome.

  15. Molecular-level understanding of protein adsorption at the interface between water and a strongly interacting uncharged solid surface.

    PubMed

    Penna, Matthew J; Mijajlovic, Milan; Biggs, Mark J

    2014-04-09

    Although protein adsorption on solids is of immense relevance, experimental limitations mean there is still a remarkable lack of understanding of the adsorption mechanism, particularly at a molecular level. By subjecting 240+ molecular dynamics simulations of two peptide/water/solid surface systems to statistical analysis, a generalized molecular level mechanism for peptide adsorption has been identified for uncharged surfaces that interact strongly with the solution phase. This mechanism is composed of three phases: (1) biased diffusion of the peptide from the bulk phase toward the surface; (2) anchoring of the peptide to the water/solid interface via interaction of a hydrophilic group with the water adjacent to the surface or a strongly interacting hydrophobic group with the surface; and (3) lockdown of the peptide on the surface via a slow, stepwise and largely sequential adsorption of its residues, which we term 'statistical zippering'. The adsorption mechanism is dictated by the existence of water layers adjacent to the solid and orientational ordering therein. By extending the solid into the solution by ~8 Å and endowing it with a charged character, the water layers ensure the peptide feels the effect of the solid at a range well beyond the dispersion force that arises from it, thus inducing biased diffusion from afar. The charging of the interface also facilitates anchoring of the peptide near the surface via one of its hydrophilic groups, allowing it time it would otherwise not have to rearrange and lockdown. Finally, the slowness of the lockdown process is dictated by the need for the peptide groups to replace adjacent tightly bound interfacial water.

  16. Study of Fluorinated Quantum Dots-Protein Interactions at the Oil/Water Interface by Interfacial Surface Tension Changes.

    PubMed

    Carrillo-Carrión, Carolina; Gallego, Marta; Parak, Wolfgang J; Carril, Mónica

    2018-05-08

    Understanding the interaction of nanoparticles with proteins and how this interaction modifies the nanoparticles’ surface is crucial before their use for biomedical applications. Since fluorinated materials are emerging as potential imaging probes and delivery vehicles, their interaction with proteins of biological interest must be studied in order to be able to predict their performance in real scenarios. It is known that fluorinated planar surfaces may repel the unspecific adsorption of proteins but little is known regarding the same process on fluorinated nanoparticles due to the scarce examples in the literature. In this context, the aim of this work is to propose a simple and fast methodology to study fluorinated nanoparticle-protein interactions based on interfacial surface tension (IFT) measurements. This technique is particularly interesting for fluorinated nanoparticles due to their increased hydrophobicity. Our study is based on the determination of IFT variations due to the interaction of quantum dots of ca. 5 nm inorganic core/shell diameter coated with fluorinated ligands (QD_F) with several proteins at the oil/water interface. Based on the results, we conclude that the presence of QD_F do not disrupt protein spontaneous film formation at the oil/water interface. Even if at very low concentrations of proteins the film formation in the presence of QD_F shows a slower rate, the final interfacial tension reached is similar to that obtained in the absence of QD_F. The differential behaviour of the studied proteins (bovine serum albumin, fibrinogen and apotransferrin) has been discussed on the basis of the adsorption affinity of each protein towards DCM/water interface and their different sizes. Additionally, it has been clearly demonstrated that the proposed methodology can serve as a complementary technique to other reported direct and indirect methods for the evaluation of nanoparticle-protein interactions at low protein concentrations.

  17. Diffusion of MMPs on the Surface of Collagen Fibrils: The Mobile Cell Surface – Collagen Substratum Interface

    PubMed Central

    Collier, Ivan E.; Legant, Wesley; Marmer, Barry; Lubman, Olga; Saffarian, Saveez; Wakatsuki, Tetsuro; Elson, Elliot; Goldberg, Gregory I.

    2011-01-01

    Remodeling of the extracellular matrix catalyzed by MMPs is central to morphogenetic phenomena during development and wound healing as well as in numerous pathologic conditions such as fibrosis and cancer. We have previously demonstrated that secreted MMP-2 is tethered to the cell surface and activated by MT1-MMP/TIMP-2-dependent mechanism. The resulting cell-surface collagenolytic complex (MT1-MMP)2/TIMP-2/MMP-2 can initiate (MT1-MMP) and complete (MMP-2) degradation of an underlying collagen fibril. The following question remained: What is the mechanism of substrate recognition involving the two structures of relatively restricted mobility, the cell surface enzymatic complex and a collagen fibril embedded in the ECM? Here we demonstrate that all the components of the complex are capable of processive movement on a surface of the collagen fibril. The mechanism of MT1-MMP movement is a biased diffusion with the bias component dependent on the proteolysis of its substrate, not adenosine triphosphate (ATP) hydrolysis. It is similar to that of the MMP-1 Brownian ratchet we described earlier. In addition, both MMP-2 and MMP-9 as well as their respective complexes with TIMP-1 and -2 are capable of Brownian diffusion on the surface of native collagen fibrils without noticeable dissociation while the dimerization of MMP-9 renders the enzyme immobile. Most instructive is the finding that the inactivation of the enzymatic activity of MT1-MMP has a detectable negative effect on the cell force developed in miniaturized 3D tissue constructs. We propose that the collagenolytic complex (MT1-MMP)2/TIMP-2/MMP-2 represents a Mobile Cell Surface – Collagen Substratum Interface. The biological implications of MT1-MMP acting as a molecular ratchet tethered to the cell surface in complex with MMP-2 suggest a new mechanism for the role of spatially regulated peri-cellular proteolysis in cell-matrix interactions. PMID:21912660

  18. Local Environment and Interactions of Liquid and Solid Interfaces Revealed by Spectral Line Shape of Surface Selective Nonlinear Vibrational Probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shun-Li; Fu, Li; Chase, Zizwe A.

    Vibrational spectral lineshape contains important detailed information of molecular vibration and reports its specific interactions and couplings to its local environment. In this work, recently developed sub-1 cm-1 high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) was used to measure the -C≡N stretch vibration in the 4-n-octyl-4’-cyanobiphenyl (8CB) Langmuir or Langmuir-Blodgett (LB) monolayer as a unique vibrational probe, and the spectral lineshape analysis revealed the local environment and interactions at the air/water, air/glass, air/calcium fluoride and air/-quartz interfaces for the first time. The 8CB Langmuir or LB film is uniform and the vibrational spectral lineshape of its -C≡N group hasmore » been well characterized, making it a good choice as the surface vibrational probe. Lineshape analysis of the 8CB -C≡N stretch SFG vibrational spectra suggests the coherent vibrational dynamics and the structural and dynamic inhomogeneity of the -C≡N group at each interface are uniquely different. In addition, it is also found that there are significantly different roles for water molecules in the LB films on different substrate surfaces. These results demonstrated the novel capabilities of the surface nonlinear spectroscopy in characterization and in understanding the specific structures and chemical interactions at the liquid and solid interfaces in general.« less

  19. First principles study of α2-Ti3Al(0 0 0 1) surface and γ-TiAl(1 1 1)/α2-Ti3Al(0 0 0 1) interfaces

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Shang, Jia-Xiang; Wang, Fu-He; Zhang, Yue

    2013-07-01

    The α2-Ti3Al(0 0 0 1) surface and γ-TiAl(1 1 1)/α2-Ti3Al(0 0 0 1) interfaces with six orientation relationships are studied by using the first-principle density functional theory. The calculated results indicate that the Ti3Al(0 0 0 1) surface has a higher surface energy (1.964 J/m2) and larger surface relaxations, compared with the γ-TiAl(1 1 1) surface. For the γ-TiAl(1 1 1)/α2-Ti3Al(0 0 0 1) interface structures, the work of separation along Ti3Al(0 0 0 1) cleavage plane is larger than that along TiAl(1 1 1) plane. In the interface region, the bonding strengths between Ti3Al layers and between TiAl layers are smaller than those along Ti3Al(0 0 0 1) plane and TiAl(1 1 1) plane in the bulk materials, respectively. The heterogeneous interface would be the weak link in the material, and the bonding strength of interface depends on the weaker one of the two phases. The bonding characteristics of interface are analyzed by the electron local function.

  20. Surface and interface effects on non-radiative exciton recombination and relaxation dynamics in CdSe/Cd,Zn,S nanocrystals

    NASA Astrophysics Data System (ADS)

    Walsh, Brenna R.; Saari, Jonathan I.; Krause, Michael M.; Nick, Robert; Coe-Sullivan, Seth; Kambhampati, Patanjali

    2016-06-01

    Excitonic state-resolved pump/probe spectroscopy and time correlate single photon counting were used to study exciton dynamics from the femtosecond to nanosecond time scales in CdSe/Cd,Zn,S nanocrystals. These measurements reveal the role of the core/shell interface as well as surface on non-radiative excitonic processes over three time regimes. Time resolved photoluminescence reports on how the interface controls slow non-radiative processes that dictate emission at the single excitonic level. Heterogeneity in decay is minimized by interfacial structure. Pump/probe measurements explore the non-radiative multiexcitonic recombination processes on the picosecond timescale. These Auger based non-radiative processes dictate lifetimes of multiexcitonic states. Finally state-resolved pump/probe measurements on the femtosecond timescale reveal the influence of the interface on electron and hole relaxation dynamics. We find that the interface has a profound influence on all three types of non-radiative processes which ultimately control light emission from nanocrystals.

  1. Formation of Reversible Solid Electrolyte Interface on Graphite Surface from Concentrated Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Dongping; Tao, Jinhui; Yan, Pengfei

    2017-02-10

    Interfacial phenomena have always been key determinants for the performance of energy storage technologies. The solid electrolyte interfacial (SEI) layer, pervasive on the surfaces of battery electrodes for numerous chemical couples, directly affects the ion transport, charge transfer and lifespan of the entire energy system. Almost all SEI layers, however, are unstable resulting in the continuous consumption of the electrolyte. Typically, this leads to the accumulation of degradation products on/restructuring of the electrode surface and thus increased cell impedance, which largely limits the long-term operation of the electrochemical reactions. Herein, a completely new SEI formation mechanism has been discovered, inmore » which the electrolyte components reversibly self-assemble into a protective surface coating on a graphite electrode upon changing the potential. In contrast to the established wisdom regarding the necessity of employing the solvent ethylene carbonate (EC) to form a protective SEI layer on graphite, a wide range of EC-free electrolytes are demonstrated for the reversible intercalation/deintercalation of Li+ cations within a graphite lattice, thereby providing tremendous flexibility in electrolyte tailoring for battery couples. This novel finding is broadly applicable and provides guidance for how to control interfacial reactions through the relationship between ion aggregation and solvent decomposition at polarized interfaces.« less

  2. Metal/silicon Interfaces and Their Oxidation Behavior - Photoemission Spectroscopy Analysis.

    NASA Astrophysics Data System (ADS)

    Yeh, Jyh-Jye

    Synchrotron radiation photoemission spectroscopy was used to study Ni/Si and Au/Si interface properties on the atomic scale at room temperature, after high temperature annealing and after oxygen exposures. Room temperature studies of metal/Si interfaces provide background for an understanding of the interface structure after elevated temperature annealing. Oxidation studies of Si surfaces covered with metal overlayers yield insight about the effect of metal atoms in the Si oxidation mechanisms and are useful in the identification of subtle differences in bonding relations between atoms at the metal/Si interfaces. Core level and valence band spectra with variable surface sensitivities were used to study the interactions between metal, Si, and oxygen for metal coverages and oxide thickness in the monolayer region. Interface morphology at the initial stage of metal/Si interface formation and after oxidation was modeled on the basis of the evolutions of metal and Si signals at different probing depths in the photoemission experiment. Both Ni/Si and Au/Si interfaces formed at room temperature have a diffusive region at the interface. This is composed of a layer of metal-Si alloy, formed by Si outdiffusion into the metal overlayer, above a layer of interstitial metal atoms in the Si substrate. Different atomic structures of these two regions at Ni/Si interface can account for the two different growth orientations of epitaxial Ni disilicides on the Si(111) surface after thermal annealing. Annealing the Au/Si interface at high temperature depletes all the Au atoms except for one monolayer of Au on the Si(111) surface. These phenomena are attributed to differences in the metal-Si chemical bonding relations associated with specific atomic structures. After oxygen exposures, both the Ni disilicide surface and Au covered Si surfaces (with different coverages and surface orderings) show silicon in higher oxidation states, in comparison to oxidized silicon on a clean surface

  3. Controlled microfluidic interfaces for microsensors

    NASA Astrophysics Data System (ADS)

    Jiang, H.

    2009-02-01

    Lab on a chip has found many applications in biological and chemical analysis, including pathogen detections. Because these labs on chips involve handling of fluids at the microscale, surface tension profoundly affects the behavior and performance of these systems. Through careful engineering, controlled liquid-liquid or liquid-gas interfaces at the microscale can be formed and used in many interesting applications. In this talk, I will present our work on applying such interfaces to microsensing. These interfaces are created at hydrophobic-hydrophilic boundaries formed within microfluidic channels and pinned by surface tension. We have designed and fabricated a few microsensing techniques including chemical and biological sensing using dissolvable micromembranes in microchannels, chemical and biological sensing at liquid crystals interfacing either air or aqueous solutions, and collection of gaseous samples and aerosols through air-liquid microfludic interfaces. I will next introduce on-chip microlenses and microlens arrays for optical detection, including smart and adaptive liquid microlenses actuated by stimuli-responsive hydrogels, and liquid microlenses in situ formed within microfluidic channels via pneumatic control of droplets.

  4. Surface-water Interface Induces Conformational Changes Critical for Protein Adsorption: Implications for Monolayer Formation of EAS Hydrophobin.

    PubMed

    Ley, Kamron; Christofferson, Andrew; Penna, Matthew; Winkler, Dave; Maclaughlin, Shane; Yarovsky, Irene

    2015-01-01

    The class I hydrophobin EAS is part of a family of small, amphiphilic fungal proteins best known for their ability to self-assemble into stable monolayers that modify the hydrophobicity of a surface to facilitate further microbial growth. These proteins have attracted increasing attention for industrial and biomedical applications, with the aim of designing surfaces that have the potential to maintain their clean state by resisting non-specific protein binding. To gain a better understanding of this process, we have employed all-atom molecular dynamics to study initial stages of the spontaneous adsorption of monomeric EAS hydrophobin on fully hydroxylated silica, a commonly used industrial and biomedical substrate. Particular interest has been paid to the Cys3-Cys4 loop, which has been shown to exhibit disruptive behavior in solution, and the Cys7-Cys8 loop, which is believed to be involved in the aggregation of EAS hydrophobin at interfaces. Specific and water mediated interactions with the surface were also analyzed. We have identified two possible binding motifs, one which allows unfolding of the Cys7-Cys8 loop due to the surfactant-like behavior of the Cys3-Cys4 loop, and another which has limited unfolding due to the Cys3-Cys4 loop remaining disordered in solution. We have also identified intermittent interactions with water which mediate the protein adsorption to the surface, as well as longer lasting interactions which control the diffusion of water around the adsorption site. These results have shown that EAS behaves in a similar way at the air-water and surface-water interfaces, and have also highlighted the need for hydrophilic ligand functionalization of the silica surface in order to prevent the adsorption of EAS hydrophobin.

  5. Surface-water Interface Induces Conformational Changes Critical for Protein Adsorption: Implications for Monolayer Formation of EAS Hydrophobin

    PubMed Central

    Ley, Kamron; Christofferson, Andrew; Penna, Matthew; Winkler, Dave; Maclaughlin, Shane; Yarovsky, Irene

    2015-01-01

    The class I hydrophobin EAS is part of a family of small, amphiphilic fungal proteins best known for their ability to self-assemble into stable monolayers that modify the hydrophobicity of a surface to facilitate further microbial growth. These proteins have attracted increasing attention for industrial and biomedical applications, with the aim of designing surfaces that have the potential to maintain their clean state by resisting non-specific protein binding. To gain a better understanding of this process, we have employed all-atom molecular dynamics to study initial stages of the spontaneous adsorption of monomeric EAS hydrophobin on fully hydroxylated silica, a commonly used industrial and biomedical substrate. Particular interest has been paid to the Cys3-Cys4 loop, which has been shown to exhibit disruptive behavior in solution, and the Cys7-Cys8 loop, which is believed to be involved in the aggregation of EAS hydrophobin at interfaces. Specific and water mediated interactions with the surface were also analyzed. We have identified two possible binding motifs, one which allows unfolding of the Cys7-Cys8 loop due to the surfactant-like behavior of the Cys3-Cys4 loop, and another which has limited unfolding due to the Cys3-Cys4 loop remaining disordered in solution. We have also identified intermittent interactions with water which mediate the protein adsorption to the surface, as well as longer lasting interactions which control the diffusion of water around the adsorption site. These results have shown that EAS behaves in a similar way at the air-water and surface-water interfaces, and have also highlighted the need for hydrophilic ligand functionalization of the silica surface in order to prevent the adsorption of EAS hydrophobin. PMID:26636091

  6. Measurement of the Surface Dilatational Viscosity of an Insoluble Surfactant Monolayer at the Air/Water Interface Using a Pendant Drop Apparatus

    NASA Technical Reports Server (NTRS)

    Lorenzo, Jose; Couzis, Alex; Maldarelli, Charles; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    When a fluid interface with surfactants is at rest, the interfacial stress is isotropic (as given by the equilibrium interfacial tension), and is described by the equation of state which relates the surface tension to the surfactant surface concentration. When surfactants are subjected to shear and dilatational flows, flow induced interaction of the surfactants; can create interfacial stresses apart from the equilibrium surface tension. The simplest relationship between surface strain rate and surface stress is the Boussinesq-Scriven constitutive equation completely characterized by three coefficients: equilibrium interfacial tension, surface shear viscosity, and surface dilatational viscosity Equilibrium interfacial tension and surface shear viscosity measurements are very well established. On the other hand, surface dilatational viscosity measurements are difficult because a flow which change the surface area also changes the surfactant surface concentration creating changes in the equilibrium interfacial tension that must be also taken into account. Surface dilatational viscosity measurements of existing techniques differ by five orders of magnitude and use spatially damped surface waves and rapidly expanding bubbles. In this presentation we introduce a new technique for measuring the surface dilatational viscosity by contracting an aqueous pendant drop attached to a needle tip and having and insoluble surfactant monolayer at the air-water interface. The isotropic total tension on the surface consists of the equilibrium surface tension and the tension due to the dilation. Compression rates are undertaken slow enough so that bulk hydrodynamic stresses are small compared to the surface tension force. Under these conditions we show that the total tension is uniform along the surface and that the Young-Laplace equation governs the drop shape with the equilibrium surface tension replaced by the constant surface isotropic stress. We illustrate this technique using

  7. Interface Engineering of Garnet Solid Electrolytes

    NASA Astrophysics Data System (ADS)

    Cheng, Lei

    Solid lithium ion conductors represent a promising class of materials for next generation high energy density batteries, with the potential for enabling use of high capacity Li metal anodes and providing opportunities for novel lithium-free cathode materials. However, highly resistive interfaces stymie their practical use. This urgent scientific challenge requires mechanistic understanding of ion transport at interfaces, as well as development of novel processes to achieve low interfacial resistances. The goal of this PhD dissertation was to generate fundamental understandings of garnet-structured Al substituted Li7La3Zr2O 12 (LLZO) electrolyte surfaces and interfaces with lithium metal electrodes. Specifically in this research, the topmost surface microstructure, local chemical environment, and surface chemistry were carefully studied. The ceramic processing of garnet is discussed and ways to control the sintering behavior and microstructures were explored and successfully demonstrated. Factors contributing to high interfacial resistance were systematically studied. The source of the high interfacial impedance has been traced to the presence of Li2CO 3 on pellet surfaces resulting from air exposure after processing. In addition, it was discovered that surface grain boundaries are surprisingly fast ion transport pathways and surface microstructure is critically important to lithium ion transport at interfaces. Complex homo- and heterostructured LLZO solid electrolytes with controllable surface and bulk microstructures were successfully fabricated, which allowed the comparison and separation of the contribution from the surface and the bulk. Engineered pellet surfaces allowed us to achieve the lowest interfacial resistance ever reported for this composition, resulting in significantly improved cycling behavior. Lastly, it was found that LLZO surfaces can be effectively stabilized under air exposure conditions, preventing Li2CO3 formation and maintaining low

  8. Contact-angle hysteresis on periodic microtextured surfaces: Strongly corrugated liquid interfaces.

    PubMed

    Iliev, Stanimir; Pesheva, Nina

    2016-06-01

    We study numerically the shapes of a liquid meniscus in contact with ultrahydrophobic pillar surfaces in Cassie's wetting regime, when the surface is covered with identical and periodically distributed micropillars. Using the full capillary model we obtain the advancing and the receding equilibrium meniscus shapes when the cross-sections of the pillars are both of square and circular shapes, for a broad interval of pillar concentrations. The bending of the liquid interface in the area between the pillars is studied in the framework of the full capillary model and compared to the results of the heterogeneous approximation model. The contact angle hysteresis is obtained when the three-phase contact line is located on one row (block case) or several rows (kink case) of pillars. It is found that the contact angle hysteresis is proportional to the line fraction of the contact line on pillars tops in the block case and to the surface fraction for pillar concentrations 0.1-0.5 in the kink case. The contact angle hysteresis does not depend on the shape (circular or square) of the pillars cross-section. The expression for the proportionality of the receding contact angle to the line fraction [Raj et al., Langmuir 28, 15777 (2012)LANGD50743-746310.1021/la303070s] in the case of block depinning is theoretically substantiated through the capillary force, acting on the solid plate at the meniscus contact line.

  9. [Comparative results evaluation of residual myopia and astigmatism correction after radial keratotomy by photorefraction keratectomy and laser specialized keratomileusis].

    PubMed

    Dias-Martines, T E; Sheludchenko, V M; Kurenkov, V V

    1999-01-01

    The results of correction of residual myopia by photorefraction keratectomy (PRK) (51 eyes) and laser specialized keratomileusis (LASIK) (36 eyes) after radial keratotomy (RK) are compared. The patients were observed for up to 12 months. After PRK, 7.3% patients developed late fleur of the cornea, evaluated by at least 2 points. The incidence of fleur directly depended on the value of residual myopia. After LASIK none of the patients developed such fleur. The best visual acuity (0.5 and higher without correction) was attained in 70.73% after PRK and RK, vs. 100% after LASIK. The results of photorefraction operations and severity of residual myopia after RK correlated. In residual myopia of up to -3 diopters the results of correction by PRK and LASIK were virtually the same. In residual myopia higher than -3 diopters, LASIK is preferable.

  10. The (2×2) reconstructions on the surface of cobalt silicides: Atomic configuration at the annealed Co/Si(111) interface

    NASA Astrophysics Data System (ADS)

    Kotlyar, V. G.; Alekseev, A. A.; Olyanich, D. A.; Utas, T. V.; Zotov, A. V.; Saranin, A. A.

    2017-08-01

    We have used scanning tunneling microscopy (STM) and ab initio total-energy calculations to characterize surface and interfacial structure of Co-Si(111) system. It has been found experimentally that two different types of the (2×2) surface structures occur. The coexistence of two phases is demonstrated by the example of STM image of the surface formed at the early stages of cobalt silicide formation under moderate annealing temperatures (500 °C). The measured height difference between the adjacent (2×2) reconstructed patches equal to about 1.0 Å (as determined from the filled-state STM images). In addition, the shift of the atomic rows by half of the row spacing is observed. Two adatom models of the (2×2) surface structures are developed. According to our data, these structures are assigned to CaF2-type CoSi2 and CsCl-type CoSi with a (2×2) array of Si adatoms on their surfaces. If the latter is the case, it has а coherent double interface CoSi/CoSi2/Si(111) with a two-layer CoSi2. Both of these interfaces are characterized by the eightfold cobalt coordination and incorporate a grown-in stacking fault.

  11. Characterization of Surface-Active Biofilm Protein BslA in Self-Assembling Langmuir Monolayer at the Air-Water Interface.

    PubMed

    Liu, Wei; Li, Shanghao; Wang, Zhuguang; Yan, Elsa C Y; Leblanc, Roger M

    2017-08-01

    Biofilm is an extracellular matrix of bacteria and serves as a protective shield of bacterial communities. It is crucial for microbial growth and one of the leading causes of human chronic infections as well. However, the structures and molecular mechanism of biofilm formation remain largely unknown. Here, we examined a protein, BslA, expressed in the biofilms of Bacillus subtilis. We characterized the Langmuir monolayers of BslA at the air/water interface. Using techniques in surface chemistry and spectroscopy, we found that BslA forms a stable and robust Langmuir monolayer at the air/water interface. Our results show that the BslA Langmuir monolayer underwent two-stage elasticity in the solid state phase upon mechanical compression: one is possibly due to the intermolecular interaction and the other is likely due to both the intermolecular compulsion and the intramolecular distortion. The Langmuir monolayer of BslA shows abrupt changes in rigidities and elasticities at ∼25 mN/m. This surface pressure is close to the one at which BlsA saturates the air/water interface as a self-assembled film without mechanical compression, corresponding to a mean molecular area of ∼700 Å 2 per molecule. Based on the results of surface UV-visible spectroscopy and infrared reflective-absorption spectroscopy, we propose that the BslA Langmuir monolayer carries intermolecular elasticity before ∼25 mN/m and both intermolecular and intramolecular elasticity after ∼25 mN/m. These results provide valuable insights into the understanding of biofilm-associated protein under high mechanical force, shedding light on further investigation of biofilm structure and functionalities.

  12. InP/ZnS nanocrystals: coupling NMR and XPS for fine surface and interface description.

    PubMed

    Virieux, Héloïse; Le Troedec, Marianne; Cros-Gagneux, Arnaud; Ojo, Wilfried-Solo; Delpech, Fabien; Nayral, Céline; Martinez, Hervé; Chaudret, Bruno

    2012-12-05

    Advanced (1)H, (13)C, and (31)P solution- and solid-state NMR studies combined with XPS were used to probe, at the molecular scale, the composition (of the core, the shell, and the interface) and the surface chemistry of InP/ZnS core/shell quantum dots prepared via a non-coordinating solvent strategy. The interface between the mismatched InP and ZnS phases is composed of an amorphous mixed oxide phase incorporating InPO(x) (with x = 3 and predominantly 4), In(2)O(3), and InO(y)(OH)(3-2y) (y = 0, 1). Thanks to the analysis of the underlying reaction mechanisms, we demonstrate that the oxidation of the upper part of the InP core is the consequence of oxidative conditions brought by decarboxylative coupling reactions (ketonization). These reactions occur during both the core preparation and the coating process, but according to different mechanisms.

  13. Miscibility of binary monolayers at the air-water interface and interaction of protein with immobilized monolayers by surface plasmon resonance technique.

    PubMed

    Wang, Yuchun; Du, Xuezhong

    2006-07-04

    The miscibility and stability of the binary monolayers of zwitterionic dipalmitoylphosphatidylcholine (DPPC) and cationic dioctadecyldimethylammonium bromide (DOMA) at the air-water interface and the interaction of ferritin with the immobilized monolayers have been studied in detail using surface pressure-area isotherms and surface plasmon resonance technique, respectively. The surface pressure-area isotherms indicated that the binary monolayers of DPPC and DOMA at the air-water interface were miscible and more stable than the monolayers of the two individual components. The surface plasmon resonance studies indicated that ferritin binding to the immobilized monolayers was primarily driven by the electrostatic interaction and that the amount of adsorbed protein at saturation was closely related not only to the number of positive charges in the monolayers but also to the pattern of positive charges at a given mole fraction of DOMA. The protein adsorption kinetics was determined by the properties of the monolayers (i.e., the protein-monolayer interaction) and the structure of preadsorbed protein molecules (i.e., the protein-protein interaction).

  14. Structure and Mechanical Properties of Polybutadiene Thin Films Bound to Surface-Modified Carbon Interface.

    PubMed

    Hori, Koichiro; Yamada, Norifumi L; Fujii, Yoshihisa; Masui, Tomomi; Kishimoto, Hiroyuki; Seto, Hideki

    2017-09-12

    The structure and mechanical properties of polybutadiene (PB) films on bare and surface-modified carbon films were examined. There was an interfacial layer of PB near the carbon layer whose density was higher (lower) than that of the bulk material on the hydrophobic (hydrophilic) carbon surface. To glean information about the structure and mechanical properties of PB at the carbon interface, a residual layer (RL) adhering to the carbon surface, which was considered to be a model of "bound rubber layer", was obtained by rinsing the PB film with toluene. The density and thickness of the RLs were identical to those of the interfacial layer of the PB film. In accordance with the change in the density, normal stress of the RLs evaluated by atomic force microscopy was also dependent on the surface free energy: the RLs on the hydrophobic carbon were hard like glass, whereas those on the hydrophilic carbon were soft like rubber. Similarly, the wear test revealed that the RLs on the hydrophilic carbon could be peeled off by scratching under a certain stress, whereas the RLs on the hydrophobic carbons were resistant to scratching.

  15. INTACS before or after laser in situ keratomileusis: correction of thin corneas with moderately high myopia.

    PubMed

    Ito, Mitsutoshi; Arai, Hiroyuki; Fukumoto, Teruki; Toda, Ikuko; Tsubota, Kazuo

    2004-01-01

    Intrastromal corneal ring segments (INTACS Micro-Thin Prescription Inserts by Addition Technologies, Fremont, Calif) were inserted as a combined surgery with laser in situ keratomileusis (LASIK) in six eyes with thin corneas to correct moderately high myopia. INTACS were implanted before LASIK (INTACS-LASIK) in three eyes and after LASIK (LASIK-INTACS) in three eyes. Mean preoperative manifest spherical equivalent refraction was -7.88 diopters. Mean follow-up was 306 days. No intraoperative complications occurred. The LASIK-INTACS eyes were slightly more overcorrected than the INTACS-LASIK eyes because of the enhanced performance of INTACS in the thinned corneal tissue. Induced astigmatism by INTACS per se was less in the LASIK-INTACS eyes than in the INTACS-LASIK eyes. At last examination, uncorrected visual acuity was better than 20/25 in all eyes. Best spectacle-corrected visual acuity was within 1 line of the preoperative value in all eyes. Both methods resulted in significant improvement in visual acuity and refraction. Based on our limited experience, however, LASIK followed by INTACS is preferred for reasons of safety, convenience, and lower induced cylinder.

  16. Femtosecond Laser Flap Creation for Laser In Situ Keratomileusis in the Setting of Previous Radial Keratotomy.

    PubMed

    Rush, Sloan W; Rush, Ryan B

    2015-01-01

    The aim of the study was to report the outcomes of laser in situ keratomileusis (LASIK) in subjects with previous radial keratotomy (RK) using a novel femtosecond laser setting on a proprietary femtosecond laser platform. This was a retrospective, consecutive chart review of patients at a single private practice institution. The medical records of 16 eyes of 8 subjects who underwent femtosecond-assisted LASIK for consecutive hyperopia after RK were retrospectively reviewed. The preoperative characteristics, intraoperative details, and postoperative outcomes were analyzed. All 16 eyes had successful femtosecond laser flap creation without significant intraoperative or postoperative complications. Uncorrected visual acuity significantly improved postoperatively (P = 0.0142) and remained stable through the final follow-up interval at 9 to 12 months postoperatively. None of the subjects lost any lines of best spectacle-corrected visual acuity in the postoperative period. The novel femtosecond laser technique described in this study can provide a safe and effective method for patients undergoing LASIK after previous RK. Future investigations are required to further validate the findings reported in this study.

  17. Dynamics of two-phase interfaces and surface tensions: A density-functional theory perspective

    NASA Astrophysics Data System (ADS)

    Yatsyshin, Petr; Sibley, David N.; Duran-Olivencia, Miguel A.; Kalliadasis, Serafim

    2016-11-01

    Classical density functional theory (DFT) is a statistical mechanical framework for the description of fluids at the nanoscale, where the inhomogeneity of the fluid structure needs to be carefully accounted for. By expressing the grand free-energy of the fluid as a functional of the one-body density, DFT offers a theoretically consistent and computationally accessible way to obtain two-phase interfaces and respective interfacial tensions in a ternary solid-liquid-gas system. The dynamic version of DFT (DDFT) can be rigorously derived from the Smoluchowsky picture of the dynamics of colloidal particles in a solvent. It is generally agreed that DDFT can capture the diffusion-driven evolution of many soft-matter systems. In this context, we use DDFT to investigate the dynamic behaviour of two-phase interfaces in both equilibrium and dynamic wetting and discuss the possibility of defining a time-dependent surface tension, which still remains in debate. We acknowledge financial support from the European Research Council via Advanced Grant No. 247031 and from the Engineering and Physical Sciences Research Council of the UK via Grants No. EP/L027186 and EP/L020564.

  18. SFG analysis of the molecular structures at the surfaces and buried interfaces of PECVD ultralow-dielectric constant pSiCOH: Reactive ion etching and dielectric recovery

    NASA Astrophysics Data System (ADS)

    Myers, John N.; Zhang, Xiaoxian; Huang, Huai; Shobha, Hosadurga; Grill, Alfred; Chen, Zhan

    2017-05-01

    Molecular structures at the surface and buried interface of an amorphous ultralow-k pSiCOH dielectric film were quantitatively characterized before and after reactive ion etching (RIE) and subsequent dielectric repair using sum frequency generation (SFG) vibrational spectroscopy and Auger electron spectroscopy. SFG results indicated that RIE treatment of the pSiCOH film resulted in a depletion of ˜66% of the surface methyl groups and changed the orientation of surface methyl groups from ˜47° to ˜40°. After a dielectric recovery process that followed the RIE treatment, the surface molecular structure was dominated by methyl groups with an orientation of ˜55° and the methyl surface coverage at the repaired surface was 271% relative to the pristine surface. Auger depth profiling indicated that the RIE treatment altered the top ˜25 nm of the film and that the dielectric recovery treatment repaired the top ˜9 nm of the film. Both SFG and Auger profiling results indicated that the buried SiCNH/pSiCOH interface was not affected by the RIE or the dielectric recovery process. Beyond characterizing low-k materials, the developed methodology is general and can be used to distinguish and characterize different molecular structures and elemental compositions at the surface, in the bulk, and at the buried interface of many different polymer or organic thin films.

  19. An operator interface design for a telerobotic inspection system

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Tso, Kam S.; Hayati, Samad

    1993-01-01

    The operator interface has recently emerged as an important element for efficient and safe interactions between human operators and telerobotics. Advances in graphical user interface and graphics technologies enable us to produce very efficient operator interface designs. This paper describes an efficient graphical operator interface design newly developed for remote surface inspection at NASA-JPL. The interface, designed so that remote surface inspection can be performed by a single operator with an integrated robot control and image inspection capability, supports three inspection strategies of teleoperated human visual inspection, human visual inspection with automated scanning, and machine-vision-based automated inspection.

  20. Nanobio interfaces: charge control of enzyme/inorganic interfaces for advanced biocatalysis.

    PubMed

    Deshapriya, Inoka K; Kumar, Challa V

    2013-11-19

    Specific approaches to the rational design of nanobio interfaces for enzyme and protein binding to nanomaterials are vital for engineering advanced, functional nanobiomaterials for biocatalysis, sensing, and biomedical applications. This feature article presents an overview of our recent discoveries on structural, functional, and mechanistic details of how enzymes interact with inorganic nanomaterials and how they can be controlled in a systematic manner using α-Zr(IV)phosphate (α-ZrP) as a model system. The interactions of a number of enzymes having a wide array of surface charges, sizes, and functional groups are investigated. Interactions are carefully controlled to screen unfavorable repulsions and enhance favorable interactions for high affinity, structure retention, and activity preservation. In specific cases, catalytic activities and substrate selectivities are improved over those of the pristine enzymes, and two examples of high activity near the boiling point of water have been demonstrated. Isothermal titration calorimetric studies indicated that enzyme binding is coupled to ion sequestration or release to or from the nanobio interface, and binding is controlled in a rational manner. We learned that (1) bound enzyme stabilities are improved by lowering the entropy of the denatured state; (2) maximal loadings are obtained by matching charge footprints of the enzyme and the nanomaterial surface; (3) binding affinities are improved by ion sequestration at the nanobio interface; and (4) maximal enzyme structure retention is obtained by biophilizing the nanobio interface with protein glues. The chemical and physical manipulations of the nanobio interface are significant not only for understanding the complex behaviors of enzymes at biological interfaces but also for desiging better functional nanobiomaterials for a wide variety of practical applications.

  1. Surface-bubble-modulated liquid chromatography: a new approach for manipulation of chromatographic retention and investigation of solute distribution at water/hydrophobic interfaces.

    PubMed

    Nakamura, Keisuke; Nakamura, Hiroki; Saito, Shingo; Shibukawa, Masami

    2015-01-20

    In this paper, we present a new chromatographic method termed surface-bubble-modulated liquid chromatography (SBMLC), that has a hybrid separation medium incorporated with surface nanobubbles. Nanobubbles or nanoscale gas phases can be fixed at the interface between water and a hydrophobic material by delivering water into a dry column packed with a nanoporous material. The incorporation of a gas phase at the hydrophobic surface leads to the formation of the hybrid separation system consisting of the gas phase, hydrophobic moieties, and the water/hydrophobic interface or the interfacial water. One can change the volume of the gas phase by pressure applied to the column, which in turn alters the area of water/hydrophobic interface or the volume of the interfacial water, while the amount of the hydrophobic moiety remains constant. Therefore, this strategy provides a novel technique not only for manipulating the separation selectivity by pressure but also for elucidating the mechanism of accumulation or retention of solute compounds in aqueous solutions by a hydrophobic material. We evaluate the contributions of the interfacial water at the surface of an octadecyl bonded silica and the bonded layer itself to the retention of various solute compounds in aqueous solutions on the column packed with the material by SBMLC. The results show that the interfacial water formed at the hydrophobic surface has a key role in retention even though its volume is rather small. The manipulation of the separation selectivity of SBMLC for some organic compounds by pressure is demonstrated.

  2. Colloidal systems and interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, S.; Morrison, E.D.

    1988-01-01

    This book is an excellent, four-part introductory text and sourcebook for those who want to acquire a quick background in , or brush up on, the physical properties and behavior of colloidal dispersions and interfaces. Part I covers properties of particles and techniques for determining particle size and surface area. Part II concentrates on the properties of interfaces, with brief subsections on insoluble monolayers, surface active solutes in aqueous and non-aqueous media, and the thermodynamics of adsorption at interfaces. Part III considers attractive and repulsive interactions, colloid stability (DLVO theory), and kinetics of coagulation. Part IV applies these concepts tomore » emulsions, foams, and suspensions. The sections on colloid rheology, interfacial tensions, Marangoni effects, and calculation of Hamaker constants are particularly good, as are Part IV and the numerous examples of practical applications used throughout the book to illustrate the concepts.« less

  3. Interfaces Charged by a Nonionic Surfactant.

    PubMed

    Lee, Joohyung; Zhou, Zhang-Lin; Behrens, Sven Holger

    2018-05-24

    Highly hydrophobic, water-insoluble nonionic surfactants are often considered irrelevant to the ionization of interfaces at which they adsorb, despite observations that suggest otherwise. In the present study, we provide unambiguous evidence for the participation of a water-insoluble surfactant in interfacial ionization by conducting electrophoresis experiments for surfactant-stabilized nonpolar oil droplets in aqueous continuous phase. It was found that the surfactant with amine headgroup positively charged the surface of oil suspended in aqueous continuous phase (oil/water interface), which is consistent with its basic nature. In nonpolar oil continuous phase, the same surfactant positively charged the surface of solid silica (solid/oil interface) which is often considered acidic. The latter observation is exactly opposite to what the traditional acid-base mechanism of surface charging would predict, most clearly suggesting the possibility for another charging mechanism.

  4. Biomimetic approaches with smart interfaces for bone regeneration.

    PubMed

    Sailaja, G S; Ramesh, P; Vellappally, Sajith; Anil, Sukumaran; Varma, H K

    2016-11-05

    A 'smart tissue interface' is a host tissue-biomaterial interface capable of triggering favourable biochemical events inspired by stimuli responsive mechanisms. In other words, biomaterial surface is instrumental in dictating the interface functionality. This review aims to investigate the fundamental and favourable requirements of a 'smart tissue interface' that can positively influence the degree of healing and promote bone tissue regeneration. A biomaterial surface when interacts synergistically with the dynamic extracellular matrix, the healing process become accelerated through development of a smart interface. The interface functionality relies equally on bound functional groups and conjugated molecules belonging to the biomaterial and the biological milieu it interacts with. The essential conditions for such a special biomimetic environment are discussed. We highlight the impending prospects of smart interfaces and trying to relate the design approaches as well as critical factors that determine species-specific functionality with special reference to bone tissue regeneration.

  5. Surface complexation of carboxylate adheres Cryptosporidium parvum öocysts to the hematite-water interface

    USGS Publications Warehouse

    Gao, X.; Metge, D.W.; Ray, C.; Harvey, R.W.; Chorover, J.

    2009-01-01

    The interaction of viable Cryptosporidium parvum öocysts at the hematite (α-Fe2O3)−water interface was examined over a wide range in solution chemistry using in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Spectra for hematite-sorbed öocysts showed distinct changes in carboxylate group vibrations relative to spectra obtained in the absence of hematite, indicative of direct chemical bonding between carboxylate groups and Fe metal centers of the hematite surface. The data also indicate that complexation modes vary with solution chemistry. In NaCl solution, öocysts are bound to hematite via monodentate and binuclear bidentate complexes. The former predominates at low pH, whereas the latter becomes increasingly prevalent with increasing pH. In a CaCl2 solution, only binuclear bidentate complexes are observed. When solution pH is above the point of zero net proton charge (PZNPC) of hematite, öocyst surface carboxylate groups are bound to the mineral surface via outer-sphere complexes in both electrolyte solutions.

  6. [Comparison of the anterior corneal asphericity after small incision lenticule extraction and femtosecond laser in situ keratomileusis].

    PubMed

    Su, X L; Wang, Y; Wu, W J; Wu, Z Q; Wu, Y N; Yu, C J

    2016-09-11

    To evaluate and compare the anterior corneal asphericity after small incision lenticule extraction(SMILE)and femtosecond laser in situ keratomileusis(FS-LASIK). In this case-control study, 45 subjects who underwent SMILE operation comprised the study group, and 33 subjects with FS-LASIK operation comprised the control group. The asphericity coefficient Q-value of the right eyes in both groups was measured at diameters of 6, 7, 8 and 9 mm, respectively, before surgery and at 1 day, 1 week, 1 month and 6 months following surgery. The correlation between the variation of Q-value and the central cutting depth was analyzed. The Q-value of anterior corneal surface was 0.85 ± 0.31, 0.80±0.28, 0.69±0.25 and 0.51±0.23 after SMILE, and 1.13±0.56, 1.01±0.47, 0.80±0.39 and 0.51±0.31 after FS-LASIK at 1 week. In both groups, the Q-value was significantly different before and after surgery(P< 0.05); there were interaction effects between the operation method and time; the difference between the two groups at 6-mm and 7-mm diameters was statistically significant(P<0.05). The variation of the Q-value before and after operation(ΔQ)showed significant difference(P6mm=0.004, P7mm=0.014)between the two groups at 6-mm and 7-mm diameters. The cap diameter of the SMILE group was smaller than that of the FS-LASIK group, but the cutting depth was larger. There was no correlation between ΔQ and the cap/disc diameter. It showed a linear relationship(P<0.05)between ΔQ and the central cutting depth at all examined diameters in the two groups, and the relation degree in the FS-LASIK group was superior to the SMILE group. Both SMILE and FS-LASIK operations can change the negative Q-value of the anterior corneal surface to the positive. The impact of SMILE on the asphericity is smaller than that of FS-LASIK. (Chin J Ophthalmol, 2016, 52: 681-685).

  7. Traumatic corneal flap displacement after laser in situ keratomileusis (LASIK)

    PubMed Central

    Tsai, Tsung-Han; Peng, Kai-Ling; Lin, Chien-Jen

    2017-01-01

    Background Laser in situ keratomileusis (LASIK) is the most common and popular procedure performed for the correction of refractive errors in the last two decades. We report a case of traumatic flap displacement with flap folding which occurred 3 years after LASIK was performed. Previous literature suggests that vision prognosis would be closely related to proper and prompt management of traumatic flap displacement with flap folding 3 years after LASIK. Case presentation A 23-year-old female presented to our hospital who had undergone uneventful LASIK in both eyes 3 years prior. Unfortunately, she had suffered a blunt trauma in her right eye in a car accident. A late onset of corneal flap displacement was found with upper and lower portion of the flap being folded inside the corneal bed. Surgical intervention for debridement with subsequent reposition of corneal flap was performed as soon as possible in the operating room. A bandage contact lens was placed, and topical antibiotic and corticosteroids were given postoperatively. Two days after the operation, the displaced corneal flap was found to be well attached smoothly on the corneal bed without folds. The best-corrected visual acuity was 6/6 with refraction of −0.75 D to 1.0 D ×175° in her right eye 1 month later. Literature review We reviewed a total of 19 published cases of late-onset traumatic flap dislocations or displacements after LASIK with complete data from 2000 to 2014. Conclusion Traumatic displacement of corneal flaps after LASIK may occur after blunt injury with specific direction of force to the flap margin, especially tangential one. According to the previous literature, late-onset traumatic flap displacement may happen at any time after LASIK and be caused by various types of injuries. Fortunately, good visual function could mostly be restored with immediate and proper management. PMID:28458585

  8. Laser in-situ keratomileusis for refractive error following radial keratotomy

    PubMed Central

    Sinha, Rajesh; Sharma, Namrata; Ahuja, Rakesh; Kumar, Chandrashekhar; Vajpayee, Rasik B

    2011-01-01

    Aim: To evaluate the safety and efficacy of laser in-situ keratomileusis (LASIK) in eyes with residual/induced refractive error following radial keratotomy (RK). Design: Retrospective study. Materials and Methods: A retrospective analysis of data of 18 eyes of 10 patients, who had undergone LASIK for refractive error following RK, was performed. All the patients had undergone RK in both eyes at least one year before LASIK. Parameters like uncorrected visual acuity (UCVA), best-corrected visual acuity (BCVA), contrast sensitivity, glare acuity and corneal parameters were evaluated both preoperatively and postoperatively. Statistical Software: STATA-9.0. Results: The mean UCVA before LASIK was 0.16±0.16 which improved to 0.64 ± 0.22 (P < 0.001) after one year following LASIK. Fourteen eyes (out of 18) had UCVA of ≥ 20/30 on Snellen's acuity chart at one year following LASIK. The mean BCVA before LASIK was 0.75 ± 0.18. This improved to 0.87 ± 0.16 at one year following LASIK. The mean spherical refractive error at the time of LASIK and at one year after the procedure was –5.37 ± 4.83 diopters (D) and –0.22 ± 1.45D, respectively. Only three eyes had a residual spherical refractive error of ≥ 1.0D at one year follow-up. In two eyes, we noted opening up of the RK incisions. No eye developed epithelial in-growth till 1 year after LASIK. Conclusion: LASIK is effective in treating refractive error following RK. However, it carries the risk of flap-related complications like opening up of the previously placed RK incisions and splitting of the corneal flap. PMID:21666312

  9. Traumatic corneal flap displacement after laser in situ keratomileusis (LASIK).

    PubMed

    Tsai, Tsung-Han; Peng, Kai-Ling; Lin, Chien-Jen

    2017-01-01

    Laser in situ keratomileusis (LASIK) is the most common and popular procedure performed for the correction of refractive errors in the last two decades. We report a case of traumatic flap displacement with flap folding which occurred 3 years after LASIK was performed. Previous literature suggests that vision prognosis would be closely related to proper and prompt management of traumatic flap displacement with flap folding 3 years after LASIK. A 23-year-old female presented to our hospital who had undergone uneventful LASIK in both eyes 3 years prior. Unfortunately, she had suffered a blunt trauma in her right eye in a car accident. A late onset of corneal flap displacement was found with upper and lower portion of the flap being folded inside the corneal bed. Surgical intervention for debridement with subsequent reposition of corneal flap was performed as soon as possible in the operating room. A bandage contact lens was placed, and topical antibiotic and corticosteroids were given postoperatively. Two days after the operation, the displaced corneal flap was found to be well attached smoothly on the corneal bed without folds. The best-corrected visual acuity was 6/6 with refraction of -0.75 D to 1.0 D ×175° in her right eye 1 month later. We reviewed a total of 19 published cases of late-onset traumatic flap dislocations or displacements after LASIK with complete data from 2000 to 2014. Traumatic displacement of corneal flaps after LASIK may occur after blunt injury with specific direction of force to the flap margin, especially tangential one. According to the previous literature, late-onset traumatic flap displacement may happen at any time after LASIK and be caused by various types of injuries. Fortunately, good visual function could mostly be restored with immediate and proper management.

  10. Ecohydrology of the wetland-forestland interface: hydrophobicity in leaf litter and its potential effect on surface evaporation

    NASA Astrophysics Data System (ADS)

    Probert, Samantha; Kettridge, Nicholas; Devito, Kevin; Hurley, Alexander

    2017-04-01

    Riparian wetlands represent an important ecotone at the interface of peatlands and forests within the Western Boreal Plain of Canada. Water storage and negative feedbacks to evaporation in these systems is crucial for the conservation and redistribution of water during dry periods and providing ecosystem resilience to disturbance. Litter cover can alter the relative importance of the physical processes that drive soil evaporation. Negative feedbacks to drying are created as the hydrophysical properties of the litter and soil override atmospheric controls on evaporation in dry conditions, subsequently dampening the effects of external forcings on the wetland moisture balance. In this study, water repellency in leaf litter has been shown to significantly correlate with surface-atmosphere interactions, whereby severely hydrophobic leaf litter is linked to the highest surface resistances to evaporation, and therefore lowest instantaneous evaporation. Decreasing moisture is associated with increasing hydrophobicity, which may reduce the evaporative flux further as the dry hydrophobic litter creates a hydrological disconnect between soil moisture and the atmosphere. In contrast, hydrophilic litter layers exhibited higher litter moistures, which is associated with reduced resistances to evaporation and enhanced evaporative fluxes. Water repellency of the litter layer has a greater control on evaporation than the presence or absence of litter itself. Litter removal had no significant effect on instantaneous evaporation or surface resistance to evaporation except under the highest evaporation conditions, where litter layers produced higher resistance values than bare peat soils. However, litter removal modified the dominant physical controls on evaporation: moisture loss in plots with leaf litter was driven by leaf and soil hydrophysical properties. Contrastingly, bare peat soils following litter removal exhibited cooler, wetter surfaces and were more strongly correlated to

  11. Contralateral eye comparison on changes in visual field following laser in situ keratomileusis vs photorefractive keratectomy for myopia: a randomized clinical trial.

    PubMed

    Mostafaei, A; Sedgipour, M R; Sadeghi-Bazargani, H

    2009-12-01

    Study purpose was to compare the changes of Visual Field (VF) during laser in situ Keratomileusis (LASIK) VS photorefractive keratectomy (PRK). This randomized, double blind, study involved 54 eyes of 27 Myopia patients who underwent LASIK or PRK procedures for contralateral eyes in each patient. Using Humphrey 30-2 SITA standard, the Mean Defect (MD) and Pattern Standard Deviation (PSD) were evaluated preoperatively and three months after surgery. At the same examination optical zone size, papillary and corneal diameters were also evaluated. There was no clinically significant difference in PSD and MD measurements between treated eyes with LASIK or PRK in any zone pre and postoperatively. VF may not be affected by corneal changes induced by LASIK or PRK three months after surgery.

  12. Poly(L-lysine) Interfaces via Dual Click Reactions on Surface-Bound Custom-Designed Dithiol Adsorbates.

    PubMed

    Shakiba, Amin; Jamison, Andrew C; Lee, T Randall

    2015-06-09

    Surfaces modified with poly(L-lysine) can be used to immobilize selected biomolecules electrostatically. This report describes the preparation of a set of self-assembled monolayers (SAMs) from three different azide-terminated adsorbates as platforms for performing controlled surface attachments and as a means of determining the parameters that afford stable poly(L-lysine)-modified SAM surfaces having controlled packing densities. A maleimide-terminated alkyne linker was "clicked" to the azide-terminated surfaces via a copper-catalyzed cycloaddition reaction to produce the attachment sites for the polypeptides. A thiol-Michael addition was then used to immobilize cysteine-terminated poly(L-lysine) moieties on the gold surface, avoiding adsorbate self-reactions with this two-step procedure. Each step in this process was analyzed by ellipsometry, X-ray photoelectron spectroscopy, polarization modulation infrared reflection-absorption spectroscopy, and contact angle goniometry to determine which adsorbate structure most effectively produced the targeted polypeptide interface. Additionally, a series of mixed SAMs using an azidoalkanethiol in combination with a normal alkanethiol having an equivalent alkyl chain were prepared to provide data to determine how dilution of the azide reactive site on the SAM surface influences the initial click reaction. Overall, the collected data demonstrate the advantages of an appropriately designed bidentate absorbate and its potential to form effective platforms for biomolecule surface attachment via click reactions.

  13. Weakly bound water structure, bond valence saturation and water dynamics at the goethite (100) surface/aqueous interface: ab initio dynamical simulations.

    PubMed

    Chen, Ying; Bylaska, Eric J; Weare, John H

    2017-03-31

    Many important geochemical and biogeochemical reactions occur in the mineral/formation water interface of the highly abundant mineral, goethite [α-Fe(OOH)]. Ab initio molecular dynamics (AIMD) simulations of the goethite α-FeOOH (100) surface and the structure, water bond formation and dynamics of water molecules in the mineral/aqueous interface are presented. Several exchange correlation functionals were employed (PBE96, PBE96 + Grimme, and PBE0) in the simulations of a (3 × 2) goethite surface with 65 absorbed water molecules in a 3D-periodic supercell (a = 30 Å, FeOOH slab ~12 Å thick, solvation layer ~18 Å thick). The lowest energy goethite (100) surface termination model was determined to have an exposed surface Fe 3+ that was loosely capped by a water molecule and a shared hydroxide with a neighboring surface Fe 3+ . The water molecules capping surface Fe 3+ ions were found to be loosely bound at all DFT levels with and without Grimme corrections, indicative that each surface Fe 3+ was coordinated with only five neighbors. These long bonds were supported by bond valence theory calculations, which showed that the bond valence of the surface Fe 3+ was saturated and surface has a neutral charge. The polarization of the water layer adjacent to the surface was found to be small and affected only the nearest water. Analysis by density difference plots and localized Boys orbitals identified three types of water molecules: those loosely bound to the surface Fe 3+ , those hydrogen bonded to the surface hydroxyl, and bulk water with tetrahedral coordination. Boys orbital analysis showed that the spin down lone pair orbital of the weakly absorbed water interact more strongly with the spin up Fe 3+ ion. These weakly bound surface water molecules were found to rapidly exchange with the second water layer (~0.025 exchanges/ps) using a dissociative mechanism. Water molecules adjacent to the surface were found to only weakly interact with the surface and as a

  14. Band bending at ferroelectric surfaces and interfaces investigated by x-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apostol, Nicoleta Georgiana, E-mail: nicoleta.apostol@infim.ro

    2014-11-24

    This work reports on the use of X-ray photoelectron spectroscopy to quantify band bending at ferroelectric free surfaces and at their interfaces with metals. Surfaces exhibiting out-of-plane ferroelectric polarization are characterized by a band bending, due to the formation of a dipole layer at the surface, composed by the uncompensated polarization charges (due to ionic displacement) and to the depolarization charge sheet of opposite sign, composed by mobile charge carriers, which migrate near surface, owing to the depolarization electric field. To this surface band bending due to out-of-plane polarization states, metal-semiconductor Schottky barriers must be considered additionally when ferroelectrics aremore » covered by metal layers. It is found that the net band bending is not always an algebraic sum of the two effects discussed above, since sometimes the metal is able to provide additional charge carriers, which are able to fully compensate the surface charge of the ferroelectric, up to the vanishing of the ferroelectric band bending. The two cases which will be discussed in more detail are Au and Cu deposited by molecular beam epitaxy on PbZr{sub 0.2}Ti{sub 0.8}O{sub 3}(001) single crystal thin layers, prepared by pulsed laser deposition. Gold forms unconnected nanoparticles, and their effect on the band bending is the apparition of a Schottky band bending additional to the band bending due to the out-of-plane polarization. Copper, starting with a given thickness, forms continuous metal layers connected to the ground of the system, and provide electrons in sufficient quantity to compensate the band bending due to the out-of-plane polarization.« less

  15. Suppression of protein adsorption on a charged phospholipid polymer interface.

    PubMed

    Xu, Yan; Takai, Madoka; Ishihara, Kazuhiko

    2009-02-09

    High capability of a charged interface to suppress adsorption of both anionic and cationic proteins was reported. The interface was covalently constructed on quartz by modifying with an anionic phospholipid copolymer, poly(2-methacryloyloxyethyl phosphorylcholine (MPC)-co-n-butyl methacrylate (BMA)-co-potassium 3-methacryloyloxypropyl sulfonate (PMPS)-co-3-methacryloxypropyl trimethoxysilane (MPTMSi)) (PMBSSi). The PMBSSi interfaces were very hydrophilic and homogeneous and could function effectively for a long time even under long-term fluidic working conditions. The PMBSSi density on the interface, which was controllable by adjusting the PMBSSi concentration of the modification solution, affected the surface properties, including the surface contact angle, the surface roughness, and the surface zeta-potential. When a PMBSSi modification was applied, the adsorption of various proteins (isoelectric point varying from 1.0 to 11.0) on quartz was reduced to at least 87% in amount, despite the various electrical natures these proteins have. The protein adsorption behavior on the PMBSSi interface depended more on the PMBSSi density than on the surface charge. The PMBSSi modification had a stable impact on the surface, not only at the physiologic ionic strength, but also over a range of the ionic strength, suggesting that electrostatic interactions do not dominate the behavior of protein adsorption to the PMBSSi surface.

  16. Surface instability of an imperfectly bonded thin elastic film under surface van der Waals forces

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Jing, Rong

    2017-02-01

    This paper studies surface instability of a thin elastic film imperfectly bonded to a rigid substrate interacting with a rigid contactor through van der Waals forces under plane strain conditions. The film-substrate interface is modeled as a linear spring with vanishing thickness described in terms of the normal and tangential interface parameters. Depending on the ratio of the two imperfect interface parameters, the critical value of the Poisson's ratio for the occurrence of surface wrinkling in the absence of surface energy can be greater than, equal to, or smaller than 0.25, which is the critical Poisson's ratio for a perfect film-substrate interface. The critical surface energy for the inhibition of the surface wrinkling is also obtained. Finally, we propose a very simple and effective method to study the surface instability of a multilayered elastic film with imperfect interfaces interacting with a rigid contactor or with another multilayered elastic film (or a multilayered simply supported plate) with imperfect interfaces.

  17. Molecular dimensions and surface diffusion assisted mechanically robust slippery perfluoropolyether impregnated mesoporous alumina interfaces

    NASA Astrophysics Data System (ADS)

    Rowthu, Sriharitha; Balic, Edin E.; Hoffmann, Patrik

    2017-12-01

    Accomplishing mechanically robust omniphobic surfaces is a long-existing challenge, and can potentially find applications in bioengineering, tribology and paint industries. Slippery liquid impregnated mesoporous α-Al2O3 interfaces are achieved with water, alkanes, water based and oil based high viscosity acrylic paints. Incredibly high abrasion-resistance (wear coefficients ≤10-8 mm3 N-1 m-1) and ultra-low friction coefficients (≥0.025) are attained, attributing to the hard alumina matrix and continuous replenishment of perfluoropolyether aided by capillarity and surface diffusion processes. A variety of impregnating liquids employed suggest that large molecules, faster surface diffusion and lowest evaporation rate generate the rare combination of high wear-resistance and omniphobicity. It is noteworthy that these novel liquid impregnated Al2O3 composites exhibit outstanding load bearing capacity up to 350 MPa; three orders of magnitude higher than achievable by the state of the art omniphobic surfaces. Further, our developed thermodynamic calculations suggest that the relative thermodynamic stability of liquid impregnated composites is linearly proportional to the spreading coefficient (S) of the impregnating liquid with the matrix material and is an important tool for the selection of an appropriate matrix material for a given liquid.

  18. Atomic interactions at the (100) diamond surface and the impact of surface and interface changes on the electronic transport properties

    NASA Astrophysics Data System (ADS)

    Deferme, Wim

    Centuries and centuries already, diamond is a material that speaks to ones imagination. Till the 18th century it was only mined in India, after it was also found in Brazil and South-Africa. But along the fascinating properties of diamond, it is also a very interesting material for industry. After the discovery at the end of the 18th century that diamond consists of carbon, it took until the 50's of the previous century before research groups from Russia, Japan and the USA were able to reproduce the growth process of diamond. In 1989 it was discovered that the surface of intrinsic, insulation diamond can be made conductive by hydrogenating the surface. It was clear that not only hydrogen at the surface but also the so called "adsorbates" were responsible for this conductivity. It was still not completely clear what was the influence of other species (like oxygen) on the mechanism of surface conductivity and therefore in this thesis the influence of oxygen on the electronic transport properties of atomically flat diamond are researched. Besides the growth of atomically flat diamond with the use of CVD (chemical vapour deposition) en the study of the grown surfaces with characterising techniques such as AFM (atomic force microscopy) and STM (scanning tunnelling microscopy), the study of the surface treatment with plasma techniques is the main topic of this thesis. The influence of oxygen on the surface conductivity is studied and with the ToF (Time-of-Flight) technique the transport properties of the freestanding diamond are examined. With a short laserflash, electrons and holes are created at the diamond/aluminium interface and due to an electric field (up to 500V) the charge carriers are translated to the back contact. In this way the influence of the surface and the changes at the aluminum contacts is studied leading to very interesting results.

  19. Molecular Dynamics Simulations of Adhesion at Epoxy Interfaces

    NASA Technical Reports Server (NTRS)

    Frankland, Sarah-Jane V.; Clancy, Thomas C.; Hinkley, J. A.; Gates. T. S.

    2008-01-01

    The effect of moisture on adhesives used in aerospace applications can be modeled with chemically specific techniques such as molecular dynamics simulation. In the present study, the surface energy and work of adhesion are calculated for epoxy surfaces and interfaces, respectively, by using molecular dynamics simulation. Modifications are made to current theory to calculate the work of adhesion at the epoxy-epoxy interface with and without water. Quantitative agreement with experimental values is obtained for the surface energy and work of adhesion at the interface without water. The work of adhesion agrees qualitatively with the experimental values for the interface with water: the magnitude is reduced 15% with respect to the value for the interface without water. A variation of 26% in the magnitude is observed depending on the water configuration at a concentration of 1.6 wt%. The methods and modifications to the method that are employed to obtain these values are expected to be applicable for other epoxy adhesives to determine the effects of moisture uptake on their work of adhesion.

  20. PREFACE: Functionalized Liquid Liquid Interfaces

    NASA Astrophysics Data System (ADS)

    Girault, Hubert; Kornyshev, Alexei A.; Monroe, Charles W.; Urbakh, Michael

    2007-09-01

    Most natural processes take place at interfaces. For this reason, surface science has been a focal point of modern research. At solid-liquid interfaces one can induce various species to adsorb or react, and thus may study interactions between the substrate and adsorbates, kinetic processes, optical properties, etc. Liquid-liquid interfaces, formed by immiscible liquids such as water and oil, have a number of distinctive features. Both sides of the interface are amenable to detailed physical and chemical analysis. By chemical or electrochemical means, metal or semiconductor nanoparticles can be formed or localised at the interface. Surfactants can be used to tailor surface properties, and also to place organic molecular or supermolecular constructions at the boundary between the liquids. Electric fields can be used to drive ions from one fluid to another, or even change the shape of the interface itself. In many cases, both liquids are optically transparent, making functionalized liquid-liquid interfaces promising for various optical applications based on the transmission or reflection of light. An advantage common to most of these systems is self-assembly; because a liquid-liquid interface is not mechanically constrained like a solid-liquid interface, it can easily access its most stable state, even after it has been driven far from equilibrium. This special issue focuses on four modes of liquid-liquid interfacial functionalization: the controlled adsorption of molecules or nanoparticles, the formation of adlayers or films, electrowetting, and ion transfer or interface-localized reactions. Interfacial adsorption can be driven electrically, chemically, or mechanically. The liquid-liquid interface can be used to study how anisotropic particles orient at a surface under the influence of a field, how surfactants interact with other adsorbates, and how nanoparticles aggregate; the transparency of the interface also makes the chirality of organic adsorbates amenable to

  1. Mechanism of anisotropic surface self-diffusivity at the prismatic ice-vapor interface.

    PubMed

    Gladich, Ivan; Oswald, Amrei; Bowens, Natalie; Naatz, Sam; Rowe, Penny; Roeselova, Martina; Neshyba, Steven

    2015-09-21

    Predictive theoretical models for mesoscopic roughening of ice require improved understanding of attachment kinetics occurring at the ice-vapor interface. Here, we use classical molecular dynamics to explore the generality and mechanics of a transition from anisotropic to isotropic self-diffusivity on exposed prismatic surfaces. We find that self-diffusion parallel to the crystallographic a-axis is favored over the c-axis at sub-melt temperatures below about -35 °C, for three different representations of the water-water intermolecular potential. In the low-temperature anisotropic regime, diffusion results from interstitial admolecules encountering entropically distinct barriers to diffusion in the two in-plane directions. At higher temperatures, isotropic self-diffusion occurring deeper within the quasi-liquid layer becomes the dominant mechanism, owing to its larger energy of activation.

  2. Cytochrome c at charged interfaces studied by resonance Raman and surface-enhanced resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Peter

    1991-05-01

    The effect of electrostatic fields on the structure of cytochrome c bound to charged interfaces was studied by resonance Raman and surface enhanced resonance Raman spectroscopy. Binding of this heme protein to the Ag electrode or heteropolytungstates which may be regarded as simple model systems for biological interfaces establishes an equilibrium between two conformational states (I II). In state I the structure and the redox potential are the same as for the uncomplexed cytochrome c. In state II however the heme pocket assumes an open structure and the axial iron Met80 bond is weakened leading to thennal coordination equilibrium between the fivecoordinated high spin and the sixcoordinated low spin configuration. These structural changes are accompanied by a decrease of the redox potential by 420 mV. The structural rearrangement of the heme pocket in state II is presumably initiated by the dissociation of the internal salt bridge of Lys13 due to electrostatic interactions with the negatively charged surfaces of the model systems. From detailed Raman spectroscopic studies characteristic spectral properties of the states I and II were identified. Based on these findings the interactions of cytochrome c with phospholipid vesicles as well as with its physiological reaction partner cytocbrome c oxidase were analysed. A systematic study of the cytochmme c/phospholipid system by varying the lipid composition and the temperature revealed mutual structural changes in both the lipid and the protein structure.

  3. Laser in situ keratomileusis for residual hyperopic astigmatism after conductive keratoplasty.

    PubMed

    Kymionis, George D; Aslanides, Ioannis M; Khoury, Aghlab N; Markomanolakis, Marinos M; Naoumidi, Tatiana; Pallikaris, loannis G

    2004-01-01

    To report a case of laser in situ keratomileusis (LASIK) in a patient with previous conductive keratoplasty. A 48-year-old man underwent conductive keratoplasty for low hyperopic astigmatism (manifest refraction OD: +2.25 -0.50 x 77 degrees; OS: +2.50 -0.50 x 105 degrees). Three months postoperatively, UCVA was 20/25 and BSCVA was 20/20 in both eyes; manifest refraction OD: -0.25 -0.75 x 110 degrees; OS: +0.75 -0.75 x 50 degrees. Sixteen months after the operation, regression of refractive outcome was (manifest) OD: +1.75 -1.25 x 90 degrees; OS: +2.50 -0.50 x 85 degrees; UCVA was 20/40 in the right eye and 20/63 in the left eye and BSCVA was 20/20 in both eyes. LASIK was performed for hyperopic regression in the left eye using an automated microkeratome (Alcon SKBM, 130-microm plate; Aesculap-Meditec MEL 70 excimer laser). LASIK was uneventful and no intraoperative or postoperative complications related to the previous conductive keratoplasty procedure or LASIK were observed. Three months after LASIK and 19 months after the initial conductive keratoplasty, the patient's left eye was emmetropic; UCVA was 20/20(-2), BSCVA was 20/20 and manifest refraction was +0.25 -0.25 x 35 degrees. There was a uniform increase in topographical steepening. Visual acuity, refraction and topographic findings remained unchanged at 6 months. Even though our experience is limited, treatment of hyperopia with LASIK in an eye with refractive regression following previous conductive keratoplasty resulted in a predicted refractive outcome, with no complications, and improvement in visual acuity at 6 months follow-up.

  4. Thermal Interface Comparisons Under Flight Like Conditions

    NASA Technical Reports Server (NTRS)

    Rodriquez-Ruiz, Juan

    2008-01-01

    Thermal interface materials are used in bolted interfaces to promote good thermal conduction between the two. The mounting surface can include panels, heat pipes, electronics boxes, etc.. . On Lunar Reconnaissance Orbiter (LRO) project the results are directly applicable: a) Several high power avionics boxes b) Several interfaces from RWA to radiator through heat pipe network

  5. What's on the Surface? Physics and Chemistry of Delta-Doped Surfaces

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael

    2011-01-01

    Outline of presentation: 1. Detector surfaces and the problem of stability 2. Delta-doped detectors 3. Physics of Delta-doped Silicon 4. Chemistry of the Si-SiO2 Interface 5. Physics and Chemistry of Delta-doped Surfaces a. Compensation b. Inversion c. Quantum exclusion. Conclusions: 1. Quantum confinement of electrons and holes dominates the behavior of delta-doped surfaces. 2. Stability of delta-doped detectors: Delta-layer creates an approx 1 eV tunnel barrier between bulk and surface. 3. At high surface charge densities, Tamm-Shockley states form at the surface. 4. Surface passivation by quantum exclusion: Near-surface delta-layer suppresses T-S trapping of minority carriers. 5. The Si-SiO2 interface compensates the surface 6. For delta-layers at intermediate depth, surface inversion layer forms 7. Density of Si-SiO2 interface charge can be extremely high (>10(exp 14)/sq cm)

  6. Adsorption of benzyldimethylhexadecylammonium chloride at the hydrophobic silica-water interface studied by total internal reflection Raman spectroscopy: effects of silica surface properties and metal salt addition.

    PubMed

    Grenoble, Zlata; Baldelli, Steven

    2013-08-29

    The adsorption of the cationic surfactant benzyldimethylhexadecylammonium (BDMHA(+)) chloride was studied at an octadecyltrichlorosilane (OTS)-monolayer-modified silica-water interface by Raman spectroscopy in total internal reflection (TIR) geometry. The present study demonstrates the capabilities of this spectroscopic technique to evaluate thermodynamic and kinetic BDMHA(+)Cl(-) adsorption properties at the hydrophobic silica surface. The surface coverage of BDMHA(+) decreased by 50% at the hydrophobic OTS-silica surface relative to the surface coverage on bare silica; the dominating driving mechanisms for surfactant adsorption were identified as hydrophobic effects and head group charge screening by the electrolyte counterions. Addition of magnesium metal salt (MgCl2) to the aqueous solution (∼ neutral pH) lowered the surface coverage and moderately increased the Langmuir adsorption constants relative to those of the pure surfactant. These trends were previously observed at the hydrophilic, negatively charged silica surface but with a smaller change in the Gibbs free energy of adsorption at the hydrophobic silica surface. The hydrophobic OTS-silica surface properties resulted in shorter times for the surfactant to reach steady-state adsorption conditions compared to the slow adsorption kinetics previously seen with the surfactant at the hydrophilic surface. Adsorption isotherms, based on Raman signal intensities from spectral analysis, were developed according to the Langmuir adsorption model for the pure surfactant at the OTS-silica-water interface; the modified Langmuir model was applied to the surfactant adsorption in the presence of 5, 10, 50, and 100 mM magnesium chloride. Spectral analysis of the Raman scattering intensities and geometric considerations suggests a hemimicelle-type surface aggregate as the most likely surfactant structure at the OTS-silica surface. The different kinetics observed at the hydrophilic versus the hydrophobic silica surface

  7. Segmentation of 830- and 1310-nm LASIK corneal optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Li, Yan; Shekhar, Raj; Huang, David

    2002-05-01

    Optical coherence tomography (OCT) provides a non-contact and non-invasive means to visualize the corneal anatomy at micron scale resolution. We obtained corneal images from an arc-scanning (converging) OCT system operating at a wavelength of 830nm and a fan-shaped-scanning high-speed OCT system with an operating wavelength of 1310nm. Different scan protocols (arc/fan) and data acquisition rates, as well as wavelength dependent bio-tissue backscatter contrast and optical absorption, make the images acquired using the two systems different. We developed image-processing algorithms to automatically detect the air-tear interface, epithelium-Bowman's layer interface, laser in-situ keratomileusis (LASIK) flap interface, and the cornea-aqueous interface in both kinds of images. The overall segmentation scheme for 830nm and 1310nm OCT images was similar, although different strategies were adopted for specific processing approaches. Ultrasound pachymetry measurements of the corneal thickness and Placido-ring based corneal topography measurements of the corneal curvature were made on the same day as the OCT examination. Anterior/posterior corneal surface curvature measurement with OCT was also investigated. Results showed that automated segmentation of OCT images could evaluate anatomic outcome of LASIK surgery.

  8. Observation of Structure of Surfaces and Interfaces by Synchrotron X-ray Diffraction: Atomic-Scale Imaging and Time-Resolved Measurements

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Yusuke; Shirasawa, Tetsuroh; Voegeli, Wolfgang; Takahashi, Toshio

    2018-06-01

    The recent developments in synchrotron optics, X-ray detectors, and data analysis algorithms have enhanced the capability of the surface X-ray diffraction technique. This technique has been used to clarify the atomic arrangement around surfaces in a non-contact and nondestructive manner. An overview of surface X-ray diffraction, from the historical development to recent topics, is presented. In the early stage of this technique, surface reconstructions of simple semiconductors or metals were studied. Currently, the surface or interface structures of complicated functional materials are examined with sub-Å resolution. As examples, the surface structure determination of organic semiconductors and of a one-dimensional structure on silicon are presented. A new frontier is time-resolved interfacial structure analysis. A recent observation of the structure and dynamics of the electric double layer of ionic liquids, and an investigation of the structural evolution in the wettability transition on a TiO2 surface that utilizes a newly designed time-resolved surface diffractometer, are presented.

  9. A Graphical Operator Interface for a Telerobotic Inspection System

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Tso, K. S.; Hayati, S.

    1993-01-01

    Operator interface has recently emerged as an important element for efficient and safe operatorinteractions with the telerobotic system. Recent advances in graphical user interface (GUI) andgraphics/video merging technologies enable development of more efficient, flexible operatorinterfaces. This paper describes an advanced graphical operator interface newly developed for aremote surface inspection system at Jet Propulsion Laboratory. The interface has been designed sothat remote surface inspection can be performed by a single operator with an integrated robot controland image inspection capability. It supports three inspection strategies of teleoperated human visual inspection, human visual inspection with automated scanning, and machine-vision-based automated inspection.

  10. Chemical reactions at aqueous interfaces

    NASA Astrophysics Data System (ADS)

    Vecitis, Chad David

    2009-12-01

    Interfaces or phase boundaries are a unique chemical environment relative to individual gas, liquid, or solid phases. Interfacial reaction mechanisms and kinetics are often at variance with homogeneous chemistry due to mass transfer, molecular orientation, and catalytic effects. Aqueous interfaces are a common subject of environmental science and engineering research, and three environmentally relevant aqueous interfaces are investigated in this thesis: 1) fluorochemical sonochemistry (bubble-water), 2) aqueous aerosol ozonation (gas-water droplet), and 3) electrolytic hydrogen production and simultaneous organic oxidation (water-metal/semiconductor). Direct interfacial analysis under environmentally relevant conditions is difficult, since most surface-specific techniques require relatively `extreme' conditions. Thus, the experimental investigations here focus on the development of chemical reactors and analytical techniques for the completion of time/concentration-dependent measurements of reactants and their products. Kinetic modeling, estimations, and/or correlations were used to extract information on interfacially relevant processes. We found that interfacial chemistry was determined to be the rate-limiting step to a subsequent series of relatively fast homogeneous reactions, for example: 1) Pyrolytic cleavage of the ionic headgroup of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) adsorbed to cavitating bubble-water interfaces during sonolysis was the rate-determining step in transformation to their inorganic constituents carbon monoxide, carbon dioxide, and fluoride; 2) ozone oxidation of aqueous iodide to hypoiodous acid at the aerosol-gas interface is the rate-determining step in the oxidation of bromide and chloride to dihalogens; 3) Electrolytic oxidation of anodic titanol surface groups is rate-limiting for the overall oxidation of organics by the dichloride radical. We also found chemistry unique to the interface, for example: 1

  11. Adhesion of voids to bimetal interfaces with non-uniform energies

    DOE PAGES

    Zheng, Shijian; Shao, Shuai; Zhang, Jian; ...

    2015-10-21

    Interface engineering has become an important strategy for designing radiation-resistant materials. Critical to its success is fundamental understanding of the interactions between interfaces and radiation-induced defects, such as voids. Using transmission electron microscopy, here we report an interesting phenomenon in their interaction, wherein voids adhere to only one side of the bimetal interfaces rather than overlapping them. We show that this asymmetrical void-interface interaction is a consequence of differing surface energies of the two metals and non-uniformity in their interface formation energy. Specifically, voids grow within the phase of lower surface energy and wet only the high-interface energy regions. Furthermore,more » because this outcome cannot be accounted for by wetting of interfaces with uniform internal energy, our report provides experimental evidence that bimetal interfaces contain non-uniform internal energy distributions. Ultimately, this work also indicates that to design irradiation-resistant materials, we can avoid void-interface overlap via tuning the configurations of interfaces.« less

  12. A Unified Overset Grid Generation Graphical Interface and New Concepts on Automatic Gridding Around Surface Discontinuities

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Akien, Edwin (Technical Monitor)

    2002-01-01

    For many years, generation of overset grids for complex configurations has required the use of a number of different independently developed software utilities. Results created by each step were then visualized using a separate visualization tool before moving on to the next. A new software tool called OVERGRID was developed which allows the user to perform all the grid generation steps and visualization under one environment. OVERGRID provides grid diagnostic functions such as surface tangent and normal checks as well as grid manipulation functions such as extraction, extrapolation, concatenation, redistribution, smoothing, and projection. Moreover, it also contains hyperbolic surface and volume grid generation modules that are specifically suited for overset grid generation. It is the first time that such a unified interface existed for the creation of overset grids for complex geometries. New concepts on automatic overset surface grid generation around surface discontinuities will also be briefly presented. Special control curves on the surface such as intersection curves, sharp edges, open boundaries, are called seam curves. The seam curves are first automatically extracted from a multiple panel network description of the surface. Points where three or more seam curves meet are automatically identified and are called seam corners. Seam corner surface grids are automatically generated using a singular axis topology. Hyperbolic surface grids are then grown from the seam curves that are automatically trimmed away from the seam corners.

  13. Adsorption and magnetism of bilayer graphene on the MnO polar surface with oxygen vacancies in the interface: First principles study

    NASA Astrophysics Data System (ADS)

    Ilyasov, Victor V.; Ershov, Igor V.; Popova, Inna G.; Pham, Khang D.; Nguyen, Chuong V.

    2018-05-01

    In this paper, we investigate systematically the structural, electronic, magnetic and adsorption properties of Bernal-stacked bilayer graphene on MnO(111) surface terminated by an oxygen atom, as a function of nonstoichiometric composition of the BLG/MnOx(111) interface. For additional functionalization of the BLG/MnOx(111) system, we also studied the adsorption properties of oxygen adsorbed on the BLG/MnOx(111) interface. Our results showed that the BLG is bound to the MnOx(111) substrate by the weak interaction for both spin-up and spin-down. Furthermore, we found that BLG adsorbed on the MnOx(111) substrate with a reduced oxygen symmetry in the interface is accompanied with a downshift of the Fermi level, which identifies the band structure of BLG as a p-type semiconductor. Upon interaction between BLG and MnOx(111) substrate, a forbidden gap of about 350 meV was opened between its bonding and antibonding π bands. A forbidden gap and the local magnetic moments in bilayer graphene can be controlled by changing the oxygen nonstoichometry or by oxygen adsorption. Additionally, magnetism has been predicted in the bilayer graphene adsorbed on the polar MnOx(111) surface with oxygen vacancies in the BLG/MnOx(111) interface, and its nature has also been discussed in this work. These results showed that the adsorption of bilayer graphene on the MnO(111) substrate can be used for developing novel generation of electronic and spintronic devices.

  14. Proteins at the Biomaterial Electrolyte Interface

    NASA Astrophysics Data System (ADS)

    Tengvall, Pentti

    2005-03-01

    Proteins adsorb rapidly onto solid and polymeric surfaces because the association process is in the vast majority of cases energetically favourable, i.e. exothermic. The most common exceptions to this rule are hydrophilic interfaces with low net charge and high mobility, e.g. immobilized PEGs. Current research in the research area tries to understand and control unwanted and wanted adsorption by studying the adsorption kinetics, protein surface binding specificity, protein exchange at interfaces, and surface protein repulsion mechanisms. In blood plasma model systems humoral cascade reactions such as surface mediated coagulation and immune complement raise considerable interest due to the immediate association to blood compatibility, and in tissue applications the binding between surfaces and membrane receptors in cells and tissues. Thus, the understanding of interfacial events at the protein level is of large importance in applications such as blood and tissue contacting biomaterials, in vitro medical and biological diagnostics, food industry and in marine anti-fouling technology. Well described consequences of adsorption are a lowered system energy, increased system entropy, irreversible binding, conformational changes, specific surface/protein interactions, and in biomedical materials applications surface opsonization followed by cell-surface interactions and a host tissue response. This lecture will deal with some mechanisms known to be of importance for the adsorption processes, such as the influence of surface chemistry and surface energy, the composition of the protein solution, the Vroman effect, and residence time. Examples will be shown from ellipsometric experiments using different model surfaces in single/few protein solutions, and specific attention be given to blood serum and plasma experiments on coagulation and immune complement at interfaces.

  15. Surface Crystallographic Dependence of Voltammetric Oxidation of Polyhydric Alcohols and Related Systems at Monocrystalline Gold-Acidic Aqueous Interfaces

    DTIC Science & Technology

    1992-02-01

    Crystallographic Dependence of Voltaumetric Oxidation of Polyhydric Alcohols and Related Systems at Monocrystalline Gold -Acidic Aqueous Interfaces by...Crystallographic Dependence of Voltamnnetric Oxidation )f Polyhydric Alcohols and Related Systems at onocrystalline Gold -Acidic Aqueous [nterfaces...mannitol, on seven oriented gold surfaces, Au(lll), 100), (110), (221), (533), (311), and (210), is reported with the objective of assessing the ole of

  16. A computational method for sharp interface advection

    PubMed Central

    Bredmose, Henrik; Jasak, Hrvoje

    2016-01-01

    We devise a numerical method for passive advection of a surface, such as the interface between two incompressible fluids, across a computational mesh. The method is called isoAdvector, and is developed for general meshes consisting of arbitrary polyhedral cells. The algorithm is based on the volume of fluid (VOF) idea of calculating the volume of one of the fluids transported across the mesh faces during a time step. The novelty of the isoAdvector concept consists of two parts. First, we exploit an isosurface concept for modelling the interface inside cells in a geometric surface reconstruction step. Second, from the reconstructed surface, we model the motion of the face–interface intersection line for a general polygonal face to obtain the time evolution within a time step of the submerged face area. Integrating this submerged area over the time step leads to an accurate estimate for the total volume of fluid transported across the face. The method was tested on simple two-dimensional and three-dimensional interface advection problems on both structured and unstructured meshes. The results are very satisfactory in terms of volume conservation, boundedness, surface sharpness and efficiency. The isoAdvector method was implemented as an OpenFOAM® extension and is published as open source. PMID:28018619

  17. A computational method for sharp interface advection.

    PubMed

    Roenby, Johan; Bredmose, Henrik; Jasak, Hrvoje

    2016-11-01

    We devise a numerical method for passive advection of a surface, such as the interface between two incompressible fluids, across a computational mesh. The method is called isoAdvector, and is developed for general meshes consisting of arbitrary polyhedral cells. The algorithm is based on the volume of fluid (VOF) idea of calculating the volume of one of the fluids transported across the mesh faces during a time step. The novelty of the isoAdvector concept consists of two parts. First, we exploit an isosurface concept for modelling the interface inside cells in a geometric surface reconstruction step. Second, from the reconstructed surface, we model the motion of the face-interface intersection line for a general polygonal face to obtain the time evolution within a time step of the submerged face area. Integrating this submerged area over the time step leads to an accurate estimate for the total volume of fluid transported across the face. The method was tested on simple two-dimensional and three-dimensional interface advection problems on both structured and unstructured meshes. The results are very satisfactory in terms of volume conservation, boundedness, surface sharpness and efficiency. The isoAdvector method was implemented as an OpenFOAM ® extension and is published as open source.

  18. Determination of the density of surface states at the semiconductor-insulator interface in a metal-insulator-semiconductor structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulyamov, G., E-mail: Gulyamov1949@rambler.ru; Sharibaev, N. U.

    2011-02-15

    The temporal dependence of thermal generation of electrons from occupied surface states at the semiconductor-insulator interface in a metal-insulator-semiconductor structure is studied. It is established that, at low temperatures, the derivative of the probability of depopulation of occupied surface states with respect to energy is represented by the Dirac {delta} function. It is shown that the density of states of a finite number of discrete energy levels under high-temperature measurements manifests itself as a continuous spectrum, whereas this spectrum appears discrete at low temperatures. A method for processing the continuous spectrum of the density of surface states is suggested thatmore » method makes it possible to determine the discrete energy spectrum. The obtained results may be conducive to an increase in resolution of the method of non-stationary spectroscopy of surface states.« less

  19. Effects of laser in situ keratomileusis (LASIK) on corneal biomechanical measurements with the Corvis ST tonometer.

    PubMed

    Frings, Andreas; Linke, Stephan J; Bauer, Eva L; Druchkiv, Vasyl; Katz, Toam; Steinberg, Johannes

    2015-01-01

    This study was initiated to evaluate biomechanical changes using the Corvis ST tonometer (CST) on the cornea after laser in situ keratomileusis (LASIK). University Medical Center Hamburg-Eppendorf, Germany, and Care Vision Refractive Centers, Germany. Retrospective cohort study. This retrospective study included 37 eyes of 37 refractive patients. All CST measurements were performed 1 day before surgery and at the 1-month follow-up examination. The LASIK procedure included mechanical flap preparation using a Moria SBK microkeratome and an Allegretto excimer laser platform. Statistically significant differences were observed for mean first applanation length, mean first and second deflection lengths, mean first and second deflection amplitudes, radius of curvature, and peak distance. Significant positive correlations were found between the change (Δ) of radius of curvature and manifest refraction spherical equivalent (MRSE), ablation depth, and Δintraocular pressure as well as between AD and ΔHC-time. Each diopter of myopic correction in MRSE resulted in an increase in Δradius of curvature of 0.2 mm. Several CST parameters were statistically significantly altered by LASIK, thereby indicating that flap creation, ablation, or both, significantly change the ability of the cornea to absorb or dissipate energy.

  20. Analysis of corneal endothelial cell density and morphology after laser in situ keratomileusis using two types of femtosecond lasers

    PubMed Central

    Tomita, Minoru; Waring, George O; Watabe, Miyuki

    2012-01-01

    Purpose To compare two different femtosecond lasers used for flap creation during laser-assisted in situ keratomileusis (LASIK) surgery in terms of their effects on the corneal endothelium. Methods We performed LASIK surgery on 254 eyes of 131 patients using IntraLase FS60 (Abbott Medical Optics, Inc, Irvine, CA; IntraLase group) and 254 eyes of 136 patients using Femto LDV (Ziemer Group AG, Port, Switzerland; LDV group) for corneal flap creation. The mean cell density, coefficient of variation, and hexagonality of the corneal endothelial cells were determined and the results were statistically compared. Results There were no statistically significant differences in the corneal morphology between pre and post LASIK results in each group, nor were there significant differences between the results of both groups at 3 months post LASIK. Conclusions Both IntraLase FS60 and Ziemer Femto LDV are able to create flaps without significant adverse effects on the corneal endothelial morphology through 3 months after LASIK surgery. PMID:23055680

  1. Orientation dependence of heterogeneous nucleation at the Cu-Pb solid-liquid interface.

    PubMed

    Palafox-Hernandez, J Pablo; Laird, Brian B

    2016-12-07

    In this work, we examine the effect of surface structure on the heterogeneous nucleation of Pb crystals from the melt at a Cu substrate using molecular-dynamics (MD) simulation. In a previous work [Palafox-Hernandez et al., Acta Mater. 59, 3137 (2011)] studying the Cu/Pb solid-liquid interface with MD simulation, we observed that the structure of the Cu(111) and Cu(100) interfaces was significantly different at 625 K, just above the Pb melting temperature (618 K for the model). The Cu(100) interface exhibited significant surface alloying in the crystal plane in contact with the melt. In contrast, no surface alloying was seen at the Cu(111) interface; however, a prefreezing layer of crystalline Pb, 2-3 atomic planes thick and slightly compressed relative to bulk Pb crystal, was observed to form at the interface. We observe that at the Cu(111) interface the prefreezing layer is no longer present at 750 K, but surface alloying in the Cu(100) interface persists. In a series of undercooling MD simulations, heterogeneous nucleation of fcc Pb is observed at the Cu(111) interface within the simulation time (5 ns) at 592 K-a 26 K undercooling. Nucleation and growth at Cu(111) proceeded layerwise with a nearly planar critical nucleus. Quantitative analysis yielded heterogeneous nucleation barriers that are more than two orders of magnitude smaller than the predicted homogeneous nucleation barriers from classical nucleation theory. Nucleation was considerably more difficult on the Cu(100) surface-alloyed substrate. An undercooling of approximately 170 K was necessary to observe nucleation at this interface within the simulation time. From qualitative observation, the critical nucleus showed a contact angle with the Cu(100) surface of over 90°, indicating poor wetting of the Cu(100) surface by the nucleating phase, which according to classical heterogeneous nucleation theory provides an explanation of the large undercooling necessary to nucleate on the Cu(100) surface

  2. Interface layer to tailor the texture and surface morphology of Al-doped ZnO polycrystalline films on glass substrates

    NASA Astrophysics Data System (ADS)

    Nomoto, Junichi; Inaba, Katsuhiko; Kobayashi, Shintaro; Makino, Hisao; Yamamoto, Tetsuya

    2017-06-01

    A 10-nm-thick radio frequency magnetron-sputtered aluminum-doped zinc oxide (AZO) showing a texture with a preferential (0001) orientation on amorphous glass substrates was used as an interface layer for tailoring the orientation of 490-nm-thick polycrystalline AZO films subsequently deposited by direct current (DC) magnetron sputtering at a substrate temperature of 200 °C. Wide-angle X-ray diffraction pole figure analysis showed that the resulting 500-nm-thick AZO films showed a texture with a highly preferential c-axis orientation. This showed that DC-magnetron-sputtered AZO films grew along with the orientation matching that of the interface layer, whereas 500-nm-thick AZO films deposited on bare glass substrates by DC magnetron sputtering exhibited a mixed orientation of the c-plane and other planes. The surface morphology was also improved while retaining the lateral grain size by applying the interface layer as revealed by atomic force microscopy.

  3. Confinement of surface waves at the air-water interface to control aerosol size and dispersity

    NASA Astrophysics Data System (ADS)

    Nazarzadeh, Elijah; Wilson, Rab; King, Xi; Reboud, Julien; Tassieri, Manlio; Cooper, Jonathan M.

    2017-11-01

    The precise control over the size and dispersity of droplets, produced within aerosols, is of great interest across many manufacturing, food, cosmetic, and medical industries. Amongst these applications, the delivery of new classes of high value drugs to the lungs has recently attracted significant attention from pharmaceutical companies. This is commonly achieved through the mechanical excitation of surface waves at the air liquid interface of a parent liquid volume. Previous studies have established a correlation between the wavelength on the surface of liquid and the final aerosol size. In this work, we show that the droplet size distribution of aerosols can be controlled by constraining the liquid inside micron-sized cavities and coupling surface acoustic waves into different volumes of liquid inside micro-grids. In particular, we show that by reducing the characteristic physical confinement size (i.e., either the initial liquid volume or the cavities' diameters), higher harmonics of capillary waves are revealed with a consequent reduction of both aerosol mean size and dispersity. In doing so, we provide a new method for the generation and fine control of aerosols' sizes distribution.

  4. Higher-order aberrations after wavefront-optimized photorefractive keratectomy and laser in situ keratomileusis

    PubMed Central

    Randleman, J. Bradley; Perez-Straziota, Claudia E.; Hu, Michelle H.; White, Alfred J.; Loft, Evan S.; Stulting, R. Doyle

    2013-01-01

    PURPOSE To analyze the changes in higher-order aberrations (HOAs) that occur after wavefront-optimized photorefractive keratectomy (PRK) and laser in situ keratomileusis (LASIK). SETTING Private practice, Atlanta, Georgia, USA. METHODS This retrospective analysis comprised eyes that had PRK or LASIK from June 2004 through October 2005. Postoperative outcome measures included 3-month uncorrected visual acuity (UCVA), best spectacle-corrected visual acuity (BSCVA), manifest refraction spherical equivalent (MRSE), changes in the root mean square (RMS) and grouped coefficient HOAs (microns) measured with a corneal analyzer, and subjective assessment of visual aberrations. RESULTS One hundred consecutive eyes of 54 patients had PRK, and 100 contemporaneous consecutive eyes of 71 patients had LASIK. The PRK and LASIK populations were similar in general demographics, preoperative HOAs, and postoperative UCVA and BSCVA. The mean MRSE was slightly hyperopic after PRK (mean +0.11 diopters [D]) and slightly myopic after LASIK (mean −0.19 D) (P<.0001). There were no statistically significant changes in RMS or grouped coefficient HOA values after PRK or LASIK, nor were there significant differences in postoperative RMS or grouped coefficient HOA values between PRK and LASIK. One percent of PRK and LASIK patients reported a subjective increase in postoperative visual aberrations; 5% reported a subjective improvement postoperatively. CONCLUSIONS Wavefront-optimized excimer laser surgery did not induce significant HOAs after PRK or LASIK. The 2 techniques were equally efficacious and had equivalent postoperative HOA profiles. PMID:19185240

  5. Asymmetric orientation of toluene molecules at oil-silica interfaces

    NASA Astrophysics Data System (ADS)

    Ledyastuti, Mia; Liang, Yunfeng; Kunieda, Makoto; Matsuoka, Toshifumi

    2012-08-01

    The interfacial structure of heptane and toluene at oil-silica interfaces has previously been studied by sum frequency generation [Z. Yang et al., J. Phys. Chem. C. 113, 20355 (2009)], 10.1021/jp9043122. It was found that the toluene molecule is almost perpendicular to the silica surface with a tilt angle of about 25°. Here, we have investigated the structural properties of toluene and heptane at oil-silica interfaces using molecular dynamics simulations for two different surfaces: the oxygen-bridging (hydrophobic) and hydroxyl-terminated (hydrophilic) surfaces of quartz (silica). Based on the density profile, it was found that both heptane and toluene oscillate on silica surfaces, with heptane showing more oscillation peaks. Furthermore, the toluene molecules of the first layer were found to have an asymmetric distribution of orientations, with more CH3 groups pointed away from the silica surface than towards the silica surface. These findings are generally consistent with previous experiments, and reveal enhanced molecular structures of liquids at oil-silica interfaces.

  6. Asymmetric orientation of toluene molecules at oil-silica interfaces.

    PubMed

    Ledyastuti, Mia; Liang, Yunfeng; Kunieda, Makoto; Matsuoka, Toshifumi

    2012-08-14

    The interfacial structure of heptane and toluene at oil-silica interfaces has previously been studied by sum frequency generation [Z. Yang et al., J. Phys. Chem. C. 113, 20355 (2009)]. It was found that the toluene molecule is almost perpendicular to the silica surface with a tilt angle of about 25°. Here, we have investigated the structural properties of toluene and heptane at oil-silica interfaces using molecular dynamics simulations for two different surfaces: the oxygen-bridging (hydrophobic) and hydroxyl-terminated (hydrophilic) surfaces of quartz (silica). Based on the density profile, it was found that both heptane and toluene oscillate on silica surfaces, with heptane showing more oscillation peaks. Furthermore, the toluene molecules of the first layer were found to have an asymmetric distribution of orientations, with more CH(3) groups pointed away from the silica surface than towards the silica surface. These findings are generally consistent with previous experiments, and reveal enhanced molecular structures of liquids at oil-silica interfaces.

  7. Surface Partitioning and Stability of Mixed Films of Fluorinated Alcohols and Acids at the Air- Water Interface

    NASA Astrophysics Data System (ADS)

    Rontu, N. A.; Vaida, V.

    2007-05-01

    The production of fluorinated compounds over the past 50 years has had numerous industrial applications. For example, perfluorinated carboxylic acids are used in the synthesis of polymers and fire retardants, perfluoroalkyl sulfonates act as surface protectors, and fluorotelomer alcohols are incorporated into products such as paints, coatings, polymers, and adhesives. Fluorotelomer alcohols (FTOHs) are linear polyfluorinated alcohols with the formula CF3(CF2)nCH2CH2OH (n=1,3,5,...). They have been suggested as possible precursors for perfluorinated carboxylic acids and detected in the troposphere over several North American sites. Perfluorocarboxylic acids have even been detected in the arctic food chain, human blood, tissues of animals and environmental waters. We report the surface activity of fluorotelomer alcohols and perfluorinated carboxylic acids at the air-water interface by using a Langmuir trough. Isotherms of the pure compounds along with mixed films with other organic carboxylic acids were collected. The main objective of these experiments was to understand their heterogeneous chemistry by characterizing the pure and mixed films, which serves as a representative model for organic films on atmospheric surfaces such as those found on oceans and aqueous aerosols. Film properties and behavior, notably stabilization, evaporation from the subphase, and miscibility in the single-component mixtures as well as in the mixed films will be discussed. An important consequence of FTOHs and perfluorocarboxylic acids being found to partition to the air-water interface is the possibility of their transport and widespread distribution and deposition using atmospheric aerosols.

  8. Adsorption of organic ligands on low surface charge clay minerals: the composition in the aqueous interface region.

    PubMed

    Jelavić, S; Stipp, S L S; Bovet, N

    2018-06-27

    An understanding of the mechanisms that control the adsorption of organic molecules on clay minerals is of interest in several branches of science and industry. Oil production using low salinity injection fluids can increase yields by as much as 40% over standard injection with seawater or formation water. The mechanism responsible for the low salinity response is still debated, but one hypothesis is a change in pore surface wettability. Organic contamination in soil and drinking water aquifers is a challenge for municipal water suppliers and for agriculture. A better understanding is needed for how mineral species, solution composition and pH affect the desorption of low molecular weight organic ligands from clay minerals and consequently their wettability. We used X-ray photoelectron spectroscopy under cryogenic conditions to investigate the in situ composition in the mineral-solution interface region in a series of experiments with a range of pH and ion concentrations. We demonstrate that both chlorite and kaolinite release organic molecules under conditions relevant for low salinity water flooding. This release increases with a higher solution pH but is only slightly affected by the character of the organic ligand. This is consistent with the observation that low salinity enhanced oil recovery correlates with the presence of chlorite and kaolinite. Our results indicate that the pore surface charge and salinity of formation water and injection fluids are key parameters in determining the low salinity response. In general, our results imply that clay mineral surface charge influences the composition in the interface through an affinity for organic molecules.

  9. Passive micromixer using by convection and surface tension effects with air-liquid interface.

    PubMed

    Ju, Jongil; Warrick, Jay

    2013-12-01

    This article describes a passive micromixer that utilizes an air-liquid interface and surface tension effects to enhance fluid mixing via convection and Marangoni effects. Performance of the microfluidic component is tested within a passive-pumping-based device that consists of three microchannels connected in succession using passive micro-mixers. Mixing was quantified at 5 key points along the length of the device using microscope images of patterned streams of Alexa 488 fluorescent-dyed water and pure DI water flowing through the device. The passive micro-mixer mixed fluid 15-20 times more effectively than diffusion between laminar flow streams alone and is a novel micro-mixer embodiment that provides an additional strategy for removing external components from microscale devices for simpler, autonomous operation.

  10. Passive micromixer using by convection and surface tension effects with air-liquid interface

    PubMed Central

    Ju, Jongil; Warrick, Jay

    2014-01-01

    This article describes a passive micromixer that utilizes an air-liquid interface and surface tension effects to enhance fluid mixing via convection and Marangoni effects. Performance of the microfluidic component is tested within a passive-pumping-based device that consists of three microchannels connected in succession using passive micro-mixers. Mixing was quantified at 5 key points along the length of the device using microscope images of patterned streams of Alexa 488 fluorescent-dyed water and pure DI water flowing through the device. The passive micro-mixer mixed fluid 15–20 times more effectively than diffusion between laminar flow streams alone and is a novel micro-mixer embodiment that provides an additional strategy for removing external components from microscale devices for simpler, autonomous operation. PMID:25104979

  11. Twelve-Year Follow-Up of Laser In Situ Keratomileusis for Moderate to High Myopia.

    PubMed

    Ikeda, Tetsuya; Shimizu, Kimiya; Igarashi, Akihito; Kasahara, Sumie; Kamiya, Kazutaka

    2017-01-01

    To assess the long-term clinical outcomes of conventional laser in situ keratomileusis (LASIK) for moderate to high myopia. We retrospectively examined sixty-eight eyes of 37 consecutive patients who underwent conventional LASIK for the correction of myopia (-3.00 to -12.75 diopters (D)). At 3 months and 1, 4, 8, and 12 years postoperatively, we assessed the safety, efficacy, predictability, stability, mean keratometry, central corneal thickness, and adverse events. The safety and efficacy indices were 0.82 ± 0.29 and 0.67 ± 0.37, respectively, 12 years postoperatively. At 12 years, 53% and 75% of the eyes were within 0.5 and 1.0 D, respectively, of the targeted correction. Manifest refraction changes of -0.74 ± 0.99 D occurred from 3 months to 12 years after LASIK ( p < 0.001). We found a significant correlation of refractive regression with the changes in keratometric readings from 3 months to 12 years postoperatively (Pearson correlation coefficient, r = -0.28, p = 0.02), but not with the changes in central corneal thickness ( r = -0.08, p = 0.63). No vision-threatening complications occurred in any case. Conventional LASIK offered good safety outcomes during the 12-year observation period. However, the efficacy and the predictability gradually decreased with time owing to myopic regression in relation to corneal steepening.

  12. Interfaces of electrical contacts in organic semiconductor devices

    NASA Astrophysics Data System (ADS)

    Demirkan, Korhan

    Progress in organic semiconductor devices relies on better understanding of interfaces as well as material development. The engineering of interfaces that exhibit low resistance, low operating voltage and long-term stability to minimize device degradation is one of the crucial requirements. Photoelectron spectroscopy is a powerful technique to study the metal-semiconductor interfaces, allowing: (i) elucidation of the energy levels of the semiconductor and the contacts that determine Schottky barrier height, (ii) inspection of electrical interactions (such as charge transfer, dipole formation, formation of induced density of states or formation of polaron/bi-polaron states) that effect the energy level alignment, (iii) determination of interfacial chemistry, and (iv) estimation of interface morphology. In this thesis, we have used photoelectron spectroscopy extensively for detailed analysis of the metal organic semiconductor interfaces. In this study, we demonstrate the use of photoelectron spectroscopy for construction of energy level diagrams and display some results related to chemical tailoring of materials for engineering interfaces with lowered Schottky barriers. Following our work on the energy level alignment of poly(p-phenyene vinylene) based organic semiconductors on various substrates [Au, indium tin oxide, Si (with native oxide) and Al (with native oxide)], we tested controlling the energy level alignment by using polar self assembled molecules (SAMs). Photoelectron spectroscopy showed that, by introducing SAMs on the Au surface, we successfully changed the effective work function of Au surface. We found that in this case, the change in the effective work function of the metal surface was not reflected as a shift in the energy levels of the organic semiconductor, as opposed to the results achieved with different substrate materials. To investigate the chemical interactions at the metal/organic interface, we studied the metallization of poly(2-methoxy-5

  13. Effect of the equivalent refractive index on intraocular lens power prediction with ray tracing after myopic laser in situ keratomileusis.

    PubMed

    Canovas, Carmen; van der Mooren, Marrie; Rosén, Robert; Piers, Patricia A; Wang, Li; Koch, Douglas D; Artal, Pablo

    2015-05-01

    To determine the impact of the equivalent refractive index (ERI) on intraocular lens (IOL) power prediction for eyes with previous myopic laser in situ keratomileusis (LASIK) using custom ray tracing. AMO B.V., Groningen, the Netherlands, and the Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA. Retrospective data analysis. The ERI was calculated individually from the post-LASIK total corneal power. Two methods to account for the posterior corneal surface were tested; that is, calculation from pre-LASIK data or from post-LASIK data only. Four IOL power predictions were generated using a computer-based ray-tracing technique, including individual ERI results from both calculation methods, a mean ERI over the whole population, and the ERI for normal patients. For each patient, IOL power results calculated from the four predictions as well as those obtained with the Haigis-L were compared with the optimum IOL power calculated after cataract surgery. The study evaluated 25 patients. The mean and range of ERI values determined using post-LASIK data were similar to those determined from pre-LASIK data. Introducing individual or an average ERI in the ray-tracing IOL power calculation procedure resulted in mean IOL power errors that were not significantly different from zero. The ray-tracing procedure that includes an average ERI gave a greater percentage of eyes with an IOL power prediction error within ±0.5 diopter than the Haigis-L (84% versus 52%). For IOL power determination in post-LASIK patients, custom ray tracing including a modified ERI was an accurate procedure that exceeded the current standards for normal eyes. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  14. Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid-structure interaction, and free surface flow: Part I

    NASA Astrophysics Data System (ADS)

    Saye, Robert

    2017-09-01

    In this two-part paper, a high-order accurate implicit mesh discontinuous Galerkin (dG) framework is developed for fluid interface dynamics, facilitating precise computation of interfacial fluid flow in evolving geometries. The framework uses implicitly defined meshes-wherein a reference quadtree or octree grid is combined with an implicit representation of evolving interfaces and moving domain boundaries-and allows physically prescribed interfacial jump conditions to be imposed or captured with high-order accuracy. Part one discusses the design of the framework, including: (i) high-order quadrature for implicitly defined elements and faces; (ii) high-order accurate discretisation of scalar and vector-valued elliptic partial differential equations with interfacial jumps in ellipticity coefficient, leading to optimal-order accuracy in the maximum norm and discrete linear systems that are symmetric positive (semi)definite; (iii) the design of incompressible fluid flow projection operators, which except for the influence of small penalty parameters, are discretely idempotent; and (iv) the design of geometric multigrid methods for elliptic interface problems on implicitly defined meshes and their use as preconditioners for the conjugate gradient method. Also discussed is a variety of aspects relating to moving interfaces, including: (v) dG discretisations of the level set method on implicitly defined meshes; (vi) transferring state between evolving implicit meshes; (vii) preserving mesh topology to accurately compute temporal derivatives; (viii) high-order accurate reinitialisation of level set functions; and (ix) the integration of adaptive mesh refinement. In part two, several applications of the implicit mesh dG framework in two and three dimensions are presented, including examples of single phase flow in nontrivial geometry, surface tension-driven two phase flow with phase-dependent fluid density and viscosity, rigid body fluid-structure interaction, and free

  15. Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid-structure interaction, and free surface flow: Part II

    NASA Astrophysics Data System (ADS)

    Saye, Robert

    2017-09-01

    In this two-part paper, a high-order accurate implicit mesh discontinuous Galerkin (dG) framework is developed for fluid interface dynamics, facilitating precise computation of interfacial fluid flow in evolving geometries. The framework uses implicitly defined meshes-wherein a reference quadtree or octree grid is combined with an implicit representation of evolving interfaces and moving domain boundaries-and allows physically prescribed interfacial jump conditions to be imposed or captured with high-order accuracy. Part one discusses the design of the framework, including: (i) high-order quadrature for implicitly defined elements and faces; (ii) high-order accurate discretisation of scalar and vector-valued elliptic partial differential equations with interfacial jumps in ellipticity coefficient, leading to optimal-order accuracy in the maximum norm and discrete linear systems that are symmetric positive (semi)definite; (iii) the design of incompressible fluid flow projection operators, which except for the influence of small penalty parameters, are discretely idempotent; and (iv) the design of geometric multigrid methods for elliptic interface problems on implicitly defined meshes and their use as preconditioners for the conjugate gradient method. Also discussed is a variety of aspects relating to moving interfaces, including: (v) dG discretisations of the level set method on implicitly defined meshes; (vi) transferring state between evolving implicit meshes; (vii) preserving mesh topology to accurately compute temporal derivatives; (viii) high-order accurate reinitialisation of level set functions; and (ix) the integration of adaptive mesh refinement. In part two, several applications of the implicit mesh dG framework in two and three dimensions are presented, including examples of single phase flow in nontrivial geometry, surface tension-driven two phase flow with phase-dependent fluid density and viscosity, rigid body fluid-structure interaction, and free

  16. Lung Segmentation Refinement based on Optimal Surface Finding Utilizing a Hybrid Desktop/Virtual Reality User Interface

    PubMed Central

    Sun, Shanhui; Sonka, Milan; Beichel, Reinhard R.

    2013-01-01

    Recently, the optimal surface finding (OSF) and layered optimal graph image segmentation of multiple objects and surfaces (LOGISMOS) approaches have been reported with applications to medical image segmentation tasks. While providing high levels of performance, these approaches may locally fail in the presence of pathology or other local challenges. Due to the image data variability, finding a suitable cost function that would be applicable to all image locations may not be feasible. This paper presents a new interactive refinement approach for correcting local segmentation errors in the automated OSF-based segmentation. A hybrid desktop/virtual reality user interface was developed for efficient interaction with the segmentations utilizing state-of-the-art stereoscopic visualization technology and advanced interaction techniques. The user interface allows a natural and interactive manipulation on 3-D surfaces. The approach was evaluated on 30 test cases from 18 CT lung datasets, which showed local segmentation errors after employing an automated OSF-based lung segmentation. The performed experiments exhibited significant increase in performance in terms of mean absolute surface distance errors (2.54 ± 0.75 mm prior to refinement vs. 1.11 ± 0.43 mm post-refinement, p ≪ 0.001). Speed of the interactions is one of the most important aspects leading to the acceptance or rejection of the approach by users expecting real-time interaction experience. The average algorithm computing time per refinement iteration was 150 ms, and the average total user interaction time required for reaching complete operator satisfaction per case was about 2 min. This time was mostly spent on human-controlled manipulation of the object to identify whether additional refinement was necessary and to approve the final segmentation result. The reported principle is generally applicable to segmentation problems beyond lung segmentation in CT scans as long as the underlying segmentation

  17. Lung segmentation refinement based on optimal surface finding utilizing a hybrid desktop/virtual reality user interface.

    PubMed

    Sun, Shanhui; Sonka, Milan; Beichel, Reinhard R

    2013-01-01

    Recently, the optimal surface finding (OSF) and layered optimal graph image segmentation of multiple objects and surfaces (LOGISMOS) approaches have been reported with applications to medical image segmentation tasks. While providing high levels of performance, these approaches may locally fail in the presence of pathology or other local challenges. Due to the image data variability, finding a suitable cost function that would be applicable to all image locations may not be feasible. This paper presents a new interactive refinement approach for correcting local segmentation errors in the automated OSF-based segmentation. A hybrid desktop/virtual reality user interface was developed for efficient interaction with the segmentations utilizing state-of-the-art stereoscopic visualization technology and advanced interaction techniques. The user interface allows a natural and interactive manipulation of 3-D surfaces. The approach was evaluated on 30 test cases from 18 CT lung datasets, which showed local segmentation errors after employing an automated OSF-based lung segmentation. The performed experiments exhibited significant increase in performance in terms of mean absolute surface distance errors (2.54±0.75 mm prior to refinement vs. 1.11±0.43 mm post-refinement, p≪0.001). Speed of the interactions is one of the most important aspects leading to the acceptance or rejection of the approach by users expecting real-time interaction experience. The average algorithm computing time per refinement iteration was 150 ms, and the average total user interaction time required for reaching complete operator satisfaction was about 2 min per case. This time was mostly spent on human-controlled manipulation of the object to identify whether additional refinement was necessary and to approve the final segmentation result. The reported principle is generally applicable to segmentation problems beyond lung segmentation in CT scans as long as the underlying segmentation utilizes the

  18. Colloidal Particles at Fluid Interfaces and the Interface of Colloidal Fluids

    NASA Astrophysics Data System (ADS)

    McGorty, Ryan

    Holographic microscopy is a unifying theme in the different projects discussed in this thesis. The technique allows one to observe microscopic objects, like colloids and droplets, in a three-dimensional (3D) volume. Unlike scanning 3D optical techniques, holography captures a sample's 3D information in a single image: the hologram. Therefore, one can capture 3D information at video frame rates. The price for such speed is paid in computation time. The 3D information must be extracted from the image by methods such as reconstruction or fitting the hologram to scattering calculations. Using holography, we observe a single colloidal particle approach, penetrate and then slowly equilibrate at an oil--water interface. Because the particle moves along the optical axis (z-axis) and perpendicular to the interface holography is used to determine its position. We are able to locate the particle's z-position to within a few nanometers with a time resolution below a millisecond. We find that the capillary force pulling the particle into the interface is not balanced by a hydrodynamic force. Rather, a larger-than-viscous dissipation associated with the three-phase contact-line slipping over the particle's surface results in equilibration on time scales orders of magnitude longer than the minute time scales over which our setup allows us to examine. A separate project discussed here also examines colloidal particles and fluid-fluid interfaces. But the fluids involved are composed of colloids. With a colloid and polymer water-based mixture we study the phase separation of the colloid-rich (or liquid) and colloid-poor (or gas) region. In comparison to the oil--water interface in the previously mentioned project, the interface between the colloidal liquid and gas phases has a surface tension nearly six orders of magnitude smaller. So interfacial fluctuations are observable under microscopy. We also use holographic microscopy to study this system but not to track particles with

  19. Electric double layer at metal oxide surfaces:static properties of the cassiterite-water interface.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlcek, L.; Zhang, Z.; Machesky, M .L.

    2007-03-24

    The structure of water at the (110) surface of cassiterite ({alpha}-SnO{sub 2}) at ambient conditions was studied by means of molecular dynamics simulations and X-ray crystal truncation rod experiments and interpreted with the help of the revised MUSIC model of surface protonation. The interactions of the metal oxide in the simulations were described by a recently developed classical force field based on the SPC/E model of water. Two extreme cases of completely hydroxylated and nonhydroxylated surfaces were considered along with a mixed surface with 50% dissociation. To study the dependence of the surface properties on pH, neutral and negatively chargedmore » variants of the surfaces were constructed. Axial and lateral density distributions of water for different types of surfaces were compared to each other and to experimental axial density distributions found by X-ray experiments. Although significant differences were found between the structures of the studied interfaces, the axial distances between Sn and O atoms are very similar and therefore could not be clearly distinguished by the diffraction technique. The explanation of structures observed in the density distributions was provided by a detailed analysis of hydrogen bonding in the interfacial region. It revealed qualitatively different hydrating patterns formed at neutral hydroxylated and nonhydroxylated surfaces and suggested a preference for the dissociative adsorption of water. At negatively charged surfaces, however, the situation can be reversed by the electric field stabilizing a hydrogen bond network similar to that found at the neutral nonhydroxylated surface. Comparison with previously studied rutile ({alpha}-TiO{sub 2}) surfaces provided insight into the differences between the hydration of these two metal oxides, and an important role was ascribed to their different lattice parameters. A link to macroscopic properties was provided by the revised MUSIC surface protonation model. Explicit use of

  20. Electric double layer at metal oxide surfaces: Static properties of the cassiterite - Water Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlcek, Lukas; Zhang, Zhan; Machesky, Michael L.

    2007-01-01

    The structure of water at the (110) surface of cassiterite ({alpha}-SnO{sub 2}) at ambient conditions was studied by means of molecular dynamics simulations and X-ray crystal truncation rod experiments and interpreted with the help of the revised MUSIC model of surface protonation. The interactions of the metal oxide in the simulations were described by a recently developed classical force field based on the SPC/E model of water. Two extreme cases of completely hydroxylated and nonhydroxylated surfaces were considered along with a mixed surface with 50% dissociation. To study the dependence of the surface properties on pH, neutral and negatively chargedmore » variants of the surfaces were constructed. Axial and lateral density distributions of water for different types of surfaces were compared to each other and to experimental axial density distributions found by X-ray experiments. Although significant differences were found between the structures of the studied interfaces, the axial distances between Sn and O atoms are very similar and therefore could not be clearly distinguished by the diffraction technique. The explanation of structures observed in the density distributions was provided by a detailed analysis of hydrogen bonding in the interfacial region. It revealed qualitatively different hydrating patterns formed at neutral hydroxylated and nonhydroxylated surfaces and suggested a preference for the dissociative adsorption of water. At negatively charged surfaces, however, the situation can be reversed by the electric field stabilizing a hydrogen bond network similar to that found at the neutral nonhydroxylated surface. Comparison with previously studied rutile ({alpha}-TiO{sub 2}) surfaces provided insight into the differences between the hydration of these two metal oxides, and an important role was ascribed to their different lattice parameters. A link to macroscopic properties was provided by the revised MUSIC surface protonation model. Explicit use of

  1. Photoluminescence and capacitance voltage characterization of GaAs surface passivated by an ultrathin GaN interface control layer

    NASA Astrophysics Data System (ADS)

    Anantathanasarn, Sanguan; Hasegawa, Hideki

    2002-05-01

    A novel surface passivation technique for GaAs using an ultrathin GaN interface control layer (GaN ICL) formed by surface nitridation was characterized by ultrahigh vacuum (UHV) photoluminescence (PL) and capacitance-voltage ( C- V) measurements. The PL quantum efficiency was dramatically enhanced after being passivated by the GaN ICL structure, reaching as high as 30 times of the initial clean GaAs surface. Further analysis of PL data was done by the PL surface state spectroscopy (PLS 3) simulation technique. PL and C- V results are in good agreement indicating that ultrathin GaN ICL reduces the gap states and unpins the Fermi level, realizing a wide movement of Fermi level within the midgap region and reduction of the effective surface recombination velocity by a factor of 1/60. GaN layer also introduced a large negative surface fixed charge of about 10 12 cm -2. A further improvement took place by depositing a Si 3N 4 layer on GaN ICL/GaAs structure.

  2. Variational Implicit Solvation with Solute Molecular Mechanics: From Diffuse-Interface to Sharp-Interface Models.

    PubMed

    Li, Bo; Zhao, Yanxiang

    2013-01-01

    Central in a variational implicit-solvent description of biomolecular solvation is an effective free-energy functional of the solute atomic positions and the solute-solvent interface (i.e., the dielectric boundary). The free-energy functional couples together the solute molecular mechanical interaction energy, the solute-solvent interfacial energy, the solute-solvent van der Waals interaction energy, and the electrostatic energy. In recent years, the sharp-interface version of the variational implicit-solvent model has been developed and used for numerical computations of molecular solvation. In this work, we propose a diffuse-interface version of the variational implicit-solvent model with solute molecular mechanics. We also analyze both the sharp-interface and diffuse-interface models. We prove the existence of free-energy minimizers and obtain their bounds. We also prove the convergence of the diffuse-interface model to the sharp-interface model in the sense of Γ-convergence. We further discuss properties of sharp-interface free-energy minimizers, the boundary conditions and the coupling of the Poisson-Boltzmann equation in the diffuse-interface model, and the convergence of forces from diffuse-interface to sharp-interface descriptions. Our analysis relies on the previous works on the problem of minimizing surface areas and on our observations on the coupling between solute molecular mechanical interactions with the continuum solvent. Our studies justify rigorously the self consistency of the proposed diffuse-interface variational models of implicit solvation.

  3. Water at hydrophobic interfaces delays proton surface-to-bulk transfer and provides a pathway for lateral proton diffusion

    PubMed Central

    Zhang, Chao; Knyazev, Denis G.; Vereshaga, Yana A.; Ippoliti, Emiliano; Nguyen, Trung Hai; Carloni, Paolo; Pohl, Peter

    2012-01-01

    Fast lateral proton migration along membranes is of vital importance for cellular energy homeostasis and various proton-coupled transport processes. It can only occur if attractive forces keep the proton at the interface. How to reconcile this high affinity to the membrane surface with high proton mobility is unclear. Here, we tested whether a minimalistic model interface between an apolar hydrophobic phase (n-decane) and an aqueous phase mimics the biological pathway for lateral proton migration. The observed diffusion span, on the order of tens of micrometers, and the high proton mobility were both similar to the values previously reported for lipid bilayers. Extensive ab initio simulations on the same water/n-decane interface reproduced the experimentally derived free energy barrier for the excess proton. The free energy profile GH+ adopts the shape of a well at the interface, having a width of two water molecules and a depth of 6 ± 2RT. The hydroniums in direct contact with n-decane have a reduced mobility. However, the hydroniums in the second layer of water molecules are mobile. Their in silico diffusion coefficient matches that derived from our in vitro experiments, (5.7 ± 0.7) × 10-5 cm2 s-1. Conceivably, these are the protons that allow for fast diffusion along biological membranes. PMID:22675120

  4. Learning Analytics for Natural User Interfaces

    ERIC Educational Resources Information Center

    Martinez-Maldonado, Roberto; Shum, Simon Buckingham; Schneider, Bertrand; Charleer, Sven; Klerkx, Joris; Duval, Erik

    2017-01-01

    The continuous advancement of natural user interfaces (NUIs) allows for the development\tof novel and creative ways to support collocated collaborative work in a wide range of areas, including teaching and learning. The use of NUIs, such as those based on interactive multi-touch surfaces and tangible user interfaces (TUIs), can offer unique…

  5. Water at surfaces with tunable surface chemistries

    NASA Astrophysics Data System (ADS)

    Sanders, Stephanie E.; Vanselous, Heather; Petersen, Poul B.

    2018-03-01

    Aqueous interfaces are ubiquitous in natural environments, spanning atmospheric, geological, oceanographic, and biological systems, as well as in technical applications, such as fuel cells and membrane filtration. Where liquid water terminates at a surface, an interfacial region is formed, which exhibits distinct properties from the bulk aqueous phase. The unique properties of water are governed by the hydrogen-bonded network. The chemical and physical properties of the surface dictate the boundary conditions of the bulk hydrogen-bonded network and thus the interfacial properties of the water and any molecules in that region. Understanding the properties of interfacial water requires systematically characterizing the structure and dynamics of interfacial water as a function of the surface chemistry. In this review, we focus on the use of experimental surface-specific spectroscopic methods to understand the properties of interfacial water as a function of surface chemistry. Investigations of the air-water interface, as well as efforts in tuning the properties of the air-water interface by adding solutes or surfactants, are briefly discussed. Buried aqueous interfaces can be accessed with careful selection of spectroscopic technique and sample configuration, further expanding the range of chemical environments that can be probed, including solid inorganic materials, polymers, and water immiscible liquids. Solid substrates can be finely tuned by functionalization with self-assembled monolayers, polymers, or biomolecules. These variables provide a platform for systematically tuning the chemical nature of the interface and examining the resulting water structure. Finally, time-resolved methods to probe the dynamics of interfacial water are briefly summarized before discussing the current status and future directions in studying the structure and dynamics of interfacial water.

  6. One-year eye-to-eye comparison of wavefront-guided versus wavefront-optimized laser in situ keratomileusis in hyperopes

    PubMed Central

    Sáles, Christopher S; Manche, Edward E

    2014-01-01

    Background To compare wavefront (WF)-guided and WF-optimized laser in situ keratomileusis (LASIK) in hyperopes with respect to the parameters of safety, efficacy, predictability, refractive error, uncorrected distance visual acuity, corrected distance visual acuity, contrast sensitivity, and higher order aberrations. Methods Twenty-two eyes of eleven participants with hyperopia with or without astigmatism were prospectively randomized to receive WF-guided LASIK with the VISX CustomVue S4 IR or WF-optimized LASIK with the WaveLight Allegretto Eye-Q 400 Hz. LASIK flaps were created using the 150-kHz IntraLase iFS. Evaluations included measurement of uncorrected distance visual acuity, corrected distance visual acuity, <5% and <25% contrast sensitivity, and WF aberrometry. Patients also completed a questionnaire detailing symptoms on a quantitative grading scale. Results There were no statistically significant differences between the groups for any of the variables studied after 12 months of follow-up (all P>0.05). Conclusion This comparative case series of 11 subjects with hyperopia showed that WF-guided and WF-optimized LASIK had similar clinical outcomes at 12 months. PMID:25419115

  7. Safety, efficacy, and predictability of laser in situ keratomileusis to correct myopia or myopic astigmatism with a 750 Hz scanning-spot laser system.

    PubMed

    Tomita, Minoru; Watabe, Miyuki; Yukawa, Satoshi; Nakamura, Nobuo; Nakamura, Tadayuki; Magnago, Thomas

    2014-02-01

    To evaluate the clinical outcomes of laser in situ keratomileusis (LASIK) to correct myopia or myopic astigmatism using the Amaris 750S 750 Hz excimer laser. Private LASIK center, Tokyo, Japan. Case series. Patients with myopia or myopic astigmatism (spherical equivalent -0.50 to -11.63 diopters [D]), a corrected distance visual acuity (CDVA) of 20/20 or better, and an estimated residual bed thickness of 300 μm or more had LASIK using the aspheric aberration-free ablation profile of the 750 Hz scanning-spot laser and the Femto LDV Crystal Line femtosecond laser for flap creation. Study parameters included uncorrected distance visual acuity (UDVA), CDVA, manifest refraction, astigmatism, and higher-order aberrations (HOAs). The study included 1280 eyes (685 patients). At 3 months, 96.6% of eyes had a UDVA of 20/20 or better and 99.1% had 20/32 or better; 94.1% of eyes were within ± 0.50 D of the intended correction and 98.9% were within ± 1.00 D; 89.7% of eyes had no residual cylinder and 96.0% had a postoperative astigmatism of less than 0.50 D. All eyes had a postoperative CDVA of 20/20 or better. The HOAs increased postoperatively (P<.001), with mean total postoperative corneal and ocular HOAs of 0.66 μm ± 0.20 (SD) and 0.56 ± 0.23 μm, respectively. The efficacy index and safety index were 1.02 and 1.06, respectively. Laser in situ keratomileusis with the 750 Hz scanning-spot laser was safe, effective, and predictable. No specific clinical side effects that might be associated with a high repetition rate occurred. Mr. Magnago is an employee of Schwind eye-tech-solutions GmbH. No other author has a financial or proprietary interest in any material or method mentioned. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  8. Apparatus and method to reduce wear and friction between CMC-to-metal attachment and interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cairo, Ronald Ralph; Parolini, Jason Robert; Delvaux, John McConnell

    An apparatus to reduce wear and friction between CMC-to-metal attachment and interface, including a metal layer configured for insertion between a surface interface between a CMC component and a metal component. The surface interface of the metal layer is compliant relative to asperities of the surface interface of the CMC component. A coefficient of friction between the surface interface of the CMC component and the metal component is about 1.0 or less at an operating temperature between about 300.degree. C. to about 325.degree. C. and a limiting temperature of the metal component.

  9. Diffusion and interface evolution during the atomic layer deposition of TiO{sub 2} on GaAs(100) and InAs(100) surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Liwang; Gougousi, Theodosia, E-mail: gougousi@umbc.edu

    2016-01-15

    Atomic layer deposition is used to form TiO{sub 2} films from tetrakis dimethyl amino titanium and H{sub 2}O on native oxide GaAs(100) and InAs(100) surfaces. The evolution of the film/substrate interface is examined as a function of the deposition temperature (100–325 °C) using ex situ x-ray photoelectron spectroscopy. An increase in the deposition temperature up to 250 °C leads to enhancement of the native oxide removal. For depositions at 300 °C and above, interface reoxidation is observed during the initial deposition cycles but when the films are thicker than 3 nm, the surface oxides are removed steadily. Based on these observations, two distinct filmmore » growth regimes are identified; up to 250 °C, layer-by-layer dominates while at higher temperatures island growth takes over. Angle resolved x-ray photoelectron spectroscopy measurements performed on 3 nm TiO{sub 2} film deposited at 325 °C on both surfaces demonstrates a very important difference between the two substrates: for GaAs the native oxides remaining in the stack are localized at the interface, while for InAs(100), the indium oxides are mixed in the TiO{sub 2} film.« less

  10. Total photoelectron yield spectroscopy of energy distribution of electronic states density at GaN surface and SiO2/GaN interface

    NASA Astrophysics Data System (ADS)

    Ohta, Akio; Truyen, Nguyen Xuan; Fujimura, Nobuyuki; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi

    2018-06-01

    The energy distribution of the electronic state density of wet-cleaned epitaxial GaN surfaces and SiO2/GaN structures has been studied by total photoelectron yield spectroscopy (PYS). By X-ray photoelectron spectroscopy (XPS) analysis, the energy band diagram for a wet-cleaned epitaxial GaN surface such as the energy level of the valence band top and electron affinity has been determined to obtain a better understanding of the measured PYS signals. The electronic state density of GaN surface with different carrier concentrations in the energy region corresponding to the GaN bandgap has been evaluated. Also, the interface defect state density of SiO2/GaN structures was also estimated by not only PYS analysis but also capacitance–voltage (C–V) characteristics. We have demonstrated that PYS analysis enables the evaluation of defect state density filled with electrons at the SiO2/GaN interface in the energy region corresponding to the GaN midgap, which is difficult to estimate by C–V measurement of MOS capacitors.

  11. The effect of flap thickness on corneal biomechanics after myopic laser in situ keratomileusis using the M-2 microkeratome.

    PubMed

    Goussous, Iyad A; El-Agha, Mohamed-Sameh; Awadein, Ahmed; Hosny, Mohamed H; Ghaith, Alaa A; Khattab, Ahmed L

    2017-01-01

    The purpose of this study was to determine the effect of flap thickness on corneal biomechanics after myopic laser in situ keratomileusis (LASIK). This is a prospective controlled non-randomized, institutional study. Patients underwent either epi-LASIK with mitomycin (advanced surface ablation [ASA]), thin-flap LASIK (90 µm head), or thick-flap LASIK (130 µm head). In ASA, the Moria Epi-K hydroseparator was used. LASIK flaps were created using the Moria M-2 mechanical microkeratome. The corneal hysteresis (CH) and corneal resistance factor (CRF) were measured preoperatively and 3 months after surgery, using the Ocular Response Analyzer ® . Ten patients (19 eyes) underwent ASA, 11 patients (16 eyes) underwent thin-flap LASIK, and 11 patients (16 eyes) underwent thick-flap LASIK. The mean preoperative CH was 10.47±0.88, 10.52±1.4, and 11.28±1.4 mmHg ( p =0.043), respectively, decreasing after surgery by 1.75±1.02, 1.66±1.00, and 2.62±1.03 mmHg ( p =0.017). The mean reduction of CH per micron of central corneal ablation was 0.031, 0.023, and 0.049 mmHg/µm ( p =0.005). Mean preoperative CRF was 10.11±1.28, 10.34±1.87, and 10.62±1.76 mmHg ( p =0.66), decreasing after surgery by 2.33±1.35, 2.77±1.03, and 2.92±1.10 mmHg ( p =0.308). The mean reduction of CRF per micron of central corneal ablation was 0.039, 0.040, and 0.051 mmHg/µm ( p =0.112). Thick-flap LASIK caused a greater reduction of CH and CRF than thin-flap LASIK and ASA, although this was statistically significant only for CH. ASA and thin-flap LASIK were found to be biomechanically similar.

  12. Dry-Surface Simulation Method for the Determination of the Work of Adhesion of Solid-Liquid Interfaces.

    PubMed

    Leroy, Frédéric; Müller-Plathe, Florian

    2015-08-04

    We introduce a methodology, referred to as the dry-surface method, to calculate the work of adhesion of heterogeneous solid-liquid interfaces by molecular simulation. This method employs a straightforward thermodynamic integration approach to calculate the work of adhesion as the reversible work to turn off the attractive part of the actual solid-liquid interaction potential. It is formulated in such a way that it may be used either to evaluate the ability of force fields to reproduce reference values of the work of adhesion or to optimize force-field parameters with reference values of the work of adhesion as target quantities. The methodology is tested in the case of water on a generic model of nonpolar substrates with the structure of gold. It is validated through a quantitative comparison to phantom-wall calculations and against a previous characterization of the thermodynamics of the gold-water interface. It is found that the work of adhesion of water on nonpolar substrates is a nonlinear function of the microscopic solid-liquid interaction energy parameter. We also comment on the ability of mean-field approaches to predict the work of adhesion of water on nonpolar substrates. In addition, we discuss in detail the information on the solid-liquid interfacial thermodynamics delivered by the phantom-wall approach. We show that phantom-wall calculations yield the solid-liquid interfacial tension relative to the solid surface tension rather than the absolute solid-liquid interfacial tension as previously believed.

  13. Developments in Molecular Recognition and Sensing at Interfaces

    PubMed Central

    Ariga, Katsuhiko; Hill, Jonathan P.; Endo, Hiroshi

    2007-01-01

    In biological systems, molecular recognition events occur mostly within interfacial environments such as at membrane surfaces, enzyme reaction sites, or at the interior of the DNA double helix. Investigation of molecular recognition at model interfaces provides great insights into biological phenomena. Molecular recognition at interfaces not only has relevance to biological systems but is also important for modern applications such as high sensitivity sensors. Selective binding of guest molecules in solution to host molecules located at solid surfaces is crucial for electronic or photonic detection of analyte substances. In response to these demands, molecular recognition at interfaces has been investigated extensively during the past two decades using Langmuir monolayers, self-assembled monolayers, and lipid assemblies as recognition media. In this review, advances of molecular recognition at interfaces are briefly summarized.

  14. Dynamic torsional misalignment of eyes during laser in-situ keratomileusis.

    PubMed

    Shajari, Mehdi; Bühren, Jens; Kohnen, Thomas

    2016-05-01

    To determine the amount and characteristics of dynamic torsional misalignment of eyes during excimer ablation in laser in-situ keratomileusis (LASIK). Retrospective trial for evaluation of dynamic intraoperative torsional misalignment of 179 eyes that underwent LASIK for correction of myopia and/or astigmatism. Patients were treated with the Keracor 217z excimer laser implementing 25 Hz dynamic eye tracker ACE 100 (both Technolas Perfect Vision, Munich, Germany). From dynamic torsional misalignments, temporal power spectra were obtained by Fourier analysis up to a frequency of 12.5 Hz and an amplitude of ±15° from initial torsional status (limited by the tracking system). The f90, f95, and f99 criteria were defined as the frequency below which 90 %, 95 %, and 99 % of misalignments occur. A Wilcoxon rank sum test was performed to detect differences of f90, f95, and f99 in groups' gender, age, and eye (if both eyes underwent surgery at same day). Multiple regression analysis (MRA) was performed to evaluate possible preoperative predictors of f90, f95, and f99. Fourier analysis showed a dominance of high-frequency, low-power dynamic torsional misalignment. Mean f95 threshold of rotational movements was 4.89±2.12 Hz (median 4.54, ranging from 0.44 to 9.23 Hz). Wilcoxon rank sum test showed no differences in f90, f95, and f99 between groups' gender, age, and eye. MRA revealed age, gender, and optical zone as preoperative predictors on intraoperative f90, f95, and f99. Dynamic intraoperative torsional misalignments of eyes undergoing LASIK are dominated by low-frequency (slow), high-power (large) movements, with 95 % being slower than 4.89Hz regarding the spectrum analyzed (0-12.5Hz, ±15°). Movements can be predicted preoperatively by eye treated, patients' gender, and age in pre-LASIK diagnostics.

  15. Charge regulation at semiconductor-electrolyte interfaces.

    PubMed

    Fleharty, Mark E; van Swol, Frank; Petsev, Dimiter N

    2015-07-01

    The interface between a semiconductor material and an electrolyte solution has interesting and complex electrostatic properties. Its behavior will depend on the density of mobile charge carriers that are present in both phases as well as on the surface chemistry at the interface through local charge regulation. The latter is driven by chemical equilibria involving the immobile surface groups and the potential determining ions in the electrolyte solution. All these lead to an electrostatic potential distribution that propagate such that the electrolyte and the semiconductor are dependent on each other. Hence, any variation in the charge density in one phase will lead to a response in the other. This has significant implications on the physical properties of single semiconductor-electrolyte interfaces and on the electrostatic interactions between semiconductor particles suspended in electrolyte solutions. The present paper expands on our previous publication (Fleharty et al., 2014) and offers new results on the electrostatics of single semiconductor interfaces as well as on the interaction of charged semiconductor colloids suspended in electrolyte solution. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Energy level alignment and molecular conformation at rubrene/Ag interfaces: Impact of contact contaminations on the interfaces

    NASA Astrophysics Data System (ADS)

    Sinha, Sumona; Wang, C.-H.; Mukherjee, M.

    2017-07-01

    This paper addresses the impact of electrode contaminations on the interfacial energy level alignment, the molecular conformation, orientation and surface morphology deposited organic film at organic semiconductor/noble metal interfaces by varying of film thickness from sub-monolayer to multilayer, which currently draws significant attention with regard to its application in organic electronics. The UHV clean Ag and unclean Ag were employed as substrate whereas rubrene was used as an organic semiconducting material. The photoelectron spectroscopy (XPS and UPS) was engaged to investigate the evolution of interfacial energetics; polarization dependent near edge x-ray absorption fine structure spectroscopy (NEXAFS) was employed to understand the molecular conformation as well as orientation whereas atomic force microscopy (AFM) was used to investigate the surface morphologies of the films. The adventitious contamination layer was acted as a spacer layer between clean Ag substrate surface and rubrene molecular layer. As a consequence, hole injection barrier height, interface dipole as well as molecular-conformation, molecular-orientation and surface morphology of rubrene thin films were found to depend on the cleanliness of Ag substrate. The results have important inferences about the understanding of the impact of substrate contamination on the energy level alignment, the molecular conformation as well as orientation and surface morphology of deposited rubrene thin film at rubrene/Ag interfaces and are beneficial for the improvement of the device performance.

  17. Sum-Frequency Generation Spectroscopy for Studying Organic Layers at Water-Air Interfaces: Microlayer Monitoring and Surface Reactivity

    NASA Astrophysics Data System (ADS)

    Laß, Kristian; Kleber, Joscha; Bange, Hermann; Friedrichs, Gernot

    2015-04-01

    The sea surface microlayer, according to commonly accepted terminology, comprises the topmost millimetre of the oceanic water column. It is often enriched with organic matter and is directly influenced by sunlight exposure and gas exchange with the atmosphere, hence making it a place for active biochemistry and photochemistry as well as for heterogeneous reactions. In addition, surface active material either is formed or accumulates directly at the air-water interface and gives rise to very thin layers, sometimes down to monomolecular thickness. This "sea surface nanolayer" determines the viscoelastic properties of the seawater surface and thus may impact the turbulent air-sea gas exchange rates. To this effect, this small scale layer presumably plays an important role for large scale changes of atmospheric trace gas concentrations (e.g., by modulating the ocean carbon sink characteristics) with possible implications for coupled climate models. To date, detailed knowledge about the composition, structure, and reactivity of the sea surface nanolayer is still scarce. Due to its small vertical dimension and the small amount of material, this surfactant layer is very difficult to separate and analyse. A way out is the application of second-order nonlinear optical methods, which make a direct surface-specific and background-free detection of this interfacial layer possible. In recent years, we have introduced the use of vibrational sum frequency generation (VSFG) spectroscopy to gain insight into natural and artificial organic monolayers at the air-water interface. In this contribution, the application of VSFG spectroscopy for the analysis of the sea surface nanolayer will be illustrated. Resulting spectra are interpreted in terms of layer composition and surfactant classes, in particular with respect to carbohydrate-containing molecules such as glycolipids. The partitioning of the detected surfactants into soluble and non-soluble ("wet" and "dry") surfactants will be

  18. Effects of surface and interface traps on exciton and multi-exciton dynamics in core/shell quantum dots

    NASA Astrophysics Data System (ADS)

    Bozio, Renato; Righetto, Marcello; Minotto, Alessandro

    2017-08-01

    Exciton interactions and dynamics are the most important factors determining the exceptional photophysical properties of semiconductor quantum dots (QDs). In particular, best performances have been obtained for ingeniously engineered core/shell QDs. We have studied two factors entering in the exciton decay dynamics with adverse effects for the luminescence efficiency: exciton trapping at surface and interface traps, and non-radiative Auger recombination in QDs carrying either net charges or multiple excitons. In this work, we present a detailed study into the optical absorption, fluorescence dynamics and quantum yield, as well as ultrafast transient absorption properties of CdSe/CdS, CdSe/Cd0.5Zn0.5S, and CdSe/ZnS QDs as a function of shell thickness. It turns out that de-trapping processes play a pivotal role in determining steady state emission properties. By studying the excitation dependent photoluminescence quantum yields (PLQY) in different CdSe/CdxZn1-xS (x = 0, 0.5, 1) QDs, we demonstrate the different role played by hot and cold carrier trapping rates in determining fluorescence quantum yields. Finally, the use of global analysis allows us untangling the complex ultrafast transient absorption signals. Smoothing of interface potential, together with effective surface passivation, appear to be crucial factors in slowing down both Auger-based and exciton trapping recombination processes.

  19. Wavefront-guided versus wavefront-optimized laser in situ keratomileusis: contralateral comparative study.

    PubMed

    Padmanabhan, Prema; Mrochen, Michael; Basuthkar, Subam; Viswanathan, Deepa; Joseph, Roy

    2008-03-01

    To compare the outcomes of wavefront-guided and wavefront-optimized treatment in fellow eyes of patients having laser in situ keratomileusis (LASIK) for myopia. Medical and Vision Research Foundation, Tamil Nadu, India. This prospective comparative study comprised 27 patients who had wavefront-guided LASIK in 1 eye and wavefront-optimized LASIK in the fellow eye. The Hansatome (Bausch & Lomb) was used to create a superior-hinged flap and the Allegretto laser (WaveLight Laser Technologie AG), for photoablation. The Allegretto wave analyzer was used to measure ocular wavefront aberrations and the Functional Acuity Contrast Test chart, to measure contrast sensitivity before and 1 month after LASIK. The refractive and visual outcomes and the changes in aberrations and contrast sensitivity were compared between the 2 treatment modalities. One month postoperatively, 92% of eyes in the wavefront-guided group and 85% in the wavefront-optimized group had uncorrected visual acuity of 20/20 or better; 93% and 89%, respectively, had a postoperative spherical equivalent refraction of +/-0.50 diopter. The differences between groups were not statistically significant. Wavefront-guided LASIK induced less change in 18 of 22 higher-order Zernike terms than wavefront-optimized LASIK, with the change in positive spherical aberration the only statistically significant one (P= .01). Contrast sensitivity improved at the low and middle spatial frequencies (not statistically significant) and worsened significantly at high spatial frequencies after wavefront-guided LASIK; there was a statistically significant worsening at all spatial frequencies after wavefront-optimized LASIK. Although both wavefront-guided and wavefront-optimized LASIK gave excellent refractive correction results, the former induced less higher-order aberrations and was associated with better contrast sensitivity.

  20. Refraction-reflection of electrons at lateral metallic interfaces

    NASA Astrophysics Data System (ADS)

    Kher-Elden, M. A.; El-Fattah, Z. M. Abd; Yassin, O.; El-Okr, M. M.

    2017-11-01

    Electron boundary element method (EBEM) has been employed to simulate electron refraction at the lateral interface between two homogenous metals featuring surface states characterized by isotropic constant energy surfaces. A decent agreement was achieved between the real-space EBEM simulations and the wave-space analysis obtained from electron plane wave expansion (EPWE) method. Calculations were performed for three different electron energies, being -0.05, -0.15, and -0.25 eV, where the reference energy is set to -0.4 eV, i.e., the band minimum of the Cu(111) surface state. For an interface separating two metals with the same effective mass (0.41 me) and a potential difference of 0.2 eV, we demonstrate that electrons with the first two energies exhibit refraction at the interface, following the Snell's law, and total internal reflections occur beyond energy-dependent critical angles, whereas for the third electron energy, a total internal reflection occurs at all incident angles. These findings were used to simulate optical elements such as convex lenses and possible guiding through perfect electron mirrors, in contrast to Bragg-based guiding. Given the varieties of possible means of manipulating the dispersion parameters via surface adsorbates and thin-film growth, the degree of electron refraction-reflection at metallic interfaces could be precisely tuned.

  1. Comparison of the surfaces and interfaces formed for sputter and electroless deposited gold contacts on CdZnTe

    NASA Astrophysics Data System (ADS)

    Bell, Steven J.; Baker, Mark A.; Duarte, Diana D.; Schneider, Andreas; Seller, Paul; Sellin, Paul J.; Veale, Matthew C.; Wilson, Matthew D.

    2018-01-01

    Cadmium zinc telluride (CdZnTe) is a leading sensor material for spectroscopic X/γ-ray imaging in the fields of homeland security, medical imaging, industrial analysis and astrophysics. The metal-semiconductor interface formed during contact deposition is of fundamental importance to the spectroscopic performance of the detector and is primarily determined by the deposition method. A multi-technique analysis of the metal-semiconductor interface formed by sputter and electroless deposition of gold onto (111) aligned CdZnTe is presented. Focused ion beam (FIB) cross section imaging, X-ray photoelectron spectroscopy (XPS) depth profiling and current-voltage (IV) analysis have been applied to determine the structural, chemical and electronic properties of the gold contacts. In a novel approach, principal component analysis has been employed on the XPS depth profiles to extract detailed chemical state information from different depths within the profile. It was found that electroless deposition forms a complicated, graded interface comprised of tellurium oxide, gold/gold telluride particulates, and cadmium chloride. This compared with a sharp transition from surface gold to bulk CdZnTe observed for the interface formed by sputter deposition. The electronic (IV) response for the detector with electroless deposited contacts was symmetric, but was asymmetric for the detector with sputtered gold contacts. This is due to the electroless deposition degrading the difference between the Cd- and Te-faces of the CdZnTe (111) crystal, whilst these differences are maintained for the sputter deposited gold contacts. This work represents an important step in the optimisation of the metal-semiconductor interface which currently is a limiting factor in the development of high resolution CdZnTe detectors.

  2. Graphene assisted effective hole-extraction on In2O3:H/CH3NH3PbI3 interface: Studied by modulated surface spectroscopy

    NASA Astrophysics Data System (ADS)

    Vinoth Kumar, Sri Hari Bharath; Muydinov, Ruslan; Kol'tsova, Tat‘yana; Erfurt, Darja; Steigert, Alexander; Tolochko, Oleg; Szyszka, Bernd

    2018-01-01

    Charge separation in CH3NH3PbI3 (MAPbI3) films deposited on a hydrogen doped indium oxide (In2O3:H) photoelectrode was investigated by modulated surface photovoltage (SPV) spectroscopy in a fixed capacitor arrangement. It was found that In2O3:H reproducibly extracts photogenerated-holes from MAPbI3 films. The oxygen-plasma treatment of the In2O3:H surface is suggested to be a reason for this phenomenon. Introducing graphene interlayer increased charge separation nearly 6 times as compared to that on the In2O3:H/MAPbI3 interface. Furthermore, it is confirmed by SPV spectroscopy that the defects of the MAPbI3 interface are passivated by graphene.

  3. Reaction of a phospholipid monolayer with gas-phase ozone at the air-water interface: measurement of surface excess and surface pressure in real time.

    PubMed

    Thompson, Katherine C; Rennie, Adrian R; King, Martin D; Hardman, Samantha J O; Lucas, Claire O M; Pfrang, Christian; Hughes, Brian R; Hughes, Arwel V

    2010-11-16

    The reaction between gas-phase ozone and monolayers of the unsaturated lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, on aqueous solutions has been studied in real time using neutron reflection and surface pressure measurements. The reaction between ozone and lung surfactant, which contains POPC, leads to decreased pulmonary function, but little is known about the changes that occur to the interfacial material as a result of oxidation. The results reveal that the initial reaction of ozone with POPC leads to a rapid increase in surface pressure followed by a slow decrease to very low values. The neutron reflection measurements, performed on an isotopologue of POPC with a selectively deuterated palmitoyl strand, reveal that the reaction leads to loss of this strand from the air-water interface, suggesting either solubilization of the product lipid or degradation of the palmitoyl strand by a reactive species. Reactions of (1)H-POPC on D(2)O reveal that the headgroup region of the lipids in aqueous solution is not dramatically perturbed by the reaction of POPC monolayers with ozone supporting degradation of the palmitoyl strand rather than solubilization. The results are consistent with the reaction of ozone with the oleoyl strand of POPC at the air-water interface leading to the formation of OH radicals. The highly reactive OH radicals produced can then go on to react with the saturated palmitoyl strands leading to the formation of oxidized lipids with shorter alkyl tails.

  4. Formation of protein/surfactant adsorption layer at the air/water interface as studied by dilational surface rheology.

    PubMed

    Mikhailovskaya, A A; Noskov, B A; Lin, S-Y; Loglio, G; Miller, R

    2011-08-25

    The dynamic dilatational surface elasticity of mixed solutions of globular proteins (β-lactoglobulin (BLG) and bovine serum albumin (BSA)) with cationic (dodecyltrimethylammonium bromide (DTAB)) and anionic (sodium dodecyl sulfate (SDS)) surfactants was measured as a function of the surfactant concentration and surface age. If the cationic surfactant concentration exceeds a certain critical value, the kinetic dependencies of the dynamic surface elasticity of BLG/DTAB and BSA/DTAB solutions become nonmonotonous and resemble those of mixed solutions of proteins with guanidine hydrochloride. This result indicates not only the destruction of the protein tertiary structure in the surface layer of mixed solution but also a strong perturbation of the secondary structure. The corresponding kinetic dependencies for protein solutions with added anionic surfactants are always monotonous, thereby revealing a different mechanism of the adsorption layer formation. One can assume that the secondary structure is destroyed to a lesser extent in the latter case and hinders the formation of loops and tails at the interface. The increase of the solution's ionic strength by the addition of sodium chloride results in stronger changes of the protein conformations in the surface layer and the appearance of a local maximum in the kinetic dependencies of the dynamic surface elasticity in a relatively narrow range of SDS concentration. © 2011 American Chemical Society

  5. Deformation of a free interface pierced by a tilted cylinder

    NASA Astrophysics Data System (ADS)

    Raufaste, C.; Kirstetter, G.; Celestini, F.; Cox, S. J.

    2012-07-01

    We investigate the interaction between an infinite cylinder and a free fluid-fluid interface governed only by its surface tension. We study the deformation of an initially flat interface when it is deformed by the presence of a cylindrical object, tilted at an arbitrary angle, that the interface “totally wets”. Our simulations predict all significant quantities such as the interface shape, the position of the contact line, and the force exerted by the interface on the cylinder. These results are compared with an experimental study of the penetration of a soap film by a cylindrical liquid jet. This dynamic situation exhibits all the characteristics of a totally wetting interface. We show that whatever the inclination, the force is always perpendicular to the plane of the interface, and its amplitude diverges as the inclination angle increases. Such results should bring new insights in both fluid and solid mechanics, from animal locomotion to surface micro-processing.

  6. Efficiency of surface plasmon excitation at the photonic crystal – metal interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsova, T I; Raspopov, N A

    2015-11-30

    We report the results of a theoretical investigation of light wave transformation in a one-dimensional photonic crystal. The scheme considered comprises an incident wave directed in parallel with layers of the photonic crystal under an assumption that the wave vector is far from a forbidden zone. Expressions for propagating and evanescent electromagnetic waves in a periodic medium of the photonic crystal are obtained. It is found that the transverse structure of the propagating wave comprises a strong constant component and a weak oscillating component with a period determined by that of the photonic crystal. On the contrary, the dependence ofmore » evanescent waves on transverse coordinates is presented by a strong oscillating component and a weak constant component. The process of transformation of propagating waves to evanescent waves at a crystal – metal interface is investigated. Parameters of the photonic crystal typical for synthetic opals are used in all numerical simulations. The theoretical approach elaborated yields in an explicit form the dependence of the amplitude of a generated surface wave on the period of the dielectric function modulation in the photonic crystal. The results obtained show that in the conditions close to plasmon resonance the amplitude of the surface wave may be on the order of or even exceed that of the initial incident wave. (light wave transformation)« less

  7. BioFET-SIM web interface: implementation and two applications.

    PubMed

    Hediger, Martin R; Jensen, Jan H; De Vico, Luca

    2012-01-01

    We present a web interface which allows us to conveniently set up calculations based on the BioFET-SIM model. With the interface, the signal of a BioFET sensor can be calculated depending on its parameters, as well as the signal dependence on pH. As an illustration, two case studies are presented. In the first case, a generic peptide with opposite charges on both ends is inverted in orientation on a semiconducting nanowire surface leading to a corresponding change in sign of the computed sensitivity of the device. In the second case, the binding of an antibody/antigen complex on the nanowire surface is studied in terms of orientation and analyte/nanowire surface distance. We demonstrate how the BioFET-SIM web interface can aid in the understanding of experimental data and postulate alternative ways of antibody/antigen orientation on the nanowire surface.

  8. Tear menisci after laser in situ keratomileusis with mechanical microkeratome and femtosecond laser.

    PubMed

    Xie, Wenjia; Zhang, Dong; Chen, Jia; Liu, Jing; Yu, Ye; Hu, Liang

    2014-08-21

    To investigate the effect on tear menisci after laser in situ keratomileusis (LASIK) with flap creation by either microkeratome or femtosecond laser. Sixty eyes of 30 myopes were analyzed. Fifteen patients underwent LASIK with Moria II microkeratome, and the other 15 patients with 60-KHz IntraLase femtosecond laser. Upper and lower tear meniscus parameters of height (UTMH, LTMH) and area (UTMA, LTMA) were measured by SD-OCT preoperatively and 1 week, 1 month, and 3 months postoperatively. Compared with the baseline values, all tear meniscus parameters decreased significantly at each postoperative time point (all P < 0.01) in both groups. LTMH increased significantly between 1 week and 1 month and between 1 and 3 months after surgery in the microkeratome (both P < 0.01) and femtosecond laser groups (P < 0.01, P = 0.012, respectively). There were significant increases in LTMA between 1 week and 1 month after surgery in the microkeratome group (P < 0.01) and in the femtosecond laser group (P = 0.028). There were no significant differences in UTMH, UTMA, LTMH, or LTMA between two groups. The depth of ablation was negatively correlated with the LTMA at 1 week after surgery (R = -0.256, P = 0.049) for all patients. There were no significant differences in the tear meniscus parameters between the microkeratome and femtosecond laser groups. The depth of ablation was significantly correlated with the LTMA only at 1 week after surgery. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  9. Surface adsorption of oppositely charged C14TAB-PAMPS mixtures at the air/water interface and the impact on foam film stability.

    PubMed

    Fauser, Heiko; von Klitzing, Regine; Campbell, Richard A

    2015-01-08

    We have studied the oppositely charged polyelectrolyte/surfactant mixture of poly(acrylamidomethylpropanesulfonate) sodium salt (PAMPS) and tetradecyl trimethylammonium bromide (C14TAB) using a combination of neutron reflectivity and ellipsometry measurements. The interfacial composition was determined using three different analysis methods involving the two techniques for the first time. The bulk surfactant concentration was fixed at a modest value while the bulk polyelectrolyte concentration was varied over a wide range. We reveal complex changes in the surface adsorption behavior. Mixtures with low bulk PAMPS concentrations result in the components interacting synergistically in charge neutral layers at the air/water interface. At the bulk composition where PAMPS and C14TAB are mixed in an equimolar charge ratio in the bulk, we observe a dramatic drop in the surfactant surface excess to leave a large excess of polyelectrolyte at the interface, which we infer to have loops in its interfacial structure. Further increase of the bulk PAMPS concentration leads to a more pronounced depletion of material from the surface. Mixtures containing a large excess of PAMPS in the bulk showed enhanced adsorption, which is attributed to the large increase in total ionic strength of the system and screening of the surfactant headgroup charges. The data are compared to our former results on PAMPS/C14TAB mixtures [Kristen et al. J. Phys. Chem. B, 2009, 23, 7986]. A peak in the surface tension is rationalized in terms of the changing surface adsorption and, unlike in more concentrated systems, is unrelated to bulk precipitation. Also, a comparison between the determined interfacial composition with zeta potential and foam film stability data shows that the highest film stability occurs when there is enhanced synergistic adsorption of both components at the interface due to charge screening when the total ionic strength of the system is highest. The additional contribution to the

  10. Characteristics of gradient-interface-structured ZnCdSSe quantum dots with modified interface and its application to quantum-dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Jeong, Da-Woon; Kim, Jae-Yup; Seo, Han Wook; Lim, Kyoung-Mook; Ko, Min Jae; Seong, Tae-Yeon; Kim, Bum Sung

    2018-01-01

    Colloidal quantum dots (QDs) are attractive materials for application in photovoltaics, LEDs, displays, and bio devices owing to their unique properties. In this study, we synthesized gradient-interface-structured ZnCdSSe QDs and modified the interface based on a thermodynamic simulation to investigate its optical and physical properties. In addition, the interface was modified by increasing the molar concentration of Se. QDs at the modified interface were applied to QD-sensitized solar cells, which showed a 25.5% increase in photoelectric conversion efficiency owing to the reduced electron confinement effect. The increase seems to be caused by the excited electrons being relatively easily transferred to the level of TiO2 owing to the reduced electron confinement effect. Consequently, the electron confinement effect was observed to be reduced by increasing the ZnSe (or Zn1-xCdxSe)-rich phase at the interface. This means that, based on the thermodynamic simulation, the interface between the core QDs and the surface of the QDs can be controlled. The improvement of optical and electronic properties by controlling interfaces and surfaces during the synthesis of QDs, as reported in this work, can be useful for many applications beyond solar cells.

  11. Interfaces - Weak Links, Yet Great Opportunities

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Dimofte, Florin; Chupp, Raymond E.; Steinetz, Bruce M.

    2011-01-01

    Inadequate turbomachine interface design can rapidly degrade system performance, yet provide great opportunity for improvements. Engineered coatings of seals and bearing interfaces are major issues in the operational life of power systems. Coatings, films, and combined use of both metals and ceramics play a major role in maintaining component life. Interface coatings, like lubricants, are sacrificial for the benefit of the component. Bearing and sealing surfaces are routinely protected by tribologically paired coatings such as silicon diamond like coatings (SiDLC) in combination with an oil lubricated wave bearing that prolongs bearing operational life. Likewise, of several methods used or researched for detecting interface failures, dopants within coatings show failures in functionally graded ceramic coatings. The Bozzolo-Ferrante-Smith (BFS) materials models and quantum mechanical tools, employed in interface design, are discussed.

  12. Bioinspired interface for nanobiodevices based on phospholipid polymer chemistry

    PubMed Central

    Ishihara, Kazuhiko; Takai, Madoka

    2009-01-01

    This review paper describes novel biointerfaces for nanobiodevices. Biocompatible and non-biofouling surfaces are designed largely based on cell membrane structure, and the preparation and functioning of the bioinspired interface are evaluated and compared between living and artificial systems. A molecular assembly of polymers with a phospholipid polar group has been developed as the platform of the interface. At the surface, protein adsorption is effectively reduced and the subsequent bioreactions are suppressed. Through this platform, biomolecules with a high affinity to the specific molecules are introduced under mild conditions. The activity of the biomolecules is retained even after immobilization. This bioinspired interface is adapted to construct bionanodevices, that is, microfluidic chips and nanoparticles for capturing target molecules and cells. The interface functions well and has a very high efficiency for biorecognition. This bioinspired interface is a promising universal platform that integrates various fields of science and has useful applications. PMID:19324688

  13. Twelve-Year Follow-Up of Laser In Situ Keratomileusis for Moderate to High Myopia

    PubMed Central

    Ikeda, Tetsuya; Igarashi, Akihito; Kasahara, Sumie

    2017-01-01

    Purpose To assess the long-term clinical outcomes of conventional laser in situ keratomileusis (LASIK) for moderate to high myopia. Methods We retrospectively examined sixty-eight eyes of 37 consecutive patients who underwent conventional LASIK for the correction of myopia (−3.00 to −12.75 diopters (D)). At 3 months and 1, 4, 8, and 12 years postoperatively, we assessed the safety, efficacy, predictability, stability, mean keratometry, central corneal thickness, and adverse events. Results The safety and efficacy indices were 0.82 ± 0.29 and 0.67 ± 0.37, respectively, 12 years postoperatively. At 12 years, 53% and 75% of the eyes were within 0.5 and 1.0 D, respectively, of the targeted correction. Manifest refraction changes of −0.74 ± 0.99 D occurred from 3 months to 12 years after LASIK (p < 0.001). We found a significant correlation of refractive regression with the changes in keratometric readings from 3 months to 12 years postoperatively (Pearson correlation coefficient, r = −0.28, p = 0.02), but not with the changes in central corneal thickness (r = −0.08, p = 0.63). No vision-threatening complications occurred in any case. Conclusions Conventional LASIK offered good safety outcomes during the 12-year observation period. However, the efficacy and the predictability gradually decreased with time owing to myopic regression in relation to corneal steepening. PMID:28596969

  14. Controlling the dual mechanisms of oxide interface doping

    NASA Astrophysics Data System (ADS)

    Dai, Weitao; Cen, Cheng

    The formation of two dimensional electron gas (2DEG) at LaAlO3/SrTiO3 interfaces involves multiple electronic and structural causes. The interplay between them makes the investigation of individual mechanism very challenging. Here we demonstrate the nanoscale selective control of two interface doping pathways: charge transfers from surface adsorbed protons and oxygen vacancies created in LaAlO3 layers. The selective control is achieved by combining intensive electric field generated by conducting AFM probe which controls both the creation/migration of oxygen vacancies and the surface proton density, with plasma assisted surface hydroxylation and solvent based proton solvation that act mainly on surface adsorbates. Robust nanoscale reversible metal-insulator transition was achieved at the interfaces with the LaAlO3 layer thicker than the critic thickness. Different combinations of the experimental methods and doping mechanisms enable highly flexible tuning of the 2DEG's carrier density, mobility and sensitivity to ambient environments. The reversible and independent controls of surface states and vacancies add to the fundamental material research capabilities and can benefit future exploration of designed 2DEG nanoelectronics.

  15. Cells on Gels: Cell Behavior at the Air-Gel Interface

    NASA Astrophysics Data System (ADS)

    O'Bryan, Christopher; Hormel, Tristan; Bhattacharjee, Tapomoy; Sawyer, W.; Angelini, Thomas

    Numerous different types of cells are often grown at air-liquid interfaces. For example, a common way to create cell spheroids is to disperse cells in a droplet of liquid media that hangs from the lid of a culture dish - the ``hanging drop'' method. Some types of epithelial cells form monolayers at the bottom of hanging drops, instead of spheroids. Corneal epithelial cells stratify and exhibit a tissue-like phenotype when attached to liquid permeable culture surfaces positioned at the air-liquid media interface (air-lifted culture). These widely used culture methods make experimentation challenging - imaging through hanging drops and air-lifted culture dishes is prohibitive. However, similar results may be achieved by culturing cells on hydrogel surfaces at the air-gel interface. In this talk we will describe a method for culturing cells at air-gel interfaces. We seed human corneal epithelial cells (hTCEpi) onto the surfaces of hydrogel networks and jammed microgels, exposed to air. Preliminary observations of cell behavior at the air-gel interface will be presented.

  16. Effect of diquafosol tetrasodium eye drop for persistent dry eye after laser in situ keratomileusis.

    PubMed

    Mori, Yosai; Nejima, Ryohei; Masuda, Ayami; Maruyama, Yoko; Minami, Keiichiro; Miyata, Kazunori; Amano, Shiro

    2014-07-01

    To evaluate the effect of diquafosol tetrasodium (DQS) for the treatment of persistent dry eye after laser in situ keratomileusis (LASIK). Miyata Eye Hospital, Miyazaki, Japan. Noncomparative case series. This prospective study included 30 eyes of 15 patients in whom dry eye had persisted for over 12 months after LASIK, and the symptoms had not improved with artificial tears and sodium hyaluronate treatment. In addition, treatment with DQS 3% eye drops, 6 times a day, was performed for 12 weeks. Best-corrected visual acuity, tear secretion with the Schirmer test, tear break-up time, and fluorescein and lissamine green staining scores on the cornea and conjunctiva were examined before and at 1, 4, and 12 weeks after the addition. A subjective questionnaire of 14 symptoms was also assessed before and 12 weeks after treatment. The fluorescein and lissamine green staining scores significantly improved over 12 weeks; however, the best-corrected visual acuity and tear secretion did not change. The symptoms of fatigue, dryness, grittiness, discomfort, difficulty in reading, and discomfort within the area of dryness improved after the additional DQS treatment. The DQS treatment improved the subjective and objective symptoms of persistent dry eye after LASIK. Increased mucin production because of the addition of DQS probably improved the tear film stability and reduced the symptoms of dry eye in patients who had persistent dry eye after LASIK.

  17. Fundamental Studies of the Silicon Carbide MOS Interface

    NASA Astrophysics Data System (ADS)

    Swandono, Steven

    Climate change has placed a spotlight on renewable energy. Power electronics are essential to minimize energy loss when electricity is converted to a form used on the power grid. With silicon devices now approaching performance limits, SiC MOSFET can deliver power electronics to greater heights. However, the power capability of SiC MOSFETs is constrained by having low interface carrier mobility. It was coincidentally discovered that MOSFETs with oxide grown in alumina tubes have significantly higher mobility. We believe that the large surface potential fluctuations in SiC MOS interface results in percolation transport, and sodium ions from the alumina tubes reduces these percolative effects. Fabrication of SiC MOSFETs with different oxide thickness can vary the surface potential fluctuations and is used to verify the impact of percolation transport on SiC interface mobility. Characterization techniques on SiC devices are adopted from their silicon counterparts. Many characterization techniques are not tailored to the specification of SiC materials and hence, result in conflicting results during comparison of data among different research groups. The later chapters discussed the inaccuracies in the MOS AC conductance technique caused by the non-linear surface potential - gate voltage relationship and an energy-dependent interface state density. Using an exact model, we quantify errors in the extraction of interface state density, capture cross section, and position of the surface Fermi level when analyzed using the standard Nicollian-Goetzberger equations. We show that the exponential dependence of capture cross section on energy near the band edges is an artifact of the data analysis.

  18. Electron acceleration by surface plasma waves in double metal surface structure

    NASA Astrophysics Data System (ADS)

    Liu, C. S.; Kumar, Gagan; Singh, D. B.; Tripathi, V. K.

    2007-12-01

    Two parallel metal sheets, separated by a vacuum region, support a surface plasma wave whose amplitude is maximum on the two parallel interfaces and minimum in the middle. This mode can be excited by a laser using a glass prism. An electron beam launched into the middle region experiences a longitudinal ponderomotive force due to the surface plasma wave and gets accelerated to velocities of the order of phase velocity of the surface wave. The scheme is viable to achieve beams of tens of keV energy. In the case of a surface plasma wave excited on a single metal-vacuum interface, the field gradient normal to the interface pushes the electrons away from the high field region, limiting the acceleration process. The acceleration energy thus achieved is in agreement with the experimental observations.

  19. Investigating buried polymer interfaces using sum frequency generation vibrational spectroscopy

    PubMed Central

    Chen, Zhan

    2010-01-01

    This paper reviews recent progress in the studies of buried polymer interfaces using sum frequency generation (SFG) vibrational spectroscopy. Both buried solid/liquid and solid/solid interfaces involving polymeric materials are discussed. SFG studies of polymer/water interfaces show that different polymers exhibit varied surface restructuring behavior in water, indicating the importance of probing polymer/water interfaces in situ. SFG has also been applied to the investigation of interfaces between polymers and other liquids. It has been found that molecular interactions at such polymer/liquid interfaces dictate interfacial polymer structures. The molecular structures of silane molecules, which are widely used as adhesion promoters, have been investigated using SFG at buried polymer/silane and polymer/polymer interfaces, providing molecular-level understanding of polymer adhesion promotion. The molecular structures of polymer/solid interfaces have been examined using SFG with several different experimental geometries. These results have provided molecular-level information about polymer friction, adhesion, interfacial chemical reactions, interfacial electronic properties, and the structure of layer-by-layer deposited polymers. Such research has demonstrated that SFG is a powerful tool to probe buried interfaces involving polymeric materials, which are difficult to study by conventional surface sensitive analytical techniques. PMID:21113334

  20. New Finite Difference Methods Based on IIM for Inextensible Interfaces in Incompressible Flows

    PubMed Central

    Li, Zhilin; Lai, Ming-Chih

    2012-01-01

    In this paper, new finite difference methods based on the augmented immersed interface method (IIM) are proposed for simulating an inextensible moving interface in an incompressible two-dimensional flow. The mathematical models arise from studying the deformation of red blood cells in mathematical biology. The governing equations are incompressible Stokes or Navier-Stokes equations with an unknown surface tension, which should be determined in such a way that the surface divergence of the velocity is zero along the interface. Thus, the area enclosed by the interface and the total length of the interface should be conserved during the evolution process. Because of the nonlinear and coupling nature of the problem, direct discretization by applying the immersed boundary or immersed interface method yields complex nonlinear systems to be solved. In our new methods, we treat the unknown surface tension as an augmented variable so that the augmented IIM can be applied. Since finding the unknown surface tension is essentially an inverse problem that is sensitive to perturbations, our regularization strategy is to introduce a controlled tangential force along the interface, which leads to a least squares problem. For Stokes equations, the forward solver at one time level involves solving three Poisson equations with an interface. For Navier-Stokes equations, we propose a modified projection method that can enforce the pressure jump condition corresponding directly to the unknown surface tension. Several numerical experiments show good agreement with other results in the literature and reveal some interesting phenomena. PMID:23795308

  1. Interface fluctuations during rapid drainage

    NASA Astrophysics Data System (ADS)

    Ayaz, Monem; Toussaint, Renaud; Schäfer, Gerhard; Jørgen Måløy, Knut; Moura, Marcel

    2017-04-01

    We experimentally study the interface dynamics of an immiscible fluid as it invades a monolayer of saturated porous medium through rapid drainage. The seemingly stable and continuous motion of the interface at macroscale, involves numerous abrupt pore-scale jumps and local reconfigurations of the interface. By computing the velocity fluctuations along the invasion front from sequences of images captured at high frame rate, we are able to study both the local and global behavior. The latter displays an intermittent behavior with power-law distributed avalanches in size and duration. As the system is drained potential surface energy is stored at the interface up to a given threshold in pressure. The energy released generates elastic waves at the confining plate, which we detect using piezoelectric type acoustic sensors. By detecting pore-scale events emanating from the depinning of the interface, we look to develop techniques for localizing the displacement front. To assess the quality of these techniques, optical monitoring is done in parallel using a high speed camera.

  2. Particle self-assembly at ionic liquid-based interfaces.

    PubMed

    Frost, Denzil S; Nofen, Elizabeth M; Dai, Lenore L

    2014-04-01

    This review presents an overview of the nature of ionic liquid (IL)-based interfaces and self-assembled particle morphologies of IL-in-water, oil- and water-in-IL, and novel IL-in-IL Pickering emulsions with emphasis on their unique phenomena, by means of experimental and computational studies. In IL-in-water Pickering emulsions, particles formed monolayers at ionic liquid-water interfaces and were close-packed on fully covered emulsion droplets or aggregated on partially covered droplets. Interestingly, other than equilibrating at the ionic liquid-water interfaces, microparticles with certain surface chemistries were extracted into the ionic liquid phase with a high efficiency. These experimental findings were supported by potential of mean force calculations, which showed large energy drops as hydrophobic particles crossed the interface into the IL phase. In the oil- and water-in-IL Pickering emulsions, microparticles with acidic surface chemistries formed monolayer bridges between the internal phase droplets rather than residing at the oil/water-ionic liquid interfaces, a significant deviation from traditional Pickering emulsion morphology. Molecular dynamics simulations revealed aspects of the mechanism behind this bridging phenomenon, including the role of the droplet phase, surface chemistry, and inter-particle film. Novel IL-in-IL Pickering emulsions exhibited an array of self-assembled morphologies including the previously observed particle absorption and bridging phenomena. The appearance of these morphologies depended on the particle surface chemistry as well as the ILs used. The incorporation of particle self-assembly with ionic liquid science allows for new applications at the intersection of these two fields, and have the potential to be numerous due to the tunability of the ionic liquids and particles incorporated, as well as the particle morphology by combining certain groups of particle surface chemistry, IL type (protic or aprotic), and whether oil

  3. Comparison of 5468 retreatments after laser in situ keratomileusis by lifting the flap or performing photorefractive keratectomy on the flap.

    PubMed

    Ortega-Usobiaga, J; Llovet-Osuna, F; Katz, T; Djodeyre, M R; Druchkiv, V; Bilbao-Calabuig, R; Baviera, J

    2018-02-01

    To assess visual outcomes of retreatment after laser in situ keratomileusis (LASIK) by lifting the flap or performing photorefractive keratectomy (PRK) on the flap, as well as to establish whether there was an increased risk of epithelial ingrowth (EIG) when LASIK and lifting of the flap are separated by a long time interval and to determine the incidence of corneal haze after PRK. Retrospective study of 4077 patients (5468 eyes) who underwent LASIK and subsequent retreatment were reviewed in order to study their visual results and identify cases of EIG and corneal haze. Enhancements included 5196 eyes from 3876 patients that were retreated by lifting the flap, and 272 eyes from 201 patients that were retreated by PRK on the flap. No statistically significant differences were found between the retreatments in terms of predictability, efficacy, and safety. A total of 704 cases of EIG were found after lifting the flap, for which surgical cleansing was necessary in 70. Surgical cleansing decreased the efficacy index when compared with patients with EIG who did not need cleansing (P=.01). Differences in terms of safety and predictability were not statistically significant. The incidence of corneal haze after ablation of the surface of the previous flap was 14.34%, although none of these cases were clinically relevant. Visual outcomes were similar between patients who were retreated by lifting the flap and those who underwent PRK. The incidence of EIG when the flap was lifted was 13.55%. The incidence of EIG increases with the time elapsed between the primary procedure and retreatment. Copyright © 2017 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Photovoltaics module interface: General purpose primers

    NASA Technical Reports Server (NTRS)

    Boerio, J.

    1985-01-01

    The interfacial chemistry established between ethylene vinyl acetate (EVA) and the aluminized back surface of commercial solar cells was observed experimentally. The technique employed is called Fourier Transform Infrared (FTIR) spectroscopy, with the infrared signal being reflected back from the aluminum surface through the EVA film. Reflection infrared (IR) spectra are given and attention is drawn to the specific IR peak at 1080/cm which forms on hydrolytic aging of the EVA/aluminum system. With this fundamental finding, and the workable experimental techniques, candidate silane coupling agents are employed at the interface, and their effects on eliminating or slowing hydrolytic aging of the EVA/aluminum interface are monitored.

  5. Driving CO2 to a Quasi-Condensed Phase at the Interface between a Nanoparticle Surface and a Metal-Organic Framework at 1 bar and 298 K.

    PubMed

    Lee, Hiang Kwee; Lee, Yih Hong; Morabito, Joseph V; Liu, Yejing; Koh, Charlynn Sher Lin; Phang, In Yee; Pedireddy, Srikanth; Han, Xuemei; Chou, Lien-Yang; Tsung, Chia-Kuang; Ling, Xing Yi

    2017-08-23

    We demonstrate a molecular-level observation of driving CO 2 molecules into a quasi-condensed phase on the solid surface of metal nanoparticles (NP) under ambient conditions of 1 bar and 298 K. This is achieved via a CO 2 accumulation in the interface between a metal-organic framework (MOF) and a metal NP surface formed by coating NPs with a MOF. Using real-time surface-enhanced Raman scattering spectroscopy, a >18-fold enhancement of surface coverage of CO 2 is observed at the interface. The high surface concentration leads CO 2 molecules to be in close proximity with the probe molecules on the metal surface (4-methylbenzenethiol), and transforms CO 2 molecules into a bent conformation without the formation of chemical bonds. Such linear-to-bent transition of CO 2 is unprecedented at ambient conditions in the absence of chemical bond formation, and is commonly observed only in pressurized systems (>10 5 bar). The molecular-level observation of a quasi-condensed phase induced by MOF coating could impact the future design of hybrid materials in diverse applications, including catalytic CO 2 conversion and ambient solid-gas operation.

  6. Interface activation and surface characteristics of Ti/TiN/HA coated sintered stainless steels

    NASA Astrophysics Data System (ADS)

    Choe, Han-Cheol; Ko, Yeong-Mu

    2006-02-01

    Interface activation and surface characteristics of Ti/TiN/HA film coated sintered stainless steels (SSS) have been investigated by electrochemical and biocompatibility tests. HA (hydroxyapatite), Ti, and Ti/TiN film coatings were applied using electron-beam deposition method (EB-PVD). Ti, Ti/TiN, and Ti/TiN/HA film coated surfaces and layers were investigated by SEM and XPS. The coated films showed micro-columnar structure, and Ti/TiN/HA films were denser than Ti or HA-only film. The corrosion resistance of the HA coating was similar to that of Ti/TiN/HA film coating when Cu content reached 4 wt.%, but the corrosion resistance of the HA coating decreased when Cu content increased from 4 wt.% in 0.9% NaCl solution. Therefore, HA-only coating could ensure corrosion resistance when Cu content does not exceed 4 wt.%. The results of biocompatibility tests of SSS on dogs showed that bone formation and biocompatibility were favorable when Cu content did not exceed 4 wt.%. The biocompatibility with bone was generally favorable in Ti/TiN/HA film coating and HA-only coating, while bone formation was somewhat faster for the HA film coated surface than for the Ti/TiN/HA film coating. Also, good cell growth and osseointegration without toxicity were observed.

  7. Physicochemical Study of Viral Nanoparticles at the Air/Water Interface.

    PubMed

    Torres-Salgado, Jose F; Comas-Garcia, Mauricio; Villagrana-Escareño, Maria V; Durán-Meza, Ana L; Ruiz-García, Jaime; Cadena-Nava, Ruben D

    2016-07-07

    The assembly of most single-stranded RNA (ssRNA) viruses into icosahedral nucleocapsids is a spontaneous process driven by protein-protein and RNA-protein interactions. The precise nature of these interactions results in the assembly of extremely monodisperse and structurally indistinguishable nucleocapsids. In this work, by using a ssRNA plant virus (cowpea chlorotic mottle virus [CCMV]) as a charged nanoparticle we show that the diffusion of these nanoparticles from the bulk solution to the air/water interface is an irreversible adsorption process. By using the Langmuir technique, we measured the diffusion and adsorption of viral nucleocapsids at the air/water interface at different pH conditions. The pH changes, and therefore in the net surface charge of the virions, have a great influence in the diffusion rate from the bulk solution to the air/water interface. Moreover, assembly of mesoscopic and microscopic viral aggregates at this interface depends on the net surface charge of the virions and the surface pressure. By using Brewster's angle microscopy we characterized these structures at the interface. Most common structures observed were clusters of virions and soap-frothlike micron-size structures. Furthermore, the CCMV films were compressed to form monolayers and multilayers from moderate to high surface pressures, respectively. After transferring the films from the air/water interface onto mica by using the Langmuir-Blodgett technique, their morphology was characterized by atomic force microscopy. These viral monolayers showed closed-packing nano- and microscopic arrangements.

  8. Magnetic and Nematic Orders of the Two-Dimensional Electron Gas at Oxide (111) Surfaces and Interfaces

    NASA Astrophysics Data System (ADS)

    Boudjada, Nazim; Wachtel, Gideon; Paramekanti, Arun

    2018-02-01

    Recent experiments have explored two-dimensional electron gases (2DEGs) at oxide (111) surfaces and interfaces, finding evidence for hexagonal symmetry breaking in SrTiO3 at low temperature. We discuss many-body instabilities of such (111) 2DEGs, incorporating multiorbital interactions in the t2 g manifold which can induce diverse magnetic and orbital orders. Such broken symmetries may partly account for the observed nematicity, cooperating or competing with phonon mechanisms. We present an effective field theory for the interplay of magnetism and nematic charge order, and discuss implications of the nematicity for transport and superconductivity in (111) 2DEGs.

  9. Precise measurement of surface plasmon forces at a metal-dielectric interface using a calibrated evanescent wave

    NASA Astrophysics Data System (ADS)

    Liu, Lulu; Woolf, Alex

    2015-03-01

    By observing the motion of an optically trapped microscopic colloid, sub-piconewton static and dynamical forces have been measured using a technique called photonic force microscopy. This technique, though potentially powerful, has in the past struggled to make precise measurements in the vicinity of a reflective or metallic interface, due to distortions of the optical field. We introduce a new in-situ, contact-free calibration method for particle tracking using an evanescent wave, and demonstrate its expanded capability by the precise measurement of forces of interaction between a single colloid and the optical field generated by a propagating surface plasmon polariton on gold.

  10. Real-Time Monitoring of Azo Dye Interfacial Adsorption at Silica-Water Interface by Total Internal Reflection-Induced Surface Evanescent Wave.

    PubMed

    Xiong, Yan; Wang, Qing; Duan, Ming; Tan, Jun; Fang, Shenwen; Wu, Jiayi

    2018-06-19

    An interface research method based on total internal reflection induced evanescent wave (TIR-EW) is developed to monitor the adsorption behavior of azo dye at the silica-water interface. The monitoring system is constructed by employing silica optical fiber (SOF) as both charged substrate for dye adsorption and light transmission waveguide for evanescent wave production. According to the change of evanescent wave intensity and followed by Beer's law, the methylene blue (MB) adsorption behavior can be real-time monitored at the silica-water interface. Langmuir adsorption model and pseudo-first-order model are applied to obtain the related thermodynamic and kinetic data. The adsorption equilibrium constant ( K ads ) and adsorption free energy (Δ G) of MB at the silica-water interface are determined to be (3.3 ± 0.5) × 10 4 M -1 and -25.7 ± 1.7 kJ mol -1 . Meanwhile, this method is highlighted to isolate elementary processes of adsorption and desorption under steady-state conditions, and gives adsorption rate constant ( k a ) and desorption rate constant ( k d ) of 8585 ± 19.8 min -1 and 0.26 ± 0.0006 min -1 for 15 r/min flow rate. The surface interaction process is revealed and adsorption mechanism is proposed, indicating MB first adsorbed on Si-O - sites through electrostatic attraction and then on Si-OH sites through hydrogen bond with increasing MB concentrations. Our findings from this study provided molecular-level interpretation of azo dye adsorption at silica-water interface, and the results provide important insight into how MB adsorption can be controlled at the interface.

  11. Surface CHEMKIN (Version 4. 0): A Fortran package for analyzing heterogeneous chemical kinetics at a solid-surface---gas-phase interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coltrin, M.E.; Kee, R.J.; Rupley, F.M.

    1991-07-01

    Heterogeneous reaction at the interface between a solid surface and adjacent gas is central to many chemical processes. Our purpose for developing the software package SURFACE CHEMKIN was motivated by our need to understand the complex surface chemistry in chemical vapor deposition systems involving silicon, silicon nitride, and gallium arsenide. However, we have developed the approach and implemented the software in a general setting. Thus, we expect it will find use in such diverse applications as chemical vapor deposition, chemical etching, combustion of solids, and catalytic processes, and for a wide range of chemical systems. We believe that it providesmore » a powerful capability to help model, understand, and optimize important industrial and research chemical processes. The SURFACE CHEMKIN software is designed to work in conjunction with the CHEMKIN-2 software, which handles the chemical kinetics in the gas phase. It may also be used in conjunction with the Transport Property Package, which provides information about molecular diffusion. Thus, these three packages provide a foundation on which a user can build applications software to analyze gas-phase and heterogeneous chemistry in flowing systems. These packages should not be considered programs'' in the ordinary sense. That is, they are not designed to accept input, solve a particular problem, and report the answer. Instead, they are software tools intended to help a user work efficiently with large systems of chemical reactions and develop Fortran representations of systems of equations that define a particular problem. It is up the user to solve the problem and interpret the answer. 11 refs., 15 figs., 5 tabs.« less

  12. SFG and AFM Studies of Polymer Surface Monolayers

    NASA Astrophysics Data System (ADS)

    Somorjai, Gabor A.

    2003-03-01

    Sum frequency generation vibrational spectroscopy and atomic force microscopy techniques were utilized to study the structure and composition of polymer surfaces ranging from polyethylene and polypropylene to copolymers of polyurethane and polystyrene. The surface methyl groups aligned perpendicular to the surface above the glass transition temperature of polypropylene. Large side groups such as the phenyl group on polystyrene is also near the surface normal at the polymer-air interface. At the air interface hydrophobic groups are dominant on the polymer surface while at solid-water interface hydrophilic groups segregate to the surface. Minimizing surface energy is the cause of readjusting the surface composition at polymer-water interfaces as compared to polymer-air interfaces. Upon stretching the soft component of two-component polymer systems segregates to the surface and both the surface structure and the surface composition undergo reversible or irreversible changes depending on the magnitude of the stretch. Since the heart beat forces bio-polymers to stretch over 40 million times a year the molecular behavior due to stretching has important physiological consequences.

  13. First-principles study of metallic iron interfaces

    NASA Astrophysics Data System (ADS)

    Hung, A.; Yarovsky, I.; Muscat, J.; Russo, S.; Snook, I.; Watts, R. O.

    2002-04-01

    Adhesion between clean, bulk-terminated bcc Fe(1 0 0) and Fe(1 1 0) matched and mismatched surfaces was simulated within the theoretical framework of the density functional theory. The generalized-gradient spin approximation exchange-correlation functional was used in conjunction with a plane wave-ultrasoft pseudopotential representation. The structure and properties of bulk bcc Fe were calculated in order to establish the reliability of the methodology employed, as well as to determine suitably converged values of computational parameters to be used in subsequent surface calculations. Interfaces were modelled using a single supercell approach, with the interfacial separation distance manipulated by the size of vacuum separation between vertically adjacent surface cells. The adhesive energies at discrete interfacial separations were calculated for each interface and the resulting data fitted to the universal binding energy relation (UBER) of Rose et al. [Phys. Rev. Lett. 47 (1981) 675]. An interpretation of the values of the fitted UBER parameters for the four Fe interfaces studied is given. In addition, a discussion on the validity of the employed computational methodology is presented.

  14. Role of air-water interfaces in colloid transport in porous media: A review

    NASA Astrophysics Data System (ADS)

    Flury, Markus; Aramrak, Surachet

    2017-07-01

    Air-water interfaces play an important role in unsaturated porous media, giving rise to phenomena like capillarity. Less recognized and understood are interactions of colloids with the air-water interface in porous media and the implications of these interactions for fate and transport of colloids. In this review, we discuss how colloids, both suspended in the aqueous phase and attached at pore walls, interact with air-water interfaces in porous media. We discuss the theory of colloid/air-water interface interactions, based on the different forces acting between colloids and the air-water interface (DLVO, hydrophobic, capillary forces) and based on thermodynamic considerations (Gibbs free energy). Subsurface colloids are usually electrostatically repelled from the air-water interface because most subsurface colloids and the air-water are negatively charged. However, hydrophobic interactions can lead to attraction to the air-water interface. When colloids are at the air-water interface, capillary forces are usually dominant over other forces. Moving air-water interfaces are effective in mobilizing and transporting colloids from surfaces. Thermodynamic considerations show that, for a colloid, the air-water interface is the favored state as compared with the suspension phase, except for hydrophilic colloids in the nanometer size range. Experimental evidence indicates that colloid mobilization in soils often occurs through macropores, although matrix transport is also prevalent in absence of macropores. Moving air-water interfaces, e.g., occurring during infiltration, imbibition, or drainage, have been shown to scour colloids from surfaces and translocate colloids. Colloids can also be pinned to surfaces by thin water films and capillary menisci at the air-water-solid interface line, causing colloid retention and immobilization. Air-water interfaces thus can both mobilize or immobilize colloids in porous media, depending on hydrodynamics and colloid and surface

  15. The impact of electrolyte on the adsorption of the anionic surfactant methyl ester sulfonate at the air-solution interface: Surface multilayer formation.

    PubMed

    Xu, H; Thomas, R K; Penfold, J; Li, P X; Ma, K; Welbourne, R J L; Roberts, D W; Petkov, J T

    2018-02-15

    The methyl ester sulfonates represent a promising group of anionic surfactants which have the potential for improved performance and biocompatibility in a range of applications. Their solution properties, in particular their tolerance to hard water, suggests that surface ordering may occur in the presence of multi-valent counterion. Understanding their adsorption properties in a range of different circumstances is key to the exploitation of their potential. Neutron reflectivity and surface tension have been used to characterise the adsorption at the air-aqueous solution interface of the anionic surfactant sodium tetradecanoic 2-sulfo 1-methyl ester, C 14 MES, in the absence of electrolyte and in the presence of mono, di, and tri-valent counterions, Na + , Ca 2+ , and Al 3+ . In particular the emphasis has been on exploring the tendency to form layered structures at the interface. In the absence of electrolyte and in the presence of NaCl and CaCl 2 and AlCl 3 at low concentrations monolayer adsorption is observed, and the addition of electrolyte results in enhanced adsorption. In the presence of NaCl and CaCl 2 only monolayer adsorption is observed. However at higher AlCl 3 concentrations surface multilayer formation is observed, in which the number of bilayers at the surface depends upon the surfactant and AlCl 3 concentrations. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Surface Science at the Solid Liquid Interface

    DTIC Science & Technology

    1993-10-06

    prominent experimental avenue, developed originally by Hubbard et al,_ involves emersing monocrystalline elec- As for metal surfaces in ultrahigh vacuum...reliable means of both preparing and dosateizn ordered monocrystalline metal surfaces in UHV has led to ing appropriate molecular components of...surface atoms in place of bottom panel of Fig. 2, equal intensity contours are shown 23 underlying surface atoms, the compression is 24/23 - I in the

  17. Study of solid/liquid and solid/gas interfaces in Cu-isoleucine complex by surface X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Ferrer, Pilar; Rubio-Zuazo, Juan; Castro, German R.

    2013-02-01

    The enzymes could be understood like structures formed by amino acids bonded with metals, which act as active sites. The research on the coordination of metal-amino acid complexes will bring light on the behavior of metal enzymes, due to the close relation existing between the atomic structure and the functionality. The Cu-isoleucine bond is considered as a good model system to attain a better insight into the characteristics of naturally occurring copper metalloproteins. The surface structure of metal-amino acid complex could be considered as a more realistic model for real systems under biologic working conditions, since the molecular packing is decreased. In the surface, the structural constrains are reduced, keeping the structural capability of surface complex to change as a function of the surrounding environment. In this work, we present a surface X-ray diffraction study on Cu-isoleucine complex under different ambient conditions. Cu(Ile)2 crystals of about 5 mm × 5 mm × 1 mm have been growth, by seeding method in a supersaturated solution, presenting a surface of high quality. The sample for the surface diffraction study was mounted on a cell specially designed for solid/liquid or solid/gas interface analysis. The Cu-isoleucine crystal was measured under a protective dry N2 gas flow and in contact with a saturated metal amino acid solution. The bulk and the surface signals were compared, showing different atomic structures. In both cases, from surface diffraction data, it is observed that the atomic structure of the top layer undergoes a clear structural deformation. A non-uniform surface relaxation is observed producing an inhomogeneous displacement of the surface atoms towards the surface normal.

  18. Cation coordination reactions on nanocrystals: surface/interface, doping control and advanced photocatalysis applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Jiatao

    2016-10-01

    Abstract: Including the shape and size effect, the controllable doping, hetero-composite and surface/interface are the prerequisite of colloidal nanocrystals for exploring their optoelectronic properties, such as fluorescence, plasmon-exciton coupling, efficient electron/hole separation, and enhanced photocatalysis applications. By controlling soft acid-base coordination reactions between cation molecular complexes and colloidal nanocrystals, we showed that chemical thermodynamics could drive nanoscale monocrystalline growth of the semiconductor shell on metal nano-substrates and the substitutional heterovalent doping in semiconductor nanocrystals. We have demonstrated evolution of relative position of Au and II-VI semiconductor in Au-Semi from symmetric to asymmetric configuration, different phosphines initiated morphology engineering, oriented attachment of quantum dots into micrometer nanosheets with synergistic control of surface/interface and doing, which can further lead to fine tuning of plasmon-exciton coupling. Therefore, different hydrogen photocatalytic performance, Plasmon enhanced photocatalysis properties have been achieved further which lead to the fine tuning of plasmon-exciton coupling. Substitutional heterovalent doping here enables the tailoring of optical, electronic properties and photocatalysis applications of semiconductor nanocrystals because of electronic impurities (p-, n-type doping) control. References: (1) J. Gui, J. Zhang*, et al. Angew. Chem. Int. Ed. 2015, 54, 3683. (2) Q. Zhao, J. Zhang*, etc., Adv. Mater. 2014, 26, 1387. (3) J. Liu, Q. Zhao, S. G. Wang*, J. Zhang*, etc., Adv. Mater. 2015, 27-2753-2761. (4) H. Qian, J. Zhang*, etc., NPG Asia Mater. (2015) 7, e152. (5) M. Ji, M. Xu, etc., J. Zhang*, Adv. Mater. 2016, in proof. (6) S. Yu, J. T. Zhang, Y. Tang, M. Ouyang*, Nano Lett. 2015, 15, 6282-6288. (7) J. Zhang, Y. Tang, K. Lee and M. Ouyang*, Science 2010, 327, 1634. (8) J. Zhang, Y. Tang, K. Lee, M. Ouyang*, Nature 2010, 466

  19. Photorefractive keratectomy (PRK) versus laser-assisted in-situ keratomileusis (LASIK) for myopia.

    PubMed

    Shortt, A J; Allan, B D S

    2006-04-19

    Myopia (also known as short-sightedness or near-sightedness) is an ocular condition in which the refractive power of the eye is greater than is required, resulting in light from distant objects being focused in front of the retina instead of directly on it. The two most commonly used surgical techniques to permanently correct myopia are photorefractive keratectomy (PRK) and laser-assisted in-situ keratomileusis (LASIK). The aim of this review was to compare the effectiveness and safety of PRK and LASIK for correction of myopia. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library (2005, Issue 3), MEDLINE (1966 to September 2005), EMBASE (1980 to September 2005) and LILACs (1982 to 3 November 2005). We also searched the reference lists of the studies and the Science Citation Index. We included randomised controlled trials comparing PRK and LASIK for correction of any degree of myopia. We also included data on adverse events from prospective multicentre consecutive case series in the Food and Drugs Administration (FDA) trials database (http//www.fda.gov/cdrh/LASIK/lasers.htm). Two authors independently assessed trial quality and extracted data. Data were summarised using odds ratio and mean difference. Odds ratios were combined using a random-effects model after testing for heterogeneity. This review included six randomised controlled trials involving a total of 417 eyes, of which 201 were treated with PRK and 216 with LASIK. We found that although LASIK gives a faster visual recovery than PRK, the effectiveness of these two procedures is comparable. We found some evidence that LASIK may be less likely than PRK to result in loss of best spectacle-corrected visual acuity. LASIK gives a faster visual recovery than PRK but the effectiveness of these two procedures is comparable. Further trials using contemporary techniques are required to determine whether LASIK and PRK are equally safe.

  20. Outcomes of photorefractive keratectomy following laser in situ keratomileusis: a cohort study.

    PubMed

    Iovieno, Alfonso; Teichman, Joshua C; Low, Stephanie; Yeung, Sonia N; Eve Lègarè, Marie; Lichtinger, Alejandro D; Slomovic, Allan R; Rootman, David S

    2016-12-01

    To analyze the outcomes of photorefractive keratectomy (PRK) on residual myopia and hyperopia post-laser in situ keratomileusis (LASIK) and to compare these results with PRK on eyes without previous laser refractive surgery. Retrospective comparative cohort study. Patients undergoing PRK between 2006 and 2010 were reviewed. Patients were divided into 4 groups, myopic or hyperopic PRK post-LASIK (mPRK-PL and hPRK-PL, respectively) and myopic or hyperopic PRK on corneas without previous laser refractive surgery (mPRK and hPRK, respectively). Uncorrected and corrected distance visual acuity, mean refractive spherical equivalent (MRSE), and mean keratometry and aberrations (total, higher order [HOA], coma, trefoil, and spherical aberration) were recorded at months 3 and 6 postoperatively, as were complications and attempted versus achieved MRSE. Thirty-three eyes of 25 patients who underwent PRK post-LASIK (21 eyes of 14 patients for hPRK-PL and 12 eyes of 11 patients for mPRK-PL) and 35 eyes of 21 patients who underwent PRK on virgin eyes (11 eyes of 8 patients for hPRK and 24 eyes of 13 patients for mPRK) were included in the study. The only significant differences in outcomes were found to be HOA at 3 months for hPRK-PL as compared with both hPRK and mPRK. Achieved MRSE was significantly different from expected MRSE for hPRK-PL at 3 months postoperatively. No haze- or flap-related complications were observed. Outcomes of PRK were not different in myopic and hyperopic corrections post-LASIK by 6 months or when compared with PRK in virgin eyes. HOA may render hPRK-PL results less predictable early in the postoperative period. Copyright © 2016 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  1. [Analysis of AC/A ratio after myopic excimer laser in situ keratomileusis].

    PubMed

    Wu, Xiao-ying; Liu, Shuang-zhen

    2003-03-01

    To study the changes of AC/A ratio of myopia after excimer laser in situ keratomileusis (LASIK). 135 myopia patients were treated by LASIK, their AC/A ratios were measured with synoptohore before surgery and 3 months after surgery. The average AC/A ratios of naked eyes or eyes wearing glasses before surgery and the naked after surgery were (0.724 +/- 0.587) (Delta)/D, (2.754 +/- 1.565) (Delta)/D, (1.618 +/- 1.027) (Delta)/D in turn. There were significant difference among those groups (P < 0.001). That also appeared in different degree of myopia naked before surgery (P < 0.01). We found no significant difference between the groups wearing glasses before surgery and naked after surgery (P > 0.05). A positive correlation was built up between postoperative AC/A ratio and AC/A ratio of wearing glasses or refractive diopter before surgery (r = 0.550, P < 0.001; r = 0.185, P < 0.005). And the postoperative AC/A ratios had a negative correlation to age or length of ocular axis (r = -0.340, P < 0.001; r = -0.192, P < 0.002). The regression equation for postoperative AC/A ratios was figured out as Y((Delta)/D) = 4.080 0 - 0.031 8X(1) - 0.097 1X(2) + 0.325 0X(3) (P < 0.001). X(1) = age (year), X(2) = length of ocular axis (mm), X(3) = preoperative AC/A ratio with weaning glasses ((Delta)/D). The naked AC/A ratios are higher than the preoperative's after LASIK, but lower than the wearing glasses's before surgery. It is influenced by the factors, such as: the preoperative AC/A ratio of wearing glasses, the length of ocular axis and the age.

  2. Active Surfaces and Interfaces of Soft Materials

    NASA Astrophysics Data System (ADS)

    Wang, Qiming

    A variety of intriguing surface patterns have been observed on developing natural systems, ranging from corrugated surface of white blood cells at nanometer scales to wrinkled dog skins at millimeter scales. To mimetically harness functionalities of natural morphologies, artificial transformative skin systems by using soft active materials have been rationally designed to generate versatile patterns for a variety of engineering applications. The study of the mechanics and design of these dynamic surface patterns on soft active materials are both physically interesting and technologically important. This dissertation starts with studying abundant surface patterns in Nature by constructing a unified phase diagram of surface instabilities on soft materials with minimum numbers of physical parameters. Guided by this integrated phase diagram, an electroactive system is designed to investigate a variety of electrically-induced surface instabilities of elastomers, including electro-creasing, electro-cratering, electro-wrinkling and electro-cavitation. Combing experimental, theoretical and computational methods, the initiation, evolution and transition of these instabilities are analyzed. To apply these dynamic surface instabilities to serving engineering and biology, new techniques of Dynamic Electrostatic Lithography and electroactive anti-biofouling are demonstrated.

  3. Kinetics of pulse photothermal surface deformation as a method of studying the phase interface movement in a first-order phase transition

    NASA Astrophysics Data System (ADS)

    Vintzentz, S. V.; Kiselev, V. F.; Levshin, N. L.; Sandomirskii, V. B.

    1991-01-01

    The photothermal surface deformation (PTSD) method is used for characterization of the first-order phase transition (PT) for the first time. The advantages of the method are demonstrated experimentally for the well known metal-to-semiconductor PT in VO 2. It is found that near the PT temperature the PTSD pulse in a VO 2 film has a sign opposite to that of the thermoelastic response. The conclusion is drawn that this phenomenon is determined primarily by the contribution of the decrease in the specific volume (Δ V/ V) of the substance involved in the semiconductor-to-metal PT. The sign of Δ V/ V for a submicron polycrystalline VO 2 film is determined. Besides, analysis shows that in the PTSD kinetics measured as a whole we can "separate" a law for the metal-semicon- ductor interface movement (i.e. the interface moves towards the interior of the film when the latter is heated and back towards the surface when it is cooling down). The relative density change due to the PT is estimated based on this law.

  4. Detailed study of SiOxNy:H/Si interface properties for high quality surface passivation of crystalline silicon

    NASA Astrophysics Data System (ADS)

    Dong, Peng; Lei, Dong; Yu, Xuegong; Huang, Chunlai; Li, Mo; Dai, Gang; Zhang, Jian; Yang, Deren

    2018-01-01

    In this work, we present a detailed study on the interface and passivation properties of the hydrogenated silicon oxynitride (SiOxNy:H) on the crystalline silicon (c-Si) and their correlations with the film composition. The SiOxNy:H films were synthesized by plasma enhanced chemical vapor deposition (PECVD) at various N2O flow rates, which results in different film composition, in particular the different H-related bonds, such as Sisbnd H and Nsbnd H bonds. Fourier transform infrared spectroscopy measurements show that the concentration of Nsbnd H bonds increases with the N2O flows from 0 to 30 sccm, while drops below the detection limit at N2O flows above 30 sccm. This changing trend of Nsbnd H bonds correlates well with the evolution of carrier lifetime of silicon substrate passivated by SiOxNy:H film, indicating the crucial role of Nsbnd H bonds in surface passivation. It is inferred that during the film deposition and forming gas anneal (FGA) a considerable amount of hydrogen atoms are liberated from the weak type of Nsbnd H bonds rather than Sisbnd H bonds, and then passivate the dangling bonds at the interface, thus resulting in the significant reduction of interface state density and the improved passivation quality. In detail, the interface state density is reduced from ∼5 × 1012 to ∼2 × 1012 cm-2 eV-1 after the FGA, as derived from the high frequency capacitance-voltage (Csbnd V) measurements.

  5. Manipulating perfume delivery to the interface using polymer-surfactant interactions.

    PubMed

    Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig

    2016-03-15

    Enhanced delivery of perfumes to interfaces is an important element of their effectiveness in a range of home and personal care products. The role of polyelectrolyte-surfactant mixtures to promote perfume adsorption at interfaces is explored here. Neutron reflectivity, NR, was used to quantify the adsorption of the model perfumes phenylethanol, PE, and linalool, LL, at the air-water interface in the presence of the anionic surfactant sodium dodecylsulfate, SDS, and the cationic polyelectrolytes, poly(dimethyldiallyl ammonium chloride), polydmdaac, and poly(ethyleneimine), PEI. The strong SDS-polydmdaac interaction dominates the surface adsorption in SDS-polymer-perfume (PE, LL) mixtures, such that the PE and LL adsorption is greatly suppressed. For PEI-SDS-perfume mixtures the PEI-LL interaction competes with the SDS-PEI interaction at all pH at the surface and significant LL adsorption occurs, whereas for PE the PEI-SDS interaction dominates and the PE adsorption is greatly reduced. The use of the strong surface polyelectrolyte-ionic surfactant interaction to manipulate perfume adsorption at the air-water interface has been demonstrated. In particular the results show how the competition between polyelectrolyte, surfactant and perfume interactions at the surface and in solution affect the partitioning of perfumes to the surface. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Surfactant effects on heat transfer at gas/liquid interfaces

    NASA Astrophysics Data System (ADS)

    Lopez, J. M.; Hirsa, A. H.

    2000-01-01

    A formulation of a canonical model to elucidate the interplay and competition between three primary sources of heat and mass transfer in non-isothermal systems with gas/liquid interfaces is presented. The nonlinear interaction between (i) buoyancy driven flow in the bulk, (ii) thermal Marangoni flow at the gas/liquid interface, and (iii) surfactant Marangoni flow at the interface is considered. A numerical model of the Navier-Stokes and energy equations is being developed for a simple, axisymmetric flow geometry. The boundary conditions for the Navier-Stokes equations are functions of the intrinsic viscoelastic properties of the interface, specifically the surface tension and the surface viscosities. A flow geometry which is amenable to both experiments and computations for elucidating the separate effects of the three mechanisms consists of an annular region bounded by a stationary inner and an outer cylinder and floor, and a free surface. The flow is driven by the temperature difference between the inner and outer cylinder which are set independently, and the floor is insulated. The predictions of the model for earth-g can be compared to laboratory measurements of the velocity field, and the surface temperature distribution. The predictions of the model for arbitrary gravity may be subsequently tested in the microgravity environment. .

  7. Ceramic surfaces, interfaces and solid-state reactions

    NASA Astrophysics Data System (ADS)

    Heffelfinger, Jason Roy

    Faceting, the decomposition of a surface into two or more surfaces of different orientation, is studied as a function of annealing time for ceramic surfaces. Single-crystals of Alsb2Osb3\\ (alpha-Alsb2Osb3 or corundum structure) are carefully prepared and characterized by atomic force microscopy, scanning electron microscopy and transmission electron microscopy. The mechanisms by which the originally smooth vicinal surface transforms into either a hill-and-valley or a terrace-and-step structure have been characterized. The progression of faceting is found to have a series of stages: surface smoothing, nucleation and growth of individual facets, formation of facet domains, coalescence of individual and facet domains and facet coarsening. These stages provide a model for the mechanisms of how other ceramic surfaces may facet into hill-and-valley and terrace-and-step surface microstructures. The well characterized Alsb2Osb3 surfaces provide excellent substrates by which to study the effect of surface structure on thin-film growth. Pulsed-laser deposition was used to grow thin films of yttria stabilized zirconia (YSZ) and Ysb2Osb3 onto annealed Alsb2Osb3 substrates. The substrate surface structure, such as surface steps and terraces, was found to have several effects on thin-film growth. Thin-films grown onto single-crystal substrates serve as a model geometry for studying thin-film solid-state reactions. Here, the reaction sequence and orientation relationship between thin films of Ysb2Osb3 and an Alsb2Osb3 substrate were characterized for different reaction temperatures. In a system were multiple reaction phases can form, the yttria aluminum monoclinic phase (YAM) was found to form prior to formation of other phases in this system. In a second system, a titanium alloy was reacted with single crystal Alsb2Osb3 in order to study phase formation in an intermetallic system. Both Tisb3Al and TiAl were found to form as reaction products and their orientation relationships

  8. Coniferyl alcohol reactivity at the air/water interface.

    PubMed

    Cathala, Bernard; Aguié-Béghin, Véronique; Douillard, Roger

    2004-01-01

    In order to investigate the sensitivity of the lignin monomer coupling reactions to the environment physicochemical conditions, coniferyl alcohol (CA) was polymerised at the air/water interface. Characterisation of the interface during the reaction by surface pressure measurement and ellipsometry demonstrates that the reaction occurs near or at the interface. Coupling products were analysed by HPLC and compared to reaction products obtained in the case of polymerisation in solution. Relative proportions of beta-beta and beta-O-4 dehydrodimers were found to increase in air/water interface experiment.

  9. Molecular adsorption steers bacterial swimming at the air/water interface.

    PubMed

    Morse, Michael; Huang, Athena; Li, Guanglai; Maxey, Martin R; Tang, Jay X

    2013-07-02

    Microbes inhabiting Earth have adapted to diverse environments of water, air, soil, and often at the interfaces of multiple media. In this study, we focus on the behavior of Caulobacter crescentus, a singly flagellated bacterium, at the air/water interface. Forward swimming C. crescentus swarmer cells tend to get physically trapped at the surface when swimming in nutrient-rich growth medium but not in minimal salt motility medium. Trapped cells move in tight, clockwise circles when viewed from the air with slightly reduced speed. Trace amounts of Triton X100, a nonionic surfactant, release the trapped cells from these circular trajectories. We show, by tracing the motion of positively charged colloidal beads near the interface that organic molecules in the growth medium adsorb at the interface, creating a high viscosity film. Consequently, the air/water interface no longer acts as a free surface and forward swimming cells become hydrodynamically trapped. Added surfactants efficiently partition to the surface, replacing the viscous layer of molecules and reestablishing free surface behavior. These findings help explain recent similar studies on Escherichia coli, showing trajectories of variable handedness depending on media chemistry. The consistent behavior of these two distinct microbial species provides insights on how microbes have evolved to cope with challenging interfacial environments. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Linear stability of an active fluid interface

    NASA Astrophysics Data System (ADS)

    Nagilla, Amarender; Prabhakar, Ranganathan; Jadhav, Sameer

    2018-02-01

    Motivated by studies suggesting that the patterns exhibited by the collectively expanding fronts of thin cells during the closing of a wound [S. Mark et al., "Physical model of the dynamic instability in an expanding cell culture," Biophys. J. 98(3), 361-370 (2010)] and the shapes of single cells crawling on surfaces [A. C. Callan-Jones et al., "Viscous-fingering-like instability of cell fragments," Phys. Rev. Lett. 100(25), 258106 (2008)] are due to fingering instabilities, we investigate the stability of actively driven interfaces under the Hele-Shaw confinement. An initially radial interface between a pair of viscous fluids is driven by active agents. Surface tension and bending rigidity resist the deformation of the interface. A point source at the origin and a distributed source are also included to model the effects of injection or suction and growth or depletion, respectively. Linear stability analysis reveals that for any given initial radius of the interface, there are two key dimensionless driving rates that determine interfacial stability. We discuss stability regimes in a state space of these parameters and their implications for biological systems. An interesting finding is that an actively mobile interface is susceptible to the fingering instability irrespective of viscosity contrast.

  11. Fast ion transport at a gas-metal interface

    DOE PAGES

    McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua

    2017-11-06

    Fast ion transport and the resulting fusion yield reduction are computed at a gas-metal interface. The extent of fusion yield reduction is observed to depend sensitively on the charge state of the surrounding pusher material and the width of the atomically mixed region. These sensitivities suggest that idealized boundary conditions often implemented at the gas-pusher interface for the purpose of estimating fast ion loss will likely overestimate fusion reactivity reduction in several important limits. Additionally, the impact of a spatially complex material interface is investigated by considering a collection of droplets of the pusher material immersed in a DT plasma.more » It is found that for small Knudsen numbers, the extent of fusion yield reduction scales with the surface area of the material interface. As the Knudsen number is increased, but, the simple surface area scaling is broken, suggesting that hydrodynamic mix has a nontrivial impact on the extent of fast ion losses.« less

  12. Potential-specific structure at the hematite-electrolyte interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBriarty, Martin E.; Stubbs, Joanne; Eng, Peter

    The atomic-scale structure of interfaces between metal oxides and aqueous electrolytes controls their catalytic, geochemical, and corrosion behavior. Measurements that probe these interfaces in situ provide important details of ion and solvent arrangements, but atomically precise structural models do not exist for common oxide-electrolyte interfaces far from equilibrium. Using a novel cell, we measured the structure of the hematite (a-Fe 2O 3) (110more » $$\\bar{2}$$)-electrolyte interface under controlled electrochemical bias using synchrotron crystal truncation rod X ray scattering. At increasingly cathodic potentials, charge-compensating protonation of surface oxygen groups increases the coverage of specifically bound water while adjacent water layers displace outwardly and became disordered. Returning to open circuit potential leaves the surface in a persistent metastable protonation state. The flux of current and ions at applied potential is thus regulated by a unique interfacial electrolyte environment, suggesting that electrical double layer models should be adapted to the dynamically changing interfacial structure far from equilibrium.« less

  13. Coal-rock interface detector

    NASA Technical Reports Server (NTRS)

    Rose, S. D.; Crouch, C. E.; Jones, E. W. (Inventor)

    1979-01-01

    A coal-rock interface detector is presented which employs a radioactive source and radiation sensor. The source and sensor are separately and independently suspended and positioned against a mine surface of hydraulic pistons, which are biased from an air cushioned source of pressurized hydraulic fluid.

  14. Accessing Developmental Information of Fossil Hominin Teeth Using New Synchrotron Microtomography-Based Visualization Techniques of Dental Surfaces and Interfaces

    PubMed Central

    Le Cabec, Adeline; Tang, Nancy; Tafforeau, Paul

    2015-01-01

    Quantification of dental long-period growth lines (Retzius lines in enamel and Andresen lines in dentine) and matching of stress patterns (internal accentuated lines and hypoplasias) are used in determining crown formation time and age at death in juvenile fossil hominins. They yield the chronology employed for inferences of life history. Synchrotron virtual histology has been demonstrated as a non-destructive alternative to conventional invasive approaches. Nevertheless, fossil teeth are sometimes poorly preserved or physically inaccessible, preventing observation of the external expression of incremental lines (perikymata and periradicular bands). Here we present a new approach combining synchrotron virtual histology and high quality three-dimensional rendering of dental surfaces and internal interfaces. We illustrate this approach with seventeen permanent fossil hominin teeth. The outer enamel surface and enamel-dentine junction (EDJ) were segmented by capturing the phase contrast fringes at the structural interfaces. Three-dimensional models were rendered with Phong’s algorithm, and a combination of directional colored lights to enhance surface topography and the pattern of subtle variations in tissue density. The process reveals perikymata and linear enamel hypoplasias on the entire crown surface, including unerupted teeth. Using this method, highly detailed stress patterns at the EDJ allow precise matching of teeth within an individual’s dentition when virtual histology is not sufficient. We highlight that taphonomical altered enamel can in particular cases yield artificial subdivisions of perikymata when imaged using X-ray microtomography with insufficient resolution. This may complicate assessments of developmental time, although this can be circumvented by a careful analysis of external and internal structures in parallel. We further present new crown formation times for two unerupted canines from South African Australopiths, which were found to form

  15. Rashba spin-orbit effect and its electric field control at the surfaces and interfaces for spintronics applications (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Satpathy, Sashi; Shanavas, Kavungal Veedu

    2015-09-01

    The Rashba effect [1] describes the momentum-dependent spin splitting of the electron states at a surface or interface. It is the combined result of the relativistic spin-orbit interaction (SOI) and the inversion-symmetry breaking. The control of the Rashba effect by an applied electric field is at the heart of the proposed Rashba-effect-based spintronics devices for manipulating the electron spinfor ma- nipulating the electron spin in the semiconductors. The effect is expected to be much stronger in the perovskite oxides owing to the presence of high-Z elements. In this talk, I will introduce the Rashba effect and discuss how the Rashba SOI at the surfaces and interfaces can be tuned by manipulating the two dimensional electron gas (2DEG) by an applied electric field. The effect can be understood in terms of a tight-binding model Hamiltonian for the d orbitals incorporating the effect of electric field in terms of effective orbital overlap parameters [3]. From first principles calculations we see that the Rashba SOI originates from the first few layers near the surface and it therefore can be altered by drawing the 2DEG to the surface or by pushing the 2DEG deeper into the bulk with an applied elec- tric field. These ideas will be illustrated by a comprehensive density-functional study of polar perovskite systems [4]. References [1] E. I. Rashba, Sov. Phys. Solid State 2, 1109 (1960) [2] A. Ohtomo and H. Hwang, Nature 427, 423 (2004); Z. Popovic, S. Satpathy, and R. Martin, Phys. Rev. Letts. 101, 256801 (2008) [3] K. V. Shanavas and S. Satpathy, Phys. Rev. Lett. 112, 086802 (2014); K. V. Shanavas, Z. S. Popovic, and S. Satpathy, Phys. Rev. B 90, 165108 (2014) [4] K. V. Shanavas, J. Electron Spectrosc., In press (2015)

  16. Accessing developmental information of fossil hominin teeth using new synchrotron microtomography-based visualization techniques of dental surfaces and interfaces.

    PubMed

    Le Cabec, Adeline; Tang, Nancy; Tafforeau, Paul

    2015-01-01

    Quantification of dental long-period growth lines (Retzius lines in enamel and Andresen lines in dentine) and matching of stress patterns (internal accentuated lines and hypoplasias) are used in determining crown formation time and age at death in juvenile fossil hominins. They yield the chronology employed for inferences of life history. Synchrotron virtual histology has been demonstrated as a non-destructive alternative to conventional invasive approaches. Nevertheless, fossil teeth are sometimes poorly preserved or physically inaccessible, preventing observation of the external expression of incremental lines (perikymata and periradicular bands). Here we present a new approach combining synchrotron virtual histology and high quality three-dimensional rendering of dental surfaces and internal interfaces. We illustrate this approach with seventeen permanent fossil hominin teeth. The outer enamel surface and enamel-dentine junction (EDJ) were segmented by capturing the phase contrast fringes at the structural interfaces. Three-dimensional models were rendered with Phong's algorithm, and a combination of directional colored lights to enhance surface topography and the pattern of subtle variations in tissue density. The process reveals perikymata and linear enamel hypoplasias on the entire crown surface, including unerupted teeth. Using this method, highly detailed stress patterns at the EDJ allow precise matching of teeth within an individual's dentition when virtual histology is not sufficient. We highlight that taphonomical altered enamel can in particular cases yield artificial subdivisions of perikymata when imaged using X-ray microtomography with insufficient resolution. This may complicate assessments of developmental time, although this can be circumvented by a careful analysis of external and internal structures in parallel. We further present new crown formation times for two unerupted canines from South African Australopiths, which were found to form over

  17. An interface capturing scheme for modeling atomization in compressible flows

    NASA Astrophysics Data System (ADS)

    Garrick, Daniel P.; Hagen, Wyatt A.; Regele, Jonathan D.

    2017-09-01

    The study of atomization in supersonic flow is critical to ensuring reliable ignition of scramjet combustors under startup conditions. Numerical methods incorporating surface tension effects have largely focused on the incompressible regime as most atomization applications occur at low Mach numbers. Simulating surface tension effects in compressible flow requires robust numerical methods that can handle discontinuities caused by both shocks and material interfaces with high density ratios. In this work, a shock and interface capturing scheme is developed that uses the Harten-Lax-van Leer-Contact (HLLC) Riemann solver while a Tangent of Hyperbola for INterface Capturing (THINC) interface reconstruction scheme retains the fluid immiscibility condition in the volume fraction and phasic densities in the context of the five equation model. The approach includes the effects of compressibility, surface tension, and molecular viscosity. One and two-dimensional benchmark problems demonstrate the desirable interface sharpening and conservation properties of the approach. Simulations of secondary atomization of a cylindrical water column after its interaction with a shockwave show good qualitative agreement with experimentally observed behavior. Three-dimensional examples of primary atomization of a liquid jet in a Mach 2 crossflow demonstrate the robustness of the method.

  18. Scanning probe microscopy of biomedical interfaces

    NASA Astrophysics Data System (ADS)

    Vansteenkiste, S. O.; Davies, M. C.; Roberts, C. J.; Tendler, S. J. B.; Williams, P. M.

    1998-02-01

    The development of the scanning probe microscopes over the past decade has provided a number of exciting new surface analytical techniques making a significant progress in the characterisation of biomedical interfaces. In this review, several examples are presented to illustrate that SPM is a powerful and promising tool for surface investigations including biomolecules, cell membranes, polymers and even living cells. The ability of the SPM instrument to monitor adhesion phenomena and provide quantitative information about intermolecular interactions is also described. Moreover, the huge potential of the scanning probe microscopes to study dynamic processes at interfaces under nearly physiological conditions is highlighted. Novel applications in the field of biochemistry, microbiology, biomaterial engineering, drug delivery and even medicine are discussed.

  19. GROUT-CONCRETE INTERFACE BOND PERFORMANCE: EFFECT OF INTERFACE MOISTURE ON THE TENSILE BOND STRENGTH AND GROUT MICROSTRUCTURE.

    PubMed

    De la Varga, I; Muñoz, J F; Bentz, D P; Spragg, R P; Stutzman, P E; Graybeal, B A

    2018-05-01

    Bond between two cementitious materials is crucial in applications such as repairs, overlays, and connections of prefabricated bridge elements (PBEs), to name just a few. It is the latter that has special interest to the authors of this paper. After performing a dimensional stability study on grout-like materials commonly used as connections between PBEs, it was observed that the so-called 'non-shrink' cementitious grouts showed a considerable amount of early-age shrinkage. This might have negative effects on the integrity of the structure, due not only to the grout material's early degradation, but also to a possible loss of bond between the grout and the prefabricated concrete element. Many factors affect the bond strength between two cementitious materials (e.g., grout-concrete), the presence of moisture at the existing concrete substrate surface being one of them. In this regard, pre-moistening the concrete substrate surface prior to the application of the grout material is sometimes recommended for bond enhancement. This topic has been the focus of numerous research studies in the past; however, there is still controversy among practitioners on the real benefits that this practice might provide. This paper evaluates the tensile bond performance of two non-shrink cementitious grouts applied to the exposed aggregate surface of a concrete substrate, and how the supply of moisture at the grout-concrete interface affects the bond strength. "Pull-off" bond results show increased tensile bond strength when the concrete surface is pre-moistened. Reasons to explain the observed increased bond strength are given after a careful microstructural analysis of the grout-concrete interface. Interfaces where sufficient moisture is provided to the concrete substrate such that moisture movement from the grout is prevented show reduced porosity and increased hydration on the grout side of the interface, which is thought to directly contribute to the increased tensile bond

  20. Surface, Bulk, and Interface: Rational Design of Hematite Architecture toward Efficient Photo-Electrochemical Water Splitting.

    PubMed

    Li, Chengcheng; Luo, Zhibin; Wang, Tuo; Gong, Jinlong

    2018-05-11

    Collecting and storing solar energy to hydrogen fuel through a photo-electrochemical (PEC) cell provides a clean and renewable pathway for future energy demands. Having earth-abundance, low biotoxicity, robustness, and an ideal n-type band position, hematite (α-Fe 2 O 3 ), the most common natural form of iron oxide, has occupied the research hotspot for decades. Here, a close look into recent progress of hematite photoanodes for PEC water splitting is provided. Effective approaches are introduced, such as cocatalysts loading and surface passivation layer deposition, to improve the hematite surface reaction in thermodynamics and kinetics. Second, typical methods for enhancing light absorption and accelerating charge transport in hematite bulk are reviewed, concentrating upon doping and nanostructuring. Third, the back contact between hematite and substrate, which affects interface states and electron transfer, is deliberated. In addition, perspectives on the key challenges and future prospects for the development of hematite photoelectrodes for PEC water splitting are given. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Modal Interfaces in Hawaii

    NASA Technical Reports Server (NTRS)

    Wright, E. Alvey

    1974-01-01

    Hawaii, an archipelago where transportation distances are short but the interfaces are many, seeks elimination of modal changes by totally-submerged hydrofoil craft operating at the water surface directly between tourist resort destinations, by dual mode rapid transit vehicles operating directly between the deplaning bridges at Honolulu International Airport and hotel porte-cochere at Waikiki, by demand responsive vehicles for collection and distribution operating on fixed guideways for line haul, and by roll-on/roll-off inter-island ferries for all models of manually operated ground vehicles. The paper also describes facilitation of unavoidable interfaces by innovative sub-systems.

  2. Patient-reported outcomes 5 years after laser in situ keratomileusis.

    PubMed

    Schallhorn, Steven C; Venter, Jan A; Teenan, David; Hannan, Stephen J; Hettinger, Keith A; Pelouskova, Martina; Schallhorn, Julie M

    2016-06-01

    To assess vision-related, quality-of-life outcomes 5 years after laser in situ keratomileusis (LASIK) and determine factors predictive of patient satisfaction. Optical Express, Glasgow, Scotland. Retrospective case series. Data from patients who had attended a clinical examination 5 years after LASIK were analyzed. All treatments were performed using the Visx Star S4 IR excimer laser. Patient-reported satisfaction, the effect of eyesight on various activities, visual phenomena, and ocular discomfort were evaluated 5 years postoperatively. Multivariate regression analysis was performed to determine factors affecting patient satisfaction. The study comprised 2530 patients (4937 eyes) who had LASIK. The mean age at the time of surgery was 42.4 years ± 12.5 (SD), and the preoperative manifest spherical equivalent ranged from -11.0 diopters (D) to +4.88 D. Five years postoperatively, 79.3% of eyes were within ±0.50 D of emmetropia and 77.7% of eyes achieved monocular uncorrected distance visual acuity (UDVA) and 90.6% of eyes achieved binocular UDVA of 20/20 or better. Of the patients, 91.0% said they were satisfied with their vision and 94.9% did not wear distance correction. Less than 2.0% of patients noticed visual phenomena, even with spectacle correction. Major predictors of patient satisfaction 5 years postoperatively were postoperative binocular UDVA (37.6% variance explained by regression model), visual phenomena (relative contribution of 15.0%), preoperative and postoperative sphere and their interactions (11.6%), and eyesight-related difficulties with various activities such as night driving, outdoor activities, and reading (10.2%). Patient-reported quality-of-life and satisfaction rates remained high 5 years after LASIK. Uncorrected vision was the strongest predictor of satisfaction. Dr. S.C. Schallhorn is a consultant to Abbott Medical Optics, Inc., Zeiss Meditec AG, and Autofocus Inc. and a global medical director for Optical Express. No other

  3. Engineering the magnetic coupling and anisotropy at the molecule–magnetic surface interface in molecular spintronic devices

    PubMed Central

    Campbell, Victoria E.; Tonelli, Monica; Cimatti, Irene; Moussy, Jean-Baptiste; Tortech, Ludovic; Dappe, Yannick J.; Rivière, Eric; Guillot, Régis; Delprat, Sophie; Mattana, Richard; Seneor, Pierre; Ohresser, Philippe; Choueikani, Fadi; Otero, Edwige; Koprowiak, Florian; Chilkuri, Vijay Gopal; Suaud, Nicolas; Guihéry, Nathalie; Galtayries, Anouk; Miserque, Frederic; Arrio, Marie-Anne; Sainctavit, Philippe; Mallah, Talal

    2016-01-01

    A challenge in molecular spintronics is to control the magnetic coupling between magnetic molecules and magnetic electrodes to build efficient devices. Here we show that the nature of the magnetic ion of anchored metal complexes highly impacts the exchange coupling of the molecules with magnetic substrates. Surface anchoring alters the magnetic anisotropy of the cobalt(II)-containing complex (Co(Pyipa)2), and results in blocking of its magnetization due to the presence of a magnetic hysteresis loop. In contrast, no hysteresis loop is observed in the isostructural nickel(II)-containing complex (Ni(Pyipa)2). Through XMCD experiments and theoretical calculations we find that Co(Pyipa)2 is strongly ferromagnetically coupled to the surface, while Ni(Pyipa)2 is either not coupled or weakly antiferromagnetically coupled to the substrate. These results highlight the importance of the synergistic effect that the electronic structure of a metal ion and the organic ligands has on the exchange interaction and anisotropy occurring at the molecule–electrode interface. PMID:27929089

  4. Nanobubbles at Hydrophilic Particle-Water Interfaces.

    PubMed

    Pan, Gang; He, Guangzhi; Zhang, Meiyi; Zhou, Qin; Tyliszczak, Tolek; Tai, Renzhong; Guo, Jinghua; Bi, Lei; Wang, Lei; Zhang, Honggang

    2016-11-01

    The puzzling persistence of nanobubbles breaks Laplace's law for bubbles, which is of great interest for promising applications in surface processing, H 2 and CO 2 storage, water treatment, and drug delivery. So far, nanobubbles have mostly been reported on hydrophobic planar substrates with atomic flatness. It remains a challenge to quantify nanobubbles on rough and irregular surfaces because of the lack of a characterization technique that can detect both the nanobubble morphology and chemical composition inside individual nanobubble-like objects. Here, by using synchrotron-based scanning transmission soft X-ray microscopy (STXM) with nanometer resolution, we discern nanoscopic gas bubbles of >25 nm with direct in situ proof of O 2 inside the nanobubbles at a hydrophilic particle-water interface under ambient conditions. We find a stable cloud of O 2 nanobubbles at the diatomite particle-water interface hours after oxygen aeration and temperature variation. The in situ technique may be useful for many surface nanobubble-related studies such as material preparation and property manipulation, phase equilibrium, nucleation kinetics, and relationships with chemical composition within the confined nanoscale space. The oxygen nanobubble clouds may be important in modifying particle-water interfaces and offering breakthrough technologies for oxygen delivery in sediment and/or deep water environments.

  5. Facile Fabrication of Binary Nanoscale Interface for No-Loss Microdroplet Transportation.

    PubMed

    Liang, Weitao; Zhu, Liqun; Li, Weiping; Xu, Chang; Liu, Huicong

    2016-06-07

    Binary nanoscale interfacial materials are fundamental issues in many applications for smart surfaces. A binary nanoscale interface with binary surface morphology and binary wetting behaviors has been prepared by a facile wet-chemical method. The prepared surface presents superhydrophobicity and high adhesion with the droplet at the same time. The composition, surface morphology, and wetting behaviors of the prepared surface have been systematic studied. The special wetting behaviors can be contributed to the binary nanoscale effect. The stability of the prepared surface was also investigated. As a primary application, a facile device based on the prepared binary nanoscale interface with superhydrophobicity and high adhesion was constructed for microdroplet transportation.

  6. PREFACE: Liquid-solid interfaces: structure and dynamics from spectroscopy and simulations Liquid-solid interfaces: structure and dynamics from spectroscopy and simulations

    NASA Astrophysics Data System (ADS)

    Gaigeot, Marie-Pierre; Sulpizi, Marialore

    2012-03-01

    Liquid-solid interfaces play an important role in a number of phenomena encountered in biological, chemical and physical processes. Surface-induced changes of the material properties are not only important for the solid support but also for the liquid itself. In particular, it is now well established that water at the interface is substantially different from bulk water, even in the proximity of apparently inert surfaces such as a simple metal. The complex chemistry at liquid-solid interfaces is typically fundamental to heterogeneous catalysis and electrochemistry, and has become especially topical in connection with the search for new materials for energy production. A quite remarkable example is the development of cheap yet efficient solar cells, whose basic components are dye molecules grafted to the surface of an oxide material and in contact with an electrolytic solution. In life science, the most important liquid-solid interfaces are the water-cell-membrane interfaces. Phenomena occurring at the surface of phospholipid bilayers control the docking of proteins, the transmission of signals as well as transport of molecules in and out of the cell. Recently the development of bio-compatible materials has lead to research on the interface between bio-compatible material and lipid/proteins in aqueous solution. Gaining a microscopic insight into the processes occurring at liquid-solid interfaces is therefore fundamental to a wide range of disciplines. This special section collects some contributions to the CECAM Workshop 'Liquid/Solid interfaces: Structure and Dynamics from Spectroscopy and Simulations' which took place in Lausanne, Switzerland in June 2011. Our main aim was to bring together knowledge and expertise from different communities in order to advance our microscopic understanding of the structure and dynamics of liquids at interfaces. In particular, one of our ambitions was to foster discussion between the experimental and theoretical

  7. Revealing the cell-material interface with nanometer resolution by FIB-SEM

    PubMed Central

    Santoro, Francesca; Zhao, Wenting; Joubert, Lydia-Marie; Duan, Liting; Schnitker, Jan; van de Burgt, Yoeri; Lou, Hsin-Ya; Liu, Bofei; Salleo, Alberto; Cui, Lifeng; Cui, Yi; Cui, Bianxiao

    2018-01-01

    The interface between cells and non-biological surfaces regulates cell attachment, chronic tissue responses, and ultimately the success of medical implants or biosensors. Clinical and laboratory studies show that topological features of the surface profoundly influences cellular responses, e.g. titanium surfaces with nano- and microtopographical structures enhance osteoblast attachment and host-implant integration as compare to smooth surface. To understand how cells and tissues respond to different topographical features, it is of critical importance to directly visualize the cell-materials interface at the relevant nanometer length scale. Here, we present a new method for in situ examination of the cell-to-material interface at any desired location, based on focused-ion beam milling and scanning electron microscopy imaging (FIB-SEM) to resolve the cell membrane-to-material interface with 10 nm resolution. By examining how cell membranes interact with topographical features such as nanoscale protrusions or invaginations, we discovered that the cell membrane readily deforms inward and wraps around protruding structures, but hardly deforms outward to contour invaginating structures. This asymmetric membrane response (inward vs. outward deformation) causes the cleft width between the cell membrane and the nanostructure surface to vary for more than an order of magnitude. Our results suggest that surface topology is a crucial consideration for the development of medical implants or biosensors whose performances are strongly influenced by the cell-to-material interface. We anticipate that the method can be used to explore the direct interaction of cells/tissue with medical devices such as metal implants in the future. PMID:28682058

  8. Water liquid-vapor interface subjected to various electric fields: A molecular dynamics study.

    PubMed

    Nikzad, Mohammadreza; Azimian, Ahmad Reza; Rezaei, Majid; Nikzad, Safoora

    2017-11-28

    Investigation of the effects of E-fields on the liquid-vapor interface is essential for the study of floating water bridge and wetting phenomena. The present study employs the molecular dynamics method to investigate the effects of parallel and perpendicular E-fields on the water liquid-vapor interface. For this purpose, density distribution, number of hydrogen bonds, molecular orientation, and surface tension are examined to gain a better understanding of the interface structure. Results indicate enhancements in parallel E-field decrease the interface width and number of hydrogen bonds, while the opposite holds true in the case of perpendicular E-fields. Moreover, perpendicular fields disturb the water structure at the interface. Given that water molecules tend to be parallel to the interface plane, it is observed that perpendicular E-fields fail to realign water molecules in the field direction while the parallel ones easily do so. It is also shown that surface tension rises with increasing strength of parallel E-fields, while it reduces in the case of perpendicular E-fields. Enhancement of surface tension in the parallel field direction demonstrates how the floating water bridge forms between the beakers. Finally, it is found that application of external E-fields to the liquid-vapor interface does not lead to uniform changes in surface tension and that the liquid-vapor interfacial tension term in Young's equation should be calculated near the triple-line of the droplet. This is attributed to the multi-directional nature of the droplet surface, indicating that no constant value can be assigned to a droplet's surface tension in the presence of large electric fields.

  9. Viewpoint 9--molecular structure of aqueous interfaces

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Wilson, M. A.

    1993-01-01

    In this review we summarize recent progress in our understanding of the structure of aqueous interfaces emerging from molecular level computer simulations. It is emphasized that the presence of the interface induces specific structural effects which, in turn, influence a wide variety of phenomena occurring near the phase boundaries. At the liquid-vapor interface, the most probable orientations of a water molecule is such that its dipole moment lies parallel to the interface, one O-H bond points toward the vapor and the other O-H bond is directed toward the liquid. The orientational distributions are broad and slightly asymmetric, resulting in an excess dipole moment pointing toward the liquid. These structural preferences persist at interfaces between water and nonpolar liquids, indicating that the interactions between the two liquids in contact are weak. It was found that liquid-liquid interfaces are locally sharp but broadened by capillary waves. One consequence of anisotropic orientations of interfacial water molecules is asymmetric interactions, with respect to the sign of the charge, of ions with the water surface. It was found that even very close to the surface ions retain their hydration shells. New features of aqueous interfaces have been revealed in studies of water-membrane and water-monolayer systems. In particular, water molecules are strongly oriented by the polar head groups of the amphiphilic phase, and they penetrate the hydrophilic head-group region, but not the hydrophobic core. At infinite dilution near interfaces, amphiphilic molecules exhibit behavior different from that in the gas phase or in bulk water. This result sheds new light on the nature of hydrophobic effect in the interfacial regions. The presence of interfaces was also shown to affect both equilibrium and dynamic components of rates of chemical reactions. Applications of continuum models to interfacial problems have been, so far, unsuccessful. This, again, underscores the

  10. Adsorption of the natural protein surfactant Rsn-2 onto liquid interfaces.

    PubMed

    Brandani, Giovanni B; Vance, Steven J; Schor, Marieke; Cooper, Alan; Kennedy, Malcolm W; Smith, Brian O; MacPhee, Cait E; Cheung, David L

    2017-03-22

    To stabilize foams, droplets and films at liquid interfaces a range of protein biosurfactants have evolved in nature. Compared to synthetic surfactants, these combine surface activity with biocompatibility and low solution aggregation. One recently studied example is Rsn-2, a component of the foam nest of the frog Engystomops pustulosus, which has been predicted to undergo a clamshell-like opening transition at the air-water interface. Using atomistic molecular dynamics simulations and surface tension measurements we study the adsorption of Rsn-2 onto air-water and cyclohexane-water interfaces. The protein adsorbs readily at both interfaces, with adsorption mediated by the hydrophobic N-terminus. At the cyclohexane-water interface the clamshell opens, due to the favourable interaction between hydrophobic residues and cyclohexane molecules and the penetration of cyclohexane molecules into the protein core. Simulations of deletion mutants showed that removal of the N-terminus inhibits interfacial adsorption, which is consistent with the surface tension measurements. Deletion of the hydrophilic C-terminus also affects adsorption, suggesting that this plays a role in orienting the protein at the interface. The characterisation of the interfacial behaviour gives insight into the factors that control the interfacial adsorption of proteins, which may inform new applications of this and similar proteins in areas including drug delivery and food technology and may also be used in the design of synthetic molecules showing similar changes in conformation at interfaces.

  11. Gauging interest of the general public in laser-assisted in situ keratomileusis eye surgery.

    PubMed

    Stein, Joshua D; Childers, David M; Nan, Bin; Mian, Shahzad I

    2013-07-01

    To assess interest among members of the general public in laser-assisted in situ keratomileusis (LASIK) surgery and how levels of interest in this procedure have changed over time in the United States and other countries. Using the Google Trends Web site, we determined the weekly frequency of queries involving the term "LASIK" from January 1, 2007, through January 1, 2011, in the United States, United Kingdom, Canada, and India. We fit separate regression models for each of the countries to assess whether residents of these countries differed in their querying rates on specific dates and over time. Similar analyses were performed to compare 4 US states. Additional regression models compared general public interest in LASIK surgery before and after the release of a 2008 Food and Drug Administration report describing complaints associated with this procedure. During 2007 to 2011, the Google query rate for "LASIK" was highest among persons residing in India, followed by the United Kingdom, Canada, and the United States. During this time period, the query rate declined by 40% in the United States, 24% in India, and 22% in the United Kingdom, and it increased by 8% in Canada. In all 4 of the US states examined, the query rate declined-by 52% in Florida, 56% in New York, 54% in Texas, and 42% in California. Interest in LASIK declined further among US citizens after the Food and Drug Administration report release. Interest among the general public in LASIK surgery has been waning in recent years.

  12. Accuracy of Corneal Power Measurements for Intraocular Lens Power Calculation after Myopic Laser In situ Keratomileusis.

    PubMed

    Helaly, Hany A; El-Hifnawy, Mohammad A M; Shaheen, Mohamed Shafik; Abou El-Kheir, Amr F

    2016-01-01

    To evaluate the accuracy of corneal power measurements for intraocular lens (IOL) power calculation after myopic laser in situ keratomileusis (LASIK). The study evaluated 45 eyes with a history of myopic LASIK. Corneal power was measured using manual keratometry, automated keratometry, optical biometry, and Scheimflug tomography. Different hypothetical IOL power calculation formulas were performed for each case. The steepest mean K value was measured with manual keratometry (37.48 ± 2.86 D) followed by automated keratometry (37.31 ± 2.83 D) then optical biometry (37.06 ± 2.98 D) followed by Scheimflug tomography (36.55 ± 3.08). None of the K values generated by Scheimflug tomography were steeper than the measurements from the other 3 instruments. Using equivalent K reading (EKR) 4 mm with the Double-K SRK/T formula, the refractive outcome generated 97.8% of cases within ± 2 D, 80.0% of cases within ± 1 D, and 42.2% of cases within ± 0.5 D. The best combination of formulas was "Shammas-PL + Double-K SRK/T formula using EKR 4 mm." Scheimflug tomography imaging using the Holladay EKR 4 mm improved the accuracy of IOL power calculation in post-LASIK eyes. The best option is a combination of formulas. We recommended the use the combined "Shammas-PL ± Double-K SRK/T formula using EKR 4 mm"h for optical outcomes.

  13. Dynamic surface tension and adsorption mechanism of surfactin biosurfactant at the air-water interface.

    PubMed

    Onaizi, Sagheer A

    2018-03-01

    The dynamic adsorption of the anionic biosurfactant, surfactin, at the air-water interface has been investigated in this work and compared to those of two synthetic surfactants: the anionic sodium dodecylbenzenesulfonate (SDBS) and the nonionic octaethylene glycol monotetradecyl ether (C 14 E 8 ). The results revealed that surfactin adsorption at the air-water interface is purely controlled by diffusion mechanism at the initial stage of the adsorption process (i.e., [Formula: see text]), but shifts towards a mixed diffusion-barrier mechanism when surface tension approaches equilibrium (i.e., [Formula: see text]) due to the development of an energy barrier for adsorption. Such energy barrier has been found to be a function of the surfactin bulk concentration (increases with increasing surfactin concentration) and it is estimated to be in the range of 1.8-9.5 kJ/mol. Interestingly, such a trend (pure diffusion-controlled mechanism at [Formula: see text] and mixed diffusion-barrier mechanism at [Formula: see text]) has been also observed for the nonionic C 14 E 8 surfactant. Unlike the pure diffusion-controlled mechanism of the initial surfactin adsorption, which was the case in the presence and the absence of the sodium ion (Na + ), SDBS showed a mixed diffusion-barrier controlled at both short and long time, with an energy barrier of 3.0-9.0 and 3.8-18.0 kJ/mol, respectively. Such finding highlights the nonionic-like adsorption mechanism of surfactin despite its negative charge.

  14. A nonpolar, nonamphiphilic molecule can accelerate adsorption of phospholipids and lower their surface tension at the air/water interface.

    PubMed

    Nguyen, Phuc Nghia; Trinh Dang, Thuan Thao; Waton, Gilles; Vandamme, Thierry; Krafft, Marie Pierre

    2011-10-04

    The adsorption dynamics of a series of phospholipids (PLs) at the interface between an aqueous solution or dispersion of the PL and a gas phase containing the nonpolar, nonamphiphilic linear perfluorocarbon perfluorohexane (PFH) was studied by bubble profile analysis tensiometry. The PLs investigated were dioctanoylphosphatidylcholine (DiC(8)-PC), dilaurylphosphatidylcholine, dimyristoylphosphatidylcholine, and dipalmitoylphosphatidylcholine. The gas phase consisted of air or air saturated with PFH. The perfluorocarbon gas was found to have an unexpected, strong effect on both the adsorption rate and the equilibrium interfacial tension (γ(eq)) of the PLs. First, for all of the PLs, and at all concentrations investigated, the γ(eq) values were significantly lower (by up to 10 mN m(-1)) when PFH was present in the gas phase. The efficacy of PFH in decreasing γ(eq) depends on the ability of PLs to form micelles or vesicles in water. For vesicles, it also depends on the gel or fluid state of the membranes. Second, the adsorption rates of all the PLs at the interface (as assessed by the time required for the initial interfacial tension to be reduced by 30%) are significantly accelerated (by up to fivefold) by the presence of PFH for the lower PL concentrations. Both the surface-tension reducing effect and the adsorption rate increasing effect establish that PFH has a strong interaction with the PL monolayer and acts as a cosurfactant at the interface, despite the absence of any amphiphilic character. Fitting the adsorption profiles of DiC(8)-PC at the PFH-saturated air/aqueous solution interface with the modified Frumkin model indicated that the PFH molecule lay horizontally at the interface. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The role of surfaces, chemical interfaces, and disorder on plutonium incorporation in pyrochlores

    DOE PAGES

    Perriot, Romain; Dholabhai, Pratik P.; Uberuaga, Blas P.

    2016-07-27

    Pyrochlores, a class of complex oxides with formula A 2B 2O 7, are one of the candidates for nuclear waste encapsulation, due to the natural occurrence of actinide-bearing pyrochlore minerals and laboratory observations of high radiation tolerance. In this work, we use atomistic simulations to determine the role of surfaces, chemical interfaces, and cation disorder on the plutonium immobilization properties of pyrochlores as a function of pyrochlore chemistry. We find that both Pu 3+ and Pu 4+ segregate to the surface for the four low-index pyrochlore surfaces considered, and that the segregation energy varies with the chemistry of the compound.more » We also find that pyrochlore/pyrochlore bicrystals A 2B 2O 7/A 2'B 2'O 7 can be used to immobilize Pu 3+ and Pu 4+ either in the same or separate phases of the compound, depending on the chemistry of the material. Finally, we find that Pu 4+ segregates to the disordered phase of an order/disorder bicrystal, driven by the occurrence of local oxygen-rich environments. However, Pu 3+ is weakly sensitive to the oxygen environment, and therefore only slightly favors the disordered phase. This behavior suggests that, at some concentration, Pu incorporation can destabilize the pyrochlore structure. Together, these results provide new insight into the ability of pyrochlore compounds to encapsulate Pu and suggest new considerations in the development of waste forms based on pyrochlores. Particularly, the phase structure of a multi-phase pyrochlore composite can be used to independently getter decay products based on their valence and size.« less

  16. Effect of the surface roughness on interfacial breakdown between two dielectric surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fournier, D.

    1996-12-31

    Cable splices and accessories are the weak link in an underground power distribution system. Investigations of problems related to cable splices and accessories becomes quite intricate once the simpler causes of failures are dismissed to allow more complex phenomena to be examined. The interfacial breakdown between two internal dielectric surfaces represents one of the major causes of failure for power cable joints. In order to better understand this phenomenon, breakdown experiments were performed at interfaces found in cable splices. An experimental jig was designed to induce breakdown between dielectric surfaces longitudinally along their interface. Effects of surface roughness at EPDM/XLPEmore » and EPDM/EPDM interfaces as well as the presence of silicone grease are taken into account.« less

  17. Irregularity of the posterior corneal surface during applanation using a curved femtosecond laser interface and microkeratome cutting head.

    PubMed

    Vetter, Jan M; Holtz, Carsten; Vossmerbaeumer, Urs; Pfeiffer, Norbert

    2012-03-01

    To evaluate the irregularity of the posterior corneal surface and intrastromal dissection during the preparation of donor tissue for Descemet stripping automated endothelial keratoplasty (DSAEK) using a curved interface femtosecond laser and microkeratome. Sixteen human donor corneas unsuitable for transplantation were divided into two groups: a femtosecond (FS) laser group (n=7) using the VisuMax femtosecond laser (Carl Zeiss Meditec) and a microkeratome group (n=9) using the Amadeus II microkeratome (Ziemer Ophthalmic Group). The corneas were fixed on artificial anterior chambers. Horizontal cross-sections were obtained using spectral-domain optical coherence tomography prior to applanation, during applanation, as well as during and after intrastromal dissection at 450-μm corneal depth. The posterior surface and the dissection line were evaluated for irregularity by fitting a second-order polynomial curve using regression analysis and obtaining the root-mean-square error (RMSE). Groups were compared using analysis of variance. The RMSE of the posterior surface prior to applanation was 9.7 ± 3.1 μm in the FS laser group and 10.2 ± 2.3 μm in the microkeratome group. The RMSE increased to 50.7 ± 9.4 μm and 20.9 ± 6.1 μm during applanation and decreased again to 10.6 ± 1.4 μm and 8.1 ± 1.8 μm after applanation in the FS laser and microkeratome groups, respectively. The RMSE of the intrastromal cut was 19.5 ± 5.7 μm in the FS laser group and 7.7 ± 3.0 μm in the microkeratome group (P<.001). Our results show significantly greater irregularity with the curved interface femtosecond laser-assisted cleavage compared to microkeratome-assisted corneal dissection, possibly due to applanation-derived deformation of the posterior cornea. Copyright 2012, SLACK Incorporated.

  18. Ab initio study on the dynamics of furfural at the liquid-solid interfaces

    NASA Astrophysics Data System (ADS)

    Dang, Hongli; Xue, Wenhua; Shields, Darwin; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu

    2013-03-01

    Catalytic biomass conversion sometimes occurs at the liquid-solid interfaces. We report ab initio molecular dynamics simulations at finite temperatures for the catalytic reactions involving furfural at the water-Pd and water-Cu interfaces. We found that, during the dynamic process, the furan ring of furfural prefers to be parallel to the Pd surface and the aldehyde group tends to be away from the Pd surface. On the other hand, at the water-Cu(111) interface, furfural prefers to be tilted to the Cu surface while the aldehyde group is bonded to the surface. In both cases, interaction of liquid water and furfural is identified. The difference of dynamic process of furfural at the two interfaces suggests different catalytic reaction mechanisms for the conversion of furfural, consistent with the experimental investigations. Supported by DOE (DE-SC0004600). Simulations and calculations were performed on XSED's and NERSC's supercomputers

  19. Surface and interface investigation of aluminosilicate biomaterial by the “in vivo” experiments

    NASA Astrophysics Data System (ADS)

    Oudadesse, H.; Derrien, A. C.; Martin, S.; Chaair, H.; Cathelineau, G.

    2008-11-01

    Porous mixtures of aluminosilicate/calcium phosphate have been studied for biomaterials applications. Aluminosilicates formed with an inorganic polymeric constitution present amorphous zeolites because of their 3D network structure and present the ability to link to bone matrix. Amorphous geopolymers of the potassium-poly(sialate)-nanopolymer type were synthesised at low temperature and studied for their use as potential biomaterials. They were mixed with 13% weight of calcium phosphate like biphasic hydroxyapatite and β-tricalcium phosphate. In this study, " in vivo" experiments were monitored to evaluate the biocompatibility, the surface and the interface behaviour of these composites when used as bone implants. Moreover, it has been demonstrated using histological and physicochemical studies that the developed materials exhibited a remarkable bone bonding when implanted in a rabbit's thighbone for a period of 1 month. The easy synthesis conditions (low temperature) of this composite and the fast intimate links with bone constitute an improvement of synthetic bone graft biomaterial.

  20. Modeling interface shear behavior of granular materials using micro-polar continuum approach

    NASA Astrophysics Data System (ADS)

    Ebrahimian, Babak; Noorzad, Ali; Alsaleh, Mustafa I.

    2018-01-01

    Recently, the authors have focused on the shear behavior of interface between granular soil body and very rough surface of moving bounding structure. For this purpose, they have used finite element method and a micro-polar elasto-plastic continuum model. They have shown that the boundary conditions assumed along the interface have strong influences on the soil behavior. While in the previous studies, only very rough bounding interfaces have been taken into account, the present investigation focuses on the rough, medium rough and relatively smooth interfaces. In this regard, plane monotonic shearing of an infinite extended narrow granular soil layer is simulated under constant vertical pressure and free dilatancy. The soil layer is located between two parallel rigid boundaries of different surface roughness values. Particular attention is paid to the effect of surface roughness of top and bottom boundaries on the shear behavior of granular soil layer. It is shown that the interaction between roughness of bounding structure surface and the rotation resistance of bounding grains can be modeled in a reasonable manner through considered Cosserat boundary conditions. The influence of surface roughness is investigated on the soil shear strength mobilized along the interface as well as on the location and evolution of shear localization formed within the layer. The obtained numerical results have been qualitatively compared with experimental observations as well as DEM simulations, and acceptable agreement is shown.

  1. Interface bonding of shotcrete reinforced brick masonry assemblages, volume 1

    NASA Astrophysics Data System (ADS)

    Robinson, D. W.; Kahn, L. F.

    1982-09-01

    Nine 9 sq ft. shotcrete reinforced brick masonry assemblages and one 9 sq ft brick masonry control specimen were tested under a single reversed cycle diagonal compression load similar to the ASTM E519-74 testing procedures. The interface surface conditions, between the brick and shotcrete were varied. The surfaces of the single sythe of old brick were either dry, wet, or epoxy coated before application of the 3-inch reinforced shotcrete layer. Ultimate load capacities of the specimens were similar, however, specimens with epoxy-enhanced interfaces were the most ductile; the dry brick specimens showed interface bond failure immediately after the ultimate inplane load was attained.

  2. Soft particles at fluid interfaces: wetting, structure, and rheology

    NASA Astrophysics Data System (ADS)

    Isa, Lucio

    Most of our current knowledge concerning the behavior of colloidal particles at fluid interfaces is limited to model spherical, hard and uniform objects. Introducing additional complexity, in terms of shape, composition or surface chemistry or by introducing particle softness, opens up a vast range of possibilities to address new fundamental and applied questions in soft matter systems at fluid interfaces. In this talk I will focus on the role of particle softness, taking the case of core-shell microgels as a paradigmatic example. Microgels are highly swollen and cross-linked hydrogel particles that, in parallel with their practical applications, e.g. for emulsion stabilization and surface patterning, are increasingly used as model systems to capture fundamental properties of bulk materials. Most microgel particles develop a core-shell morphology during synthesis, with a more cross-linked core surrounded by a corona of loosely linked and dangling polymer chains. I will first discuss the difference between the wetting of a hard spherical colloid and a core-shell microgel at an oil-water interface, pinpointing the interplay between adsorption at the interface and particle deformation. I will then move on to discuss the interplay between particle morphology and the microstructure and rheological properties of the interface. In particular, I will demonstrate that synchronizing the compression of a core-shell microgel-laden fluid interface with the deposition of the interfacial monolayer makes it possible to transfer the 2D phase diagram of the particles onto a solid substrate, where different positions correspond to different values of the surface pressure and the specific area. Using atomic force microscopy, we analyzed the microstructure of the monolayer and discovered a phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases correspond to shell-shell or core-core inter

  3. Quantitative biological surface science: challenges and recent advances.

    PubMed

    Höök, Fredrik; Kasemo, Bengt; Grunze, Michael; Zauscher, Stefan

    2008-12-23

    Biological surface science is a broad, interdisciplinary subfield of surface science, where properties and processes at biological and synthetic surfaces and interfaces are investigated, and where biofunctional surfaces are fabricated. The need to study and to understand biological surfaces and interfaces in liquid environments provides sizable challenges as well as fascinating opportunities. Here, we report on recent progress in biological surface science that was described within the program assembled by the Biomaterial Interface Division of the Science and Technology of Materials, Interfaces and Processes (www.avs.org) during their 55th International Symposium and Exhibition held in Boston, October 19-24, 2008. The selected examples show that the rapid progress in nanoscience and nanotechnology, hand-in-hand with theory and simulation, provides increasingly sophisticated methods and tools to unravel the mechanisms and details of complex processes at biological surfaces and in-depth understanding of biomolecular surface interactions.

  4. High temperature interface superconductivity

    DOE PAGES

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-T c superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T c Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed.more » Here, we conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.« less

  5. Semiconductor/dielectric interface engineering and characterization

    NASA Astrophysics Data System (ADS)

    Lucero, Antonio T.

    The focus of this dissertation is the application and characterization of several, novel interface passivation techniques for III-V semiconductors, and the development of an in-situ electrical characterization. Two different interface passivation techniques were evaluated. The first is interface nitridation using a nitrogen radical plasma source. The nitrogen radical plasma generator is a unique system which is capable of producing a large flux of N-radicals free of energetic ions. This was applied to Si and the surface was studied using x-ray photoelectron spectroscopy (XPS). Ultra-thin nitride layers could be formed from 200-400° C. Metal-oxide-semiconductor capacitors (MOSCAPs) were fabricated using this passivation technique. Interface nitridation was able to reduce leakage current and improve the equivalent oxide thickness of the devices. The second passivation technique studied is the atomic layer deposition (ALD) diethylzinc (DEZ)/water treatment of sulfur treated InGaAs and GaSb. On InGaAs this passivation technique is able to chemically reduce higher oxidation states on the surface, and the process results in the deposition of a ZnS/ZnO interface passivation layer, as determined by XPS. Capacitance-voltage (C-V) measurements of MOSCAPs made on p-InGaAs reveal a large reduction in accumulation dispersion and a reduction in the density of interfacial traps. The same technique was applied to GaSb and the process was studied in an in-situ half-cycle XPS experiment. DEZ/H2O is able to remove all Sb-S from the surface, forming a stable ZnS passivation layer. This passivation layer is resistant to further reoxidation during dielectric deposition. The final part of this dissertation is the design and construction of an ultra-high vacuum cluster tool for in-situ electrical characterization. The system consists of three deposition chambers coupled to an electrical probe station. With this setup, devices can be processed and subsequently electrically characterized

  6. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.

    PubMed

    Gao, Wenpei; Hood, Zachary D; Chi, Miaofang

    2017-04-18

    Developing novel catalysts with high efficiency and selectivity is critical for enabling future clean energy conversion technologies. Interfaces in catalyst systems have long been considered the most critical factor in controlling catalytic reaction mechanisms. Interfaces include not only the catalyst surface but also interfaces within catalyst particles and those formed by constructing heterogeneous catalysts. The atomic and electronic structures of catalytic surfaces govern the kinetics of binding and release of reactant molecules from surface atoms. Interfaces within catalysts are introduced to enhance the intrinsic activity and stability of the catalyst by tuning the surface atomic and chemical structures. Examples include interfaces between the core and shell, twin or domain boundaries, or phase boundaries within single catalyst particles. In supported catalyst nanoparticles (NPs), the interface between the metallic NP and support serves as a critical tuning factor for enhancing catalytic activity. Surface electronic structure can be indirectly tuned and catalytically active sites can be increased through the use of supporting oxides. Tuning interfaces in catalyst systems has been identified as an important strategy in the design of novel catalysts. However, the governing principle of how interfaces contribute to catalyst behavior, especially in terms of interactions with intermediates and their stability during electrochemical operation, are largely unknown. This is mainly due to the evolving nature of such interfaces. Small changes in the structural and chemical configuration of these interfaces may result in altering the catalytic performance. These interfacial arrangements evolve continuously during synthesis, processing, use, and even static operation. A technique that can probe the local atomic and electronic interfacial structures with high precision while monitoring the dynamic interfacial behavior in situ is essential for elucidating the role of

  7. Tuning exchange bias in Fe/γ-Fe{sub 2}O{sub 3} core-shell nanoparticles: Impacts of interface and surface spins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khurshid, Hafsa, E-mail: hkhurshi@usf.edu, E-mail: phanm@usf.edu, E-mail: sharihar@usf.edu; Phan, Manh-Huong, E-mail: hkhurshi@usf.edu, E-mail: phanm@usf.edu, E-mail: sharihar@usf.edu; Mukherjee, Pritish

    A comparative study has been performed of the exchange bias (EB) effect in Fe/γ-Fe{sub 2}O{sub 3} core-shell nanoparticles with the same thickness of the γ-Fe{sub 2}O{sub 3} shell (∼2 nm) and the diameter of the Fe core varying from 4 nm to 11 nm. Transmission electron microscopy (TEM) and high-resolution TEM confirmed the high quality of the core-shell nanostructures. A systematic analysis of magnetization versus magnetic field measurements under zero-field-cooled and field-cooled regimes using the Meiklejohn-Bean model and deconvoluting superparamagnetic and paramagnetic contribution to the total magnetic moment Langevin function shows that there exists a critical particle size (∼10 nm), above which the spinsmore » at the interface between Fe and γ-Fe{sub 2}O{sub 3} contribute primarily to the EB, but below which the surface spin effect is dominant. Our finding yields deeper insight into the collective contributions of interface and surface spins to the EB in core-shell nanoparticle systems, knowledge of which is the key to manipulating EB in magnetic nanostructures for spintronics applications.« less

  8. Fate of Uranium During Transport Across the Groundwater-Surface Water Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaffe, Peter R.; Kaplan, Daniel I.

    Discharge of contaminated groundwater to surface waters is of concern at many DOE facilities. For example, at F-Area and TNX-Area on the Savannah River Site, contaminated groundwater, including uranium, is already discharging into natural wetlands. It is at this interface where contaminants come into contact with the biosphere. These this research addressed a critical knowledge gap focusing on the geochemistry of uranium (or for that matter, any redox-active contaminant) in wetland systems. Understanding the interactions between hydrological, microbial, and chemical processes will make it possible to provide a more accurate conceptual and quantitative understanding of radionuclide fate and transport undermore » these unique conditions. Understanding these processes will permit better long-term management and the necessary technical justification for invoking Monitored Natural Attenuation of contaminated wetland areas. Specifically, this research did provide new insights on how plant-induced alterations to the sediment biogeochemical processes affect the key uranium reducing microorganisms, the uranium reduction, its spatial distribution, the speciation of the immobilized uranium, and its long-term stability. This was achieved by conducting laboratory mesocosm wetland experiments as well as field measurements at the SRNL. Results have shown that uranium can be immobilized in wetland systems. To a degree some of the soluble U(VI) was reduced to insoluble U(IV), but the majority of the immobilized U was incorporated into iron oxyhydroxides that precipitated onto the root surfaces of wetland plants. This U was immobilized mostly as U(VI). Because it was immobilized in its oxidized form, results showed that dry spells, resulting in the lowering of the water table and the exposure of the U to oxic conditions, did not result in U remobilization.« less

  9. The effect of flap thickness on corneal biomechanics after myopic laser in situ keratomileusis using the M-2 microkeratome

    PubMed Central

    Goussous, Iyad A; El-Agha, Mohamed-Sameh; Awadein, Ahmed; Hosny, Mohamed H; Ghaith, Alaa A; Khattab, Ahmed L

    2017-01-01

    Purpose The purpose of this study was to determine the effect of flap thickness on corneal biomechanics after myopic laser in situ keratomileusis (LASIK). Methods This is a prospective controlled non-randomized, institutional study. Patients underwent either epi-LASIK with mitomycin (advanced surface ablation [ASA]), thin-flap LASIK (90 µm head), or thick-flap LASIK (130 µm head). In ASA, the Moria Epi-K hydroseparator was used. LASIK flaps were created using the Moria M-2 mechanical microkeratome. The corneal hysteresis (CH) and corneal resistance factor (CRF) were measured preoperatively and 3 months after surgery, using the Ocular Response Analyzer®. Results Ten patients (19 eyes) underwent ASA, 11 patients (16 eyes) underwent thin-flap LASIK, and 11 patients (16 eyes) underwent thick-flap LASIK. The mean preoperative CH was 10.47±0.88, 10.52±1.4, and 11.28±1.4 mmHg (p=0.043), respectively, decreasing after surgery by 1.75±1.02, 1.66±1.00, and 2.62±1.03 mmHg (p=0.017). The mean reduction of CH per micron of central corneal ablation was 0.031, 0.023, and 0.049 mmHg/µm (p=0.005). Mean preoperative CRF was 10.11±1.28, 10.34±1.87, and 10.62±1.76 mmHg (p=0.66), decreasing after surgery by 2.33±1.35, 2.77±1.03, and 2.92±1.10 mmHg (p=0.308). The mean reduction of CRF per micron of central corneal ablation was 0.039, 0.040, and 0.051 mmHg/µm (p=0.112). Conclusion Thick-flap LASIK caused a greater reduction of CH and CRF than thin-flap LASIK and ASA, although this was statistically significant only for CH. ASA and thin-flap LASIK were found to be biomechanically similar. PMID:29200820

  10. The atomic level structure of the TiO(2)-NiTi interface.

    PubMed

    Nolan, M; Tofail, S A M

    2010-09-07

    The biocompatibility of NiTi shape memory alloys (SMA) has made possible applications in invasive and minimally invasive biomedical devices. The NiTi intermetallic alloy spontaneously forms a thin passive layer of TiO(2), which provides its biocompatibility. The oxide layer is thought to form as Ti in the alloy reacts with oxygen. In this paper, we study the details of the oxide-alloy interface. The atomic model is the (110) NiTi surface interfaced with the (100) rutile TiO(2) surface; this combination provides the best lattice match of alloy and oxide. When the interface forms, static minimisations and molecular dynamics show that there is no migration of atoms between the alloy and the oxide. In the alloy there are some notable structural relaxations. We find that a columnar structure appears in which alternating long and short Ni-Ti bonds are present in each surface and subsurface plane into the fourth subsurface layer. The oxide undergoes some structural changes as a result of terminal oxygen coordinating to Ti in the NiTi surface. The electronic structure shows that Ti(3+) species are present at the interface, with Ti(4+) in the bulk of the oxide layer and that the metallic character of the alloy is unaffected by the interaction with oxygen, all of which is consistent with experiment. A thermodynamic analysis is used to examine the stability of different possible structures-a perfect interface and one with Ti and O vacancies. We find that under conditions typical of oxidation and shape memory treatments, the most stable interface structure is that with Ti vacancies in the alloy surface, leaving an Ni-rich layer, consistent with the experimental findings for this interface.

  11. The Overgrid Interface for Computational Simulations on Overset Grids

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Computational simulations using overset grids typically involve multiple steps and a variety of software modules. A graphical interface called OVERGRID has been specially designed for such purposes. Data required and created by the different steps include geometry, grids, domain connectivity information and flow solver input parameters. The interface provides a unified environment for the visualization, processing, generation and diagnosis of such data. General modules are available for the manipulation of structured grids and unstructured surface triangulations. Modules more specific for the overset approach include surface curve generators, hyperbolic and algebraic surface grid generators, a hyperbolic volume grid generator, Cartesian box grid generators, and domain connectivity: pre-processing tools. An interface provides automatic selection and viewing of flow solver boundary conditions, and various other flow solver inputs. For problems involving multiple components in relative motion, a module is available to build the component/grid relationships and to prescribe and animate the dynamics of the different components.

  12. Integrated assessment of groundwater - surface water exchange in the hillslope - riparian interface of a montane catchment

    NASA Astrophysics Data System (ADS)

    Scheliga, Bernhard; Tetzlaff, Doerthe; Nuetzmann, Gunnar; Soulsby, Chris

    2016-04-01

    Groundwater-surface water dynamics play an important role in runoff generation and the hydrologic connectivity between hillslopes and streams. Here, we present findings from a suite of integrated, empirical approaches to increase our understanding of groundwater-surface water interlinkages in a 3.2 km ^ 2 experimental catchment in the Scottish Highlands. The montane catchment is mainly underlain by granite and has extensive (70%) cover of glacial drift deposits which are up to 40 m deep and form the main aquifer in the catchment. Flat valley bottom areas fringe the stream channel and are characterised by peaty soils (0.5-4 m deep) which cover about 10% of the catchment and receive drainage from upslope areas. The transition between the hillslopes and riparian zone forms a critical interface for groundwater-surface water interactions that controls both the dynamics of riparian saturation and stream flow generation. We nested observations using wells to assess the groundwater - surface water transition, LiDAR surveys to explore the influence of micro-topography on shallow groundwater efflux and riparian wells to examine the magnitude and flux rates of deeper groundwater sources. We also used electrical resistivity surveys to assess the architecture and storage properties of drift aquifers. Finally, we used isotopic tracers to differentiate recharge sources and associated residence times as well as quantifying how groundwater dynamics affect stream flow. These new data have provided a novel conceptual framework for local groundwater - surface water exchange that is informing the development of new deterministic models for the site.

  13. Universal emulsion stabilization from the arrested adsorption of rough particles at liquid-liquid interfaces

    PubMed Central

    Zanini, Michele; Marschelke, Claudia; Anachkov, Svetoslav E.; Marini, Emanuele; Synytska, Alla; Isa, Lucio

    2017-01-01

    Surface heterogeneities, including roughness, significantly affect the adsorption, motion and interactions of particles at fluid interfaces. However, a systematic experimental study, linking surface roughness to particle wettability at a microscopic level, is currently missing. Here we synthesize a library of all-silica microparticles with uniform surface chemistry, but tuneable surface roughness and study their spontaneous adsorption at oil–water interfaces. We demonstrate that surface roughness strongly pins the particles' contact lines and arrests their adsorption in long-lived metastable positions, and we directly measure the roughness-induced interface deformations around isolated particles. Pinning imparts tremendous contact angle hysteresis, which can practically invert the particle wettability for sufficient roughness, irrespective of their chemical nature. As a unique consequence, the same rough particles stabilize both water-in-oil and oil-in-water emulsions depending on the phase they are initially dispersed in. These results both shed light on fundamental phenomena concerning particle adsorption at fluid interfaces and indicate future design rules for particle-based emulsifiers. PMID:28589932

  14. Universal emulsion stabilization from the arrested adsorption of rough particles at liquid-liquid interfaces

    NASA Astrophysics Data System (ADS)

    Zanini, Michele; Marschelke, Claudia; Anachkov, Svetoslav E.; Marini, Emanuele; Synytska, Alla; Isa, Lucio

    2017-06-01

    Surface heterogeneities, including roughness, significantly affect the adsorption, motion and interactions of particles at fluid interfaces. However, a systematic experimental study, linking surface roughness to particle wettability at a microscopic level, is currently missing. Here we synthesize a library of all-silica microparticles with uniform surface chemistry, but tuneable surface roughness and study their spontaneous adsorption at oil-water interfaces. We demonstrate that surface roughness strongly pins the particles' contact lines and arrests their adsorption in long-lived metastable positions, and we directly measure the roughness-induced interface deformations around isolated particles. Pinning imparts tremendous contact angle hysteresis, which can practically invert the particle wettability for sufficient roughness, irrespective of their chemical nature. As a unique consequence, the same rough particles stabilize both water-in-oil and oil-in-water emulsions depending on the phase they are initially dispersed in. These results both shed light on fundamental phenomena concerning particle adsorption at fluid interfaces and indicate future design rules for particle-based emulsifiers.

  15. Surfaces and interfaces of glass and ceramics; Proceedings of the International Symposium on Special Topics in Ceramics, Alfred University, Alfred, N.Y., August 27-29, 1973

    NASA Technical Reports Server (NTRS)

    Frechette, V. D. (Editor); Lacourse, W. C.; Burdick, V. L.

    1974-01-01

    The characterization of surfaces and interfaces is considered along with the infrared spectra of several N-containing compounds absorbed on montmorillonites, applications of surface characterization techniques to glasses, the observation of electronic spectra in glass and ceramic surfaces, a method for determining the preferred orientation of crystallites normal to a surface, and the friction and wear behavior of glasses and ceramics. Attention is given to the wear behavior of cast surface composites, an experimental investigation of the dynamic and thermal characteristics of the ceramic stock removal process, a dynamic elastic model of ceramic stock removal, and the structure and properties of solid surfaces. Individual items are announced in this issue.

  16. Resin composite repair: Quantitative microleakage evaluation of resin-resin and resin-tooth interfaces with different surface treatments

    PubMed Central

    Celik, Cigdem; Cehreli, Sevi Burcak; Arhun, Neslihan

    2015-01-01

    Objective: The aim was to evaluate the effect of different adhesive systems and surface treatments on the integrity of resin-resin and resin-tooth interfaces after partial removal of preexisting resin composites using quantitative image analysis for microleakage testing protocol. Materials and Methods: A total of 80 human molar teeth were restored with either of the resin composites (Filtek Z250/GrandioSO) occlusally. The teeth were thermocycled (1000×). Mesial and distal 1/3 parts of the restorations were removed out leaving only middle part. One side of the cavity was finished with course diamond bur and the other was air-abraded with 50 μm Al2O3. They were randomly divided into four groups (n = 10) to receive: Group 1: Adper Single Bond 2; Group 2: All Bond 3; Group 3: ClearfilSE; Group 4: BeautiBond, before being repaired with the same resin composite (Filtek Z250). The specimens were re-thermocycled (1000×), sealed with nail varnish, stained with 0.5% basic fuchsin, sectioned mesiodistally and photographed digitally. The extent of dye penetration was measured by image analysis software (ImageJ) for both bur-finished and air-abraded surfaces at resin-tooth and resin-resin interfaces. The data were analyzed statistically. Results: BeautiBond exhibited the most microleakage at every site. Irrespective of adhesive and initial composite type, air-abrasion showed less microleakage except for BeautiBond. The type of initial repaired restorative material did not affect the microleakage. BeautiBond adhesive may not be preferred in resin composite repair in terms of microleakage prevention. Conclusions: Surface treatment with air-abrasion produced the lowest microleakage scores, independent of the adhesive systems and the pre-existing resin composite type. Pre-existing composite type does not affect the microleakage issue. All-in-one adhesive resin (BeautiBond) may not be preferred in resin composite repair in terms of microleakage prevention. PMID:25713491

  17. Liquid crystal interfaces: Experiments, simulations and biosensors

    NASA Astrophysics Data System (ADS)

    Popov, Piotr

    Interfacial phenomena are ubiquitous and extremely important in various aspects of biological and industrial processes. For example, many liquid crystal applications start by alignment with a surface. The underlying mechanisms of the molecular organization of liquid crystals at an interface are still under intensive study and continue to be important to the display industry in order to develop better and/or new display technology. My dissertation research has been devoted to studying how complex liquid crystals can be guided to organize at an interface, and to using my findings to develop practical applications. Specifically, I have been working on developing biosensors using liquid-crystal/surfactant/lipid/protein interactions as well as the alignment of low-symmetry liquid crystals for potential new display and optomechanical applications. The biotechnology industry needs better ways of sensing biomaterials and identifying various nanoscale events at biological interfaces and in aqueous solutions. Sensors in which the recognition material is a liquid crystal naturally connects the existing knowledge and experience of the display and biotechnology industries together with surface and soft matter sciences. This dissertation thus mainly focuses on the delicate phenomena that happen at liquid interfaces. In the introduction, I start by defining the interface and discuss its structure and the relevant interfacial forces. I then introduce the general characteristics of biosensors and, in particular, describe the design of biosensors that employ liquid crystal/aqueous solution interfaces. I further describe the basic properties of liquid crystal materials that are relevant for liquid crystal-based biosensing applications. In CHAPTER 2, I describe the simulation methods and experimental techniques used in this dissertation. In CHAPTER 3 and CHAPTER 4, I present my computer simulation work. CHAPTER 3 presents insight of how liquid crystal molecules are aligned by

  18. Passivation of Ge/high-κ interface using RF Plasma nitridation

    NASA Astrophysics Data System (ADS)

    Dushaq, Ghada; Nayfeh, Ammar; Rasras, Mahmoud

    2018-01-01

    In this paper, plasma nitridation of a germanium surface using NH3 and N2 gases is performed with a standard RF-PECVD method at a substrate temperature of 250 °C. The structural and optical properties of the Ge surface have been investigated using Atomic Force Microscopy (AFM), Fourier Transform Infrared Spectroscopy (FT-IR), and Variable Angle Spectroscopic Ellipsometery (VASE). Study of the Ge (100) surface revealed that it is nitrated after plasma treatment while the GeO2 regrowth on the surface has been suppressed. Also, stability of the treated surface under air exposure is observed, where all the measurements were performed at room ambient. The electrical characteristics of fabricated Al/Ti/HfO2/GeON/p-Ge capacitors using the proposed surface treatment technique have been investigated. The C-V curves indicated a negligible hysteresis compared to ˜500 mV observed in untreated samples. Additionally, the C-V characteristic is used to extract the high-κ/Ge interface trap density using the most commonly used methods in determining the interface traps. The discussion includes the Dit calculation from the high-low frequency (Castagné-Vapaille) method and Terman (high-frequency) method. The high-low frequency method indicated a low interface trap density of ˜2.5 × 1011 eV-1.cm-2 compared to the Terman method. The J-V measurements revealed more than two orders of magnitude reduction of the gate leakage. This improved Ge interface quality is a promising low-temperature technique for fabricating high-performance Ge MOSFETs.

  19. Physics, mathematics and numerics of particle adsorption on fluid interfaces

    NASA Astrophysics Data System (ADS)

    Schmuck, Markus; Pavliotis, Grigorios A.; Kalliadasis, Serafim

    2012-11-01

    We study two arbitrary immiscible fuids where one phase contains small particles of the size of the interface and smaller. We primarily focus on charge-free particles with wetting characteristics described by the contact angle formed at the interface between the two phases and the particles. Based on the experimental observation that particles are adsorbed on the interface to reduce the interfacial energy and hence the surface tension as well, we formulate a free-energy functional that accounts for these physical effects. Using elements from calculus of variations and formal gradient flow theory, we derive partial differential equations describing the location of the interface and the density of the particles in the fluid phases. Via numerical experiments we analyse the time evolution of the surface tension, the particle concentration, and the free energy over time and reflect basic experimentally observed phenomena.

  20. Gravity and the membrane-solution interface: theoretical investigations.

    PubMed

    Schatz, A; Linke-Hommes, A

    1989-01-01

    The theory of concentration and potential variations at interfaces is applied to the membrane-solution interface to calculate density variations. The theory is modified to take care of the finite ion volumes in electrolytes. Our model is a phospholipid membrane with a surface charge density of -4.824*10(-6)(As/cm2) in contact with solutions of KCl, NaCl, CaCl2, and mixtures. Maximal density variations of about 4*10(-2)(G/cm3) were found in surface layers between the membrane and the solutions. The extension of the layers is in the range of 1 to 6 nm.