NASA Astrophysics Data System (ADS)
Courrèges, E.; Vially, R.; Roest, W. R.; Patriat, M.; Patriat, P.; Loubrieu, B.; Lecomte, J.-C.; Schaming, M.; Schmitz, J.; Maia, M.
2009-04-01
France ratified the United Nations Convention on the Law of the Sea in 1996, and has since undertaken an ambitious program of bathymetric and seismic data acquisition (EXTRAPLAC Program) to support claims for the extension of the legal continental shelf, in accordance with Article 76 of this convention. For this purpose, three oceanographic surveys took place on board of the R/V Marion Dufresne II, operated by the French Polar Institute, on the Kerguelen Plateau, in the Southern Indian Ocean: MD137-Kergueplac1 (February 2004), MD150-Kergueplac2 (October 2005) and MD165-Kergueplac3 (January 2008). Thus, more than 20 000 km of multibeam bathymetric, magnetic and gravimetric profiles, and almost 6 000 km of seismic profiles where acquired during a total of 62 days of survey in the study area. Ifremer's "rapid seismic" system was used, comprised of 4 guns and a 24 trace digital streamer, operated at speeds up to 10 knots. In addition to its use for the Extraplac Program, the data set issued from these surveys provides the opportunity to improve our knowledge of the structure of the Kerguelen Plateau and more particularly of its complex margins. In this poster, we show different kinds of data. The high resolution bathymetry (200 m grid) data set allows us to specify the irregular morphology of the sea floor in the north Kerguelen Plateau region, characterised by ridges and volcano chains that intersect the oceanic basin on its NE edge. The seismic profiles show that the acoustic basement of the plateau is not much tectonised, and displays a very smooth texture, clearly contrasting it from typical oceanic basement. Both along the edge of the plateau and in the abyssal plain, sediments have variable thicknesses. The sediments on the margin of the plateau are up to 1200 meters thick and display irregular crisscross patterns, suggesting the presence of important bottom currents. An important concentration of new magnetic data, in a key area (Northern Kerguelen Platerau) and at a key period (Oligocene), helps us understand the setting up of the oceanic plateau and the kinematics reconstructions between Antarctica and Australia plates. We focused on the northeastern margin of the Kerguelen Plateau, from 77E30 up to the Amsterdam Saint-Paul fracture zone, where the South East Indian Ridge (SEIR) shows a large offset toward the Kerguelen Plateau. On a larger scale, the opening between Kerguelen Plateau and Broken Ridge has kept very morphologically homologous margins on each side of the SEIR: in the Southern Kerguelen Plateau, the magnetic anomalies are regular, parallel to the SEIR and also to the morphological boundary of the plateau. In contrast, the northeastern margin of the Northern Kerguelen Plateau is not much explored and its interpretation less obvious, because volcanic masses overlie discordantly the oceanic crust. We compiled the magnetic anomalies pickings, integrating data from recent Kergueplac surveys and previous studies, to identify with more confidence the oldest anomalies at the plateau margin. We used it for reconstructions at different stages (from a8o to initial opening), realised with rotation poles of Cande & Stocks (2004). These reconstructions confirm that kinematic in the whole SE Indian Ocean, and in particular in the Northern part of the Kerguelen Plateau, remains unresolved. In particular, we discuss both the fit between Kerguelen and Broken Ridge and the implication for the opening between Australia and Antarctica as well as the possible junctions along the Amsterdam fracture zone with the Crozet basin where the spreading rate was much faster before A18.
NASA Astrophysics Data System (ADS)
Scheffer, Annette; Trathan, Philip N.; Edmonston, Johnnie G.; Bost, Charles-André
2016-02-01
Investigating the responses of marine predators to environmental features is of key importance for understanding their foraging behaviour and reproductive success. In this study we examined the foraging behaviour of king penguins breeding at Kerguelen (southern Indian Ocean) in relation to oceanographic and bathymetric features within their foraging ambit. We used ARGOS and Global Positioning System tracking together with Time-Depth-Temperature-Recorders (TDR) to follow the at-sea movements of incubating and brooding king penguins. Combining the penguin behaviour with oceanographic data at the surface through satellite data and at depth through in-situ recordings by the TDRs enabled us to explore how these predators adjusted their horizontal and vertical foraging movements in response to their physical environment. Relating the observed behaviour and oceanographic patterns to local bathymetry lead to a comprehensive picture of the combined influence of bathymetry and meso-scale circulation on the foraging behaviour of king penguins. During both breeding stages king penguins foraged in the area to the south-east of Kerguelen, where they explored an influx of cold waters of southern origin interacting with the Kerguelen Plateau bathymetry. Foraging in the Polar Front and at the thermocline was associated with high prey capture rates. However, foraging trip orientation and water mass utilization suggested that bathymetrically entrained cold-water features provided the most favourable foraging locations. Our study explicitly reports the exploration of bathymetry-related oceanographic features by foraging king penguins. It confirms the presence of Areas of Ecological Significance for marine predators on the Kerguelen Plateau, and suggests the importance of further areas related to the cold-water flow along the shelf break of the Kerguelen Plateau.
NASA Astrophysics Data System (ADS)
Frey, F. A.; Coffin, M. F.; Wallace, P. J.; Weis, D.; Zhao, X.; Wise, S. W.; Wähnert, V.; Teagle, D. A. H.; Saccocia, P. J.; Reusch, D. N.; Pringle, M. S.; Nicolaysen, K. E.; Neal, C. R.; Müller, R. D.; Moore, C. L.; Mahoney, J. J.; Keszthelyi, L.; Inokuchi, H.; Duncan, R. A.; Delius, H.; Damuth, J. E.; Damasceno, D.; Coxall, H. K.; Borre, M. K.; Boehm, F.; Barling, J.; Arndt, N. T.; Antretter, M.
2000-02-01
Oceanic plateaus form by mantle processes distinct from those forming oceanic crust at divergent plate boundaries. Eleven drillsites into igneous basement of Kerguelen Plateau and Broken Ridge, including seven from the recent Ocean Drilling Program Leg 183 (1998-99) and four from Legs 119 and 120 (1987-88), show that the dominant rocks are basalts with geochemical characteristics distinct from those of mid-ocean ridge basalts. Moreover, the physical characteristics of the lava flows and the presence of wood fragments, charcoal, pollen, spores and seeds in the shallow water sediments overlying the igneous basement show that the growth rate of the plateau was sufficient to form subaerial landmasses. Most of the southern Kerguelen Plateau formed at ˜110 Ma, but the uppermost submarine lavas in the northern Kerguelen Plateau erupted during Cenozoic time. These results are consistent with derivation of the plateau by partial melting of the Kerguelen plume. Leg 183 provided two new major observations about the final growth stages of the Kerguelen Plateau. 1: At several locations, volcanism ended with explosive eruptions of volatile-rich, felsic magmas; although the total volume of felsic volcanic rocks is poorly constrained, the explosive nature of the eruptions may have resulted in globally significant effects on climate and atmospheric chemistry during the late-stage, subaerial growth of the Kerguelen Plateau. 2: At one drillsite, clasts of garnet-biotite gneiss, a continental rock, occur in a fluvial conglomerate intercalated within basaltic flows. Previously, geochemical and geophysical evidence has been used to infer continental lithospheric components within this large igneous province. A continental geochemical signature in an oceanic setting may represent deeply recycled crust incorporated into the Kerguelen plume or continental fragments dispersed during initial formation of the Indian Ocean during breakup of Gondwana. The clasts of garnet-biotite gneiss are the first unequivocal evidence of continental crust in this oceanic plateau. We propose that during initial breakup between India and Antarctica, the spreading center jumped northwards transferring slivers of the continental Indian plate to oceanic portions of the Antarctic plate.
Radium isotopes to investigate the water mass pathways on the Kerguelen plateau (KEOPS project)
NASA Astrophysics Data System (ADS)
Bourquin, M.; van Beek, P.; Reyss, J.; Souhaut, M.; Charette, M.; Jeandel, C.
2006-12-01
High biological productivity takes place on the Kerguelen Plateau in the Indian sector of the Southern Ocean known to be a HNLC region. Natural iron fertilization is suspected in that area. One goal of the KEOPS project is to understand the mechanisms controlling iron fertilization. We measured radium isotopes (228Ra, T1/2=5.75 y; 226Ra, T1/2=1602 y) in seawater in order to provide information on the water mass pathways on the Kerguelen plateau. Ra isotopes are produced in the sediment and diffuse in the water column. Ra isotopes may thus be a good analogue for tracing the input of sedimentary iron and its fate on the Kerguelen Plateau. The large volumes of seawater needed for Ra analysis were collected using either the ship-intake, Niskin bottles or in-situ pumping. MnO2 fibers were then used to separate Ra from seawater. 228Ra activities are extremely low in the plateau area, being in most cases <0.1 dpm/100 kg (ca. 1 ag/kg). Station A3 (520 m depth), located on the plateau in the middle of the bloom zone, also displays such low values with, however, higher 228Ra activities in the upper 50-150 m. Such a pattern suggests the presence of a water mass that has been advected on the Kerguelen Plateau. This water mass could have been enriched in 228Ra in contact with the sediment of Heard Island, south of the Kerguelen Plateau. The Ra data agree with the REE results of Zhang et al.
Guillaumot, Charlène; Martin, Alexis; Fabri-Ruiz, Salomé; Eléaume, Marc; Saucède, Thomas
2016-01-01
The present dataset provides a case study for species distribution modelling (SDM) and for model testing in a poorly documented marine region. The dataset includes spatially-explicit data for echinoid (Echinodermata: Echinoidea) distribution. Echinoids were collected during oceanographic campaigns led around the Kerguelen Plateau (+63°/+81°E; -46°/-56°S) since 1872. In addition to the identification of collection specimens from historical cruises, original data from the recent campaigns POKER II (2010) and PROTEKER 2 to 4 (2013-2015) are also provided. In total, five families, ten genera, and 12 echinoid species are recorded in the region of the Kerguelen Plateau. The dataset is complemented with environmental descriptors available and relevant for echinoid ecology and SDM. The environmental data was compiled from different sources and was modified to suit the geographic extent of the Kerguelen Plateau, using scripts developed with the R language (R Core Team 2015). Spatial resolution was set at a common 0.1° pixel resolution. Mean seafloor and sea surface temperatures, salinity and their amplitudes, all derived from the World Ocean Database (Boyer et al. 2013) are made available for the six following decades: 1955-1964, 1965-1974, 1975-1984, 1985-1994, 1995-2004, 2005-2012. Future projections are provided for several parameters: they were modified from the Bio-ORACLE database (Tyberghein et al. 2012). They are based on three IPCC scenarii (B1, AIB, A2) for years 2100 and 2200 (IPCC, 4 th report).
Wind-induced upwelling in the Kerguelen Plateau region
NASA Astrophysics Data System (ADS)
Gille, S. T.; Carranza, M. M.; Cambra, R.
2014-11-01
In contrast to most of the Southern Ocean, the Kerguelen Plateau supports an unusually strong spring chlorophyll (Chl a) bloom, likely because the euphotic zone in the region is supplied with higher iron concentrations. This study uses satellite wind, sea surface temperature (SST), and ocean color data to explore the impact of wind-driven processes on upwelling of cold (presumably iron-rich) water to the euphotic zone. Results show that, in the Kerguelen region, cold SSTs correlate with high wind speeds, implying that wind-mixing leads to enhanced vertical mixing. Cold SSTs also correlate with negative wind-stress curl, implying that Ekman pumping can further enhance upwelling. In the moderate to high eddy kinetic energy (EKE) regions surrounding Kerguelen, we find evidence of coupling between winds and SST gradients associated with mesoscale eddies, which can locally modulate the wind-stress curl. This coupling introduces persistent wind-stress curl patterns and Ekman pumping around these long-lived eddies, which may modulate the evolution of Chl a in the downstream plume far offshore. Close to the plateau, this eddy coupling breaks down. Kerguelen has a significant wind shadow on its downwind side, which changes position depending on the prevailing wind and which generates a wind-stress curl dipole that shifts location depending on wind direction. This leads to locally enhanced Ekman pumping for a few hundred kilometers downstream from the Kerguelen Plateau; Chl a values tend to be more elevated in places where wind-stress curl induces Ekman upwelling than in locations of downwelling, although the estimated upwelling rates are too small for this relationship to derive from direct effects on upward iron supply, and thus other processes, which remain to be determined, must also be involved in the establishment of these correlations. During the October and November (2011) KErguelen Ocean and Plateau compared Study (KEOPS-2) field program, wind conditions were fairly typical for the region, with enhanced Ekman upwelling expected to the north of the Kerguelen Islands.
NASA Astrophysics Data System (ADS)
Olierook, Hugo K. H.; Merle, Renaud E.; Jourdan, Fred
2017-06-01
The link between the Kerguelen large igneous province and several moderately-voluminous magmatic domains emplaced on continental crust near the relict triple junction of eastern Gondwana remains tentative. In particular, linking Sr-Nd-Pb isotopic ratios of the 90,000 km2 submerged Naturaliste Plateau at the relict triple junction of eastern Gondwana to the Kerguelen LIP were difficult due to previous age estimates of ca. 100 Ma. Sericite hydrothermal plateau ages as old as 127.6 ± 0.6 Ma indicate that the volcanism on the plateau began at or prior to ca. 128 Ma, which is > 25 m.y. older than previous estimations. These ages are closely matched by the then-nearby ca. 140-130 Ma Comei, 137-130 Ma Bunbury, 124 Ma Wallaby Plateau and 118-117 Ma Rajmahal-Bengal-Sylhet magmatic provinces. The Sr-Nd-Pb isotopic characteristics of the majority of these ca. 140-117 Ma circum-eastern Gondwana magmatic provinces display only source contributions from the depleted asthenosphere and lithosphere with negligible contribution from the Kerguelen mantle plume. The Comei Province shows a direct plume-related melt signature, probably because it sits directly in the center of the modeled plume head position at 140-130 Ma. We suggest that the Kerguelen mantle plume provided the additional heat necessary to melt the asthenosphere and lithosphere of the circum-eastern Gondwanan magmatic provinces. Only after the motion of the Kerguelen plume head into the nascent Indian Ocean at ca. 100-95 Ma does a significant melt contribution from the Kerguelen mantle plume become evident in the isotopic signature, a signal that persists until the present-day. Despite differences in source contributions over time, it is clear that the Kerguelen mantle plume is necessary for the production of all the circum-eastern Gondwana magmatic domains, which we propose should be referred to as the Greater Kerguelen Large Igneous Province.
NASA Astrophysics Data System (ADS)
Jena, Babula
2016-09-01
The presence of the Kerguelen Plateau and surrounding bathymetric features has a strong influence on the persistently eastward flowing Antarctic Circumpolar Current (ACC), resulting in enhancement of surface chlorophyll-a (Chl- a) in the downstream section of the plateau along the polar front (PF). The phenomenon is reported in this paper as the island mass effect (IME). Analysis of climatological Chl- a datasets from Aqua- Moderate Resolution Imaging Spectroradiometer (Aqua- MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) shows distinct bloomy plumes (Chl- a>0.5 mg/m3) during austral spring-summer spreading as far as ~1800 km offshore up to 98°E along the downstream of the north Kerguelen Plateau (NKP). Similar IME phenomena is apparent over the south Kerguelen Plateau (SKP) with the phytoplankton bloom extending up to 96.7°E, along the southern boundary of ACC. The IME phenomena are pronounced only during austral spring-summer period with the availability of light and sedimentary source of iron from shallow plateau to sea surface that fertilizes the mixed layer. The NKP bloom peaks with a maximum areal extent of 1.315 million km2 during December, and the SKP bloom peaks during January with a time lag of one month. The blooms exist for at least 4 months of a year and are significant both as the base of regional food web and for regulating the biogeochemical cycle in the Southern Ocean. Even though the surface water above the Kerguelen Plateau is rich in Chl- a, an exception of an oligotrophic condition dominated between NKP and SKP due to apparent intrusion of iron limited low phytoplankton regime waters from the Enderby basin through the northeastward Fawn Trough Current.
New Exploration of Kerguelen Plateau Margins
NASA Astrophysics Data System (ADS)
Vially, R.; Roest, W. R.; Loubrieu, B.; Courreges, E.; Lecomte, J.; Patriat, M.; Pierre, D.; Schaming, M.; Schmitz, J.
2008-12-01
France ratified the United Nations Convention on the Law of the Sea in 1996, and has since undertaken an ambitious program of bathymetric and seismic data acquisition (EXTRAPLAC Program) to support claims for the extension of the legal continental shelf, in accordance with Article 76 of this convention. For this purpose, three oceanographic surveys took place on board of the R/V Marion Dufresne II on the Kerguelen Plateau, in Southern Indian Ocean: MD137-Kergueplac1 (February 2004), MD150-Kergueplac2 (October 2005) and MD165-Kergueplac3 (January 2008), operated by the French Polar Institute. Thus, more than 20 000 km of multibeam bathymetric, magnetic and gravimetric profiles, and almost 6 000 km of seismic profiles where acquired during a total of 62 days of survey in the study area. Ifremer's "rapid seismic" system was used, comprised of 4 guns and a 24 trace digital streamer, operated at speeds up to 10 knots. In addition to its use for the Extraplac Program, the data set issued from these surveys gives the opportunity to improve our knowledge of the structure of the Kerguelen Plateau and more particularly of its complex margins. In this poster, we will show the high resolution bathymetry (200 m) data set, that allows us to specify the irregular morphology of the sea floor in the north Kerguelen Plateau, characterised by ridges and volcanoes chains, radial to the plateau, that intersect the oceanic basin on the NE edge of the Kerguelen Plateau. We will also show magnetic and gravity data, which help us to understand the setting up of the oceanic plateau and the kinematics reconstructions. The seismic profiles show that the acoustic basement of the plateau is not much tectonised, and displays a very smooth texture, clearly contrasting it from typical oceanic basement. Both along the edge of the plateau as in the abyssal plain, sediments have variable thicknesses. The sediments on the margin of the plateau are up to 1200 meters thick and display irregular crisscross patterns, suggesting the presence of important bottom currents.
NASA Astrophysics Data System (ADS)
van Wijk, Esmee M.; Rintoul, Stephen R.; Ronai, Belinda M.; Williams, Guy D.
2010-05-01
The fine-scale circulation around the Heard and McDonald Islands and through the Fawn Trough, Kerguelen Plateau, is described using data from three high-resolution CTD sections, Argo floats and satellite maps of chlorophyll a, sea surface temperature (SST) and absolute sea surface height (SSH). We confirm that the Polar Front (PF) is split into two branches over the Kerguelen Plateau, with the NPF crossing the north-eastern limits of our survey carrying 25 Sv to the southeast. The SPF was associated with a strong eastward-flowing jet carrying 12 Sv of baroclinic transport through the deepest part of Fawn Trough (relative to the bottom). As the section was terminated midway through the trough this estimate is very likely to be a lower bound for the total transport. We demonstrate that the SPF contributes to the Fawn Trough Current identified by previous studies. After exiting the Fawn Trough, the SPF crossed Chun Spur and continued as a strong north-westward flowing jet along the eastern flank of the Kerguelen Plateau before turning offshore between 50°S and 51.5°S. Measured bottom water temperatures suggest a deep water connection between the northern and southern parts of the eastern Kerguelen Plateau indicating that the deep western boundary current continues at least as far north as 50.5°S. Analysis of satellite altimetry derived SSH streamlines demonstrates a southward shift of both the northern and southern branches of the Polar Front from 1994 to 2004. In the direct vicinity of the Heard and McDonald islands, cool waters of southern origin flow along the Heard Island slope and through the Eastern Trough bringing cold Winter Water (WW) onto the plateau. Complex topography funnels flow through canyons, deepens the mixed layer and increases productivity, resulting in this area being the preferred foraging region for a number of satellite-tracked land-based predators.
NASA Astrophysics Data System (ADS)
Bowie, A. R.; van der Merwe, P.; Quéroué, F.; Trull, T.; Fourquez, M.; Planchon, F.; Sarthou, G.; Chever, F.; Townsend, A. T.; Obernosterer, I.; Sallée, J.-B.; Blain, S.
2015-07-01
Iron availability in the Southern Ocean controls phytoplankton growth, community composition and the uptake of atmospheric CO2 by the biological pump. The KEOPS-2 (KErguelen Ocean and Plateau compared Study 2) "process study", took place around the Kerguelen Plateau in the Indian sector of the Southern Ocean. This is a region naturally fertilised with iron on the scale of hundreds to thousands of square kilometres, producing a mosaic of spring blooms which show distinct biological and biogeochemical responses to fertilisation. This paper presents biogeochemical iron budgets (incorporating vertical and lateral supply, internal cycling, and sinks) for three contrasting sites: an upstream high-nutrient low-chlorophyll reference, over the plateau and in the offshore plume east of the Kerguelen Islands. These budgets show that distinct regional environments driven by complex circulation and transport pathways are responsible for differences in the mode and strength of iron supply, with vertical supply dominant on the plateau and lateral supply dominant in the plume. Iron supply from "new" sources (diffusion, upwelling, entrainment, lateral advection, atmospheric dust) to the surface waters of the plume was double that above the plateau and 20 times greater than at the reference site, whilst iron demand (measured by cellular uptake) in the plume was similar to that above the plateau but 40 times greater than at the reference site. "Recycled" iron supply by bacterial regeneration and zooplankton grazing was a relatively minor component at all sites (< 8 % of new supply), in contrast to earlier findings from other biogeochemical iron budgets in the Southern Ocean. Over the plateau, a particulate iron dissolution term of 2.5 % was invoked to balance the budget; this approximately doubled the standing stock of dissolved iron in the mixed layer. The exchange of iron between dissolved, biogenic particulate and lithogenic particulate pools was highly dynamic in time and space, resulting in a decoupling of the iron supply and carbon export and, importantly, controlling the efficiency of fertilisation.
Widespread Neogene and Quaternary Volcanism on Central Kerguelen Plateau, Southern Indian Ocean
NASA Astrophysics Data System (ADS)
Duncan, R. A.; Falloon, T.; Quilty, P. G.; Coffin, M. F.
2016-12-01
We report new age determinations and compositions for rocks from 18 dredge hauls collected from eight submarine areas across Central Kerguelen Plateau (CKP). Sea knolls and volcanic fields with multiple small cones were targeted over a 125,000 km2 region that includes Heard and McDonald islands. Large early Miocene (16-22 Ma) sea knolls rise from the western margin of the CKP and are part of a NNW-SSE line of volcanic centers that lie between Îles Kerguelen and Heard and McDonald islands. A second group of large sea knolls is aligned E-W across the center of this region. We see evidence of much younger activity (5 Ma to present) in volcanic fields to the north of, and up to 300 km NE of Heard Island. Compositions include basanite, basalt, and trachybasalt, that are broadly similar to plateau lava flows from nearby Ocean Drilling Program (ODP) Site 1138, lower Miocene lavas at Îles Kerguelen, dredged rocks from the early Miocene sea knolls, and Big Ben lavas from Heard Island. Geochemical data indicate decreasing fractions of mantle source melting with time. The western line of sea knolls has been related to hotspot activity now underlying the Heard Island area. In view of the now recognized much larger area of young volcanic activity, we propose that a broad region of CKP became volcanically active in Neogene time due to incubation of plume material at the base of the relatively stationary overlying plateau. The presence of pre-existing crustal faults promotes access for melts from the Heard mantle plume to rise to the surface.
NASA Astrophysics Data System (ADS)
Mathieu, L.; Byrne, P. K.; van Wyk de Vries, B.; Moine, B.
2009-12-01
Little work has been done on the tectonics of the emergent areas of the Kerguelen Archipelago, even though the extensive outcrop renders the islands especially good for structural work. The results of two field campaigns and remote sensing analysis carried out in the central part of the archipelago around the Val Travers valley and the Mt Ross volcano are presented. The Archipelago is part of the Kerguelen Plateau, a Large Igneous Province that has developed in the Indian Ocean from the early Cretaceous. It spread along the newly formed SE Indian mid-oceanic ridge (SEIR) during the early Tertiary. The rifting event produced NW-SE, N-S and E-W striking grabens in the plateau that are respectively, parallel to the SEIR, related to sinistral strike-slip movements along the SEIR, and of unknown origin. The Kerguelen Archipelago formed after the rifting event over the plateau but nevertheless, it contains the bulk of structural directions mentioned above. The lavas (Plateau Basalts) that make up most of the area are densely fractured, crossed by many veins and some small faults as well as dykes. The rare faults identified are either normal or affected by sinistral transtensional movements. The fractures have mainly a NW-SE orientation that is consistent with extension related to the SEIR. Dykes, veins and normal faults strike E-W and are related to a dominant N-S directed regional extension. The scarcity of discrete faults contrasts with the density of fractures and other lineaments that appear to cover the bulk of land exposed to remote sensing observations. Such structures were formed by regional deformation too small to produce large discrete faults. We also have found a 20 km-wide polygonal fracture pattern encircling Mt Ross Volcano. This structure could be linked to repeated deflation and inflation of the ground related to a buried intrusive complex. Again, the movements are too small to produce discrete faults. Instead, they produce a polygon of deformation whose edges are parallel to buried rifting faults re-activated by the vertical movements. This work outlines the structure of the central part of the Kerguelen Archipelago that is affected by regional stresses and is imprinted by local tectonic structures related to intrusive activity. Kerguelen provides a structural situation that can be compared with Iceland and also with volcano-tectonic structures on other planets.
Fine resolution 3D temperature fields off Kerguelen from instrumented penguins
NASA Astrophysics Data System (ADS)
Charrassin, Jean-Benoît; Park, Young-Hyang; Le Maho, Yvon; Bost, Charles-André
2004-12-01
The use of diving animals as autonomous vectors of oceanographic instruments is rapidly increasing, because this approach yields cost-efficient new information and can be used in previously poorly sampled areas. However, methods for analyzing the collected data are still under development. In particular, difficulties may arise from the heterogeneous data distribution linked to animals' behavior. Here we show how raw temperature data collected by penguin-borne loggers were transformed to a regular gridded dataset that provided new information on the local circulation off Kerguelen. A total of 16 king penguins ( Aptenodytes patagonicus) were equipped with satellite-positioning transmitters and with temperature-time-depth recorders (TTDRs) to record dive depth and sea temperature. The penguins' foraging trips recorded during five summers ranged from 140 to 600 km from the colony and 11,000 dives >100 m were recorded. Temperature measurements recorded during diving were used to produce detailed 3D temperature fields of the area (0-200 m). The data treatment included dive location, determination of the vertical profile for each dive, averaging and gridding of those profiles onto 0.1°×0.1° cells, and optimal interpolation in both the horizontal and vertical using an objective analysis. Horizontal fields of temperature at the surface and 100 m are presented, as well as a vertical section along the main foraging direction of the penguins. Compared to conventional temperature databases (Levitus World Ocean Atlas and historical stations available in the area), the 3D temperature fields collected from penguins are extremely finely resolved, by one order finer. Although TTDRs were less accurate than conventional instruments, such a high spatial resolution of penguin-derived data provided unprecedented detailed information on the upper level circulation pattern east of Kerguelen, as well as the iron-enrichment mechanism leading to a high primary production over the Kerguelen Plateau.
NASA Astrophysics Data System (ADS)
Trull, Thomas W.; Davies, Diana; Casciotti, Karen
2008-03-01
The KErguelen Ocean and Plateau compared Study (KEOPS) documented enhanced iron input and phytoplankton biomass over the deep Kerguelen plateau in comparison to surrounding high-nutrient low-chlorophyll (HNLC) waters in late summer 2005. We examined the influence of this iron on nitrogen and carbon metabolism by the microbial food-web, by comparing samples from on-plateau and off-plateau. Suspended particulate organic carbon (POC) was ˜5 times more abundant on-plateau and exhibited greater POC/PON (˜6.5 vs. ˜5.5), δ13C-POC (˜-21.5 vs. ˜-24.5‰) and δ15N-PON (˜+2 vs. ˜0‰) than off-plateau. These differences arose in part from changes in ecosystem structure as demonstrated by size-fractionation (1, 5, 20, 55, 210, and 335-μm filters in series), which revealed large isotopic variations with size ( δ13C-POC ranged from -28 to -19‰ and δ15N-PON from -3 to +5‰) and greater abundances of 13C- and 15N-enriched large phytoplankton over the plateau. The 13C enrichment in POC reflected faster growth rates and greater draw-down of dissolved inorganic carbon over the plateau. Quantitative comparison to the δ15N of dissolved nitrate indicates that the δ15N-PON enrichment derived from increased assimilation of nitrate, corresponding to new production f-ratios of 0.7-0.9 on-plateau vs. 0.4-0.6 off-plateau. Results from a sparse set of free-drifting sediment trap samples suggest control of export by zooplankton grazing. The 15N and 18O enrichments in dissolved nitrate exhibited a 1:1 correlation, indicating that phytoplankton assimilation controls nitrate availability and only a relatively small amount of nitrate was regenerated by nitrification. The δ15N-NO 3 values yield indistinguishable isotopic fractionation factors on and off the plateau ( 15ɛ of 4-5‰). This suggests that variations in iron availability may not bias the interpretation of paleo-environmental 15N records, and leaves intact the view that higher sedimentary δ15N-PON values during the last glacial maximum indicate greater fractional nitrate depletion in the Southern Ocean.
NASA Astrophysics Data System (ADS)
Bout-Roumazeilles, V.; Beny, F.; Mazaud, A.; Michel, E.; Crosta, X.; Davies, G. R.; Bory, A. J. M.
2017-12-01
High-resolution sedimentological and geochemical records were obtained from two sediment cores recovered by the French R/V Marion Dufresne during the INDIEN-SUD-ACC cruises near the sub-Antarctic Kerguelen Islands (49°S). This area is ideal to record past oceanic and atmospheric changes in the Southern Ocean because they are currently located in the northern branch of the Antarctic Circumpolar Current and under the direct influence of Southern Hemisphere Westerly wind belt. This study focuses on the last termination, with specific emphasis on the impact of severe climatic events (Heinrich Stadial 1, Antarctic Cold Reversal, Younger Dryas) onto the ocean-atmospheric exchange. Results indicates that most of the sediment is derived from the Kerguelen Plateau, characterized by high smectite content. Periodically, a minor contribution of Antarctica is noticeable. In particular, illite variations suggest fast and short northward incursions of Antarctic Bottom Water, probably formed in the Prydz Bay during the last glaciation. Grainsize repartition combined to magnetic parameters show a southward migration of the ACC and the fronts associated from the beginning of the deglaciation, which is consistent with Southern Hemisphere climate variations. On the opposite, it highlights an asynchronous decrease of the ACC strength, with a large drop during the Antarctic Cold Reversal when atmospheric CO2 increase was slowed down. Thus, at least in the studied area, the ACC strength and the Antarctic Climate were not synchronous during the last deglaciation.
NASA Astrophysics Data System (ADS)
Bowie, A. R.; van der Merwe, P.; Quéroué, F.; Trull, T.; Fourquez, M.; Planchon, F.; Sarthou, G.; Chever, F.; Townsend, A. T.; Obernosterer, I.; Sallée, J.-B.; Blain, S.
2014-12-01
Iron availability in the Southern Ocean controls phytoplankton growth, community composition and the uptake of atmospheric CO2 by the biological pump. The KEOPS-2 experiment took place around the Kerguelen plateau in the Indian sector of the Southern Ocean, a region naturally fertilised with iron at the scale of hundreds to thousands of square kilometres, producing a mosaic of spring blooms which showed distinct biological and biogeochemical responses to fertilisation. This paper presents biogeochemical iron budgets (incorporating vertical and lateral supply, internal cycling, and sinks) for three contrasting sites: an upstream high-nutrient low-chlorophyll reference, over the plateau, and in the offshore plume east of Kerguelen Island. These budgets show that distinct regional environments driven by complex circulation and transport pathways are responsible for differences in the mode and strength of iron supply, with vertical supply dominant on the plateau and lateral supply dominant in the plume. Iron supply from "new" sources to surface waters of the plume was double that above the plateau and 20 times greater than at the reference site, whilst iron demand (measured by cellular uptake) in the plume was similar to the plateau but 40 times greater than the reference. "Recycled" iron supply by bacterial regeneration and zooplankton grazing was a relative minor component at all sites (<8% of "new" supply), in contrast to earlier findings from other biogeochemical iron budgets in the Southern Ocean. Over the plateau, a particulate iron dissolution term of 2.5% was invoked to balance the budget; this approximately doubled the standing stock of dissolved iron in the mixed layer. The exchange of iron between dissolved, biogenic and lithogenic particulate pools was highly dynamic in time and space, resulting in a decoupling of iron supply and carbon export and, importantly, controlling the efficiency of fertilisation.
NASA Astrophysics Data System (ADS)
Savoye, N.; Trull, T. W.; Jacquet, S. H. M.; Navez, J.; Dehairs, F.
2008-03-01
Five iron-fertilization experiments in the Southern Ocean have clearly demonstrated that adding iron increases primary production, but the implications for carbon export to the ocean interior have been less clear. This reflects both observational limitations of short-term experiments and their uncertain relevance to quantifying ecosystem level processes that are likely to be structured differently under conditions of punctual versus persistent stimulation. To avoid these biases, KEOPS (KErguelen Ocean and Plateau compared Study) investigated the naturally iron-fertilized Kerguelen Plateau region in the Indian Sector of the Southern Ocean that exhibits an annual phytoplankton bloom. Here, we report particulate organic carbon (POC) and nitrogen export from this system based on the 234Th approach. Results indicate that the export fluxes were variable both on and off the Kerguelen Plateau (9.0-38.4 mmol C m -2 d -1 and 1.6-4.8 mmol N m -2 d -1) and were in the range of values reported for natural Southern Ocean ecosystems. Export fluxes were compared at two reference stations, one above and one outside the Plateau. The station above the plateau was characterized by higher iron supply and export fluxes compared to the station outside the plateau. The difference in the export flux between these two reference stations defines the export excess induced by iron fertilization. It was 10.8±4.9 mmol C m -2 d -1 and 0.9±0.7 mmol N m -2 d -1 at 100 m, and 14.2±7.7 mmol C m -2 d -1 and 2.0±1.3 mmol N m -2 d -1 at 200 m. This POC export excess was similar to those found during other studies of artificial (SOFeX) and natural (CROZEX) iron fertilization in the Southern Ocean. The examination of the export efficiency (defined as the ratio of export to primary production) revealed significant variability over the plateau related to the temporal decoupling of production and export during the demise of the bloom. On average, the export efficiency was lower over the plateau than in surrounding waters, suggesting that increased iron supply may increase total export but lower export efficiency. Our findings are very important for evaluating present and past carbon cycling in the Southern and global oceans and for assessing predictive scenarios of carbon cycling and budget.
NASA Astrophysics Data System (ADS)
Lo Monaco, C.; Metzl, N.; D'Ovidio, F.; Llort, J.; Ridame, C.
2014-12-01
Iron and light are the main factors limiting the biological pump of CO2 in the Southern Ocean. Iron fertilization experiments have demonstrated the potential for increased uptake of atmospheric CO2, but little is known about the evolution of fertilized environnements. This paper presents observations collected in one of the largest phytoplankton bloom of the Southern Ocean sustained by iron originating from the Kerguelen Plateau. We first complement previous studies by investigating the mechanisms that control air-sea CO2 fluxes over and downstream of the Kerguelen Plateau at the onset of the bloom based on measurements obtained in October-November 2011. These new observations show the rapid establishment of a strong CO2 sink in waters fertilized with iron as soon as vertical mixing is reduced. The magnitude of the CO2 sink was closely related to chlorophyll a and iron concentrations. Because iron concentration strongly depends on the distance from the iron source and the mode of delivery, we identified lateral advection as the main mechanism controlling air-sea CO2 fluxes downtream the Kerguelen Plateau during the growing season. In the southern part of the bloom, situated over the Plateau (iron source), the CO2 sink was stronger and spatially more homogeneous than in the plume offshore. However, we also witnessed a substantial reduction in the uptake of atmospheric CO2 over the Plateau following a strong winds event. Next, we used all the data available in this region in order to draw the seasonal evolution of air-sea CO2 fluxes. The CO2 sink is rapidly reduced during the course of the growing season, which we attribute to iron and silicic acid depletion. South of the Polar Front, where nutrients depletion is delayed, we suggest that the amplitude and duration of the CO2 sink is mainly controlled by vertical mixing. The impact of iron fertilization on air-sea CO2 fluxes is revealed by comparing the uptake of CO2 integrated over the productive season in the bloom, between 1 and 1.5 mol C m-2 yr-1, and in the iron-poor HNLC waters, where we found a typical value of 0.4 mol C m-2 yr-1. Extrapolating our results to the ice-free Southern Ocean (~50-60° S) suggests that iron fertilization of the whole area would increase the contemporay oceanic uptake of CO2 by less than 0.1 Pg C yr-1, i.e., less than 1% of the current anthropogenic CO2 emissions.
Internal tides and vertical mixing over the Kerguelen Plateau
NASA Astrophysics Data System (ADS)
Park, Young-Hyang; Fuda, Jean-Luc; Durand, Isabelle; Naveira Garabato, Alberto C.
2008-03-01
Within the context of the natural iron-fertilization study KEOPS, time series measurements of CTD and LADCP profiles at a site (50.6°S, 72°E; 528 m) coinciding with an annual phytoplankton bloom over the Kerguelen Plateau were made during the January-February 2005 KEOPS cruise. An important activity of highly nonlinear semidiurnal internal tides having peak-to-peak isopycnal displacements of up to 80 m is identified. These internal tides appear to be a principal agent for promoting elevated vertical mixing indispensable for upward transfer of iron within the seasonal thermocline. We estimate local vertical eddy diffusivities of the order of 4×10 -4 m 2 s -1 using a Thorpe scale analysis. Although this estimate is higher by an order of magnitude than the canonical value O (0.1×10 -4 m 2 s -1) in the open ocean away from boundaries, it is consistent with nonlinear internal wave/wave interaction theories, as verified by independent diffusivity estimates using the vertical wavenumber spectral methods for shear and strain. It is also suggested that the general ocean circulation may play an important role in preconditioning the bloom in that the relatively sluggish circulation over the shallow plateau (compared to the much more dynamic neighbouring deep ocean) may foster the bloom's observed annual recurrence over the plateau.
NASA Astrophysics Data System (ADS)
Planchon, F.; Ballas, D.; Cavagna, A.-J.; Bowie, A. R.; Davies, D.; Trull, T.; Laurenceau, E.; Van Der Merwe, P.; Dehairs, F.
2014-11-01
The Kerguelen Plateau region in the Indian sector of the Southern Ocean supports annually a large-scale phytoplankton bloom which is naturally fertilized with iron. As part of the second KErguelen Ocean and Plateau compared Study expedition (KEOPS2) in austral spring (October-November 2011), we examined upper-ocean Particulate Organic Carbon (POC) export using the 234Th approach. We aimed at characterizing the spatial and the temporal variability of POC export production at high productivity sites over and downstream the Kerguelen plateau. Export production is compared to a High Nutrient Low Chlorophyll area upstream of the plateau in order to assess the impact of iron-induced productivity on the vertical export of carbon. Deficits in 234Th activities relative to its parent nuclide 238U were observed at all stations in surface waters, indicating that scavenging by particles occurred during the early stages of the phytoplankton bloom. 234Th export was lowest at reference station R-2 (412 ± 134 dpm m-2 d-1) and highest inside a~permanent meander of the Polar Front (PF) at stations E (1995 ± 176 dpm m-2 d-1, second visit E-3) where a detailed time series was obtained as part of a~pseudo-lagrangian study. 234Th export over the central plateau was relatively limited at station A3 early (776 ± 171 dpm m-2 d-1, first visit A3-1) and late in the survey (993 ± 223 dpm m-2 d-1, second visit A3-2), but it was higher at high biomass stations TNS-8 (1372 ± 255 dpm m-2 d-1) and E-4W (1068 ± 208 dpm m-2 d-1) in waters which could be considered as derived from plateau. Limited 234Th export of 973 ± 207 dpm m-2 d-1 was also found in the northern branch of the Kerguelen bloom located downstream of the island, north of the PF (station F-L). The 234Th results support that Fe fertilization increased particle export in all iron fertilized waters. The impact was greatest in the recirculation feature (3-4 fold at 200 m depth), but more moderate over the central Kerguelen plateau and in the northern plume of the Kerguelen bloom (∼2-fold at 200 m depth). The C : Th ratio of large (> 53 μm) potentially sinking particles collected via sequential filtration using in situ pumping (ISP) systems were used to convert the 234Th flux into a POC export flux. The C : Th ratios of sinking particles were highly variable (range: 3.1 ± 0.1-10.5 ± 0.2 μmol dpm-1) with no clear site related trend, despite the variety of ecosystem responses in the fertilized regions. C : Th ratios showed a decreasing trend between 100 and 200 m depth suggesting preferential loss of carbon relative to 234Th possibly due to heterotrophic degradation and/or grazing activity. Comparison of the C : Th ratios within sinking particles obtained with the drifting sediment traps showed in most cases very good agreement to those collected via ISP deployments (> 53 μm particles). Carbon export production varied between 3.5 ± 0.9 mmol m-2 d-1 and 11.8 ± 1.3 mmol m-2 d-1 from the upper 100 m and between 1.8 ± 0.9 mmol m-2 d-1 and 8.2 ± 0.9 mmol m-2 d-1 from the upper 200 m. Highest export production was found inside the PF meander with a range of 5.4 ± 0.7 mmol m-2 d-1 to 11.8 ± 1.1 mmol m-2 d-1 at 100 m depth decreasing to 5.3 ± 1.0 mmol m-2 d-1 to 8.2 ± 0.8 mmol m-2 d-1 at 200 m depth over the 19 day survey period. The impact of Fe fertilization is highest inside the PF meander with 2.9- up to 4.5-fold higher carbon flux at 200 m depth in comparison to the HNLC control station. The impact of Fe fertilization was significantly less over the central plateau (stations A3 and E-4W) and in the northern branch of the bloom (station F-L) with 1.6- up to 2.0-fold higher carbon flux compared to the reference station R. Export efficiencies (ratio of export to primary production) were particularly variable with relatively high values in the recirculation feature (6-27%) and low values (1-5%) over the central plateau (station A3) and north of the PF (station F-L) indicating spring biomass accumulation. Comparison with KEOPS1 results indicated that carbon export production is much lower during the onset of the bloom in austral spring in comparison to the peak and declining phase in late summer.
NASA Astrophysics Data System (ADS)
Planchon, F.; Ballas, D.; Cavagna, A.-J.; Bowie, A. R.; Davies, D.; Trull, T.; Laurenceau-Cornec, E. C.; Van Der Merwe, P.; Dehairs, F.
2015-06-01
This study examined upper-ocean particulate organic carbon (POC) export using the 234Th approach as part of the second KErguelen Ocean and Plateau compared Study expedition (KEOPS2). Our aim was to characterize the spatial and the temporal variability of POC export during austral spring (October-November 2011) in the Fe-fertilized area of the Kerguelen Plateau region. POC export fluxes were estimated at high productivity sites over and downstream of the plateau and compared to a high-nutrient low-chlorophyll (HNLC) area upstream of the plateau in order to assess the impact of iron-induced productivity on the vertical export of carbon. Deficits in 234Th activities were observed at all stations in surface waters, indicating early scavenging by particles in austral spring. 234Th export was lowest at the reference station R-2 and highest in the recirculation region (E stations) where a pseudo-Lagrangian survey was conducted. In comparison 234Th export over the central plateau and north of the polar front (PF) was relatively limited throughout the survey. However, the 234Th results support that Fe fertilization increased particle export in all iron-fertilized waters. The impact was greatest in the recirculation feature (3-4 fold at 200 m depth, relative to the reference station), but more moderate over the central Kerguelen Plateau and in the northern plume of the Kerguelen bloom (~2-fold at 200 m depth). The C : Th ratio of large (>53 μm) potentially sinking particles collected via sequential filtration using in situ pumping (ISP) systems was used to convert the 234Th flux into a POC export flux. The C : Th ratios of sinking particles were highly variable (3.1 ± 0.1 to 10.5 ± 0.2 μmol dpm-1) with no clear site-related trend, despite the variety of ecosystem responses in the fertilized regions. C : Th ratios showed a decreasing trend between 100 and 200 m depth suggesting preferential carbon loss relative to 234Th possibly due to heterotrophic degradation and/or grazing activity. C : Th ratios of sinking particles sampled with drifting sediment traps in most cases showed very good agreement with ratios for particles collected via ISP deployments (>53 μm particles). Carbon export production varied between 3.5 ± 0.9 and 11.8 ± 1.3 mmol m-2 d-1 from the upper 100 m and between 1.8 ± 0.9 and 8.2 ± 0.9 mmol m-2 d-1 from the upper 200 m. The highest export production was found inside the PF meander with a range of 5.3 ± 1.0 to 11.8 ± 1.1 mmol m-2 d-1 over the 19-day survey period. The impact of Fe fertilization is highest inside the PF meander with 2.9-4.5-fold higher carbon flux at 200 m depth in comparison to the HNLC control station. The impact of Fe fertilization was significantly less over the central plateau (stations A3 and E-4W) and in the northern branch of the bloom (station F-L) with 1.6-2.0-fold higher carbon flux compared to the reference station R. Export efficiencies (ratio of export to primary production and ratio of export to new production) were particularly variable with relatively high values in the recirculation feature (6 to 27 %, respectively) and low values (1 to 5 %, respectively) over the central plateau (station A3) and north of the PF (station F-L), indicating spring biomass accumulation. Comparison with KEOPS1 results indicated that carbon export production is much lower during the onset of the bloom in austral spring than during the peak and declining phases in late summer.
2014/2015 Investigations of the Ontong Java and Kerguelen Plateaus
NASA Astrophysics Data System (ADS)
Coffin, M. F.; Whittaker, J. M.
2013-12-01
The two largest oceanic plateaus, Ontong Java in the western Pacific, and Kerguelen in the southern Indian Ocean, will be the focus of scheduled multidisciplinary/interdisciplinary shipboard expeditions in 2014 and 2015. In mid-2014, scientists aboard the Schmidt Ocean Institute's RV Falkor will investigate the origin and evolution of two large atolls, Ontong Java and Nukumanu, surmounting the ca 122 Ma Ontong Java Plateau, as well how Kroenke Canyon, which deeply incises the plateau, formed and evolved. First-ever multibeam bathymetry and sub-bottom profiling data from the atolls and canyon will reveal their submarine and shallow sub-seafloor morphology, and, if combined with geochemical and geochronological analyses of potential igneous basement samples, will yield important information on their origin and evolution. The primary goals of this atoll and canyon project are: to test potential genetic relationships between a) the atolls and the OJP, and b) the atolls and Kroenke Canyon; to understand and model how atolls and canyons form and evolve on oceanic plateaus, isolated from terrestrial influences and subject to sea level fluctuations; and to contribute to understanding tsunami risk on low-lying atolls. In late 2014 and early 2015, researchers aboard Australia's new Marine National Facility, RV Investigator, will investigate active submarine hotspot volcanism on the Kerguelen Plateau and its consequences. The project's overall aim is to test the hypothesis that hydrothermal activity driven by active submarine magmatism fertilizes surface waters with iron that enhances primary biological productivity. Surmounting the Cretaceous plateau, Heard and McDonald Islands are among the world's most active hotspot volcanoes, and new multibeam bathymetry and sub-bottom profiling data will enable identification of candidate active submarine volcanoes, which we will sample. In the overlying water column, we will collect samples to test for the presence or absence of associated hydrothermalism as well as iron and other elemental enrichment. If present, we will compare our data to satellite images of primary biological productivity (eg, chlorophyll) to test for temporal and spatial correlations.
NASA Astrophysics Data System (ADS)
Obernosterer, Ingrid; Christaki, Urania; Lefèvre, Dominique; Catala, Philippe; Van Wambeke, France; Lebaron, Philippe
2008-03-01
The response of heterotrophic bacteria ( Bacteria and Archaea) to the spring phytoplankton bloom that occurs annually above the Kerguelen Plateau (Southern Ocean) due to natural iron fertilization was investigated during the KErguelen Ocean and Plateau compared Study (KEOPS) cruise in January-February 2005. In surface waters (upper 100 m) in the core of the phytoplankton bloom, heterotrophic bacteria were, on an average, 3-fold more abundant and revealed rates of production ([ 3H] leucine incorporation) and respiration (<0.8 μm size fraction) that exceeded those in surrounding high-nutrient low-chlorophyll (HNLC) waters by factors of 6 and 5, respectively. These differences in bacterial metabolic activities were attributable to high-nucleic-acid-containing cells that dominated (≈80% of total cell abundance) the heterotrophic bacterial community associated with the phytoplankton bloom. Bacterial growth efficiencies varied between 14% and 20% inside the bloom and were <10% in HNLC waters. Results from bottle-incubation experiments performed at the bloom station indicated that iron had no direct but an indirect effect on heterotrophic bacterial activity, due to the stimulation by phytoplankton-derived dissolved organic matter. Within the Kerguelen bloom, bacterial carbon demand accounted for roughly 45% of gross community production. These results indicate that heterotrophic bacteria processed a significant portion of primary production, with most of it being rapidly respired.
NASA Astrophysics Data System (ADS)
Carlotti, F.; Jouandet, M.-P.; Nowaczyk, A.; Harmelin-Vivien, M.; Lefèvre, D.; Richard, P.; Zhu, Y.; Zhou, M.
2015-07-01
This paper presents results on the spatial and temporal distribution patterns of mesozooplankton in the naturally fertilized region to the east of the Kerguelen Islands (Southern Ocean) visited at early bloom stage during the KEOPS2 survey (15 October to 20 November 2011). The aim of this study was to compare the zooplankton response in contrasted environments localized over the Kerguelen Plateau in waters of the east shelf and shelf edge and in productive oceanic deep waters characterized by conditions of complex circulation and rapidly changing phytoplankton biomass. The mesozooplankton community responded to the spring bloom earlier on the plateau than in the oceanic waters, where complex mesoscale circulation stimulated initial more or less ephemeral blooms before a broader bloom extension. Taxonomic compositions showed a high degree of similarity across the whole region, and the populations initially responded to spring bloom with a large production of larval forms increasing abundances, without biomass changes. Taxonomic composition and stable isotope ratios of size-fractionated zooplankton indicated the strong domination of herbivores, and the total zooplankton biomass values over the survey presented a significant correlation with the integrated chlorophyll concentrations in the mixed layer. The biomass stocks observed at the beginning of the KEOPS2 cruise were around 1.7 g C m-2 above the plateau and 1.2 g C m-2 in oceanic waters. Zooplankton biomass in oceanic waters remained on average below 2 g C m-2 over the study period, except for one station in the Polar Front zone (F-L), whereas zooplankton biomasses were around 4 g C m-2 on the plateau at the end of the survey. The most remarkable feature during the sampling period was the stronger increase in abundance in the oceanic waters (25 × 103 to 160 × 103 ind m-2) than on the plateau (25 × 103 to 90 × 103 ind m-2). The size structure and taxonomic distribution patterns revealed a cumulative contribution of various larval stages of dominant copepods and euphausiids particularly in the oceanic waters, with clearly identifiable stages of progress during a Lagrangian time series survey. The reproduction and early stage development of dominant species were sustained by mesoscale-related initial ephemeral blooms in oceanic waters, but growth was still food-limited and zooplankton biomass stagnated. In contrast, zooplankton abundance and biomass on the shelf were both in a growing phase, at slightly different rates, due to growth under sub-optimal conditions. Combined with our observations during the KEOPS1 survey (January-February 2005), the present results deliver a consistent understanding of patterns in mesozooplankton abundance and biomass from early spring to summer in the poorly documented oceanic region east of the Kerguelen Islands.
NASA Astrophysics Data System (ADS)
Frey, Frederick A.; Weis, Dominique
1995-08-01
Basaltic basement has been recovered by deep-sea drilling at seven sites on the linear Ninetyeast Ridge in the eastern Indian Ocean. Studies of the recovered lavas show that this ridge formed from ~ 82 to 38 Ma as a series of subaerial volcanoes that were created by the northward migration of the Indian Plate over a fixed magma source in the mantle. The Sr, Nd and Pb isotopic ratios of lavas from the Ninetyeast Ridge range widely, but they largely overlap with those of lavas from the Kerguelen Archipelago, thereby confirming previous inferences that the Kerguelen plume was an important magma source for the Ninetyeast Ridge. Particularly important are the ~ 81 Ma Ninetyeast Ridge lavas from DSDP Site 216 which has an anomalous subsidence history (Coffin 1992). These lavas are FeTi-rich tholeiitic basalts with isotopic ratios that overlap with those of highly alkalic, Upper Miocene lavas in the Kerguelen Archipelago. The isotopic characteristics of the latter which erupted in an intraplate setting have been proposed to be the purest expression of the Kerguelen plume (Weis et al. 1993a,b). Despite the overlap in isotopic ratios, there are important compositional differences between lavas erupted on the Ninetyeast Ridge and in the Kerguelen Archipelago. The Ninetyeast Ridge lavas are dominantly tholeiitic basalts with incompatible element abundance ratios, such as La/Yb and Zr/Nb, which are intermediate between those of Indian Ocean MORB (mid-ocean ridge basalt) and the transitional to alkalic basalts erupted in the Kerguelen Archipelago. These compositional differences reflect a much larger extent of melting for the Ninetyeast Ridge lavas, and the proximity of the plume to a spreading ridge axis. This tectonic setting contrasts with that of the recent alkalic lavas in the Kerguelen Archipelago which formed beneath the thick lithosphere of the Kerguelen Plateau. From ~ 82 to 38 Ma there was no simple, systematic temporal variation of Sr, Nd and Pb isotopic ratios in Ninetyeast Ridge lavas. Therefore all of the isotopic variability cannot be explained by aging of a compositionally uniform plume. Although Class et al. (1993) propose that some of the isotopic variations reflect such aging, we infer that most of the isotopic heterogeneity in lavas from the Ninetyeast Ridge and Kerguelen Archipelago can be explained by mixing of the Kerguelen plume with a depleted MORB-like mantle component. However, with this interpretation some of the youngest, 42-44 Ma, lavas from the southern Ninetyeast Ridge which have206pb/204Pb ratios exceeding those in Indian Ocean MORB and Kerguelen Archipelago lavas require a component with higher206Pb/204Pb, such as that expressed in lavas from St. Paul Island.
NASA Astrophysics Data System (ADS)
Péron, Clara; Welsford, Dirk C.; Ziegler, Philippe; Lamb, Timothy D.; Gasco, Nicolas; Chazeau, Charlotte; Sinègre, Romain; Duhamel, Guy
2016-02-01
Size and sex specific habitat preferences are common in animal populations and can have important implications for sound spatial management of harvested species. Patagonian toothfish (Dissostichus eleginoides) is a commercially exploited fish species characterised by its longevity (>50 yo) and its extremely broad distribution in depths ranging from 10 m to 2500 m on most of the Plateaux, banks and seamounts of the Southern Ocean. As many bentho-pelagic fish species, Patagonian toothfish exhibits sexual dimorphism and ontogenetic habitat shift towards deeper waters as they grow. In this study, we modelled the spatial structure of Patagonian toothfish population (median total length and sex composition) in a data-rich area, the Kerguelen Plateau (Southern Indian Ocean), to better understand the ecological drivers of their distributional patterns and inform current and future fishery management strategies. We applied spatially-explicit statistical models to quantify and predict the effects of the complex topography of the Kerguelen Plateau in structuring the spatial distribution of Patagonian toothfish total length and sex ratio, while controlling for gear selectivity and season. Model predictions showed that juvenile toothfish live in shallow regions (shelf and banks) and move downward progressively up to 600 m while they grow. Between 600 m and 1200 m, the downward movement stops and fish settle at their preferred depths. While in this depth range, fish are ∼75 cm long and most vulnerable to fisheries. As they approach maturity large fish move downward to deep-sea habitats (from 1200 m to >2300 m) and head towards the spawning grounds on the western side of the plateau and around Skiff Bank. Importantly, the sex ratio was not evenly distributed across the Plateau; prediction maps revealed a higher proportion of females in the South whereas a strong male-bias sex ratio (70%) occurred in the North-West. Large-scale prediction maps derived from our models assisted in developing hypotheses regarding ecological drivers of Patagonian toothfish habitat-use and movement across different life stages and sex. Such hypotheses are crucial to inform management strategies of this multijurisdictional fishery (France and Australia) at the spatial and temporal scales over which natural processes and fishery extend.
Lagrangian Analysis of Kerguelen's Naturally Iron-fertilised Phytoplankton Bloom
NASA Astrophysics Data System (ADS)
Della Penna, A.; Trull, T. W.; Grenier, M.; Wotherspoon, S.; Johnson, C.; De Monte, S.; d'Ovidio, F.
2015-12-01
The role of iron as a limiting micro-nutrient for primary production in High Nutrient Low Chlorophyll regions has been highlighted by paleoceanography, artificial fertilisation experiments and observed naturally fertilised systems. Examples of natural fertilisation have suggested that (sub-)mesoscale (1-100 km, days-months) horizontal transport modulates and structures the spatial and temporal extent of iron enrichment, phytoplankton production and biogeography. Here we combine different satellite products (altimetry, ocean color, PHYSAT), in-situ sampling, drifting floats and autonomous profilers to analyse the naturally iron-fertilised phytoplankton bloom of the Kerguelen region (Southern Ocean). Considering the Kerguelen Plateau as the main local source of iron, we compute two Lagrangian diagnostics: the "age" - how long before a water parcel has touched the plateau- and the "origin" - the latitude where a water parcel has left the plateau. First, we verify that these altimetry-defined diagnostics' spatial patterns -computed using geostrophic and Ekman corrected velocity fields- are coherent with the ones structuring the trajectories of more than 100 drifters and that trends in surface Chlorophyll (Chl) present an overall agreement with total column content (yet with ~2-3x differences in dynamic ranges likely due to the varying presence of Chl below the mixed layer). Second, assuming a first-order removal, we fit "age" with iron measurements and we estimate removal rates for bloom and abiotic conditions of respectively 0.058 and 0.041 1/d. Then, we relate "age" and "origin" with locations of high Chl concentrations and diatom-dominance. We find out that locations of high Chl concentration correspond to water parcels that have recently left the plateau. Furthermore, general additive models reveal that recently enriched waters are more likely to present a diatom dominance. However, the expected exponential fit varies within the geographic domain suggesting that other mechanisms may affect diatom dominance. These findings suggest that, in spite of their simple definitions, "age" and "origin" can be used to locate hotspots of primary production, study diatom-dominance biogeography and guide adaptive sampling stategies for biogeochemical fieldwork.
NASA Astrophysics Data System (ADS)
Watson, S. J.; Spain, E. A.; Coffin, M. F.; Whittaker, J. M.; Fox, J. M.; Bowie, A. R.
2016-12-01
Heard and McDonald islands (HIMI) are two active volcanic edifices on the Central Kerguelen Plateau. Scientists aboard the Heard Earth-Ocean-Biosphere Interactions voyage in early 2016 explored how this volcanic activity manifests itself near HIMI. Using Simrad EK60 split-beam echo sounder and deep tow camera data from RV Investigator, we recorded the distribution of seafloor emissions, providing the first direct evidence of seabed discharge around HIMI, mapping >244 acoustic plume signals. Northeast of Heard, three distinct plume clusters are associated with bubbles (towed camera) and the largest directly overlies a sub-seafloor opaque zone (sub-bottom profiler) with >140 zones observed within 6.5 km. Large temperature anomalies did not characterize any of the acoustic plumes where temperature data were recorded. We therefore suggest that these plumes are cold methane seeps. Acoustic properties - mean volume backscattering and target strength - and morphology - height, width, depth to surface - of plumes around McDonald resembled those northeast of Heard, also suggesting gas bubbles. We observed no bubbles on extremely limited towed camera data around McDonald; however, visibility was poor. The acoustic response of the plumes at different frequencies (120 kHz vs. 18 kHz), a technique used to classify water column scatterers, differed between HIMI, suggestiing dissimilar target size (bubble radii) distributions. Environmental context and temporal characteristics of the plumes differed between HIMI. Heard plumes were concentrated on flat, sediment rich plains, whereas around McDonald plumes emanated from sea knolls and mounds with hard volcanic seafloor. The Heard plumes were consistent temporally, while the McDonald plumes varied temporally possibly related to tides or subsurface processes. Our data and analyses suggest that HIMI acoustic plumes were likely caused by gas bubbles; however, the bubbles may originate from two or more distinct processes.
NASA Astrophysics Data System (ADS)
Ahadi, Floriane; Delpech, Guillaume; Gautheron, Cécile; Nomade, Sébastien; Zeyen, Hermann; Guillaume, Damien
2017-04-01
Low temperature thermochronology on plutonic rocks is traditionally used to calculate erosion rates over large time scale. However, this method requires a good knowledge of the local or regional geology and particularly the thermal structure and evolution of the crust. The Kerguelen Islands (48-50°S, 68/5-70.5°E, Indian Ocean) are the emerged part of a vast oceanic plateau and are mostly made up of Oligocene basaltic traps that are cross cut by a dense network of large and deep valleys. Numerous plutonic complexes of various age (20-4.5 Ma) locally intrude theses traps and cover about 15% of the main island's surface. The Rallier du Baty peninsula is the largest plutonic complex, it is mainly constituted of syenites and is divided into two adjacent circular plutonic complexes whose centres are distant of 15 km. The southern part has a laccolith structure with satellites plutons and was emplaced at shallow depth (about 1 to 3 km) between 13.7 ± 0.3 and 8.0 ± 0.2 Ma. The northern part was emplaced later between 7.8 ± 0.25 and 4.5 ± 0.1 Ma. The Kerguelen Islands are of particular interest to understand the impact of Cenozoïc climatic variations on the long-term geomorphological evolution of emerged reliefs at mid-latitudes. To understand the erosion of the area, we conducted the first study on the Kerguelen Islands using the biotite 40Ar/39Ar (BAr), apatite and zircon (U-Th)/He thermochronometers (AHe and ZHe). In the southern part, the BAr ages for the various intrusions of the complex range from 9.44 ± 0.13 Ma to 13.84 ± 0.07 Ma. These ages are identical to high-temperature crystallisation ages (U-Pb on zircon) indicating an extremely rapid cooling between ˜700 and ˜300°C. The mean ZHe ages range between 7.1 ± 2.3 and 8.8 ± 1.4 and the mean AHe ages range between 4.4 ± 0.3 Ma and 7.4 ± 0.7 Ma. The AHe ages of the southern complex are similar to the crystallization ages of the northern part of the complex. The mean AHe ages in the northern part are much younger and range from 1.4 ± 0.7 Ma to 0.8 ± 0.1 Ma. Combined with the thermochronological approach, the thermal structure of the crust beneath the Kerguelen Plateau was established by inverse modelling of gravity, geoid and topography data. The results suggest a mean current thermal gradient of ˜40°/km for the Kerguelen Plateau. Moreover, thermal modelling allows reconstructing heat diffusion in 1D after successive sill intrusions (vertically and horizontally) in order to confirm AHe data can be interpreted as exhumation ages in both complexes. In this case, the mean thermal gradient can be considered to convert the cooling rates in erosion rates.
NASA Astrophysics Data System (ADS)
Jouandet, Marie Paule; Blain, Stephane; Metzl, Nicolas; Brunet, Christian; Trull, Thomas W.; Obernosterer, Ingrid
2008-03-01
During the Kerguelen Ocean and Plateau compared Study (KEOPS, January-February 2005), a high-resolution distribution of surface fugacity of carbon dioxide ( fCO 2) was obtained from underway measurements. The stations in the core of the naturally iron-fertilized bloom were characterized by low fCO 2 (311±8 μatm) compared to the atmosphere, thus representing a large CO 2 sink. This contrasted with stations typical of high-nutrient low-chlorophyll (HNLC) conditions where the surface water was roughly in equilibrium with the atmosphere ( fCO 2=372±5 μatm). The vertical distribution of dissolved inorganic carbon (DIC) also was obtained at stations within and outside the bloom. Based on this data set, we constructed a carbon budget for the mixed layer that allowed us to determine the seasonal net community production (NCP season) and the seasonal carbon export in two contrasting environments. The robustness of the approach and the errors also were estimated. The NCP season in the core of the bloom was 6.6±2.2 mol m -2, typical of productive areas of the Southern Ocean. At the HNLC station the NCP season was 3 times lower than in the bloom. Our estimate of the daily net community production (NCP daily) within the bloom compares well with shipboard measurements of NCP. The NCP daily obtained above the Kerguelen Plateau was of the same order as the estimates from Southern Ocean artificial iron-fertilization experiments (SOIREE and EisenEx). The seasonal carbon export was derived from NCP season after subtraction of the seasonal accumulation of particulate and dissolved organic carbon. In the bloom, the carbon export (5.4±1.9 mol m -2) was 3-fold higher than at the HNLC station (1.7±0.4 mol m -2). Comparison of our results to artificial iron-fertilization experiments shows that the biological pump is enhanced by natural iron fertilization.
Diversity and Distribution Patterns in High Southern Latitude Sponges
Downey, Rachel V.; Griffiths, Huw J.; Linse, Katrin; Janussen, Dorte
2012-01-01
Sponges play a key role in Antarctic marine benthic community structure and dynamics and are often a dominant component of many Southern Ocean benthic communities. Understanding the drivers of sponge distribution in Antarctica enables us to understand many of general benthic biodiversity patterns in the region. The sponges of the Antarctic and neighbouring oceanographic regions were assessed for species richness and biogeographic patterns using over 8,800 distribution records. Species-rich regions include the Antarctic Peninsula, South Shetland Islands, South Georgia, Eastern Weddell Sea, Kerguelen Plateau, Falkland Islands and north New Zealand. Sampling intensity varied greatly within the study area, with sampling hotspots found at the Antarctic Peninsula, South Georgia, north New Zealand and Tierra del Fuego, with limited sampling in the Bellingshausen and Amundsen seas in the Southern Ocean. In contrast to previous studies we found that eurybathy and circumpolar distributions are important but not dominant characteristics in Antarctic sponges. Overall Antarctic sponge species endemism is ∼43%, with a higher level for the class Hexactinellida (68%). Endemism levels are lower than previous estimates, but still indicate the importance of the Polar Front in isolating the Southern Ocean fauna. Nineteen distinct sponge distribution patterns were found, ranging from regional endemics to cosmopolitan species. A single, distinct Antarctic demosponge fauna is found to encompass all areas within the Polar Front, and the sub-Antarctic regions of the Kerguelen Plateau and Macquarie Island. Biogeographical analyses indicate stronger faunal links between Antarctica and South America, with little evidence of links between Antarctica and South Africa, Southern Australia or New Zealand. We conclude that the biogeographic and species distribution patterns observed are largely driven by the Antarctic Circumpolar Current and the timing of past continent connectivity. PMID:22911840
NASA Astrophysics Data System (ADS)
Leitchenkov, German; Guseva, Julia; Ivanov, Sergey; Golynsky, Alexander
2017-04-01
The history of break-up and sea-floor spreading between India and Antarctica long remained vague mainly because of the data scarcity off both continents. Geophysical studies carried out recently in the Enderby Basin (Southern Indian Ocean) provided new information and advanced our knowledge on this problem. Magnetic surveys discovered there a prominent linear high-amplitude bipolar magnetic anomaly (HBMA), which stretched more than 1000 km westward from the southern Kerguelen Plateau. This anomaly was interpreted by many as the contact between stretched continental crust and oceanic crust. Gaina et al. (1987) suggested the existence of an abandoned spreading centre in the eastern Enderby Basin and inferred that the Elan Bank (established as a microcontinent) was isolated from the India margin by a ridge jump at about M0 chron (c. 120 Ma). South of an abandoned spreading centre, they identified a series of magnetic anomalies from M2 to M9. New magnetic data collected in the western Enderby Basin and revision of all available geophysical data gives a new notion on the geodynamics of the East Gondwana break-up and separation of India from Antarctica. According to a new model, the HBMA corresponds to M34o chrone and its increased intensity can be explained by the emplacement of the Kerguelen Hotspot and thickening of the oceanic (magmatic) crust at that time. A relationship between hot-spots and appearance of high-amplitude magnetic anomalies is observed elsewhere in the World Ocean. In our model, the continent-ocean boundary is located about 150 km landward of the HBMA, and anomalies from M4 to M0 are identified between these features. The ridge jump (which isolated the Elan Bank) occurred about 110 Ma ago when the Kerguelen Hotspot moved toward the India margin. This model is consistent with the interpretation of sea-floor spreading history off Western Australia. An earlier (around 120 Ma) ridge jump probably occurred in the area of the southern Kerguelen Plateau, which was thought to be underlain by continental crust. This work was conducted under the RSF grant (Project No 16-17-10139).
NASA Astrophysics Data System (ADS)
Lemaitre, N.; Planquette, H.; Dehairs, F.; van der Merwe, P.; Bowie, A. R.; Trull, T. W.; Laurenceau-Cornec, E. C.; Davies, D.; Bollinger, C.; Le Goff, M.; Grossteffan, E.; Planchon, F.
2016-11-01
The Kerguelen Plateau is characterized by a naturally Fe-fertilized phytoplankton bloom that extends more than 1000 km downstream in the Antarctic Circumpolar Current. During the KEOPS2 study, in austral spring, we measured particulate nitrogen (PN), biogenic silica (BSi) and particulate iron (PFe) export fluxes in order to investigate how the natural fertilization impacts the stoichiometry and the magnitude of export fluxes and therefore the efficiency of the biological carbon pump. At 9 stations, we estimated elemental export fluxes based on element concentration to 234Th activity ratios for particulate material collected with in-situ pumps and 234Th export fluxes (Planchon et al., 2015). This study revealed that the natural Fe-fertilization increased export fluxes but to variable degrees. Export fluxes for the bloom impacted area were compared with those of a high-nutrient, low-chlorophyll (HNLC), low-productive reference site located to the south-west of Kerguelen and which had the lowest BSi and PFe export fluxes (2.55 mmol BSi m-2 d-1 and 1.92 μmol PFem-2 d-1) and amongst the lowest PN export flux (0.73 mmol PN m-2 d-1). The impact of the Fe fertilization was the greatest within a meander of the polar front (PF), to the east of Kerguelen, with fluxes reaching 1.26 mmol PN m-2 d-1; 20.4 mmol BSi m-2 d-1 and 22.4 μmol PFe m-2 d-1. A highly productive site above the Kerguelen Plateau, on the contrary, was less impacted by the fertilization with export fluxes reaching 0.72 mmol PN m-2 d-1; 4.50 mmol BSi m-2 d-1 and 21.4 μmol PFe m-2 d-1. Our results suggest that ecosystem features (i.e. type of diatom community) could play an important role in setting the magnitude of export fluxes of these elements. Indeed, for the PF meander, the moderate productivity was sustained by the presence of large and strongly silicified diatom species while at the higher productivity sites, smaller and slightly silicified diatoms dominated. Interestingly, our results suggest that PFe export fluxes can be driven by the lithogenic pool of particles, especially over the Plateau where such inputs from the sediments are important. Finally, for the Plateau and the PF meander, the comparison between PFe export and the particulate PFe stock integrated over the mixed layer depth revealed an efficient PFe export out of the mixed layer at these sites. Export efficiencies (i.e. the ratio between export and uptake) exhibit a very efficient silica pump especially at the HNLC reference station where heavily silicified diatoms were present. On the contrary, the increase with depth of the C:N ratio and the low nitrogen export efficiencies support the idea of a strong remineralization and nitrification activity.
NASA Astrophysics Data System (ADS)
Trull, T. W.; Davies, D. M.; Dehairs, F.; Cavagna, A.-J.; Lasbleiz, M.; Laurenceau-Cornec, E. C.; d'Ovidio, F.; Planchon, F.; Leblanc, K.; Quéguiner, B.; Blain, S.
2015-02-01
We examined phytoplankton community responses to natural iron fertilisation at 32 sites over and downstream from the Kerguelen Plateau in the Southern Ocean during the austral spring bloom in October-November 2011. The community structure was estimated from chemical and isotopic measurements (particulate organic carbon - POC; 13C-POC; particulate nitrogen - PN; 15N-PN; and biogenic silica - BSi) on size-fractionated samples from surface waters (300, 210, 50, 20, 5, and 1 μm fractions). Higher values of 13C-POC (vs. co-located 13C values for dissolved inorganic carbon - DIC) were taken as indicative of faster growth rates and higher values of 15N-PN (vs. co-located 15N-NO3 source values) as indicative of greater nitrate use (rather than ammonium use, i.e. higher f ratios). Community responses varied in relation to both regional circulation and the advance of the bloom. Iron-fertilised waters over the plateau developed dominance by very large diatoms (50-210 μm) with high BSi / POC ratios, high growth rates, and significant ammonium recycling (lower f ratios) as biomass built up. In contrast, downstream polar frontal waters with a similar or higher iron supply were dominated by smaller diatoms (20-50 μm) and exhibited greater ammonium recycling. Stations in a deep-water bathymetrically trapped recirculation south of the polar front with lower iron levels showed the large-cell dominance observed on the plateau but much less biomass. Comparison of these communities to surface water nitrate (and silicate) depletions as a proxy for export shows that the low-biomass recirculation feature had exported similar amounts of nitrogen to the high-biomass blooms over the plateau and north of the polar front. This suggests that early spring trophodynamic and export responses differed between regions with persistent low levels vs. intermittent high levels of iron fertilisation.
2015-10-19
and has a large number of hydroacoustic signals generated by seismic events. Results Many of these results were reported in the previous July 15...noise, under-ice scattering, bathymetric diffraction and the application of the ocean acoustic Parabolic Equation to infrasound . 2. Tasks a. Task...of long-range signals is a seismic event on the Kerguelen Plateau (-53°S 71°E) in the southern ocean. This region of the world, which includes Heard
Jiang, Shijun; Wise, Sherwood W.
2007-01-01
Ocean Drilling Program (ODP) Core Section 183-1135A-25R-4 from the Kerguelen Plateau in the Indian Ocean sector of the Southern Ocean represents only the second complete, expanded sequence through the Paleocene/Eocene Thermal Maximum (PETM; ~55 Ma) recovered from Antarctic waters. Calcareous nannoplankton at this site underwent an abrupt, fundamental turnover across the PETM as defined by a carbon isotope excursion. Although Chiasmolithus, Discoaster, and Fasciculithus exponentially increase in abundance at the onset, the former abruptly drops but then rapidly recovers, whereas the latter two taxa show opposite trends due to surface-water oligotrophy. These observations confirm previous results from ODP Site 690 on Maud Rise. The elevated pCO2 that accompanied the PETM caused a shoaling of the lysocline and carbonate compensation depth, leading to intensive dissolution of susceptible holococcoliths and poor preservation of the assemblages. Similarities and contrasts between the results of this study and previous work from open-ocean sites and shelf margins further demonstrate that the response to the PETM was consistent in open-ocean environments, but could be localized on continental shelves where nutrient regimes depend on the local geologic setting and oceanographic conditions.
NASA Astrophysics Data System (ADS)
Mosseri, Julie; Quéguiner, Bernard; Armand, Leanne; Cornet-Barthaux, Véronique
2008-03-01
Biogenic silica stocks and fluxes were investigated in austral summer over the naturally iron-fertilized Kerguelen Plateau and in nearby high-nutrient, low-chlorophyll (HNLC) off-plateau surface waters. The Kerguelen Plateau hosted a large-diatom bloom, with high levels of biogenic silica (BSi) but relatively low silicic acid (Si(OH) 4) uptake rates (1100±600 mmol m -2 and 8±4 mmol m -2 d -1, respectively). Diatoms of the naturally iron-enriched area presented high affinities for silicic acid, allowing them in combination with a beneficial nutrient vertical supply to grow in low silicic acid waters (<2 μM). Si(OH) 4 acid uptake rates were also compared with carbon and nitrogen uptake rates. As expected for diatoms growing in favourable nutrient conditions, and from previous artificial iron-enrichment experiments, Si:C and Si:NO 3 elemental uptake ratios of the natural diatom community of the plateau were close to 0.13 and 1, respectively. In contrast, diatom communities in the HNLC waters were composed of strongly silicified (high Si:C, Si:NO 3 uptake ratios) diatoms with low affinities for Si(OH) 4. Although the Si:NO 3 uptake ratio in the surface waters of the plateau was close to 1, the apparent consumption of nitrate on a seasonal basis was much lower (˜5 μM) than the apparent consumption of silicic acid (˜15 μM). This was mainly due to diatoms growing actively on ammonium (i.e. 39-77% of the total nitrogen uptake) produced by an intense heterotrophic activity. Thus we find that while Fe fertilization does increase N uptake with respect to Si uptake, rapid recycling of N decouples nitrogen and carbon export from silica export so that the "silicate pump" remains more efficient than that of N (or P). For this reason an iron-fertilized Southern Ocean is unlikely to experience nitrate exhaustion or export silicic acid to the global ocean.
Volcanism, Iron, and Phytoplankton in the Heard and McDonald Islands Region, Southern Indian Ocean
NASA Astrophysics Data System (ADS)
Coffin, M. F.; Arculus, R. J.; Bowie, A. R.; Chase, Z.; Robertson, R.; Trull, T. W.; Heobi in2016 v01 Shipboard Party, T.
2016-12-01
Phytoplankton supply approximately half of the oxygen in Earth's atmosphere, and iron supply limits the growth of phytoplankton in the anemic Southern Ocean. Situated entirely within the Indian Ocean sector of the Southern Ocean are Australia's only active subaerial volcanoes, Heard and McDonald islands (HIMI) on the central Kerguelen Plateau, a large igneous province. Widespread fields of submarine volcanoes, some of which may be active, extend for distances of up to several hundred kilometers from the islands. The predominantly eastward-flowing Antarctic Circumpolar Current sweeps across the central Kerguelen Plateau, and extensive blooms of phytoplankton are observed on the Plateau down-current of HIMI. The goal of RV Investigator voyage IN2016_V01, conducted in January/February 2016, is to test the hypothesis that hydrothermal fluids, which cool active submarine volcanoes in the HIMI region, ascend from the seafloor and fertilise surface waters with iron, thereby enhancing biological productivity beginning with phytoplankton. Significant initial shipboard results include: Documentation, for the first time, of the role of active HIMI and nearby submarine volcanoes in supplying iron to the Southern Ocean. Nearshore waters had elevated dissolved iron levels. Although biomass was not correspondingly elevated, fluorescence induction data indicated highly productive resident phytoplankton. Discovery of >200 acoustic plumes emanating from the seafloor and ascending up to tens of meters into the water column near HIMI. Deep tow camera footage shows bubbles rising from the seafloor in an acoustic plume field north of Heard Island. Mapping 1,000 km2 of uncharted seafloor around HIMI. Submarine volcanic edifices punctuate the adjacent seafloor, and yielded iron-rich rocks similar to those found on HIMI, respectively. Acoustic plumes emanating from some of these features suggest active seafloor hydrothermal systems.
NASA Astrophysics Data System (ADS)
Carlotti, F.; Jouandet, M.-P.; Nowaczyk, A.; Harmelin-Vivien, M.; Lefèvre, D.; Guillou, G.; Zhu, Y.; Zhou, M.
2015-02-01
This study presents results on the zooplankton response to the early phase of the northeastern Kerguelen bloom during the KEOPS2 survey (15 October-20 November 2011). The campaign combined a large coverage of the eastern part of the shelf and the adjacent oceanic regions with 2 quasi-perpendicular transects oriented south to north (between 49°08' and 46°50' S) and west to east (between 69°50' and 74°60' E) aiming to document the spatial extension of the bloom and its coastal-off shore gradient, and a pseudo-lagrangian survey located in a complex recirculation zone in a stationary meander of the Polar front nearly centered at the crossing of the 2 initial transects. In addition, 8 stations were performed for 24 h observations, distributed in key areas and some of them common with the KEOPS1 cruise (January-February 2005). The mesozooplankton biomass stocks observed at the beginning of the KEOPS2 cruise were around 2 g C m-2 both above the plateau and in oceanic waters. Zooplankton biomasses in oceanic waters were maintained in average below 2 g C m-2 over the study period, except for one station in the Polar Front Zone (FL), whereas zooplankton biomasses were around 4 g C m-2 on the plateau at the end of the cruise. Taxonomic composition and stable isotope ratios of size-fractionated zooplankton indicated the strong domination of herbivores. The most remarkable feature during the sampling period was the stronger increase in the integrated 0-250 m abundances in the oceanic waters (25 × 103 to 160 × 103 ind m-2) than on the plateau (25 × 103 to 90 × 103 ind m-2). The size structure and taxonomic distributions revealed a cumulative contribution of various larval stages of dominant copepods and euphausiids particularly in the oceanic waters, with clearly identifiable stages of progress during the Lagrangian survey. These different results during KEOPS2 suggested that the zooplankton community was able to respond to the growing phytoplankton blooms earlier on the plateau than in the oceanic waters. The reproduction and early stage development of dominant species were sustained by mesoscale-related initial ephemeral blooms in oceanic waters but individual growth was still food-limited and zooplankton biomass stagnated. On the contrary, zooplankton abundances and biomasses on the shelf were both in a growing phase, with slightly different rates, due to sub-optimal conditions of growth and reproduction conditions. Combined with the KEOPS1, the present results deliver a consistent understanding of the spring changes in zooplankton abundance and biomass in the Kerguelen area.
Verducci, M.; Foresi, L.M.; Scott, G.H.; ,; Sprovieri, M.; Lirer, F.
2007-01-01
This research focuses on a detailed study of faunal and biogeochemical changes that occurred at ODP Hole 747A in the Kerguelen Plateau region of the Southern Ocean during the middle Miocene (14.8-11.8 Ma). Abundance fluctuations of several planktonic foraminiferal taxa, stable oxygen isotope and Mg/Ca ratios have been integrated as a multi-proxy approach to reach a better understanding of the growth modality and fluctuations of the East Antarctic Ice Sheet (EAIS) during this period. A 7°C decrease in Sea Surface Temperature (SST), an abrupt turnover in the planktonic foraminiferal assemblage, a 1.5‰ shift towards heavier δ18O values (Mi3 event) and a related shift towards heavier seawater δ118O values between 13.9 and 13.7 Ma, are interpreted to reflect rapid surface water cooling and EAIS expansion. Hole 747A data suggest a major change in the variability of the climate system fostered by EAIS expansion between 13.9 and 13.7 Ma. Ice sheet fluctuations were greater during the interval 14.8-13.9 Ma compared with those from 13.7 to 11.8 Ma, whereas the latter interval was characterized by a more stable EAIS. In our opinion, the middle Miocene ice sheet expansion in Antarctica represents a first step towards the development of the modern permanent ice sheet
NASA Astrophysics Data System (ADS)
Grenier, M.; Della Penna, A.; Trull, T. W.
2014-12-01
Natural iron fertilisation from Southern Ocean islands results in high primary production and phytoplankton biomass accumulations readily visible in satellite ocean colour observations. These images reveal great spatial complexity with highly varying concentrations of chlorophyll, presumably reflecting both variations in iron supply and conditions favouring phytoplankton accumulation. To examine the second aspect, in particular the influences of variations in temperature and stratification, we deployed four autonomous profiling floats in the Antarctic Circumpolar Current near the Kerguelen plateau in the Indian sector of the Southern Ocean. Each "bio-profiler" measured more than 250 profiles of temperature (T), salinity (S), dissolved oxygen, chlorophyll fluorescence (Chl a), and particle backscatter in the top 300 m of the water column, sampling up to 5 profiles per day along meandering trajectories extending up to 1000 km. Comparison of surface Chl a estimates (top 50 m depth; analogous to values from satellite images) with total water column inventories revealed largely linear relationships, suggesting that dilution of chlorophyll by mixed layer depth variations plays only a minor role in the spatial distributions observed by satellite, and correspondingly that these images provide credible information on total and not just surface biomass accumulations. Regions of very high Chl a accumulation (1.5-10 μg L-1) were associated predominantly with a narrow T-S class of surface waters, which appears to derive from the northern Kerguelen plateau. In contrast, waters with only moderate Chl a enrichments (0.5-1.5 μg L-1) displayed no clear correlation with water properties, including no dependence on mixed layer depth, suggesting a diversity of sources of iron and/or its efficient dispersion across filaments of the plume. The lack of dependence on mixed layer depth also indicates a limited influence on production by light limitation. One float became trapped in a cyclonic eddy, allowing temporal evaluation of the water column in early autumn. During this period, decreasing surface Chl a inventories corresponded with decreases in oxygen inventories on sub-mixed layer density surfaces, consistent with significant export of organic matter and its respiration and storage as dissolved inorganic carbon in the ocean interior. These results are encouraging for the expanded use of autonomous observing platforms to study biogeochemical, carbon cycle, and ecological problems, although the complex blend of Lagrangian and Eulerian sampling achieved by the floats suggests that arrays rather than single floats will often be required.
NASA Astrophysics Data System (ADS)
Farías, L.; Florez-Leiva, L.; Besoain, V.; Fernández, C.
2014-08-01
The concentrations of greenhouse gases (GHGs) like nitrous oxide (N2O) and methane (CH4) were measured in the Kerguelen Plateau Region (KPR), an area with annual microalgal bloom caused by natural Fe fertilization, which may stimulate microbes involved in GHG cycling. This study was carried out during the KEOPS 2 cruise during the austral spring of 2011. Two transects were sampled along and across the KRP, the north-south (N-S) transect (46-51° S, 72° E meridian) and the west-east (W-E) transect (66-75° E, 48.3° S latitude), both associated with the presence of a plateau, polar fronts and other mesoscale features. The W-E transect had N2O levels ranging from equilibrium (105%) to light supersaturation (120%) with respect to the atmosphere. CH4 levels fluctuated dramatically, with intense supersaturations (120-970%) in areas close to the coastal waters of Kerguelen Island and in the polar front (PF). There, Fe and nutrient fertilization seem to promote high total chlorophyll a (TChl a) levels. The distribution of both gases was more homogenous in the N-S transect, but CH4 peaked at southeastern stations of the KPR (A3 stations), where phytoplankton bloom was observed. Both gases responded significantly to the patchy distribution of particulate matter as Chl a, stimulated by Fe supply by complex mesoscale circulation. While CH4 appears to be produced mainly at the pycnoclines, N2O seems to be consumed superficially. Air-sea fluxes for N2O (from -10.5 to 8.65, mean 1.71 μmol m-2d-1), and for CH4 (from 0.32 to 38.1, mean 10.07 μmol m-2d-1) reflected sink and source behavior for N2O and source behavior for CH4, with considerable variability associated with a highly fluctuating wind regime and, in the case of CH4, due to its high superficial levels that had not been reported before in the Southern Ocean and may be caused by an intense microbial CH4 cycling.
Hydrothermal venting on the flanks of Heard and McDonald islands, southern Indian Ocean
NASA Astrophysics Data System (ADS)
Lupton, J. E.; Arculus, R. J.; Coffin, M.; Bradney, A.; Baumberger, T.; Wilkinson, C.
2017-12-01
Heard Island and the nearby McDonald Islands are two sites of active volcanism associated with the so-called Kerguelen mantle plume or hot spot. In fact, it has been proposed that the Kerguelen hot spot is currently located beneath Heard Island. During its maiden maximum endurance voyage (IN2016_V01), the recently commissioned Australian R/V Investigator conducted a detailed bathymetric and water column survey of the waters around Heard Island and the McDonald Islands as well as other sites on the Kerguelen Plateau. Some 50 hydrographic profiles were completed using the CTD/rosette system equipped with trace metal sampling and a nephelometer for suspended particle concentrations. In addition to the hydrographic profiles, 244 bubble plumes were detected in the vicinity of the Heard and McDonald Islands using the ship's multibeam system. It is thought that the bubble plumes observed on sea knolls and other seafloor surrounding the McDonald Islands are likely hydrothermal in origin, while plumes northeast of Heard Island may be biogenic methane from cold seeps. At 29 of the hydrographic stations water samples for helium isotope measurements were drawn from the CTD rosette and hermetically sealed into copper tubing for subsequent shorebased mass spectrometer and gas chromatograph analysis. In this paper we report results for 3He/4He ratios and CO2 and CH4 concentrations in water samples collected with the CTD/rosette, and discuss how these results are correlated with suspended particle concentrations and temperature anomalies.
NASA Astrophysics Data System (ADS)
Chase, Z.; Bowie, A. R.; Blain, S.; Holmes, T.; Rayner, M.; Sherrin, K.; Tonnard, M.; Trull, T. W.
2016-12-01
The Kerguelen plateau in the Southern Indian Ocean is a naturally iron-fertilised region surrounded by iron-limited, High Nutrient Low Chlorophyll waters. The Heard Earth Ocean Biosphere Interaction (HEOBI) project sampled waters south of the Polar Front in the vicinity of Heard and McDonald Islands (HIMI) in January and February 2016. Fe fertilised waters over the plateau generally exhibited high phytoplankton biomass and photosynthetic competency (as in previous studies and satellite observations), but interestingly, phytoplankton biomass was low near HIMI, though photosynthetic competency was high. In plateau waters away from HIMI, silicic acid (Si) concentrations were strongly depleted in surface waters, averaging 3 μM, while nitrate concentrations were close to 25 μM. Relative to the remnant winter water, this represents an average seasonal drawdown of 32 μM Si and only 8 μM nitrate. Though absolute drawdown was lower at an HNLC reference site south of Heard Island, the drawdown ratio was similarly high (ΔSi: ΔN 4-5). The average N:P drawdown ratio was 12, typical for a diatom-dominated system (Weber and Deutsch 2010). N:P drawdown was positively correlated with Si drawdown, perhaps indicative of an impact of Fe on both seasonal Si drawdown and diatom N:P uptake (Price 2005). In the well-mixed, shallow waters (< 200 m) around HIMI nutrient concentrations were elevated, with no surface nutrient depletion. Nutrient concentrations near the islands were generally consistent with input from vertical mixing of the regional nutrient profile. However, N* values (N* = N - P*16) near the islands were anomalously low (-5 to -7) relative to the regional nutrient profile (N* 3). Subsurface minima in N* (as low as -6) were observed just below the pycnocline at several plateau stations. If negative N* values here are indicative of intense remineralisation of P-rich organic matter, and possible preferential remineralisation of P (Blain et al. 2015), these observations suggest the existence of strong production and remineralisation of organic matter around Heard and McDonald Islands, despite the apparent lack of nutrient drawdown or biomass accumulation. Mixed layers deeper than the euphotic zone are one mechanism that retains these remineralization signatures and near the islands, tidal mixing also contributes.
Surface wave tomography of the Ontong Java Plateau: Seismic probing of the largest igneous province
NASA Astrophysics Data System (ADS)
Richardson, William Philip
1998-12-01
Large igneous provinces (LIP), such as the gigantic Cretaceous oceanic plateaus, the Ontong-Java, the Manihiki and the Kerguelen, are part of a globally distributed diverse suite of massive crustal features considered to be episodic representations of mantle dynamics (Coffin and Eldholm, 1994). The Ontong Java Plateau in the central western Pacific is by far the largest (and presumably thickest) of these provinces and is believed to have been emplaced rapidly in the Aptian, ˜122 Ma (Tarduno et al., 1991). From 1994 to 1996 four PASSCAL broadband seismic stations were deployed in an array north of the OJP. Analysis was conducted on vertical component broadband seismograms from events recorded on the Micronesian Seismic Experiment array between January 1994 and March 1996. The purpose of this experiment is to investigate the crustal and upper mantle structure of the Ontong Java Plateau (OJP) employing surface wave tomographic methods. Using the partitioned waveform inversion method (Nolet, 1990) and earthquakes with published Centroid Moment Tensor (Dziewonski et al., 1981) solutions, we produce waveform fits from source-to-receiver paths that primarily sample the OJP. From these waveform fits, linearized constraints on shear velocity suggest: (1) a massively thickened crust over the center of the OJP-greater than 35km over central areas of the plateau while thinning off-center; (2) a pronounced low-velocity zone down to ˜300km depth-a robust result in agreement with recent geochemical predictions (Neal et al., 1997); (3) the probability of lateral heterogeneity across the OJP. Finally, by combining many single waveform inversions (van der Lee and Nolet, 1997b) a 3-D shear velocity model can be computed for the Ontong Java Plateau and the nearby Caroline Basin. New constraints on the crustal thickness (and hence the volume extruded) are presented, thereby adding to the understanding of the overall tectonic setting and possible emplacement mechanism of the structure.
Oceanic microplate formation records the onset of India-Eurasia collision
NASA Astrophysics Data System (ADS)
Matthews, Kara J.; Dietmar Müller, R.; Sandwell, David T.
2016-01-01
Mapping of seafloor tectonic fabric in the Indian Ocean, using high-resolution satellite-derived vertical gravity gradient data, reveals an extinct Pacific-style oceanic microplate ('Mammerickx Microplate') west of the Ninetyeast Ridge. It is one of the first Pacific-style microplates to be mapped outside the Pacific basin, suggesting that geophysical conditions during formation probably resembled those that have dominated at eastern Pacific ridges. The microplate formed at the Indian-Antarctic ridge and is bordered by an extinct ridge in the north and pseudofault in the south, whose conjugate is located north of the Kerguelen Plateau. Independent microplate rotation is indicated by asymmetric pseudofaults and rotated abyssal hill fabric, also seen in multibeam data. Magnetic anomaly picks and age estimates calculated from published spreading rates suggest formation during chron 21o (∼47.3 Ma). Plate reorganizations can trigger ridge propagation and microplate development, and we propose that Mammerickx Microplate formation is linked with the India-Eurasia collision (initial 'soft' collision). The collision altered the stress regime at the Indian-Antarctic ridge, leading to a change in segmentation and ridge propagation from an establishing transform. Fast Indian-Antarctic spreading that preceded microplate formation, and Kerguelen Plume activity, may have facilitated ridge propagation via the production of thin and weak lithosphere; however both factors had been present for tens of millions of years and are therefore unlikely to have triggered the event. Prior to the collision, the combination of fast spreading and plume activity was responsible for the production of a wide region of undulate seafloor to the north of the extinct ridge and 'W' shaped lineations that record back and forth ridge propagation. Microplate formation provides a precise means of dating the onset of the India-Eurasia collision, and is completely independent of and complementary to timing constraints derived from continental geology or convergence histories.
NASA Astrophysics Data System (ADS)
Rembauville, M.; Salter, I.; Leblond, N.; Gueneugues, A.; Blain, S.
2015-06-01
A sediment trap moored in the naturally iron-fertilized Kerguelen Plateau in the Southern Ocean provided an annual record of particulate organic carbon and nitrogen fluxes at 289 m. At the trap deployment depth, current speeds were typically low (~ 10 cm s-1) and primarily tidal-driven (M2 tidal component). Although advection was weak, the sediment trap may have been subject to hydrodynamical and biological (swimmer feeding on trap funnel) biases. Particulate organic carbon (POC) flux was generally low (< 0.5 mmol m-2 d-1), although two episodic export events (< 14 days) of 1.5 mmol m-2 d-1 were recorded. These increases in flux occurred with a 1-month time lag from peaks in surface chlorophyll and together accounted for approximately 40% of the annual flux budget. The annual POC flux of 98.2 ± 4.4 mmol m-2 yr-1 was low considering the shallow deployment depth but comparable to independent estimates made at similar depths (~ 300 m) over the plateau, and to deep-ocean (> 2 km) fluxes measured from similarly productive iron-fertilized blooms. Although undertrapping cannot be excluded in shallow moored sediment trap deployment, we hypothesize that grazing pressure, including mesozooplankton and mesopelagic fishes, may be responsible for the low POC flux beneath the base of the winter mixed layer. The importance of plankton community structure in controlling the temporal variability of export fluxes is addressed in a companion paper.
Horizontal mixing in the Southern Ocean from Argo float trajectories
NASA Astrophysics Data System (ADS)
Roach, Christopher J.; Balwada, Dhruv; Speer, Kevin
2016-08-01
We provide the first observational estimate of the circumpolar distribution of cross-stream eddy diffusivity at 1000 m in the Southern Ocean using Argo float trajectories. We show that Argo float trajectories, from the float surfacing positions, can be used to estimate lateral eddy diffusivities in the ocean and that these estimates are comparable to those obtained from RAFOS floats, where they overlap. Using the Southern Ocean State Estimate (SOSE) velocity fields to advect synthetic particles with imposed behavior that is "Argo-like" and "RAFOS-like" diffusivity estimates from both sets of synthetic particles agreed closely at the three dynamically very different test sites, the Kerguelen Island region, the Southeast Pacific Ocean, and the Scotia Sea, and support our approach. Observed cross-stream diffusivities at 1000 m, calculated from Argo float trajectories, ranged between 300 and 2500 m2 s-1, with peaks corresponding to topographic features associated with the Scotia Sea, the Kerguelen Plateau, the Campbell Plateau, and the Southeast Pacific Ridge. These observational estimates agree with previous regional estimates from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) near the Drake Passage, and other estimates from natural tracers (helium), inverse modeling studies, and current meter measurements. These estimates are also compared to the suppressed eddy diffusivity in the presence of mean flows. The comparison suggests that away from regions of strong topographic steering suppression explains both the structure and magnitude of eddy diffusivity but that eddy diffusivities in the regions of topographic steering are greater than what would be theoretically expected and the ACC experiences localized enhanced cross-stream mixing in these regions.
The crustal structure of the Cocos ridge off Costa Rica
NASA Astrophysics Data System (ADS)
Walther, Christian H. E.
2003-03-01
The submarine Cocos ridge in the northwestern Panamá basin, a bathymetric feature more than 1000-km long and 250-500 km broad, is about 2 km shallower than the adjacent basin. It is generally interpreted as the trace of the Galápagos hot spot. Two 127- and 260-km long seismic wide-angle sections were recorded along and across this ridge, offshore the Osa peninsula, Costa Rica. Crustal thickening is seen everywhere along the sections. On the northwestern outer ridge flank, increased thickness is exclusively attributed to the upper crust and expressed by 2-km thick flow basalts. The Quepos plateau caps the upper crust in this area. Toward the center of the Cocos ridge, the Moho deepens from 11-12 to 21 km depth and crustal thickening is almost entirely attributed to the lower crust which makes up 80% of the crust and is three times the thickness of normal oceanic lower crust. It is homogeneously structured and the velocities which range from 6.5 km/s at the top to 7.35 km/s at the base are comparable to normal lower crust under these depth conditions and suggest no differences to a gabbroic rock composition. Similarities to the crustal velocity structure of Iceland, central Kerguelen plateau, and Broken ridge are consistent with a formation of this 13-15 Ma old Cocos ridge segment by excessive magmatism in a near-plate boundary setting.
Oceanic magmatic evolution during ocean opening under influence of mantle plume
NASA Astrophysics Data System (ADS)
Sushchevskaya, Nadezhda; Melanholina, Elena; Belyatsky, Boris; Krymsky, Robert; Migdisova, Natalya
2015-04-01
Petrology, geochemistry and geophysics as well as numerical simulation of spreading processes in plume impact environments on examples of Atlantic Ocean Iceland and the Central Atlantic plumes and Kerguelen plume in the Indian Ocean reveal: - under interaction of large plume and continental landmass the plume can contribute to splitting off individual lithosphere blocks, and their subsequent movement into the emergent ocean. At the same time enriched plume components often have geochemical characteristics of the intact continental lithosphere by early plume exposure. This is typical for trap magmatism in Antarctica, and for magmatism of North and Central Atlantic margins; - in the course of the geodynamic reconstruction under the whole region of the South Atlantic was formed (not in one step) metasomatized enriched sub-oceanic mantle with pyroxenite mantle geochemical characteristics and isotopic composition of enriched HIMU and EM-2 sources. That is typical for most of the islands in the West Antarctic. This mantle through spreading axes jumping involved in different proportions in the melting under the influence of higher-temperature rising asthenospheric lherzolite mantle; - CAP activity was brief enough (200 ± 2 Ma), but Karoo-Maud plume worked for a longer time and continued from 180 to 170 Ma ago in the main phase. Plume impact within Antarctica distributed to the South and to the East, leading to the formation of extended igneous provinces along the Transantarctic Mountains and along the east coast (Queen Maud Land province and Schirmacher Oasis). Moreover, this plume activity may be continued later on, after about 40 million years cessation, as Kerguelen plume within the newly-formed Indian Ocean, significantly affects the nature of the rift magmatism; - a large extended uplift in the eastern part of the Indian Ocean - Southeastern Indian Ridge (SEIR) was formed on the ancient spreading Wharton ridge near active Kerguelen plume. The strongest plume influence on the SEIR formation occurred 70-50 mln years ago, when the process of primary magma generation happened at high degrees of melting (up to 30%), which is not typical for spreading ridges of the Atlantic and Pacific Oceans. According to geochemical characteristics of the Kerguelen Plateau and SEIR magma sources close to each other, and have an enriched source of more typical for Kerguelen plume magmas and diluted by depleted substance for SEIR melts. Appearance of magmatism on the Antarctic margin about 56 thousand years ago, in the form of a stratovolcano Gaussberg indicates sublithospheric Kerguelen plume distribution in the south-west direction. The source of primary magmas (lamproite composition) is an ancient Gondwana lithosphere, has undergone repeated changes in the early stages of evolution during which it was significantly enriched in volatile and lithophile elements, and radiogenic Sr and Pb.
Guseva, Y.B.; Leitchenkov, G.L.; Gandyukhin, V.V.; Ivanov, S.V.
2007-01-01
This study is based on about 8400 km of MCS, magnetic and gravity data as well as 20 sonobuoys collected by the Russian Antarctic Expedition during 2003 and 2004 in the Davis Sea and adjacent areas between 80°E and 102°E. Major tectonic provinces and features are identified and mapped in the study region including: 1) A marginal rift with a the extended continental crust ranging 130 to more than 200 km in width; 2) The marginal volcanic plateau of the Bruce Bank consisting of the Early Cretaceous igneous rocks; 3) The Early Cretaceous and Late Cretaceous−Paleogene oceanic basins; and 4) The Early Cretaceous igneous province of the Kerguelen Plateau. Four major horizons identified in the sedimentary cover of the Davis Sea region are attributed to main tectonic events and/or paleoenvironmental changes.
Hydrothermal Links Between the Caribbean Plateau and OAE2
NASA Astrophysics Data System (ADS)
Duncan, R. A.; Snow, L. J.
2003-12-01
A popular current model for the sporadic occurrence of ocean anoxic events (OAEs) in the Cretaceous ties hydrothermally-induced changes in ocean chemistry (bio-limiting trace metals) during ocean plateau (LIP) volcanism to increased surface productivity, followed by mid-to-deep water oxygen depletion and accumulation of organic-rich sediments. This proposed connection is far from accepted, and important unresolved aspects include the timing of events and yet-to-be-proved synchroneity of volcanism and OAEs, the sensitivity of phytoplankton to bio-limiting (and toxic) trace metals, the difference in biotic responses at various OAEs, and the source of the hydrothermal inputs (sea floor spreading centers or ocean plateaus). To test this hypothesis we have measured the distribution of major, minor and trace element abundances in five pelagic carbonate and black shale sequences that bracket the OAE2, defined by a prominent positive excursion in the global seawater d13C record. Sedimentary sections at Rock Creek Canyon (Pueblo, CO), ODP Site 1138 (Kerguelen Plateau), Bass River (NJ), Totuma well (Venezuela) and Baranca el Canyon (Mexico) were chosen to examine potential trace metal patterns and gradients around the proposed source of hydrothermal inputs - the Caribbean Plateau, whose initial volcanic activity has been dated at 93-89 Ma. ICP-AES and ICP-MS elemental abundances from whole rock samples are normalized to Zr to remove the effect of terrestrial inputs. We find prominent trace metal "spikes" (up to 50 times background) for elements known to be concentrated in volatile degassing of magmas and in hydrothermal plumes resulting from seawater-rock reactions. These anomalies begin at the onset and continue well into the d13C excusion at all five sites. Furthermore, the magnitude of the anomalies decreases with distance from the Caribbean region, and the pattern of elements shifts from a wide range of metals near-source to predominantly long residence time metals far "downstream".
NASA Astrophysics Data System (ADS)
Rembauville, M.; Meilland, J.; Ziveri, P.; Schiebel, R.; Blain, S.; Salter, I.
2016-05-01
We report the contribution of planktic foraminifers and coccoliths to the particulate inorganic carbon (PIC) export fluxes collected over an annual cycle (October 2011/September 2012) on the central Kerguelen Plateau in the Antarctic Zone (AAZ) south of the Polar Front (PF). The seasonality of PIC flux was decoupled from surface chlorophyll a concentration and particulate organic carbon (POC) fluxes and was characterized by a late summer (February) maximum. This peak was concomitant with the highest satellite-derived sea surface PIC and corresponded to a Emiliania huxleyi coccoliths export event that accounted for 85% of the annual PIC export. The foraminifer contribution to the annual PIC flux was much lower (15%) and dominated by Turborotalita quinqueloba and Neogloboquadrina pachyderma. Foraminifer export fluxes were closely related to the surface chlorophyll a concentration, suggesting food availability as an important factor regulating the foraminifer's biomass. We compared size-normalized test weight (SNW) of the foraminifers with previously published SNW from the Crozet Islands using the same methodology and found no significant difference in SNW between sites for a given species. However, the SNW was significantly species-specific with a threefold increase from T. quinqueloba to Globigerina bulloides. The annual PIC:POC molar ratio of 0.07 was close to the mean ratio for the global ocean and lead to a low carbonate counter pump effect (~5%) compared to a previous study north of the PF (6-32%). We suggest that lowers counter pump effect south of the PF despite similar productivity levels is due to a dominance of coccoliths in the PIC fluxes and a difference in the foraminifers species assemblage with a predominance of polar species with lower SNW.
India-Eurasia collision triggers formation of an oceanic microplate
NASA Astrophysics Data System (ADS)
Matthews, Kara; Müller, Dietmar; Sandwell, David
2016-04-01
Detailed mapping of seafloor tectonic fabric in the Indian Ocean, using high-resolution satellite-derived vertical gravity gradient data, reveals an extinct Pacific-style oceanic microplate - the Mammerickx Microplate - west of the Ninetyeast Ridge. It is one of the first Pacific-style microplates to be mapped outside the Pacific basin, suggesting that geophysical conditions during formation probably resembled those that have dominated at eastern Pacific ridges. The microplate formed at the Indian-Antarctic ridge and is bordered by an extinct ridge in the north and pseudofault in the south, whose conjugate is located north of the Kerguelen Plateau. Independent microplate rotation is indicated by asymmetric pseudofaults and rotated abyssal hill fabric, also identified in multibeam data. Magnetic anomaly picks and age estimates calculated from published spreading rates suggest formation during chron 21o (~47.3 Ma). Plate reorganizations can trigger ridge propagation and microplate development, and we propose that formation of the Mammerickx Microplate is linked with the initial 'soft' stage of the India-Eurasia collision. The collision altered the stress regime at the Indian-Antarctic ridge, leading to a change in segmentation and ridge propagation from an establishing transform fault. Fast Indian-Antarctic spreading that preceded microplate formation, and Kerguelen Plume activity may have facilitated ridge propagation via the production of thin and weak lithosphere. However, both factors had been present for tens of millions of years and are therefore unlikely to have triggered the event. Prior to the collision, this combination of fast spreading and plume activity was responsible for the production of a wide region of undulate seafloor to the north of the extinct ridge and 'W' shaped lineations that record back and forth ridge propagation. Microplate formation provides a means of dating the onset of the India-Eurasia collision, and is completely independent of and complementary to timing constraints derived from continental geology or convergence histories.
NASA Astrophysics Data System (ADS)
Basu, A. R.; Weaver, K. L.; Sengupta, S.
2001-12-01
Although the 116-113 Ma-old Rajmahal-Sylhet Traps of the Bengal basin, potentially covering an area > 2x105 km2, can be directly linked via Ninetyeast Ridge to the Kerguelen Plume, more than 5,000 kms away, it is generally believed that this flood basalt volcanism originated from a normal MORB-type mantle at the boundary of a mantle plume. This model, primarily based on geochemical analysis of a limited number of Rajmahal basalts, requires initiation of rifting of the eastern Indian margin by a smaller thermal flux than necessary for creating a large igneous province. Here we show that the extent of volcanism associated with the Rajmahal-Sylhet Traps is far greater than usually assumed, thus requiring a direct involvement of the Kerguelen Plume. In addition to the surface exposures of the flood basalts in Rajmahal-Sylhet, the basaltic rocks have been encountered in many parts of the Bengal Basin in bore holes reaching a maximum thickness of 600 m in the western margin of the Basin (Sengupta, Bull. AAPG, 1966) Most importantly, several suites of ultrapotassic and alkalic intrusive complexes, similar to those associated with the Deccan and Siberia Traps, occur over wide areas within and outside the Basin: i) southwest of the surface exposures of Rajmahal basalts, distance 200km, intrusive in Lower Gondwana coalbeds, Ar-Ar age 114 Ma (P.R. Renne, personal communication), ii) 400 km north of Rajmahal, exposed in Sikkim, intrusive into metamorphic crystalline nappes of the Himalayas; distance here is not real and must be a minimum as the nappes have been transported from the north, iii) northeast of Rajmahal in Meghalaya State, distance 550 km, intrusive into metamorphic Precambrian basement rocks. Nd-Sr isotopic ratios and trace element characteristics of these above ultrapotassic and alkaline rocks are consistent with their origin associated with the Kerguelen Plume. The wide range in Nd-Sr array for these rocks, including the Sylhet and Rajmahal basalts, shows initial \\epsilonNd(T) values of +4 to -8 and 87Sr/86Sr of 0.7045 to 0.7100, which are similar to Kerguelen transitional and alkaline basalts, Bunburry Gosselin lavas and Naturaliste plateau basalts. Therefore, the zone of influence of the plume head with Rajmahal at the center would be at least 700 km in diameter, and such a large area would require direct involvement of the Kerguelen Plume head for magma genesis in the Bengal basin. Recognition of associated volcanism in the northeast of Sylhet Traps allows Nintyeast Ridge to be the appropriate hotspot track in the Bay of Bengal.
Variable Melt Production Rate of the Kerguelen HotSpot Due To Long-Term Plume-Ridge Interaction
NASA Astrophysics Data System (ADS)
Bredow, Eva; Steinberger, Bernhard
2018-01-01
For at least 120 Myr, the Kerguelen plume has distributed enormous amounts of magmatic rocks over various igneous provinces between India, Australia, and Antarctica. Previous attempts to reconstruct the complex history of this plume have revealed several characteristics that are inconsistent with properties typically associated with plumes. To explore the geodynamic behavior of the Kerguelen hotspot, and in particular address these inconsistencies, we set up a regional viscous flow model with the mantle convection code ASPECT. Our model features complex time-dependent boundary conditions in order to explicitly simulate the surrounding conditions of the Kerguelen plume. We show that a constant plume influx can result in a variable magma production rate if the plume interacts with nearby spreading ridges and that a dismembered plume, multiple plumes, or solitary waves in the plume conduit are not required to explain the fluctuating magma output and other unusual characteristics attributed to the Kerguelen hotspot.
NASA Astrophysics Data System (ADS)
Jomelli, Vincent; Mokadem, Fatima; Schimmelpfennig, Irene; Chapron, Emmanuel; Rinterknecht, Vincent; Favier, Vincent; Verfaillie, Deborah; Brunstein, Daniel; Legentil, Claude; Michel, Elisabeth; Swingedouw, Didier; Jaouen, Alain; Aumaitre, Georges; Bourlès, Didier L.; Keddadouche, Karim
2017-04-01
Similar to many other regions in the world, glaciers in the southern sub-polar regions are currently retreating. In the Kerguelen Islands (49°S, 69°E), the mass balance of the Cook Ice Cap (CIC), the largest ice cap in this region, experienced dramatic shrinking between 1960 and 2013 with retreat rates among the highest in the world. This observation needs to be evaluated in a long-term context. However, data on the past glacier extents are sparse in the sub-Antarctic regions. To investigate the deglaciation pattern since the Last Glacial Maximum (LGM) period, we present the first 13 cosmogenic 36Cl surface exposure ages from four sites in the Kerguelen Islands. The 36Cl ages from erratic and moraine boulders span from 24.4 ± 2.7 ka to 0.3 ± 0.1 ka. We combined these ages with existing glacio-marine radiocarbon ages and bathymetric data to document the temporal and spatial changes of the island's glacial history. Ice began to retreat on the main island before 24.4 ± 2.7 ka until around the time of the Antarctic Cold Reversal (ACR) period (∼14.5-12.9 ka), during which the Bontemps moraine was formed by the advance of a CIC outlet glacier. Deglaciation continued during the Holocene probably until 3 ka with evidence of minor advances during the last millennium. This chronology is in pace with major changes in δ18O in a recent West Antarctica ice core record, showing that Kerguelen Islands glaciers are particularly sensitive and relevant to document climate change in the southern polar regions.
NASA Astrophysics Data System (ADS)
Heimburger, Alexie; Losno, Remi; Triquet, Sylvain; Bon Nguyen, Elisabeth
2013-04-01
Atmospheric supplies bringing trace metals are suspected to have a significant impact on biogeochemical processes in High-Nutrient-Low-Chlorophyll waters of the open ocean, such as the Southern Ocean. We recorded time series of atmospheric deposition samples continuously collected over two years on Kerguelen and Crozet Islands in the Southern Indian Ocean. Dust deposition flux and scavenging ratio on Kerguelen Islands were reported in a previous publication [Heimburger et al., GBC, 2012]. Here, we present results of total atmospheric deposition fluxes for a large suite of elements (Al, As, Ba, Ca, Ce, Co, Cr, Cu, Fe, K, La, Li, Mg, Mn, Na, Nd, Ni, Pb including isotopes, Rb, S, Si, Sr, Ti, U, V, Zn), which are identified as coming either from sea-salt, crustal or anthropogenic sources. Enrichment factor variabilities for Pb, As, Cr, Cu and V and Pb isotopic ratios highlight the anthropogenic contribution during the austral winter only. For Al, Fe, Mn and Si, deposition fluxes are similar for both Kerguelen and Crozet Islands, which are situated 1300 km apart, and so can be extrapolated for the entire Southern Indian Ocean. Over the entire sampling period, those fluxes are on average equal to 53 ± 2 µg/m²/d, 33 ± 1 µg/m²/d, 0.83 ± 0.04 µg/m²/d and 88 ± 14 µg/m²/d respectively. For the other non-sea-salt elements, we observed differences between flux values from a factor of two to a factor of five with a decreasing gradient from Crozet to Kerguelen Islands. One-month field experiments were also performed during four different austral summers in order to collect rain water on an event basis. Soluble and insoluble fractions were directly separated by filtration and analysed using High Resolution - Inductively Coupled Plasma - Mass Spectrometry and Inductively Coupled Plasma-Atomic Emission Spectrometry as done for deposition samples. Concentrations in rain water samples are very low and difficult to measure accurately mainly because of possible contamination issues. Deduced solubility vary on a large extend but those variabilities are correlated between all the crustal elements.
NASA Astrophysics Data System (ADS)
Dragon, Anne-Cecile; Monestiez, P.; Bar-Hen, A.; Guinet, C.
2010-10-01
In the Southern Ocean, mesoscale features, such as fronts and eddies, have been shown to have a significant impact in structuring and enhancing primary productivity. They are therefore likely to influence the spatial structure of prey fields and play a key role in the creation of preferred foraging regions for oceanic top-predators. Optimal foraging theory predicts that predators should adjust their movement behaviour in relation to prey density. While crossing areas with sufficient prey density, we expect predators would change their behaviour by, for instance, decreasing their speed and increasing their turning frequency. Diving predators would as well increase the useful part of their dive i.e. increase bottom-time thereby increasing the fraction of time spent capturing prey. Southern elephant seals from the Kerguelen population have several foraging areas: in Antarctic waters, on the Kerguelen Plateau and in the interfrontal zone between the Subtropical and Polar Fronts. This study investigated how the movement and diving behaviour of 22 seals equipped with satellite-relayed data loggers changed in relation to mesoscale structures typical of the interfrontal zone. We studied the links between oceanographic variables including temperature and sea level anomalies, and diving and movement behaviour such as displacement speed, diving duration and bottom-time. Correlation coefficients between each of the time series were calculated and their significance tested with a parametric bootstrap. We focused on oceanographic changes, both temporal and spatial, occurring during behavioural transitions in order to clarify the connections between the behaviour and the marine environment of the animals. We showed that a majority of seals displayed a specific foraging behaviour related to the presence of both cyclonic and anticyclonic eddies. We characterized mesoscale oceanographic zones as either favourable or unfavourable based on the intensity of foraging activity as identified by the behavioural variables. Our findings highlight the importance of mesoscale features for top-predators’ behaviour and introduce a new approach for evaluating the importance to the seals of the origin and intensity of these features.
Flood lavas on Earth, Io and Mars
Keszthelyi, L.; Self, S.; Thordarson, T.
2006-01-01
Flood lavas are major geological features on all the major rocky planetary bodies. They provide important insight into the dynamics and chemistry of the interior of these bodies. On the Earth, they appear to be associated with major and mass extinction events. It is therefore not surprising that there has been significant research on flood lavas in recent years. Initial models suggested eruption durations of days and volumetric fluxes of order 107 m3 s-1 with flows moving as turbulent floods. However, our understanding of how lava flows can be emplaced under an insulating crust was revolutionized by the observations of actively inflating pahoehoe flows in Hawaii. These new ideas led to the hypothesis that flood lavas were emplaced over many years with eruption rates of the order of 104 m3 s-1. The field evidence indicates that flood lava flows in the Columbia River Basalts, Deccan Traps, Etendeka lavas, and the Kerguelen Plateau were emplaced as inflated pahoehoe sheet flows. This was reinforced by the observation of active lava flows of ??? 100 km length on Io being formed as tube-fed flow fed by moderate eruption rates (102-103 m3 s-1). More recently it has been found that some flood lavas are also emplaced in a more rapid manner. New high-resolution images from Mars revealed 'platy-ridged' flood lava flows, named after the large rafted plates and ridges formed by compression of the flow top. A search for appropriate terrestrial analogues found an excellent example in Iceland: the 1783-1784 Laki Flow Field. The brecciated Laki flow top consists of pieces of pahoehoe, not aa clinker, leading us to call this 'rubbly pahoehoe'. Similar flows have been found in the Columbia River Basalts and the Kerguelen Plateau. We hypothesize that these flows form with a thick, insulating, but mobile crust, which is disrupted when surges in the erupted flux are too large to maintain the normal pahoehoe mode of emplacement Flood lavas emplaced in this manner could have (intermittently) reached effusion rates of the order of 106 m3 s-1.
Co-location of air capture, sub-ocean CO2 storage and energy production on the Kerguelen plateau
NASA Astrophysics Data System (ADS)
Goldberg, D.; Han, P.; Lackner, K.; Wang, T.
2011-12-01
How can carbon capture and storage activities be sustained from an energy perspective while keeping the entire activity out of sight and away from material risk and social refrain near populated areas? In light of reducing the atmospheric CO2 level to mitigate its effect on climate change, the combination of new air-capture technologies and large offshore storage reservoirs, supplemented by carbon neutral renewable energy, could address both of these engineering and public policy concerns. Because CO2 mixes rapidly in the atmosphere, air capture scrubbers could be located anywhere in the world. Although the power requirements for this technology may reduce net efficiencies, the local availability of carbon-neutral renewable energy for this purpose would eliminate some net energy loss. Certain locations where wind speeds are high and steady, such as those observed at high latitude and across the open ocean, appeal as carbon-neutral energy sources in close proximity to immense and secure reservoirs for geological sequestration of captured CO2. In particular, sub-ocean basalt flows are vast and carry minimal risks of leakage and damages compared to on-land sites. Such implementation of a localized renewable energy source coupled with carbon capture and storage infrastructure could result in a global impact of lowered CO2 levels. We consider an extreme location on the Kerguelen plateau in the southern Indian Ocean, where high wind speeds and basalt storage reservoirs are both plentiful. Though endowed with these advantages, this mid-ocean location incurs clear material and economic challenges due to its remoteness and technological challenges for CO2 capture due to constant high humidity. We study the wind energy-air capture power balance and consider related factors in the feasibility of this location for carbon capture and storage. Other remote oceanic sites where steady winds blow and near large geological reservoirs may be viable as well, although all would require extensive research. Using these mitigation technologies in combination may offer a pivotal option for reducing atmospheric carbon to pre-industrial levels with minimal human risk or inconvenience.
The past, present and future distribution of a deep-sea shrimp in the Southern Ocean
Costello, Mark J.
2016-01-01
Shrimps have a widespread distribution across the shelf, slope and seamount regions of the Southern Ocean. Studies of Antarctic organisms have shown that individual species and higher taxa display different degrees of sensitivity and adaptability in response to environmental change. We use species distribution models to predict changes in the geographic range of the deep-sea Antarctic shrimp Nematocarcinus lanceopes under changing climatic conditions from the Last Glacial Maximum to the present and to the year 2100. The present distribution range indicates a pole-ward shift of the shrimp population since the last glaciation. This occurred by colonization of slopes from nearby refugia located around the northern part of Scotia Arc, southern tip of South America, South Georgia, Bouvet Island, southern tip of the Campbell plateau and Kerguelen plateau. By 2100, the shrimp are likely to expand their distribution in east Antarctica but have a continued pole-ward contraction in west Antarctica. The range extension and contraction process followed by the deep-sea shrimp provide a geographic context of how other deep-sea Antarctic species may have survived during the last glaciation and may endure with projected changing climatic conditions in the future. PMID:26925334
The past, present and future distribution of a deep-sea shrimp in the Southern Ocean.
Basher, Zeenatul; Costello, Mark J
2016-01-01
Shrimps have a widespread distribution across the shelf, slope and seamount regions of the Southern Ocean. Studies of Antarctic organisms have shown that individual species and higher taxa display different degrees of sensitivity and adaptability in response to environmental change. We use species distribution models to predict changes in the geographic range of the deep-sea Antarctic shrimp Nematocarcinus lanceopes under changing climatic conditions from the Last Glacial Maximum to the present and to the year 2100. The present distribution range indicates a pole-ward shift of the shrimp population since the last glaciation. This occurred by colonization of slopes from nearby refugia located around the northern part of Scotia Arc, southern tip of South America, South Georgia, Bouvet Island, southern tip of the Campbell plateau and Kerguelen plateau. By 2100, the shrimp are likely to expand their distribution in east Antarctica but have a continued pole-ward contraction in west Antarctica. The range extension and contraction process followed by the deep-sea shrimp provide a geographic context of how other deep-sea Antarctic species may have survived during the last glaciation and may endure with projected changing climatic conditions in the future.
2014-05-27
This image from NASA Terra spacecraft shows the Kerguelen Islands also known as the Desolation Islands, which are part of the French Southern and Antarctic lands. The islands are among the most isolated places on Earth.
NASA Astrophysics Data System (ADS)
Arnaud, Fabien; Fanget, Bernard; Malet, Emmanuel; Poulenard, Jérôme; Støren, Eivind; Leloup, Anouk; Bakke, Jostein; Sabatier, Pierre
2016-04-01
Recent paleo-studies revealed climatic southern high latitude climate evolution patterns that are crucial to understand the global climate evolution(1,2). Among others the strength and north-south shifts of westerlies wind appeared to be a key parameter(3). However, virtually no lands are located south of the 45th South parallel between Southern Georgia (60°W) and New Zealand (170°E) precluding the establishment of paleoclimate records of past westerlies dynamics. Located around 50°S and 70°E, lost in the middle of the sub-Antarctic Indian Ocean, Kerguelen archipelago is a major, geomorphologically complex, land-mass that is covered by hundreds lakes of various sizes. It hence offers a unique opportunity to reconstruct past climate and environment dynamics in a region where virtually nothing is known about it, except the remarkable recent reconstructions based on a Lateglacial peatbog sequence(4). During the 2014-2015 austral summer, a French-Norwegian team led the very first extensive lake sediment coring survey on Kerguelen Archipelago under the umbrella of the PALAS program supported by the French Polar Institute (IPEV). Two main areas were investigated: i) the southwest of the mainland, so-called Golfe du Morbihan, where glaciers are currently absent and ii) the northernmost Kerguelen mainland peninsula so-called Loranchet, where cirque glaciers are still present. This double-target strategy aims at reconstructing various independent indirect records of precipitation (glacier advance, flood dynamics) and wind speed (marine spray chemical species, wind-borne terrigenous input) to tackle the Holocene climate variability. Despite particularly harsh climate conditions and difficult logistics matters, we were able to core 6 lake sediment sites: 5 in Golfe du Morbihan and one in Loranchet peninsula. Among them two sequences taken in the 4km-long Lake Armor using a UWITEC re-entry piston coring system by 20 and 100m water-depth (6 and 7m-long, respectively). One sequence from the newly-named Lake Tiercelin (2m-long) was recovered using UWITEC gravity coring equipment operated from a portable rubber boat by 54m water-depth. Those three sequences cover the whole Holocene periods. The 3m-long sequence taken in Lake Guynemer, Loranchet peninsula, was taken using a homemade small platform and a Nesje piston corer by 50m water-depth and covers the last 5 ka cal. BP. Two additional lakes were cored in the vicinity of Lake Armor: Fougères and Poule from which short sequences were taken in order to study environmental changes since the arrival of humans in the 18th century and the subsequent introduction of exogenous plant and animal species. We present here preliminary results including the dating of all sediment sequences as well as their chemical logging and sedimentological description. This already revealed the recurrence of Holocene volcanic eruptions as well as erosion patterns that are comparable among different records. The recognition of tephra layers will further allow the synchronization of terrestrial records together and with marine records around Kerguelen Archipelago. Paleoclimate interpretations of acquired data as well as further measurements are still ongoing processes. However, one may already argue that we collected rare geological sequences of prime importance in the quest of understanding climate patterns affecting the southern high latitudes all along the Holocene. 1. Lamy. et al. 2015. in Integr. Anal. of Intergl. Clim. Dyn. Schulz & Paul eds., 75-81 (Springer) 2. Rebolledo et al. 2015. Quat. Res. 84, 21-36 3. Agosta et al. 2015. Clim. Res. 62, 219-240 4. Van der Putten et al 2015. Quat. Sci. Rev. 122, 142-157
NASA Astrophysics Data System (ADS)
Cotté, C.; d'Ovidio, F.; Behagle, N.; Roudaut, G.; Brehmer, P.; Bost, C. A.; Guinet, C.; Cherel, Y.
2016-02-01
Large parts of the Southern Ocean waters are rich in macronutrients, but blooms of phytoplankton occur in a patchy and localized way. This is in part due to the presence of sources of limiting micronutrients scattered along the continental breaks, whose inputs are stirred into the open ocean very inhomogeneously. At the highest levels of ecosystems, top predators reveal areas of ecological importance where no other information is available on the underpinning trophic web. A dramatic example of this situation is provided by the region around Kerguelen archipelago, in the Southern Indian Ocean. Here, the high nutrient, low iron waters transported eastward by the Antarctic Circumpolar Current encounter the iron-rich Kerguelen shelf break. As a consequence, a plume of high chlorophyll water develops east of the plateau, extending from the shelf break for hundreds of kms into the open ocean, and strongly modulated by the intense mesoscale activity. Large populations of top predators use this area to forage during the summer periode, despite very scarce knowledge on their micronektonic prey and on mid-trophic oragnisms. By combining in campaign data, satellite observations, and biologging, we adopt an end-to-end approach and describe the mechanisms by which the ocean physics impacts the regional biogeochemistry firstly by redistributing iron-rich coastal waters into the open ocean, and then by focusing on the trophic interactions. We consider in particular the role of mesoscale eddies and submesoscale fronts, whose temporal dynamics resonates with biological processes and organises the variability of ecosystems.
Shaded Relief with Height as Color, Kerguelen Island, south Indian Ocean
2002-07-11
These two images show exactly the same area, Kerguelen Island in the southern Indian Ocean. The image on the left was created using the best global topographic data set previously available, the U.S. Geological Survey GTOPO30.
NASA Astrophysics Data System (ADS)
Bencherif, H.; El Amraoui, L.; Kirgis, G.; Leclair de Bellevue, J.; Hauchecorne, A.; Mzé, N.; Portafaix, T.
2010-07-01
This paper reports on an increase of ozone event observed over Kerguelen (49.4° S, 70.3° E) in relationship with large-scale isentropic transport. It is evidenced from ground-based observations, together with satellite global observations and assimilated fields. The study is based on the analyses of the first ozonesonde experiment never recorded at the Kerguelen site in the framework of a French campaign called ROCK that took place from April to August 2008. Comparisons and interpretations of the observed event are supported by co-localised SAOZ observations, by global mapping of tracers (O3, N2O and columns of O3) from Aura/MLS and Aura/OMI experiments, and by model simulations of Ertel Potential Vorticity initialised by ECMWF (European Centre for Medium-Range Weather Forecasts) data reanalyses. Satellite and ground-based observational data revealed a consistent increase of ozone in the local stratosphere by mid-April 2008. Additionally, Ozone (O3) and nitrous oxide (N2O) profiles obtained during January-May 2008 by the Microwave Lamb Sounder (MLS) aboard the Aura satellite are assimilated into MOCAGE (MOdèle de Chimie Atmosphérique à Grande Echelle), a global three-dimensional chemistry transport model of Météo-France. The assimilated total O3 values are consistent with SAOZ ground observations (within ±5%), and isentropic distributions of O3 are matching well with maps of advected potential vorticity (APV) derived from the MIMOSA model, a high-resolution advection transport model, and from ECMWF reanalysis. The studied event seems to be related to isentropic transport of air masses that took place simultaneously in the lower- and middle-stratosphere, respectively from the polar region and from tropics to the mid-latitudes. In fact, the studied ozone increase by mid April 2008 results simultaneously: (1) from an equator-ward departure of polar air masses characterised with a high-ozone layer in the lower stratosphere (nearby the 475 K isentropic level), and (2) from a reverse isentropic transport from tropics to mid- and high-latitudes in the upper stratosphere (nearby the 700 K level). The increase of ozone observed over Kerguelen from the 16-April ozonesonde profile is then attributed to a concomitant isentropic transport of ozone in two stratospheric layers: the tropical air moving southward and reaches over Kerguelen in the upper stratosphere, and the polar air passing over the same area but in the lower stratosphere.
NASA Astrophysics Data System (ADS)
Gibbons, Ana D.; Whittaker, Joanne M.; Müller, R. Dietmar
2013-03-01
models for the Cretaceous seafloor-spreading history of East Gondwana result in unlikely tectonic scenarios for at least one of the plate boundaries involved and/or violate particular constraints from at least one of the associated ocean basins. We link East Gondwana spreading corridors by integrating magnetic and gravity anomaly data from the Enderby Basin off East Antarctica within a regional plate kinematic framework to identify a conjugate series of east-west-trending magnetic anomalies, M4 to M0 ( 126.7-120.4 Ma). The mid-ocean ridge that separated Greater India from Australia-Antarctica propagated from north to south, starting at 136 Ma northwest of Australia, and reached the southern tip of India at 126 Ma. Seafloor spreading in the Enderby Basin was abandoned at 115 Ma, when a ridge jump transferred the Elan Bank and South Kerguelen Plateau to the Antarctic plate. Our revised plate kinematic model helps resolve the problem of successive two-way strike-slip motion between Madagascar and India seen in many previously published reconstructions and also suggests that seafloor spreading between them progressed from south to north from 94 to 84 Ma. This timing is essential for tectonic flow lines to match the curved fracture zones of the Wharton and Enderby basins, as Greater India gradually began to unzip from Madagascar from 100 Ma. In our model, the 85-East Ridge and Kerguelen Fracture Zone formed as conjugate flanks of a "leaky" transform fault following the 100 Ma spreading reorganization. Our model also identifies the Afanasy Nikitin Seamounts as products of the Conrad Rise hotspot.
NASA Astrophysics Data System (ADS)
Bencherif, H.; El Amraoui, L.; Kirgis, G.; Leclair de Bellevue, J.; Hauchecorne, A.; Mzé, N.; Portafaix, T.; Pazmino, A.; Goutail, F.
2011-01-01
This paper reports on an increase of ozone event observed over Kerguelen (49.4° S, 70.3° E) in relationship with large-scale isentropic transport. This is evidenced by ground-based observations (co-localised radiosonde and SAOZ experiments) together with satellite global observations (Aura/MLS) assimilated into MOCAGE, a Méteo-France model. The study is based on the analyses of the first ozonesonde experiment never recorded at the Kerguelen site within the framework of a French campaign called ROCK that took place from April to August 2008. Comparisons and interpretations of the observed event are supported by co-localised SAOZ observations, by global mapping of tracers (O3, N2O and columns of O3) from Aura/MLS and Aura/OMI experiments, and by model simulations of Ertel Potential Vorticity initialised by the ECMWF (European Centre for Medium-Range Weather Forecasts) data reanalyses. Satellite and ground-based observational data revealed a consistent increase of ozone in the local stratosphere by mid-April 2008. Additionally, Ozone (O3) and nitrous oxide (N2O) profiles obtained during January-May 2008 using the Microwave Limb Sounder (MLS) aboard the Aura satellite are assimilated into MOCAGE (MOdèle de Chimie Atmosphérique à Grande Echelle), a global three-dimensional chemistry transport model of Météo-France. The assimilated total O3 values are consistent with SAOZ ground observations (within ±5%), and isentropic distributions of O3 match well with maps of advected potential vorticity (APV) derived from the MIMOSA model, a high-resolution advection transport model, and from the ECMWF reanalysis. The event studied seems to be related to the isentropic transport of air masses that took place simultaneously in the lower- and middle-stratosphere, respectively from the polar region and from the tropics to the mid-latitudes. In fact, the ozone increase observed by mid April 2008 resulted simultaneously: (1) from an equator-ward departure of polar air masses characterised with a high-ozone layer in the lower stratosphere (near the 475 K isentropic level), and (2) from a reverse isentropic transport from the tropics to mid- and high-latitudes in the upper stratosphere (nearby the 700 K level). The increase of ozone observed over Kerguelen from the 16-April ozonesonde profile is thus attributed to a concomitant isentropic transport of ozone in two stratospheric layers: the tropical air moving southward and reaching over Kerguelen in the upper stratosphere, and the polar air passing over the same area but in the lower stratosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freon, A.; Berry, J.; Coste, J.-P.
1959-02-01
Some recordings of the variations of intensity of cosmic neutrons, made since October 1956 at the observatory of the Pic du Midi and since July 1957 on the Kerguelen Islands, have shown the existence, since the beginning of the observations and during at least 20 solar rotations, of a cyclic variation with a stable period equal to 27.35 plus or minus 0.1 solar days and a maximum amplitude of 2.2% attained in October 1957. (tr-auth)
Dust Records in Ice Cores from the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Wang, N.; Yao, T.; Thompson, L. G.
2014-12-01
Dust plays an important role in the Earth system, and it usually displays largely spatial and temporal variations. It is necessary for us to reconstruct the past variations of dust in different regions to better understand the interactions between dust and environments. Ice core records can reveal the history of dust variations. In this paper, we used the Guliya, Dunde, Malan and Dasuopu ice cores from the Tibetan Plateau to study the spatial distribution, the seasonal variations and the secular trends of dust. It was found that the mean dust concentration was higher by one or two order of magnitudes in the Guliya and Dunde ice cores from the northern Tibetan Plateau than in the Dasuopu ice core from the southern Tibetan Plateau. During the year, the highest dust concentration occurs in the springtime in the northern Tibetan Plateau while in the non-monsoon season in the southern Tibetan Plateau. Over the last millennium, the Dasuopu ice core record shows that the 1270s~1380s and 1870s~1990s were the two epochs with high dust concentration. However, the Malan ice core from the northern Tibetan Plateau indicates that high dust concentration occurred in the 1130s~1550s and 1770s~1940s. Interestingly, climatic and environmental records of the ice cores from the Tibetan Plateau reflected that the correlation between dust concentration and air temperature was strongly positive in the southern Plateau while negative in the northern Plateau over the last millennium. This implies that climatic and environmental changes existed considerable differences in the different parts of the Plateau. Moreover, four Asian megadroughts occurred in 1638~1641, 1756~1758, 1790~1796 and 1876~1878, which caused more than tens millions people died, were revealed clearly by dust record in the Dasuopu ice core.
The role of diatom resting spores in pelagic-benthic coupling in the Southern Ocean
NASA Astrophysics Data System (ADS)
Rembauville, Mathieu; Blain, Stéphane; Manno, Clara; Tarling, Geraint; Thompson, Anu; Wolff, George; Salter, Ian
2018-05-01
Natural iron fertilization downstream of Southern Ocean island plateaus supports large phytoplankton blooms and promotes carbon export from the mixed layer. In addition to sequestering atmospheric CO2, the biological carbon pump also supplies organic matter (OM) to deep-ocean ecosystems. Although the total flux of OM arriving at the seafloor sets the energy input to the system, the chemical nature of OM is also of significance. However, a quantitative framework linking ecological flux vectors to OM composition is currently lacking. In the present study we report the lipid composition of export fluxes collected by five moored sediment traps deployed in contrasting productivity regimes of Southern Ocean island systems (Kerguelen, Crozet and South Georgia) and compile them with quantitative data on diatom and faecal pellet fluxes. At the three naturally iron-fertilized sites, the relative contribution of labile lipids (mono- and polyunsaturated fatty acids, unsaturated fatty alcohols) is 2-4 times higher than at low productivity sites. There is a strong attenuation of labile components as a function of depth, irrespective of productivity. The three island systems also display regional characteristics in lipid export. An enrichment of zooplankton dietary sterols, such as C27Δ5, at South Georgia is consistent with high zooplankton and krill biomass in the region and the importance of faecal pellets to particulate organic carbon (POC) flux. There is a strong association of diatom resting spore fluxes that dominate productive flux regimes with energy-rich unsaturated fatty acids. At the Kerguelen Plateau we provide a statistical framework to link seasonal variation in ecological flux vectors and lipid composition over a complete annual cycle. Our analyses demonstrate that ecological processes in the upper ocean, e.g. resting spore formation and grazing, not only impact the magnitude and stoichiometry of the Southern Ocean biological pump, but also regulate the composition of exported OM and the nature of pelagic-benthic coupling.
NASA Astrophysics Data System (ADS)
Sackett, O.; Armand, L.; Beardall, J.; Hill, R.; Doblin, M.; Connelly, C.; Howes, J.; Stuart, B.; Ralph, P.; Heraud, P.
2014-05-01
Photosynthesis by marine diatoms contributes substantially to global biogeochemical cycling and ecosystem productivity. It is widely accepted that diatoms are extremely sensitive to changes in Fe availability, with numerous in situ experiments demonstrating rapid growth and increased export of elements (e.g. C, Si and Fe) from surface waters as a result of Fe addition. Less is known about the effects of Fe enrichment on the phenotypes of diatoms, such as associated changes in nutritional value, furthermore data on taxon-specific responses is almost non-existent. Enhanced supply of nutrient-rich waters along the coast of the subantarctic Kerguelen Island provide a valuable opportunity to examine the responses of phytoplankton to natural Fe enrichment. Here we demonstrate the use of synchrotron radiation Fourier Transform Infrared (SR-FTIR) microspectroscopy to analyse changes in the macromolecular composition of diatoms collected along the coast and plateau of Kerguelen Island, Southern Ocean. SR-FTIR microspectroscopy enabled the analysis of individual diatom cells from mixed communities of field-collected samples, thereby providing insight into in situ taxon-specific responses in relation to changes in Fe availability. Phenotypic responses were taxon-specific in terms of intraspecific variability and changes in proteins, amino acids, phosphorylated molecules, silicate and carbohydrates. In contrast to some previous studies, silicate levels increased under Fe enrichment, in conjunction with increases in carbohydrate stores. The highly abundant taxon Fragilariopsis kerguelensis displayed a higher level of phenotypic plasticity than Pseudo-nitzschia spp., while analysis of the data pooled across all measured taxa showed different patterns in macromolecular composition compared to those for individual taxon. This study demonstrates that taxon-specific responses to Fe enrichment may not always be accurately reflected by bulk community measurements, highlighting the need for further research into taxon-specific phenotypic responses of phytoplankton to environmental change.
NASA Astrophysics Data System (ADS)
Sackett, O.; Armand, L.; Beardall, J.; Hill, R.; Doblin, M.; Connelly, C.; Howes, J.; Stuart, B.; Ralph, P.; Heraud, P.
2014-10-01
Photosynthesis by marine diatoms contributes substantially to global biogeochemical cycling and ecosystem productivity. It is widely accepted that diatoms are extremely sensitive to changes in Fe availability, with numerous in situ experiments demonstrating rapid growth and increased export of elements (e.g. C, Si and Fe) from surface waters as a result of Fe addition. Less is known about the effects of Fe enrichment on the phenotypes of diatoms, such as associated changes in nutritional value - furthermore, data on taxon-specific responses are almost non-existent. Enhanced supply of nutrient-rich waters along the coast of the subantarctic Kerguelen Island provide a valuable opportunity to examine the responses of phytoplankton to natural Fe enrichment. Here we demonstrate the use of synchrotron radiation Fourier Transform Infrared (SR-FTIR) microspectroscopy to analyse changes in the macromolecular composition of diatoms collected along the coast and plateau of Kerguelen Island, Southern Ocean. SR-FTIR microspectroscopy enabled the analysis of individual diatom cells from mixed communities of field-collected samples, thereby providing insight into in situ taxon-specific responses in relation to changes in Fe availability. Phenotypic responses were taxon-specific in terms of intraspecific variability and changes in proteins, amino acids, phosphorylated molecules, silicate/silicic acid and carbohydrates. In contrast to some previous studies, silicate/silicic acid levels increased under Fe enrichment, in conjunction with increases in carbohydrate stores. The highly abundant taxon Fragilariopsis kerguelensis displayed a higher level of phenotypic plasticity than Pseudo-nitzschia spp., while analysis of the data pooled across all measured taxa showed different patterns in macromolecular composition compared to those for individual taxon. This study demonstrates that taxon-specific responses to Fe enrichment may not always be accurately reflected by bulk community measurements, highlighting the need for further research into taxon-specific phenotypic responses of phytoplankton to environmental change.
Svanella-Dumas, Laurence; Candresse, Thierry; Hullé, Maurice; Marais, Armelle
2013-01-01
A systematic search for viral infection was performed in the isolated Kerguelen Islands, using a range of polyvalent genus-specific PCR assays. Barley yellow dwarf virus (BYDV) was detected in both introduced and native grasses such as Poa cookii. The geographical distribution of BYDV and its prevalence in P. cookii were analyzed using samples collected from various sites of the archipelago. We estimate the average prevalence of BYDV to be 24.9% in P. cookii, with significant variability between sites. BYDV genetic diversity was assessed using sequence information from two genomic regions: the P3 open reading frame (ORF) (encoding the coat protein) and the hypervariable P6 ORF region. The phylogenetic analysis in the P3 region showed that BYDV sequences segregate into three major lineages, the most frequent of which (Ker-I cluster) showed close homology with BYDV-PAV-I isolates and had very low intra-lineage diversity (0.6%). A similarly low diversity was also recorded in the hypervariable P6 region, suggesting that Ker-I isolates derive from the recent introduction of BYDV-PAV-I. Divergence time estimation suggests that BYDV-PAV-I was likely introduced in the Kerguelen environment at the same time frame as its aphid vector, Rhopalosiphum padi, whose distribution shows good overlap with that of BYDV-Ker-I. The two other lineages show more than 22% amino acid divergence in the P3 region with other known species in the BYDV species complex, indicating that they represent distinct BYDV species. Using species-specific amplification primers, the distribution of these novel species was analyzed. The high prevalence of BYDV on native Poaceae and the presence of the vector R. padi, raises the question of its impact on the vulnerable plant communities of this remote ecosystem. PMID:23825645
NASA Astrophysics Data System (ADS)
Ali, Jason R.; Aitchison, Jonathan C.
2008-06-01
Using the most up-to-the-date information available, we present a considerably revised plate tectonic and paleogeographic model for the Indian Ocean bordering continents, from Gondwana's Middle Jurassic break-up through to India's collision with Asia in the middle Cenozoic. The landmass framework is then used to explore the sometimes complex and occasionally counter-intuitive patterns that have been observed in the fossil and extant biological records of India, Madagascar, Africa and eastern Eurasia, as well those of the more distal continents. Although the paleogeographic model confirms the traditional view that India became progressively more isolated from the major landmasses during the Cretaceous and Paleocene, it is likely that at various times minor physiographic features (principally ocean islands) provided causeways and/or stepping-stone trails along which land animals could have migrated to/from the sub-continent. Aside from a likely link (albeit broken by several marine gaps) to Africa for much of this time (it is notable, that the present-day/recent biota of Madagascar indicates that the ancestors of five land-mammal orders, plus bats, crossed the > 400-km-wide Mozambique Channel at different times in the Cenozoic), it is possible that the Kerguelen Plateau connected India and Australia-Antarctica in the mid-Cretaceous (approximately 115-90 Ma). Later, the Seychelles-Mascarene Plateau and nearby elevated sea-floor areas could have allowed faunas to pass between southern India and Madagascar in the Late Cretaceous, from around 85-65 Ma, with an early Cenozoic extension to this path forming as a result of the Reunion hot-spot trace islands growing on the ocean floor to the SSW of India. The modelling also suggests that India's northward passage towards Asia, with eventual collision at 35 Ma, involved the NE corner of the sub-continent making a glancing contact with Sumatra, followed by Burma from ~ 57 Ma (late Paleocene) onwards, a scenario which is compatible with the fossil record indicating that India-Asia faunal exchanges began occurring at about this time. Finally, we contend that a number of biologically-based direct terrestrial migration routes that have been proposed for last 15 m.y. of the Cretaceous (Asia to India; Antarctica to Madagascar and/or India) can probably be dismissed because the marine barriers, likely varying from > 1000 up to 2500 km, were simply too wide.
Atmospheric drying as the main driver of dramatic glacier wastage in the southern Indian Ocean
Favier, V.; Verfaillie, D.; Berthier, E.; Menegoz, M.; Jomelli, V.; Kay, J. E.; Ducret, L.; Malbéteau, Y.; Brunstein, D.; Gallée, H.; Park, Y.-H.; Rinterknecht, V.
2016-01-01
The ongoing retreat of glaciers at southern sub-polar latitudes is particularly rapid and widespread. Akin to northern sub-polar latitudes, this retreat is generally assumed to be linked to warming. However, no long-term and well-constrained glacier modeling has ever been performed to confirm this hypothesis. Here, we model the Cook Ice Cap mass balance on the Kerguelen Islands (Southern Indian Ocean, 49°S) since the 1850s. We show that glacier wastage during the 2000s in the Kerguelen was among the most dramatic on Earth. We attribute 77% of the increasingly negative mass balance since the 1960s to atmospheric drying associated with a poleward shift of the mid-latitude storm track. Because precipitation modeling is very challenging for the current generation of climate models over the study area, models incorrectly simulate the climate drivers behind the recent glacier wastage in the Kerguelen. This suggests that future glacier wastage projections should be considered cautiously where changes in atmospheric circulation are expected. PMID:27580801
Hafnium isotope results from mid-ocean ridges and Kerguelen.
Patchett, P.J.
1983-01-01
176Hf/177Hf ratios are presented for oceanic volcanic rocks representing both extremes of the range of mantle Hf-Nd-Sr isotopic variation. Hf from critical mid-ocean ridge basalts shows that 176Hf/177Hf does indeed have a greater variability than 143Nd/144Nd and 87Sr/86Sr in the depleted mantle. This extra variation is essentially of a random nature, and can perhaps be understood in terms of known Rb/Sr-Sm/Nd-Lu/Hf fractionation relationships. At the other extreme of mantle isotopic compositions, 176Hf/177Hf ratios for igneous rocks from the Indian Ocean island of Kerguelen show a closely similar variation to published 143Nd/144Nd ratios for the same samples. Comparison of Hf-Nd-Sr isotopic relatonships for Tristan da Cunha, Kerguelen and Samoa reveals divergences in the mantle array for ocean-island magma sources, and perhaps suggests that these irregularities are largely the result of an extra component of 87Sr/86Sr variation.-G.R.
Hafnium isotope results from mid-ocean ridges and Kerguelen
Jonathan, Patchett P.
1983-01-01
176Hf/177Hf ratios are presented for oceanic volcanics representing both extremes of the range of mantle HfNdSr isotopic variation. Hf from critical mid-ocean ridgebasalts shows that 176Hf/177Hf does indeed have a greater variability than 143Nd/144Nd and 87Sr/86Sr in the depleted mantle. This extra variation is essentially of a random nature, and can perhaps be understood in terms of known Rb/SrSm/NdLu/Hf fractionation relationships. At the other extreme of mantle isotopic composition, 176Hf/177Hf ratios for igneous rocks from the Indian Ocean island of Kerguelen show a closely similar variation to published 143Nd/144Nd ratios for the same samples. Comparison of HfNdSr c relationships for Tristan da Cunha, Kerguelen and Samoa reveals divergences in the mantle array for ocean island magma sources, and perhaps suggests that these irregularities are largely the result of an extra component of 87Sr/86Sr variation. ?? 1983.
NASA Technical Reports Server (NTRS)
Corcuff, P.; Corcuff, Y.; Carpenter, D. L.; Chappell, C. R.; Vigneron, J.; Kleimenova, N.
1972-01-01
The equatorial structure and dynamics of the plasmasphere during the period of magnetic recovery, lasting from the 13 to 23 of September 1968, are studied. The H(+) ions density profiles measured in the night and afternoon sectors by the excentered orbital satellite OGO 5 and L sub p positions of the plasmapause deduced from the VLF records of the polar orbital satellite OGO 4, are included. Electron densities are calculated from the whistlers received at Kerguelen (L approximately 3, 7) and Byrd (L approximately 7), ground stations 150 degrees of longitude apart.
USGS analysis of the Australian UNCLOS submission
Hutchinson, Deborah R.; Rowland, Robert W.
2006-01-01
In November 2004, the Government of Australia made a submission to the Commission on the Limits of the Continental Shelf (CLCS) for 10 extended continental shelf (ECS) regions, utilizing Article-76 of the United Nations Convention on the Law of the Sea (UNCLOS). With information provided in the Australian Executive Summary, the USGS examined the 10 regions of the submission from geological, morphological, and resource perspectives. By their own request, the Australians asked that CLCS take no action on the Australian-Antarctic Territory. The major limitation in this analysis is that no bathymetric soundings or detailed hydrographic profiles were provided in the Australian Executive Summary that might show why the Foot of the Slope (FOS) was chosen or where the 2,500-m contour is located. This represents a major limitation because more than half of the 4,205 boundary points utilize the bathymetric formula line and more than one-third of them utilize the bathymetric constraint line. CLCS decisions on the components of this submission may set a precedent for how ECSs are treated in future submissions. Some of the key decisions will cover (a) how a 'natural prolongation' of a continental margin is determined, particularly if a bathymetric saddle that appears to determine the prolongation is in deep water and is well outside of the 200-nm limit (Exmouth Plateau), (b) defining to what extent that plateaus, rises, caps, banks and spurs that are formed of oceanic crust and from oceanic processes can be considered to be 'natural prolongations' (Kerguelen Plateau), (c) to what degree UNCLOS recognizes reefs and uninhabited micro-islands (specifically, rocks and/or sand shoals) as islands that can have an EEZ (Middleton and Elizabeth Reefs north of Lord Howe Island), and (d) how the Foot of the Slope (FOS) is chosen (Great Australian Bight). The submission contains situations that are relevant to potential future U.S. submissions and are potentially analogous to certain features of the US margins. The Australian margin has significant geological and morphological variety, similar to the US margin and gives a good idea of the complexity of issues related to the U.S. margin. Decisions about basins and ridges in the Lord Howe Rise and Three Kings Ridge regions will likely bear on the status of ridges in the Arctic, such as Lomonosov Ridge. The Naturaliste Plateau and the South Tasman Rise appear to have parallels with the Chukchi Plateau in the Arctic and the Blake Plateau off the southeastern U.S. The ECS on Macquarie Island/Ridge may determine how boundaries along ridges such as the Mariannas are treated.
NASA Astrophysics Data System (ADS)
Dutkiewicz, Adriana; Müller, Dietmar; Hogg, Andrew; Spence, Paul
2017-04-01
Understanding the transport of modern deep-sea sediment is critical for accurate models of climate-ocean history and the widespread use of the sedimentological record as a proxy for productivity where the connection between biogenic seafloor lithologies and sea-surface is tenuous. The Southern Ocean, where diatoms contribute the bulk of pelagic material to the seafloor forming an extensive belt of diatom ooze, is an exemplar. However, most of the key studies on large-scale sediment reworking in the Southern Ocean were conducted in the 1970s when relatively little was known about the oceanography of this region. At this time even our knowledge of the bathymetry and tectonic fabric, which underpin the distribution of deep-sea currents, were fairly general. The record of widespread regional disconformities in the abyssal plains of the Southern Ocean is well-established and indicates extensive erosion of deep-sea sediments throughout the Quaternary. Here we combine a high-resolution numerical model of bottom currents with sedimentological data to constrain the redistribution of sediment across the abyssal plains and adjacent mid-ocean ridges in the Southern Ocean. We use the global ocean-sea ice model (GFDL-MOM01) to simulate ocean circulation at a resolution that results in realistic velocities throughout the water column, and is ideal for estimating interaction between time-dependent bottom currents and ocean bathymetry. 230Th-normalized vertical sediment rain rates for 63 sites in the Southeast Indian Ocean, combined with satellite data-derived surface productivity, demonstrate that a wide belt of fast sedimentation rates (> 5.5 cm/kyr) along the Southeast Indian Ridge (SEIR) occurs in a region of low surface productivity bounded by two major disconformity fields associated with the Kerguelen Plateau to the east and the Macquarie Ridge to the west. Our ocean circulation model illustrates that the disconformity fields occur in regions of intense bottom current activity where current speeds reach 0.2 m/s and are favorable for generating intense nepheloid layers. These currents transport sediment towards and along the SEIR and through leaky fracture zones to regions where bottom currents speeds drop to < 0.03 m/s and fine particles settle out of suspension. We suggest that the anomalously high sedimentation rates along an 8,000 km-long segment of the SEIR represent a giant Pliocene-Holocene succession of contourite drifts. It is a major extension of the much smaller contourite east of Kerguelen and has accumulated since 3-5 Ma based on the age of the oldest crust underlying the deposit. These inferred contourite drifts provide exceptionally valuable drilling targets for high-resolution climatic investigations of the Southern Ocean. Understanding and quantifying the link between bottom current activity and sediment transport is critical for paleooceanographic and palaeoclimatic reconstructions and for understanding the history of current flow. Dutkiewicz, A., Müller, R.D., Hogg, A. McC., and Spence, P., 2016, Vigorous deep-sea currents cause global anomaly in sediment accumulation in the Southern Ocean, Geology, 44, 663-666, DOI: 10.1130/G38143.1
NASA Astrophysics Data System (ADS)
Yang, X.
2011-12-01
Temperature variation in the past 2000 years on the plateau is reconstructed from Puruogangri ice core d18O, and compared before compositing with other three ice core records as the Dunde ice core (northeast Plateau), Guliya ice core (northwest Plateau) and Dasuopu ice core (south Plateau). The comparison reveals the synchroneity of large-scale climate events, and the composition highlights the warming in the 7th century and 12-13th centuries, and the cold in the 19th century. We searched for historical documentary about Tibet since A.D. 620, extracting record of human activities and social development directly determined or indirectly influenced by climate, and categorizing it into five aspects as basic resources, economic development, military strength, national coherence, and cultural and religious development, to quantify Tibetan development till A.D. 1900. Curve based upon the sum of the five aspects shows Tibetan national strength variation in the past 2000 years. The composited ice core record and Tibetan national strength variation shows consistency, especially during the Songtsen Gampo reign, medieval warm period and the 19th century cold period, thus suggesting the dominative role of climate change in Tibetan civilization before modern ages, as well as proposing the potential application of historical record in paleoclimate reconstruction on the Tibetan Plateau.
NASA Astrophysics Data System (ADS)
Verfaillie, Deborah; Favier, Vincent; Dumont, Marie; Jomelli, Vincent; Gilbert, Adrien; Brunstein, Daniel; Frenot, Yves
2013-04-01
Situated in the Indian Ocean at 49° S, 69° E, Kerguelen archipelago represents a unique sub-polar observational site. Located at low altitude and on islands, the glaciers are particularly sensitive to oceanic and atmospheric variations (e.g. Poggi, 1977a,b; Vallon, 1987). The cryosphere on Kerguelen showed important fluctuations during the last 2 centuries (Frenot et al., 1993). After a small stable period until 1961, the ice cap showed a huge and extremely quick retreat, losing 20% of its surface during the last 40 years (Berthier et al., 2009). Relating directly this acceleration with the fluctuations of temperature and precipitation inferred from direct meteorological measurements is attractive and was generally performed (e.g. Frenot et al., 1993, 1997; Berthier et al., 2009). However, it was recently discovered that the drastic temperature change may be mainly due to changes in meteorological station characteristics in 1973 (Météo France, personal communication), challenging previous interpretation. The analysis of field data collected on Ampere glacier since 2010 presented here provides a first approach in our aim to understand the recent rapid retreat of its cryosphere. In this area, short term mass balance data from previous studies (Vallon 1977a,b, 1987) were compared to recent mass balance measurements. The analysis revealed that the spatial distribution of SMB significantly changed in 40 years. Collecting spatially distributed data of the surface characteristics and ablation was crucial to better interpret our field data. Recent variations (from 2000 to 2012) of the equilibrium line altitude (ELA) of Cook ice cap derived from MODIS imagery confirmed that the ELA rose about 100m since 2000. Additionally, we analysed meteorological and reanalysis data over Kerguelen from 1950 to 2012, in order to assess the causes and processes involved in the retreat of the ice cap, and present additional SMB and ELA estimates from a simple positive degree-day model. We concluded that the parameter with the largest variation was precipitation, which was associated to a decrease in cloud cover. The direct impact of these changes was a rise of the 0°C level that led to a reduction of the occurrence of solid precipitation at low elevation. These retroactions demonstrate that Kerguelen's glaciers are extremely sensitive to small climatic changes. These results on glaciological processes of Ampere glacier are an important base to constrain modelling approaches to assess past, present and future ice cap variations. In this framework, regional scale simulations of mass balance processes over Kerguelen archipelago have been initiated with a downscaling scheme (SMHiL) and with the regional climate model MAR (Modèle Atmosphérique Régional).
NASA Astrophysics Data System (ADS)
Borisova, Anastassia Y.; Bohrson, Wendy A.; Grégoire, Michel
2017-07-01
Chemical Geodynamics relies on a paradigm that the isotopic composition of ocean island basalt (OIB) represents equilibrium with its primary mantle sources. However, the discovery of huge isotopic heterogeneity within olivine-hosted melt inclusions in primitive basalts from Kerguelen, Iceland, Hawaii and South Pacific Polynesia islands implies open-system behavior of OIBs, where during magma residence and transport, basaltic melts are contaminated by surrounding lithosphere. To constrain the processes of crustal assimilation by OIBs, we employed the Magma Chamber Simulator (MCS), an energy-constrained thermodynamic model of recharge, assimilation and fractional crystallization. For a case study of the 21-19 Ma basaltic series, the most primitive series ever found among the Kerguelen OIBs, we performed sixty-seven simulations in the pressure range from 0.2 to 1.0 GPa using compositions of olivine-hosted melt inclusions as parental magmas, and metagabbro xenoliths from the Kerguelen Archipelago as wallrock. MCS modeling requires that the assimilant is anatectic crustal melts (P2O5 ≤ 0.4 wt.% contents) derived from the Kerguelen oceanic metagabbro wallrock. To best fit the phenocryst assemblage observed in the investigated basaltic series, recharge of relatively large masses of hydrous primitive basaltic melts (H2O = 2-3 wt%; MgO = 7-10 wt.%) into a middle crustal chamber at 0.2 to 0.3 GPa is required. Our results thus highlight the important impact that crustal gabbro assimilation and mantle recharge can have on the geochemistry of mantle-derived olivine-phyric OIBs. The importance of crustal assimilation affecting primitive plume-derived basaltic melts underscores that isotopic and chemical equilibrium between ocean island basalts and associated deep plume mantle source(s) may be the exception rather than the rule.
Wide range of mercury contamination in chicks of southern ocean seabirds.
Blévin, Pierre; Carravieri, Alice; Jaeger, Audrey; Chastel, Olivier; Bustamante, Paco; Cherel, Yves
2013-01-01
Using top predators as sentinels of the marine environment, Hg contamination was investigated within the large subantarctic seabird community of Kerguelen Islands, a remote area from the poorly known Southern Indian Ocean. Chicks of 21 sympatric seabirds presented a wide range of Hg concentrations, with the highest contaminated species containing ~102 times more feather Hg than the less contaminated species. Hence, Kerguelen seabirds encompass the whole range of chick feather Hg values that were previously collected worldwide in poorly industrialized localities. Using stable isotopes, the effects of foraging habitats (reflected by δ(13)C) and trophic positions (reflected by δ(15)N) on Hg concentrations were investigated. Species-related Hg variations were highly and positively linked to feather δ(15)N values, thus highlighting the occurrence of efficient Hg biomagnification processes within subantarctic marine trophic webs. By contrast, Hg contamination overall correlated poorly with feeding habitats, because of the pooling of species foraging within different isotopic gradients corresponding to distinct seabird habitats (benthic, pelagic, neritic and oceanic). However, when focusing on oceanic seabirds, Hg concentration was related to feather δ(13)C values, with species feeding in colder waters (lower δ(13)C values) south of Kerguelen Islands being less prone to be contaminated than species feeding in northern warmer waters (higher δ(13)C values). Within the context of continuous increase in global Hg emissions, Kerguelen Islands that are located far away from anthropogenic sources can be considered as an ideal study site to monitor the temporal trend of global Hg contamination. The present work helps selecting some seabird species as sentinels of environmental pollution according to their high Hg concentrations and their contrasted foraging ecology.
Wide Range of Mercury Contamination in Chicks of Southern Ocean Seabirds
Blévin, Pierre; Carravieri, Alice; Jaeger, Audrey; Chastel, Olivier; Bustamante, Paco; Cherel, Yves
2013-01-01
Using top predators as sentinels of the marine environment, Hg contamination was investigated within the large subantarctic seabird community of Kerguelen Islands, a remote area from the poorly known Southern Indian Ocean. Chicks of 21 sympatric seabirds presented a wide range of Hg concentrations, with the highest contaminated species containing ∼102 times more feather Hg than the less contaminated species. Hence, Kerguelen seabirds encompass the whole range of chick feather Hg values that were previously collected worldwide in poorly industrialized localities. Using stable isotopes, the effects of foraging habitats (reflected by δ13C) and trophic positions (reflected by δ15N) on Hg concentrations were investigated. Species-related Hg variations were highly and positively linked to feather δ15N values, thus highlighting the occurrence of efficient Hg biomagnification processes within subantarctic marine trophic webs. By contrast, Hg contamination overall correlated poorly with feeding habitats, because of the pooling of species foraging within different isotopic gradients corresponding to distinct seabird habitats (benthic, pelagic, neritic and oceanic). However, when focusing on oceanic seabirds, Hg concentration was related to feather δ13C values, with species feeding in colder waters (lower δ13C values) south of Kerguelen Islands being less prone to be contaminated than species feeding in northern warmer waters (higher δ13C values). Within the context of continuous increase in global Hg emissions, Kerguelen Islands that are located far away from anthropogenic sources can be considered as an ideal study site to monitor the temporal trend of global Hg contamination. The present work helps selecting some seabird species as sentinels of environmental pollution according to their high Hg concentrations and their contrasted foraging ecology. PMID:23349912
NASA Astrophysics Data System (ADS)
Bonilla-Findji, Osana; Malits, Andrea; Lefèvre, Dominique; Rochelle-Newall, Emma; Lemée, Rodolphe; Weinbauer, Markus G.; Gattuso, Jean-Pierre
2008-03-01
To investigate the potential effects of viruses on bacterial respiration (BR), production (BP) and growth efficiency (BGE), experiments were performed using natural microbial communities from the coastal Mediterranean Sea, from a typical high-nutrient low-chlorophyll (HNLC) region in the Southern Ocean and from a naturally iron (Fe)-fertilized algal bloom above the Kerguelen Plateau (Southern Ocean). Seawater was sequentially filtered and concentrated to produce a bacterial concentrate, a viral concentrate and a virus-free ultrafiltrate. The combination of all three fractions served as treatments with active viruses. Heating or microwaving was used to inactivate viruses for the control treatments. Despite the differences in the initial trophic state and community composition of the study sites, consistent trends were found. In the presence of active viruses, BR was stimulated (up to 113%), whereas BP and BGE were reduced (up to 51%). Our results suggest that viruses enhance the role of bacteria as oxidizers of organic matter, hence as producers of CO 2, and remineralizers of CO 2, N, P and Fe. In the context of Fe-fertilization, this has important implications for the final fate of organic carbon in marine systems.
Earth Observations taken by the Expedition 18 Crew
2009-01-06
ISS018-E-018110 (6 Jan. 2009) --- Kerguelen Kelp Beds in the Southern Indian Ocean are featured in this image photographed by an Expedition 18 crewmember on the International Space Station. MacMurdo and Howe Islands are two of the 300 islands of the Kerguelen Archipelago, a remote place located in the Southern Indian Ocean that belongs to the French Southern and Antarctic Lands. The Kerguelen Archipelago is also known as the "Desolation Islands". The coastal regions of the islands support low vegetation (mainly genus Acaena), while elevations above 50 meters are rocky. There are no permanent inhabitants of the islands, but there is a permanent settlement (Port aux Francais) that hosts scientists mainly interested in biology, oceanography and earth sciences ? in addition, the settlement maintains a weather station and satellite/rocket tracking station. Latitudinal weather conditions are typical from the ?roaring forties? through the ?furious fifties? - on the day this image was taken, the mean daily temperature was 4.5 degrees Celsius with mean westerly winds of 9 meters per second. A substantial proportion of the coastlines of sub-Antarctic islands, like the Kerguelen Islands, are occupied by highly productive giant kelp beds (Macrocystis pyrifera). One of the largest marine macroalgaes, the species can grow up to 50 meters in length, forming undersea forests in hard-bottom subtidal areas. Fronds can spread out to form a canopy which can totally cover the water surface ? we interpret that the black patches surrounding coastal areas in this astronaut photograph are the offshore kelp beds. These forests serve as a habitat for marine fauna, and due to their large biomass and relatively long turnover act as an efficient sink for atmospheric carbon dioxide. The surface wave pattern traveling southeastward along the gray-blue ocean surface, and through the kelp beds, are visible due to the sunglint from the water surface. This also improves the identification of the kelp beds by creating a different water texture (and therefore a contrast) between the dark vegetation and the ocean surface. Kerguelen Archipelago hosts thousands of marine birds (penguins, albatrosses, and petrels among others) and seals (elephant and Antarctic fur species). Whales (humpback) and dolphins (killer whales and Commerson's dolphin) are very common in the area. Fishing boats also frequent the Archipelago ? including unlicensed, so-called ?pirate? fishing vessels.
Transitions in axial morphology along the Southeast Indian Ridge
NASA Astrophysics Data System (ADS)
Ma, Ying; Cochran, James R.
1996-07-01
Shipboard bathymetric and magnetic profiles across the Southeast Indian Ridge (SEIR) were analyzed in order to examine the nature of along-axis variations in axial morphology at this intermediate spreading rate ridge. Three types of axial morphology are observed along the SEIR: an axial high, a shallow (200-700 m deep) axial valley and a deep (>1000 m deep) axial valley. An axial high is found to the east of the Australian-Antarctic Discordance (AAD) (east of 128°E) and between 82°E and 104°E. A shallow rift valley is found from 104°E to 114°E and from 82°E westward past the Amerstdam/St. Paul hotspot (ASP) to about 30°S, 75°E. Deep rift valleys are found from 114°E to 128°E in the vicinity of the AAD and from the Indian Ocean Triple Junction (IOTJ) at 25°S, 70°E to about 30°S, 75°E. The transition near 30°S occurs in an area of constant zero-age depth and does not appear to result from an increase in mantle temperature. It could be the result of the rapid increase in spreading rate along that portion of the SEIR. The most likely cause of the other transitions in axial morphology is variations in mantle temperature. The transitions between the different types of axial morphology are well defined and occur over a limited distance. Transitions in axial morphology are accompanied by significant changes in ridge flank topographic roughness. The transitions from axial valleys to axial highs are also accompanied by changes in the amplitude of the seafloor magnetic anomalies. Our observations suggest that there are distinct modes rather than a continuum of axial morphology on the SEIR and that there appears to be a "threshold" mechanism for a rapid change between different states of axial morphology. The ASP has only a limited influence on the SEIR. The ridge axis is marked by an axial valley for the entire distance from the IOTJ up to and past the ASP. The ridge axis becomes shallower as the ASP is approached from the northwest but only by about 300 m over a distance of 800 km. In addition, the ridge continues to become shallower away from Amsterdam Island toward the transition to an axial high at 82°E, 350 km to the east of the ASP. The Kerguelen hotspot appears to exert a major influence on the morphology of the SEIR by feeding asthenospheric material to the ridge axis. A long, narrow finger-like gravity high extends ENE away from the Kerguelen Plateau for a distance of 500 km. Shipboard data show that the gravity high results from a large volcanic ridge. The ridge appears analogous to the Rodriguez Ridge extending from the Reunion hotspot toward the Central Indian Ridge. A series of lower and broader lineated gravity highs extend from the volcanic ridge toward the SEIR in the ridge segment between the 81°E and 85°E transforms, which is the westernmost segment with an axial high. The only region of significant off-ridge seismicity on the Antarctic flank of the SEIR is a diffuse band of epicenters extending from Kerguelen to the SEIR within the segment between the 81°E and 85°E fracture zones. The along-axis gradient in depth from 86°E to the AAD and the transitions in axial morphology at 104°E and 114°E most likely reflect along-axis variations in mantle temperature and melt production rate due to distance from the Kerguelen hotspot and the influence of the AAD.
Shaded Relief with Height as Color, Kerguelen Island, south Indian Ocean
NASA Technical Reports Server (NTRS)
2002-01-01
These two images show exactly the same area, Kerguelen Island in the southern Indian Ocean. The image on the left was created using the best global topographic data set previously available, the U.S. Geological Survey's GTOPO30. In contrast, the much more detailed image on the right was generated with data from the Shuttle Radar Topography Mission, which collected enough measurements to map 80 percent of Earth's landmass at this level of precision.
Discovered in 1772 by French navigator Chevalier Yves deKerguelen-Tremarac, Kerguelen is the largest of a group of 300 islands, islets and reefs that make up the Kerguelen Archipelago. The islands lie atop the Kerguelen-Gaussberg Ridge and are built up of a thick series of lava flows with deposits of fragmented volcanic rock and some granite. Ice covers about one-third of the island, with the large Cook Glacier visible as the tan-colored region at the center-left. The highest point at 1,850 meters (6,068 feet) is glacier-covered Mount Ross, located near the bottom center. The coastline of the main island is highly irregular with a large number of peninsulas linked to the island by narrow isthmuses. Remarkably, although the island is 120 by 140 kilometers (75 by 87 miles) in size no point is more than 20 kilometers (12 miles) from the sea.For some parts of the globe, Shuttle Radar Topography Mission measurements are 30 times more precise than previously available topographical information, according to NASA scientists. Mission data will be a welcome resource for national and local governments, scientists, commercial enterprises, and members of the public alike. The applications are as diverse as earthquake and volcano studies, flood control, transportation, urban and regional planning, aviation, recreation, and communications. The data's military applications include mission planning and rehearsal, modeling, and simulation.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission aboard Space Shuttle Endeavour, launched on Feb. 11,2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR)that flew twice on Endeavour in 1994. The Shuttle Radar Topography Mission was designed to collect 3-D measurements of Earth's surface. To collect the 3-D data, engineers added a 60-meter approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.Size: 222 kilometers by 146 kilometers (138 miles by 91 miles) Location: 49.1 degrees South latitude, 69.5 degrees East longitude Orientation: North is at the top Date Acquired: February 2000 (SRTM)Ecotone shift and major droughts during the mid-late Holocene in the central Tibetan Plateau.
Shen, Caiming; Liu, Kam-Biu; Morrill, Carrie; Overpeck, Jonathan T; Peng, Jinlan; Tang, Lingyu
2008-04-01
A well-dated pollen record from a large lake located on the meadow-steppe ecotone provides a history of ecotone shift in response to monsoonal climate changes over the last 6000 years in the central Tibetan Plateau. The pollen record indicates that the ecotone shifted eastward during 6000-4900, 4400-3900, and 2800-1600 cal. yr BP when steppes occupied this region, whereas it shifted westward during the other intervals when the steppes were replaced by meadows. The quantitative reconstruction of paleoclimate derived from the pollen record shows that monsoon precipitation fluctuated around the present level over the last 6000 years in the central Tibetan Plateau. Three major drought episodes of 5600-4900, 4400-3900, and 2800-2400 cal. yr BP are detected by pollen signals and lake sediments. Comparison of our record with other climatic proxy data from the Tibetan Plateau and other monsoonal regions shows that these episodes are three major centennial-scale monsoon weakening events.
Glacier extent in sub-Antarctic Kerguelen archipelago from MIS 3 period: Evidence from 36Cl dating
NASA Astrophysics Data System (ADS)
Jomelli, Vincent; Schimmelpfennig, Irene; Favier, Vincent; Mokadem, Fatima; Landais, Amaelle; Rinterknecht, Vincent; Brunstein, Daniel; Verfaillie, Deborah; Legentil, Claude; Aumaitre, Georges; Bourlès, Didier L.; Keddadouche, Karim
2018-03-01
Documenting sub-Antarctic glacier variations during the local last glacial maximum is of major interest to better understand their sensitivity to atmospheric and oceanic temperature changes in conjunction with Antarctic ice sheet changes. However, data are sparse because evidence of earlier glacier extents is for most sub-Antarctic islands located offshore making their observation complex. Here, we present 22 cosmogenic 36Cl surface exposure ages obtained from five sites at Kerguelen to document the glacial history. The 36Cl ages from roche moutonnee surfaces, erratics and boulders collected on moraines span from 41.9 ± 4.4 ka to 14.3 ± 1.1 ka. Ice began to retreat on the eastern part of the main island before 41.4 ± 4.4 ka. Slow deglaciation occurred from ∼41 to ∼29 ka. There is no evidence of advances between 29 ka and the Antarctic Cold Reversal (ACR) period (∼14.5-12.9 ka) period. During the ACR, however, the Bontemps and possibly Belvedere moraines were formed by the advance of a Cook Ice Cap outlet glacier and a local glacier on the Presque Ile Jeanne d'Arc, respectively. This glacier evolution differs partly from that of glaciers in New Zealand and in Patagonia. These asynchronous glacier changes in the sub-Antarctic region are however in agreement with sea surface temperature changes recorded around Antarctica, which suggest differences in the climate evolution of the Indo-Pacific and Atlantic sectors of Antarctica.
NASA Astrophysics Data System (ADS)
Pusz, A. E.; Scher, H. D.; Thunell, R.
2010-12-01
The Eocene-Oligocene transition (EOT) marks the largest change in global climate over the past 50 million years. The EOT is characterized by a two step increase in benthic foraminiferal δ18O that culminated at the Eocene-Oligocene Glacial Maximum. The δ18O increase reflects a combination of deep-water temperature change and the first development of continental-scale ice sheets on Antarctica during the Cenozoic. We present two new high-resolution coupled benthic foraminiferal δ18O and fossil fish tooth neodymium (Nd) isotope records across the EOT from South Atlantic Ocean Drilling Program (ODP) Sites 1090 (Agulhas Ridge, 42°54’S, 8°54’E, 3200 m paleo-depth) and 1265 (Walvis Ridge, 28°50’S, 2°38’E, 2400 m paleo-depth). The least radiogenic Nd values of -7.5 at Site 1090 and -8.1 at Site 1265 occur in step with the benthic δ18O shifts at these two sites. Data from Sites 1090 and 1265 are in agreement with coupled benthic δ18O and ɛNd records from ODP Site 738 on the Kerguelen Plateau. The magnitude of the ɛNd excursion is 1.0 at Site 1265, 1.5 at Site 1090, and 3.0 at Site 738. The origin of nonradiogenic Nd associated with the excursions at Sites 1265, 1090, and 738 is likely glacial erosion of old, Precambrian and Proterozoic bedrock from the Antarctic continent during ice sheet formation. This explanation is preferred over a pulse of Northern Component Water because the abrupt ɛNd decrease at the Agulhas and Walvis ridges is half the magnitude of that at Site 738, which is farthest from the influence of a North Atlantic derived deep-water mass source. We interpret the Nd isotope records to reflect the input of a large amount of glacially transported detrital material from the east Antarctic continent that was funneled through the Lambert Graben towards Prydz Bay. The abrupt and coincident character of the ɛNd shift indicates the eroded material was quickly spread through the Southern Ocean and diluted by mixing with other water masses.
Loess Plateau storage of Northeastern Tibetan Plateau-derived Yellow River sediment
Nie, Junsheng; Stevens, Thomas; Rittner, Martin; Stockli, Daniel; Garzanti, Eduardo; Limonta, Mara; Bird, Anna; Andò, Sergio; Vermeesch, Pieter; Saylor, Joel; Lu, Huayu; Breecker, Daniel; Hu, Xiaofei; Liu, Shanpin; Resentini, Alberto; Vezzoli, Giovanni; Peng, Wenbin; Carter, Andrew; Ji, Shunchuan; Pan, Baotian
2015-01-01
Marine accumulations of terrigenous sediment are widely assumed to accurately record climatic- and tectonic-controlled mountain denudation and play an important role in understanding late Cenozoic mountain uplift and global cooling. Underpinning this is the assumption that the majority of sediment eroded from hinterland orogenic belts is transported to and ultimately stored in marine basins with little lag between erosion and deposition. Here we use a detailed and multi-technique sedimentary provenance dataset from the Yellow River to show that substantial amounts of sediment eroded from Northeast Tibet and carried by the river's upper reach are stored in the Chinese Loess Plateau and the western Mu Us desert. This finding revises our understanding of the origin of the Chinese Loess Plateau and provides a potential solution for mismatches between late Cenozoic terrestrial sedimentation and marine geochemistry records, as well as between global CO2 and erosion records. PMID:26449321
Tracing the hydrological cycle by water stable isotopes on the Tibetan plateau
NASA Astrophysics Data System (ADS)
Tian, L.; Yao, T.; Yu, W.
2013-05-01
A network of precipitation, river, lake water, ice core and atmospheric vapor sampling was set up on the Tibetan Plateau to trance the moisture origins supplied to the plateau, the inland hydrological cycle process and land surface evaporation processes. This work shows different moisture from Indian Ocean monsoon and the westerlies dominate the precipitation δ18O in the south and north of the plateau respectively, which can cause a difference in precipitation δ18O of about 5‰ in average. Precipitation δ18O bears "temperature effect" in the northern Tibetan Plateau, whereas the seasonal precipitation δ18O shows precipitation "amount effect" in the south. This relation is also held in the ice core records on the plateau. An instance is the δ18O record from shallow ice cores in Muztagata Glacier, Dunde ice cap and Naimona'Nyi Glacier. The ice core δ18O record from monsoon region in south Tibet, such as Dasuopu glacier in Xixiabangma, shows a precipitation "amount effect" at least in the annual scale. Further isotope enrichment can be found in the land surface evaporation processes. A simple case is in the close lake system in Yamdruk-tso catchment, southern part of Tibetan Plateau. Both observation and simulation work shows the enrichment of heavy isotope in lake water can be over 10‰ for δ18O, which is much linked to the local climatic condition. Simulation work also shows that atmospheric vapor isotope is also very important to capture the lake water δD value. However, vapor isotopes data are usually less available on the plateau.
Carravieri, Alice; Bustamante, Paco; Churlaud, Carine; Cherel, Yves
2013-06-01
Seabirds have been used extensively as bioindicators of mercury (Hg) contamination in the marine environment, although information on flightless species like penguins remains limited. In order to assess the use of penguins as bioindicators of Hg contamination in subantarctic and Antarctic marine ecosystems, Hg concentrations were evaluated in the feathers of the four species that breed on the Kerguelen Islands in the southern Indian Ocean. Compared to other seabirds, adult Kerguelen penguins had low to moderate feather Hg concentrations, with an average ranging from 1.96 ± 0.41 μgg(-1) dry weight in the southern rockhopper penguin to 5.85 ± 3.00 μg g(-1) dry weight in the gentoo penguin. The species was a major determinant of Hg contamination, with feather Hg concentrations being lower in the oceanic species (king and crested penguins) than in the coastal one (gentoo penguin). In all species however, feather Hg concentrations were higher in adults than in chicks, reflecting the different periods of Hg bioaccumulation in the internal tissues of the two age classes. The relationship between adult penguin trophic ecology and Hg burdens was investigated using stable isotopes. Feeding habits (reflected by δ(15)N values) had a greater effect on adult feather Hg concentrations when compared to foraging habitats (reflected by δ(13)C values), indicating Hg biomagnification in Kerguelen neritic and oceanic waters. Dietary preferences were crucial in explaining individual feather Hg concentrations, as highlighted by intra-specific variation in Hg levels of gentoo penguins sampled at two different breeding sites of the archipelago. Penguins appear to reflect Hg bioavailability reliably in their foraging environment and could serve as efficient bioindicators of Hg contamination in the Southern Ocean on different spatial and temporal scales. Copyright © 2013 Elsevier B.V. All rights reserved.
Independently dated paleomagnetic secular variation records from the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Haberzettl, Torsten; Henkel, Karoline; Kasper, Thomas; Ahlborn, Marieke; Su, Youliang; Wang, Junbo; Appel, Erwin; St-Onge, Guillaume; Stoner, Joseph; Daut, Gerhard; Zhu, Liping; Mäusbacher, Roland
2015-04-01
Magnetostratigraphy has been serving as a valuable tool for dating and confirming chronologies of lacustrine sediments in many parts of the world. Suitable paleomagnetic records on the Tibetan Plateau (TP) and adjacent areas are, however, extremely scarce. Here, we derive paleomagnetic records from independently radiocarbon-dated sediments from two lakes separated by 250 km on the southern central TP, Tangra Yumco and Taro Co. Studied through alternating field demagnetization of u-channel samples, characteristic remanent magnetization (ChRM) directions document similar inclination patterns in multiple sediment cores for the past 4000 years. Comparisons to an existing record from Nam Co, a lake 350 km east of Tangra Yumco, a varve-dated record from the Makran Accretionary Wedge, records from Lakes Issyk-Kul and Baikal, and a stack record from East Asia reveal many similarities in inclination. This regional similarity demonstrates the high potential of inclination to compare records over the Tibetan Plateau and eventually date other Tibetan records stratigraphically. PSV similarities over such a large area (>3000 km) suggest a large-scale core dynamic origin rather than small scale processes like drift of the non-dipole field often associated with PSV records.
Oxygen-18 concentrations in recent precipitation and ice cores on the Tibetan Plateau
Tian, L.; Yao, T.; Schuster, P.F.; White, J.W.C.; Ichiyanagi, K.; Pendall, Elise; Pu, J.; Yu, W.
2003-01-01
A detailed study of the climatic significance of ??18O in precipitation was completed on a 1500 km southwest-northeast transect of the Tibetan Plateau in central Asia. Precipitation samples were collected at four meteorological stations for up to 9 years. This study shows that the gradual impact of monsoon precipitation affects the spatial variation of ??18O-T relationship along the transect. Strong monsoon activity in the southern Tibetan Plateau results in high precipitation rates and more depleted heavy isotopes. This depletion mechanism is described as a precipitation "amount effect" and results in a poor ??18O-T relationship at both seasonal and annual scales. In the middle of the Tibetan Plateau, the effects of the monsoon are diminished but continue to cause a reduced correlation of ??18O and temperature at the annual scale. At the monthly scale, however, a significant ??18O-T relationship does exist. To the north of the Tibetan Plateau beyond the extent of the effects of monsoon precipitation, ??18O in precipitation shows a strong temperature dependence. ??18O records from two shallow ice cores and historic air temperature data were compared to verify the modern ??18O-T relationship. ??18O in Dunde ice core was positively correlated with air temperature from a nearby meteorological station in the north of the plateau. The ??18O variation in an ice core from the southern Plateau, however, was inversely correlated with precipitation amount at a nearby meteorological station and also the accumulation record in the ice core. The long-term variation of ??18O in the ice core record in the monsoon regions of the southern Tibetan Plateau suggest past monsoon seasons were probably more expansive. It is still unclear, however, how changes in large-scale atmosphere circulation might influence summer monsoon precipitation on the Tibetan Plateau.
Chapuis, J L; Chantal, J; Bijlenga, G
1994-02-01
Myxoma virus was introduced into the Kerguelen archipelago in 1955-1956. Thirty years after its introduction, the virus is present in most areas inhabited by rabbits. Rabbit fleas and mosquitoes are absent from this group of islands and the disease is transmitted by contact. The timing of the beginning of new myxomatosis outbreaks, the absence of real epizootics as well as the higher percentage of infected males over females are specific observations in favour of this mode of transmission. The majority of 34 isolates tested between 1984 and 1988 are of intermediate virulence (Grades IIIA-IIIB). In these conditions, the impact of myxomatosis virus on rabbit populations estimated on two sites is low. Myxomatosis therefore plays only a minor role in the regulation of rabbit populations.
NASA Astrophysics Data System (ADS)
Hudson, Adam M.; Olsen, John W.; Quade, Jay; Lei, Guoliang; Huth, Tyler E.; Zhang, Hucai
2016-07-01
The Asian Monsoon, which brings ∼80% of annual precipitation to much of the Tibetan Plateau, provides runoff to major rivers across the Asian continent. Paleoclimate records indicate summer insolation and North Atlantic paleotemperature changes forced variations in monsoon rainfall through the Holocene, resulting in hydrologic and ecologic changes in plateau watersheds. We present a record of Holocene hydrologic variability in the Yarlung Tsangpo (YT) valley of the southern Tibetan Plateau, based on sedimentology and 14C dating of organic-rich 'black mats' in paleowetlands deposits, that shows changes in wetlands extent in response to changing monsoon intensity. Four sedimentary units indicate decreasing monsoon intensity since 10.4 ka BP. Wet conditions occurred at ∼10.4 ka BP, ∼9.6 ka BP and ∼7.9-4.8 ka BP, with similar-to-modern conditions from ∼4.6-2.0 ka BP, and drier-than-modern conditions from ∼2.0 ka BP to present. Wetland changes correlate with monsoon intensity changes identified in nearby records, with weak monsoon intervals corresponding to desiccation and erosion of wetlands. Dating of in situ ceramic and microlithic artifacts within the wetlands indicates Epipaleolithic human occupation of the YT valley after 6.6 ka BP, supporting evidence for widespread colonization of the Tibetan Plateau in the early and mid-Holocene during warm, wet post-glacial conditions.
Are there limits to swimming world records?
Nevill, A M; Whyte, G P; Holder, R L; Peyrebrune, M
2007-12-01
The purpose of this article was to investigate whether swimming world records are beginning to plateau and whether the inequality between men and women's swimming performances is narrowing, similar to that observed in running world records. A flattened "S-shaped curve" logistic curve is fitted to 100-m, 200-m, and 400-m front-crawl world-record swimming speeds for men and women from 1 May 1957 to the present time, using the non-linear least-squares regression. The inequality between men and women's world records is also assessed using the ratio, Women's/Men's world record speeds. The results confirm that men and women's front-crawl swimming world-record speeds are plateauing and the ratio between women's and men's world records has remained stable at approximately 0.9. In conclusion, the logistic curves provide evidence that swimming world-record speeds experienced a period of "accelerated" growth/improvements during the 1960 - 1970s, but are now beginning to plateau. The period of acceleration corresponded with numerous advances in science and technology but also coincided with the anecdotal evidence for institutionalised doping. Also noteworthy, however, is the remarkably consistency in the women's/men's world record ratio, circa 0.9, similar to those observed in middle and long distance running performances. These finding supports the notion that a 10 % gender inequality exists for both swimming and running.
A new species of Mongolodectes (Orthoptera: Tettigoniidae) from Alashan Plateau in China.
Liu, Chun-Xiang; Xu, Wen-Jing; Zhang, Chun-Tian
2015-12-02
The genus Mongolodectes is endemic to vast Mongolian Plateau and has two recorded species in the Mongolian People's Republic and one species in China's Inner Mongolia. Here we describe one new species Mongolodectes huangi sp. n. from China's Inner Mongolia. Further investigations are needed for precise identification and complete understanding on the fauna of the Mongolian Plateau.
NASA Astrophysics Data System (ADS)
Strecker, M. R.; Bookhagen, B.; Alonso, R. N.; Pingel, H.; Freymark, J.
2015-12-01
With average elevations of about 3.7 km the Altiplano-Puna Plateau of the southern central Andes constitutes the world's second largest orogenic plateau. The plateau generally consists of internally drained, partly coalesced sedimentary basins bordered by reverse-fault bounded ranges, >5 km high. In the Puna, the Argentine sector of the plateau, active tectonism has been interpreted to be characterized by a low level of strike-slip and normal faulting associated with mafic volcanism. In contrast, the eastern plateau margins and the adjacent foreland record a higher level of seismicity and ongoing contraction. Despite ubiquitous Plio-Pleistocene normal faulting along the eastern plateau margins, our new observations record contraction in the plateau interior. Fanning of E-dipping Miocene sedimentary strata involved in the formation of an anticline in the Pocitos Basin of the central Puna interior indicates growth, which must have begun after 7 Ma; 1.5-m.y.-old lacustrine strata as well as tilted Pleistocene lacustrine shorelines associated with this structure indicate sustained uplift into the Quaternary. Corresponding observations along the eastern border of the Pocitos Basin show that <3.5-m.y.-old strata are involved in contractile deformation and basin compartmentalization. Shortening in the central Puna is compatible with Plio-Pleistocene shortening in the low-elevation Salar de Atacama farther west, and may indicate that low-elevation sectors of the plateau have not yet reached a critical elevation that is conducive to normal faulting as observed elsewhere. The onset of extensional deformation in the Puna is thus highly disparate in space and time. Coeval regional thrusting, strike-slip, and normal faulting do not support a structural and topographic setting that promotes wholesale extension and orogenic collapse of the plateau realm.
Fukushima Nuclear Accident Recorded in Tibetan Plateau Snow Pits
Wang, Ninglian; Wu, Xiaobo; Kehrwald, Natalie; Li, Zhen; Li, Quanlian; Jiang, Xi; Pu, Jianchen
2015-01-01
The β radioactivity of snow-pit samples collected in the spring of 2011 on four Tibetan Plateau glaciers demonstrate a remarkable peak in each snow pit profile, with peaks about ten to tens of times higher than background levels. The timing of these peaks suggests that the high radioactivity resulted from the Fukushima nuclear accident that occurred on March 11, 2011 in eastern Japan. Fallout monitoring studies demonstrate that this radioactive material was transported by the westerlies across the middle latitudes of the Northern Hemisphere. The depth of the peak β radioactivity in each snow pit compared with observational precipitation records, suggests that the radioactive fallout reached the Tibetan Plateau and was deposited on glacier surfaces in late March 2011, or approximately 20 days after the nuclear accident. The radioactive fallout existed in the atmosphere over the Tibetan Plateau for about one month. PMID:25658094
NASA Astrophysics Data System (ADS)
van den Hoff, John; Burton, Harry; Robins, Judith
2012-12-01
Livestock was often released onto remote Southern Ocean islands as a food source for shipwreck survivors during the industrial whaling and sealing era. Although animals were put ashore at nearby Isles Kerguelen and Crozet, the historical records make no mention of domesticated livestock ever being set ashore at Heard Island between 1855 and 1882. Here we report a pig ( Sus scrofa) mandible discovered amongst other bones and artefacts in an `elephanters' midden found at Spit Bay, Heard Island. The find provides very strong evidence a live pig was shipped ashore and eaten as part of the sealers meagre provisions. Archaeological investigations of middens at other sealing locations could produce new insights into the dietary habits of these men.
Launey, Sophie; Brunet, Geraldine; Guyomard, René; Davaine, Patrick
2010-01-01
Human-mediated biological invasions constitute interesting case studies to understand evolutionary processes, including the role of founder effects. Population expansion of newly introduced species can be highly dependant on barriers caused by landscape features, but identifying these barriers and their impact on genetic structure is a relatively recent concern in population genetics and ecology. Salmonid populations of the Kerguelen Islands archipelago are a favorable model system to address these questions as these populations are characterized by a simple history of introduction, little or no anthropogenic influence, and demographic monitoring since the first introductions. We analyzed genetic variation at 10 microsatellite loci in 19 populations of brown trout (Salmo trutta L.) in the Courbet Peninsula (Kerguelen Islands), where the species, introduced in 3 rivers only, has colonized the whole water system in 40 years. Despite a limited numbers of introductions, trout populations have maintained a genetic diversity comparable with what is found in hatchery or wild populations in Europe, but they are genetically structured. The main factor explaining the observed patterns of genetic diversity is the history of introductions, with each introduced population acting as a source for colonization of nearby rivers. Correlations between environmental and genetic parameters show that within each "source population" group, landscape characteristics (type of coast, accessibility of river mouth, distances between rivers, river length ...) play a role in shaping directions and rates of migration, and thus the genetic structure of the colonizing populations.
NASA Astrophysics Data System (ADS)
He, Y.; Liu, Z.; Zheng, Z.; Zhao, C.; Sun, Y.
2012-12-01
The Northeastern Tibetan Plateau is a high elevation region sensitive to large-scale climate change, thus allows us better understanding the Holocene climate interactions between the mid-latitude westerly and subtropical Asia monsoon circulations. This region is now and in the late Holocene out of the influence of Asian monsoon systems and inconsistency hydrological variations from monsoon controlled region is suggested. However, the boundary and the interactions between the westerly and the Asian monsoon circulations during the whole Holocene have not been well documented. Here we present multiple biomarker alkane and alkenone based records from Lake Gahai in the Qaidam Basin on the northeastern Tibetan Plateau to study the lake level and climate variability over the past 12,000 years. Characterized by marked alkane-based average chain length (ACL) and carbon preference index (CPI) values, our records provide unambiguous evidence of a generally dry climate from 9 to 2 ka (1 ka = 1,000 cal yr BP), and a relatively wet climate after 2 ka and before 9 ka. The occurrence of alkenones during the period of low ACL and CPI values also supports this result. Good match between our records and other earlier paleoclimatic records derived from the same basin was found, suggesting the paleoenvironment record obtained at Lake Gahai is a regional record rather than a local signal, at least in the Qaidam Basin. This generally dry climate between 9 and 2 ka was almost synchronous with the weakening of East Asian and Indian monsoon intensities. However, our data suggest an opposite moisture relation from our region and westerly controlled region. This phenomenon may lie on the interaction between westerly and monsoon systems, probably contributed to the topographic subsidence associated with stronger atmospheric convergence and rising motion on the plateau. Also this discrepancy was likely due to the enhanced evaporation than to the increased monsoon precipitation in the northeastern Tibetan Plateau, which accounts for the high temperatures.
Earth Observations taken by the Expedition 18 Crew
2009-02-28
ISS018-E-038182 (28 Feb. 2009) --- Mawson Peak, Heard Island is featured in this image photographed by an Expedition 18 crewmember on the International Space Station. Heard Island is located in the southern Indian Ocean, approximately 1,550 kilometers to the north of Antarctica. The island is a visible part of the Kerguelen Plateau, a submerged feature on the seafloor formed by large amounts of volcanic rock erupted over a geologically short time period within an oceanic tectonic plate ? features like these are termed large igneous provinces by geologists. Most of Heard Island is formed from volcanic rocks associated with the Big Ben stratovolcano. The northeastern slopes of the volcano are visible in shadow at the top left of this detailed astronaut photograph. Recent observed volcanic activity at Heard Island has occurred at 2,745 meters high Mawson Peak, which sits within a breached caldera (collapsed and empty magma chamber beneath a volcano) on the southwestern side of the Big Ben volcano ? the shadow cast by Mawson Peak in the image points directly to the crescent-shaped caldera rim. Detailed geologic study of the Big Ben volcano is made difficult by the presence of several glaciers, including Gotley and Lied Glaciers on the southwestern slopes. This image, taken during Southern Hemisphere summer, also reveals some of the non-glaciated, light to dark brown volcanic rock forming the island on either side of Gotley Glacier.
Plateau Waves of Intracranial Pressure and Multimodal Brain Monitoring.
Dias, Celeste; Maia, Isabel; Cerejo, Antonio; Smielewski, Peter; Paiva, José-Artur; Czosnyka, Marek
2016-01-01
The aim of this study was to describe multimodal brain monitoring characteristics during plateau waves of intracranial pressure (ICP) in patients with head injury, using ICM+ software for continuous recording. Plateau waves consist of an abrupt elevation of ICP above 40 mmHg for 5-20 min. This is a prospective observational study of patients with head injury who were admitted to a neurocritical care unit and who developed plateau waves. We analyzed 59 plateau waves that occurred in 8 of 18 patients (44 %). At the top of plateau waves arterial blood pressure remained almost constant, but cerebral perfusion pressure, cerebral blood flow, brain tissue oxygenation, and cerebral oximetry decreased. After plateau waves, patients with a previously better autoregulation status developed hyperemia, demonstrated by an increase in cerebral blood flow and brain oxygenation. Pressure and oxygen cerebrovascular reactivity indexes (pressure reactivity index and ORxshort) increased significantly during the plateau wave as a sign of disruption of autoregulation. Bedside multimodal brain monitoring is important to characterize increases in ICP and give differential diagnoses of plateau waves, as management of this phenomenon differs from that of regular ICP.
NASA Astrophysics Data System (ADS)
John, C. M.; Browning, E.; Lowery, C.; Leckie, R. M.; Karner, G. D.; Schouten, S.
2012-12-01
The East Antarctic Ice Sheet (EAIS) had a major influence on Cenozoic eustasy and paleoceanography. Reconstructing changes in ice volume and climate associated with the EAIS is thus critical to a better understanding of climate dynamics, but this has proven difficult to do using only sedimentary records from Antarctica because ice sheets tend to erase evidences of their own history. It is possible, however, to gain information about the dynamics of the EAIS by reconstructing glacio-eustasy and regional paleoceanographic changes away from Antarctica. We present a record of carbonate deposition spanning the uppermost Oligocene to upper Miocene on the Marion Plateau of Northeastern Australia (ODP Leg 194). The Marion Plateau is ideally located for our study on a tectonically quiescent margin, and it is a sensitive recorder of Antarctic paleoenvironmental changes due to its geographical position in the southern hemisphere. We conducted a multi-disciplinary study involving sedimentology, sequence stratigraphy, calcareous nannofossil and foraminifer micropaleontology, and organic geochemistry. Eleven lower and middle Miocene sequence boundaries can be recognized on the Marion Plateau based on facies and seismic reflection lines, and each sequence boundary (sea-level fall) is associated with a phase of growth of the EAIS (as evidenced by positive shifts in δ18O, termed "Mi Events"). The oldest boundary recovered is 23.16 Ma old. By combining backstripping and δ18O estimates, the amplitude of four of the Miocene eustatic falls are constrained to 27±1 m at 16.5 Ma (Mi2), 27±1 m at 15.6 Ma (Mi2a), 33±3 m at 14.8 Ma (Mi3a), and 59±6 m at 13.6 Ma (Mi3). The amplitude of the eustatic drop associated with event Mi3 suggests a major growth phase of the EAIS in the middle Miocene, which is supported by other deep-sea records and several recent studies from continental Antarctica. Furthermore, nannofossil assemblages show four main clusters corresponding to changes in temperature and productivity on the Marion Plateau; for much of the Miocene, surface waters of the Marion Plateau are characterized by warm, subtropical temperatures, but at 14.8 Ma (coeval with event Mi3a) assemblages suddenly become dominated by the cold-water species Dictyococcites productus and Dictyococcites antarcticus. TEX86 data support the observation based on nannofossil assemblages, suggesting incursions of colder waters on the Marion Plateau from 14.8 Ma to 13.6 Ma, with a progressive return to sub-tropical temperatures afterwards. The combined glacio-eustatic and paleoceanographic records of the Marion Plateau suggest the onset of significant cooling on Antarctica by 14.8 Ma, followed by a major growth phase of the EAIS by 13.6 Ma.
Circumpolar Estimates of Isopycnal Mixing in the ACC from Argo Floats
NASA Astrophysics Data System (ADS)
Roach, C. J.; Balwada, D.; Speer, K. G.
2015-12-01
There are few direct observations of cross-stream isopycnal mixing in the interior of the Southern Ocean, yet such measurements are needed to determine the role of eddies transporting properties across the ACC, and key to progress toward testing theories of meridional overturning. In light of this we examine if it is possible to obtain estimates of mixing from Argo float trajectories. We divided the Southern Ocean into overlapping 15ο longitude bins before estimating mixing. Resulting diffusivities ranged from 300 to 3000 m2s-1, with peaks corresponding to the Scotia Sea; Kerguelen and Campbell Plateaus. Comparison of our diffusivities with previous regional studies demonstrated good agreement. Tests of the methodology in the DIMES region found that mixing from Argo floats agreed closely with mixing from RAFOS floats. To further test the method we used the Southern Ocean State Estimate velocity fields to advect particles with Argo and RAFOS float like behaviours. Stirring estimates from the particles agreed well with each other in the Kerguelen Island region, South Pacific and Scotia Sea, despite the differences in the imposed behaviour. Finally, these estimates were compared to mixing length suppression theory presented in Ferrari and Nikurashin 2010. This mixing length suppression theory quantifies horizontal diffusivity similar to Prandtl (1925), but the mixing length is suppressed in the presence of mean flows and eddy phase speeds. Our results suggest that the theory can explain both the structure and magnitude of mixing using mean flow data. An exception is near the Kerguelen and Campbell Plateaus where theory under-estimates mixing relative to our results.
NASA Astrophysics Data System (ADS)
Fonseca, Ricardo; Martín-Torres, Javier
2018-03-01
We have used the Weather Research and Forecasting (WRF) model to simulate the climate of the Kerguelen Islands (49° S, 69° E) and investigate its inter-annual variability. Here, we have dynamically downscaled 30 years of the Climate Forecast System Reanalysis (CFSR) over these islands at 3-km horizontal resolution. The model output is found to agree well with the station and radiosonde data at the Port-aux-Français station, the only location in the islands for which observational data is available. An analysis of the seasonal mean WRF data showed a general increase in precipitation and decrease in temperature with elevation. The largest seasonal rainfall amounts occur at the highest elevations of the Cook Ice Cap in winter where the summer mean temperature is around 0 °C. Five modes of variability are considered: conventional and Modoki El Niño-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), Subtropical IOD (SIOD) and Southern Annular Mode (SAM). It is concluded that a key mechanism by which these modes impact the local climate is through interaction with the diurnal cycle in particular in the summer season when it has a larger magnitude. One of the most affected regions is the area just to the east of the Cook Ice Cap extending into the lower elevations between the Gallieni and Courbet Peninsulas. The WRF simulation shows that despite the small annual variability, the atmospheric flow in the Kerguelen Islands is rather complex which may also be the case for the other islands located in the Southern Hemisphere at similar latitudes.
Delille, D; Gleizon, F
2003-09-01
Untreated sewage has been released from Port-aux Français station, Kerguelen Island, into the Southern Ocean for more than 50 years. We investigated the spatial distribution of faecal bacteria indicators during a one-year survey conducted in seawater off Morbihan Bay near the French permanent station of the Kerguelen Island (49 degrees 21(')S, 70 degrees 30(')E). Seawater samples were taken bimonthly from nine stations evenly distributed around the sewage outfalls of the station. Escherichia coli and enterococci were estimated using specific microplates (Miniaturized method for the enumeration of E. coli or enterococci in surface and waste waters, "MU/EC or MU/SF methods", BIO-RAD( Copyright)). In order to evaluate the role of seasonal changes of environmental parameters on the survival of enteric bacteria, total and saprophytic bacterial abundances were also estimated in all seawater samples. High densities of faecal bacteria (maximum 10(4) cells 100 ml(-1)) were found in seawater surrounding the sewage outfall. However, enteric bacterial counts decreased rapidly with increasing distance from the outfall. In all samples collected further than 2 km from the outfall, the bacterial indicators were absent or present in small numbers (<10 cells 100 ml(-1)). Faecal coliforms were not detected in samples collected at pristine sites located 10 km from Port-aux-Français. Despite these low contamination levels, faecal bacteria were always detected in the vicinity of the sewage outfall during the seasonal survey. The concentration of faecal bacteria may be related to the number of people inhabiting the station.
Anderson, R. Scott; Betancourt, J.L.; Mead, J.I.; Hevly, R.H.; Adam, D.P.
2000-01-01
The Colorado Plateau is a distinct physiographic province in western North America, which presently straddles the transition between summer-wet and summer-dry climatic regimes to the south and northwest, respectively. In addition to climate, the diversity of environments and plant communities on the Colorado Plateau has resulted from extreme topographic diversity. Desert lowlands as low as 360 m elevation are surrounded by forested plateaus, and even higher peaks greater than 3800 m elevation. This environmental diversity provides a unique opportunity to study the history of biotic communities in an arid region of North America. Although the Colorado Plateau harbours numerous potential sites, the paleoecological record of the Plateau is poorly known. Potential deposits for analysis include packrat middens, alluvial and cave sites at lower elevations, and lake, bog and wetland sites at higher elevations. Forty-six sites have been analysed across the nearly 337,000 km2 region, of which 27 contain records that span Marine Oxygen Isotope Stage (IS) 2 data, with IS 3 information coming from only 12 sites. Most IS 2 and 3 sites are clustered along the lowland regions of the Colorado River corridor and the uplands of the Mogollon Rim area. We compiled selected data from long paleoecological records to examine patterns of vegetation and climate change across the southern Colorado Plateau for the middle and late Wisconsin. During the middle Wisconsin, mixed conifers covered middle-elevations presently dominated by ponderosa pine (Pinus ponderosa), and juniper (Juniperus) woodland grew at elevations today covered by blackbrush (Coleogyne) and sagebrush (Artemisia) desert. During the late Wisconsin, boreal conifers, primarily Engelmann spruce (Picea engelmannii), replaced the mixed conifer association. Estimates of mean annual temperatures (MAT) during IS 3 were at least 3-4??C cooler than today, whereas IS 2 MAT estimates are at least 5??C colder. Our investigation of millennial-scale climatic variability within the region provided equivocal results. The packrat midden sequence could not distinguish vegetation changes that might be associated with Heinrich events in the North Atlantic. From the lake records, however, many Heinrich events were associated with generally drier intervals, often with elevated sagebrush pollen concentrations. Future paleoecological investigations should concentrate on the northern Colorado Plateau, as well as the eastern and western margins. Additional sites, along with closer-spaced sampling in regions already studied, will be important in determining the history of important climatic phenomena such as the timing of the Arizona monsoon.
NASA Astrophysics Data System (ADS)
Hou, M.; Zhuang, G.; Wu, M.
2017-12-01
Topics about the deformation history and uplift mechanism of Tibetan Plateau have been largely debated in the past few decades. Different geodynamic models present different predictions on the mountain building processes and hence the surface uplift history. For example, one tectonic model suggests a rapid uplift (>1.0 to 2.0 km) of the Tibetan Plateau in the period of ca. 10 to 8 Ma as result of isostatic rebound due to the removal of over-thickened mental lithosphere beneath. Whilst the stepwise uplift model infers that the high topography was growing progressively from south to north with the Northeast Tibetan Plateau being built in the Pliocene to present. In this case, the timing of Cenozoic uplift of Northeast Tibetan Plateau would provide information for distinguishing competing geodynamic processes. The stable isotope based paleoaltimetry holds the key to answering when the high topography was built. Additionally, the evolution of Cenozoic Asian climate was argued to be closely related to the high topography built up on the Tibetan Plateau since the India-Asian collision and/or impacted by the global change. To understand when the high topography was built and how the growth of Tibetan Plateau impacted the climate, we reconstructed the long-term histories of paleohydrology from hinterland and foreland basins in the Northeast Tibetan Plateau. We applied the compound-specific isotope hydrogen analysis to leaf wax n-alkanes (δ2Hn-alk) that are preserved in well-dated stratigraphic series (ca. 24 Ma to the present) in the Northeast Tibetan Plateau. The newly reconstructed δ2Hn-alk supports the inference of high topography on the Northeast Tibetan Plateau was built during the middle to late Miocene. Our inference is consistent with sedimentary and basement rock studies that show fundamental changes in facies and provenance and exhumation history. The new δ2Hn-alk record also reveals that the regional climate became drier since the middle Miocene following the gain of high elevations on the plateau. Additionally, the late Cenozoic global cooling might impact the regional climate by influencing the precipitable moisture content.
Gravitational salt tectonics above a rising basement plateau offshore Algeria
NASA Astrophysics Data System (ADS)
Gaullier, Virginie; Vendeville, Bruno C.; Besème, Grégoire; Legoux, Gaetan; Déverchère, Jacques; Lymer, Gaël
2017-04-01
Seismic data (survey "MARADJA 1", 2003) offshore the Algerian coast have imaged an unexpected deformation pattern of the Messinian salt (Mobile Unit; MU) and its sedimentary overburden (Messinian Upper Unit and Plio-Quaternary) above an actively rising plateau in the subsalt basement. From a geodynamic point of view, the region is undergoing crustal convergence, as attested by the Boumerdes earthquake (2003, magnitude 6.8). The rise of this plateau, forming a 3D promontory restricted to the area offshore Algiers, is associated with that geodynamic setting. The seismic profiles show several subsalt thrusts (Domzig et al. 2006). The data provided additional information on the deformation of the Messinian mobile evaporitic unit and its Plio-Quaternary overburden. Margin-perpendicular profiles show mostly compressional features (anticlines and synclines) that had little activity during Messinian times, then grew more during Plio-Quaternary times. A few normal faults are also present, but are not accompanied by salt rise. By contrast, margin-parallel profiles clearly show that extensional, reactive salt diapiric ridges (symptomatic with their triangular shape in cross section) formed early, as early as the time of deposition of the Messinian Upper Unit, as recorded by fan-shaped strata. These ridges have recorded E-W, thin-skinned gravity gliding above the Messinian salt, as a response to the rise of the basement plateau. We tested this hypothesis using two analogue models, one where we assumed that the rise of the plateau started after Messinian times (initially tabular salt across the entire region), the second model assumed that the plateau had already risen partially as the Messininan Mobile Unit was deposited (salt initially thinner above the plateau than in the adjacent regions). In both experiments, the rise of the plateau generated preferential E-W extension above the salt, combined with N-S shortening. Extension was caused by gravity gliding of the salt from above the rising basement toward the deeper adjacent basins. So far, the deformation pattern of the salt and overburden on the plateau did not allow us to use it as a clear indicator of whether the plateau's rise started before or during Messinian times.
Calipso recordings and monitoring dust storms over the open seas in south of the iran plateau
NASA Astrophysics Data System (ADS)
Khalesifard, Hamid R.; Bayat, Farizeh
2018-04-01
Open seas in the south of the Iran plateau are under the influence of heavy dust storms which are originating either from the Tigris and Euphrates basin, the Arabian Peninsula or Hamoun lake. We have used the recordings of the CALIPSO satellite to investigate the seasonal variations as well as the origins of the dust storms over the region. CALIPSO data set shows dust activities are frequent during May to September in the interested region and the Hamoun lake has considerable impacts on it.
Li, Qiang; Wang, Xiaoming
2015-01-01
This paper reports the fossil zokors (Myospalacinae) collected from the lower Pliocene (~4.4 Ma) of Zanda Basin, southwestern Tibet, which is the first record in the hinterland of Tibetan Plateau within the Himalayan Range. Materials include 29 isolated molars belonging to Prosiphneus eriksoni (Schlosser, 1924) by having characters including large size, highly fused roots, upper molars of orthomegodont type, m1 anterior cap small and centrally located, and first pair of m1 reentrants on opposing sides, high crowns, and high value of dentine tract parameters. Based on the cladistics analysis, all seven species of Prosiphneus and P. eriksoni of Zanda form a monophyletic clade. P. eriksoni from Zanda, on the other hand, is nearly the terminal taxon of this clade. The appearance of P. eriksoni in Zanda represents a significant dispersal in the early Pliocene from its center of origin in north China and Mongolian Plateau, possibly via the Hol Xil-Qiangtang hinterland in northern Tibet. The fast evolving zokors are highly adapted to open terrains at a time when regional climates had become increasingly drier in the desert zones north of Tibetan Plateau during the late Miocene to Pliocene. The occurrence of this zokor in Tibet thus suggests a rather open steppe environment. Based on fossils of large mammals, we have formulated an "out of Tibet" hypothesis that suggests earlier and more primitive large mammals from the Pliocene of Tibet giving rise to the Ice Age megafauna. However, fossil records for large mammals are still too poor to evaluate whether they have evolved from lineages endemic to the Tibetan Plateau or were immigrants from outside. The superior record of small mammals is in a better position to address this question. With relatively dense age intervals and numerous localities in much of northern Asia, fossil zokors provide the first example of an "into Tibet" scenario--earlier and more primitive taxa originated from outside of the Tibetan Plateau and the later the lineage became extinct in southwestern Tibet.
Li, Qiang; Wang, Xiaoming
2015-01-01
This paper reports the fossil zokors (Myospalacinae) collected from the lower Pliocene (~4.4 Ma) of Zanda Basin, southwestern Tibet, which is the first record in the hinterland of Tibetan Plateau within the Himalayan Range. Materials include 29 isolated molars belonging to Prosiphneus eriksoni (Schlosser, 1924) by having characters including large size, highly fused roots, upper molars of orthomegodont type, m1 anterior cap small and centrally located, and first pair of m1 reentrants on opposing sides, high crowns, and high value of dentine tract parameters. Based on the cladistics analysis, all seven species of Prosiphneus and P. eriksoni of Zanda form a monophyletic clade. P. eriksoni from Zanda, on the other hand, is nearly the terminal taxon of this clade. The appearance of P. eriksoni in Zanda represents a significant dispersal in the early Pliocene from its center of origin in north China and Mongolian Plateau, possibly via the Hol Xil-Qiangtang hinterland in northern Tibet. The fast evolving zokors are highly adapted to open terrains at a time when regional climates had become increasingly drier in the desert zones north of Tibetan Plateau during the late Miocene to Pliocene. The occurrence of this zokor in Tibet thus suggests a rather open steppe environment. Based on fossils of large mammals, we have formulated an “out of Tibet” hypothesis that suggests earlier and more primitive large mammals from the Pliocene of Tibet giving rise to the Ice Age megafauna. However, fossil records for large mammals are still too poor to evaluate whether they have evolved from lineages endemic to the Tibetan Plateau or were immigrants from outside. The superior record of small mammals is in a better position to address this question. With relatively dense age intervals and numerous localities in much of northern Asia, fossil zokors provide the first example of an “into Tibet” scenario–earlier and more primitive taxa originated from outside of the Tibetan Plateau and the later the lineage became extinct in southwestern Tibet. PMID:26658457
NASA Astrophysics Data System (ADS)
Sierra Hernandez, R.; Gabrielli, P.; Beaudon, E.; Wegner, A.; Thompson, L. G.
2014-12-01
The Tibetan Plateau or Third Pole covers over 5 million km2, and has ~46,000 glaciers that collectively contain one of the Earth's largest stores of fresh water. The Guliya ice cap located in the western Kunlun Shan on the Qinghai-Tibetan Plateau, China, is the largest (> 200 km2) ice cap in the subtropical zone. In 1992, a 308.6 m ice core to bedrock was recovered from the Guliya ice cap. The deepest 20 meters yielded the first record extending back through the last glacial cycle found outside of the Polar Regions. Because of its continental location on the northwestern side of the Tibetan Plateau, the atmospheric circulation over the Guliya ice cap is dominated by westerly air flow from the Eurasian region. Therefore the site is expected to be unaffected by the fallout of anthropogenic trace metals originating from the inner Asian continent and rather may serve to characterize trace metal emissions from the western countries. Here we present preliminary results of the determination of 29 trace elements, Rb, Sr, Nb, Mo, Ag, Cd, Sn, Sb, Cs, Ba, Ta, Tl, Pb, Bi, U, Li, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, and As, from Guliya ice core samples spanning the period 1500 - 1992 AD at seasonal (1750-1992 AD) and annual (1500-1750 AD) resolution. This Guliya trace element record will complement the developing records from the Dasuopu glacier, central Himalaya, and from the Puruogangri ice cap in the western Tanggula Shan in central Tibetan Plateau, which in contrast to Guliya are influenced by the monsoon. We investigate the possible sources both natural and anthropogenic of atmospheric trace elements and their fluxes over the Tibetan Plateau during the last 500 years.
NASA Astrophysics Data System (ADS)
Wiers, Steffen; Snowball, Ian; O'Regan, Matt; Almqvist, Bjarne
2017-04-01
The Yermak Plateau, situated north of Svalbard, has been recognized as one of several places in the Arctic Ocean where paleomagnetism yields controversial results. Despite low sedimentation rates, excursional paleomagnetic directions have been reconstructed from many cores in the region. Commonly reported geomagnetic excursions, i.e. Laschamp, Norwegian-Greenland-Sea and Blake, show considerably longer durations and younger ages compared to established short-lived geomagnetic polarity microchrons. An environmental control on the paleomagnetic record, connected to self-reversal during maghemitization of titanomagnetite has been proposed as one explanation for the wide occurrence of anomalous paleomagnetic data in the Arctic Ocean, but it remains unclear what mechanisms are responsible. Without independent stratigraphic control and independent dating it is difficult to distinguish between true and false records of the paleomagnetic field. Here we present a paleo- and environmental magnetic record from an 8.6 m long oriented Kasten core (PS92/39-02) collected at 1464 m water depth on the Yermak Plateau (81.94°N 13.82°E). The density and magnetic susceptibility fit well into the regional stratigraphy and allow for correlation of different parameters with independently dated records. During AF demagnetization zones with a weak-medium gyro-remanence and/or spurious ARM acquisition were observed at fields above 70 mT, but in some instances above 50 mT, coinciding with shallow to positive inclination zones. Based on a gyro-cleaned record the initial paleomagnetic age model fits well into the regional constraints. The top of the core was assigned to be recent, the first observed excursion was assigned to Laschamp (ca. 41ka), the second to Norwegian-Greenland Sea (ca. 70-80 ka) and the top of the third to Blake (ca. 110 ka). With no excursions observed below Blake, the bottom of the sediment sequence was assumed to be younger than 180 ka (the age of the Iceland Basin/Pringle Falls excursion). We applied this basic age model to kARM/k (magnetic grain size proxy) and the resulting temporal trend is very similar to the global oxygen isotope record of ice volume. The waxing and waning of the Svalbard-Barent Sea Ice Sheet is the main control on terrigenous input to the Yermak Plateau and thus link d18O and magnetic grain-size. With records spanning more than 2-3 glacial cycles orbital tuning could further support our findings. Finally, we propose the use of magnetic grain-size (as of kARM/k) as an independent tuning mechanism for dating sediments from the Yermak Plateau.
Knight, Rebekah; Danielski, Alan
2018-04-21
Tibial plateau levelling osteotomy (TPLO) is commonly performed for surgical management of cranial cruciate ligament (CCL) disease. It has been suggested that small dogs may have steeper tibial plateau angles (TPAs) than large dogs, which has been associated with increased complication rates after TPLO. A retrospective study was performed to assess the rate and nature of long-term complications following TPLO in small dogs with TPAs>30°. Medical records were reviewed for dogs with TPAs>30° treated for CCL rupture by TPLO with a 2.0 mm plate over a five-year period. Radiographs were assessed to determine TPA, postoperative tibial tuberosity width and to identify any complication. Up-to-date medical records were obtained from the referring veterinary surgeon and any complications in the year after surgery were recorded. The effects of different variables on complication rate were assessed using logistic regression analysis. Minor complications were reported in 22.7 per cent of cases. This is similar to or lower than previously reported complication rates for osteotomy techniques in small dogs and dogs with steep TPAs. A smaller postoperative TPA was the only variable significantly associated with an increased complication rate. No major complications were identified. © British Veterinary Association (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Astrophysics Data System (ADS)
Zhang, C.; Xiao, G.; Wu, H.; Hao, Q.; Guo, Z.
2014-12-01
A typical inland aridification is present in Central Asia, global cooling, the retreat of Para-Tethys Sea and Tibetan Plateau uplift have been thought to be the main driving forces of the climate change in interior Asia during Cenozoic. However, only few terrestrial climate records from the Asian inland were extended to the late Oligocene-early Miocene, it is still unclear the evolution of aridification before the middle Miocene and which of these driving forces plays the key role. Here, a sedimentary, mineralogy and geochemical proxies record of the early Miocene sedimentary sequence (ca. 22.1 to 16.7 Ma) from Xining Basin was present in this paper, which locates in the northeastern side of Tibetan Plateau. Mineralogical and geochemical parameters show obvious two stages climate change. During ~ 22.1-19 Ma (Unit I), the enrichment of I/S (irregular mixed-layers of illite and smectite) content, high values of a*/L* and much stronger chemical weathering degree reveal a warm and humid climate condition. During 19-16.7 Ma (Unit II), the increase of chlorite and dolomite contents, the upward decrease of a*/L* and much weaker chemical weathering than Unit I suggest evidently increased aridity since ca. 19 Ma. Comprehensive comparisons among records from the central western China demonstrate that the aridification since ca. 19 Ma is widespread in northeastern of Tibetan Plateau. The early Miocene episodic uplift of the north and northeastern Tibetan Plateau, especially, the uplift of Laji Shan at ~22 Ma, possibly have played a key role in the aridification of the Xining Basin.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-30
... availability of the Record of Decision (ROD) for this project, located in Carbon, Duchesne, and Uintah Counties... . SUPPLEMENTARY INFORMATION: The West Tavaputs Plateau (WTP) Project Area is located in Carbon, Duchesne, and... the project would be located in Carbon County. The WTP Project Area is bounded on the west by Sheep...
NASA Astrophysics Data System (ADS)
Fenn, C.; Martin, E. E.; Basak, C.
2011-12-01
Comparisons of seawater and detrital Pb isotopes from sites proximal to Antarctica at the Eocene/Oligocene transition (EOT) are being used to understand variations in continental weathering associated with the development of the East Antarctic Ice Sheet (EAIS). Previous work has shown that seawater and detrital archives yield similar isotopic values during Eocene warmth, which is interpreted to record congruent chemical weathering of the continent. In contrast, distinct isotopic values for the two phases at the EOT represents increased incongruent mechanical weathering during growth of the ice sheet. For this study we expanded beyond the initial glaciation at the EOT to determine whether less dramatic changes in ice volume and climate also produce variations in weathering and intensity that are recorded by seawater and detrital Pb isotopes. We collected Nd and Pb isotope data from extractions of Fe-Mn oxide coatings of bulk decarbonated marine sediments, which preserve seawater isotopic values, and from complete dissolutions of the remaining silicate fraction for Ocean Drilling Program Site 748 on Kerguelen Plateau (1300 m modern water depth). The data spans an interval of deglaciation from ~23.5-27 Ma documented by δ18O that has been equated to a ~30% decrease in ice volume on Antarctica (Pekar and Christie-Blick, 2008, Palaeogeogr., Palaeoclim., Palaeoecol.). Initial results from Site 748 include the first ɛNd values for intermediate waters in the Oligocene Southern Ocean and reveal a value of ~-8 over the entire 3.5 my interval, which is consistent with values reported for deep Indian Ocean sites at this time and similar to deeper Southern Ocean sites. Corresponding detrital ɛNd values are less radiogenic and decrease from -9 to -13 during the study interval. Detrital 206Pb/204Pb values also decrease during the warming interval, while seawater 206Pb/204Pb values increase. The decrease in detrital values indicates the composition of source materials entering the ocean changed as the ice sheet waned. Increasing seawater 206Pb/204Pb may record enhanced chemical weathering under conditions of greater water availability and warmer temperatures combined with abundant rock flour created during the preceding glacial advance. As previous studies have documented initial weathering leachates tend to be more radiogenic than the parent rock composition. Alternatively, seawater values during warming in the late Oligocene approach values recorded during initial ice sheet expansion at the EOT in Site 738, which may suggest Pb isotope variations in seawater and detrital residues are not sensitive to less dramatic intervals of climate change and ice sheet dynamics. We plan to continue this study into the Pliocene to see if we can identify the timing of the transition from a wet-based to dry-based EAIS, an event that is likely to have profound consequences for weathering on Antarctica and the offset between the two Pb isotope archives.
NASA Astrophysics Data System (ADS)
Hudson, A. M.; Olsen, J. W.; Quade, J.; Lei, G.; Huth, T.; Zhang, H.; Perreault, C.
2016-12-01
The headwaters of the Yarlung Tsangpo river valley, located in the southwestern Tibetan Plateau, are characterized by a cold and dry climate, but contain abundant river-marginal wetlands environments, which fluctuate in extent in response to changes in local water table elevation. This region receives 80% of precipitation from the Indian Monsoon, which forms the dominant control on moisture availability, and hence wetlands extent. Our paleowetlands record, based on 14C dating of organic-rich paleowetlands deposits, provides a novel record of Holocene monsoon intensity. The wetlands deposits consist of four sedimentary units that indicate decreasing wetlands extent and monsoon intensity since 10.4 ka BP. Wet conditions occurred at ˜10.4 ka BP, ˜9.6 ka BP and ˜7.9-4.8 ka BP, with similar-to-modern conditions from ˜4.6-2.0 ka BP, and drier-than-modern conditions from ˜2.0 ka BP to present. Wetland changes correlate with monsoon intensity changes identified in nearby records, with weak monsoon intervals corresponding to desiccation and erosion of wetlands deposits. Dating of in situ ceramic and microlithic artifacts in wetlands sediments at multiple sites indicates Epipaleolithic human occupation of the YT valley after 6.6 ka BP. Artifact typology study reveals a similar microlithic technology was employed across the high plateau interior, but XRF obsidian provenance reveals separate northeast and southwest lithic conveyance zones. This indicates widespread colonization of the high, arid Tibetan Plateau interior by one or more highly mobile human populations during the early and mid-Holocene, coincident with favorable warm, wet climate conditions.
Low-latitude high elevation of the leading edge of southern Eurasia throughout the Cenozoic
NASA Astrophysics Data System (ADS)
Ingalls, M.; Rowley, D. B.; Colman, A. S.; Olack, G.; Currie, B.; Li, S.
2016-12-01
The elevation history of the Tibetan Plateau promises insight into the mechanisms and dynamics that develop and sustain high topography over tens of millions of years. We present the first continuous Cenozoic elevation history from two proximal sedimentary basins on the southern Tibetan Plateau, as well as preliminary paleoaltimetry results from the south-central and central Plateau (Sangsang and Lunpola). The oxygen stable isotope and Δ47 clumped isotope compositions of non-marine carbonates allow us to constrain the carbonate formation temperatures and reconstruct the paleo-precipitation record of the Eocene to Pliocene Oiyug Basin and Paleocene to Eocene Penbo Basin. We exploit the systematic decrease of surface temperature and meteoric water δ18O with elevation. Minimally altered and unaltered pedogenic carbonates from the Oiyug Basin yield Δ47, CDES values of 0.625 to 0.755, that correspond with temperatures of 1-30 °C using a (Zaarur et al., 2013) Δ47 thermometer for low temperature carbonates. Similarly, the Penbo Basin yields Δ47, CDES values of 0.700-0.730, corresponding with temperatures of 6-12°C. Our paleoelevation estimates for the well-studied Oiyug basin ( 6100-4200 meters) support previous evidence (Spicer et al., 2003; Currie et al., 2005; Polissar et al., 2009; Currie et al., 2016) that high elevations were attained in southern Tibet by at least 30 Ma. Our paleoelevation estimates for the Penbo Basin (4100±550 meters) extends the altitude record of the southern Plateau to pre-India-Asia collision. Preliminary results from Sangsang, further west along the Indus-Yarlung Suture, and Lunpola, on the central Plateau, allow us to develop a spatially and temporally more complex paleo-altitude map and land surface evolution of the Tibetan Plateau since the onset of continent-continent collision.
A.W. Cantrell; Y. Wang; C.J. Schweitzer
2011-01-01
The southeastern United States is known for its high herpetofaunal diversity, which can be partly explained by high habitat diversity (Bailey et al. 2006). However, there are still many areas within the southeast that are not well studied, with little scientific documentation of species composition. One such area is the mid-Cumberland Plateau, in particular Grundy Co...
NASA Astrophysics Data System (ADS)
Li, Zaijun; Wang, Fei; Wang, Xin; Li, Baofeng; Chen, Fahu
2018-07-01
Aridification of the Asian interior is one of the most significant paleoenvironmental events during the Cenozoic. However, continuous paleoclimatic records from desert interiors are scarce because of the lack of outcrops, erosion and discontinuous sediment accumulation. Here we report a multi-proxy climatic record for the last ∼3.55 Ma from paleomagnetically-dated drilling core WEDP01 from the central Tengger Desert, which is one of the most important sediment source areas for Northern Hemisphere atmospheric dust and the Chinese Loess Plateau. Analysis of grain-size components indicates the onset of continuous dust deposition at 2.6 Ma and desert formation at 0.9 Ma. In addition, analysis of major element content and sediment color reveals a stepwise process of increasing aridification and significant cooling in the Tengger Desert area. Simultaneous aridification events in northwest China during the Quaternary were probably induced by the uplift of the Tibetan Plateau. Northern Hemisphere glaciation may have been another important factor for Asian aridification; meanwhile, the increased dust emission from sources such as the Tengger Desert may provide a positive feedback mechanism for global cooling.
Authier, Matthieu; Dragon, Anne-Cécile; Richard, Pierre; Cherel, Yves; Guinet, Christophe
2012-01-01
Maternal effects are widespread in ecology and can alter the dynamics of a population. We investigated the impact of maternal foraging strategies on offspring weaning mass—a proxy of maternal foraging success and of offspring survival—in southern elephant seals on îles Kerguelen. Using 4 years of data, we modelled pup weaning mass as a two-component mixture and used blood stable isotope values to discriminate between maternal foraging strategies previously identified from bio-logging studies. Carbon isotope ratio was a strong predictor of weaning mass, but the relationship was non-monotonic in contrast to a priori expectations. Females foraging in the interfrontal zone weaned pups with a smaller mass compared with females foraging in Antarctic waters. Pup mass was positively correlated with a proxy of global primary production in the interfrontal zone for small weanlings. Maternal effects, via a poor foraging efficiency in the 1970s, may help explain the large population decrease observed at that time on îles Kerguelen because of an overall decrease in pup weaning mass, survival and subsequent recruitment. PMID:22398171
NASA Astrophysics Data System (ADS)
Chu, Guoqiang; Sun, Qing; Yang, Ke; Li, Aiguo; Yu, Xiaohan; Xu, Tao; Yan, Fen; Wang, Hua; Liu, Meimei; Wang, Xiaohua; Xie, Manman; Lin, Yuan; Liu, Qiang
2011-01-01
We report glacial varves in the sediment of Lake Xinluhai, Tibetan Plateau. Independent data of 137Cs and 210Pb indicate that these are annually deposited varves. Varves appear as rhythmic units of light-colored silt layer capped by a dark clay layer under microscope. Varve thickness in Lake Xinluhai is sensitive to precipitation because sediment accumulation is strongly affected by monsoon rainfall in the area. A general decreasing trend can be observed in the varve thickness over the past 160 years. Spectral analyses of the varve record are dominated by cycles which are similar to ENSO periodicities. It implies that the decreasing trend of the South Asia monsoon may be linking with ENSO. Spatially, the decreasing trend can be observed across different proxy records in the south of the Tibetan Plateau. Although arguments still remain for the dynamic mechanisms and spatial rainfall difference, the South Asian summer monsoon could be weakened due to rising temperatures.
Ouisse, Tiphaine; Bonte, Dries; Lebouvier, Marc; Hendrickx, Frederik; Renault, David
Comprehensive studies to identify species-specific drivers of survival to environmental stress, reproduction, growth, and recruitment are vital to gaining a better understanding of the main ecological factors shaping species habitat distribution and dispersal routes. The present study performed a field-based assessment of habitat distribution in the invasive carabid beetle Merizodus soledadinus for the Kerguelen archipelago. The results emphasised humid habitats as a key element of the insect's realised niche. In addition, insects faced food and water stress during dispersal events. We evaluated quantitatively how water availability and trophic resources governed the spatial distribution of this invasive predatory insect at Îles Kerguelen. Food and water stress survival durations [in 100%, 70%, and 30% relative humidity (RH) conditions] and changes in a set of primary metabolic compounds (metabolomics) were determined. Adult M. soledadinus supplied with water ad libitum were highly tolerant to prolonged starvation (LT 50 =51.7±6.2d). However, food-deprived insect survival decreased rapidly in moderate (70% RH, LT 50 =30.37±1.39h) and low (30% RH, LT 50 =13.03±0.48h) RH conditions. Consistently, body water content decreased rapidly in insects exposed to 70% and 30% RH. Metabolic variation evidenced the effects of food deprivation in control insects (exposed to 100% RH), which exhibited a progressive decline of most glycolytic sugars and tricarboxylic acid cycle intermediates. Most metabolite levels were elevated levels during the first few hours of exposure to 30% and 70% RH. Augmented alanine and lactate levels suggested a shift to anaerobic metabolism. Simultaneously, peaks in threonine and glycolytic sugars pointed to metabolic disruption and a progressive physiological breakdown in dehydrating individuals. Overall, the results of our study indicate that the geographic distribution of M. soledadinus populations is highly dependent on habitat RH and water accessibility. Copyright © 2016 Elsevier Ltd. All rights reserved.
Quillfeldt, Petra; Cherel, Yves; Masello, Juan F.; Delord, Karine; McGill, Rona A. R.; Furness, Robert W.; Moodley, Yoshan; Weimerskirch, Henri
2015-01-01
Distant populations of animals may share their non-breeding grounds or migrate to distinct areas, and this may have important consequences for population differentiation and dynamics. Small burrow-nesting seabirds provide a suitable case study, as they are often restricted to safe breeding sites on islands, resulting in a patchy breeding distribution. For example, Thin-billed prions Pachyptila belcheri have two major breeding colonies more than 8,000 km apart, on the Falkland Islands in the south-western Atlantic and in the Kerguelen Archipelago in the Indian Ocean. We used geolocators and stable isotopes to compare at-sea movements and trophic levels of these two populations during their non-breeding season, and applied ecological niche models to compare environmental conditions in the habitat. Over three winters, birds breeding in the Atlantic showed a high consistency in their migration routes. Most individuals migrated more than 3000 km eastwards, while very few remained over the Patagonian Shelf. In contrast, all Indian Ocean birds migrated westwards, resulting in an overlapping nonbreeding area in the eastern Atlantic sector of the Southern Ocean. Geolocators and isotopic signature of feathers indicated that prions from the Falklands moulted at slightly higher latitudes than those from Kerguelen Islands. All birds fed on low trophic level prey, most probably crustaceans. The phenology differed notably between the two populations. Falkland birds returned to the Patagonian Shelf after 2-3 months, while Kerguelen birds remained in the nonbreeding area for seven months, before returning to nesting grounds highly synchronously and at high speed. Habitat models identified sea surface temperature and chlorophyll a concentration as important environmental parameters. In summary, we show that even though the two very distant populations migrate to roughly the same area to moult, they have distinct wintering strategies: They had significantly different realized niches and timing which may contribute to spatial niche partitioning. PMID:26018194
ERIC Educational Resources Information Center
Gray, Judith A., Ed.
Two catalogs inventory wax cylinder collections, field recorded among Native American groups, 1890-1942. The catalog for Great Basin and Plateau Indian tribes contains entries for 174 cylinders in 7 collections from the Flathead, Nez Perce, Thompson/Okanagon, Northern Ute, and Yakima tribes. The catalog for Northwest Coast and Arctic Indian tribes…
Bacterial responses to environmental change on the Tibetan Plateau over the past half century.
Liu, Yongqin; Priscu, John C; Yao, Tandong; Vick-Majors, Trista J; Xu, Baiqing; Jiao, Nianzhi; Santibáñez, Pamela; Huang, Sijun; Wang, Ninglian; Greenwood, Mark; Michaud, Alexander B; Kang, Shichang; Wang, Jianjun; Gao, Qun; Yang, Yunfeng
2016-06-01
Climate change and anthropogenic factors can alter biodiversity and can lead to changes in community structure and function. Despite the potential impacts, no long-term records of climatic influences on microbial communities exist. The Tibetan Plateau is a highly sensitive region that is currently undergoing significant alteration resulting from both climate change and increased human activity. Ice cores from glaciers in this region serve as unique natural archives of bacterial abundance and community composition, and contain concomitant records of climate and environmental change. We report high-resolution profiles of bacterial density and community composition over the past half century in ice cores from three glaciers on the Tibetan Plateau. Statistical analysis showed that the bacterial community composition in the three ice cores converged starting in the 1990s. Changes in bacterial community composition were related to changing precipitation, increasing air temperature and anthropogenic activities in the vicinity of the plateau. Collectively, our ice core data on bacteria in concert with environmental and anthropogenic proxies indicate that the convergence of bacterial communities deposited on glaciers across a wide geographical area and situated in diverse habitat types was likely induced by climatic and anthropogenic drivers. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Su, Tao; Wilf, Peter; Xu, He; Zhou, Zhe-Kun
2014-08-01
• The Qinghai-Tibet Plateau is a major center of plant diversity and endemism, but little is known about how this developed due to the region's very scarce paleobotanical record. The silverberry genus Elaeagnus (Elaeagnaceae) reaches its greatest diversity (54 species) and endemism (36 species) in this area. Fossil Elaeagnaceae could provide significant evidence for the phylogeny and biogeography of the family and contribute primary data regarding the evolution of the unique Qinghai-Tibet Plateau flora in its dramatic setting of tectonic and climatic change.• We describe four fossil leaves with diagnostic features of Elaeagnus from the late Miocene of eastern Tibet, modern altitude of 3910 m a.s.l.. We also review prior fossil records of Elaeagnaceae.• The well-preserved, densely packed, stellate scales on fossil leaf surfaces are diagnostic of Elaeagnaceae. We assign these fossil leaves to Elaeagnus tibetensis T. Su et Z.K. Zhou sp. nov., comprising the first confirmed fossil Elaeagnus leaves worldwide.• Elaeagnus was present in eastern Tibet by the late Miocene. Together with previous fossil records, the new species supports a Holarctic history of the family. The diversification of Elaeagnus in the Qinghai-Tibet Plateau and adjacent areas might have been driven by continuous uplift at least since the late Miocene, causing formation of complex topography and climate with high rainfall seasonality. The characteristic scales on leaf surfaces are likely to be an important functional adaptation to seasonal droughts during early spring. © 2014 Botanical Society of America, Inc.
NASA Astrophysics Data System (ADS)
Foppert, Annie; Donohue, Kathleen A.; Watts, D. Randolph; Tracey, Karen L.
2017-08-01
Eddy heat flux (EHF) is a predominant mechanism for heat transport across the zonally unbounded mean flow of the Antarctic Circumpolar Current (ACC). Observations of dynamically relevant, divergent, 4 year mean EHF in Drake Passage from the cDrake project, as well as previous studies of atmospheric and oceanic storm tracks, motivates the use of sea surface height (SSH) standard deviation, H*, as a proxy for depth-integrated, downgradient, time-mean EHF (>[EHF>¯>]) in the ACC. Statistics from the Southern Ocean State Estimate corroborate this choice and validate throughout the ACC the spatial agreement between H* and >[EHF>¯>] seen locally in Drake Passage. Eight regions of elevated >[EHF>¯>] are identified from nearly 23.5 years of satellite altimetry data. Elevated cross-front exchange usually does not span the full latitudinal width of the ACC in each region, implying a hand-off of heat between ACC fronts and frontal zones as they encounter the different >[EHF>¯>] hot spots along their circumpolar path. Integrated along circumpolar streamlines, defined by mean SSH contours, there is a convergence of
Growing the Anatolian plateau: Coupled tectonic deformation and lithospheric slab dynamics
NASA Astrophysics Data System (ADS)
Schildgen, T. F.; Cosentino, D.; Yildirim, C.; Echtler, H.; Strecker, M. R.
2011-12-01
The Anatolian plateau marks the western end of the high topography associated with collision of the African and Arabian plates with Eurasia. The Eastern and Central Anatolian plateaus have been considered separate entities, with crustal shortening in the east resulting in a 1.5- to 2.5-km high and more rugged plateau compared to the strike-slip bounded, 1- to 1.5-km high, relatively undeformed plateau in the west. Uplift mechanisms for the Eastern Anatolian plateau have been discussed for decades, and a mounting body of evidence supports an important role of both crustal shortening and lithospheric slab dynamics. In contrast, fewer studies have been focused on Central Anatolia. Our recent data constraining the timing, magnitude, pattern, and style of uplift in Central Anatolia helps not only to elucidate details of what may be an early stage in orogenic plateau development, but also highlights ways in which the two plateau realms may be closely linked. Approaches to determining paleoaltimetry in Central Anatolia differ from those in other major orogenic plateaus, as its modest elevations and low Neogene exhumation imply that stable isotope and thermochronological methods have limited applicability. Nonetheless, sedimentary basins within the plateau interior, preserved along the high-relief margins, and in basins flanking the plateau archive the deformation and uplift history, particularly where the uplifted strata include fossil-rich marine sediments. Combined with manifestations of river incision in response to surface uplift, these deposits offer one of the world's best-constrained records of long-term, km-scale surface uplift. However, assessing uplift along the plateau margins is complex, because the timing of the 1 to 1.5 km lowering of sea level in the Mediterranean and Black seas during the Messinian Salinity Crisis overlaps with the onset of regional surface uplift. Although a number of major questions remain concerning the relative timing of uplift of Eastern and Central Anatolia, how sea-level lowering and climate change affected records interpreted as an uplift signal, and to what extent upper mantle processes can be linked to surface uplift patterns, both the Central and Eastern Anatolia appear to have been impacted by lithospheric slab dynamics. Specifically, uplift of the southern margin of Central Anatolia starting between 7 and 5.45 Ma appears to postdate uplift of Eastern Anatolia, which may be explained by slab break-off and tearing that initiated in the east and subsequently propagated westward. In contrast to the processes forcing plateau uplift along the southern flank, we link growth of the northern margin of Central Anatolia to westward extrusion of the Anatolian microplate and the restraining bend in the North Anatolian Fault. These disparate underlying mechansims may be linked if the evolution of the subducting lithospheric slab helped to initiate westward extrusion of Central Anatolia.
Brahana, J.V.; Macy, J.A.; Mulderink, Dolores; Zemo, Dawn
1986-01-01
The Cumberland Plateau aquifer system consists of Pennsylvanian sandstones, conglomerates, shales, and coals which underlie the Cumberland Plateau in Tennessee. Major water-bearing zones occur within the sandstones and conglomerates in interconnected fractures. The water-bearing formations are separated by shale and siltstone that retard the vertical circulation of ground water, The Pennington Formation serves as the base of this aquifer system and is an effective confining unit, The Cumberland Plateau aquifer system is an important water source for the Cumberland Plateau, wells and springs from the aquifer system supply most of the rural domestic and public drinking-water supplies, water from wells drilled into the Cumberland Plateau aquifer system is generally of good to excellent quality. Of the 32 water-quality analyses on file from this aquifer. only 2 had dissolved-solids concentrations greater than 500 milligrams per liter, and about three-fourths had less than 200 milligrams per liter dissolved solids, However, no samples from depths greater than 300 feet below land surface have been recorded. Ground water from locations where the sandstones are buried deeply, such as the Wartburg basin, may contain dissolved-solids concentrations greater than 1,000 milligrams per liter.
Brahana, J.V.; Macy, Jo Ann; Mulderink, Dolores; Zemo, Dawn
1986-01-01
The Cumberland Plateau aquifer system consists of Pennsylvanian sandstones, conglomerates, shales, and coals which underlie the Cumberland Plateau in Tennessee. Major water-bearing zones occur within the sandstones and conglomerates in interconnected fractures. The water-bearing formations are separated by shale and siltstone that retard the vertical circulation of ground water. The Pennington Formation serves as the base of this aquifer system and is an effective confining unit. The Cumberland Plateau aquifer system is an important water source for the Cumberland Plateau. Wells and springs from the aquifer system supply most of the rural domestic and public drinking-water supplies. Water from wells drilled into the Cumberland Plateau aquifer system is generally of good to excellent quality. Of the 32 water-quality analyses on file from this aquifer, only 2 had dissolved-solids concentrations greater than 500 milligrams per liter, and about three-fourths had less than 200 milligrams per liter dissolved solids. However, no samples from depths greater than 300 feet below land surface have been recorded. Ground water from locations where the sandstones are buried deeply, such as the Wartburg basin, may contain dissolved-solids concentrations greater than 1,000 milligrams per liter.
Reyes Reyes, M Vanesa; Iñíguez, Miguel A; Hevia, Marta; Hildebrand, John A; Melcón, Mariana L
2015-10-01
Commerson's dolphins (Cephalorhynchus commersonii) inhabit coastal waters of Southern South America and Kerguelen Islands. Limited information exists about the acoustic repertoire of this species in the wild. Here, echolocation signals from free-ranging Commerson's dolphins were recorded in Bahía San Julián, Argentina. Signal parameters were calculated and a cluster analysis was made on 3180 regular clicks. Three clusters were obtained based on peak frequency (129, 137, and 173 kHz) and 3 dB bandwidth (8, 6, and 5 kHz). The 428 buzz clicks were analyzed separately. They consisted of clicks emitted with a median inter-click interval of 3.5 ms, peak frequency at 131 kHz, 3 dB bandwidth of 9 kHz, 10 dB bandwidth of 18 kHz, and duration of 56 μs. Buzz clicks were significantly shorter and with a lower peak frequency and a broader bandwidth than most of the regular clicks. This study provided the first description of different echolocation signals, including on- and off-axis signals, recorded from Commerson's dolphins in the wild, most likely as a result of animals at several distances and orientations to the recording device. This information could be useful while doing passive acoustic monitoring.
Pressures, flow, and brain oxygenation during plateau waves of intracranial pressure.
Dias, Celeste; Maia, Isabel; Cerejo, António; Varsos, Georgios; Smielewski, Peter; Paiva, José-Artur; Czosnyka, Marek
2014-08-01
Plateau waves are common in traumatic brain injury. They constitute abrupt increases of intracranial pressure (ICP) above 40 mmHg associated with a decrease in cerebral perfusion pressure (CPP). The aim of this study was to describe plateau waves characteristics with multimodal brain monitoring in head injured patients admitted in neurocritical care. Prospective observational study in 18 multiple trauma patients with head injury admitted to Neurocritical Care Unit of Hospital Sao Joao in Porto. Multimodal systemic and brain monitoring of primary variables [heart rate, arterial blood pressure, ICP, CPP, pulse amplitude, end tidal CO₂, brain temperature, brain tissue oxygenation pressure, cerebral oximetry (CO) with transcutaneous near-infrared spectroscopy and cerebral blood flow (CBF)] and secondary variables related to cerebral compensatory reserve and cerebrovascular reactivity were supported by dedicated software ICM+ ( www.neurosurg.cam.ac.uk/icmplus) . The compiled data were analyzed in patients who developed plateau waves. In this study we identified 59 plateau waves that occurred in 44% of the patients (8/18). During plateau waves CBF, cerebrovascular resistance, CO, and brain tissue oxygenation decreased. The duration and magnitude of plateau waves were greater in patients with working cerebrovascular reactivity. After the end of plateau wave, a hyperemic response was recorded in 64% of cases with increase in CBF and brain oxygenation. The magnitude of hyperemia was associated with better autoregulation status and low oxygenation levels at baseline. Multimodal brain monitoring facilitates identification and understanding of intrinsic vascular brain phenomenon, such as plateau waves, and may help the adequate management of acute head injury at bed side.
Reif, Ullrich; Hulse, Donald A; Hauptman, Joe G
2002-01-01
To evaluate the effect of tibial plateau leveling on joint motion in canine stifle joints in which the cranial cruciate ligament (CCL) had been severed. In vitro cadaver study. Six canine cadaver hind legs. Radiographs of the stifle joints were made to evaluate the tibial plateau angle with respect to the long axis of the tibia. The specimens were mounted in a custom-made testing device to measure cranio-caudal translation of the tibia with respect to the femur. An axial load was applied to the tibia, and its position was recorded in the normal stifle, after transection of the CCL, and after tibial plateau leveling. Further, the amount of caudal tibial thrust was measured in the tibial plateau leveled specimen while series of eight linearly increasing axial tibial loads were applied. Transection of the CCL resulted in cranial tibial translation when axial tibial load was applied. After tibial plateau leveling, axial loading resulted in caudal translation of the tibia. Increasing axial tibial load caused a linear increase in caudal tibial thrust in all tibial plateau-leveled specimens. After tibial plateau leveling, axial tibial load generates caudal tibial thrust, which increases if additional axial load is applied. Tibial plateau leveling osteotomy may prevent cranial translation during weight bearing in dogs with CCL rupture by converting axial load into caudal tibial thrust. The amount of caudal tibial thrust seems to be proportional to the amount of weight bearing. Copyright 2002 by The American College of Veterinary Surgeons
Song, Huiming; Liu, Yu; Li, Qiang; Gao, Na; Ma, Yongyong; Zhang, Yanhua
2014-01-01
Tree-ring samples from Chinese Pine (Pinus tabulaeformis Carr.) collected at Mt. Shimen on the western Loess Plateau, China, were used to reconstruct the mean May–July temperature during AD 1630–2011. The regression model explained 48% of the adjusted variance in the instrumentally observed mean May–July temperature. The reconstruction revealed significant temperature variations at interannual to decadal scales. Cool periods observed in the reconstruction coincided with reduced solar activities. The reconstructed temperature matched well with two other tree-ring based temperature reconstructions conducted on the northern slope of the Qinling Mountains (on the southern margin of the Loess Plateau of China) for both annual and decadal scales. In addition, this study agreed well with several series derived from different proxies. This reconstruction improves upon the sparse network of high-resolution paleoclimatic records for the western Loess Plateau, China. PMID:24690885
NASA Astrophysics Data System (ADS)
Chen, Feng; Yuan, Yujiang; Fan, Zexin; Yu, Shulong
2018-01-01
We established a tree-ring width series from one Yunnan Douglas fir (Pseudotsuga forrestii) stand near the Mingyong glacier terminus of Meili Snow Mountain, southeastern Tibetan Plateau. Correlation analyses indicated that radial growth of Yunnan Douglas firs is largely controlled by variations in winter (November-March) precipitation. The precipitation reconstruction model accounts for 37% of the actual precipitation variance during the common period 1954-2012. Spatial correlations with the gridded precipitation data reveal that the winter precipitation reconstruction represents regional precipitation changes over the southeastern Tibetan Plateau. By comparing our results with other regional tree-ring records, a distinctive amount of common dry and humid periods were found. Our winter precipitation reconstruction shows profound similarities with Salween river streamflow signals as well as regional glacial activity. Cross-wavelet analysis reveals solar and ENSO influences on precipitation and streamflow variations in the southeastern Tibetan Plateau.
Plateau Waves of Intracranial Pressure and Partial Pressure of Cerebral Oxygen.
Lang, Erhard W; Kasprowicz, Magdalena; Smielewski, Peter; Pickard, John; Czosnyka, Marek
2016-01-01
This study investigates 55 intracranial pressure (ICP) plateau waves recorded in 20 patients after severe traumatic brain injury (TBI) with a focus on a moving correlation coefficient between mean arterial pressure (ABP) and ICP, called PRx, which serves as a marker of cerebrovascular reactivity, and a moving correlation coefficient between ABP and cerebral partial pressure of oxygen (pbtO2), called ORx, which serves as a marker for cerebral oxygen reactivity. ICP and ICPamplitude increased significantly during the plateau waves, whereas CPP and pbtO2 decreased significantly. ABP, ABP amplitude, and heart rate remained unchanged. In 73 % of plateau waves PRx increased during the wave. ORx showed an increase during and a decrease after the plateau waves, which was not statistically significant. Our data show profound cerebral vasoparalysis on top of the wave and, to a lesser extent, impairment of cerebral oxygen reactivity. The different behavior of the indices may be due to the different latencies of the cerebral blood flow and oxygen level control mechanisms. While cerebrovascular reactivity is a rapidly reacting mechanism, cerebral oxygen reactivity is slower.
NASA Astrophysics Data System (ADS)
Zhang, Yuebao; Sun, Donghuai; Li, Zaijun; Wang, Fei; Wang, Xin; Li, Baofeng; Guo, Feng; Wu, Sheng
2014-09-01
Previous work has shown that aeolian Red Clay first appears at around 8 Ma in the main Chinese Loess Plateau and at 25-22 Ma in the western Loess Plateau; however, records of aeolian deposition in the North Pacific suggest that aeolian accumulation occurred throughout the Cenozoic, and that changes in aeolian flux occurred in distinct stages. Tracing the Cenozoic aeolian history of the interior of the Asian continent may help us to understand the history of Asian aridification and its driving forces. In the Lanzhou area on the western margin of the Loess Plateau and the northeastern edge of the Tibetan Plateau, the Cenozoic stratigraphic sequence consists of fluvial-lacustrine sediments in the lower part, aeolian Red Clay with intercalated fluvial layers in the middle part, and predominantly aeolian loess in the upper part. We use high resolution paleomagnetic measurements of this sequence to construct a time scale, and measurements of sediment rock magnetic properties, grain-size, and color reflectance and sedimentary facies analysis to reconstruct the paleoenvironment. The results show that prior to 33 Ma the area was dominantly a fluvial-lacustrine environment, and that subsequently an aridification trend commenced, as indicated by the appearance of aeolian sediment. This change coincided with, and is thus explained as the environmental response to global cooling. A significant increase in aeolian sediments occurred at ~ 26 Ma, suggesting that a large scale arid environment had formed in the Asian interior since the late Oligocene. Stepwise increases of aeolian sediment, and decreases in sediments of hydraulic origin, occurred at ~ 22, ~ 14, ~ 8 and 2.6 Ma and represent important stages in the aridification process. This long-term trend was interrupted by intervals dominated by fluvial sedimentation at 23.6-22 Ma and 17.1-14.1 Ma and which were probably associated with warming of the global climate and the tectonic uplift of the northeastern Tibetan Plateau. Tectonic events occurring in Lanzhou at ~ 9-8 Ma and ~ 3.5 Ma indicate strong uplift of the northeastern Tibetan Plateau.
Evolving strain partitioning in the Eastern Himalaya: The growth of the Shillong Plateau
NASA Astrophysics Data System (ADS)
Najman, Yani; Bracciali, Laura; Parrish, Randall R.; Chisty, Emdad; Copley, Alex
2016-01-01
The Shillong Plateau is the only raised topography (up to 2000 m elevation) in the Himalayan foreland. It is proposed to have had a major influence on strain partitioning and thus tectonics in the Eastern Himalaya. Additionally, its position on the trajectory of the summer monsoon means it has influenced the regional climate, with reduced erosion rates proposed over geological timescales in its lee. The timing of surface uplift of the plateau has been difficult to determine. Exhumation rates have been calculated over geological timescales, but these seem at variance with estimates based upon extrapolating the present day velocity field measured with GPS, and it has thus been suggested that exhumation and surface uplift are decoupled. We determine the timing of surface uplift using the sedimentary record in the adjacent Surma Basin to the south, which records the transition from a passive margin with southward thickening sedimentary packages to a flexural basin with north-thickening strata, due to loading by the uplifting plateau. Our method involves using all available 2D seismic data for the basin, coupled to well tie information, to produce isochore maps and construct a simple model of the subsidence of the Surma basin in order to assess the timing and magnitude of flexural loading by the Shillong Plateau. We conclude that the major period of flexural loading occurred from the deposition of the Tipam Formation (3.5- ∼ 2 Ma) onwards, which is likely to represent the timing of significant topographic growth of the Shillong Plateau. Our isochore maps and seismic sections also allow us to constrain the timing of thinning over the north-south trending anticlines of the adjacent basin-bounding Indo-Burman Ranges, as occurring over this same time interval. The combined effect of the uplift of the Shillong Plateau and the westward encroachment of the Indo-Burman Ranges to this region served to sever the palaeo-Brahmaputra drainage connection between Himalayan source and Surma Basin sink, at the end of Tipam Formation times (∼ 2 Ma).
Tao, Yu-Qiang; Lei, Guo-Liang; Xue, Bin; Yao, Shu-Chun; Pu, Yang; Zhang, Hu-Cai
2014-02-01
Tibetan Plateau is the world's highest plateau, which provides a unique location for the investigation of global fractionation of organochlorine pesticides (OCPs). In this study, deposition and regional distribution of HCHs and p,p'-DDX in the western and southern Tibetan Plateau were investigated by the records from a sediment core of Lake Zige Tangco and 24 surface soils. Concentration of ΣHCHs in the surface soils of the western Tibetan Plateau was much higher than that of the southern part. Maximum fluxes of α-, β-, and δ-HCH in the sediment core were 9.0, 222, and 21 pg cm(-2) year(-1), respectively, which appeared in the mid-1960s. Significant correlations were observed between concentrations of α- and β-HCH in both the surface soils and the sediment core. Concentrations of both α- and β-HCH increased with the inverse of the average annual temperature of these sites. γ-HCH became the dominant isomer of HCHs after the late 1970s, and reached the maximum flux of 160 pg cm(-2) year(-1) in the early 1990s. There were no significant correlations between concentrations of γ-HCH and the other isomers in both the surface soils and the sediment core. The results suggested that there was input of Lindane at scattered sites in this area. In contrast to ΣHCHs, concentration of Σp,p'-DDX in the surface soils of the southern part was much higher than that of the western part. Maximum flux of Σp,p'-DDX was 44 pg cm(-2) year(-1), which appeared in the mid-1960s. Local emission of p,p'-DDT was found at scattered sites. This study provides novel data and knowledge for the OCPs in the western and southern Tibetan Plateau, which will help understand the global fractionation of OCPs in remote alpine regions.
Li, Kai; Liu, Xingqi; Herzschuh, Ulrike; Wang, Yongbo
2016-01-01
Abrupt climate changes and fluctuations over short time scales are superimposed on long-term climate changes. Understanding rapid climate fluctuations at the decadal time scale over the past millennium will enhance our understanding of patterns of climate variability and aid in forecasting climate changes in the future. In this study, climate changes on the southeastern Tibetan Plateau over the past millennium were determined from a 4.82-m-long sediment core from Basomtso Lake. At the centennial time scale, the Medieval Climate Anomaly (MCA), Little Ice Age (LIA) and Current Warm Period (CWP) are distinct in the Basomtso region. Rapid climate fluctuations inferred from five episodes with higher sediment input and likely warmer conditions, as well as seven episodes with lower sediment input and likely colder conditions, were well preserved in our record. These episodes with higher and lower sediment input are characterized by abrupt climate changes and short time durations. Spectral analysis indicates that the climate variations at the centennial scale on the southeastern Tibetan Plateau are influenced by solar activity during the past millennium. PMID:27091591
Masurkar, Arjun V.; Chen, Wei R.
2011-01-01
The olfactory glomerulus is the locus of information transfer between olfactory sensory neurons and output neurons of the olfactory bulb. Juxtaglomerular cells (JGCs) may influence intraglomerular processing by firing plateau potentials that support multiple spikes. It is unclear what inward currents mediate this firing pattern. In previous work, we characterized potassium currents of JGCs. We focus here on the inward currents using whole cell current clamp and voltage recording in a rat in vitro slice preparation, as well as computer simulation. We first showed that sodium current was not required to mediate plateau potentials. Voltage clamp characterization of calcium current (ICa) determined that ICa consisted of a slow activating, rapidly inactivating (τ10%–90% rise 6–8ms, τinactivation 38–77ms) component Icat1, similar to T-type currents, and a sustained (τinactivation≫500ms) component Icat2, likely composed of L-type and P/Q-type currents. We used computer simulation to test their roles in plateau potential firing. We robustly modeled Icat1 and Icat2 to Hodgkin-Huxley schemes (m3h and m2, respectively) and simulated a JGC plateau potential with 6 conductances: calcium currents as above, potassium currents from our prior study (A-type Ikt1, D-type Ikt2, delayed rectifier Ikt3), and a fast sodium current (INa). We demonstrated that Icat1 was required for mediating the plateau potential, unlike INa and Icat2, and its τinactivation determined plateau duration. We also found that Ikt1 dictated plateau potential shape more than Ikt2 and Ikt3. The influence of these two transient and opposing conductances suggests a unique mechanism of plateau potential physiology. PMID:21704681
NASA Astrophysics Data System (ADS)
Worthington, L. L.; van Avendonk, H. J.; Gulick, S. P.; Christeson, G. L.; Pavlis, T. L.
2010-12-01
Flat-slab subduction and accretion of the Yakutat (YAK) microplate in southern Alaska characterizes the most recent iteration in the process of terrane accretion that has built the tectonic assemblage of the Canada-Alaska Cordillera since the Mesozoic. Despite the potentially pivotal role of the Yakutat collision in the evolution and deformation of the North American Cordillera, major questions regarding locations of active faults and velocity structure and thickness of the Yakutat block itself have gone unanswered. We present results of a 2008 marine seismic reflection/refraction survey acquired as part of the St. Elias Erosion and Tectonics Project (STEEP), a multi-disciplinary NSF-Continental Dynamics project aimed at structural evolution and geodynamics related to the YAK collision. An onshore-offshore wide-angle refraction profile shows YAK crustal thickness ranging from ~15 km near the Bering Glacier to ~35 km east of the Dangerous River Zone (DRZ), with calculated lower crustal velocities potentially >7km/s. Crustal velocity and structure are continuous across the DRZ on the YAK shelf, which is historically described as a vertical boundary between continental crust on the east and oceanic basement on the west. Instead, we observe a gradual shallowing of elevated crustal velocities associated with a basement high observed on coincident marine reflection data near the DRZ. Crustal velocity and thicknesses are comparable to the Kerguelen oceanic plateau and the Siletz terrane, thus supporting the oceanic plateau theory for the origin of the YAK microplate. The observed variable crustal thickness indicates that the YAK slab may be slightly wedge-shaped, thinning in the direction of subduction. The thickest portion of the offshore YAK is entering the orogen near the eastern syntaxis, where the Fairweather fault system encounters a restraining bend as its orientation changes from north-south to east-west. It follows that observations of elevated exhumation rates and concentrated seismicity in the vicinity of the syntaxis may not be the exclusive result of this corner geometry. Instead, we must consider that underlying crustal structure of the YAK indentor partially determines the large-scale patterns of mountain building in southern Alaska. These observations also imply that uplift and deformation have intensified through time as thicker, more buoyant YAK crust attempts to subduct.
NASA Astrophysics Data System (ADS)
Sushchevskaya, Nadezhda; Krymsky, Robert; Belyatsky, Boris; Antonov, Anton; Migdisova, Natalya
2013-04-01
Emplacement (130-115 m.y. ago) of dikes and sills of alkaline-ultrabasic composition within Jetty oasis (East Antarctica) is suggested as a later appearance of plume magmatism within the East-Antarctic Shield [Andronikov et al., 1993, 2001; Laiba et al., 1987]. This region is located opposite Kerguelen Islands and possibly could be properly connected with activity of the Kerguelen-plume [Foley et al., 2001, 2006]. Jurassic-Cretaceous dykes, stocks and sills of alkaline-ultrabasic rocks, relatively close to kimberlite-type, are exposed within Jetty oasis and on the southern shore of the Raddock Lake. This alkaline-ultrabasic magmatism has appeared to be connected with the main Mesozoic stage of the evolution of the Lambert and Amery glaciers riftogenic structure [Kurinin et al., 1980, 1988]. The alkaline-ultrabasic dikes and sills within Jetty oasis cut the rocks of the Beaver complex, Permo-Triassic terrigeneous successions of the Amery complex, and late Paleozoic low-alkaline basic dikes as well. Dashed chain of 6 stock bodies spread out on 15 km along the eastern shore of the Beaver Lake, marked their allocation with submeridianal zone of the deep cracks, boarded of the eastern side of the Beaver Lake trough. At the same time, new data upon Quaternary magmatism of the mountain Gaussberg has confirmed the unique features of ultra-potassium alkaline magmatism (up to 14-17% K2O) formed under exclusively continental conditions [Murphy et al., 2002]. Volcanic cone is located at the continuation of Gaussberg rift zone which is possibly a part of Lambert fracture zone. Its formation is connected with the early stages of Gondwana development, perhaps, reactivated in different Precambrian events and according to numerous data is a single rift zone which is traced Indian inland (Indrani graben, [Golynsky, 2011]). The time of lamproitic magmas eruption is estimated at 56000±5000 yeas ago [Tingey et al., 1983]. Earlier it had been shown the Mesozoic (about 170 Ma) basaltic dykes of the Schirmacher Oasis and basalts and dolerites of the Queen Maud Land (180 Ma) are identical in petrology and geochemistry terms and supposedly could be interpreted as the manifestation of the Karoo-Maud plume activity in Antarctica [Sushchevskaya et al., 2012]. The spatial distribution of the dikes indicates the eastward spreading of the plume material from DML to the Schirmacher Oasis within at least 10 Ma (up to ~35 Ma, taking into account the uncertainty of age determination). On the other hand, the considerable duration and multistage character of plume magmatism related to the activity of the Karoo-Maud plume in Antarctica and Africa [Leat et al., 2007; Luttinen et al., 2002] may indicate that the Mesozoic dikes of the oasis correspond to a single stage of plume magmatism. On the basis of obtained isotopic data it has been determined two magmatic melt evolution trends for basalts from: Queen Maud Land - Kerguelen Archipelago - Afanasy Nikitin Rise (Indian Ocean) and Jetty - Schirmacher oasises which mantle sources are quite different. Thus the Jetty - Schirmacher oasises magmatic melt sources are characterized by prevalence of the matter of moderately enriched or primitive chondritic mantle source and lithospheric mantle of Proterozoic ages but the substances of depleted mantle source similar to MORB-type and ancient mantle are absent. New data obtained on Nd, Sr, Pb isotopic and lithophile elements compositions of the alkaline-ultrabasic rocks from the Jetty oasis and Gaussberg volcano completed imagine of the Kerguelen-plume evolution. It has been confirmed unique character of the alkaline lamproiites of the Gaussberg volcano enrichments. Highly radiogenic Sr and Pb isotope ratios of these lamproiites reflect melting of the ancient sublithospheric depleted mantle which was stored from the Archean till nowadays unaffected by metasomatic-enrichment processes. During modern melting of this mantle part there is input of additional substances (crustal fluid of sediment origins, subducted sediments etc.) with high Rb/Sr ratio.
Rapid change in drift of the Australian plate records collision with Ontong Java plateau.
Knesel, Kurt M; Cohen, Benjamin E; Vasconcelos, Paulo M; Thiede, David S
2008-08-07
The subduction of oceanic plateaux, which contain extraordinarily thick basaltic crust and are the marine counterparts of continental flood-basalt provinces, is an important factor in many current models of plate motion and provides a potential mechanism for triggering plate reorganization. To evaluate such models, it is essential to decipher the history of the collision between the largest and thickest of the world's oceanic plateaux, the Ontong Java plateau, and the Australian plate, but this has been hindered by poor constraints for the arrival of the plateau at the Melanesian trench. Here we present (40)Ar-(39)Ar geochronological data on hotspot volcanoes in eastern Australian that reveal a strong link between collision of the Greenland-sized Ontong Java plateau with the Melanesian arc and motion of the Australian plate. The new ages define a short-lived period of reduced northward plate motion between 26 and 23 Myr ago, coincident with an eastward offset in the contemporaneous tracks of seamount chains in the Tasman Sea east of Australia. These features record a brief westward deflection of the Australian plate as the plateau entered and choked the Melanesian trench 26 Myr ago. From 23 Myr ago, Australia returned to a rapid northerly trajectory at roughly the same time that southwest-directed subduction began along the Trobriand trough. The timing and brevity of this collisional event correlate well with offsets in hotspot seamount tracks on the Pacific plate, including the archetypal Hawaiian chain, and thus provide strong evidence that immense oceanic plateaux, like the Ontong Java, can contribute to initiating rapid change in plate boundaries and motions on a global scale.
NASA Astrophysics Data System (ADS)
Vacquié-Garcia, Jade; Guinet, Christophe; Laurent, Cécile; Bailleul, Frédéric
2015-03-01
Changes in marine environments, induced by the global warming, are likely to influence the prey field distribution and consequently the foraging behaviour and the distribution of top marine predators. Thanks to bio-logging, the simultaneous measurements of fine-scale foraging behaviors and oceanographic parameters by predators allow characterizing their foraging environments and provide insights into their prey distribution. In this context, we propose to delimit and to characterize the foraging environments of a marine predator, the Southern Elephant Seal (SES). To do so, the relationship between oceanographic factors and prey encounter events (PEE) was investigated in 12 females SES from Kerguelen Island simultaneously equipped with accelerometers and with a range of physical sensors (temperature, light and depth). PEEs were assessed from the accelerometer data at high spatio-temporal precision while the physical sensors allowed the continuous monitoring of environmental conditions encountered by the SES when diving. First, visited and foraging environments were distinguished according to the oceanographic conditions encountered in the absence and in presence of PEE. Then, a hierarchical classification of the physical parameters recorded during PEEs led to the distinction of five different foraging environments. These foraging environments were structured according to the main frontal systems of the SO. One was located north to the subantarctic front (SAF) and characterized by high temperature and depth, and low light levels. Another, characterized by intermediate levels of temperature, light and depth, was located between the SAF and the polar front (PF). And finally, the last three environments were all found south to the PF and, characterized by low temperature but highly variable depth and light levels. The large physical and/or spatial differences found between these environments suggest that, depending on the location, different prey communities are targeted by SES over a broad range of water temperature, light level and depth conditions. This result highlights the versatility of this marine predator. In addition, in most cases, PEEs were found deeper during the day than during the night, which is indicative of mesopelagic prey performing nycthemeral migration, a behaviour consistent with myctophids species thought to represent the bulk of Kerguelen SES female diets.
Micromagnetic Study of Perpendicular Magnetic Recording Media
NASA Astrophysics Data System (ADS)
Dong, Yan
With increasing areal density in magnetic recording systems, perpendicular recording has successfully replaced longitudinal recording to mitigate the superparamagnetic limit. The extensive theoretical and experimental research associated with perpendicular magnetic recording media has contributed significantly to improving magnetic recording performance. Micromagnetic studies on perpendicular recording media, including aspects of the design of hybrid soft underlayers, media noise properties, inter-grain exchange characterization and ultra-high density bit patterned media recording, are presented in this dissertation. To improve the writability of recording media, one needs to reduce the head-to-keeper spacing while maintaining a good texture growth for the recording layer. A hybrid soft underlayer, consisting of a thin crystalline soft underlayer stacked above a non-magnetic seed layer and a conventional amorphous soft underlayer, provides an alternative approach for reducing the effective head-to-keeper spacing in perpendicular recording. Micromagnetic simulations indicate that the media using a hybrid soft underlayer helps enhance the effective field and the field gradient in comparison with conventional media that uses only an amorphous soft underlayer. The hybrid soft underlayer can support a thicker non-magnetic seed layer yet achieve an equivalent or better effective field and field gradient. A noise plateau for intermediate recording densities is observed for a recording layer of typical magnetization. Medium noise characteristics and transition jitter in perpendicular magnetic recording are explored using micromagnetic simulation. The plateau is replaced by a normal linear dependence of noise on recording density for a low magnetization recording layer. We show analytically that a source of the plateau is similar to that producing the Non-Linear-Transition-Shift of signal. In particular, magnetostatic effects are predicted to produce positive correlation of jitter and thus negative correlation of noise at the densities associated with the plateau. One focus for developing perpendicular recording media is on how to extract intergranular exchange coupling and intrinsic anisotropy field dispersion. A micromagnetic numerical technique is developed to effectively separate the effects of intergranular exchange coupling and anisotropy dispersion by finding their correlation to differentiated M-H curves with different initial magnetization states, even in the presence of thermal fluctuation. The validity of this method is investigated with a series of intergranular exchange couplings and anisotropy dispersions for different media thickness. This characterization method allows for an experimental measurement employing a vibrating sample magnetometer (VSM). Bit patterned media have been suggested to extend areal density beyond 1 Tbit/in2. The feasibility of 4 Tbit/in2 bit patterned recording is determined by aspects of write head design and media fabrication, and is estimated by the bit error rate. Micromagnetic specifications including 2.3:1 BAR bit patterned exchange coupled composite media, trailing shield, and side shields are proposed to meet the requirement of 3x10 -4 bit error rate, 4 nm fly height, 5% switching field distribution, 5% timing and 5% jitter errors for 4 Tbit/in2 bit-patterned recording. Demagnetizing field distribution is examined by studying the shielding effect of the side shields on the stray field from the neighboring dots. For recording self-assembled bit-patterned media, the head design writes two staggered tracks in a single pass and has maximum perpendicular field gradients of 580 Oe/nm along the down-track direction and 476 Oe/nm along the cross-track direction. The geometry demanded by self-assembly reduces recording density to 2.9 Tbit/in 2.
Tibetan Glaciers as Integrators and Sentinels of Climate Change
NASA Astrophysics Data System (ADS)
Thompson, L. G.; Tandong, Y.; Davis, M. E.; Kehrwald, N. M.; Mosley-Thompson, E. S.
2008-12-01
Information from ice cores collected over the last two decades across the Tibetan Plateau demonstrates that this is a climatically diverse and complex region. Records spanning more than 500,000 years have been recovered from the Guliya ice cap in the far northwestern Kunlun Mountains, where the climate is dominated by the westerly flow over the Eurasian land mass. Shorter records (less than 10,000 years) have been recovered from ice fields in the central Himalaya to the south, where a monsoonal climate regime dominates and the annual accumulation is high. On decadal and longer timescales IPCC climate models predict that continued anthropogenic greenhouse gas emissions will force air temperature to increase faster at higher elevations. This vertical amplification will be greatest in low latitudes due to upper tropospheric humidity and water vapor feedback. Meteorological records across the Tibetan Plateau indicate that temperatures have risen since the mid-1950s and the rate of warming is greater (0.3°C per decade) at the higher elevation stations. Likewise, the stable isotopic compositions of ice cores across the Plateau show an overall the 20th Century enrichment that is greatest at the highest elevation sites. Glaciers in the central Himalayas, including many around the Tibetan Plateau, are experiencing an accelerating rate of ice loss, due in part to current temperature trends and associated feedbacks. Ice loss in the central Himalayas is evident from ice cores recovered in 2006 from the Naimona'nyi ice field. Unlike previous cores from glaciers around the world, including those drilled across the Tibetan Plateau, the Naimona'nyi cores lack the elevated levels of beta radioactivity from the decay of 36Cl and 3H associated with atmospheric thermonuclear bomb testing in the 1950s and 1960s. This suggests that net mass (ice) loss has exceeded accumulation on this glacier since at least 1950. If the climate conditions that govern the mass balance on Naimona'nyi extend to other glaciers in the region, the implications for future water resources in South Asia could be dire as these glaciers feed the headwaters of the Indus, Ganges and Brahmaputra Rivers which sustain the world's most populous region.
NASA Astrophysics Data System (ADS)
Caves Rugenstein, J. K.; Bayshashov, B. U.; Zhamangara, A.; Ritch, A. J.; Ibarra, D. E.; Sjostrom, D. J.; Mix, H.; Winnick, M.; Chamberlain, C. P.
2017-12-01
The timing of high surface topography and the corresponding climatic impacts of the many high ranges north of the Tibetan Plateau, such as the Altai and Tian Shan, remain poorly constrained. Most Neogene reconstructions of Central Asia climate come from interior China, where the influences of Altai and Tian Shan uplift are difficult to deconvolve from effects due to Tibetan Plateau uplift and changes in global climate. We present a new pedogenic carbonate oxygen and carbon isotope record from terrestrial Neogene sediments of the Zaysan Basin in eastern Kazakhstan, which lies upwind of the Altai and Tian Shan, in contrast to the numerous paleoclimate records from interior China. The δ18O values of pedogenic carbonate exhibit a robust 4‰ decrease in the late Neogene—a trend that sharply contrasts with nearly all downwind records of δ18O from Central Asia. We attribute this decrease to the establishment of the modern seasonal precipitation regime whereby Kazakhstan receives the majority of its moisture in the spring and fall, which lowers the δ18O of pedogenic carbonates. The dominance of spring and fall precipitation in Kazakhstan results from the interaction of the mid-latitude jet with the high topography of the Altai and Tian Shan during its movement northward in spring and southward in fall. The late Miocene interaction of the jet with these actively uplifting northern Central Asia ranges reorganized Central Asia climate, establishing starkly different seasonal precipitation regimes, further drying interior China, and increasing the incidence of the lee cyclones that deposit dust on the Loess Plateau. To the south of the Zaysan Basin, earlier shifts in δ18O hint at early Neogene changes in climate attributable to a late Oligocene/early Miocene phase of uplift in the Tian Shan. We conclude that paleoclimatic changes in Central Asia in the Neogene are more tightly controlled by the interaction of the mid-latitude westerlies with the bounding ranges of northern Central Asia than by changes in the height or extent of the Tibetan Plateau.
NASA Astrophysics Data System (ADS)
Xue, Liang; Alemu, Tadesse; Gani, Nahid D.; Abdelsalam, Mohamed G.
2018-05-01
We use morphotectonic analysis to study the tectonic uplift history of the southeastern Ethiopian Plateau (SEEP). Based on studies conducted on the Northwestern Ethiopian Plateau, steady-state and pulsed tectonic uplift models were proposed to explain the growth of the plateau since 30 Ma. We test these two models for the largely unknown SEEP. We present the first quantitative morphotectonic study of the SEEP. First, in order to infer the spatial distribution of the tectonic uplift rates, we extract geomorphic proxies including normalized steepness index ksn, hypsometric integral HI, and chi integral χ from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital elevation model (DEM). Second, we compare these rates with the thickness of flood basalt that we estimated from geological maps. Third, to constrain the timing of regional tectonic uplift, we develop a knickpoint celerity model. Fourth, we compare our results to those from the Northwestern Ethiopian Plateau to suggest a possible mechanism to explain regional tectonic uplift of the entire Ethiopian Plateau. We find an increase in tectonic uplift rates from the southeastern escarpments of the Afar Depression in the northeast to that of the Main Ethiopian Rift to the southwest. We identify three regional tectonic uplift events at 11.7, 6.5, and 4.5 Ma recorded by the development of regionally distributed knickpoints. This is in good agreement with ages of tectonic uplift events reported from the Northwestern Ethiopian Plateau.
Climatic Changes on Tibetan Plateau Based on Ice Core Records
NASA Astrophysics Data System (ADS)
Yao, T.
2008-12-01
Climatic changes have been reconstructed for the Tibetan Plateau based on ice core records. The Guliya ice core on the Tibetan Plateau presents climatic changes in the past 100,000 years, thus is comparative with that from Vostok ice core in Antarctica and GISP2 record in Arctic. These three records share an important common feature, i.e., our climate is not stable. It is also evident that the major patterns of climatic changes are similar on the earth. Why does climatic change over the earth follow a same pattern? It might be attributed to solar radiation. We found that the cold periods correspond to low insolation periods, and warm periods to high insolation periods. We found abrupt climatic change in the ice core climatic records, which presented dramatic temperature variation of as much as 10 °C in 50 or 60 years. Our major challenge in the study of both climate and environment is that greenhouse gases such as CO2, CH4 are possibly amplifying global warming, though at what degree remains unclear. One of the ways to understand the role of greenhouse gases is to reconstruct the past greenhouse gases recorded in ice. In 1997, we drilled an ice core from 7100 m a.s.l. in the Himalayas to reconstruct methane record. Based on the record, we found seasonal cycles in methane variation. In particular, the methane concentration is high in summer, suggestiing active methane emission from wet land in summer. Based on the seasonal cycle, we can reconstruct the methane fluctuation history in the past 500 years. The most prominent feature of the methane record in the Himalayan ice core is the abrupt increase since 1850 A.D.. This is closely related to the industrial revolution worldwide. We can also observe sudden decrease in methane concentration during the World War I and World War II. It implies that the industrial revolution has dominated the atmospheric greenhouse gas emission for about 100 years. Besides, the average methane concentration in the Himalayan ice core is higher than that in polar regions, indicating that the low latitude wet land is a major natural source of atmospheric methane.
Distribution and ecology of Ostracodes from 34 lakes on the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Peng, P.; Fürstenberg, S.; Frenzel, P.; Guo, Y.; Zhu, L.; Gifty-Akita, L.
2013-12-01
Abstract Ostracodes (bivalved Crustaceans) inhabit nearly all aquatic environments from the marine realm to continental freshwater bodies and represent important bio-indicators since their calcific shells are readily preserved in the lake sediments in high numbers. Furthermore they record a plentifulness of information about palaeoenvironments. This data can be used for reconstructing climatic changes on the Tibetan Plateau. We obtained 112 surface sediment samples from 34 lakes on the plateau to investigate distribution and ecology of ostracodes for understanding the implications of aquatic environmental factors on the distribution of ostracodes. There were 12 species identified: Candona candida, Candona xizangensis, Fabaeformiscandona gyirongensis, Potamocypris villosa, Heterocypris sp. , Eucypris gyirongensis, Ilyocypris sp. , Cytherissa lacustris, Leucuocythere dorsotuberosa, Leucocytherella sinensis, and Limnocythere inopinata. Corresponding environmental factors including water depth, specific conductivity, temperature, pH and dissolved oxygen were monitored in various lakes. The range of specific conductivity was between 275 and 202000 μS/cm. A Principle Component Analysis (PCA) depicted that ostracode diversity gained high relations with specific conductivity (r = -0.43) and dissolved oxygen (r = 0.43). This indicated that specific conductivity could be the main factor driving the distribution of ostracodes on the Tibetan Plateau. Keywords: Ostracodes, Tibetan Plateau, lacustrine sediment, ecology, diversity
NASA Astrophysics Data System (ADS)
Lu, Haijian; Fu, Bihong; Shi, Pilong; Xue, Guoliang; Li, Haibing
2018-05-01
Constraints on the timing and style of the Tibetan Plateau growth help spur new understanding of the tectonic evolution of the northern Tibetan Plateau and its relation to the India-Asia continental collision. In this regard, records of tectonic deformation with accurate ages are urgently needed, especially in regions without relevant studies. The Kumkol basin, located between two major intermontane basins (the Hoh Xil and Qaidam basins), may hold clues to how these major basins evolve during the Cenozoic. However, little has been known about the exact ages of the strata and tectonic deformation of the basin. Herein, detailed paleomagnetic and structural studies are conducted on the southern Baiquanhe section in the central Kumkol basin, northern Tibetan Plateau. The magnetostratigraphic study indicates that the southern Baiquanhe section spans a time interval of 8.2-4.2 Ma. Well-preserved growth strata date to 7.5 Ma, providing evidence for a significant thrust fault-related folding. This thrust-related folding has also been identified in the Tian Shan foreland and in the northern Tibetan Plateau, most likely implying a pulsed basinward deformation during the late Miocene.
NASA Astrophysics Data System (ADS)
d'Ovidio, F.; Della Penna, A.; Trull, T. W.; Nencioli, F.; Pujol, M.-I.; Rio, M.-H.; Park, Y.-H.; Cotté, C.; Zhou, M.; Blain, S.
2015-10-01
Field campaigns are instrumental in providing ground truth for understanding and modeling global ocean biogeochemical budgets. A survey however can only inspect a fraction of the global oceans, typically a region hundreds of kilometers wide for a temporal window of the order of (at most) several weeks. This spatiotemporal domain is also the one in which the mesoscale activity induces through horizontal stirring a strong variability in the biogeochemical tracers, with ephemeral, local contrasts which can easily mask the regional and seasonal gradients. Therefore, whenever local in situ measures are used to infer larger-scale budgets, one faces the challenge of identifying the mesoscale structuring effect, if not simply to filter it out. In the case of the KEOPS2 investigation of biogeochemical responses to natural iron fertilization, this problem was tackled by designing an adaptive sampling strategy based on regionally optimized multisatellite products analyzed in real time by specifically designed Lagrangian diagnostics. This strategy identified the different mesoscale and stirring structures present in the region and tracked the dynamical frontiers among them. It also enabled back trajectories for the ship-sampled stations to be estimated, providing important insights into the timing and pathways of iron supply, which were explored further using a model based on first-order iron removal. This context was essential for the interpretation of the field results. The mesoscale circulation-based strategy was also validated post-cruise by comparing the Lagrangian maps derived from satellites with the patterns of more than one hundred drifters, including some adaptively released during KEOPS2 and a subsequent research voyage. The KEOPS2 strategy was adapted to the specific biogeochemical characteristics of the region, but its principles are general and will be useful for future in situ biogeochemical surveys.
NASA Astrophysics Data System (ADS)
d'Ovidio, F.; Della Penna, A.; Trull, T. W.; Nencioli, F.; Pujol, I.; Rio, M. H.; Park, Y.-H.; Cotté, C.; Zhou, M.; Blain, S.
2015-01-01
Field campaigns are instrumental in providing ground truth for understanding and modelling global ocean biogeochemical budgets. A survey however can only inspect a fraction of the global oceans, typically a region 100s km wide for a temporal window of the order of (at most) several weeks. This spatiotemporal domain is also the one in which the mesoscale activity induces through horizontal stirring a strong variability in the biogeochemical tracers, with ephemeral, local contrasts which can easily mask the regional and seasonal gradients. Therefore, whenever local in-situ measures are used to infer larger scale budgets one faces the challenge of identifying the mesoscale structuring effect, if not simply to filter it out. In the case of the KEOPS2 investigation of biogeochemical responses to natural iron fertilization, this problem was tackled by designing an adaptive sampling strategy based on regionally-optimized multisatellite products analyzed in real time by specifically designed Lagrangian diagnostics. This strategy identified the different mesoscale and stirring structures present in the region and tracked the dynamical frontiers among them. It also enabled back-trajectories for the ship sampled stations to be estimated, providing important insights into the timing and pathways of iron supply, which were explored further using model based on first order iron removal. This context was essential for the interpretation of the field results. The mesoscale circulation based strategy was also validated post-cruise by comparing the Lagrangian maps derived from satellite with the patterns of more than one hundred drifters adaptively released during KEOPS2 and a subsequent research voyage. The KEOPS2 strategy was adapted to the specific biogeochemical characteristics of the region, but its principles are general and will be useful for future in-situ biogeochemical surveys.
Submarine geology and geomorphology of active Sub-Antarctic volcanoes: Heard and McDonald Islands
NASA Astrophysics Data System (ADS)
Watson, S. J.; Coffin, M. F.; Whittaker, J. M.; Lucieer, V.; Fox, J. M.; Carey, R.; Arculus, R. J.; Bowie, A. R.; Chase, Z.; Robertson, R.; Martin, T.; Cooke, F.
2016-12-01
Heard and McDonald Islands (HIMI) are World Heritage listed sub-Antarctic active volcanic islands in the Southern Indian Ocean. Built atop the Kerguelen Plateau by Neogene-Quaternary volcanism, HIMI represent subaerial exposures of the second largest submarine Large Igneous Province globally. Onshore, processes influencing island evolution include glaciers, weathering, volcanism, vertical tectonics and mass-wasting (Duncan et al. 2016). Waters surrounding HIMI are largely uncharted, due to their remote location. Hence, the extent to which these same processes shape the submarine environment around HIMI has not been investigated. In early 2016, we conducted marine geophysical and geologic surveys around HIMI aboard RV Investigator (IN2016_V01). Results show that volcanic and sedimentary features prominently trend east-west, likely a result of erosion by the eastward flowing Antarctic Circumpolar Current and tidal currents. However, spatial patterns of submarine volcanism and sediment distribution differ substantially between the islands. >70 sea knolls surround McDonald Island suggesting substantial submarine volcanism. Geophysical data reveals hard volcanic seafloor around McDonald Island, whereas Heard Island is characterised by sedimentary sequences tens of meters or more thick and iceberg scours - indicative of glacial processes. Differences in submarine geomorphology are likely due to the active glaciation of Heard Island and differing rock types (Heard: alkali basalt, McDonald: phonolite), and dominant products (clastics vs. lava). Variations may also reflect different magmatic plumbing systems beneath the two active volcanoes (Heard produces larger volumes of more focused lava, whilst McDonald extrudes smaller volumes of more evolved lavas from multiple vents across the edifice). Using geophysical data, corroborated with new and existing geologic data, we present the first geomorphic map revealing the processes that shape the submarine environment around HIMI.
Prieto, Luis; Lopez, Victoria; Perez-Frances, Carmen; Marin, Julio
2010-12-01
Changes in forced vital capacity (FVC) may represent an indirect method for the detection of plateau in response to inhaled bronchoconstrictor agents. To determine the relationship between the level of plateau obtained with either methacholine or adenosine monophosphate (AMP) and the decrease in FVC induced by each bronchoconstrictor agent. Airway responsiveness to high concentrations of methacholine and AMP was determined in patients with intermittent asthma (n = 41) or allergic rhinitis (n = 26). Furthermore, allergen-induced changes in the response to each bronchoconstrictor agent were investigated in 18 pollen-sensitive patients. Concentration-response curves were characterized by the slope of the FVC values recorded at each step of the challenge against the corresponding forced expiratory volume in 1 second (FEV1) values and, if possible, by the level of plateau. The slope FVC vs FEV1 was similar in patients with plateau and in those without plateau. In patients with pollen allergy, the mean (95% confidence interval) for the level of plateau detected with methacholine increased from 16.8% (11.8%-22.0%) before the pollen season to 21.7% (14.8%-28.6%, P = .008) during the pollen season, whereas pollen-induced changes in the slope FVC vs FEV1 were not significant. Similar results were obtained with AMP. In patients with allergic rhinitis or intermittent asthma, methacholine or AMP-induced changes in FVC are not significantly related to the presence or level of plateau. Furthermore, these 2 constituents of the concentration-response curve can be modified independently by a proinflammatory stimulus. These results suggest that the bronchoconstrictor-induced change in FVC cannot be used as a surrogate estimation of the level of plateau. Copyright © 2010 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
A Tibetan lake sediment record of Holocene Indian summer monsoon variability
NASA Astrophysics Data System (ADS)
Bird, Broxton W.; Polisar, Pratigya J.; Lei, Yanbin; Thompson, Lonnie G.; Yao, Tandong; Finney, Bruce P.; Bain, Daniel J.; Pompeani, David P.; Steinman, Byron A.
2014-08-01
Sedimentological data and hydrogen isotopic measurements of leaf wax long-chain n-alkanes (δDwax) from an alpine lake sediment archive on the southeastern Tibetan Plateau (Paru Co) provide a Holocene perspective of Indian summer monsoon (ISM) activity. The sedimentological data reflect variations in lake level and erosion related to local ISM rainfall over the Paru Co catchment, whereas δDwax reflects integrated, synoptic-scale ISM dynamics. Our results indicate that maximum ISM rainfall occurred between 10.1 and ˜5.2 ka, during which time there were five century-scale high and low lake stands. After 5.2 ka, the ISM trended toward drier conditions to the present, with the exception of a pluvial event centered at 0.9 ka. The Paru Co results share similarities with paleoclimate records from across the Tibetan Plateau, suggesting millennial-scale ISM dynamics were expressed coherently. These millennial variations largely track gradual decreases in orbital insolation, the southward migration of the Intertropical Convergence Zone (ITCZ), decreasing zonal Pacific sea surface temperature (SST) gradients and cooling surface air temperatures on the Tibetan Plateau. Centennial ISM and lake-level variability at Paru Co closely track reconstructed surface air temperatures on the Tibetan Plateau, but may also reflect Indian Ocean Dipole events, particularly during the early Holocene when ENSO variability was attenuated. Variations in the latitude of the ITCZ during the early and late Holocene also appear to have exerted an influence on centennial ISM rainfall.
M-wave, H- and V-reflex recruitment curves during maximal voluntary contraction.
Racinais, Sebastien; Maffiuletti, Nicola A; Girard, Olivier
2013-08-01
To investigate whether the H reflex-M wave recruitment curves obtained during maximal voluntary contraction (MVC) differ from rest and to determine the stimulation intensities allowing to record stable reflex responses. Full recruitment curves (precision, 2 mA) were obtained from the soleus muscle in 14 volunteers at rest and during plantar flexion MVCs. Maximal M-wave reached significantly larger amplitude during MVC (+2.2 [0.4; 3.9] mV) for a higher stimulation intensity (+7.9 [-0.4; 16] mA). Similarly, maximal H-reflex reached significantly larger amplitude during MVC than at rest (+3.2 [0.9; 5.5] mV) for a much higher stimulation intensity (+17.7 [9.7; 25.7] mA). V-wave amplitude plateaued only when M-wave during MVC plateaued, that is, at higher intensity than M-wave at rest. V-wave was correlated to the maximal H-reflex during MVC (r = 0.79, P < 0.05). Electrically evoked potentials showed a specific recruitment curve during MVC with higher maximal values attained for higher stimulation intensities. Thus, recording reflex responses during MVC based on intensities determined at rest or as a percentage of M-wave may yield inaccurate results. V-wave presented a plateau for stimulation intensity of 1.5 times the onset of the resting M-wave plateau. Evoked potentials obtained during actual contractions should be normalized to M-waves obtained during contractions of the same force level.
Rain shadow development and paleoenvironmental change in the southern Central Anatolian Plateau
NASA Astrophysics Data System (ADS)
Meijers, Maud J. M.; Mulch, Andreas; Brocard, Gilles Y.; Whitney, Donna L.
2015-04-01
Ongoing Arabia-Eurasia convergence in the eastern Mediterranean region has led to the westward escape of the Anatolian microplate and the formation of the Central Anatolian Plateau (CAP). The US-NSF CD-CAT (Continental Dynamics-Central Anatolian Tectonics) project aims at understanding the surface-to-mantle coupling during the transition from collision to escape tectonics and plateau formation in Anatolia. Within the CD-CAT project, this study aims at determining the paleoenvironmental conditions and the age of plateau (margin) uplift by integrating stable isotope geochemistry and absolute dating techniques (40Ar/39Ar geochronology and magnetostratigraphy) on middle Miocene to Pliocene lacustrine sedimentary rocks. The low-relief CAP (~1.5 km average elevation) is characterized by high-relief mountain ranges at its southern and northern margins. The Tauride mountain belt forms the southern plateau margin of the CAP with a relief of up to 3 km. Uplift of Tortonian marine sediments in the central Taurides to modern elevations of up to 2 km constrain the onset of surface uplift of the southern plateau margin to ~8 Ma (Schildgen et al. 2012a,b). Proxy records of oxygen isotopes (δ18O) in precipitation allow to reconstruct the development of the present-day Tauride rain shadow and hence the surface elevation history of the southern plateau margin. Here we evaluate δ18O and δ13C records of seven lacustrine basins situated along a SW-NE swath in the lee of the modern Tauride mountains in order to track the development of a Tauride rain shadow and changes in open to closed lake conditions through the late Miocene to Pliocene. We focus on lacustrine sections with available mammal ages and integrate these with 40Ar/39Ar geochronology of widespread volcanics of the Central Anatolian Volcanic Province and magnetostratigraphy where possible. Our results from seven sections of ~12-4 Ma in lacustrine deposits and pedogenic soil carbonates of ~3-2.5 Ma show a decrease of δ18O values between ~12 and ~6 Ma of ca. 3o followed by a period of remarkably stable δ18O values around 21.5o until about 2.5 Ma. The latter coincides with modern δ18O values of the least-evaporative rinds of modern pedogenic carbonate. The observed 3o decrease in δ18O of lacustrine carbonate accounts for about 50 % of the present-day effect of orographic rainout on δ18O of precipitation (Schemmel et al. 2013) along the southern plateau margin. This might indicate the presence of a ~1000m high plateau prior to the formation of the Tauride chain. Schildgen et al., EPSL 317-118, 2012a; Schildgen et al., Tectonics 31, 2012b; Schemmel et al., AJS 313, 2013
Atwood, Chase; Maxwell, Mac; Butler, Ryan; Wills, Robert
2015-01-01
The goal of this study was to retrospectively investigate the effect of incisional closure with either stainless steel skin staples or intradermal poliglecaprone 25 on the prevalence of surgical site infection following tibial plateau leveling osteotomy in dogs. Medical records were reviewed for dogs treated with unilateral tibial plateau leveling osteotomy at Memphis Veterinary Specialists between 2006 and 2013. Procedures (n = 306) from 242 dogs were included in the study. The association of potential risk factors with the occurrence of postoperative infection was assessed using logistic regression. A value of P < 0.05 was considered significant. Weight and administration of postoperative antimicrobials were found to significantly influence surgical site infection prevalence. No significant association was noted between closure method and prevalence of postoperative infection. PMID:25829557
NASA Astrophysics Data System (ADS)
Meyer, Michael; Wang, Zhijun; Schlütz, Frank; Hoffmann, Dirk; May, Jan-Hendrik; Aldenderfer, Mark
2014-05-01
Morphodynamics and sedimentation on the Tibetan Plateau are strongly controlled by cold-arid climate conditions and distinct freeze-thaw cycles. In such a periglacial environment mass-wasting processes are dominant on mountain slopes, causing thick successions of talus and colluvium to accumulate. While periglacial slope dynamics are ubiquitous on the plateau today, they were probably much more intense during the various cold stages of the Late Pleistocene. However, the exact nature as well as the timing and duration of such temperature controlled slope dynamics on the Tibetan plateau are not well constrained. Travertines are secondary carbonates precipitated from hydrothermal springs. On the Tibetan Plateau these types of spring deposits form along neotectonic faults, where super-saturated ground water can penetrate onto the surface, facilitating degassing and carbonate precipitation. Spring carbonate formation further requires non-permanently frozen ground and reasonable humid conditions in order to recharge the ground water aquifer. Travertines hold potential for palaeoenvironmental reconstruction, because they are dateable via U-series techniques and their geochemical, biological and petrographic signature can be used to extract high resolution palaeoenvironmental information. Due to a dense network of neotectonic faults on the Tibetan plateau, travertines are relatively common. Nevertheless, the potential of these hydrothermal spring deposits as an archive for palaeoenvironmental change on the plateau has yet to be explored. Here we present the first results obtained for an unusual, non-continuous sediment sequence encountered in southern Tibet at an altitude of 4200 m asl. near Chusang village, i.e. a ca. 200 m thick succession of periglacial colluvium alternating with travertine deposits. Preliminary data indicate that travertine deposition at the Chusang hydrothermal spring occurred periodically throughout the Late Pleistocene and extensive travertine precipitation was also responsible for preserving old colluvial sediment. We combine U-series disequilibrium dating with optically stimulated luminescence dating and radiocarbon dating to constrain the depositional history of this unique sediment sequence. Sedimentological logging and geomorphological mapping is used to understand past depositional processes and environmental constraints. Comparison to published high resolution climate records that are continuous in nature (e.g. speleothem records from adjacent catchments and regions) will allow us to link this clastic-chemical sediment sequence into the broader palaeoclimatic framework of High Asia.
Righter, Kevin; Cosca, Michael A.; Morgan, Leah
2016-01-01
The hornblende- and biotite-bearing R chondrite LAP 04840 is a rare kind of meteorite possibly containing outer solar system water stored during metamorphism or postshock annealing deep within an asteroid. Because little is known regarding its age and origin, we determined 40Ar/39Ar ages on hornblende-rich separates of the meteorite, and obtained plateau ages of 4340(±40) to 4380(±30) Ma. These well-defined plateau ages, coupled with evidence for postshock annealing, indicate this meteorite records an ancient shock event and subsequent annealing. The age of 4340–4380 Ma (or 4.34–4.38 Ga) for this and other previously dated R chondrites is much older than most impact events recorded by ordinary chondrites and points to an ancient event or events that predated the late heavy bombardment that is recorded in so many meteorites and lunar samples.
NASA Astrophysics Data System (ADS)
Rohrmann, A.; Alonso, R. N.; Sachse, D.; Mulch, A.; Pingel, H.; Tofelde, S.; Strecker, M. R.
2017-12-01
The growth of the Andean Plateau is one of the main controlling factors of present-day's South American climate and hydrological state and has played a major role in the evolution of species on 106 yr timescales. Yet, information about the timing of uplift and ensuing variability of climatic, hydrologic, and ecologic conditions are sparse. Reconstructions of topographic growth of mountain belts increasingly rely on leaf-wax hydrogen isotope data (δDwax), a paleo-hydrology proxy obtained from organic material in sedimentary rocks. However, establishing paleo-elevations have been hampered by the complexities associated with the δDwax signal, including changes in atmospheric circulation, atmospheric water-vapor transport, and evapo-transpiration. Rather than reconstructing absolute elevation changes, an alternative method involves to evaluate changes in δD (or δ18O) between low and high-elevation sites, Δ(δD) or Δ(δ18O) (δ-δ approach), and reference high-elevation δ18O or δD proxy data of precipitation to a (near-)sea-level record. We present a multi-isotope record with δDwax, δ13Cwax and δ18Ocarb on a well-dated sedimentary section from the 4-km-high Andean Plateau (Pastos Grandes Basin, 24°38' S, 66°40' W) and compare this record to an intermontane basin record (Angastaco Basin, 25°41' S, 66°04' W) located farther east in the E Cordillera to decipher patterns of hydrological changes during topographic growth. We show that over the last 9 Myr the eastern plateau margin experienced: (a) a variable influx of moisture and related changes in hydrologic conditions related to the onset of the South American Low-Level-Jet starting at 7.6 Ma; and (b) relative surface uplift on the order of 2 km between 9-4 Ma and later uplift of the intermonate basin after 5 Ma to its present-day elevation (using a δ-δ approach). This allows us to calculate an uplift rate of 0.8 km/Myr for the time between 9-4 Ma. The timing of uplift contradict earlier findings that most of the southern Andean Plateau had attained its high-elevation at least by 15 Ma or even as early as 38 Ma. Instead, we conclude that basins in the west attained elevation earlier during Andean mountain building, whereas basins farther east reached higher elevations later on, comparable to eastward-directed topographic growth observed in the Bolivian-Peruvian Altiplano.
Baker, Katherine M; Foutz, Timothy L; Johnsen, Kyle J; Budsberg, Steven C
2014-09-01
To quantify the 3-D kinematics and collateral ligament strain of stifle joints in cadaveric canine limbs before and after cranial cruciate ligament transection followed by total knee replacement (TKR) involving various tibial plateau angles and spacer thicknesses. 6 hemi-pelvises collected from clinically normal nonchondrodystrophic dogs (weight range, 25 to 35 kg). Hemi-pelvises were mounted on a modified Oxford knee rig that allowed 6 degrees of freedom of the stifle joint but prevented mechanical movement of the hip and tarsal joints. Kinematics and collateral ligament strain were measured continuously while stifle joints were flexed. Data were again collected after cranial cruciate ligament transection and TKR with combinations of 3 plateau angles (0°, 4°, and 8°) and spacer thicknesses (5, 7, and 9 mm). Presurgical (ie, normal) stifle joint rotations were comparable to those previously documented for live dogs. After TKR, kinematics recorded for the 8°, 5-mm implant most closely resembled those of unaltered stifle joints. Decreasing the plateau angle and increasing spacer thickness altered stifle joint adduction, internal rotation, and medial translation. Medial collateral ligament strain was minimal in unaltered stifle joints and was unaffected by TKR. Lateral collateral ligament strain decreased with steeper plateau angles but returned to a presurgical level at the flattest plateau angle. Among the constructs tested, greatest normalization of canine stifle joint kinematics in vitro was achieved with the steepest plateau angle paired with the thinnest spacer. Furthermore, results indicated that strain to the collateral ligaments was not negatively affected by TKR.
The Effect of Mild Motion Sickness and Sopite Syndrome on Multitasking Cognitive Performance
2013-03-01
Ledin, & Falkmer, 2009), in command and control tasks ( Cowings , Toscano, DeRoshia, & Tauson, 2001), or in visual search (Golding & Kerguelen, 1992...common and frequent. Research has shown that drowsiness is among the most frequent symptoms associated with motion sickness ( Cowings et al., 2001...sickness ( Cowings , Naifeh, & Toscano, 1990; J. C. Miller, Sharkey, Graham, & McCauley, 1993). The following paragraphs will focus on the
NASA Astrophysics Data System (ADS)
Huntington, K. W.; Wernicke, B. P.; Eiler, J. M.
2009-05-01
Topography is a first-order expression of the buoyancy of the lithosphere, and the timing and pattern of elevation change can place fundamental constraints on mantle flow and continental dynamics. We investigate the timing of Colorado Plateau uplift using clumped-isotope thermometry to independently constrain both the temperature and isotopic composition of ancient surface waters based on the 13C-18O bond enrichment in carbonates. Analyses of ancient lake sediments from the plateau interior and adjacent lowlands are compared to signals recorded by modern sediments collected over 3 km of elevation in the region. Comparison of modern and ancient samples deposited near sea level provides an opportunity to quantify the influence of climate on changes in temperature, and therefore more accurately assess the contribution from changes in elevation. Both modern and ancient (Miocene-Pliocene) carbonates record near-surface spring/summer lake water temperatures that vary strongly with elevation. Modern and ancient lake carbonate temperature lapse rates of -4.2±0.7°C/km and -4.1±0.6°C/km, respectively, suggest that little if any post-16 Ma change in elevation of the southern plateau is required to explain the data. Agreement of δ18O data for modern and ancient surface waters supports this interpretation. The zero-elevation intercept of the ancient trend is 7.7±2.0°C warmer than the modern trend, indicating significant cooling due to climate change since Late Miocene time. The temperature data are permissive of up to 450 m of uplift or 250 m of subsidence of the plateau interior since 6 Ma, but do not support km-scale changes. Combined with previous constraints, the data suggest that most uplift of the south-central plateau occurred during Late Cretaceous/earliest Tertiary time, favoring uplift mechanisms such as crustal thickening by channel flow, hydration of the mantle lithosphere due to volatile flux from the Laramide flat slab, or dynamic topography associated with slab foundering. The data do not support explanations that ascribe most uplift to ca. 40-0 Ma disposal of the Farallon or North American mantle lithosphere.
Upper Mantle Dynamics of Bangladesh by Splitting Analyzes of Core Refracted SKS and SKKS Waves
NASA Astrophysics Data System (ADS)
Tiwari, A. K.; Bhushan, K.; Eken, T.; Singh, A.
2017-12-01
New shear wave splitting measurements are obtained from hitherto less studied Bengal Basin using core refracted SKS and SKKS phases. Splitting parameters, time delays (δt) and fast polarization directions (Φ) were estimated through analysis of 64 high-quality waveforms (≥ 2.5 signal to noise ratio) from 29 earthquakes with magnitude ≥5.5 recorded at eight seismic stations deployed over Bangladesh. We found no evidence of splitting which indicates azimuthal isotropy beneath the region. Null measurements can be explained by near vertical axis of anisotropy or by the presence of multiple anisotropic layers with different fast polarization directions, where combined effect results in null. We consider that the presence of partial melts within the upper mantle due to Kerguelen mantle plume activities may be the potential geodynamic cause for observed null measurements. It locally perturbed mantle convection flow beneath the region and reoriented the lattice preferred orientation of the upper mantle mineral mainly olivine as this disabled the core refracted SKS and SKKS phases to scan the anisotropic characteristics of the region, and hence null measurements are obtained.
High-resolution 900 year volcanic and climatic record from the Vostok area, East Antarctica
NASA Astrophysics Data System (ADS)
Osipov, E. Y.; Khodzher, T. V.; Golobokova, L. P.; Onischuk, N. A.; Lipenkov, V. Y.; Ekaykin, A. A.; Shibaev, Y. A.; Osipova, O. P.
2014-05-01
Ion chromatography measurements of 1730 snow and firn samples obtained from three short cores and one pit in the Vostok station area, East Antarctica, allowed for the production of the combined volcanic record of the last 900 years (AD 1093-2010). The resolution of the record is 2-3 samples per accumulation year. In total, 24 volcanic events have been identified, including seven well-known low-latitude eruptions (Pinatubo 1991, Agung 1963, Krakatoa 1883, Tambora 1815, Huanaputina 1600, Kuwae 1452, El Chichon 1259) found in most of the polar ice cores. In comparison with three other East Antarctic volcanic records (South Pole, Plateau Remote and Dome C), the Vostok record contains more events within the last 900 years. The differences between the records may be explained by local glaciological conditions, volcanic detection methodology, and, probably, differences in atmospheric circulation patterns. The strongest volcanic signal (both in sulfate concentration and flux) was attributed to the AD 1452 Kuwae eruption, similar to the Plateau Remote and Talos Dome records. The average snow accumulation rate calculated between volcanic stratigraphic horizons for the period AD 1260-2010 is 20.9 mm H2O. Positive (+13%) anomalies of snow accumulation were found for AD 1661-1815 and AD 1992-2010, and negative (-12%) for AD 1260-1601. We hypothesized that the changes in snow accumulation are associated with regional peculiarities in atmospheric transport.
NASA Astrophysics Data System (ADS)
Grillo, Barbara; Braitenberg, Carla; Nagy, Ildikó; Devoti, Roberto; Zuliani, David; Fabris, Paolo
2018-04-01
Ten years' geodetic observations (2006-2016) in a natural cave of the Cansiglio Plateau (Bus de la Genziana), a limestone karstic area in northeastern Italy, are discussed. The area is of medium-high seismic risk: a strong earthquake in 1936 below the plateau (M m = 6.2) and the 1976 disastrous Friuli earthquake (M m = 6.5) are recent events. At the foothills of the karstic massif, three springs emerge, with average flow from 5 to 10 m3/s, and which are the sources of a river. The tiltmeter station is set in a natural cavity that is part of a karstic system. From March 2013, a multiparametric logger (temperature, stage, electrical conductivity) was installed in the siphon at the bottom of the cave to discover the underground hydrodynamics. The tilt records include signals induced by hydrologic and tectonic effects. The tiltmeter signals have a clear correlation to the rainfall, the discharge series of the river and the data recorded by multiparametric loggers. Additionally, the data of a permanent GPS station located on the southern slopes of the Cansiglio Massif (CANV) show also a clear correspondence with the river level. The fast water infiltration into the epikarst, closely related to daily rainfall, is distinguished in the tilt records from the characteristic time evolution of the karstic springs, which have an impulsive level increase with successive exponential decay. It demonstrates the usefulness of geodetic measurements to reveal the hydrological response of the karst. One outcome of the work is that the tiltmeters can be used as proxies for the presence of flow channels and the pressure that builds up due to the water flow. With 10 years of data, a new multidisciplinary frontier was opened between the geodetic studies and the karstic hydrogeology to obtain a more complete geologic description of the karst plateau.
NASA Astrophysics Data System (ADS)
Grillo, Barbara; Braitenberg, Carla; Nagy, Ildikó; Devoti, Roberto; Zuliani, David; Fabris, Paolo
2018-05-01
Ten years' geodetic observations (2006-2016) in a natural cave of the Cansiglio Plateau (Bus de la Genziana), a limestone karstic area in northeastern Italy, are discussed. The area is of medium-high seismic risk: a strong earthquake in 1936 below the plateau ( M m = 6.2) and the 1976 disastrous Friuli earthquake ( M m = 6.5) are recent events. At the foothills of the karstic massif, three springs emerge, with average flow from 5 to 10 m3/s, and which are the sources of a river. The tiltmeter station is set in a natural cavity that is part of a karstic system. From March 2013, a multiparametric logger (temperature, stage, electrical conductivity) was installed in the siphon at the bottom of the cave to discover the underground hydrodynamics. The tilt records include signals induced by hydrologic and tectonic effects. The tiltmeter signals have a clear correlation to the rainfall, the discharge series of the river and the data recorded by multiparametric loggers. Additionally, the data of a permanent GPS station located on the southern slopes of the Cansiglio Massif (CANV) show also a clear correspondence with the river level. The fast water infiltration into the epikarst, closely related to daily rainfall, is distinguished in the tilt records from the characteristic time evolution of the karstic springs, which have an impulsive level increase with successive exponential decay. It demonstrates the usefulness of geodetic measurements to reveal the hydrological response of the karst. One outcome of the work is that the tiltmeters can be used as proxies for the presence of flow channels and the pressure that builds up due to the water flow. With 10 years of data, a new multidisciplinary frontier was opened between the geodetic studies and the karstic hydrogeology to obtain a more complete geologic description of the karst plateau.
NASA Astrophysics Data System (ADS)
Gao, Y.; Wang, Q.; SHI, Y.
2017-12-01
There are orogenic belts and strong deformation in northeastern zone of Tibetan Plateau. The media in crust and in the upper mantle are seismic anisotropic there. This study uses seismic records by permanent seismic stations and portable seismic arrays, and adopts analysis techniques on body waves to obtain spatial anisotropic distribution in northeastern front zone of Tibetan Plateau. With seismic records of small local earthquakes, we study shear-wave splitting in the upper crust. The polarization of fast shear wave (PFS) can be obtained, and PFS is considered parallel to the strike of the cracks, as well as the direction of maximum horizontal compressive stress. However, the result shows the strong influence from tectonics, such as faults. It suggests multiple-influence including stress and fault. Spatial distribution of seismic anisotropy in study zone presents the effect in short range. PFS at the station on the strike-slip fault is quite different to PFS at station just hundreds of meters away from the fault. With seismic records of teleseismic waveforms, we obtained seismic anisotropy in the whole crust by receiver functions. The PFS directions from Pms receiver functions show consistency, generally in WNW. The time-delay of slow S phases is significant. With seismic records of SKS, PKS and SKKS phases, we can detect seismic anisotropy in the upper mantle by splitting analysis. The fast directions of these phases also show consistency, generally in WNW, similar to those of receiver functions, but larger time-delays. It suggests significant seismic anisotropy in the crust and crustal deformation is coherent to that in the upper mantle.Seismic anisotropy in the upper crust, in the whole crust and in the upper mantle are discussed both in difference and tectonic implications [Grateful to the support by NSFC Project 41474032].
Tectonic Uplift of the Danba Area in the Eastern Tibetan Plateau
NASA Astrophysics Data System (ADS)
Chang, C. P.; Ho, H. P.; Horng, C. S.; Hsu, Y. C.; Tan, X. B.
2017-12-01
The Danba anticline in the eastern Tibetan Plateau is located between the Longmenshan orogen to the east and the Xianshuihe sinistral fault zone to the west. This anticline has been recognized as an area with extreme exhumation by previous studies. The Tibetan plateau was built by the convergence between Indo-Australian plate and Eurasian plate since early Cenozoic. The eastward lower crustal flow under the plateau obstructed by the Yangtze craton soon after this convergence generated a very complex structural situation in the southeastern side of the Tibetan plateau. In this study, in order to understand the processes and mechanisms of the structural complexity of the Danba area, we apply two methods: stress analysis and magnetic measurement. By measuring the brittle deformation recorded in the strata, we carry out a series of stress analysis to demonstrate the stress field of this area. In addition, due to comprehend the magnetic characteristics of low-grade metamorphic rocks and volcanic rocks in this area, we process the rock magnetic measurement of hysteresis loop and X-ray diffraction analysis. The occurrence of pyrrhotite can be taken as an important isograd in low-grade metamorphic rocks, which is helpful for stratigraphic and structural studies. Based on our results, we try to explain the mechanism of this rapid uplift, which involves material, structural, and kinematic interaction.
Katsenis, Dimitris; Athanasiou, Vasilis; Vasilis, Athanasiou; Megas, Panayiotis; Panayiotis, Megas; Tyllianakis, Minos; Minos, Tillianakis; Lambiris, Elias
2005-04-01
To evaluate the outcome of bicondylar tibial plateau fractures treated with minimal internal fixation augmented by small wire external fixation frames and to assess the necessity of bridging the knee joint by extending the external fixation to the distal femur. This is a retrospective study of 48 tibial plateau fractures. There were 40 (83.5%) Schatzker type VI fractures, 8 Schatzker type V fractures, and 18 (37.5%) fractures were open. A complex injury according to the Tscherne-Lobenhoffer classification was recorded in 30 (62.5%) patients. All fractures were treated with combined minimally invasive internal and external fixation. Closed reduction was achieved in 32 (66.6%) of the fractures. Extension of the external fixation to the distal femur was done in 30 (62.5%) fractures. Results were assessed according to the criteria of Honkonen-Jarvinen. Follow-up ranged from 28 to 60 months with an average of 38 months. All fractures but 1 united at an average of 13.5 weeks (range 11-18 weeks). One patient developed an infected nonunion of the diaphyseal segment of his fracture. Thirty-nine (81%) patients achieved an excellent or good radiologic result. An excellent or good final clinical result was recorded in 36 patients (76%). Bridging the knee joint did not affect significantly the result (P < 0.418). No significant correlation was found between the type of fracture and the final score (P < 0.458). Hybrid internal and external fixation combined with tibiofemoral extension of the fixation is an attractive treatment option for complex tibial plateau fractures.
NASA Astrophysics Data System (ADS)
Su, Bob; Ma, Yaoming; Menenti, Massimo; Wen, Jun; Sobrino, Jose; He, Yanbo; Li, Zhao-Liang; Tang, Bohui; Sneeuw, Nico; Zhong, Lei; Zeng, Yijian; van der Veld, Rogier; Chen, Xuelong; Zheng, Donghai; Huang, Ying; Lv, Shaoning; Wang, Lichun
2016-08-01
The achievements made in Dragon III in 2014-2016 are listed below:1. Maintaining the Tibetan Plateau Soil Moisture and Soil Temperature Observatory (Tibet-Obs) [1-3] and developing a method and data product by blending SM product over Tibetan Plateau and evaluating other available SM products [4].2. Developing a new algorithm for representing the effective soil temperature in microwave radiometry [5-7].3. Developing data sets to study the regional and plateau scale land-atmosphere interactions in TPE [8-11].4. Identifying and developing improved land surface processes [12-15].5. Developing a method for the quantification of water cycle components based on earth observation data and a comparison to reanalysis data [16-17].6. Investigating and revealing the mechanism of surface and tropospheric heatings on the Tibetan plateau [18].7. Proposing a validation framework for the generationof climate data records [19].8. Graduating seven young scientists with their doctorates during the last two years of Dragon III programme.9. Making the datasets and algorithms accessible to the scientific community.
Cenozoic mountain building on the northeastern Tibetan Plateau
Lease, Richard O.
2014-01-01
Northeastern Tibetan Plateau growth illuminates the kinematics, geodynamics, and climatic consequences of large-scale orogenesis, yet only recently have data become available to outline the spatiotemporal pattern and rates of this growth. I review the tectonic history of range growth across the plateau margin north of the Kunlun fault (35°–40°N) and east of the Qaidam basin (98°–107°E), synthesizing records from fault-bounded mountain ranges and adjacent sedimentary basins. Deformation began in Eocene time shortly after India-Asia collision, but the northeastern orogen boundary has largely remained stationary since this time. Widespread middle Miocene–Holocene range growth is portrayed by accelerated deformation, uplift, erosion, and deposition across northeastern Tibet. The extent of deformation, however, only expanded ~150 km outward to the north and east and ~150 km laterally to the west. A middle Miocene reorganization of deformation characterized by shortening at various orientations heralds the onset of the modern kinematic regime where shortening is coupled to strike slip. This regime is responsible for the majority of Cenozoic crustal shortening and thickening and the development of the northeastern Tibetan Plateau.
Zhao, Fang; Ma, Jun-Ying; Cai, Hui-Xia; Su, Jian-Ping; Hou, Zhi-Bin; Zhang, Tong-Zuo; Lin, Gong-Hua
2014-07-01
Cestode larvae spend one phase of their two-phase life cycle in the viscera of rodents, but cases of cestodes infecting subterranean rodents have only been rarely observed. To experimentally gain some insight into this phenomenon, we captured approximately 300 plateau zokors (Eospalax baileyi), a typical subterranean rodent inhabiting the Qinghai-Tibet Plateau, and examined their livers for the presence of cysts. Totally, we collected five cysts, and using a mitochondrial gene (cox1) and two nuclear genes (pepck and pold) as genetic markers, we were able to analyze the taxonomy of the cysts. Both the maximum likelihood and Bayesian methods showed that the cysts share a monophyly with Taenia mustelae, while Kimura 2-parameter distances and number of different sites between our sequences and T. mustelae were far less than those found between the examined sequences and other Taeniidae species. These results, alongside supporting paraffin section histology, imply that the cysts found in plateau zokors can be regarded as larvae of T. mustelae, illustrating that zokors are a newly discovered intermediate host record of this parasite.
ZHAO, Fang; ZHANG, Ming-Xia; MA, Jun-Ying; CAI, Hui-Xia; SU, Jian-Ping; CAI, Hui-Xia; HOU, Zhi-Bin; ZHANG, Tong-Zuo; LIN, Gong-Hua
2014-01-01
Cestode larvae spend one phase of their two-phase life cycle in the viscera of rodents, but cases of cestodes infecting subterranean rodents have only been rarely observed. To experimentally gain some insight into this phenomenon, we captured approximately 300 plateau zokors (Eospalax baileyi), a typical subterranean rodent inhabiting the Qinghai-Tibet Plateau, and examined their livers for the presence of cysts. Totally, we collected five cysts, and using a mitochondrial gene (cox1) and two nuclear genes (pepck and pold) as genetic markers, we were able to analyze the taxonomy of the cysts. Both the maximum likelihood and Bayesian methods showed that the cysts share a monophyly with Taenia mustelae, while Kimura 2-parameter distances and number of different sites between our sequences and T. mustelae were far less than those found between the examined sequences and other Taeniidae species. These results, alongside supporting paraffin section histology, imply that the cysts found in plateau zokors can be regarded as larvae of T. mustelae, illustrating that zokors are a newly discovered intermediate host record of this parasite. PMID:25017751
NASA Astrophysics Data System (ADS)
Zhu, Di-Cheng; Chung, Sun-Lin; Niu, Yaoling
2016-02-01
The Greater Tibetan Plateau, also known in China as the Qinghai-Tibet Plateau or the Qingzang Plateau, is a tectonic amalgamation of numbers of continental collision events from the northwest in the early Paleozoic to the southwest in the Cenozoic (cf. Dewey et al., 1988; Pan et al., 2012; Yin and Harrison, 2000). These collision events resulted in orogenic belts that record the prolonged albeit complex histories of opening and closing of Tethyan ocean basins and associated tectonic and magmatic responses (cf. Chung et al., 2005; Pan et al., 2012; Song et al., 2014; Yin and Harrison, 2000; Zhu et al., 2013, 2015). Although many aspects related to these events have been recently synthesized with elegance by Pan et al. (2012) and Zhu et al. (2013) using data and observations made available since 2000, many scientific questions, such as the duration of oceanic basins, the collisional and accretionary processes of different terranes, the processes responsible for crustal growth, and the mechanisms for economic mineralization, remain underdeveloped and require further investigations with additional data.
Impact of topography and land-sea distribution on east Asian paleoenvironmental patterns
NASA Astrophysics Data System (ADS)
Zhang, Z. S.; Wang, H. J.; Guo, Z. T.; Jiang, D. B.
2006-03-01
Much geological research has illustrated the transition of paleoenvironmental patterns during the Cenozoic from a planetary-wind-dominant type to a monsoon-dominant type, indicating the initiation of the East Asian monsoon and inland-type aridity. However, there is a dispute about the causes and mechanisms of the transition, especially about the impact of the Himalayan/Tibetan Plateau uplift and the Paratethys Sea retreat. Thirty numerical sensitivity experiments under different land-sea distributions and Himalayan/Tibetan Plateau topography conditions are performed here to simulate the evolution of climate belts with emphasis on changes in the rain band, and these are compared with the changes in the paleoenvironmental patterns during the Cenozoic recovered by geological records, The consistency between simulations and the geological evidence indicates that both the Tibetan Plateau uplift and the Paratethys Sea retreat play important roles in the formation of the monsoon-dominant environmental pattern. Furthermore, the simulations show the monsoon-dominant environmental pattern comes into being when the Himalayan/Tibetan Plateau reaches 1000-2000 m high and the Paratethys Sea retreats to the Turan Plate.
Ardhuin, Fabrice; Lavanant, Thibaut; Obrebski, Mathias; Marié, Louis; Royer, Jean-Yves; d'Eu, Jean-François; Howe, Bruce M; Lukas, Roger; Aucan, Jerome
2013-10-01
The generation of ultra-low frequency acoustic noise (0.1 to 1 Hz) by the nonlinear interaction of ocean surface gravity waves is well established. More controversial are the quantitative theories that attempt to predict the recorded noise levels and their variability. Here a single theoretical framework is used to predict the noise level associated with propagating pseudo-Rayleigh modes and evanescent acoustic-gravity modes. The latter are dominant only within 200 m from the sea surface, in shallow or deep water. At depths larger than 500 m, the comparison of a numerical noise model with hydrophone records from two open-ocean sites near Hawaii and the Kerguelen islands reveal: (a) Deep ocean acoustic noise at frequencies 0.1 to 1 Hz is consistent with the Rayleigh wave theory, in which the presence of the ocean bottom amplifies the noise by 10 to 20 dB; (b) in agreement with previous results, the local maxima in the noise spectrum support the theoretical prediction for the vertical structure of acoustic modes; and (c) noise level and variability are well predicted for frequencies up to 0.4 Hz. Above 0.6 Hz, the model results are less accurate, probably due to the poor estimation of the directional properties of wind-waves with frequencies higher than 0.3 Hz.
Yasuda, Hideto; Nishimura, Tetsuro; Kamo, Tetsuro; Sanui, Masamitsu; Nango, Eishu; Abe, Takayuki; Takebayashi, Toru; Lefor, Alan Kawarai; Hashimoto, Satoru
2017-05-29
Lower tidal volume ventilation in patients with acute respiratory distress syndrome (ARDS) is a strategy to reduce the plateau pressure and driving pressure to limit ventilator-induced lung injury (VILI). Several randomised controlled trials (RCTs) and meta-analyses showed that limiting both the plateau pressure and the tidal volume decreased mortality, but the optimal plateau pressure to demonstrate a benefit is uncertain. The aim of this systematic review is to investigate the optimal upper limit of plateau pressure in patients with ARDS to prevent VILI and improve clinical outcomes using meta-analysis with and without meta-regression. RCTs comparing two mechanical ventilation strategies will be included, with lower plateau pressure and with higher plateau pressure, among patients with ARDS and acute lung injury. Data sources include MEDLINE via the NCBI Entrez system, Cochrane Central Register of Controlled Trials (CENTRAL), EMBASE and Ichushi, a database of papers in Japanese. Two of three physicians will independently screen trials obtained by search for eligibility, and extract data from included studies onto standardised data recording forms. For each included trial, the risk of bias and the quality of evidence will be evaluated using the Grading of Recommendation Assessment Development and Evaluation system. This study does not require ethical approval. The results of this systematic review and meta-analysis with and without meta-regression will be disseminated through conference presentation and publication in a peer-reviewed journal. CRD42016041924. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Complex Medial Meniscus Tears Are Associated With a Biconcave Medial Tibial Plateau.
Barber, F Alan; Getelman, Mark H; Berry, Kathy L
2017-04-01
To determine whether an association exists between a biconcave medial tibial plateau and complex medial meniscus tears. A consecutive series of stable knees undergoing arthroscopy were evaluated retrospectively with the use of preoperative magnetic resonance imaging (MRI), radiographs, and arthroscopy documented by intraoperative videos. Investigators independently performed blinded reviews of the MRI or videos. Based on the arthroscopy findings, medial tibial plateaus were classified as either biconcave or not biconcave. A transverse coronal plane ridge, separating the front of the tibial plateau from the back near the inner margin of the posterior body of the medial meniscus, was defined as biconcave. The medial plateau slope was calculated with MRI sagittal views. General demographic information, body mass index, and arthroscopically confirmed knee pathology were recorded. A total of 179 consecutive knees were studied from July 2014 through August 2015; 49 (27.2%) biconcave medial tibial plateaus and 130 (72.8%) controls were identified at arthroscopy. Complex medial meniscus tears were found in 103. Patients with a biconcave medial tibial plateau were found to have more complex medial meniscus tears (69.4%) than those without a biconcavity (53.1%) (P = .049) despite having lower body mass index (P = .020). No difference in medial tibial plateau slope was observed for biconcavities involving both cartilage and bone, bone only, or an indeterminate group (P = .47). Biconcave medial tibial plateaus were present in 27.4% of a consecutive series of patients undergoing knee arthroscopy. A biconcave medial tibial plateau was more frequently associated with a complex medial meniscus tear. Level III, case-control study. Copyright © 2016 Arthroscopy Association of North America. All rights reserved.
NASA Astrophysics Data System (ADS)
Guo, Zhen; Chen, Yongshun John
2017-04-01
We have obtained a high resolution 3-D crustal and uppermost mantle velocity model of the Ordos block and its surrounding areas by joint inversion of ambient noise tomography and receiver functions using seismic recordings from 320 stations. The resulting model shows wide-spread low velocity zone (Vs ≤ 3.4 km/s) in the mid-to-lower crust beneath northeastern Tibet Plateau, which may favor crustal ductile flow within the plateau. However, our model argues against the eastward crustal ductile flow beneath the Qinling belt from the Tibetan Plateau. We find high velocities in the middle part of Qinling belt which separate the low velocities in the mid-to-lower crust of the eastern Qinling belt from the low velocity zone in eastern Tibetan Plateau. More importantly, we observe significant low velocities and thickened lower crust at the Liupanshan thrust belt as the evidence for strong crustal shortening at this boundary between the northeastern Tibetan Plateau and Ordos block. The most important finding of our model is the upper mantle low velocity anomalies surrounding the Ordos block, particularly the one beneath the Trans North China Craton (TNCO) that is penetrating into the southern margin of the Ordos block for ∼100 km horizontally in the depth range of ∼70 km and at least 100 km. We propose an on-going lithospheric mantle reworking at the southernmost boundary of the Ordos block due to complicated mantle flow surrounding the Ordos block, that is, the eastward asthenospheric flow from the Tibet Plateau proposed by recent SKS study and mantle upwelling beneath the TNCO from mantle transition zone induced by the stagnant slabs of the subducted Pacific plate.
NASA Astrophysics Data System (ADS)
Yin, Xiufeng; Kang, Shichang; de Foy, Benjamin; Cong, Zhiyuan; Luo, Jiali; Zhang, Lang; Ma, Yaoming; Zhang, Guoshuai; Rupakheti, Dipesh; Zhang, Qianggong
2017-09-01
Ozone is an important pollutant and greenhouse gas, and tropospheric ozone variations are generally associated with both natural and anthropogenic processes. As one of the most pristine and inaccessible regions in the world, the Tibetan Plateau has been considered as an ideal region for studying processes of the background atmosphere. Due to the vast area of the Tibetan Plateau, sites in the southern, northern and central regions exhibit different patterns of variation in surface ozone. Here, we present continuous measurements of surface ozone mixing ratios at Nam Co Station over a period of ˜ 5 years (January 2011 to October 2015), which is a background site in the inland Tibetan Plateau. An average surface ozone mixing ratio of 47.6 ± 11.6 ppb (mean ± standard deviation) was recorded, and a large annual cycle was observed with maximum ozone mixing ratios in the spring and minimum ratios during the winter. The diurnal cycle is characterized by a minimum in the early morning and a maximum in the late afternoon. Nam Co Station represents a background region where surface ozone receives negligible local anthropogenic emissions inputs, and the anthropogenic contribution from South Asia in spring and China in summer may affect Nam Co Station occasionally. Surface ozone at Nam Co Station is mainly dominated by natural processes involving photochemical reactions, vertical mixing and downward transport of stratospheric air mass. Model results indicate that the study site is affected differently by the surrounding areas in different seasons: air masses from the southern Tibetan Plateau contribute to the high ozone levels in the spring, and enhanced ozone levels in the summer are associated with air masses from the northern Tibetan Plateau. By comparing measurements at Nam Co Station with those from other sites on the Tibetan Plateau, we aim to expand the understanding of ozone cycles and transport processes over the Tibetan Plateau. This work may provide a reference for future model simulations.
NASA Astrophysics Data System (ADS)
Wu, M.; Zhuang, G.; Hou, M.
2017-12-01
The climatic evolution on the northern Tibetan Plateau has long been a dynamic and controversial topic. Different views include that the climate may have become dry monotonically since the time period of 12 to 10 Ma, or the present-day dry conditions were reached in several steps which were coupled to the phased expansion of Tibetan Plateau, or the climate alternated between dry and wet conditions during the late Neogene—a result of varying climate related to the East Asian monsoon. The different views are due to the lack of a holistic knowledge about climatic histories that influenced the northern Tibetan Plateau. Previous studies show that the strong East Asian summer monsoon has been dominant in the eastern part of the Northern Tibetan Plateau during the 'prolonged interglacial state' (ca. 7 to 4 Ma); whilst others reveal that the whole northern Tibetan Plateau has been under the dominant influence of the westerlies since the Eocene. In order to reconstruct the paleoclimatic history, we applied the new proxy in paleoclimatology, i.e. the compound-specific isotope hydrogen analysis on lipid wax n-alkanes. We studied two well-dated sedimentary sections from the southwestern Qaidam basin on the northern Tibetan Plateau. These two sections comprise a 16-million-year-long record of δ2Hn-alk. Our new δ2Hn-alk values show a trend that δ2Hn-alk values became higher during the middle to late Miocene and kept the high values until the Quaternary. Our new findings share similarities as well as show differences from previous δ2Hn-alk study in the region. The timing of the onset of increasing δ2Hn-alk is synchronous across the region, revealing the drying climate. However, the relatively stable δ2Hn-alk values, contrasting with the relatively lower δ2Hn-alk values during the 'prolonged interglacial state', suggest that two climatic regimes were controlling different parts of the northern Tibetan Plateau.
Lang, Erhard W; Kasprowicz, Magdalena; Smielewski, Peter; Pickard, John; Czosnyka, Marek
2015-08-01
Plateau waves in intracranial pressure (ICP) are frequently recorded in neuro intensive care and are not yet fully understood. To further investigate this phenomenon, we analyzed partial pressure of cerebral oxygen (pbtO2) and a moving correlation coefficient between ICP and mean arterial blood pressure (ABP), called PRx, along with the cerebral oxygen reactivity index (ORx), which is a moving correlation coefficient between cerebral perfusion pressure (CPP) and pbtO2 in an observational study. We analyzed 55 plateau waves in 20 patients after severe traumatic brain injury. We calculated ABP, ABP pulse amplitude (ampABP), ICP, CPP, pbtO2, heart rate (HR), ICP pulse amplitude (ampICP), PRx, and ORx, before, during, and after each plateau wave. The analysis of variance with Bonferroni post hoc test was used to compare the differences in the variables before, during, and after the plateau wave. We considered all plateau waves, even in the same patient, independent because they are separated by long intervals. We found increases for ICP and ampICP according to our operational definitions for plateau waves. PRx increased significantly (p = 0.00026), CPP (p < 0.00001) and pbtO2 (p = 0.00007) decreased significantly during the plateau waves. ABP, ampABP, and HR remained unchanged. PRx during the plateau was higher than before the onset of wave in 40 cases (73 %) with no differences in baseline parameters for those with negative and positive ΔPRx (difference during and after). ORx showed an increase during and a decrease after the plateau waves, however, not statistically significant. PbtO2 overshoot after the wave occurred in 35 times (64 %), the mean difference was 4.9 ± 4.6 Hg (mean ± SD), and we found no difference in baseline parameters between those who overshoot and those who did not overshoot. Arterial blood pressure remains stable in ICP plateau waves, while cerebral autoregulatory indices show distinct changes, which indicate cerebrovascular reactivity impairment at the top of the wave. PbtO2 decreases during the waves and may show a slight overshoot after normalization. We assume that this might be due to different latencies of the cerebral blood flow and oxygen level control mechanisms. Other factors may include baseline conditions, such as pre-plateau wave cerebrovascular reactivity or pbtO2 levels, which differ between studies.
Tectonic analysis of folds in the Colorado plateau of Arizona
NASA Technical Reports Server (NTRS)
Davis, G. H.
1975-01-01
Structural mapping and analysis of folds in Phanerozoic rocks in northern Arizona, using LANDSAT-1 imagery, yielded information for a tectonic model useful in identifying regional fracture zones within the Colorado Plateau tectonic province. Since the monoclines within the province developed as a response to differential movements of basement blocks along high-angle faults, the monoclinal fold pattern records the position and trend of many elements of the regional fracture system. The Plateau is divided into a mosaic of complex, polyhedral crustal blocks whose steeply dipping faces correspond to major fracture zones. Zones of convergence and changes in the trend of the monoclinal traces reveal the corners of the blocks. Igneous (and salt) diapirs have been emplaced into many of the designated zones of crustal weakness. As loci of major fracturing, folding, and probably facies changes, the fractures exert control on the entrapment of oil and gas.
14C plateaus and global stratigraphic correlation during Termination IA
NASA Astrophysics Data System (ADS)
Sarnthein, M.; Grootes, P. M.; Kennett, J. P.; Nadeau, M.
2006-12-01
In search of a global 14C reference record for Termination IA, we analyzed three published 14C records with centennial-scale resolution, that provide independent evidence for calibrating the 14C time scale: (1) A sediment record from Cariaco Basin (ODP Site 1002) correlated to the U/Th-dated Hulu Cave record (Hughen et al., 2006), (2) a U/Th dated speleothem record from the Bahamas (Beck et al., 2001, 2006), and (3) a set of U/Th-dated coral ages (IntCal04 plus Fairbanks et al., 2005) that unfortunately lack data from 18-15 cal. ka. All these records exhibit significant changes in the slope of 14C vs. calendar ages, allowing us to define a suite of major and minor "14C plateaus" in each record, that in total occupy >70% of the 14C record between 19 and 14 cal. ka. Despite their different origin the three records are largely consistent. When dating resolution is sufficient, most plateaus show a characteristic internal structure incorporating 14C inversions, in particular near the onset of a plateau. Plateau boundary ages for the Cariaco record have a total range of uncertainty of 150-450 yr due to uncertainties with age calibration (Hughen et al., 2006), in addition to the range of dating resolution. During Termination IA, a period of dramatic climate change, these boundary ages should serve as datums for the global correlation of marine sediment records. Moreover, they are employed to deduce apparent paleoventil-ation ages and thus circulation patterns of surface and bottom water masses, as demonstrated for example from the northern Pacific and the Icelandic Sea.
NASA Astrophysics Data System (ADS)
Worthington, L. L.; Christeson, G. L.; van Avendonk, H. J.; Gulick, S. P.
2009-12-01
We present results of a 2008 marine seismic reflection/refraction survey acquired as part of the St. Elias Erosion and Tectonics Project (STEEP), a multi-disciplinary NSF-Continental Dynamics project aimed at tectonic-climate interaction, structural evolution and geodynamics in the Chugach-St. Elias orogen. The Chugach-St.Elias orogen is the result of flat-slab subduction and collision of the Yakutat (YAK) microplate with North Amercian (NA) on the southern Alaska margin during the last ~10Ma. A fundamental goal of STEEP is to address controversy related to the deep crustal structure of the YAK block itself, describe its offshore structural relationships and constrain its buoyancy in order to understand the orogenic driver. Marine seismic reflection profiles acquired across the offshore YAK microplate provide the first regional images of the top of the subducting YAK basement. The basement reflector is observed near the seafloor at the Dangerous River Zone (DRZ) and is overlain by up to 12 km of sediments near Kayak Island, resulting in a basement dip of ~3° in the direction of subduction. The basement reflector also shallows near the shelf-edge adjacent to the Transition Fault, the YAK-Pacific boundary. These observations are indicative of an overall regional basement tilt towards the NA continent. Two coincident wide-angle refraction profiles constrain YAK crustal thickness between 30-35km, >20km thicker than normal oceanic crust, and lower crustal velocities potentially >7km/s. Crustal velocity and thickness are comparable to the Kerguelen oceanic plateau and the Siletz terrane. These results are the first direct observations in support of the oceanic plateau theory for the origin of the YAK microplate. Crustal velocity and structure are continuous across the DRZ on the YAK shelf, which is historically described as a vertical boundary between continental crust on the east and oceanic basement on the west. Instead, we observe a gradual shallowing of elevated crustal velocities associated with the aforementioned basement high near DRZ. Interestingly, observed Moho arrivals across the profile do not mimic the dipping trajectory of the basement reflector, indicating that the YAK slab may be slightly wedge-shaped, thinning in the direction of subduction. If true, the following implications for the YAK-NA collision must be considered: first, that uplift and deformation have intensified through time as thicker, more buoyant YAK crust attempts to subduct; second, migration of intense uplift from west to east across the orogen is partly controlled by underlying slab structure at depth.
Response of nesting northern goshawks to logging truck noise in northern Arizona
Teryl G. Grubb; Larry L. Pater; Angela E. Gatto; David K. Delaney
2013-01-01
We recorded 94 sound-response events at 3 adult-occupied northern goshawk (Accipiter gentilis) nests 78 m, 143 m, and 167m from the nearest United States Forest Service maintenance level 3, improved gravel road on the Kaibab Plateau in northern Arizona. During 4 test sessions on 7, 8, 10, and 11 June 2010, we recorded 60 experimentally controlled logging trucks; 30 non...
NASA Astrophysics Data System (ADS)
Hoffmann, Lars; Grimsdell, Alison W.; Alexander, M. Joan
2017-04-01
Stratospheric gravity waves from small-scale orographic sources are currently not well-represented in general circulation models. This may be a reason why many simulations have difficulty reproducing the dynamical behaviour of the southern hemisphere polar vortex in a realistic manner. Here we discuss a 12-year record (2003 - 2014) of stratospheric gravity wave activity at southern hemisphere orographic hotspots as observed by the Atmospheric InfraRed Sounder (AIRS) aboard the National Aeronautics and Space Administration's (NASA's) Aqua satellite. We introduce a simple and effective approach, referred to as the 'two-box method', to detect gravity wave activity from infrared nadir sounder measurements and to discriminate between gravity waves from orographic and other sources. From austral mid fall to mid spring (April - October) the contributions of orographic sources to the observed gravity wave occurrence frequencies were found to be largest for the Andes (90%), followed by the Antarctic Peninsula (76%), Kerguelen Islands (73%), Tasmania (70%), New Zealand (67%), Heard Island (60%), and other hotspots (24 - 54%). Mountain wave activity was found to be closely correlated with peak terrain altitudes, and with zonal winds in the lower troposphere and mid stratosphere. We propose a simple model to predict the occurrence of mountain wave events in the AIRS observations using zonal wind thresholds at 3 hPa and 750 hPa. The model has significant predictive skill for hotspots where gravity wave activity is primarily due to orographic sources. It typically reproduces seasonal variations of the mountain wave occurrence frequencies at the Antarctic Peninsula and Kerguelen Islands from near zero to over 60% with mean absolute errors of 4 - 5 percentage points. The prediction model can be used to disentangle upper level wind effects on observed occurrence frequencies from low level source and other influences. The data and methods presented here can help to identify interesting case studies in the vast amount of AIRS data, which could then be further explored to study the specific characteristics of stratospheric gravity waves from orographic sources and to support model validation. Reference: Hoffmann, L., Grimsdell, A. W., and Alexander, M. J.: Stratospheric gravity waves at Southern Hemisphere orographic hotspots: 2003-2014 AIRS/Aqua observations, Atmos. Chem. Phys., 16, 9381-9397, doi:10.5194/acp-16-9381-2016, 2016.
NASA Astrophysics Data System (ADS)
Bao, X.; Shen, Y.
2017-12-01
An accurate tomography model of the lithospheric mantle is essential for understanding the dynamics and evolution of the Tibetan Plateau. Using regional earthquake records, we obtain the first full-wave Pn tomography model for the eastern Tibetan Plateau. The resulting three-dimensional model exhibits similarities to and notable differences from the previous models based on ray theory. The juxtaposition of a high-velocity anomaly under the eastern Qiangtang Terrane and a low-velocity anomaly to the south near the Bangong-Nujiang Suture (BNS) provides strong evidence that the underthrusting Indian Plate does not reach the BNS beneath the plateau east of 90°E. The model shows no evidence for a southward-subducted Qaidam lithosphere. The sandwich-like layering of a low-velocity layer between two high-velocity layers at 80 to 160 km depths, mainly beneath the Qiangtang Terrane, is consistent with the results of S-to-P receiver functions. The observed contact between these two high-velocity layers beneath the Kunlun suggests that the lower high-velocity layer can be identified as the foundering Tibetan lithospheric mantle, which may be caused by gravitational instability. Beneath the eastern Kunlun Fault and the West Qinling orogen, a southward dipping high-velocity anomaly underlies a low-velocity mantle anomaly, is a pattern consistent with a delaminated mantle lithosphere and associated upwelling asthenosphere. Together with the evidence for lithospheric delamination beneath the central and southern Tibetan Plateau in previous studies, our findings suggest that the lithospheric foundering plays an important role in the formation of the Tibetan Plateau.
Return to sport following tibial plateau fractures: A systematic review
Robertson, Greg A J; Wong, Seng J; Wood, Alexander M
2017-01-01
AIM To systemically review all studies reporting return to sport following tibial plateau fracture, in order to provide information on return rates and times to sport, and to assess variations in sporting outcome for different treatment methods. METHODS A systematic search of CINAHAL, Cochrane, EMBASE, Google Scholar, MEDLINE, PEDro, Scopus, SPORTDiscus and Web of Science was performed in January 2017 using the keywords “tibial”, “plateau”, “fractures”, “knee”, “athletes”, “sports”, “non-operative”, “conservative”, “operative”, “return to sport”. All studies which recorded return rates and times to sport following tibial plateau fractures were included. RESULTS Twenty-seven studies were included: 1 was a randomised controlled trial, 7 were prospective cohort studies, 16 were retrospective cohort studies, 3 were case series. One study reported on the outcome of conservative management (n = 3); 27 reported on the outcome of surgical management (n = 917). Nine studies reported on Open Reduction Internal Fixation (ORIF) (n = 193), 11 on Arthroscopic-Assisted Reduction Internal Fixation (ARIF) (n = 253) and 7 on Frame-Assisted Fixation (FRAME) (n = 262). All studies recorded “return to sport” rates. Only one study recorded a “return to sport” time. The return rate to sport for the total cohort was 70%. For the conservatively-managed fractures, the return rate was 100%. For the surgically-managed fractures, the return rate was 70%. For fractures managed with ORIF, the return rate was 60%. For fractures managed with ARIF, the return rate was 83%. For fractures managed with FRAME was 52%. The return rate for ARIF was found to be significantly greater than that for ORIF (OR 3.22, 95%CI: 2.09-4.97, P < 0.001) and for FRAME (OR 4.33, 95%CI: 2.89-6.50, P < 0.001). No difference was found between the return rates for ORIF and FRAME (OR 1.35, 95%CI: 0.92-1.96, P = 0.122). The recorded return time was 6.9 mo (median), from a study reporting on ORIF. CONCLUSION Return rates to sport for tibial plateau fractures remain limited compared to other fractures. ARIF provides the best return rates. There is limited data regarding return times to sport. Further research is required to determine return times to sport, and to improve return rates to sport, through treatment and rehabilitation optimisation. PMID:28808629
Geologic field-trip guide to the volcanic and hydrothermal landscape of the Yellowstone Plateau
Morgan Morzel, Lisa Ann; Shanks, W. C. Pat; Lowenstern, Jacob B.; Farrell, Jamie M.; Robinson, Joel E.
2017-11-20
Yellowstone National Park, a nearly 9,000 km2 (~3,468 mi2) area, was preserved in 1872 as the world’s first national park for its unique, extraordinary, and magnificent natural features. Rimmed by a crescent of older mountainous terrain, Yellowstone National Park has at its core the Quaternary Yellowstone Plateau, an undulating landscape shaped by forces of late Cenozoic explosive and effusive volcanism, on-going tectonism, glaciation, and hydrothermal activity. The Yellowstone Caldera is the centerpiece of the Yellowstone Plateau. The Yellowstone Plateau lies at the most northeastern front of the 17-Ma Yellowstone hot spot track, one of the few places on Earth where time-transgressive processes on continental crust can be observed in the volcanic and tectonic (faulting and uplift) record at the rate and direction predicted by plate motion. Over six days, this field trip presents an intensive overview into volcanism, tectonism, and hydrothermal activity on the Yellowstone Plateau (fig. 1). Field stops are linked directly to conceptual models related to monitoring of the various volcanic, geochemical, hydrothermal, and tectonic aspects of the greater Yellowstone system. Recent interest in young and possible future volcanism at Yellowstone as well as new discoveries and synthesis of previous studies, (for example, tomographic, deformation, gas, aeromagnetic, bathymetric, and seismic surveys), provide a framework in which to discuss volcanic, hydrothermal, and seismic activity in this dynamic region.
NASA Astrophysics Data System (ADS)
Zhuang, G.; Brandon, M. T.; Pagani, M.
2012-12-01
The paleotopographic evolution of Tibet remains a key issue in testing models for the formation of orogenic plateaus. Stable isotopes from paleosols and lake carbonates provide the primary tool for estimating paleotopography. Unfortunately, the deposits are strongly controlled by evaporation, which means that the surface waters from which they formed were shifted towards heavier isotopic compositions relative to initial (pre-evaporation) meteoric compositions. As a result, estimates from these settings probably represent a lower bound for paleotopography. We report here on new analyses of compound-specific hydrogen stable isotopes, which were determined for n-alkanes extracts from 36 samples from Neogene strata in the northern Tibetan Plateau. N-alkanes represent long-chain hydrocarbons, commonly formed as leaf waxes in terrestrial high plants. The advantage of this record is that it is linked to times when moisture transport was high and evaporation low, as required to allow for the plants to thrive. Distributions of n-alkanes show maxima at C27, C29, and C31 with high odd-over-even preference values, suggesting excellent preservation of lipid biomarkers from terrestrial high plants. The deuterium values highly co-vary between three compounds. Application of an apparent fractionation factor based on modern ground waters and soil-derived lipid biomarkers suggest a multiple-phase evolution of paleometeoric waters consistent with well-constrained tectonic and climatic histories in the northern Tibetan Plateau. For example, a ~60‰ negative shift in δD between 16-10 Ma correlates well with sedimentological and thermochronologic evidence for rapid erosion at that time. The magnitude of this isotopic shift is equivalent to an increase in elevation of 2 to 3 km, assuming that the isotopic composition of the moisture source remained constant during this time. An abrupt positive δD shift at ~10 Ma is consistent with studies supporting intensified aridity in central Asia, whereas a negative δD shift at ~6.5 Ma potentially reflects a change to more moist conditions related to the onset/intensified East Asia Summer Monsoon. The attainment of high elevations in northern Tibetan Plateau is synchronous with the attainment of maximum elevation in the south-central Tibetan Plateau and with the transition from dominant tectonic extrusion to distributed crustal shortening in the northern Tibetan Plateau.
Rates and style of Cenozoic deformation around the Gonghe Basin, northeastern Tibetan Plateau
Craddock, William H.; Kirby, Eric; Zhang, Huiping; Clark, Marin K.; Champagnac, Jean-Daniel; Yuan, Daoyang
2014-01-01
The northeastern Tibetan Plateau constitutes a transitional region between the low-relief physiographic plateau to the south and the high-relief ranges of the Qilian Shan to the north. Cenozoic deformation across this margin of the plateau is associated with localized growth of fault-cored mountain ranges and associated basins. Herein, we combine detailed structural analysis of the geometry of range-bounding faults and deformation of foreland basin strata with geomorphic and exhumational records of erosion in hanging-wall ranges in order to investigate the magnitude, timing, and style of deformation along the two primary fault systems, the Qinghai Nan Shan and the Gonghe Nan Shan. Structural mapping shows that both ranges have developed above imbricate fans of listric thrust faults, which sole into décollements in the middle crust. Restoration of shortening along balanced cross sections suggests a minimum of 0.8–2.2 km and 5.1–6.9 km of shortening, respectively. Growth strata in the associated foreland basin record the onset of deformation on the two fault systems at ca. 6–10 Ma and ca. 7–10 Ma, respectively, and thus our analysis suggests late Cenozoic shortening rates of 0.2 +0.2/–0.1 km/m.y. and 0.7 +0.3/–0.2 km/m.y. along the north and south sides of Gonghe Basin. Along the Qinghai Nan Shan, these rates are similar to late Pleistocene slip rates of ∼0.10 ± 0.04 mm/yr, derived from restoration and dating of a deformed alluvial-fan surface. Collectively, our results imply that deformation along both flanks of the doubly vergent Qilian Shan–Nan Shan initiated by ca. 10 Ma and that subsequent shortening has been relatively steady since that time.
NASA Astrophysics Data System (ADS)
Baby, Guillaume; Guillocheau, François; Boulogne, Carl; Robin, Cécile; Dall'Asta, Massimo
2018-04-01
The south and southeast coast of southern Africa (from 28°S to 33°S) forms a high-elevated transform passive margin bounded to the east by the Agulhas-Falkland Fracture Zone (AFFZ). We analysed the stratigraphic record of the Outeniqua and Durban (Thekwini) Basins, located on the African side of the AFFZ, to determine the evolution of these margins from the rifting stage to present-day. The goal was to reconstruct the strike-slip evolution of the Agulhas Margin and the uplift of the inland high-elevation South African Plateau. The Agulhas transform passive margin results from four successive stages: Rifting stage, from Late Triassic to Early Cretaceous ( 200?-134 Ma), punctuated by three successive rifting episodes related to the Gondwana breakup; Wrench stage (134-131 Ma), evidenced by strike- and dip-slip deformations increasing toward the AFFZ; Active transform margin stage (131-92 Ma), during which the Falkland/Malvinas Plateau drifts away along the AFFZ, with an uplift of the northeastern part of the Outeniqua Basin progressively migrating toward the west; Thermal subsidence stage (92-0 Ma), marked by a major change in the configuration of the margin (onset of the shelf-break passive margin morphology). Two main periods of uplift were documented during the thermal subsidence stage of the Agulhas Margin: (1) a 92 Ma short-lived margin-scale uplift, followed by a second one at 76 Ma located along the Outeniqua Basin and; (2) a long-lasting uplift from 40 to 15 Ma limited to the Durban (Thekwini) Basin. This suggests that the South African Plateau is an old Upper Cretaceous relief (90-70 Ma) reactivated during Late Eocene to Early Miocene times (40-15 Ma).
Records of anthropogenic antimony in the glacial snow from the southeastern Tibetan Plateau
NASA Astrophysics Data System (ADS)
Zhang, Yulan; Kang, Shichang; Chen, Pengfei; Li, Xiaofei; Liu, Yajun; Gao, Tanguang; Guo, Junming; Sillanpää, Mika
2016-12-01
Antimony (Sb) is a ubiquitous element in the environment that is potentially toxic at very low concentrations. In this study, surface snow/ice and snowpit samples were collected from four glaciers in the southeastern Tibetan Plateau in June 2015. The concentrations of Sb and other elements were measured in these samples. The results showed that the average concentration of Sb was approximately 2.58 pg g-1 with a range of 1.64-9.20 pg g-1. The average Sb concentration in the study area was comparable to that recorded in a Mt. Everest ice core and higher than that in Arctic and Antarctic snow/ice but much lower than that in Tien Shan and Alps ice cores. Sb presented different variations with other toxic elements (Pb and Cr) and a crustal element (Al) in the three snowpits, which indicated the impact of a different source or post-deposition processes. The enrichment factor of Sb was larger than 10, suggesting that anthropogenic sources provided important contributions to Sb deposition in the glaciers. The Sb in the glacial snow was mainly loaded in the fourth component in principal component analysis, exhibiting discrepancies with crustal elements (Fe and Ca) and other toxic metals (Pb). Backward trajectories revealed that the air mass arriving at the southeastern Tibetan Plateau mostly originated from the Bay of Bengal and the South Asia in June. Thus, pollutants from the South Asia could play an important role in Sb deposition in the studied region. The released Sb from glacier meltwater in the Tibetan Plateau and surrounding areas might pose a risk to the livelihoods and well-being of those in downstream regions.
NASA Astrophysics Data System (ADS)
Zhu, Lu-Pei; Zeng, Rong-Sheng; Wu, Francis T.; Owens, Thomas J.; Randall, George E.
1993-05-01
As part of a joint Sino-U.S. research project to study the deep structure of the Tibetan Plateau, 11 broadband digital seismic recorders were deployed on the Plateau for one year of passive seismic recording. In this report we use teleseimic P waveforms to study the seismic velocity structure of crust and upper mantle under three stations by receiver function inversion. The receiver function is obtained by first rotating two horizontal components of seismic records into radial and tangential components and then deconvolving the vertical component from them. The receiver function depends only on the structure near the station because the source and path effects have been removed by the deconvolution. To suppress noise, receiver functions calculated from events clustered in a small range of back-azimuths and epicentral distances are stacked. Using a matrix formalism describing the propagation of elastic waves in laterally homogeneous stratified medium, a synthetic receiver function and differential receiver functions for the parameters in each layer can be calculated to establish a linearized inversion for one-dimensional velocity structure. Preliminary results of three stations, Wen-quan, Golmud and Xigatze (Coded as WNDO, TUNL and XIGA), located in central, northern and southern Plateau are given in this paper. The receiver functions of all three stations show clear P-S converted phases. The time delays of these converted phases relative to direct P arrivals are: WNDO 7.9s (for NE direction) and 8.3s (for SE direction), TUNL 8.2s, XIGA 9.0s. Such long time delays indicate the great thickness of crust under the Plateau. The differences between receiver function of these three station shows the tectonic difference between southern and north-central Plateau. The waveforms of the receiver functions for WNDO and TUNL are very simple, while the receiver function of XIGA has an additional midcrustal converted phase. The S wave velocity structures at these three stations are estimated from inversions of the receiver function. The crustal shear wave velocities at WNDO and TUNL are vertically homogeneous, with value between 3.5 3.6 km/s down to Moho. This value in the lower crust is lower than the normal value for the lower crust of continents, which is consistent with the observed strong Sn attenuation in this region. The velocity structure at XIGA shows a velocity discontinuity at depth of 20 km and high velocity value of 4.0 km/s in the midcrust between 20 30 km depth. Similar results are obtained from a DSS profile in southern Tibet. The velocity under XIGA decreases below a depth of 30 km, reaching the lowest value of 3.2 km/s between 50 55 km. depth. This may imply that the Indian crust underthrusts the low part of Tibetan crust in the southern Plateau, forming a “double crust”. The crustal thickness at each of these sites is: WNDO, 68 km; TUNL, 70 km; XI-GA, 80 km.
Chertoff, Mark E.; Earl, Brian R.; Diaz, Francisco J.; Sorensen, Janna L.; Thomas, Megan L. A.; Kamerer, Aryn M.; Peppi, Marcello
2014-01-01
The electrical signal recorded at the round window was used to estimate the location of missing outer hair cells. The cochlear response was recorded to a low frequency tone embedded in high-pass filtered noise conditions. Cochlear damage was created by either overexposure to frequency-specific tones or laser light. In animals with continuous damage along the partition, the amplitude of the cochlear response increased as the high-pass cutoff frequency increased, eventually reaching a plateau. The cochlear distance at the onset of the plateau correlated with the anatomical onset of outer hair cell loss. A mathematical model replicated the physiologic data but was limited to cases with continuous hair cell loss in the middle and basal turns. The neural contribution to the cochlear response was determined by recording the response before and after application of Ouabain. Application of Ouabain eliminated or reduced auditory neural activity from approximately two turns of the cochlea. The amplitude of the cochlear response was reduced for moderate signal levels with a limited effect at higher levels, indicating that the cochlear response was dominated by outer hair cell currents at high signal levels and neural potentials at low to moderate signal levels. PMID:25190395
Earliest tea as evidence for one branch of the Silk Road across the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Lu, Houyuan; Zhang, Jianping; Yang, Yimin; Yang, Xiaoyan; Xu, Baiqing; Yang, Wuzhan; Tong, Tao; Jin, Shubo; Shen, Caiming; Rao, Huiyun; Li, Xingguo; Lu, Hongliang; Fuller, Dorian Q.; Wang, Luo; Wang, Can; Xu, Deke; Wu, Naiqin
2016-01-01
Phytoliths and biomolecular components extracted from ancient plant remains from Chang’an (Xi’an, the city where the Silk Road begins) and Ngari (Ali) in western Tibet, China, show that the tea was grown 2100 years ago to cater for the drinking habits of the Western Han Dynasty (207BCE-9CE), and then carried toward central Asia by ca.200CE, several hundred years earlier than previously recorded. The earliest physical evidence of tea from both the Chang’an and Ngari regions suggests that a branch of the Silk Road across the Tibetan Plateau, was established by the second to third century CE.
Earliest tea as evidence for one branch of the Silk Road across the Tibetan Plateau.
Lu, Houyuan; Zhang, Jianping; Yang, Yimin; Yang, Xiaoyan; Xu, Baiqing; Yang, Wuzhan; Tong, Tao; Jin, Shubo; Shen, Caiming; Rao, Huiyun; Li, Xingguo; Lu, Hongliang; Fuller, Dorian Q; Wang, Luo; Wang, Can; Xu, Deke; Wu, Naiqin
2016-01-07
Phytoliths and biomolecular components extracted from ancient plant remains from Chang'an (Xi'an, the city where the Silk Road begins) and Ngari (Ali) in western Tibet, China, show that the tea was grown 2100 years ago to cater for the drinking habits of the Western Han Dynasty (207BCE-9CE), and then carried toward central Asia by ca.200CE, several hundred years earlier than previously recorded. The earliest physical evidence of tea from both the Chang'an and Ngari regions suggests that a branch of the Silk Road across the Tibetan Plateau, was established by the second to third century CE.
NASA Astrophysics Data System (ADS)
Ao, Hong; Zhang, Peng; Dekkers, Mark J.; Roberts, Andrew P.; An, Zhisheng; Li, Yongxiang; Lu, Fengyan; Lin, Shan; Li, Xingwen
2016-01-01
Lanzhou Basin lies on the northeastern margin of the Tibetan Plateau in western China and is a rich source of Oligocene-Miocene mammalian fossils. Obtaining precise age determinations for these fossils is important to address key questions concerning mammalian and environmental evolution in Asia associated with stepwise Tibetan Plateau uplift. Here we report a new magnetostratigraphic record for the Xingjiawan fluvio-lacustrine section from the northwestern margin of Lanzhou Basin that can be correlated to the geomagnetic polarity timescale with two options. The Late Miocene Xingjiawan Fauna is located either at the boundary between reversed polarity chron C4r.1r and normal polarity chron C4n.2n or at the boundary between subchrons C5r.1r and C5n.2n, with an estimated age of at least ∼8 Ma or perhaps as early as ∼11 Ma. Both age estimations imply that the fossil Stegodon in the Lanzhou Basin is the oldest known record of Stegodon worldwide; it predates the formerly oldest Stegodon find from Africa by at least one million years and perhaps by as many as four million years. This provides new evidence for an Asian origin of Stegodon. Together with other faunal components, a mixed woodland/grassland setting existed in the Lanzhou Basin during the Late Miocene, in contrast to its modern arid environment.
NASA Astrophysics Data System (ADS)
Révillon, S.; Chauvel, C.; Arndt, N. T.; Pik, R.; Martineau, F.; Fourcade, S.; Marty, B.
2002-12-01
The composition of the mantle plumes that created large oceanic plateaus such as Ontong Java or the Caribbean is still poorly known. Geochemical and isotopic studies on accreted portions of the Caribbean plateau have shown that the plume source was heterogeneous and contained isotopically depleted and relatively enriched portions. A distinctive feature of samples from the Caribbean plateau is their unusual Sr isotopic compositions, which, at a given Nd isotopic ratio, are far higher than in samples from other oceanic plateaus. Sr, O and He isotopic compositions of whole rocks and magmatic minerals (clinopyroxene or olivine) separated from komatiites, gabbros and peridotites from Gorgona Island in Colombia were determined to investigate the origin of these anomalously radiogenic compositions. Sequentially leached clinopyroxenes have Sr isotopic compositions in the range 87Sr/ 86Sr=0.70271-0.70352, systematically lower than those of leached and unleached whole rocks. Oxygen isotopic ratios of clinopyroxene vary within the range δ 18O=5.18-5.35‰, similar to that recorded in oceanic island basalts. He isotopic ratios are high ( R/ Ra=8-19). The lower 87Sr/ 86Sr ratios of most of the clinopyroxenes shift the field of the Caribbean plateau in Nd-Sr isotope diagrams toward more 'normal' values, i.e. a position closer to the field defined by mid-ocean ridge basalts and oceanic-island basalts. Three clinopyroxenes have slightly higher 87Sr/ 86Sr ratios that cannot be explained by an assimilation model. The high 87Sr/ 86Sr and variations of 143Nd/ 144Nd are interpreted as a source characteristic. Trace-element ratios, however, are controlled mainly by fractionation during partial melting. We combine these isotopic data in a heterogeneous plume source model that accounts for the diversity of isotopic signatures recorded on Gorgona Island and throughout the Caribbean plateau. The heterogeneities are related to old recycled oceanic lithosphere in the plume source; the high 3He/ 4He ratios may indicate that the source material once resided in the lower mantle.
Hydrologic reconnaissance of the Wasatch Plateau-Book Cliffs coal-fields area, Utah
Waddell, Kidd M.; Contratto, P. Kay; Sumsion, C.T.; Butler, John R.
1981-01-01
Data obtained during a hydrologic reconnaissance in 1975-77 in the Wasatch Plateau-Book Cliffs coal-fields area of Utah were correlated with existing long-term data. Maps were prepared showing average precipitation, average streamflow, stream temperature, ground- and surface-water quality, sediment yield, and geology. Recommendations were made for additional study and suggested approaches for continued monitoring in the coalfields areas.moDuring the 1931-75 water years, the minimum discharges for the five major streams that head in the area ranged from about 12,000 to 26,000 acre-feet per year, and the maximum discharges ranged from about 59,000 to 315,000 acre-feet per year. Correlations indicate that 3 years of low-flow records at stream sites in the Wasatch Plateau would allow the development of relationships with long-term sites that can be used to estimate future low-flow records within a standard error of about 20 percent.Most water-quality degradation in streams occurs along the flanks of the Wasatch Plateau and Book Cliffs. In the uplands, dissolved-solids concentrations generally ranged from less than 100 to about 250 milligrams per liter, and in the lowlands, the concentrations ranged from about 250 to more than 6,000 milligrams per liter.Most springs in the Wasatch Plateau and Book Cliffs discharge from the Star Point Sandstone or younger formations, and the water generally contains less than about 1,000 milligrams per liter of dissolved solids. The discharges of 65 springs ranged from about 0.2 to 200 gallons per minute. The Blackhawk Formation, which is the principal coal-bearing formation, produces water in many of the mines. The dissolved-solids concentration in water discharging from springs and mines in the Blackhawk ranged from about 60 to 800 milligrams per liter.In the lowland areas, the Ferron Sandstone Member of the Maneos Shale appears to have the most potential for subsurface development of water of suitable chemical quality for human consumption. Three wells in the Ferron yielded water with dissolved-solids concentrations ranging from about 650 to 1,230 milligrams per liter.
Illusory Late Heavy Bombardments
NASA Astrophysics Data System (ADS)
Boehnke, P.; Harrison, M.
2016-12-01
The Late Heavy Bombardment (LHB), a hypothesized impact spike at 3.9 Ga, is one of the major scientific concepts to emerge from Apollo-era lunar exploration and a significant portion of the evidence now marshaled for its existence comes from histograms of 40Ar/39Ar "plateau" ages. Despite the lack of erosion and plate tectonics, the lunar crust does not retain a perfect impact record due to protracted crust formation, lunar volcanism, and overprinting from subsequent impact events. Indeed, virtually all Apollo-era samples show 40Ar/39Ar age spectrum disturbances due to later re-heating events. This provides evidence that partial 40Ar resetting is a significant feature of lunar 40Ar/39Ar analyses which could bias interpretation of bombardment histories due to "plateau" ages being misleadingly young. In order to examine the effects of partial resetting on the inference of bombardment histories from "plateau" ages, we combine chronologic information derived from the early heating steps of each 40Ar/39Ar analysis, as this represents a good approximation of the timing of the last reheating event, with a first-order physical model of 40Ar* diffusion in Apollo samples. We use this modeling framework and data compilation to examine the uniqueness of inverting "plateau" age histograms from synthetic impact histories. Our results show that "plateau" histograms tend to yield age peaks, even in those cases where the input impact history did not contain such a spike. That is, monotonically declining impact histories yield apparent episodes that could be misinterpreted as LHB-type events. Since H-chondrites and HED meteorites also show apparent impact spikes, we extend our conclusions to impact histories for meteorite parent bodies as well. We conclude that the assignment of apparent "plateau" ages bears an undesirably high degree of subjectivity. When compounded by inappropriately simplistic interpretations of histograms constructed from such "plateau" ages, impact spikes that are more apparent than real can emerge.
NASA Astrophysics Data System (ADS)
Yang, Zhao; Shen, Chuanbo; Ratschbacher, Lothar; Enkelmann, Eva; Jonckheere, Raymond; Wauschkuhn, Bastian; Dong, Yunpeng
2017-06-01
Combining 121 new fission track and (U-Th)/He ages with published thermochronologic data, we investigate the Late Cretaceous-Cenozoic exhumation/cooling history of the eastern Tibetan Plateau, Qinling, Daba Shan, and Sichuan Basin of east central China. The Qinling orogen shows terminal southwestward foreland growth in the northern Daba Shan thrust belt at 100-90 Ma and in the southern Daba Shan fold belt at 85-70 Ma. The eastern margin of Tibetan Plateau experienced major exhumation phases at 70-40 Ma (exhumation rate 0.05-0.08 mm/yr), 25-15 Ma (≤1 mm/yr in the Pengguan Massif; 0.2 mm/yr in the imbricated western Sichuan Basin), and since 11-10 Ma along the Longmen Shan ( 0.80 mm/yr) and the interior of the eastern Tibetan Plateau (Dadu River gorge, Min Shan; 0.50 mm/yr). The Sichuan Basin records two basin-wide denudation phases, likely a result of the reorganization of the upper Yangtze River drainage system. The first phase commenced at 45 Ma and probably ended before the Miocene; >1 km of rocks were eroded from the central and eastern Sichuan Basin. The second phase commenced at 12 Ma and denudated the central Sichuan Basin, Longmen Shan, and southern Daba Shan; more than 2 km of rocks were eroded after the lower Yangtze River had cut through the Three Gorges and captured the Sichuan Basin drainage. In contrast to the East Qinling, which was weakly effected by late Cenozoic exhumation, the West Qinling and Daba Shan have experienced rapid exhumation/cooling since 15-13 Ma, a result of growth of the Tibetan Plateau beyond the Sichuan Basin.
Aeolian processes during the Holocene in Gannan Region, Eastern Tibetan Plateau
NASA Astrophysics Data System (ADS)
Yang, S.; Cheng, T.; Li, S.; Liang, M.
2016-12-01
Aeolian desertification occurring in the Tibetan Plateau has received attention recently for it has become a severe environmental problem by accelerating the grassland degradation and eco-environment damage. The Gannan Region is located in the northeastern Tibetan Plateau with a mean altitude of 3500m. It is highly sensitive to global environmental change and human disturbance. Serious soil erosion and desertification and extensive land degradation have caused heavy eco-environmental impacts. To investigate the evolution of the desertification in Holocene in the Plateau is of great importance for understanding the desertification trend under the global changes in the Tibetan Plateau. Loess and aeolian sands is a key geological archive related to desertification processes and the past environment changes. In this study a typical 8.5m-thick loess-sands profile named MQQ, was selected at the Maqu city. It is situated on the first terrace (T1) of the Yellow River. Detailed accelerator mass spectrometry (AMS) 14C dating of bulk organic matter content has shown the Aeolian sediments of the MQQ section occurring since the early Holocene. the mass-specific frequency-dependent magnetic susceptibility (χfd) and grainsize records show a clear upward increase in the contents of superparamagnetic grains and fine fractions in grain size, which indicates a gradual wetting trend during the Holocene.The sediment rates change from very high in the early Holocene to low values after 8.2 ka. The wetting process can be divided into three steps: 10.0-8.2 ka, 8.2-3.0 ka and 3.0-present. It indicates that the climate in the eastern Tibetan Plateau was dry during the early Holocene. After that the climate was getting wet gradually. The variations of the westerlies and the Asian monsoon may cause the environmental change in this region.
Abdel-Hamid, Mohamed Zaki; Chang, Chung-Hsun; Chan, Yi-Sheng; Lo, Yang-Pin; Huang, Jau-Wen; Hsu, Kuo-Yao; Wang, Ching-Jen
2006-06-01
This investigation arthroscopically assesses the frequency of soft tissue injury in tibial plateau fracture according to the severity of fracture patterns. We hypothesized that use of arthroscopy to evaluate soft tissue injury in tibial plateau fractures would reveal a greater number of associated injuries than have previously been reported. From March 1996 to December 2003, 98 patients with closed tibial plateau fractures were treated with arthroscopically assisted reduction and osteosynthesis, with precise diagnosis and management of associated soft tissue injuries. Arthroscopic findings for associated soft tissue injuries were recorded, and the relationship between fracture type and soft tissue injury was then analyzed. The frequency of associated soft tissue injury in this series was 71% (70 of 98). The menisci were injured in 57% of subjects (56 in 98), the anterior cruciate ligament (ACL) in 25% (24 of 98), the posterior cruciate ligament (PCL) in 5% (5 of 98), the lateral collateral ligament (LCL) in 3% (3 of 98), the medial collateral ligament (MCL) in 3% (3 of 98), and the peroneal nerve in 1% (1 of 98); none of the 98 patients exhibited injury to the arteries. No significant association was noted between fracture type and incidence of meniscus, PCL, LCL, MCL, artery, and nerve injury. However, significantly higher injury rates for the ACL were observed in type IV and VI fractures. Soft tissue injury was associated with all types of tibial plateau fracture. Menisci (peripheral tear) and ACL (bony avulsion) were the most commonly injured sites. A variety of soft tissue injuries are common with tibial plateau fracture; these can be diagnosed with the use of an arthroscope. Level III, diagnostic study.
Liu, Xiaomang; Yang, Tiantian; Hsu, Koulin; ...
2017-01-10
On the Tibetan Plateau, the limited ground-based rainfall information owing to a harsh environment has brought great challenges to hydrological studies. Satellite-based rainfall products, which allow for a better coverage than both radar network and rain gauges on the Tibetan Plateau, can be suitable alternatives for studies on investigating the hydrological processes and climate change. In this study, a newly developed daily satellite-based precipitation product, termed Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks $-$ Climate Data Record (PERSIANN-CDR), is used as input for a hydrologic model to simulate streamflow in the upper Yellow and Yangtze River basinsmore » on the Tibetan Plateau. The results show that the simulated streamflows using PERSIANN-CDR precipitation and the Global Land Data Assimilation System (GLDAS) precipitation are closer to observation than that using limited gauge-based precipitation interpolation in the upper Yangtze River basin. The simulated streamflow using gauge-based precipitation are higher than the streamflow observation during the wet season. In the upper Yellow River basin, gauge-based precipitation, GLDAS precipitation, and PERSIANN-CDR precipitation have similar good performance in simulating streamflow. Finally, the evaluation of streamflow simulation capability in this study partly indicates that the PERSIANN-CDR rainfall product has good potential to be a reliable dataset and an alternative information source of a limited gauge network for conducting long-term hydrological and climate studies on the Tibetan Plateau.« less
NASA Astrophysics Data System (ADS)
Stein, J. R.; Pankow, K. L.; Koper, K. D.; McCarter, M. K.
2014-12-01
On average, several hundred earthquakes are located each year within the Wasatch Plateau region of central Utah. This region includes the boundary between the relatively stable Colorado Plateau and the actively extending Basin and Range physiographic provinces. Earthquakes in this region tend to fall in the intermountain seismic belt (ISB), a continuous band of seismicity that extends from Montana to Arizona. While most of the earthquakes in the ISB are of tectonic origin, events in the Wasatch Plateau also include mining induced seismicity (MIS) from local underground coal mining operations. Using a catalog of 16,182 seismic events (-0.25 < M < 4.5) recorded from 1981 to 2011, we use double difference relocation and waveform cross correlation techniques to help discriminate between these two populations of events. Double difference relocation greatly improves the relative locations between the many events that occur in this area. From the relative relocations, spatial differences between event types are used to differentiate between shallow MIS and considerably deeper events associated with tectonic seismicity. Additionally, waveform cross-correlation is used to cluster events with similar waveforms—meaning that events in each cluster should have a similar source location and mechanism—in order to more finely group seismic events occurring in the Wasatch Plateau. The results of this study provide both an increased understanding of the influence mining induced seismicity has on the number of earthquakes detected within this region, as well as better constraints on the deeper tectonic structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaomang; Yang, Tiantian; Hsu, Koulin
On the Tibetan Plateau, the limited ground-based rainfall information owing to a harsh environment has brought great challenges to hydrological studies. Satellite-based rainfall products, which allow for a better coverage than both radar network and rain gauges on the Tibetan Plateau, can be suitable alternatives for studies on investigating the hydrological processes and climate change. In this study, a newly developed daily satellite-based precipitation product, termed Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks $-$ Climate Data Record (PERSIANN-CDR), is used as input for a hydrologic model to simulate streamflow in the upper Yellow and Yangtze River basinsmore » on the Tibetan Plateau. The results show that the simulated streamflows using PERSIANN-CDR precipitation and the Global Land Data Assimilation System (GLDAS) precipitation are closer to observation than that using limited gauge-based precipitation interpolation in the upper Yangtze River basin. The simulated streamflow using gauge-based precipitation are higher than the streamflow observation during the wet season. In the upper Yellow River basin, gauge-based precipitation, GLDAS precipitation, and PERSIANN-CDR precipitation have similar good performance in simulating streamflow. Finally, the evaluation of streamflow simulation capability in this study partly indicates that the PERSIANN-CDR rainfall product has good potential to be a reliable dataset and an alternative information source of a limited gauge network for conducting long-term hydrological and climate studies on the Tibetan Plateau.« less
NASA Astrophysics Data System (ADS)
Liang, X.; Tian, X.; Wang, M.
2017-12-01
Indian plate collided with Eurasian plate at 60 Ma and there are about 3000 km crustal shortening since the continental-continental collision. At least one third of the total amount of crustal shortening between Indian and Eurasian plates could not be accounted by thickened Tibetan crust and surface erosion. It will need a combination of possible transfer of lower crust to the mantle by eclogitization and lateral extrusion. Based on the lithosphere-asthenosphere boundary images beneath the Tibetan plateau, there is also at least the same amount deficit for lithospheric mantle subducted into upper/lower mantle or lateral extrusion with the crust. We have to recover a detailed Indian continental lithosphere image beneath the plateau in order to explain this deficit of mass budget. Combining the new teleseismic body waves recorded by SANDWICH passive seismic array with waveforms from several previous temporary seismic arrays, we carried out finite-frequency tomographic inversions to image three-dimensional velocity structures beneath southern and central Tibetan plateau to examine the possible image of subducted Indian lithosphere in the Tibetan upper mantle. We have recovered a continuous high velocity body in upper mantle and piece-wised high velocity anomalies in the mantle transition zone. Based on their geometry and relative locations, we interpreted these high velocity anomalies as the subducted and detached Indian lithosphere at different episodes of the plateau evolution. Detachments of the subducted Indian lithosphere should have a crucial impact on the volcanism activities and uplift history of the plateau.
NASA Astrophysics Data System (ADS)
Graindorge, D.; Museur, T.; Roest, W. R.; Klingelhoefer, F.; Loncke, L.; Basile, C.; Poetisi, E.; Deverchere, J.; Heuret, A.; Jean-Frederic, L.; Perrot, J.
2017-12-01
The MARGATS scientific cruise was carried out from October 20th to November 16th 2016 on board the R/V L'Atalante, offshore Suriname and French Guiana. This cruise is part of a program dedicated to the geological investigation of the continental margin, including the Demerara plateau, following the GUYAPLAC (2003), IGUANES (2013) and DRADEM (2016) cruises. The aim of MARGATS was to image the internal structure of the Demerara plateau and its different margins using coincident deep penetrating wide angle refraction and multi channel reflection seismic (MCS) methods. During the MARGATS experiment 171 OBS deployments were distributed along 4 wide-angle lines. Along each wide-angle line we also recorded coincident MCS data using a 3 km long 480 channel streamer. The dataset was completed by three MCS lines along the eastern part of the Demerara plateau. MCS MAR007 line which is coincident with line OBS MAR-3 was extended on land by 13 land stations deployed along the Maroni River. This line, together with MCS MAR001 and the coincident OBS MAR-1 line reveal the highly homogeneous deep structure of the internal part of the plateau. MCS MAR005 line, which is coincident with OBS MAR-2, MCS MAR006 line coincident with OBS MAR-4, MCS MAR002, MCS MAR003 and MCS MAR004 helps to elucidate the structural complexity of the northern transform margin and the eastern divergent margin of the plateau. These new datasets are highly complementary to the DRADEM dredge results which provide evidence for mid Jurassic volcanic rocks along the plateau and significant vertical displacements along the transform margin. These results allow to interpret the plateau as the remains of a huge jurassic volcanic divergent margin along the Central Atlantic ocean to the west, possibly remobilized during the cretaceous opening of the Equatorial Atlantic ocean as an highly oblique margin to the north and a divergent margin to the east in persistent presence of volcanism. This AGU session will be a great opportunity to present the exceptional quality of the seismic data, after the initial processing steps and how these data are conditioning a new understanding of the Demarara plateau and its margins which implies the hypothetic role of a new hot spot shaping the complex polyphased history of the structure.
NASA Astrophysics Data System (ADS)
You, Chao; Yao, Tandong; Xu, Chao
2018-03-01
Changes in fire activity across regions around the Tibetan Plateau are poorly understood, especially under the recent warming and drying trends. In this work, we report records of the specific fire tracer levoglucosan in a central Tibetan ice core, indicating a rapid increase in wildfires across the Himalayas and surroundings at the beginning of the 21st century. The climate system, especially precipitation changes, modulates the annual variability of wildfires in regions around the Tibetan Plateau. Decreasing premonsoon precipitation has prolonged the dry seasons across Himalayan regions affected by the Indian summer monsoon; meanwhile, increasing precipitation over the arid and semiarid Indus River Plain promotes plant growth and thereby increases biofuel availability. These trends have therefore induced increased frequencies of strong wildfires in the Himalayas and surroundings. Increasing strong wildfire events can potentially enhance black carbon deposits on Himalayan glaciers, which would impact glacial melting during the premonsoon wildfire seasons in the near future.
The Cretaceous/Paleogene Transition on the East Tasman Plateau, Southwestern Pacific
NASA Technical Reports Server (NTRS)
Schellenberg, Stephen A.; Brinkhuis, Henk; Stickley, Catherine E.; Fuller, Michael; Kyte, Frank T.; Williams, Graham L.
2004-01-01
Ocean Drilling Program Leg 189 recovered a potentially complete shallow marine record of the Cretaceous-Paleogene boundary (KPB) at Site 1172 on the East Tasman Plateau. Here we present high-resolution (cm-scale) data from micropaleontology, geochemistry, sedimentology, and paleomagnetism that provide no evidence for a complete KPB, but instead suggest a boundary-spanning hiatus of at least 0.8 Ma. We interpret this hiatus to represent the sequence boundary between the uppermost Maastrichtian Tal.1 and lowermost Danian Ta1.2/ Da- 1 3rd-order sequence stratigraphic cycles. Microfloral assemblages indicate generally shallow paleodepths, restricted circulation, and eutrophic conditions through the section. Paleodepths progressively shallow through the late Maastrichtian, while more oceanic and warmer conditions dominate the early Danian. The Site 1172 KPB section is broadly comparable to other southern highlatitude sections in Antarctica and New Zealand, but appears to record a shallower and more restricted environment that permitted a eustatically-driven hiatus across the KPB mass extinction event.
Ice-volume-forced erosion of the Chinese Loess Plateau global Quaternary stratotype site.
Stevens, T; Buylaert, J-P; Thiel, C; Újvári, G; Yi, S; Murray, A S; Frechen, M; Lu, H
2018-03-07
The International Commission on Stratigraphy (ICS) utilises benchmark chronostratigraphies to divide geologic time. The reliability of these records is fundamental to understand past global change. Here we use the most detailed luminescence dating age model yet published to show that the ICS chronology for the Quaternary terrestrial type section at Jingbian, desert marginal Chinese Loess Plateau, is inaccurate. There are large hiatuses and depositional changes expressed across a dynamic gully landform at the site, which demonstrates rapid environmental shifts at the East Asian desert margin. We propose a new independent age model and reconstruct monsoon climate and desert expansion/contraction for the last ~250 ka. Our record demonstrates the dominant influence of ice volume on desert expansion, dust dynamics and sediment preservation, and further shows that East Asian Summer Monsoon (EASM) variation closely matches that of ice volume, but lags insolation by ~5 ka. These observations show that the EASM at the monsoon margin does not respond directly to precessional forcing.
NASA Astrophysics Data System (ADS)
Abba, Habu Tela; Hassan, Wan Muhamad Saridan Wan; Saleh, Muneer Aziz; Aliyu, Abubakar Sadiq; Ramli, Ahmad Termizi
2017-11-01
In- situ measurement of terrestrial gamma radiation dose rates (TGRD) was conducted in northern zone of Jos Plateau and a statistical relationship between the TGRD and the underlying geological formations was investigated. The TGRD rates in all the measurements ranged from 40 to 1265 nGy h-1 with a mean value of 250 nGy h-1. The maximum TGDR was recorded on geological type G8 (Younger Granites) at Bisitchi, and the lowest TGDR was recorded on G6 (Basaltic rocks) at Gabia. One way analysis of variance (ANOVA) statistical test was used to compared the data. Significantly, the results of this study inferred a strong relationship between TGRD levels with geological structures of a place. An isodose map was plotted to represent exposure rates due to TGRD. The results of this investigation could be useful for multiple public interest such as evaluating public dose for the area.
Central Plateau Cleanup at DOE's Hanford Site - 12504
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowell, Jonathan
The discussion of Hanford's Central Plateau includes significant work in and around the center of the Hanford Site - located about 7 miles from the Columbia River. The Central Plateau is the area to which operations will be shrunk in 2015 when River Corridor cleanup is complete. This work includes retrieval and disposal of buried waste from miles of trenches; the cleanup and closure of massive processing canyons; the clean-out and demolition to 'slab on grade' of the high-hazard Plutonium Finishing Plant; installation of key groundwater treatment facilities to contain and shrink plumes of contaminated groundwater; demolition of all othermore » unneeded facilities; and the completion of decisions about remaining Central Plateau waste sites. A stated goal of EM has been to shrink the footprint of active cleanup to less than 10 square miles by 2020. By the end of FY2011, Hanford will have reduced the active footprint of cleanup by 64 percent exceeding the goal of 49 percent. By 2015, Hanford will reduce the active footprint of cleanup by more than 90 percent. The remaining footprint reduction will occur between 2015 and 2020. The Central Plateau is a 75-square-mile region near the center of the Hanford Site including the area designated in the Hanford Comprehensive Land Use Plan Environmental Impact Statement (DOE 1999) and Record of Decision (64 FR 61615) as the Industrial-Exclusive Area, a rectangular area of about 20 square miles in the center of the Central Plateau. The Industrial-Exclusive Area contains the 200 East and 200 West Areas that have been used primarily for Hanford's nuclear fuel processing and waste management and disposal activities. The Central Plateau also encompasses the 200 Area CERCLA National Priorities List site. The Central Plateau has a large physical inventory of chemical processing and support facilities, tank systems, liquid and solid waste disposal and storage facilities, utility systems, administrative facilities, and groundwater monitoring wells. As a companion to the Hanford Site Cleanup Completion Framework document, DOE issued its draft Central Plateau Cleanup Completion Strategy in September 2009 to provide an outline of DOE's vision for completion of cleanup activities across the Central Plateau. As major elements of the Hanford cleanup along the Columbia River Corridor near completion, DOE believed it appropriate to articulate the agency vision for the remainder of the cleanup mission. The Central Plateau Cleanup Completion Strategy and the Hanford Site Cleanup Completion Framework were provided to the regulatory community, the Tribal Nations, political leaders, the public, and Hanford stakeholders to promote dialogue on Hanford's future. The Central Plateau Cleanup Completion Strategy describes DOE's vision for completion of Central Plateau cleanup and outlines the decisions needed to achieve the vision. The Central Plateau strategy involves steps to: (1) contain and remediate contaminated groundwater, (2) implement a geographic cleanup approach that guides remedy selection from a plateau-wide perspective, (3) evaluate and deploy viable treatment methods for deep vadose contamination to provide long-term protection of the groundwater, and (4) conduct essential waste management operations in coordination with cleanup actions. The strategy will also help optimize Central Plateau readiness to use funding when it is available upon completion of River Corridor cleanup projects. One aspect of the Central Plateau strategy is to put in place the process to identify the final footprint for permanent waste management and containment of residual contamination within the 20-square-mile Industrial-Exclusive Area. The final footprint identified for permanent waste management and containment of residual contamination should be as small as practical and remain under federal ownership and control for as long as a potential hazard exists. Outside the final footprint, the remainder of the Central Plateau will be available for other uses consistent with the Hanford Comprehensive Land-Use Plan (DOE 1999), while maintained under federal ownership and control. (author)« less
Dynamic characterization of the Chamousset rock column before its fall
NASA Astrophysics Data System (ADS)
Levy, C.; Baillet, L.; Jongmans, D.
2009-04-01
The rockfall of Chamousset (volume of 21000m3 ) occurred on November 10, 2007, affecting the 300 m high Urgonian cliff of the southern Vercors massif, French Alps. This event took place when the Vercors plateau was covered by snow. The unstable column was previously detected by observations on the development of a 30 m long fracture back on the plateau. Two aerial Lidar scans of the cliff were acquired before and after the failure, allowing the geometry of the column and of the broken plane to be determined. A temporary seismic array along with two extensometers was installed from July to November 2007. The seismic array consisted of 7 short period seismometers (1 three-components and 6 vertical-component). One vertical seismometer was installed on the column while the other 6 were deployed on the plateau with an array aperture of about 70 m. During the last two months of record, short period seismometers were replaced by 4.5 Hz geophones. The monitoring system recorded in a continuous mode (1000 Hz of frequency sampling) but it stopped to work two weeks before the fall, after the solar panels were covered by snow. During the running period, the seismic array recorded hundreds of local seismic events, from short (less than 0.5 s) impulsive signals to events with a long duration (a few tens of seconds). Our study was first focused on the dynamic response of the column and on the seismic noise frequency content. Fourier spectra of the seismic noise signals recorded on the column and the corresponding spectral ratios showed the presence of several resonance frequencies of the column. The first resonance frequency was measured at 3.6 Hz in July 2007 and it decreases regularly with time to reach 2.6 Hz two weeks before the fall. In parallel, extensometer measurements show that the fracture aperture increased with time during the same period. The dynamic response of a block which separates from a rock mass was 2D numerically modelled. Finite element computations showed that the progressive block decoupling, resulting from a crack propagation inside the mass, generates a decrease of the natural frequency, as it was measured on the site. These results highlight the interest to study the dynamic response of an unstable column for hazard assessment purposes. In a second phase, we studied the recorded impulsive signals in which we were able to identify P and S waves. Seismic experiments were performed in September 2008 on the plateau in order to constrain the ground velocity structure. Preliminary event location shows that the signal sources were located along the broken plane and probably result from micro-cracks along rock bridges.
Lea, Mary-Anne; Bonadonna, Francesco; Hindell, Mark A; Guinet, Christophe; Goldsworthy, Simon D
2002-06-01
The estimation of milk consumption in free-ranging seals using tritium dilution techniques makes the key assumption that the animals drink no pre-formed water during the experimental period. However, frequent observations of unweaned Antarctic fur seal pups drinking water at Iles Kerguelen necessitated the testing of this assumption. We estimated water flux rates of 30 pups (10.7+/-0.3 kg) in four experimental groups by isotopic dilution over 4 days. The groups were: (1) pups held in an open air enclosure without access to water to estimate fasting metabolic water production (MWP); (2) free-ranging pups not administered additional water; (3) pups held in an open air enclosure and given a total of 300 ml of fresh water to verify technique accuracy; and (4) free-ranging pups given 200 ml of fresh water. Pups without access to water exhibited water flux rates (20.5+/-0.8 ml kg(-1)d(-1)), which were significantly lower than those observed for the free-ranging group (33.0+/-1.7 ml kg(-1) d(-1)). Mean estimated pre-formed water intake for the free-ranging experimental groups was 12.6 ml kg(-1) d(-1). Thus, MWP, measured as total water intake during fasting, may be significantly over-estimated in free-ranging Antarctic fur seal pups at Iles Kerguelen and at other sites and subsequently milk intake rates may be underestimated.
NASA Technical Reports Server (NTRS)
Brown, Laurie L.; Caffall, Nancy M.; Golombek, Matthew P.
1993-01-01
The tectonic response of the Taos Plateau volcanic field in the southern San Luis basin to late stage extensional environment of the Rio Grande rift was investigate using paleomagnetic techniques. Sixty-two sites (533 samples) of Pliocene volcanic units were collected covering four major rock types with ages of 4.7 to 1.8 Ma. Twenty-two of these sites were from stratigraphic sections of the lower, middle and upper Servilleta Basalt collected in the Rio Grande gorge at two locations 19 km apart. Flows from the lower and middle members in the southern gorge record reversed polarities, while those in Garapata Canyon are normal with an excursion event in the middle of the sequence. The uppermost flows of the upper member at both sites display normal directions. Although these sections correlate chemically, they seem to represent different magnetic time periods during the Gilbert Reversed-Polarity Chron. The data suggest the Taos Plateau volcanic field, showing no rotation and some flattening in the south and east, has acted as a stable buttress and has been downwarped by overriding of the southeastern end of the plateau by the Picuris Mountains, which make up the northern corner of the counter-clockwise rotating Espanola block.
NASA Astrophysics Data System (ADS)
Brown, Laurie L.; Caffall, Nancy M.; Golombek, Matthew P.
1993-12-01
The tectonic response of the Taos Plateau volcanic field in the southern San Luis basin to late stage extensional environment of the Rio Grande rift was investigate using paleomagnetic techniques. Sixty-two sites (533 samples) of Pliocene volcanic units were collected covering four major rock types with ages of 4.7 to 1.8 Ma. Twenty-two of these sites were from stratigraphic sections of the lower, middle and upper Servilleta Basalt collected in the Rio Grande gorge at two locations 19 km apart. Flows from the lower and middle members in the southern gorge record reversed polarities, while those in Garapata Canyon are normal with an excursion event in the middle of the sequence. The uppermost flows of the upper member at both sites display normal directions. Although these sections correlate chemically, they seem to represent different magnetic time periods during the Gilbert Reversed-Polarity Chron. The data suggest the Taos Plateau volcanic field, showing no rotation and some flattening in the south and east, has acted as a stable buttress and has been downwarped by overriding of the southeastern end of the plateau by the Picuris Mountains, which make up the northern corner of the counter-clockwise rotating Espanola block.
NASA Astrophysics Data System (ADS)
Kremer, A.; Stein, R.; Fahl, K.; Ji, Z.; Yang, Z.; Wiers, S.; Matthiessen, J.; Forwick, M.; Löwemark, L.; O'Regan, M.; Chen, J.; Snowball, I.
2018-02-01
The Yermak Plateau is located north of Svalbard at the entrance to the Arctic Ocean, i.e. in an area highly sensitive to climate change. A multi proxy approach was carried out on Core PS92/039-2 to study glacial-interglacial environmental changes at the northern Barents Sea margin during the last 160 ka. The main emphasis was on the reconstruction of sea ice cover, based on the sea ice proxy IP25 and the related phytoplankton - sea ice index PIP25. Sea ice was present most of the time but showed significant temporal variability decisively affected by movements of the Svalbard Barents Sea Ice Sheet. For the first time, we prove the occurrence of seasonal sea ice at the eastern Yermak Plateau during glacial intervals, probably steered by a major northward advance of the ice sheet and the formation of a coastal polynya in front of it. Maximum accumulation of terrigenous organic carbon, IP25 and the phytoplankton biomarkers (brassicasterol, dinosterol, HBI III) can be correlated to distinct deglaciation events. More severe, but variable sea ice cover prevailed at the Yermak Plateau during interglacials. The general proximity to the sea ice margin is further indicated by biomarker (GDGT) - based sea surface temperatures below 2.5 °C.
Earliest tea as evidence for one branch of the Silk Road across the Tibetan Plateau
Lu, Houyuan; Zhang, Jianping; Yang, Yimin; Yang, Xiaoyan; Xu, Baiqing; Yang, Wuzhan; Tong, Tao; Jin, Shubo; Shen, Caiming; Rao, Huiyun; Li, Xingguo; Lu, Hongliang; Fuller, Dorian Q.; Wang, Luo; Wang, Can; Xu, Deke; Wu, Naiqin
2016-01-01
Phytoliths and biomolecular components extracted from ancient plant remains from Chang’an (Xi’an, the city where the Silk Road begins) and Ngari (Ali) in western Tibet, China, show that the tea was grown 2100 years ago to cater for the drinking habits of the Western Han Dynasty (207BCE-9CE), and then carried toward central Asia by ca.200CE, several hundred years earlier than previously recorded. The earliest physical evidence of tea from both the Chang’an and Ngari regions suggests that a branch of the Silk Road across the Tibetan Plateau, was established by the second to third century CE. PMID:26738699
The Effects of Non-Contingent Feedback on the Incidence of Plateau at V̇O2max
Gordon, Dan; Gernigon, Marie; Baker, James; Merzbach, Viviane; Scruton, Adrian
2017-01-01
The purpose of this study was to examine the effects of non-contingent feedback in the form of heart rate (HR) on the incidence of plateau at V̇O2max. Ten physically active males (age 24.8 yrs ± 4.2; mass 81.4 ± 9.0 kg; stature 1.80 ± 0.11 m, V̇O2max 53.2 ± 5.8 ml·kg-1.min-1) who were V̇O2max testing naïve but were cognisant as to the heart rate responses to exercise completed four incremental tests to volitional exhaustion, separated by ~72 h for the determination of V̇O2max and gas exchange threshold. The first trial served as a familiarisation with the remaining three being experimental conditions where HR was presented in a screen projection as either the actual response (HR-A) or 10 b·min-1 higher than recorded (HR-H) or 10 b·min-1 lower (HR-L). Throughout all trials V̇O2 was recorded on a breath-by-breath basis with plateau criteria of ≤ 50 ml·min-1. RESULTS: A significant difference was observed for Δ V̇O2 over the final two consecutive 30s sampling periods between HR-A, both HR-L and HR-H (p = 0.049) and for the incidence of plateau response between condition (p = 0.021). An additional significant difference was observed for sub-maximal Δ V̇O2 responses between HR-A and HR-H (p = 0.049) and HR-A and HR-L (p = 0.006). Non-significant differences were observed for all other criteria. These data indicate that when presented with non-contingent feedback in the form of HR, that the perceptually orientated pacing schema becomes disrupted promoting a sparing of the finite anaerobic capacity to compensate for the imbalance between the afferent signal and perception of effort. Key points The manifestation of the plateau at V̇O2max is disrupted (lower incidence rates) when participants are exposed to non-contingent feedback in the form of heart rate. Non-contingent feedback in the form of heart rate does not affect the V̇O2max score or associated cardio-respiratory parameters. Given the association between the V̇O2-plateau and the finite anaerobic capacity it is proposed that non-contingent feedback creates a sparing of this resource due to an imbalance between the perception of effort and the bio-feedback. PMID:28344458
NASA Astrophysics Data System (ADS)
Paisani, Julio Cesar; Pontelli, Marga Eliz; Osterrieth, Margarita Luisa; Paisani, Sani Daniela Lopes; Fachin, Andressa; Guerra, Simone; Oliveira, Leandro
2014-10-01
The Araucaria Plateau is a geomorphological unit that occupies approximately three-quarters of the terrain in the southern region of Brazil. The plateau displays different altitudinal levels (600 to <1400 m a.s.l.) that are locally recognized as remnants of planed surfaces (S8-S1). These surfaces are maintained by basic (S3-S8) and acidic (S1 and S2) volcanic flows from the Neocretaceous period of the Paraná Basin. The largest extent of this plateau is located in a humid subtropical climate zone. Colluvial, colluvial-alluvial, alluvial sediments and paleosols (Ab diagnostic horizons) occur predominantly in S2. The paleosols are located in low-hierarchical-order fossil valleys (first- to fourth-order in Strahler's stream classification) and valley heads, which are referred to as paleovalleys in this paper. We employed these paleosols as stratigraphic level markers of the pedogenesis of the regional Upper Quaternary and propose their importance as records of the paleoenvironmental conditions of the Araucaria Plateau in areas above 1200 m a.s.l. These paleosols were dated by 14C and show ages between 23.8 ± 0.05 kyr BP (28.06-29.08 kyr cal. BP) and 41.16 ± 0.48 kyr BP (44.13-45.58 kyr cal. BP). The calibrated ages are related to Marine Isotope Stage 3 (MIS 3), in which the last period of global warming occurred (approximately 60-25 kyr cal. BP). We integrated the morphological, pedogeochemical, clay fraction mineralogy, micromorphological and δC-13 analyses of five paleosols from S2 to verify the paleoenvironmental conditions of the Araucaria Plateau and its correspondence with the paleoclimatic phenomena that were identified on a global scale during MIS 3 in the Southern Hemisphere. We obtained the following conclusions: a) the properties of paleosols reflect pedological processes that are adjusted to the paleoenvironmental conditions at the end of MIS 3 and the transition to MIS 2 (Last Glacial Maximum); b) aplasmogenic partial acidolysis was the predominant pedogeochemical process during MIS 3; c) during this period, the water regime was sufficiently humid to develop hydromorphic horizons in the valley bottoms of the entire drainage network to the valley heads; d) regional change toward a drier hydric regime occurred in MIS 2, when erosion of the paleosols predominated; and e) in MIS 1 (current Holocene interglacial), burial of the paleosols and relief inversion occurred, which resulted in fossilization of the valleys.
NASA Astrophysics Data System (ADS)
Wang, Zheng; An, Zhisheng; Liu, Zhonghui; Qiang, Xiaoke; Zhang, Fan; Liu, Weiguo
2018-04-01
This study reports hydrogen isotopic records from the central Chinese Loess Plateau (CLP) over the past 250 ka. After eliminating the influence of ice and local temperatures, the δDwax records extracted from two loess sites at Xifeng and Luochuan can be taken to represent arid/humid alternations in the hydrological environment in this marginal Asian Summer Monsoon (ASM) region; they also contain integrated information on summer precipitation patterns and the corresponding responses to these changes by predominant vegetation cover types. These arid/humid alternations show 100 ka, 40 ka and 20 ka cycles. An increase in precipitation in association with an enhanced summer monsoon has historically been taken to be the major factor driving a humid environment in the central CLP. However, hydroclimatic changes in δDwax records differ for the central CLP, central China and southern China. Over a 20 ka cycle, the influence of solar insolation on hydroclimatic changes can be shown to be consistent throughout the central CLP. However, changes in the relative location of the land and sea may have caused different hydroclimatic responses between southern China and the central CLP on a glacial-interglacial scale. The hydroclimatic variability in the central CLP would suggest that an enhanced summer monsoon due to climatic warming is the key to understanding decreased drought degree in this marginal monsoonal region.
NASA Astrophysics Data System (ADS)
Dunnington, Gwen; Edwards, Benjamin R.; Ryane, Chanone; Russell, James K.; Lasher, Gregory K.
2010-05-01
One of the most significant difficulties with understanding terrestrial Pleistocene climate change is that the depositional record of ancient ice sheets is frequently destroyed by successive glaciations. Given their resistance to erosion, glaciovolcanic features provide unique opportunities at which to look for evidence of multiple glaciations. Evidence from the Kawdy Plateau (KP) region of northern British Columbia is consistent with the presence of multiple ice sheets covering the Canadian Cordillera over the past 2 Ma and derives from two sources: features interpreted as having formed by glacial scouring of bedrock, and the state of preservation for six glaciovolcanic edifices (Kawdy Mountain, Tutsingale Mountain, Nuthinaw Mountain, Meehaz Mountain, Tanker tuya, Horseshoe tuya) located on the plateau. Detailed measurements of glacial mega-grooves/striations on bedrock in the eastern part of the plateau, along with similar features on two different edifices (Tutsingale Mountain and Tanker tuya), are consistent with ice movement in three distinctly different azimuths: 21-59 degrees; 60-88 degrees; 88-92 degrees. The scours may indicate the presence of at least three separate glaciers flowing in different directions over the KP, separated by enough time to allow the previous glacier to melt entirely and expose the plateau floor to continued erosion. Cross-cutting relationships and quality of preservation indicate that the group trending between 88-92° across the plateau and tuyas is the oldest, the group trending 21-59° is younger than that, and a group trending 60-88° is the youngest, presumably related to ice flow during the Last Glacial Maximum (LGM). Drumlinoid features on the plateau floor and on top of Horseshoe Tuya indicate that despite this 71° variation in orientation direction of scours across the entire area, the general direction of ice movement across the plateau has always been in an east-to-west or northeast-to-southwest direction. The states of erosion for all six of the KP glaciovolcanic edifices are consistent with extensive glaciation. Besides the glacial features noted above, at least three of the edifices (Kawdy Mountain, Tanker tuya, Horseshoe tuya) show evidence for extensive morphological modification. Although the core of Kawdy Mountain is made of erosion-resistant palagonitized volcanic breccia and intrusions, its core has been eviscerated and now has a long, northeasterly trending cirque-like valley. Horseshoe tuya appears to have lost almost half of its original volume into a north-facing, cirque-like feature. The aerial footprint of Tanker tuya is consistent with erosion of more than half of the original edifice, and its lower stratigraphy may contain at least one pre-LGM glacial diamicton. We believe that these observations indicate that the Cordilleran Ice Sheet (CIS) did not remain constant and intact during the Pleistocene, but fluctuated between periods of thick, low-elevation ice cover and more sparse, high-elevation cover. Evidence for multi-stage continental glaciation has important implications for the reconstruction of the history of the Cordilleran ice sheet, correlation with the marine Pleistocene climate record, and constraints on the paleoclimate factors which influenced terrestrial ice sheet development.
The circum-Antarctic sedimentary record; a dowsing rod for Antarctic ice in the Eocene
NASA Astrophysics Data System (ADS)
Scher, H.
2012-12-01
Arguments for short-lived Antarctic glacial events during the Eocene (55-34 Ma) are compelling, however the paleoceanographic proxy records upon which these arguments are based (e.g., benthic δ18O, eustatic sea level, deep sea carbonate deposition) are global signals in which the role of Antarctic ice volume variability is ambiguous. That is to say, the proxy response to ice volume may be masked other processes. As a result broad correlations between proxies for ice volume are lacking during suspected Eocene glacial events. I will present a more direct approach for detecting Antarctic ice sheets in the Eocene; utilizing provenance information derived from the radiogenic isotopic composition of the terrigenous component of marine sediments near Antarctica. The method relies on knowledge that marine sediments represent a mixture derived from different basement terrains with different isotopic fingerprints. A key issue when using sedimentary deposits to characterize continental sediment sources is to deconvolve different sources from the mixed signal of the bulk sample. The pioneering work of Roy et al. (2007) and van de Flierdt et al. (2007) represents a major advance in Antarctic provenance studies. It is now known that the isotopic composition of neodymium (Nd) and hafnium (Hf) in modern circum-Antarctic sediments are distributed in a pattern that mimics the basement age of sediment sources around Antarctica. For this study I selected two Ocean Drilling Program (ODP) sites on southern Kerguelen Plateau (ODP Sites 738 and 748) because of their proximity to Prydz Bay, where Precambrian sediment sources contribute to extremely nonradiogenic isotopic signatures in modern sediments in the Prydz Bay region. New detrital Nd isotope records from these sediment cores reveal an Nd isotope excursion at the Bartonian/Priabonian boundary (ca. 37 Ma) that coincides with a 0.5 ‰ increase in benthic foram δ18O values. Detrital sediment ɛNd values are around -12 in intervals where δ18O values are low and decrease to -15.5 when δ18O values are highest. In contrast there is not a significant change in the ɛNd values of fossil fish teeth across the δ18O excursion at ODP Site 738. Low variability in fossil fish tooth ɛNd values precludes a major reorganization of bottom water circulation that may otherwise have transported terrigenous sediment from distal areas. Thus, the results from this study provide very strong evidence for an increase in the amount of fine-grained terrigenous material that was discharged from the Prydz Bay drainage and/or a change in the sediment source. I argue that these data provide evidence for erosion/weathering of Antarctic basement rocks by small ice sheets that formed in the hinterland of the Prydz Bay drainage. The approach that will be presented holds great promise for identifying short-lived glaciations on Antarctica prior to the major development of ice sheets at the Eocene Oligocene boundary. Understanding the timing, frequency, and duration of these events is paramount to evaluating the processes and feedbacks that resulted in the global transition from greenhouse to icehouse. References: Roy, M., et al. (2007), Chemical Geology, 244, 507-519. van de Flierdt T, Goldstein SL, Hemming SR, et al, Earth and Planetary Science Letters, 2007, 259, Pages:432-441.
NASA Astrophysics Data System (ADS)
Mulibo, Gabriel D.; Nyblade, Andrew A.
2013-08-01
P and S relative arrival time residuals from teleseismic earthquakes recorded on over 60 temporary AfricaArray broadband seismic stations deployed in Uganda, Tanzania, and Zambia between 2007 and 2011 have been inverted, together with relative arrival time residuals from earthquakes recorded by previous deployments, for a tomographic image of mantle wave speed variations extending to a depth of 1200 km beneath eastern Africa. The image shows a low-wave speed anomaly (LWA) well developed at shallow depths (100-200 km) beneath the Eastern and Western branches of the Cenozoic East African rift system and northwestern Zambia, and a fast wave speed anomaly at depths ≤ 350 km beneath the central and northern parts of the East African Plateau and the eastern and central parts of Zambia. At depths ≥350 km the LWA is most prominent under the central and southern parts of the East African Plateau and dips to the southwest beneath northern Zambia, extending to a depth of at least 900 km. The amplitude of the LWA is consistent with a ˜150-300 K thermal perturbation, and its depth extent indicates that the African superplume, originally identified as a lower mantle anomaly, is likely a whole mantle structure. A superplume extending from the core-mantle boundary to the surface implies an origin for the Cenozoic extension, volcanism, and plateau uplift in eastern Africa rooted in the dynamics of the lower mantle.
Constant Chinese Loess Plateau dust source since the Late Miocene
NASA Astrophysics Data System (ADS)
Bird, Anna; Millar, Ian; Stevens, Thomas; Rodenburg, Tanja; Rittner, Martin; Vermeesch, Pieter; Lu, Huayu
2017-04-01
The dramatic deepening of northern hemisphere glaciation at the Pliocene-Pleistocene boundary is accompanied by major changes in global climate. The role of the global atmospheric dust cycle in this event is not clear; in particular, whether, changes in the dust cycle influenced climates change, or resulted from it. Miocene and Quaternary wind-blown Chinese loess records past dust-cycle history, influences of aridification and monsoon circulation. Previous work on the vast Chinese Loess Plateau is in conflict over whether changes in dust source occur at the Pliocene-Pleistocene boundary (2.59 Ma), or at 1.2 Ma, despite these intervals marking major shifts in monsoon dynamics (Sun 2005; Nie et al. 2014a). Here we present Sr, Nd and Hf isotopic data from multiple sites and show that the dust source remains the same across these boundaries. The use of isotope tracers from multiple sites allows us to demonstrate that shifts in sediment geochemistry can be explained by grain-size and weathering changes. Nd and Hf isotopes show that the dust was dominantly sourced from the Tibetan Plateau, with some input from bedrock underlying the Badain Jaran/Tengger deserts. This shows that a major established and constant dust source on the northern Tibetan Plateau has been active and unchanged since the late Miocene, despite dramatically changing climate conditions. Changes in loess accumulation are therefore a function of climate change in the Tibetan Plateau source regions rather than due to expanding source areas controlled by aridification over a widening area over the Pliocene and Quaternary.
NASA Astrophysics Data System (ADS)
Kent-Corson, Malinda L.; Ritts, Bradley D.; Zhuang, Guangsheng; Bovet, Paul M.; Graham, Stephan A.; Page Chamberlain, C.
2009-05-01
This study presents oxygen and carbon isotopic records from lacustrine, paleosol, alluvial, and fluvial carbonate sampled in thirteen Cenozoic sedimentary sections that span the northern margin of the Tibetan Plateau. Isotopic analyses of 1475 carbonate samples yield δ18O values that range from 13.1 to 38.9‰ (SMOW), and δ13C values range from - 11.5 to 3.7‰ (PDB). Based on these analyses, we see two isotopic trends regionally. We interpret a Paleogene decrease in average oxygen isotope values to result from an increase in the mean elevation of the study region's drainages as they tapped waters from a growing Tibetan Plateau to the south of the study area. We interpret a Neogene increase in both carbon and oxygen isotope values to result from the initiation of local mountain building in the study area and the withdrawal of marine waters, which increased basin isolation, aridity, and temperatures. The timing of inferred initiation of uplift in this region is consistent with structural, thermochronological, and sedimentological evidence for a tectonic transition in the early and middle Miocene from accommodation of India-Eurasia convergence through extrusion along the Altyn Tagh fault to accommodation of convergence through active shortening and mountain building in this region. This study also supports tectonic models for the differential uplift of the Tibetan Plateau, in that mountain building in this study region significantly postdates estimates for the attainment of high elevation from isotopic studies of the central Tibetan Plateau.
Brown, Colin H; Bourque, Charles W
2004-01-01
Phasic activity in magnocellular neurosecretory cells is characterized by alternating periods of activity (bursts) and silence. During phasic bursts, action potentials are superimposed on plateau potentials that are generated by summation of depolarizing after-potentials. Dynorphin is copackaged in vasopressin neurosecretory vesicles that are exocytosed from magnocellular neurosecretory cell dendrites and terminals, and both peptides have been implicated in the generation of phasic activity. Here we show that somato-dendritic dynorphin release terminates phasic bursts by autocrine inhibition of plateau potentials in magnocellular neurosecretory cells recorded intracellularly from hypothalamic explants using sharp electrodes. Conditioning spike trains caused an activity-dependent reduction of depolarizing after-potential amplitude that was partially reversed by α-latrotoxin (which depletes neurosecretory vesicles) and by nor-binaltorphimine (κ-opioid receptor antagonist), but not by an oxytocin/vasopressin receptor antagonist or a μ-opioid receptor antagonist, indicating that activity-dependent inhibition of depolarizing after-potentials requires exocytosis of an endogenous κ-opioid peptide. κ-Opioid inhibition of depolarizing after-potentials was not mediated by actions on evoked after-hyperpolarizations since these were not affected by κ-opioid receptor agonists or antagonists. Evoked bursts were prolonged by antagonism of κ-opioid receptors with nor-binaltorphimine and by depletion of neurosecretory vesicles by α-latrotoxin, becoming everlasting in ∼50% of cells. Finally, spontaneously active neurones exposed to nor-binaltorphimine switched from phasic to continuous firing as plateau potentials became non-inactivating. Thus, dynorphin coreleased with vasopressin generates phasic activity through activity-dependent feedback inhibition of plateau potentials in magnocellular neurosecretory cells. PMID:15107473
The Effects of Non-Contingent Feedback on the Incidence of Plateau at V̇O2max.
Gordon, Dan; Gernigon, Marie; Baker, James; Merzbach, Viviane; Scruton, Adrian
2017-03-01
The purpose of this study was to examine the effects of non-contingent feedback in the form of heart rate (HR) on the incidence of plateau at V̇O 2max . Ten physically active males (age 24.8 yrs ± 4.2; mass 81.4 ± 9.0 kg; stature 1.80 ± 0.11 m, V̇O 2max 53.2 ± 5.8 ml·kg -1. min -1 ) who were V̇O 2max testing naïve but were cognisant as to the heart rate responses to exercise completed four incremental tests to volitional exhaustion, separated by ~72 h for the determination of V̇O 2max and gas exchange threshold. The first trial served as a familiarisation with the remaining three being experimental conditions where HR was presented in a screen projection as either the actual response (HR-A) or 10 b·min -1 higher than recorded (HR-H) or 10 b·min -1 lower (HR-L). Throughout all trials V̇O 2 was recorded on a breath-by-breath basis with plateau criteria of ≤ 50 ml·min -1 . A significant difference was observed for Δ V̇O 2 over the final two consecutive 30s sampling periods between HR-A, both HR-L and HR-H (p = 0.049) and for the incidence of plateau response between condition (p = 0.021). An additional significant difference was observed for sub-maximal Δ V̇O 2 responses between HR-A and HR-H (p = 0.049) and HR-A and HR-L (p = 0.006). Non-significant differences were observed for all other criteria. These data indicate that when presented with non-contingent feedback in the form of HR, that the perceptually orientated pacing schema becomes disrupted promoting a sparing of the finite anaerobic capacity to compensate for the imbalance between the afferent signal and perception of effort.
Geologic map of the MTM 85200 quadrangle, Olympia Rupes region of Mars
Skinner, James A.; Herkenhoff, Kenneth E.
2012-01-01
The north polar region of Mars is dominated by Planum Boreum, a roughly circular, domical plateau that rises >2,500 m above the surrounding lowland. Planum Boreum is >1,500 km in diameter, contains deep, curvilinear troughs and chasmata, isolated cavi, and marginal scarps and slopes. The north polar plateau is surrounded by low-lying and nearly horizontal plains of various surface texture, geologic origin, and stratigraphic significance. The MTM 85200 quadrangle spans 5° of latitude (lat 82.5° to 87.5° N.) and 40° of longitude (long 140° to 180° E.) within the eastern hemisphere of Mars. The quadrangle includes the high-standing Planum Boreum, curvilinear troughs of Boreales Scopuli, deep, sinuous scarps of Olympia Rupes, isolated and coalesced depressions of Olympia Cavi, margins of the circular polar erg Olympia Undae, and low-standing Olympia Planum. The surface of Planum Boreum within the MTM 85200 quadrangle is characterized by smoothly sculptured landforms with shallow slopes and variable relief at kilometer scales. Areas that are perennially covered with bright frost are generally smooth and planar at 100-m scales. However, MGS MOC and MRO HiRISE images show that much of the icy polar plateau is rough at decameter scale. The Martian polar plateaus are likely to contain a record of global climate history for >107 to as much as ~3 x 109 years. This record is partly observable as rhythmically layered deposits exposed in the curvilinear troughs of the north polar plateau, Planum Boreum. The north polar layered deposits are widely interpreted to be among the most youthful bedrock deposits on the Martian surface. These materials and their stratigraphic and structural relations provide a glimpse into some of the more recent geologic processes that have occurred on Mars. The ability of the massive polar deposits to periodically trap and release both volatiles and lithic particles may represent a globally important, recurring geologic process for Mars.
Monitoring of Global Acoustic Transmissions: Signal Processing and Preliminary Data Analysis
1991-09-01
Approved by: A .- • -, Jam t . Miller, Thesis Advisor Ching-San Chiu, Thesis Co-Advisor Curtis A. Collins Chairman, Department of Oceanography ii ABSTRACT A...Island Sonobuoys CSIRO, Australia Mawson Station Sonobuoys CSIRO, Australia Kerguelen Island Sonobuoys INSU-TAAF, France Indian Ocean Sonobuoys NIO, India...three major uncertainties underlying the use of global acoustic transmissions: 5 *0" NN N $ o* w W o W" .a 4W r N 1W o0" M fo4 ° v t &W "w s Figure
A high-resolution Holocene Asian Monsoon record from a Tibetan lake-Peiku Co
NASA Astrophysics Data System (ADS)
Du, M.; Ricketts, R. D.; Colman, S.; Werne, J. P.
2010-12-01
Recent studies on Tibetan lakes have demonstrated the great potential of lake sediments as archives of climate variations in this region. We present a high-resolution multi-proxy record from a closed-basin Tibetan lake—Peiku Co (4595m a.s.l., 28°55’ N, 85°35’E). A 5.5-meter-long UwiTec core (PC07-1B) provides a record extending back to ~22,000 cal years B.P., based on 14C AMS dating. Multi-proxy analyses, including high-resolution magnetic susceptibility, bulk density, elemental composition (ITRAX X-ray Fluorescence Core Scanner), and carbonate content have been carried out to compare to other paleoenvironmental records from the Tibetan Plateau. Furthermore, microbial lipids have been measured to test the applicability of GDGT-based temperature reconstructions (TEX86 and MBT/CBT). The record from Peiku Co captures the climate transition out of the last glacial period. A significant transition to warmer and wetter condition is indicated around 14,500 cal years B.P., possibly attributed to the strengthening of the summer monsoon, which is consistent with the monsoon records from Lake Qinghai. The switch to colder conditions between 12,500 and 11,500 cal years B.P. could be correlated with the Younger Dryas. The early and mid-Holocene is marked by an increase in monsoon precipitation, yet the overall trend is interrupted by two short periods of decreasing precipitation around 7000 and 5000 cal years B.P., as seen in other published records across the Asian monsoon areas. The GDGT indices are employed for temperature reconstruction. The samples from Peiku Co varied widely in BIT indices with values ranging from 0.23 to 0.88, with an average of 0.65. The high BIT values suggest this lake received significant terrestrial organic matter input, which probably respond to rainfall variations. The MBT/CBT-based temperature from the core-top is -3.2 °C, slightly higher than the measured MAAT (-4°C) on the Tibetan Plateau, but statistically the same within error of the current calibration. The core top sample yields a CBT-derived pH of 8.7, which broadly agrees with soil pH values measured on the Tibetan Plateau. Additional 210Pb and 14C dates and compound-specific isotope analyses will also be used to provide further information on the vegetation history and hydrological conditions in this area.
NASA Astrophysics Data System (ADS)
Geissman, J. W.; Olsen, P. E.; Kent, D. V.; Irmis, R. B.; Gehrels, G. E.; Mundil, R.; Parker, W.; Bachmann, G. H.; Kurschner, W. M.; Sha, J.
2014-12-01
The Triassic Period was punctuated by two of the largest Phanerozoic mass-extinctions and witnessed the evolution of elements of the modern biota and the advent of the age of dinosaurs. A rich archive of biotic and environmental changes on land for the early Mesozoic is on the Colorado Plateau, which despite over 100 years of study still remains poorly calibrated in time and poorly registered to other global records. Over 15 years ago, a diverse team of scientists began to develop the concept of a multi-phase, long term Colorado Plateau Coring Project (CPCP). Planning involved two major meetings (DOSECC/NSFICDP supported in Fall, 2007, St. George, UT; and International Continental Drilling Program (ICDP) supported in Spring, 2009, Albuquerque, NM). The National Park Service embraced the concept of Phase One drilling at Petrified Forest National Park (PFNP) in northern Arizona, which exposes one of the most famous and best studied successions of the continental Triassic on Earth, and the Phase One target was decided. Most drilling operation costs were secured from ICDP in Summer, 2010. In late 2013, following more recent NSF support, the research team, utilizing Ruen Drilling Inc., drilled a continuous ~530 m core (60o plunge) through the entire section of Triassic strata (Chinle and Moenkopi fms.) in the north end and a ~240 m core (75o plunge) in lower Chinle and all Moenkopi strata at the south end of the PFNP. Our continuous sampling will place this record in a reliable quantitative and exportable time scale, as a reference section in which magnetostratigraphic, geochronologic, environmental, and paleontologic data are registered to a common thickness scale with unambiguous superposition using pristine samples. The cores are being scanned at the High Resolution X-ray Computed Tomography Facility at UT Austin. They will be transported to the LacCore National Lacustrine Core Facility at U Minnesota, where they will be split, imaged, and scanned for several properties, including XRF data. The core will then be transported to the Rutgers University for sampling. The planning team is contemplating Phase Two options (e.g., the Middle to Lower Triassic marine-influenced section west of the Colorado Plateau (St. George, Utah) area or the Upper Triassic to Lower Jurassic sequence in the Comb Ridge area (Bluff, Utah)).
NASA Astrophysics Data System (ADS)
Harkins, Nathan W.
A mechanical description of the interplay between ongoing crustal deformation and topographic evolution within the Tibetan Plateau remains outstanding, and thus our ability to describe the mechanisms responsible for the creation of this and other continental plateaus is limited. In this work, we employ a multidisciplinary approach to investigate the Quaternary record of active tectonism and coeval topographic evolution in the northeastern Tibetan Plateau. Fluvial channel topographic data paired with geochronologically calibrated measures of erosion rate reveal a headward migrating wave of dramatically accelerated incision rates in the headwaters of the Yellow River, which drains a large portion of northeastern Tibet. This transient increase in incision is likely driven by downstream base-level changes along the plateau margin and is superimposed onto a broad region of higher erosion rates confined to the plateau itself, within the Anyemaqen Shan (mountains). The Kunlun fault, one of the major active strike-slip faults of Tibet, trends through the Anyemaqen Shan. Using a careful approach towards quantifying millennial slip-rates along this fault zone based on the age of offset landforms, we constrain the Pleistocene kinematics of the eastern portion of the Kunlun fault and link this deformation to tectonically-driven erosion in the Anyemaqen Shan. Consideration of the age and morphology of fluvial terraces offset by the fault both highlights uncertainties associated with slip-rate determinations and allow more confident quantification of the allowable range of slip-rates at sites that take advantage of these features. Several new slip-rate determinations from this study at select locations corroborate a small number of previous determinations to identify an eastward decreasing slip-rate gradient and termination of the Kunlun fault within the Anyemaqen Shan. Existing geodetic data reveals a similar pattern of eastward-decreasing distributed shear across the fault zone. The spatial coincidence of tectonically driven erosion in the Anyemaqen Shan with the slip-rate gradient and termination the Kunlun fault implies that the crust of the northeastern plateau has the ability to accumulate regionally distributed permanent strain. Therefore, traditional 'rigid-body' rotation type descriptions of Tibetan Plateau kinematics fail to describe deformation on the northeastern plateau.
NASA Astrophysics Data System (ADS)
Schildgen, T. F.; Cosentino, D.; Caruso, A.; Yildirim, C.; Echtler, H.; Strecker, M. R.
2011-12-01
The Central Anatolian plateau in Turkey borders one of the most complex tectonic regions on Earth, where collision of the Arabian plate with Eurasia in Eastern Anatolia transitions to a cryptic pattern of subduction of the African beneath the Eurasian plate, with concurrent westward extrusion of the Anatolian microplate. Topographic growth of the southern margin of the Central Anatolian plateau has proceeded in discrete stages that can be distinguished based on the outcrop pattern and ages of uplifted marine sediments. These marine units, together with older basement rocks and younger continental sedimentary fills, also record an evolving nature of crustal deformation and uplift patterns that can be used to test the viability of different uplift mechanisms that have contributed to generate the world's third-largest orogenic plateau. Late Miocene marine sediments outcrop along the SW plateau margin at 1.5 km elevation, while they blanket the S and SE margins at up to more than 2 km elevation. Our new biostratigraphic data limit the age of 1.5-km-high marine sediments along the SW plateau margin to < 7.17 Ma, while regional lithostratigraphic correlations imply that the age is < 6.7 Ma. After reconstructing the post-Late Miocene surface uplift pattern from elevations of uplifted marine sediments and geomorphic reference surfaces, it is clear that regional surface uplift reaches maximum values along the modern plateau margin, with the SW margin experiencing less cumulative uplift compared to the S and SE margins. Our structural measurements and inversion modeling of faults within the uplifted region agree with previous findings in surrounding regions, with early contraction followed by strike-slip and extensional deformation. Shallow earthquake focal mechanisms show that the extensional phase has continued to the present. Broad similarities in the onset of surface uplift (after 7 Ma) and a change in the kinematic evolution of the plateau margin (after 8 Ma) suggest that these phenomena may have been linked with a change in the tectonic stress field associated with the process(es) causing post-7 Ma surface uplift. The complex geometry of lithospheric slabs beneath the southern plateau margin, early Pliocene to recent alkaline volcanism, and the localized uplift pattern with accompanying tensional/transtensional stresses point toward slab tearing and localized heating at the base of the lithosphere as a probable mechanism for post-7 Ma uplift of the SW margin. Considering previous work in the region, slab break-off is more likely responsible for non-contractional uplift along the S and SE margins. Overall there appears to be an important link between slab dynamics and surface uplift across the whole southern margin of the Central Anatolian plateau.
NASA Astrophysics Data System (ADS)
Dong, Guanghui; Liu, Honggao; Yang, Yishi; Yang, Ying; Zhou, Aifeng; Wang, Zhongxin; Ren, Xiaoyan; Chen, Fahu
2016-12-01
The study of the history of human activities in ancient cities has provided valuable evidences for understanding the evolution of human-land relations during the late Holocene. Numerous ancient cities were discovered through archaeological surveys of the east Qinghai Province, located on the northeastern border of the Tibetan Plateau, China; however, the mystery of when or why these cities were built remains unsolved. As recorded in this paper, we sampled reliable dating materials from 47 ancient cities in the area, determined their ages by radiocarbon dating, and compared the dating results with historical documents and high resolution paleoclimate records to explore the influencing factors for the development of these ancient cities. The 54 radiocarbon dates indicated that most of these cities were built or repaired during the Han Dynasty (202 BC‒AD 220), Tang Dynasty (AD 618‒AD 907), the Five Dynasties and Ten Kingdoms period (AD 907‒AD 960), the Song dynasty (AD 960‒AD 1279), and the Ming Dynasty (AD 1368‒AD 1644). The radiocarbon dates correspond well with historical records of the area. Our work suggests the ancient cities in east Qinghai Province were likely built primarily for military defense, and may have also have been affected by climate change.
NASA Astrophysics Data System (ADS)
Meng, Xianqiang; Liu, Lianwen; Wang, Xingchen T.; Balsam, William; Chen, Jun; Ji, Junfeng
2018-03-01
The East Asian summer monsoon (EASM) is an important component of the global climate system. A better understanding of EASM rainfall variability in the past can help constrain climate models and better predict the response of EASM to ongoing global warming. The warm early Pleistocene, a potential analog of future climate, is an important period to study EASM dynamics. However, existing monsoon proxies for reconstruction of EASM rainfall during the early Pleistocene fail to disentangle monsoon rainfall changes from temperature variations, complicating the comparison of these monsoon records with climate models. Here, we present three 2.6 million-year-long EASM rainfall records from the Chinese Loess Plateau (CLP) based on carbonate dissolution, a novel proxy for rainfall intensity. These records show that the interglacial rainfall on the CLP was lower during the early Pleistocene and then gradually increased with global cooling during the middle and late Pleistocene. These results are contrary to previous suggestions that a warmer climate leads to higher monsoon rainfall on tectonic timescales. We propose that the lower interglacial EASM rainfall during the early Pleistocene was caused by reduced sea surface temperature gradients across the equatorial Pacific, providing a testable hypothesis for climate models.
NASA Astrophysics Data System (ADS)
Doran, Taylor Louise; Herries, Andy I. R.; Hopley, Philip J.; Sombroek, Hank; Hellstrom, John; Hodge, Ed; Kuhn, Brian F.
2015-07-01
The tufa deposits of the Ghaap Plateau escarpment provide a rich, yet minimally explored, geological archive of climate and environmental history coincident with hominin evolution in South Africa. This study examines the sedimentary and geochemical records of ancient and modern tufas from Buxton-Norlim Limeworks, Groot Kloof, and Gorrokop, to assess the potential of these sediments for providing reliable chronologies of high-resolution, paleoenvironmental information. Chronometric dating demonstrates that tufa formation has occurred from at least the terminal Pliocene through to the modern day. The stable isotope records show a trend toward higher, more variable δ18O and δ13C values with decreasing age from the end of the Pliocene onwards. The long-term increase in δ18O values corresponds to increasingly arid conditions, while increasing δ13C values reflect the changing proportion of C3/C4 vegetation in the local environment. Analysis of the Thabaseek Tufa, in particular, provides valuable evidence for reconstructing the depositional and chronological context of the enigmatic Taung Child (Australopithecus africanus). Collectively, the results of the present study demonstrate the potential of these deposits for developing high-precision records of climate change and, ultimately, for understanding the causal processes relating climate and hominin evolution.
Total knee arthroplasty in patients with a prior fracture of the tibial plateau.
Weiss, Nicholas G; Parvizi, Javad; Trousdale, Robert T; Bryce, Rex D; Lewallen, David G
2003-02-01
A fracture of the tibial plateau may predispose the knee to the development of posttraumatic arthritis. Malunion, intra-articular chondro-osseous defects, limb malalignment, retained internal fixation devices, and poor surrounding soft tissues may in turn compromise the outcome of total knee arthroplasty. The aim of our study was to evaluate the results of total knee arthroplasty in patients with a previous fracture of the tibial plateau. The results of sixty-two condylar total knee arthroplasties performed with cement, from 1988 to 1999, in sixty-two patients with a previous fracture of the tibial plateau were reviewed. The fracture of the tibial plateau had been treated by open reduction and internal fixation in thirty-eight knees, external fixation in one knee, and nonoperatively in twenty-three knees. There were forty women and twenty-two men with an average age of sixty-three years at the time of the arthroplasty. Knee Society scores were recorded preoperatively and at the time of follow-up, at an average of 4.7 years, and complications were noted. No patient was lost to follow-up. The mean Knee Society scores improved significantly (p < 0.0001), from 43.9 points for pain and 52 points for function preoperatively to 82.9 and 84 points, respectively, at the time of the latest follow-up. There were thirteen reoperations, which included manipulation with the patient under anesthesia (five knees), wound revision (three knees), and component revision (five knees). There were six intraoperative complications (10%). A postoperative complication occurred in sixteen knees (26%). The vast majority of patients treated with total knee arthroplasty after a previous fracture of the tibial plateau have substantial improvement in function and relief of pain. However, these patients are at increased risk for perioperative complications, as evidenced by the high reoperation rate of 21% in this study.
NASA Astrophysics Data System (ADS)
Meyer, Michael; Aldenderfer, Mark; Wang, Zhijun; Hoffmann, Dirk; Dahl, Jenny; Degering, Detlev; Haas, Randy; Schlütz, Frank; Gliganic, Luke; May, Jan-Hendrik
2017-04-01
The nature and timing of a permanent human settlement on the Tibetan Plateau and the accompanying cultural and physiological responses, including genetic high-altitude adaptations, are subject to ongoing debate (1-3). The latest genetic data (based on extensive analysis of the modern Tibetan genome) suggest a main wave of human migration onto the plateau between 15 and 8 ka but genetic traces that hint to an even earlier initial occupation (dating to 65 ka) have to be considered too (4, 5). The archaeological record against which these genetic data can be compared to remains scant. The few archaeological sites with a chronometric age are all located on the northeastern margin of the plateau and range in date from 9 to 15 ka. These sites typically are at medium to low elevations (≤ 3300 masl) and are believed to have been short-term, seasonal occupations monitored from lower-elevation base camps (1). It is widely believed that permanent peopling of the interior (higher-elevation zones) of the Tibetan Plateau was only facilitated by an agricultural lifeway at 3.6 thousand calibrated carbon-14 years before present (2). The climatic and paleoenvironmental constraints on this colonization process are poorly understood (1-3). Here we report a reanalysis of the chronology and paleoenvironmental significance of the Chusang site, located on the central Tibetan Plateau at an elevation of 4270 meters above sea level (3). The site is known for its hot springs and extensive hydrothermal carbonate (travertine) formations and also preserves 19 human hand- and footprints on the surface of a fossil travertine sheet. The minimum age of the site is fixed at 7.4 thousand years (thorium-230/uranium dating), with a maximum age between 8.20 and 12.67 thousand calibrated carbon-14 years before present based on radiocarbon and OSL single-grain dating. Travel cost modeling and archaeological data suggest that the site was part of an annual, permanent, preagricultural occupation of the central plateau. We suggest that migration onto the plateau during the early Holocene was enabled by the wetter regional climate at that time. These findings challenge (i) current models of the occupation of the Tibetan Plateau and (ii) the original dating of Chusang that - based on OSL multi-grain dating - suggests and an age for the imprints of ca. 20 ka. 1. Aldenderfer, M. (2011): Peopling the Tibetan plateau: Insights from archaeology. High Alt. Med. Biol. 12, 141-147. 2. Chen, F. H. et al. (2015): Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B.P. Science 347, 248-250. 3. Meyer, M.C. et al. (2017): Permanent human occupation of the central Tibetan Plateau in the early Holocene. Science 355, 64-67. 4. Lu, D. et al. (2016): Ancestral Origins and Genetic History of Tibetan Highlanders. The American Journal of Human Genetics 99, 580-594. 5. Xiang, K. et al. (2013): Identification of a Tibetan-specific mutation in the hypoxic gene EGLN1 and its contribution to high-altitude adaptation. Molecular biology and evolution 30, 1889-1898.
Long, Hao; Fuchs, Markus; Yang, Linhai; Cheng, Hongyi
2016-01-01
Over the Tibetan Plateau and adjacent regions, numerous 14C-based lake records revealed a ubiquitous wet climatic period during 40–25 ka (late MIS 3), which is in contradiction with the global pattern of generally cold and dry climates. This paper focuses on OSL dating results of a large set of sand dunes and alluvial sediments (50 OSL ages) from the Qinwangchuan (QWC) Basin at the northeast edge of the Tibetan Plateau, with the aim to test the validity of the anomalous wet condition for the late MIS 3 interval, evidenced by numerous lake highstands. The abrupt sand dune accumulation as indication of increased aridity in the study area was OSL dated to ~40–13 ka. This dry climatic inference of the sand dune system from QWC apparently shows no wet MIS 3a event. Thus, the anomalous wet conditions revealed by high lake levels for the late MIS 3 phase may not be a universal phenomena across entire western China. PMID:27172907
NASA Astrophysics Data System (ADS)
Perello, M. M.; Bird, B. W.; Lei, Y.; Polissar, P. J.; Thompson, L. G.; Yao, T.
2017-12-01
The Tibetan Plateau is the headwaters of several major river systems in South Asia, which serve as essential water resources for more than 40% of the world's population. The majority of regional precipitation that sustains these water resources is from the Indian summer monsoon (ISM), which can experience considerably variability in response to local and remote forcings and teleconnections. Despite the ISM's importance, its sensitivity to long term and abrupt changes in climatic boundary conditions is not well established with the modern instrumental record or the available body of paleoclimate data. Here, we present results from an ongoing study that utilizes lake sediment records to provide a longer record of relative levels of precipitation and lake level during the monsoon season. The sediments cores used in this study were collected from five lakes along an east-west transect in the Eastern Tibetan Plateau (87-95°E). Using these records, we assess temporal and spatial variability in the intensity of the ISM throughout the Holocene on decadal frequencies. Multiple proxies, including sedimentology, grain size, geochemistry, terrestrial and aquatic leaf wax isotopes, and diatom community assemblages, are used to assess paleo-precipitation and lake level. Preliminary records from our lakes indicate regional trends in monsoon strength, with higher lake levels in the Early Holocene, but with greater variability in the Late Holocene than in other regional paleoclimate records. We have also observed weak responses in our lakes to the Late Holocene events, the Medieval Climate Anomaly and the Little Ice Age. These paleoclimate reconstructions furthers our understanding of strong versus weak monsoon intensities and can be incorporated in climate models for predicting future monsoon conditions.
Vaccaro, John J.
1992-01-01
The sensitivity of groundwater recharge estimates was investigated for the semiarid Ellensburg basin, located on the Columbia Plateau, Washington, to historic and projected climatic regimes. Recharge was estimated for predevelopment and current (1980s) land use conditions using a daily energy-soil-water balance model. A synthetic daily weather generator was used to simulate lengthy sequences with parameters estimated from subsets of the historical record that were unusually wet and unusually dry. Comparison of recharge estimates corresponding to relatively wet and dry periods showed that recharge for predevelopment land use varies considerably within the range of climatic conditions observed in the 87-year historical observation period. Recharge variations for present land use conditions were less sensitive to the same range of historical climatic conditions because of irrigation. The estimated recharge based on the 87-year historical climatology was compared with adjustments to the historical precipitation and temperature records for the same record to reflect CO2-doubling climates as projected by general circulation models (GCMs). Two GCM scenarios were considered: an average of conditions for three different GCMs with CO2 doubling, and a most severe “maximum” case. For the average GCM scenario, predevelopment recharge increased, and current recharge decreased. Also considered was the sensitivity of recharge to the variability of climate within the historical and adjusted historical records. Predevelopment and current recharge were less and more sensitive, respectively, to the climate variability for the average GCM scenario as compared to the variability within the historical record. For the maximum GCM scenario, recharge for both predevelopment and current land use decreased, and the sensitivity to the CO2-related climate change was larger than sensitivity to the variability in the historical and adjusted historical climate records.
Delayed build-up of Arctic ice sheets during 400,000-year minima in insolation variability.
Hao, Qingzhen; Wang, Luo; Oldfield, Frank; Peng, Shuzhen; Qin, Li; Song, Yang; Xu, Bing; Qiao, Yansong; Bloemendal, Jan; Guo, Zhengtang
2012-10-18
Knowledge of the past variability of climate at high northern latitudes during astronomical analogues of the present interglacial may help to inform our understanding of future climate change. Unfortunately, long-term continuous records of ice-sheet variability in the Northern Hemisphere only are scarce because records of benthic (18)O content represent an integrated signal of changes in ice volume in both polar regions. However, variations in Northern Hemisphere ice sheets influence the Siberian High (an atmospheric pressure system), so variations in the East Asian winter monsoon (EAWM)--as recorded in the aeolian dust deposits on the Chinese Loess Plateau--can serve as a useful proxy of Arctic climate variability before the ice-core record begins. Here we present an EAWM proxy record using grain-size variations in two parallel loess sections representative of sequences across the whole of the Chinese Loess Plateau over the past 900,000 years. The results show that during periods of low eccentricity and precessional variability at approximately 400,000-year intervals, the grain-size-inferred intensity of the EAWM remains weak for up to 20,000 years after the end of the interglacial episode of high summer monsoon activity and strong pedogenesis. In contrast, there is a rapid increase in the EAWM after the end of most other interglacials. We conclude that, for both the 400,000-year interglacials, the weak EAWM winds maintain a mild, non-glacial climate at high northern latitudes for much longer than expected from the conventional loess and marine oxygen isotope records. During these times, the less-severe summer insolation minima at 65° N (ref. 4) would have suppressed ice and snow accumulation, leading to a weak Siberian High and, consequently, weak EAWM winds.
NASA Astrophysics Data System (ADS)
Xiao, Guoqiao; Abels, Hemmo A.; Yao, Zhengquan; Dupont-Nivet, Guillaume; Hilgen, Frederik J.
2010-05-01
At the boundary between the Eocene and Oligocene epochs, approximately 34 million years ago (Ma), the Earth experienced a significant change from a greenhouse world to an icehouse world. The present understanding of the triggering mechanisms, processes and environmental effects of this climatic event is mostly based upon ocean sediment records and climatic modeling results. Terrestrial records of the critical interval are rare and, where available, often poorly constrained in time. Here, we present a continuous continental record (Tashan section) from the Xining basin at the northeastern edge of Tibetan Plateau, covering the period between ~35 to 33 Ma. Lithology supplemented with high-resolution magnetic susceptibility (MS), median grain size (MGS) and color reflectance (a*) records show clear Late Eocene basic cyclicity of ~3.5 m in length. Our detailed magnetostratigraphic age model indicates that this cycle was most likely forced by the 41-kyr obliquity cycle driving drier and wetter periods in northern hemisphere Asian interior climates already 1 million year before the Eocene-Oligocene Climate Transition (EOCT). Detailed comparison of the E/O boundary interval in the Tashan section with marine records show that the most pronounced lithofacies change in the Xining Basin corresponds to the first of two widely recognized steps in oxygen isotopes making up the EOCT. This first step is reported to precede the major and second step (base of the Oi-1 phase) by around 0.2 to 0.3 Myr and has recently been suggested to be mainly related to atmospheric cooling rather than ice volume growth.
A Look at Derailment Today: North America and Europe.
ERIC Educational Resources Information Center
Leslie, Jean Brittain; Van Velsor, Ellen
Executives with a track record of success are sometimes fired, demoted, or plateaued. This publication presents findings of a study conducted by the Center for Creative Leadership (CCL), which compared contemporary derailed and successful executives in the United States and Europe. Results are compared to those of earlier CCL findings. Data were…
NASA Astrophysics Data System (ADS)
Hou, Juzhi; D'Andrea, William J.; Wang, Mingda; He, Yue; Liang, Jie
2017-05-01
Precipitation atop the Tibetan Plateau (TP) is delivered by the Indian summer monsoon, the Asian summer monsoon, and weather systems associated with the subtropical westerly jet. Variations in the relative importance of the monsoon systems and the westerly jet are hypothesized to have occurred at decadal, millennial and glacial-interglacial scales. However, paleoclimate observations based on explicit climate proxies are still scarce, limiting our understanding of the mechanisms of Holocene climate variability on the Tibetan Plateau (TP). Here we present three independently dated compound specific hydrogen isotope records of sedimentary leaf waxes from lakes on the TP, Bangong Co, Lake Qinghai and Linggo Co. The leaf wax δD records reflect isotopes in precipitation, and we combine these observations with existing isotopic and hydrological data to investigate variations in the influence of the summer monsoon and the westerly jet on the moisture budget of the TP since the Late Pleistocene. δD values of precipitation at all three lakes were relatively positive during the Late Pleistocene indicating a weakened summer monsoon. During the early and mid-Holocene, δD values of precipitation at the three lakes were relatively negative, suggesting the importance of summer monsoon. During the middle to late Holocene, δD values at Bangong Co and Lake Qinghai gradually increased with superimposed episodes of short term of δD variability. However, at Linggo Co in the northern TP, periods of more positive δD values of precipitation correspond to wetter intervals inferred from lake level high stands, and likely reflect variations in moisture associated with the westerly jet. Thus, the δD records at Linggo Co imply the lesser importance of summer monsoon moisture in the hydrologic budget of the northern TP. Collectively, the hydrogen isotope records at these three lakes document millennial and centennial scale variations in the strength of the summer monsoon systems and concurrent changes in the westerly jet. Furthermore, millennial-scale fluctuations in the δD records at the three lakes during the middle to late Holocene suggest episodes of reduced summer monsoonal moisture delivery to these regions, and correspond with intervals of cool sea surface temperatures in the North Atlantic.
NASA Astrophysics Data System (ADS)
Chen, Fahu; Wu, Duo; Chen, Jianhui; Zhou, Aifeng; Yu, Junqing; Shen, Ji; Wang, Sumin; Huang, Xiaozhong
2016-12-01
Climatic and environmental changes in the northeastern Tibetan Plateau are controlled by the Asian summer monsoon (ASM) and the westerlies, two key circulation components of the global climate system which directly affect a large human population and associated ecosystems in eastern Asia. During the past few decades, a series of Holocene palaeoclimatic records have been obtained from sediment cores from Lake Qinghai and from various other geological archives in the surrounding area of the northeastern Tibetan Plateau. However, because of uncertainties regarding the sediment chronologies and the climatic significance of the proxies used, the nature of Holocene climatic changes in the region remains unclear and even controversial. Here we review all major classes of the published data from drilled cores from Lake Qinghai, as well as other evidence from lakes and aeolian deposits from surrounding areas, in order to reconstruct changes in moisture patterns and possible summer monsoon evolution in the area during the Holocene. Combining the results of moisture and precipitation proxies such as vegetation history, pollen-based precipitation reconstruction, aeolian activity, lake water depth/lake level changes, salinity and sediment redness, we conclude that moisture and precipitation began to increase in the early Holocene, reached their maximum during the middle Holocene, and decreased during the late Holocene - similar to the pattern of the East Asian summer monsoon (EASM) in northern China. It is clear that the region experienced a relatively dry climate and weak EASM during the early Holocene, as indicated by relatively low tree pollen percentages and fluctuating pollen concentrations; generally low lake levels of Lake Qinghai and the adjacent Lake Hurleg and Lake Toson in the Qaidam Basin; and widely distributed aeolian sand deposition in the Lake Qinghai Basin and the nearby Gonghe Basin to the south, and in the eastern Qaidam Basin to the west. We argue that the ostracod δ18O record, which is widely used as a proxy of effective moisture and summer monsoon intensity in lake sediments, at least in Lake Qinghai, and which exhibits light values in the early Holocene and heavier values thereafter, cannot be used to reflect the strength of the EASM or the intensity of monsoon precipitation - as is also the case for leaf wax δ2H records. Rather, we argue that as is the case of the Chinese speleothem δ18O record, which also is often interpreted as an EASM proxy, it reflects variation in the δ18O of precipitation. Overall, we suggest that the EASM significantly affected precipitation in the northeastern Tibetan Plateau during the Holocene; and that it increased in strength during the early Holocene, reached a maximum during the middle Holocene and decreased during the late Holocene.
NASA Astrophysics Data System (ADS)
An, Z.; Colman, S.
2007-12-01
As a closed continental lake on the north-east margin of the Tibetan Plateau, Lake Qinghai is sensitive to climate variations as well as the environmental effects of Plateau growth/uplift. Supported by Chinese funding agencies and ICDP, onshore and offshore lake cores were drilled in 2005. We compare our preliminary chronostratigraphic, sedimentologic, and geochemical results with climatic records from the Loess Plateau, South China Sea, Arctic and global oceans, and we discuss the evolution of Lake Qinghai at different time scales since the late Miocene. Lake Qinghai is shown to have intimate linkages with the warm/moist East Asian summer monsoon, the cold/dry East Asian winter monsoon, and the growth/uplift of the Tibetan Plateau. Magnetostratigraphic studies of the onshore drill cores indicate that thick greenish clays were deposited during Late Miocene, suggesting the initial formation of the Qinghai Lake basin. Consistent with proxies from the Loess Plateau and the South China Sea, they imply summer-monsoon strengthening and inland intrusion. These changes may be related to a growth event of the Tibetan Plateau at 10-8 Ma, which led to the uplift of Qinghai Nanshan, formation of faulted lake basins, and enhanced summer monsoon circulation. From 6 to 4.6Ma eolian red clays in the core indicate lake basin dessication, as Loess Plateau dust flux increased with the strengthening of the winter monsoon and coincident with intense Arctic ice rafting at 6-5 Ma. From 4.6 to 3.5 Ma thick greenish clays were deposited as modern Lake Qinghai formed. Significantly increased fluxes of TOC, C/N and total sediment might be related to uplift of Qinghai Nanshan and basin subsidence at that time, and they are coeval with the increasing strength of East Asian monsoon during early Pliocene. At 3.5-2.6 Ma, continued strengthening of the East Asian summer monsoon, inland aridification, and increases in global ice volume suggest another growth event of the Tibetan Plateau. Shallow-water silty clays were deposited in the lake basin at this time. Since 2.6 Ma, deposition in the basin was characterized by shallow-water silty clays, intercalated with layers of loess- like material, eolian sand, gravel, and sand, indicating multiple lake expansion/dessication cycles, presumably at orbital frequencies, reflecting multiple migrations of the East Asian summer monsoon front driven by solar radiation and global ice volume changes over this region. Several previous studies of cores as much as 7m long from the depositional basins of Lake Qinghai have documented monsoon climate and environmental changes at the lake from the deglacial period through the Holocene, which are generally consistent with northern Hemisphere summer insolation and its seasonality changes. A wide variety of proxies have been used, and some cores have been studied at very high temporal resolution, especially for the last several hundred years. Results suggest that solar activity influences decadal regional temperatures, and that it is the East Asian summer monsoon as opposed to the Indian summer monsoon that acts as the dominate moisture source at the decadal scale within the local region. Offshore GLAD800 drill cores obtained in 2005 sampled fine-grained sediments before encountering thick units of sand. The fine-grained sections are 2-3 times longer than previous cores from similar sites. Paleolimnological proxy studies are underway on these cores to extend the young part of the paleoenvironmental record back to significantly before the last glacial maximum.
NASA Astrophysics Data System (ADS)
Li, Xiangzhong; Liu, Xiangjun; He, Yuxin; Liu, Weiguo; Zhou, Xin; Wang, Zheng
2018-02-01
Holocene climatic and environmental changes on the northeastern Tibetan Plateau (TP) have been widely discussed based on the climatic records from sedimentary cores. However, differences in the reconstructed climatic history from various studies in this region still exist, probably due to influence of climatic proxies from multiple factors and the chronological uncertainties in lacustrine sediments. Here we present records of terrestrial plant δ13C, soil color and total organic carbon content over the past 8400 years from a well-dated meadow section on the northeastern TP. The terrestrial plant δ13C value serves as a good summer precipitation/moisture indicator in the studied region. Soil color property and TOC content are also able to disentangle the moisture evolution history. All the data show much wet climates at 8400-7400 cal yr BP, dry climates at 7400-6000 cal yr BP and then wet conditions with fluctuation at 6000-3200 cal yr BP. Late Holocene moisture appears to be comparable with moist conditions from 6000 to 3200 cal yr BP. By further comparing the climatic variations in the Lake Qinghai area with records of the reconstructed summer temperature and the Asian Monsoon precipitation, we believe that the pattern of moisture/precipitation evolution in the Lake Qinghai area was not completely consistent with regions around Lake Qinghai, probably due to complicated interaction between the East Asian Summer Monsoon and the Indian Summer Monsoon.
NASA Astrophysics Data System (ADS)
Lu, Fengyan; An, Zhisheng; Chang, Hong; Dodson, John; Qiang, Xiaoke; Yan, Hong; Dong, Jibao; Song, Yougui; Fu, Chaofeng; Li, Xiangzhong
2017-05-01
The Early Pliocene Warm Period (EPWP, 5-3 Ma) is sometimes thought to be a useful analogue for a future warmer world, and thus the boundary conditions and drivers of climate in the EPWP may provide valuable lessons for understanding how a future warmer world might unfold. Lake Qinghai is located on the northeastern margin of the Tibetan Plateau (TP) and is affected by both Monsoon climate and Westerlies circulation. It is sensitive to the climate drivers of these systems. Its sediments, accumulated over the Cenozoic period, are a rich source of information for climate, tectonics and environmental changes of the period. We present a high-resolution ostracod record from a Lake Qinghai sediment core with a record of the period 5.10-2.60 Ma, thus covering the EPWP. Ostracods appear at 4.63 Ma and are most abundant until 3.58 Ma, while a body of water was present at the core site. This suggests a phase of humid climate and an intensified Asian Summer Monsoon (ASM), which is consistent with a warmer and wetter climate in the early Pliocene. Within this period the ostracod record shows some variabilities in lake level with deeper periods suggesting more intense ASM compared to those with shallower water. The disappearance of ostracods at 3.58 Ma may provide evidence for the uplift of Qinghai Nanshan (south of Qinghai Lake) since this is when the ASM intensified.
NASA Astrophysics Data System (ADS)
Duan, Y.; Sun, Q.; Zhao, H.
2017-12-01
GDGTs-based proxies have been used successfully to reconstruct paleo-temperature from loess-paleosol sequences during the past few years. However, the pH variations of loess sediments derived from GDGTs covering the geological history remain poorly constrained. Here we present two pH records spanning the last 12 ka (1ka=1000years) based on the modified cyclization ratio index (CBT') of the branched GDGTs using regional CBT'-pH empirical relationship from two well-dated loess-paleosol sections (YWY14 and SHD09) in the northeastern Tibetan Plateau. The results indicate that a slightly alkaline condition occurred during 12 8.5 ka with pH values ranging from 6.98 to 7.24, then CBT'-derived pH decreased from 8.5 to 6.5 ka with values from 7.19 to 6.49 and gradually increased thereafter. The reconstructed pH values from topmost samples can be well compared with instrumental pH values of the surrounding surface soil. The lowest intervals of CBT'-derived pH values during the mid-Holocene in our records are consistent with the results of highest tree pollen percentage from the adjacent lake sediments and regional weakest aeolian activities, which reveals that the moisture maximum during that period, but conflicted with previous results of the wettest early-Holocene inferred from speleothem or ostracod shell oxygen isotope (δ18O) values. Taking together, we conclude that Holocene humidity evolution (wettest middle Holocene) in response to the East Asian summer monsoon (EASM) changes exerts important control on pH variations of loess deposits in northeastern Tibetan Plateau. CBT'-derived pH variations can be potentially used as an indicator of EASM evolution reconstructions. In addition, we argue that speleothem or ostracod shell δ18O records are essentially a signal of the isotopic composition of precipitations rather than EASM intensity.
NASA Astrophysics Data System (ADS)
Barman, Prakash; Jade, Sridevi; Shrungeshwara, T. S.; Kumar, Ashok; Bhattacharyya, Sanjeev; Ray, Jagat Dwipendra; Jagannathan, Saigeetha; Jamir, Wangshi Menla
2017-09-01
The present study reports the contemporary deformation of the tectonically complex northeast India using 11 years (2002-2013) of GPS observations. The central Shillong Plateau and few sites north of Plateau located in Assam Valley behave like a rigid block with 7 mm/year India-fixed southward velocity. The Euler pole of rotation of this central Shillong Plateau-Assam Valley (SH-AS) block is estimated to be at -25.1° ± 0.2°N, -97.8° ± 1.8°E with an angular velocity of 0.533° ± 0.10° Myr-1 relative to India-fixed reference frame. Kopili fault located between Shillong Plateau and Mikir massif records a dextral slip of 4.7 ± 1.3 mm/year with a locking depth of 10.2 ± 1.4 km indicating the fragmentation of Assam Valley across the fault. Presently, western edge of Mikir massif appears to be locked to Assam block indicating strain accumulation in this region. First-order elastic dislocation modelling of the GPS velocities estimates a slip rate of 16 mm/year along the Main Himalayan Thrust in Eastern Himalaya which is locked over a width of 130 km from the surface to a depth of 17 km with underthrusting Indian plate. Around 9 mm/year arc-normal convergence is accommodated in Lesser Himalaya just south of Main Central Thrust indicating high strain accumulation. Out of 36 mm/year (SSE) India-Sunda plate motion, about 16 mm/year motion is accommodated in Indo-Burmese Fold and Thrust Belt, both as normal convergence ( 6 mm/year) and active slip ( 7-11 mm/year) in this region.
Xie, Min; Huang, Jianxin; Li, Peng; Ou, Zhiyan; Hou, Jing
2016-06-23
We aimed to conduct a pharmacodynamic comparison of rocuronium bromide between patients from the plateau area and from the plain area. A total of 104 patients who received laparoscopic cholecystectomy in Sichuan Provincial People's Hospital and Aba Autonomous Prefecture People's Hospital from October 2015 to December 2015 were included in this study. Among them, 46 patients were from the plateau area and 58 were from the plain area. Both groups received total intravenous anesthesia (TIVA) with a dose of 0.6mg/kg rocuronium bromide during induction. In the meantime, neuromuscular block was monitored using a train-of-four (TOF) stimulation mode. The onset time (time to achieve the lowest TOF value after the injection of rocuronium bromide), duration of maximal neuromuscular block (duration of lowest T1 value), time to 25% recovery, time to 75% recovery, recovery index (time from 25% recovery to 75% recovery), time to extubation, length of stay in Post Anesthesia Care Unit (PACU) and muscle strength upon PACU discharge were all recorded. The onset time, time to 25% recovery, time to 75% recovery and time to extubation were all significantly prolonged in patients from the plateau area after receiving one single dose of rocuronium bromide (P<0.05). However, both groups didn't show any significant difference in maximal neuromuscular block, recovery index (time from 25% recovery to 75% recovery), length of stay in PACU or muscle strength upon PACU discharge (P>0.05). Compared to patients from the plain area, patients from the plateau area showed prolonged onset time of rocuronium bromide, reduced metabolic capabilities and longer duration of muscular relaxation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Modern limnology of two lakes in the Tibetan Plateau - evidence from in-situ monitoring
NASA Astrophysics Data System (ADS)
Wang, M.; Li, X.; Lei, L.; He, Y.; Hou, J.
2013-12-01
The mechanisms of climate change in the Tibetan Plateau, known as the Third Pole, receive more and more attention due to its unique geographic location and the influence of multiple climate systems. Among the paleoclimate archives, widespread lakes provide abundant information on past climate changes and have been investigated for decades. Though many high-quality paleolimnological records have been reported in the Tibetan Plateau, little is known about the modern limnological processes in most Tibetan lakes as most lakes are difficult to access and not ready for long-term monitoring. We have installed a series of temperature data logger at different water levels in two Tibetan lakes, Bangong Co and Dagze Co in July 2012 to monitor hourly variability of temperature profile. Bangong Co (33.5°N, 79.8°E, 4245 m asl) is a freshwater lake (salinity ~0.5 g/L) in the westernmost Tibetan Plateau, receiving melt water from mountain glaciers in the basin. Dagze Co (31.9°N, 87.5°E, 4470 m asl) is saline lake (salinity ~15 g/L) in the central Tibetan Plateau, mostly fed by precipitation. In combination with the climate data in the nearby weather stations, we wish to understand the modern limnological processes in the two lakes and their potential effect on the lake biology, sedimentation, and sedimentary biomarkers. Based on the data collected for the first calendar year (Jul 2012 ~ Aug 2013), we anticipate to understand: 1) the influence of climate on the hydrological processes in high elevation lakes; 2) the difference in the metalimnion in meltwater-fed lake (Bangong Co) and precipitation-fed lake (Dagze Co) and their potential effect on the lake biology; 3) the difference in the spring turnover and fall turnover and the effect of meltwater and salinity.
Cretaceous plate interaction during the formation of the Colombian plateau, Northandean margin
NASA Astrophysics Data System (ADS)
Kammer, Andreas; Piraquive, Alejandro; Díaz, Sebastián
2015-04-01
The Cretaceous subduction cycle at the Northandean margin ends with an accretionary event that welds the plateau rocks of the present Western Cordillera to the continental margin. A suture between plateau and rock associations of the continental margin is well exposed at the western border of the Central Cordillera, but overprinted by intense block tectonics. Analyzed in detail, its evolution tracks an increased coupling between lower and upper plate, as may be accounted for by the following stages: 1) The Cretaceous plateau suite records at its onset passive margin conditions, as it encroaches on the continental margin and accounts for an extensional event that triggered the emplacement of ultramafic and mafic igneous rock suites along major faults. 2) An early subduction stage of a still moderate plate coupling is documented by the formation of a magmatic arc in an extensional setting that may have been prompted by slab retreat. Convergence direction was oblique, as attested the transfer of strike-slip displacements to the forearc region. 3) A phase of strong plate interaction entailed the delamination of narrow crustal flakes and their entrainment to depths below the petrologic Moho, as evidenced by their present association to serpentinites in a setting that bears characteristics of a subduction channel. 4) During the final collisional stage deformation is transferred to the lower plate, where the stacking of imbricate sheets, combined with their erosional unloading, led to the formation of an antiformal bulge that fed a foreland basin. - The life time of this Cretaceous subduction cycle was strictly synchronous to the construction of the Colombian plateau. With the final collisional stage magmatic activity vanished. This coincidence incites to explore a relationship between plume activity and subduction.
Biagianti, Bruno; Fisher, Melissa; Neilands, Torsten B; Loewy, Rachel; Vinogradov, Sophia
2016-11-01
Individuals with schizophrenia who engage in targeted cognitive training (TCT) of the auditory system show generalized cognitive improvements. The high degree of variability in cognitive gains maybe due to individual differences in the level of engagement of the underlying neural system target. 131 individuals with schizophrenia underwent 40 hours of TCT. We identified target engagement of auditory system processing efficiency by modeling subject-specific trajectories of auditory processing speed (APS) over time. Lowess analysis, mixed models repeated measures analysis, and latent growth curve modeling were used to examine whether APS trajectories were moderated by age and illness duration, and mediated improvements in cognitive outcome measures. We observed significant improvements in APS from baseline to 20 hours of training (initial change), followed by a flat APS trajectory (plateau) at subsequent time-points. Participants showed interindividual variability in the steepness of the initial APS change and in the APS plateau achieved and sustained between 20 and 40 hours. We found that participants who achieved the fastest APS plateau, showed the greatest transfer effects to untrained cognitive domains. There is a significant association between an individual's ability to generate and sustain auditory processing efficiency and their degree of cognitive improvement after TCT, independent of baseline neurocognition. APS plateau may therefore represent a behavioral measure of target engagement mediating treatment response. Future studies should examine the optimal plateau of auditory processing efficiency required to induce significant cognitive improvements, in the context of interindividual differences in neural plasticity and sensory system efficiency that characterize schizophrenia. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
The Colorado Plateau: cultural, biological, and physical research
Cole, Kenneth L.; van Riper, Charles
2004-01-01
Stretching from the four corners of Arizona, New Mexico, Colorado, and Utah, the Colorado Plateau is a natural laboratory for a wide range of studies. This volume presents 23 original articles drawn from more than 100 research projects presented at the Sixth Biennial Conference of Research on the Colorado Plateau. This scientific gathering revolved around research, inventory, and monitoring of lands in the region. The book's contents cover management techniques for cultural, biological, and physical resources, representing collaborative efforts among federal, university, and private sector scientists and land managers. Chapters on cultural concerns cover benchmarks of modern southwestern anthropological knowledge, models of past human activity and impact of modern visitation at newly established national monuments, challenges in implementing the 1964 Wilderness Act, and opportunities for increased federal research on Native American lands. The section on biological resources comprises sixteen chapters, with coverage that ranges from mammalian biogeography to responses of elk at the urban-wildland interface. Additional biological studies include the effects of fire and grazing on vegetation; research on bald eagles at Grand Canyon and tracking wild turkeys using radio collars; and management of palentological resources. Two final chapters on physical resources consider a proposed rerouting of the Rio de Flag River in urban Flagstaff, Arizona, and an examination of past climate patterns over the Plateau, using stream flow records and tree ring data. In light of similarities in habitat and climate across the Colorado Plateau, techniques useful to particular management units have been found to be applicable in many locations. This volume highlights an abundance of research that will prove useful for all of those working in the region, as well as for others seeking comparative studies that integrate research into land management actions.
NASA Astrophysics Data System (ADS)
Guozhuang, Shen; Jingjuan, Liao; Huadong, Guo; Yingkui, Li
2014-03-01
Qinghai-Tibetan Plateau is the largest lake area in China, with a total area of existing lakes of 36,900km2, accounting for 52% of the total lake area of China. Lakes on the Tibetan Plateau play critical roles in the water cycle and ecological and environment systems of the Plateau. The global trend of warming up is increasing obviously, which has led to major changes in the climate conditions in China, even in the world. Whereas, when they analyse the relationship they just use the weather station's recording data, without any spatial analysis of the climate data. Here, we will do some researches on the relationship between the 10 selected lakes' area variation and the corresponding climate change in their drainage basin and discuss how the lakes changes in recent 40 years using the climate data processed using the spatial kriging. Thus, the drainage area can be taken into account and a real relationship can be pointed out. In order to study the relationship, Landsat MSS data, Landsat TM, Landsat ETM images, the topographic map have been collected to extract the variation of lake area. The 131 weather stations climate data, including precipitation, temperature, sun shine duration, evaporation are chosen to study the relationship. After extraction of the area of the lakes, a multivariate statistical analysis method was used to test the relationship between the area of the lakes and the global climate change, including the change of the temperature, the precipitation, and other factors. The variation of lakes in Qinghai-Tibetan Plateau is related to the mean temperature, the precipitation and saturation vapour pressure. But the frozen soil may affect the lake area variation to some extent.
NASA Astrophysics Data System (ADS)
Cuo, L.
2017-12-01
Desert is an area that receives less than 25 cm precipitation in cold climate or 50 cm precipitation in hot climate (Miller, 1961). Others defined true desert as a region having no recorded precipitation in 12 consecutive months (McGinnies et al., 1968). According to Koppen-Gieger climate classification system, if mean annual precipitation is less than 50% of the value A calculated by mean annual temperature times 20 plus 280 if 70% or more precipitation falls in April-September, the region has desert climate; if the mean annual precipitation is within 50%-100% of the value A, the region has semi-arid or steppe climate. On the Tibetan Plateau, the above definitions will result in no desert at all or the majority of the region falling into the category of desert which is not consistent with reality based on field exploration. In this study, the fractional vegetation coverage (FPC), precipitation, soil moisture and extreme wind days are used as indices to define areas of various degrees of desertification which produces much more realistic distribution of desert areas on the plateau. The Lund-Potsdam-Jena Dynamic Vegetation model (LPJ) is used to simulate vegetation growth, succession and vegetation properties such as FPC and soil moisture on the Tibetan Plateau. Gridded daily climate data are generated to drive the model and to analyze the status and changes of various deserts including light desert, medium desert, severe desert, extremely severe desert and desert proned area. The study will reveal the status and changes of possible driving factors of desertification, as well as various kinds of desert on the Tibetan Plateau during 1957-2015.
Global Cooling Drive Tectonic Scale Aridification of Asian Interior since Miocene
NASA Astrophysics Data System (ADS)
Jiang, F.; Zhu, X.
2017-12-01
Global cooling and the uplift of Tibetan Plateau are two potential mechanisms for tectonic scale aridification of Asian interior since Miocene. However, their relative importance is still controversial due to lack of continuous paleoclimate record. Here, using a 164 m long sediment core from Site U1438 in the Amami Sankaku Basin (ASB) in the NW Pacific, we show that the tectonic scale aridification of Asian interior is linked to global cooling rather than the uplift of the Tibetan Plateau. We analyzed the characteristics and variations of clastic mineral (e.g. quartz), clay minerals, radiogenic strontium (Sr) and neodymium (Nd) isotopes of the fine pelagic mud intervals from the sediment core. These new evidences indicate a continuous input of Asian dust from Asian interior to ASB since Miocene. We found that Asian dust in the ASB overall increased starting from ca.15.0 Myr (mid-Miocene), and ca. 3.5 Myr (Late Pliocene). The variations of Asian dust transport and accumulation closely responds to known times of enhanced Asian aridification and prevailing westerlies. The overall and gradual increase of Asian dust since mid-Miocene and Late Pliocene are in agreement with the formation and development of the polar ice caps, and are coupled with the gradual decrease of the global temperature recorded by the δ18O ratio of forams, but lag behind the tectonic uplift of the Tibetan Plateau. We argue that global cooling drove the aridification of the Asian interior and resulted in the increase of Asian dust deposition in the ASB.
NASA Astrophysics Data System (ADS)
Wang, Jian-Gang; Hu, Xiumian; Garzanti, Eduardo; Ji, Wei-Qiang; Liu, Zhi-Chao; Liu, Xiao-Chi; Wu, Fu-Yuan
2017-07-01
Constraining the timing of early topographic growth on the Tibetan plateau is critical for any models of India-Asia collision, Himalayan orogeny and subsequent plateau development in the Cenozoic. Stratigraphic, sedimentological and provenance analysis of the Lower Cretaceous red-beds of the Damxung Conglomerate provide new key information to reconstruct the paleogeography and the tectonic evolution of the Lhasa terrane at the time. The over 700-m-thick Damxung Conglomerate documents distal alluvial fan to braidplain sedimentation passing upward to proximal alluvial fan sedimentation. Deposition began near sea level, as documented by limestone beds occurring at the base of the unit. Zircon U-Pb dating of interbedded tuff layers constrain deposition age at ca. 111 Ma. Abundance of volcanic clasts, Cretaceous U-Pb ages and Hf isotopes of detrital zircons yielding mainly negative ɛHf(t) values together with paleocurrent data indicate an active volcanic source located in the North Lhasa subterrane. Pre-Mesozoic-aged zircon, recycled quartz and (meta) sedimentary rock fragments increase up-section, indicating progressive erosional exhumation of the Paleozoic sedimentary/metasedimentary basement. The Damxung Conglomerate thus records a significant uplift and unroofing stage in the source region, implying initial topographic growth on the Lhasa terrane at early Albian time. Early Cretaceous topographic growth on the Lhasa terrane is supported by the stratigraphic record in the Linzhou basin, the Xigaze forearc basin and the southern Nima basin. In contrast, marine strata in the central-western Lhasa terrane lasted until the early Cenomanian (ca. 96 Ma), indicating diachronous marine regression on the Lhasa terrane from east to west.
Monsoonal upwelling in the western Arabian Sea since the middle Miocene
NASA Astrophysics Data System (ADS)
Zhuang, G.; Zhang, Y.
2017-12-01
The Asian monsoon has long been argued to be a product of the Himalaya-Tibetan Plateau, and simulation experiments have confirmed the key role of the Himalaya-Tibetan Plateau in transforming regional atmospheric and oceanic circulations. However, temporal constraints on the strengthening of the Asian monsoon inferred from foraminifer isotopic and faunal data and terrestrial climatic and ecological records are inconsistent with each other, which has obscured the tectonic-climatic linkage. In particular, discriminating the post-middle Miocene global cooling from the monsoon upwelling cooling is critical, but poorly understood due to the lack of adequate constraints for monsoonal upwelling. Here we present new middle to late Miocene biomarker-based reconstructions of sea-surface temperature (SST) for the western Arabian Sea. Our new SSTs capture a long-term ocean cooling since ca. 14.8 Ma and a major drop in SST in the period 11-10 Ma after which the SSTs reached similar values as the Holocene. The new SST record is consistent with planktonic foraminifer, siliceous biota, and geochemical tracer studies, suggestive of ocean cooling and high productivity associated with monsoonal upwelling. The 11-10 Ma ocean cooling is not clearly expressed in other tropical oceans, indicating that the ocean cooling in the western Arabian Sea is not a simple reflection of global cooling. We interpret the 11-10 Ma ocean cooling as representing the establishment of monsoonal upwelling in the western Arabian Sea, triggered by strong cyclonic activities as a result of the Neogene outward expansion of the Himalaya-Tibetan Plateau.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freon, A.
1962-01-01
It is well known that 27-day recurrent variation of cosmic radiation presents long periods of stability in correlation with long-life high-activity regions of the sun. These variations have been previously studied during the last solar activity maximum (Oct. 1956 to Dec. 1958) using data from two neutron monitors located at Pic-du-Midi, France, and Port-aux-Francais, Kerguelen Island. Results are presented from a study of these recurrent variations for the Jan. 1955 to Jan. 1961 period. (W.D.M.)
NASA Astrophysics Data System (ADS)
Strecker, M. R.; Bookhagen, B.; Alonso, R.
2012-12-01
With average elevations of about 3.7 km, the semi-arid to arid Puna Plateau is a first-order morphotectonic province of the southern central Andes and is an integral part of the world's second largest orogenic plateau. With few exceptions, this region consists of internally drained, partly coalesced sedimentary basins that are mainly bordered by 5- to 6-km high reverse-fault bounded basement ranges or volcanic edifices. The basins contain continental evaporites, volcanic and clastic deposits, typically between 3 and 5 km thick, and record protracted sedimentation since the Eo-Oligocene. While these basins and ranges are related to contraction, extensional tectonics associated with mafic volcanism characterizes the eastern and southern sectors of the Puna Plateau, while the eastern flanks of the plateau and the adjacent foreland are subjected to shortening. The changeover from contraction to extension in the Puna appears to have been diachronous. Along the SE plateau margin the changeover based on previously published age dating took place between 7 and 5 Ma, while areas in the central and northern Puna document shortening until 6 and 9 Ma, respectively. In the latter two areas, however, evidence for extension comparable to the eastern and southeastern plateau is scarce. This is compatible with our new observations from the Salar de Pocitos area in the western interior of the plateau, which has been characterized by protracted shortening from the Tertiary to the present-day. The N-S oriented Salar de Pocitos basin (435 km2) is the vestige of a formerly contiguous sedimentary basin that extended to the Salar de Arizaro in the west. Unlike many other basins in this region, the Pocitos basin is bordered by the limb of an anticline developed in Tertiary sedimentary rocks on the west, while the east side comprises the reverse-faulted range front of Sierra Qda. Honda. To the north the basin is closed by transverse-oriented late Miocene volcanic edifices, and to the south it is delimited by structural blocks. Evidence for sustained contractional tectonic activity exists along the western basin margin. Fanning of dipping strata, inclined gravel-covered pediment surfaces, and wind gaps associated with gravel derived from the Cerro Macón ~15 km to the west document late Tertiary to Pleistocene growth of the basin-bounding, approximately N-S oriented and N-plunging anticline. Late Pleistocene and Holocene lake shorelines and lacustrine deposits are also tilted eastward along the same structure. In addition, Interferometric Synthetic Aperture Radar (InSAR) measurements of deformed lake terraces in the Pocitos basin clearly document that the fold is growing and that the basin continues to be asymmetrically deformed. Taken together, the results of previous observations and our study emphasize that (1) a plateau-wide kinematic changeover from shortening to extension does not exist; (2) the kinematic changeover was rather disparate in space and time; and (3) internal sectors of the plateau continue to be shortened and the plateau margin and regions in the adjacent broken foreland have not developed through progressive eastward propagation of deformation.
NASA Astrophysics Data System (ADS)
Sun, H.; Seki, O.; Zhou, A.; Chen, F.; Schouten, S.; Toney, J. L.; Bendle, J.
2011-12-01
The Asian monsoon is a key component of the earth's climate system that directly affects the livelihood of 50 million people on the loess plateau of central China. At the far edge of monsoonal influence, this region is especially vulnerable to future changes in temperature and evaporation / precipitation. Therefore, paleoclimatic information on the natural sensitivity of the region to changes in monsoon driven aridity are crucial. Despite the need for multiproxy records of Holocene climate from this region, reconstructions are rare, because of the low resolution of loess deposits and the scarcity of other paleoclimate archives (e.g. natural lakes, speleothems). Here we present multiple proxy records from Tianchi lake, one of the few nature lakes on the loess plateau and central China. The chronology is well constrained by a high-resolution (20 AMS 14C dates) radiocarbon age-model, spanning the past 6200 years. Here we present pollen, Glycerol dibiphytanyl glycerol tetraethers (GDGTs), lake macrophyte and higher plant-wax biomarkers to reconstruct regional climate change during the middle to late Holocene. Evidence from pollen data suggest that deciduous trees decreased from 6200 cal yr BP and then more rapidly from 1000 yr BP. Modern and downcore molecular distribution patterns of n-alkanes and n-alkanoic acids, especially n-alkane Paq values, suggest increasing relative abundance of macrophytes over this time, which we interpret (based on lake morphology) as decreasing lake-level. Using the recent Sun et al (2011) regional calibration we derive mean annual GDGT based temperatures (MBT/CBT-MATs) with reasonable ranges. Our temperature reconstruction closely correlates on millennial to centennial timescales with the independent D/H measurements on C28 fatty acid methyl esters (C28 FAMEs), whose signal is assumed to derive primarily from terrestrial plant waxes and the δD values to reflect local changes in relative humidity. Comparisons of our independent GDGT temperatures and plant-wax hydrogen isotopic records with stalagmite δ18O records from the monsoon region and NH summer insolation suggests strongly that our record reflects regional changes in monsoon strength forced by NH summer insolation. Superimposed on the longer-term insolation driven changes are centennial scale variations, recorded by both the independent reconstructions of relative humidity (C28 FAME δD) and temperature (MBT/CBT-MAT). In the most recent 1000yr, and especially the last 500yr of the record, the lake sediments record significant changes in many parameters, magnetic susceptibility, rapid increases in herbaceous pollen and decreases in deciduous trees, changes in biomarker distributions and isotopes. This is coeval with documentary records of increasing local population density and infers historical human impact on the catchment.
Is radiographic measurement of bony landmarks reliable for lateral meniscal sizing?
Yoon, Jung-Ro; Kim, Taik-Seon; Lim, Hong-Chul; Lim, Hyung-Tae; Yang, Jae-Hyuk
2011-03-01
The accuracy of meniscal measurement methods is still in debate. The authors' protocol for radiologic measurements will provide reproducible bony landmarks, and this measurement method of the lateral tibial plateau will correlate with the actual anatomic value. Controlled laboratory study. Twenty-five samples of fresh lateral meniscus with attached proximal tibia were obtained during total knee arthroplasty. Each sample was obtained without damage to the meniscus and bony attachment sites. The inclusion criterion was mild to moderate osteoarthritis in patients with mechanical axis deviation of less than 15°. Knees with lateral compartment osteoarthritic change or injured or degenerated menisci were excluded. For the lateral tibial plateau length measurements, the radiographic beam was angled 10° caudally at neutral rotation, which allowed differentiation of the lateral plateau cortical margins from the medial plateau. The transition points were identified and used for length measurement. The values of length were then compared with the conventional Pollard method and the anatomic values. The width measurement was done according to Pollard's protocol. For each knee, the percentage deviation from the anatomic dimension was recorded. Intraobserver error and interobserver error were calculated. The deviation of the authors' radiographic length measurements from anatomic dimensions was 1.4 ± 1.1 mm. The deviation of Pollard's radiographic length measurements was 4.1 ± 2.0 mm. With respect to accuracy-which represents the frequency of measurements that fall within 10% of measurements-the accuracy of authors' length was 98%, whereas for Pollard's method it was 40%. There was a good correlation between anatomic meniscal dimensions and each radiologic plateau dimensions for lateral meniscal width (R(2) = .790) and the authors' lateral meniscal length (R(2) = .823) and fair correlation for Pollard's lateral meniscal length (R(2) = .660). The reliability of each radiologic measurement showed good reliability (intraclass correlation coefficients, .823 to .973). The authors tried to determine the best-fit equation for predicting meniscal size from Pollard's method of bone size, as follows: anatomic length = 0.52 × plateau length (according to Pollard's method) + 5.2, not as Pollard suggested (0.7 × Pollard's plateau length). Based on this equation-namely, the modified Pollard method-the percentage difference decreased, and the accuracy increased to 92%. Lateral meniscal length dimension can be accurately predicted from the authors' radiographic tibial plateau measurements. This study may provide valuable information in preoperative sizing of lateral meniscus in meniscal allograft transplantation.
The ionic bases of the action potential in isolated mouse cardiac Purkinje cell.
Vaidyanathan, Ravi; O'Connell, Ryan P; Deo, Makarand; Milstein, Michelle L; Furspan, Philip; Herron, Todd J; Pandit, Sandeep V; Musa, Hassan; Berenfeld, Omer; Jalife, José; Anumonwo, Justus M B
2013-01-01
Collecting electrophysiological and molecular data from the murine conduction system presents technical challenges. Thus, only little advantage has been taken of numerous genetically engineered murine models to study excitation through the cardiac conduction system of the mouse. To develop an approach for isolating murine cardiac Purkinje cells (PCs), to characterize major ionic currents and to use the data to simulate action potentials (APs) recorded from PCs. Light microscopy was used to isolate and identify PCs from apical and septal cells. Current and voltage clamp techniques were used to record APs and whole cell currents. We then simulated a PC AP on the basis of our experimental data. APs recorded from PCs were significantly longer than those recorded from ventricular cells. The prominent plateau phase of the PC AP was very negative (≈-40 mV). Spontaneous activity was observed only in PCs. The inward rectifier current demonstrated no significant differences compared to ventricular myocytes (VMs). However, sodium current density was larger, and the voltage-gated potassium current density was significantly less in PCs compared with myocytes. T-type Ca(2+) currents (I(Ca,T)) were present in PCs but not VMs. Computer simulations suggest that I(Ca,T) and cytosolic calcium diffusion significantly modulate AP profile recorded in PCs, as compared to VMs. Our study provides the first comprehensive ionic profile of murine PCs. The data show unique features of PC ionic mechanisms that govern its excitation process. Experimental data and numerical modeling results suggest that a smaller voltage-gated potassium current and the presence of I(Ca,T) are important determinants of the longer and relatively negative plateau phase of the APs. Copyright © 2013 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ward, Dylan J.; Cesta, Jason M.; Galewsky, Joseph; Sagredo, Esteban
2015-11-01
The spatiotemporal pattern of glaciation along the Andes Mountains is an important proxy record reflecting the varying influence of global and regional circulation features on South American climate. However, the timing and extent of glaciation in key parts of the orogen, particularly the deglaciated arid Andes, are poorly constrained. We present new cosmogenic 10Be and 36Cl exposure ages for glacial features on and near the Chajnantor Plateau (23 °S). The new dates, although scattered due to cosmogenic inheritance, imply that the most recent extensive glacial occupation ended before or during the global Last Glacial Maximum (LGM). We discuss this new record in the context of published glacial chronologies from glacial features in Peru, Bolivia, and northern Chile rescaled using the latest cosmogenic 10Be production rate calibration for the tropical Andes. The results imply regionally synchronous moraine stabilization ca. 25-40 ka, 15-17 ka, and 12-14 ka, with the youngest of these moraines absent in records south of ∼20 °S, including in our new Chajnantor area chronology. This spatial pattern implicates easterly moisture in generating sufficient snowfall to glaciate the driest parts of the Andes, while allowing a role for westerly moisture, possibly modulated by the migration of the Southern Westerly Wind belt, in the regions near and south of the Atacama Desert.
Sensory-evoked LTP driven by dendritic plateau potentials in vivo.
Gambino, Frédéric; Pagès, Stéphane; Kehayas, Vassilis; Baptista, Daniela; Tatti, Roberta; Carleton, Alan; Holtmaat, Anthony
2014-11-06
Long-term synaptic potentiation (LTP) is thought to be a key process in cortical synaptic network plasticity and memory formation. Hebbian forms of LTP depend on strong postsynaptic depolarization, which in many models is generated by action potentials that propagate back from the soma into dendrites. However, local dendritic depolarization has been shown to mediate these forms of LTP as well. As pyramidal cells in supragranular layers of the somatosensory cortex spike infrequently, it is unclear which of the two mechanisms prevails for those cells in vivo. Using whole-cell recordings in the mouse somatosensory cortex in vivo, we demonstrate that rhythmic sensory whisker stimulation efficiently induces synaptic LTP in layer 2/3 (L2/3) pyramidal cells in the absence of somatic spikes. The induction of LTP depended on the occurrence of NMDAR (N-methyl-d-aspartate receptor)-mediated long-lasting depolarizations, which bear similarities to dendritic plateau potentials. In addition, we show that whisker stimuli recruit synaptic networks that originate from the posteromedial complex of the thalamus (POm). Photostimulation of channelrhodopsin-2 expressing POm neurons generated NMDAR-mediated plateau potentials, whereas the inhibition of POm activity during rhythmic whisker stimulation suppressed the generation of those potentials and prevented whisker-evoked LTP. Taken together, our data provide evidence for sensory-driven synaptic LTP in vivo, in the absence of somatic spiking. Instead, LTP is mediated by plateau potentials that are generated through the cooperative activity of lemniscal and paralemniscal synaptic circuitry.
Bovine tuberculosis: a retrospective study at Jos abattoir, Plateau State, Nigeria.
Okeke, Lilian Akudo; Fawole, Olufunmilayo; Muhammad, Maryam; Okeke, Ikenna Osemeka; Nguku, Patrick; Wasswa, Peter; Dairo, David; Cadmus, Simeon
2016-01-01
Nigeria has the thirteenth highest burden of human tuberculosis. The current increasing incidence of tuberculosis in humans, particularly in immune-compromised persons, has given interest in the zoonotic importance of Mycobacterium bovis in developing countries like Nigeria. This study determined the prevalence of bovine tuberculosis as a background information for effective control measures in Plateau State in cattle population. We reviewed surveillance records on cattle slaughtered and suggestive tuberculosis lesions from cattle slaughtered annually from 2007-2012 in Jos abattoir, Plateau State. Bovine tuberculosis cases at post mortem were based on examination of characteristics TB lesion on organs by Veterinary officers. We performed descriptive analysis using Epi info version 3.5.3 and Microsoft Excel 2007. A total of 52, 262 cattle were slaughtered from 2007-2012, out of which 4, 658 (11.2%) had evidence of tuberculosis lesion at post mortem. The average yearly prevalence was 9.1% but varied from a high of 16.3% in 2007 to a low of 3.1% in 2012. Trend analysis showed that bovine tuberculosis had a seasonal variation and peaked mostly in July and August. The number of suggestive Tb lesion cases was highest in the month of August and lowest in the month of January, 2007-2012. This study shows that bovine tuberculosis is endemic in Plateau State. Trend analysis showed that bovine tuberculosis is seasonal and peaked mostly in July and August. Continuous surveillance through meat inspection is required to prevent zoonotic transmission of bovine tuberculosis.
NASA Astrophysics Data System (ADS)
Simini, F.; Santos, D.; Francescoli, L.
2016-04-01
We measure the Tibiofemoral contact point migration to offer clinicians a tool to evaluate Anterior Cruciate Ligament reconstruction. The design of the tool includes a C arm with fluoroscopy, image acquisition and processing system, interactive software and report generation for the clinical record. The procedure samples 30 images from the videofluoroscopy describing 2 seconds movements of hanging-to-full-extension of the knee articulation. A geometrical routine implemented in the original equipment (CINARTRO) helps capture tibial plateau and femoral condile profile by interaction with the user. The tightness or looseness of the knee is expressed by the migration given in terms of movement of the femur along the tibial plateau, as a percentage. We automatically create clinical reports in standard Clinical Document Architecture or CDA format. A special phantom was developed to correct the “pin cushion effect” in Rx images. Five cases of broken ACL patients were measured giving meaningful results for clinical follow up. Tibiofemoral contact point migration was measured as 60% of the tibial plateau, with standard deviation of 6% for healthy knees, 4% when injured and 1% after reconstruction.
Li, Mingqi; Huang, Lei; Yin, Zhi-Yong; Shao, Xuemei
2017-11-01
This study presents a 304-year mean July-October maximum temperature reconstruction for the southeastern Tibetan Plateau based on both tree-ring width and maximum latewood density data. The reconstruction explained 58% of the variance in July-October maximum temperature during the calibration period (1958-2005). On the decadal scale, we identified two prominent cold periods during AD 1801-1833 and 1961-2003 and two prominent warm periods during AD 1730-1800 and 1928-1960, which are consistent with other reconstructions from the nearby region. Based on the reconstructed temperature series and volcanic eruption chronology, we found that most extreme cold years were in good agreement with major volcanic eruptions, such as 1816 after the Tambora eruption in 1815. Also, clusters of volcanic eruptions probably made the 1810s the coldest decade in the past 300 years. Our results indicated that fingerprints of major volcanic eruptions can be found in the reconstructed temperature records, while the responses of regional climate to these eruption events varied in space and time in the southeastern Tibetan Plateau.
Depth variations of P-wave azimuthal anisotropy beneath Mainland China
Wei, Wei; Zhao, Dapeng; Xu, Jiandong; Zhou, Bengang; Shi, Yaolin
2016-01-01
A high-resolution model of P-wave anisotropic tomography beneath Mainland China and surrounding regions is determined using a large number of arrival-time data recorded by the China seismic network, the International Seismological Centre (ISC) and temporary seismic arrays deployed on the Tibetan Plateau. Our results provide important new insights into the subducted Indian plate and mantle dynamics in East Asia. Our tomographic images show that the northern limit of the subducting Indian plate has reached the Jinsha River suture in eastern Tibet. A striking variation of P-wave azimuthal anisotropy is revealed in the Indian lithosphere: the fast velocity direction (FVD) is NE-SW beneath the Indian continent, whereas the FVD is arc parallel beneath the Himalaya and Tibetan Plateau, which may reflect re-orientation of minerals due to lithospheric extension, in response to the India-Eurasia collision. There are multiple anisotropic layers with variable FVDs in some parts of the Tibetan Plateau, which may be the cause of the dominant null splitting measurements in these regions. A circular pattern of FVDs is revealed around the Philippine Sea slab beneath SE China, which reflects asthenospheric strain caused by toroidal mantle flow around the edge of the subducting slab. PMID:27432744
Shear-Wave Splitting and Crustal Anisotropy in the Shillong-Mikir Plateau of Northeast India
NASA Astrophysics Data System (ADS)
Bora, Dipok K.; Hazarika, Devajit; Paul, Arpita; Borah, Kajaljyoti; Borgohain, Jayanta Madhab
2018-01-01
Seismic anisotropy of crust beneath the Shillong-Mikir Plateau and the surrounding regions of northeast India have been investigated with the help of splitting analysis of S-wave of local earthquakes. We estimate a total 83 pairs of splitting parameters ( Φ and δt) from 67 local shallow focus earthquakes (depth ≤ 32 km) recorded by the 10 broadband seismological stations operated in the study region. The results show delay times ranging from 0.02 to 0.2 s, which correspond to anisotropy up to 4%, suggesting significant strength of anisotropy in the study region. Fast polarization direction ( Φ) in the Shillong Plateau shows mostly NW-SE trend in the western part and NE-SW trend in the northern part. Φs near Kopili fault (KF) follows NW-SE trend. Φ at most of the stations in the study region is consistent with the local stress orientation, suggesting that the anisotropy is mainly caused by preferentially aligned cracks responding to the stress field. On the other hand, anisotropy observed near the KF is due to aligned macroscopic fracture related to strike-slip movement in the fault zone.
NASA Astrophysics Data System (ADS)
Fiorillo, Edoardo; Maselli, Fabio; Tarchiani, Vieri; Vignaroli, Patrizio
2017-10-01
Remote sensing digital image analysis has been applied to monitor land clearing and degradation processes on a plateau covered by tiger bush near Niamey in South West Niger, where signs of severe landscape degradation due to fuelwood supply have been observed in the last decades. A MODIS NDVI dataset (2000-2015) and five LANDSAT images (1986-2012) were used to identify spatial and temporal dynamics and to emphasize areas of greater degradation. The study indicates that the land clearing found by previous investigations in the second part of the 20th century is still ongoing, with a decreasing trend of MODIS NDVI values recorded in the period 2000-2015. This trend appeared to be linked to an increase in bare soil areas that was demonstrated by analysis of LANDSAT SAVI images. The investigation also indicated that rates of degradation are stronger in more deteriorated areas like those located nearer Niamey; degradation patterns also tend to increase from the inner areas to the edges of the plateau. These results attest to the urgency to develop effective environmental preservation policies and find alternative solutions for domestic energy supply.
Depth variations of P-wave azimuthal anisotropy beneath Mainland China
NASA Astrophysics Data System (ADS)
Wei, Wei; Zhao, Dapeng; Xu, Jiandong; Zhou, Bengang; Shi, Yaolin
2016-07-01
A high-resolution model of P-wave anisotropic tomography beneath Mainland China and surrounding regions is determined using a large number of arrival-time data recorded by the China seismic network, the International Seismological Centre (ISC) and temporary seismic arrays deployed on the Tibetan Plateau. Our results provide important new insights into the subducted Indian plate and mantle dynamics in East Asia. Our tomographic images show that the northern limit of the subducting Indian plate has reached the Jinsha River suture in eastern Tibet. A striking variation of P-wave azimuthal anisotropy is revealed in the Indian lithosphere: the fast velocity direction (FVD) is NE-SW beneath the Indian continent, whereas the FVD is arc parallel beneath the Himalaya and Tibetan Plateau, which may reflect re-orientation of minerals due to lithospheric extension, in response to the India-Eurasia collision. There are multiple anisotropic layers with variable FVDs in some parts of the Tibetan Plateau, which may be the cause of the dominant null splitting measurements in these regions. A circular pattern of FVDs is revealed around the Philippine Sea slab beneath SE China, which reflects asthenospheric strain caused by toroidal mantle flow around the edge of the subducting slab.
NASA Astrophysics Data System (ADS)
Saini, Jeetendra; Günther, Franziska; Aichner, Bernhard; Mischke, Steffen; Herzschuh, Ulrike; Zhang, Chengjun; Mäusbacher, Roland; Gleixner, Gerd
2017-02-01
We investigated 4.84-m-long sediment record spanning over the Late Glacial and Holocene from Lake Donggi Cona to be able to reconstruct circulation pattern on the Tibetan Plateau (TP). Presently, Lake Donggi Cona is located at the boundaries of Westerlies and Asian monsoon circulations in the northeastern TP. However, the exact timing and stimulating mechanisms for climatic changes and monsoon shifts in this region are still debated. We used a 19-ka-long stable isotope record of sedimentary n-alkanes to address this discrepancy by providing insights into paleohydrological conditions. The δD of nC23 is influenced by lake water evaporation; the δD values of sedimentary nC29 are mainly controlled by moisture source and temperature changes. Long-chain n-alkanes dominate over the core whereas three mean clusters (i.e. microbial, aquatic and terrestrial) can be inferred. Multi-proxies suggest five major episodes in the history of Lake Donggi Cona. The Lake Donggi Cona record indicates that the Late Glacial (18.4-14.8 cal ka BP) was dominated by low productivity of mainly microbial and aquatic organisms. Relatively low δD values suggest low temperatures and moist conditions eventually caused by stronger Westerlies, winter monsoon and melt-water influence. Likely, the shift (∼17.9 cal ka BP) from microbial to enhanced aquatic input suggests either a change from deep to shallow water lake or a break in local stratification. Between 14.8 and 13.0 cal ka BP, variable climatic conditions prevailed. Although the Westerlies weekend, the increase in temperature enhanced the permafrost and snow melting (displayed by a high sedimentary accumulation rate). Higher δD values indicate increasingly arid conditions with higher temperatures which eventually lead to high evaporative conditions and lowest lake levels. Low vegetation cover and high erosion rates led to high sediment accumulation resulting in stratification followed by anoxia in the terminal lake. From 13.0 to 9.2 cal ka BP, lowered values of δD along with high contents of terrestrial organic matter marked the early-Holocene warming indicating a further strengthening of summer precipitation and higher lake levels. A cooling trend was observed in the mid-Holocene between 9.2 and 3.0 cal ka BP accompanied by higher moisture availability (displayed by lowered δD values) caused by reduced evaporative conditions due to a drop in temperature and recovering Westerlies. After 3.0 cal ka BP, a decrease in lake productivity and cold and semi-arid conditions prevailed suggesting lower lake levels and reduced moisture from recycled air masses and Westerlies. We propose that the summer monsoon was the predominant moisture source during the Bølling-Allerød warm complex and early-Holocene followed by Westerlies in mid-to-late Holocene period. Stable carbon isotope values ∼ - 32‰ indicate the absence of C4-type vegetation in the region contradicting with their presence in the Lake Qinghai record. The δD record from lake Donggi Cona highlights the importance of the interplay between Westerlies and summer monsoon circulation at this location, which is highly dynamic in northeastern plateau compared to the North Atlantic circulation and insolation changes. Consequently lake Donggi Cona might be an important anchor point for environmental reconstructions on the Tibetan Plateau.
Anderson, Lesleigh; Brunelle, Andrea; Thompson, Robert S.
2015-01-01
Apparent changes in vegetation distribution, fire, and other disturbance regimes throughout western North America have prompted investigations of the relative importance of human activities and climate change as potential causal mechanisms. Assessing the effects of Euro-American settlement is difficult because climate changes occur on multi-decadal to centennial time scales and require longer time perspectives than historic observations can provide. Here, we report vegetation and environmental changes over the past ~13,000 years as recorded in a sediment record from Bison Lake, a subalpine lake on a high plateau in northwestern Colorado. Results are based on multiple independent proxies, which include pollen, charcoal, and elemental geochemistry, and are compared with previously reported interpretations of hydroclimatic changes from oxygen isotope ratios. The pollen data indicate a slowly changing vegetation sequence from sagebrush steppe during the late glacial to coniferous forest through the late Holocene. The most dramatic vegetation changes of the Holocene occurred during the ‘Medieval Climate Anomaly’ (MCA) and ‘Little Ice Age’ (LIA) with rapid replacement of conifer forest by grassland followed by an equally rapid return to conifer forest. Late Holocene vegetation responses are mirrored by changes in fire, lake biological productivity, and watershed erosion. These combined records indicate that subsequent disturbance related to Euro-American settlement, although perhaps significant, had acted upon a landscape that was already responding to MCA-LIA hydroclimatic change. Results document both rapid and long-term subalpine grassland ecosystem dynamics driven by agents of change that can be anticipated in the future and simulated by ecosystem models.
Unraveling the unusual morphology of the Cretaceous Dirck Hartog extinct mid-ocean ridge
NASA Astrophysics Data System (ADS)
Watson, S. J.; Whittaker, J. M.; Halpin, J.; Williams, S.; Milan, L. A.; Daczko, N. R.; Wyman, D. A.
2015-12-01
The Perth Abyssal Plain (PAP), offshore southwest Australia formed during Mesozoic East Gondwana breakup and Kerguelen plume activity. This study combines petrographic and geochemical data from the first samples ever to be dredged from the flanks of the Dirck Hartog Ridge (DHR), a prominent linear bathymetric feature in the central PAP, with new bathymetric profiles across the PAP to better constrain the formation of the early Indian Ocean floor. The DHR exhibits high relief and distinctive asymmetry that is unusual compared to most active or extinct spreading centres and likely results from compression and deformation of the recently extinct DHR during changes in relative motion of the Indian plate (110 - 100 Ma). Exhumation of gabbros in the southern DHR and an increase in seafloor roughness towards the centre of the PAP, likely result from a half spreading rate decrease from 35 mm/yr (based on magnetic reversals) to 24 mm/yr at ~114 Ma. The results support a slowdown of spreading prior to full cessation at ~102 Ma. The composition of basaltic samples varies along the DHR: from sub-alkaline dolerites with incompatible element concentrations most similar to depleted-to-normal mid-ocean ridge basalts in the south, to alkali basalts similar to ocean island basalts in the north. Therefore, magma sources and degrees of partial melting varied in space and time, a result supporting the interpretation that the DHR is an extinct spreading ridge rather than a pseudofault. The enriched alkali basalt signatures may be attributed to melting of a heterogeneous mantle or to the influence of the Kerguelen plume over distances greater than 1000 km. The results demonstrate the significance of regional tectonic plate motions on the formation and deformation of young ocean crust, and provide insight into the unique DHR morphology.
Fire and human history of a barren-forest mosaic in Southern Indiana
Richard P. Guyette; Daniel C. Dey; Michael C. Stambaugh
2002-01-01
The purpose of this paper is to provide quantitative fire history information from a historically unique region, the oak barrens of the Interior Low Plateau Ecoregion. We sampled 27 post oak (Quercus stellata Wangenh.) trees from the Boone Creek watershed in southern Indiana. The period of tree-ring record ranged in calendar years from 1654 to 1999...
Jesse L. Morris; Andrea Brunelle; R. Justin DeRose; Heikki Seppa; Mitchell J. Power; Vachel Carter; Ryan Bares
2013-01-01
Paleoenvironmental reconstructions are important for understanding the influence of long-term climate variability on ecosystems and landscape disturbance dynamics. In this paper we explore the linkages among past climate, vegetation, and fire regimes using a high-resolution pollen and charcoal reconstruction from Morris Pond located on the Markagunt Plateau in...
Zhang, Yulan; Kang, Shichang; Zhang, Qianggong; Gao, Tanguang; Guo, Junming; Grigholm, Bjorn; Huang, Jie; Sillanpää, Mika; Li, Xiaofei; Du, Wentao; Li, Yang; Ge, Xinlei
2016-01-01
Glaciochemistry can provide important information about climatic change and environmental conditions, as well as for testing regional and global atmospheric trace transport models. In this study, δ18O and selected chemical constituents records in snowpits collected from eight glaciers in the Tibetan Plateau and adjacent areas have been investigated. Drawing on the integrated data, our study summarized the seasonal and spatial characteristics of snow chemistry, and their potential sources. Distinct seasonal patterns of δ18O values in snowpits indicated more negative in the south TP controlled by Indian monsoon, and less negative in the north TP and Tien Shan. Overall increasing concentrations of microparticles and crustal ions from south to north indicated a strength of dust deposition on glaciers from semi-arid and arid regions. Principal component analysis and air mass trajectories suggested that chemical constituents were mainly attributable to crustal sources as demonstrated by the high concentrations of ions occurring during the non-monsoon seasons. Nevertheless, other sources, such as anthropogenic pollution, played an important role on chemical variations of glaciers near the human activity centers. This study concluded that air mass transport from different sources played important roles on the spatial distributions and seasonality of glaciochemistry.
NASA Technical Reports Server (NTRS)
Brown, Laurie L.; Caffall, Nancy M.; Golombek, Matthew P.
1993-01-01
The tectonic response of the Taos Plateau volcanic field in the southern San Luis basin to the late stage extensional environment of the Rio Grande rift was investigated using paleomagnetic techniques. Sixty-two sites (533 samples) of Pliocene volcanic units were collected covering four major rock types with ages of 4.7 to 1.8 Ma. Twenty-two of these sites were from stratigraphic sections of the lower, middle and upper Servilleta Basalt collected in the Rio Grande gorge at two locations 19 km apart. Flows from the lower and middle members in the southern gorge record reversed polarities, while those in Garapata Canyon are normal with an excursion event in the middle of the sequence. The uppermost flows of the upper member at both sites display normal directions. Although these sections correlate chemically, they seem to represent different magnetic time periods during the Gilbert Reversed-Polarity Chiron. Alternating field demagnetization, aided by principal component analysis, yields 55 sites with stable directions representing both normal and reversed polarities, and five sites indicating transitional fields. Mean direction of the normal and inverted reversed sites is I=49.3 deg. and D=356.7 deg. (alpha(sub 95)=3.6 deg). Angular dispersion of the virtual geomagnetic poles is 16.3 deg, which is consistent with paleosecular variation model G, fit to data from the past 5 m.y. Comparison with the expected direction indicates no azimuthal rotation of the Taos Plateau volcanic field; inclination flattening for the southern part of the plateau is 8.3 deg +/- 5.3 deg. Previous paleomagnelic data indicate 10 deg- 15 deg counterclockwise rotation of die Espanola block to the south over the past 5 m.y. The data suggest the Taos Plateau volcanic field, showing no rotation and some flattening in the south and east, has acted as a stable buttress and has been downwarped by overriding of the southeastern end of the plateau by the Picuris Mountains, which make up the northern corner of the counterclockwise rotating Espanola block.
NASA Astrophysics Data System (ADS)
Rosenkranz, Ruben; Schildgen, Taylor; Wittmann, Hella; Spiegel, Cornelia
2018-02-01
The uplift of the Shillong Plateau, in northeast India between the Bengal floodplain and the Himalaya Mountains, has had a significant impact on regional precipitation patterns, strain partitioning, and the path of the Brahmaputra River. Today, the plateau receives the highest measured yearly rainfall in the world and is tectonically active, having hosted one of the strongest intra-plate earthquakes ever recorded. Despite the unique tectonic and climatic setting of this prominent landscape feature, its exhumation and surface uplift history are poorly constrained. We collected 14 detrital river sand and 3 bedrock samples from the southern margin of the Shillong Plateau to measure erosion rates using the terrestrial cosmogenic nuclide 10Be. The calculated bedrock erosion rates range from 2.0 to 5.6 m My-1, whereas catchment average erosion rates from detrital river sands range from 48 to 214 m My-1. These rates are surprisingly low in the context of steep, tectonically active slopes and extreme rainfall. Moreover, the highest among these rates, which occur on the low-relief plateau surface, appear to have been affected by anthropogenic land-use change. To determine the onset of surface uplift, we coupled the catchment averaged erosion rates with topographic analyses of the plateau's southern margin. We interpolated an inclined, pre-incision surface from minimally eroded remnants along the valley interfluves and calculated the eroded volume of the valleys carved beneath the surface. The missing volume was then divided by the volume flux derived from the erosion rates to obtain the onset of uplift. The results of this calculation, ranging from 3.0 to 5.0 Ma for individual valleys, are in agreement with several lines of stratigraphic evidence from the Brahmaputra and Bengal basin that constrain the onset of topographic uplift, specifically the onset of flexural loading and the transgression from deltaic to marine deposition. Ultimately, our data corroborate the hypothesis that surface uplift was decoupled from the onset of rapid exhumation, which occurred several millions of years earlier.
NASA Astrophysics Data System (ADS)
Pingel, H.; Mulch, A.; Rohrmann, A.; Alonso, R. N.; Strecker, M. R.
2015-12-01
Intermontane basin strata along the E flanks of the Puna Plateau in NW Argentina are ideal archives to investigate the interaction between tectonics, topography, and changes in climate. In particular, these strata record the fragmentation of a formerly contiguous foreland by range uplifts, ensuing intra-basin deformation, and surface uplift. These changes were often accompanied by a transition from humid to semiarid conditions as windward range uplift exceeded orographic threshold elevations. The E Andean flanks comprise steep gradients in topography, rainfall, and surface-process rates. Rainfall is focused along the E flanks of the plateau, while the orogen interior is arid. These gradients are mirrored by the stable isotope ratios of modern rainfall, and therefore, in the stable isotope composition of proxy materials that incorporate this water. We present D/H ratios of volcanic glass (δDg) from dated tuffs in Mio-Pleistocene sediments of intermontane basins in the Eastern Cordillera between ~23 and 26°S (Humahuaca, Toro, and Angastaco basins). We document a strong co-varying relationship between tectono-sedimentary events in the basins and corresponding δDg values. Initial D-depletion trends in the Toro and Angastaco basins constrains the onset of surface uplift to 6.5 and 7 Ma, respectively. Strong positive δDg shifts of >15‰ in Humahuaca at ~3 Ma and <2 Ma in the Toro basin are apparently caused by enhanced evaporation. In this tectonic setting the observed relationships may be related to the attainment of orographic threshold conditions and ensuing hinterland aridification. δDg values in Angastaco, additionally, appear to be episodically influenced by enhanced convective rainfall during the Plio-Pleistocene, similar to modern conditions.
NASA Astrophysics Data System (ADS)
Kumar, Santosh; Rino, Vikoleno; Hayasaka, Yasutaka; Kimura, Kosuke; Raju, Shunmugam; Terada, Kentaro; Pathak, Manjari
2017-04-01
The Meghalaya Plateau and the Mikir Hills constitute a northeastern extension of the Precambrian Indian Shield. They are dominantly composed of Proterozoic basement granite gneisses, granites, migmatites, granulites, the Shillong Group metasedimentary cover sequence, and Mesozoic-Tertiary igneous and sedimentary rocks. Medium to coarse grained, equigranular to porphyritic Cambrian granite plutons intrude the basement granite gneisses and the Shillong Group. U-Pb SHRIMP zircon geochronology and geochemistry of the granite gneisses and granites have been carried out in order to understand the nature and timing of granite magmatism, supercontinent cycles, and crustal growth of the Meghalaya Plateau and Mikir Hills. Zircons from the Rongjeng granite gneiss record the oldest magmatism at 1778 ± 37 Ma. An inherited zircon core has an age of 2566.4 ± 26.9 Ma, indicating the presence of recycled Neoarchaean crust in the basement granite gneisses. Zircons from the Sonsak granite have two ages: 523.4 ± 7.9 Ma and 1620.8 ± 9.2 Ma, which indicate partial assimilation of an older granite gneiss by a younger granite melt. Zircons from the Longavalli granite gneiss of the Mikir Hills has a crystallization age of 1430.4 ± 9.6 Ma and a metamorphic age of 514 ± 18.6 Ma. An inherited core of a zircon from Longavalli granite gneiss has an age of 1617.1 ± 14.5 Ma. Zircons from younger granite plutons have Cambrian mean ages of 528.7 ± 5.5 Ma (Kaziranga), 516 ± 9.0 Ma (South Khasi), 512.5 ± 8.7 Ma (Kyrdem), and 506.7 ± 7.1 Ma and 535 ± 11 Ma (Nongpoh). These plutons are products of the global Pan-African tectonothermal event, and their formation markedly coincides with the later stages of East Gondwana assembly (570-500 Ma, Kuunga orogen). The older inherited zircon cores (2566.4 ± 26.9 Ma, 1758.1 ± 54.3 Ma, 1617.1 ± 14 Ma) imply a significant role for recycled ancient crust in the generation of Cambrian granites. Thus the Meghalaya Plateau and Mikir Hills experienced major felsic magmatic episodes at 1800 Ma, 1600 Ma, 1400 Ma, and 500 Ma with recycling of Neoarchaean crust, and later contributions from Paleo-Mesoproterozoic granite gneiss sources. A 258 ± 20 Ma lower intercept age of the Rongjeng granite gneiss perhaps indicates a Permo-Triassic thermal imprint on the Meghalaya Plateau. The granite gneisses and granites have peraluminous to metaluminous compositions, and syn-orogenic to post-collisional affinities. We conclude that the orogenic history of the Meghalaya Plateau and the Mikir Hills records crustal growth of the Columbia and Gondwana supercontinents as noted in other Pan-African-Indian-Prydz-Brasiliano orogens.
Exploring Arctic history through scientific drilling
NASA Astrophysics Data System (ADS)
ODP Leg 151 Shipboard Scientific Party
During the brief Arctic summer of 1993, the Ocean Drilling Program's research vessel JOIDES Resolution recovered the first scientific drill cores from the eastern Arctic Ocean. Dodging rafts of pack ice shed from the Arctic ice cap, the science party sampled sediments north of 80°N latitude from the Yermak Plateau, as well as from sites in Fram Strait, the northeastern Greenland margin, and the Iceland Plateau (Figure 1).The sediments collected reveal the earliest history of the connection between the North Atlantic and Arctic Oceans through the Nordic Seas. The region between Greenland and Norway first formed a series of isolated basins, sometimes with restricted deep circulation, that eventually joined and allowed deep and surface Arctic Ocean water to invade the region. A record was also retrieved that shows major glaciation in the region began about 2.5 m.y.a.
Geologic map of Colorado National Monument and adjacent areas, Mesa County, Colorado
Scott, Robert B.; Harding, Anne E.; Hood, William C.; Cole, Rex D.; Livaccari, Richard F.; Johnson, James B.; Shroba, Ralph R.; Dickerson, Robert P.
2001-01-01
New 1:24,000-scale geologic mapping in the Colorado National Monument Quadrangle and adjacent areas, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of and data for the stratigraphy, structure, geologic hazards in the area from the Colorado River in Grand Valley onto the Uncompahgre Plateau. The plateau drops abruptly along northwest-trending structures toward the northeast 800 m to the Redlands area and the Colorado River in Grand Valley. In addition to common alluvial and colluvial deposits, surficial deposits include Holocene and late Pleistocene charcoal-bearing valley-fill deposits, late to middle Pleistocene river-gravel terrace deposits, Holocene to middle Pleistocene younger, intermediate, and old fan-alluvium deposits, late to middle Pleistocene local gravel deposits, Holocene to late Pleistocene rock-fall deposits, Holocene to middle Pleistocene young and old landslide deposits, Holocene to late Pleistocene sheetwash deposits and eolian deposits, and Holocene Cienga-type deposits. Only the lowest part of the Upper Cretaceous Mancos Shale is exposed in the map area near the Colorado River. The Upper and Lower? Cretaceous Dakota Formation and the Lower Cretaceous Burro Canyon Formation form resistant dipslopes in the Grand Valley and a prominent ridge on the plateau. Less resistant strata of the Upper Jurassic Morrison Formation consisting of the Brushy Basin, Salt Wash, and Tidwell Members form slopes on the plateau and low areas below the mountain front of the plateau. The Middle Jurassic Wanakah Formation nomenclature replaces the previously used Summerville Formation. Because an upper part of the Middle Jurassic Entrada Formation is not obviously correlated with strata found elsewhere, it is therefore not formally named; however, the lower rounded cliff former Slickrock Member is clearly present. The Lower Jurassic silica-cemented Kayenta Formation forms the cap rock for the Lower Jurassic carbonate-cemented Wingate Sandstone, which forms the impressive cliffs of the monument. The Upper Triassic Chinle Formation was deposited on the eroded and weathered Middle Proterozoic meta-igneous gneiss, pegmatite dikes, and migmatitic gneiss. Structurally the area is deceptively challenging. Nearly flat-lying strata on the plateau are folded by northwest-trending fault-propagation folds into at least two S-shaped folds along the mountain front of the plateau. Strata under Grand Valley dip at about 6 degrees to the northeast. In the absence of local evidence, the uplifted plateau is attributed to Laramide deformation by dated analogous structures elsewhere in the Colorado Plateau. The major exposed fault records high-angle reverse relationships in the basement rocks but dissipates strain as a triangular zone of distributed microfractures and cataclastic flow into overlying Mesozoic strata that absorb the fault strain, leaving only folds. Evidence for younger, probably late Pliocene or early Pleistocene, uplift does exist at the antecedent Unaweep Canyon south and east of the map area. To what degree this younger deformation affected the map area is unknown. Several geologic hazards affect the area. Middle and late Pleistocene landslides involving the smectite-bearing Brushy Basin Member of the Morrison Formation are extensive on the plateau and common in the Redlands below the plateau. Expansive clay in the Brushy Basin and other strata create foundation stability problems for roads and homes. Flash floods create a serious hazard to people on foot in narrow canyons in the monument and to homes close to water courses downstream from narrow restrictions close to the monument boundary.
Bailleul, Frederic; Vacquie-Garcia, Jade; Guinet, Christophe
2015-01-01
The current decline in dissolved oxygen concentration within the oceans is a sensitive indicator of the effect of climate change on marine environment. However the impact of its declining on marine life and ecosystems’ health is still quite unclear because of the difficulty in obtaining in situ data, especially in remote areas, like the Southern Ocean (SO). Southern elephant seals (Mirounga leonina) proved to be a relevant alternative to the traditional oceanographic platforms to measure physical and biogeochemical structure of oceanic regions rarely observed. In this study, we use a new stage of development in biologging technology to draw a picture of dissolved oxygen concentration in the SO. We present the first results obtained from a dissolved oxygen sensor added to Argos CTD-SRDL tags and deployed on 5 female elephant seals at Kerguelen. From October 2010 and October 2011, 742 oxygen profiles associated with temperature and salinity measurements were recorded. Whether a part of the data must be considered cautiously, especially because of offsets and temporal drifts of the sensors, the range of values recorded was consistent with a concomitant survey conducted from a research vessel (Keops-2 project). Once again, elephant seals reinforced the relationship between marine ecology and oceanography, delivering essential information about the water masses properties and the biological status of the Southern Ocean. But more than the presentation of a new stage of development in animal-borne instrumentation, this pilot study opens a new field of investigation in marine ecology and could be enlarged in a near future to other key marine predators, especially large fish species like swordfish, tuna or sharks, for which dissolved oxygen is expected to play a crucial role in distribution and behaviour. PMID:26200780
Bailleul, Frederic; Vacquie-Garcia, Jade; Guinet, Christophe
2015-01-01
The current decline in dissolved oxygen concentration within the oceans is a sensitive indicator of the effect of climate change on marine environment. However the impact of its declining on marine life and ecosystems' health is still quite unclear because of the difficulty in obtaining in situ data, especially in remote areas, like the Southern Ocean (SO). Southern elephant seals (Mirounga leonina) proved to be a relevant alternative to the traditional oceanographic platforms to measure physical and biogeochemical structure of oceanic regions rarely observed. In this study, we use a new stage of development in biologging technology to draw a picture of dissolved oxygen concentration in the SO. We present the first results obtained from a dissolved oxygen sensor added to Argos CTD-SRDL tags and deployed on 5 female elephant seals at Kerguelen. From October 2010 and October 2011, 742 oxygen profiles associated with temperature and salinity measurements were recorded. Whether a part of the data must be considered cautiously, especially because of offsets and temporal drifts of the sensors, the range of values recorded was consistent with a concomitant survey conducted from a research vessel (Keops-2 project). Once again, elephant seals reinforced the relationship between marine ecology and oceanography, delivering essential information about the water masses properties and the biological status of the Southern Ocean. But more than the presentation of a new stage of development in animal-borne instrumentation, this pilot study opens a new field of investigation in marine ecology and could be enlarged in a near future to other key marine predators, especially large fish species like swordfish, tuna or sharks, for which dissolved oxygen is expected to play a crucial role in distribution and behaviour.
NASA Astrophysics Data System (ADS)
Balling, Philipp; Ballato, Paolo; Dunkl, István; Zeillinger, Gerold; Heidarzadeh, Ghasem; Ghasemi, Mohammad; Strecker, Manfred R.
2014-05-01
The Iranian Plateau is situated in the collision zone between the Arabian and Eurasian plates and forms a NW-SE elongated, 40- to 50-km-thick crustal block, delimited to the north by the Urmieh Dokhtar Volcanic Zone and to south by the High Zagros Mountains. The plateau is characterized by a series of basins and mountain ranges bounded by reverse and transpressive faults. These mountain ranges reflect a history of strong collisional deformation, with intensely faulted and folded Pre-Cambrian (basement) to Miocene (terrestrial sediments of the Upper Red Formation) rocks. Based on the structural evolution, high mean elevation of 2 km, and a crustal thickness of up to 56 km, the realm of the present-day plateau must have absorbed a significant fraction of past plate convergence between Eurasia and Arabia. However, according to seismic and GPS data active deformation is rather limited. In addition, the exact timing and style of deformation, the extent of crustal shortening and thickening on the northern Iranian Plateau during continental collision remain unclear. To address these issues we collected structural data and modeled deformation scenarios cross four mountain ranges that constitute the northern margin of the Iranian Plateau (NW Iran). The Tarom, Mah Neshan and Sultanije mountain ranges are NW-SE oriented, while the northernmost (Bozgosh) is E-W aligned. Due to the lack of subsurface data, several forward and backward models were generated with MOVE (Midland Valley, structural modelling software). The model with the simplest and most robust geological explanation of the field data was chosen. In addition, we combined our structural work with an apatite (U-Th)/He study (AHe) along two transects (Bozgosh, Mah Neshan) and Zircon (U-Th)/He data (ZHe) on higher exhumed locations. In the northern sector of the plateau late Cretaceous (or Paleocene?) rocks had been deposited unconformably onto older, deformed rocks. This suggests that the Arabia-Eurasia collision was predated by at least one contractional episode, which was most likely associated with the deposition of red continental conglomerates (Fajan Fm.). Consequently, some of the major faults affecting Tertiary units in the region may be inherited structures, reactivated during collisional deformation. Our structural results indicate that the different mountain ranges constituting the northern plateau are characterized by thick-skinned deformation (tectonics) with major deep-seated faults exposing basement rocks. Locally, thin-skinned tectonics occurred, with multiple detachment horizons within evaporites of the Lower and Upper Red formations (Oligo-Miocene), and shales of the Shemshak (Jurassic), and the Barut (Cambrian) formations. The first obtained AHe cooling ages for this area suggest that the more internal sectors of the Iranian Plateau (SW of the Mah Neshan profile) record an early cooling phase at 25-20 Ma. This was followed by outward propagation of deformation fronts to the north and northeast from approximately 12 to 8 Ma. This resulted in the development of a contractional basin and range morphology of the Iranian Plateau.
Kugelman, David N.; Qatu, Abdullah M.; Haglin, Jack M.; Konda, Sanjit R.; Egol, Kenneth A.
2017-01-01
Background: Tibial plateau fractures can be devastating traumatic injuries to the knee, particularly in active athletes. Purpose/Hypothesis: The purpose of this study was to report on the return to participation in recreational athletics after operatively managed tibial plateau fractures. In addition, this study assessed factors associated with the ability to return to participation in recreational athletics after tibial plateau fractures treated with open reduction internal fixation and compared final outcomes between patients who were able to return to recreational athletics and those who could not. The hypothesis was that returning to participation in recreational athletics would be dependent on the time from surgery after operative fixation of tibial plateau fractures. Less severe injuries would be associated with a quicker return to athletics. Study Design: Case-control study; Level of evidence, 3. Methods: All tibial plateau fractures treated by 1 of 3 surgeons at a single academic institution over an 11-year period were prospectively followed. Final outcomes were evaluated using the Short Musculoskeletal Function Assessment at latest follow-up. All complications were recorded at each follow-up. Differences between the groups were compared using Student t tests for continuous variables. Chi-square analysis was used to determine whether differences between categorical variables existed. Logistic regression was performed to assess independent variables associated with returning to participation in recreational athletics. Results: A total of 169 patients who underwent operative management of their tibial plateau fracture reported participation in recreational athletics before their injury. By the 6-month time point, 48 patients (31.6%) had returned to participation in recreational athletics, and at final follow-up (mean, 15 months), 89 patients (52.4%) had returned to participation in recreational athletics. Predictors of returning to recreational athletics included white race, female sex, social alcohol consumption, younger age, increased range of motion (ROM), low-energy Schatzker patterns (I-III), injuries not inclusive of orthopaedic polytrauma or open fractures, and no postoperative complications. White race, social alcohol consumption, and increased ROM were associated with returning to athletics at both 6-month and final follow-up. Lack of a venous thromboembolism was associated with returning to athletics at final follow-up. Patients who returned to recreational athletics had associations with better functional outcomes and emotional status than those who did not. Conclusion: The number of patients who returned to participation in recreational athletics gradually increased over time after operative fixation of tibial plateau fractures. Less severe injuries and a lack of postoperative complications were associated with a quicker return to athletics. Predictors of returning to participation in recreational athletics after operatively managed tibial plateau fractures can be used to target patients at risk of not returning to play to provide interventions aimed at improving their recovery, such as early knee range of motion, muscle strengthening, and participation in low-impact activities. PMID:29276713
Liang, Eryuan; Lu, Xiaoming; Ren, Ping; Li, Xiaoxia; Zhu, Liping; Eckstein, Dieter
2012-03-01
Dendroclimatology is playing an important role in understanding past climatic changes on the Tibetan Plateau. Forests, however, are mainly confined to the eastern Tibetan Plateau. On the central Tibetan Plateau, in contrast, shrubs and dwarf shrubs need to be studied instead of trees as a source of climate information. The objectives of this study were to check the dendrochronological potential of the dwarf shrub Wilson juniper (Juniperus pingii var. wilsonii) growing from 4740 to 4780 m a.s.l. and to identify the climatic factors controlling its radial growth. Forty-three discs from 33 stems of Wilson juniper were sampled near the north-eastern shore of the Nam Co (Heavenly Lake). Cross-dating was performed along two directions of each stem, avoiding the compression-wood side as far as possible. A ring-width chronology was developed after a negative exponential function or a straight line of any slope had been fit to the raw measurements. Then, correlations were calculated between the standard ring-width chronology and monthly climate data recorded by a weather station around 100 km away. Our study has shown high dendrochronological potential of Wilson juniper, based on its longevity (one individual was 324 years old), well-defined growth rings, reliable cross-dating between individuals and distinct climatic signals reflected by the ring-width variability. Unlike dwarf shrubs in the circum-arctic tundra ecosystem which positively responded to above-average temperature in the growing season, moisture turned out to be growth limiting for Wilson juniper, particularly the loss of moisture caused by high maximum temperatures in May-June. Because of the wide distribution of shrub and dwarf shrub species on the central Tibetan Plateau, an exciting prospect was opened up to extend the presently existing tree-ring networks far up into one of the largest tundra regions of the world.
Paleoglaciation of the Tibetan Plateau based on exposure ages and ELA depression estimates
NASA Astrophysics Data System (ADS)
Heyman, Jakob
2014-05-01
The Tibetan Plateau holds a major part of all glaciers outside the polar regions and an ample record of past glaciations. The glacial history of the Tibetan Plateau has attracted significant interest, with a large body of research investigating the extent, timing, and climatic implications of past glaciations. Here I present an extensive compilation of exposure ages and equilibrium line altitude (ELA) depression estimates from glacial deposits across the Tibetan Plateau to address the timing and degree of past glaciations. I compiled Be-10 exposure age data for a total of 1877 samples and recalculated exposure ages using an updated (lower) global Be-10 production rate. All samples were organized in groups of individual glacial deposits where each deposit represents one glacial event enabling evaluation of the exposure age clustering. For each glacial deposit I estimated the ELA depression based on a simple toe to headwall ratio approach using Google Earth. To discriminate good (well-clustered) from poor (scattered) exposure age groups the glacial deposits were divided into three groups based on exposure age clustering. A major part of the glacial deposits have scattered exposure ages affected by prior or incomplete exposure, complicating exposure age interpretations. The well-clustered exposure age groups are primarily from mountain ranges along the margins of the Tibetan Plateau with a main peak in age between 10 and 30 ka, indicating glacial advances during the global last glacial maximum (LGM). A large number of exposure ages older than 30 ka indicates maximum glaciation predating the LGM, but the exposure age scatter generally prohibits accurate definition of the glacial chronology. The ELA depression estimates scatter significantly, but a major part is remarkably low. Average ELA depressions of 333 ± 191 m for the LGM and 494 ± 280 m for the pre-LGM exposure indicate restricted glacier expansion and limited glacial cooling.
Hauswirth, O.; Noble, D.; Tsien, R. W.
1972-01-01
1. Experiments on sheep Purkinje fibres were designed to determine whether the current mechanisms responsible for delayed rectification at the pace-maker (negative to -50 mV) and plateau (positive to -50 mV) ranges of potential are kinetically separable and independent. 2. Hyperpolarizations from the plateau range were shown to produce decay of a single component of outward current within the plateau range, but two components were evident when the hyperpolarizations entered the pace-maker range. 3. The time courses of recovery of the two components were too similar at -25 mV to allow temporal resolution at this potential. Clear temporal resolution was, however, possible at potentials between -55 and -95 mV. An indirect method of resolving the two components at -25 mV was used. 4. The kinetic properties of the two components correspond to those previously described for the pace-maker potassium current, iK2, and the outward plateau current, ix1 (Noble & Tsien, 1968, 1969a). 5. The instantaneous (fully activated) current—voltage relation for iK2 was reconstructed from the analysed current records. It was found that this relation shows a negative slope conductance at all potentials positive to -75 mV and that the current tends towards zero at zero membrane potential. 6. The results are compared with those predicted by two reaction models of the iK2 and ix1 mechanisms. It is concluded that iK2 and ix1 are kinetically separable but that it is not possible with present techniques to decide whether they are controlled by the same or completely independent membrane structures. It is also shown that the instantaneous current—voltage relation calculated for iK2 does not depend on whether the controlling mechanisms are assumed to be independent or linked. PMID:4679715
NASA Astrophysics Data System (ADS)
Xie, Z.; Wu, Q.; Zhang, R.
2017-12-01
Collision between Indian and Eurasian result in intense deformation and crustal shortening in the Tibetan Plateau. NE margin of Tibetan Plateau experienced complex deformation between Qilian orogen and its adjacent blocks, Alxa Block in the north and Ordos Block in the east. We focus on if there any evidences exist in the NE margin of Tibetan Plateau, which can support crustal channel flow model. China Earthquake Administration had deployed temporary seismic array which is called ChinaArray Phase Ⅱ, dense seismic stations covered NE margin of Tibetan Plateau. Seismic data recorded by 81 seismic stations is applied in this research. We calculated receiver functions with time-domain deconvolution. We selected RFs which have clear Ps phase both in radial and transverse components to measure Ps splitting owing to crustal anisotropy, and 130 pairs of anisotropy parameters of 51 seismic stations were obtained. We would like to discuss about dynamic mechanism of this area using crustal anisotropy associated with the result of SKS-splitting and surface constrains like GPS velocity. The result can be summarized as follows. The large scale of delay time imply that the crustal anisotropy mainly derives from middle to lower crust rather than upper crust. In the southeastern part of the research area, crustal anisotropy is well agree with the result computed form SKS-splitting and GPS velocity directions trending NWW-SEE or E-W direction. This result imply a vertically coherent deformation in the area as the directions of crustal anisotropy trend to be perpendicular to the direction of normal stress. In the middle and north part of the research area, the fast polarization direction of crustal anisotropy is NEE-SWW or E-W direction, parallels with direction of GPS velocity, but differ to the direction of the result of SKS-splitting. This result may imply that decoupled deformation in this area associated with middle to lower crustal flow.
The Exhumation of the Central Lhasa, Tibet: Evidence from the Low-temperature Thermochronology
NASA Astrophysics Data System (ADS)
Sun, G.; Xiumian, H.; Sinclair, H. D.; Stuart, F. M.
2017-12-01
The modern Tibetan Plateau has an average elevation of 4500 m above the sea level. But its early growth history still remains debate, despite its significance to the global climate system. In common, the early growth of the Tibetan Plateau has been attributed to the India-Asia collision in the early Paleocene. However, the structural reconstruction, Late Cretaceous sedimentation, and petrology studies, imply there would be a paleo-plateau or the high-elevation gain in the Lhasa terrane prior to the India-Asia collision. In order to examine this model, the zircon/apatite U-Th-He (ZHe and AHe) and apatite fission track (AFT) are employed to the mid-Cretaceous granites in Coqen area, central Lhasa. Eight samples from the plateau surface yield ZHe ages ranging from 88 to 54 Ma, while the AHe ages ranging from 70 to 45 Ma. Five samples from the above have been conducted the AFT analysis and yielded AFT ages ranging between 73 and 62 Ma, showing the similar age ranges with the corresponding AHe ages. Single-sample inverse thermal kinetic modeling reveal that these intrusive rocks have undergone the rapid cooling history since 85 Ma, after when, the relatively slow cooling process has been established at 45 Ma. Inverse thermal-kinetic modeling of these data, recorded in the context of the Late Cretaceous rapid cooling history, is best interpreted by the early plateau growth in the central Lhasa. In consideration of the substantial crustal thickening and shortening in the Lhasa terrane during the Cretaceous, this Late Cretaceous-Early Paleogene rapid cooling history reveal that the exhumation of the central Lhasa has initiated before the India-Asia collision. This scenario is consistent with a 30 Ma ( 90-60 Ma) sedimentation hiatus since the Late Cretaceous terrestrial conglomerate deposition in the central Lhasa terrane.
The Asian Monsoon Moisture Transportation Revealed by Two Cave Sites in Myanmar
NASA Astrophysics Data System (ADS)
Liu, G.; Wang, X.; Chiang, H. W.; Maung Maung, P.; Jiang, X.; Aung, L. T.; Tun, S. T.
2014-12-01
Here we present two well-resolved, calcite δ18O records on Myanmar speleothems. The samples were collected from a coastal site in southeastern Myanmar and a plateau site in central Myanmar, respectively. Chronologically determined by high-precision U/Th dating techniques, both records span a large portion of the past 40,000 years. The two records show similar millennial-scale oscillations during the last glacial period, which are also in-phase with the speleothem records from Chinese cave sites located in the downstream of Indian Monsoon trajectories. The δ18O values between the two profiles are virtually the same, ~ -7.5‰, during late Holocene, in concert with the numbers in modern rainfall at the two sites. However, in glacial time, the δ18O value of the central Myanmar record shifts from -6.5‰ to -8‰, approximately 2‰ lower than that in the coastal dataset, which varies from -4.5‰ to -6‰. We interpret the similarly low δ18O values during Holocene in both records as a result of strong monsoonal rainfall and water recycling particularly through forest transpiration. However in glacial time, with a possibly drier and less forested land, water recycling is weaker. Therefore, rainfall δ18O and subsequently speleothem δ18O appear a stronger geographical gradient, possibly dominated by the continental rainout effect. Our interpretation can be supported by the speleothem δ13C records from the two sites. Calcite δ13C from the coastal site varies slightly from ~-7‰ in the last glacial to ~-9‰ in Holocene. Whereas it shares a similar value to the coastal record during Holocene, the δ13C profile from the plateau site shows a much higher value, up to -0.7‰, during the glacial time. This suggests that the mountainous region in central Myanmar was likely dominated by C4 plants (e.g., grass) during the glacial time, while the same region is covered by forests today. Such change on vegetation type and coverage may influence the δ18O of recycling moisture transported further inland.
NASA Technical Reports Server (NTRS)
Liu, Y.-G.; Schmitt, R. A.
1993-01-01
A number of geological and palaeontological evidences support multiple impacts of cometary showers within a short time (approximately 1-3 Ma) and their connection with mass extinctions. Observations include clustered crater ages, stratigraphic horizons of impact ejecta closely spaced in time, and evidence for stepwise mass extinctions spanning intervals of 1-3 Ma. For the K/T boundary, three candidates, Popigai, Manson, and Yucatan, have been proposed as impact craters. Two distinct strata at the K/T boundary in western North America have been interpreted as evidence for two sequential impacts. If multiple impacts occurred within a time span of about 1 Ma then multiple Ir enrichments should be observed. DSDP Hole 577B on the Shatsky Plateau in the northern Pacific at K/T time is the first site. Samples contain approximately greater than 97 percent CaCO3, which exhibit clear chemical signals associated with asteroidal/cometary impact. Ir, Fe, and Cr data are presented. From the Th-normalized data, two satellite peaks below the major peak at 78 cm and 81 cm of 577B-1-4 are clearly shown. The major Ir peak (K/T boundary) is at 72 cm. Fe and Cr, from C1-like impactor ejecta fallout, also show two peaks at the same positions. For hole 738C on the southern Kerguelen Plateau, Ir values reach a peak concentration of 18 ppb in the clay layer at 96.0-96.2 cm in section 20R-5, and gradually tail off. In the sample 115 cm above the boundary, Ir concentrations have still not reached background levels. From the Ir peak downward to the lowermost sample analyzed at 102 cm, the Ir concentration is still as high as 1.7 ppb. From the Th-normalized data, we observe a small Ir/Th peak at 100-101 cm. Though this peak is within the error margin, the trend is clear. Fe and Cr exhibit the same pattern. The third case is Hole 690C on the Queen Maud Ridge. Again, the Ir/Th plot indicates the strong possibility of satellite peaks at approximately 52 cm. The main peak is at 39-40 cm. For the Stevns Klint K/T boundary layers, the stratification of trace elements appears threefold with peak concentrations in sublayers A1, A3, and B2 for different element groups, including Ir. C1 ratios for many siderophile elements found in combined layers III and IV, corresponding to layers A, B, C, and D, strongly support the impact hypothesis. Also, multiple Ir anomalies in the K/T section at Lattengebirge, Bavarian Alps are reported. Recent works on Ni-rich spinels and Ir at the K/T boundaries clearly establish cometary/asteroidal impacts at the K/T boundary. Lastly, cometary showers can explain the enhanced Ir contents over approximately a 1 Ma interval in Gubbio shales.
Patrick Brose; Susan Stout; Gary Miller; Kurt Gottschalk
2003-01-01
The SILVAH decision-support system developed by numerous researchers at the Forestry Sciences Lab in Irvine, PA, has a proven track record for prescribing appropriate silvicultural treatments for the cherry-maple and northern hardwood forests of the Allegheny Plateau region. However, it has had only limited usage in mixed-oak forests of the same region and virtually no...
Kuevda, E V; Gubareva, E A; Gumenyuk, I S; Sotnichenko, A S; Gilevich, I V; Nakokhov, R Z; Rusinova, T V; Yudina, T G; Red'ko, A N; Alekseenko, S N
2017-03-01
We modified the protocol of obtaining of biological scaffolds of rat lungs based on dynamic recording of specific resistivity of working detergent solution (conductometry) during perfusion decellularization. Termination of sodium deoxycholate exposure after attaining ionic equilibrium plateau did not impair the quality of decellularization and preserved structural matrix components, which was confirmed by morphological analysis and quantitative assay of residual DNA.
Daniel M. Johnson; Mark E. Sherrard; Jean-Christophe Domec; Robert B. Jackson
2014-01-01
Key message Deep root hydraulic conductance is upregulated during severe drought and is associated with upregulation in aquaporin activity. Abstract In 2011, Texas experienced the worst single-year drought in its recorded history and, based on tree-ring data, likely itsworst in the pastmillennium. In the Edwards Plateau of Texas, rainfall was 58 % lower and the mean...
NASA Astrophysics Data System (ADS)
Gruetzner, Jens; Lathika, Nambiyathodi; Jimenez Espejo, Francisco J.; Uenzelmann-Neben, Gabriele
2017-04-01
The gateway south of South Africa constitutes an integral inter-ocean link in the global thermohaline circulation (THC) since it allows the exchange of shallow- and deepwater masses between the Indian and the Atlantic. Thus understanding past variations of this current system is important for improving our knowledge of the global climate. The long-term changes in deepwater flow in the Atlantic-Indian gateway during the Cenozoic have been initially studied using reflection seismic profiles. But in many cases the seismic stratigraphy is poorly constrained and not further resolved within the time period from the late Miocene to present. In particular, there are limited Pliocene records that can be used to investigate the influence of climatic (e.g. Antartic ice volume) and tectonic (e.g. closure of the central American seaway) on the deep-water variability. Here we focus on the bottom water flow around the Agulhas Plateau, a location proximal to the entrance of North Atlantic Deep Water (NADW) to the Southern Ocean and South Indian Ocean. IODP Expedition 361 (SAFARI) Site U1475 was drilled in 2669 m water depth into a sediment drift that is deposited on the southwestern flank of Agulhas Plateau and comprises a complete stratigraphic section of the last 7 Ma. We present cleaned, edited, and spliced high-resolution data sets of sediment physical properties measured at Site U1475. Synthetic seismograms generated from the velocity and bulk density core scanning records allow a detailed correlation oft the drilling results with the Site survey seismic reflection profiles. Seismic reflectors at 3.75 and 3.87 s (two-way-traveltime) correspond to major increases in acoustic impedance at 110 and 216 meters below seafloor. Based on the preliminary shipboard biostratigraphic age model sediments at these depths have ages of 4.0 and 5.1 Ma, respectively. Furthermore spectral analyses of physical property records such as natural gamma radiation and colour reflectance reveal climate variability on orbital and suborbital timescales.
Global carbon management using air capture and geosequestration at remote locations
NASA Astrophysics Data System (ADS)
Lackner, K. S.; Goldberg, D.
2014-12-01
CO2 emissions need not only stop; according the IPCC, emissions need to turn negative. This requires means to remove CO2 from air and store it safely and permanently. We outline a combination of secure geosequestration and direct capture of CO2 from ambient air to create negative emissions at remote locations. Operation at remote sites avoids many difficulties associated with capture at the source, where space for added equipment is limited, good storage sites are in short supply, and proximity to private property engenders resistance. Large Igneous Provinces have been tested as secure CO2 reservoirs. CO2 and water react with reservoir rock to form stable carbonates, permanently sequestering the carbon. Outfitting reservoirs in large igneous provinces far from human habitation with ambient air capture systems creates large CO2 sequestration sites. Their remoteness offers advantages in environmental security and public acceptance and, thus, can smooth the path toward CO2 stabilization. Direct capture of CO2 from ambient air appears energetically and economically viable and could be scaled up quickly. Thermodynamic energy requirements are very small and a number of approaches have shown to be energy efficient in practice. Sorbent technologies include supported organoamines, alkaline brines, and quaternary ammonium based ion-exchange resins. To demonstrate that the stated goals of low cost and low energy consumption can be reached at scale, public research and demonstration projects are essential. We suggest co-locating air capture and geosequestration at sites where renewable energy resources can power both activities. Ready renewable energy would also allow for the co-production of synthetic fuels. Possible locations with large wind and basalt resources include Iceland and Greenland, the north-western United States, the Kerguelen plateau, Siberia and Morocco. Capture and sequestration in these reservoirs could recover all of the emissions of the 20th century and still contribute to a carbon neutral economy throughout the 21st century. Mobilizing industrial infrastructure to these areas poses a challenge. However, the urgency of the climate problem requires immediate action, with economic incentives and commitments to site evaluation and engineering development.
NASA Astrophysics Data System (ADS)
Picard, K.; Watson, S. J.; Fox, J. M.; Post, A.; Whittaker, J. M.; Lucieer, V.; Carey, R.; Coffin, M. F.; Hodgson, D.; Hogan, K.; Graham, A. G. C.
2017-12-01
Unravelling the glacial history of Sub-Antarctic islands can provide clues to past climate and Antarctic ice sheet stability. The glacial history of many sub-Antarctic islands is poorly understood, including the Heard and McDonald Islands (HIMI) located on the Kerguelen Plateau in the southern Indian Ocean. The geomorphologic development of HIMI has involved a combination of construction via hotspot volcanism and mechanical erosion caused by waves, weather, and glaciers. Today, the 2.5 km2 McDonald Islands are not glacierised; in contrast, the 368 km2 Heard Island has 12 major glaciers, some extending from the summit of 2813 m to sea level. Historical accounts from Heard Island suggest that the glaciers were more extensive in the 1850s to 1870s, and have retreated at least 12% (33.89 km2) since 1997. However, surrounding bathymetry suggests a much more extensive previous glaciation of the HIMI region that encompassed 9,585 km2, likely dating back at least to the Last Glacial Maximum (LGM) ca. 26.5 -19 ka. We present analyses of multibeam bathymetry and backscatter data, acquired aboard RV Investigator in early 2016, that support the previous existence of an extensive icecap. These data reveal widespread ice-marginal and subglacial features including moraines, over-deepened troughs, drumlins and crag-and-tails. Glacial landforms suggest paleo-ice flow directions and a glacial extent that are consistent with previously documented broad scale morphological features. We identify >660 iceberg keel scours in water depths ranging from 150 - 530 m. The orientations of the iceberg keel scours reflect the predominantly east-flowing Antarctic Circumpolar Current and westerly winds in the region. 40Ar/39Ar dating of volcanic rocks from submarine volcanoes around McDonald Islands suggests that volcanism and glaciation coincided. The flat-topped morphology of these volcanoes may result from lava-ice interaction or erosion by glaciers post eruption during a time of extensive ice-sheet cover and/or wave base erosion during sea level low stands. The prevalence and range of glacial landforms around HIMI suggest extensive past glaciation, and that glaciers have exerted a major influence on submarine geomorphology.
NASA Astrophysics Data System (ADS)
Chatterjee, Sankar; Scotese, Christopher
Palaeobiogeographic analysis of Indian tetrapods during the Late Cretaceous-Early Tertiary time has recognized that both vicariance and geodispersal have played important roles in producing biogeographic congruence. The biogeographic patterns show oscillating cycles of geodispersal (Late Cretaceous), followed by congruent episodes of vicariance and geodispersal (Early Eocene), followed by another geodispersal event (Middle Eocene). New biogeographic synthesis suggests that the Late Cretaceous Indian tetrapod fauna is cosmopolitan with both Gondwanan and Laurasian elements. Throughout most of the Cretaceous, India was separated from the rest of Gondwana, but in the latest Cretaceous it reestablished contact with Africa through Kohistan-Dras (K-D) volcanic arc, and maintained biotic link with South America via Ninetyeast Ridge-Kerguelen-Antarctica corridor. These two geodispersal routes allowed exchanges of "pan-Gondwana" terrestrial tetrapods from Africa, South America, and Madagascar. During that time India also maintained biotic connections with Laurasia across the Neotethys via Kohistan-Dras Arc and Africa. During the Palaeocene, India, welded to the K-D Arc, rafted like a "Noah's Ark" as an island continent and underwent rapid cladogenesis because of allopatric speciation. Although the Palaeocene fossil record is blank, Early Eocene tetrapods contain both endemic and cosmopolitan elements, but Middle Eocene faunas have strong Asian character. India collided with Asia in Early and Middle Eocene time and established a new northeast corridor for faunal migration to facilitate the bidirectional "Great Asian Interchange" dispersals.
Wang, Chun-Yong; Mooney, W.D.; Ding, Z.; Yang, J.; Yao, Z.; Lou, H.
2009-01-01
The shallow seismic velocity structure of the Kunlun fault zone (KLFZ) was jointly deduced from seismic refraction profiling and the records of trapped waves that were excited by five explosions. The data were collected after the 2001 Kunlun M s8.1 earthquake in the northern Tibetan Plateau. Seismic phases for the in-line record sections (26 records up to a distance of 15 km) along the fault zone were analysed, and 1-D P- and S-wave velocity models of shallow crust within the fault zone were determined by using the seismic refraction method. Sixteen seismic stations were deployed along the off-line profile perpendicular to the fault zone. Fault-zone trapped waves appear clearly on the record sections, which were simulated with a 3-D finite difference algorithm. Quantitative analysis of the correlation coefficients of the synthetic and observed trapped waveforms indicates that the Kunlun fault-zone width is 300 m, and S-wave quality factor Q within the fault zone is 15. Significantly, S-wave velocities within the fault zone are reduced by 30-45 per cent from surrounding rocks to a depth of at least 1-2 km, while P-wave velocities are reduced by 7-20 per cent. A fault-zone with such P- and S-low velocities is an indication of high fluid pressure because Vs is affected more than Vp. The low-velocity and low-Q zone in the KLFZ model is the effect of multiple ruptures along the fault trace of the 2001 M s8.1 Kunlun earthquake. ?? 2009 The Authors Journal compilation ?? 2009 RAS.
Delayed warming hiatus over the Tibetan Plateau
NASA Astrophysics Data System (ADS)
An, Wenling; Hou, Shugui; Hu, Yongyun; Wu, Shuangye
2017-03-01
A reduction in the warming rate for the global surface temperature since the late 1990s has attracted much attention and caused a great deal of controversy. During the same time period, however, most previous studies have reported enhanced warming over the Tibetan Plateau (TP). In this study we further examined the temperature trend of the TP and surrounding areas based on the homogenized temperature records for the period 1980-2014, we found that for the TP regions lower than 4000 m the warming rate has started to slow down since the late 1990s, a similar pattern consistent with the whole China and the global temperature trend. However, for the TP regions higher than 4000 m, this reduction in warming rate did not occur until the mid-2000s. This delayed warming hiatus could be related to changes in regional radiative, energy, and land surface processes in recent years.
Gravity increase before the 2015 Mw 7.8 Nepal earthquake
NASA Astrophysics Data System (ADS)
Chen, Shi; Liu, Mian; Xing, Lelin; Xu, Weimin; Wang, Wuxing; Zhu, Yiqing; Li, Hui
2016-01-01
The 25 April 2015 Nepal earthquake (Mw 7.8) ruptured a segment of the Himalayan front fault zone. Four absolute gravimetric stations in southern Tibet, surveyed from 2010/2011 to 2013 and corrected for secular variations, recorded up to 22.40 ± 1.11 μGal/yr of gravity increase during this period. The gravity increase is distinct from the long-wavelength secular trends of gravity decrease over the Tibetan Plateau and may be related to interseismic mass change around the locked plate interface under the Himalayan-Tibetan Plateau. We modeled the source region as a disk of 580 km in diameter, which is consistent with the notion that much of the southern Tibetan crust is involved in storing strain energy that drives the Himalayan earthquakes. If validated in other regions, high-precision ground measurements of absolute gravity may provide a useful method for monitoring mass changes in the source regions of potential large earthquakes.
Ages of fracturing and resurfacing in the Amenthes region, Mars
NASA Technical Reports Server (NTRS)
Maxwell, Ted A.; Mcgill, George E.
1988-01-01
An attempt is made to determine whether there is any tectonic evidence in the relatively recent history of the boundary zone that will place contraints on the origin of the Martian dichotomy. It is found that the timing of resurfacing events and structural modification of outlier plateaus and mesas in the Martian eastern hemisphere provides a contraint on the history of tectonic events along the cratered terrain-northern plains boundary. The circumferential grabens surrounding the Isidis basin ceased forming before the final emplacement of ridged plains on the adjacent northern lowlands. The cratered plateau east of the Isidis basin includes two crater populations; stripping of the rims of craters was complete before downfalling of the transition zone between the cratered terrain and the northern plains, and a young population of craters on the plateau records the same age as the ridged plains units north of the boundary.
NASA Astrophysics Data System (ADS)
Gawior, D.; Rutkiewicz, P.; Malik, I.; Wistuba, M.
2017-11-01
LiDAR data provide new insights into the historical development of mining industry recorded in the topography and landscape. In the study on the lead ore mining in the 13th-17th century we identified remnants of mining activity in relief that are normally obscured by dense vegetation. The industry in Tarnowice Plateau was based on exploitation of galena from the bedrock. New technologies, including DEM from airborne LiDAR provide show that present landscape and relief of post-mining area under study developed during several, subsequent phases of exploitation when different techniques of exploitation were used and probably different types of ores were exploited. Study conducted on the Tarnowice Plateau proved that combining GIS visualization techniques with historical maps, among all geological maps, is a promising approach in reconstructing development of anthropogenic relief and landscape..
Holocene record of eolian activity from Genggahai Lake, northeastern Qinghai-Tibetan Plateau, China
NASA Astrophysics Data System (ADS)
Qiang, Mingrui; Liu, Yingying; Jin, Yanxiang; Song, Lei; Huang, Xiangtong; Chen, Fahu
2014-01-01
The history of dust emission and eolian activity in dust source areas remains unclear due to the scarcity of geological archives. Grain-size data from Genggahai Lake on the northeastern Qinghai-Tibetan Plateau show that sand-sized particles in the lake sediments were transported primarily by strong winds to the lake and therefore can be used as a proxy for eolian activity. Eolian activity was weak from 10.3 to 6.3 ka, which may be a response to increased vegetation cover due to the strengthened Asian summer monsoon. In contrast, eolian activity occurred episodically when the summer monsoon weakened. The abrupt, intense sand deposition events are likely to have resulted from strong wind regimes, in turn linked to cooling events in the North Atlantic. Our results suggest that changes in atmospheric circulation patterns may have strongly affected the moisture balance and wind strength in the dust source area and hence dust emissions.
Responses of Hail and Storm Days to Climate Change in the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Zou, Tian; Zhang, Qinghong; Li, Wenhong; Li, Jihong
2018-05-01
There is increasing concern that local severe storm occurrence may be changing as a result of climate change. The Tibetan Plateau (TP), one of the world's most sensitive areas to climate change, became significantly warmer during recent decades. Since 1960 (1980), storm (hail) days have been decreasing by 6.2%/decade (18.3%/decade) in the region. However, what caused the frequency changes of storm and hail in the TP is largely unknown. Based on 53-year continuous weather records at 48 TP stations and reanalysis data, we show here for the first time that the consistent decline of storm days is strongly related to a drier midtroposphere since 1960. Further analysis demonstrated that fewer hail days are driven by an elevation of the melting level (thermodynamically) and a weaker wind shear (dynamically) in a warming climate. These results imply that less storm and hail may occur over TP when climate warms.
Comparing floral and isotopic paleoelevation estimates: Examples from the western United States
NASA Astrophysics Data System (ADS)
Hyland, E. G.; Huntington, K. W.; Sheldon, N. D.; Smith, S. Y.; Strömberg, C. A. E.
2016-12-01
Describing paleoelevations is crucial to understanding tectonic processes and deconvolving the effects of uplift and climate on environmental change in the past. Decades of work has gone into estimating past elevation from various proxy archives, particularly using modern relationships between elevation and temperature, floral assemblage compositions, or oxygen isotope values. While these methods have been used widely and refined through time, they are rarely applied in tandem; here we provide two examples from the western United States using new multiproxy methods: 1) combining clumped isotopes and macrofloral assemblages to estimate paleoelevations along the Colorado Plateau, and 2) combining oxygen isotopes and phytolith methods to estimate paleoelevations within the greater Yellowstone region. Clumped isotope measurements and refined floral coexistence methods from sites on the northern Colorado Plateau like Florissant and Creede (CO) consistently estimate low (< 2km) elevations through the Eocene/Oligocene, suggesting slower uplift and a south-north propagation of the plateau. Oxygen isotope measurements and C4 phytolith estimates from sites surrounding the Yellowstone hotspot consistently estimate moderate uplift (0.2-0.7km) propagating along the hotspot track, suggesting migrating dynamic topography associated with the region. These examples provide support for the emerging practice of using multiproxy methods to estimate paleoelevations for important time periods, and can help integrate environmental and tectonic records of the past.
50,000 years of vegetation and climate history on the Colorado Plateau, Utah and Arizona, USA
Coats, Larry L.; Cole, Kenneth L.; Mead, Jim I.
2008-01-01
Sixty packrat middens were collected in Canyonlands and Grand Canyon National Parks, and these series include sites north of areas that produced previous detailed series from the Colorado Plateau. The exceptionally long time series obtained from each of three sites (> 48,000 14C yr BP to present) include some of the oldest middens yet discovered. Most middens contain a typical late-Wisconsinan glaciation mixture of mesic and xeric taxa, evidence that plant species responded to climate change by range adjustments of elevational distribution based on individual criteria. Differences in elevational range from today for trees and shrubs ranged from no apparent change to as much as 1200 m difference. The oldest middens from Canyonlands NP, however, differ in containing strictly xeric assemblages, including middens incorporating needles of Arizona single-leaf pinyon, far north of its current distribution. Similar-aged middens from the eastern end of Grand Canyon NP contain plants more typical of glacial climates, but also contain fossils of one-seed juniper near its current northern limit in Arizona. Holocene middens reveal the development of modern vegetation assemblages on the Colorado Plateau, recording departures of mesic taxa from low elevation sites, and the arrival of modern dominant components much later.
Hydrology of the cavernous limestones of the Mammoth Cave area, Kentucky
Brown, Richmond F.
1966-01-01
The Mammoth Cave National Park in central Kentucky offers a unique opportunity to study the occurrence of ground water in limestone under natural conditions. Ground water occurs as perched and semiperched bodies in alternate sandstone, shale, and limestone formations and under water-table conditions at the approximate level of the Green River in thick soluble limestone. Three continuous recorders that operated for 5 years indicate that precipitation on the Mammoth Cave plateau recharges the underlying sandstone rapidly. Ground water from the sandstone discharges horizontally to the edges of the plateau and vertically to underlying formations. Some of the precipitation recharges underlying formations almost immediately through overland flow to sinkholes and free fall through open shafts to pools at the water table. Much of the precipitation on the Pennyroyal plain flows overland into sinkholes and then through solution openings to the Green River. Water from the Green River flows into limestone solution channels under Mammoth Cave plateau at some stages, and this water discharges again to the Green River downstream. The presence of salt water, high in chloride in the Green River, makes it possible to trace the movement of the river water through the underground streams. Graphs show relationships of chloride concentration, stage of the Green River, time, precipitation, ground-water levels, and stratigraphy.
Kolawole, Grace O.; Gilbert, Hannah N.; Dadem, Nancin Y.; Genberg, Becky L.; Agbaji, Oche O.
2017-01-01
Background. Decentralization of care and treatment for HIV infection in Africa makes services available in local health facilities. Decentralization has been associated with improved retention and comparable or superior treatment outcomes, but patient experiences are not well understood. Methods. We conducted a qualitative study of patient experiences in decentralized HIV care in Plateau State, north central Nigeria. Five decentralized care sites in the Plateau State Decentralization Initiative were purposefully selected. Ninety-three patients and 16 providers at these sites participated in individual interviews and focus groups. Data collection activities were audio-recorded and transcribed. Transcripts were inductively content analyzed to derive descriptive categories representing patient experiences of decentralized care. Results. Patient participants in this study experienced the transition to decentralized care as a series of “trade-offs.” Advantages cited included saving time and money on travel to clinic visits, avoiding dangers on the road, and the “family-like atmosphere” found in some decentralized clinics. Disadvantages were loss of access to ancillary services, reduced opportunities for interaction with providers, and increased risk of disclosure. Participants preferred decentralized services overall. Conclusion. Difficulty and cost of travel remain a fundamental barrier to accessing HIV care outside urban centers, suggesting increased availability of community-based services will be enthusiastically received. PMID:28331636
Kolawole, Grace O; Gilbert, Hannah N; Dadem, Nancin Y; Genberg, Becky L; Agaba, Patricia A; Okonkwo, Prosper; Agbaji, Oche O; Ware, Norma C
2017-01-01
Background. Decentralization of care and treatment for HIV infection in Africa makes services available in local health facilities. Decentralization has been associated with improved retention and comparable or superior treatment outcomes, but patient experiences are not well understood. Methods. We conducted a qualitative study of patient experiences in decentralized HIV care in Plateau State, north central Nigeria. Five decentralized care sites in the Plateau State Decentralization Initiative were purposefully selected. Ninety-three patients and 16 providers at these sites participated in individual interviews and focus groups. Data collection activities were audio-recorded and transcribed. Transcripts were inductively content analyzed to derive descriptive categories representing patient experiences of decentralized care. Results. Patient participants in this study experienced the transition to decentralized care as a series of "trade-offs." Advantages cited included saving time and money on travel to clinic visits, avoiding dangers on the road, and the "family-like atmosphere" found in some decentralized clinics. Disadvantages were loss of access to ancillary services, reduced opportunities for interaction with providers, and increased risk of disclosure. Participants preferred decentralized services overall. Conclusion. Difficulty and cost of travel remain a fundamental barrier to accessing HIV care outside urban centers, suggesting increased availability of community-based services will be enthusiastically received.
Jarboe, Nicholas A.; Coe, Robert S.; Glen, Jonathan M. G.
2011-01-01
Geomagnetic polarity transitions may be significantly more complex than are currently depicted in many sedimentary and lava-flow records. By splicing together paleomagnetic results from earlier studies at Steens Mountain with those from three newly studied sections of Oregon Plateau flood basalts at Catlow Peak and Poker Jim Ridge 70–90 km to the southeast and west, respectively, we provide support for this interpretation with the most detailed account of a magnetic field reversal yet observed in volcanic rocks. Forty-five new distinguishable transitional (T) directions together with 30 earlier ones reveal a much more complex and detailed record of the 16.7 Ma reversed (R)-to-normal (N) polarity transition that marks the end of Chron C5Cr. Compared to the earlier R-T-N-T-N reversal record, the new record can be described as R-T-N-T-N-T-R-T-N. The composite record confirms earlier features, adds new west and up directions and an entire large N-T-R-T segment to the path, and fills in directions on the path between earlier directional jumps. Persistent virtual geomagnetic pole (VGP) clusters and separate VGPs have a preference for previously described longitudinal bands from transition study compilations, which suggests the presence of features at the core–mantle boundary that influence the flow of core fluid and distribution of magnetic flux. Overall the record is consistent with the generalization that VGP paths vary greatly from reversal to reversal and depend on the location of the observer. Rates of secular variation confirm that the flows comprising these sections were erupted rapidly, with maximum rates estimated to be 85–120 m ka−1 at Catlow and 130–195 m ka−1 at Poker Jim South. Paleomagnetic poles from other studies are combined with 32 non-transitional poles found here to give a clockwise rotation of the Oregon Plateau of 11.4°± 5.6° with respect to the younger Columbia River Basalt Group flows to the north and 14.5°± 4.6° with respect to cratonic North America (95 per cent confidence interval).
Habitat Suitability Index Models: Slough darter
Edwards, Elizabeth A.; Bacteller, Mary; Maughan, O. Eugene
1982-01-01
The native range of the slough darter (Etheostoma gracile) extends from western Alabama (Smith-Vaniz 1968) to central Texas and northward in the lowland areas of the former Mississippi Embayment and the Interior Low Plateau to central Illinois (Collette 1962) and southwestern Indiana (Gerking 1945). Its distribution also includes southeast Kansas (Metcalf 1959; Cross 1967) and northeast Oklahoma (Blair 1959). Natural hybridization with the blackside darter (Percina maculata) has been recorded (Page 1976).
NASA Astrophysics Data System (ADS)
Li, Xiangying; Ding, Yongjian; Yu, Zhongbo; Mika, Sillanpää; Liu, Shiyin; Shangguan, Donghui; Lu, Chengyang
2015-02-01
The climate significance of oxygen isotopes from the central Tibetan Plateau (cTP) ice cores is a debated issue because of large scale atmospheric circulation. A high-resolution δ18O record was recovered from the Xiao Dongkemadi (XD) ice core, which expanded the spatial coverage of δ18O data in this region. Annual average δ18O correlated significantly with nearby MJJAS air temperatures, suggesting the δ18O can be used as a proxy to reconstruct regional climate change. The reconstructed temperature anomaly is related to the regional and global warming trends, and the greater warming amplitude since 1970s is related to the elevation dependency of the warming signal. The close relationship of the warming to variations in glacier mass balances and discharge reveal that recent warming has led to obvious glacier shrinkage and runoff increase. Correlation analysis suggests that monsoon and westerly moisture substantially influence the cTP ice core records, along with an increase in their level of contribution to the XD core accumulation in recent decades, and confirms a teleconnection of regional climate of the cTP ice cores with climate parameters in the Indian and North Atlantic Oceans.
Chemical Records in Snowpits from High Altitude Glaciers in the Tibetan Plateau and Its Surroundings
Zhang, Yulan; Kang, Shichang; Zhang, Qianggong; Gao, Tanguang; Guo, Junming; Grigholm, Bjorn; Huang, Jie; Sillanpää, Mika; Li, Xiaofei; Du, Wentao; Li, Yang; Ge, Xinlei
2016-01-01
Glaciochemistry can provide important information about climatic change and environmental conditions, as well as for testing regional and global atmospheric trace transport models. In this study, δ18O and selected chemical constituents records in snowpits collected from eight glaciers in the Tibetan Plateau and adjacent areas have been investigated. Drawing on the integrated data, our study summarized the seasonal and spatial characteristics of snow chemistry, and their potential sources. Distinct seasonal patterns of δ18O values in snowpits indicated more negative in the south TP controlled by Indian monsoon, and less negative in the north TP and Tien Shan. Overall increasing concentrations of microparticles and crustal ions from south to north indicated a strength of dust deposition on glaciers from semi-arid and arid regions. Principal component analysis and air mass trajectories suggested that chemical constituents were mainly attributable to crustal sources as demonstrated by the high concentrations of ions occurring during the non-monsoon seasons. Nevertheless, other sources, such as anthropogenic pollution, played an important role on chemical variations of glaciers near the human activity centers. This study concluded that air mass transport from different sources played important roles on the spatial distributions and seasonality of glaciochemistry. PMID:27186638
NASA Astrophysics Data System (ADS)
Bougeois, Laurie; Dupont-Nivet, Guillaume; de Rafélis, Marc; Tindall, Julia C.; Proust, Jean-Noël; Reichart, Gert-Jan; de Nooijer, Lennart J.; Guo, Zhaojie; Ormukov, Cholponbelk
2018-03-01
Asian climate patterns, characterised by highly seasonal monsoons and continentality, are thought to originate in the Eocene epoch (56 to 34 million years ago - Ma) in response to global climate, Tibetan Plateau uplift and the disappearance of the giant Proto-Paratethys sea formerly extending over Eurasia. The influence of this sea on Asian climate has hitherto not been constrained by proxy records despite being recognised as a major driver by climate models. We report here strongly seasonal records preserved in annual lamina of Eocene oysters from the Proto-Paratethys with sedimentological and numerical data showing that monsoons were not dampened by the sea and that aridification was modulated by westerly moisture sourced from the sea. Hot and arid summers despite the presence of the sea suggest a strong anticyclonic zone at Central Asian latitudes and an orographic effect from the emerging Tibetan Plateau. Westerly moisture precipitating during cold and wetter winters appear to have decreased in two steps. First in response to the late Eocene (34-37 Ma) sea retreat; second by the orogeny of the Tian Shan and Pamir ranges shielding the westerlies after 25 Ma. Paleogene sea retreat and Neogene westerly shielding thus provide two successive mechanisms forcing coeval Asian desertification and biotic crises.
NASA Astrophysics Data System (ADS)
Kinsley, C. W.; McGee, D.; Anderson, C. H.; Murray, R. W.; Tada, R.; Alvarez Zarikian, C. A.
2017-12-01
Recent work has shown a mechanistic relationship between the Westerly Jet (WJ) and East Asian Monsoon (EAM) precipitation, as migration of the WJ to the northern edge of the Tibetan Plateau during spring and early summer appears to be essential for driving convective rainfall over eastern China. Chiang et al. (2015) has proposed the "Jet Transition Hypothesis" wherein it is put forward that changes to the seasonal meridional position of the WJ relative to the Tibetan Plateau drives rainfall climate changes over East Asia on paleoclimate timescales. This hypothesis would predict that in extreme scenarios such as cold phases of Dansgaard-Oeschger (D-O) stadials and during periods of low Northern Hemisphere summer insolation that the Jet would not move north of the Tibetan Plateau, keeping East Asia in prolonged spring conditions. Conversely, during periods of high Northern Hemisphere summer insolation it would be predicted that the Jet would move more quickly north of the Tibetan Plateau and remain there longer, keeping East Asia in prolonged summer conditions. Westerly Jet behavior can be reconstructed using sediments from the Japan Sea, as the WJ path and intensity determines dust emissions and transport paths from Chinese and Mongolian dust source areas, which is the primary source of terrigenous material to the Japan Sea. Radiogenic isotopes of Pb, Nd and Sr can be been applied to fingerprint the dust sources from Asia, and measurements of these isotopes downcore in the Japan Sea will allow reconstruction of the changing dust source area and thus behavior of the WJ. By coupling dust reconstructions lending insight to the behavior of the Westerly Jet with complementary records reflecting EAM intensity and precipitation distribution, the mean state and variability of the WJ and its coupling with the EAM can be examined. This study will measure a suite of samples for Pb, Nd and Sr isotopes from IODP Site U1430 over glacial-interglacial timescales, allowing detailed insights into changes in eolian sediment source regions in the Japan Sea and laying a foundation for future work examining millennial- and orbital-scale variability. Chiang, J.C.H., et al. 2015. Role of Seasonal Transitions and Westerly Jets in East Asian Paleoclimate, QSR, 108, 111-129.
Rise and Demise of a Southern Laramide Hinterland Plateau, US-Mexico Border Region
NASA Astrophysics Data System (ADS)
Lawton, T. F.; Clinkscales, C. A.; Jennings, G. R.
2011-12-01
New U-Pb geochronology and stratigraphic data sets suggest that an elevated, altiplano-like plateau existed in the backarc region of what is now southern Arizona and southern New Mexico during Late Cretaceous through Paleogene (~28 Ma) time, and indicate that the Laramide province of the US was thus flanked on both its western and southern sides by hinterland plateaus. The Laramide stratigraphic record of southwestern New Mexico and southeastern Arizona formed during a short time period spanning 75-70 Ma, as indicated by numerous, newly-dated, interbedded tuff beds. The Laramide deposits (Fort Crittenden Formation of Arizona, Ringbone and Skunk Ranch Formations of Arizona, Cabullona Group of Sonora), which contain growth strata developed adjacent to steep thrust faults, accumulated in lake and lake-margin fan-delta and alluvial-fan settings on the northern margin of a volcanic arc whose main magmatic locus lay in northeastern Sonora and northwestern Chihuahua. By the end of basin development, the arc had migrated northward to occupy the former depocenters, such that intermediate volcanic rocks interfinger with and overlie the lacustrine deposits, and subvolcanic plutons, one with an age of 69 Ma, intrude and cross-cut thrust faults. Laramide strata unconformably overlie lowermost Upper Cretaceous (~97 Ma) strata and contractional structures are unconformably truncated beneath Oligocene (~33 Ma) volcaniclastic rocks. Detritus derived from the Cretaceous arc is abundant in Campanian fluvial strata (Kaiparowits Formation and Mesaverde Group) of the southern Colorado Plateau. East-west normal faults with as much as 3 km of displacement and a related array of conjugate NW- and NE-striking normal faults, many of these previously interpreted as reverse and transcurrent faults, are widespread in ranges of southern New Mexico and southeastern Arizona. These faults post-date Laramide contractional structures and are in turn cut by Neogene N-S normal faults. The east-west normal faults are occupied by regionally widespread granitic and rhyolitic dikes ranging 34-27 Ma, yet the Oligocene volcaniclastic rocks are cut by the faults, indicating that the fault system was active during earliest-early late Oligocene magmatism. From the newly assembled data, we infer the presence of a high-standing plateau along the US-Mexico border that was backed by a magmatic arc in northern Mexico. The plateau was supported by lithosphere thickened during backarc contraction, which began in the interval 97-75 Ma. Although the depositional elevation of the Laramide lakes is not yet known, rivers flowed northward from the hinterland plateau toward the Uinta Basin as early as 80 Ma and corroborate the existence of a southern source area. The plateau was thus a long-lived feature with a longevity of as much as 40-50 m.y. It collapsed during Paleogene N-S extension triggered by some combination of thermal weakening by Oligocene magmatism, gravitational failure, and/or retrograde motion of the Farallon slab. The southern Laramide plateau was evidently linked both geographically and temporally to the Cordilleran hinterland plateau ("Nevadaplano") of Nevada and western Utah and thus constituted an important component of the greater Laramide orogen.
NASA Astrophysics Data System (ADS)
Kirby, Eric
2017-04-01
The manifestation of coupling among climate, erosion and tectonics along steep topographic margins of orogenic plateaus is strongly dependent on the processes driving crustal thickening. Along the eastern margin of the Tibetan Plateau, a long-standing and vigorous debate persists over whether mountain building occurred largely along upper-crustal faults or was the consequence of distributed thickening in the lower crust. Here I revisit this debate and show how surface deformation recorded by geomorphology over millennial timescales (10^4-105 yr) can yield insight into the role the deep crust along plateau margins. In contrast to the intensively studied Longmen Shan, the topographic margin of the Tibetan Plateau north of the Sichuan Basin follows the north-south Min Shan and cuts orthogonally across the structural grain of the Mesozoic West Qinling orogen. The lack of a direct association of topography with upper crustal faults affords an opportunity to evaluate the patterns of differential rock uplift from geomorphology. First, I employ an empirical calibration of river profile steepness (channel gradient normalized for drainage basin area) and erosion rate from cosmogenic 10Be concentrations in modern sediment. Application to the channels draining the plateau margin reveals a locus of high (300-500 m/Myr) erosion rate coincident with the Min Shan. Second, I present new results of surveying and dating of fluvial terraces developed along the Bailong Jiang, one of the major rivers draining across the plateau margin. A preliminary chronology of terrace formation and abandonment based on radiocarbon and OSL dating of fluvial deposits reveals systematic spatial gradients in fluvial incision, with highest incision rates (1000-2000 m/Myr) localized along the axis of the Min Shan and decreasing toward both the foreland and the plateau. This locus of incision has apparently been sustained through multiple generations of terrace formation and abandonment since at least 80 ka and thus is interpreted to reflect sustained differential rock uplift along this axis. The wavelength of the region of highest incision rates is 80 km and requires either 1) a deeply buried tip of a blind fault, or 2) thickening in the deep crust. We argue that terrace deformation and associated rock uplift likely reflects flow and thickening of deep Tibetan crust against the foreland of the West Qinling.
NASA Astrophysics Data System (ADS)
Kirby, Eric; Zhang, Huiping; Chen, Jie
2016-04-01
The manifestation of coupling among climate, erosion and tectonics along steep topographic margins of orogenic plateaus is strongly dependent on the processes driving crustal thickening. Along the eastern margin of the Tibetan Plateau, a long-standing an vigorous debate persists over whether mountain building occurred largely along upper-crustal faults or was the consequence of distributed thickening in the lower crust. Here we revisit this debate and show how surface deformation recorded by geomorphology over millennial timescales (104-105 yr) can yield insight into the role the deep crust along plateau margins. In contrast to the intensively studied Longmen Shan, the topographic margin of the Tibetan Plateau north of the Sichuan Basin follows the north-south Min Shan and cuts orthogonally across the structural grain of the Mesozoic West Qinling orogen. The lack of a direct association of topography with upper crustal faults affords an opportunity to evaluate the patterns of differential rock uplift from geomorphology. First, we employ an empirical calibration of river profile steepness (channel gradient normalized for drainage basin area) and erosion rate from cosmogenic 10Be concentrations in modern sediment. Application to the channels draining the plateau margin reveals a locus of high (300-500 m/Myr) erosion rate coincident with the Min Shan. Second, we present new results of surveying and dating of fluvial terraces developed along the Bailong Jiang, one of the major rivers draining across the plateau margin. A preliminary chronology of terrace tread deposits based on radiocarbon and OSL samples reveals systematic spatial gradients in fluvial incision, with highest incision rates (1000-2000 m/Myr) localized along the axis of the Min Shan and decreasing toward both the foreland and the plateau. This locus of incision has apparently been sustained through multiple generations of terrace formation and abandonment since ca. 80ka and thus is interpreted to reflect sustained differential rock uplift along this axis. The wavelength of the region of highest incision rates is ˜80 km and requires either 1) a deeply buried tip of a blind fault, or 2) thickening in the deep crust. We argue that terrace deformation and associated rock uplift likely reflects flow and thickening of deep Tibetan crust against the foreland of the West Qinling.
VizieR Online Data Catalog: GMVA 86GHz images of OJ 287 (Hodgson+, 2017)
NASA Astrophysics Data System (ADS)
Hodgson, J. A.; Krichbaum, T. P.; Marscher, A. P.; Jorstad, S. G.; Rani, B.; Marti-Vidal, I.; Sanchez, S.; Bremer, M.; Lindqvist, M.; Uunila, M.; Kallunki, J.; Vicente, P.; Angelakis, E.; Karamanavis, V.; Myserlis, I.; Nestoras, I.; Sievers, A.; Gurwell, M.; Zensus, J. A.
2017-01-01
The GMVA combines the eight 3mm receiver equipped stations of the VLBA and up to six European observatories, including Elsberg, Onsala, Metsahovi, Pico Veleta, Plateau de Bure, and since 2012, Yebes. Data were recorded at 512 Mbit/s, with eight 8MHz channels, in dual polarisation. Onsala and Yebes observed in left circular polarisation (LCP) only. For these stations, LCP was assumed to be equal to RCP and hence Stokes I. Scans of approximately 7 minutes every 15 minutes were recorded with pointing and calibration performed on European stations in the gaps between scans. (2 data files).
Patterns and timing of loess-paleosol transitions in Eurasia: Constraints for paleoclimate studies
NASA Astrophysics Data System (ADS)
Zeeden, Christian; Hambach, Ulrich; Obreht, Igor; Hao, Qingzhen; Abels, Hemmo A.; Veres, Daniel; Lehmkuhl, Frank; Gavrilov, Milivoj B.; Marković, Slobodan B.
2018-03-01
Loess-paleosol sequences are the most extensive terrestrial paleoclimate records in Europe and Asia documenting atmospheric circulation patterns, vegetation, and sedimentary dynamics in response to glacial-interglacial cyclicity. Between the two sides of the Eurasian continent, differences may exist in response and response times to glacial changes and finding these is essential to understand the climate systems of the northern hemisphere. Therefore, assessment of common patterns and regional differences in loess-paleosol sequences (LPS) is vital, but remains, however, uncertain. Another key to interpret these records is to constrain the mechanisms responsible for the formation and preservation of paleosols and loess layers in these paleoclimate archives. This study therefore compares LPS magnetic susceptibility records as proxies for paleosol formation intensity for selected sites from the central Chinese Loess Plateau and the Carpathian Basin in Europe over the last 440 kyr. Inconsistencies and crucial issues concerning the timing, correlation and paleoclimate potential of selected Eurasian LPS are outlined. Our comparison of Eurasian LPS shows generally similar patterns of paleosol formation, while highlighting several crucial differences. Especially for paleosols developed around 200 and 300 ka, the reported timing of soil formation differs by up to 30 ka. In addition, a drying and cooling trend over the last 300 ka has been documented in Europe, with no such evidence in the Asian records. The comparison shows that there is still uncertainty in defining the chronostratigraphic framework for these records on glacial-interglacial time scales in the order of 5-30 kyr for the last 440 ka. We argue that the baseline of the magnetic susceptibility proxy in loess from the Carpathian Basin is the most striking difference between European LPS and the Chinese Loess Plateau. In our opinion, many of the current timing/age differences may be overcome once a comparable stratigraphic interpretation is achieved.
NASA Astrophysics Data System (ADS)
Beaudon, E.; Gabrielli, P.; Sierra Hernandez, R.; Wegner, A.; Thompson, L. G.
2017-12-01
Since the 1980s, Asia has experienced enormous industrial development from rapid population growth, industrialization and consequent large-scale environmental changes. The inherent generated atmospheric pollution currently contributes to half of all Earth's anthropogenic trace metals emissions. Asian trace metal aerosols, when deposited on glaciers of the surrounding mountains of the Tibetan Plateau (TP), leave a characteristic chemical fingerprint. Interpreting trace element (TE) records from glaciers implies a thorough comprehension of their provenance and temporal variability. It is then essential to discriminate the TEs' natural background components from their anthropogenic components. Here we present 500-year TE records from the Puruogangri ice core (Tibet, China) that provide a highly resolved account of the impact of past atmospheric influences, environmental processes and human activities on the central TP. A decreasing aeolian dust input to the ice cap allowed the detection of an atmospheric pollution signal. The anthropogenic pollution contribution emerges in the record since the early 1900s and increases substantially after 1935. The metallurgy (Zn, Pb and steel smelting) emission products from the former Soviet Union and especially from central Asia likely enhanced the anthropogenic deposition to the Puruogangri ice cap between 1935 and 1980, suggesting that the westerlies served as a conveyor of atmospheric pollution to central Tibet. The impact of this industrial pollution cumulated with that of the hemispheric coal and gasoline combustion which are respectively traced by Sb and Pb enrichment in the ice. The Chinese steel production accompanying the Great Leap Forward (1958-1961) and the Chinese Cultural Revolution (1966-1976) is proposed as a secondary but proximal source of Pb pollution affecting the ice cap between 1958 and 1976. The most recent decade (1980-1992) of the enrichment time series suggests that Puruogangri ice cap recorded the early Sb, Cd, Zn, Pb and Ag pollution originating from developing countries of South (i.e., India) and East (i.e., China) Asia and transported by the summer monsoonal circulation.
NASA Astrophysics Data System (ADS)
Insel, N.; Grove, M.; Haschke, M.; Barnes, J. B.; Schmitt, A. K.; Strecker, M. R.
2012-12-01
Constraining the pre-Neogene history of the Puna plateau is crucial for establishing the initial conditions that attended the early stage evolution of the southern extent of the Andean plateau. We apply high- to low-temperature thermochronology data from plutonic rocks in northwestern Argentina to quantify the Paleozoic, Mesozoic and early Tertiary cooling history of the Andean crust. U-Pb crystallization ages of zircons indicate that pluton intrusion occurred during the early mid-Ordovician (490-470 Ma) and the late Jurassic (160-150 Ma). Lower-temperature cooling histories from 40Ar/39Ar analyses of K-feldspar vary substantially. Basement rocks underlying the western Puna resided at temperatures below 200°C (<6 km depth) since the Devonian (˜400 Ma). In contrast, basement rocks underlying the southeastern Puna were hotter (˜200-300°C) throughout the Paleozoic and Jurassic and cooled to temperatures of <200°C by ˜120 Ma. The southeastern Puna basement records a rapid cooling phase coeval with active extension of the Cretaceous Salta rift at ˜160-100 Ma that we associate with tectonic faulting and lithospheric thinning. The northeastern Puna experienced protracted cooling until the late Cretaceous with temperatures <200°C during the Paleocene. Higher cooling rates between 78 and 55 Ma are associated with thermal subsidence during the postrift stage of the Salta rift and/or shortening-related flexural subsidence. Accelerated cooling and deformation during the Eocene was focused within a narrow zone along the eastern Puna/Eastern Cordillera transition that coincides with Paleozoic/Mesozoic structural and thermal boundaries. Our results constrain regional erosion-induced cooling throughout the Cenozoic to have been less than ˜150°C, which implies total Cenozoic denudation of <6-4 km.
NASA Astrophysics Data System (ADS)
Gao, R.; Wang, H.; Li, W.; Li, H.
2014-12-01
The Minshan region, located along the eastern margin of the Tibetan Plateau north of the Sichuan Basin, provides an important natural laboratory in which to study the patterns of deformation and their relationship to mountain building at the margin of the plateau. The Minshan range is bounded by the Minjiang fault to the west and Huya fault to the east. Evidence from the Neotectonics sediments suggests that deformation along the western Min Shan may reflect the surface response to thickening of a weak lower crust at the margin of the Tibetan Plateau (Kirby et al., 2000). In 2014, two deep seismic profiles was carried out across the Minjiang fault (55 km long) and Huya fault (45 km long) respectively, supported by China geological survey project (No.1212011220260) and Crust Probe Project of China (SinoProbe-02-01). The recording of seismic waves from 4 big shots (500kg), 100 middle shots (120 kg) and 400 small shots (36 kg) were employed. The geophones spacing is 50 m. The preliminary stack sections provide us a detailed deformation mechanism of the Minshan region for the first time. The result shows that: (1) The Huya fault section shows different reflection characteristics on the west and east flank. (2) The Moho reflection beneath the Huya fault, which appeared at 12-13 s two-way time, tilts from the east to the west. (3) The Minjiang fault shows as a series of thrust nappe in the upper crust. (4) A strong reflector appears in the middle crust of the Minjiang section at 8-9 s two-way times, and it dips down to the lower crust from west to east.
Jin, Xiao-gang; Zhang, Ming-jun; Wang, Sheng-jie; Zhu, Xiao-fan; Dong, Lei; Ren, Zheng-guo; Chen, Fen-li
2015-04-01
Based on stable isotopes in 409 precipitation samples provided by GNIP and meteorological records at the eight stations in Loess Plateau from January 1985 to December 2004, as well as the trajectory model of HYSPLIT 4.9, the spatial and temporal variations of d-excess and Δ18O were analyzed. The spatial distribution of secondary evaporation rate and the impact of meteorological factors on below-cloud secondary evaporation were also discussed. The result showed that: (1) During summer and winter monsoon periods, Δ18O showed an uptrend variation and d-excess showed a downtrend variation from south to north in Loess Plateau. From east to west, Δ180 showed an uptrend variation only in summer monsoon period and a downtrend variation in winter monsoon period. The value of d-excess also showed a downtrend variation. Amplitude of variation Δ18O and d-excess could indicate the routes of monsoon. (2) Secondary evaporation existed on an annual basis, and it was relatively significant during the summer monsoon period, with ranges from 1.51% to 5.88% and an average rate of 3.87%. While winter monsoon became lower, the rates ranged from 1.06% to 5.46%, and the average rate dropped to 3.03%. Monsoon had larger influence on secondary evaporation in margin area of the plateau, while the influence on the central stations was little. (3) Temperature had the highest contribution to secondary evaporation, followed by precipitation amount and water vapor pressure, and relative humidity had a small contribution. Moreover, the influence of wind speed and altitude on secondary evaporation was weak.
Re-evaluating the 1940s CO2 plateau
NASA Astrophysics Data System (ADS)
Bastos, A.; Ciais, P.; Barichivitch, J.; Brovkin, V.; Gasser, T.; Pongratz, J.; Trudinger, C. M.
2016-12-01
The ice-core record reveals a stabilisation of atmospheric CO2 in the 1940s (the so called "plateau"), in spite of continued emissions from fossil fuel burning (FF) and land-use change (LUC). This stabilisation has been previously attributed to very strong oceanic CO2 uptake, perhaps in response to the El-Niño event in 1940. However, this explanation is questionable, since recent atmospheric CO2 data indicate that El Niño events generally lead to higher atmospheric CO2 growth-rates because of the terrestrial response, and oceanic CO2 measurements indicate the range of variability in the ocean sink has been rather modest in recent decades. We use up-to-date reconstructions of the CO2 sources (FF and LUC), ocean uptake from two different reconstructions and the terrestrial sink (from TRENDY models) over the 20th century to evaluate whether these allow capturing the CO2 plateau and provide further insight about its drivers. While these datasets provide a plausible explanation for most of the 20th century carbon budget, especially since 1970, they overestimate atmospheric CO2 growth rate during the plateau period by 0.9-2.0PgC.yr-1. We test the possible explanations for this mismatch, namely i) the role of natural variability in the ocean sink; ii) the representation of the terrestrial sink response to the climate anomalies during the 1940s by land-surface models; iii) the contribution of land-use processes possibly not represented in the current datasets. We conclude that a strong terrestrial sink concurrent with enhanced oceanic uptake is required to explain the CO2 stabilisation. Tests performed using the OSCAR carbon-cycle model suggest that changes in land-use coinciding with drastic socioeconomic changes during WW2 could plausibly contribute to the additional sink required.
Quantifying export production in the Southern Ocean: Implications for the Baxs proxy
NASA Astrophysics Data System (ADS)
Hernandez-Sanchez, Maria T.; Mills, Rachel A.; Planquette, HéLèNe; Pancost, Richard D.; Hepburn, Laura; Salter, Ian; Fitzgeorge-Balfour, Tania
2011-12-01
The water column and sedimentary Baxs distribution around the Crozet Plateau is used to decipher the controls and timing of barite formation and to evaluate how export production signals are recorded in sediments underlying a region of natural Fe fertilization within the Fe limited Southern Ocean. Export production estimated from preserved, vertical sedimentary Baxs accumulation rates are compared with published export fluxes assessed from an integrated study of the biological carbon pump to determine the validity of Baxs as a quantitative proxy under different Fe supply conditions typical of the Southern Ocean. Detailed assessment of the geochemical partitioning of Ba in sediments and the lithogenic end-member allows appropriate correction of the bulk Ba content and determination of the Baxs content of sediments and suspended particles. The upper water column distribution of Baxs is extremely heterogeneous spatially and temporally. Organic carbon/Baxs ratios in deep traps from the Fe fertilized region are similar to other oceanic settings allowing quantification of the inferred carbon export based on established algorithms. There appears to be some decoupling of POC and Ba export in the Fe limited region south of the Plateau. The export production across the Crozet Plateau inferred from the Baxs sedimentary proxy indicates that the Fe fertilized area to the north of the Plateau experiences enhanced export relative to equivalent Southern Ocean settings throughout the Holocene and that this influence may also have impacted the site to the south for significant periods. This interpretation is corroborated by alternative productivity proxies (opal accumulation, 231Paxs/230Thxs). Baxs can be used to quantify export production in complex settings such as naturally Fe-fertilized (volcanoclastic) areas, providing appropriate lithogenic correction is undertaken, and sediment focusing is corrected for along with evaluation of barite preservation.
NASA Astrophysics Data System (ADS)
Ma, Yingzhao; Hong, Yang; Chen, Yang; Yang, Yuan; Tang, Guoqiang; Yao, Yunjun; Long, Di; Li, Changmin; Han, Zhongying; Liu, Ronghua
2018-01-01
Accurate estimation of precipitation from satellites at high spatiotemporal scales over the Tibetan Plateau (TP) remains a challenge. In this study, we proposed a general framework for blending multiple satellite precipitation data using the dynamic Bayesian model averaging (BMA) algorithm. The blended experiment was performed at a daily 0.25° grid scale for 2007-2012 among Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42RT and 3B42V7, Climate Prediction Center MORPHing technique (CMORPH), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR). First, the BMA weights were optimized using the expectation-maximization (EM) method for each member on each day at 200 calibrated sites and then interpolated to the entire plateau using the ordinary kriging (OK) approach. Thus, the merging data were produced by weighted sums of the individuals over the plateau. The dynamic BMA approach showed better performance with a smaller root-mean-square error (RMSE) of 6.77 mm/day, higher correlation coefficient of 0.592, and closer Euclid value of 0.833, compared to the individuals at 15 validated sites. Moreover, BMA has proven to be more robust in terms of seasonality, topography, and other parameters than traditional ensemble methods including simple model averaging (SMA) and one-outlier removed (OOR). Error analysis between BMA and the state-of-the-art IMERG in the summer of 2014 further proved that the performance of BMA was superior with respect to multisatellite precipitation data merging. This study demonstrates that BMA provides a new solution for blending multiple satellite data in regions with limited gauges.
A Surgical Model of Posttraumatic Osteoarthritis With Histological and Gait Validation.
Zahoor, Talal; Mitchell, Reed; Bhasin, Priya; Schon, Lew; Zhang, Zijun
2016-07-01
Posttraumatic osteoarthritis (PTOA) is secondary to an array of joint injuries. Animal models are useful tools for addressing the uniqueness of PTOA progression in each type of joint injury and developing strategies for PTOA prevention and treatment. Intra-articular fracture induces PTOA pathology. Descriptive laboratory study. Through a parapatellar incision, the medial tibial plateau was exposed in the left knees of 8 Sprague-Dawley rats. Osteotomy at the midpoint between the tibial crest and the outermost portion of the medial tibial plateau, including the covering articular cartilage, was performed using a surgical blade. The fractured medial tibial plateau was fixed with 2 needles transversely. The fractured knees were not immobilized. Before and after surgery, rat gait was recorded. Rats were sacrificed at week 8, and their knees were harvested for histology. After intra-articular fracture, the affected limbs altered gait from baseline (week 0). In the first 2 weeks, the gait of the operated limbs featured a reduced paw print intensity and stride length but increased maximal contact and stance time. Reduction of maximal and mean print area and duty cycle (the percentage of stance phase in a step) was present from week 1 to week 5. Only print length was reduced in weeks 7 and 8. At week 8, histology of the operated knees demonstrated osteoarthritic pathology. The severity of the PTOA pathology did not correlate with the changes of print length at week 8. Intra-articular fracture of the medial tibial plateau effectively induced PTOA in rat knees. During PTOA development, the injured limbs demonstrated characteristic gait. Intra-articular fracture represents severe joint injury and associates with a high rate of PTOA. This animal model, with histologic and gait validations, can be useful for future studies of PTOA prevention and early diagnosis.
Identification and paleoclimatic significance of magnetite nanoparticles in soils
NASA Astrophysics Data System (ADS)
Ahmed, Imad A. M.; Maher, Barbara A.
2018-02-01
In the world-famous sediments of the Chinese Loess Plateau, fossil soils alternate with windblown dust layers to record monsoonal variations over the last ˜3 My. The less-weathered, weakly magnetic dust layers reflect drier, colder glaciations. The fossil soils (paleosols) contain variable concentrations of nanoscale, strongly magnetic iron oxides, formed in situ during the wetter, warmer interglaciations. Mineralogical identification of the magnetic soil oxides is essential for deciphering these key paleoclimatic records. Formation of magnetite, a mixed Fe2+/Fe3+ ferrimagnet, has been linked to soil redox oscillations, and thence to paleorainfall. An opposite hypothesis states that magnetite can only form if the soil is water saturated for significant periods in order for Fe3+ to be reduced to Fe2+, and suggests instead the temperature-dependent formation of maghemite, an Fe3+-oxide, much of which ages subsequently into hematite, typically aluminum substituted. This latter, oxidizing pathway would have been temperature, but not rainfall dependent. Here, through structural fingerprinting and scanning transmission electron microscopy and electron energy loss spectroscopy analysis, we prove that magnetite is the dominant soil-formed ferrite. Maghemite is present in lower concentrations, and shows no evidence of aluminum substitution, negating its proposed precursor role for the aluminum-substituted hematite prevalent in the paleosols. Magnetite dominance demonstrates that magnetite formation occurs in well-drained, generally oxidizing soils, and that soil wetting/drying oscillations drive the degree of soil magnetic enhancement. The magnetic variations of the Chinese Loess Plateau paleosols thus record changes in monsoonal rainfall, over timescales of millions of years.
NASA Astrophysics Data System (ADS)
Hochmuth, Katharina; Gohl, Karsten; Uenzelmann-Neben, Gabriele
2014-05-01
The Manihiki Plateau is a Large Igneous Province (LIP) located in the Central Pacific. It is assumed, that the formation of the Manihiki Plateau took place during the early Cretaceous in multiple volcanic stages as part of the "Super-LIP" Ontong-Java-Nui. The plateau consists of several sub-plateaus of which the Western Plateau und High Plateau are the largest. In addressing the plateau's magmatic evolutionary history, one of the key questions is whether all sub-plateaus experienced the same magmatic history or if distinct phases of igneous or tectonic processes led to its fragmentation. During the RV Sonne cruise SO-224 in 2012; we collected two deep crustal seismic refraction/wide-angle reflection lines, crossing the two main sub-plateaus. Modeling of P- and S-wave phases reveals the different crustal nature of both sub-plateaus. On the High Plateau, the 20 km thick crust is divided into four seismic units, interpreted to range from basaltic composition in the uppermost crust to peridotitic composition in the middle and lower crust. The Western Plateau on the other hand shows multiple rift structures and no indications of basalt flows. With a maximum of 17 km crustal thickness, the Western Plateau is also thinner than the High Plateau. The upper basement layers show relatively low P-wave velocities (3.0 - 5.0 km/s), which infers that on the Western Plateau these layers consist of volcanoclastic and carbonatic rocks rather than basaltic flow units. Later volcanic stages may be restricted to the High Plateau with a possible eastward trend in the center of volcanic activity. Extensive secondary volcanism does not seem to have occurred on the Western Plateau, and its later deformation is mainly caused by tectonic extension and rifting.
H.R. Deselm; W.L. Patterson; Vernon Bates; D.B. Durham; R.K. Abernethy; D.C. Eagar; R.P. Ford; Paul.B. Hamel
1999-01-01
Records of the woody flora, based on nearly 1500 plotslstands of mainly forest vegetation of West and Middle Tennessee, have been compiled. The data are from 1155 transects (data collected 1993-1995) and 343 0.1 ha plots (data collected 1985-1986). Taxa total 246 species and lesser forms. The dominant woody plants sort into many community types occupying the small...
NASA Astrophysics Data System (ADS)
Kalnins, L. M.; Cohen, B. E.; Fitton, J. G.; Mark, D. F.; Richards, F. D.; Barfod, D. N.
2015-12-01
The east Australian and Tasman Sea region is home to a unique example of intraplate volcanism: three long-lived, sub-parallel volcanic chains spaced only about 500 km apart. Here we present new 40Ar/39Ar results from the centre chain, the Tasmantid Seamounts, and show that the chain is strongly age-progressive, with an excellent correspondence to the age of the continental East Australian Volcanic Chain to the west and to the more limited ages available for the Lord Howe Seamount Chain to the east. Results from the Louisiade Plateau at the northern end of the Tasmantid chain suggest that it is composed of basalts of the correct age to be a large igneous province formed by the impact of the Tasmantid plume head reaching the lithosphere. This record of relative movement between the plate and the magma source over the last 55 Ma shows two clear deflections from the overall linear trend, one at 26--23 Ma, also observed in the continental chain and linked with the Ontong-Java Plateau jamming the South Melanesian subduction zone, and another at 50--43 Ma, beyond the end of the continental record and contemporaneous with the Hawaiian-Emperor bend. How does such a unique trio of volcanic chains form? The clear age progression, long lifespan, and tie to the Louisiade Plateau are classic indicators of deep-seated plumes, but it is difficult to explain how three separate plumes could remain stable for over 30 Ma when separated by little more than the radii of the plume conduits. Here we examine alternative possible explanations for this volcanic pattern, including small plumes rising from a single deep-seated plume pooling at the 660 km discontinuity, a single plume splitting around a subducting slab fragment, and small-scale convection triggered by topography on the lithosphere-asthenosphere boundary.
Reciever Function Transect Across Tibet, Tarim and Tien Shan
NASA Astrophysics Data System (ADS)
Marshall, B.; Levin, V. L.; Huang, G.; Roecker, S. W.; Wang, H.
2010-12-01
We investigate the region of the ongoing collision between the India and Eurasia tectonic plates that results in widespread deformation of the continental lithosphere. Over the past decade, numerous regional studies were conducted between the Himalaya and the Tien Shan mountains, each illuminating a small part of the area. We combine the data from a number of portable and permanent networks to construct a ~1800 km long profile of lithospheric properties that cross three very different tectonic domains: the Tibetan plateau, the Tarim basin, and the Tien Shan mountains. We use data from 60 stations operated in the region by US, Chinese and French researchers. We use records of distant earthquakes to construct receiver function gathers for each station. The uniformity of processing ensures that our results are comparable along the transect. We examine receiver function gathers at each site, and rank their quality on the basis of number of records, noise levels, and directional stability of the wavefield. We select 27 sites with high-quality data. For these we construct average receiver function traces using data in the 60-85 degree range, and use them as a guide to the lithospheric layering beneath the region. On most receiver functions we constructed the most prominent feature is a positive phase likely associated with the crust-mantle transition. The timing of this phase varies significantly over the length of the profile. Beneath the Tibetan plateau delay times ~7-8 s are seen close to the Himalayas, and nearly 10 s delays are found further north. Delays of 6 to 8 s are seen beneath sites in the Tarim basin and the Tien Shan mountains, and nearly 10 s delays are seen at the border between them. In addition to the pulse associated with the crust-mantle transition we see other locally-consistent features, for example a negative phase with delay values between 3 and 5 s beneath much of the Tibetan plateau.
Williams, Steven E; Linton, Nick; O'Neill, Louisa; Harrison, James; Whitaker, John; Mukherjee, Rahul; Rinaldi, Christopher A; Gill, Jaswinder; Niederer, Steven; Wright, Matthew; O'Neill, Mark
2017-09-01
Bipolar voltage is used during electroanatomic mapping to define abnormal myocardium, but the effect of activation rate on bipolar voltage is not known. We hypothesized that bipolar voltage may change in response to activation rate. By examining corresponding unipolar signals we sought to determine the mechanisms of such changes. LA extrastimulus mapping was performed during CS pacing in 10 patients undergoing first time paroxysmal atrial fibrillation ablation. Bipolar and unipolar electrograms were recorded using a PentaRay catheter (4-4-4 spacing) and indifferent IVC electrode, respectively. An S1S2 pacing protocol was delivered with extrastimulus coupling interval reducing from 350 to 200 milliseconds. At each recording site (119 ± 37 per LA), bipolar peak-to-peak voltage, unipolar peak to peak voltage and activation delay between unipole pairs was measured. Four patterns of bipolar voltage/extrastimulus coupling interval curves were seen: voltage attenuation with plateau voltage >1 mV (48 ± 15%) or <1 mV (22 ± 15%), and voltage unaffected by coupling interval with plateau voltage >1 mV (17 ± 10%) or <1 mV (13 ± 8%). Electrograms showing bipolar voltage attenuation were associated with significantly greater unipolar voltage attenuation at low (25 ± 28 mV/s vs. 9 ± 11 mV/s) and high (23 ± 29 mV/s vs. 6 ± 12 mV/s) plateau voltage sites (P < 0.001). There was a small but significant increase in conduction delay between unipole pairs at sites showing bipolar voltage attenuation (P = 0.026). Bipolar electrogram voltage is dependent on activation rate at a significant proportion of sites. Changes in unipolar voltage and timing underlie these effects. These observations have important implications for use of voltage mapping to delineate abnormal atrial substrate. © 2017 The Authors. Journal of Cardiovascular Electrophysiology published by Wiley Periodicals, Inc.
Linton, Nick; O'Neill, Louisa; Harrison, James; Whitaker, John; Mukherjee, Rahul; Rinaldi, Christopher A.; Gill, Jaswinder; Niederer, Steven; Wright, Matthew; O'Neill, Mark
2017-01-01
Abstract Introduction Bipolar voltage is used during electroanatomic mapping to define abnormal myocardium, but the effect of activation rate on bipolar voltage is not known. We hypothesized that bipolar voltage may change in response to activation rate. By examining corresponding unipolar signals we sought to determine the mechanisms of such changes. Methods and results LA extrastimulus mapping was performed during CS pacing in 10 patients undergoing first time paroxysmal atrial fibrillation ablation. Bipolar and unipolar electrograms were recorded using a PentaRay catheter (4‐4‐4 spacing) and indifferent IVC electrode, respectively. An S1S2 pacing protocol was delivered with extrastimulus coupling interval reducing from 350 to 200 milliseconds. At each recording site (119 ± 37 per LA), bipolar peak‐to‐peak voltage, unipolar peak to peak voltage and activation delay between unipole pairs was measured. Four patterns of bipolar voltage/extrastimulus coupling interval curves were seen: voltage attenuation with plateau voltage >1 mV (48 ± 15%) or <1 mV (22 ± 15%), and voltage unaffected by coupling interval with plateau voltage >1 mV (17 ± 10%) or <1 mV (13 ± 8%). Electrograms showing bipolar voltage attenuation were associated with significantly greater unipolar voltage attenuation at low (25 ± 28 mV/s vs. 9 ± 11 mV/s) and high (23 ± 29 mV/s vs. 6 ± 12 mV/s) plateau voltage sites (P < 0.001). There was a small but significant increase in conduction delay between unipole pairs at sites showing bipolar voltage attenuation (P = 0.026). Conclusions Bipolar electrogram voltage is dependent on activation rate at a significant proportion of sites. Changes in unipolar voltage and timing underlie these effects. These observations have important implications for use of voltage mapping to delineate abnormal atrial substrate. PMID:28639747
NASA Astrophysics Data System (ADS)
Montelli, A.; Dowdeswell, J. A.; Ottesen, D.; Johansen, S. E.
2018-07-01
Quaternary architectural evolution and sedimentary processes on the mid-Norwegian continental slope are investigated using margin-wide three- and two-dimensional seismic datasets. Of ∼100,000 km3 sediments delivered to the mid-Norwegian shelf and slope over the Quaternary, ∼75,000 km3 comprise the slope succession. The structural high of the Vøring Plateau, characterised by initially low (∼1-2°) slope gradients and reduced accommodation space, exerted a strong control over the long-term architectural evolution of the margin. Slope sediment fluxes were higher on the Vøring Plateau area, increasing up to ∼32 km3 ka-1 during the middle Pleistocene, when fast-flowing ice streams advanced to the palaeo-shelf edge. Resulted in a more rapid slope progradation on the Vøring Plateau, these rates of sediment delivery are high compared to the maximum of ∼7 km3 ka-1 in the adjacent sectors of the slope, characterised by steeper slope (∼3-5°), more available accommodation space and smaller or no palaeo-ice streams on the adjacent shelves. In addition to the broad-scale architectural evolution, identification of more than 300 buried slope landforms provides an unprecedented level of detailed, process-based palaeoenvironmental reconstruction. Channels dominate the Early Pleistocene record (∼2.7-0.8 Ma), during which glacimarine sedimentation on the slope was influenced by dense bottom-water flow and turbidity currents. Morphologic signature of glacigenic debris-flows appear within the Middle-Late Pleistocene (∼0.8-0 Ma) succession. Their abundance increases towards Late Pleistocene, marking a decreasing role for channelized turbidity currents and dense water flows. This broad-scale palaeo-environmental shift coincides with the intensification of Northern Hemispheric glaciations, highlighting first-order climate control on the sedimentary processes in high-latitude continental slopes.
NASA Astrophysics Data System (ADS)
Shi, Xuhua; Weldon, Ray; Liu-Zeng, Jing; Wang, Yu; Weldon, Elise; Sieh, Kerry; Li, Zhigang; Zhang, Jinyu; Yao, Wenqian; Li, Zhanfei
2018-06-01
Quantifying slip rates and earthquake occurrence of active faults on the Shan Plateau, southeast of the eastern Himalayan syntaxis, is critical to assessing the seismic hazard and understanding the kinematics and geodynamics of this region. Most previous estimates of slip rates are averaged over either many millions of years using offset geological markers or decades using GPS. Well-constrained millennial slip rates of these faults remain sparse and constraints on recurrence rates of damaging earthquakes exist only for a few faults. Here we investigate the millennial slip rate and timing of recent earthquakes on the Jinghong fault, one of the geomorphically most significant sinistral-slip faults on the central Shan Plateau. We map and reconstruct fault offset (18 ± 5 m) of alluvial fan features at Manpa on the central Jinghong fault, using a 0.1 m-resolution digital surface model obtained from an unmanned aerial vehicle survey. We establish a slip rate, ≤2.5 ± 0.7 mm/yr over the past 7000 years, using pit-exposed stratigraphy. This millennial slip rate is consistent with rates averaged over both decadal and million-year timescales. Excavations at three sites near the town of Gelanghe on the northeastern Jinghong fault demonstrate 1) that the last seismic ground-rupture occurred between 482 and 889 cal yr BP, most likely in the narrower window 824-767 cal yr BP, if the lack of large earthquakes in the historical earthquake record is reliable, and 2) that multiple fault ruptures have occurred since 3618 cal yr BP. Combining this finding with a lack of large earthquakes in the 800-year-long Chinese historic record in this region, we suggest an average recurrence interval of seismic ground-ruptures on the order of 1000 years. This recurrence interval is consistent with the slip rate of the Jinghong fault and the size and earthquake frequency on other sinistral faults on the Shan Plateau.
Inventory of Amphibians and Reptiles in Southern Colorado Plateau National Parks
Persons, Trevor B.; Nowak, Erika M.
2006-01-01
In fiscal year 2000, the National Park Service (NPS) initiated a nationwide program to inventory vertebrates andvascular plants within the National Parks, and an inventory plan was developed for the 19 park units in the Southern Colorado Plateau Inventory & Monitoring Network. We surveyed 12 parks in this network for reptiles and amphibians between 2001 and 2003. The overall goals of our herpetofaunal inventories were to document 90% of the species present, identify park-specific species of special concern, and, based on the inventory results, make recommendations for the development of an effective monitoring program. We used the following standardized herpetological methods to complete the inventories: time-area constrained searches, visual encounter ('general') surveys, and nighttime road cruising. We also recorded incidental species sightings and surveyed existing literature and museum specimen databases. We found 50 amphibian and reptile species during fieldwork. These included 1 salamander, 11 anurans, 21 lizards, and 17 snakes. Literature reviews, museum specimen data records, and personal communications with NPS staff added an additional eight species, including one salamander, one turtle, one lizard, and five snakes. It was necessary to use a variety of methods to detect all species in each park. Randomly-generated 1-ha time-area constrained searches and night drives produced the fewest species and individuals of all the methods, while general surveys and randomly-generated 10-ha time-areas constrained searches produced the most. Inventory completeness was likely compromised by a severe drought across the region during our surveys. In most parks we did not come close to the goal of detecting 90% of the expected species present; however, we did document several species range extensions. Effective monitoring programs for herpetofauna on the Colorado Plateau should use a variety of methods to detect species, and focus on taxa-specific methods. Randomly-generated plots must take into account microhabitat and aquatic features to be effective at sampling for herpetofauna.
Climatology of monsoon precipitation over the Tibetan Plateau from 13-year TRMM observations
NASA Astrophysics Data System (ADS)
Aijuan, Bai; Guoping, Li
2016-10-01
Based on the 13-year data from the Tropical Rainfall Measuring Mission (TRMM) satellite during 2001-2013, the influencing geographical location of the Tibetan Plateau (Plateau) monsoon is determined. It is found that the domain of the Plateau monsoon is bounded by the latitude between 27° N and 37° N and the longitude between 60° E and 103° E. According to the annual relative precipitation, the Plateau monsoon can be divided into three sections: the Plateau winter monsoon (PWM) over Iran and Afghanistan, the Plateau summer monsoon (PSM) over the central Plateau, and the transiting zone of the Plateau monsoon (TPM) over the south, west, and east edges of the Plateau. In PWM and PSM, the monsoon climatology has a shorter rainy season with the mean annual rainfall of less than 800 mm. In TPM, it has a longer rainy season with the mean annual rainfall of more than 1800 mm. PWM experiences a single-peak monthly rainfall with the peak during January to March; PSM usually undergoes a multi-peak pattern with peaks in the warm season; TPM presents a double-peak pattern, with a strong peak in late spring to early summer and a secondary peak in autumn. The Plateau monsoon also characterizes an asymmetrical seasonal advance of the rain belt. In the east of the Plateau, the rain belt migrates in a south-north orientation under the impact of the tropical and subtropical systems' oscillation. In the west of the Plateau, the rain belt advances in an east-west direction, which is mainly controlled by the regional Plateau monsoon.
NASA Astrophysics Data System (ADS)
Dong, Zhiwen; Qin, Dahe; Kang, Shichang; Liu, Yajun; Li, Yang; Huang, Jie; Qin, Xiang
2016-08-01
Cryoconite deposited on mountain glacier surfaces is significant for understanding regional atmospheric environments, which could influence the albedo and energy balance of the glacier basins, and maintain the glacial microbiology system. Field observations were conducted on the glaciers of western China, including Laohugou Glacier No.12 (LHG), Tanggula Dongkemadi Glacier (TGL), Zhadang Glacier (ZD), and Baishui Glacier No.1 in the Yulong Mountains (YL), as well as Urumqi Glacier No.1 in the Tianshan Mountains (TS) for comparison with locations in the Tibetan Plateau, in addition to laboratory TEM-EDX analysis of the individual cryoconite particles filtered on lacey carbon (LC) and calcium-coated carbon (Ca-C) TEM grids. This work provided information on the morphology and chemical composition, as well as a unique record of the particle's physical state, of cryoconite deposition on the Tibetan Plateau. The result showed that there is a large difference in the cryoconite particle composition between various locations on the Tibetan Plateau. In total, mineral dust particles were dominant (>50%) in the cryoconite at all locations. However, more anthropogenic particles (e.g., black carbon (BC) and fly ash) were found in YL (38%) and ZD (22%) in the Ca-C grids in the southern locations. In TGL, many NaCl and MCS particles (>10%), as well as few BC and biological particles (<5%), were found in cryoconite in addition to mineral dust. In TS, the cryoconite is composed primarily of mineral dust, as well as BC (<5%). Compared with other sites, the LHG cryoconite shows a more complex composition of atmospheric deposition with sufficient NaCl, BC, fly ash and biological particles (6% in LC grid). The higher ratio of anthropogenic particles in the southern Tibetan Plateau is likely caused by atmospheric pollutant transport from the south Asia to the Tibetan Plateau. Cryoconite in the northern locations (e.g., TGL, LHG, and TS) with higher dust and salt particle ratio are influenced by large deserts in central Asia. Therefore, the transport and deposition of cryoconite is of great significance for understanding regional atmospheric environment and circulation. Large amounts of biological, NaCl and MCS particles were observed in the cryoconite, implying that in addition to dust and BC, many types of light absorbing impurities (LAI) together could influence the glacier albedo change and induce ice melting in the mountain glaciers of the Tibetan Plateau. Moreover, a high BC concentration in the south (e.g., YL and ZD) could significantly change the albedo of snow and ice, at a greater rate than dust, causing significant melting of the glaciers under global warming.
NASA Astrophysics Data System (ADS)
Hambach, Ulrich; Zeeden, Christian; Veres, Daniel; Obreht, Igor; Bösken, Janina; Marković, Slobodan B.; Eckmeier, Eileen; Fischer, Peter; Lehmkuhl, Frank
2015-04-01
Aeolian dust sediments (loess) are beside marine/lacustrine sediments, speleothemes and arctic ice cores the key archives for the reconstruction of the Quaternary palaeoenvironment in the Eurasian continental mid-latitudes. The Eurasian loess-belt has its western end in the Middle (Carpathian) and the Lower Danube Basin where one can find true loess plateaus dating back more than one million years and comprising a semi-continuous record of Pleistocene environmental change. The loess-palaeosol sequences (LPSS) of the region allow inter-regional and trans-regional comparison and, even more importantly, the analysis of temporal and spatial trends in Pleistocene environments, even on a hemispheric scale. However, the general temporal resolution of the LPSS seems mostly limited to the orbital scale patterns, enabling the general comparision of their well documented palaeoclimate record to the marine isotope stages (MIS) and thus to the course of the global ice volume with time. Following the widespread conventional wisdom in loess research, cold and more importantly dry conditions are generally assumed to lead to relatively high accumulation rates of loess, whereas during warmer and more humid environmental conditions the vegetation cover prevents ablation and clastic silt production. Moreover, synsedimentary pedogenesis prevails and hence, (embryonic) soils are formed which are rapidly buried by loess as soon as the climate returns to drier conditions. In the last decades, mineral magnetic parameters became fundamental palaeoclimate proxies in loess research. The magnetic susceptibility (χ) and its dependence on the frequency of the applied field (χfd) turned out to be beside grain size and geochemical indices a highly sensitive proxy especially for soil humidity during loess accumulation. Here we present the first results of an ongoing study on two Late Pleistocene LPSS from the southern Carpathian Basin (Titel-Plateau, Vojvodina, Serbia) and the eastern Lower Danube Basin near to the Black Sea (Urluia quarry, Dobrogea, Romania). In order to investigate the potential of Danubian loess in recording millennial-scale palaeoclimate variability, a 22 m deep drill-core from the Titel loess plateau and a more than 15 metres thick LPSS from the Urluia quarry were contiguously sampled. Both sides provide improved insight into past climate evolution of the regions down to MIS 6. The presentation will focus on the down-core/down-section variability of χ and χfd as environmental proxy parameters. Based on these mineral magnetic proxies we can already draw the following conclusions: 1) The dust accumulation rates in both regions were relatively constant over the past c. 130 kyrs, even during full interglacial conditions. 2) In the studied sections, the pedo-complex S1 represents ± the Eemian and not the entire MIS 5, as previously assumed. 3) There are a lot of similarities between the mineral magnetic records of the Titel-Plateau (Vojvodina, South Carpathian Basin) and the Urluia quarry (Dobrogea, Lower Danube Basin) and also between these records and those from the Chinese Loess Plateau, but also fundamental differences. 4) During the early glacial (end of MIS5) we find no evidence for soil formation in the South Carpathian Basin whereas in the Dobrogea near to the Black Sea coast embryonic soils developed. On the contrary, during the younger part of MIS 3 (≤ 40 ka) near to the Black Sea coast soil humidity sharply decreased towards the LGM whereas in the South Carpathian Basin the mineral magnetic proxies indicate a relative maximum in pedogenesis/soil humidity. Sedimentological, geochemical, geochronological and palaeomagnetic investigations are in progress. They will provide further high quality data sets leading to an improved understanding of the Late Pleistocene environmental evolution in the Danube Basin.
NASA Astrophysics Data System (ADS)
Bershaw, John; Garzione, Carmala N.; Higgins, Pennilyn; MacFadden, Bruce J.; Anaya, Frederico; Alvarenga, Herculano
2010-01-01
Paleoelevation constraints from fossil leaf physiognomy and stable isotopes of sedimentary carbonate suggest that significant surface uplift of the northern Andean plateau, on the order of 2.5 ± 1 km, occurred between ˜ 10.3 and 6.4 Ma. Independent spatial and temporal constraints on paleoelevation and paleoclimate of both the northern and southern plateau are important for understanding the distribution of rapid surface uplift and its relation to climate evolution across the plateau. This study focuses on teeth from modern and extinct mammal taxa (including notoungulates, pyrotheres, and litopterns) spanning ˜ 29 Ma to present, collected from the Altiplano and Eastern Cordillera of Bolivia (16.2°S to 21.4°S), and lowland Brazil. Tooth enamel of large, water-dependent mammals preserves a record of surface water isotopes and the type of plants that animals ingested while their teeth were mineralizing. Previous studies have shown that the δ18O of modern precipitation and surface waters decrease systematically with increasing elevations across the central Andes. Our results from high elevation sites between 3600 and 4100 m show substantially more positive δ18O values for late Oligocene tooth samples compared to < 10 Ma tooth δ18O values. Late Oligocene teeth collected from low elevation sites in southeast Brazil show δ18O values similar (within 2‰) to contemporaneous teeth collected at high elevation in the Eastern Cordillera. This affirms that the Andean plateau was at a very low elevation during the late Oligocene. Late Oligocene teeth from the northern Eastern Cordillera also yield consistent δ13C values of about - 9‰, indicating that the environment was semi-arid at that time. Latitudinal gradients in δ18O values of late Miocene to Pliocene fossil teeth are similar to modern values for large mammals, suggesting that by ˜ 8 Ma in the northern Altiplano and by ˜ 3.6 Ma in the southern Altiplano, both regions had reached high elevation and established a latitudinal rainfall gradient similar to modern.
NASA Astrophysics Data System (ADS)
Li, W.; Shi, Y.; Zhang, H.; Cheng, H.
2017-12-01
The Hexi Corridor, located between the Alax block and the Caledon fold belt in the North Qilian Mountains, is the forefront area of northward thrust of the Tibet Plateau. Most notably, this active tectonic region consists of a series of faults and western-northwest trending Cenozoic basins. Therefore, it's a pivotal part in terms of recording tectonic pattern of the Tibet Plateau and also demonstrating the northward growth of Tibetan Plateau. In order to explain the mechanism of formation and evolution of the paired basins in the Hexi Corridor and based on the visco-elasticity-plasticity constitutive relation, we construct a 3-D finite element numerical model, including the Altun Tagh fault zone, the northern Qilian Shan-Hexi corridor faults system and the Haiyuan fault zone in northeast of the Tibet Plateau.The boundary conditions are constrained by GPS observations and fault slip rate provided by field geology, with steady rate of deformation of north-south compression and lateral shear along the approximately east-west strike fault zones.In our numerical model, different blocks are given different mechanical features and major fault zones are assumed mechanical weak zones. The long-term (5Ma) accumulation of lithospheric stress, displacement and fault dislocation of the Hexi Corridor and its adjacent regions are calculated in different models for comparison. Meanwhile, we analyze analyzed how the crustal heterogeneity affecting the tectonic deformations in this region. Comparisons between the numerical results and the geological observations indicate that under compression-shear boundary conditions, heterogeneous blocks of various scales may lead to the development of en echelon faults and basins in the Hexi corridor. And the ectonic deformation of Alax and the North Qilian Mountains are almost simultaneous, which may be earlier than the initiation of en echelon basins in the Hexi Corridor and the faults between the en echelon basins. Calculated horizontal and vertical deformation rate are in agreement with geological data. The calculation of deformation process is helpful for understanding the geological evolution history of the northeastwards growth of the Tibetan Plateau.
2017-01-01
Studies comparing neuronal activity at the dorsal and ventral poles of the hippocampus have shown that the scale of spatial information increases and the precision with which space is represented declines from the dorsal to ventral end. These dorsoventral differences in neuronal output and spatial representation could arise due to differences in computations performed by dorsal and ventral CA1 neurons. In this study, we tested this hypothesis by quantifying the differences in dendritic integration and synaptic plasticity between dorsal and ventral CA1 pyramidal neurons of rat hippocampus. Using a combination of somatic and dendritic patch-clamp recordings, we show that the threshold for LTP induction is higher in dorsal CA1 neurons and that a G-protein-coupled inward-rectifying potassium channel mediated regulation of dendritic plateau potentials and dendritic excitability underlies this gating. By contrast, similar regulation of LTP is absent in ventral CA1 neurons. Additionally, we show that generation of plateau potentials and LTP induction in dorsal CA1 neurons depends on the coincident activation of Schaffer collateral and temporoammonic inputs at the distal apical dendrites. The ventral CA1 dendrites, however, can generate plateau potentials in response to temporally dispersed excitatory inputs. Overall, our results highlight the dorsoventral differences in dendritic computation that could account for the dorsoventral differences in spatial representation. SIGNIFICANCE STATEMENT The dorsal and ventral parts of the hippocampus encode spatial information at very different scales. Whereas the place-specific firing fields are small and precise at the dorsal end of the hippocampus, neurons at the ventral end have comparatively larger place fields. Here, we show that the dorsal CA1 neurons have a higher threshold for LTP induction and require coincident timing of excitatory synaptic inputs for the generation of dendritic plateau potentials. By contrast, ventral CA1 neurons can integrate temporally dispersed inputs and have a lower threshold for LTP. Together, these dorsoventral differences in the threshold for LTP induction could account for the differences in scale of spatial representation at the dorsal and ventral ends of the hippocampus. PMID:28280255
Malik, Ruchi; Johnston, Daniel
2017-04-05
Studies comparing neuronal activity at the dorsal and ventral poles of the hippocampus have shown that the scale of spatial information increases and the precision with which space is represented declines from the dorsal to ventral end. These dorsoventral differences in neuronal output and spatial representation could arise due to differences in computations performed by dorsal and ventral CA1 neurons. In this study, we tested this hypothesis by quantifying the differences in dendritic integration and synaptic plasticity between dorsal and ventral CA1 pyramidal neurons of rat hippocampus. Using a combination of somatic and dendritic patch-clamp recordings, we show that the threshold for LTP induction is higher in dorsal CA1 neurons and that a G-protein-coupled inward-rectifying potassium channel mediated regulation of dendritic plateau potentials and dendritic excitability underlies this gating. By contrast, similar regulation of LTP is absent in ventral CA1 neurons. Additionally, we show that generation of plateau potentials and LTP induction in dorsal CA1 neurons depends on the coincident activation of Schaffer collateral and temporoammonic inputs at the distal apical dendrites. The ventral CA1 dendrites, however, can generate plateau potentials in response to temporally dispersed excitatory inputs. Overall, our results highlight the dorsoventral differences in dendritic computation that could account for the dorsoventral differences in spatial representation. SIGNIFICANCE STATEMENT The dorsal and ventral parts of the hippocampus encode spatial information at very different scales. Whereas the place-specific firing fields are small and precise at the dorsal end of the hippocampus, neurons at the ventral end have comparatively larger place fields. Here, we show that the dorsal CA1 neurons have a higher threshold for LTP induction and require coincident timing of excitatory synaptic inputs for the generation of dendritic plateau potentials. By contrast, ventral CA1 neurons can integrate temporally dispersed inputs and have a lower threshold for LTP. Together, these dorsoventral differences in the threshold for LTP induction could account for the differences in scale of spatial representation at the dorsal and ventral ends of the hippocampus. Copyright © 2017 the authors 0270-6474/17/373940-16$15.00/0.
Late quaternary climate, precipitation δ18O, and Indian monsoon variations over the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Li, Jingmin; Ehlers, Todd A.; Werner, Martin; Mutz, Sebastian G.; Steger, Christian; Paeth, Heiko
2017-01-01
The Himalaya-Tibet orogen contains one of the largest modern topographic and climate gradients on Earth. Proxy data from the region provide a basis for understanding Tibetan Plateau paleo climate and paleo elevation reconstructions. Paleo climate model comparisons to proxy data compliment sparsely located data and can improve climate reconstructions. This study investigates temporal changes in precipitation, temperature and precipitation δ18O (δO18p) over the Himalaya-Tibet from the Last Glacial Maximum (LGM) to present. We conduct a series of atmospheric General Circulation Model (GCM, ECHAM5-wiso) experiments at discrete time slices including a Pre-industrial (PI, Pre-1850 AD), Mid Holocene (MH, 6 ka BP) and LGM (21 ka BP) simulations. Model predictions are compared with existing proxy records. Model results show muted climate changes across the plateau during the MH and larger changes occurring during the LGM. During the LGM surface temperatures are ∼ 2.0- 4.0 °C lower across the Himalaya and Tibet, and >5.0 °C lower at the northwest and northeast edge of the Tibetan Plateau. LGM mean annual precipitation is 200-600 mm/yr lower over on the Tibetan Plateau. Model and proxy data comparison shows a good agreement for the LGM, but large differences for the MH. Large differences are also present between MH proxy studies near each other. The precipitation weighted annual mean δ18Op lapse rate at the Himalaya is about 0.4 ‰ /km larger during the MH and 0.2 ‰ /km smaller during the LGM than during the PI. Finally, rainfall associated with the continental Indian monsoon (between 70°E-110°E and 10°N-30°N) is about 44% less in the LGM than during PI times. The LGM monsoon period is about one month shorter than in PI times. Taken together, these results document significant spatial and temporal changes in temperature, precipitation, and δ18Op over the last ∼21 ka. These changes are large enough to impact interpretations of proxy data and the intensity of the Indian monsoon.
Regional variability in dust-on-snow processes and impacts in the Upper Colorado River Basin
Skiles, S. McKenzie; Painter, Thomas H.; Belnap, Jayne; Holland, Lacey; Reynolds, Richard L.; Goldstein, Harland L.; Lin, J.
2015-01-01
Dust deposition onto mountain snow cover in the Upper Colorado River Basin frequently occurs in the spring when wind speeds and dust emission peaks on the nearby Colorado Plateau. Dust loading has increased since the intensive settlement in the western USA in the mid 1880s. The effects of dust-on-snow have been well studied at Senator Beck Basin Study Area (SBBSA) in the San Juan Mountains, CO, the first high-altitude area of contact for predominantly southwesterly winds transporting dust from the southern Colorado Plateau. To capture variability in dust transport from the broader Colorado Plateau and dust deposition across a larger area of the Colorado River water sources, an additional study plot was established in 2009 on Grand Mesa, 150 km to the north of SBBSA in west central, CO. Here, we compare the 4-year (2010–2013) dust source, deposition, and radiative forcing records at Grand Mesa Study Plot (GMSP) and Swamp Angel Study Plot (SASP), SBBSA's subalpine study plot. The study plots have similar site elevations/environments and differ mainly in the amount of dust deposited and ensuing impacts. At SASP, end of year dust concentrations ranged from 0.83 mg g−1 to 4.80 mg g−1, and daily mean spring dust radiative forcing ranged from 50–65 W m−2, advancing melt by 24–49 days. At GMSP, which received 1.0 mg g−1 less dust per season on average, spring radiative forcings of 32–50 W m−2 advanced melt by 15–30 days. Remote sensing imagery showed that observed dust events were frequently associated with dust emission from the southern Colorado Plateau. Dust from these sources generally passed south of GMSP, and back trajectory footprints modelled for observed dust events were commonly more westerly and northerly for GMSP relative to SASP. These factors suggest that although the southern Colorado Plateau contains important dust sources, dust contributions from other dust sources contribute to dust loading in this region, and likely account for the majority of dust loading at GMSP.
NASA Astrophysics Data System (ADS)
Tang, S.; Dong, L.; Lu, P.; Zhou, K.; Wang, F.; Han, S.; Min, M.; Chen, L.; Xu, N.; Chen, J.; Zhao, P.; Li, B.; Wang, Y.
2016-12-01
Due to the lack of observing data which match the satellite pixel size, the inversion accuracy of satellite products in Tibetan Plateau(TP) is difficult to be evaluated. Hence, the in situ observations are necessary to support the calibration and validation activities. Under the support of the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX-III) projec a multi-scale automatic observatory of soil moisture and temperature served for satellite product validation (TIPEX-III-SMTN) were established in Tibetan Plateau. The observatory consists of two regional scale networks, including the Naqu network and the Geji network. The Naqu network is located in the north of TP, and characterized by alpine grasslands. The Geji network is located in the west of TP, and characterized by marshes. Naqu network includes 33 stations, which are deployed in a 75KM*75KM region according to a pre-designed pattern. At Each station, soil moisture and temperature are measured by five sensors at five soil depths. One sensor is vertically inserted into 0 2 cm depth to measure the averaged near-surface soil moisture and temperature. The other four sensors are horizontally inserted at 5, 10, 20, and 30 cm depths, respectively. The data are recorded every 10 minutes. A wireless transmission system is applied to transmit the data in real time, and a dual power supply system is adopted to keep the continuity of the observation. The construction of Naqu network has been accomplished in August, 2015, and Geji network will be established before Oct., 2016. Observations acquired from TIPEX-III-SMTN can be used to validate satellite products with different spatial resolution, and TIPEX-III-SMTN can also be used as a complementary of the existing similar networks in this area, such as CTP-SMTMN (the multiscale Soil Moistureand Temperature Monitoring Network on the central TP) . Keywords: multi-scale soil moisture soil temperature, Tibetan Plateau Acknowledgments: This work was jointly supported by CMA Special Fund for Scientific Research in the Public Interest (Grant No. GYHY201406001, GYHY201206008-01), and Climate change special fund (QHBH2014)'
Wang, Chun-Yong; Chan, W.W.; Mooney, W.D.
2003-01-01
Using P and S arrival times from 4625 local and regional earthquakes recorded at 174 seismic stations and associated geophysical investigations, this paper presents a three-dimensional crustal and upper mantle velocity structure of southwestern China (21??-34??N, 97??-105??E). Southwestern China lies in the transition zone between the uplifted Tibetan plateau to the west and the Yangtze continental platform to the east. In the upper crust a positive velocity anomaly exists in the Sichuan Basin, whereas a large-scale negative velocity anomaly exists in the western Sichuan Plateau, consistent with the upper crustal structure under the southern Tibetan plateau. The boundary between these two anomaly zones is the Longmen Shan Fault. The negative velocity anomalies at 50-km depth in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with temperature and composition variations in the upper mantle. The Red River Fault is the boundary between the positive and negative velocity anomalies at 50-km depth. The overall features of the crustal and the upper mantle structures in southwestern China are a low average velocity, large crustal thickness variations, the existence of a high-conductivity layer in the crust or/and upper mantle, and a high heat flow value. All these features are closely related to the collision between the Indian and the Asian plates.
The longitudinal dependence of whistler and chorus characteristics observed on the ground near L=4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, A.J.; Carpenter, D.L.; Corcuff, Y.
1991-01-01
Whistler activity at L {approx equal} 4 is known to be a function of longitude, peaking in the Weddell Sea sector of Antarctica; a combination of source and propagation factors, the latter possibly partly associated with the South Atlantic geomagnetic anomaly, is believed to be responsible. There is evidence, for example from satellite surveys, that chorus and hiss activity may also be longitude dependent. To investigate this further, the authors have compared VLF data from four L {approx equal} 4 Antarctic stations from a 2-day period in June 1982. Siple, Halley, and Sanae form a closely spaced ({approximately}20 {degree}- 0{degree}more » geomagnetic longitude) triplet, while Kerguelen is {approximately}120{degrees} (geomagnetic) to the east, on the opposite side of the anomaly. To a large extent there was a repeatable diurnal variation in activity at all stations on the two days. Events observed at Siple tended to be similar to those observed {approximately} 9 hours earlier (the same MLT) at Kerguelen on the same day. There was a very marked drop-off in both whistler and VLF emission activity between Siple and Halley on the one hand and Sanae on the other. The reason for this is not clear; it may be either a source effect such as the lower occurence of lightning over eastern North America compared to the adjacent Atlantic Ocean, or else a wave-particle interaction effect whereby the conditions for wave growth or amplification are more favorable, or substorm particle injections penetrate the magnetosphere more deeply, at the longitude of Siple than further east. Comparison of the spectral forms of whistler mode activity at neighboring stations suggests that wave generation occurs simultaneously over relatively wide longitude (or local time) sectors ({approx gt} 30{degrees} or 2 hours). Individual interaction regions are smaller than this, {approx lt} 5{degrees} in longitude, comparable with the previously inferred sizes of whistler ducts.« less
Anisotropic tomography of the Indian continent and the geodynamic role of its keel
NASA Astrophysics Data System (ADS)
Montagner, J. P.; Maurya, S.; Sibrant, A.; Davaille, A.; Stutzmann, E.; Kumar, R.; Jean, B.
2017-12-01
The Indian moved at an exceptional high rate (18-20cm/year) after the birth of La Réunion hotspot, ≈65Ma ago and the Deccan volcanic province before the collision with the Asian continent. Other older plumes Marion, Kerguelen located in the Indian ocean are also associated with very fast plate motion. We present a high-resolution 3D anisotropic model of the Indian plate region down to 300 km depth, obtained by inverting a new massive database of surface-wave observations. The Rayleigh and Love wave dispersion measurements along 14,000 paths are made in a broad frequency range (16-250s). Our estimates of the depth to the Lithosphere-Asthenosphere Boundary (LAB) derived from seismic velocity Vsv variations at depth reveal large variations (120-250 km) beneath the different cratonic blocks. A low velocity layer associated with the Mid-lithospheric discontinuity is present when the root of the lithosphere is deep. This extensive anisotropic tomographic investigation of the Indian continent displays an almost north-south keel, 600km long and 300km wide, down to 250km depth. The keel is characterized by fast velocities, smaller than average radial and azimuthal anisotropies. The distribution of azimuthal anisotropy defines the flow lines around the keel, and, at the LAB, coincides with the APM direction of the Indian plate. The fast axis azimuths at 250 km depth are also in accordance with the results from SK(K)S splitting. Such a keel could probably perturb plume-induced flow in the asthenosphere. To determine the influence of such a keel on the interaction of India with several mantle plumes (Marion, Crozet, Kerguelen, La Réunion), we used laboratory experiments. Some preliminary results will be presented on the comparison between the laboratory flowlines and the direction of seismic anisotropy.
NASA Astrophysics Data System (ADS)
Weis, D.; Harrison, L.
2017-12-01
The Hawaiian mantle plume has been active for >80 Ma with the highest magmatic flux, also distinctly increasing with time. The identification of two clear geochemical trends (Loa-Kea) among Hawaiian volcanoes in all isotope systems has implications for the dynamics and internal structure of the plume conduit and source in the deep mantle. A compilation of modern isotopic data on Hawaiian shield volcanoes and from the Northwest Hawaiian Ridge (NWHR), focusing specifically on high-precision Pb isotopes integrated with Sr, Nd and Hf isotopes, indicates the presence of source differences for Loa- and Kea-trend volcanoes that are maintained throughout the 1 Ma activity of each volcano. These differences extend back in time on all the Hawaiian Islands ( 5 Ma), and as far back as 47 Ma on the NWHR. In all isotope systems, the Loa-trend basalts are more heterogeneous by a factor of 1.5 than the Kea-trend basalts. The Hawaiian mantle plume overlies the boundary between ambient Pacific lower mantle on the Kea side and the Pacific LLSVP on the Loa side. Geochemical differences between Kea and Loa trends reflect preferential sampling of these two distinct sources of deep mantle material, with additional contribution of ULVZ material sporadically on the Loa side. Plume movement up the gently sloping edge of the LLSVP resulted in entrainment of greater amounts of LLSVP-enriched material over time, and explains why the Hawaiian mantle plume dramatically strengthens over time, contrary to plume models. Similar indications of preferential sampling at the edges of the African LLSVP are found in Kerguelen and Tristan da Cunha basalts in the Indian and Atlantic oceans, respectively. The anomalous low-velocity zones at the core-mantle boundary store geochemical heterogeneities that are enriched in recycled material (EM-I type) with different compositions under the Pacific and under Africa, and that are sampled by strong mantle plumes such as Hawaii and Kerguelen.
Comparing the performance plateau in adult cochlear implant patients using HINT and AzBio.
Massa, Sean T; Ruckenstein, Michael J
2014-04-01
This study aims to characterize the performance plateau in adult cochlear implant recipients after the initial postimplantation increase by using word recognition testing and an explicit definition of performance plateau. Retrospective review. Urban, tertiary referral center. One hundred twenty-five patients with 138 devices tested with AzBio were matched to 130 patients with 138 devices tested with HINT based on performed on CNC monosyllable tests. Patient's performance was measured overtime using AzBio and HINT tests to determine when and at what score their performance reached a plateau. Time from implantation to reach a performance plateau and plateau score with each test. Thirty-four devices reached a HINT plateau and 30 devices reached an AzBio plateau. Patients reached plateaus at similar times postoperatively using HINT and AzBio, 18.8 and 16.5 weeks, respectively (p = 0.476). Five patients tested with HINT plateaued at scores of 99% to 100%, whereas no patients plateaued above 92% with AzBio. Patients reached a plateau in performance at similar median times using AzBio and HINT, despite the ceiling effect of HINT in some patients. Most patients who reach a plateau did so within 4 months, but exactly when and if a patient's performance plateaus varies significantly among individuals. Further study is required to determine which test best reflects when a patient reaches his or her maximal performance in natural listening conditions.
Molecular phylogeny and biogeography of the Qinghai-Tibet Plateau endemic Nannoglottis (Asteraceae).
Liu, Jian-Quan; Gao, Tian-Gang; Chen, Zhi-Duan; Lu, An-Ming
2002-06-01
All taxa endemic to the Qinghai-Tibet Plateau are hypothesized to have originated in situ or from immediately adjacent areas because of the relatively recent formation of the plateau since the Pliocene, followed by the large-scaled biota extinction and recession caused by the Quaternary ice sheet. However, identification of specific progenitors remains difficult for some endemics, especially some endemic genera. Nannoglottis, with about eight species endemic to this region, is one such genus. Past taxonomic treatments have suggested its relationships with four different tribes of Asteraceae. We intend to identify the closest relatives of Nannoglottis by evaluating the level of monophyly, tribal delimitation, and systematic position of the genus by using molecular data from ndhF gene, trnL-F, and ITS region sequences. We find that all sampled species of Nannoglottis are a well-defined monophyly. This supports all recent taxonomic treatments of Nannoglottis, in which all sampled species were placed in one broadly re-circumscribed genus. Nannoglottis is most closely related to the Astereae, but stands as an isolated genus as the first diverging lineage of the tribe, without close relatives. A tentative relationship was suggested for Nannoglottis and the next lineage of the tribe was based on the ITS topology, the "basal group," which consists of seven genera from the Southern Hemisphere. Such a relationship is supported by some commonly shared plesiomorphic morphological characters. Despite the very early divergence of Nannoglottis in the Astereae, the tribe must be regarded to have its origin in Southern Hemisphere rather than in Asia, because based on all morphological, molecular, biogeographical, and fossil data, the Asteraceae and its major lineages (tribes) are supposed to have originated in the former area. Long-distance dispersal using Southeast Asia as a steppingstone from Southern Hemisphere to the Qinghai-Tibet Plateau is the most likely explanation for this unusual biogeographic link of Nannoglottis. The 23-32-million-year divergence time between Nannoglottis and the other Astereae estimated by DNA sequences predated the formation of the plateau. This estimation is further favored by the fossil record of the Asteraceae and the possible time of origin of the Astereae. Nannoglottis seems to have reached the Qinghai-Tibet area in the Oligocene-Eocene and then re-diversified with the uplift of the plateau. The molecular infragenetic phylogeny of the genus identifies two distinct clades, which reject the earlier infrageneric classification based on the arrangement of the involucral bracts and the length of the ligules, but agree well with the habits and ecological preferences of its current species. The "alpine shrub" vs. "coniferous forest" divergence within Nannoglottis was estimated at about 3.4 million years ago when the plateau began its first large-scale uplifting and the coniferous vegetation began to appear. Most of the current species at the "coniferous forest" clade of the genus are estimated to have originated from 1.02 to 1.94 million years ago, when the second and third uprisings of the plateau occurred, the climate oscillated and the habitats were strongly changed. The assumed evolution, speciation diversity, and radiation of Nannoglottis based on molecular phylogeny and divergence times agree well with the known geological and paleobotanical histories of the Qinghai-Tibet Plateau. (c) 2002 Elsevier Science (USA).
Medial tibial plateau morphology and stress fracture location: A magnetic resonance imaging study.
Yukata, Kiminori; Yamanaka, Issei; Ueda, Yuzuru; Nakai, Sho; Ogasa, Hiroyoshi; Oishi, Yosuke; Hamawaki, Jun-Ichi
2017-06-18
To determine the location of medial tibial plateau stress fractures and its relationship with tibial plateau morphology using magnetic resonance imaging (MRI). A retrospective review of patients with a diagnosis of stress fracture of the medial tibial plateau was performed for a 5-year period. Fourteen patients [three female and 11 male, with an average age of 36.4 years (range, 15-50 years)], who underwent knee MRI, were included. The appearance of the tibial plateau stress fracture and the geometry of the tibial plateau were reviewed and measured on MRI. Thirteen of 14 stress fractures were linear, and one of them stellated on MRI images. The location of fractures was classified into three types. Three fractures were located anteromedially (AM type), six posteromedially (PM type), and five posteriorly (P type) at the medial tibial plateau. In addition, tibial posterior slope at the medial tibial plateau tended to be larger when the fracture was located more posteriorly on MRI. We found that MRI showed three different localizations of medial tibial plateau stress fractures, which were associated with tibial posterior slope at the medial tibial plateau.
Ibáñez-Bernal, Sergio; Muñoz, José; Rebollar-Téllez, Eduardo A; Pech-May, Agelica; Marina, Carlos F
2015-07-31
Collections from four localities, two of the High Plateau and two of the Eastern Mountains Municipality of Chiapas, near the border with Guatemala, included 26 species with four new species records for Mexico: Lutzomyia (Helcocyrtomyia) hartmanni (Fairchild & Hertig, 1957), Dampfomyia (Coromyia) disneyi (Williams, 1987), Psychodopygus bispinosus (Fairchild & Hertig, 1951), and Psychodopygus corossoniensis (LePont & Pajot, 1978). These records represent an updated total of 50 species in Mexico, 48 of which are extant species and the remaining two fossils. The name Xiphopsathyromyia n. n. is proposed in substitution of Xiphomyia Artemiev, 1991, a homonym of Xiphomyia Townsend, 1917, a genus of Tachinidae (Diptera).
New Zealand Maritime Glaciation: Millennial-Scale Southern Climate Change Since 3.9 Ma
NASA Astrophysics Data System (ADS)
Carter, Robert M.; Gammon, Paul
2004-06-01
Ocean Drilling Program Site 1119 is ideally located to intercept discharges of sediment from the mid-latitude glaciers of the New Zealand Southern Alps. The natural gamma ray signal from the site's sediment core contains a history of the South Island mountain ice cap since 3.9 million years ago (Ma). The younger record, to 0.37 Ma, resembles the climatic history of Antarctica as manifested by the Vostok ice core. Beyond, and back to the late Pliocene, the record may serve as a proxy for both mid-latitude and Antarctic polar plateau air temperature. The gamma ray signal, which is atmospheric, also resembles the ocean climate history represented by oxygen isotope time series.
Poor flight performance in deep-diving cormorants.
Watanabe, Yuuki Y; Takahashi, Akinori; Sato, Katsufumi; Viviant, Morgane; Bost, Charles-André
2011-02-01
Aerial flight and breath-hold diving present conflicting morphological and physiological demands, and hence diving seabirds capable of flight are expected to face evolutionary trade-offs regarding locomotory performances. We tested whether Kerguelen shags Phalacrocorax verrucosus, which are remarkable divers, have poor flight capability using newly developed tags that recorded their flight air speed (the first direct measurement for wild birds) with propeller sensors, flight duration, GPS position and depth during foraging trips. Flight air speed (mean 12.7 m s(-1)) was close to the speed that minimizes power requirement, rather than energy expenditure per distance, when existing aerodynamic models were applied. Flights were short (mean 92 s), with a mean summed duration of only 24 min day(-1). Shags sometimes stayed at the sea surface without diving between flights, even on the way back to the colony, and surface durations increased with the preceding flight durations; these observations suggest that shags rested after flights. Our results indicate that their flight performance is physiologically limited, presumably compromised by their great diving capability (max. depth 94 m, duration 306 s) through their morphological adaptations for diving, including large body mass (enabling a large oxygen store), small flight muscles (to allow for large leg muscles for underwater propulsion) and short wings (to decrease air volume in the feathers and hence buoyancy). The compromise between flight and diving, as well as the local bathymetry, shape the three-dimensional foraging range (<26 km horizontally, <94 m vertically) in this bottom-feeding cormorant.
Soil carbon sequestration potential for "grain for green" project in Loess Plateau, China
Chang, R.; Fu, B.; Liu, Gaisheng; Liu, S.
2011-01-01
Conversion of cropland into perennial vegetation land can increase soil organic carbon (SOC) accumulation, which might be an important mitigation measure to sequester carbon dioxide from the atmosphere. The “Grain for Green” project, one of the most ambitious ecological programmes launched in modern China, aims at transforming the low-yield slope cropland into grassland and woodland. The Loess Plateau in China is the most important target of this project due to its serious soil erosion. The objectives of this study are to answer three questions: (1) what is the rate of the SOC accumulation for this “Grain for Green” project in Loess Plateau? (2) Is there a difference in SOC sequestration among different restoration types, including grassland, shrub and forest? (3) Is the effect of restoration types on SOC accumulation different among northern, middle and southern regions of the Loess Plateau? Based on analysis of the data collected from the literature conducted in the Loess Plateau, we found that SOC increased at a rate of 0.712 TgC/year in the top 20 cm soil layer for 60 years under this project across the entire Loess Plateau. This was a relatively reliable estimation based on current data, although there were some uncertainties. Compared to grassland, forest had a significantly greater effect on SOC accumulation in middle and southern Loess Plateau but had a weaker effect in the northern Loess Plateau. There were no differences found in SOC sequestration between shrub and grassland across the entire Loess Plateau. Grassland had a stronger effect on SOC sequestration in the northern Loess Plateau than in the middle and southern regions. In contrast, forest could increase more SOC in the middle and southern Loess Plateau than in the northern Loess Plateau, whereas shrub had a similar effect on SOC sequestration across the Loess Plateau. Our results suggest that the “Grain for Green” project can significantly increase the SOC storage in Loess Plateau, and it is recommended to expand grassland and shrub areas in the northern Loess Plateau and forest in the middle and southern Loess Plateau to enhance the SOC sequestration in this area.
Vertebrate Fossils Imply Paleo-elevations of the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Deng, T.; Wang, X.; Li, Q.; Wu, F.; Wang, S.; Hou, S.
2017-12-01
The uplift of the Tibetan Plateau remains unclear, and its paleo-elevation reconstructions are crucial to interpret the geodynamic evolution and to understand the climatic changes in Asia. Uplift histories of the Tibetan Plateau based on different proxies differ considerably, and two viewpoints are pointedly opposing on the paleo-elevation estimations of the Tibetan Plateau. One viewpoint is that the Tibetan Plateau did not strongly uplift to reach its modern elevation until the Late Miocene, but another one, mainly based on stable isotopes, argues that the Tibetan Plateau formed early during the Indo-Asian collision and reached its modern elevation in the Paleogene or by the Middle Miocene. In 1839, Hugh Falconer firstly reported some rhinocerotid fossils collected from the Zanda Basin in Tibet, China and indicated that the Himalayas have uplifted by more than 2,000 m since several million years ago. In recent years, the vertebrate fossils discovered from the Tibetan Plateau and its surrounding areas implied a high plateau since the late Early Miocene. During the Oligocene, giant rhinos lived in northwestern China to the north of the Tibetan Plateau, while they were also distributed in the Indo-Pakistan subcontinent to the south of this plateau, which indicates that the elevation of the Tibetan Plateau was not too high to prevent exchanges of large mammals; giant rhinos, the rhinocerotid Aprotodon, and chalicotheres still dispersed north and south of "Tibetan Plateau". A tropical-subtropical lowland fish fauna was also present in the central part of this plateau during the Late Oligocene, in which Eoanabas thibetana was inferred to be closely related to extant climbing perches from South Asia and Sub-Saharan Africa. In contrast, during the Middle Miocene, the shovel-tusked elephant Platybelodon was found from many localities north of the Tibetan Plateau, while its trace was absent in the Siwaliks of the subcontinent, which implies that the Tibetan Plateau had uplifted high enough to obstruct the exchange of mammals in the Middle Miocene. The Pliocene mammalian fauna of the Zanda Basin showed initiation of cold-adapted lineages that predate Ice Age megafauna, which implied that the Tibetan Plateau reached its modern elevation.
NASA Astrophysics Data System (ADS)
Lucas, S. G.; Tanner, L. H.; Geissman, J. W.; Hurley, L. L.; Kozur, H.; Heckert, A.; Kuerschner, W.; Weems, R.
2010-12-01
Strata of the Moenave Formation on and adjacent to the southern Colorado Plateau in Utah-Arizona, USA represent one of the best known and most stratigraphically continuous, complete and fossiliferous terrestrial sections across the Triassic-Jurassic boundary. We present here a synthesis of new biostratigraphic and magnetostratigraphic data collected from the Moenave Formation across the outcrop belt, which extends from the St. George area in southwestern Utah to the Tuba City area in northern Arizona. These include, palynomorphs, conchostracans and vertebrate fossils (including footprints) and a composite polarity record based on four magnetostratigraphic sections. Placement of the Triassic-Jurassic boundary in strata of the Moenave Formation has long been imprecise and debatable, but these new data (especially the conchostracan) allow us to place the Triassic-Jurassic boundary relatively precisely in the middle part of the Whitmore Point Member of the Moenave Formation. This placement supports the conclusion that terrestrial extinctions preceded marine extinctions across the Triassic-Jurassic boundary and likely were unrelated to CAMP volcanism.
NASA Astrophysics Data System (ADS)
Rodgers, Arthur J.; Schwartz, Susan Y.
We report low average crustal P-wave velocities (5.9-6.1 km/s, Poisson's ratio 0.23-0.27, thickness 68-76 km) in southern Tibet from modelling regional Pnl waveforms recorded by the 1991-1992 Tibetan Plateau Experiment. We also find that the mantle lithosphere beneath the Indus-Tsangpo Suture and the Lhasa Terrane is shield-like (Pn velocity 8.20-8.25 km/s, lid thickness 80-140 km, positive velocity gradient 0.0015-0.0025 s-1). Analysis of relative Pn travel time residuals requires a decrease in the mantle velocities beneath the northern Lhasa Terrane, the Banggong-Nujiang Suture and the southern Qiangtang Terrane. Tectonic and petrologic considerations suggest that low bulk crustal velocities could result from a thick (50-60 km) felsic upper crust with vertically limited and laterally pervasive partial melt. These results are consistent with underthrusting of Indian Shield lithosphere beneath the Tibetan Plateau to at least the central Lhasa Terrane.
Serial position effects in free memory recall--An ERP-study.
Wiswede, Daniel; Rüsseler, Jascha; Münte, Thomas F
2007-05-01
Event-related brain potentials (ERPs) elicited by recalled and non-recalled words were recorded from 18 female subjects to investigate primacy and recency effects in free memory recall. The typical pattern of a serial position curve (SPC) was obtained with words presented at first and final positions in a list recalled better than words presented in the middle of a list. A marked positivity is seen in the ERPs for words on Primacy, but not on Recency positions at frontocentral electrodes. In contrast, ERP amplitudes on parietal electrodes resemble the SPC seen in behavioral data: P300 amplitude is largest for words on Primacy and Recency positions and attenuated on Plateau positions. Furthermore, subjects with a clear Primacy effect in behavioral data show a distinct frontal positive slow wave for Primacy words only, whereas subjects without a clear primacy effect show a frontal "difference due to subsequent memory" (DM) effect for Primacy and Plateau words. These results are discussed in the framework of working memory and distinctiveness.
NASA Astrophysics Data System (ADS)
Osterberg, E. C.; Birkel, S. D.; Kreutz, K. J.; Wake, C. P.; Campbell, S. W.; Winski, D.
2015-12-01
Researchers from the University of Maine, University of New Hampshire, and Dartmouth College supported by NSF recently recovered two ice cores from the Mt. Hunter Plateau in the Alaska Range of Denali National Park. Ongoing analyses of snow accumulation, snowmelt, stable isotopes, and chemistry within the core are providing proxy information for ~1000 years of regional climate variability. Broader context to link circulation across the North Pacific and western North America can be obtained by using climate reanalysis. In this vein, we are using monthly, daily, and sub-daily meteorological fields from the NCEP Climate Forecasting System Reanalysis (CFSR) to characterize large-scale circulation associated with notable events in the ice core record onward from 1979. One goal is to assess the relationship between annual snow accumulation spikes and storm frequency and magnitude. A second goal is to relate these observations to events during the Little Ice Age and Medieval Warm Period. Work is in progress, and results will be presented at the fall meeting.
Time-varying span efficiency through the wingbeat of desert locusts.
Henningsson, Per; Bomphrey, Richard J
2012-06-07
The flight performance of animals depends greatly on the efficacy with which they generate aerodynamic forces. Accordingly, maximum range, load-lifting capacity and peak accelerations during manoeuvres are all constrained by the efficiency of momentum transfer to the wake. Here, we use high-speed particle image velocimetry (1 kHz) to record flow velocities in the near wake of desert locusts (Schistocerca gregaria, Forskål). We use the measured flow fields to calculate time-varying span efficiency throughout the wing stroke cycle. The locusts are found to operate at a maximum span efficiency of 79 per cent, typically at a plateau of about 60 per cent for the majority of the downstroke, but at lower values during the upstroke. Moreover, the calculated span efficiencies are highest when the largest lift forces are being generated (90% of the total lift is generated during the plateau of span efficiency) suggesting that the combination of wing kinematics and morphology in locust flight perform most efficiently when doing the most work.
Shittu, Ismaila; Sulaiman, Lanre K; Gado, Dorcas A; Egbuji, Anthony N; Ndahi, Mwapu D; Pam, Ezekiel; Joannis, Tony M
2016-01-01
Infectious laryngotracheitis (ILT) is a highly contagious acute respiratory disease of chickens with outbreaks resulting in high economic losses due to increased mortality and drop in egg production. This study reports a survey of ILT virus antibody conducted in nine local government areas (LGAs) of Plateau State involving 67 randomly selected commercial poultry flocks. In all, 938 sera were tested using the Agar Gel Immuno-diffusion (AGID) technique. Overall prevalence of 1.2% (N = 11) was recorded. ILT virus antibody was found in 2.5% (n = 9) and 7.1% (n = 2) of the tested sera from Jos South and Langtang North LGAs, respectively. No detectable ILT virus antibody was found from the other seven LGAs. This is the first report of ILT infection in poultry from the North central part of Nigeria. It is therefore recommended that the economic implication of ILT infection in Nigerian poultry population be conducted in order to know if vaccination should be adopted for control.
Don Vandendriesche; Linda Haugen
2008-01-01
Oak decline has been recorded on oak forests throughout the Ozark Plateau of Missouri since the 1970s, but severe drought in the late 1990s, combined with the advancing age of the Ozark forests, has intensified the levels of crown dieback and mortality beyond historical levels. The purpose of this project was to determine whether the Forest Vegetation Simulator (FVS)...
NASA Astrophysics Data System (ADS)
Aizen, V.; Aizen, E.; Kreutz, K.; Nikitin, S.; Fujita, K.; Cecil, D.
2001-12-01
Investigations in Siberian Altai permits to expand our scope from Tibet, Himalayas, Tien Shan and Pamir to the area located at the northeastern edge of the Central Asia Mountain System. Altai forms a natural barrier to the northern and western air masses and therefore affords an opportunity to develop modern paleo-climate records relating to the westerly jet stream, the Siberian High and Pacific monsoon. Moreover, Altai alpine snowice accumulation areas are appropriative for studying air pollution dynamics at the center of Eurasia, eastward from the major Former USSR air pollutants in Kazakhstan, South Siberia and Ural Mountains. During the last century Altai Mountains became extremely contaminated region by heavy metal mining, metallurgy, nuclear test in Semipalatinsk polygon and Baikonur rocket site. Our first field reconnaissance on the West Belukha snow/firn plateau at the Central Altai was carried out in July 2001. Dispute of the large Alatai Mountains glaciation, the West Belukha Plateau (49o48' N, 86o32'E, 4000-4100 m a.s.l.) is only one suitable snow accumulation site in Altai to recover ice-core paleo-climatic and environmental records that is not affected by meltwater percolation. The objective of our first reconnaissance was to find an appropriate deep drilling site by radio-echo sounding survey, to recover shallow ice-core, to identify the annual snow accumulation rate, major ions, heavy metals, radio nuclides and oxygen isotopes level distribution. During 6 days of work on the Plateau, a 22 m shallow firn/ice core has been recovered by PICO hand auger at elevation 4050 m where the results of radio-echo sounding suggests about 150 m ice thickness. In addition to the firn/ice core recovery, five 2.5 meter snow pits were sampled for physical statigraphy, major ions, trace element, and heavy metals analysis to assess spatial variability of the environmental impact in this region. Four automatic snow gauges were installed near proposed deep ice coring site for year around records. The seasonal accumulation at the drilling site was ranged from 250 to 300 ?? with density of 0.34 - 0.40 g cm-3. The ice-core stratigraphy analysis has shown that accumulation area seems to lie in the cold infiltration-recrystallization zone. Geochemical analysis of the shallow ice core, snow pit samples collecting during the 2001 field research will be discussed along with meteorological and synoptic data collected at the nearest to Belukha Plateau Akkem, (2050 m) and Kara -Tyurek (3600 ?) stations. A preliminary result has revealed that variability of elementary synoptic processes over the region impact on the amount of precipitation. North Atlantic Oscillation and West Pacific Oscillation indices have inverse associations with average amount of precipitation in Siberia where Altai is located. >http://www.icess.ucsb.edu/%7eaizen/aizen.html
Bellingshausen Sea Ice Extent Recorded in an Antarctic Peninsula Ice Core
NASA Technical Reports Server (NTRS)
Porter, Stacy E.; Parkinson, Claire L.; Mosley-Thompson, Ellen
2016-01-01
Annual net accumulation (A(sub n)) from the Bruce Plateau (BP) ice core retrieved from the Antarctic Peninsula exhibits a notable relationship with sea ice extent (SIE) in the Bellingshausen Sea. Over the satellite era, both BP A(sub n) and Bellingshausen SIE are influenced by large-scale climatic factors such as the Amundsen Sea Low, Southern Annular Mode, and Southern Oscillation. In addition to the direct response of BP A(sub n) to Bellingshausen SIE (e.g., more open water as a moisture source), these large-scale climate phenomena also link the BP and the Bellingshausen Sea indirectly such that they exhibit similar responses (e.g., northerly wind anomalies advect warm, moist air to the Antarctic Peninsula and neighboring Bellingshausen Sea, which reduces SIE and increases A(sub n)). Comparison with a time series of fast ice at South Orkney Islands reveals a relationship between BP A(sub n) and sea ice in the northern Weddell Sea that is relatively consistent over the twentieth century, except when it is modulated by atmospheric wave patterns described by the Trans-Polar Index. The trend of increasing accumulation on the Bruce Plateau since approximately 1970 agrees with other climate records and reconstructions in the region and suggests that the current rate of sea ice loss in the Bellingshausen Sea is unrivaled in the twentieth century.
Thurow, Jürgen
1988-01-01
Ocean Drilling Program Leg 123 drilled two sites in the Indian Ocean in order to study the rifting and early spreading of one of the world’s oldest ocean basins.Site 765 was drilled in 5714 meters of water on the Argo Abyssal Plain northwest of Australia. The sedimentary succession records the opening of an ocean basin, from the first sediments deposited atop young oceanic crust, to the present day. The oldest sediments are microlaminated brown silty claystones, locally rich in calcareous bioclasts. Most of the sequence is dominated by turbidites (primarily calcareous) which probably originated within canyons cut into the margin of the drowned platform of the North West Shelf of Australia.Site 766 is located in 3998 meters of water, at the base of the steep western margin of the Exmouth Plateau. The oldest sediments penetrated are glauconitic, volcaniclastic, and bioclastic sandstones and siltstones, which are interbedded with inclined basaltic sills. These sediments were deposited by a prograding submarine fan system which shed shallow marine sediments westward or northwestward off of the western rim of the Exmouth Plateau. Sandstones are succeeded by silty claystones, recording gradual abandonment or redirection of the fan system. An overlying sequence of pelagic and hemipelagic clayey and zeolitic calcareous oozes and chalks is succeeded by featureless and homogeneous pelagic nannofossil oozes.
NASA Astrophysics Data System (ADS)
Zhao, Wenwei; Zhao, Yan; Qin, Feng
2017-10-01
Understanding fire history and its driving mechanisms can provide valuable insights into present fire regime (intensity, severity and frequency), the interplay between vegetation and fire, and trigger of fire activities. Here we reconstruct the Holocene fire history in the Zoige Basin on the eastern Tibetan Plateau, on the basis of sedimentary micro-charcoal record over the last 10.0 ka (1 ka = 1000 cal yr BP) and discuss the influences of vegetation and climate on fire dynamics. Our results show that regional fire was active at 10.0-3.3 ka and a significant decrease in fire activity characterized the period after 3.3 ka. The high regional fire frequency at 10.0-3.3 ka is consistent with the forested landscape suggested by high affinity scores of cool mixed forest biome (mainly consisted of spruce), implying that fire dynamics during this period was generally controlled by the variations of arboreal biomass and summer temperature. During 6.3-4.6 ka the prevailing Asian summer monsoon provided increased moisture to this region and thus suppressed fire activities to an extent, despite the availability of abundant biomass. Declined tree biomass after 3.3 ka probably accounted for the decreased fire activities. In addition, two successive fire events at ca. 3.5-3.3 ka were likely responsible for the subsequent abrupt decline of forest components in the landscape.
NASA Astrophysics Data System (ADS)
Yang, Xiaoxin; Yao, Tandong; Joswiak, Daniel; Yao, Ping
2014-05-01
Temperature signals in ice-core δ18O on the Tibetan Plateau (TP), particularly in the central and southern parts, continue to be debated because of the large scale of atmospheric circulation. This study presents ten ice-core δ18O records at an annual resolution, with four (Malan, Muztagata, Guliya, and Dunde) in the northern, three (Puruogangri, Geladaindong, Tanggula) in the central and three (Noijin Kangsang, Dasuopu, East Rongbuk) in the southern TP. Integration shows commonly increasing trends in δ18O in the past century, featuring the largest one in the northern, a moderate one in the central and the smallest one in the southern TP, which are all consistent with ground-based measurements of temperature. The influence of atmospheric circulation on isotopic signals in the past century was discussed through the analysis of El Niño/Southern Oscillation (ENSO), and of possible connections between sea surface temperature (SST) and the different increasing trends in both ice-core δ18O and temperature. Particularly, El Niño and the corresponding warm Bay of Bengal (BOB) SST enhance the TP ice-core isotopic enrichment, while La Niña, or corresponding cold BOB SST, causes depletion. This thus suggests a potential for reconstructing the ENSO history from the TP ice-core δ18O.
A secondary origin for the central plateau of Hebes Chasma
NASA Technical Reports Server (NTRS)
Peterson, C.
1982-01-01
Hebes Chasma, one of the northern members of the Valles Marineris, can be divided into three physiographic provinces; chasma walls, chasma floor, and central plateau. Theories of origin of the 5-kilometer-high central plateau include (1) the plateau is an eroded remnant of the surrounding plains, and (2) the plateau is a secondary feature deposited after formation of the chasma. A secondary eolian or pyroclastic origin best explains the morphology of the plateau. The chasma probably formed by collapse of a pre-existing graben that was widened by landslides and subsequently filled with eolian or pyroclastic material. Continued mass wasting isolated the plateau from the chasma walls. The enclosed nature of Hebes Chasma may have inhibited eolian erosion and transport within the trough, so that the relatively fresh appearance of the plateau has been preserved.
Medial tibial plateau morphology and stress fracture location: A magnetic resonance imaging study
Yukata, Kiminori; Yamanaka, Issei; Ueda, Yuzuru; Nakai, Sho; Ogasa, Hiroyoshi; Oishi, Yosuke; Hamawaki, Jun-ichi
2017-01-01
AIM To determine the location of medial tibial plateau stress fractures and its relationship with tibial plateau morphology using magnetic resonance imaging (MRI). METHODS A retrospective review of patients with a diagnosis of stress fracture of the medial tibial plateau was performed for a 5-year period. Fourteen patients [three female and 11 male, with an average age of 36.4 years (range, 15-50 years)], who underwent knee MRI, were included. The appearance of the tibial plateau stress fracture and the geometry of the tibial plateau were reviewed and measured on MRI. RESULTS Thirteen of 14 stress fractures were linear, and one of them stellated on MRI images. The location of fractures was classified into three types. Three fractures were located anteromedially (AM type), six posteromedially (PM type), and five posteriorly (P type) at the medial tibial plateau. In addition, tibial posterior slope at the medial tibial plateau tended to be larger when the fracture was located more posteriorly on MRI. CONCLUSION We found that MRI showed three different localizations of medial tibial plateau stress fractures, which were associated with tibial posterior slope at the medial tibial plateau. PMID:28660141
Colorado Plateau magmatism and uplift by warming of heterogeneous lithosphere.
Roy, Mousumi; Jordan, Thomas H; Pederson, Joel
2009-06-18
The forces that drove rock uplift of the low-relief, high-elevation, tectonically stable Colorado Plateau are the subject of long-standing debate. While the adjacent Basin and Range province and Rio Grande rift province underwent Cenozoic shortening followed by extension, the plateau experienced approximately 2 km of rock uplift without significant internal deformation. Here we propose that warming of the thicker, more iron-depleted Colorado Plateau lithosphere over 35-40 Myr following mid-Cenozoic removal of the Farallon plate from beneath North America is the primary mechanism driving rock uplift. In our model, conductive re-equilibration not only explains the rock uplift of the plateau, but also provides a robust geodynamic interpretation of observed contrasts between the Colorado Plateau margins and the plateau interior. In particular, the model matches the encroachment of Cenozoic magmatism from the margins towards the plateau interior at rates of 3-6 km Myr(-1) and is consistent with lower seismic velocities and more negative Bouguer gravity at the margins than in the plateau interior. We suggest that warming of heterogeneous lithosphere is a powerful mechanism for driving epeirogenic rock uplift of the Colorado Plateau and may be of general importance in plate-interior settings.
Early Human Occupation on the Northeast Tibetan Plateau
NASA Astrophysics Data System (ADS)
Rhode, D.; Madsen, D.; Brantingham, P.; Perrault, C.
2010-12-01
The Tibetan Plateau presents great challenges for human occupation: low oxygen, high ultraviolet radiation, harsh seasonal climate, low overall biological productivity. How and when early humans were able to cope physiologically, genetically, and behaviorally with these extremes is important for understanding the history of human adaptive flexibility. Our investigations of prehistoric human settlement on the northeast Tibetan Plateau focus on (a) establishing well-dated evidence for occupation of altitudes >3000 m, (b) the environmental context of high altitude adaptation, and (c) relations of hunting and pastoralism to lower-altitude agrarian systems. We observe two major prehistoric settlement patterns in the Qinghai Lake area. The earliest, ~15,000-7500 yr old, consists of small isolated firehearths with sparse associated stone tools and wild mammal remains (1). Numerous hearths often occur in the same localities, indicating repeated short-duration occupations by small hunting parties. A second pattern, ~9000-4000 yr old, was established during the Holocene climatic optimum. These sites represent prolonged seasonal residential occupation, containing dark anthropogenic midden, hearth and pit constructions, abundant stone tools, occasional ceramics, and abundant diverse faunal remains (including medium-large mammals but lacking domestic sheep/yak)(2). These Plateau-margin base camps allowed greater intensity of use of the high Plateau. Residential occupation was strongly influenced by nearby lower-altitude farming communities; development of the socioeconomic landscape along the Yellow River likely played at least as great a role in Plateau occupation patterns as did Holocene environmental changes. Holocene vegetation changes in the NE Tibetan Plateau have been attributed to climate (3) or anthropogenic modification (4). Our results document changes in shrub/tree presence from ~12,000-4000 BP, similar to pollen records, that likely reflect climate rather than anthropogenic grazing pressure, because domestic yak/sheep remains are absent archaeologically before ~4000 BP. Our results have implications for the age of distinct Tibetan high-altitude physiological adaptations (5), suggested to be as recent as ~2750 BP. Prolonged occupation of Plateau margins commenced much earlier, but year-round occupation above 4000 m likely occurred only with the emergence of yak pastoralism (6). Genetic models need to consider which environmental factors lead to strong selection for genetic divergence (e.g., seasonal vs year-round occupation, occupation at ~3000 m vs >4000 m, etc); settlement history reconstructions such as that presented here can help. (1)Brantingham PJ, et al. 2007, Elsevier Dev Quat Sci 9:129-150; Madsen DB, et al. 2006, J Arch Sci 33:1433-1444. (2)Rhode D, et al. 2007, J Arch Sci 34:600-612. (3)Herzschuh, U, et al. 2010, Glo Ecol Biogeog 19:278-286. (4)Miehe G, et al. 2009, Palaeo Palaeo Palaeo 267:130-147.; Schlütz F., Lehmkuhl F., 2009, Quat Sci Rev 28:1449-1471. (5)Beall C, et al. 2010, PNAS 107:11459-11464; Simonson TS, et al. 2010, Science 329:72-75; Yi X. et al., 2010, Science 329:75-78. (6)Rhode D, et al. 2007, Elsevier Dev Quat Sci 9:205-226.
Ma, Ben-Yuan; Wei, Lian; Sun, Sheng-Zhen; Wang, Duo-Wei; Wei, Deng-Bang
2014-04-25
Plateau zokor (Myospalax baileyi) is a subterranean mammal. Plateau zokor has high learning and memory ability, and can determine the location of blocking obstacles in their tunnels. Forkhead box p2 (FOXP2) is a transcription factor implicated in the neural control of orofacial coordination and sensory-motor integration, particularly with respect to learning, memory and vocalization. To explore the association of foxP2 with the high learning and memory ability of plateau zokor, the cDNA of foxP2 of plateau zokor was sequenced; by using plateau pika as control, the expression levels of foxP2 mRNA and FOXP2 protein in brain of plateau zokor were determined by real-time PCR and Western blot, respectively; and the location of FOXP2 protein in the brain of plateau zokor was determined by immunohistochemistry. The result showed that the cDNA sequence of plateau zokor foxP2 was similar to that of other mammals and the amino acid sequences showed a relatively high degree of conservation, with the exception of two particular amino acid substitutions [a Gln (Q)-to-His (H) change at position 231 and a Ser (S)-to-Ile (I) change at position 235]. Higher expression levels of foxP2 mRNA (3-fold higher) and FOXP2 protein (>2-fold higher) were detected in plateau zokor brain relative to plateau pika brain. In plateau zokor brain, FOXP2 protein was highly expressed in the cerebral cortex, thalamus and the striatum (a basal ganglia brain region). The results suggest that the high learning and memory ability of plateau zokor is related to the high expression levels of foxP2 in the brain.
NASA Technical Reports Server (NTRS)
Carpenter, D. L.
1992-01-01
The objective of this research was to obtain new understanding of the thermal plasma structure and dynamics of the plasmasphere bulge region of the magnetosphere, with special emphasis on the erosion process that results in a reduction in plasmasphere size and on the manner in which erosion leads to the presence of patches of dense plasma in the middle and outer afternoon-dusk magnetosphere. Case studies involving data from the DE 1, GEOS 2, and ISEE 1 satellites and from ground whistler stations Siple, Halley, and Kerguelen were used. A copy of the published paper entitled 'A case study of plasma structure in the dusk sector associated with enhanced magnetospheric convection,' is included.
When Boundary Layers Collide: Plumes v. Subduction Zones
NASA Astrophysics Data System (ADS)
Moresi, L. N.; Betts, P. G.; Miller, M. S.; Willis, D.; O'Driscoll, L.
2014-12-01
Many subduction zones retreat while hotspots remain sufficiently stable in the mantle to provide an approximate reference frame. As a consequence, the mantle can be thought of as an unusual convecting system which self-organises to promote frequent collisions of downgoing material with upwellings. We present three 3D numerical models of subduction where buoyant material from a plume head and an associated ocean-island chain or plateau produce flat slab subduction and deformation of the over-riding plate. We observe transient instabilities of the convergent margin including: contorted trench geometry; trench migration parallel with the plate margin; folding of the subducting slab and orocline development at the convergent margin; and transfer of the plateau to the overriding plate. The presence of plume material beneath the oceanic plateau causes flat subduction above the plume, resulting in a "bowed" shaped subducting slab. In the absence of a plateau at the surface, the slab can remain uncoupled from the over-riding plate during very shallow subduction and hence there is very little shortening at the surface or advance of the plate boundary. In plateau-only models, plateau accretion at the edge of the overriding plate results in trench migration around the edge of the plateau before subduction re-establishes directly behind the trailing edge of the plateau. The plateau shortens during accretion and some plateau material subducts. In a plateau-plus-plume model, accretion is associated with rapid trench advance as the flat slab drives the plateau into the margin. This indentation stops once a new convergent boundary forms close to the original trench location. A slab window formed beneath the accreted plateau allows plume material to flow from beneath the subducting plate to the underside of the overriding plate. In all of these models the subduction zone maintains a relatively stable configuration away from the buoyancy anomalies within the downgoing plate. The models provide a dynamic context for plateau and plume accretion in accretionary orogenic systems.
Bilmont, A; Retournard, M; Asimus, E; Palierne, S; Autefage, A
2018-06-11
This study evaluated the effects of tibial plateau levelling osteotomy on cranial tibial subluxation and tibial rotation angle in a model of feline cranial cruciate ligament deficient stifle joint. Quadriceps and gastrocnemius muscles were simulated with cables, turnbuckles and a spring in an ex vivo limb model. Cranial tibial subluxation and tibial rotation angle were measured radiographically before and after cranial cruciate ligament section, and after tibial plateau levelling osteotomy, at postoperative tibial plateau angles of +5°, 0° and -5°. Cranial tibial subluxation and tibial rotation angle were not significantly altered after tibial plateau levelling osteotomy with a tibial plateau angle of +5°. Additional rotation of the tibial plateau to a tibial plateau angle of 0° and -5° had no significant effect on cranial tibial subluxation and tibial rotation angle, although 2 out of 10 specimens were stabilized by a postoperative tibial plateau angle of -5°. No stabilization of the cranial cruciate ligament deficient stifle was observed in this model of the feline stifle, after tibial plateau levelling osteotomy. Given that stabilization of the cranial cruciate ligament deficient stifle was not obtained in this model, simple transposition of the tibial plateau levelling osteotomy technique from the dog to the cat may not be appropriate. Schattauer GmbH Stuttgart.
Climatic Change over the 'Third Pole' from Long Tree-Ring Records
NASA Astrophysics Data System (ADS)
Cook, E.
2011-12-01
Climatic change over the Greater Himalayas and Tibetan Plateau, the 'Third Pole' of the world, is of great concern now as the Earth continues to warm at an alarming rate. While future climatic change over this region and its resulting impacts on humanity and the environment are difficult to predict with much certainty, knowing how climate has varied in the past can provide both an improved understanding of the range of variability and change that could occur in the future and the necessary context for assessing recent observed climatic change there. For this purpose, one of the best natural archives of past climate information available for study of the Third Pole environment is the changing pattern of annual ring widths found in long tree-ring chronologies. The forests of the Third Pole support many long-lived tree species, with some having life spans in excess of 1,000 years. This natural resource is steadily dwindling now due to continuing deforestation caused by human activity, but there is still enough remaining forest cover to produce a detailed network of long tree-ring chronologies for study of climate variability and change covering the past several centuries. The tree-ring records provide a mix of climate information, including that related to both temperature and precipitation. Examples of long drought-sensitive tree-ring records from the more arid parts of the Karakoram and Tibetan Plateau will be presented, along with records that primarily reflect changing temperatures in moister environments such as in Bhutan. Together they provide a glimpse of how climate of the Third Pole has changed over the past several centuries, the range of natural variability that could occur in the future independent of changes caused by greenhouse warming, and how changes during the latter part of the 20th century period of rapid global warming compare to the past.
NASA Astrophysics Data System (ADS)
Xiong, Jianguo; Li, Youli; Zhong, Yuezhi; Lu, Honghua; Lei, Jinghao; Xin, Weilin; Wang, Libo; Hu, Xiu; Zhang, Peizhen
2017-12-01
At the eastern Qilian Shan mountain front in the NE Tibetan Plateau, the Minle-Damaying Fault (MDF), the southernmost fault of the North Frontal Thrust (NFT) system, has previously been proposed as an inactive structure during the Holocene. Here we present a detailed record of six strath terraces of the Xie River that document the history of active deformation of the MDF. One optically stimulated luminescence dating sample constrains abandonment of the highest terrace T6 at 12.7 ± 1.4 ka. The formation ages of the lower terraces (T4-T1) are dated by AMS 14C dating. The cumulative vertical offsets of the MDF recorded by these terraces are determined as 12.2 ± 0.4 m (T6), 8.0 ± 0.4 m (T5), 6.4 ± 0.4 m (T4), 4.6 ± 0.1 m (T3), and 3.2 ± 0.2 m (T1c) by an unmanned aerial vehicle system, respectively. A long-term vertical slip rate of the MDF of 0.9 ± 0.2 mm/yr is then estimated from the above data of terrace age and vertical offset by a linear regression. Assuming that the fault dip of 35 ± 5° measured at the surface is representative for the depth-averaged fault dip, horizontal shortening rates of 0.83-1.91 mm/yr are inferred for the MDF. Our new data show that the proximal fault (the MDF) of the NFT system at the eastern Qilian Shan mountain front has remained active when the deformation propagated basinward, a different scenario from that observed at both the western and central Qilian Shan mountain front.
NASA Astrophysics Data System (ADS)
Grigholm, B.; Mayewski, P. A.; Kang, S.; Zhang, Y.; Kaspari, S.; Sneed, S. B.; Zhang, Q.
2009-10-01
In autumn 2005, a joint expedition between the University of Maine and the Institute of Tibetan Plateau Research recovered three ice cores from Guoqu Glacier (33°34'37.8″N, 91°10'35.3″E, 5720 m above sea level) on the northern side of Mt. Geladaindong, central Tibetan Plateau. Isotopes (δ18O), major soluble ions (Na+, K+, Mg2+, Ca2+, Cl-, NO3-, SO42-), and radionuclide (β-activity) measurements from one of the cores revealed a 70-year record (1935-2005). Statistical analysis of major ion time series suggests that atmospheric soluble dust species dominate the chemical signature and that background dust levels conceal marine ion species deposition. The soluble dust time series have interspecies relations and common structure (empirical orthogonal function (EOF) 1), suggesting a similar soluble dust source or transport route. Annual and seasonal correlations between the EOF 1 time series and National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis climate variables (1948-2004) suggest that the Mt. Geladaindong ice core record provides a proxy for local and regional surface pressure. An approximately threefold decrease of soluble dust concentrations in the middle to late 1970s, accompanied by regional increases in pressure and temperature and decreases in wind velocity, coincides with the major 1976-1977 shift of the Pacific Decadal Oscillation (PDO) from a negative to a positive state. This is the first ice core evidence of a potential teleconnection between central Asian atmospheric soluble dust loading and the PDO. Analysis of temporally longer ice cores from Mt. Geladaindong may enhance understanding of the relationship between the PDO and central Asian atmospheric circulation and subsequent atmospheric soluble dust loading.
Crew Earth Observations over Bolivia taken during Expedition 12
2005-11-03
ISS012-E-06456 (3 Nov. 2005) --- Salar de Uyuni, the largest Salar (salt flat) in the world, located within the Altiplano of Bolivia, South America is featured in this image photographed by an Expedition 12 crewmember on the International Space Station. The Altiplano is a high plateau formed during uplift of the Andes Mountains. The plateau harbors fresh and saltwater lakes, together with Salars, that are surrounded by mountains with no drainage outlets--all at elevations greater than 3,659 meters (12,000 feet) above mean sea level. The Salar de Uyuni covers approximately 8,000 square kilometers (3,100 square miles), and it is a major transport route across the Bolivian Altiplano due to its flatness. This image features the northern end of the Salar and the dormant volcano Mount Tunupa (image center). This mountain is high enough to support a summit glacier, and enough rain falls on the windward slopes to provide water for small communities along the base. The dark volcanic rocks comprising Mt. Tunupa are in sharp contrast with the white, mineral-crusted surface of the Salar. The major minerals are halite--common table salt--and gypsum--a common component of drywall. Relict shorelines visible in the surface salt deposits (lower right of the image) attest to the occasional presence of small amounts of water in the Salar. Sediments in the Salar basin record fluctuations in water levels that occurred as the lake that once occupied the Salar evaporated. These sediments provide a valuable paleoclimate record for the region. The dynamic geological history of the Altiplano is recorded in isolated "islands" within the salt flat (image left); these islands are typically built from fossil coral reefs covered by Andean volcanic rocks.
NASA Astrophysics Data System (ADS)
Zhang, Tao; Fang, Xiaomin; Wang, Yadong; Song, Chunhui; Zhang, Weilin; Yan, Maodu; Han, Wenxia; Zhang, Dawen
2018-07-01
The Altyn Tagh range (ATR) is the northern geological boundary of the Tibetan Plateau and plays a key role in accommodating its Cenozoic lithospheric deformation. However, knowledge of the structural style and age of uplift of the ATR is limited and controversial. The Qaidam Basin, in the southeast side of the ATR, provides an outstanding field laboratory for understanding the history and mechanisms of ATR growth. This study presents a detailed sedimentological analysis of a 1040-m-thick late Cenozoic ( 17-5.0 Ma) sedimentary sequence from the western Qaidam Basin, together with the analysis of sedimentological data from nearby boreholes and sections. Our aims were to determine the spatiotemporal evolution of the sedimentary sequences in the study area and to explore their response to late Cenozoic tectonic activity in the ATR. The results show three major intervals of the sedimentary characteristics in the study area: >17-16 Ma, 10 Ma and <5 Ma, which are closely related to the development of unconformities and growth strata recorded by high-resolution seismic reflection profiles. Combining the results with a comprehensive provenance analysis and with published records of regional climate change and tectonic activity, we discuss the possible factors responsible for the variations in the sedimentary characteristics of the studied sections. We conclude that significant tectonic responses in the western Qaidam Basin during the late Cenozoic were caused by three stages of tectonic activity of the ATR, at >17-16 Ma, 16-10 Ma and 10 Ma, during which the ATR respectively experienced tectonic uplift, fast strike-slip motion and intense uplift.
Enhanced functional expression of transient outward current in hypertrophied feline myocytes.
Ten Eick, R E; Zhang, K; Harvey, R D; Bassett, A L
1993-08-01
Cardiac hypertrophy can decrease myocardial contractility and alter the electrophysiological activity of the heart. It is well documented that action potentials recorded from hypertrophied feline ventricular cells can exhibit depressed plateau voltages and prolonged durations. Similar findings have been made by others in rabbit, rat, guinea pig, and human heart. Whole-cell patch voltage-clamp studies designed to explain these changes in the action potential suggest that the only component of the membrane current recorded from feline right ventricular (RV) myocytes found to be substantially different from normal is the 4-amino-pyridine-sensitive transient outward current (I(to)). However, it was not clear if the change in I(to) could explain the changes in the action potential of hypertrophied cardiocytes, nor was it clear if these changes reflect an alteration in the electrophysiological character of the channels underlying I(to). A kinetic comparison of I(to) elicited by hypertrophied RV myocytes with that elicited by comparable normal RV myocytes previously revealed no differences, suggesting that the increased magnitude of the peak I(to) recorded from hypertrophied myocytes arises because the current density increases and not because of any alteration in the kinetic parameters governing the current. This finding suggests that in hypertrophy additional normal channels are expressed rather than a kinetically different channel subtype emerging. Investigations designed to determine if enhancement of I(to) could explain the hypertrophy-induced changes in plateau voltage and action potential duration suggest that a change in I(to) density can indeed explain the entire effect of hypertrophy on RV action potentials. If this notion is correct, the likelihood of "sudden death" in patients with myocardial hypertrophy might be decreased by a blocker selective for cardiac I(to).
NASA Astrophysics Data System (ADS)
Schlindwein, Vera; Bönnemann, Christian; Reichert, Christian; Grevemeyer, Ingo; Flueh, Ernst
2003-01-01
We have performed a 3-D seismic refraction tomography of a 48 × 48 km2 area surrounding ODP site 757, which is planned to host an International Ocean Network (ION) permanent seismological observatory, called the Ninetyeast Ridge Observatory (NERO). The study area is located in the southern part of the Ninetyeast Ridge, the trail left by the Kerguelen hotspot on the Indian plate. The GEOMAR Research Centre for Marine Geosciences and the Federal Institute for Geosciences and Natural Resources acquired 18 wide-angle profiles recorded by 23 ocean bottom hydrophones during cruise SO131 of R/V Sonne in spring 1998. We apply a first arrival traveltime tomography technique using regularized inversion to recover the 3-D velocity structure relative to a 1-D background model that was constructed from a priori information and averaged traveltime data. The final velocity model revealed the crustal structure down to approximately 8 km depth. Resolution tests showed that structures with approximately 6 km horizontal extent can reliably be resolved down to that depth. The survey imaged the extrusive layer of the upper crust of the Ninetyeast Ridge, which varies in thickness between 3 and 4 km. A high-velocity anomaly coinciding with a positive magnetic anomaly represents a volcanic centre from which crust in this area is thought to have formed. A pronounced low-velocity anomaly is located underneath a thick sedimentary cover in a bathymetric depression. However, poor ray coverage of the uppermost kilometre of the crust in this area resulted in smearing of the shallow structure to a larger depth. Tests explicitly including the shallow low-velocity layer confirmed the existence of the deeper structure. The heterogeneity of the upper crust as observed by our study will have consequences for the waveforms of earthquake signals to be recorded by the future seismic observatory.
NASA Astrophysics Data System (ADS)
Burke, K.
2001-12-01
Restoration, by plate rotation, of the 25 LIPs (Table 1 of Coffin and Eldholm in AGU Monog.121) that have erupted at the Earth's surface since 200 Ma to their original eruption sites shows that at their times of eruption 24 of the LIPs lay above one or other of the "Sub-African" and "Sub-Pacific" DMLVVs (Garnero:AREPS 2000 Fig.5). The Columbia River LIP is the exception. This concentration of LIPs over DMLVVs is indicative of a possible role for DMLVVs in LIP formation. Persistence of an association of LIPs with DMLVVs for 200 My indicates that DMLVVs are long-lived mantle features consistent with the suggestion that no refrigerating subducted slabs have penetrated the two DMLVVs during the past 200 My. The two LIP provinces provide complementary information about how DMLVVs may interact with the Earth's surface. That in the Pacific, where plate motion has been fast, is better for revealing short-term changes. By contrast plate motion has generally been slow over the "Sub-African" DMLVV and there the longer-term record of interaction with the surface is better. That record, which extends back as far as 200 Ma, includes evidence of (1) A DMLVV role in the break-up of the Super-continent of Pangea, with LIP formation, intra-continental rifting and the establishment of new plate boundaries.(2) The construction of plate-wide Basin and Swell topography on the African plate during the past 30 My.(3) The eruption of 9 LIPs into pre-existing intra-continental rifts, which I suggest has been a consequence of "upside-down drainage"along the base of the lithosphere (Cf. Sleep 1997) and (4) The eruption of as many as 7 LIPs within a 10 M sq.km. region around Kerguelen
NASA Astrophysics Data System (ADS)
Rey, P. F.; Teyssier, C.; Whitney, D. L.
2009-04-01
Gravitational potential energy stored in an orogenic plateau can be sufficiently strong to deform the surrounding region (foreland), hence contributing to both plateau growth and collapse. Gravity-driven channel flow from the plateau lower crust into the foreland lower crust, or channel extrusion, has been proposed as a main contributor to the eastward growth of the Tibetan plateau, possibly driving the lower crust channel as far as 1000 km beneath the foreland (eg. Royden et al., 2008). On the basis of numerical modeling using temperature-dependent viscosities and densities, we show that four processes impose severe limitations to channel extrusion: (1) cooling of the extruded channel, (2) convective motion in the plateau channel, (3) surface extension of the plateau, and (4) erosion of the plateau edge. Model results show that peak velocities in the extrusion channel drop rapidly (in less than a few My) from ca. 5 cm/year to less than 1 cm/year, owing to the rapid cooling in the channel from 750-850°C to 650-550°C as it travels into the foreland region. Channel flow extrusion is further slowed when convective flow initiates in the plateau channel as a result of only a few percent drop in density. This convection inhibits laminar flow in the channel, reduces the peak horizontal velocity in the channel to a few mm, and even drives a counter flow at the base of the channel, preventing its propagation toward the foreland. If the foreland is actively pulled away from the plateau (extending boundaries), the plateau upper crust undergoes extension and the lower crust moves up efficiently into a metamorphic core complex, which inhibits flow of the channel away from the plateau and even generates a counter flow from the foreland to the metamorphic core complex. If the foreland is fixed, the same phenomenon occurs as long as the foreland upper crust undergoes shortening (likely weakened by high pore fluid pressure), which enhances extension of the plateau and upward flow of the channel. Previous studies (eg. Beaumont et al, 2001) have already emphasized the importance of aggressive erosion of the plateau edge as a process able to remove a section of the plateau upper crust, providing space for the plateau lower crust to flow into. Together, these numerical experiments demonstrate the dynamic link that exists between plateau and foreland through the behavior of a low-viscosity channel. For the cases studied, the length scale of channel extrusion is 100 km in the most favorable conditions, and not 1000 km as previously suggested. Beaumont, C., Jamieson, R.A., Nguyen, M.H. & Lee, B. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414, 738-742 (2001). Royden, L. H., Burchfiel, B.C. & van der Hilst, R.D. The geological evolution of the Tibetan Plateau. Science 321, 1054 - 1058 (2008).
NASA Astrophysics Data System (ADS)
Jin, Sheng; Zhang, Letian; Wei, Wenbo; Ye, Gaofeng; Jing, Jianen; Dong, Hao; Xie, Chengliang; Yin, Yaotian
2017-04-01
The Tibetan Plateau, as known as "roof of the world", was created through the on-going continent-continent collision between the Indian and Eurasian plates since 55 Ma. As the process continues, the plateau is growing both vertically and horizontally. The horizontal expansion of the plateau is blocked by the Yangtze block in the east, the Tarim block in the north, and the Ordos block in the northeast, and consequently lead to the formation of the circum Tibetan plateau orogenic belts. To better understand the mechanism behind this process, we conducted a comparative study by collecting 7 magnetotelluric (MT) profiles over the margins of the Tibetan plateau, namely, the INDEPTH 100, 700 and 800 lines in the southern Tibet, the INDEPTH 4000 and 5000 lines across the Altyn Tagh fault on the northern margin of the plateau, as well as other two profiles across the Haiyuan fault and the Longmenshan fault on the northeastern and eastern margins of the plateau deployed under the framework of project SinoProbe. The electrical features of the stable blocks surrounding the Tibetan plateau are generally resistive, while crustal conductive layers are found to be wide spread within the plateau. The southern margin of the Tibetan plateau is characterized by large scale underthrust of the Indian lithosphere beneath the plateau. This intense converging process created the thrust fault system distributed along the southern margin of the Tibetan plateau over 1000 km. Crustal conductive layers discovered in southern Tibet are generally associated with the southward crustal flow that originated from the lower crust within the plateau and exhumed along the thrust belts in the Himalayas. On the eastern margin of the Tibetan plateau, the electrical structures suggest that the Yangtze block wedged into the Tibetan lithosphere and caused decoupling between the crust and upper mantel. Large scale conductors discovered beneath the Songpan-Ganze block reflect that the eastward crustal flow was blocked and piled up along the eastern margin of the plateau due to the block of the Sichuan Basin, which further result in the uplift and expansion of the eastern Tibetan plateau. The northeastern and northern margins of the Tibetan plateau is bounded by large scale left-lateral strike-slip Haiyuan and Altyn Tagh faults. In these regions, the plateau interacts with the surrounding stable blocks in a way of oblique strike-slip. The deformation of the northern Tibetan lithosphere is dominated by crustal thickening, where no features of decoupling or large scale underthrusting were seen. Crustal conductors in these regions are generally not very well connected, which suggest the absence of crustal flow. Deep metamorphism fluids could be an alternative interpretation of the crustal conductors in these regions. * This work was jointly supported by the grants from Project SinoProbe-02-04 and National Natural Science Foundation of China (41404060).
Bellier, J.-P.; Marca, S.; Norris, R.D.; Kroon, D.; Klaus, A.; Alexander, I.T.; Bardot, L.P.; Barker, C.E.; Blome, C.D.; Clarke, L.J.; Erbacher, J.; Faul, K.L.; Holmes, M.A.; Huber, B.T.; Katz, M.E.; MacLeod, K.G.; Martinez-Ruiz, F. C.; Mita, I.; Nakai, M.; Ogg, James G.; Pak, D.K.; Pletsch, T.K.; ,; Shackleton, N.J.; Smit, J.; Ussler, W.; Watkins, D.K.; Widmark, J.; Wilson, P.A.
1997-01-01
During ODP Leg 171B, devoted to the analysis of the Blake Plateau margin in front of Florida, 16 holes have been drilled in 5 distinct sites. The sites have documented a sedimentary succession ranging in age from Aptian to Eocene. Emphasis has been put on critical periods, comprising the Paleocene-Eocene transition, the Cretaceous-Tertiary boundary which has been cored in excellent conditions, the middle Maastrichtian extinctions and the Albian anoxic episodes.
Drew, Jarrod O; Glyde, Mark R; Hosgood, Giselle L; Hayes, Alex J
2018-02-01
To evaluate the effect of tibial plateau levelling osteotomy on stifle extensor mechanism load in an ex vivo cruciate-intact canine cadaveric model. Ex vivo mechanical testing study. Cadaveric canine pelvic limbs ( n = 6). A 21-mm tibial radial osteotomy was performed on pelvic limbs ( n = 6) prior to being mounted into a load-bearing limb press. The proximal tibial segment was incrementally rotated until the anatomical tibial plateau angle had been rotated to at least 1°. The proportional change in stifle extensor mechanism load between the anatomical tibial plateau angle and the neutralized (∼6.5 degrees) and over-rotated (∼1°) tibial plateau angle was analysed using a one-sample t -test against a null hypothesis of no change. A p -value ≤0.05 was considered significant. There was no significant change in the stifle extensor mechanism load from the anatomical tibial plateau angle (308 N [261-355 N]) to the neutralized tibial plateau angle (313 N [254-372 N]; p =.81), or from the anatomical tibial plateau angle to the over-rotated tibial plateau angle (303 N [254-352 N; p = 0.67). Tibial plateau levelling osteotomy does not significantly alter stifle extensor mechanism load at either a neutralized or over-rotated tibial plateau angle in our cruciate-intact model. Schattauer GmbH Stuttgart.
Influence of Western Tibetan Plateau Summer Snow Cover on East Asian Summer Rainfall
NASA Astrophysics Data System (ADS)
Wang, Zhibiao; Wu, Renguang; Chen, Shangfeng; Huang, Gang; Liu, Ge; Zhu, Lihua
2018-03-01
The influence of boreal winter-spring eastern Tibetan Plateau snow anomalies on the East Asian summer rainfall variability has been the focus of previous studies. The present study documents the impacts of boreal summer western and southern Tibetan Plateau snow cover anomalies on summer rainfall over East Asia. Analysis shows that more snow cover in the western and southern Tibetan Plateau induces anomalous cooling in the overlying atmospheric column. The induced atmospheric circulation changes are different corresponding to more snow cover in the western and southern Tibetan Plateau. The atmospheric circulation changes accompanying the western Plateau snow cover anomalies are more obvious over the midlatitude Asia, whereas those corresponding to the southern Plateau snow cover anomalies are more prominent over the tropics. As such, the western and southern Tibetan Plateau snow cover anomalies influence the East Asian summer circulation and precipitation through different pathways. Nevertheless, the East Asian summer circulation and precipitation anomalies induced by the western and southern Plateau snow cover anomalies tend to display similar distribution so that they are more pronounced when the western and southern Plateau snow cover anomalies work in coherence. Analysis indicates that the summer snow cover anomalies over the Tibetan Plateau may be related to late spring snow anomalies due to the persistence. The late spring snow anomalies are related to an obvious wave train originating from the western North Atlantic that may be partly associated with sea surface temperature anomalies in the North Atlantic Ocean.
PLATEAU IRIS SYNDROME--CASE SERIES.
Feraru, Crenguta Ioana; Pantalon, Anca Delia; Chiselita, Dorin; Branisteanu, Daniel
2015-01-01
Plateau iris is characterized by closing the anterior chamber angle due to a large ciliary body or due to its anterior insertion that alters the position of iris periphery in respect to the trabecular meshwork. There are two aspects that need to be differentiated: plateau iris configuration and plateau iris syndrome. The first describes a situation when the iris root is flat and the anterior chamber is not shallow, the latter refers to a post laser iridotomy condition in which a patent iridotomy has removed the relative pupillary block, but goniscopically confirmed angle closure recurs without central shallowing of the anterior chamber. Isolated plateau iris syndrome is rare compared to plateau iris configuration. We hereby present two case reports of plateau iris syndrome in young patients who came to an ophthalmologic consult by chance.
Lake overspill and onset of fluvial incision in the Iranian Plateau: Insights from the Mianeh Basin
NASA Astrophysics Data System (ADS)
Heidarzadeh, Ghasem; Ballato, Paolo; Hassanzadeh, Jamshid; Ghassemi, Mohammad R.; Strecker, Manfred R.
2017-07-01
Orogenic plateaus represent a prime example of the interplay between surface processes, climate, and tectonics. This kind of an interplay is thought to be responsible for the formation, preservation, and, ultimately, the destruction of a typical elevated, low-internal relief plateau landscape. Here, we document the timing of intermontane basin filling associated with the formation of a low-relief plateau morphology, followed by basin opening and plateau-flank incision in the northwestern Iranian Plateau of the Arabia-Eurasia collision zone. Our new U-Pb zircon ages from intercalated volcanic ashes in exposed plateau basin-fill sediments from the most external plateau basin (Mianeh Basin) document that the basin was internally drained at least between ∼7 and 4 Ma, and that from ∼5 to 4 Ma it was characterized by an ∼2-km-high and ∼0.5-km-deep lake (Mianeh paleolake), most likely as a result of wetter climatic conditions. At the same time, the eastern margin of the Mianeh Basin (and, therefore, of the Iranian Plateau) experienced limited tectonic activity, as documented by onlapping sediments and smoothed topography. The combination of high lake level and subdued topography at the plateau margin led to lake overspill, which resulted in the cutting of an ∼1-km-deep bedrock gorge (Amardos) by the Qezel-Owzan River (QOR) beginning at ∼4 Ma. This was associated with the incision of the plateau landscape and the establishment of fluvial connectivity with the Caspian Sea. Overall, our study emphasizes the interplay between surface and tectonic processes in forming, maintaining, and destroying orogenic plateau morphology, the transitional nature of orogenic plateau landscapes on timescales of 106 yr, and, finally, the role played by overspilling in integrating endorheic basins.
Mechanics of monoclinal systems in the Colorado Plateau during the Laramide orogeny
NASA Astrophysics Data System (ADS)
Yin, An
1994-11-01
Monoclines developed in the Colorado Plateau region during the Laramide orogeny are divided into western and eastern groups by a broad NNW trending antiform through the central part of the plateau. In the western group the major monoclines verge to the east, whereas in the eastern group the major monoclines verge to the west. Paleogeographic reconstruction based on paleocurrent indicators and sedimentary facies distribution suggests that the broad antiform was developed during the Laramide orogeny and was coeval with the formation of the monoclines in the plateau. This relationship implies that the monoclines were drag folds verging towards the center of the plateau as a response to the antiformal warping of the plateau. To simulate the warping of the plateau region and the stress distribution that produced the variable trends of the monoclines, an elastic thin plate model considering in-plane stress was developed. This model assumes that (1) sedimentation in the Laramide basins provided vertical loading along the edge of the plateau region, (2) frictional sliding was operating along the Laramide faults on the northern and eastern boundaries, and (3) the greatest regional compressive stress was oriented in the N 60 deg E direction and was applied uniformly along the western and southwestern sides of the plateau. Buoyancy due to instantaneous isostatic adjustment of crustal thickening or magmatic addition was also considered. The result of the model suggests that the frictional strength of the Uinta thrust system on the northern side of the plateau is at least 2 times greater than that along the Park Range and Sangre de Cristo thrust systems on the eastern side of the plateau in order to explain the observed monoclinal trends and the warping pattern within the plateau during the Laramide orogeny.
Blakey, R.C.; Peterson, F.; Kocurek, G.
1988-01-01
Late Paleozoic and Mesozoic eolian deposits include rock units that were deposited in ergs (eolian sand seas), erg margins and dune fields. They form an important part of Middle Pennsylvanian through Upper Jurassic sedimentary rocks across the Western Interior of the United States. These sedimentary rock units comprise approximately three dozen major eolian-bearing sequences and several smaller ones. Isopach and facies maps and accompanying cross sections indicate that most eolian units display varied geometry and complex facies relations to adjacent non-eolian rocks. Paleozoic erg deposits are widespread from Montana to Arizona and include Pennsylvanian formations (Weber, Tensleep, Casper and Quadrant Sandstones) chiefly in the Northern and Central Rocky Mountains with some deposits (Hermosa and Supai Groups) on the Colorado Plateau. Lower Permian (Wolfcampian) erg deposits (Weber, Tensleep, Casper, Minnelusa, Ingleside, Cedar Mesa, Elephant Canyon, Queantoweap and Esplanade Formations) are more widespread and thicken into the central Colorado Plateau. Middle Permian (Leonardian I) erg deposits (De Chelly and Schnebly Hill Formations) are distributed across the southern Colorado Plateau on the north edge of the Holbrook basin. Leonardian II erg deposits (Coconino and Glorieta Sandstones) are slightly more widespread on the southern Colorado Plateau. Leonardian III erg deposits formed adjacent to the Toroweap-Kaibab sea in Utah and Arizona (Coconino and White Rim Sandstones) and in north-central Colorado (Lyons Sandstone). Recognized Triassic eolian deposits include major erg deposits in the Jelm Formation of central Colorado-Wyoming and smaller eolian deposits in the Rock Point Member of the Wingate Sandstone and upper Dolores Formation, both of the Four Corners region. None of these have as yet received a modern or thorough study. Jurassic deposits of eolian origin extend from the Black Hills to the southern Cordilleran arc terrain. Lower Jurassic intervals include the Jurassic part of the Wingate Sandstone and the Navajo-Aztec-Nugget complex and coeval deposits in the arc terrain to the south and west of the Colorado Plateau. Major Middle Jurassic deposits include the Page Sandstone on the Colorado Plateau and the widespread Entrada Sandstone, Sundance Formation, and coeval deposits. Less extensive eolian deposits occur in the Carmel Formation, Temple Cap Sandstone, Romana Sandstone and Moab Tongue of the Entrada Sandstone, mostly on the central and western Colorado Plateau. Upper Jurassic eolian deposits include the Bluff Sandstone Member and Recapture Member of the Morrison Formation and Junction Creek Sandstone, all of the Four Corners region, and smaller eolian deposits in the Morrison Formation of central Wyoming and apparently coeval Unkpapa Sandstone of the Black Hills. Late Paleozoic and Mesozoic eolian deposits responded to changing climatic, tectonic and eustatic controls that are documented elsewhere in this volume. All of the eolian deposits are intricately interbedded with non-eolian deposits, including units of fluvial, lacustrine and shallow-marine origin, clearly dispelling the myth that eolian sandstones are simple sheet-like bodies. Rather, these units form some of the most complex bodies in the stratigraphic record. ?? 1988.
Re-evaluating the 1940s CO2 plateau
NASA Astrophysics Data System (ADS)
Bastos, Ana; Ciais, Philippe; Barichivich, Jonathan; Bopp, Laurent; Brovkin, Victor; Gasser, Thomas; Peng, Shushi; Pongratz, Julia; Viovy, Nicolas; Trudinger, Cathy M.
2016-09-01
The high-resolution CO2 record from Law Dome ice core reveals that atmospheric CO2 concentration stalled during the 1940s (so-called CO2 plateau). Since the fossil-fuel emissions did not decrease during the period, this stalling implies the persistence of a strong sink, perhaps sustained for as long as a decade or more. Double-deconvolution analyses have attributed this sink to the ocean, conceivably as a response to the very strong El Niño event in 1940-1942. However, this explanation is questionable, as recent ocean CO2 data indicate that the range of variability in the ocean sink has been rather modest in recent decades, and El Niño events have generally led to higher growth rates of atmospheric CO2 due to the offsetting terrestrial response. Here, we use the most up-to-date information on the different terms of the carbon budget: fossil-fuel emissions, four estimates of land-use change (LUC) emissions, ocean uptake from two different reconstructions, and the terrestrial sink modelled by the TRENDY project to identify the most likely causes of the 1940s plateau. We find that they greatly overestimate atmospheric CO2 growth rate during the plateau period, as well as in the 1960s, in spite of giving a plausible explanation for most of the 20th century carbon budget, especially from 1970 onwards. The mismatch between reconstructions and observations during the CO2 plateau epoch of 1940-1950 ranges between 0.9 and 2.0 Pg C yr-1, depending on the LUC dataset considered. This mismatch may be explained by (i) decadal variability in the ocean carbon sink not accounted for in the reconstructions we used, (ii) a further terrestrial sink currently missing in the estimates by land-surface models, or (iii) LUC processes not included in the current datasets. Ocean carbon models from CMIP5 indicate that natural variability in the ocean carbon sink could explain an additional 0.5 Pg C yr-1 uptake, but it is unlikely to be higher. The impact of the 1940-1942 El Niño on the observed stabilization of atmospheric CO2 cannot be confirmed nor discarded, as TRENDY models do not reproduce the expected concurrent strong decrease in terrestrial uptake. Nevertheless, this would further increase the mismatch between observed and modelled CO2 growth rate during the CO2 plateau epoch. Tests performed using the OSCAR (v2.2) model indicate that changes in land use not correctly accounted for during the period (coinciding with drastic socioeconomic changes during the Second World War) could contribute to the additional sink required. Thus, the previously proposed ocean hypothesis for the 1940s plateau cannot be confirmed by independent data. Further efforts are required to reduce uncertainty in the different terms of the carbon budget during the first half of the 20th century and to better understand the long-term variability of the ocean and terrestrial CO2 sinks.
NASA Astrophysics Data System (ADS)
François, Thomas; Agard, Philippe; Meyer, Bertrand; Zarrinkoub, Mohammad; Chung, Sun-Lin; Bernet, Matthias; Burov, Evgueni
2013-04-01
The Iranian plateau is a smooth topographic high at the rear of the Zagros mountains, with average elevation of c. 1.5 km. Its formation is thought to result from the collision between the Arabian and Eurasian plates since ~35 Myrs, following a long-standing subduction, and represents an interesting analogue to the so far better documented Tibetan plateau. Yet, while the Zagros orogeny was reappraised by numerous authors over the past few years, the topographic build-up of both the Zagros and the Iranian plateau remains ill-constrained. We herein present (U-Th)/He and fission track (FT) thermochronology results to reconstruct the Cenozoic tectonic evolution of the Iranien plateau and quantify the age and amount of vertical movements. Apatite and zircon single grain cooling age data were collected on plutonic rocks (for which crystallization ages were already available: Chiu et al., 2010) from the internal domains of Sanandaj-Sirjan Zone (SSZ), Urumieh-Doktar magmatic arc (UDMA), Central Iran and, for comparison, Kopet Dagh. We stress that an important milestone for topographic build-up is the presence of the marine Qom formation (coeval with the external Asmari formation) in the UDMA and part of the SSZ, indicating that the plateau was at or near sea level at 20 Ma. Temperature time paths inferred from low temperature thermochronology suggest a spatial and temporal separation of exhumation processes. The results show that the SSZ was exhumed very early in the collision process (essentially before 20 Ma), with a likely acceleration around the Oligocene (i.e., at the onset of continental collision) from 0.05 to 0.3 mm/yr. Post-collision cooling along the UDMA is marked by an average, constant exhumation rate of 0.3-0.4 mm/yr, which suggests that no significant increase or decrease of erosion occurred since continental collision. In Central Iran, the overlap (within error) of ZrFT, AFT and AHe ages from gneissic samples points to their rapid cooling during the upper Eocene (~42°C/Ma). These results are consistent with the reported formation of several small metamorphic core-complexes in Central Iran towards the end of oceanic subduction, possibly associated with slab rollback. Our thermochronological data allow to locate major topographic and erosional changes during the Cenozoic. Topographic build-up occurred in the SSZ during oceanic subduction and onset of collision (35 Ma) and shifted to the UDMA during continental collision (20 Ma), while progressing towards the external parts of the belt during the Mio-Pliocene (5-10 Ma). Most importantly, we conclude that the uplift of the Iranian plateau was a constant, steady process over the last 20 Ma, at least as a first approximation, as inferred from the combination of constant exhumation in the UDMA and sedimentary records of the central Iranian basin.
3D velocity imaging of Hikurangi subduction beneath the Wellington region, New Zealand
NASA Astrophysics Data System (ADS)
Wech, A.; Henrys, S. A.; Sutherland, R.; Seward, A. M.; Stern, T. A.; Sato, H.; Okaya, D. A.; Bassett, D.
2011-12-01
We present first results from the Seismic Array HiKurangi Experiment (SAHKE). This joint project involving institutions from New Zealand, Japan and the USA aims to investigate the subduction zone fault characteristics beneath the southernmost part of New Zealand's North Island. Situated above where the Pacific Plate is subducting beneath the Australian plate at a rate of ~42 mm/yr, the Wellington region provides a unique opportunity to investigate the frictional properties, geometry, and seismic potential of a shallow, locked megathrust fault. Here the coupled plate interface is 20-30 km deep beneath land and can be sampled with onshore-offshore data from 3 sides. An added interest to this project is that the elevated, oceanic, Hikurangi plateau has entered the subduction zone, east of Wellington, but it is still unclear how far the plateau has advanced westward into the subduction zone. SAHKE combines active and passive source data comprising 4 distinct data sets. 1) A dense temporary array of 50 seismometers with ~7 km spacing augmented 25 regional network instruments to record 49 local and 45 teleseismic earthquakes over a four month period. 2) These stations also recorded 69,000 offshore airgun shots from 17 lines crisscrossing two sides of the array. 3) An additional coast-to-coast transect of 50 stations cutting through the temporary array recorded ~2000 offshore shots on either side. 4) 1000 stations with 100m spacing along that same transect separately recorded 12 in-line, 500 kg onshore dynamite explosions. First inspection of the recent onshore shot gathers show excellent signal to noise and a band of three strong reflectors between 20 and 38 km at the western end of the profile. We combine shot and earthquake recordings to simultaneously invert ~750,000 first arrivals for velocity structure and hypocenters in the densely sampled volume. First results from 3D, Vp tomography and relocated hypocenters agree with previous studies and suggest the later weak signals are reflections from the top of the Pacific plate. Our improved velocity model provides a high-resolution geometry of the subducting plate to support interpretation of other phases identified in SAHKE shot gathers.
NASA Astrophysics Data System (ADS)
Sierra-Hernández, M. Roxana; Gabrielli, Paolo; Beaudon, Emilie; Wegner, Anna; Thompson, Lonnie G.
2018-03-01
A continuous record of 29 trace elements (TEs) has been constructed between 1650 and 1991 CE (Common Era) from an ice core retrieved in 1992 from the Guliya ice cap, on the northwestern Tibetan Plateau. Enrichments of Pb, Cd, Zn and Sb were detected during the second half of the 19th century and the first half of the 20th century (∼1850-1950) while enrichments of Sn (1965-1991), Cd and Pb (1975-1991) were detected during the second half of the 20th century. The EFs increased significantly by 20% for Cd and Sb, and by 10% for Pb and Zn during 1850-1950 relative to the pre-1850s. Comparisons of the Guliya TEs data with other ice core-derived and production/consumption data suggest that Northern Hemisphere coal combustion (primarily in Western Europe) is the likely source of Pb, Cd, Zn, and Sb during the 1850-1950 period. Coal combustion in Europe declined as oil replaced coal as the primary energy source. The European shift from coal to oil may have contributed to the observed Sn enrichment in ∼1965 (60% EF increase in 1975-1991), although regional fossil fuel combustion (coal and leaded gasoline) from western China, Central Asia, and South Asia (India, Nepal), as well as Sn mining/smelting in Central Asia, may also be possible sources. The post-1975 Cd and Pb enrichments (40% and 20% EF increase respectively in 1975-1991) may reflect emissions from phosphate fertilizers, fossil fuel combustion, and/or non-ferrous metal production, from western China, Central Asia, and/or South Asia. Leaded gasoline is likely to have also contributed to the post-1975 Pb enrichment observed in this record. The results strongly suggest that the Guliya ice cap has recorded long-distance emissions from coal combustion since the 1850s with more recent contributions from regional agriculture, mining, and/or fossil fuel combustion. This new Guliya ice core record of TEs fills a geographical gap in the reconstruction of the pollution history of this region that extends well beyond modern instrumental records.
Decadal record of monsoon dynamics across the Himalayas using tree ring data
NASA Astrophysics Data System (ADS)
Brunello, Camilla Francesca; Andermann, Christoff; Helle, Gerhard; Comiti, Francesco; Tonon, Giustino; Ventura, Maurizio; Hovius, Niels
2017-04-01
The temporal variability of the Indian monsoon penetrating through the Himalayan range and into the southern Tibetan Plateau is poorly understood. Intermittent ingress of wet monsoon air masses into the otherwise arid and deserted landscapes beyond the orographic barrier can have consequences for erosion and flooding, as well as for water availability. Furthermore, the latitudinal rainfall distribution across the mountain range is crucial to better understand the hydrological cycles of rivers originating there. Because instrumental measurements are rare in the High Himalayas and on the Plateau, hydro-climatic sensitive proxies, such as oxygen stable isotope ratios in cellulose of tree-rings, are a valuable source of data covering decades to centuries. Here we present new findings on how often and how far the Indian monsoon penetrated into trans-Himalayan region over the last century. To cope with the lack of direct measurements, we strive to reconstruct a record of intense monsoon years based on tree-ring width chronologies along a latitudinal gradient. Thus, we need to answer whether water availability is the main driver of tree growth in the trans-Himalayan region and how dendro-isotopic data relate to seasonal precipitation inputs and sources. In order to study the monsoon dynamics, we selected four sites along the Kali Gandaki River valley in the central Himalayas (Nepal). This valley connects the very wet, monsoon dominated south Himalayan front with the arid trans-Himalayan region and the southern Tibetan Plateau. Our study area covers the sensitive northern end of the precipitation gradient, located in the upper part of the catchment. Water availability, which drastically varies at each site, was explored by using the climate signal- and isotope-transfer within arboreal systems composed of Juniperus sp., Cupressus sp. and Pinus sp. Results from continuous dendrometer measurements for the entire growing season (Mar-Oct) allowed us to assess the link between tree growth and precipitation, confirming the sensitivity of the trees to water availability. A set of cores from at least 20 individual trees was collected at each site. Dating revealed records with lengths from 80 to 500 years. Tree-ring width measurements were detrended to minimize the ecological influence on growth, and analyzed against local climate parameters such as temperature and precipitation. The site chronologies were compared to highlight the propagation of the monsoonal events along the latitudinal transect. Additionally, 80-year tree-ring oxygen isotope records from the lowest site (Lete, 2500 m a.s.l.) of the transect were compared with precipitation patterns derived from historical rain gauge and satellite data. This study provides first insights into the relationship among tree-ring width, cellulose isotopes and monsoon signature, shedding light on decadal variations of precipitation in the high-elevated arid area of the High Himalayas.
NASA Astrophysics Data System (ADS)
Li, B.; Tang, S.
2016-12-01
Convective activities in the Tibetan Plateau have obvious seasonal and sub-seasonal change, as well as regional characteristics. Although a variety of precipitation datasets can commonly reveal the southeast-northwest decreasing summer rainfall in the Tibetan Plateau, the amount of rainfall, the rainfall frequency, and the number of precipitation days among multiple precipitation datasets have great diversions. So we try to understand the convection characteristics of Tibetan Plateau from the view of brightness temperature of black body (hereafter TBB) of FY-2. In May, the mainly convection belt is along the eastern part of the plateau due to the westerly belt. In June, as the eruption of the summer monsoon and the strengthening of the southwesterly, the strongest convection occurs on the southeast side of the Tibetan Plateau. In late summer, with the strengthening of the East Asian summer monsoon, the strong southwest wind bring abundant moisture to the central plateau, thus a convective activity belt is formed over the Tibetan Plateau, within which there are two convection centers, and the strength of the central southern center is stronger than that of the southeastern one. In the west part of the plateau, convective activities come alive and gradually move northward after about 40th pentad. In the central part of the plateau, the live time of convections is 2 pentads earlier than that of the western part, and the convections have experienced three times of northward process in later time. In the eastern part of the plateau, convections is relatively active throughout the summer, and the northward stretching time is slightly later than that in the central part of the plateau. Two high intra-seasonal variability centers are located in the middle branch of the Brahmaputra and the southeastern part of the plateau. Summer convective activities are very uneven in these regions and prone to occur drought and flood disasters.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-11
... Resources, have written a Draft Springfield Plateau Regional Restoration Plan and Environmental Assessment... Plateau ecoregion, and an environmental assessment, as required pursuant to the National Environmental... Springfield Plateau Regional Restoration Plan and Environmental Assessment will be finalized prior to...
Shield volcanism and lithospheric structure beneath the Tharsis plateau, Mars
NASA Technical Reports Server (NTRS)
Blasius, K. R.; Cutts, J. A.
1976-01-01
The heights of four great shield volcanoes, when interpreted as reflecting the local hydrostatic head on a common source of upwelling magma, provide significant constraints on models of lithospheric structure beneath the Tharsis plateau. If Bouguer gravity anomalies are modeled in terms of a variable thickness crust, and a two-component (crust/mantle) earth-like structure is assumed for the Martian lithosphere, the derived model lithosphere beneath the Tharsis plateau has the following properties: (1) the upper low-density 'crustal' component is thickened beneath the Tharsis plateau; (2) the lower high-density 'mantle' component is thinned beneath the Tharsis plateau; and (3) there is a net gradient on the base of the Martian lithosphere directed downward away from beneath the summit of the Tharsis plateau. A long history of magmatic intrusion is hypothesized to have been the cause of the updoming of the Tharsis plateau and the maintenance of the plateau in a state of only partial compensation.
Douglas, M R; Davis, M A; Amarello, M; Smith, J J; Schuett, G W; Herrmann, H-W; Holycross, A T; Douglas, M E
2016-04-01
Ecosystems transition quickly in the Anthropocene, whereas biodiversity adapts more slowly. Here we simulated a shifting woodland ecosystem on the Colorado Plateau of western North America by using as its proxy over space and time the fundamental niche of the Arizona black rattlesnake (Crotalus cerberus). We found an expansive (= end-of-Pleistocene) range that contracted sharply (= present), but is blocked topographically by Grand Canyon/Colorado River as it shifts predictably northwestward under moderate climate change (= 2080). Vulnerability to contemporary wildfire was quantified from available records, with forested area reduced more than 27% over 13 years. Both 'ecosystem metrics' underscore how climate and wildfire are rapidly converting the Plateau ecosystem into novel habitat. To gauge potential effects on C. cerberus, we derived a series of relevant 'conservation metrics' (i.e. genetic variability, dispersal capacity, effective population size) by sequencing 118 individuals across 846 bp of mitochondrial (mt)DNA-ATPase8/6. We identified five significantly different clades (net sequence divergence = 2.2%) isolated by drainage/topography, with low dispersal (F ST = 0.82) and small sizes (2N ef = 5.2). Our compiled metrics (i.e. small-populations, topographic-isolation, low-dispersal versus conserved-niche, vulnerable-ecosystem, dispersal barriers) underscore the susceptibility of this woodland specialist to a climate and wildfire tandem. We offer adaptive management scenarios that may counterbalance these metrics and avoid the extirpation of this and other highly specialized, relictual woodland clades.
Poyarkov, Nikolay A; Duong, Tang Van; Orlov, Nikolai L; Gogoleva, Svetlana S; Vassilieva, Anna B; Nguyen, Luan Thanh; Nguyen, Vu Dang Hoang; Nguyen, Sang Ngoc; Che, Jing; Mahony, Stephen
2017-01-01
Asian Mountain Toads ( Ophryophryne ) are a poorly known genus of mostly small-sized anurans from southeastern China and Indochina. To shed light on the systematics within this group, the most comprehensive mitochondrial DNA phylogeny for the genus to date is presented, and the taxonomy and biogeography of this group is discussed. Complimented with extensive morphological data (including associated statistical analyses), molecular data indicates that the Langbian Plateau, in the southern Annamite Mountains, Vietnam, is one of the diversity centres of this genus where three often sympatric species of Ophryophryne are found, O. gerti , O. synoria and an undescribed species. To help resolve outstanding taxonomic confusion evident in literature (reviewed herein), an expanded redescription of O. gerti is provided based on the examination of type material, and the distributions of both O. gerti and O. synoria are considerably revised based on new locality records. We provide the first descriptions of male mating calls for all three species, permitting a detailed bioacoustics comparison of the species. We describe the new species from highlands of the northern and eastern Langbian Plateau, and distinguish it from its congeners by a combination of morphological, molecular and acoustic characters. The new species represents one of the smallest known members of the genus Ophryophryne . At present, the new species is known from montane evergreen forest between 700-2200 m a.s.l. We suggest the species should be considered Data Deficient following IUCN's Red List categories.
NASA Astrophysics Data System (ADS)
Fu, Yuanyuan V.; Gao, Yuan; Li, Aibing; Li, Lun; Chen, Anguo
2017-06-01
Lithospheric shear wave velocity beneath the southeastern margin of the Tibetan Plateau is obtained from Rayleigh wave tomography using earthquake data recorded by the temporary ChinArray and permanent China Digital Seismic Array. Fundamental mode Rayleigh wave phase velocities at periods of 20-100 s are determined and used to construct the 3-D shear wave velocity model. Low-velocity anomalies appear along or close to the major faults in the middle crust and become a broad zone in the lower crust, suggesting block extrusion in the shallow crust and diffuse deformation in the lower crust, both of which play important roles in accommodating the collision between the Indian and Eurasian plates. A vertical low-velocity column beneath the Tengchong Volcano is observed, which could be caused by upwelling of warm mantle due to the lithosphere extension in the Thailand rift basin to the south or by fluid-induced partial melting due to the subduction of the Burma slab. The western Yangtze Craton is characterized by low velocity in the crust and uppermost mantle above the fast mantle lithosphere, indicating possible thermal erosion at the western craton edge resulted from the extrusion of the Tibetan Plateau. A low-velocity zone is imaged at the depths of 70-150 km beneath the eastern part of the Yangtze Craton, which could be caused by small-scale mantle convection associated with the subduction of the Burma microplate and/or the opening of the South China Sea.
Old-field plant succession on the Pajarito Plateau
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foxx, T.; Mullen, M.; Salisbury, M.
Eight fallow historic fields of the ponderosa pine and pinon-juniper cover types were surveyed to determine species composition and distribution. The purpose of the study was to understand plant succession on old fields as related to mechanically manipulated sites such as material disposal areas (MDAs). Additionally, the authors wanted a listing of species on disturbed lands of the Pajarito Plateau to aide in the reclamation planning of MDAs using native species. They also wanted to determine if any species could be used as an indicator of disturbance. The eight historic fields were all within Los Alamos County, New Mexico, andmore » had been abandoned in 1943. Two sites were within the boundaries of Los Alamos National Laboratory and were studied both in 1982 and 1993. The study provides a description of each of the field sites, historic information about the homesteads from patent applications, a photographic record of some of the sites, and a listing of species found within each field. The study showed that there were 78 different plant species found on disturbed sites. Of these 78 species, 23 were found to be dominant on one or more of the MDAs or old fields. Although, the disturbance history of each site is imperfectly known, the study does provide an indication of successional processes within disturbed sites of the Pajarito Plateau. Additionally, it provides a listing of species that will invade disturbed sites, species that may be used in site reclamation.« less
A deceleration search for magnetar pulsations in the X-ray plateaus of short GRBs
NASA Astrophysics Data System (ADS)
Rowlinson, A.; Patruno, A.; O'Brien, P. T.
2017-11-01
A newly formed magnetar has been proposed as the central engine of short GRBs to explain ongoing energy injection giving observed plateau phases in the X-ray light curves. These rapidly spinning magnetars may be capable of emitting pulsed emission comparable to known pulsars and magnetars. In this paper we show that, if present, a periodic signal would be detectable during the plateau phases observed using the Swift/X-Ray Telescope recording data in Window Timing mode. We conduct a targeted deceleration search for a periodic signal from a newly formed magnetar in 2 Swift short GRBs and rule out any periodic signals in the frequency band 10-285 Hz to ≈15-30 per cent rms. These results demonstrate that we would be able to detect pulsations from the magnetar central engine of short GRBs if they contribute to 15-30 per cent of the total emission. We consider these constraints in the context of the potential emission mechanisms. The non-detection is consistent with the emission being reprocessed in the surrounding environment or with the rotation axis being highly aligned with the observing angle. As the emission may be reprocessed, the expected periodic emission may only constitute a few per cent of the total emission and be undetectable in our observations. Applying this strategy to future observations of the plateau phases with more sensitive X-ray telescopes may lead to the detection of the periodic signal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhusan Singh, Braj; Chaudhary, Sujeet
2012-09-15
The effect of variation in the thickness of ion assisted ion beam sputtered MgO spacer layer deposited at oxygen ion assisted energy of 50 eV on the extent of magnetic coupling of NiFe and CoFe layers in Si/NiFe(10 nm)/Mg(1 nm)/MgO(2,4,6 nm)/CoFe(10 nm) sandwich structure is investigated. At MgO spacer layer thickness of 4 nm, the separate reversal of magnetizations of the two ferromagnetic layers is observed in the hystresis loop recorded along easy direction. This results in a 3.5 Oe wide plateau like region during magnetization reversal, which became 4.5 Oe at 6 nm thin MgO. At 2 nm thinmore » MgO, the absence of plateau during magnetization reversal region revealed ferromagnetic coupling between the two ferromagnetic layers, which is understood to arise due to the growth of very thin and low density (1.22 gm/cc) MgO spacer layer, indicating the presence of pinholes as revealed by x-ray reflectometry. After vaccum annealing (200 Degree-Sign C/1 h), the plateau region for 4 and 6 nm thin MgO case decreased to 1.5 Oe and 2.0 Oe, respectively, due to enhanced interface roughness/mixing. In addition, an enhancement of the in-plane magnetic anisotropy is also observed.« less
Douglas, M. R.; Davis, M. A.; Amarello, M.; Smith, J. J.; Schuett, G. W.; Herrmann, H.-W.; Holycross, A. T.; Douglas, M. E.
2016-01-01
Ecosystems transition quickly in the Anthropocene, whereas biodiversity adapts more slowly. Here we simulated a shifting woodland ecosystem on the Colorado Plateau of western North America by using as its proxy over space and time the fundamental niche of the Arizona black rattlesnake (Crotalus cerberus). We found an expansive (= end-of-Pleistocene) range that contracted sharply (= present), but is blocked topographically by Grand Canyon/Colorado River as it shifts predictably northwestward under moderate climate change (= 2080). Vulnerability to contemporary wildfire was quantified from available records, with forested area reduced more than 27% over 13 years. Both ‘ecosystem metrics' underscore how climate and wildfire are rapidly converting the Plateau ecosystem into novel habitat. To gauge potential effects on C. cerberus, we derived a series of relevant ‘conservation metrics' (i.e. genetic variability, dispersal capacity, effective population size) by sequencing 118 individuals across 846 bp of mitochondrial (mt)DNA-ATPase8/6. We identified five significantly different clades (net sequence divergence = 2.2%) isolated by drainage/topography, with low dispersal (FST = 0.82) and small sizes (2Nef = 5.2). Our compiled metrics (i.e. small-populations, topographic-isolation, low-dispersal versus conserved-niche, vulnerable-ecosystem, dispersal barriers) underscore the susceptibility of this woodland specialist to a climate and wildfire tandem. We offer adaptive management scenarios that may counterbalance these metrics and avoid the extirpation of this and other highly specialized, relictual woodland clades. PMID:27152218
Ma, Junying; Wang, Hu; Lin, Gonghua; Craig, Philip S; Ito, Akira; Cai, Zhenyuan; Zhang, Tongzuo; Han, Xiumin; Ma, Xiao; Zhang, Jingxiao; Liu, Yufang; Zhao, Yanmei; Wang, Yongshun
2012-07-01
The Qinghai-Tibetan Plateau (QTP, in western China), which is the largest and highest plateau on Earth, is a highly epidemic region for Echinococcus spp. We collected 70 Echinococcus samples from humans, dogs, sheep, yaks, plateau pikas, and voles in eastern and southern Qinghai and genotyped them using the mitochondrial DNA marker cytochrome oxidase subunit I gene and maximum parsimony and Bayesian reconstruction methods. Based on the 792-bp sequence matrix, we recorded 124 variable sites, of which, 115 were parsimony-informative. Thirty-four haplotypes (H1-H34) were detected, of which H1-H15, H16-H17, and H18-H34 belonged to Echinococcus shiquicus, Echinococcus multilocularis, and Echinococcus granulosus, respectively. Within 26 human isolates, three were identified as E. multilocularis and 23 were E. granulosus. We also detected a dual infection case in a dog with E. multilocularis and E. granulosus. The intraspecific haplotype (Hd ± SD) and nucleotide (Nd ± SD) diversity of E. shiquicus (0.947 ± 0.021; 0.00441 ± 0.00062) was higher than that for E. granulosus (0.896 ± 0.038; 0.00221 ± 0.00031) and E. multilocularis (0.286 ± 0.196; 0.00036 ± 0.00025). Moreover, the haplotype network of E. shiquicus showed a radial feature rather than a divergent feature in a previous study, indicating this species in the QTP has also evolved with bottleneck effects.
Prescott, Hallie C; Brower, Roy G; Cooke, Colin R; Phillips, Gary; O'Brien, James M
2013-03-01
Lung-protective ventilation with lower tidal volume and lower plateau pressure improves mortality in patients with acute lung injury and acute respiratory distress syndrome. We sought to determine the incidence of elevated plateau pressure in acute lung injury /acute respiratory distress syndrome patients receiving lower tidal volume ventilation and to determine the factors that predict elevated plateau pressure in these patients. We used data from 1398 participants in Acute Respiratory Distress Syndrome Network trials, who received lower tidal volume ventilation (≤ 6.5mL/kg predicted body weight). We considered patients with a plateau pressure greater than 30cm H2O and/or a tidal volume less than 5.5mL/kg predicted body weight on study day 1 to have "elevated plateau pressure." We used logistic regression to identify baseline clinical variables associated with elevated plateau pressure and to develop a model to predict elevated plateau pressure using a subset of 1,188 patients. We validated the model in the 210 patients not used for model development. Medical centers participating in Acute Respiratory Distress Syndrome Network clinical trials. None. Of the 1,398 patients in our study, 288 (20.6%) had elevated plateau pressure on day 1. Severity of illness indices and demographic factors (younger age, greater body mass index, and non-white race) were independently associated with elevated plateau pressure. The multivariable logistic regression model for predicting elevated plateau pressure had an area under the receiving operator characteristic curve of 0.71 for both the developmental and the validation subsets. acute lung injury patients receiving lower tidal volume ventilation often have a plateau pressure that exceeds Acute Respiratory Distress Syndrome Network goals. Race, body mass index, and severity of lung injury are each independently associated with elevated plateau pressure. Selecting a smaller initial tidal volume for non-white patients and patients with higher severity of illness may decrease the incidence of elevated plateau pressure. Prospective studies are needed to evaluate this approach.
Reconstructing spatial and temporal patterns of paleoglaciation across Central Asia
NASA Astrophysics Data System (ADS)
Stroeven, Arjen P.
2014-05-01
Understanding the behaviour of mountain glaciers and ice caps, the evolution of mountain landscapes, and testing global climate models all require well-constrained information on past spatial and temporal patterns of glacier change. Particularly important are transitional regions that have high spatial and temporal variation in glacier activity and that can provide a sensitive record of past climate change. Central Asia is an extreme continental location with glaciers that have responded sensitively to variations in major regional climate systems. As an international team, we are reconstructing glacial histories of several areas of the Tibetan Plateau as well as along the Tian Shan, Altai and Kunlun Mountains. Building on previous work, we are using remote sensing-based geomorphological mapping augmented with field observations to map out glacial landforms and the maximum distributions of erratics. We then use cosmogenic nuclide Be-10 and Al-26, optically stimulated luminescence, and electron spin resonance dating of moraines and other landforms to compare dating techniques and to constrain the ages of defined extents of paleo-glaciers and ice caps. Comparing consistently dated glacial histories across central Asia provides an opportunity to examine shifts in the dominance patterns of climate systems over time in the region. Results to date show significant variations in the timing and extent of glaciation, including areas in the southeast Tibetan Plateau and Tian Shan with extensive valley and small polythermal ice cap glaciation during the global last glacial maximum in contrast to areas in central and northeast Tibetan Plateau that had very limited valley glacier expansion then. Initial numerical modelling attempting to simulate mapped and dated paleoglacial extents indicates that relatively limited cooling is sufficient to produce observed past expansions of glaciers across the Tibetan Plateau, and predicts complex basal thermal regimes in some locations that match patterns of past glacial erosion inferred from landform patterns and ages. Future modelling will examine glacier behaviour along major mountain ranges across central Asia.
Li, Qiang; Wang, Xiaoming; Xie, Guangpu; Yin, An
2013-01-01
A shortage of Cenozoic vertebrate fossils in the Tibetan Plateau has been an obstacle in our understanding of biological evolution in response to changes in tectonism, topography, and environment. This is especially true for Paleogene records, so far known by only two sites along the northern rim of the Plateau. We report a Hongyazi Basin in northern Tibetan Plateau that produces at least three mammalian faunas that span Oligocene through late Miocene. Located at the foothills of the Danghe Nanshan and presently connected to the northern margin of the Suganhu Basin through the Greater Haltang River, the intermountain basin is controlled by the tectonics of the Danghe Nanshan to the north and Chahan'ebotu Mountain to the south, making the basin sediments well suited for inferring the evolutionary history of these two mountain ranges. At the bottom of the local section, the Oligocene Haltang Fauna is best compared to the early Oligocene Desmatolagus-Karakoromys decessus assemblage in the Dingdanggou Fauna in Tabenbuluk Basin. The Middle Miocene Ebotu Fauna from the middle Hongyazi section shares many taxa with the late Middle Miocene Tunggur mammal assemblage in Inner Mongolia, such as Heterosminthus orientalis, Megacricetodon sinensis, Democricetodon lindsayi, and Alloptox gobiensis. Toward the top of the section, the Hongyazi Fauna includes late Miocene elements typical of Hipparion faunas of North China. All three faunas are of typical North China-Central Asian characteristics, suggesting a lack of geographic barriers for faunal differentiation through the late Miocene. Sedimentary packages producing these faunas are arrayed from north to south in progressively younger strata, consistent with a compressive regime to accommodate shortening between Danghe Nanshan and Chahan'ebotu Mountain by thrust faults and folds. With additional constraints from vertebrate fossils along the northern flanks of the Danghe Nanshan, an eastward propagation of the Danghe Nanshan is postulated.
A controlled evaluation of oral screen effects on intra-oral pressure curve characteristics.
Knösel, Michael; Jung, Klaus; Kinzinger, Gero; Bauss, Oskar; Engelke, Wilfried
2010-10-01
The purpose of this study was to quantify the impact of oral screen (OS) application on intra-oral pressure characteristics in three malocclusion groups. Fifty-six randomly recruited participants (26 males and 30 females) who met the inclusion criteria of either an Angle Class I occlusal relationships or Angle Class II1 or II2 malocclusions, were assigned by dentition to group I (n = 31), group II1 (n = 12), or group II2 (n = 13). Two 3 minute periods of intra-oral pressure monitoring were conducted on each participant, using two different oral end fittings connected to a piezo-resistive relative pressure sensor: (1) a flexible OS and (2) a small-dimensioned air-permeable end cap (EC), which was placed laterally in the premolar region, thus recording intra-oral pressure independent of the influence of the OS. Pressure curve characteristics for both periods and between the malocclusion groups were evaluated with reference to the frequency of swallowing peaks, duration, and altitude of negative pressure plateau phases and the area under the pressure curve. Statistical analysis was undertaken using analysis of variance (ANOVA), the Wilcoxon Mann-Whitney test, and spearman correlation coefficient. A median number of two peaks (median height -20.9 mbar) and three plateau phases (median height of -2.3 mbar) may be regarded as normative for normal occlusion subjects during a 3 minute period, at rest. OS application raised the median average duration and height of intra-oral negative pressure plateau phases in the II1 subjects, exceeding those of group I, but less than the plateau duration in group II2. Median peak heights were distinctively lower in groups I and II1 during OS application. It is concluded that additional training for extension of intra-oral pressure phases may be a promising approach to pre-orthodontic Class II division 1 treatment.
Li, Qiang; Wang, Xiaoming; Xie, Guangpu; Yin, An
2013-01-01
A shortage of Cenozoic vertebrate fossils in the Tibetan Plateau has been an obstacle in our understanding of biological evolution in response to changes in tectonism, topography, and environment. This is especially true for Paleogene records, so far known by only two sites along the northern rim of the Plateau. We report a Hongyazi Basin in northern Tibetan Plateau that produces at least three mammalian faunas that span Oligocene through late Miocene. Located at the foothills of the Danghe Nanshan and presently connected to the northern margin of the Suganhu Basin through the Greater Haltang River, the intermountain basin is controlled by the tectonics of the Danghe Nanshan to the north and Chahan’ebotu Mountain to the south, making the basin sediments well suited for inferring the evolutionary history of these two mountain ranges. At the bottom of the local section, the Oligocene Haltang Fauna is best compared to the early Oligocene Desmatolagus-Karakoromys decessus assemblage in the Dingdanggou Fauna in Tabenbuluk Basin. The Middle Miocene Ebotu Fauna from the middle Hongyazi section shares many taxa with the late Middle Miocene Tunggur mammal assemblage in Inner Mongolia, such as Heterosminthus orientalis, Megacricetodon sinensis, Democricetodon lindsayi, and Alloptox gobiensis. Toward the top of the section, the Hongyazi Fauna includes late Miocene elements typical of Hipparion faunas of North China. All three faunas are of typical North China-Central Asian characteristics, suggesting a lack of geographic barriers for faunal differentiation through the late Miocene. Sedimentary packages producing these faunas are arrayed from north to south in progressively younger strata, consistent with a compressive regime to accommodate shortening between Danghe Nanshan and Chahan’ebotu Mountain by thrust faults and folds. With additional constraints from vertebrate fossils along the northern flanks of the Danghe Nanshan, an eastward propagation of the Danghe Nanshan is postulated. PMID:24376585
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dallmeyer, R.D.
1989-03-01
Hornblende concentrates prepared from cuttings from two deep test wells penetrating the complex display internally concordant {sup 40}Ar/{sup 39}Ar incremental-release spectra defining plateau ages of 510.8 {plus minus} 1.1 Ma and 513.1 {plus minus} 1.8 Ma, which are interpreted to date post-metamorphic cooling through temperatures required for intracrystalline argon retention. The Kasila Group constitutes the western segment of the Rokelide orogen in Sierra Leone. Four hornblende concentrations prepared for amphibolite within the Kasila Group yield {sup 40}Ar/{sup 39}Ar plateau ages of 505.0 {plus minus} 5.2, 508.2 {plus minus} 2.1, 510.5 {plus minus} 2.6, and 546.1 {plus minus} 6.8 Ma. Theymore » are interpreted to date post-metamorphic cooling through appropriate argon closure temperature following a ca. 550-560 Ma, Pan-African II phase of tectonothermal activity. A biotite concentrate from paragneiss within the Kasila Group displays an internally concordant {sup 40}/Ar{sup 39}Ar release spectrum defining a plateau age of 524.7 {plus minus} 1.3 Ma, which likely reflects slight contamination with extraneous (excess) argon. Muscovite from the Marampa Group yields a {sup 40}Ar/{sup 39}Ar plateau age of 561.1 {plus minus} 2.3 Ma, which is interpreted to date cooling through appropriate argon closure temperatures. Although these temperatures are generally considered to be lower than those for hornblenede, the muscovite records an older cooling age, suggesting that the Marampa Group experienced slightly earlier post-metamorphic uplift and cooling relative to the Kasila Group. Lithologic comparison combined with similarities in post-metamorphic thermal evolution suggest that the St. Lucie Metamorphic Complex originated within the Rockelide orogen. This and other lithotectonic elements of the Suwannee terrane appear to represent a fragment of Gondwana which accreted to Laurentia during late Paleozoic amalgamation of Pangea.« less
NASA Astrophysics Data System (ADS)
McCarthy, J. A.; Schoenbohm, L. M.; Bierman, P. R.; Rood, D. H.
2013-12-01
The eastern margin of the Puna Plateau has been the focus of many studies seeking to link climatically-moderated surface processes and tectonism through dynamic feedbacks. However, evaluating any theories regarding climatic-tectonic feedbacks requires the determination of tectonic, climatic, and geomorphic chronologies across a wide region, from plateau to wedge-top to foreland. In this study, we contribute to that effort by examining Quaternary landscape evolution of a single intermontane basin of spatially uniform climate, adjacent to the plateau margin. The semi-arid Pucará Valley contains eight abandoned and incised geomorphic surfaces, most of which are deformed by active structures. These geomorphic surfaces - thin alluvial fans and strath terraces - dominate the landscape and record multiple pulses of incision in the late Quaternary. We find no evidence for significant depositional intervals and valley incision continues currently. Substantial accumulations of pedogenic carbonate and pedogenic gypsum within abandoned surfaces indicate that arid or semi-arid conditions are long lived in this valley. Conversely, relict periglacial morphology in adjacent ranges supports cooler temperatures in the past. River incision is enhanced across active structures, but preliminary observations suggest that the magnitude of deformation cannot fully explain the magnitude of incision. As a result, we argue that extrabasinal base-level lowering is the primary driver of incision in the Pucará Valley, but Quaternary deformation is significant enough to spatially influence erosion. Cooler climatic intervals may influence the sedimentology of alluvial and fluvial deposits, but we find no evidence for significant climatic changes that could change rates or styles of landscape evolution over this time frame. Pending cosmogenic nuclide analysis of fan deposits and river sediments will permit the derivation of fault slip rates, surface ages, modern and paleo-erosion rates, and sediment transport histories. These results will further refine our understanding of tectonic and climatic forcing of surface processes in the Quaternary.
NASA Astrophysics Data System (ADS)
Deng, Xiao-Dong; Li, Jian-Wei; Vasconcelos, Paulo M.; Cohen, Benjamin E.; Kusky, Timothy M.
2014-08-01
40Ar/39Ar laser incremental heating analyses of supergene K-Mn oxides from weathering profiles at the Baye Mn deposit, southern Yunnan Plateau, SW China, were carried out to place constraints on the timing of weathering and derive insights into local paleoclimatic and landscape evolution. Weathering profiles in the Baye Mn mine are dominated by 20-30 m thick saprolites, which are locally covered by unconsolidated alluvial deposits. We analyzed 70 grains from 35 hand samples collected from four sites located at distinct elevations. In most cases, different grains from the same hand sample and different samples from the same site have reproducible 40Ar/39Ar plateau ages. The plateau ages of individual grains are also consistent with the respective isochron, integrated, and ideogram ages. This age consistency attests to the reliability of the geochronological results as numerical constraints on the formation and evolution of these weathering profiles. Sixty-four grains from 32 hand samples collected from weathering profiles at four sites (A to D) yield well-defined plateau or pseudoplateau ages ranging from 2.98 ± 0.07 to <0.16 Ma (2σ). The age results show that Mn oxides become progressively younger towards lower elevations: samples collected from the highest elevation site (∼1855 m a.s.l.) have the oldest ages at 2.98 ± 0.07 to 2.83 ± 0.13 Ma; samples from intermediate elevations (1821 to 1815 m a.s.l.) yield ages ranging from 2.91 ± 0.10 to 2.08 ± 0.11 Ma; and those from the lowest sites (1768 to 1753 m a.s.l.) are younger than 1.25 ± 0.08 Ma. The age versus elevation relationship indicates fast downward propagation of weathering front since the late Pliocene, and permits estimating the weathering rates at 3.3 ± 3.8, 6.6 ± 1.2, and 11.1 ± 1.9 m Myr-1 during the time periods of 2.98-2.83, 2.91-2.08, and 1.25 to <0.16 Ma, respectively. The average river incision rates estimated from the surface exposed ages range from 235 ± 10 to 416 ± 19 m Myr-1 during the past 3 million years. The incision rate calculated from minimum exposed ages at sites B-D is 33 ± 2 m Myr-1 for the time period of 2.91-1.25 Ma, which is consistent with the slow incision of streams on the ridges over the Yunnan Plateau since the early Pleistocene. Three Mn oxide pebbles contained in the alluvial deposits overlying the saprolite-dominated weathering profiles at the two highest sites provided additional information on the timing of weathering. Four grains from two pebbles yield plateau ages of 6.32 ± 0.19 to 5.27 ± 0.10 Ma, whereas the other two grains from the third pebble indicate the minimum formation ages of 8.2 ± 0.4 and 9.3 ± 0.3 Ma. These ages confirm the existence of older weathering profiles, now dismantled, in the region. Manganese oxide 40Ar/39Ar ages of the Baye deposit, when combined with results from other localities, indicate that lateritic weathering and supergene Mn enrichment and, by inference, warm and humid climates conducive to intense weathering have prevailed over the Plateau since the middle to late Miocene. The climatic conditions inferred from the weathering geochronology are consistent with multiple independent marine and terrestrial sedimentary and paleontological records, confirming that supergene Mn oxides can be used as a useful proxy for past climate. Age clusters of Mn oxides at 2.9-2.4, 1.2-0.8, and 0.6-0.4 Ma are broadly coincident with and thus likely reflect intensification events of the Indian Summer Monsoon that brings moisture and abundant precipitation to the Yunnan Plateau. These clusters also coincide with the periods of significant surface uplift in the Yunnan Plateau, demonstrating a causal link between topographic evolution, plateau uplift, and intensification of the monsoonal climate.
40 CFR 81.162 - Northeast Plateau Intrastate Air Quality Control Region.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Northeast Plateau Intrastate Air... Air Quality Control Regions § 81.162 Northeast Plateau Intrastate Air Quality Control Region. The Northeast Plateau Intrastate Air Quality Control Region (California) consists of the territorial area...
The diverse crustal structure and magmatic evolution of the Manihiki Plateau, central Pacific
NASA Astrophysics Data System (ADS)
Hochmuth, K.; Gohl, K.; Uenzelmann-Neben, G.; Werner, R.
2014-07-01
The Manihiki Plateau is a Large Igneous Province (LIP) in the central Pacific. It was emplaced as part of the "Super-LIP" Ontong Java Nui and experienced fragmentation into three sub-plateaus, possibly during the break-up of Ontong Java Nui. The Manihiki Plateau is presumably the centerpiece of this "Super-LIP" and its investigation can therefore decipher the break-up mechanisms as well as the evolution of the plateau after its initial emplacement. By analyzing two seismic refraction/wide-angle reflection profiles crossing the two largest sub-plateaus of the Manihiki Plateau, the High Plateau and the Western Plateaus, we give new insights into their crustal structure and magmatic evolution. The High Plateau shows a crustal structure of 20 km thickness and a seismic P wave velocity distribution, which is comparable to other LIPs. The High Plateau experienced a strong secondary volcanism, which can be seen in relicts of seamount chain volcanism. The Western Plateaus on the other hand show no extensive secondary volcanism and are mainly structured by fault systems and sedimentary basins. A constant decrease in Moho depth (9-17 km) is a further indicator of crustal stretching on the Western Plateaus. Those findings lead to the conclusion, that the two sub-plateaus of the Manihiki Plateau experienced a different magmatic and tectonic history. Whereas the High Plateau experienced a secondary volcanism, the Western Plateaus underwent crustal stretching during and after the break-up of Ontong Java Nui. This indicates, that the sub-plateaus of the Manihiki Plateau play an individual part in the break-up history of Ontong Java Nui.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-21
...-FF03E00000] Final Springfield Plateau Regional Restoration Plan and Environmental Assessment and Finding of... Springfield Plateau Regional Restoration Plan (Plan) and Environmental Assessment and Finding of No... Springfield Plateau Regional Restoration Plan and Environmental Assessment (77 FR 1717). The public comment...
NASA Astrophysics Data System (ADS)
Pacheco-Hoyos, Jaime G.; Aguirre-Díaz, Gerardo J.; Dávila-Harris, Pablo
2018-01-01
A lithofacies analysis of the Huichapan ignimbrite has been undertaken to evaluate its depositional history from large pyroclastic density currents. The Huichapan ignimbrite is a massive ignimbrite sheet with a maximum runout of at least 55 km and thickness variations between 6 and 80 m. The lower portion of the Huichapan ignimbrite consists of a large plateau [ 100 km3; 69 km3 as dense-rock equivalent (DRE)] of massive ignimbrites with welding variations from densely welded to partly welded, devitrification, and high-temperature vapor-phase alteration. The lower part grades laterally to moderately welded and non-devitrified ignimbrites. These variations are interpreted as the sedimentation of density-stratified pyroclastic density currents erupted as boiling-over pulses from the Huichapan-Donguinyó caldera complex at a continuous rate, supporting deposition by quasi-steady progressive aggradation of sustained and hot currents. To the north of the caldera, the lower portion of the ignimbrite consists of a small plateau (< 10 km3) in which the densely welded and devitrified lithofacies are absent. Our interpretation is that the pyroclastic density currents flowed late to the north of the caldera and formed a smaller ignimbrite plateau with respect to the western one. This northern ignimbrite plateau cooled faster than the western ignimbrite plateau. Deposition-induced topographic modifications suggest that topographic obstacles, such as remnants of older volcanoes, may have promoted the deviation of the density currents to the north. The upper portion of the ignimbrite is composed of extensive, massive, coarse clast-rich, non-devitrified, and non-welded ignimbrites with abundant fines-poor pipes. This upper part was deposited from largely sustained and rapidly aggrading high-concentration currents in a near end-member, fluid escape-dominated flow boundary zone. The absence of welding in the upper portion may record pyroclastic density currents cooling during the formation of a relatively high pyroclastic fountain at the vent. We have established a depositional model for the Huichapan ignimbrite that explains the differences between the western and northern plateaus. The Huichapan ignimbrite was formed during a large caldera-forming eruption with concentrated pyroclastic fountains. High mass-flow rate was maintained for long periods, promoting the mobility of the pyroclastic density currents.
NASA Astrophysics Data System (ADS)
Sierra Hernandez, R.; Gabrielli, P.; Beaudon, E.; Thompson, L. G.; Wegner, A.
2017-12-01
Anthropogenic emissions (e.g., greenhouse gases, trace elements (TE) including toxic metals) to the atmosphere have dramatically increased since the Industrial Revolution in the 19th century. High temperature processes such as fossil fuel combustion and pyrometallurgy generate fumes and fine particles (< 0.1µm - 10 µm) containing toxic metals (e.g., Cd, Zn, Pb) that if not captured by emission controls can be transported over long distances by air masses and subsequently deposited far from their emission sources. Atmospheric TE monitoring programs, along with emission inventories, have been conducted in recent decades. However, they lack pre-1900 information which is necessary to contextualize current atmospheric changes. Thus, it is necessary to use natural archives (e.g., ice cores, lake sediments) to reconstruct atmospheric pollution trends. Glaciers and ice sheets preserve atmospheric species that are deposited as snow accumulates over time, creating valuable records of past climatic/environmental conditions. Polar ice cores have been used to obtain TE records. However, only a few non-polar ice core records provide continuous information back to pre-industrial times. Thus, ice core records of TEs from mid- and low-latitudes are needed to assess the spatial and temporal extent and levels of pollution in the environment. Here we present records of 29 TEs spanning the period 1650-1991 CE from the Guliya ice cap in the western Kunlun Mountains, northwest Tibetan Plateau to assess their natural and anthropogenic sources. The Guliya TEs records show two distinct periods with only crustal contributions prior to the 1850s and non-crustal contributions (Pb, Cd, Sb, Zn, Sn) after the 1850s. Enrichments of Pb, Cd, Sb, and Zn in Guliya between 1850 and 1950 can be attributed primarily to coal combustion emissions from western countries (Europe) while regional emissions (fossil fuel combustion, mining/smelting, fertilizers) from Central Asia, and probably from Kashgar in western China, and South Asia (India, Nepal) could be the source of the TE enrichments (Cd, Pb, Sn) observed in Guliya after 1950. This information can be used by modelers to assess pollution transport at local, regional, and global scales and by policy makers to develop strategies and policies to reduce their emissions.
NASA Astrophysics Data System (ADS)
Zan, Jinbo; Fang, Xiaomin; Zhang, Weilin; Yan, Maodu; Zhang, Dawen
2018-04-01
The loess-red clay sequences in northern China provide high-resolution terrestrial records of Asian monsoon evolution and aridification of the Asian interior. To date, however, aeolian deposits of late Pliocene-early Pleistocene age (3.5-2.4 Ma) have only rarely been reported from the western Chinese Loess Plateau (CLP), which significantly hinders our understanding of the distribution of aeolian deposits and the palaeoenvironmental evolution of the region. Here, we present magnetostratigraphic, lithologic and magnetic susceptibility results for two recently-drilled boreholes from the north bank of Baxie River, central Linxia Basin, which are highly correlative with those of the loess-red clay deposits spanning the interval from 3.6 to 2.4 Ma in the eastern CLP. Our results provide the first direct evidence for the occurrence of late Pliocene-early Pleistocene aeolian deposits in the western CLP and provide new insights into the distribution of aeolian deposits in northern China. The spatial coherence of the magnetic susceptibility fluctuations further indicates that magnetic susceptibility is a powerful tool for stratigraphic correlation of late Pliocene aeolian deposits in the western CLP. In addition, our results demonstrate that erosional events may have occurred in the early or middle Pleistocene, and they may provide new insights into the reasons for the absence of loess-red clay deposits from 3.5 to 2.4 Ma in most parts of the western CLP.
NASA Astrophysics Data System (ADS)
Madanipour, Saeed; Ehlers, Todd A.; Yassaghi, Ali; Enkelmann, Eva
2017-08-01
The Talesh Mountains at the NW margin of the Iranian Plateau curve around the southwestern corner of the South Caspian Block and developed in response to the collision of the Arabian-Eurasian Plates. The timing, rates, and regional changes in late Cenozoic deformation of the Talesh Mountains are not fully understood. In this study, we integrate 23 new apatite and zircon bedrock U-Th/He ages and structurally restored geologic cross sections with previously published detrital apatite fission track data to reconstruct the deformation history of the Talesh Mountains. Our results reveal that slow rock exhumation initiated during the late Oligocene ( 27-23 Ma) and then accelerated in the middle Miocene ( 12 Ma). These events resulted in the present-day high-elevation and curved geometry of the mountains. The spatial and temporal distribution of cooling ages suggest that the Oligocene bending of the Talesh Mountains was earlier than in the eastern Alborz, Kopeh Dagh, and central Alborz Mountains that initiated during the late Cenozoic. Late Oligocene and middle Miocene deformation episodes recorded in the Talesh Mountains can be related to the collisional phases of the Arabian and Eurasian Plates. The lower rate of exhumation recorded in the Talesh Mountains occurred during the initial soft collision of the Arabian-Eurasian Plates in the late Oligocene. The accelerated exhumation that occurred during final collision since the middle Miocene resulted from collision of the harder continental margin.
NASA Astrophysics Data System (ADS)
Kerr, Andrew C.; Tarney, John
2005-04-01
It is widely accepted that the thickened oceanic crust of the Caribbean plate, its basaltic accreted margins, and accreted mafic terranes in northwestern South America represent the remnants of a single ca. 90 Ma oceanic plateau. We review geologic, geochemical, and paleomagnetic evidence that suggests that the Caribbean-Colombian oceanic plateau in fact represents the remnants of two different oceanic plateaus, both dated as ca. 90 Ma. The first of these plateaus, the Caribbean Plateau, formed ca. 90 Ma in the vicinity of the present-day Galapagos hotspot. Northeastward movement of the Farallon plate meant that this plateau collided with the proto Caribbean arc and northwestern South America <10 m.y. after the plateau's main phase of formation. Paleomagnetic evidence suggests that the second of these plateaus, the Gorgona Plateau, formed at 26° 30°S, possibly at the site of the present-day Sala y Gomez hotspot. Over the next ˜45 m.y., this plateau was carried progressively northeastward on the Farallon plate and collided in the middle Eocene with the proto Andean subduction zone in northwestern South America. The recognition of a second ca. 90 Ma Pacific oceanic plateau strengthens the link between plateau formation and global oceanic anoxic events.
Traveltimes and amplitudes from nuclear explosions; Nevada Test Site to Ordway, Colorado
Ryall, Alan; Stuart, David J.
1963-01-01
This paper treats the results of a study of seismic waves generated by eight nuclear explosions and recorded at 31 locations between the Nevada Test Site (NTS) and Ordway, Colorado. The line of recording stations crosses the eastern part of the Basin and Range Province, the Colorado Plateau, the southern Rocky Mountains, and extends into the Great Plains. In the eastern Basin and Range Province and the western margin of the Colorado Plateau (0 ≤ Δ ≤ 385 km ), the time-distance curves for Pg and Pn can be expressed, respectively, as T1 = 0.8 + Δ/6.0. T3 = 5.8 + Δ/7.6. A third phase, tentatively identified as P*, is represented by the equation T2 = 3.8 + Δ/6.5. Using the crustal structure and Pn velocity (7.9 km/ sec) found for the NTS region by other authors, these relations indicate that the thickness of the crust increases from about 25 km at NTS to about 42 km in the western part of the Colorado Plateau Province. East of this boundary the velocity of P in the upper mantle increases to 8.0 km/sec; depth to the Mohorovicic discontinuity is approximately constant over the range 435 ≤ Δ ≤ 645 km. Beyond 850 km, first arrivals indicate an apparent velocity of about 8.4 km/sec. Amplitudes of Pn attenuate according to the equation A = Ao Δ-1/2(Δ -d)-3/2 e-0.0022Δ over the distance range 150 ≤ Δ ≤ 850 km. This relation yields a value of Q, for Pn of about 520. The amplitudes of Pg attenuates extremely rapidly, and beyond about 130 km this phase cannot be identified with certainty. An extension of the Pg traveltime branch at large distances could be associated with waves reflected beyond the critical angle, from the base of the crust. This phase, called ?P after Mohorovicic, appears to attenuate as A = Ao e-0.076Δ Δ-1/2. The value of Q indicated by this equation is about 200.
NASA Astrophysics Data System (ADS)
Roecker, S. W.; Priestley, K. F.; Tatar, M.
2014-12-01
The Iranian Plateau forms a broad zone of deformation between the colliding Arabian and Eurasian plates. The convergence is accommodated in the Zagros Mountains of SW Iran, the Alborz Mountains of northern Iran, and the Kopeh Dagh Mountains of NE Iran. These deforming belts are separated by relatively aseismic depressions such as the Lut Block. It has been suggested that the Arabia-Eurasia collision is similar to the Indo-Eurasia collision but at a early point of development and therefore, it may provide clues to our understanding of the earlier stages of the continent-continent collision process. We present results of the analysis of seismic data collected along two NE-SW trending transects across the Iranian Plateau. The first profile extends from near Bushere on the Persian Gulf coast to near to the Iran-Turkmenistan border north of Mashad, and consists of seismic recordings along the SW portion of the line in 2000-2001 and recording along the NE portion of the line in 2003 and 2006-2008. The second profile extends from near the Iran-Iraq border near the Dezfel embayment to the south Caspian Sea coast north of Tehran. We apply the combined 2.5D finite element waveform tomography algorithm of Baker and Roecker [2014] to jointly invert teleseismic body and surface waves to determine the elastic wavespeed structures of these areas. The joint inversion of these different types of waves affords similar types of advantages that are common to combined surface wave dispersion/receiver function inversions in compensating for intrinsic weaknesses in horizontal and vertical resolution capabilities. We compare results recovered from a finite difference approach to document the effects of various assumptions related to their application, such as the inclusion of topography, on the models recovered. We also apply several different inverse methods, starting with simple gradient techniques to the more sophisticated pseudo-Hessian or L-BFGS approach, and find that the latter are generally more robust. Modeling of receiver functions and surface wave dispersion prior to the analysis is shown to be an efficacious way to generate starting models for this analysis.
NASA Astrophysics Data System (ADS)
Saini, Jeetendra; Guenther, Franziska; Mäusbacher, Roland; Gleixner, Gerd
2015-04-01
The Tibetan Plateau is one of the most extensive and sensitive region of elevated topography affecting global climate. The interplay between the Asian summer monsoon and the westerlies greatly influences the lake systems at the Tibetan Plateau. Despite a considerable number of research efforts in last decade, possible environmental reactions to change in monsoon dynamics are still not well understood. Here we present results from a sediment core of lake Donggi Cona, which dates back to late glacial period. Distinct organic geochemical proxies and stable isotopes are used to study the paleoenvironmental and hydrological changes in late glacial and Holocene period. Sedimentary n-alkanes of lake Donggi Cona are used as a proxy for paleoclimatic and monsoonal reconstruction. The hydrogen (δD) and carbon (δ13C) isotopes of n-alkanes are used as proxy for hydrological and phytoplankton productivity, respectively . Qualitative and quantitative analysis were performed for n-alkanes over the sediment core. δD proxy for sedimentary n-alkanes is used to infer lake water and rainfall signal. δD of (n-alkane C23) records the signal of the lake water, whereas δD of (n-alkane C29) record the precipitation signal, hence act as an appropriate proxy to track Asian monsoon. Long chain n-alkanes dominate over the sediment core while unsaturated mid chain n-alkenes have high abundance in some samples. From 18.4-13.8 cal ka BP, sample shows low organic productivity due to cold and arid climate. After 13.8-11.8 cal ka BP, slight increase in phytoplankton productivity indicate onset of weaker monsoon. From 11.8-6.8 cal ka BP, high content of organic matter indicates rise in productivity and strong monsoon with high inflow. After 6.8 cal ka BP, decrease in phytoplankton productivity indicating cooler climate and show terrestrial signal. Our results provide new insight into the variability of east Asian monsoon and changes in phytoplankton productivity for last 18.4 ka. Keywords: n-alkanes; n-alkane C23; n-alkane C29; hydrogen isotopes (δD); carbon isotopes (δ13C); east Asian monsoon; precipitation;
Yang, Bo; Yu, Jiakuo; Gong, Xi; Chen, Lianxu; Wang, Yongjian; Wang, Jian; Wang, Haijun; Zhang, Jiying
2014-01-01
The tibial plateau is asymmetric with a larger medial plateau. We observed from clinical practice that the shape of the tibial plateau does not always present a larger medial plateau. Tibial plateau also showed other shapes. The purpose of this study was to analyze the anthropometric data of the proximal tibia in a large group of Chinese patients undergoing total knee arthroplasty and to investigate the morphology of the resected proximal tibial surface and its gender differences. A total of 822 knees (164 males, 658 females) from the Chinese population were measured intraoperatively for medial anteroposterior (MAP) and lateral anteroposterior (LAP) dimensions of the resected proximal tibial surface. The difference of MAP and LAP (DML) was also calculated as MAP minus LAP. We then classified the data into three groups based on the DML (<-2, -2 to 2, and >2 mm) to analyze the morphology of the proximal tibia and its distribution between male and female. The shape of proximal tibial plateau was of three types: larger medial plateau type, symmetric type, and larger lateral plateau type. There were significant differences between males and females in relation to the shape distribution of the proximal tibial plateau (P < 0.05). Most of the proximal tibial plateau was asymmetric, with 517 of 822 (62.9%) tibia having a DML >2 mm and 120 of 822 (14.6%) tibia having a DML<-2 mm. Only 185 of 822 (22.5%) tibia had a DML between -2 and 2 mm. The results of this study can be used as a guideline to design tibial components with different DMLs to better match the different anthropometry of the resected tibial surface.
Drainage Evolution during the Uplift of the Central Anatolia Plateau
NASA Astrophysics Data System (ADS)
Brocard, G. Y.; Meijers, M. J.; Willenbring, J. K.; Kaymakci, N.; Whitney, D. L.
2015-12-01
The Central Anatolian plateau formed in the past 8-6 Myrs, associated to a change in tectonic regime, from contraction to extensional escape tectonics. We have examined the response of the river drainage of Central Anatolia to the rise of the plateau uplift and to the formation of the Anatolian microplate, tracking changes in drainage organization. Anatolia experienced widespread rock uplift and erosion in the Late Oligocene, generating a narrow, steep, and quickly eroding mountain range above the future southern plateau margin. A regionally widespread marine transgression resulted from wholesale foundering of this orogen in Early Miocene time. Widespread planation surfaces overlapped by Miocene marine carbonates bevel this topography, indicating that relief had been reduced to a low elevation pedimented landscape by the end of the Middle Miocene. Plateau uplift initiated around 11 My ago in Eastern Anatolia; it was echoed in Central Anatolia by a short-lived phase of contraction and localized uplifts that predate escape tectonics and mark the beginning of the current topographic differentiation of the southern plateau margin. The through-going drainage network inherited disintegrated, and a vast zone of inward drainage formed at the location of the future plateau interior. Between 8 and 6 My, the southern plateau margin (i.e. the Tauride Mountains) emerged. δ18O analyses on lacustrine and pedogenic carbonates show that the southern plateau margin, if not the plateau interior, had experienced enough uplift by 5 My to generate a substantial rain shadow over the plateau interior. Being disconnected from the regional base level from the start, the plateau interior was able to rise without experiencing substantial dissection. It reconnected to all surrounding sediment sinks (Mediterranean Sea, Black Sea and Persian Gulf) over the past 5 My. We discuss the mechanisms that have driven this reconnection. Bottom-up processes of integration such as drainage divide retreat did not produce any major changes. Top-down processes such as lake overflow and avulsion achieved most of the re-integration. They result from more positive precipitation/evaporation balances, either due to elevation change during plateau uplift or due to tectonic fragmentation of depocenters during the development of escape tectonics.
Late Pliocene age control and composite depths at ODP Site 982, revisited
NASA Astrophysics Data System (ADS)
Khélifi, N.; Sarnthein, M.; Naafs, B. D. A.
2011-05-01
Ocean Drilling Program (ODP) Site 982 provided a key sediment section at Rockall Plateau for reconstructing northeast Atlantic paleoceanography and monitoring benthic δ18O stratigraphy over the Late Pliocene to Quaternary onset of major Northern Hemisphere Glaciation. A renewed hole-specific inspection of magnetostratigraphic events and the addition of epibenthic δ18O records for short Pliocene sections in holes 982A, B, and C, crossing core breaks in the δ18O record published for Hole 982B, now imply a major revision of composite core depths. After tuning to the orbitally tuned reference record LR04 the new composite δ18O record results in a hiatus, where the Kaena magnetic event might been lost, and in a significant age reduction for all proxy records by 130 to 20 ka over the time span 3.2-2.7 million yr ago (Ma). Our study demonstrates the significance of reliable composite-depth scales and δ18O stratigraphies in ODP sediment records for ocean-wide correlations in paleoceanography and makes Late Pliocene trends found at Site 982 much better comparable to those published from elsewhere in the North Atlantic.
PLATEAU IRIS--DIAGNOSIS AND TREATMENT.
Stefan, Cornel; Iliescu, Daniela Adriana; Batras, Mehdi; Timaru, Cristina Mihaela; De Simone, Algerino
2015-01-01
The objective of our study was to review the current knowledge on the diagnosis and treatment options of plateau iris configuration and syndrome. Relevant publications on plateau iris that were published until 2014. Plateau iris syndrome is a form of primary angle closure glaucoma caused by a large or anteriorly positioned ciliary body that leads to mechanical obstruction of trabecular meshwork. This condition is most often found in younger patients. Plateau iris has been considered an abnormal anatomic variant of the iris that can be diagnosed on ultrasound biomicroscopy or optical coherence tomography of anterior segment. Patients with plateau iris syndrome can be recognized by the lack of response in angle opening after iridotomy. The treatment of choice in these cases is argon laser peripheral iridoplasty.
Yang, Ruiqiang; Xie, Ting; Li, An; Yang, Handong; Turner, Simon; Wu, Guangjian; Jing, Chuanyong
2016-07-01
Sediment cores from five lakes across the Tibetan Plateau were used as natural archives to study the time trends of polycyclic aromatic hydrocarbons (PAHs). The depositional flux of PAHs generally showed an increasing trend from the deeper layers towards the upper layer sediments. The fluxes of PAHs were low with little variability before the 1950s, and then gradually increased to the late 1980s, with a faster increasing rate after the 1990s. This temporal pattern is clearly different compared with those remote lakes across the European mountains when PAHs started to decrease during the period 1960s-1980s. The difference of the temporal trend was attributed to differences in the economic development stages and energy structure between these regions. PAHs are dominated by the lighter 2&3-ring homologues with the averaged percentage over 87%, while it is notable that the percentage of heavier 4-6 ring PAHs generally increased in recent years, which suggests the contribution of local high-temperature combustion sources becoming more predominant. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dubois, N.; Kindler, P.; Spezzaferri, S.; Coric, S.
2007-12-01
The sediments deposited at ODP Site 1195 (Marion Plateau, NE Australia) record synchronous shifts in their chemistry, mineralogy, grain size and colour at 6 meters below sea floor. These significant changes are interpreted to reflect the onset of the southern province of the Great Barrier Reef (GBR). An increased deposition of carbonate-rich sediments of neritic origin, coincident with a decline in both sedimentation rate and terrigenous input, is attributed to inshore trapping of materials by the reefs. Based on an age model combining magnetostratigraphic and biostratigraphic data, we propose that the southern province of the GBR initiated between 560 and 670 kyr B.P. Our best estimate concurs with previous studies reporting an age between 500 and 930 kyr B.P., albeit constraining more tightly these earlier age estimates. However, it does not support research placing the birth of the GBR in Marine Isotope Stage 11 (about 400 kyr B.P.), nor the recent theory of a worldwide modern reef development at that time.
Fuentes-Hurtado, Marcelo; Hof, Anouschka R; Jansson, Roland
2016-01-01
Quaternary glacial cycles have shaped the geographic distributions and evolution of numerous species in the Arctic. Ancient DNA suggests that the Arctic fox went extinct in Europe at the end of the Pleistocene and that Scandinavia was subsequently recolonized from Siberia, indicating inability to track its habitat through space as climate changed. Using ecological niche modeling, we found that climatically suitable conditions for Arctic fox were found in Scandinavia both during the last glacial maximum (LGM) and the mid-Holocene. Our results are supported by fossil occurrences from the last glacial. Furthermore, the model projection for the LGM, validated with fossil records, suggested an approximate distance of 2000 km between suitable Arctic conditions and the Tibetan Plateau well within the dispersal distance of the species, supporting the recently proposed hypothesis of range expansion from an origin on the Tibetan Plateau to the rest of Eurasia. The fact that the Arctic fox disappeared from Scandinavia despite suitable conditions suggests that extant populations may be more sensitive to climate change than previously thought.
Matsunaga, Koichi; Ito, Kunio; Esaki, Koji; Sugimoto, Kota; Sano, Toru; Miura, Katsuya; Sasoh, Mikio; Uji, Yukitaka
2004-12-01
To evaluate and compare the findings and changes of the anterior chamber angle configuration with indentation ultrasound biomicroscopy (UBM) gonioscopy in relative pupillary block (RPB), peripheral anterior synechia (PAS), and plateau iris configuration (PIC). This study included 73 eyes of 52 patients with RPB (n = 26), PAS (n = 21), or PIC (n = 26). First, a conventional UBM scan was performed using a normal size standard eye cup before indentation. Then, for indentation UBM gonioscopy, scans were performed using a new eye cup that we designed. For evaluation of the angle, angle opening distance 500 and angle recess area were recorded and evaluated with regard to the effect of expansion on the anterior chamber angle. Indentation UBM gonioscopy showed the characteristic images in each of the eyes. The angle of all examined eyes was significantly widened with indentation (P < 0.01). The angle changes in eyes with RPB were significantly greater than in eyes with PAS or PIC (P < 0.01). Indentation UBM gonioscopy is a very useful method for observing the angle and diagnosis of RPB, PAS, and PIC.
A 3,500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau.
Yang, Bao; Qin, Chun; Wang, Jianglin; He, Minhui; Melvin, Thomas M; Osborn, Timothy J; Briffa, Keith R
2014-02-25
An annually resolved and absolutely dated ring-width chronology spanning 4,500 y has been constructed using subfossil, archaeological, and living-tree juniper samples from the northeastern Tibetan Plateau. The chronology represents changing mean annual precipitation and is most reliable after 1500 B.C. Reconstructed precipitation for this period displays a trend toward more moist conditions: the last 10-, 25-, and 50-y periods all appear to be the wettest in at least three and a half millennia. Notable historical dry periods occurred in the 4th century BCE and in the second half of the 15th century CE. The driest individual year reconstructed (since 1500 B.C.) is 1048 B.C., whereas the wettest is 2010. Precipitation variability in this region appears not to be associated with inferred changes in Asian monsoon intensity during recent millennia. The chronology displays a statistical association with the multidecadal and longer-term variability of reconstructed mean Northern Hemisphere temperatures over the last two millennia. This suggests that any further large-scale warming might be associated with even greater moisture supply in this region.
Enhanced Climatic Warming Over the Tibetan Plateau Due to Doubling CO2: A Model Study
NASA Technical Reports Server (NTRS)
Chen, Baode; Chao, Winston C.; Liu, Xiaodong; Lau, William K. M. (Technical Monitor)
2001-01-01
A number of studies have presented the evidences that surface climate change associated with global warming at high elevation sites shows more pronounced warming than at low elevations, i.e. an elevation dependency of climatic warming pointed out that snow-albedo feedback may be responsible for the excessive warming in the Swiss Alps. From an ensemble of climate change experiments of increasing greenhouse gases and aerosols using an air-sea coupled climate model, Eyre and Raw (1999) found a marked elevation dependency of the simulated surface screen temperature increase over the Rocky Mountains. Using almost all available instrumental records, Liu and Chen (2000) showed that the main portion of the Tibetan Plateau (TP) has experienced significant ground temperature warming since the middlebrows, especially in winter, and that there is a tendency for the warming trend to increase with elevation in the TP as well as its surrounding areas. In this paper, we will investigate the mechanism of elevation dependency of climatic warming in the TP by using a high-resolution regional climate model.
Mesozoic clay diagenesis in the Appalachian Plateau
NASA Astrophysics Data System (ADS)
Boles, A.; Mulch, A.; van der Pluijm, B.
2017-12-01
Integrated investigation of authigenic clays in the Appalachian Plateau of the northeastern US Midcontinent using X-ray goniometry, Rietveld-method based illite polytype analysis, and 40Ar/39Ar geochronology yields novel insights about the structural diagenetic history of the North American sedimentary cover sequence. Texture analysis by High Resolution X-ray Texture Goniometry records the presence of a bedding-parallel diagenetic fabric, corresponding to a burial depth of 2-5 km. New development of polytype modeling using BGMN®, a quantitative X-ray powder diffraction forward modeling and whole-pattern matching program matches mineralic characteristic of illite at those depths and reduces uncertainty estimates in age analysis. Based on dating size fractions, the diagenetic age is constrained to 225-250 Ma (Triassic) by four authigenic illite samples, reflecting protracted, regional diagenesis in the area. Preliminary H isotopic analysis points to a surface-derived diagenetic fluid with δD values ranging from -48 to -72‰ (in the range of predicted Pangea meteoric fluid), with a dependence on proximity to the Appalachian Mountains that may reflect a rain shadow effect.
PLATEAU IRIS – DIAGNOSIS AND TREATMENT
Stefan, Cornel; Iliescu, Daniela Adriana; Batras, Mehdi; Timaru, Cristina Mihaela; De Simone, Algerino
2015-01-01
Objectives: The objective of our study was to review the current knowledge on the diagnosis and treatment options of plateau iris configuration and syndrome. Systematic review methodology: Relevant publications on plateau iris that were published until 2014. Conclusions: Plateau iris syndrome is a form of primary angle closure glaucoma caused by a large or anteriorly positioned ciliary body that leads to mechanical obstruction of trabecular meshwork. This condition is most often found in younger patients. Plateau iris has been considered an abnormal anatomic variant of the iris that can be diagnosed on ultrasound biomicroscopy or optical coherence tomography of anterior segment. Patients with plateau iris syndrome can be recognized by the lack of response in angle opening after iridotomy. The treatment of choice in these cases is argon laser peripheral iridoplasty PMID:27373109
Hollyday, E.F.; Hansen, G.R.
1983-01-01
Streamflow may be estimated with regression equations that relate streamflow characteristics to characteristics of the drainage basin. A statistical experiment was performed to compare the accuracy of equations using basin characteristics derived from maps and climatological records (control group equations) with the accuracy of equations using basin characteristics derived from Landsat data as well as maps and climatological records (experimental group equations). Results show that when the equations in both groups are arranged into six flow categories, there is no substantial difference in accuracy between control group equations and experimental group equations for this particular site where drainage area accounts for more than 90 percent of the variance in all streamflow characteristics (except low flows and most annual peak logarithms). (USGS)
NASA Astrophysics Data System (ADS)
Freymark, Jessica; Strecker, Manfred R.; Bookhagen, Bodo; Bekeschus, Benjamin; Eckelmann, Felix; Alonso, Ricardo
2013-04-01
Active tectonism in Cenozoic orogenic plateaus is often characterized by a combination of active extensional and strike-slip faulting subsequent to protracted phases of shortening and the build-up of high topography. In the Puna Plateau of NW Argentina, the southern part of the world's second largest orogenic plateau, the changeover from shortening to extensional tectonics is thought to have occured between 7 and 5 Ma along the southeastern plateau margin, while the central and northern plateau areas apparently changed into an extensional regime between 9 and 6 Ma (Cladouhos et al., 1994). Despite these observations of extensional structures we report on new data from the Salar de Pocitos that show sustained shortening in the south-central part of the plateau. The south-central Puna Plateau is characterized by an average elevation of about 3700 m with low relief and internally drained basins, which are bordered by reverse-fault bounded ranges. The N-S oriented Salar de Pocitos is an integral part of these contractional structures and covers an area of ~435 km². The western border of the basin constitutes the eastern flank of an anticline involving Tertiary and Quaternary sediments, while the eastern border is delimited by a N-S striking reverse fault, bounding the range front of the Sierra Qda. Honda. In the north of the Salar de Pocitos the three Miocene volcanoes Tultul, Delmedio and Pocitos form a barrier with the Salar del Rincón, and the south of the basin is bordered by fault blocks involving Ordovician lithologies that have left only a narrow valley that may have provided an outlet of the basin in the past. Multiple terraces generated during Late Pleistocene and Holocene lake highstands straddle the Pocitos Basin and serve as excellent strain markers to assess neotectonic deformation. We surveyed the terraces along N-S and E-W transects using a differential GPS. The E-W surveys are perpendicular to the structures that bound the basin and record differential basin-wide deformation. Although it is not possible yet to develop a reliable terrace chronology, taken together, the western terraces are higher than possibly equivalent terraces in the east, suggesting ongoing tilting related to protracted folding of the anticline in the west. In addition, orientations of faults, joints and tilted deposits were measured and analyzed. We show (preliminary) results and interpretations of these measurements. Tilted volcanic ash and sediment deposits have different dips and it appears that a distinct deformation stage is related to the regional anticline west of the Salar. A tectonic joint system and various small reverse faults also indicate active shortening in the area of the Salar de Pocitos from the Tertiary to the present-day. Reference: Cladouhos, T.T.; Allmendinger, R.W.; Coira, B. and Farrar, E. (1994): Late Cenozoic deformation in the Central Andes: fault kinematics from the northern Puna, northwestern Argentina and southwestern Bolivia (Journal of South American Earth Sciences, Vol. 7, No. 2., pp. 209-228)
NASA Astrophysics Data System (ADS)
Pederson, J. L.
2012-12-01
The great, active orogenic plateaus of the world have been the inspiration for modern tectonic geomorphology, including our recognition of elegant linkages between erosion, topography, tectonics and climate feedbacks, such as in steady-state landscapes. None of that correctly describes the landscape evolution of the Colorado Plateau in the southwestern U.S. Here I present new calculations of river energy and steepness as well as new incision-rate data along the upper Colorado River drainage, and then relate these patterns to recently proposed sources of mantle-driven uplift. The results indicate a complex decoupling of erosion, topography and active tectonics, with instead strong relations to bedrock resistance and passive isostatic feedback in this mostly decaying landscape. Calculations of unit stream power and a newly improved (discharge-adjusted) steepness index (kqsn) in the upper Colorado-Green drainage highlight four canyon knickzones. Each is characterized by energy expenditure an order of magnitude greater than in intervening reaches, and the knickzones generally increase in magnitude downstream with Cataract Canyon being the greatest anomaly. The strong coincidence of knickzones with changes in bedrock and mass-movement inputs suggests they are mostly pinned, equilibrium adjustments to greater bed resistance, with possible transient behavior in farther upstream knickzones. Similarly, new late-Pleistocene incision rate data exist for four locations spanning the trunk drainage -at Lee's Ferry, AZ, near Green River and Moab, UT, and in Browns Park within the Uinta knickzone. Each chronostratigraphic record is based upon multiple OSL, CRN, and U-series ages, and incision rates are calculated over the same timescale and integrate through the strong, cyclic grade changes imparted on the river by Milankovich-scale climate changes. This avoids the erroneous comparison of incision rates based upon single ages or over varying timescales. Comparision of apples-to-apples across this landscape reveals a distinct central-Colorado Plateau bullseye of faster river incision that contrasts sharply with expectations based upon the patterns of energy expenditure and topography, but which matches modeled isostatic rebound from broad late Cenozoic exhumation of the Canyonlands district. Finally, recently proposed sources of late-Cenozoic mantle-driven support for topography at the south and west flanks of the plateau have low estimated rates of uplift, which are poorly constrained in terms of actual ongoing uplift versus just topographic support. Patterns of steepness and incision rate do not match the proposed mantle uplift, illustrating a poorly understood decoupling of erosion, topography, and mantle tectonics in the Colorado Plateau. Prime examples of this decoupling are the highly incised and steep Grand Canyon region where there are proposed sources of mantle uplift but contrastingly low rates of incision, versus the broadly exhumed central plateau that features much more rapid incision yet no mantle sources of uplift. Instead of active tectonics, bedrock resistance and possible drainage transients define geomorphic patterns in this landscape, while at broader wavelengths, the central plateau bullseye of rapid incision strongly matches the pattern of passive isostatic rebound.
An Archean Geomagnetic Reversal in the Kaap Valley Pluton, South Africa
Layer; Kroner; McWilliams
1996-08-16
The Kaap Valley pluton in South Africa is a tonalite intrusion associated with the Archean Barberton Greenstone Belt. Antipodal paleomagnetic directions determined from the central and marginal parts of the pluton record a geomagnetic reversal that occurred as the pluton cooled. The age of the reversal is constrained by an 40Ar/39Ar plateau age from hornblende at 3214 +/- 4 million years, making it the oldest known reversal. The data presented here suggest that Earth has had a reversing, perhaps dipolar, magnetic field since at least 3.2 billion years ago.
Earth Observation taken by the STS-129 Crew
2009-11-21
S129-E-007324 (21 Nov. 2009) --- One of the crew members onboard the space shuttle Atlantis recorded this still image of the Bahamas' lengthy narrow Eleuthra Island. Like most of the Bahama Islands, Eleuthra is composed mainly of limestone and coral, and rises from a vast submarine plateau. The island, 80 miles (133 kilometers) long, about two miles (three kilometers) wide and covering an area of 164 square miles (425 square kilometers), is generally low and flat, has many mangrove swamps, brackish lakes, coral reefs and shoals, and many miles of sandy beaches.
NASA Astrophysics Data System (ADS)
Sheng, Yongwei; Yao, Tandong
2009-12-01
The Tibetan Plateau is one of the Earth's most sensitive regions in responding to climate change due to its extremely high altitude and the presence of permafrost and glaciers. The cryosphere, biosphere and hydrosphere of the plateau have been undergoing significant changes. Due to the low human population density, environmental changes on the plateau are largely driven by natural processes. Thus, the plateau provides a unique and comprehensive site for global change studies. This focus issue on Climate Change on the Tibetan Plateau aims to address both paleo and recent environmental changes across the plateau to facilitate our understanding of this remote and under-studied area. We invited a wide spectrum of contributions to address climate change, permafrost degradation, glacier/snow/ice dynamics, lake dynamics, land- cover/land-use changes, and their interactions on the plateau. Collectively, the diverse contributions in this special issue are expected to present the recent advancement of the above topics and beyond. See the PDF for the full text of the editorial. Focus on Climate Change on the Tibetan Plateau Contents Does a weekend effect in diurnal temperature range exist in the eastern and central Tibetan Plateau? Qinglong You, Shichang Kang, Wolfgang-Albert Flügel, Arturo Sanchez-Lorenzo, Yuping Yan, Yanwei Xu and Jie Huang Diurnal variations of summertime precipitation over the Tibetan Plateau in relation to orographically-induced regional circulations Xiaodong Liu, Aijuan Bai and Changhai Liu Lake-level fluctuations since the Last Glaciation in Selin Co (lake), Central Tibet, investigated using optically stimulated luminescence dating of beach ridges Dewen Li, Yingkui Li, Baoqi Ma, Guocheng Dong, Liqiang Wang and Junxiang Zhao Recent changes in Imja Glacial Lake and its damming moraine in the Nepal Himalaya revealed by in situ surveys and multi-temporal ASTER imagery Koji Fujita, Akiko Sakai, Takayuki Nuimura, Satoru Yamaguchi and Rishi R Sharma Changes in frozen ground in the Source Area of the Yellow River on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts Huijun Jin, Ruixia He, Guodong Cheng, Qingbai Wu, Shaoling Wang, Lanzhi Lü and Xiaoli Chang A shallow ice core re-drilled on the Dunde Ice Cap, western China: recent changes in the Asian high mountains Nozomu Takeuchi, Takayuki Miyake, Fumio Nakazawa, Hideki Narita, Koji Fujita, Akiko Sakai, Masayoshi Nakawo, Yoshiyuki Fujii, Keqin Duan and Tandong Yao Review of climate and cryospheric change in the Tibetan Plateau Shichang Kang, Yanwei Xu, Qinglong You, Wolfgang-Albert Flügel, Nick Pepin and Tandong Yao Simulated impacts of land cover change on summer climate in the Tibetan Plateau Qian Li and Yongkang Xue
Zhou, X; Ideker, R E; Blitchington, T F; Smith, W M; Knisley, S B
1995-09-01
To study the optical transmembrane potential change (delta F) induced during shocks, optical recordings were obtained in 15 isolated perfused rabbit hearts treated with the potentiometric dye di-4-ANEPPS and diacetyl monoxime. Shock electrodes were sutured on the right and left ventricles. A laser beam 30 microns in diameter was used to optically excite di-4-ANEPPS. Fluorescence from a region 150 microns in diameter was recorded during a shock. In the macroscopic study (six animals), there were nine recording spots that were 3 mm apart between the two shock electrodes. In the microscopic study, there were three recording regions that were 3 mm away from either shock electrode and midway between them, with nine recording spots that were 30 microns (three animals), 100 microns (three animals), and 300 microns (three animals) apart in each region. After 20 S1 stimuli, a 10-ms truncated exponential S2 shock of defibrillation-threshold strength was given during the plateau of the last S1 action potential. In the microscopic study, shocks were also given during diastole, with delta F recordings at the three recording regions. Shocks of both polarities were tested. delta F during the shock was expressed as a percentage of the fluorescence change during the S1 upstroke action potential amplitude (the S1 Fapa), ie, delta F/Fapa%. In the macroscopic study, the magnitudes of delta F/Fapa% from recording spots 1 to 9, numbered from the left to the right ventricular electrodes, were 77 +/- 41%, 46 +/- 32%, 32 +/- 27%, 28 +/- 20%, 37 +/- 25%, 24 +/- 20%, 33 +/- 22%, 37 +/- 25%, and 59 +/- 29%, respectively (P < .05 among the nine spots). Depolarization or hyperpolarization could occur near either shock electrode with both shock polarities, but the magnitude of hyperpolarization was 1.8 +/- 0.9 times that of depolarization at the same recording spot when the shock polarity was reversed (P < .01). In the microscopic study, the change in delta F/Fapa% varied significantly over the microscopic regions examined. The maximum values of delta F/Fapa% for hyperpolarizing shocks during diastole reached only 7 +/- 10% of those for shocks during the plateau (P < .01). During diastole, the time until a new action potential occurred after the beginning of the shock was shorter when the membrane was depolarized (1.1 +/- 0.5 ms) than when it was hyperpolarized (12.8 +/- 9.1 ms, P < .01). Conclusions are as follows: (1) A shock can induce either hyperpolarization or depolarization. (2) Hyperpolarization or depolarization during a shock can occur near either the anodal or cathodal shock electrode. (3) Variation of delta F/Fapa% exists within a microscopic region.(ABSTRACT TRUNCATED AT 400 WORDS)
Cherel, Yves; Hobson, Keith A
2005-08-07
Cephalopods play a key role in the marine environment but knowledge of their feeding habits is limited by lack of data. Here, we have developed a new tool to investigate their feeding ecology by combining the use of their predators as biological samplers together with measurements of the stable isotopic signature of their beaks. Cephalopod beaks are chitinous hard structures that resist digestion and the stable isotope ratios of carbon (delta13C) and nitrogen (delta15N) are indicators of the foraging areas and trophic levels of consumers, respectively. First, a comparison of delta13C and delta15N values of different tissues from the same individuals showed that beaks were slightly enriched in 13C but highly impoverished in 15N compared with lipid-free muscle tissues. Second, beaks from the same species showed a progressive increase in their delta15N values with increasing size, which is in agreement with a dietary shift from lower to higher trophic levels during cephalopod growth. In the same way, there was an increase in the delta15N signature of various parts of the same lower beaks in the order rostrum, lateral walls and wings, which reflects the progressive growth and chitinization of the beaks in parallel with dietary changes. Third, we investigated the trophic structure of a cephalopod community for the first time. Values of delta15N indicate that cephalopods living in slope waters of the subantarctic Kerguelen Islands (n=18 species) encompass almost three distinct trophic levels, with a continuum of two levels between crustacean- and fish-eaters and a distinct higher trophic level occupied by the colossal squid Mesonychoteuthis hamiltoni. delta13C values demonstrated that cephalopods grow in three different marine ecosystems, with 16 species living and developing in Kerguelen waters and two species migrating from either Antarctica (Slosarczykovia circumantarctica) or the subtropics (the giant squid Architeuthis dux). The stable isotopic signature of beaks accumulated in predators' stomachs therefore revealed new trophic relationships and migration patterns and is a powerful tool to investigate the role of the poorly known cephalopods in the marine environment.
NASA Astrophysics Data System (ADS)
Taft, Linda; Wiechert, Uwe; Riedel, Frank; Weynell, Marc; Zhang, Hucai
2012-02-01
Carbon and oxygen isotope ratios have been measured for nine aragonite shells of the gastropod genus Radix from the lake Bangda Co (30°29'N, 97°04'E, 4450 m a.s.l.) at the south-eastern edge and from two characteristic sites at the lake Kyaring Co (31°09'N, 88°17'E, 4650 m a.s.l.) on the central Tibetan Plateau. Radix shells were sampled for isotope ratio analysis with high spatial resolution along the ontogenetic spiral of growth providing the basis of isotope records with a sub-seasonal time-resolution. δ18O values of shells from Bangda Co are on average ˜-15.0‰ relative to PDB and the pattern exhibits a clear onset and progression of the summer monsoon precipitation indicated by a strong "amount effect". This pattern mirrors the precipitation pattern in the respective year and region as expected for a small (surface area ca 0.3 km2) and shallow (<5 m) lake or habitat with short water residence times and little evaporative 18O enrichment of the lake water. In contrast, δ18O values of Radix shells from Kyaring Co habitat A which is connected to the deep (several tens of metres) and big (surface area ca 660 km2) lake, average at ˜-13.0‰ consistent with a higher evaporation rate and longer water residence time. The latter is supported by more 18O enriched water in this habitat. The δ18O values of Radix shells from Kyaring Co habitat B are nearly as low as shells from Bangda Co due to the similar habitat characteristic but isotopic patterns of these shells exhibit a weaker "amount effect". In both lake systems δ13C values of the shells are coupled with oxygen isotopes because a large amount of isotopically light carbon is washed from mountain slopes into the lake during the rainy season. Although other processes influence the isotopic patterns, e.g. biological productivity (δ13C) or temperature (δ18O), these influences are minor compared with the monsoon signal or the effect of evaporation in the Radix shell records. The overall weaker amount effect in Radix shells from Kyaring Co habitat B compared with shells from Bangda Co are consistent with a current decreasing monsoon influence from the south-eastern edge towards the central Tibetan Plateau. Thus, fossil shells of the gastropod genus Radix are a valuable archive for reconstructing climatic and environmental changes on the Tibetan Plateau and provide information about former habitat sizes and depths.
NASA Astrophysics Data System (ADS)
Alemayehu, Melesse; Zhang, Hong-Fu; Zhu, Bin; Fentie, Birhanu; Abraham, Samuel; Haji, Muhammed
2016-01-01
Detailed petrographical observations and in-situ major- and trace-element data for minerals from ten spinel peridotite xenoliths from a new locality in Gundeweyn area, East Gojam, have been examined in order to understand the composition, equilibrium temperature and pressure conditions as well as depletion and enrichment processes of continental lithospheric mantle beneath the Ethiopian plateau. The peridotite samples are very fresh and, with the exception of one spinel harzburgite, are all spinel lherzolites. Texturally, the xenoliths can be divided into two groups as primary and secondary textures. Primary textures are protogranular and porphyroclastic while secondary ones include reaction, spongy and lamellae textures. The Fo content of olivine and Cr# of spinel ranges from 86.5 to 90.5 and 7.7 to 14.1 in the lherzolites, respectively and are 89.8 and 49.8, respectively, in the harzburgite. All of the lherzolites fall into the lower Cr# and Fo region in the olivine-spinel mantle array than the harzburgite, which indicates that they are fertile peridotites that experienced low degrees of partial melting and melt extraction. Orthopyroxene and clinopyroxene show variable Cr2O3 and Al2O3 contents regardless of their lithology. The Mg# of orthopyroxene and clinopyroxene are 87.3 to 90.1 and 85.8 to 90.5 for lherzolite and 90.4 and 91.2 for harzburgite, respectively. The peridotites have been equilibrated at a temperature and pressure ranging from 850 to 1100 °C and 10.2 to 30 kbar, respectively, with the highest pressure record from the harzburgite. They record high mantle heat flow between 60 and 150 mW/m2, which is not typical for continental environments (40 mW/m2). Such a high geotherm in continental area shows the presence of active mantle upwelling beneath the Ethiopian plateau, which is consistent with the tectonic setting of nearby area of the Afar plume. Clinopyroxene of five lherzolites and one harzburgite samples have a LREE enriched pattern and the rest exhibit LREE depletion relative to HREE. These suggest that the lithospheric mantle of the Ethiopian plateau has experienced at least two major processes, specifically, partial melting and metasomatism that produce LREE-depleted and -enriched signature of continental lithospheric mantle, respectively. There is also no clear relationship between degree of LREE enrichment and petrography of the studied peridotite. Based on our data, we conclude that the lithospheric mantle beneath Gundeweyn has experienced melt extraction during and/or before pan-African orogeny and then interacted with various degrees of asthenospheric melt. The interaction is probably related to mantle upwelling, which is mainly focused beneath East Africa rift system (EARS).
NASA Astrophysics Data System (ADS)
Klingelhoefer, F.; Museur, T.; Roest, W. R.; Graindorge, D.; Chauvet, F.; Loncke, L.; Basile, C.; Poetisi, E.; Deverchere, J.; Lebrun, J. F.; Perrot, J.; Heuret, A.
2017-12-01
Many transform margins have associated intermediate depth marginal plateaus, which are commonly located between two oceanic basins. The Demerara plateau is located offshore Surinam and French Guiana. Plate kinematic reconstructions show that the plateau is located between the central and equatorial Atlantic in a position conjugate to the Guinean Plateau. In the fall of 2016, the MARGATS cruise acquired geophysical data along the 400 km wide Demerara plateau. The main objective of the cruise was to image the deep structure of the Demerara plateau and to study its tectonic history. A set of 4 combined wide-angle and reflection seismic profiles was acquired along the plateau, using 80 ocean-bottom seismometers, a 3 km long seismic streamer and a 8000 cu inch tuned airgun array. Forward modelling of the wide-angle seismic data on a profile, located in the eastern part of the plateau and oriented in a NE-SW direction, images the crustal structure of the plateau, the transition zone and the neighbouring crust of oceanic origin, up to a depth of 40 km. The plateau itself is characterised by a crust of 30 km thickness, subdivided into three distinct layers. However, the velocities and velocity gradients do not fit typical continental crust, with a lower crustal layer showing untypically high velocities and an upper layer having a steep velocity gradient. From this model we propose that the lowermost layer is probably formed from volcanic underplated material and that the upper crustal layer likely consists of the corresponding extrusive volcanic material, forming thick seaward-dipping reflector sequences on the plateau. A basement high is imaged at the foot of the slope and forms the ocean-continent transition zone. Further oceanward, a 5-6 km thick crust is imaged with velocities and velocity gradients corresponding to a thin oceanic crust. A compilation of magnetic data from the MARGATS and 3 previous cruises shows a high amplitude magnetic anomaly along the northern edge of the plateau thereby strengthening the hypothesis of an volcanic origin of at least part of the structure. We propose, that the plateau was formed by large-scale volcanism, possibly intruding into a thinner existing continental crust.
Jr., Nikolay A. Poyarkov; Duong, Tang Van; Orlov, Nikolai L.; Gogoleva, Svetlana S.; Vassilieva, Anna B.; Nguyen, Luan Thanh; Nguyen, Vu Dang Hoang; Nguyen, Sang Ngoc; Che, Jing; Mahony, Stephen
2017-01-01
Abstract Asian Mountain Toads (Ophryophryne) are a poorly known genus of mostly small-sized anurans from southeastern China and Indochina. To shed light on the systematics within this group, the most comprehensive mitochondrial DNA phylogeny for the genus to date is presented, and the taxonomy and biogeography of this group is discussed. Complimented with extensive morphological data (including associated statistical analyses), molecular data indicates that the Langbian Plateau, in the southern Annamite Mountains, Vietnam, is one of the diversity centres of this genus where three often sympatric species of Ophryophryne are found, O. gerti, O. synoria and an undescribed species. To help resolve outstanding taxonomic confusion evident in literature (reviewed herein), an expanded redescription of O. gerti is provided based on the examination of type material, and the distributions of both O. gerti and O. synoria are considerably revised based on new locality records. We provide the first descriptions of male mating calls for all three species, permitting a detailed bioacoustics comparison of the species. We describe the new species from highlands of the northern and eastern Langbian Plateau, and distinguish it from its congeners by a combination of morphological, molecular and acoustic characters. The new species represents one of the smallest known members of the genus Ophryophryne. At present, the new species is known from montane evergreen forest between 700–2200 m a.s.l. We suggest the species should be considered Data Deficient following IUCN’s Red List categories. PMID:28769667
NASA Astrophysics Data System (ADS)
Zhang, Yuan; Feng, Xiaoming; Wang, Xiaofeng; Fu, Bojie
2018-03-01
The frequency and intensity of drought are increasing dramatically with global warming. However, few studies have characterized drought in terms of its impacts on ecosystem services, the mechanisms through which ecosystems support life. As a result, little is known about the implications of increased drought for resource management. This case study characterizes drought by linking climate anomalies with changes in the precipitation-runoff relationship (PRR) on the Loess Plateau of China, a water-limited region where ongoing revegetation makes drought a major concern. We analyzed drought events with drought durations ≥ 5 years and mean annual precipitation anomaly (PA) values ≤ -5 % during drought periods. The results show that continuous precipitation shifts are able to change the water balance of watersheds in water-limited areas, and multi-year drought events cause the PRR to change with a significantly decreasing trend (p < 0.05) compared to other historical records. For the Loess Plateau as a whole, the average runoff ratio decreased from 10 to 6.8 % during 1991-1999. The joint probability and return period gradually increase with increasing of drought duration and severity. The ecosystem service of water yield is easily affected by drought events with durations equal to or greater than 6 years and drought severity values equal to or greater than 0.55 (precipitation ≤ 212 mm). At the same time, multi-year drought events also lead to significant changes in the leaf area index (LAI). Such studies are essential for ecosystem management in water-limited areas.
NASA Technical Reports Server (NTRS)
Bhattacharyya, Joydeep; Sheehan, Anne F.; Tiampo, Kristy; Rundle, John
1999-01-01
In this study, we analyze regional seismograms to obtain the crustal structure in the eastern Great Basin and western Colorado plateau. Adopting a for- ward-modeling approach, we develop a genetic algorithm (GA) based parameter search technique to constrain the one-dimensional crustal structure in these regions. The data are broadband three-component seismograms recorded at the 1994-95 IRIS PASSCAL Colorado Plateau to Great Basin experiment (CPGB) stations and supplemented by data from U.S. National Seismic Network (USNSN) stations in Utah and Nevada. We use the southwestern Wyoming mine collapse event (M(sub b) = 5.2) that occurred on 3 February 1995 as the seismic source. We model the regional seismograms using a four-layer crustal model with constant layer parameters. Timing of teleseismic receiver functions at CPGB stations are added as an additional constraint in the modeling. GA allows us to efficiently search the model space. A carefully chosen fitness function and a windowing scheme are added to the algorithm to prevent search stagnation. The technique is tested with synthetic data, both with and without random Gaussian noise added to it. Several separate model searches are carried out to estimate the variability of the model parameters. The average Colorado plateau crustal structure is characterized by a 40-km-thick crust with velocity increases at depths of about 10 and 25 km and a fast lower crust while the Great Basin has approximately 35- km-thick crust and a 2.9-km-thick sedimentary layer.
The deep structure of Venusian plateau highlands
NASA Technical Reports Server (NTRS)
Grimm, Robert E.
1994-01-01
Magellan gravity data confirm that several of the large, tectonically deformed, plateau-like highlands on venus are shallowly compensated, most likely by crustal thickness variations. Apparent depths of isostatic compensation, computed in the spatial domain, range from 30 to 50 km for Alpha, Tellus, Ovda, and Thetis Regiones. Using a two-layer model for isostatic compensation, Alpha, Tellus, and Ovda are best represented as nearly completely compensated in crust that is regionally 20-40 km thick around these highlands, with little contribution from deeper mantle sources. In contrast to these three areas, a stronger regional gravity high associated with Thetis requires a significant upper mantle component to compensation. This is evident in the spectral admittance as a pronounced deep, long-wavelength anomaly. In the two-layer isostatic model, a broad, deeply compensated upland underlies a shallowly compensated central block of Thetis. If this deep component is interpreted as a thermal anomaly, the loci of maximum upwelling agree well with sites of recent extension. The plateau highlands are thus physiographically and isostatically equivalent to terrestrial continents, though probably not compositionally. They also share the record of a long tectonic history. The large regional gravity anomaly of Thetis indicates that active mantle proceses continue even beneath some areas (tessera) thought to be a relic of a former geological regime. The excellent agreement of modeled crustal thicknesses around Alpha, Tellus, and Ovda Regiones suggests that 20-40 km is a representative global value for the plains. Such a crust is thicker than previously estimated and about twice as thick as the expected thickness of crust produced at venusian spreading centers
New constraints on Neogene uplift of the northern Colorado Plateau
NASA Astrophysics Data System (ADS)
Van Wijk, J. W.; Raschilla, R.
2013-12-01
The Late Cretaceous Uinta Basin is located in northeastern Utah within the northern most portion of the Colorado Plateau. The basin's uplift and subsidence history and thermal evolution have impacted the maturity of source beds in the Parachute Creek Member of the Green River Formation. Using measured data of the petroleum system of the Uinta Basin, we were able to constrain timing and amplitude of uplift of the northern Colorado Plateau. We used sixty wells in a basin modeling study of the Uinta Basin's thermal structure, tectonic history and petroleum system. The wells reached into basement, and four wells provided vitrinite reflectance measurements. Vitrinite reflectance is a measurement of the percentage of reflected light from a polished vitrinite sample. The percentage of reflected light is related to the temperature conditions the sample experienced during burial, and vitrinite reflectance is a maturity indicator that covers a broad temperature range from diagenesis through the latest stages of catagenesis and records the maximum temperature a rock experiences during its burial history All models were calibrated to measured data, including vitrinite reflectance and transformation ratios from Rock-Eval pyrolysis. The models predict that the heat flow ranges from 65 mW/m2 to 45 mW/m2 from south to north in the study area. Additionally, model calibration provides a means for estimating the amount of uplift and erosion in the Uinta Basin. Uplift predicted for the Uinta Basin ranges from ~2050 m to ~2200 m and started in the Late Miocene. Our models also predicted the maturity of the rich oil shales of the Parachute Creek Member.
Surveillance of Echinococcus isolates from Qinghai, China.
Ma, Junying; Wang, Hu; Lin, Gonghua; Zhao, Fang; Li, Chao; Zhang, Tongzuo; Ma, Xiao; Zhang, Yongguo; Hou, Zhibin; Cai, Huixia; Liu, Peiyun; Wang, Yongshun
2015-01-15
Echinococcosis is highly endemic over large parts of the Qinghai-Tibet Plateau (QTP), China. Based on a large number of samples, we present data on the current presence, host distribution, and genetic diversity of Echinococcus in the Qinghai Province, located in the northeastern corner of the QTP and constituting >25% of the area of the plateau. We used 521 samples (including 451 newly collected samples and 70 samples from our previous study) from humans, yaks, sheep, goats, dogs, fox, plateau pikas, and voles in 36 counties, and genotyped them using the mitochondrial DNA marker cytochrome oxidase subunit I (cox1) gene and the maximum parsimony and Bayesian reconstruction methods. Based on the 792 bp sequence matrix, we recorded 177 variable sites; 157 were parsimony-informative. A total of 105 haplotypes (H1-H105) were detected, of which H1-H15 and H90-H104, H16-H17, H18-H89, and H105 belonged to Echinococcus shiquicus, Echinococcus multilocularis, Echinococcus granulosus, and Echinococcus canadensis, respectively. Our results showed that, (i) the Qinghai Province was under a high burden of Echinococcus epidemiology; (ii) E. granulosus was the main echinococcosis threat to the local people, and the followed is E. multilocularis; (iii) there are a considerable number of haplotypes shared by domestic animals (sheep, yaks, and dogs) and humans, demonstrating the close relationship between human and domestic animals epidemiology; (iv) the threat of E. shiquicus on humans and livestock can be mostly ignored, while the infection risk of E. canadensis echinococcosis should not be neglected. Copyright © 2014 Elsevier B.V. All rights reserved.
Proceedings of the second biennial conference on research in Colorado Plateau National Parks
van Riper, Charles
1995-01-01
On 25-28 October 1993 in Flagstaff, Arizona, the National Biological Service Colorado Plateau Research Station (formerly National Park Service Cooperative Park Studies Unit) and Northern Arizona University hosted the Second Biennial Conference of Research on the Colorado Plateau. The conference theme focused on research, inventory, and monitoring on the federal, state, and private lands in the Colorado Plateau biogeographic province.
NASA Astrophysics Data System (ADS)
Reyners, Martin
2013-01-01
Recent work involving relocation of New Zealand seismicity using a nationwide 3-D seismic velocity model has located the subducted western edge of the Hikurangi Plateau. Both the thickness (ca. 35 km) and the area of the plateau subducted in the Cenozoic (ca. 287,000 km2) are much larger than previously supposed. From ca. 45 Ma, the westernmost tip of the plateau controlled the transition at the Pacific/Australia plate boundary from subduction to the north to Emerald Basin opening to the south. At ca. 23 Ma, curvature of the subduction zone against the western flank of the buoyant plateau became extreme, and a Subduction-Transform Edge Propagator (STEP fault) developed along the western edge of the plateau. This STEP fault corresponds to the Alpine Fault, and the resulting Pacific slab edge is currently defined by intermediate-depth seismicity under the northernmost South Island. Alpine STEP fault propagation was terminated at ca. 15 Ma, when the western edge of the plateau became parallel to the trench, and thus STEP fault formation was no longer favoured. Wholesale subduction of the plateau at the Hikurangi subduction zone began at ca. 10 Ma. The development of a subduction décollement above the plateau mechanically favoured deformation within the overlying Australian plate continental crust. This led to inception of the Marlborough fault system at ca. 7 Ma, and the North Island fault system at 1-2 Ma. At ca. 7 Ma, the western edge of the converging plateau again became more normal to the trench, and there is evidence supporting the development of a second STEP fault beneath the Taupo Volcanic Zone until ca. 3 Ma. Both episodes of STEP fault development at the plateau edge led to rapid slab rollback, and correspond closely with episodes of backarc basin opening to the north in the wider Southwest Pacific. The Cenozoic tectonics of New Zealand and the Southwest Pacific has been strongly influenced not only by the resistance to subduction of the buoyant Hikurangi Plateau, but also by the shape of its western edge and changing angle of attack of this edge at the plate boundary.
NASA Astrophysics Data System (ADS)
Li, Lin; Garzione, Carmala N.
2017-02-01
Debates persist about the interpretations of stable isotope based proxies for the surface uplift of the central-northern Tibetan Plateau. These disputes arise from the uncertain relationship between elevation and the δ18 O values of meteoric waters, based on modern patterns of isotopes in precipitation and surface waters. We present a large river water data set (1,340 samples) covering most parts of the Tibetan Plateau to characterize the spatial variability and controlling factors of their isotopic compositions. Compared with the amount-weighted mean annual oxygen isotopic values of precipitation, we conclude that river water is a good substitute for isotopic studies of precipitation in the high flat (e.g., elevation >3,300 m) interior of the Tibetan Plateau in the mean annual timescale. We construct, for the first time based on field data, contour maps of isotopic variations of meteoric waters (δ18 O, δD and d-excess) on the Tibetan Plateau. In the marginal mountainous regions of the Plateau, especially the southern through eastern margins, the δ18 O and δD values of river waters decrease with increasing mean catchment elevation, which can be modeled as a Rayleigh distillation process. However, in the interior of the Plateau, northward increasing trends in δ18 O and δD values are pronounced and present robust linear relations; d-excess values are lower than the marginal regions and exhibit distinct contrasts between the eastern (8 ‰- 12 ‰) and western (<8‰) Plateau. We suggest that these isotopic features of river waters in the interior of the Tibetan Plateau result from the combined effects of: 1) mixing of different moisture sources transported by the South Asian monsoon and Westerly winds; 2) contribution of moisture from recycled surface water; and 3) sub-cloud evaporation. We further provide a sub-cloud evaporation modified Rayleigh distillation and mixing model to simulate the isotopic variations in the western Plateau. Results of this work suggest that stable isotope-based paleoaltimetry studies are reliable in the southern through eastern Plateau margins; towards the central-northern Plateau, this method cannot be applied without additional constraints and/or large uncertainties.
Seasonally-varying mechanical impact of the Tibetan Plateau on the South Asian Monsoon
NASA Astrophysics Data System (ADS)
Bordoni, S.; Park, H.
2011-12-01
Land-sea thermal contrast and heating of the atmosphere over the Tibetan Plateau have long been considered the main driving of the large-scale South-Asian monsoon circulation. Recent works (e.g., Bordoni and Schneider 2008, Boos and Kuang 2010) have challenged this prevailing view, by suggesting that monsoons can occur even in the absence of zonal inhomogeneities and that the Tibetan Plateau might be acting more as a mechanical obstacle to the circulation than as its main heat source. Elucidating the role of land-sea contrast and of the Tibetan Plateau on the current South Asian climate is the first step to understand how this might have evolved on geological time-scales and how it might respond to changing radiative forcing and land surface conditions in future decades. In this work, we examine the mechanical impact of the Tibetan Plateau on the South Asian monsoon in a hierarchy of atmospheric general circulations models. During the pre-monsoon season and monsoon onset (April-May-June), when westerlies over the southern Tibetan Plateau are still strong, the Tibetan Plateau triggers early monsoon rainfall downstream. The downstream moist convection is accompanied by strong monsoonal low-level winds and subsidence upstream of the Tibetan Plateau. In experiments where the Tibetan Plateau is removed, monsoon onset occurs about one month later, but the circulation becomes progressively stronger and reaches comparable strength during the mature phase. During the mature and decaying phase of the monsoon (July-August-September), when westerlies over the southern Tibetan Plateau almost disappear, the strength of the monsoon circulation is largely unaffected by the presence of the Plateau. A dry dynamical core with east-west oriented narrow mountains in the subtropics consistently simulates downstream convergence with background zonal westerlies over the mountain range. In a moist atmosphere, the mechanically-driven downstream convergence is expected to be associated with significant moisture convergence. We argue that the mechanically-driven downstream convergence in the presence of the Tibetan Plateau is responsible for the zonally asymmetric monsoon onset, particularly over the Bay of Bengal and South China.
Playing jigsaw with large igneous provinces - a plate-tectonic reconstruction of Ontong Java Nui
NASA Astrophysics Data System (ADS)
Hochmuth, Katharina; Gohl, Karsten; Uenzelmann-Neben, Gabriele; Werner, Reinhard
2015-04-01
Ontong Java Nui is a Cretaceous large igneous province (LIP), which was rifted apart into various smaller plateaus shortly after its emplacement around 125 Ma in the central Pacific. It incorporated the Ontong Java Plateau, the Hikurangi Plateau and the Manihiki Plateau as well as multiple smaller fragments, which have been subducted. Its size has been estimated to be approximately 0.8% of the Earth's surface. A volcanic edifice of this size has potentially had a great impact on the environment such as its CO2 release. The break-up of the "Super"-LIP is poorly constrained, because the break-up and subsequent seafloor spreading occurred within the Cretaceous Quiet Period. The Manihiki Plateau is presumably the centerpiece of this "Super"-LIP and shows by its margins and internal fragmentation that its tectonic and volcanic activity is related to the break-up of Ontong Java Nui. By incorporating two new seismic refraction/wide-angle reflection lines across two of the main sub-plateaus of the Manihiki Plateau, we can classify the break-up modes of the individual margins of the Manihiki Plateau. The Western Plateaus experienced crustal stretching due to the westward motion of the Ontong Java Plateau. The High Plateau shows sharp strike-slip movements at its eastern boundary towards an earlier part of Ontong Java Nui, which is has been subducted, and a rifted margin with a strong volcanic overprint at its southern edges towards the Hikurangi Plateau. These observations allow us a re-examination of the conjugate margins of the Hikurangi Plateau and the Ontong Java Plateau. The repositioning of the different plateaus leads to the conclusion that Ontong Java Nui was larger (~1.2% of the Earth's surface at emplacement) than previously anticipated. We use these finding to improve the plate tectonic reconstruction of the Cretaceous Pacific and to illuminate the role of the LIPs within the plate tectonic circuit in the western and central Pacific.
Prehistoric human settling on the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Chen, Fahu; Zhang, Dongju; Dong, Guanghui
2017-04-01
When and where did human first settle down on the Tibetan Plateau is under hot debate among archaeologist, anthropologists, geneticist and paleo-geographers. Based on systematic archaeological, chronological and archaeo-botanical studies of 53 sites in Northeastern Tibetan Plateau, we propose that agriculture facilitated human permanent settlement on the Tibetan Plateau initially since 5200 years ago below 2500 masl and since 3600 years ago up to around 4000 masl, possibly assisted by domesticated animals (Chen et al. 2015). By studying hand- and footprints in Chusang, Meyer et al. (2016) argue that hunter-gatherers permanently occupied central Tibetan Plateau in early Holocene without the help of agriculture. However, we think the limited hand- and footprints evidence found in Chusang could indicate no more than prehistoric hunter-gatherers presence on the remote central Tibetan Plateau in the early Holocene. In addition, by reviewing all the published archaeological data, we propose that human migrated to the Tibetan Plateau from the last Deglacial period to late Holocene mainly from North China via Yellow River valley and its tributary valleys in the Northeastern Tibetan Plateau (NETP). This migration is constituted of four stages (Upper Paleolithic, Epi-Paleolithic, Neolithic and Bronze Age) when human adapted to the high altitude environment and climate change with different strategies and techniques. Particularly, the prevail of microlithic technology in North China provoked hunter-gatherers' first visit to the NETP in relatively ameliorated last Deglacial period, and the the quick development of millet farming and subsequent mixed barley-wheat farming and sheep herding facilitated farmers and herders permanently settled in Tibetan Plateau, even above 3000 masl, during mid- and late Holocene. References: Chen et al., 2015. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 BP. Science, 347: 248-250. Meyer et al., 2016. Permanent human occupation of the central Tibetan Plateau in early Holocene. Science, 355: 64-67.
The Caribbean-Colombian cretaceous igneous province: The internal anatomy of an oceanic plateau
NASA Astrophysics Data System (ADS)
Kerr, Andrew C.; Tarney, John; Marriner, Giselle F.; Nivia, Alvaro; Saunders, Andrew D.
The Late Cretaceous Caribbean—Colombian igneous province is one of the world's best-exposed examples of a plume-derived oceanic plateau. The buoyancy of the plateau (resulting from residual heat and thick crust) kept it from being totally subducted as it moved eastward with the Farallon Plate from its site of generation in the eastern Pacific and encountered a destructive plate margin. In effect, the plateau makes up much of the Caribbean Plate; it is well exposed around its margins, but more so in accreted terranes in western Colombia (including the well-known Gorgona komatiites and Bolívar mafic/ultramafic cumulates). Compositionally, the lavas of the plateau form three groups: (a) basalts, picrites, and komatiites with light-rare-earth-element (LREE)-depleted chondrite-normalised patterns; (b) basalts with LREE-enriched patterns; and (c) basalts with essentially flat REE patterns (the most dominant type) similar to many of the basalts from the Ontong Java Plateau. These three types demonstrate the heterogeneous nature of the mantle plume source region. The picrites and the komatiites seem to lie nearer the base of the plateau than the more homogeneous basalts; thus, the more MgO-rich melts may have been erupted before large magma chambers had a chance to develop. A reconstructed crustal cross section through the plateau consists of dunitic and pyroxenitic cumulates near the base which are overlain by layered olivine-rich gabbros and more isotropic gabbros. The lowermost eruptive sequence comprises compositionally heterogeneous picrites/komatiites overlain by more homogeneous pillow basalts. Spectacular hornblende-plagioclase veins cut the Bolívar assemblage and these may represent local partial melts of the plateau's base as it was thrusted onto the continent. Subduction-related batholiths and extrusive rocks found around the margin of the province are of two distinct ages; one suite represents pre-plateau collision-related volcanism whereas the other suite, slightly younger than the plateau, may be associated with obduction.
Land-surface evolution at the continental time-scale: An example from interior Western Australia
NASA Astrophysics Data System (ADS)
Mabbutt, J. A.
1988-12-01
The interior plateau of Western Australia in the Wiluna—Meekatharra area is in part an exhumed pre-Permian surface of low relief and to that extent of Gondwana age. A lateritic duricrust on interfluvial remnants of an Old Plateau surface is probably the outcome of several cycles of weathering and stripping, rather than of a single geomorphic episode. Landforms above the Old Plateau have maintained their relief during this circumdenudation and there is no regional evidence of their isolation by major escarpment retreat. A New Plateau surface has extended by stripping of saprolite and is an etchplain, as also is the Old Plateau under the genesis postulated. The New Plateau cycle was initiated by general drainage rejuvenation whilst lateritic weathering still continued, but its extension was halted through increasing climatic aridity, probably during the Miocene.
Loess Thickness Variations Across the Loess Plateau of China
NASA Astrophysics Data System (ADS)
Zhu, Yuanjun; Jia, Xiaoxu; Shao, Mingan
2018-07-01
The soil thickness is very important for investigating and modeling soil-water processes, especially on the Loess Plateau of China with its deep loess deposit and limited water resources. A digital elevation map (DEM) of the Loess Plateau and neighborhood analysis in ArcGIS software were used to generate a map of loess thickness, which was then validated by 162 observations across the plateau. The generated loess thickness map has a high resolution of 100 m × 100 m. The map indicates that loess is thick in the central part of the plateau and becomes gradually shallower in the southeast and northwest directions. The areas near mountains and river basins have the shallowest loess deposit. The mean loess thickness is the deepest in the zones with 400-600-mm precipitation and decreases gradually as precipitation varies beyond this range. Our validation indicates that the map just slightly overestimates loess thickness and is reliable. The loess thickness is mostly between 0 and 350 m in the Loess Plateau region. The calculated mean loess thickness is 105.7 m, with the calibrated value being 92.2 m over the plateau exclusive of the mountain areas. Our findings provide very basic data of loess thickness and demonstrate great progress in mapping the loess thickness distribution for the plateau, which are valuable for a better study of soil-water processes and for more accurate estimations of soil water, carbon, and solute reservoirs in the Loess Plateau of China.
Loess Thickness Variations Across the Loess Plateau of China
NASA Astrophysics Data System (ADS)
Zhu, Yuanjun; Jia, Xiaoxu; Shao, Mingan
2018-01-01
The soil thickness is very important for investigating and modeling soil-water processes, especially on the Loess Plateau of China with its deep loess deposit and limited water resources. A digital elevation map (DEM) of the Loess Plateau and neighborhood analysis in ArcGIS software were used to generate a map of loess thickness, which was then validated by 162 observations across the plateau. The generated loess thickness map has a high resolution of 100 m × 100 m. The map indicates that loess is thick in the central part of the plateau and becomes gradually shallower in the southeast and northwest directions. The areas near mountains and river basins have the shallowest loess deposit. The mean loess thickness is the deepest in the zones with 400-600-mm precipitation and decreases gradually as precipitation varies beyond this range. Our validation indicates that the map just slightly overestimates loess thickness and is reliable. The loess thickness is mostly between 0 and 350 m in the Loess Plateau region. The calculated mean loess thickness is 105.7 m, with the calibrated value being 92.2 m over the plateau exclusive of the mountain areas. Our findings provide very basic data of loess thickness and demonstrate great progress in mapping the loess thickness distribution for the plateau, which are valuable for a better study of soil-water processes and for more accurate estimations of soil water, carbon, and solute reservoirs in the Loess Plateau of China.