Sample records for kernel cake pkc

  1. Palm kernel cake extract exerts hepatoprotective activity in heat-induced oxidative stress in chicken hepatocytes.

    PubMed

    Oskoueian, Ehsan; Abdullah, Norhani; Idrus, Zulkifli; Ebrahimi, Mahdi; Goh, Yong Meng; Shakeri, Majid; Oskoueian, Armin

    2014-10-02

    Palm kernel cake (PKC), the most abundant by-product of oil palm industry is believed to contain bioactive compounds with hepatoprotective potential. These compounds may serve as hepatoprotective agents which could help the poultry industry to alleviate adverse effects of heat stress on liver function in chickens. This study was performed to evaluate the hepatoprotective potential of PKC extract in heat-induced oxidative stress in chicken hepatocytes. The nature of the active metabolites and elucidation of the possible mechanism involved were also investigated. The PKC extract possessed free radical scavenging activity with values significantly (p < 0.05) lower than silymarin as the reference antioxidant. Heat-induced oxidative stress in chicken hepatocyte impaired the total protein, lipid peroxidation and antioxidant enzymes activity significantly (p < 0.05). Treatment of heat-induced hepatocytes with PKC extract (125 μg/ml) and silymarin as positive control increased these values significantly (p < 0.05). The real time PCR and western blot analyses revealed the significant (p < 0.05) up-regulation of oxidative stress biomarkers including TNF-like, IFN-γ and IL-1β genes; NF-κB, COX-2, iNOS and Hsp70 proteins expression upon heat stress in chicken hepatocytes. The PKC extract and silymarin were able to alleviate the expression of all of these biomarkers in heat-induced chicken hepatocytes. The gas chromatography-mass spectrometry analysis of PKC extract showed the presence of fatty acids, phenolic compounds, sugar derivatives and other organic compounds such as furfural which could be responsible for the observed hepatoprotective activity. Palm kernel cake extract could be a potential agent to protect hepatocytes function under heat induced oxidative stress.

  2. Extraction process of palm kernel cake as a source of mannan for feed additive on poultry diet

    NASA Astrophysics Data System (ADS)

    Tafsin, M.; Hanafi, N. D.; Yusraini, E.

    2017-05-01

    Palm Kernel Cake (PKC) is a by-product of palm kernel oil extraction and found in large quantity in Indonesia. The inclusion of PKC on poultry diet are limited due to some nutritional problems such as anti-nutritional properties (mannan). On the other hand, mannan containing polysaccharides play in various biological functions particularly in enhancing the immune response and to control pathogen in poultry. The research objective to find out the extraction process of PKC and conducted at animal nutrition and Feed Science Laboratory, Agricultural Faculty, University of Sumatera Utara. Various extraction methode were used in this experiment, including fraction analysis used 7 number sieves, and followed by water and acetic acid extraction. The result indicated that PKC had different particle size according to sieve size and dominated by particle size 850 um. The analysis of sugar content indicated that each particle size had different characteristic on treatment by hot water extraction. The particle size 180—850 um had higher sugar content than coarse PKC (2000—3000 um). The total sugar content were recovered vary between 0.9—3,2% from PKC were extracted. Treatment grinding method followed by hot water extraction (100—120 °C, 1 h) increased total sugar content than previous treatments and reach 8% from PKC were extracted. Utilisation acetic acid decreased the total amount of total sugar from PKC were extracted. It is concluded that treatment by hot temperature (110—120 °C) for 1 h show highest yield to extract sugar from PKC.

  3. Enhanced mannan-derived fermentable sugars of palm kernel cake by mannanase-catalyzed hydrolysis for production of biobutanol.

    PubMed

    Shukor, Hafiza; Abdeshahian, Peyman; Al-Shorgani, Najeeb Kaid Nasser; Hamid, Aidil Abdul; Rahman, Norliza A; Kalil, Mohd Sahaid

    2016-10-01

    Catalytic depolymerization of mannan composition of palm kernel cake (PKC) by mannanase was optimized to enhance the release of mannan-derived monomeric sugars for further application in acetone-butanol-ethanol (ABE) fermentation. Efficiency of enzymatic hydrolysis of PKC was studied by evaluating effects of PKC concentration, mannanase loading, hydrolysis pH value, reaction temperature and hydrolysis time on production of fermentable sugars using one-way analysis of variance (ANOVA). The ANOVA results revealed that all factors studied had highly significant effects on total sugar liberated (P<0.01). The optimum conditions for PKC hydrolysis were 20% (w/v) PKC concentration, 5% (w/w) mannanase loading, hydrolysis pH 4.5, 45°C temperature and 72h hydrolysis time. Enzymatic experiments in optimum conditions revealed total fermentable sugars of 71.54±2.54g/L were produced including 67.47±2.51g/L mannose and 2.94±0.03g/L glucose. ABE fermentation of sugar hydrolysate by Clostridium saccharoperbutylacetonicum N1-4 resulted in 3.27±1.003g/L biobutanol. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Production of ethanol and feed by high dry matter hydrolysis and fermentation of palm kernel press cake.

    PubMed

    Jørgensen, Henning; Sanadi, Anand R; Felby, Claus; Lange, Niels Erik Krebs; Fischer, Morten; Ernst, Steffen

    2010-05-01

    Palm kernel press cake (PKC) is a residue from palm oil extraction presently only used as a low protein feed supplement. PKC contains 50% fermentable hexose sugars present in the form of glucan and mainly galactomannan. This makes PKC an interesting feedstock for processing into bioethanol or in other biorefinery processes. Using a combination of mannanase, beta-mannosidase, and cellulases, it was possible without any pretreatment to hydrolyze PKC at solid concentrations of 35% dry matter with mannose yields up to 88% of theoretical. Fermentation was tested using Saccharomyces cerevisiae in both a separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) setup. The hydrolysates could readily be fermented without addition of nutrients and with average fermentation yields of 0.43 +/- 0.02 g/g based on consumed mannose and glucose. Employing SSF, final ethanol concentrations of 70 g/kg was achieved in 216 h, corresponding to an ethanol yield of 70% of theoretical or 200 g ethanol/kg PKC. Testing various enzyme mixtures revealed that including cellulases in combination with mannanases significantly improved ethanol yields. Processing PKC to ethanol resulted in a solid residue enriched in protein from 17% to 28%, a 70% increase, thereby potentially making a high-protein containing feed supplement.

  5. Effect of feeding palm oil by-products based diets on total bacteria, cellulolytic bacteria and methanogenic archaea in the rumen of goats.

    PubMed

    Abubakr, Abdelrahim; Alimon, Abdul Razak; Yaakub, Halimatun; Abdullah, Norhani; Ivan, Michael

    2014-01-01

    Rumen microorganisms are responsible for digestion and utilization of dietary feeds by host ruminants. Unconventional feed resources could be used as alternatives in tropical areas where feed resources are insufficient in terms of quality and quantity. The objective of the present experiment was to evaluate the effect of diets based on palm oil (PO), decanter cake (DC) or palm kernel cake (PKC) on rumen total bacteria, selected cellulolytic bacteria, and methanogenic archaea. Four diets: control diet (CD), decanter cake diet (DCD), palm kernel cake diet (PKCD) and CD plus 5% PO diet (CPOD) were fed to rumen cannulated goats and rumen samples were collected at the start of the experimental diets (day 0) and on days 4, 6, 8, 12, 18, 24 and 30 post dietary treatments. Feeding DCD and PKCD resulted in significantly higher (P<0.05) DNA copy number of total bacteria, Fibrobacter succinogenes, Ruminococcus flavefeciens, and Ruminococcus albus. Rumen methanogenic archaea was significantly lower (P<0.05) in goats fed PKCD and CPOD and the trend showed a severe reduction on days 4 and 6 post experimental diets. In conclusion, results indicated that feeding DCD and PKC increased the populations of cellulolytic bacteria and decreased the density of methanogenic archaea in the rumen of goats.

  6. Black Ink of Activated Carbon Derived From Palm Kernel Cake (PKC)

    NASA Astrophysics Data System (ADS)

    Selamat, M. H.; Ahmad, A. H.

    2009-06-01

    Recycling the waste from natural plant to produce useful end products will benefit many industries and help preserve the environment. The research reported in this paper is an investigation on the use of the natural waste of palm kernel cake (PKC) to produce carbon residue as a black carbon for pigment source by using pyrolysis process. The activated carbons (AC) is produced in powder form using ball milling process. Rheological spectra in ink is one of quality control process in determining its performance properties. Findings from this study will help expand the scientific knowledge-base for black ink production and formulation base on PKC. Various inks with different weight percentage compositions of AC will be made and tested against its respective rheological properties in order to determine ideal ink printing system. The items in the formulation used comprised of organic and bio-waste materials with added additive to improve the quality of the black ink. Modified Polyurethane was used as binder. The binder's properties highlighted an ideal vehicle to be applied for good black ink opacity performance. The rheological behaviour is a general foundation for ink characterization where the wt% of AC-PKC resulted in different pseudoplastic behaviors, including the Newtonian behavior. The result found that Newtonian field was located in between 2 wt% and 10 wt% of AC-PKC composition with binder. Mass spectroscopy results shown that the carbon content in PKC is high and very suitable for black performance. In the ageing test, the pigment of PKC perform fairly according to the standard pigment of Black carbon (CB) of ferum oxide pigment. The contact angle for substrate's wettability of the ink system shown a good angle proven to be a water resistive coating on paper subtrates; an advantage of the PKC ink pigment performance.

  7. Simultaneous determination of multi-mycotoxins in palm kernel cake (PKC) using liquid chromatography-tandem mass spectrometry (LC-MS/MS).

    PubMed

    Yibadatihan, S; Jinap, S; Mahyudin, N A

    2014-01-01

    Palm kernel cake (PKC) is a useful source of protein and energy for livestock. Recently, it has been used as an ingredient in poultry feed. Mycotoxin contamination of PKC due to inappropriate handling during production and storage has increased public concern about economic losses and health risks for poultry and humans. This concern has accentuated the need for the evaluation of mycotoxins in PKC. Furthermore, a method for quantifying mycotoxins in PKC has so far not been established. The aims of this study were therefore (1) to develop a method for the simultaneous determination of mycotoxins in PKC and (2) to validate and verify the method. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method using an electrospray ionisation interface (ESI) in both positive- and negative-ion modes was developed for the simultaneous determination of aflatoxins (AFB₁, AFB₂, AFG₁ and AFG₂), ochratoxin A (OTA), zearalenone (ZEA), deoxynivalenol (DON), fumonisins (FB₁ and FB₂), T-2 and HT-2 toxin in PKC. An optimum method using a 0.2 ml min⁻¹ flow rate, 0.2% formic acid in aqueous phase, 10% organic phase at the beginning and 90% organic phase at the end of the gradient was achieved. The extraction of mycotoxins was performed using a solvent mixture of acetonitrile-water-formic acid (79:20:1, v/v) without further clean-up. The mean recoveries of mycotoxins in spiked PKC samples ranged from 81% to 112%. Limits of detection (LODs) and limits of quantification (LOQs) for mycotoxin standards and PKC samples ranged from 0.02 to 17.5 μg kg⁻¹ and from 0.06 to 58.0 μg kg⁻¹, respectively. Finally, the newly developed method was successfully applied to PKC samples. The results illustrated the fact that the method is efficient and accurate for the simultaneous multi-mycotoxin determination in PKC, which can be ideal for routine analysis.

  8. Effect of Feeding Palm Oil By-Products Based Diets on Total Bacteria, Cellulolytic Bacteria and Methanogenic Archaea in the Rumen of Goats

    PubMed Central

    Abubakr, Abdelrahim; Alimon, Abdul Razak; Yaakub, Halimatun; Abdullah, Norhani; Ivan, Michael

    2014-01-01

    Rumen microorganisms are responsible for digestion and utilization of dietary feeds by host ruminants. Unconventional feed resources could be used as alternatives in tropical areas where feed resources are insufficient in terms of quality and quantity. The objective of the present experiment was to evaluate the effect of diets based on palm oil (PO), decanter cake (DC) or palm kernel cake (PKC) on rumen total bacteria, selected cellulolytic bacteria, and methanogenic archaea. Four diets: control diet (CD), decanter cake diet (DCD), palm kernel cake diet (PKCD) and CD plus 5% PO diet (CPOD) were fed to rumen cannulated goats and rumen samples were collected at the start of the experimental diets (day 0) and on days 4, 6, 8, 12, 18, 24 and 30 post dietary treatments. Feeding DCD and PKCD resulted in significantly higher (P<0.05) DNA copy number of total bacteria, Fibrobacter succinogenes, Ruminococcus flavefeciens, and Ruminococcus albus. Rumen methanogenic archaea was significantly lower (P<0.05) in goats fed PKCD and CPOD and the trend showed a severe reduction on days 4 and 6 post experimental diets. In conclusion, results indicated that feeding DCD and PKC increased the populations of cellulolytic bacteria and decreased the density of methanogenic archaea in the rumen of goats. PMID:24756125

  9. In Ovo and dietary administration of oligosaccharides extracted from palm kernel cake influence general health of pre- and neonatal broiler chicks.

    PubMed

    Faseleh Jahromi, Mohammad; Shokryazdan, Parisa; Idrus, Zulkifli; Ebrahimi, Rohollah; Liang, Juan Boo

    2017-01-01

    Palm kernel cake (PKC) is the main byproduct from the palm oil industry in several tropical countries that contains considerable amounts of oligosaccharide. We earlier demonstrated beneficial prebiotic effects of oligosaccharides extract of PKC (OligoPKC) in starter and finisher broiler birds. This study was envisaged to elucidate the effects of in ovo and/or oral administration of the OligoPKC on prenatal and post-hatched broiler chicks. A total of 140 broiler (Cobb500) eggs were randomly divided into two groups (n = 70 each), and on day 12 of incubation, eggs in one group received in ovo injection of 0.1 mL (containing 20 mg) of OligoPKC, while those in the other group received 0.1 mL of saline (placebo) solution. Of these in ovo placebo or OligoPKC injected eggs, after hatching, six chicks from each group were sampled for day-one analysis, while 48 chicks from each group were randomly allocated to two dietary regimes involving either no feeding or feeding of OligoPKC through basal diet for a 14 days experiment forming the experimental groups as: (i) saline-injected (Control, C), (ii) OligoPKC-injected (PREBovo), (iii) saline-injected, but fed 1% OligoPKC (PREBd), and (iv) OligoPKC-injected and also 1% OligoPKC (PREBovo+d). In ovo injection of prebiotic OligoPKC had no effect on body weight and serum immunoglobulins concentrations of day old chicks, except for IgG, which was increased significantly (P<0.05). Body weight and feed conversion ratio of 14 days old chicks were neither affected by in ovo injection nor feeding of OligoPKC. However, populations of cecal total bacteria and major beneficial bacteria of the chicks were markedly enhanced by feeding of OligoPKC (PREBd and PREBovo+d > C and PREBovo), but lesser influenced by in ovo OligoPKC injection. Irrespective of its prior in ovo exposure, chicks fed OligoPKC diets had lower population of pathogenic bacteria. Overall serum immunoglobulin status of birds was improved by feeding of OligoPKC but in ovo OligoPKC injection had minor effect on that. In most cases, in ovo OligoPKC injection and feeding of OligoPKC reduced the expression of nutrient transporters in the intestine and improved antioxidant capacity of liver and serum. It is concluded that in ovo injection of OligoPKC increased IgG production and antioxidant capacity in serum and liver of prenatal chicks and had limited carrying-over effects on the post-hatched chicks comparing to the supplementary feeding of OligoPKC.

  10. Cytoprotective effect of palm kernel cake phenolics against aflatoxin B1-induced cell damage and its underlying mechanism of action.

    PubMed

    Oskoueian, Ehsan; Abdullah, Norhani; Zulkifli, Idrus; Ebrahimi, Mahdi; Karimi, Ehsan; Goh, Yong Meng; Oskoueian, Armin; Shakeri, Majid

    2015-10-30

    Palm kernel cake (PKC), a by-product of the palm oil industry is abundantly available in many tropical and subtropical countries. The product is known to contain high levels of phenolic compounds that may impede the deleterious effects of fungal mycotoxins. This study focused on the evaluation of PKC phenolics as a potential cytoprotective agent towards aflatoxin B1 (AFB1)-induced cell damage. The phenolic compounds of PKC were obtained by solvent extraction and the product rich in phenolic compounds was labeled as phenolic-enriched fraction (PEF). This fraction was evaluated for its phenolic compounds composition. The antioxidant activity of PEF was determined by using 1,1-diphenyl-2-picryl-hydrazil scavenging activity, ferric reducing antioxidant power, inhibition of ß-carotene bleaching, and thiobarbituric acid reactive substances assays. The cytotoxicity assay and molecular biomarkers analyses were performed to evaluate the cytoprotective effects of PEF towards aflatoxin B1 (AFB1)-induced cell damage. The results showed that PEF contained gallic acid, pyrogallol, vanillic acid, caffeic acid, syringic acid, epicatechin, catechin and ferulic acid. The PEF exhibited free radical scavenging activity, ferric reducing antioxidant power, ß-carotene bleaching inhibition and thiobarbituric acid reactive substances inhibition. The PEF demonstrated cytoprotective effects in AFB1-treated chicken hepatocytes by reducing the cellular lipid peroxidation and enhancing antioxidant enzymes production. The viability of AFB1-treated hepatocytes was improved by PEF through up-regulation of oxidative stress tolerance genes and down-regulation of pro-inflammatory and apoptosis associated genes. The present findings supported the proposition that the phenolic compounds present in PKC could be a potential cytoprotective agent towards AFB1 cytotoxicity.

  11. Nutrition quality of extraction mannan residue from palm kernel cake on brolier chicken

    NASA Astrophysics Data System (ADS)

    Tafsin, M.; Hanafi, N. D.; Kejora, E.; Yusraini, E.

    2018-02-01

    This study aims to find out the nutrient residue of palm kernel cake from mannan extraction on broiler chicken by evaluating physical quality (specific gravity, bulk density and compacted bulk density), chemical quality (proximate analysis and Van Soest Test) and biological test (metabolizable energy). Treatment composed of T0 : palm kernel cake extracted aquadest (control), T1 : palm kernel cake extracted acetic acid (CH3COOH) 1%, T2 : palm kernel cake extracted aquadest + mannanase enzyme 100 u/l and T3 : palm kernel cake extracted acetic acid (CH3COOH) 1% + enzyme mannanase 100 u/l. The results showed that mannan extraction had significant effect (P<0.05) in improving the quality of physical and numerically increase the value of crude protein and decrease the value of NDF (Neutral Detergent Fiber). Treatments had highly significant influence (P<0.01) on the metabolizable energy value of palm kernel cake residue in broiler chickens. It can be concluded that extraction with aquadest + enzyme mannanase 100 u/l yields the best nutrient quality of palm kernel cake residue for broiler chicken.

  12. Electrochemical Immunosensor for the Detection of Aflatoxin B₁ in Palm Kernel Cake and Feed Samples.

    PubMed

    Azri, Farah Asilah; Selamat, Jinap; Sukor, Rashidah

    2017-11-30

    Palm kernel cake (PKC) is the solid residue following oil extraction of palm kernels and useful to fatten animals either as a single feed with only minerals and vitamins supplementation, or mixed with other feedstuffs such as corn kernels or soy beans. The occurrence of mycotoxins (aflatoxins, ochratoxins, zearalenone, and fumonisins) in feed samples affects the animal's health and also serves as a secondary contamination to humans via consumption of eggs, milk and meats. Of these, aflatoxin B₁ (AFB₁) is the most toxically potent and a confirmed carcinogen to both humans and animals. Methods such as High Performance Liquid Chromatography (HPLC) and Liquid Chromatography-Mass Spectrometry (LC-MS/MS) are common in the determination of mycotoxins. However, these methods usually require sample pre-treatment, extensive cleanup and skilled operator. Therefore, in the present work, a rapid method of electrochemical immunosensor for the detection of AFB₁ was developed based on an indirect competitive enzyme-linked immunosorbent assay (ELISA). Multi-walled carbon nanotubes (MWCNT) and chitosan (CS) were used as the electrode modifier for signal enhancement. N -ethyl- N '-(3-dimethylaminopropyl)-carbodiimide (EDC) and N -hydroxysuccinimide (NHS) activated the carboxyl groups at the surface of nanocomposite for the attachment of AFB₁-BSA antigen by covalent bonding. An indirect competitive reaction occurred between AFB₁-BSA and free AFB₁ for the binding site of a fixed amount of anti-AFB₁ antibody. A catalytic signal based on horseradish peroxidase (HRP) in the presence of hydrogen peroxide (H₂O₂) and 3,3',5,5'-tetramethylbenzidine (TMB) mediator was observed as a result of attachment of the secondary antibody to the immunoassay system. As a result, the reduction peak of TMB (Ox) was measured by using differential pulse voltammetry (DPV) analysis. Based on the results, the electrochemical surface area was increased from 0.396 cm² to 1.298 cm² due to the electrode modification with MWCNT/CS. At the optimal conditions, the working range of the electrochemical immunosensor was from 0.0001 to 10 ng/mL with limit of detection of 0.1 pg/mL. Good recoveries were obtained for the detection of spiked feed samples (PKC, corn kernels, soy beans). The developed method could be used for the screening of AFB₁ in real samples.

  13. Performance and meat quality characteristics of broilers fed fermented mixture of grated cassava roots and palm kernel cake as replacement for maize.

    PubMed

    Chukwukaelo, A K; Aladi, N O; Okeudo, N J; Obikaonu, H O; Ogbuewu, I P; Okoli, I C

    2018-03-01

    Performance and meat quality characteristics of broilers fed fermented mixture of grated cassava roots and palm kernel cake (FCP-mix) as a replacement for maize were studied. One hundred and eighty (180), 7-day-old broiler chickens were divided into six groups of 30 birds, and each group replicated thrice. Six experimental diets were formulated for both starter and finisher stages with diets 1 and 6 as controls. Diet 1 contained maize whereas diet 6 contained a 1:1 mixture of cassava root meal (CRM) and palm kernel cake (PKC). In diets 2, 3, 4, and 5, the FCP-mix replaced maize at the rate of 25, 50, 75, and 100%, respectively. Each group was assigned to one experimental diet in a completely randomized design. The proximate compositions of the diets were evaluated. Live weight, feed intake, feed conversion ratio (FCR), carcass weight, and sensory attributes of the meats were obtained from each replicate and data obtained was analyzed statistically. The results showed that live weight, average daily weight gain (ADWG), average daily feed intake (ADFI), and FCR of birds on treatment diets were better than those on the control diets (Diets 1 and 6). The feed cost per kilogram weight gained decreased with inclusion levels of FCP-mix. Birds on diet 1 recorded significantly (p < 0.05) higher dressing percentage than those on the other five treatments. The sensory attributes of the chicken meats were not significantly (p > 0.05) affected by the inclusion of FCP-mix in the diets. FCP-mix is a suitable substitute for maize in broiler diet at a replacement level of up to 100% for best live weight, carcass weight yield, and meat quality.

  14. Valorization of By-Products from Palm Oil Mills for the Production of Generic Fermentation Media for Microbial Oil Synthesis.

    PubMed

    Tsouko, Erminda; Kachrimanidou, Vasiliki; Dos Santos, Anderson Fragoso; do Nascimento Vitorino Lima, Maria Eduarda; Papanikolaou, Seraphim; de Castro, Aline Machado; Freire, Denise Maria Guimarães; Koutinas, Apostolis A

    2017-04-01

    This study demonstrates the production of a generic nutrient-rich feedstock using by-product streams from palm oil production that could be used as a substitute for commercial fermentation supplements. Solid-state fermentations of palm kernel cake (PKC) and palm-pressed fiber (PPF) were conducted in tray bioreactors and a rotating drum bioreactor by the fungal strain Aspergillus oryzae for the production of crude enzymes. The production of protease was optimized (319.3 U/g) at an initial moisture content of 55 %, when PKC was used as the sole substrate. The highest free amino nitrogen (FAN) production (5.6 mg/g) obtained via PKC hydrolysis using the crude enzymes produced via solid-state fermentation was achieved at 50 °C. Three initial PKC concentrations (48.7, 73.7, and 98.7 g/L) were tested in hydrolysis experiments, leading to total Kjeldahl nitrogen to FAN conversion yields up to 27.9 %. Sequential solid-state fermentation followed by hydrolysis was carried out in the same rotating drum bioreactor, leading to the production of 136.7 U/g of protease activity during fermentation and 196.5 mg/L of FAN during hydrolysis. Microbial oil production was successfully achieved with the oleaginous yeast strain Lipomyces starkeyi DSM 70296 cultivated on the produced PKC hydrolysate mixed with commercial carbon sources, including glucose, xylose, mannose, galactose, and arabinose.

  15. Detoxification of Jatropha curcas kernel cake by a novel Streptomyces fimicarius strain.

    PubMed

    Wang, Xing-Hong; Ou, Lingcheng; Fu, Liang-Liang; Zheng, Shui; Lou, Ji-Dong; Gomes-Laranjo, José; Li, Jiao; Zhang, Changhe

    2013-09-15

    A huge amount of kernel cake, which contains a variety of toxins including phorbol esters (tumor promoters), is projected to be generated yearly in the near future by the Jatropha biodiesel industry. We showed that the kernel cake strongly inhibited plant seed germination and root growth and was highly toxic to carp fingerlings, even though phorbol esters were undetectable by HPLC. Therefore it must be detoxified before disposal to the environment. A mathematic model was established to estimate the general toxicity of the kernel cake by determining the survival time of carp fingerling. A new strain (Streptomyces fimicarius YUCM 310038) capable of degrading the total toxicity by more than 97% in a 9-day solid state fermentation was screened out from 578 strains including 198 known strains and 380 strains isolated from air and soil. The kernel cake fermented by YUCM 310038 was nontoxic to plants and carp fingerlings and significantly promoted tobacco plant growth, indicating its potential to transform the toxic kernel cake to bio-safe animal feed or organic fertilizer to remove the environmental concern and to reduce the cost of the Jatropha biodiesel industry. Microbial strain profile essential for the kernel cake detoxification was discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Carcass characteristics and meat quality of lambs that are fed diets with palm kernel cake.

    PubMed

    da Conceição Dos Santos, Rozilda; Gomes, Daiany Iris; Alves, Kaliandra Souza; Mezzomo, Rafael; Oliveira, Luis Rennan Sampaio; Cutrim, Darley Oliveira; Sacramento, Samara Bianca Moraes; de Moura Lima, Elizanne; de Carvalho, Francisco Fernando Ramos

    2017-06-01

    The aim was to evaluate carcass characteristics, cut yield, and meat quality in lambs that were fed different inclusion levels of palm kernel cake. Forty-five woolless castrated male Santa Inês crossbred sheep with an initial average body weight of 23.16±0.35 kg were used. The experimental design was a completely randomized design with five treatments, with palm kernel cake in the proportions of 0.0%, 7.5%, 15.0%, 22.5%, and 30.0% with nine replications per treatment. After slaughter, the gastrointestinal tract was weighed when it was full, after which it was then emptied. The heart, liver, kidney, pancreas perirenal fat were also collected and weighed. The carcass was split into two identical longitudinal halves and weighed to determine the quantitative and qualitative characteristics. The empty body weight, carcass weight and yield, and fat thickness decreased linearly (p<0.05) as a function of palm kernel inclusion in the diet. There was no difference (p>0.05) for the rib eye area of animals that were fed palm kernel cake. There was a reduction in the commercial cut weight (p<0.05), except for the neck weight. The weights of the heart, liver, kidney fat, small, and large intestine, and gastrointestinal tract decreased. Nevertheless, the gastrointestinal content was greater for animals that were fed increasing levels of cake. For the other organs and viscera, differences were not verified (p>0.05). The sarcomere length decreased linearly (p<0.05), although an effect of the inclusion of palm kernel cake was not observed in other meat quality variables. It is worth noting that the red staining intensity, indicated as A, had a tendency to decrease (p = 0.050). The inclusion of palm kernel cake up to 30% in the diet does not lead to changes in meat quality characteristics, except for sarcomere length. Nevertheless, carcass quantitative characteristics decrease with the use of palm kernel cake.

  17. Carcass characteristics and meat quality of lambs that are fed diets with palm kernel cake

    PubMed Central

    da Conceição dos Santos, Rozilda; Gomes, Daiany Iris; Alves, Kaliandra Souza; Mezzomo, Rafael; Oliveira, Luis Rennan Sampaio; Cutrim, Darley Oliveira; Sacramento, Samara Bianca Moraes; de Moura Lima, Elizanne; de Carvalho, Francisco Fernando Ramos

    2017-01-01

    Objective The aim was to evaluate carcass characteristics, cut yield, and meat quality in lambs that were fed different inclusion levels of palm kernel cake. Methods Forty-five woolless castrated male Santa Inês crossbred sheep with an initial average body weight of 23.16±0.35 kg were used. The experimental design was a completely randomized design with five treatments, with palm kernel cake in the proportions of 0.0%, 7.5%, 15.0%, 22.5%, and 30.0% with nine replications per treatment. After slaughter, the gastrointestinal tract was weighed when it was full, after which it was then emptied. The heart, liver, kidney, pancreas perirenal fat were also collected and weighed. The carcass was split into two identical longitudinal halves and weighed to determine the quantitative and qualitative characteristics. Results The empty body weight, carcass weight and yield, and fat thickness decreased linearly (p<0.05) as a function of palm kernel inclusion in the diet. There was no difference (p>0.05) for the rib eye area of animals that were fed palm kernel cake. There was a reduction in the commercial cut weight (p<0.05), except for the neck weight. The weights of the heart, liver, kidney fat, small, and large intestine, and gastrointestinal tract decreased. Nevertheless, the gastrointestinal content was greater for animals that were fed increasing levels of cake. For the other organs and viscera, differences were not verified (p>0.05). The sarcomere length decreased linearly (p<0.05), although an effect of the inclusion of palm kernel cake was not observed in other meat quality variables. It is worth noting that the red staining intensity, indicated as A, had a tendency to decrease (p = 0.050). Conclusion The inclusion of palm kernel cake up to 30% in the diet does not lead to changes in meat quality characteristics, except for sarcomere length. Nevertheless, carcass quantitative characteristics decrease with the use of palm kernel cake. PMID:27857029

  18. Utilization of wild apricot kernel press cake for extraction of protein isolate.

    PubMed

    Sharma, P C; Tilakratne, B M K S; Gupta, Anil

    2010-12-01

    The kernels of apricot (Prunus armeniaca) stones are utilized for extraction of oil. The press cake left after extraction of oil was evaluated for preparation of protein isolate for its use in food supplementation. The apricot kernels contained 45-50% oil, 23.6-26.2% protein, 4.2% ash, 5.42% crude fibre, 8.2% carbohydrates and 90 mg HCN/100 g kernels, while press cake obtained after oil extraction contained 34.5% crude protein, which can be utilized for preparation of protein isolates. The method standardized for extraction of protein isolate broadly consisted of boiling the press cake with water in 1:20 (w/v) ratio for 1 h, raising pH to 8 and stirring for a few min followed by filtration, coagulation at pH 4 prior to sieving and pressing of coagulant for overnight and drying followed by grinding which resulted in extraction of about 71.3% of the protein contained in the press cake. The protein isolate contained 68.8% protein, 6.4% crude fat, 0.8% ash, 2.2% crude fibre and 12.7% carbohydrates. Thus the apricot kernel press cake can be utilized for preparation of protein isolate to improve the nutritional status of many food formulations.

  19. Palm kernel cake obtained from biodiesel production in diets for goats: feeding behavior and physiological parameters.

    PubMed

    de Oliveira, R L; de Carvalho, G G P; Oliveira, R L; Tosto, M S L; Santos, E M; Ribeiro, R D X; Silva, T M; Correia, B R; de Rufino, L M A

    2017-10-01

    The objective of this study was to evaluate the effects of the inclusion of palm kernel (Elaeis guineensis) cake in diets for goats on feeding behaviors, rectal temperature, and cardiac and respiratory frequencies. Forty crossbred Boer male, non-castrated goats (ten animals per treatment), with an average age of 90 days and an initial body weight of 15.01 ± 1.76 kg, were used. The goats were fed Tifton 85 (Cynodon spp.) hay and palm kernel supplemented at the rates of 0, 7, 14, and 21% of dry matter (DM). The feeding behaviors (rumination, feeding, and idling times) were observed for three 24-h periods. DM and neutral detergent fiber (NDF) intake values were estimated as the difference between the total DM and NDF contents of the feed offered and the total DM and NDF contents of the orts. There was no effect of palm kernel cake inclusion in goat diets on DM intake (P > 0.05). However, palm kernel cake promoted a linear increase (P < 0.05) in NDF intake and time spent feeding and ruminating (min/day; %; period) and a linear decrease in time spent idling. Palm kernel cakes had no effects (P > 0.05) on the chewing, feeding, and rumination efficiency (DM and NDF) or on physiological variables. The use up to 21% palm kernel cake in the diet of crossbred Boer goats maintained the feeding behaviors and did not change the physiological parameters of goats; therefore, its use is recommended in the diet of these animals.

  20. The utilization of endopower β in commercial feed which contains palm kernel cake on performance of broiler chicken

    NASA Astrophysics Data System (ADS)

    Purba, S. S. A.; Tafsin, M.; Ginting, S. P.; Khairani, Y.

    2018-02-01

    Palm kernel cake is an agricultural waste that can be used as raw material in the preparation of poultry rations. The design used was Completely Randomized Design (CRD) with 5 treatments and 4 replications. Level endopower β used 0 % (R0), 0.02% (R1), 0.04% (R2) and 0.06% (R3). The results showed that R0a and R0b were significantly different from R3 in terms of diet consumption, body weight gain and the conversion ratio The utilization of endopower β in commercial diets containing palm kernel cake in broilers can increase body weight gain, feed consumption, improve feed use efficiency and even energy. It is concluded that utilization endpower β improve performances of broiler chicken fed by diet containing palm kernel cake.

  1. Deproteinated palm kernel cake-derived oligosaccharides: A preliminary study

    NASA Astrophysics Data System (ADS)

    Fan, Suet Pin; Chia, Chin Hua; Fang, Zhen; Zakaria, Sarani; Chee, Kah Leong

    2014-09-01

    Preliminary study on microwave-assisted hydrolysis of deproteinated palm kernel cake (DPKC) to produce oligosaccharides using succinic acid was performed. Three important factors, i.e., temperature, acid concentration and reaction time, were selected to carry out the hydrolysis processes. Results showed that the highest yield of DPKC-derived oligosaccharides can be obtained at a parameter 170 °C, 0.2 N SA and 20 min of reaction time.

  2. Utilization of expeller pressed partially defatted peanut cake meal in the preparation of bakery products.

    PubMed

    Chavan, J K; Shinde, V S; Kadam, S S

    1991-07-01

    Expeller pressed partially defatted peanut cake obtained from skin-free kernels was used as graded supplements in the preparation of breads, sweet buns, cupcakes and yeast-raised doughnuts. Incorporation of cake meal lowered the specific volume and sensory properties, but improved the fresh weight, water holding capacity and protein content of the products. The products containing 10% peanut cake meal were found to be acceptable.

  3. Aflatoxin and nutrient contents of peanut collected from local market and their processed foods

    NASA Astrophysics Data System (ADS)

    Ginting, E.; Rahmianna, A. A.; Yusnawan, E.

    2018-01-01

    Peanut is succeptable to aflatoxin contamination and the sources of peanut as well as processing methods considerably affect aflatoxin content of the products. Therefore, the study on aflatoxin and nutrient contents of peanut collected from local market and their processed foods were performed. Good kernels of peanut were prepared into fried peanut, pressed-fried peanut, peanut sauce, peanut press cake, fermented peanut press cake (tempe) and fried tempe, while blended kernels (good and poor kernels) were processed into peanut sauce and tempe and poor kernels were only processed into tempe. The results showed that good and blended kernels which had high number of sound/intact kernels (82,46% and 62,09%), contained 9.8-9.9 ppb of aflatoxin B1, while slightly higher level was seen in poor kernels (12.1 ppb). However, the moisture, ash, protein, and fat contents of the kernels were similar as well as the products. Peanut tempe and fried tempe showed the highest increase in protein content, while decreased fat contents were seen in all products. The increase in aflatoxin B1 of peanut tempe prepared from poor kernels > blended kernels > good kernels. However, it averagely decreased by 61.2% after deep-fried. Excluding peanut tempe and fried tempe, aflatoxin B1 levels in all products derived from good kernels were below the permitted level (15 ppb). This suggests that sorting peanut kernels as ingredients and followed by heat processing would decrease the aflatoxin content in the products.

  4. Phorbol esters seed content and distribution in Latin American provenances of Jatropha curcas L.: potential for biopesticide, food and feed.

    PubMed

    Bueso, Francisco; Sosa, Italo; Chun, Roldan; Pineda, Renan

    2016-01-01

    Jatropha curcas L. (Jatropha) is believed to have originated from Mexico and Central America. So far, characterization efforts have focused on Asia, Africa and Mexico. Non-toxic, low phorbol ester (PE) varieties have been found only in Mexico. Differences in PE content in seeds and its structural components, crude oil and cake from Jatropha provenances cultivated in Central and South America were evaluated. Seeds were dehulled, and kernels were separated into tegmen, cotyledons and embryo for PE quantitation by RP-HPLC. Crude oil and cake PE content was also measured. No phenotypic departures in seed size and structure were observed among Jatropha cultivated in Central and South America compared to provenances from Mexico, Asia and Africa. Cotyledons comprised 96.2-97.5 %, tegmen 1.6-2.4 % and embryo represented 0.9-1.4 % of dehulled kernel. Total PE content of all nine provenances categorized them as toxic. Significant differences in kernel PE content were observed among provenances from Mexico, Central and South America (P < 0.01), being Mexican the highest (7.6 mg/g) and Cabo Verde the lowest (2.57 mg/g). All accessions had >95 % of PEs concentrated in cotyledons, 0.5-3 % in the tegmen and 0.5-1 % in the embryo. Over 60 % of total PE in dehulled kernels accumulated in the crude oil, while 35-40 % remained in the cake after extraction. Low phenotypic variability in seed physical, structural traits and PE content was observed among provenances from Latin America. Very high-PE provenances with potential as biopesticide were found in Central America. No PE-free, edible Jatropha was found among provenances currently cultivated in Central America and Brazil that could be used for human consumption and feedstock. Furthermore, dehulled kernel structural parts as well as its crude oil and cake contained toxic PE levels.

  5. Effect of feeding palm oil by-products based diets on muscle fatty acid composition in goats.

    PubMed

    Abubakr, Abdelrahim; Alimon, Abdul Razak; Yaakub, Halimatun; Abdullah, Norhani; Ivan, Michael

    2015-01-01

    The present study aims to evaluate the effects of feeding palm oil by-products based diets on different muscle fatty acid profiles in goats. Thirty-two Cacang × Boer goats were randomly assigned to four dietary treatments: (1) control diet (CD), (2) 80% decanter cake diet (DCD), (3) 80% palm kernel cake diet (PKCD) and (4) CD plus 5% palm oil (PO) supplemented diet (CPOD). After 100 days of feeding, four goats from each group were slaughtered and longissimus dorsi (LD), infraspinatus (IS) and biceps femoris (BF) were sampled for analysis of fatty acids. Goats fed the PKCD had higher (P<0.05) concentration of lauric acid (C12:0) than those fed the other diets in all the muscles tested. Compared to the other diets, the concentrations of palmitic acid (C16:0) and stearic acid (C18:0) were lower (P<0.05) and that of linoleic acid (C18:2 n-6) was higher (P<0.05) in the muscles from goats fed the CD. It was concluded that palm kernel cake and decanter cake can be included in the diet of goats up to 80% with more beneficial than detrimental effects on the fatty acid profile of their meat.

  6. New cost-effective bioconversion process of palm kernel cake into bioinsecticides based on Beauveria bassiana and Isaria javanica.

    PubMed

    do Nascimento Silva, Jaqueline; Mascarin, Gabriel Moura; Dos Santos Gomes, Isabel Cristina; Tinôco, Ricardo Salles; Quintela, Eliane Dias; Dos Reis Castilho, Leda; Freire, Denise Maria Guimarães

    2018-03-01

    The present study aimed to add value to palm oil by-products as substrates to efficiently produce conidia of Beauveria bassiana and Isaria javanica (Hypocreales: Cordycipitaceae) for biological control of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae), through a solid-state fermentation process using palm kernel cake and palm fiber as nutrient source and solid matrix, respectively. The optimum culture conditions yielded high concentrations of viable conidia after air-drying, when the fungi were grown on palm kernel cake (B. bassiana 7.65 × 10 9 and I. javanica 2.91 × 10 9  conidia g -1 dry substrate) after 6 days under optimal growth conditions set to 60% substrate moisture and 32 °C. Both fungal strains exhibited high efficacy against third-instar whitefly nymphs, inducing mortality up to 62.9 and 56.6% by B. bassiana and I. javanica, respectively, assessed after 9 days post-application in a screenhouse. Furthermore, we noted that insect mortality was strongly correlated with high atmospheric moisture, while B. bassiana appeared to require shorter accumulative hours under high moisture to kill whitefly nymphs compared to I. javanica. Our results underpin a feasible and cost-effective mass production method for aerial conidia, using palm kernel as the main substrate in order to produce efficacious fungal bioinsecticides against an invasive whitefly species in Brazil. Finally, our fermentation process may offer a sustainable and cost-effective means to produce eco-friendly mycoinsecticides, using an abundant agro-industrial by-product from Brazil that will ultimately assist in the integrated management of agricultural insect pests.

  7. Improvement of efficiency of oil extraction from wild apricot kernels by using enzymes.

    PubMed

    Bisht, Tejpal Singh; Sharma, Satish Kumar; Sati, Ramesh Chandra; Rao, Virendra Kumar; Yadav, Vijay Kumar; Dixit, Anil Kumar; Sharma, Ashok Kumar; Chopra, Chandra Shekhar

    2015-03-01

    An experiment was conducted to evaluate and standardize the protocol for enhancing recovery of oil and quality from cold pressed wild apricot kernels by using various enzymes. Wild apricot kernels were ground into powder in a grinder. Different lots of 3 kg powdered kernel were prepared and treated with different concentrations of enzyme solutions viz. Pectazyme (Pectinase), Mashzyme (Cellulase) and Pectazyme + Mashzyme. Kernel powder mixed with enzyme solutions were kept for 2 h at 50(±2) °C temperature for enzymatic treatment before its use for oil extraction through oil expeller. Results indicate that use of enzymes resulted in enhancement of oil recovery by 9.00-14.22 %. Maximum oil recovery was observed at 0.3-0.4 % enzyme concentration for both the enzymes individually, as well as in combination. All the three enzymatic treatments resulted in increasing oil yield. However, with 0.3 % (Pectazyme + Mashzyme) combination, maximum oil recovery of 47.33 % could be observed against were 33.11 % in control. The oil content left (wasted) in the cake and residue were reduced from 11.67 and 11.60 % to 7.31 and 2.72 % respectively, thus showing a high increase in efficiency of oil recovery from wild apricot kernels. Quality characteristics indicate that the oil quality was not adversely affected by enzymatic treatment. It was concluded treatment of powdered wild apricot kernels with 0.3 % (Pectazyme + Mashzyme) combination was highly effective in increasing oil recovery by 14.22 % without adversely affecting the quality and thus may be commercially used by the industry for reducing wastage of highly precious oil in the cake.

  8. Effects of neem seed derivatives on behavioral and physiological responses of the Cosmopolites sordidus (Coleoptera: Curculionidae).

    PubMed

    Musabyimana, T; Saxena, R C; Kairu, E W; Ogol, C P; Khan, Z R

    2001-04-01

    Both in a choice and multi-choice laboratory tests, fewer adults of the banana root borer, Cosmopolites sordidus (Germar), settled under the corms of the susceptible banana "Nakyetengu" treated with 5% aqueous extract of neem seed powder or cake or 2.5 and 5% emulsified neem oil than on water-treated corms. Feeding damage by larvae on banana pseudostem discs treated with 5% extract of powdered neem seed, kernel, or cake, or 5% emulsified neem oil was significantly less than on untreated discs. The larvae took much longer to locate feeding sites, initiate feeding and bore into pseudostem discs treated with extract of powdered neem seed or kernel. Few larvae survived when confined for 14 d on neem-treated banana pseudostems; the survivors weighed two to four times less than the larvae developing on untreated pseudostems. Females deposited up to 75% fewer eggs on neem-treated corms. In addition, egg hatching was reduced on neem-treated corms. The higher the concentration of neem materials the more severe the effect.

  9. Determination of amino acid contents of manketti seeds (Schinziophyton rautanenii) by pre-column derivatisation with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate and RP-HPLC.

    PubMed

    Gwatidzo, Luke; Botha, Ben M; McCrindle, Rob I

    2013-12-01

    Defatted kernel flour from manketti seed kernels (Schinziophyton rautanenii) is an underutilised natural product. The plant grows in the wild, on sandy soils little used for agriculture in Southern Africa. The kernels are rich in protein and have a great potential for improving nutrition. The protein content and amino acid profile of manketti seed kernel were studied, using a new analytical method, in order to evaluate the nutritional value. The crude protein content of the press cake and defatted kernel flour was 29.0% and 67.5%, respectively. Leucine and arginine were found to be the most abundant essential and non-essential amino acids, respectively. The seed kernel contained 4.77 g leucine and 12.34 g arginine/100 g of defatted seed kernel flour. Methionine and proline were the least abundant essential and non-essential amino acids to with 0.23 g methionine and 0.36 g proline/100 g of defatted seed kernel flour, respectively. Validation of the pre-column derivatisation procedure with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) for the determination of amino acids was carried out. The analytical parameters were determined: linearity (0.0025-0.20 mM), accuracy of the derivatisation procedure: 86.7-109.8%, precision (method: 0.72-5.04%, instrumental: 0.14-1.88% and derivatisation: 0.15-2.94% and 0.41-4.32% for intraday and interday, respectively). Limits of detection and quantification were 6.80-157 mg/100 g and 22.7-523 mg/100 g kernel flour, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Characterization and mosquitocidal potential of neem cake-synthesized silver nanoparticles: genotoxicity and impact on predation efficiency of mosquito natural enemies.

    PubMed

    Chandramohan, Balamurugan; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Madhiyazhagan, Pari; Chandirasekar, Ramachandran; Dinesh, Devakumar; Kumar, Palanisamy Mahesh; Kovendan, Kalimuthu; Suresh, Udaiyan; Subramaniam, Jayapal; Rajaganesh, Rajapandian; Aziz, Al Thabiani; Syuhei, Ban; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Nicoletti, Marcello; Wei, Hui; Benelli, Giovanni

    2016-03-01

    Mosquitoes (Diptera: Culicidae) serve as important vectors for a wide number of parasites and pathogens of huge medical and veterinary importance. Aedes aegypti is a primary dengue vector in tropical and subtropical urban areas. There is an urgent need to develop eco-friendly mosquitocides. In this study, silver nanoparticles (AgNP) were biosynthesized using neem cake, a by-product of the neem oil extraction from the seed kernels of Azadirachta indica. AgNP were characterized using a variety of biophysical methods, including UV-vis spectrophotometry, FTIR, SEM, EDX, and XRD analyses. Furthermore, the neem cake extract and the biosynthesized AgNP were tested for acute toxicity against larvae and pupae of the dengue vector Ae. aegypti. LC50 values achieved by the neem cake extract ranged from 106.53 (larva I) to 235.36 ppm (pupa), while AgNP LC50 ranged from 3.969 (larva I) to 8.308 ppm (pupa). In standard laboratory conditions, the predation efficiency of a Carassius auratus per day was 7.9 (larva II) and 5.5 individuals (larva III). Post-treatment with sub-lethal doses of AgNP, the predation efficiency was boosted to 9.2 (larva II) and 8.1 individuals (larva III). The genotoxic effect of AgNP was studied on C. auratus using the comet assay and micronucleus frequency test. DNA damage was evaluated on peripheral erythrocytes sampled at different time intervals from the treatment; experiments showed no significant damages at doses below 12 ppm. Overall, this research pointed out that neem cake-fabricated AgNP are easy to produce, stable over time, and can be employed at low dosages to reduce populations of dengue vectors, with moderate detrimental effects on non-target mosquito natural enemies.

  11. Fouling mechanism in ultrafiltration of vegetable oil

    NASA Astrophysics Data System (ADS)

    Ariono, D.; Wardani, A. K.; Widodo, S.; Aryanti, Putu T. P.; Wenten, I. G.

    2018-03-01

    Energy efficient and cost-effective separation of impurities from vegetable oil is a great challenge for vegetable oil processing. Several technologies have been developed, including pressurized membrane, chemical treatment, and chemical free separation methods. Among those technologies, ultrafiltration membrane is one of the most attractive processes with low operating pressure and temperature. In this work, hydrophobic polypropylene ultrafiltration membrane was used to remove impurities such as non-dissolved solids from palm kernel oil. Unfortunately, the hydrophobicity of polypropylene membrane leads to significant impact on the reduction of permeate flux due to membrane fouling. This fouling is associated with the accumulation of substances on the membrane surface or within the membrane pores. For better understanding, fouling mechanism that occurred during palm kernel oil ultrafiltration using hydrophobic polypropylene membrane was investigated. The effect of trans-membrane pressure and feed temperature on fouling mechanism was also studied. The result showed that cake formation became the dominant fouling mechanism up to 50 min operation of palm kernel oil ultrafiltration. Furthermore, the fouling mechanism was not affected by the increase of trans-membrane pressure and feed temperature.

  12. Numerical estimation of deformation energy of selected bulk oilseeds in compression loading

    NASA Astrophysics Data System (ADS)

    Demirel, C.; Kabutey, A.; Herak, D.; Gurdil, G. A. K.

    2017-09-01

    This paper aimed at the determination of the deformation energy of some bulk oilseeds or kernels namely oil palm, sunflower, rape and flax in linear pressing applying the trapezoidal rule which is characterized by the area under the force and deformation curve.The bulk samples were measured at the initial pressing height of 60 mm with the vessel diameter of 60 mm where they were compressed under the universal compression machine at a maximum force of 200 kN and speed of 5 mm/min.Based on the compression test, the optimal deformation energy for recovering the oil was observed at a force of 163 kN where there was no seed/kernel cake ejection in comparison to the initial maximum force used particularly for rape and flax bulk oilseeds.This information is needed for analyzing the energy efficiency of the non-linear compression process involving a mechanical screw press or expeller.

  13. Coconut (Cocos nucifera L.: Arecaceae): in health promotion and disease prevention.

    PubMed

    DebMandal, Manisha; Mandal, Shyamapada

    2011-03-01

    Coconut, Cocos nucifera L., is a tree that is cultivated for its multiple utilities, mainly for its nutritional and medicinal values. The various products of coconut include tender coconut water, copra, coconut oil, raw kernel, coconut cake, coconut toddy, coconut shell and wood based products, coconut leaves, coir pith etc. Its all parts are used in someway or another in the daily life of the people in the traditional coconut growing areas. It is the unique source of various natural products for the development of medicines against various diseases and also for the development of industrial products. The parts of its fruit like coconut kernel and tender coconut water have numerous medicinal properties such as antibacterial, antifungal, antiviral, antiparasitic, antidermatophytic, antioxidant, hypoglycemic, hepatoprotective, immunostimulant. Coconut water and coconut kernel contain microminerals and nutrients, which are essential to human health, and hence coconut is used as food by the peoples in the globe, mainly in the tropical countries. The coconut palm is, therefore, eulogised as 'Kalpavriksha' (the all giving tree) in Indian classics, and thus the current review describes the facts and phenomena related to its use in health and disease prevention. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  14. PKC-ε pseudosubstrate and catalytic activity are necessary for membrane delivery during IgG-mediated phagocytosis

    PubMed Central

    Wood, Tiffany R.; Chow, Rachel Y.; Hanes, Cheryl M.; Zhang, Xuexin; Kashiwagi, Kaori; Shirai, Yasuhito; Trebak, Mohamed; Loegering, Daniel J.; Saito, Naoaki; Lennartz, Michelle R.

    2013-01-01

    In RAW 264.7 cells [1], PKC-ε regulates FcγR-mediated phagocytosis. BMDM behave similarly; PKC-ε concentrates at phagosomes and internalization are reduced in PKC-ε−/− cells. Two questions were asked: what is the role of PKC-ε? and what domains are necessary for PKC-ε concentration? Function was studied using BMDM and frustrated phagocytosis. On IgG surfaces, PKC-ε−/− macrophages spread less than WT. Patch-clamping revealed that the spreading defect is a result of the failure of PKC-ε−/− macrophages to add membrane. The defect is specific for FcγR ligation and can be reversed by expression of full-length (but not the isolated RD) PKC-ε in PKC-ε−/− BMDM. Thus, PKC-ε function in phagocytosis requires translocation to phagosomes and the catalytic domain. The expression of chimeric PKC molecules in RAW cells identified the εPS as necessary for PKC-ε targeting. When placed into (nonlocalizing) PKC-δ, εPS was sufficient for concentration, albeit to a lesser degree than intact PKC-ε. In contrast, translocation of δ(εPSC1B) resembled that of WT PKC-ε. Thus, εPS and εC1B cooperate for optimal phagosome targeting. Finally, cells expressing εK437W were significantly less phagocytic than their PKC-ε-expressing counterparts, blocked at the pseudopod-extension phase. In summary, we have shown that εPS and εC1B are necessary and sufficient for targeting PKC-ε to phagosomes, where its catalytic activity is required for membrane delivery and pseudopod extension. PMID:23670290

  15. Interleukin-1 beta induced synthesis of protein kinase C-delta and protein kinase C-epsilon in EL4 thymoma cells: possible involvement of phosphatidylinositol 3-kinase.

    PubMed

    Varley, C L; Royds, J A; Brown, B L; Dobson, P R

    2001-01-01

    We present evidence here that the proinflammatory cytokine, interleukin-1 beta (IL-1 beta) stimulates a significant increase in protein kinase C (PKC)-epsilon and PKC-delta protein levels and increases PKC-epsilon, but not PKC-delta, transcripts in EL4 thymoma cells. Incubation of EL4 cells with IL-1 beta induced protein synthesis of PKC-epsilon (6-fold increase) by 7 h and had a biphasic effect on PKC-delta levels with peaks at 4 h (2-fold increase) and 24 h (4-fold increase). At the level of mRNA, PKC-epsilon, but not PKC-delta levels, were induced after incubation of EL4 cells with IL-1 beta. The signalling mechanisms utilized by IL-1 beta to induce the synthesis of these PKC isoforms were investigated. Two phosphatidylinositol (PI) 3-kinase-specific inhibitors, wortmannin and LY294002, inhibited IL-1 beta-induced synthesis of PKC-epsilon. However, the PI 3-kinase inhibitors had little effect on the IL-1 beta-induced synthesis of PKC-delta in these cells. Our results indicate that IL-1 beta induced both PKC-delta and PKC-epsilon expression over different time periods. Furthermore, our evidence suggests that IL-1 beta induction of PKC-epsilon, but not PKC-delta, may occur via the PI 3-kinase pathway. Copyright 2001 S. Karger AG, Basel

  16. Protein Kinase C as Regulator of Vascular Smooth Muscle Function and Potential Target in Vascular Disorders.

    PubMed

    Ringvold, H C; Khalil, R A

    2017-01-01

    Vascular smooth muscle (VSM) plays an important role in maintaining vascular tone. In addition to Ca 2+ -dependent myosin light chain (MLC) phosphorylation, protein kinase C (PKC) is a major regulator of VSM function. PKC is a family of conventional Ca 2+ -dependent α, β, and γ, novel Ca 2+ -independent δ, ɛ, θ, and η, and atypical ξ, and ι/λ isoforms. Inactive PKC is mainly cytosolic, and upon activation it undergoes phosphorylation, maturation, and translocation to the surface membrane, the nucleus, endoplasmic reticulum, and other cell organelles; a process facilitated by scaffold proteins such as RACKs. Activated PKC phosphorylates different substrates including ion channels, pumps, and nuclear proteins. PKC also phosphorylates CPI-17 leading to inhibition of MLC phosphatase, increased MLC phosphorylation, and enhanced VSM contraction. PKC could also initiate a cascade of protein kinases leading to phosphorylation of the actin-binding proteins calponin and caldesmon, increased actin-myosin interaction, and VSM contraction. Increased PKC activity has been associated with vascular disorders including ischemia-reperfusion injury, coronary artery disease, hypertension, and diabetic vasculopathy. PKC inhibitors could test the role of PKC in different systems and could reduce PKC hyperactivity in vascular disorders. First-generation PKC inhibitors such as staurosporine and chelerythrine are not very specific. Isoform-specific PKC inhibitors such as ruboxistaurin have been tested in clinical trials. Target delivery of PKC pseudosubstrate inhibitory peptides and PKC siRNA may be useful in localized vascular disease. Further studies of PKC and its role in VSM should help design isoform-specific PKC modulators that are experimentally potent and clinically safe to target PKC in vascular disease. © 2017 Elsevier Inc. All rights reserved.

  17. Partitioning-defective Protein 6 (Par-6) Activates Atypical Protein Kinase C (aPKC) by Pseudosubstrate Displacement*

    PubMed Central

    Graybill, Chiharu; Wee, Brett; Atwood, Scott X.; Prehoda, Kenneth E.

    2012-01-01

    Atypical protein kinase C (aPKC) controls cell polarity by modulating substrate cortical localization. Aberrant aPKC activity disrupts polarity, yet the mechanisms that control aPKC remain poorly understood. We used a reconstituted system with purified components and a cultured cell cortical displacement assay to investigate aPKC regulation. We find that aPKC is autoinhibited by two domains within its NH2-terminal regulatory half, a pseudosubstrate motif that occupies the kinase active site, and a C1 domain that assists in this process. The Par complex member Par-6, previously thought to inhibit aPKC, is a potent activator of aPKC in our assays. Par-6 and aPKC interact via PB1 domain heterodimerization, and this interaction activates aPKC by displacing the pseudosubstrate, although full activity requires the Par-6 CRIB-PDZ domains. We propose that, along with its previously described roles in controlling aPKC localization, Par-6 allosterically activates aPKC to allow for high spatial and temporal control of substrate phosphorylation and polarization. PMID:22544755

  18. Two novel atypical PKC inhibitors; ACPD and DNDA effectively mitigate cell proliferation and epithelial to mesenchymal transition of metastatic melanoma while inducing apoptosis

    PubMed Central

    Ratnayake, Wishrawana S.; Apostolatos, André H.; Ostrov, David A.; Acevedo-Duncan, Mildred

    2017-01-01

    Atypical protein kinase Cs (aPKC) are involved in cell cycle progression, tumorigenesis, cell survival and migration in many cancers. We believe that aPKCs play an important role in cell motility of melanoma by regulating cell signaling pathways and inducing epithelial to mesenchymal transition (EMT). We have investigated the effects of two novel aPKC inhibitors; 2-acetyl-1,3-cyclopentanedione (ACPD) and 3,4-diaminonaphthalene-2,7-disulfonic acid (DNDA) on cell proliferation, apoptosis, migration and invasion of two malignant melanoma cell lines compared to normal melanocytes. Molecular docking data suggested that both inhibitors specifically bind to protein kinase C-zeta (PKC-ζ) and PKC-iota (PKC-ι) and kinase activity assays were carried out to confirm these observations. Both inhibitors decreased the levels of total and phosphorylated PKC-ζ and PKC-ι. Increased levels of E-cadherin, RhoA, PTEN and decreased levels of phosphorylated vimentin, total vimentin, CD44, β-catenin and phosphorylated AKT in inhibitor treated cells. This suggests that inhibition of both PKC-ζ and PKC-ι using ACPD and DNDA downregulates EMT and induces apoptosis in melanoma cells. We also carried out PKC-ι and PKC-ζ directed siRNA treatments to prove the above observations. Immunoprecipitation data suggested an association between PKC-ι and vimentin and PKC-ι siRNA treatments confirmed that PKC-ι activates vimentin by phosphorylation. These results further suggested that PKC-ι is involved in signaling pathways which upregulate EMT and which can be effectively suppressed using ACPD and DNDA. Our results summarize that melanoma cells proliferate via aPKC/AKT/NF-κB mediated pathway while inducing the EMT via PKC-ι/Par6/RhoA pathway. Overall, results show that aPKCs are essential for melanoma progression and metastasis, suggesting that ACPD and DNDA can be effectively used as potential therapeutic drugs for melanoma by inhibiting aPKCs. PMID:29048609

  19. Protein kinase C-ε activation induces mitochondrial dysfunction and fragmentation in renal proximal tubules

    PubMed Central

    Bakajsova, Diana; Samarel, Allen M.

    2011-01-01

    PKC-ε activation mediates protection from ischemia-reperfusion injury in the myocardium. Mitochondria are a subcellular target of these protective mechanisms of PKC-ε. Previously, we have shown that PKC-ε activation is involved in mitochondrial dysfunction in oxidant-injured renal proximal tubular cells (RPTC; Nowak G, Bakajsova D, Clifton GL Am J Physiol Renal Physiol 286: F307–F316, 2004). The goal of this study was to examine the role of PKC-ε activation in mitochondrial dysfunction and to identify mitochondrial targets of PKC-ε in RPTC. The constitutively active and inactive mutants of PKC-ε were overexpressed in primary cultures of RPTC using the adenoviral technique. Increases in active PKC-ε levels were accompanied by PKC-ε translocation to mitochondria. Sustained PKC-ε activation resulted in decreases in state 3 respiration, electron transport rate, ATP production, ATP content, and activities of complexes I and IV and F0F1-ATPase. Furthermore, PKC-ε activation increased mitochondrial membrane potential and oxidant production and induced mitochondrial fragmentation and RPTC death. Accumulation of the dynamin-related protein in mitochondria preceded mitochondrial fragmentation. Antioxidants blocked PKC-ε-induced increases in the oxidant production but did not prevent mitochondrial fragmentation and cell death. The inactive PKC-ε mutant had no effect on mitochondrial functions, morphology, oxidant production, and RPTC viability. We conclude that active PKC-ε targets complexes I and IV and F0F1-ATPase in RPTC. PKC-ε activation mediates mitochondrial dysfunction, hyperpolarization, and fragmentation. It also induces oxidant generation and cell death, but oxidative stress is not the mechanism of RPTC death. These results show that in contrast to protective effects of PKC-ε activation in cardiomyocytes, sustained PKC-ε activation is detrimental to mitochondrial function and viability in RPTC. PMID:21289057

  20. Activation of PKC{beta}{sub II} and PKC{theta} is essential for LDL-induced cell proliferation of human aortic smooth muscle cells via Gi-mediated Erk1/2 activation and Egr-1 upregulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heo, Kyung-Sun; Department of Pharmacy, Chungnam National University, Yuseong, Daejeon; Kim, Dong-Uk

    Native LDL may be a mitogenic stimulus of VSMC proliferation in lesions where endothelial disruption occurs. Recent studies have demonstrated that the mitogenic effects of LDL are accompanied by Erk1/2 activation via an unknown G-protein-coupled receptor (GPCR). In this article, we report that LDL translocated PKC{beta}{sub II} and PKC{theta} from cytosol to plasma membrane, and inhibition of PKC{beta}{sub II} and PKC{theta} decreased LDL effects via the deactivation of Erk1/2. Moreover, pertussis toxin, but not cholera toxin or heparin, inhibited LDL-induced translocation of PKC{beta}{sub II} and PKC{theta}, suggesting that Gi protein plays a role in LDL effects. Of LPA, S1P, andmore » LDL, whose signaling is conveyed via Gi/o proteins, only LDL induced translocation of PKC{beta}{sub II} and PKC{theta}. Inhibition of PKC{beta}{sub II} or PKC{theta}, as well as of Erk1/2 and GPCR, decreases LDL-induced upregulation of Egr-1, which is critical for cell proliferation. This is the first report, to our knowledge, that the participation of PKC{theta} in VSMC proliferation is unique.« less

  1. p65 fragments, homologous to the C2 region of protein kinase C, bind to the intracellular receptors for protein kinase C.

    PubMed

    Mochly-Rosen, D; Miller, K G; Scheller, R H; Khaner, H; Lopez, J; Smith, B L

    1992-09-08

    Receptors for activated protein kinase C (RACKs) have been isolated from the particulate cell fraction of heart and brain. We previously demonstrated that binding of protein kinase C (PKC) to RACKs requires PKC activators and is via a site on PKC that is distinct from the substrate binding site. Here, we examine the possibility that the C2 region in the regulatory domain of PKC is involved in binding of PKC to RACKs. The synaptic vesicle-specific p65 protein contains two regions homologous to the C2 region of PKC. We found that three p65 fragments, containing either one or two of these PKC C2 homologous regions, bound to highly purified RACKs. Binding of the p65 fragments and PKC to RACKs was mutually exclusive; preincubation of RACKs with the p65 fragments inhibited PKC binding, and preincubation of RACKs with PKC inhibited binding of the p65 fragments. Preincubation of the p65 fragments with a peptide resembling the PKC binding site on RACKs also inhibited p65 binding to RACKs, suggesting that PKC and p65 bind to the same or nearby regions on RACKs. Since the only homologous region between PKC and the p65 fragments is the C2 region, these results suggest that the C2 region on PKC contains at least part of the RACK binding site.

  2. Apoptosis of murine melanoma B16-BL6 cells induced by quercetin targeting mitochondria, inhibiting expression of PKC-alpha and translocating PKC-delta.

    PubMed

    Zhang, Xian-Ming; Chen, Jia; Xia, Yu-Gui; Xu, Qiang

    2005-03-01

    In our previous study, quercetin was found to induce apoptosis of murine melanoma B16-BL6 cells. The cellular and molecular mechanism of quercetin-induced apoptosis was investigated in the present study. Nuclear morphology was determined by fluorescence microscopy. DNA fragmentation was analyzed by electrophoresis and quantified by the diphenylamine method. The transmembrane potential of mitochondria was measured by flow cytometry. Bcl-2, Bcl-X(L), PKC-alpha, PKC-beta, and PKC-delta were detected by Western blotting. Caspase activity was determined spectrophotometrically. Quercetin induced the condensation of nuclei of B16-BL6 cells in a dose-dependent pattern as visualized by Hoechst 33258 and propidium iodide dying. Phorbol 12-myristate 13-acetate (PMA), a PKC activator, significantly enhanced apoptosis induced by quercetin, while doxorubicin, a PKC inhibitor, markedly decreased it. Both PMA and doxorubicin showed a consistent effect on the fragmentation of nuclear DNA caused by various dosages of quercetin. Quercetin dose-dependently led to loss of the mitochondrial membrane potential, which was also significantly reinforced or antagonized by PMA and doxorubicin, respectively. Moreover, PMA showed reinforcement, while doxorubicin showed significant antagonization, of the quercetin-mediated decrease in the expression of Bcl-2. Quercetin promoted caspase-3 activity in a dose-dependent manner, which was also regulated by PMA and doxorubicin with a pattern similar to that seen in their effect on apoptosis, mitochondrial membrane potential and Bcl-2 expression, but none of these were directly affected by PMA and doxorubicin. Free fatty acid and chlorpromazine, a PKC activator and inhibitor, respectively, did not interfere with these effects of quercetin. B16-BL6 cells expressed PKC-alpha, PKC-beta, and PKC-delta. Quercetin dose-dependently inhibited the expression of PKC-alpha but not that of PKC-beta and PKC-delta. Doxorubicin almost completely blocked the effect of quercetin on the expression of PKC-alpha. Quercetin was also involved in the translocation of PKC-delta from the cytosol to the nucleus. PMA enhanced the effect of quercetin on the translocation of PKC-delta. These results indicate that quercetin induced apoptosis of murine melanoma B16-BL6 cells by injuring their mitochondria, increasing the activity of caspase-3, inhibiting the expression of Bcl-2 and PKC-alpha, and inducing the translocation of PKC-delta. Doxorubicin inhibited these effects of quercetin by blocking the decreased expression of PKC-alpha induced by quercetin while PMA increased these effects by enhancing the translocation of PKC-delta induced by quercetin.

  3. Depigmenting effect of argan press-cake extract through the down-regulation of Mitf and melanogenic enzymes expression in B16 murine melanoma cells.

    PubMed

    Bourhim, Thouria; Villareal, Myra O; Gadhi, Chemseddoha; Hafidi, Abdellatif; Isoda, Hiroko

    2018-06-26

    Oil extraction from the kernels of Argania spinosa (L.) Skeels (Sapotaceae), an endemic tree of Morocco, produces argan press-cake (APC) used as a shampoo and to treat sprains, scabies, and for healing wounds. We have previously reported that argan oil has antimelanogenesis effect. Here, we determined if the by-product, APC, has melanogenesis regulatory effect using B16 murine melanoma cells. The effect of APC ethanol extract on cell proliferation and melanin content of B16 cells were measured, and to elucidate the mechanism involved, the expression level of melanogenic enzymes tyrosinase (TYR), dopachrome tautomerase (DCT), and tyrosinase-related protein 1 (TRP1) were determined and mRNA expression level of microphthalmia- associated transcription factor (Mitf) and Tyr genes were quantified. APC ethanol extract showed a significant melanin biosynthesis inhibitory effect on B16 cells in a time-dependent manner without cytotoxicity, which could be due to the decreased expression of TYR, TRP1, and DCT in a time-dependent manner. APC extract down regulated Mitf and Tyr. Decreased TRP1 and DCT levels could be due to post-translational modifications. These results suggest that APC extract may be used as a new source of natural whitening products and may be introduced as an important pharmacological agent for the treatment of hyperpigmentation disorders.

  4. Localization of aPKC lambda/iota and its interacting protein, Lgl2, is significantly associated with lung adenocarcinoma progression.

    PubMed

    Imamura, Naoko; Horikoshi, Yosuke; Matsuzaki, Tomohiko; Toriumi, Kentaro; Kitatani, Kanae; Ogura, Go; Masuda, Ryota; Nakamura, Naoya; Takekoshi, Susumu; Iwazaki, Masayuki

    2013-12-20

    Atypical protein kinase C lambda/iota (aPKC λ/ι) is expressed in several human cancers; however, the correlation between aPKC λ/ι localization and cancer progression in human lung adenocarcinoma (LAC) remains to be clarified. We found that patients with a high level of aPKC λ/ι expression in LAC had significantly shorter overall survival than those with a low level of aPKC λ/ι expression. In addition, localization of aPKC λ/ι in the apical membrane or at the cell-cell contact was associated with both lymphatic invasion and metastasis. The intercellular adhesion molecule, E-cadherin, was decreased in LACs with highly expressed aPKC λ/ι at the invasion site of tumor cells. This result suggested that the expression levels of aPKC λ/ι and E-cadherin reflect the progression of LAC. On double-immunohistochemical analysis, aPKC λ/ι and Lgl2, a protein that interacts with aPKC λ/ι, were co-localized within LACs. Furthermore, we found that Lgl2 bound the aPKC λ/ι-Par6 complex in tumor tissue by immune-cosedimentation analysis. Apical membrane localization of Lgl2 was correlated with lymphatic invasion and lymph node metastasis. These results thus indicate that aPKC λ/ι expression is altered upon the progression of LAC. This is also the first evidence to show aPKC λ/ι overexpression in LAC and demonstrates that aPKC λ/ι localization at the apical membrane or cell-cell contact is associated with lymphatic invasion and metastasis of the tumor.

  5. Atypical PKC, PKCλ/ι, activates β-secretase and increases Aβ1-40/42 and phospho-tau in mouse brain and isolated neuronal cells, and may link hyperinsulinemia and other aPKC activators to development of pathological and memory abnormalities in Alzheimer's disease.

    PubMed

    Sajan, Mini P; Hansen, Barbara C; Higgs, Margaret G; Kahn, C Ron; Braun, Ursula; Leitges, Michael; Park, Collin R; Diamond, David M; Farese, Robert V

    2018-01-01

    Hyperinsulinemia activates brain Akt and PKC-λ/ι and increases Aβ 1-40/42 and phospho-tau in insulin-resistant animals. Here, we examined underlying mechanisms in mice, neuronal cells, and mouse hippocampal slices. Like Aβ 1-40/42 , β-secretase activity was increased in insulin-resistant mice and monkeys. In insulin-resistant mice, inhibition of hepatic PKC-λ/ι sufficient to correct hepatic abnormalities and hyperinsulinemia simultaneously reversed increases in Akt, atypical protein kinase C (aPKC), β-secretase, and Aβ 1-40/42 , and restored acute Akt activation. However, 2 aPKC inhibitors additionally blocked insulin's ability to activate brain PKC-λ/ι and thereby increase β-secretase and Aβ 1-40/42 . Furthermore, direct blockade of brain aPKC simultaneously corrected an impairment in novel object recognition in high-fat-fed insulin-resistant mice. In neuronal cells and/or mouse hippocampal slices, PKC-ι/λ activation by insulin, metformin, or expression of constitutive PKC-ι provoked increases in β-secretase, Aβ 1-40/42 , and phospho-thr-231-tau that were blocked by various PKC-λ/ι inhibitors, but not by an Akt inhibitor. PKC-λ/ι provokes increases in brain β-secretase, Aβ 1-40/42 , and phospho-thr-231-tau. Excessive signaling via PKC-λ/ι may link hyperinsulinemia and other PKC-λ/ι activators to pathological and functional abnormalities in Alzheimer's disease. Published by Elsevier Inc.

  6. Protein kinase C (PKC) isoforms in cancer, tumor promotion and tumor suppression.

    PubMed

    Isakov, Noah

    2018-02-01

    The AGC family of serine/threonine kinases (PKA, PKG, PKC) includes more than 60 members that are critical regulators of numerous cellular functions, including cell cycle and differentiation, morphogenesis, and cell survival and death. Mutation and/or dysregulation of AGC kinases can lead to malignant cell transformation and contribute to the pathogenesis of many human diseases. Members of one subgroup of AGC kinases, the protein kinase C (PKC), have been singled out as critical players in carcinogenesis, following their identification as the intracellular receptors of phorbol esters, which exhibit tumor-promoting activities. This observation attracted the attention of researchers worldwide and led to intense investigations on the role of PKC in cell transformation and the potential use of PKC as therapeutic drug targets in cancer diseases. Studies demonstrated that many cancers had altered expression and/or mutation of specific PKC genes. However, the causal relationships between the changes in PKC gene expression and/or mutation and the direct cause of cancer remain elusive. Independent studies in normal cells demonstrated that activation of PKC is essential for the induction of cell activation and proliferation, differentiation, motility, and survival. Based on these observations and the general assumption that PKC isoforms play a positive role in cell transformation and/or cancer progression, many PKC inhibitors have entered clinical trials but the numerous attempts to target PKC in cancer has so far yielded only very limited success. More recent studies demonstrated that PKC function as tumor suppressors, and suggested that future clinical efforts should focus on restoring, rather than inhibiting, PKC activity. The present manuscript provides some historical perspectives on the tumor promoting function of PKC, reviewing some of the observations linking PKC to cancer progression, and discusses the role of PKC in the pathogenesis of cancer diseases and its potential usage as a therapeutic target. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Absence of catalytic domain in a putative protein kinase C (PkcA) suppresses tip dominance in Dictyostelium discoideum

    PubMed Central

    Mohamed, Wasima; Ray, Sibnath; Brazill, Derrick; Baskar, Ramamurthy

    2017-01-01

    A number of organisms possess several isoforms of protein kinase C but little is known about the significance of any specific isoform during embryogenesis and development. To address this we characterized a PKC ortholog (PkcA; DDB_G0288147) in Dictyostelium discoideum. pkcA expression switches from prestalk in mound to prespore in slug, indicating a dynamic expression pattern. Mutants lacking the catalytic domain of PkcA (pkcA−) did not exhibit tip dominance. A striking phenotype of pkcA− was the formation of an aggregate with a central hollow, and aggregates later fragmented to form small mounds, each becoming a fruiting body. Optical density wave patterns of cAMP in the late aggregates showed several cAMP wave generation centers. We attribute these defects in pkcA− to impaired cAMP signaling, altered cell motility and decreased expression of the cell adhesion molecules – CadA and CsaA. pkcA− slugs showed ectopic expression of ecmA in the prespore region. Further, the use of a PKC-specific inhibitor, GF109203X that inhibits the activity of catalytic domain phenocopied pkcA−. PMID:26183108

  8. Alterations in protein kinase C activity and processing during zinc-deficiency-induced cell death.

    PubMed

    Chou, Susan S; Clegg, Michael S; Momma, Tony Y; Niles, Brad J; Duffy, Jodie Y; Daston, George P; Keen, Carl L

    2004-10-01

    Protein kinases C (PKCs) are a family of serine/threonine kinases that are critical for signal transduction pathways involved in growth, differentiation and cell death. All PKC isoforms have four conserved domains, C1-C4. The C1 domain contains cysteine-rich finger-like motifs, which bind two zinc atoms. The zinc-finger motifs modulate diacylglycerol binding; thus, intracellular zinc concentrations could influence the activity and localization of PKC family members. 3T3 cells were cultured in zinc-deficient or zinc-supplemented medium for up to 32 h. Cells cultured in zinc-deficient medium had decreased zinc content, lowered cytosolic classical PKC activity, increased caspase-3 processing and activity, and reduced cell number. Zinc-deficient cytosols had decreased activity and expression levels of PKC-alpha, whereas PKC-alpha phosphorylation was not altered. Inhibition of PKC-alpha with Gö6976 had no effect on cell number in the zinc-deficient group. Proteolysis of the novel PKC family member, PKC-delta, to its 40-kDa catalytic fragment occurred in cells cultured in the zinc-deficient medium. Occurrence of the PKC-delta fragment in mitochondria was co-incident with caspase-3 activation. Addition of the PKC-delta inhibitor, rottlerin, or zinc to deficient medium reduced or eliminated proteolysis of PKC-delta, activated caspase-3 and restored cell number. Inhibition of caspase-3 processing by Z-DQMD-FMK (Z-Asp-Gln-Met-Asp-fluoromethylketone) did not restore cell number in the zinc-deficient group, but resulted in processing of full-length PKC-delta to a 56-kDa fragment. These results support the concept that intracellular zinc concentrations influence PKC activity and processing, and that zinc-deficiency-induced apoptosis occurs in part through PKC-dependent pathways.

  9. Regulation of the isozymes of protein kinase C in the surviving rat myocardium after myocardial infarction: distinct modulation for PKC-alpha and for PKC-delta.

    PubMed

    Simonis, Gregor; Honold, Jörg; Schwarz, Kerstin; Braun, Martin U; Strasser, Ruth H

    2002-05-01

    The goal of this study was to clarify the regulation of the isozymes of protein kinase C (PKC) in the process of remodeling after myocardial infarction. An in vivo model of regional myocardial infarction induced by ligation of the left anterior coronary artery in rats was used. Hemodynamic parameters and the heart and lung weights were determined 1 week and 1, 2 and 3 months after operation. In transmural biopsies from the non-ischemic left ventricular wall of the infarcted heart, PKC activity (ELISA) and the expression of its major isozymes, PKC-alpha, PKC-delta and PKC-epsilon (Westernblot analysis) were determined. As early as one week after myocardial infarction, heart weight and left ventricular enddiastolic pressures were significantly increased. Lung weights increased after 2 - 3 months, indicating progressive pulmonary congestion. The activity of PKC was significantly increased about 1.8-fold after 1 week, decreasing progressively in the later time course. Whereas the expression of PKC-epsilon did not change, PKC-alpha was increased after 1 month (157%) and then returned to baseline values. In contrast, PKC-delta expression was significantly augmented after 2 and 3 months of myocardial infarction (187%). These data demonstrate for the first time that in the remodeling heart after myocardial infarction, a subtype-selective regulation of the PKC isozymes occurs: The upregulation of PKC-alpha coincides with the development of hypertrophy, whereas the extensive upregulation of PKC-delta outlasts the process of developing hypertrophy and persists in the failing heart. The trigger mechanisms for this newly characterized process remains to be elucidated.

  10. Differential requirement of PKC-θ in the development and function of Natural Regulatory T cells

    PubMed Central

    Gupta, Sonal; Manicassamy, Santhakumar; Vasu, Chenthamarakshan; Kumar, Anvita; Shang, Weirong; Sun, Zuoming

    2008-01-01

    CD4+CD25+ natural Treg cells, which are developed in the thymus, migrate to the periphery to actively maintain self-tolerance. Similar to conventional T cells, TCR signals are critical for the development and activation of Treg cell inhibitory function. While PKC-θ-mediated TCR signals are required for the activation of peripheral naïve T cells, they are dispensable for their thymic development. Here, we show that mice deficient in PKC-θ had a greatly reduced number of CD4+Foxp3+ Treg cells, which was independent of PKC-θ-regulated survival, as transgenic Bcl-xL could not restore the Treg cell population in PKC-θ−/− mice. Active and WT PKC-θ markedly stimulated, whereas inactive PKC-θ and dominant negative NFAT inhibited Foxp3 promoter activity. In addition, mice-deficient in calcineurin Aβ had a decreased Treg cell population, similar to that observed in PKC-θ deficient mice. It is likely that PKC-θ promoted the development of Treg cells by enhancing Foxp3 expression via activation of the calcineurin/NFAT pathway. Finally, Treg cells deficient in PKC-θ were as potent as WT Treg cells in inhibiting T cell activation, indicating that PKC-θ was not required for Treg cell-mediated inhibitory function. Our data highlight the contrasting roles PKC-θ plays in conventional T cell and natural Treg cell function. PMID:18842300

  11. Role of phosphatidylserine in the activation of Rho1-related Pkc1 signaling in Saccharomyces cerevisiae.

    PubMed

    Nomura, Wataru; Ito, Yusuke; Inoue, Yoshiharu

    2017-02-01

    Protein kinase C (PKC) belongs to a family of serine/threonine kinases and is evolutionary conserved among eukaryotes. It contains several functional domains, with the C1 domain being identified as a membrane-targeting module. Diacylglycerol (DAG) and phorbol esters bind to the C1 domain to enhance its kinase activity. The C1 domain is conserved in PKC (Pkc1) in the budding yeast Saccharomyces cerevisiae; however, its kinase activity does not respond to DAG. Although the C1 domain of Pkc1 physically interacts with the small GTPase Rho1, the interaction between C1 domain and lipids has not yet been characterized. We herein provide evidence to show the physical interaction between the C1 domain of Pkc1 and phosphatidylserine (PS), but not DAG. The stress-induced activation of Pkc1 signaling was abolished in a cho1 mutant, which was defective in PS synthase. The deletion of CHO1 perturbed the appropriate localization of Pkc1 at the bud tip, and impaired the physical interaction between Pkc1 and GTP-bound Rho1 in vivo. Our results suggest that PS is necessary for Pkc1 signaling due to its role in regulating the localization of Pkc1 as well as the physical interaction between Rho1 and Pkc1. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. The phosphatidylinositol 3-kinase inhibitor, wortmannin, inhibits insulin-induced activation of phosphatidylcholine hydrolysis and associated protein kinase C translocation in rat adipocytes.

    PubMed Central

    Standaert, M L; Avignon, A; Yamada, K; Bandyopadhyay, G; Farese, R V

    1996-01-01

    We questioned whether phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase C (PKC) function as interrelated signalling mechanisms during insulin action in rat adipocytes. Insulin rapidly activated a phospholipase D that hydrolyses phosphatidylcholine (PC), and this activation was accompanied by increases in diacylglycerol and translocative activation of PKC-alpha and PKC-beta in the plasma membrane. Wortmannin, an apparently specific PI 3-kinase inhibitor, inhibited insulin-stimulated, phospholipase D-dependent PC hydrolysis and subsequent translocation of PKC-alpha and PKC-beta to the plasma membrane. Wortmannin did not inhibit PKC directly in vitro, or the PKC-dependent effects of phorbol esters on glucose transport in intact adipocytes. The PKC inhibitor RO 31-8220 did not inhibit PI 3-kinase directly or its activation in situ by insulin, but inhibited both insulin-stimulated and phorbol ester-stimulated glucose transport. Our findings suggest that insulin acts through PI 3-kinase to activate a PC-specific phospholipase D and causes the translocative activation of PKC-alpha and PKC-beta in plasma membranes of rat adipocytes. PMID:8611143

  13. The phosphatidylinositol 3-kinase inhibitor, wortmannin, inhibits insulin-induced activation of phosphatidylcholine hydrolysis and associated protein kinase C translocation in rat adipocytes.

    PubMed

    Standaert, M L; Avignon, A; Yamada, K; Bandyopadhyay, G; Farese, R V

    1996-02-01

    We questioned whether phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase C (PKC) function as interrelated signalling mechanisms during insulin action in rat adipocytes. Insulin rapidly activated a phospholipase D that hydrolyses phosphatidylcholine (PC), and this activation was accompanied by increases in diacylglycerol and translocative activation of PKC-alpha and PKC-beta in the plasma membrane. Wortmannin, an apparently specific PI 3-kinase inhibitor, inhibited insulin-stimulated, phospholipase D-dependent PC hydrolysis and subsequent translocation of PKC-alpha and PKC-beta to the plasma membrane. Wortmannin did not inhibit PKC directly in vitro, or the PKC-dependent effects of phorbol esters on glucose transport in intact adipocytes. The PKC inhibitor RO 31-8220 did not inhibit PI 3-kinase directly or its activation in situ by insulin, but inhibited both insulin-stimulated and phorbol ester-stimulated glucose transport. Our findings suggest that insulin acts through PI 3-kinase to activate a PC-specific phospholipase D and causes the translocative activation of PKC-alpha and PKC-beta in plasma membranes of rat adipocytes.

  14. Clinicopathological characteristics of KIT and protein kinase C-δ expression in adenoid cystic carcinoma: comparison with chromophobe renal cell carcinoma and gastrointestinal stromal tumour.

    PubMed

    Park, Cheol Keun; Kim, Won Kyu; Kim, Hoguen

    2017-10-01

    KIT overexpression is frequently observed in adenoid cystic carcinomas (AdCCs), chromophobe renal cell carcinomas (ChRCCs), and gastrointestinal stromal tumours (GISTs). Persistent KIT activation has been reported to be mediated by protein kinase C (PKC)-δ in a subset of colon cancers with wild-type KIT overexpression, and by PKC-θ in GISTs with mutant KIT overexpression. To elucidate the clinical implications of PKC-δ and PKC-θ expression in KIT-expressing tumours, we investigated the expression of KIT, PKC-δ and PKC-θ in AdCCs and ChRCCs in comparison with GISTs. KIT expression, PKC-δ expression and PKC-θ expression were analysed in whole sections from 41 AdCCs, 40 ChRCCs and 56 GISTs by immunohistochemistry. Membranous expression of KIT was found in 34 AdCCs and all ChRCCs, whereas cytoplasmic expression of KIT was found in 46 GISTs. In AdCCs, PKC-δ expression was associated with histological grade (P = 0.049), lymphovascular invasion (P = 0.004), perineural invasion (P = 0.002), and KIT positivity (P = 0.002). PKC-δ positivity was associated with shorter relapse-free survival (RFS) (P = 0.017) and a tendency for there to be shorter overall survival (OS) (P = 0.090) in patients with AdCCs. No clinicopathological associations were observed between PKC-δ and KIT expression in ChRCCs. In GISTs, PKC-θ expression was associated with higher mitotic count (P = 0.011) and high grade according to the modified National Institutes of Health criteria (P < 0.001). PKC-θ positivity was associated with shorter RFS (P = 0.016) and a tendency for there to be shorter OS (P = 0.051) in patients with GISTs. PKC-δ expression is associated with KIT expression and the prognosis of patients with AdCCs, suggesting that PKC-δ may be a potential therapeutic target for AdCCs. © 2017 The Authors. Histopathology published by John Wiley & Sons Ltd.

  15. Heat-shock protein-25/27 phosphorylation by the delta isoform of protein kinase C.

    PubMed Central

    Maizels, E T; Peters, C A; Kline, M; Cutler, R E; Shanmugam, M; Hunzicker-Dunn, M

    1998-01-01

    Small heat-shock proteins (sHSPs) are widely expressed 25-28 kDa proteins whose functions are dynamically regulated by phosphorylation. While recent efforts have clearly delineated a stress-responsive p38 mitogen-activated protein-kinase (MAPK)-dependent kinase pathway culminating in activation of the heat-shock (HSP)-kinases, mitogen-activated protein-kinase-activated protein kinase-2 and -3, not all sHSP phosphorylation events can be explained by the p38 MAPK-dependent pathway. The contribution of protein kinase C (PKC) to sHSP phosphorylation was suggested by early studies but later questioned on the basis of the reported poor ability of purified PKC to phosphorylate sHSP in vitro. The current study re-evaluates the role of PKC in sHSP phosphorylation in the light of the isoform complexity of the PKC family. We evaluated the sHSP phosphorylation status in rat corpora lutea obtained from two stages of pregnancy, mid-pregnancy and late-pregnancy, which express different levels of the novel PKC isoform, PKC-delta. Two-dimensional Western blot analysis showed that HSP-27 was more highly phosphorylated in vivo in corpora lutea of late pregnancy, corresponding to the developmental stage in which PKC-delta is abundant and active. Late-pregnant luteal extracts contained a lipid-sensitive HSP-kinase activity which exactly co-purified with PKC-delta using hydroxyapatite and S-Sepharose column chromatography. To determine whether there might be preferential phosphorylation of sHSP by a particular PKC isoform, purified recombinant PKC isoforms corresponding to those PKC isoforms detected in rat corpora lutea were evaluated for HSP-kinase activity in vitro. Recombinant PKC-delta effectively catalysed the phosphorylation of sHSP in vitro, and PKC-alpha was 30-50% as effective as an HSP-kinase; other PKCs tested (beta1, beta2, epsilon and zeta) were poor HSP-kinases. These results show that select PKC family members can function as direct HSP-kinases in vitro. Moreover, the observation of enhanced luteal HSP-27 phosphorylation in vivo, in late pregnancy, when PKC-delta is abundant and active, suggests that select PKC family members contribute to sHSP phosphorylation events in vivo. PMID:9620873

  16. A comparative study on the decomposition of edible and non-edible oil cakes in the Gangetic alluvial soil of West Bengal.

    PubMed

    Mondal, Sudeshna; Das, Ritwika; Das, Amal Chandra

    2014-08-01

    An experiment has been conducted under laboratory conditions to investigate the effect of decomposition of two edible oil cakes, viz. mustard cake (Brassica juncea L) and groundnut cake (Arachis hypogaea L), and two non-edible oil cakes, viz. mahua cake (Madhuca indica Gmel) and neem cake (Azadirachta indica Juss), at the rate of 5.0 t ha(-1) on the changes of microbial growth and activities in relation to transformations and availability of some plant nutrients in the Gangetic alluvial (Typic Haplustept) soil of West Bengal, India. Incorporation of oil cakes, in general, highly induced the proliferation of total bacteria, actinomycetes, and fungi, resulting in greater retention and availability of oxidizable C, N, and P in soil. As compared to untreated control, the highest stimulation of total bacteria and actinomycetes was recorded with mustard cake (111.9 and 84.3 %, respectively) followed by groundnut cake (50.5 and 52.4 %, respectively), while the fungal colonies were highly accentuated due to the incorporation of neem cake (102.8 %) in soil. The retention of oxidizable organic C was highly increased due to decomposition of non-edible oil cakes, more so under mahua cake (14.5 %), whereas edible oil cakes and groundnut cake in particular exerted maximum stimulation (16.7 %) towards the retention of total N in soil. A similar trend was recorded towards the accumulation of available mineral N in soil and this was more pronounced with mustard cake (45.6 %) for exchangeable NH4 (+) and with groundnut cake (63.9 %) for soluble NO3 (-). The highest retention of total P (46.9 %) was manifested by the soil when it was incorporated with neem cake followed by the edible oil cakes; while the available P was highly induced due to the addition of edible oil cakes, the highest being under groundnut cake (23.5 %) followed by mustard cake (19.6 %).

  17. The role of protein kinase C in the opening of blood-brain barrier induced by electromagnetic pulse.

    PubMed

    Qiu, Lian-Bo; Ding, Gui-Rong; Li, Kang-Chu; Wang, Xiao-Wu; Zhou, Yan; Zhou, Yong-Chun; Li, Yu-Rong; Guo, Guo-Zhen

    2010-06-29

    The aim of this study was to determine the role of protein kinase C signaling in electromagnetic pulse (EMP)-induced blood-brain barrier (BBB) permeability change in rats. The protein level of total PKC and two PKC isoforms (PKC-alpha, and PKC-beta II) were determined in brain cerebral cortex microvessels by Western blot after exposing rats to EMP at 200kV/m for 200 pulses with 1Hz repetition rate. It was found that the protein level of PKC and PKC-betaII (but not PKC-alpha) in cerebral cortex microvessels increased significantly at 0.5h and 1h after EMP exposure compared with sham-exposed animals and then recovered at 3h. A specific PKC antagonist (H7) almost blocked EMP-induced BBB permeability change. EMP-induced BBB tight junction protein ZO-1 translocation was also inhibited. Our data indicated that PKC signaling was involved in EMP-induced BBB permeability change and ZO-1 translocation in rat.

  18. Heterogeneity of cellular proliferation within transitional cell carcinoma: correlation of protein kinase C alpha/betaI expression and activity.

    PubMed

    Aaltonen, Vesa; Koivunen, Jussi; Laato, Matti; Peltonen, Juha

    2006-07-01

    A total of 18 histological samples containing both transitional cell carcinoma (TCC) and normal urothelial epithelium were analyzed for protein kinase C (PKC)-alpha and -betaI expression, and for their phosphorylated substrates. The results showed an increased expression of PKC-alpha in 13 out of 18 samples and -betaI in 11 out of 18 TCC samples when compared with normal urothelium. In addition, 11 out of 18 of the TCC tumors displayed heterogeneous expression of the PKC isoenzymes, with different levels of immunosignal in different areas of the tumor. Within the same sample, areas of highest PKC isoenzyme expression also showed highest classical PKC activity, as estimated by immunodetection of phosphorylated forms of PKC substrates. The areas of highest expression of PKC-alpha and/or -betaI isoenzymes showed also the highest number of cells positive for Ki67, an indicator of proliferation. Immunofluorescence and Western blotting demonstrated that in cultured TCC cells, PKC-alpha was located in the cytoplasm, whereas PKC-betaI was located primarily in the nucleus as a 65-kDa fragment and in the cytoplasm as a full-size 79-kDa protein. Our results indicate that increased expression of PKC-alpha and -betaI leads to increased total classical PKC kinase activity and suggest that increased activity of the isoenzymes plays a role in accelerated growth of TCC. Furthermore, these results suggest that even in carcinoma tissue, PKC expression and activity are under strict control.

  19. Role of protein kinase C isoforms in cerebral microvascular reactivity to carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagerle, L.C.; Sang Joo Kim

    1991-03-11

    Protein kinase C (PKC) system is a family of proteins with several discrete subspecies having distinct roles in processing an ultimate expression of cellular functions, including smooth muscle cell contraction. Previous inhibitor studies from this lab implicated PKC as a potential determinant of cerebral microvascular tone and reactivity. The authors studied the role of three PKC subspecies in cerebral microvascular reactivity to CO{sub 2} challenge using monoclonal antibody (MAb) specific to PKC subspecies {alpha}, {beta}, and g. Pial arterioles in anesthetized, mechanically ventilated newborn piglets were monitored via a cranial window preparation and intravital microscopy. {alpha}PKC-, {beta}PKC-, or gPKC-MAb wasmore » applied to the cortical surface for 15 minutes, washed out, and the pial arteriolar response to CO{sub 2} challenge was evaluated (N = 18). In {beta}PKC-MAb and gPKC-MAb pretreated preparations, the subsequent CO{sub 2} challenge increased pial arteriolar diameter by 18 {plus minus} 2% and 26 {plus minus} 7% which correspond to a 50% and 27% attenuation of CO{sub 2} reactivity,k respectively, as opposed to that in MAb-naive preparations. However, {alpha}PKC-MAb pretreatment did not alter CO{sub 2} reactivity. MAbs alone changed minimally pial arteriolar diameter. The authors conclude that {beta}PKC and gPKC are involved in the expression of microvascular reactivity to CO{sub 2}, providing a putative intracellular biochemical basis for CO{sub 2}/H{sup +}-induced regulation of cerebral microvascular tone.« less

  20. PKC1 is essential for protection against both oxidative and nitrosative stresses, cell integrity, and normal manifestation of virulence factors in the pathogenic fungus Cryptococcus neoformans.

    PubMed

    Gerik, Kimberly J; Bhimireddy, Sujit R; Ryerse, Jan S; Specht, Charles A; Lodge, Jennifer K

    2008-10-01

    Cell wall integrity is crucial for fungal growth, survival, and pathogenesis. Responses to environmental stresses are mediated by the highly conserved Pkc1 protein and its downstream components. In this study, we demonstrate that both oxidative and nitrosative stresses activate the PKC1 cell integrity pathway in wild-type cells, as measured by phosphorylation of Mpk1, the terminal protein in the PKC1 phosphorylation cascade. Furthermore, deletion of PKC1 shows that this gene is essential for defense against both oxidative and nitrosative stresses; however, other genes involved directly in the PKC1 pathway are dispensable for protection against these stresses. This suggests that Pkc1 may have multiple and alternative functions other than activating the mitogen-activated protein kinase cascade from a "top-down" approach. Deletion of PKC1 also causes osmotic instability, temperature sensitivity, severe sensitivity to cell wall-inhibiting agents, and alterations in capsule and melanin. Furthermore, the vital cell wall components chitin and its deacetylated form chitosan appear to be mislocalized in a pkc1Delta strain, although this mutant contains wild-type levels of both of these polymers. These data indicate that loss of Pkc1 has pleiotropic effects because it is central to many functions either dependent on or independent of PKC1 pathway activation. Notably, this is the first time that Pkc1 has been implicated in protection against nitrosative stress in any organism.

  1. PKC1 Is Essential for Protection against both Oxidative and Nitrosative Stresses, Cell Integrity, and Normal Manifestation of Virulence Factors in the Pathogenic Fungus Cryptococcus neoformans▿ †

    PubMed Central

    Gerik, Kimberly J.; Bhimireddy, Sujit R.; Ryerse, Jan S.; Specht, Charles A.; Lodge, Jennifer K.

    2008-01-01

    Cell wall integrity is crucial for fungal growth, survival, and pathogenesis. Responses to environmental stresses are mediated by the highly conserved Pkc1 protein and its downstream components. In this study, we demonstrate that both oxidative and nitrosative stresses activate the PKC1 cell integrity pathway in wild-type cells, as measured by phosphorylation of Mpk1, the terminal protein in the PKC1 phosphorylation cascade. Furthermore, deletion of PKC1 shows that this gene is essential for defense against both oxidative and nitrosative stresses; however, other genes involved directly in the PKC1 pathway are dispensable for protection against these stresses. This suggests that Pkc1 may have multiple and alternative functions other than activating the mitogen-activated protein kinase cascade from a “top-down” approach. Deletion of PKC1 also causes osmotic instability, temperature sensitivity, severe sensitivity to cell wall-inhibiting agents, and alterations in capsule and melanin. Furthermore, the vital cell wall components chitin and its deacetylated form chitosan appear to be mislocalized in a pkc1Δ strain, although this mutant contains wild-type levels of both of these polymers. These data indicate that loss of Pkc1 has pleiotropic effects because it is central to many functions either dependent on or independent of PKC1 pathway activation. Notably, this is the first time that Pkc1 has been implicated in protection against nitrosative stress in any organism. PMID:18689526

  2. Effects of addition of different fibers on rheological characteristics of cake batter and quality of cakes.

    PubMed

    Aydogdu, Ayca; Sumnu, Gulum; Sahin, Serpil

    2018-02-01

    The aim of this study was to investigate the effects of addition of dietary fibers on rheological properties of batter and cake quality. Wheat flour was replaced by 5 and 10% (wt%) oat, pea, apple and lemon fibers. All cake batters showed shear thinning behavior. Incorporation of fibers increased consistency index (k), storage modulus (G') and loss modulus (G″). As quality parameters, specific volume, hardness, weight loss, color and microstructure of cakes were investigated. Cakes containing oat and pea fibers (5%) had similar specific volume and texture with control cakes which contained no fiber. As fiber concentration increased, specific volume decreased but hardness increased. No significant difference was found between weight loss of control cake and cakes with oat, pea and apple fibers. Lemon fiber enriched cakes had the lowest specific volume, weight loss and color difference. When microstructural images were examined, it was seen that control cake had more porous structure than fiber enriched cakes. In addition, lemon and apple fiber containing cakes had less porous crumb structure as compared to oat and pea containing ones. Oat and pea fiber (5%) enriched cakes had similar physical properties (volume, texture and color) with control cakes.

  3. Annexins - scaffolds modulating PKC localization and signaling.

    PubMed

    Hoque, Monira; Rentero, Carles; Cairns, Rose; Tebar, Francesc; Enrich, Carlos; Grewal, Thomas

    2014-06-01

    Spatial and temporal organization of signal transduction is critical to link different extracellular stimuli with distinct cellular responses. A classical example of hormones and growth factors creating functional diversity is illustrated by the multiple signaling pathways activated by the protein kinase C (PKC) family of serine/threonine protein kinases. The molecular requirements for diacylglycerol (DAG) and calcium (Ca(2+)) to promote PKC membrane translocation, the hallmark of PKC activation, have been clarified. However, the underlying mechanisms that establish selectivity of individual PKC family members to facilitate differential substrate phosphorylation and varied signal output are still not fully understood. It is now well believed that the coordinated control and functional diversity of PKC signaling involves the formation of PKC isozyme-specific protein complexes in certain subcellular sites. In particular, interaction of PKC isozymes with compartment and signal-organizing scaffolds, including receptors for activated C-kinase (RACKs), A-kinase-anchoring proteins (AKAPs), 14-3-3, heat shock proteins (HSP), and importins target PKC isozymes to specific cellular locations, thereby delivering PKC isozymes into close proximity of their substrates. In addition, several annexins (Anx), including AnxA1, A2, A5 and A6, display specific and distinct abilities to interact and promote membrane targeting of different PKC isozymes. Together with the ability of annexins to create specific membrane microenvironments, this is likely to enable PKCs to phosphorylate certain substrates and regulate their downstream effector pathways in specific cellular sites. This review aims to summarize the capacity of annexins to modulate the localization and activity of PKC family members and participate in the spatiotemporal regulation of PKC signaling in health and disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. A novel PKC-ι inhibitor abrogates cell proliferation and induces apoptosis in neuroblastoma.

    PubMed

    Pillai, Prajit; Desai, Shraddha; Patel, Rekha; Sajan, Mini; Farese, Robert; Ostrov, David; Acevedo-Duncan, Mildred

    2011-05-01

    Protein Kinase C-iota (PKC-ι), an atypical protein kinase C isoform manifests its potential as an oncogene by targeting various aspects of cancer cells such as growth, invasion and survival. PKC-ι confers resistance to drug-induced apoptosis in cancer cells. The acquisition of drug resistance is a major obstacle to good prognosis in neuroblastoma. The focus of this research was to identify the efficacy of [4-(5-amino-4-carbamoylimidazol-1-yl)-2,3-dihydroxycyclopentyl] methyl dihydrogen phosphate (ICA-1) as a novel PKC-ι inhibitor in neuroblastoma cell proliferation and apoptosis. ICA-1 specifically inhibits the activity of PKC-ι but not that of PKC-zeta (PKC-ζ), the closely related atypical PKC family member. The IC(50) for the kinase activity assay was approximately 0.1μM which is 1000 times less than that of aurothiomalate, a known PKC-ι inhibitor. Cyclin dependent kinase 7 (Cdk7) phosphorylates cyclin dependent kinases (cdks) and promotes cell proliferation. Our data shows that PKC-ι is an in vitro Cdk7 kinase and the phosphorylation of Cdk7 by PKC-ι was potently inhibited by ICA-1. Furthermore, our data shows that neuroblastoma cells proliferate via a PKC-ι/Cdk7/cdk2 cell signaling pathway and ICA-1 mediates its antiproliferative effects by inhibiting this pathway. ICA-1 (0.1μM) inhibited the in vitro proliferation of BE(2)-C neuroblastoma cells by 58% (P=0.01). Additionally, ICA-1 also induced apoptosis in neuroblastoma cells. Interestingly, ICA-1 did not affect the proliferation of normal neuronal cells suggesting its potential as chemotherapeutic with low toxicity. Hence, our results emphasize the potential of ICA-1 as a novel PKC-ι inhibitor and chemotherapeutic agent for neuroblastoma. Published by Elsevier Ltd.

  5. Insulin Signalling in Hepatocytes of Type 2 Diabetic Humans. Excessive Expression and Activity of PKC-ι and Dependent Processes and Reversal by PKC-ι Inhibitors

    PubMed Central

    Sajan, M.P.; Farese, R. V.

    2012-01-01

    Aims/Hypothesis We examined the role of the protein kinase C-τ (PKC-ι) in mediating alterations in expression of enzymes in hepatocytes of type 2 diabetic humans that contribute importantly to development of lipid and carbohydrate abnormalities in type 2 diabetes. Methods We examined insulin signalling in isolated hepatocytes of non-diabetic and type 2 diabetic humans, and effects of two newly developed small molecule PKC-ι inhibitors on aberrant signalling and downstream processes. Results Opposite to PKC-ι deficiency in diabetic muscle, which diminishes glucose transport, "PKC-ι in diabetic hepatocytes was overexpressed and overactive, basally and following insulin treatment, and, moreover, was accompanied by increased expression of "PKC-ι-dependent lipogenic, proinflammatory and gluconeogenic enzymes. Heightened "PKC-ι activity most likely reflected heightened activity of insulin receptor substrate(IRS)-2-dependent phosphatidylinositol-3-kinase (PI3K), as IRS-1 levels and IRS-1/PI3K activity were markedly diminished.. Importantly, insulin stimulated "PKC-ι expression and its overexpression in diabetic hepatocytes was reversed in vitro by both insulin deprivation and "PKC-ι inhibitors; this suggested operation of an insulin-driven, feed-forward/positive-feedback mechanism. In contrast to "PKC-ι, Akt2 activity and activation by insulin was diminished, apparently reflecting IRS-1 deficiency. Treatment of diabetic hepatocytes with "PKC-ι/λ inhibitors diminished expression of lipogenic, proinflammatory and gluconeogenic enzymes. Conclusions/Interpretations Our findings suggest that a vicious cycle of "PKC-ι overactivity and overexpression exists in hepatocytes of type 2 diabetic humans and contributes importantly to maintaining overactivity of lipogenic, proinflammatory and gluconeogenic pathways that underlie lipid and carbohydrate abnormalities in type 2 diabetes. PMID:22349071

  6. Insulin signalling in hepatocytes of humans with type 2 diabetes: excessive production and activity of protein kinase C-ι (PKC-ι) and dependent processes and reversal by PKC-ι inhibitors.

    PubMed

    Sajan, M P; Farese, R V

    2012-05-01

    We examined the role of protein kinase C-ι (PKC-ι) in mediating alterations in the abundance of enzymes in hepatocytes of type 2 diabetic humans that contribute importantly to the development of lipid and carbohydrate abnormalities in type 2 diabetes. We examined (1) insulin signalling in isolated hepatocytes of non-diabetic and type 2 diabetic humans and (2) the effects of two newly developed small molecule PKC-ι inhibitors on aberrant signalling and downstream processes. In contrast with PKC-ι deficiency in diabetic muscle, which diminishes glucose transport, PKC-ι in diabetic hepatocytes was overproduced and overactive, basally and after insulin treatment, and, moreover, was accompanied by increased abundance of PKC-ι-dependent lipogenic, proinflammatory and gluconeogenic enzymes. Heightened PKC-ι activity most likely reflected heightened activity of IRS-2-dependent phosphatidylinositol 3-kinase (PI3K), as IRS-1 levels and IRS-1/PI3K activity were markedly diminished. Importantly, insulin-stimulated PKC-ι abundance and its overabundance in diabetic hepatocytes was reversed in vitro by both insulin deprivation and PKC-ι inhibitors; this suggested operation of an insulin-driven, feed-forward/positive-feedback mechanism. In contrast with PKC-ι, protein kinase B (Akt2) activity and activation by insulin was diminished, apparently reflecting IRS-1 deficiency. Treatment of diabetic hepatocytes with PKC-ι/λ inhibitors diminished abundance of lipogenic, proinflammatory and gluconeogenic enzymes. Our findings suggest that a vicious cycle of PKC-ι overactivity and overproduction exists in hepatocytes of humans with type 2 diabetes and contributes importantly to maintaining overactivity of lipogenic, proinflammatory and gluconeogenic pathways, which underlies the lipid and carbohydrate abnormalities in type 2 diabetes.

  7. PKC-ι promotes glioblastoma cell survival by phosphorylating and inhibiting BAD through a phosphatidylinositol 3-kinase pathway.

    PubMed

    Desai, S; Pillai, P; Win-Piazza, H; Acevedo-Duncan, M

    2011-06-01

    The focus of this research was to investigate the role of protein kinase C-iota (PKC-ι) in regulation of Bad, a pro-apoptotic BH3-only molecule of the Bcl-2 family in glioblastoma. Robust expression of PKC-ι is a hallmark of human glioma and benign and malignant meningiomas. The results were obtained from the two human glial tumor derived cell lines, T98G and U87MG. In these cells, PKC-ι co-localized and directly associated with Bad, as shown by immunofluorescence, immunoprecipitation, and Western blotting. Furthermore, in-vitro kinase activity assay showed that PKC-ι directly phosphorylated Bad at phospho specific residues, Ser-112, Ser-136 and Ser-155 which in turn induced inactivation of Bad and disruption of Bad/Bcl-XL dimer. Knockdown of PKC-ι by siRNA exhibited a corresponding reduction in Bad phosphorylation suggesting that PKC-ι may be a Bad kinase. PKC-ι knockdown also induced apoptosis in both the cell lines. Since, PKC-ι is an essential downstream mediator of the PI (3)-kinase, we hypothesize that glioma cell survival is mediated via a PI (3)-kinase/PDK1/PKC-ι/Bad pathway. Treatment with PI (3)-kinase inhibitors Wortmannin and LY294002, as well as PDK1 siRNA, inhibited PKC-ι activity and subsequent phosphorylation of Bad suggesting that PKC-ι regulates the activity of Bad in a PI (3)-kinase dependent manner. Thus, our data suggest that glioma cell survival occurs through a novel PI (3)-kinase/PDK1/PKC-ι/BAD mediated pathway. Published by Elsevier B.V.

  8. Duodenal mucosal protein kinase C-δ regulates glucose production in rats.

    PubMed

    Kokorovic, Andrea; Cheung, Grace W C; Breen, Danna M; Chari, Madhu; Lam, Carol K L; Lam, Tony K T

    2011-11-01

    Activation of protein kinase C (PKC) enzymes in liver and brain alters hepatic glucose metabolism, but little is known about their role in glucose regulation in the gastrointestinal tract. We investigated whether activation of PKC-δ in the duodenum is sufficient and necessary for duodenal nutrient sensing and regulates hepatic glucose production through a neuronal network in rats. In rats, we inhibited duodenal PKC and evaluated whether nutrient-sensing mechanisms, activated by refeeding, have disruptions in glucose regulation. We then performed gain- and loss-of-function pharmacologic and molecular experiments to target duodenal PKC-δ; we evaluated the impact on glucose production regulation during the pancreatic clamping, while basal levels of insulin were maintained. PKC-δ was detected in the mucosal layer of the duodenum; intraduodenal infusion of PKC inhibitors disrupted glucose homeostasis during refeeding, indicating that duodenal activation of PKC-δ is necessary and sufficient to regulate glucose homeostasis. Intraduodenal infusion of the PKC activator 1-oleoyl-2-acetyl-sn-glycerol (OAG) specifically activated duodenal mucosal PKC-δ and a gut-brain-liver neuronal pathway to reduce glucose production. Molecular and pharmacologic inhibition of duodenal mucosal PKC-δ negated the ability of duodenal OAG and lipids to reduce glucose production. In the duodenal mucosa, PKC-δ regulates glucose homeostasis. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  9. Activated protein kinase C binds to intracellular receptors in rat hepatocytes.

    PubMed

    Robles-Flores, M; García-Sáinz, J A

    1993-12-01

    The aim of this study was to identify in rat hepatocytes cellular polypeptides that bind protein kinase C (PKC) and may influence its activity and its compartmentation. At least seven proteins, with apparent M(r) values between 12,000 and 36,000, that behave like Receptors for Activated C-Kinase (RACKs) were found in the Triton-X-100-insoluble fraction of these cells; i.e. PKC bound to these polypeptides when it was in its active form. RACKS seem to be PKC substrates. Studies using isotype-specific PKC antibodies suggested some selectivity of RACKs, i.e. RACKs in the M(r) approximately 28,000-36,000 region bound PKC-alpha and PKC-beta in the presence of phosphatidylserine, diolein and Ca2+, whereas those of M(r) approximately 12,000-14,000 bound all isoforms studied, and, in contrast with the other RACKs, they did this even in the absence of Ca2+. Peptide I (KGDYEKILVALCGGN), which has a sequence suggested to be involved in the PKC-RACKs interaction [Mochly-Rosen, Khaner, Lopez and Smith (1991) J. Biol. Chem. 266, 14866-14868], inhibited PKC activity. Preincubation of RACKs with antisera directed against peptide I prevented PKC binding to them. The data suggest that peptide I blocks PKC binding to RACKs by two mechanisms: inhibition of PKC activity and competition with a putative binding site.

  10. Regulation of Cdk7 activity through a phosphatidylinositol (3)-kinase/PKC-ι-mediated signaling cascade in glioblastoma

    PubMed Central

    Desai, Shraddha R.; Pillai, Prajit P.; Patel, Rekha S.; McCray, Andrea N.; Win-Piazza, Hla Y.; Acevedo-Duncan, Mildred E.

    2012-01-01

    The objective of this research was to study the potential function of protein kinase C (PKC)-ι in cell cycle progression and proliferation in glioblastoma. PKC-ι is highly overexpressed in human glioma and benign and malignant meningioma; however, little is understood about its role in regulating cell proliferation of glioblastoma. Several upstream molecular aberrations and/or loss of PTEN have been implicated to constitutively activate the phosphatidylinositol (PI) (3)-kinase pathway. PKC-ι is a targeted mediator in the PI (3)-kinase signal transduction repertoire. Results showed that PKC-ι was highly activated and overexpressed in glioma cells. PKC-ι directly associated and phosphorylated Cdk7 at T170 in a cell cycle-dependent manner, phosphorylating its downstream target, cdk2 at T160. Cdk2 has a major role in inducing G1–S phase progression of cells. Purified PKC-ι phosphorylated both endogenous and exogenous Cdk7. PKC-ι downregulation reduced Cdk7 and cdk2 phosphorylation following PI (3)-kinase inhibition, phosphotidylinositol-dependent kinase 1 knockdown as well as PKC-ι silencing (by siRNA treatment). It also diminished cdk2 activity. PKC-ι knockdown inhibited overall proliferation rates and induced apoptosis in glioma cells. These findings suggest that glioma cells may be proliferating through a novel PI (3)-kinase-/PKC-ι/Cdk7/cdk2-mediated pathway. PMID:22021906

  11. Regulation of Cdk7 activity through a phosphatidylinositol (3)-kinase/PKC-ι-mediated signaling cascade in glioblastoma.

    PubMed

    Desai, Shraddha R; Pillai, Prajit P; Patel, Rekha S; McCray, Andrea N; Win-Piazza, Hla Y; Acevedo-Duncan, Mildred E

    2012-01-01

    The objective of this research was to study the potential function of protein kinase C (PKC)-ι in cell cycle progression and proliferation in glioblastoma. PKC-ι is highly overexpressed in human glioma and benign and malignant meningioma; however, little is understood about its role in regulating cell proliferation of glioblastoma. Several upstream molecular aberrations and/or loss of PTEN have been implicated to constitutively activate the phosphatidylinositol (PI) (3)-kinase pathway. PKC-ι is a targeted mediator in the PI (3)-kinase signal transduction repertoire. Results showed that PKC-ι was highly activated and overexpressed in glioma cells. PKC-ι directly associated and phosphorylated Cdk7 at T170 in a cell cycle-dependent manner, phosphorylating its downstream target, cdk2 at T160. Cdk2 has a major role in inducing G(1)-S phase progression of cells. Purified PKC-ι phosphorylated both endogenous and exogenous Cdk7. PKC-ι downregulation reduced Cdk7 and cdk2 phosphorylation following PI (3)-kinase inhibition, phosphotidylinositol-dependent kinase 1 knockdown as well as PKC-ι silencing (by siRNA treatment). It also diminished cdk2 activity. PKC-ι knockdown inhibited overall proliferation rates and induced apoptosis in glioma cells. These findings suggest that glioma cells may be proliferating through a novel PI (3)-kinase-/PKC-ι/Cdk7/cdk2-mediated pathway.

  12. The dissociation constants of the cytostatic bosutinib by nonlinear least-squares regression of multiwavelength spectrophotometric and potentiometric pH-titration data.

    PubMed

    Meloun, Milan; Nečasová, Veronika; Javůrek, Milan; Pekárek, Tomáš

    2016-02-20

    Potentiometric and spectrophotometric pH-titration of the multiprotic cytostatics bosutinib for dissociation constants determination were compared. Bosutinib treats patients with positive chronic myeloid leukemia. Bosutinib exhibits four protonatable sites in a pH range from 2 to 11, where two pK are well separated (ΔpK>3), while the other two are near dissociation constants. In the neutral medium, bosutinib occurs in the slightly water soluble form LH that can be protonated to the soluble cation LH4(3+). The molecule LH can be dissociated to still difficultly soluble anion L(-). The set of spectra upon pH from 2 to 11 in the 239.3-375.0nm was divided into two absorption bands: the first one from 239.3 to 290.5nm and the second from 312.3 to 375.0nm, which differ in sensitivity of chromophores to a pH change. Estimates of pK of the entire set of spectra were compared with those of both absorption bands. Due to limited solubility of bosutinib the protonation in a mixed aqueous-methanolic medium was studied. In low methanol content of 3-6% three dissociation constants can be reliably determined with SPECFIT/32 and SQUAD(84) and after extrapolation to zero content of methanol they lead to pKc1=3.43(12), pKc2=4.54(10), pKc3=7.56(07) and pKc4=11.04(05) at 25°C and pKc1=3.44(06), pKc2=5.03(08) pKc3=7.33(05) and pKc4=10.92(06) at 37°C. With an increasing content of methanol in solvent the dissociation of bosutinib is suppressed and the percentage of LH3(2+) decreases and LH prevails. From the potentiometric pH-titration at 25°C the concentration dissociation constants were estimated with ESAB pKc1=3.51(02), pKc2=4.37(02), pKc3=7.97(02) and pKc4=11.05(03) and with HYPERQUAD: pKc1=3.29(12), pKc2=4.24(10), pKc3=7.95(07) and pKc4=11.29(05). Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Involvement of PKC and ROS in the cytotoxic mechanism of anti-leukemic decursin and its derivatives and their structure-activity relationship in human K562 erythroleukemia and U937 myeloleukemia cells.

    PubMed

    Kim, Hyeon Ho; Sik Bang, Sung; Seok Choi, Jin; Han, Hogyu; Kim, Ik-Hwan

    2005-06-08

    Protein kinase C (PKC) plays an important role in the proliferation and differentiation of various cell types including normal and leukemic hematopoietic cells. Recently, various PKC modulators were used as a chemotherapeutic agent of leukemia. Decursin (1), a pyranocoumarin from Angelica gigas, exhibits the cytotoxic effects on various human cancer cell lines and in vitro PKC activation. For the development of more effective anticancer agents with PKC modulation activity, 11 decursin derivatives 2-12 were chemically synthesized and evaluated for their ability to act as a tumor-suppressing PKC activator and as an antagonist to phorbol 12-myristate 13-acetate (PMA), a tumor-promoting PKC activator. In the presence of phosphatidylserine (PS), all of 12 compounds 1-12 activated PKC (mainly alpha, beta, and gamma isozymes) but only three compounds 1-3 activated PKC even in the absence of PS. Six compounds 1-6 containing the coumarin structure were cytotoxic to human K562 erythroleukemia and U937 myeloleukemia cells. A cytotoxic mechanism of decursin and its derivatives was investigated using TUR cells, a PKC betaII-deficient variant of U937 cells. Among six compounds 1-6 with cytotoxicity to K562 and U937 leukemia cells, only three compounds 1-3 were cytotoxic to TUR cells. Therefore, compounds 1-3 and 4-6 inhibit the proliferation of leukemia cells in a PKC betaII-independent and dependent manner, respectively, indicating that the side chain of compounds determines the dependency of their cytotoxicity on PKC betaII. To further elucidate the cytotoxic mechanism of compounds 1 and 2, levels of PKC isozymes and generation of reactive oxygen species (ROS) were investigated. Compounds 1-2 induced the down-regulation of PKC alpha and betaII in K562 cells and the production of ROS in U937 cells. Thus, PKC and ROS are probably important factors in the cytotoxic mechanism of compounds 1-2. From these results, the structure-activity relationship of decursin and its derivatives is as follows: (i) the coumarin structure is required for anti-leukemic activity and (ii) the side chain is a determinant of PKC activation and the cytotoxic mechanism in leukemia cells.

  14. PKC412 (CGP41251) modulates the proliferation and lipopolysaccharide-induced inflammatory responses of RAW 264.7 macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyatake, Katsutoshi; Institute for Genome Research, The University of Tokushima, Tokushima; Inoue, Hiroshi

    2007-08-17

    PKC412 (CGP41251) is a multitarget protein kinase inhibitor with anti-tumor activities. Here, we investigated the effects of PKC412 on macrophages. PKC412 inhibited the proliferation of murine RAW 264.7 macrophages through induction of G2/M cell cycle arrest and apoptosis. At non-toxic drug concentrations, PKC412 significantly suppressed the lipopolysaccharide (LPS)-induced release of TNF-{alpha} and nitric oxide, while instead enhancing IL-6 secretion. PKC412 attenuated LPS-induced phosphorylations of MKK4 and JNK, as well as AP-1 DNA binding activities. Furthermore, PKC412 suppressed LPS-induced Akt and GSK-3{beta} phosphorylations. These results suggest that the anti-proliferative and immunomodulatory effects of PKC412 are, at least in part, mediated throughmore » its interference with the MKK4/JNK/AP-1 and/or Akt/GSK-3{beta} pathways. Since macrophages contribute significantly to the development of both acute and chronic inflammation, PKC412 may have therapeutic potential and applications in treating inflammatory and/or autoimmune diseases.« less

  15. Phosphoproteomics profiling suggests a role for nuclear βΙPKC in transcription processes of undifferentiated murine embryonic stem cells.

    PubMed

    Costa-Junior, Helio Miranda; Garavello, Nicole Milaré; Duarte, Mariana Lemos; Berti, Denise Aparecida; Glaser, Talita; de Andrade, Alexander; Labate, Carlos A; Ferreira, André Teixeira da Silva; Perales, Jonas Enrique Aguilar; Xavier-Neto, José; Krieger, José Eduardo; Schechtman, Deborah

    2010-12-03

    Protein kinase C (PKC) plays a key role in embryonic stem cell (ESC) proliferation, self-renewal, and differentiation. However, the function of specific PKC isoenzymes have yet to be determined. Of the PKCs expressed in undifferentiated ESCs, βIPKC was the only isoenzyme abundantly expressed in the nuclei. To investigate the role of βΙPKC in these cells, we employed a phosphoproteomics strategy and used two classical (cPKC) peptide modulators and one βIPKC-specific inhibitor peptide. We identified 13 nuclear proteins that are direct or indirect βΙPKC substrates in undifferentiated ESCs. These proteins are known to be involved in regulating transcription, splicing, and chromatin remodeling during proliferation and differentiation. Inhibiting βΙPKC had no effect on DNA synthesis in undifferentiated ESCs. However, upon differentiation, many cells seized to express βΙPKC and βΙPKC was frequently found in the cytoplasm. Taken together, our results suggest that βIPKC takes part in the processes that maintain ESCs in their undifferentiated state.

  16. Decursin and PDBu: two PKC activators distinctively acting in the megakaryocytic differentiation of K562 human erythroleukemia cells.

    PubMed

    Kim, Hyeon Ho; Ahn, Kyung Seop; Han, Hogyu; Choung, Se Young; Choi, Sang-Yun; Kim, Ik-Hwan

    2005-12-01

    Protein kinase C (PKC) plays an important role in the proliferation and differentiation of various cell types including normal and leukemic hematopoietic cells. Phorbol 12,13-dibutyrate (PDBu) induces the megakaryocytic differentiation of K562 human erythroleukemia cells through PKC activation. Decursin, a pyranocoumarin from Angelica gigas, exhibits the cytotoxic effects on various human cancer cell lines and in vitro PKC activation. We report here the differences between two PKC activators, tumor-suppressing decursin and tumor-promoting PDBu, in their actions on the megakaryocytic differentiation of K562 cells. First of all, decursin inhibited PDBu-induced bleb formation in K562 cells. Decursin also inhibited the PDBu-induced megakaryocytic differentiation of K562 cells that is characterized by an increase in substrate adhesion, the secretion of granulocyte/macrophage colony stimulating factor (GM-CSF) and interleukin-6 (IL-6), and the surface expression of integrin beta3. The binding of PDBu to PKC was competitively inhibited by decursin. Decursin induced the more rapid down-regulation of PKC alpha and betaII isozymes than that induced by PDBu in K562 cells. Unlike PDBu, decursin promoted the translocation of PKC alpha and betaII to the nuclear membrane. Decursin-induced faster down-regulation and nuclear translocation of PKC alpha and betaII were not affected by the presence of PDBu. All these results indicate that decursin and phorbol ester are PKC activators distinctively acting in megakaryocytic differentiation and PKC modulation in K562 leukemia cells.

  17. Differential and Conditional Activation of PKC-Isoforms Dictates Cardiac Adaptation during Physiological to Pathological Hypertrophy

    PubMed Central

    Naskar, Shaon; Datta, Kaberi; Mitra, Arkadeep; Pathak, Kanchan; Datta, Ritwik; Bansal, Trisha; Sarkar, Sagartirtha

    2014-01-01

    A cardiac hypertrophy is defined as an increase in heart mass which may either be beneficial (physiological hypertrophy) or detrimental (pathological hypertrophy). This study was undertaken to establish the role of different protein kinase-C (PKC) isoforms in the regulation of cardiac adaptation during two types of cardiac hypertrophy. Phosphorylation of specific PKC-isoforms and expression of their downstream proteins were studied during physiological and pathological hypertrophy in 24 week male Balb/c mice (Mus musculus) models, by reverse transcriptase-PCR, western blot analysis and M-mode echocardiography for cardiac function analysis. PKC-δ was significantly induced during pathological hypertrophy while PKC-α was exclusively activated during physiological hypertrophy in our study. PKC-δ activation during pathological hypertrophy resulted in cardiomyocyte apoptosis leading to compromised cardiac function and on the other hand, activation of PKC-α during physiological hypertrophy promoted cardiomyocyte growth but down regulated cellular apoptotic load resulting in improved cardiac function. Reversal in PKC-isoform with induced activation of PKC-δ and simultaneous inhibition of phospho-PKC-α resulted in an efficient myocardium to deteriorate considerably resulting in compromised cardiac function during physiological hypertrophy via augmentation of apoptotic and fibrotic load. This is the first report where PKC-α and -δ have been shown to play crucial role in cardiac adaptation during physiological and pathological hypertrophy respectively thereby rendering compromised cardiac function to an otherwise efficient heart by conditional reversal of their activation. PMID:25116170

  18. Use of baru (Brazilian almond) waste from physical extraction of oil to produce gluten free cakes.

    PubMed

    Pineli, Lívia de Lacerda de Oliveira; de Aguiar, Lorena Andrade; de Oliveira, Guilherme Theodoro; Botelho, Raquel Braz Assunção; Ibiapina, Maria do Desterro Ferreira Pereira; de Lima, Herbert Cavalcanti; Costa, Ana Maria

    2015-03-01

    The extraction of oil from baru almonds produces a waste that carries part of their nutritional qualities and antioxidants. It can be used to produce partially deffated baru flour (PDBF). We aimed to evaluate the applicability of PDBF and the effect of the addition of xanthan gum (XG) to produce gluten free cakes. Cakes were prepared with 100% wheat flour (WF cake) and with 100% PDBF and four different levels of XG (0%-PDBF cake, 0.1%-X1, 0.2%-X2 and 0.3%-X3 cakes), and evaluated for composition, antioxidants, moisture, specific volume, texture and sensory acceptance. PDBF cakes showed lower carbohydrate values, but higher protein, lipids, calories and antioxidant contents. They were rich in fiber, as well as iron, zinc and copper. The replacement of WF by PDBF resulted in an increased hardness and adhesiveness and a decreased cohesiveness, elasticity and moisture. Chewiness of X2 cake was similar to that of WF cake. X2 and X3 cakes showed specific volume closer to that of WF cake. No difference was found among the treatments for texture and appearance acceptances. Flavor of X2 and X3 cakes were more accepted than WF cake. Acceptance of all cakes were in the liking region of hedonic scale. PBDF associated to XG is a feasible option to substitute WF in gluten free cake, improving its nutritional quality.

  19. Atypical protein kinase C activity is required for extracellular matrix degradation and invasion by Src-transformed cells.

    PubMed

    Rodriguez, Elena M; Dunham, Elizabeth E; Martin, G Steven

    2009-10-01

    Atypical protein kinase C (aPKC) isoforms have been shown to mediate Src-dependent signaling in response to growth factor stimulation. To determine if aPKC activity contributes to the transformed phenotype of cells expressing oncogenic Src, we have examined the activity and function of aPKCs in 3T3 cells expressing viral Src (v-Src). aPKC activity and tyrosine phosphorylation were found to be elevated in some but not all clones of mouse fibroblasts expressing v-Src. aPKC activity was inhibited either by addition of a membrane-permeable pseudosubstrate, by expression of a dominant-negative aPKC, or by RNAi-mediated knockdown of specific aPKC isoforms. aPKC activity contributes to morphological transformation and stress fiber disruption, and is required for migration of Src-transformed cells and for their ability to polarize at the edge of a monolayer. The lambda isoform of aPKC is specifically required for invasion through extracellular matrix in Boyden chamber assays and for degradation of the extracellular matrix in in situ zymography assays. Tyrosine phosphorylation of aPKClambda is required for its ability to promote cell invasion. The defect in invasion upon aPKC inhibition appears to result from a defect in the assembly and/or function of podosomes, invasive adhesions on the ventral surface of the cell that are sites of protease secretion. aPKC was also found to localize to podosomes of v-Src transformed cells, suggesting a direct role for aPKC in podosome assembly and/or function. We conclude that basal or elevated aPKC activity is required for the ability of Src-transformed cells to degrade and invade the extracellular matrix. Copyright 2009 Wiley-Liss, Inc.

  20. Differential acute and chronic response of protein kinase C in cultured neonatal rat heart myocytes to alpha 1-adrenergic and phorbol ester stimulation.

    PubMed

    Henrich, C J; Simpson, P C

    1988-12-01

    Both alpha 1-adrenergic agonists (e.g. norepinephrine, NE*) and tumor-promoting phorbol esters (e.g. phorbol myristate acetate, PMA) are known to activate protein kinase C (PKC) (Abdel-Latif, 1986, Niedel and Blackshear, 1986). However, alpha 1 agonists and PMA produce very different effects on cardiac function (see Simpson, 1985; Benfey, 1987; Meidell et al., 1986; Leatherman et al., 1987; Yuan et al., 1987; for examples). PKC activation in heart cells has been studied only for PMA treated perfused heart (Yuan et al., 1987). Therefore, acute activation and chronic regulation of PKC by NE and PMA were compared in cultured neonatal rat heart myocytes. NE acutely and transiently activated PKC, as measured by translocation of PKC activity to the cell particulate fraction (Niedel and Blackshear, 1986). Particulate PKC activity peaked at 23% of total after NE for 30 s, as compared with 8% for control (P less than 0.001). By contrast, acute PKC activation by PMA was more pronounced and persistent, with particulate PKC activity 62% of total at 5 min (P less than 0.001). Calcium/lipid-independent kinase activity increased acutely with PMA, but not with NE. Chronic treatment with NE (24 to 48 h) increased total per cell PKC activity and 3H-phorbol dibutyrate (PDB) binding sites, an index of the number of PKC molecules (Niedel and Blackshear, 1986), by 30 to 60% over control (all P less than 0.05 to 0.01). In contrast with NE, chronic treatment with PMA down-regulated PKC, reducing total per cell PKC activity and 3H-PDB binding sites to 3% and 12% of control, respectively (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Interaction between protein kinase C and protein kinase A can modulate transmitter release at the rat neuromuscular synapse.

    PubMed

    Santafé, M M; Garcia, N; Lanuza, M A; Tomàs, M; Tomàs, J

    2009-02-15

    We used intracellular recording to investigate the functional interaction between protein kinase C (PKC) and protein kinase A (PKA) signal transduction cascades in the control of transmitter release in the neuromuscular synapses from adult rats. Our results indicate that: 1) PKA and PKC are independently involved in asynchronous release. 2) Evoked acetylcholine (ACh) release is enhanced with the PKA agonist Sp-8-BrcAMP and the PKC agonist phorbol ester (PMA). 3) PKA has a constitutive role in promoting a component of normal evoked transmitter release because, when the kinase is inhibited with H-89, the release diminishes. However, the PKC inhibitor calphostin C (CaC) does not affect ACh release. 4) PKA regulates neurotransmission without PKC involvement because, after PMA or CaC modulation of the PKC activity, coupling to the ACh release of PKA can normally be stimulated with Sp-8-BrcAMP or inhibited with H-89. 5) After PKA inhibition with H-89, PKC stimulation with PMA (or inhibition with CaC) does not lead to any change in evoked ACh release. However, in PKA-stimulated preparations with Sp-8-BrcAMP, PKC becomes tonically active, thus potentiating a component of release that can now be blocked with CaC. In normal conditions, therefore, PKA was able to modulate ACh release independently of PKC activity, whereas PKA stimulation caused the PKC coupling to evoked release. In contrast, PKA inhibition prevent PKC stimulation (with the phorbol ester) and coupling to ACh output. There was therefore some dependence of PKC on PKA activity in the fine control of the neuromuscular synaptic functionalism and ACh release.

  2. Expression of P-aPKC-iota, E-cadherin, and beta-catenin related to invasion and metastasis in hepatocellular carcinoma.

    PubMed

    Du, Guang-Sheng; Wang, Jian-Ming; Lu, Jin-Xi; Li, Qiang; Ma, Chao-Qun; Du, Ji-Tao; Zou, Sheng-Quan

    2009-06-01

    Atypical protein kinase C iota (aPKC-iota) and its associated intracellular molecules, E-cadherin and beta-catenin, are important for cell polarization in tumorigenesis and progression. Expression of aPKC-iota, P-aPKC-iota (activated aPKC-iota), E-cadherin, and beta-catenin in hepatocellular carcinoma (HCC) was measured, and correlation with clinicopathological characteristics of HCC was analyzed. Paraffin-embedded tumor tissue was obtained from patients with HCC after resection without preoperative radiotherapy or chemotherapy. Gene expression was detected by polymerase chain reaction (PCR), and protein expression was detected by immunohistochemistry and Western blot analysis. Expressions of aPKC-iota, P-aPKC-iota, E-cadherin, and beta-catenin were analyzed with relation to the clinicopathological data. The gene and protein expression of aPKC-iota are obviously higher in HCC tissues than that in peritumoral tissues and normal tissues by semiquantitative PCR and immunohistochemistry methods. Accumulation of aPKC-iota in HCC cytoplasm and nucleolus inhibited the later formation of belt-like adherens junctions (AJs) and/or tight junctions (TJs) in cell-cell contact. E-cadherin was reduced and accumulation of cytoplasm beta-catenin was increased in HCC. The expression of aPKC-iota was closely related to pathological differentiation, tumor size, invasion, and metastasis of HCC. Accumulation of cytoplasm aPKC-iota may reflect pathological differentiation, invasion, and metastasis potential of HCC. In this regard, our study on HCC revealed the potential usefulness of aPKC-iota, E-cadherin, and beta-catenin as a prognostic marker, closely related to pathological differentiation, invasion, metastasis, and prognosis of HCC.

  3. Protein kinase C isoforms in iris sphincter smooth muscle: differential effects of phorbol ester on contraction and cAMP accumulation are species specific.

    PubMed

    Husain, S; Abdel-Latif, A A

    1996-03-01

    Objectives were to identify PKC isoforms in iris sphincter isolated from rabbit, cat, dog and bovine irides, to determine their subcellular distribution, and to investigate the effects of the phorbol ester, PDBu, on contraction and cAMP accumulation in this tissue. Using six isoform (alpha, beta, gamma, epsilon, delta, zeta)-specific polyclonal antibodies, PKC alpha, beta, epsilon, delta, and zeta were detected in the four species, whereas PKC gamma was detected only in dog and bovine. PKC alpha and epsilon are the most abundant isoforms in this tissue. PKC alpha is mainly cytosolic in rabbit and bovine and membrane associated in cat and dog. PKC gamma is equally distributed in cytosol and membrane fractions of bovine, but mostly cytosolic in dog. PKC beta, delta and epsilon are mainly membraneous and PKC zeta is mainly cytosolic in all species. PDBu (100 nM) induced a contractile response in rabbit- and cat-, but not in dog and bovine, sphincters, and increased cAMP accumulation in rabbit, cat, dog and bovine by 111, 130, 458 and 294%, respectively. Therefore, the lack of effect of PDBu on contraction in dog and bovine, as compared to rabbit and cat, may be due: (a) to the presence of PKC gamma isoform, and (b) to the stronger stimulatory effects of the phorbol ester on cAMP production in the non-contracting species. In addition to demonstrating the presence of various PKC isoforms in the iris sphincter and the activation of adenylyl cyclase by this protein kinase, we have shown that the distribution of the PKC isoforms in this tissue is species specific. Furthermore, our data suggest that there may be specific physiological functions associated with each of the PKC isoforms and that PKC is involved in the contractile response of some but not all smooth muscles.

  4. Navy Bean Flour Particle Size and Protein Content Affect Cake Baking and Batter Quality(1).

    PubMed

    Singh, Mukti; Byars, Jeffrey A; Liu, Sean X

    2015-06-01

    Whole navy bean flour and its fine and coarse particle size fractions were used to completely replace wheat flour in cakes. Replacement of wheat flour with whole bean flour significantly increased the protein content. The protein content was adjusted to 3 levels with navy bean starch. The effect of navy bean flour and its fractions at 3 levels of protein on cake batter rheology and cake quality was studied and compared with wheat flour samples. Batters prepared from navy bean flour and its fractions had higher viscosity than the cake flour. Reducing the protein content by addition of starch significantly lowered the viscosity of cake batters. The whole navy bean flour and coarse bean fraction cakes were softer than cakes made with wheat flour but had reduced springiness. Principal component analysis showed a clear discrimination of cakes according to protein. It also showed that low protein navy bean flour cakes were similar to wheat flour cakes. Navy bean flour with protein content adjusted to the level of cake (wheat) flour has potential as a healthy alternative in gluten-free cakes. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  5. From baking a cake to solving the diffusion equation

    NASA Astrophysics Data System (ADS)

    Olszewski, Edward A.

    2006-06-01

    We explain how modifying a cake recipe by changing either the dimensions of the cake or the amount of cake batter alters the baking time. We restrict our consideration to the génoise and obtain a semiempirical relation for the baking time as a function of oven temperature, initial temperature of the cake batter, and dimensions of the unbaked cake. The relation, which is based on the diffusion equation, has three parameters whose values are estimated from data obtained by baking cakes in cylindrical pans of various diameters. The relation takes into account the evaporation of moisture at the top surface of the cake, which is the dominant factor affecting the baking time of a cake.

  6. Experimental study of cake formation on heat treated and membrane coated needle felts in a pilot scale pulse jet bag filter using optical in-situ cake height measurement

    PubMed Central

    Saleem, Mahmood; Khan, Rafi Ullah; Tahir, M. Suleman; Krammer, Gernot

    2011-01-01

    Pulse-jet bag filters are frequently employed for particle removal from off gases. Separated solids form a layer on the permeable filter media called filter cake. The cake is responsible for increasing pressure drop. Therefore, the cake has to be detached at a predefined upper pressure drop limit or at predefined time intervals. Thus the process is intrinsically semi-continuous. The cake formation and cake detachment are interdependent and may influence the performance of the filter. Therefore, understanding formation and detachment of filter cake is important. In this regard, the filter media is the key component in the system. Needle felts are the most commonly used media in bag filters. Cake formation studies with heat treated and membrane coated needle felts in pilot scale pulse jet bag filter were carried out. The data is processed according to the procedures that were published already [Powder Technology, Volume 173, Issue 2, 19 April 2007, Pages 93–106]. Pressure drop evolution, cake height distribution evolution, cake patches area distribution and their characterization using fractal analysis on different needle felts are presented here. It is observed that concavity of pressure drop curve for membrane coated needle felt is principally caused by presence of inhomogeneous cake area load whereas it is inherent for heat treated media. Presence of residual cake enhances the concavity of pressure drop at the start of filtration cycle. Patchy cleaning is observed only when jet pulse pressure is too low and unable to provide the necessary force to detach the cake. The border line is very sharp. Based on experiments with limestone dust and three types of needle felts, for the jet pulse pressure above 4 bar and filtration velocity below 50 mm/s, cake is detached completely except a thin residual layer (100–200 μm). Uniformity and smoothness of residual cake depends on the surface characteristics of the filter media. Cake height distribution of residual cake and newly formed cake during filtration prevails. The patch size analysis and fractal analysis reveal that residual cake grow in size (latterly) following regeneration initially on the base with edges smearing out, however, the cake heights are not leveled off. Fractal dimension of cake patches boundary falls in the range of 1–1.4 and depends on vertical position as well as time of filtration. Cake height measurements with Polyimide (PI) needle felts were hampered on account of its photosensitive nature. PMID:24415801

  7. Microgravity modifies protein kinase C isoform translocation in the human monocytic cell line U937 and human peripheral blood T-cells

    NASA Technical Reports Server (NTRS)

    Hatton, Jason P.; Gaubert, Francois; Cazenave, Jean-Pierre; Schmitt, Didier; Hashemi, B. B. (Principal Investigator); Hughes-Fulford, M. (Principal Investigator)

    2002-01-01

    Individual protein kinase C (PKC) isoforms fulfill distinct roles in the regulation of the commitment to differentiation, cell cycle arrest, and apoptosis in both monocytes and T-cells. The human monocyte like cell line U937 and T-cells were exposed to microgravity, during spaceflight and the translocation (a critical step in PKC signaling) of individual isoforms to cell particulate fraction examined. PKC activating phorbol esters induced a rapid translocation of several PKC isoforms to the particulate fraction of U937 monocytes under terrestrial gravity (1 g) conditions in the laboratory. In microgravity, the translocation of PKC beta II, delta, and epsilon in response to phorbol esters was reduced in microgravity compared to 1 g, but was enhanced in weak hypergravity (1.4 g). All isoforms showed a net increase in particulate PKC following phorbol ester stimulation, except PKC delta which showed a net decrease in microgravity. In T-cells, phorbol ester induced translocation of PKC delta was reduced in microgravity, compared to 1 g, while PKC beta II translocation was not significantly different at the two g-levels. These data show that microgravity differentially alters the translocation of individual PKC isoforms in monocytes and T-cells, thus providing a partial explanation for the modifications previously observed in the activation of these cell types under microgravity.

  8. The Role of PKC-θ in CD4+ T Cells and HIV Infection: To the Nucleus and Back Again

    PubMed Central

    Phetsouphanh, Chansavath; Kelleher, Anthony D.

    2015-01-01

    Protein kinase C (PKC)-θ is the only member of the PKC family that has the ability to translocate to the immunological synapse between T cells and antigen-presenting cells upon T cell receptor and MHC-II recognition. PKC-θ interacts functionally and physically with other downstream effector molecules to mediate T cell activation, differentiation, and migration. It plays a critical role in the generation of Th2 and Th17 responses and is less important in Th1 and CTL responses. PKC-θ has been recently shown to play a role in the nucleus, where it mediates inducible gene expression in the development of memory CD4+ T cells. This novel PKC (nPKC) can up-regulate HIV-1 transcription and PKC-θ activators such as Prostratin have been used in early HIV-1 reservoir eradication studies. The exact manner of the activation of virus by these compounds and the role of PKC-θ, particularly its nuclear form and its association with NF-κB in both the cytoplasmic and nuclear compartments, needs further precise elucidation especially given the very important role of NF-κB in regulating transcription from the integrated retrovirus. Continued studies of this nPKC isoform will give further insight into the complexity of T cell signaling kinases. PMID:26284074

  9. Activation of classical protein kinase C reduces the expression of human cationic amino acid transporter 3 (hCAT-3) in the plasma membrane.

    PubMed

    Rotmann, Alexander; Vékony, Nicole; Gassner, Davina; Niegisch, Günter; Strand, Dennis; Martiné, Ursula; Closs, Ellen I

    2006-04-01

    We have previously shown that activation of PKC (protein kinase C) results in internalization of hCAT-1 [human CAT-1 (cationic amino acid transporter 1)] and a decrease in arginine transport [Rotmann, Strand, Martiné and Closs (2004) J. Biol. Chem. 279, 54185-54192]. However, others found increased transport rates for arginine in response to PKC activation, suggesting a differential effect of PKC on different CAT isoforms. Therefore we investigated the effect of PKC on hCAT-3, an isoform expressed in thymus, brain, ovary, uterus and mammary gland. In Xenopus laevis oocytes and human U373MG glioblastoma cells, hCAT-3-mediated L-arginine transport was significantly reduced upon treatment with compounds that activate classical PKC. In contrast, inactive phorbol esters and an activator of novel PKC isoforms had no effect. PKC inhibitors (including the PKCalpha-preferring Ro 31-8280) reduced the inhibitory effect of the PKC-activating compounds. Microscopic analyses revealed a PMA-induced reduction in the cell-surface expression of fusion proteins between hCAT-3 and enhanced green fluorescent protein expressed in X. laevis oocytes and glioblastoma cells. Western-blot analysis of biotinylated surface proteins demonstrated a PMA-induced decrease in hCAT-3 in the plasma membrane, but not in total protein lysates. Pretreatment with a PKC inhibitor also reduced this PMA effect. It is concluded that similar to hCAT-1, hCAT-3 activity is decreased by PKC via reduction of transporter molecules in the plasma membrane. Classical PKC isoforms seem to be responsible for this effect.

  10. Relative importance of moisture migration and amylopectin retrogradation for pound cake crumb firming.

    PubMed

    Luyts, A; Wilderjans, E; Van Haesendonck, I; Brijs, K; Courtin, C M; Delcour, J A

    2013-12-15

    Moisture migration largely impacts cake crumb firmness during storage at ambient temperature. To study the importance of phenomena other than crumb to crust moisture migration and to exclude moisture and temperature gradients during baking, crustless cakes were baked using an electrical resistance oven (ERO). Cake crumb firming was evaluated by texture analysis. First, ERO cakes with properties similar to those baked conventionally were produced. Cake batter moisture content (MC) was adjusted to ensure complete starch gelatinisation in the baking process. In cakes baked conventionally, most of the increase in crumb firmness during storage was caused by moisture migration. Proton nuclear magnetic resonance ((1)H NMR) showed that the population containing protons of crystalline starch grew during cake storage. These and differential scanning calorimetry (DSC) data pointed to only limited amylopectin retrogradation. The limited increase in amylopectin retrogradation during cake storage cannot solely account for the significant firming of ERO cakes and, hence, other phenomena are involved in cake firming. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. New insights into comparison between synthetic and practical municipal wastewater in cake layer characteristic analysis of membrane bioreactor.

    PubMed

    Zhou, Lijie; Zhuang, Wei-Qin; Wang, Xin; Yu, Ke; Yang, Shufang; Xia, Siqing

    2017-11-01

    In previous studies, cake layer analysis in membrane bioreactor (MBR) was both carried out with synthetic and practical municipal wastewater (SMW and PMW), leading to different results. This study aimed to identify the comparison between SMW and PMW in cake layer characteristic analysis of MBR. Two laboratory-scale anoxic/oxic MBRs were operated for over 90days with SMW and PMW, respectively. Results showed that PMW led to rough cake layer surface with particles, and the aggravation of cake layer formation with thinner and denser cake layer. Additionally, inorganic components, especially Si and Al, in PMW accumulated into cake layer and strengthened the cake layer structure, inducing severer biofouling. However, SMW promoted bacterial metabolism during cake layer formation, thus aggravated the accumulation of organic components into cake layer. Therefore, SMW highlighted the organic components in cake layer, but weakened the inorganic functions in practical MBR operation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Aniracetam improves contextual fear conditioning and increases hippocampal gamma-PKC activation in DBA/2J mice.

    PubMed

    Smith, Amy M; Wehner, Jeanne M

    2002-01-01

    DBA/2J (D2) mice display poor contextual learning and have less membrane-bound hippocampal protein kinase C (PKC) compared with C57BL/6 (B6) mice. Aniracetam and oxiracetam were previously shown to improve contextual learning in D2 mice and increase PKC activity. This study investigated a possible mechanism for learning enhancement by examining the effects of aniracetam on contextual fear conditioning and activation of the y isoform of PKC (gamma-PKC) in male D2 mice. In comparison to animals treated with vehicle only (10% 2-hydroxypropyl-beta-cyclodextrin), mice treated with aniracetam (100 mg/kg) 30 min prior to fear conditioning training demonstrated significantly improved contextual learning when tested 30 min and 24 h after training. This corresponded with a significant increase in activated, membrane-bound hippocampal gamma-PKC 30 min after training. No increase in learning or gamma-PKC was found 5 min after training. These results suggest an altered time course of activation of gamma-PKC in response to treatment with aniracetam, which improves learning in D2 mice.

  13. Nitric oxide, PKC-ε, and connexin43 are crucial for ischemic preconditioning-induced chemical gap junction uncoupling.

    PubMed

    Rong, Bing; Xie, Fei; Sun, Tao; Hao, Li; Lin, Ming-Jie; Zhong, Jing-Quan

    2016-10-25

    Ischemic preconditioning (IPC) maintains connexin43 (Cx43) phosphorylation and reduces chemical gap junction (GJ) coupling in cardiomyocytes to protect against ischemic damage. However, the signal transduction pathways underlying these effects are not fully understood. Here, we investigated whether nitric oxide (NO) and protein kinase C-ε (PKC-ε) contribute to IPC-induced cardioprotection by maintaining Cx43 phosphorylation and inhibiting chemical GJ coupling. IPC reduced ischemia-induced myocardial infarction and increased cardiomyocyte survival; phosphorylated Cx43, eNOS, and PKC-ε levels; and chemical GJ uncoupling. Administration of the NO donor SNAP mimicked the effects of IPC both in vivo and in vitro, maintaining Cx43 phosphorylation, promoting chemical GJ uncoupling, and reducing myocardial infarction. Preincubation with the NO synthase inhibitor L-NAME or PKC-ε translocation inhibitory peptide (PKC-ε-TIP) abolished these effects of IPC. Additionally, by inducing NO production, IPC induced translocation of PKC-ε, but not PKC-δ, from the cytosolic to the membrane fraction in primary cardiac myocytes. IPC-induced cardioprotection thus involves increased NO production, PKC-ε translocation, Cx43 phosphorylation, and chemical GJ uncoupling.

  14. Analgesic Effects of Toad Cake and Toad-cake-containing Herbal Drugs: Analgesic effects of toad cake.

    PubMed

    Inoue, Eiji; Shimizu, Yasuharu; Masui, Ryo; Usui, Tomomi; Sudoh, Keiichi

    2014-03-01

    This study was conducted to clarify the analgesic effect of toad cake and toad-cake-containing herbal drugs. We counted the writhing response of mice after the intraperitoneal administration of acetic acid as a nociceptive pain model and the withdrawal response after the plantar surface stimulation of the hind paw induced by partial sciatic nerve ligation of the mice as a neuropathic pain model to investigate the analgesic effect of toad cake and toad-cake-containing herbal drugs. A co-treatment study with serotonin biosynthesis inhibitory drug 4-chloro- DL-phenylalanine methyl ester hydrochloride (PCPA), the catecholamine biosynthesis inhibitory drug α-methyl- DL-tyrosine methyl ester hydrochloride (AMPT) or the opioid receptor antagonist naloxone hydrochloride was also conducted. Analgesic effects in a mouse model of nociceptive pain and neuropathic pain were shown by oral administration of toad cake and toad-cake-containing herbal drugs. The effects of toad cake and toad-cake-containing herbal drugs disappeared upon co-treatment with PCPA, but not with AMPT or naloxone in the nociceptive pain model; the analgesic effect of toad-cake-containing herbal drugs also disappeared upon co-treatment with PCPA in the neuropathic pain model. Toad cake and toad-cake-containing herbal drugs have potential for the treatments of nociceptive pain and of neuropathic pain, such as post-herpetic neuralgia, trigeminal neuralgia, diabetic neuralgia, and postoperative or posttraumatic pain, by activation of the central serotonin nervous system.

  15. Protein kinase C activation modulates reversible increase in cortical blood-brain barrier permeability and tight junction protein expression during hypoxia and posthypoxic reoxygenation.

    PubMed

    Willis, Colin L; Meske, Diana S; Davis, Thomas P

    2010-11-01

    Hypoxia (Hx) is a component of many disease states including stroke. Ischemic stroke occurs when there is a restriction of cerebral blood flow and oxygen to part of the brain. During the ischemic, and subsequent reperfusion phase of stroke, blood-brain barrier (BBB) integrity is lost with tight junction (TJ) protein disruption. However, the mechanisms of Hx and reoxygenation (HR)-induced loss of BBB integrity are not fully understood. We examined the role of protein kinase C (PKC) isozymes in modifying TJ protein expression in a rat model of global Hx. The Hx (6% O(2)) induced increased hippocampal and cortical vascular permeability to 4 and 10 kDa dextran fluorescein isothiocyanate (FITC) and endogenous rat-IgG. Cortical microvessels revealed morphologic changes in nPKC-θ distribution, increased nPKC-θ and aPKC-ζ protein expression, and activation by phosphorylation of nPKC-θ (Thr538) and aPKC-ζ (Thr410) residues after Hx treatment. Claudin-5, occludin, and ZO-1 showed disrupted organization at endothelial cell margins, whereas Western blot analysis showed increased TJ protein expression after Hx. The PKC inhibition with chelerythrine chloride (5 mg/kg intraperitoneally) attenuated Hx-induced hippocampal vascular permeability and claudin-5, PKC (θ and ζ) expression, and phosphorylation. This study supports the hypothesis that nPKC-θ and aPKC-ζ signaling mediates TJ protein disruption resulting in increased BBB permeability.

  16. Protein kinase C is increased in the liver of humans and rats with non-insulin-dependent diabetes mellitus: an alteration not due to hyperglycemia.

    PubMed Central

    Considine, R V; Nyce, M R; Allen, L E; Morales, L M; Triester, S; Serrano, J; Colberg, J; Lanza-Jacoby, S; Caro, J F

    1995-01-01

    We tested the hypothesis that liver protein kinase C (PKC) is increased in non-insulin-dependent diabetes mellitus (NIDDM). To this end we examined the distribution of PKC isozymes in liver biopsies from obese individuals with and without NIDDM and in lean controls. PKC isozymes alpha, beta, epsilon and zeta were detected by immunoblotting in both the cytosol and membrane fractions. Isozymes gamma and delta were not detected. There was a significant increase in immunodetectable PKC-alpha (twofold), -epsilon (threefold), and -zeta (twofold) in the membrane fraction isolated from obese subjects with NIDDM compared with the lean controls. In obese subjects without NIDDM, the amount of membrane PKC isozymes was not different from the other two groups. We next sought an animal model where this observation could be studied further. The Zucker diabetic fatty rat offered such a model system. Immunodetectable membrane PKC-alpha, -beta, -epsilon, and -zeta were significantly increased when compared with both the lean and obese controls. The increase in immunodetectable PKC protein correlated with a 40% elevation in the activity of PKC at the membrane. Normalization of circulating glucose in the rat model by either insulin or phlorizin treatment did not result in a reduction in membrane PKC isozyme protein or kinase activity. Further, phlorizin treatment did not improve insulin receptor autophosphorylation nor did the treatment lower liver diacylglycerol. We conclude that liver PKC is increased in NIDDM, a change that is not secondary to hyperglycemia. It is possible that PKC-mediated phosphorylation of some component in the insulin signaling cascade contributes to the insulin resistance observed in NIDDM. Images PMID:7769136

  17. pkc-1 regulates daf-2 insulin/IGF signalling-dependent control of dauer formation in Caenorhabditis elegans.

    PubMed

    Monje, José M; Brokate-Llanos, Ana M; Pérez-Jiménez, Mercedes M; Fidalgo, Manuel A; Muñoz, Manuel J

    2011-12-01

    In Caenorhabditis elegans, the insulin/IGF pathway participates in the decision to initiate dauer development. Dauer is a diapause stage that is triggered by environmental stresses, such as a lack of nutrients. Insulin/IGF receptor mutants arrest constitutively in dauer, an effect that can be suppressed by mutations in other elements of the insulin/IGF pathway or by a reduction in the activity of the nuclear hormone receptor daf-12. We have isolated a pkc-1 mutant that acts as a novel suppressor of the dauer phenotypes caused by insulin/IGF receptor mutations. Interactions between insulin/IGF mutants and the pkc-1 suppressor mutant are similar to those described for daf-12 or the DAF-12 coregulator din-1. Moreover, we show that the expression of the DAF-12 target daf-9, which is normally elevated upon a reduction in insulin/IGF receptor activity, is suppressed in a pkc-1 mutant background, suggesting that pkc-1 could link the daf-12 and insulin/IGF pathways. pkc-1 has been implicated in the regulation of peptide neurosecretion in C. elegans. Although we demonstrate that pkc-1 expression in the nervous system regulates dauer formation, our results suggest that the requirement for pkc-1 in neurosecretion is independent of its role in modulating insulin/IGF signalling. pkc-1 belongs to the novel protein kinase C (nPKC) family, members of which have been implicated in insulin resistance and diabetes in mammals, suggesting a conserved role for pkc-1 in the regulation of the insulin/IGF pathway. © 2011 The Authors. Aging Cell © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  18. Down-Regulation of Protein Kinase C-ε by Prolonged Incubation with PMA Inhibits the Proliferation of Vascular Smooth Muscle Cells.

    PubMed

    Zhou, Huixuan; Wang, Yan; Zhou, Quanhong; Wu, Bin; Wang, Aizhong; Jiang, Wei; Wang, Li

    2016-01-01

    Phorbol myristate acetate (PMA) exerts a pleiotropic effect on the growth and differentiation of various cells. Protein kinase Cs (PKCs) plays a central role in mediating the effects of PMA on cells. The present study investigated whether the down-regulation of protein kinase C-ε (PKC-ε) is involved in the inhibition of vascular smooth muscle cell (VSMC) proliferation caused by prolonged PMA incubation. Using cell counting, Cell Counting Kit-8 (CCK-8) and EdU incorporation assay on VSMCs, we evaluated the inhibitory effects of prolonged incubation of PMA, of lentiviruses carrying the short-hairpin RNAs (shRNA) of PKC-ε and of the PKC-ε inhibitor peptide on the proliferation and viability of cells. The effect of PKC-ε down-regulation on growth of rat breast cancer SHZ-88 cells was also measured. The prolonged incubation of VSMCs with PMA for up to 72 hours resulted in attenuated cell growth rates in a time-dependent manner. The expression of PKC-ε, as assessed by Western blotting, was also decreased accordingly. Notably, the number of EdU-positive cells and the cell viability of VSMCs were decreased by shRNA of PKC-ε and the PKC-ε inhibitor peptide, respectively. The proliferation of rat breast cancer SHZ-88 cells was also attenuated by lentivirus-induced shRNA silencing of PKC-ε. Prolonged incubation of PMA can inhibit the expression of PKC-ε. The effect results in the inhibition of VSMC proliferation. PKC-ε silencing can also attenuate breast cancer cell growth, suggesting that PKC-ε may be a potential target for anti-cancer drugs. © 2016 The Author(s) Published by S. Karger AG, Basel.

  19. Activation of classical protein kinase C reduces the expression of human cationic amino acid transporter 3 (hCAT-3) in the plasma membrane

    PubMed Central

    Rotmann, Alexander; Vékony, Nicole; Gassner, Davina; Niegisch, Günter; Strand, Dennis; Martiné, Ursula; Closs, Ellen I.

    2005-01-01

    We have previously shown that activation of PKC (protein kinase C) results in internalization of hCAT-1 [human CAT-1 (cationic amino acid transporter 1)] and a decrease in arginine transport [Rotmann, Strand, Martiné and Closs (2004) J. Biol. Chem. 279, 54185–54192]. However, others found increased transport rates for arginine in response to PKC activation, suggesting a differential effect of PKC on different CAT isoforms. Therefore we investigated the effect of PKC on hCAT-3, an isoform expressed in thymus, brain, ovary, uterus and mammary gland. In Xenopus laevis oocytes and human U373MG glioblastoma cells, hCAT-3-mediated L-arginine transport was significantly reduced upon treatment with compounds that activate classical PKC. In contrast, inactive phorbol esters and an activator of novel PKC isoforms had no effect. PKC inhibitors (including the PKCα-preferring Ro 31-8280) reduced the inhibitory effect of the PKC-activating compounds. Microscopic analyses revealed a PMA-induced reduction in the cell-surface expression of fusion proteins between hCAT-3 and enhanced green fluorescent protein expressed in X. laevis oocytes and glioblastoma cells. Western-blot analysis of biotinylated surface proteins demonstrated a PMA-induced decrease in hCAT-3 in the plasma membrane, but not in total protein lysates. Pretreatment with a PKC inhibitor also reduced this PMA effect. It is concluded that similar to hCAT-1, hCAT-3 activity is decreased by PKC via reduction of transporter molecules in the plasma membrane. Classical PKC isoforms seem to be responsible for this effect. PMID:16332251

  20. A Kinase Inhibitor Screen Reveals Protein Kinase C-dependent Endocytic Recycling of ErbB2 in Breast Cancer Cells*

    PubMed Central

    Bailey, Tameka A.; Luan, Haitao; Tom, Eric; Bielecki, Timothy Alan; Mohapatra, Bhopal; Ahmad, Gulzar; George, Manju; Kelly, David L.; Natarajan, Amarnath; Raja, Srikumar M.; Band, Vimla; Band, Hamid

    2014-01-01

    ErbB2 overexpression drives oncogenesis in 20–30% cases of breast cancer. Oncogenic potential of ErbB2 is linked to inefficient endocytic traffic into lysosomes and preferential recycling. However, regulation of ErbB2 recycling is incompletely understood. We used a high-content immunofluorescence imaging-based kinase inhibitor screen on SKBR-3 breast cancer cells to identify kinases whose inhibition alters the clearance of cell surface ErbB2 induced by Hsp90 inhibitor 17-AAG. Less ErbB2 clearance was observed with broad-spectrum PKC inhibitor Ro 31-8220. A similar effect was observed with Go 6976, a selective inhibitor of classical Ca2+-dependent PKCs (α, β1, βII, and γ). PKC activation by PMA promoted surface ErbB2 clearance but without degradation, and ErbB2 was observed to move into a juxtanuclear compartment where it colocalized with PKC-α and PKC-δ together with the endocytic recycling regulator Arf6. PKC-α knockdown impaired the juxtanuclear localization of ErbB2. ErbB2 transit to the recycling compartment was also impaired upon PKC-δ knockdown. PMA-induced Erk phosphorylation was reduced by ErbB2 inhibitor lapatinib, as well as by knockdown of PKC-δ but not that of PKC-α. Our results suggest that activation of PKC-α and -δ mediates a novel positive feedback loop by promoting ErbB2 entry into the endocytic recycling compartment, consistent with reported positive roles for these PKCs in ErbB2-mediated tumorigenesis. As the endocytic recycling compartment/pericentrion has emerged as a PKC-dependent signaling hub for G-protein-coupled receptors, our findings raise the possibility that oncogenesis by ErbB2 involves previously unexplored PKC-dependent endosomal signaling. PMID:25225290

  1. Protein kinase C epsilon, which sensitizes skin to sun's UV radiation-induced cutaneous damage and development of squamous cell carcinomas, associates with Stat3.

    PubMed

    Aziz, Moammir H; Manoharan, Herbert T; Verma, Ajit K

    2007-02-01

    Chronic exposure to UV radiation (UVR) is the major etiologic factor in the development of human skin cancers including squamous cell carcinoma (SCC). We have shown that protein kinase C(epsilon) (PKC(epsilon)), a Ca(2+)-independent, phospholipid-dependent serine/threonine kinase, is an endogenous photosensitizer. PKC(epsilon) is among the six isoforms (alpha, delta, epsilon, eta, mu, and zeta) expressed in both mouse and human skin. PKC(epsilon) transgenic mice, which overexpress PKC(epsilon) in the basal epidermal cells and cells of the hair follicle, are highly sensitive to UVR-induced cutaneous damage and development of SCC. We now present that PKC(epsilon)-overexpressing, but not PKC(delta)-overexpressing, transgenic mice, when exposed to a single (4 kJ/m(2)) or repeated (four doses, 2 kJ/m(2)/dose, thrice weekly) UVR, emitted by Kodacel-filtered FS-40 sun lamps, elicit constitutive phosphorylation of signal transducers and activators of transcription 3 (Stat3) at both Tyr705 and Ser727 residues. UVR-induced phosphorylation of Stat3 accompanied increased expression of Stat3-regulated genes (c-myc, cyclin D1, cdc25A, and COX-2). In reciprocal immunoprecipitation/blotting experiments, phosphorylated Stat3 co-immunoprecipitated with PKC(epsilon). As observed in vivo using PKC(epsilon) knockout mice and in vitro in an immunocomplex kinase assay, PKC(epsilon) phosphorylated Stat3 at Ser727 residue. These results indicate for the first time that (a) PKC(epsilon) is a Stat3Ser727 kinase; (b) PKC(epsilon)-mediated phosphorylation of StatSer727 may be essential for transcriptional activity of Stat3; and (c) UVR-induced phosphorylation of Ser727 may be a key component of the mechanism by which PKC(epsilon) imparts sensitivity to UVR-induced development of SCC.

  2. Phosphorylation of h1 Calponin by PKC epsilon may contribute to facilitate the contraction of uterine myometrium in mice during pregnancy and labor

    PubMed Central

    2012-01-01

    Background The timely onset of powerful uterine contractions during parturition occurs through thick and thin filament interactions, similar to other smooth muscle tissues. Calponin is one of the thin filament proteins. Phosphorylation of calponin induced by PKC-epsilon can promote the contraction of vascular smooth muscle. While the mechanism by which calponin regulates the contraction of pregnant myometrium has rarely been explored. Here, we explore whether PKC-epsilon/h1 calponin pathway contribute to regulation of myometrial contractility and development of parturition. Methods We detected the expression of h1 calponin, phosphorylated h1 calponin, PKC-epsilon and phosphorylated PKC-epsilon in the different stages of mice during pregnancy and in labor by the method of western blot and recorded the contraction activity of myometrium strips at the 19th day during pregnancy with different treatments by the organ bath experiments. Results The level of the four proteins including h1 calponin, phosphorylated h1 calponin, PKC-epsilon and phosphorylated PKC-epsilon was significantly increased in pregnant mice myometrium as compared with that in nonpregnant mice. The ratios of phosphorylated h1 calponin/h1 calponin and phosphorylated PKC-epsilon/PKC-epsilon were reached the peak after the onset of labor in myometrium in the mice. After the treatment of more than 10(9-) mol/L Psi-RACK (PKC-epsilon activator), the contractility of myometrium strips from mice was reinforced and the level of phosphorylated h1 calponin increased at the same time which could be interrupted by the specific inhibitor of PKC-epsilon. Meanwhile, the change of the ratio of phosphorylated h1 calponin/h1 calponin was consistent with that of contraction force of mice myometrium strips. Conclusions These data suggest that in mice myometrium, phosphorylation of h1 calponin induced by the PKC-epsilon might facilitate the contraction of uterine in labor and regulate pregnant myometrial contractility. PMID:22551221

  3. Correction of metabolic abnormalities in a rodent model of obesity, metabolic syndrome, and type 2 diabetes mellitus by inhibitors of hepatic protein kinase C-ι.

    PubMed

    Sajan, Mini P; Nimal, Sonali; Mastorides, Stephen; Acevedo-Duncan, Mildred; Kahn, C Ronald; Fields, Alan P; Braun, Ursula; Leitges, Michael; Farese, Robert V

    2012-04-01

    Excessive activity of hepatic atypical protein kinase (aPKC) is proposed to play a critical role in mediating lipid and carbohydrate abnormalities in obesity, the metabolic syndrome, and type 2 diabetes mellitus. In previous studies of rodent models of obesity and type 2 diabetes mellitus, adenoviral-mediated expression of kinase-inactive aPKC rapidly reversed or markedly improved most if not all metabolic abnormalities. Here, we examined effects of 2 newly developed small-molecule PKC-ι/λ inhibitors. We used the mouse model of heterozygous muscle-specific knockout of PKC-λ, in which partial deficiency of muscle PKC-λ impairs glucose transport in muscle and thereby causes glucose intolerance and hyperinsulinemia, which, via hepatic aPKC activation, leads to abdominal obesity, hepatosteatosis, hypertriglyceridemia, and hypercholesterolemia. One inhibitor, 1H-imidazole-4-carboxamide, 5-amino-1-[2,3-dihydroxy-4-[(phosphonooxy)methyl]cyclopentyl-[1R-(1a,2b,3b,4a)], binds to the substrate-binding site of PKC-λ/ι, but not other PKCs. The other inhibitor, aurothiomalate, binds to cysteine residues in the PB1-binding domains of aPKC-λ/ι/ζ and inhibits scaffolding. Treatment with either inhibitor for 7 days inhibited aPKC, but not Akt, in liver and concomitantly improved insulin signaling to Akt and aPKC in muscle and adipocytes. Moreover, both inhibitors diminished excessive expression of hepatic, aPKC-dependent lipogenic, proinflammatory, and gluconeogenic factors; and this was accompanied by reversal or marked improvements in hyperglycemia, hyperinsulinemia, abdominal obesity, hepatosteatosis, hypertriglyceridemia, and hypercholesterolemia. Our findings highlight the pathogenetic importance of insulin signaling to hepatic PKC-ι in obesity, the metabolic syndrome, and type 2 diabetes mellitus and suggest that 1H-imidazole-4-carboxamide, 5-amino-1-[2,3-dihydroxy-4-[(phosphonooxy)methyl]cyclopentyl-[1R-(1a,2b,3b,4a)] and aurothiomalate or similar agents that selectively inhibit hepatic aPKC may be useful treatments. Published by Elsevier Inc.

  4. Regulation of mTOR and S6K1 activation by the nPKC isoforms, PKCepsilon and PKCdelta, in adult cardiac muscle cells.

    PubMed

    Moschella, Phillip C; Rao, Vijay U; McDermott, Paul J; Kuppuswamy, Dhandapani

    2007-12-01

    Activation of both mTOR and its downstream target, S6K1 (p70 S6 kinase) have been implicated to affect cardiac hypertrophy. Our earlier work, in a feline model of 1-48 h pressure overload, demonstrated that mTOR/S6K1 activation occurred primarily through a PKC/c-Raf pathway. To further delineate the role of specific PKC isoforms on mTOR/S6K1 activation, we utilized primary cultures of adult feline cardiomyocytes in vitro and stimulated with endothelin-1 (ET-1), phenylephrine (PE), TPA, or insulin. All agonist treatments resulted in S2248 phosphorylation of mTOR and T389 and S421/T424 phosphorylation of S6K1, however only ET-1 and TPA-stimulated mTOR/S6K1 activation was abolished with infection of a dominant negative adenoviral c-Raf (DN-Raf) construct. Expression of DN-PKC(epsilon) blocked ET-1-stimulated mTOR S2448 and S6K1 S421/T424 and T389 phosphorylation but had no effect on insulin-stimulated S6K1 phosphorylation. Expression of DN-PKC(delta) or pretreatment of cardiomyocytes with rottlerin, a PKC(delta) specific inhibitor, blocked both ET-1 and insulin stimulated mTOR S2448 and S6K1 T389 phosphorylation. However, treatment with Gö6976, a specific classical PKC (cPKC) inhibitor did not affect mTOR/S6K1 activation. These data indicate that: (i) PKC(epsilon) is required for ET-1-stimulated T421/S424 phosphorylation of S6K1, (ii) both PKC(epsilon) and PKC(delta) are required for ET-1-stimulated mTOR S2448 and S6K1 T389 phosphorylation, (iii) PKC(delta) is also required for insulin-stimulated mTOR S2448 and S6K1 T389 phosphorylation. Together, these data delineate both distinct and combinatorial roles of specific PKC isoforms on mTOR and S6K1 activation in adult cardiac myocytes following hypertrophic stimulation.

  5. [Design and application of a cake-shaping apparatus for drug-separated moxibustion].

    PubMed

    Zhu, Ai-Jun; Lu, Xiao-Dong

    2008-08-01

    Acupuncturist makes herbal cakes with traditional manual way, with such disadvantages as slow in making, varying in thickness and size of the cake. When the patients are treated with medical cake-separated moxibustion, they will be unevenly affected by the heat and the patient easily suffers from burning. These hinder clinically wide application of cake-separated moxibustion. With practice of many years, the authors design and make a kind of manual cake-shaping apparatus which can rapidly and conveniently make uniform medical cake, with simple technique, ingenious structure and normal material.

  6. Effect of different flours on quality of legume cakes to be baked in microwave-infrared combination oven and conventional oven.

    PubMed

    Ozkahraman, Betul Canan; Sumnu, Gulum; Sahin, Serpil

    2016-03-01

    The objective of this study was to compare the quality of legume cakes baked in microwave-infrared combination (MW-IR) oven with conventional oven. Legume cake formulations were developed by replacing 10 % wheat flour by lentil, chickpea and pea flour. As a control, wheat flour containing cakes were used. Weight loss, specific volume, texture, color, gelatinization degree, macro and micro-structure of cakes were investigated. MW-IR baked cakes had higher specific volume, weight loss and crust color change and lower hardness values than conventionally baked cakes. Larger pores were observed in MW-IR baked cakes according to scanning electron microscope (SEM) images. Pea flour giving the hardest structure, lowest specific volume and gelatinization degree was determined to be the least acceptable legume flour. On the other hand, lentil and chickpea flour containing cakes had the softest structure and highest specific volume showing that lentil and chickpea flour can be used to produce functional cakes.

  7. Activation of Protein Kinase C and Protein Kinase D in Human Natural Killer Cells: Effects of Tributyltin, Dibutyltin, and Tetrabromobisphenol A

    PubMed Central

    Rana, Krupa; Whalen, Margaret M.

    2015-01-01

    Up to now, the ability of target cells to activate protein kinase C (PKC) and protein kinase D (PKD) (which is often a downstream target of PKC) has not been examined in natural killer (NK) lymphocytes. Here we examined whether exposure of human NK cells to lysis sensitive tumor cells activated PKC and PKD. The results of these studies show for the first time that activation of PKC and PKD occurs in response to target cell binding to NK cells. Exposure of NK cells to K562 tumor cells for 10 and 30 minutes increased phosphorylation/activation of both PKC and PKD by roughly 2 fold. Butyltins (tributyltin (TBT); dibutyltin (DBT)) and brominated compounds (tetrabromobisphenol A (TBBPA)) are environmental contaminants that are found in human blood. Exposures of NK cells to TBT, DBT or TBBPA decrease NK cell lytic function in part by activating the mitogen activated protein kinases (MAPKs) that are part of the NK lytic pathway. We established that PKC and PKD are part of the lytic pathway upstream of MAPKs and thus we investigated whether DBT, TBT, and TBBPA exposures activated PKC and PKD. TBT activated PKC by 2–3 fold at 10 min at concentrations ranging from 50–300 nM while DBT caused a 1.3 fold activation at 2.5 μM at 10 min. Both TBT and DBT caused an approximately 2 fold increase in phosphorylation/activation of PKC. Exposures to TBBPA caused no statistically significant changes in either PKC or PKD activation. PMID:26228090

  8. Celebratory Cakes

    ERIC Educational Resources Information Center

    Mahoney, Ellen

    2012-01-01

    Cakes are no longer the simple desserts they once were. The cake has evolved into an elaborate, sculptural form that represents a special occasion. Sculptural cake forms have become expressive designs using three-dimensional shapes, an array of surface textures, and a range of colors. The use of cakes in the artwork of David Gilhooly, Wayne…

  9. Comparative study of texture of normal and energy reduced sponge cakes.

    PubMed

    Baeva, M R; Panchev, I N; Terzieva, V V

    2000-08-01

    The complete sucrose elimination and its replacement by microencapsulated aspartame (Nutra Sweet) and bulking agents (sorbitol, wheat starch and wheat germ) on the physical and textural sensory characteristics of two diabetic sponge cakes against a control sponge cake was studied. Mathematical and statistical methods were used and regression models worked out, describing the physical and textural characteristics of the three sponge cakes and their values were optimized. The effect on the porosity, springiness, volume and shrinkage of sponge takes was substantial and depended on the amount of the added ingredients. The diabetic sponge cake containing wheat germ showed the least physical and sensory deviations against the control sponge cake. The energy value of the diabetic sponge cakes against the control one was reduced with 25% for the ordinary sponge cake without sucrose and with 29% for sponge cake without sucrose containing wheat germ.

  10. Analgesic Effects of Toad Cake and Toad-cake-containing Herbal Drugs

    PubMed Central

    Inoue, Eiji; Shimizu, Yasuharu; Masui, Ryo; Usui, Tomomi; Sudoh, Keiichi

    2014-01-01

    Objectives: This study was conducted to clarify the analgesic effect of toad cake and toad-cake-containing herbal drugs. Methods: We counted the writhing response of mice after the intraperitoneal administration of acetic acid as a nociceptive pain model and the withdrawal response after the plantar surface stimulation of the hind paw induced by partial sciatic nerve ligation of the mice as a neuropathic pain model to investigate the analgesic effect of toad cake and toad-cake-containing herbal drugs. A co-treatment study with serotonin biosynthesis inhibitory drug 4-chloro- DL-phenylalanine methyl ester hydrochloride (PCPA), the catecholamine biosynthesis inhibitory drug α-methyl- DL-tyrosine methyl ester hydrochloride (AMPT) or the opioid receptor antagonist naloxone hydrochloride was also conducted. Results: Analgesic effects in a mouse model of nociceptive pain and neuropathic pain were shown by oral administration of toad cake and toad-cake-containing herbal drugs. The effects of toad cake and toad-cake-containing herbal drugs disappeared upon co-treatment with PCPA, but not with AMPT or naloxone in the nociceptive pain model; the analgesic effect of toad-cake-containing herbal drugs also disappeared upon co-treatment with PCPA in the neuropathic pain model. Conclusion: Toad cake and toad-cake-containing herbal drugs have potential for the treatments of nociceptive pain and of neuropathic pain, such as post-herpetic neuralgia, trigeminal neuralgia, diabetic neuralgia, and postoperative or posttraumatic pain, by activation of the central serotonin nervous system. PMID:25780693

  11. Atypical protein kinase C induces cell transformation by disrupting Hippo/Yap signaling

    PubMed Central

    Archibald, Andrew; Al-Masri, Maia; Liew-Spilger, Alyson; McCaffrey, Luke

    2015-01-01

    Epithelial cells are major sites of malignant transformation. Atypical protein kinase C (aPKC) isoforms are overexpressed and activated in many cancer types. Using normal, highly polarized epithelial cells (MDCK and NMuMG), we report that aPKC gain of function overcomes contact inhibited growth and is sufficient for a transformed epithelial phenotype. In 2D cultures, aPKC induced cells to grow as stratified epithelia, whereas cells grew as solid spheres of nonpolarized cells in 3D culture. aPKC associated with Mst1/2, which uncoupled Mst1/2 from Lats1/2 and promoted nuclear accumulation of Yap1. Of importance, Yap1 was necessary for aPKC-mediated overgrowth but did not restore cell polarity defects, indicating that the two are separable events. In MDCK cells, Yap1 was sequestered to cell–cell junctions by Amot, and aPKC overexpression resulted in loss of Amot expression and a spindle-like cell phenotype. Reexpression of Amot was sufficient to restore an epithelial cobblestone appearance, Yap1 localization, and growth control. In contrast, the effect of aPKC on Hippo/Yap signaling and overgrowth in NMuMG cells was independent of Amot. Finally, increased expression of aPKC in human cancers strongly correlated with increased nuclear accumulation of Yap1, indicating that the effect of aPKC on transformed growth by deregulating Hippo/Yap1 signaling may be clinically relevant. PMID:26269582

  12. Topography of Protein Kinase C βII in Benign and Malignant Melanocytic Lesions.

    PubMed

    Krasagakis, Konstanin; Tsentelierou, Eleftheria; Chlouverakis, Gregory; Stathopoulos, Efstathios N

    2017-09-01

    Protein kinase C βII promotes melanogenesis and affects proliferation of melanocytic cells but is frequently absent or decreased in melanoma cells in vitro. To investigate PKC-βII expression and spatial distribution within a lesion in various benign and malignant melanocytic proliferations. Expression of PKC-βII was semiquantitatively assessed in the various existing compartments (intraepidermal [not nested], junctional [nested], and dermal) of benign (n = 43) and malignant (n = 28) melanocytic lesions by immunohistochemistry. Melanocytes in the basal layer of normal skin or in lentigo simplex stained strongly for PKC-βII. Common nevi lacked completely PKC-βII. All other lesions expressed variably PKC-βII, with cutaneous melanoma metastases displaying the lowest rate of positivity (14%). In the topographical analysis within a lesion, PKC-βII expression was largely retained in the intraepidermal and junctional part of all other lesions (dysplastic nevus, lentigo maligna, and melanoma). Reduced expression of PKC-βII was found in the dermal component of benign and malignant lesions ( P = .041 vs intraepidermal). PKC-βII expression in the various compartments did not differ significantly between benign and malignant lesions. The current study revealed a significant correlation between PKC-βII expression and spatial localization of melanocytes, with the lowest expression found in the dermal compartment and the highest in the epidermal compartment.

  13. Rational design and validation of an anti-protein kinase C active-state specific antibody based on conformational changes.

    PubMed

    Pena, Darlene Aparecida; Andrade, Victor Piana de; Silva, Gabriela Ávila Fernandes; Neves, José Ivanildo; Oliveira, Paulo Sergio Lopes de; Alves, Maria Julia Manso; Devi, Lakshmi A; Schechtman, Deborah

    2016-02-25

    Protein kinase C (PKC) plays a regulatory role in key pathways in cancer. However, since phosphorylation is a step for classical PKC (cPKC) maturation and does not correlate with activation, there is a lack of tools to detect active PKC in tissue samples. Here, a structure-based rational approach was used to select a peptide to generate an antibody that distinguishes active from inactive cPKC. A peptide conserved in all cPKCs, C2Cat, was chosen since modeling studies based on a crystal structure of PKCβ showed that it is localized at the interface between the C2 and catalytic domains of cPKCs in an inactive kinase. Anti-C2Cat recognizes active cPKCs at least two-fold better than inactive kinase in ELISA and immunoprecipitation assays, and detects the temporal dynamics of cPKC activation upon receptor or phorbol stimulation. Furthermore, the antibody is able to detect active PKC in human tissue. Higher levels of active cPKC were observed in the more aggressive triple negative breast cancer tumors as compared to the less aggressive estrogen receptor positive tumors. Thus, this antibody represents a reliable, hitherto unavailable and a valuable tool to study PKC activation in cells and tissues. Similar structure-based rational design strategies can be broadly applied to obtain active-state specific antibodies for other signal transduction molecules.

  14. Functional divergence of platelet protein kinase C (PKC) isoforms in thrombus formation on collagen.

    PubMed

    Gilio, Karen; Harper, Matthew T; Cosemans, Judith M E M; Konopatskaya, Olga; Munnix, Imke C A; Prinzen, Lenneke; Leitges, Michael; Liu, Qinghang; Molkentin, Jeffery D; Heemskerk, Johan W M; Poole, Alastair W

    2010-07-23

    Arterial thrombosis, a major cause of myocardial infarction and stroke, is initiated by activation of blood platelets by subendothelial collagen. The protein kinase C (PKC) family centrally regulates platelet activation, and it is becoming clear that the individual PKC isoforms play distinct roles, some of which oppose each other. Here, for the first time, we address all four of the major platelet-expressed PKC isoforms, determining their comparative roles in regulating platelet adhesion to collagen and their subsequent activation under physiological flow conditions. Using mouse gene knock-out and pharmacological approaches in human platelets, we show that collagen-dependent alpha-granule secretion and thrombus formation are mediated by the conventional PKC isoforms, PKCalpha and PKCbeta, whereas the novel isoform, PKC, negatively regulates these events. PKCdelta also negatively regulates thrombus formation but not alpha-granule secretion. In addition, we demonstrate for the first time that individual PKC isoforms differentially regulate platelet calcium signaling and exposure of phosphatidylserine under flow. Although platelet deficient in PKCalpha or PKCbeta showed reduced calcium signaling and phosphatidylserine exposure, these responses were enhanced in the absence of PKC. In summary therefore, this direct comparison between individual subtypes of PKC, by standardized methodology under flow conditions, reveals that the four major PKCs expressed in platelets play distinct non-redundant roles, where conventional PKCs promote and novel PKCs inhibit thrombus formation on collagen.

  15. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents.

    PubMed

    Benoit, Stephen C; Kemp, Christopher J; Elias, Carol F; Abplanalp, William; Herman, James P; Migrenne, Stephanie; Lefevre, Anne-Laure; Cruciani-Guglielmacci, Céline; Magnan, Christophe; Yu, Fang; Niswender, Kevin; Irani, Boman G; Holland, William L; Clegg, Deborah J

    2009-09-01

    Insulin signaling can be modulated by several isoforms of PKC in peripheral tissues. Here, we assessed whether one specific isoform, PKC-theta, was expressed in critical CNS regions that regulate energy balance and whether it mediated the deleterious effects of diets high in fat, specifically palmitic acid, on hypothalamic insulin activity in rats and mice. Using a combination of in situ hybridization and immunohistochemistry, we found that PKC-theta was expressed in discrete neuronal populations of the arcuate nucleus, specifically the neuropeptide Y/agouti-related protein neurons and the dorsal medial nucleus in the hypothalamus. CNS exposure to palmitic acid via direct infusion or by oral gavage increased the localization of PKC-theta to cell membranes in the hypothalamus, which was associated with impaired hypothalamic insulin and leptin signaling. This finding was specific for palmitic acid, as the monounsaturated fatty acid, oleic acid, neither increased membrane localization of PKC-theta nor induced insulin resistance. Finally, arcuate-specific knockdown of PKC-theta attenuated diet-induced obesity and improved insulin signaling. These results suggest that many of the deleterious effects of high-fat diets, specifically those enriched with palmitic acid, are CNS mediated via PKC-theta activation, resulting in reduced insulin activity.

  16. Nitric oxide, PKC-ε, and connexin43 are crucial for ischemic preconditioning-induced chemical gap junction uncoupling

    PubMed Central

    Sun, Tao; Hao, Li; Lin, Ming-Jie; Zhong, Jing-Quan

    2016-01-01

    Ischemic preconditioning (IPC) maintains connexin43 (Cx43) phosphorylation and reduces chemical gap junction (GJ) coupling in cardiomyocytes to protect against ischemic damage. However, the signal transduction pathways underlying these effects are not fully understood. Here, we investigated whether nitric oxide (NO) and protein kinase C-ε (PKC-ε) contribute to IPC-induced cardioprotection by maintaining Cx43 phosphorylation and inhibiting chemical GJ coupling. IPC reduced ischemia-induced myocardial infarction and increased cardiomyocyte survival; phosphorylated Cx43, eNOS, and PKC-ε levels; and chemical GJ uncoupling. Administration of the NO donor SNAP mimicked the effects of IPC both in vivo and in vitro, maintaining Cx43 phosphorylation, promoting chemical GJ uncoupling, and reducing myocardial infarction. Preincubation with the NO synthase inhibitor L-NAME or PKC-ε translocation inhibitory peptide (PKC-ε-TIP) abolished these effects of IPC. Additionally, by inducing NO production, IPC induced translocation of PKC-ε, but not PKC-δ, from the cytosolic to the membrane fraction in primary cardiac myocytes. IPC-induced cardioprotection thus involves increased NO production, PKC-ε translocation, Cx43 phosphorylation, and chemical GJ uncoupling. PMID:27655723

  17. Protein kinase C: perfectly balanced.

    PubMed

    Newton, Alexandra C

    2018-04-01

    Protein kinase C (PKC) isozymes belong to a family of Ser/Thr kinases whose activity is governed by reversible release of an autoinhibitory pseudosubstrate. For conventional and novel isozymes, this is effected by binding the lipid second messenger, diacylglycerol, but for atypical PKC isozymes, this is effected by binding protein scaffolds. PKC shot into the limelight following the discovery in the 1980s that the diacylglycerol-sensitive isozymes are "receptors" for the potent tumor-promoting phorbol esters. This set in place a concept that PKC isozymes are oncoproteins. Yet three decades of cancer clinical trials targeting PKC with inhibitors failed and, in some cases, worsened patient outcome. Emerging evidence from cancer-associated mutations and protein expression levels provide a reason: PKC isozymes generally function as tumor suppressors and their activity should be restored, not inhibited, in cancer therapies. And whereas not enough activity is associated with cancer, variants with enhanced activity are associated with degenerative diseases such as Alzheimer's disease. This review describes the tightly controlled mechanisms that ensure PKC activity is perfectly balanced and what happens when these controls are deregulated. PKC isozymes serve as a paradigm for the wisdom of Confucius: "to go beyond is as wrong as to fall short."

  18. Regulation of Chloride Channels by Protein Kinase C in Normal and Cystic Fibrosis Airway Epithelia

    NASA Astrophysics Data System (ADS)

    Li, Ming; McCann, John D.; Anderson, Matthew P.; Clancy, John P.; Liedtke, Carole M.; Nairn, Angus C.; Greengard, Paul; Welsh, Michael J.

    1989-06-01

    Apical membrane chloride channels control chloride secretion by airway epithelial cells. Defective regulation of these channels is a prominent characteristic of cystic fibrosis. In normal intact cells, activation of protein kinase C (PKC) by phorbol ester either stimulated or inhibited chloride secretion, depending on the physiological status of the cell. In cell-free membrane patches, PKC also had a dual effect: at a high calcium concentration, PKC inactivated chloride channels; at a low calcium concentration, PKC activated chloride channels. In cystic fibrosis cells, PKC-dependent channel inactivation was normal, but activation was defective. Thus it appears that PKC phosphorylates and regulates two different sites on the channel or on an associated membrane protein, one of which is defective in cystic fibrosis.

  19. Development of a Pancake-Making Method for a Batter-Based Product

    USDA-ARS?s Scientific Manuscript database

    Cake and pancake are major batter-based products made with soft wheat flour. A standardized baking method for high-ratio cake has been widely used for evaluating the cake-baking performance of soft wheat flour. Chlorinated flour is used to make high-ratio cake, and the cake formula contains relative...

  20. Influence of different emulsifiers on characteristics of eggless cake containing soy milk: Modeling of physical and sensory properties by mixture experimental design.

    PubMed

    Rahmati, Nazanin Fatemeh; Mazaheri Tehrani, Mostafa

    2014-09-01

    Emulsifiers of different structures and functionalities are important ingredients usually used in baking cakes with satisfactory properties. In this study, three emulsifiers including distilled glycerol mono stearate (DGMS), lecithin and sorbitan mono stearate (SMS) were used to bake seven eggless cakes containing soy milk and optimization was performed by using mixture experimental design to produce an eggless cake sample with optimized properties. Physical properties of cake batters (viscosity, specific gravity and stability), cake quality parameters (moisture loss, density, specific volume, volume index, contour, symmetry, color and texture) and sensory attributes of eggless cakes were analyzed to investigate functional potential of the emulsifiers and results were compared with those of control cake containing egg. Almost in all cases emulsifiers, compared to the control cake, changed properties of eggless cakes significantly. Regarding models of different response variables (except for some properties) and their high R(2) (99.51-100), it could be concluded that models obtained by mixture design were significantly fitted for the studied responses.

  1. SIDE VIEW OF PREPARATION FOR PULLING CONTINUOUSLYCAST "CAKES" FROM MOLDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SIDE VIEW OF PREPARATION FOR PULLING CONTINUOUSLY-CAST "CAKES" FROM MOLDS AT #03 STATION. WHEN THE CAKES HAVE COOLED SUFFICIENTLY, THE CASTER STATION IS MOVED ASIDE TO EXPOSE THE QUENCH TANK AND MOLDS. EACH CAKE OF THE THREE CAKES WEIGHS UP TO APPROXIMATELY 20,000. THE DIMENSIONS OF BRASS CAKES RANGE UP TO 27 1\\2" WIDE X 6 3\\4" THICK X 25' LONG, CORRESPONDING MAXIMUMS FOR COPPER CAKES ARE 37 1\\2" X 5" X 24'. #01 STATION, DATING FROM THE EARLY 1960'S CASTS ONLY A SINGLE BAR (RATHER THAN THREE SIMULTANEOUSLY), THAT IS APPROXIMATELY HALF THE LENGTH OF CAKES FROM THE OTHER STATIONS (150' V. 300") AND WEIGHS UP TO 12,500 LBS. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  2. SIDE VIEW OF PREPARATION FOR PULLING CONTINUOUSLYCAST "CAKES" FROM MOLDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SIDE VIEW OF PREPARATION FOR PULLING CONTINUOUSLY-CAST "CAKES" FROM MOLDS AT #03 STATION. WHEN THE CAKES HAVE COOLED SUFFICIENTLY, THE CASTER STATION IS MOVED ASIDE TO EXPOSE THE QUENCH TANK AND MOLDS. EACH CAKE OF THE THREE CAKES WEIGHS UP TO APPROXIMATELY 20,000 LBS THE DIMENSIONS OF BRASS CAKES RANGE UP TO 27 1\\2" WIDE X 6 3\\4" THICK X 25' LONG, CORRESPONDING MAXIMUMS FOR COPPER CAKES ARE 37 1\\2" X 5" X 24'. #01 STATION, DATING FROM THE EARLY 1960'S CASTS ONLY A SINGLE BAR (RATHER THAN THREE SIMULTANEOUSLY), THAT IS APPROXIMATELY HALF THE LENGTH OF CAKES FROM THE OTHER STATIONS (150' V. 300") AND WEIGHS UP TO 12,500 LBS. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  3. PKA and PKC Are Required for Long-Term but Not Short-Term in Vivo Operant Memory in "Aplysia"

    ERIC Educational Resources Information Center

    Michel, Maximilian; Green, Charity L.; Lyons, Lisa C.

    2011-01-01

    We investigated the involvement of PKA and PKC signaling in a negatively reinforced operant learning paradigm in "Aplysia", learning that food is inedible (LFI). In vivo injection of PKA or PKC inhibitors blocked long-term LFI memory formation. Moreover, a persistent phase of PKA activity, although not PKC activity, was necessary for long-term…

  4. A novel and selective inhibitor of PKC ζ potently inhibits human breast cancer metastasis in vitro and in mice.

    PubMed

    Wu, Jing; Liu, Shuye; Fan, Zhijuan; Zhang, Lei; Tian, Yaqiong; Yang, Rui

    2016-06-01

    Cell motility and chemotaxis play pivotal roles in the process of tumor development and metastasis. Protein kinase C ζ (PKC ζ) mediates epidermal growth factor (EGF)-stimulated chemotactic signaling pathway through regulating cytoskeleton rearrangement and cell adhesion. The purpose of this study was to develop anti-PKC ζ therapeutics for breast cancer metastasis. In this study, a novel and high-efficient PKC ζ inhibitor named PKCZI195.17 was screened out through a substrate-specific strategy. MTT assay was used to determine the cell viability of human breast cancer MDA-MB-231, MDA-MB-435, and MCF-7 cells while under PKCZI195.17 treatment. Wound-healing, chemotaxis, and Matrigel invasion assays were performed to detect the effects of PKCZI195.17 on breast cancer cells migration and invasion. Adhesion, actin polymerization, and Western blotting were performed to detect the effects of PKCZI195.17 on cells adhesion and actin polymerization, and explore the downsteam signaling mechanisms involved in PKC ζ inhibition. MDA-MB-231 xenograft was used to measure the in vivo anti-metastasis efficacy of PKCZI195.17. The compound PKCZI195.17 selectively inhibited PKC ζ kinase activity since it failed to inhibit PKC α, PKC β, PKC δ, PKC η, AKT2, as well as FGFR2 activity. PKCZI195.17 significantly impaired spontaneous migration, chemotaxis, and invasion of human breast cancer MDA-MB-231, MDA-MB-435, and MCF-7 cells, while PKCZI195.17 did not obviously inhibited cells viability. PKCZI195.17 also inhibited cells adhesion and actin polymerization through attenuating the phosphorylations of integrin β1, LIMK, and cofilin, which might be the downstream effectors of PKC ζ-mediated chemotaxis in MDA-MB-231 cells. Furthermore, PKCZI195.17 suppressed the breast cancer metastasis and increased the survival time of breast tumor-bearing mice. In summary, PKCZI195.17 was a PKC ζ-specific inhibitor which dampened cancer cell migration and metastasis and may serve as a novel therapeutic drug for breast cancer metastasis.

  5. Dopaminergic neurotoxicant 6-OHDA induces oxidative damage through proteolytic activation of PKC{delta} in cell culture and animal models of Parkinson's disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latchoumycandane, Calivarathan; Anantharam, Vellareddy; Jin, Huajun

    2011-11-15

    The neurotoxicant 6-hydroxydopamine (6-OHDA) is used to investigate the cellular and molecular mechanisms underlying selective degeneration of dopaminergic neurons in Parkinson's disease (PD). Oxidative stress and caspase activation contribute to the 6-OHDA-induced apoptotic cell death of dopaminergic neurons. In the present study, we sought to systematically characterize the key downstream signaling molecule involved in 6-OHDA-induced dopaminergic degeneration in cell culture and animal models of PD. Treatment of mesencephalic dopaminergic neuronal N27 cells with 6-OHDA (100 {mu}M) for 24 h significantly reduced mitochondrial activity and increased cytosolic cytochrome c, followed by sequential activation of caspase-9 and caspase-3. Co-treatment with the freemore » radical scavenger MnTBAP (10 {mu}M) significantly attenuated 6-OHDA-induced caspase activities. Interestingly, 6-OHDA induced proteolytic cleavage and activation of protein kinase C delta (PKC{delta}) was completely suppressed by treatment with a caspase-3-specific inhibitor, Z-DEVD-FMK (50 {mu}M). Furthermore, expression of caspase-3 cleavage site-resistant mutant PKC{delta}{sup D327A} and kinase dead PKC{delta}{sup K376R} or siRNA-mediated knockdown of PKC{delta} protected against 6-OHDA-induced neuronal cell death, suggesting that caspase-3-dependent PKC{delta} promotes oxidative stress-induced dopaminergic degeneration. Suppression of PKC{delta} expression by siRNA also effectively protected N27 cells from 6-OHDA-induced apoptotic cell death. PKC{delta} cleavage was also observed in the substantia nigra of 6-OHDA-injected C57 black mice but not in control animals. Viral-mediated delivery of PKC{delta}{sup D327A} protein protected against 6-OHDA-induced PKC{delta} activation in mouse substantia nigra. Collectively, these results strongly suggest that proteolytic activation of PKC{delta} is a key downstream event in dopaminergic degeneration, and these results may have important translational value for development of novel treatment strategies for PD.« less

  6. Analysis of Substrates of Protein Kinase C Isoforms in Human Breast Cells By The Traceable Kinase Method

    PubMed Central

    Chen, Xiangyu; Zhao, Xin; Abeyweera, Thushara P.; Rotenberg, Susan A.

    2012-01-01

    A previous report (Biochemistry 46: 2364–2370, 2007) described the application of The Traceable Kinase Method to identify substrates of PKCα in non-transformed human breast MCF-10A cells. Here, a non-radioactive variation of this method compared the phospho-protein profiles of three traceable PKC isoforms (α, δ and ζ) for the purpose of identifying novel, isoform-selective substrates. Each FLAG-tagged traceable kinase was expressed and co-immunoprecipitated along with high affinity substrates. The isolated kinase and its associated substrates were subjected to an in vitro phosphorylation reaction with traceable kinase-specific N6-phenyl-ATP, and the resulting phospho-proteins were analyzed by Western blot with an antibody that recognizes the phosphorylated PKC consensus site. Phospho-protein profiles generated by PKC-α and -δ were similar and differed markedly from that of PKC-ζ. Mass spectrometry of selected bands revealed known PKC substrates and several potential substrates that included the small GTPase-associated effector protein Cdc42 effector protein-4 (CEP4). Of those potential substrates tested, only CEP4 was phosphorylated by pure PKC-α, –δ, and −ζ isoforms in vitro, and by endogenous PKC isoforms in MCF-10A cells treated with DAG-lactone, a membrane permeable PKC activator. Under these conditions, the stoichiometry of CEP4 phosphorylation was 3.2 ± 0.5 (mol phospho-CEP4/mol CEP4). Following knock-down with isoform-specific shRNA-encoding plasmids, phosphorylation of CEP4 was substantially decreased in response to silencing of each of the three isoforms (PKC–α, –δ, or –ζ), whereas testing of kinase-dead mutants supported a role for only PKC-α and –δ in CEP4 phosphorylation. These findings identify CEP4 as a novel intracellular PKC substrate that is phosphorylated by multiple PKC isoforms. PMID:22897107

  7. Interfering RNA against PKC-α inhibits TNF-α-induced IP3R1 expression and improves glomerular filtration rate in rats with fulminant hepatic failure.

    PubMed

    Wang, Dong-Lei; Dai, Wen-Ying; Wang, Wen; Wen, Ying; Zhou, Ying; Zhao, Yi-Tong; Wu, Jian; Liu, Pei

    2018-05-01

    We have reported that tumor necrosis factor-α (TNF-α) is critical for reduction of glomerular filtration rate (GFR) in rats with fulminant hepatic failure (FHF). The present study aims to evaluate the underlying mechanisms of decreased GFR during acute hepatic failure. Rats with FHF induced by d-galactosamine plus lipopolysaccharide (GalN/LPS) were injected intravenously with recombinant lentivirus harboring short hairpin RNA against the protein kinase C-α ( PKC-α) gene (Lenti-shRNA-PKC-α). GFR, serum levels of aminotransferases, creatinine, urea nitrogen, potassium, sodium, chloride, TNF-α, and endothelin-1 (ET-1), as well as type 1 inositol 1,4,5-trisphosphate receptor (IP 3 R1) expression in renal tissue were assessed. The effects of PKC-α silencing on TNF-α-induced IP 3 R1, specificity protein 1 (SP-1), and c-Jun NH 2 -terminal kinase (JNK) expression, as well as cytosolic calcium content were determined in glomerular mesangial cell (GMCs) with RNAi against PKC-α. Renal IP 3 R1 overexpression was abrogated by pre-treatment with Lenti-shRNA-PKC-α. The PKC-α silence significantly improved the compromised GFR, reduced Cr levels, and reversed the decrease in glomerular inulin space and the increase in glomerular calcium content in GalN/LPS-exposed rats. TNF-α treatment increased expression of PKC-α, IP 3 R1, specificity protein 1 (SP-1), JNK, and p-JNK in GMCs and increased Ca 2 + release and binding activity of SP-1 to the IP 3 R1 promoter. These effects were blocked by transfection of siRNA against the PKC-α gene, and the PKC-α gene silence also restored cytosolic Ca 2+ concentration. RNAi targeting PKC-α inhibited TNF-α-induced IP 3 R1 overexpression and in turn improved compromised GFR in the development of acute kidney injury during FHF in rats.

  8. Role of protein kinase C-η in cigarette smoke extract-induced apoptosis in MRC-5-cells.

    PubMed

    Son, E S; Kyung, S Y; Lee, S P; Jeong, S H; Shin, J Y; Ohba, M; Yeo, E J; Park, J W

    2015-09-01

    Cigarette smoke (CS) is a major risk factor for emphysema, which causes cell death in structural cells of the lung by mechanisms that are still not completely understood. We demonstrated previously that CS extract (CSE) induces caspase activation in MRC-5 human lung fibroblasts, activated protein kinase C-η (PKC-η), and translocated PKC-η from the cytosol to the membrane. The objective of this study was to investigate the involvement of PKC-η activation in a CSE-induced extrinsic apoptotic pathway. We determined that CSE increases expression of caspase 3 and 8 cleavage in MRC-5 cells and overexpression of PKC-η significantly increased expression of caspase 3 and 8 cleavage compared with control LacZ-infected cells. In contrast, dominant negative (dn) PKC-η inhibited apoptosis in MRC-5 cells exposed to CSE and decreased expression of caspase 3 and 8 compared with control cells. Exposure to 10% CSE for >8 h significantly increased lactate dehydrogenase release in PKC-η-infected cells compared with LacZ-infected cells. Additionally, PKC-η-infected cells had an increased number of Hoechst 33342 stained nuclei compared with LacZ-infected cells, while dn PKC-η-infected cells exhibited fewer morphological changes than LacZ-infected cells under phase-contrast microscopy. In conclusion, PKC-η activation plays a pro-apoptotic role in CSE-induced extrinsic apoptotic pathway in MRC-5 cells. These results suggest that modulation of PKC-η may be a useful tool for regulating the extrinsic apoptosis of MRC-5 cells by CSE and may have therapeutic potential in the treatment of CS-induced lung injury. © The Author(s) 2014.

  9. Evidence that the modulation of membrane-associated protein kinase C activity by an endogenous inhibitor plays a role in N1E-115 murine neuroblastoma cell differentiation.

    PubMed

    Chakravarthy, B R; Wong, J; Durkin, J P

    1995-10-01

    Murine neuroblastoma cells, N1E-115, were induced to differentiate into neuron-like cells by serum deprivation for 18 h. As previous studies have shown that the suppression of protein kinase C (PKC) activity by selective inhibitors or neutralizing antibodies induces neuroblastoma cells to differentiate, we tested the hypothesis that serum deprivation may cause a rapid loss in membrane PKC activity that occurs well before the morphological changes that are characteristic of cell differentiation. A significant reduction in particulate (membrane) PKC activity was indeed observed within 3 h of serum withdrawal when enzyme activity was measured in intact native membranes by the recently described in vitro "direct" assay. This rapid reduction in enzyme activity was confirmed by the decreased phosphorylation of the MARCKS protein, an endogenous PKC-selective substrate, in intact cells. The decrease in membrane PKC activity occurred without any loss in the amount of membrane-associated enzyme, suggesting that some factor(s) resident in neuroblastoma membranes was suppressing PKC activity. Indeed, results indicate the presence of an endogenous inhibitor of PKC tightly associated with neuroblastoma membranes. This inhibitory activity increased in the membranes of cells subjected to serum deprivation, raising the possibility that it was likely responsible for the decline in membrane PKC activity in differentiating N1E-115 cells. Preliminary characterization indicated that the inhibitory activity is a protein and is localized mainly in the membrane fraction. Thus, these results demonstrate directly that endogenous inhibitor can regulate membrane-associated PKC activity in cells and thereby modulate PKC-related neuronal functions.

  10. Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C.

    PubMed

    Cario, Elke; Gerken, Guido; Podolsky, Daniel K

    2004-07-01

    Protein kinase C (PKC) has been implicated in regulation of intestinal epithelial integrity in response to lumenal bacteria. Intestinal epithelial cells (IECs) constitutively express Toll-like receptor (TLR)2, which contains multiple potential PKC binding sites. The aim of this study was to determine whether TLR2 may activate PKC in response to specific ligands, thus potentially modulating barrier function in IECs. TLR2 agonist (synthetic bacterial lipopeptide Pam(3)CysSK4, peptidoglycan)-induced activation of PKC-related signaling cascades were assessed by immunoprecipitation, Western blotting, immunofluorescence, and kinase assays-combined with functional transfection studies in the human model IEC lines HT-29 and Caco-2. Transepithelial electrical resistance characterized intestinal epithelial barrier function. Stimulation with TLR2 ligands led to activation (phosphorylation, enzymatic activity, translocation) of specific PKC isoforms (PKCalpha and PKCdelta). Phosphorylation of PKC by TLR2 ligands was blocked specifically by transfection with a TLR2 deletion mutant. Ligand-induced activation of TLR2 greatly enhanced transepithelial resistance in IECs, which was prevented by pretreatment with PKC-selective antagonists. This effect correlated with apical tightening and sealing of tight junction (TJ)-associated ZO-1, which was mediated via PKC in response to TLR2 ligands, whereas morphologic changes of occludin, claudin-1, or actin cytoskeleton were not evident. Downstream the endogenous PKC substrate myristoylated alanine-rich C kinase substrate (MARCKS), but not transcriptional factor activator protein-1 (AP-1), was activated significantly on stimulation. The present study provides evidence that PKC is an essential component of the TLR2 signaling pathway with the physiologic consequence of directly enhancing intestinal epithelial integrity through translocation of ZO-1 on activation.

  11. Renal PKC-ε deficiency attenuates acute kidney injury and ischemic allograft injury via TNF-α-dependent inhibition of apoptosis and inflammation.

    PubMed

    Rong, Song; Hueper, Katja; Kirsch, Torsten; Greite, Robert; Klemann, Christian; Mengel, Michael; Meier, Matthias; Menne, Jan; Leitges, Michael; Susnik, Nathan; Meier, Martin; Haller, Hermann; Shushakova, Nelli; Gueler, Faikah

    2014-09-15

    Acute kidney injury (AKI) increases the risk of morbidity and mortality after major surgery and transplantation. We investigated the effect of PKC-ε deficiency on AKI and ischemic allograft damage after kidney transplantation. PKC-ε-deficient and wild type (WT) control mice were subjected to 35 min of renal pedicle clamping to induce AKI. PKC-ε deficiency was associated with a marked improvement in survival and an attenuated loss of kidney function. Furthermore, functional MRI experiments revealed better renal perfusion in PKC-ε-deficient mice than in WT mice one day after IRI. Acute tubular necrosis and neutrophil infiltration were markedly reduced in PKC-ε-deficient mice. To determine whether this resistance to ischemia-reperfusion injury resulted from changes in local renal cells or infiltrating leukocytes, we studied a life-supporting renal transplant model of ischemic graft injury. We transplanted kidneys from H(2b) PKC-ε-deficient mice (129/SV) and their corresponding WT littermates into major histocompatibility complex-incompatible H(2d) recipients (BALB/c) and induced ischemic graft injury by prolonged cold ischemia time. Recipients of WT allografts developed severe renal failure and died within 10 days of transplantation. Recipients of PKC-ε-deficient allografts had better renal function and survival; they had less generation of ROS and upregulation of proinflammatory proteins (i.e., ICAM-1, inducible nitric oxide synthase, and TNF-α) and showed less tubular epithelial cell apoptosis and inflammation in their allografts. These data suggest that local renal PKC-ε expression mediates proapoptotic and proinflammatory signaling and that an inhibitor of PKC-ε signaling could be used to prevent hypoxia-induced AKI. Copyright © 2014 the American Physiological Society.

  12. Designing of Protein Kinase C β-II Inhibitors against Diabetic complications: Structure Based Drug Design, Induced Fit docking and analysis of active site conformational changes

    PubMed Central

    Vijayakumar, Balakrishnan; Velmurugan, Devadasan

    2012-01-01

    Protein Kinase C β-II (PKC β-II) is an important enzyme in the development of diabetic complications like cardiomyopathy, retinopathy, neuropathy, nephropathy and angiopathy. PKC β-II is activated in vascular tissues during diabetic vascular abnormalities. Thus, PKC β-II is considered as a potent drug target and the crystal structure of the kinase domain of PKC β-II (PDB id: 2I0E) was used to design inhibitors using Structure-Based Drug Design (SBDD) approach. Sixty inhibitors structurally similar to Staurosporine were retrieved from PubChem Compound database and High Throughput Virtual screening (HTVs) was carried out with PKC β-II. Based on the HTVs results and the nature of active site residues of PKC β-II, Staurosporine inhibitors were designed using SBDD. Induced Fit Docking (IFD) studies were carried out between kinase domain of PKC β-II and the designed inhibitors. These IFD complexes showed favorable docking score, glide energy, glide emodel and hydrogen bond and hydrophobic interactions with the active site of PKC β-II. Binding free energy was calculated for IFD complexes using Prime MM-GBSA method. The conformational changes induced by the inhibitor at the active site of PKC β-II were observed for the back bone Cα atoms and side-chain chi angles. PASS prediction tool was used to analyze the biological activities for the designed inhibitors. The various physicochemical properties were calculated for the compounds. One of the designed inhibitors successively satisfied all the in silico parameters among the others and seems to be a potent inhibitor against PKC β-II. PMID:22829732

  13. Role of protein kinase C in the induction and maintenance of serotonin-dependent enhancement of the glutamate response in isolated siphon motor neurons of Aplysia californica.

    PubMed

    Villareal, Greg; Li, Quan; Cai, Diancai; Fink, Ann E; Lim, Travis; Bougie, Joanna K; Sossin, Wayne S; Glanzman, David L

    2009-04-22

    Serotonin (5-HT) mediates learning-related facilitation of sensorimotor synapses in Aplysia californica. Under some circumstances 5-HT-dependent facilitation requires the activity of protein kinase C (PKC). One critical site of PKC's contribution to 5-HT-dependent synaptic facilitation is the presynaptic sensory neuron. Here, we provide evidence that postsynaptic PKC also contributes to synaptic facilitation. We investigated the contribution of PKC to enhancement of the glutamate-evoked potential (Glu-EP) in isolated siphon motor neurons in cell culture. A 10 min application of either 5-HT or phorbol ester, which activates PKC, produced persistent (> 50 min) enhancement of the Glu-EP. Chelerythrine and bisindolylmaleimide-1 (Bis), two inhibitors of PKC, both blocked the induction of 5-HT-dependent enhancement. An inhibitor of calpain, a calcium-dependent protease, also blocked 5-HT's effect. Interestingly, whereas chelerythrine blocked maintenance of the enhancement, Bis did not. Because Bis has greater selectivity for conventional and novel isoforms of PKC than for atypical isoforms, this result implicates an atypical isoform in the maintenance of 5-HT's effect. Although induction of enhancement of the Glu-EP requires protein synthesis (Villareal et al., 2007), we found that maintenance of the enhancement does not. Maintenance of 5-HT-dependent enhancement appears to be mediated by a PKM-type fragment generated by calpain-dependent proteolysis of atypical PKC. Together, our results suggest that 5-HT treatment triggers two phases of PKC activity within the motor neuron, an early phase that may involve conventional, novel or atypical isoforms of PKC, and a later phase that selectively involves an atypical isoform.

  14. The interrelation between aPKC and glucose uptake in the skeletal muscle during contraction and insulin stimulation.

    PubMed

    Santos, J M; Benite-Ribeiro, S A; Queiroz, G; Duarte, J A

    2014-12-01

    Contraction and insulin increase glucose uptake in skeletal muscle. While the insulin pathway, better characterized, requires activation of phosphoinositide 3-kinase (PI3K) and atypical protein kinase (aPKC), muscle contraction seems to share insulin-activated components to increase glucose uptake. This study aimed to investigate the interrelation between the pathway involved in glucose uptake evoked by insulin and muscle contraction. Isolated muscle of rats was treated with solvent (control), insulin, wortmannin (PI3K inhibitor) and the combination of insulin plus wortmannin. After treatment, muscles were electrically stimulated (contracted) or remained at rest. Glucose transporter 4 (GLUT4) localization, glucose uptake and phospho-aPKC (aPKC activated form) were assessed. Muscle contraction and insulin increased glucose uptake in all conditions when compared with controls not stimulating an effect that was accompanied by an increase in GLUT4 and of phospho-aPKC at the muscle membrane. Contracted muscles treated with insulin did not show additive effects on glucose uptake or aPKC activity compared with the response when these stimuli were applied alone. Inhibition of PI3K blocked insulin effect on glucose uptake and aPKC but not in the contractile response. Thus, muscle contraction seems to stimulate aPKC and glucose uptake independently of PI3K. Therefore, aPKC may be a convergence point and a rate limit step in the pathway by which, insulin and contraction, increase glucose uptake in skeletal muscle. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Association of atypical protein kinase C isotypes with the docker protein FRS2 in fibroblast growth factor signaling.

    PubMed

    Lim, Y P; Low, B C; Lim, J; Wong, E S; Guy, G R

    1999-07-02

    FRS2 is a docker protein that recruits signaling proteins to the plasma membrane in fibroblast growth factor signal transduction. We report here that FRS2 was associated with PKC lambda when Swiss 3T3 cells were stimulated with basic fibroblast growth factor. PKC zeta, the other member of the atypical PKC subfamily, could also bind FRS2. The association between FRS2 and PKC lambda is likely to be direct as shown by yeast two-hybrid analysis. The C-terminal fragments of FRS2 (amino acid residues 300-508) and SNT2 (amino acids 281-492), an isoform bearing 50% identity to FRS2, interacted with PKC lambda at a region (amino acids 240-562) that encompasses the catalytic domain. In vitro kinase assays revealed neither FRS2 nor SNT2 was a substrate of PKC lambda or zeta. Mutation of the alanine residue (Ala-120) to glutamate in the pseudo-substrate region of PKC lambda results in a constitutively active kinase that exhibited more than 2-fold greater binding to FRS2 in vitro than its "closed" wild-type counterpart. Tyrosine phosphorylation of FRS2 did not affect its binding to the constitutively active PKC lambda mutant, suggesting that the activation of PKC lambda is necessary and sufficient for its association with FRS2. It is likely that FRS2 serves as an anchoring protein for targeting activated atypical PKCs to the cell plasma membrane in signaling pathways.

  16. GLI activation by atypical protein kinase C ι/λ regulates the growth of basal cell carcinomas.

    PubMed

    Atwood, Scott X; Li, Mischa; Lee, Alex; Tang, Jean Y; Oro, Anthony E

    2013-02-28

    Growth of basal cell carcinomas (BCCs) requires high levels of hedgehog (HH) signalling through the transcription factor GLI. Although inhibitors of membrane protein smoothened (SMO) effectively suppress HH signalling, early tumour resistance illustrates the need for additional downstream targets for therapy. Here we identify atypical protein kinase C ι/λ (aPKC-ι/λ) as a novel GLI regulator in mammals. aPKC-ι/λ and its polarity signalling partners co-localize at the centrosome and form a complex with missing-in-metastasis (MIM), a scaffolding protein that potentiates HH signalling. Genetic or pharmacological loss of aPKC-ι/λ function blocks HH signalling and proliferation of BCC cells. Prkci is a HH target gene that forms a positive feedback loop with GLI and exists at increased levels in BCCs. Genome-wide transcriptional profiling shows that aPKC-ι/λ and SMO control the expression of similar genes in tumour cells. aPKC-ι/λ functions downstream of SMO to phosphorylate and activate GLI1, resulting in maximal DNA binding and transcriptional activation. Activated aPKC-ι/λ is upregulated in SMO-inhibitor-resistant tumours and targeting aPKC-ι/λ suppresses signalling and growth of resistant BCC cell lines. These results demonstrate that aPKC-ι/λ is critical for HH-dependent processes and implicates aPKC-ι/λ as a new, tumour-selective therapeutic target for the treatment of SMO-inhibitor-resistant cancers.

  17. Physicochemical and functional properties of protein concentrate from by-product of coconut processing.

    PubMed

    Rodsamran, Pattrathip; Sothornvit, Rungsinee

    2018-02-15

    Coconut cake, a by-product from milk and oil extractions, contains a high amount of protein. Protein extraction from coconut milk cake and coconut oil cake was investigated. The supernatant and precipitate protein powders from both coconut milk and oil cakes were compared based on their physicochemical and functional properties. Glutelin was the predominant protein fraction in both coconut cakes. Protein powders from milk cake presented higher water and oil absorption capacities than those from oil cake. Both protein powders from oil cake exhibited better foaming capacity and a better emulsifying activity index than those from milk cake. Coconut proteins were mostly solubilized in strong acidic and alkaline solutions. Minimum solubility was observed at pH 4, confirming the isoelectric point of coconut protein. Therefore, the coconut residues after extractions might be a potential alternative renewable plant protein source to use asa food ingredient to enhance food nutrition and quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Cake properties in ultrafiltration of TiO2 fine particles combined with HA: in situ measurement of cake thickness by fluid dynamic gauging and CFD calculation of imposed shear stress for cake controlling.

    PubMed

    Du, Xing; Qu, Fangshu; Liang, Heng; Li, Kai; Chang, Haiqing; Li, Guibai

    2016-05-01

    In this study, the cake buildup of TiO2 fine particles in the presence of humid acid (HA) and cake layer controlling during ultrafiltration (UF) were investigated. Specifically, we measured the cake thickness using fluid dynamic gauging (FDG) method under various solution conditions, including TiO2 concentration (0.1-0.5 g/L), HA concentration (0-5 mg/L, total organic carbon (TOC)), and pH values (e.g., 4, 6 and 10), and calculated the shear stress distribution induced by stirring using computational fluid dynamics (CFD) to analyze the cake layer controlling conditions, including the operation flux (50-200 L m(-2) h(-1)) and TiO2 concentration (0.1-0.5 g/L). It was found that lower TiO2/HA concentration ratio could lead to exceedingly severe membrane fouling because of the formation of a relatively denser cake layer by filling the voids of cake layer with HA, and pH was essential for cake layer formation owing to the net repulsion between particles. Additionally, it was observed that shear stress was rewarding for mitigating cake growth under lower operation flux as a result of sufficient back-transport forces, and exhibited an excellent performance on cake layer controlling in lower TiO2 concentrations due to slight interaction forces on the vicinity of membrane.

  19. Rapid association of protein kinase C-epsilon with insulin granules is essential for insulin exocytosis.

    PubMed

    Mendez, Carlos F; Leibiger, Ingo B; Leibiger, Barbara; Høy, Marianne; Gromada, Jesper; Berggren, Per-Olof; Bertorello, Alejandro M

    2003-11-07

    Glucose-dependent exocytosis of insulin requires activation of protein kinase C (PKC). However, because of the great variety of isoforms and their ubiquitous distribution within the beta-cell, it is difficult to predict the importance of a particular isoform and its mode of action. Previous data revealed that two PKC isoforms (alpha and epsilon) translocate to membranes in response to glucose (Zaitzev, S. V., Efendic, S., Arkhammar, P., Bertorello, A. M., and Berggren, P. O. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 9712-9716). Using confocal microscopy, we have now established that in response to glucose, PKC-epsilon but not PKC-alpha associates with insulin granules and that green fluorescent protein-tagged PKC-epsilon changes its distribution within the cell periphery upon stimulation of beta-cells with glucose. Definite evidence of PKC-epsilon requirement during insulin granule exocytosis was obtained by using a dominant negative mutant of this isoform. The presence of this mutant abolished glucose-induced insulin secretion, whereas transient expression of the wild-type PKC-epsilon led to a significant increase in insulin exocytosis. These results suggest that association of PKC-epsilon with insulin granule membranes represents an important component of the secretory network because it is essential for insulin exocytosis in response to glucose.

  20. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-θ subcellular localization in rodents

    PubMed Central

    Benoit, Stephen C.; Kemp, Christopher J.; Elias, Carol F.; Abplanalp, William; Herman, James P.; Migrenne, Stephanie; Lefevre, Anne-Laure; Cruciani-Guglielmacci, Céline; Magnan, Christophe; Yu, Fang; Niswender, Kevin; Irani, Boman G.; Holland, William L.; Clegg, Deborah J.

    2009-01-01

    Insulin signaling can be modulated by several isoforms of PKC in peripheral tissues. Here, we assessed whether one specific isoform, PKC-θ, was expressed in critical CNS regions that regulate energy balance and whether it mediated the deleterious effects of diets high in fat, specifically palmitic acid, on hypothalamic insulin activity in rats and mice. Using a combination of in situ hybridization and immunohistochemistry, we found that PKC-θ was expressed in discrete neuronal populations of the arcuate nucleus, specifically the neuropeptide Y/agouti-related protein neurons and the dorsal medial nucleus in the hypothalamus. CNS exposure to palmitic acid via direct infusion or by oral gavage increased the localization of PKC-θ to cell membranes in the hypothalamus, which was associated with impaired hypothalamic insulin and leptin signaling. This finding was specific for palmitic acid, as the monounsaturated fatty acid, oleic acid, neither increased membrane localization of PKC-θ nor induced insulin resistance. Finally, arcuate-specific knockdown of PKC-θ attenuated diet-induced obesity and improved insulin signaling. These results suggest that many of the deleterious effects of high-fat diets, specifically those enriched with palmitic acid, are CNS mediated via PKC-θ activation, resulting in reduced insulin activity. PMID:19726875

  1. Protein kinase C isoforms at the neuromuscular junction: localization and specific roles in neurotransmission and development.

    PubMed

    Lanuza, Maria A; Santafe, Manel M; Garcia, Neus; Besalduch, Núria; Tomàs, Marta; Obis, Teresa; Priego, Mercedes; Nelson, Phillip G; Tomàs, Josep

    2014-01-01

    The protein kinase C family (PKC) regulates a variety of neural functions including neurotransmitter release. The selective activation of a wide range of PKC isoforms in different cells and domains is likely to contribute to the functional diversity of PKC phosphorylating activity. In this review, we describe the isoform localization, phosphorylation function, regulation and signalling of the PKC family at the neuromuscular junction. Data show the involvement of the PKC family in several important functions at the neuromuscular junction and in particular in the maturation of the synapse and the modulation of neurotransmission in the adult. © 2013 Anatomical Society.

  2. Effect of wheat flour characteristics on sponge cake quality.

    PubMed

    Moiraghi, Malena; de la Hera, Esther; Pérez, Gabriela T; Gómez, Manuel

    2013-02-01

    To select the flour parameters that relate strongly to cake-making performance, in this study the relationship between sponge cake quality, solvent retention capacity (SRC) profile and flour physicochemical characteristics was investigated using 38 soft wheat samples of different origins. Particle size average, protein, damaged starch, water-soluble pentosans, total pentosans, SRC and pasting properties were analysed. Sponge cake volume and crumb texture were measured to evaluate cake quality. Cluster analysis was applied to assess differences in flour quality parameters among wheat lines based on the SRC profile. Cluster 1 showed significantly higher sponge cake volume and crumb softness, finer particle size and lower SRC sucrose, SRC carbonate, SRC water, damaged starch and protein content. Particle size, damaged starch, protein, thickening capacity and SRC parameters correlated negatively with sponge cake volume, while total pentosans and pasting temperature showed the opposite effect. The negative correlations between cake volume and SRC parameters along with the cluster analysis results indicated that flours with smaller particle size, lower absorption capacity and higher pasting temperature had better cake-making performance. Some simple analyses, such as SRC, particle size distribution and pasting properties, may help to choose flours suitable for cake making. Copyright © 2012 Society of Chemical Industry.

  3. Effect of PKC412, an inhibitor of protein kinase C, on spontaneous metastatic model mice.

    PubMed

    Nakamura, Kazuki; Yoshikawa, Noriko; Yamaguchi, Yu; Kagota, Satomi; Shinozuka, Kazumasa; Kunitomo, Masaru

    2003-01-01

    We investigated the anti-metastatic effect of PKC412, a selective inhibitor of protein kinase C (PKC), on a spontaneous metastatic mouse model, which was prepared by inoculation with B16-BL6 mouse melanoma cells into the footpad of the right hind leg. At two weeks after inoculation, the primary tumor was amputated completely. PKC412 (200 mg/kg) administered orally for four weeks after the tumor inoculation, significantly prolonged survival compared with the control. Furthermore, to elucidate the mechanism of the anti-metastatic effect of PKC412, we examined the growth rate of B16-BL6 cells premixed with Matrigel in vivo and the invasiveness of B16-BL6 cells using a chemo-invasion chamber in vitro. PKC412 significantly reduced the growth rate of cells in vivo (100 and 200 mg/kg) and the invading cells in vitro (10, 30 and 100 nM) in a dose-dependent manner. Thus, PKC412 exerts an anti-metastatic action through inhibition of the invasiveness of melanoma cells in the extracellular matrix.

  4. Structural development of sucrose-sweetened and sucrose-free sponge cakes during baking.

    PubMed

    Baeva, Marianna Rousseva; Terzieva, Vesselina Velichkova; Panchev, Ivan Nedelchev

    2003-06-01

    The influence of sucrose, wheat starch and sorbitol upon the heat- and mass-exchanging processes forming the structure of sponge cake was studied. Under the influence of wheat starch and sorbitol the structure of the sucrose-free sponge cake was formed at more uniform total moisture release. This process was done at lower temperatures and smoother change of the sponge cake height with respect to the sucrose-sweetened sponge cake. The porous and steady structure of both cakes was finally formed at identical time--between 18th and 19th minute, at the applied conditions for baking of each batter (metal pan with diameter 15.4 cm and depth 6.2 cm containing 300 g of batter and placed in an electric oven "Rahovetz-02", Bulgaria for 30 min at 180 degrees C). The water-losses at the end of baking (10.30% and 10.40% for the sucrose-sweetened cake and sucrose-free cake, respectively) and the final temperatures reached in the crumb central layers (96.6 degrees C and 96.3 degrees C for the sucrose-sweetened cake and sucrose-free cake, respectively) during baking of both samples were not statistically different. The addition of wheat starch and sorbitol in sucrose-free sponge cake lead to the statistically different values for the porosity (76.15% and 72.98%) and the volume (1014.17 cm3 and 984.25 cm3) of the sucrose-sweetened and sucrose-free sponge cakes, respectively. As a result, the sucrose-free sponge cake formed during baking had a more homogeneous and finer microstructure with respect to that ofthe sucrose-sweetened one.

  5. Genetically Modified Flax Expressing NAP-SsGT1 Transgene: Examination of Anti-Inflammatory Action

    PubMed Central

    Matusiewicz, Magdalena; Kosieradzka, Iwona; Zuk, Magdalena; Szopa, Jan

    2014-01-01

    The aim of the work was to define the influence of dietary supplementation with GM (genetically modified) GT#4 flaxseed cake enriched in polyphenols on inflammation development in mice liver. Mice were given ad libitum isoprotein diets: (1) standard diet; (2) high-fat diet rich in lard, high-fat diet enriched with 30% of (3) isogenic flax Linola seed cake; and (4) GM GT#4 flaxseed cake; for 96 days. Administration of transgenic and isogenic seed cake lowered body weight gain, of transgenic to the standard diet level. Serum total antioxidant status was statistically significantly improved in GT#4 flaxseed cake group and did not differ from Linola. Serum thiobarbituric acid reactive substances, lipid profile and the liver concentration of pro-inflammatory cytokine tumor necrosis factor-α were ameliorated by GM and isogenic flaxseed cake consumption. The level of pro-inflammatory cytokine interferon-γ did not differ between mice obtaining GM GT#4 and non-GM flaxseed cakes. The C-reactive protein concentration was reduced in animals fed GT#4 flaxseed cake and did not differ from those fed non-GM flaxseed cake-based diet. Similarly, the liver structure of mice consuming diets enriched in flaxseed cake was improved. Dietetic enrichment with GM GT#4 and non-GM flaxseed cakes may be a promising solution for health problems resulting from improper diet. PMID:25247574

  6. Effect of selected spices on chemical and sensory markers in fortified rye-buckwheat cakes.

    PubMed

    Przygodzka, Małgorzata; Zieliński, Henryk; Ciesarová, Zuzana; Kukurová, Kristina; Lamparski, Grzegorz

    2016-07-01

    The aim of this study was to find out the effect of selected spices on chemical and sensorial markers in cakes formulated on rye and light buckwheat flour fortified with spices. Among collection of spices, rye-buckwheat cakes fortified individually with cloves, nutmeg, allspice, cinnamon, vanilla, and spice mix revealed the highest sensory characteristics and overall quality. Cakes fortified with cloves, allspice, and spice mix showed the highest antioxidant capacity, total phenolics, rutin, and almost threefold higher available lysine contents. The reduced furosine content as well as free and total fluorescent intermediatory compounds were observed as compared to nonfortified cakes. The FAST index was significantly lowered in all cakes enriched with spices, especially with cloves, allspice, and mix. In contrast, browning index increased in compare to cakes without spices. It can be suggested that clove, allspice, vanilla, and spice mix should be used for production of safety and good quality cakes.

  7. εPKC confers acute tolerance to cerebral ischemic reperfusion injury

    PubMed Central

    Bright, Rachel; Sun, Guo-Hua; Yenari, Midori A.; Steinberg, Gary K.; Mochly-Rosen, Daria

    2008-01-01

    In response to mild ischemic stress, the brain elicits endogenous survival mechanisms to protect cells against a subsequent lethal ischemic stress, referred to as ischemic tolerance. The molecular signals that mediate this protection are thought to involve the expression and activation of multiple kinases, including protein kinase C (PKC). Here we demonstrate that εPKC mediates cerebral ischemic tolerance in vivo. Systemic delivery of ψεRACK, an εPKC-selective peptide activator, confers neuroprotection against a subsequent cerebral ischemic event when delivered immediately prior to stroke. In addition, activation of εPKC by ψεRACK treatment decreases vascular tone in vivo, as demonstrated by a reduction in microvascular cerebral blood flow. Here we demonstrate the role of acute and transient εPKC in early cerebral tolerance in vivo and suggest that extra-parenchymal mechanisms, such as vasoconstriction, may contribute to the conferred protection. PMID:18586397

  8. Production of staphylococcal enterotoxin A in cream-filled cake.

    PubMed

    Anunciaçao, L L; Linardi, W R; do Carmo, L S; Bergdoll, M S

    1995-07-01

    Cakes were baked with normal ingredients and filled with cream, inoculated with different size enterotoxigenic-staphylococcal inocula. Samples of the cakes were incubated at room temperature and put in the refrigerator. Samples of cake and filling were taken at different times and analyzed for staphylococcal count and presence of enterotoxin. The smaller the inoculum, the longer the time required for sufficient growth (10(6)) to occur for production of detectable enterotoxin. Enterotoxin added to the cake dough before baking (210 degrees C, 45 min) did not survive the baking. The presence of enterotoxin in the contaminated cream filling indicated this as the cause of staphylococcal food poisoning from cream-filled cakes. Refrigeration of the cakes prevented the growth of the staphylococci.

  9. The Aspergillus fumigatus pkcA G579R Mutant Is Defective in the Activation of the Cell Wall Integrity Pathway but Is Dispensable for Virulence in a Neutropenic Mouse Infection Model

    PubMed Central

    Rocha, Marina Campos; de Godoy, Krissia Franco; de Castro, Patrícia Alves; Hori, Juliana Issa; Bom, Vinícius Leite Pedro; Brown, Neil Andrew; da Cunha, Anderson Ferreira; Goldman, Gustavo Henrique; Malavazi, Iran

    2015-01-01

    Aspergillus fumigatus is an opportunistic human pathogen, which causes the life-threatening disease, invasive pulmonary aspergillosis. In fungi, cell wall homeostasis is controlled by the conserved Cell Wall Integrity (CWI) pathway. In A. fumigatus this signaling cascade is partially characterized, but the mechanisms by which it is activated are not fully elucidated. In this study we investigated the role of protein kinase C (PkcA) in this signaling cascade. Our results suggest that pkcA is an essential gene and is activated in response to cell wall stress. Subsequently, we constructed and analyzed a non-essential A. fumigatus pkcA G579R mutant, carrying a Gly579Arg substitution in the PkcA C1B regulatory domain. The pkcA G579R mutation has a reduced activation of the downstream Mitogen-Activated Protein Kinase, MpkA, resulting in the altered expression of genes encoding cell wall-related proteins, markers of endoplasmic reticulum stress and the unfolded protein response. Furthermore, PkcAG579R is involved in the formation of proper conidial architecture and protection to oxidative damage. The pkcA G579R mutant elicits increased production of TNF-α and phagocytosis but it has no impact on virulence in a murine model of invasive pulmonary aspergillosis. These results highlight the importance of PkcA to the CWI pathway but also indicated that additional regulatory circuits may be involved in the biosynthesis and/or reinforcement of the A. fumigatus cell wall during infection. PMID:26295576

  10. PKC{eta} is a negative regulator of AKT inhibiting the IGF-I induced proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahaf, Galit; Rotem-Dai, Noa; Koifman, Gabriela

    2012-04-15

    The PI3K-AKT pathway is frequently activated in human cancers, including breast cancer, and its activation appears to be critical for tumor maintenance. Some malignant cells are dependent on activated AKT for their survival; tumors exhibiting elevated AKT activity show sensitivity to its inhibition, providing an Achilles heel for their treatment. Here we show that the PKC{eta} isoform is a negative regulator of the AKT signaling pathway. The IGF-I induced phosphorylation on Ser473 of AKT was inhibited by the PKC{eta}-induced expression in MCF-7 breast adenocarcinoma cancer cells. This was further confirmed in shRNA PKC{eta}-knocked-down MCF-7 cells, demonstrating elevated phosphorylation on AKTmore » Ser473. While PKC{eta} exhibited negative regulation on AKT phosphorylation it did not alter the IGF-I induced ERK phosphorylation. However, it enhanced ERK phosphorylation when stimulated by PDGF. Moreover, its effects on IGF-I/AKT and PDGF/ERK pathways were in correlation with cell proliferation. We further show that both PKC{eta} and IGF-I confer protection against UV-induced apoptosis and cell death having additive effects. Although the protective effect of IGF-I involved activation of AKT, it was not affected by PKC{eta} expression, suggesting that PKC{eta} acts through a different route to increase cell survival. Hence, our studies show that PKC{eta} provides negative control on AKT pathway leading to reduced cell proliferation, and further suggest that its presence/absence in breast cancer cells will affect cell death, which could be of therapeutic value.« less

  11. Epac1, PDE4, and PKC protein expression and their association with AKAP95, Cx43, and cyclinD2/E1 in breast cancer tissues.

    PubMed

    Huang, Ping; Sun, Qian; Zhuang, Wenxin; Peng, Kuan; Wang, Dai; Yao, Youliang; Guo, Dongbei; Zhang, Lu; Shen, Chuhan; Sun, Mengyun; Tang, Chaoying; Teng, Bogang; Zhang, Yongxing

    2017-09-01

    This study was conducted to investigate the exchange protein directly activated by cAMP (Epac1), PDE4, and PKC expression in breast cancer tissues, and the correlation between these proteins and AKAP95, Cx43, cyclin D2, and cyclin E1. PV-9000 two-step immunohistochemistry was used to analyze protein expression. The positive rate of Epac1 protein expression in breast cancer tissues (58%) was higher than in para-carcinoma tissues (10%) (P < 0.05). There were no significant differences in the positive rates of PDE4 and PKC expression between breast cancer and para-carcinoma tissues (P > 0.05). The positive expression rate of PDE4 was higher in the P53 protein positive group compared to the P53 negative group (P < 0.05). Correlations between Epac1 and cyclin D2, PDE4 and cyclin D2, AKAP95 and PKC, Cx43 and PKC, and cyclin D2 and PKC proteins were observed (P < 0.05). Epac1 expression in breast cancer tissues was increased, suggesting that the protein may be involved in the development of breast cancer. Correlations between Epac1 and cyclin D2, PDE4 and cyclin D2, AKAP95 and PKC, Cx43 and PKC, and cyclin D2 and PKC proteins suggested synergistic effects among these proteins in the development of breast cancer. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  12. Modeled microgravity-induced protein kinase C isoform expression in human lymphocytes

    NASA Technical Reports Server (NTRS)

    Sundaresan, A.; Risin, D.; Pellis, N. R.

    2004-01-01

    In long-term space travel, the crew is exposed to microgravity and radiation that invoke potential hazards to the immune system. T cell activation is a critical step in the immune response. Receptor-mediated signaling is inhibited in both microgravity and modeled microgravity (MMG) as reflected by diminished DNA synthesis in peripheral blood lymphocytes and their locomotion through gelled type I collagen. Direct activation of protein kinase C (PKC) bypassing cell surface events using the phorbol ester PMA rescues MMG-inhibited lymphocyte activation and locomotion, whereas the calcium ionophore ionomycin had no rescue effect. Thus calcium-independent PKC isoforms may be affected in MMG-induced locomotion inhibition and rescue. Both calcium-dependent isoforms and calcium-independent PKC isoforms were investigated to assess their expression in lymphocytes in 1 g and MMG culture. Human lymphocytes were cultured and harvested at 24, 48, 72, and 96 h, and serial samples were assessed for locomotion by using type I collagen and expression of PKC isoforms. Expression of PKC-alpha, -delta, and -epsilon was assessed by RT-PCR, flow cytometry, and immunoblotting. Results indicated that PKC isoforms delta and epsilon were downregulated by >50% at the transcriptional and translational levels in MMG-cultured lymphocytes compared with 1-g controls. Events upstream of PKC, such as phosphorylation of phospholipase Cgamma in MMG, revealed accumulation of inactive enzyme. Depressed calcium-independent PKC isoforms may be a consequence of an upstream lesion in the signal transduction pathway. The differential response among calcium-dependent and calcium-independent isoforms may actually result from MMG intrusion events earlier than PKC, but after ligand-receptor interaction.

  13. Effect of transglutaminase on some properties of cake enriched with various protein sources.

    PubMed

    Alp, H; Bilgiçli, N

    2008-06-01

    The effect of transglutaminase (TG) enzyme addition (0% and 0.09%) on batter and cake properties, prepared with different protein sources (nonfat dry milk [NFDM], soy flour, and soymilk) and flour types (type A with 11.4% protein and type B with 8.6% protein), was investigated. Specific gravity and pH of cake batters were determined, and physical and chemical analysis of the cake samples was performed. Soy products improved cake weight, volume, softness, protein, and fat contents. NFDM increased the crust redness and crumb lightness more than the other protein sources. TG enzyme addition affected the volume, softness, crust, and crumb color of the cake samples significantly (P < 0.05). The combination of TG enzyme and flour B with lower protein gave more puffed, symmetrical, and softer cake samples. TG had a potential application with different protein sources in cake production. Especially interactions between TG with soy flour and TG and wheat flour with high protein content were important in cake formulations due to the softening effect on crumb.

  14. Mechanistic modeling of the loss of protein sieving due to internal and external fouling of microfilters.

    PubMed

    Bolton, Glen R; Apostolidis, Alex J

    2017-09-01

    Fed-batch and perfusion cell culture processes used to produce therapeutic proteins can use microfilters for product harvest. In this study, new explicit mathematical models of sieving loss due to internal membrane fouling, external membrane fouling, or a combination of the two were generated. The models accounted for membrane and cake structures and hindered solute transport. Internal membrane fouling was assumed to occur due to the accumulation of foulant on either membrane pore walls (pore-retention model) or membrane fibers (fiber-retention model). External cake fouling was assumed to occur either by the growth of a single incompressible cake layer (cake-growth) or by the accumulation of a number of independent cake layers (cake-series). The pore-retention model was combined with either the cake-series or cake-growth models to obtain models that describe internal and external fouling occurring either simultaneously or sequentially. The models were tested using well-documented sieving decline data available in the literature. The sequential pore-retention followed by cake-growth model provided a good fit of sieving decline data during beer microfiltration. The cake-series and cake-growth models provided good fits of sieving decline data during the microfiltration of a perfusion cell culture. The new models provide insights into the mechanisms of fouling that result in the loss of product sieving. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1323-1333, 2017. © 2017 American Institute of Chemical Engineers.

  15. Protein Kinase C-dependent Phosphorylation of Transient Receptor Potential Canonical 6 (TRPC6) on Serine 448 Causes Channel Inhibition*

    PubMed Central

    Bousquet, Simon M.; Monet, Michaël; Boulay, Guylain

    2010-01-01

    TRPC6 is a cation channel in the plasma membrane that plays a role in Ca2+ entry following the stimulation of a Gq-protein coupled or tyrosine kinase receptor. A dysregulation of TRPC6 activity causes abnormal proliferation of smooth muscle cells and glomerulosclerosis. In the present study, we investigated the regulation of TRPC6 activity by protein kinase C (PKC). We showed that inhibiting PKC with GF1 or activating it with phorbol 12-myristate 13-acetate potentiated and inhibited agonist-induced Ca2+ entry, respectively, into cells expressing TRPC6. Similar results were obtained when TRPC6 was directly activated with 1-oleyl-2-acetyl-sn-glycerol. Activation of the cells with carbachol increased the phosphorylation of TRPC6, an effect that was prevented by the inhibition of PKC. The target residue of PKC was identified by an alanine screen of all canonical PKC sites on TRPC6. Unexpectedly, all the mutants, including TRPC6S768A (a residue previously proposed to be a target for PKC), displayed PKC-dependent inhibition of channel activity. Phosphorylation prediction software suggested that Ser448, in a non-canonical PKC consensus sequence, was a potential target for PKCδ. Ba2+ and Ca2+ entry experiments revealed that GF1 did not potentiate TRPC6S448A activity. Moreover, activation of PKC did not enhance the phosphorylation state of TRPC6S448A. Using A7r5 vascular smooth muscle cells, which endogenously express TRPC6, we observed that a novel PKC isoform is involved in the inhibition of the vasopressin-induced Ca2+ entry. Furthermore, knocking down PKCδ in A7r5 cells potentiated vasopressin-induced Ca2+ entry. In summary, we provide evidence that PKCδ exerts a negative feedback effect on TRPC6 through the phosphorylation of Ser448. PMID:20961851

  16. Protein kinase C-dependent phosphorylation of transient receptor potential canonical 6 (TRPC6) on serine 448 causes channel inhibition.

    PubMed

    Bousquet, Simon M; Monet, Michaël; Boulay, Guylain

    2010-12-24

    TRPC6 is a cation channel in the plasma membrane that plays a role in Ca(2+) entry following the stimulation of a G(q)-protein coupled or tyrosine kinase receptor. A dysregulation of TRPC6 activity causes abnormal proliferation of smooth muscle cells and glomerulosclerosis. In the present study, we investigated the regulation of TRPC6 activity by protein kinase C (PKC). We showed that inhibiting PKC with GF1 or activating it with phorbol 12-myristate 13-acetate potentiated and inhibited agonist-induced Ca(2+) entry, respectively, into cells expressing TRPC6. Similar results were obtained when TRPC6 was directly activated with 1-oleyl-2-acetyl-sn-glycerol. Activation of the cells with carbachol increased the phosphorylation of TRPC6, an effect that was prevented by the inhibition of PKC. The target residue of PKC was identified by an alanine screen of all canonical PKC sites on TRPC6. Unexpectedly, all the mutants, including TRPC6(S768A) (a residue previously proposed to be a target for PKC), displayed PKC-dependent inhibition of channel activity. Phosphorylation prediction software suggested that Ser(448), in a non-canonical PKC consensus sequence, was a potential target for PKCδ. Ba(2+) and Ca(2+) entry experiments revealed that GF1 did not potentiate TRPC6(S448A) activity. Moreover, activation of PKC did not enhance the phosphorylation state of TRPC6(S448A). Using A7r5 vascular smooth muscle cells, which endogenously express TRPC6, we observed that a novel PKC isoform is involved in the inhibition of the vasopressin-induced Ca(2+) entry. Furthermore, knocking down PKCδ in A7r5 cells potentiated vasopressin-induced Ca(2+) entry. In summary, we provide evidence that PKCδ exerts a negative feedback effect on TRPC6 through the phosphorylation of Ser(448).

  17. Role of protein kinase C in TBT-induced inhibition of lytic function and MAPK activation in human natural killer cells.

    PubMed

    Abraha, Abraham B; Rana, Krupa; Whalen, Margaret M

    2010-11-01

    Human natural killer (NK) cells are lymphocytes that destroy tumor and virally infected cells. Previous studies have shown that exposure of NK cells to tributyltin (TBT) greatly diminishes their ability to destroy tumor cells (lytic function) while activating mitogen-activated protein kinases (MAPK) (p44/42, p38, and JNK) in NK cells. The signaling pathway that regulates NK lytic function appears to include activation of protein kinase C(PKC) as well as MAPK activity. TBT-induced activation of MAPKs would trigger a portion of the NK lytic signaling pathway, which would then leave the NK cell unable to trigger this pathway in response to a subsequent encounter with a target cell. In the present study we evaluated the involvement of PKC in inhibition of NK lysis of tumor cells and activation of MAPKs caused by TBT exposure. TBT caused a 2–3-fold activation of PKC at concentrations ranging from 50 to 300 nM (16–98 ng/ml),indicating that activation of PKC occurs in response to TBT exposure. This would then leave the NK cell unable to respond to targets. Treatment with the PKC inhibitor, bisindolylmaleimide I, caused an 85% decrease in the ability of NK cells to lyse tumor cells, validating the involvement of PKC in the lytic signaling pathway. The role of PKC in the activation of MAPKs by TBT was also investigated using bisindolylmaleimide I. The results indicated that, in NK cells where PKC activation was blocked, there was no activation of the MAPK, p44/42 in response to TBT.However, TBT-induced activation of the MAPKs, p38 and JNK did not require PKC activation. These results indicate the pivotal role of PKC in the TBT-induced loss of NK lytic function including activation of p44/42 by TBT in NK cells.

  18. Role of protein kinase C in the TBT-induced inhibition of lytic function and MAPK activation in human natural killer cells

    PubMed Central

    Abraha, Abraham B.; Rana, Krupa; Whalen, Margaret M.

    2010-01-01

    Human natural killer (NK) cells are lymphocytes that destroy tumor and virally infected cells. Previous studies have shown that exposures of NK cells to tributyltin (TBT) greatly diminish their ability to destroy tumor cells (lytic function) while activating mitogen-activated protein kinases (MAPK) (p44/42, p38, and JNK) in the NK cells. The signaling pathway that regulates NK lytic function appears to include activation of protein kinase C (PKC) as well as MAPK activity. The TBT-induced activation of MAPKs would trigger a portion of the NK lytic signaling pathway, which would then leave the NK cell unable to trigger this pathway in response to a subsequent encounter with a target cell. In the present study we evaluated the involvement of PKC in the inhibition of NK lysis of tumor cells and activation of MAPKs caused by TBT exposures. TBT caused a 2–3 fold activation of PKC at concentrations ranging from 50–300 nM (16–98 ng/mL), indicating that activation of PKC occurs in response to TBT exposures. This would then leave the NK cell unable to respond to targets. Treatment with the PKC inhibitor, bisindolylmaleimide I, caused an 85% decrease in the ability of NK cells to lyse tumor cells validating the involvement of PKC in the lytic signaling pathway. The role of PKC in the activation of MAPKs by TBT was also investigated using bisindolylmaleimide I. The results indicated that in NK cells where PKC activation was blocked there was no activation of the MAPK, p44/42 in response to TBT. However, TBT-induced activation of the MAPKs, p38 and JNK did not require PKC activation. These results indicate the pivotal role of PKC in the TBT-induced loss of NK lytic function including the activation of p44/42 by TBT in NK cells. PMID:20390410

  19. 14-3-3ζ and aPKC-ι synergistically facilitate epithelial-mesenchymal transition of cholangiocarcinoma via GSK-3β/Snail signaling pathway.

    PubMed

    Yang, Yan; Liu, Yan; He, Jun-Chuang; Wang, Jian-Ming; Schemmer, Peter; Ma, Chao-Qun; Qian, Ya-Wei; Yao, Wei; Zhang, Jian; Qi, Wei-Peng; Fu, Yang; Feng, Wei; Yang, Tao

    2016-08-23

    Cholangiocarcinoma (CCA) invasion and metastasis are the primary causes of poor survival rates in patients. The epithelial-mesenchymal transition (EMT) is a crucial step in cancer invasion and metastasis. However, it is still unclear of the molecular mechanism. In this study, the expression of 14-3-3ζ and atypical protein kinase C-ι (aPKC-ι) was further detected in CCA tissues and cell lines. Meanwhile, we established the EMT model of CCA cells and investigated 14-3-3ζ and aPKC-ι co-regulatory effect on the EMT in vitro and in vivo. Further, we identified the downstream molecular glycogen synthase kinase 3 beta (GSK-3β)/Snail signalling pathway that contribute to regulating the EMT. Our data showed that the expression of 14-3-3ζ and aPKC-ι was synergistically increased in CCA tissues compared with adjacent noncancerous tissues and was intimately associated with differentiation and the tumour-node-metastasis (TNM) stage. Multivariate Cox regression analysis indicated that high 14-3-3ζ and aPKC-ι expression separately predicted a poor prognosis and were independent prognostic indicators in patients with CCA. The CO-IP experiment confirmed that the mutual binding relationship between 14-3-3ζ and aPKC-ι. Small interfering RNAs and siRNA rescue experiment demonstrated that 14-3-3ζ and aPKC-ι regulated each other. In addition, 14-3-3ζ and aPKC-ι pretreatment by si-RNA inhibit the phosphorylated GSK-3β and Snail expression during EMT. Meanwhile, silence of 14-3-3ζ or aPKC-ι suppressed CCA cells migration, metastasis and proliferation in vitro and in vivo. Our study demonstrates that 14-3-3ζ and aPKC-ι synergistically facilitate EMT of CCA via GSK-3β/Snail signalling pathway, and may be potential therapeutic target for CCA.

  20. Oncogenic PKC-ι activates Vimentin during epithelial-mesenchymal transition in melanoma; a study based on PKC-ι and PKC-ζ specific inhibitors.

    PubMed

    Ratnayake, Wishrawana S; Apostolatos, Christopher A; Apostolatos, André H; Schutte, Ryan J; Huynh, Monica A; Ostrov, David A; Acevedo-Duncan, Mildred

    2018-05-21

    Melanoma is one of the fastest growing cancers in the United States and is accompanied with a poor prognosis owing to tumors being resistant to most therapies. Atypical protein kinase Cs (aPKC) are involved in malignancy in many cancers. We previously reported that aPKCs play a key role in melanoma's cell motility by regulating cell signaling pathways which induce epithelial-mesenchymal Transition (EMT). We tested three novel inhibitors; [4-(5-amino-4-carbamoylimidazol-1-yl)-2,3-dihydroxycyclopentyl] methyl dihydrogen phosphate (ICA-1T) along with its nucleoside analog 5-amino-1-((1R,2S,3S,4R)-2,3-dihydroxy-4-methylcyclopentyl)-1H-imidazole-4-carboxamide (ICA-1S) which are specific to protein kinase C-iota (PKC-ι) and 8-hydroxy-1,3,6-naphthalenetrisulfonic acid (ζ-Stat) which is specific to PKC-zeta (PKC-ζ) on cell proliferation, apoptosis, migration and invasion of two malignant melanoma cell lines compared to normal melanocytes. Molecular modeling was used to identify potential binding sites for the inhibitors and to predict selectivity. Kinase assay showed >50% inhibition for specified targets beyond 5 μM for all inhibitors. Both ICA-1 and ζ-Stat significantly reduced cell proliferation and induced apoptosis, while ICA-1 also significantly reduced migration and melanoma cell invasion. PKC-ι stimulated EMT via TGFβ/Par6/RhoA pathway and activated Vimentin by phosphorylation at S39. Both ICA-1 and ζ-Stat downregulate TNF-α induced NF-κB translocation to the nucleus there by inducing apoptosis. Results suggest that PKC-ι is involved in melanoma malignancy than PKC-ζ. Inhibitors proved to be effective under in-vitro conditions and need to be tested in-vivo for the validity as effective therapeutics. Overall, results show that aPKCs are essential for melanoma progression and metastasis and that they could be used as effective therapeutic targets for malignant melanoma.

  1. 14-3-3ζ and aPKC-ι synergistically facilitate epithelial-mesenchymal transition of cholangiocarcinoma via GSK-3β/snail signaling pathway

    PubMed Central

    He, Jun-chuang; Wang, Jian-ming; Schemmer, Peter; Ma, Chao-qun; Qian, Ya-wei; Yao, Wei; Zhang, Jian; Qi, Wei-peng; Fu, Yang; Feng, Wei; Yang, Tao

    2016-01-01

    Cholangiocarcinoma (CCA) invasion and metastasis are the primary causes of poor survival rates in patients. The epithelial-mesenchymal transition (EMT) is a crucial step in cancer invasion and metastasis. However, it is still unclear of the molecular mechanism. In this study, the expression of 14-3-3ζ and atypical protein kinase C-ι (aPKC-ι) was further detected in CCA tissues and cell lines. Meanwhile, we established the EMT model of CCA cells and investigated 14-3-3ζ and aPKC-ι co-regulatory effect on the EMT in vitro and in vivo. Further, we identified the downstream molecular glycogen synthase kinase 3 beta (GSK-3β)/Snail signalling pathway that contribute to regulating the EMT. Our data showed that the expression of 14-3-3ζ and aPKC-ι was synergistically increased in CCA tissues compared with adjacent noncancerous tissues and was intimately associated with differentiation and the tumour-node-metastasis (TNM) stage. Multivariate Cox regression analysis indicated that high 14-3-3ζ and aPKC-ι expression separately predicted a poor prognosis and were independent prognostic indicators in patients with CCA. The CO-IP experiment confirmed that the mutual binding relationship between 14-3-3ζ and aPKC-ι. Small interfering RNAs and siRNA rescue experiment demonstrated that 14-3-3ζ and aPKC-ι regulated each other. In addition, 14-3-3ζ and aPKC-ι pretreatment by si-RNA inhibit the phosphorylated GSK-3β and Snail expression during EMT. Meanwhile, silence of 14-3-3ζ or aPKC-ι suppressed CCA cells migration, metastasis and proliferation in vitro and in vivo. Our study demonstrates that 14-3-3ζ and aPKC-ι synergistically facilitate EMT of CCA via GSK-3β/Snail signalling pathway, and may be potential therapeutic target for CCA. PMID:27409422

  2. Synergistic effects of adenosine A1 and P2Y receptor stimulation on calcium mobilization and PKC translocation in DDT1 MF-2 cells.

    PubMed

    Fredholm, Bertil B; Assender, Jean W; Irenius, Eva; Kodama, Noriko; Saito, Naoaki

    2003-06-01

    1. The effect of adenosine analogues and of nucleotides, alone or in combination, on intracellular calcium, accumulation of inositol (1,4,5) trisphosphate (InsP3), and on activation of protein kinase C (PKC) was studied in DDT1 MF2 cells derived from a Syrian hamster myosarcoma. These cells were found to express mRNA for A1 and some as yet unidentified P2Y receptor(s). 2. Activation of either receptor type stimulated the production of InsP3 and raised intracellular calcium in DDT1 MF2 cells. Similarly, the A1 selective agonist N6-cyclopentyladenosine (CPA) increased PKC-dependent phosphorylation of the substrate MBP(4-14) and induced a PKC translocation to the plasma membrane as determined using [3H]-phorbol dibutyrate (PDBu) binding in DDT1 MF-2 cells. However, neither adenosine nor CPA induced a significant translocation of transiently transfected gamma-PKC-GFP from the cytosol to the cell membrane. In contrast to adenosine analogues, ATP and UTP also caused a rapid but transient translocation of gamma-PKC-GFP and activation of PKC. 3. Doses of the A1 agonist CPA and of ATP or UTP per se caused barely detectable increases in intracellular Ca2+ but when combined, they caused an almost maximal stimulation. Similarly, adenosine (0.6 microM) and UTP (or ATP, 2.5 microM), which per se caused no detectable translocation of either gamma- or epsilon-PKC-GFP, caused when combined a very clear-cut translocation of both PKC subforms, albeit with different time courses. These results show that simultaneous activation of P2Y and adenosine A1 receptors synergistically increases Ca2+ transients and translocation of PKC in DDT1 MF-2 cells. Since adenosine is rapidly formed by breakdown of extracellular ATP, such interactions may be biologically important.

  3. Isoenzymes of protein kinase C in rat mammary tissue: changes in properties and relative amounts during pregnancy and lactation.

    PubMed

    Connor, K; Clegg, R A

    1993-05-01

    Protein kinase isoenzymes belonging to the protein kinase C (PK-C) family present in rat mammary tissue have been resolved from one another by chromatography on hydroxyapatite, and characterized. PK-C alpha is the predominant isoenzyme and is present at a constant level of activity throughout mammary-gland development and differentiation. In contrast, marked changes in the relative abundance of other mammary PK-C isoenzymes accompany the transition from pregnancy to lactation. The sensitivity of mammary PK-C alpha to Ca2+ is greater in tissue from pregnant than from lactating rats. This isoenzyme has other atypical properties consistent with its being more highly phosphorylated than PK-C alpha in rat brain and spleen. One of the protein kinase isoenzymes resolved from mammary tissue recognizes the peptide substrate used to assay AMP-activated kinase and may thus interfere in the determination of this activity. Another is fully active in the absence of Ca2+ and is more than 80% active in the absence of added lipid effectors. A 'housekeeping' role is proposed for PK-C alpha in mammary tissue, whereas the less abundant PK-C isoenzymes may be involved in mammary cell proliferation and differentiation.

  4. Protein kinase C β inhibits autophagy and sensitizes cervical cancer Hela cells to cisplatin.

    PubMed

    Li, Na; Zhang, Wei

    2017-04-28

    Recently, autophagy has been indicated to play an essential role in various biological events, such as the response of cervical cancer cells to chemotherapy. However, the exact signalling mechanism that regulates autophagy during chemotherapy remains unclear. In the present study, we investigated the regulation by cisplatin on protein kinase C β (PKC β), on B-cell lymphoma 2 (Bcl-2) and on apoptosis in cervical cancer Hela cells. And then we examined the regulation by cisplatin on autophagy and the role of autophagy on the chemotherapy in Hela cells. In addition, the regulation of the PKC β on the autophagy was also investigated. Our results indicated that cisplatin promoted PKC β in Hela cells. The PKC β inhibitor reduced the cisplatin-induced apoptosis, whereas increased the cisplatin-induced autophagy in Hela cells. On the other side, the PKC β overexpression aggravated the cisplatin-induced apoptosis, whereas down-regulated the cisplatin-induced autophagy. Taken together, our study firstly recognized the involvement of PKC β in the cytotoxicity of cisplatin via inhibiting autophagy in cervical cancer cells. We propose that PKC β would sensitize cervical cancer cells to chemotherapy via reducing the chemotherapy induced autophagy in cancer cells. © 2017 The Author(s).

  5. The engine maintenance scheduling by using reliability centered maintenance method and the identification of 5S application in PT. XYZ

    NASA Astrophysics Data System (ADS)

    Sembiring, N.; Panjaitan, N.; Saragih, A. F.

    2018-02-01

    PT. XYZ is a manufacturing company that produces fresh fruit bunches (FFB) to Crude Palm Oil (CPO) and Palm Kernel Oil (PKO). PT. XYZ consists of six work stations: receipt station, sterilizing station, thressing station, pressing station, clarification station, and kernelery station. So far, the company is still implementing corrective maintenance maintenance system for production machines where the machine repair is done after damage occurs. Problems at PT. XYZ is the absence of scheduling engine maintenance in a planned manner resulting in the engine often damaged which can disrupt the smooth production. Another factor that is the problem in this research is the kernel station environment that becomes less convenient for operators such as there are machines and equipment not used in the production area, slippery, muddy, scattered fibers, incomplete use of PPE, and lack of employee discipline. The most commonly damaged machine is in the seed processing station (kernel station) which is cake breaker conveyor machine. The solution of this problem is to propose a schedule plan for maintenance of the machine by using the method of reliability centered maintenance and also the application of 5S. The result of the application of Reliability Centered maintenance method is obtained four components that must be treated scheduled (time directed), namely: for bearing component is 37 days, gearbox component is 97 days, CBC pen component is 35 days and conveyor pedal component is 32 days While after identification the application of 5S obtained the proposed corporate environmental improvement measures in accordance with the principles of 5S where unused goods will be moved from the production area, grouping goods based on their use, determining the procedure of cleaning the production area, conducting inspection in the use of PPE, and making 5S slogans.

  6. Cooperativity Between Oncogenic PKC Epsilon and Pten Loss in Prostate Cancer Progression

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0535 TITLE: “Cooperativity Between Oncogenic PKC Epsilon and Pten Loss in Prostate Cancer Progression” PRINCIPAL...3. DATES COVERED 30 Sep 2014 - 29 Sep 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Cooperativity Between Oncogenic PKC Epsilon and Pten Loss in...the s-econd leadi.ng caus.e of cmcer-related deaths .unong wen in thee United States. Protein kinase C epsilon (PKCs), a me-mber of the PKC £uuily

  7. Utilization of deoiled Jatropha curcas seed cake for production of xylanase from thermophilic Scytalidium thermophilum.

    PubMed

    Joshi, Chetna; Khare, S K

    2011-01-01

    Jatropha curcas is a major biodiesel crop. Large amount of deoiled cake is generated as by-product during biodiesel production from its seeds. Deoiled J. curcas seed cake was assessed as substrate for the production of xylanase from thermophilic fungus Scytalidium thermophilum by solid-state fermentation. The seed cake was efficiently utilized by S. thermophilum for its growth during which it produced good amount of heat stable extracellular xylanase. The solid-state fermentation conditions were optimized for maximum xylanase production. Under the optimized conditions viz. deoiled seed cake supplemented with 1% oat-spelt xylan, adjusted to pH 9.0, moisture content 1:3 w/v, inoculated with 1×10(6) spores per 5 g cake and incubated at 45 °C, 1455 U xylanase/g deoiled seed cake was obtained. The xylanase was useful in biobleaching of paper pulp. Solid-state fermentation of deoiled cake appears a potentially viable approach for its effective utilization. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Utilization of Oleogels as a Replacement for Solid Fat in Aerated Baked Goods: Physicochemical, Rheological, and Tomographic Characterization.

    PubMed

    Kim, Joo Young; Lim, Jeongtaek; Lee, JaeHwan; Hwang, Hong-Sik; Lee, Suyong

    2017-02-01

    Canola oil-carnauba wax oleogels were evaluated as a replacement for shortening in a baked cake system. The use of oleogels produced cake batters with a lower pseudoplastic property and also contributed to their viscous nature. The shortening replacement with oleogels at up to 50% was effective in maintaining the ability to hold air cells into the cake batters. The volume of cakes had an overall tendency to decrease with increasing shortening replacement with oleogels, leading to increased cake firmness. The tomographic analysis demonstrated that the total porosity and fragmentation index were reduced in the oleogel cakes, showing a more connected solid structure. The levels of saturated fatty acids in the cakes containing oleogels were significantly reduced to 13.3%, compared to the control with shortening (74.2%). As a result, the use of oleogels for shortening up to 25% produced cakes with lower levels of saturated fatty acids without quality loss. © 2016 Institute of Food Technologists®.

  9. Evaluation of antioxidant, rheological, physical and sensorial properties of wheat flour dough and cake containing turmeric powder.

    PubMed

    Park, S H; Lim, H S; Hwang, S Y

    2012-10-01

    The effects of addition of turmeric powder (0%, 2%, 4%, 6% and 8%) were examined in order to obtain an antioxidant-enriched cake with good physico-chemical and sensorial properties. The rheological properties of doughs were evaluated using dynamic rheological measurements. Physical properties, curcumin content, radical scavenging activity (RSA-DPPH assay) and sensory analysis (hedonic test) of the supplemented cake were determined. Addition of turmeric powder up to 8% caused significant changes on dough characteristics and on cake rheological properties. The highest curcumin (203 mg/kg) and RSA-DPPH activity (45%) were achieved in the cake having the highest percentage of turmeric powder (8%); however, this sample showed the worst results regarding the rheological properties. Moreover, by sensory evaluation this cake sample was not acceptable. A 6% substitution of wheat flour with turmeric powder showed acceptable sensory scores which were comparable to those of 0-4% turmeric cakes. This indicated that up to 6% level of turmeric powder might be included in cake formulation.

  10. Effect of adding palm oil mill decanter cake slurry with regular turning operation on the composting process and quality of compost from oil palm empty fruit bunches.

    PubMed

    Yahya, Azmi; Sye, Chong Puay; Ishola, Tajudeen Abiodun; Suryanto, Hadi

    2010-11-01

    Formation of compost from oil palm empty fruit bunches (EFB) and decanter cake slurry by adding palm oil mill effluent (POME) with regular turning operation was investigated. The experiment was conducted in a commercial composting plant under the normal production process. The addition of decanter cake slurry has hastened the composting process of the EFB. The C/N ratio after 51 days for the mature compost with the decanter cake slurry was 18.65 while that of the matured compost without the decanter cake slurry remained high at 28.96. The compost formed from the addition of decanter cake to EFB and POME had 46.4% nitrogen, 17.9% phosphorus, 17.7% potassium and 23.1% calcium more than that without decanter cake. The use of compost produced from EFB, POME and decanter cake slurry could solve more environmental problems and enhance economic benefits in the oil palm industry.

  11. Influence of waxy rice flour substitution for wheat flour on characteristics of batter and freeze-thawed cake.

    PubMed

    Jongsutjarittam, Nisachon; Charoenrein, Sanguansri

    2013-09-12

    This study aimed to improve the freeze-thawed cake properties by10-20% waxy rice flour (WRF) substitution for wheat flour (WF). Viscosity of WRF-substituted batters was lower; consequently, trapped air was less uniformly distributed than WF batter. After five freeze-thaw cycles, firmness and enthalpy of melting retrograded amylopectin of WF- and WRF-substituted cakes increased and the matrix surrounding the air pores from SEM images was denser than in fresh-baked cakes. Sensory evaluation showed an increase in firmness and a decrease in firmness acceptability of freeze-thawed cakes. However, freeze-thawed cake with WRF substitution had significantly less firmness, less dense matrix and more acceptability than WF cake. This could have been due to a low amylose content of WRF and the spread of ruptured waxy rice starch granules around swollen wheat starch granules as observed by CLSM. Thus, WRF could be used for WF substitution to improve the firmness in freeze-thawed cake. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Rheological, physical, and sensory attributes of gluten-free rice cakes containing resistant starch.

    PubMed

    Tsatsaragkou, Kleopatra; Papantoniou, Maria; Mandala, Ioanna

    2015-02-01

    In this study the effect of resistant starch (RS) addition on gluten-free cakes from rice flour and tapioca starch physical and sensorial properties was investigated. Increase in RS concentration made cake batters less elastic (drop of G'(ω), G''(ω) values) and thinner (viscosity decreased). Cakes specific volume increased with an increase in RS level and was maximized for 15 g/100 g RS, although porosity values were significantly unaffected by RS content. Crumb grain analysis exhibited a decrease in surface porosity, number of pores and an increase in average pore diameter as RS concentration increased. During storage, cake crumb remained softer in formulations with increasing amounts of RS. Sensory evaluation of cakes demonstrated the acceptance of all formulations, with cake containing 20 g/100 g RS mostly preferred. Gluten-free cakes with improved quality characteristics and high nutritional value can be manufactured by the incorporation of RS. © 2015 Institute of Food Technologists®

  13. Utilisation of preharvest dropped apple peels as a flour substitute for a lower glycaemic index and higher fibre cake.

    PubMed

    Jun, Yujin; Bae, In Young; Lee, Suyong; Lee, Hyeon Gyu

    2014-02-01

    Fibre-enriched materials (FEMs) obtained from preharvest dropped apple peels were utilised as a source of dietary fibre in baked cakes and their effects on the textural/nutritional qualities and starch digestibility (glucose release behaviour, starch digestion fraction, predicted glycaemic index) of the cakes were evaluated. When FEMs were incorporated into the cake formulation (3 g and 6 g of dietary fibre per serving (100 g)), the volume of the cakes seemed to be reduced and their texture become harder. However, 3 g of FEMs did not degrade the cake qualities. The use of FEMs in cakes significantly reduced the levels of rapidly digestible starch and slowly digestible starch, while the levels of resistant starch increased. Additionally, the cake samples prepared with FEMs exhibited a lower predicted glycaemic index. This study may give rise to multi-functional bakery products with acceptable quality and low glycaemic index.

  14. Mechanisms of action of particles used for fouling mitigation in membrane bioreactors.

    PubMed

    Loulergue, P; Weckert, M; Reboul, B; Cabassud, C; Uhl, W; Guigui, C

    2014-12-01

    Adding chemicals to the biofluid is an option to mitigate membrane fouling in membrane bioreactors. In particular, previous studies have shown that the addition of particles could enhance activated sludge filterability. Nevertheless, the mechanisms responsible for the improved filtration performance when particles are added are still unclear. Two main mechanisms might occur: soluble organic matter adsorption onto the particles and/or cake structure modification. To date, no studies have clearly dissociated the impact of these two phenomena as a method was needed for the in-line characterization of the cake structure during filtration. The objective of this study was thus to apply, for the first time, an optical method for in-situ, non-invasive, characterization of cake structure during filtration of a real biofluid in presence of particles. This method was firstly used to study local cake compressibility during the biofluid filtration. It was found that the first layers of the cake were incompressible whereas the cake appeared to be compressible at global scale. This questions the global scale analysis generally used to study cake compressibility and highlights the interest of coupling local characterization with overall process performance analysis. Secondly, the impact of adding submicronic melamine particles into the biofluid was studied. It appears that particles added into the biofluid strongly influence the cake properties, making it thicker and more permeable. Furthermore, by using liquid chromatography with an organic carbon detector to determine the detailed characteristics of the feed and permeate, it was shown that the modification of cake structure also affected the retention of soluble organic compounds by the membrane and thus the cake composition. Simultaneous use of a method for in-situ characterization of the cake structure with a detailed analysis of the fluid composition and monitoring of the global performance is thus a powerful method for evaluating cake structure and composition and their impact on global process performance. The use of this methodology should allow "cake engineering" to be developed so that cake properties (structure, composition) can be controlled and process performance optimized. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Protein Kinase C-δ Mediates Neuronal Apoptosis in the Retinas of Diabetic Rats via the Akt Signaling Pathway

    PubMed Central

    Kim, Young-Hee; Kim, Yoon-Sook; Park, Chang-Hwan; Chung, In-Yong; Yoo, Ji-Myong; Kim, Jae-Geun; Lee, Byung-Ju; Kang, Sang-Soo; Cho, Gyeong-Jae; Choi, Wan-Sung

    2008-01-01

    OBJECTIVE—Protein kinase C (PKC)-δ, an upstream regulator of the Akt survival pathway, contributes to cellular dysfunction in the pathogenesis of diabetes. Herein, we examined the role of PKC-δ in neuronal apoptosis through Akt in the retinas of diabetic rats. RESEARCH DESIGN AND METHODS—We used retinas from 24- and 35-week-old male Otsuka Long-Evans Tokushima fatty (OLETF) diabetic and Long-Evans Tokushima Otsuka (LETO) nondiabetic rats. To assess whether PKC-δ affects Akt signaling and cell death in OLETF rat retinas, we examined 1) PKC-δ activity and apoptosis; 2) protein levels of phosphatidylinositol 3-kinase (PI 3-kinase) p85, heat shock protein 90 (HSP90), and protein phosphatase 2A (PP2A); 3) Akt phosphorylation; and 4) Akt binding to HSP90 or PP2A in LETO and OLETF retinas in the presence or absence of rottlerin, a highly specific PKC-δ inhibitor, or small interfering RNAs (siRNAs) for PKC-δ and HSP90. RESULTS—In OLETF retinas from 35-week-old rats, ganglion cell death, PKC-δ and PP2A activity, and Akt-PP2A binding were significantly increased and Akt phosphorylation and Akt-HSP90 binding were decreased compared with retinas from 24-week-old OLETF and LETO rats. Rottlerin and PKC-δ siRNA abrogated these effects in OLETF retinas from 35-week-old rats. HSP90 siRNA significantly increased ganglion cell death and Akt-PP2A complexes and markedly decreased HSP90-Akt binding and Akt phosphorylation in LETO retinas from 35-week-old rats compared with those from nontreated LETO rats. CONCLUSIONS—PKC-δ activation contributes to neuro-retinal apoptosis in diabetic rats by inhibiting Akt-mediated signaling pathways. PMID:18443201

  16. Acute Ethanol Administration Rapidly Increases Phosphorylation of Conventional Protein Kinase C in Specific Mammalian Brain Regions in Vivo

    PubMed Central

    Wilkie, Mary Beth; Besheer, Joyce; Kelley, Stephen P.; Kumar, Sandeep; O’Buckley, Todd K.; Morrow, A. Leslie; Hodge, Clyde W.

    2010-01-01

    Background Protein kinase C (PKC) is a family of isoenzymes that regulate a variety of functions in the central nervous system including neurotransmitter release, ion channel activity, and cell differentiation. Growing evidence suggests that specific isoforms of PKC influence a variety of behavioral, biochemical, and physiological effects of ethanol in mammals. The purpose of this study was to determine whether acute ethanol exposure alters phosphorylation of conventional PKC isoforms at a threonine 674 (p-cPKC) site in the hydrophobic domain of the kinase, which is required for its catalytic activity. Methods Male rats were administered a dose range of ethanol (0, 0.5, 1, or 2 g/kg, intragastric) and brain tissue was removed 10 minutes later for evaluation of changes in p-cPKC expression using immunohistochemistry and Western blot methods. Results Immunohistochemical data show that the highest dose of ethanol (2 g/kg) rapidly increases p-cPKC immunoreactivity specifically in the nucleus accumbens (core and shell), lateral septum, and hippocampus (CA3 and dentate gyrus). Western blot analysis further showed that ethanol (2 g/kg) increased p-cPKC expression in the P2 membrane fraction of tissue from the nucleus accumbens and hippocampus. Although p-cPKC was expressed in numerous other brain regions, including the caudate nucleus, amygdala, and cortex, no changes were observed in response to acute ethanol. Total PKCγ immunoreactivity was surveyed throughout the brain and showed no change following acute ethanol injection. Conclusions These results suggest that ethanol rapidly promotes phosphorylation of cPKC in limbic brain regions, which may underlie effects of acute ethanol on the nervous system and behavior. PMID:17511744

  17. Deletion of protein kinase C-ε attenuates mitochondrial dysfunction and ameliorates ischemic renal injury.

    PubMed

    Nowak, Grazyna; Takacsova-Bakajsova, Diana; Megyesi, Judit

    2017-01-01

    Previously, we documented that activation of protein kinase C-ε (PKC-ε) mediates mitochondrial dysfunction in cultured renal proximal tubule cells (RPTC). This study tested whether deletion of PKC-ε decreases dysfunction of renal cortical mitochondria and improves kidney function after renal ischemia. PKC-ε levels in mitochondria of ischemic kidneys increased 24 h after ischemia. Complex I- and complex II-coupled state 3 respirations were reduced 44 and 27%, respectively, in wild-type (WT) but unchanged and increased in PKC-ε-deficient (KO) mice after ischemia. Respiratory control ratio coupled to glutamate/malate oxidation decreased 50% in WT but not in KO mice. Activities of complexes I, III, and IV were decreased 59, 89, and 61%, respectively, in WT but not in KO ischemic kidneys. Proteomics revealed increases in levels of ATP synthase (α-subunit), complexes I and III, cytochrome oxidase, α-ketoglutarate dehydrogenase, and thioredoxin-dependent peroxide reductase after ischemia in KO but not in WT animals. PKC-ε deletion prevented ischemia-induced increases in oxidant production. Plasma creatinine levels increased 12-fold in WT and 3-fold in KO ischemic mice. PKC-ε deletion reduced tubular necrosis, brush border loss, and distal segment damage in ischemic kidneys. PKC-ε activation in hypoxic RPTC in primary culture exacerbated, whereas PKC-ε inhibition reduced, decreases in: 1) complex I- and complex II-coupled state 3 respirations and 2) activities of complexes I, III, and IV. We conclude that PKC-ε activation mediates 1) dysfunction of complexes I and III of the respiratory chain, 2) oxidant production, 3) morphological damage to the kidney, and 4) decreases in renal functions after ischemia. Copyright © 2017 the American Physiological Society.

  18. Deletion of protein kinase C-ε attenuates mitochondrial dysfunction and ameliorates ischemic renal injury

    PubMed Central

    Takacsova-Bakajsova, Diana; Megyesi, Judit

    2016-01-01

    Previously, we documented that activation of protein kinase C-ε (PKC-ε) mediates mitochondrial dysfunction in cultured renal proximal tubule cells (RPTC). This study tested whether deletion of PKC-ε decreases dysfunction of renal cortical mitochondria and improves kidney function after renal ischemia. PKC-ε levels in mitochondria of ischemic kidneys increased 24 h after ischemia. Complex I- and complex II-coupled state 3 respirations were reduced 44 and 27%, respectively, in wild-type (WT) but unchanged and increased in PKC-ε-deficient (KO) mice after ischemia. Respiratory control ratio coupled to glutamate/malate oxidation decreased 50% in WT but not in KO mice. Activities of complexes I, III, and IV were decreased 59, 89, and 61%, respectively, in WT but not in KO ischemic kidneys. Proteomics revealed increases in levels of ATP synthase (α-subunit), complexes I and III, cytochrome oxidase, α-ketoglutarate dehydrogenase, and thioredoxin-dependent peroxide reductase after ischemia in KO but not in WT animals. PKC-ε deletion prevented ischemia-induced increases in oxidant production. Plasma creatinine levels increased 12-fold in WT and 3-fold in KO ischemic mice. PKC-ε deletion reduced tubular necrosis, brush border loss, and distal segment damage in ischemic kidneys. PKC-ε activation in hypoxic RPTC in primary culture exacerbated, whereas PKC-ε inhibition reduced, decreases in: 1) complex I- and complex II-coupled state 3 respirations and 2) activities of complexes I, III, and IV. We conclude that PKC-ε activation mediates 1) dysfunction of complexes I and III of the respiratory chain, 2) oxidant production, 3) morphological damage to the kidney, and 4) decreases in renal functions after ischemia. PMID:27760765

  19. High mobility group box-1 is phosphorylated by protein kinase C zeta and secreted in colon cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hanna; Park, Minhee; Shin, Nara

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer Specific enzyme for HMGB1 phosphorylation and its secretion is proposed. Black-Right-Pointing-Pointer Inhibition of PKC-{zeta} leads to significant reduction of the secreted HMGB1. Black-Right-Pointing-Pointer Phosphorylation of specific site of HMGB1 redirects its secretion in cancer cells. Black-Right-Pointing-Pointer Activation of PKC-{zeta} in cancers explains the enhanced HMGB1 secretion. -- Abstract: High mobility group box-1 (HMGB1), a nuclear protein, is overexpressed and secreted in cancer cells. Phosphorylation on two different nuclear localization signal regions are known to be important for the nuclear-to-cytoplasmic transport and secretion of HMGB1. However, little is known about the biochemical mechanism of HMGB1 modifications and its subsequentmore » secretion from cancer cells. To identify the specific enzyme and important sites for HMGB1 phosphorylation, we screened the protein kinase C (PKC) family in a colon cancer cell line (HCT116) for HMGB1 binding by pull-down experiments using a 3XFLAG-HMGB1 construct. Strong interactions between atypical PKCs (PKC-{zeta}, {lambda}, and {iota}) and cytoplasmic HMGB1 were observed in HCT116 cells. We further identified the most critical PKC isotype that regulates HMGB1 secretion is PKC-{zeta} by using PKC inhibitors and siRNA experiments. The serine residues at S39, S53 and S181 of HMGB1 were related to enhancing HMGB1 secretion. We also demonstrated overexpression and activation of PKC-{zeta} in colon cancer tissues. Our findings suggest that PKC-{zeta} is involved in the phosphorylation of HMGB1, and the phosphorylation of specific serine residues in the nuclear localization signal regions is related to enhanced HMGB1 secretion in colon cancer cells.« less

  20. Brettanomyces as a starter culture in rice-steamed sponge cake: a traditional fermented food in China.

    PubMed

    Wu, Peng; Xu, Xiaoyun; Xu, Yongxia; Chen, Qingchan; Pan, Siyi

    2011-11-01

    The potential use of Brettanomyces anomalus PSY-001 as an additional starter culture for the production of Rice-steamed sponge cake (RSSC), a traditional fermented food in China, was investigated. Two productions of RSSC, each containing batches of experimental cakes with Brettanomyces added and reference cakes with the leavened liquid added were carried out. For both experimental and reference cakes, chemical analysis and sensory evaluation were carried out during the fermentation period. The results showed that experimental cakes had desirable aroma and taste. The observed differences indicate a positive contribution to the overall quality of RSSC by B. anomalus PSY-001.

  1. Intake, digestibility, nitrogen balance, performance, and carcass yield of lambs fed licuri cake.

    PubMed

    Costa, J B; Oliveira, R L; Silva, T M; Ribeiro, R D X; Silva, A M; Leão, A G; Bezerra, L R; Rocha, T C

    2016-07-01

    This study aimed to determine the impact of the inclusion of licuri cake in the diets of crossbred Santa Inês lambs, based on intake, digestibility, N balance, urea N, and performance. We used 44 male lambs that were vaccinated and wormed, with an average age of 6 mo and an average BW of 21.2 kg ± 2.7 kg. The lambs were fed a mixture of Tifton-85 hay (40%) and a concentrated mixture (60%) composed of ground corn, soybean meal, and mineral premix. For the treatments, licuri cake was added at levels of 0, 8, 16, and 24% of DM, with the licuri cake replacing soybean meal and ground corn. We used 11 lambs per treatment in a randomized design. The lambs were confined for 70 d, and the digestibility trial occurred between Day 40 and Day 55. The increased level of licuri cake inclusion promoted a linear reduction in DM intake ( = 0.00) with a 39% reduction between treatments with the 0 and 24% cakes. On the other hand, ether extract () consumption showed an initial quadratic increase ( = 0.00). The total weight gain and ADG showed a linear decrease ( = 0.00) with the addition of licuri cake. The inclusion of licuri cake linearly enhanced ( = 0.02) the digestibility of CP and EE, whereas the digestibility of other nutrients in lambs remained unchanged ( > 0.05). The licuri cake increase led to a linear decrease ( < 0.05) in the N intake, fecal N, and retained N in lambs. Urinary N was not changed. The slaughter carcass weight, HCW, cold carcass weight, hot carcass yield, and cold carcass yield showed linear decreases ( < 0.05) with the addition of licuri cake. Carcass morphometric measurements were influenced by experimental diets, showing linear decreases ( < 0.05) with the addition of licuri cake to diets. The fat thickness, conformation, external length, internal length, leg length, rump width, and chest circumference showed linear decreases ( < 0.05) with the inclusion of licuri cake in diets. The inclusion of licuri cake decreased DMI and digestibility, reflecting the lower ADG. Although feed efficiency was not affected, the lambs weighed less at slaughter and the licuri cake had a negative impact on carcass yield. Therefore, the use of the studied levels of licuri cake in diets for finishing lambs cannot be recommended.

  2. Intervention of PKC-θ as an immunosuppressive regimen

    PubMed Central

    Sun, Zuoming

    2012-01-01

    PKC-θ is selectively enriched in T cells and specifically translocates to immunological synapse where it mediates critical T cell receptor signals required for T cell activation, differentiation, and survival. T cells deficient in PKC-θ are defective in their ability to differentiate into inflammatory effector cells that mediate actual immune responses whereas, their differentiation into regulatory T cells (Treg) that inhibits the inflammatory T cells is enhanced. Therefore, the manipulation of PKC-θ activity can shift the ratio between inflammatory effector T cells and inhibitory Tregs, to control T cell-mediated immune responses that are responsible for autoimmunity and allograft rejection. Indeed, PKC-θ-deficient mice are resistant to the development of several Th2 and Th17-dependent autoimmune diseases and are defective in mounting alloimmune responses required for rejection of transplanted allografts and graft-versus-host disease. Selective inhibition of PKC-θ is therefore considered as a potential treatment for prevention of autoimmune diseases and allograft rejection. PMID:22876242

  3. [Phosphorylation of protein kinase C in cerebrospinal fluid-contacting nucleus modulates the inflammatory pain in rats].

    PubMed

    Zhou, Fang; Wang, Jia-You; Tian, En-Qi; Zhang, Li-Cai

    2015-12-25

    The present study was aimed to investigate the role of cerebrospinal fluid-contacting nucleus (CSF-CN) neurons in modulation of inflammatory pain and underlying mechanism. The inflammatory pain model was made by subcutaneous injection of the complete Freund's adjuvant (CFA) into the left hind paw of rats. The phosphorylation level of PKC (p-PKC) was examined by Western blot. Thermal withdrawal latency (TWL) of the rats was measured to assess inflammatory pain. The results showed that, compared with the sham controls, the inflammatory pain model rats showed shortened TWL on day 1, 3, and 7 after CFA injection, as well as increased level of p-PKC in CSF-CN neurons at 24 h after CFA injection. The administration of GF109203X, a PKC inhibitor, into lateral ventricle decreased the level of p-PKC protein expression and increased TWL in the model rats. These results suggest that blocking the PKC pathway in CSF-CN neurons may be an effective way to reduce or eliminate the inflammatory pain.

  4. The "memory kinases": roles of PKC isoforms in signal processing and memory formation.

    PubMed

    Sun, Miao-Kun; Alkon, Daniel L

    2014-01-01

    The protein kinase C (PKC) isoforms, which play an essential role in transmembrane signal conduction, can be viewed as a family of "memory kinases." Evidence is emerging that they are critically involved in memory acquisition and maintenance, in addition to their involvement in other functions of cells. Deficits in PKC signal cascades in neurons are one of the earliest abnormalities in the brains of patients suffering from Alzheimer's disease. Their dysfunction is also involved in several other types of memory impairments, including those related to emotion, mental retardation, brain injury, and vascular dementia/ischemic stroke. Inhibition of PKC activity leads to a reduced capacity of many types of learning and memory, but may have therapeutic values in treating substance abuse or aversive memories. PKC activators, on the other hand, have been shown to possess memory-enhancing and antidementia actions. PKC pharmacology may, therefore, represent an attractive area for developing effective cognitive drugs for the treatment of many types of memory disorders and dementias. © 2014 Elsevier Inc. All rights reserved.

  5. Non-Caking Freeze Dried Applesauce

    DTIC Science & Technology

    A study was initiated to develop an applesauce which resists caking when subjected to elevated temperatures such as 37.7C. for two weeks and/or 57C...following results were obtained: (1) The degree of caking of the freeze dried applesauce powder was correlated with the amount of juice extracted. (2... applesauce powders. (3) Reducing sugars appear to be the factor contributing most significantly to the caking with the higher reducing sugar levels producing the higher degrees of caking.

  6. Tamoxifen inhibits tumor cell invasion and metastasis in mouse melanoma through suppression of PKC/MEK/ERK and PKC/PI3K/Akt pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuoka, Hiroshi; Department of Pharmacy, Nara Hospital, Kinki University School of Medicine, 1248-1 Ikoma, Nara 630-0293; Tsubaki, Masanobu

    2009-07-15

    In melanoma, several signaling pathways are constitutively activated. Among these, the protein kinase C (PKC) signaling pathways are activated through multiple signal transduction molecules and appear to play major roles in melanoma progression. Recently, it has been reported that tamoxifen, an anti-estrogen reagent, inhibits PKC signaling in estrogen-negative and estrogen-independent cancer cell lines. Thus, we investigated whether tamoxifen inhibited tumor cell invasion and metastasis in mouse melanoma cell line B16BL6. Tamoxifen significantly inhibited lung metastasis, cell migration, and invasion at concentrations that did not show anti-proliferative effects on B16BL6 cells. Tamoxifen also inhibited the mRNA expressions and protein activities ofmore » matrix metalloproteinases (MMPs). Furthermore, tamoxifen suppressed phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt through the inhibition of PKC{alpha} and PKC{delta} phosphorylation. However, other signal transduction factor, such as p38 mitogen-activated protein kinase (p38MAPK) was unaffected. The results indicate that tamoxifen suppresses the PKC/mitogen-activated protein kinase kinase (MEK)/ERK and PKC/phosphatidylinositol-3 kinase (PI3K)/Akt pathways, thereby inhibiting B16BL6 cell migration, invasion, and metastasis. Moreover, tamoxifen markedly inhibited not only developing but also clinically evident metastasis. These findings suggest that tamoxifen has potential clinical applications for the treatment of tumor cell metastasis.« less

  7. Ultrasonic wave propagation in powders

    NASA Astrophysics Data System (ADS)

    Al-Lashi, R. S.; Povey, M. J. W.; Watson, N. J.

    2018-05-01

    Powder clumps (cakes) has a significant effect on the flowability and stability of powders. Powder caking is mainly caused by moisture migration due to wetting and environmental (temperature and humidity) changes. The process of moisture migration caking involves creating liquid bridges between the particles during condensation which subsequently harden to form solid bridges. Therefore, an effective and reliable technique is required to quantitatively and non-invasively monitor caking kinetics and effective stiffness. This paper describes two ultrasonic instruments (ultrasonic velocity pulse and airborne ultrasound systems) that have been used to monitor the caking phenomenon. Also, it discusses the relationship between the ultrasonic velocity and attenuation measurements and tracking caking kinetics and the effective stiffness of powders.

  8. Physicochemical and Sensory Characteristics of Sponge Cakes with Rubus coreanus Powder

    PubMed Central

    Lee, Jun Ho

    2015-01-01

    To develop new type of sponge cake, the effects of partial (0~40%) replacement with Rubus coreanus powder (RCP) on the quality characteristics of sponge cakes were investigated. The pH level and moisture content ranged from 4.05~8.23 and 28.49~36.59, respectively, and significantly decreased upon addition of RCP (P<0.05). Baking loss rate and cake firmness significantly increased with higher RCP content in the formulation, whereas morphological characteristics of cakes such as height, volume, and symmetry indices significantly decreased (P<0.05). For crumb color values, L*- and b*-values significantly decreased while a*-value significantly increased as a result of RCP substitution (P<0.05). Hedonic sensory results indicated that sponge cakes supplemented with 30~40% RCP showed the most favorable acceptance scores for most of the sensory attributes evaluated. Overall, Rubus coreanus sponge cake could be developed with comparable physicochemical qualities without sacrificing consumer acceptability. PMID:26451358

  9. Physicochemical and Sensory Characteristics of Sponge Cakes with Rubus coreanus Powder.

    PubMed

    Lee, Jun Ho

    2015-09-01

    To develop new type of sponge cake, the effects of partial (0~40%) replacement with Rubus coreanus powder (RCP) on the quality characteristics of sponge cakes were investigated. The pH level and moisture content ranged from 4.05~8.23 and 28.49~36.59, respectively, and significantly decreased upon addition of RCP (P<0.05). Baking loss rate and cake firmness significantly increased with higher RCP content in the formulation, whereas morphological characteristics of cakes such as height, volume, and symmetry indices significantly decreased (P<0.05). For crumb color values, L*- and b*-values significantly decreased while a*-value significantly increased as a result of RCP substitution (P<0.05). Hedonic sensory results indicated that sponge cakes supplemented with 30~40% RCP showed the most favorable acceptance scores for most of the sensory attributes evaluated. Overall, Rubus coreanus sponge cake could be developed with comparable physicochemical qualities without sacrificing consumer acceptability.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Yuri, E-mail: saito-yu@bldon.med.osaka-u.ac.jp; Shibayama, Hirohiko; Tanaka, Hirokazu

    Research highlights: {yields} Anamorsin (AM) (also called CIAPIN-1) is a cell-death-defying factor. {yields} Biological mechanisms of AM functions have not been elucidated yet. {yields} PKC{theta} , PKC{delta} and p38MAPK were more phosphorylated in AM deficient MEF cells. {yields} AM may negatively regulates PKCs and p38MAPK in MEF cells. -- Abstract: Anamorsin (AM) plays crucial roles in hematopoiesis and embryogenesis. AM deficient (AM KO) mice die during late gestation; AM KO embryos are anemic and very small compared to wild type (WT) embryos. To determine which signaling pathways AM utilizes for these functions, we used murine embryonic fibroblast (MEF) cells generatedmore » from E-14.5 AM KO or WT embryos. Proliferation of AM KO MEF cells was markedly retarded, and PKC{theta}, PKC{delta}, and p38MAPK were more highly phosphorylated in AM KO MEF cells. Expression of cyclinD1, the target molecule of p38MAPK, was down-regulated in AM KO MEF cells. p38MAPK inhibitor as well as PKC inhibitor restored expression of cyclinD1 and cell growth in AM KO MEF cells. These data suggest that PKC{theta}, PKC{delta}, and p38MAPK activation lead to cell cycle retardation in AM KO MEF cells, and that AM may negatively regulate novel PKCs and p38MAPK in MEF cells.« less

  11. Selective up-regulation of protein kinase C eta in phorbol ester-sensitive versus -resistant EL4 mouse thymoma cells.

    PubMed

    Resnick, M S; Luo, X; Vinton, E G; Sando, J J

    1997-06-01

    Stimulation of sensitive EL4 mouse thymoma cells (s-EL4) with phorbol esters results in production of interleukin 2 (IL-2), adherence to a plastic substrate, and growth inhibition, whereas a phorbol ester-resistant variant (r-EL4) fails to respond. Previous studies revealed substantially decreased expression of protein kinase C (PKC) epsilon in the r-EL4 versus s-EL4 cells. This work has been extended to examine the more recently described PKC isozymes. Western and Northern analyses revealed a marked decrease in PKC eta and theta in r-EL4 as compared to s-EL4 cells. Treatment of these lines with phorbol ester for 24 h resulted in down-regulation of all PKC isozymes examined except PKC eta, which was up-regulated in the s-EL4 cells at the time of maximal IL-2 production. Two newly isolated EL4 clones, resistant to phorbol ester-induced growth inhibition but still exhibiting the phorbol ester-induced adherence and IL-2 production, both expressed PKC eta and theta. Collectively, these observations suggest a dissociation of growth inhibition from adherence and IL-2 production pathways and a potential role for PKC eta in the latter.

  12. Protein kinase C mediates platelet secretion and thrombus formation through protein kinase D2.

    PubMed

    Konopatskaya, Olga; Matthews, Sharon A; Harper, Matthew T; Gilio, Karen; Cosemans, Judith M E M; Williams, Christopher M; Navarro, Maria N; Carter, Deborah A; Heemskerk, Johan W M; Leitges, Michael; Cantrell, Doreen; Poole, Alastair W

    2011-07-14

    Platelets are highly specialized blood cells critically involved in hemostasis and thrombosis. Members of the protein kinase C (PKC) family have established roles in regulating platelet function and thrombosis, but the molecular mechanisms are not clearly understood. In particular, the conventional PKC isoform, PKCα, is a major regulator of platelet granule secretion, but the molecular pathway from PKCα to secretion is not defined. Protein kinase D (PKD) is a family of 3 kinases activated by PKC, which may represent a step in the PKC signaling pathway to secretion. In the present study, we show that PKD2 is the sole PKD member regulated downstream of PKC in platelets, and that the conventional, but not novel, PKC isoforms provide the upstream signal. Platelets from a gene knock-in mouse in which 2 key phosphorylation sites in PKD2 have been mutated (Ser707Ala/Ser711Ala) show a significant reduction in agonist-induced dense granule secretion, but not in α-granule secretion. This deficiency in dense granule release was responsible for a reduced platelet aggregation and a marked reduction in thrombus formation. Our results show that in the molecular pathway to secretion, PKD2 is a key component of the PKC-mediated pathway to platelet activation and thrombus formation through its selective regulation of dense granule secretion.

  13. Mutagenesis of the C2 domain of protein kinase C-alpha. Differential roles of Ca2+ ligands and membrane binding residues.

    PubMed

    Medkova, M; Cho, W

    1998-07-10

    The C2 domains of conventional protein kinase C (PKC) have been implicated in their Ca2+-dependent membrane binding. The C2 domain of PKC-alpha contains several Ca2+ ligands that bind multiple Ca2+ ions and other putative membrane binding residues. To understand the roles of individual Ca2+ ligands and protein-bound Ca2+ ions in the membrane binding and activation of PKC-alpha, we mutated five putative Ca2+ ligands (D187N, D193N, D246N, D248N, and D254N) and measured the effects of mutations on vesicle binding, enzyme activity, and monolayer penetration of PKC-alpha. Altered properties of these mutants indicate that individual Ca2+ ions and their ligands have different roles in the membrane binding and activation of PKC-alpha. The binding of Ca2+ to Asp187, Asp193, and Asp246 of PKC-alpha is important for the initial binding of protein to membrane surfaces. On the other hand, the binding of another Ca2+ to Asp187, Asp246, Asp248, and Asp254 induces the conformational change of PKC-alpha, which in turn triggers its membrane penetration and activation. Among these Ca2+ ligands, Asp246 was shown to be most essential for both membrane binding and activation of PKC-alpha, presumably due to its coordination to multiple Ca2+ ions. Furthermore, to identify the residues in the C2 domain that are involved in membrane binding of PKC-alpha, we mutated four putative membrane binding residues (Trp245, Trp247, Arg249, and Arg252). Membrane binding and enzymatic properties of two double-site mutants (W245A/W247A and R249A/R252A) indicate that Arg249 and Arg252 are involved in electrostatic interactions of PKC-alpha with anionic membranes, whereas Trp245 and Trp247 participate in its penetration into membranes and resulting hydrophobic interactions. Taken together, these studies provide the first experimental evidence for the role of C2 domain of conventional PKC as a membrane docking unit as well as a module that triggers conformational changes to activate the protein.

  14. Different roles of protein kinase C alpha and delta isoforms in the regulation of neutral sphingomyelinase activity in HL-60 cells.

    PubMed Central

    Visnjić, D; Batinić, D; Banfić, H

    1999-01-01

    The signalling mechanisms responsible for the hydrolysis of sphingomyelin mediated by 1,25-dihydroxyvitamin D(3) [1, 25(OH)(2)D(3)] and interferon gamma (IFN-gamma) in HL-60 cells were investigated. IFN-gamma was found to increase selectively the activity of cytosolic, Mg(2+)-independent, neutral sphingomyelinase. The treatment of HL-60 cells with the combination of 1,25(OH)(2)D(3) and IFN-gamma had an additive effect on sphingomyelin hydrolysis, ceramide release and the activity of cytosolic, Mg(2+)-independent, neutral sphingomyelinase. The pretreatment of HL-60 cells with staurosporine, chelerythrine chloride and bisindolylmaleimide abolished the activity of sphingomyelinase in response to 1,25(OH)(2)D(3) and IFN-gamma. Calphostin C, which acts on the regulatory site of protein kinase C (PKC), and Gö 6976, a selective inhibitor of Ca(2+)-dependent PKC isoforms, inhibited the effect of 1,25(OH)(2)D(3) but had no effect on the IFN-gamma-mediated increase in activity of sphingomyelinase. Isoform-specific antibodies were used to deplete different PKC isoforms from cytosol before the treatment of the cytosolic fraction with 1,25(OH)(2)D(3), arachidonic acid (AA) and PMA. The depletion of PKC isoforms beta(1), beta(2), epsilon, eta, mu, zeta and lambda had no effect on the activation of sphingomyelinase induced by 1,25(OH)(2)D(3) or by AA. The depletion of PKC alpha from the cytosol completely abolished the effect of 1,25(OH)(2)D(3) on sphingomyelinase activity but had no effect on the AA-induced activity of sphingomyelinase. PMA had no effect on the activity of sphingomyelinase in either untreated or alpha-depleted cytosol but significantly increased the activity of sphingomyelinase when added to cytosol depleted of PKC delta. Moreover, PMA inhibited the effect of 1,25(OH)(2)D(3) on sphingomyelinase activation but the inhibitory effect was abolished by prior depletion of PKC delta from the cytosol. These studies demonstrate that 1,25(OH)(2)D(3)-induced activation of sphingomyelinase is mediated by PKC alpha. Furthermore, PKC delta had an inhibitory effect on sphingomyelinase, suggesting that the difference between the 1,25(OH)(2)D(3)- and PMA-mediated effects on sphingomyelin turnover depends on the specific regulation of the PKC alpha and PKC delta isoforms. PMID:10585882

  15. Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide

    PubMed Central

    Vellani, Vittorio; Mapplebeck, Sarah; Moriondo, Andrea; Davis, John B; McNaughton, Peter A

    2001-01-01

    The effects of activation of protein kinase C (PKC) on membrane currents gated by capsaicin, protons, heat and anandamide were investigated in primary sensory neurones from neonatal rat dorsal root ganglia (DRG) and in HEK293 cells (human embryonic kidney cell line) transiently or stably expressing the human vanilloid receptor hVR1. Maximal activation of PKC by a brief application of phorbol 12-myristate 13-acetate (PMA) increased the mean membrane current activated by a low concentration of capsaicin by 1.65-fold in DRG neurones and 2.18-fold in stably transfected HEK293 cells. Bradykinin, which activates PKC, also enhanced the response to capsaicin in DRG neurones. The specific PKC inhibitor RO31-8220 prevented the enhancement caused by PMA. Activation of PKC did not enhance the membrane current at high concentrations of capsaicin, showing that PKC activation increases the probability of channel opening rather than unmasking channels. Application of PMA alone activated an inward current in HEK293 cells transiently transfected with VR1. The current was suppressed by the VR1 antagonist capsazepine. PMA did not, however, activate a current in the large majority of DRG neurones nor in HEK293 cells stably transfected with VR1. Removing external Ca2+ enhanced the response to a low concentration of capsaicin 2.40-fold in DRG neurones and 3.42-fold in HEK293 cells. Activation of PKC in zero Ca2+ produced no further enhancement of the response to capsaicin in either DRG neurones or HEK293 cells stably transfected with VR1. The effects of PKC activation on the membrane current gated by heat, anandamide and low pH were qualitatively similar to those on the capsaicin-gated current. The absence of a current activated by PMA in most DRG neurones or in stably transfected HEK293 cells suggests that activation of PKC does not directly open VR1 channels, but instead increases the probability that they will be activated by capsaicin, heat, low pH or anandamide. Removal of calcium also potentiates activation, and PKC activation then has no further effect. The results are consistent with a model in which phosphorylation of VR1 by PKC increases the probability of channel gating by agonists, and in which dephosphorylation occurs by a calcium-dependent process. PMID:11483711

  16. aPKC-ι/P-Sp1/Snail signaling induces epithelial-mesenchymal transition and immunosuppression in cholangiocarcinoma.

    PubMed

    Qian, Yawei; Yao, Wei; Yang, Tao; Yang, Yan; Liu, Yan; Shen, Qi; Zhang, Jian; Qi, Weipeng; Wang, Jianming

    2017-10-01

    Cholangiocarcinoma (CCA) is a highly malignant bile duct cancer that tends to invade and metastasize early. The epithelial-mesenchymal transition (EMT) has been implicated in cancer cell invasion and metastasis, as well as in cancer cell evasion of host immunity. In this study, we investigated the interaction between atypical protein kinase C-iota (aPKC-ι) and Snail in the regulation of EMT and its relationship to CCA immunosuppression. Our results demonstrated that aPKC-ι, Snail, and infiltrated immunosuppressive cells were significantly up-regulated in CCA tumor tissues and linked to poor prognosis. aPKC-ι induced EMT and immunosuppression by regulating Snail in vitro and in vivo, although aPKC-ι did not directly interact with Snail in coimmunoprecipitation experiments. To further clarify the molecular interaction between aPKC-ι and Snail in relation to EMT, quantitative iTRAQ-based phosphoproteomic analysis and liquid chromatography-tandem mass spectrometry were conducted to identify the substrates of aPKC-ι-dependent phosphorylation. Combined with coimmunoprecipitation, we showed that specificity protein 1 (Sp1) was directly phosphorylated by aPKC-ι on Ser59 (P-Sp1). Both Sp1 and P-Sp1 were up-regulated in CCA tumor tissues and associated with clinicopathological features and poor prognosis in CCA patients. Moreover, using chromatin immunoprecipitation assays, we found that P-Sp1 regulated Snail expression by increasing Sp1 binding to the Snail promoter. P-Sp1 also regulated aPKC-ι/Snail-induced EMT-like changes and immunosuppression in CCA cells. Our findings further indicated that CCA cells with EMT-like features appear to generate immunosuppressive natural T regulatory-like cluster of differentiation 4-positive (CD4 + )CD25 - cells rather than to increase CD4 + CD25 + natural T regulatory cells, in part by mediating T regulatory-inducible cytokines such as transforming growth factor β1 and interleukin 2. These results demonstrate that aPKC-ι promotes EMT and induces immunosuppression through the aPKC-ι/P-Sp1/Snail signaling pathway and may be a potential therapeutic target for CCA. (Hepatology 2017;66:1165-1182). © 2017 by the American Association for the Study of Liver Diseases.

  17. 40 CFR 417.190 - Applicability; description of the manufacture of detergent bars and cakes subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... manufacture of detergent bars and cakes subcategory. 417.190 Section 417.190 Protection of Environment... POINT SOURCE CATEGORY Manufacture of Detergent Bars and Cakes Subcategory § 417.190 Applicability; description of the manufacture of detergent bars and cakes subcategory. The provisions of this subpart are...

  18. Study of hydroxymethylfurfural and furfural formation in cakes during baking in different ovens, using a validated multiple-stage extraction-based analytical method.

    PubMed

    Petisca, Catarina; Henriques, Ana Rita; Pérez-Palacios, Trinidad; Pinho, Olívia; Ferreira, Isabel M P L V O

    2013-12-15

    A procedure for extraction of hydroxymethylfurfural (HMF) and furfural from cakes was validated. Higher yield was achieved by multiple step extraction with water/methanol (70/30) and clarification with Carrez I and II reagents. Oven type and baking time strongly influenced HMF, moisture and volatile profile of model cakes, whereas furfural content was not significantly affected. No correlation was found between these parameters. Baking time influenced moisture and HMF formation in cakes from traditional and microwave ovens but not in steam oven cakes. Significant moisture decrease and HMF increase (3.63, 9.32, and 41.9 mg kg(-1)dw at 20, 40 and 60 min, respectively) were observed during traditional baking. Cakes baked by microwave also presented a significant increase of HMF (up to 16.84 mg kg(-1)dw at 2.5 min). Steam oven cakes possessed the highest moisture content and no significant differences in HMF and furfural. This oven is likely to form low HMF and furfural, maintaining cake moisture and aroma compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Chia (Salvia hispanica L) gel can be used as egg or oil replacer in cake formulations.

    PubMed

    Borneo, Rafael; Aguirre, Alicia; León, Alberto E

    2010-06-01

    This study determined the overall acceptability, sensory characteristics, functional properties, and nutrient content of cakes made using chia (Salvia hispanica L) gel as a replacement for oil or eggs. Chia gel was used to replace 25%, 50%, and 75% of oil or eggs in a control cake formulation. Seventy-five untrained panelists participated in rating cakes on a seven-point hedonic scale. Analysis of variance conducted on the sensory characteristics and overall acceptability indicated a statistically significant effect when replacing oil or eggs for color, taste, texture, and overall acceptability (P<0.05). Post hoc analysis (using Fisher's least significant difference method) indicated that the 25% chia gel cakes were not significantly different from the control for color, taste, texture, and overall acceptability. The 50% oil substituted (with chia gel) cake, compared to control, had 36 fewer kilocalories and 4 g less fat per 100-g portion. Cake weight was not affected by chia gel in the formulation, although cake volume was lower as the percentage of substitution increased. Symmetry was generally not affected. This study demonstrates that chia gel can replace as much as 25% of oil or eggs in cakes while yielding a more nutritious product with acceptable sensory characteristics. 2010 American Dietetic Association. Published by Elsevier Inc. All rights reserved.

  20. Moisture-induced caking of beverage powders.

    PubMed

    Chávez Montes, Edgar; Santamaría, Nadia Ardila; Gumy, Jean-Claude; Marchal, Philippe

    2011-11-01

    Beverage powders can exhibit caking during storage due to high temperature and moisture conditions, leading to consumer dissatisfaction. Caking problems can be aggravated by the presence of sensitive ingredients. The caking behaviour of cocoa beverage powders, with varying amounts of a carbohydrate sensitive ingredient, as affected by climate conditions was studied in this work. Sorption isotherms of beverage powders were determined at water activities (a(w) ) ranging from 0.1 to 0.6 in a moisture sorption analyser by gravimetry and fitted to the Brunauer-Emmett-Teller (BET) or the Guggenheim-Anderson-de Boer (GAB) equation. Glass transition temperatures (T(g) ) at several a(w) were analysed by differential scanning calorimetry and fitted to the Gordon-Taylor equation. Deduced T(g) = f(a(w) ) functions helped to identify stability or caking zones. Specific experimental methods, based on the analysis of mechanical properties of powder cakes formed under compression, were used to quantify the degree of caking. Pantry tests complemented this study to put in evidence the visual perception of powder caking with increasing a(w) . The glass transition approach was useful to predict the risks of caking but was limited to products where T(g) can be measured. On the other hand, quantification of the caking degree by analysis of mechanical properties allowed estimation of the extent of degradation for each product. This work demonstrated that increasing amounts of a carbohydrate sensitive ingredient in cocoa beverages negatively affected their storage stability. Copyright © 2011 Society of Chemical Industry.

  1. Experimental assessment of toxic phytochemicals in Jatropha curcas: oil, cake, bio-diesel and glycerol.

    PubMed

    Pradhan, Subhalaxmi; Naik, S N; Khan, M Ashhar I; Sahoo, P K

    2012-02-01

    Jatropha curcas seed is a rich source of oil; however, it can not be utilised for nutritional purposes due to presence of toxic and anti-nutritive compounds. The main objective of the present study was to quantify the toxic phytochemicals present in Indian J. curcas (oil, cake, bio-diesel and glycerol). The amount of phorbol esters is greater in solvent extracted oil (2.8 g kg⁻¹) than in expeller oil (2.1 g kg⁻¹). Liquid chromatography-mass spectroscopy analysis of the purified compound from an active extract of oil confirmed the presence of phorbol esters. Similarly, the phorbol esters content is greater in solvent extracted cake (1.1 g kg⁻¹) than in cake after being expelled (0.8 g kg⁻¹). The phytate and trypsin inhibitory activity of the cake was found to be 98 g kg⁻¹ and 8347 TIU g⁻¹ of cake, respectively. Identification of curcin was achieved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the concentration of curcin was 0.95 g L⁻¹ of crude concentrate obtained from cake. Higher amounts of phorbol esters are present in oil than cake but bio-diesel and glycerol are free of phorbol esters. The other anti-nutritional components such as trypsin inhibitors, phytates and curcin are present in cake, so the cake should be detoxified before being used for animal feed. Copyright © 2011 Society of Chemical Industry.

  2. Characterization of broiler cake and broiler litter, the by-products of two management practices.

    PubMed

    Sistani, K R; Brink, G E; McGowen, S L; Rowe, D E; Oldham, J L

    2003-10-01

    The application of broiler manure and bedding (litter) on land has been a long-used disposal method that benefits plant and soil. For proper manure management, factors such as nutrient content, house cleaning management, application methods, and many land, crop, and climatic factors must be considered. A study was undertaken to characterize broiler cake and broiler litter as the by-products of two management systems in Mississippi. Broiler cake and litter productions were quantified and analyzed for four flocks during 1999 and 2000. The overall means for broiler cake production were 12.50, 13.90, and 10.30 kg m(-2) for producers 1, 2, and 3, respectively. Significantly greater quantities of litter, 27.50, 29.0, and 28.30 kg m(-2) than cake were determined for the same producers. The cake and litter moisture averaged 455 and 277 g kg(-1), respectively. No significant differences were observed between cake and litter total N, NH4-N, total C, total P, and water-soluble P (WP). However, cake had significantly greater Ca, Mg, K, Cu, Fe, Mn, and Zn than litter. Approximately 16.8% of the broiler cake and 15.2% of the broiler litter total P were in the form of water-soluble P. The NH4-N content of the cake and the litter were 12.5% and 11.5% of the cake and litter total nitrogen, respectively. The results also showed the advantage of the decaking practice with respect to the quantity of the manure generated for land application. Approximately 57% of the litter remains in the poultry house with decaking practice after each growth cycle compared to the 0% for total cleanout practice.

  3. Effect of ingredients on rheological, physico-sensory, and nutritional characteristics of omega-3-fatty acid enriched eggless cake.

    PubMed

    Abhay Kumar, N; Prasada Rao, U J S; Jeyarani, T; Indrani, D

    2017-10-01

    The effect of defatted soya flour (DS), flax seed powder (FS) in combination (DSFS) with emulsifiers such as glycerol monostearate, GMS (DSFSG) and sodium stearoyl-2-lactylate, SSL (DSFSS) on the rheological, physico-sensory, protein subunit composition by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), fatty acid profile, and nutritional characteristics of eggless cake was studied. Use of DSFS, DSFSG, and DSFSS increased the amylograph peak viscosity, hot and cold paste viscosities similar to the egg. Addition of DSFS, DSFSG, and DSFSS increased viscosity of eggless cake batter; cake volume and the overall quality score (OQS) of eggless cake. Among these, highest improvement in OQS was brought about by DSFSG. According to SDS-PAGE results, the improvement by DSFSG is due to crosslinking of wheat-soya-flax proteins similar to wheat-egg proteins crosslinking. The eggless cake with DSFSG was found to be rich in omega-3-fatty acid as it contained 0.6% of linolenic acid compared to 0.1% each of cake with egg and eggless cake. As eggs are significant source of cholesterol, there has been an increased interest in search of ingredients that can replace egg in cakes. Hence, recent trend in the baking industry is to produce eggless cake using a combination of different ingredients and additives. However, there is no scientific information on the interaction of non-egg protein with wheat protein in building up the structure and also to improve the nutritional quality with respect to protein and fatty acids profiles of eggless cake. The information generated on the use of combination of defatted soya flour and flax seed along with emulsifiers will be helpful for the commercial manufacture of omega-3-fatty acid rich eggless cake with desired quality attributes. © 2017 Wiley Periodicals, Inc.

  4. In vitro utilization of lime treated olive cake as a component of complete feed for small ruminants.

    PubMed

    Ishfaq, A; Sharma, R K; Rastogi, A; Malla, B A; Farooq, J

    2015-01-01

    The current in vitro study was carried out to determine the chemical composition and inclusion level of lime treated olive cake on acid detergent fiber (ADF) replacement basis in adult male goats. Crude olive cake was collected and evaluated for proximate composition and protein fractionation. It was treated with 6% lime and incubated for 1 week under room temperature in 2 kg sealed polythene bags and was evaluated for proximate composition after incubation. Different isonitrogenous complete diets containing 0-50% of lime treated olive cake on ADF replacement basis were formulated as per the requirement of adult male goats. In ADF replacement, fiber and concentrate sources were replaced by lime treated olive cake by replacing the 0-50% ADF percentage of the total 40% ADF value of complete feed. The formulated complete diets were tested for in vitro degradation parameters. Treatment of olive cake with 6% slaked lime increased availability of cellulose and alleviated digestibility depression caused by high ether extract percentage. Organic matter, nitrogen free extract, ADF and neutral detergent fiber were significantly lowered by lime treatment of olive cake. The cornell net carbohydrate and protein system analysis showed that non-degradable protein represented by acid detergent insoluble nitrogen (ADIN) was 21.71% whereas the non-available protein represented by neutral detergent insoluble nitrogen (NDIN) was 38.86% in crude olive cake. The in vitro dry matter degradation (IVDMD) values were comparable at all replacement levels. However, a point of inflection was observed at 40% ADF replacement level, which was supported by truly degradable organic matter (TDOM), microbial biomass production (MBP), efficiency of MBP and partitioning factor values (PF). In our study, we concluded that there is comparable difference in composition of Indian olive cake when compared with European olive cake. The most important finding was that about 78% of nitrogen present in Indian olive cake is available to animal in contrary to that of European olive cake. We concluded from in vitro studies that Indian olive cake can be included in complete feed at 30% level (w/w; 40% ADF replacement) for feeding in small ruminants without compromising in vitro degradability of the feed.

  5. In vitro phosphorylation of insulin receptor substrate 1 by protein kinase C-zeta: functional analysis and identification of novel phosphorylation sites.

    PubMed

    Sommerfeld, Mark R; Metzger, Sabine; Stosik, Magdalene; Tennagels, Norbert; Eckel, Jürgen

    2004-05-18

    Protein kinase C-zeta (PKC-zeta) participates both in downstream insulin signaling and in the negative feedback control of insulin action. Here we used an in vitro approach to identify PKC-zeta phosphorylation sites within insulin receptor substrate 1 (IRS-1) and to characterize the functional implications. A recombinant IRS-1 fragment (rIRS-1(449)(-)(664)) containing major tyrosine motifs for interaction with phosphatidylinositol (PI) 3-kinase strongly associated to the p85alpha subunit of PI 3-kinase after Tyr phosphorylation by the insulin receptor. Phosphorylation of rIRS-1(449)(-)(664) by PKC-zeta induced a prominent inhibition of this process with a mixture of classical PKC isoforms being less effective. Both PKC-zeta and the classical isoforms phosphorylated rIRS-1(449)(-)(664) on Ser(612). However, modification of this residue did not reduce the affinity of p85alpha binding to pTyr-containing peptides (amino acids 605-615 of rat IRS-1), as determined by surface plasmon resonance. rIRS-1(449)(-)(664) was then phosphorylated by PKC-zeta using [(32)P]ATP and subjected to tryptic phosphopeptide mapping based on two-dimensional HPLC coupled to mass spectrometry. Ser(498) and Ser(570) were identified as novel phosphoserine sites targeted by PKC-zeta. Both sites were additionally confirmed by phosphopeptide mapping of the corresponding Ser --> Ala mutants of rIRS-1(449)(-)(664). Ser(570) was specifically targeted by PKC-zeta, as shown by immunoblotting with a phosphospecific antiserum against Ser(570) of IRS-1. Binding of p85alpha to the S570A mutant was less susceptible to inhibition by PKC-zeta, when compared to the S612A mutant. In conclusion, our in vitro data demonstrate a strong inhibitory action of PKC-zeta at the level of IRS-1/PI 3-kinase interaction involving multiple serine phosphorylation sites. Whereas Ser(612) appears not to participate in the negative control of insulin signaling, Ser(570) may at least partly contribute to this process.

  6. Golgi-Associated Protein Kinase C-ε Is Delivered to Phagocytic Cups: Role of Phosphatidylinositol 4-Phosphate.

    PubMed

    Hanes, Cheryl M; D'Amico, Anna E; Ueyama, Takehiko; Wong, Alexander C; Zhang, Xuexin; Hynes, W Frederick; Barroso, Margarida M; Cady, Nathaniel C; Trebak, Mohamed; Saito, Naoaki; Lennartz, Michelle R

    2017-07-01

    Protein kinase C-ε (PKC-ε) at phagocytic cups mediates the membrane fusion necessary for efficient IgG-mediated phagocytosis. The C1B and pseudosubstrate (εPS) domains are necessary and sufficient for this concentration. C1B binds diacylglycerol; the docking partner for εPS is unknown. Liposome assays revealed that the εPS binds phosphatidylinositol 4-phosphate (PI4P) and PI(3,5)P 2 Wortmannin, but not LY294002, inhibits PKC-ε concentration at cups and significantly reduces the rate of phagocytosis. As Wortmannin inhibits PI4 kinase, we hypothesized that PI4P mediates the PKC-ε concentration at cups and the rate of phagocytosis. PKC-ε colocalizes with the trans -Golgi network (TGN) PI4P reporter, P4M, suggesting it is tethered at the TGN. Real-time imaging of GFP-PKC-ε-expressing macrophages revealed a loss of Golgi-associated PKC-ε during phagocytosis, consistent with a Golgi-to-phagosome translocation. Treatment with PIK93, a PI4 kinase inhibitor, reduces PKC-ε at both the TGN and the cup, decreases phagocytosis, and prevents the increase in capacitance that accompanies membrane fusion. Finally, expression of the Golgi-directed PI4P phosphatase, hSac1-K2A, recapitulates the PIK93 phenotype, confirming that Golgi-associated PI4P is critical for efficient phagocytosis. Together these data are consistent with a model in which PKC-ε is tethered to the TGN via an εPS-PI4P interaction. The TGN-associated pool of PKC-ε concentrates at the phagocytic cup where it mediates the membrane fusion necessary for phagocytosis. The novelty of these data lies in the demonstration that εPS binds PI4P and PI(3,5)P 2 and that PI4P is necessary for PKC-ε localization at the TGN, its translocation to the phagocytic cup, and the membrane fusion required for efficient Fc [γ] receptor-mediated phagocytosis. Copyright © 2017 by The American Association of Immunologists, Inc.

  7. Gabapentin Effects on PKC-ERK1/2 Signaling in the Spinal Cord of Rats with Formalin-Induced Visceral Inflammatory Pain

    PubMed Central

    Li, Mei-yi; Fong, Peter; Zhang, Ji-guo; Zhang, Can-wen; Gong, Ke-rui; Yang, Ming-feng; Niu, Jing-zhong; Ji, Xun-ming; Lv, Guo-wei

    2015-01-01

    Currently, the clinical management of visceral pain remains unsatisfactory for many patients suffering from this disease. While preliminary animal studies have suggested the effectiveness of gabapentin in successfully treating visceral pain, the mechanism underlying its analgesic effect remains unclear. Evidence from other studies has demonstrated the involvement of protein kinase C (PKC) and extracellular signal-regulated kinase1/2 (ERK1/2) in the pathogenesis of visceral inflammatory pain. In this study, we tested the hypothesis that gabapentin produces analgesia for visceral inflammatory pain through its inhibitory effect on the PKC-ERK1/2 signaling pathway. Intracolonic injections of formalin were performed in rats to produce colitis pain. Our results showed that visceral pain behaviors in these rats decreased after intraperitoneal injection of gabapentin. These behaviors were also reduced by intrathecal injections of the PKC inhibitor, H-7, and the ERK1/2 inhibitor, PD98059. Neuronal firing of wide dynamic range neurons in L6–S1 of the rat spinal cord dorsal horn were significantly increased after intracolonic injection of formalin. This increased firing rate was inhibited by intraperitoneal injection of gabapentin and both the individual and combined intrathecal application of H-7 and PD98059. Western blot analysis also revealed that PKC membrane translocation and ERK1/2 phosphorylation increased significantly following formalin injection, confirming the recruitment of PKC and ERK1/2 during visceral inflammatory pain. These effects were also significantly reduced by intraperitoneal injection of gabapentin. Therefore, we concluded that the analgesic effect of gabapentin on visceral inflammatory pain is mediated through suppression of PKC and ERK1/2 signaling pathways. Furthermore, we found that the PKC inhibitor, H-7, significantly diminished ERK1/2 phosphorylation levels, implicating the involvement of PKC and ERK1/2 in the same signaling pathway. Thus, our results suggest a novel mechanism of gabapentin-mediated analgesia for visceral inflammatory pain through a PKC-ERK1/2 signaling pathway that may be a future therapeutic target for the treatment of visceral inflammatory pain. PMID:26512901

  8. Consecutive pharmacological activation of PKA and PKC mimics the potent cardioprotection of temperature preconditioning

    PubMed Central

    Khaliulin, Igor; Parker, Joanna E.; Halestrap, Andrew P.

    2010-01-01

    Aims Temperature preconditioning (TP) provides very powerful protection against ischaemia/reperfusion. Understanding the signalling pathways involved may enable the development of effective pharmacological cardioprotection. We investigated the interrelationship between activation of protein kinase A (PKA) and protein kinase C (PKC) in the signalling mechanisms of TP and developed a potent pharmacological intervention based on this mechanism. Methods and results Isolated rat hearts were subjected to TP, 30 min global ischaemia, and 60 min reperfusion. Other control and TP hearts were perfused with either sotalol (β-adrenergic blocker) or H-89 (PKA inhibitor). Some hearts were pre-treated with either isoproterenol (β-adrenergic agonist) or adenosine (PKC activator) that were given alone, simultaneously, or sequentially. Pre-treatment with isoproterenol, adenosine, and the consecutive isoproterenol/adenosine treatment was also combined with the PKC inhibitor chelerythrine. Cardioprotection was evaluated by haemodynamic function recovery, lactate dehydrogenase release, measurement of mitochondrial permeability transition pore opening, and protein carbonylation during reperfusion. Cyclic AMP and PKA activity were increased in TP hearts. H-89 and sotalol blocked the cardioprotective effect of TP and TP-induced PKC activation. Isoproterenol, adenosine, and the consecutive treatment increased PKC activity during pre-ischaemia. Isoproterenol significantly reduced myocardial glycogen content. Isoproterenol and adenosine, alone or simultaneously, protected hearts but the consecutive treatment gave the highest protection. Cardioprotective effects of adenosine were completely blocked by chelerythrine but those of the consecutive treatment only attenuated. Conclusion The signal transduction pathway of TP involves PKA activation that precedes PKC activation. Pharmacologically induced consecutive PKA/PKC activation mimics TP and induces extremely potent cardioprotection. PMID:20558443

  9. Hyperglycaemia promotes human brain microvascular endothelial cell apoptosis via induction of protein kinase C-ßI and prooxidant enzyme NADPH oxidase.

    PubMed

    Shao, Beili; Bayraktutan, Ulvi

    2014-01-01

    Blood-brain barrier disruption represents a key feature in hyperglycaemia-aggravated cerebral damage after an ischaemic stroke. Although the underlying mechanisms remain largely unknown, activation of protein kinase C (PKC) is thought to play a critical role. This study examined whether apoptosis of human brain microvascular endothelial cells (HBMEC) might contribute to hyperglycaemia-evoked barrier damage and assessed the specific role of PKC in this phenomenon. Treatments with hyperglycaemia (25 mM) or phorbol myristate acetate (PMA, a protein kinase C activator, 100 nM) significantly increased NADPH oxidase activity, O2 (•-) generation, proapoptotic protein Bax expression, TUNEL-positive staining and caspase-3/7 activities. Pharmacological inhibition of NADPH oxidase, PKC-a, PKC-ß or PKC-ßI via their specific inhibitors and neutralisation of O2 (•-) by a cell-permeable superoxide dismutase mimetic, MnTBAP normalised all the aforementioned increases induced by hyperglycaemia. Suppression of these PKC isoforms also negated the stimulatory effects of hyperglycaemia on the protein expression of NADPH oxidase membrane-bound components, Nox2 and p22-phox which determine the overall enzymatic activity. Silencing of PKC-ßI gene through use of specific siRNAs abolished the effects of both hyperglycaemia and PMA on endothelial cell NADPH oxidase activity, O2 (•-) production and apoptosis and consequently improved the integrity and function of an in vitro model of human cerebral barrier comprising HBMEC, astrocytes and pericytes. Hyperglycaemia-mediated apoptosis of HBMEC contributes to cerebral barrier dysfunction and is modulated by sequential activations of PKC-ßI and NADPH oxidase.

  10. Apolipoprotein CIII-induced THP-1 cell adhesion to endothelial cells involves pertussis toxin-sensitive G protein- and protein kinase C alpha-mediated nuclear factor-kappaB activation.

    PubMed

    Kawakami, Akio; Aikawa, Masanori; Nitta, Noriko; Yoshida, Masayuki; Libby, Peter; Sacks, Frank M

    2007-01-01

    Plasma apolipoprotein CIII (apoCIII) independently predicts risk for coronary heart disease (CHD). We recently reported that apoCIII directly enhances adhesion of human monocytes to endothelial cells (ECs), and identified the activation of PKC alpha as a necessary upstream event of enhanced monocyte adhesion. This study tested the hypothesis that apoCIII activates PKC alpha in human monocytic THP-1 cells, leading to NF-kappaB activation. Among inhibitors specific to PKC activators, phosphatidylcholine-specific phospholipase C (PC-PLC) inhibitor D609 limited apoCIII-induced PKC alpha activation and THP-1 cell adhesion. ApoCIII increased PC-PLC activity in THP-1 cells, resulting in PKC alpha activation. Pertussis toxin (PTX) inhibited apoCIII-induced PC-PLC activation and subsequent PKC alpha activation, implicating PTX-sensitive G protein pathway. ApoCIII further activated nuclear factor-kappaB (NF-kappaB) through PKC alpha in THP-1 cells and augmented beta1-integrin expression. The NF-kappaB inhibitor peptide SN50 partially inhibited apoCIII-induced beta1-integrin expression and THP-1 cell adhesion. ApoCIII-rich VLDL had similar effects to apoCIII alone. PTX-sensitive G protein pathway participates critically in PKC alpha stimulation in THP-1 cells exposed to apoCIII, activating NF-kappaB, and increasing beta1-integrin. This action causes monocytic cells to adhere to endothelial cells. Furthermore, because leukocyte NF-kappaB activation contributes to inflammatory aspects of atherogenesis, apoCIII may stimulate diverse inflammatory responses through monocyte activation.

  11. Atypical Protein Kinase C Activity in the Hypothalamus Is Required for Lipopolysaccharide-Mediated Sickness Responses

    PubMed Central

    Thaler, Joshua P.; Choi, Sun Ju; Sajan, Mini P.; Ogimoto, Kayoko; Nguyen, Hong T.; Matsen, Miles; Benoit, Stephen C.; Wisse, Brent E.; Farese, Robert V.; Schwartz, Michael W.

    2009-01-01

    By activating the Toll-like receptor 4-nuclear factor-κB signal transduction pathway, the bacterial endotoxin lipopolysaccharide (LPS) induces anorexia, weight loss, fever, and other components of the sickness response. By comparison, the hormones leptin and insulin cause anorexia without sickness via a central mechanism involving the phosphatidylinositol-3 kinase signaling pathway. In the current study, we investigated whether a common Toll-like receptor 4 and phosphatidylinositol-3 kinase signaling intermediate, atypical protein kinase Cζ/λ (aPKC), contributes to changes of energy balance induced by these stimuli. Immunohistochemistry analysis revealed that aPKC is expressed in the arcuate and paraventricular nuclei of the hypothalamus, key sites of leptin, insulin, and LPS action. Although administration of LPS, insulin, and leptin each acutely increased hypothalamic aPKC activity at doses that also reduce food intake, LPS treatment caused over 10-fold greater activation of hypothalamic a PKC signaling than that induced by leptin or insulin. Intracerebroventricular pretreatment with an aPKC inhibitor blocked anorexia induced by LPS but not insulin or leptin. Similarly, LPS-induced hypothalamic inflammation (as judged by induction of proinflammatory cytokine gene expression) and neuronal activation in the paraventricular nucleus (as judged by c-fos induction) were reduced by central aPKC inhibition. Although intracerebroventricular aPKC inhibitor administration also abolished LPS-induced fever, it had no effect on sickness-related hypoactivity or weight loss. We conclude that although hypothalamic aPKC signaling is not required for food intake inhibition by insulin or leptin, it plays a key role in inflammatory anorexia and fever induced by LPS. PMID:19819945

  12. Large-conductance voltage- and Ca2+-activated K+ channel regulation by protein kinase C in guinea pig urinary bladder smooth muscle

    PubMed Central

    Hristov, Kiril L.; Smith, Amy C.; Parajuli, Shankar P.; Malysz, John

    2013-01-01

    Large-conductance voltage- and Ca2+-activated K+ (BK) channels are critical regulators of detrusor smooth muscle (DSM) excitability and contractility. PKC modulates the contraction of DSM and BK channel activity in non-DSM cells; however, the cellular mechanism regulating the PKC-BK channel interaction in DSM remains unknown. We provide a novel mechanistic insight into BK channel regulation by PKC in DSM. We used patch-clamp electrophysiology, live-cell Ca2+ imaging, and functional studies of DSM contractility to elucidate BK channel regulation by PKC at cellular and tissue levels. Voltage-clamp experiments showed that pharmacological activation of PKC with PMA inhibited the spontaneous transient BK currents in native freshly isolated guinea pig DSM cells. Current-clamp recordings revealed that PMA significantly depolarized DSM membrane potential and inhibited the spontaneous transient hyperpolarizations in DSM cells. The PMA inhibitory effects on DSM membrane potential were completely abolished by the selective BK channel inhibitor paxilline. Activation of PKC with PMA did not affect the amplitude of the voltage-step-induced whole cell steady-state BK current or the single BK channel open probability (recorded in cell-attached mode) upon inhibition of all major Ca2+ sources for BK channel activation with thapsigargin, ryanodine, and nifedipine. PKC activation with PMA elevated intracellular Ca2+ levels in DSM cells and increased spontaneous phasic and nerve-evoked contractions of DSM isolated strips. Our results support the concept that PKC activation leads to a reduction of BK channel activity in DSM via a Ca2+-dependent mechanism, thus increasing DSM contractility. PMID:24352333

  13. 46 CFR 148.310 - Seed cake.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... apply to solvent-extracted rape seed meal, pellets, soya bean meal, cotton seed meal, or sunflower seed meal that— (1) Contains a maximum of 4 percent vegetable oil and a maximum of 15 percent vegetable oil... cake. (e) The seed cake must be kept as dry as practical at all times. (f) If the seed cake is solvent...

  14. Effect of flour-oil composite as powdered fat source in low-fat cake mixes

    USDA-ARS?s Scientific Manuscript database

    Excess steam jet-cooked composites containing wheat flour and 30 to 55% canola oil were drum dried and used to replace the oil and part of the flour in low-fat cake mix formulations. Specific gravity and viscosity of cake batters were measured. The cakes were analyzed for crumb grain, color, textu...

  15. PKC-η-MARCKS Signaling Promotes Intracellular Survival of Unopsonized Burkholderia thailandensis.

    PubMed

    Micheva-Viteva, Sofiya N; Shou, Yulin; Ganguly, Kumkum; Wu, Terry H; Hong-Geller, Elizabeth

    2017-01-01

    Pathogenic Burkholderia rely on host factors for efficient intracellular replication and are highly refractory to antibiotic treatment. To identify host genes that are required by Burkholderia spp. during infection, we performed a RNA interference (RNAi) screen of the human kinome and identified 35 host kinases that facilitated Burkholderia thailandensis intracellular survival in human monocytic THP-1 cells. We validated a selection of host kinases using imaging flow cytometry to assess efficiency of B. thailandensis survival in the host upon siRNA-mediated knockdown. We focused on the role of the novel protein kinase C isoform, PKC-η, in Burkholderia infection and characterized PKC-η/MARCKS signaling as a key event that promotes the survival of unopsonized B. thailandensis CDC2721121 within host cells. While infection of lung epithelial cells with unopsonized Gram-negative bacteria stimulated phosphorylation of Ser175/160 in the MARCKS effector domain, siRNA-mediated knockdown of PKC-η expression reduced the levels of phosphorylated MARCKS by >3-fold in response to infection with Bt CDC2721121. We compared the effect of the conventional PKC-α and novel PKC-η isoforms on the growth of B. thailandensis CDC2721121 within monocytic THP-1 cells and found that ≥75% knock-down of PRKCH transcript levels reduced intracellular bacterial load 100% more efficiently when compared to growth in cells siRNA-depleted of the classical PKC-α, suggesting that the PKC-η isoform can specifically mediate Burkholderia intracellular survival. Based on imaging studies of intracellular B. thailandensis , we found that PKC-η function stimulates phagocytic pathways that promote B. thailandensis escape into the cytoplasm leading to activation of autophagosome flux. Identification of host kinases that are targeted by Burkholderia during infection provides valuable molecular insights in understanding Burkholderia pathogenesis, and ultimately, in designing effective host-targeted therapies against infectious disease caused by intracellular pathogens.

  16. PKC-η-MARCKS Signaling Promotes Intracellular Survival of Unopsonized Burkholderia thailandensis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Micheva-Viteva, Sofiya N.; Shou, Yulin; Ganguly, Kumkum

    Pathogenic Burkholderia rely on host factors for efficient intracellular replication and are highly refractory to antibiotic treatment. To identify host genes that are required by Burkholderia spp. during infection, we performed a RNA interference (RNAi) screen of the human kinome and identified 35 host kinases that facilitated Burkholderia thailandensis intracellular survival in human monocytic THP-1 cells. We validated a selection of host kinases using imaging flow cytometry to assess efficiency of B. thailandensis survival in the host upon siRNA-mediated knockdown. We focused on the role of the novel protein kinase C isoform, PKC-η, in Burkholderia infection and characterized PKC-η/MARCKS signalingmore » as a key event that promotes the survival of unopsonized B. thailandensis CDC2721121 within host cells. While infection of lung epithelial cells with unopsonized Gram-negative bacteria stimulated phosphorylation of Ser175/160 in the MARCKS effector domain, siRNA-mediated knockdown of PKC-η expression reduced the levels of phosphorylated MARCKS by >3-fold in response to infection with Bt CDC2721121. We compared the effect of the conventional PKC-α and novel PKC-η isoforms on the growth of B. thailandensis CDC2721121 within monocytic THP-1 cells and found that ≥75% knock-down of PRKCH transcript levels reduced intracellular bacterial load 100% more efficiently when compared to growth in cells siRNA-depleted of the classical PKC-α, suggesting that the PKC-η isoform can specifically mediate Burkholderia intracellular survival. Based on imaging studies of intracellular B. thailandensis, we found that PKC-η function stimulates phagocytic pathways that promote B. thailandensis escape into the cytoplasm leading to activation of autophagosome flux. As a result, identification of host kinases that are targeted by Burkholderia during infection provides valuable molecular insights in understanding Burkholderia pathogenesis, and ultimately, in designing effective host-targeted therapies against infectious disease caused by intracellular pathogens.« less

  17. Anti-inflammatory activity of Chios mastic gum is associated with inhibition of TNF-alpha induced oxidative stress

    PubMed Central

    2011-01-01

    Background Gum of Chios mastic (Pistacia lentiscus var. chia) is a natural antimicrobial agent that has found extensive use in pharmaceutical products and as a nutritional supplement. The molecular mechanisms of its anti-inflammatory activity, however, are not clear. In this work, the potential role of antioxidant activity of Chios mastic gum has been evaluated. Methods Scavenging of superoxide radical was investigated by electron spin resonance and spin trapping technique using EMPO spin trap in xanthine oxidase system. Superoxide production in endothelial and smooth muscle cells stimulated with TNF-α or angiotensin II and treated with vehicle (DMSO) or mastic gum (0.1-10 μg/ml) was measured by DHE and HPLC. Cellular H2O2 was measured by Amplex Red. Inhibition of protein kinase C (PKC) with mastic gum was determined by the decrease of purified PKC activity, by inhibition of PKC activity in cellular homogenate and by attenuation of superoxide production in cells treated with PKC activator phorbol 12-myristate 13-acetate (PMA). Results Spin trapping study did not show significant scavenging of superoxide by mastic gum itself. However, mastic gum inhibited cellular production of superoxide and H2O2 in dose dependent manner in TNF-α treated rat aortic smooth muscle cells but did not affect unstimulated cells. TNF-α significantly increased the cellular superoxide production by NADPH oxidase, while mastic gum completely abolished this stimulation. Mastic gum inhibited the activity of purified PKC, decreased PKC activity in cell homogenate, and attenuated superoxide production in cells stimulated with PKC activator PMA and PKC-dependent angiotensin II in endothelial cells. Conclusion We suggest that mastic gum inhibits PKC which attenuates production of superoxide and H2O2 by NADPH oxidases. This antioxidant property may have direct implication to the anti-inflammatory activity of the Chios mastic gum. PMID:21645369

  18. PKC-η-MARCKS Signaling Promotes Intracellular Survival of Unopsonized Burkholderia thailandensis

    DOE PAGES

    Micheva-Viteva, Sofiya N.; Shou, Yulin; Ganguly, Kumkum; ...

    2017-06-07

    Pathogenic Burkholderia rely on host factors for efficient intracellular replication and are highly refractory to antibiotic treatment. To identify host genes that are required by Burkholderia spp. during infection, we performed a RNA interference (RNAi) screen of the human kinome and identified 35 host kinases that facilitated Burkholderia thailandensis intracellular survival in human monocytic THP-1 cells. We validated a selection of host kinases using imaging flow cytometry to assess efficiency of B. thailandensis survival in the host upon siRNA-mediated knockdown. We focused on the role of the novel protein kinase C isoform, PKC-η, in Burkholderia infection and characterized PKC-η/MARCKS signalingmore » as a key event that promotes the survival of unopsonized B. thailandensis CDC2721121 within host cells. While infection of lung epithelial cells with unopsonized Gram-negative bacteria stimulated phosphorylation of Ser175/160 in the MARCKS effector domain, siRNA-mediated knockdown of PKC-η expression reduced the levels of phosphorylated MARCKS by >3-fold in response to infection with Bt CDC2721121. We compared the effect of the conventional PKC-α and novel PKC-η isoforms on the growth of B. thailandensis CDC2721121 within monocytic THP-1 cells and found that ≥75% knock-down of PRKCH transcript levels reduced intracellular bacterial load 100% more efficiently when compared to growth in cells siRNA-depleted of the classical PKC-α, suggesting that the PKC-η isoform can specifically mediate Burkholderia intracellular survival. Based on imaging studies of intracellular B. thailandensis, we found that PKC-η function stimulates phagocytic pathways that promote B. thailandensis escape into the cytoplasm leading to activation of autophagosome flux. As a result, identification of host kinases that are targeted by Burkholderia during infection provides valuable molecular insights in understanding Burkholderia pathogenesis, and ultimately, in designing effective host-targeted therapies against infectious disease caused by intracellular pathogens.« less

  19. Lead acetate induces EGFR activation upstream of SFK and PKC{alpha} linkage to the Ras/Raf-1/ERK signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, C.-Y.; Wang, Y.-T.; Tzeng, D.-W.

    2009-03-01

    Lead acetate (Pb), a probable human carcinogen, can activate protein kinase C (PKC) upstream of extracellular signal-regulated kinase 1 and 2 (ERK1/2). Yet, it remains unclear whether Pb activation of PKC {yields} ERK1/2 involves receptor/non-receptor tyrosine kinases and the Ras signaling transducer. Here we demonstrate a novel mechanism elicited by Pb for transmitting ERK1/2 signaling in CL3 human non-small-cell lung adenocarcinoma cells. Pb induction of higher steady-state levels of Ras-GTP was essential for increasing phospho-Raf-1{sup S338} and phospho-ERK1/2. Pre-treatment of the cells with a conventional PKC inhibitor Goe6976 or depleting PKC{alpha} using specific small interfering RNA blocked Pb induction ofmore » Ras-GTP. Pb also activated cellular tyrosine kinases. Specific pharmacological inhibitors, PD153035 for epidermal growth factor receptor (EGFR) and SU6656 for Src family tyrosine kinases (SFK), but not AG1296 for platelet-derived growth factor receptor, could suppress the Pb-induced tyrosine kinases, PKC{alpha}, Ras-GTP, phospho-Raf-1{sup S338} and phospho-ERK1/2. Furthermore, phosphorylation of tyrosines on the EGFR multiple autophosphorylation sites and the conserved SFK autophosphorylation site occurred during exposure of cells to Pb for 1-5 min and 5-30 min, respectively. Intriguingly, Pb activation of EGFR required the intrinsic kinase activity but not dimerization of the receptor. Inhibition of SFK or PKC{alpha} activities did not affect EGFR phosphorylation, while knockdown of EGFR blocked SFK phosphorylation and PKC{alpha} activation following Pb. Together, these results indicate that immediate activation of EGFR in response to Pb is obligatory for activation of SFK and PKC{alpha} and subsequent the Ras-Raf-1-MKK1/2-ERK1/2 signaling cascade.« less

  20. Oxysterol-binding protein-related protein (ORP) 9 is a PDK-2 substrate and regulates Akt phosphorylation.

    PubMed

    Lessmann, Eva; Ngo, Mike; Leitges, Michael; Minguet, Susana; Ridgway, Neale D; Huber, Michael

    2007-02-01

    The oxysterol-binding protein and oxysterol-binding protein-related protein family has been implicated in lipid transport and metabolism, vesicle trafficking and cell signaling. While investigating the phosphorylation of Akt/protein kinase B in stimulated bone marrow-derived mast cells, we observed that a monoclonal antibody directed against phospho-S473 Akt cross-reacted with oxysterol-binding protein-related protein 9 (ORP9). Further analysis revealed that mast cells exclusively express ORP9S, an N-terminal truncated version of full-length ORP9L. A PDK-2 consensus phosphorylation site in ORP9L and OPR9S at S287 (VPEFS(287)Y) was confirmed by site-directed mutagenesis. In contrast to Akt, increased phosphorylation of ORP9S S287 in stimulated mast cells was independent of phosphatidylinositol 3-kinase but sensitive to inhibition of conventional PKC isotypes. PKC-beta dependence was confirmed by lack of ORP9S phosphorylation at S287 in PKC-beta-deficient, but not PKC-alpha-deficient, mast cells. Moreover, co-immunoprecipitation of PKC-beta and ORP9S, and in vitro phosphorylation of ORP9S in this complex, argued for direct phosphorylation of ORP9S by PKC-beta, introducing ORP9S as a novel PKC-beta substrate. Akt was also detected in a PKC-beta/ORP9S immune complex and phosphorylation of Akt on S473 was delayed in PKC-deficient mast cells. In HEK293 cells, RNAi experiments showed that depletion of ORP9L increased Akt S473 phosphorylation 3-fold without affecting T308 phosphorylation in the activation loop. Furthermore, mammalian target of rapamycin was implicated in ORP9L phosphorylation in HEK293 cells. These studies identify ORP9 as a PDK-2 substrate and negative regulator of Akt phosphorylation at the PDK-2 site.

  1. Degradation of Jatropha curcas phorbol esters derived from Jatropha oil cake and their tumor-promoting activity.

    PubMed

    Nakao, Motoyuki; Hasegawa, Go; Yasuhara, Tadashi; Ishihara, Yoko

    2015-04-01

    Large amount of oil cake is generated during biodiesel production from Jatropha seeds. Although Jatropha oil cake is rich in plant nutrients, presence of toxic phorbol esters restricts the usage of oil cake as a fertilizer. The objective of this study is to evaluate the components and tumor promoting activity of phorbol esters in Jatropha oil cake-supplemented soil and plants grown in the treated soil. Contents and their biological activity of Jatropha phorbol esters in soil and plants were sequentially analyzed by high-performance liquid chromatography (HPLC) and in vitro cell transformation assay, respectively. Disappearance of Jatropha phorbol-ester-specific peaks were followed with HPLC during incubation of Jatropha oil cake with soil for five weeks. Along with the degradation of Jatropha phorbol ester in soil, tumor-promoting activity in the sample was also attenuated and ultimately disappeared. Jatropha phorbol esters and tumor promoting activity were not detected from mustard spinach grown in the Jatropha oil cake-supplemented soil. In addition, the esterase KM109 degrades DHPB (see definition below; Jatropha phorbol ester) and reduced its tumor-promoting activity. From these data, we conclude: (1) components and tumor promoting activity of Jatropha phorbol esters in the oil cake disappeared completely by incubation with soil for five-week, (2) Jatropha phorbol esters did not transfer into plants grown in the Jatropha oil cake-supplemented soil, and (3) DHPB can be degraded by esterase from soil bacterium. These observations are useful for utilization of Jatropha oil cake as a fertilizer. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Preservation of cocoa antioxidant activity, total polyphenols, flavan-3-ols, and procyanidin content in foods prepared with cocoa powder.

    PubMed

    Stahl, L; Miller, K B; Apgar, J; Sweigart, D S; Stuart, D A; McHale, N; Ou, B; Kondo, M; Hurst, W J

    2009-08-01

    Little is known about the effects of common cooking processes on cocoa flavanols. Antioxidant activity, total polyphenols (TP), flavanol monomers, and procyanidin oligomers were determined in chocolate frosting, a hot cocoa drink, chocolate cookies, and chocolate cake made with natural cocoa powder. Recoveries of antioxidant activity, TP, flavanol monomers, and procyanidins ranged from 86% to over 100% in the chocolate frosting, hot cocoa drink, and chocolate cookies. Losses were greatest in the chocolate cake with recoveries ranging from 5% for epicatechin to 54% for antioxidant activity. The causes of losses in baked chocolate cakes were investigated by exchanging baking soda with baking powder or combinations of the 2 leavening agents. Use of baking soda as a leavening agent was associated with increased pH and darkening color of cakes. Losses of antioxidant activity, TP, flavanol monomers, and procyanidins were associated with an increased extractable pH of the baked cakes. Chocolate cakes made with baking powder for leavening resulted in an average extractable pH of 6.2 with essentially complete retention of antioxidant activity and flavanol content, but with reduced cake heights and lighter cake color. Commercially available chocolate cake mixes had final pHs above 8.3 and contained no detectable monomeric flavanols after baking. These results suggest that baking soda causes an increase in pH and subsequent destruction of flavanol compounds and antioxidant activity. Use of an appropriate leavening agent to moderate the final cake pH to approximately 7.25 or less results in both good leavening and preservation of cocoa flavanols and procyanidins.

  3. In vitro Starch Hydrolysis Rate, Physico-chemical Properties and Sensory Evaluation of Butter Cake Prepared Using Resistant Starch Type III Substituted for Wheat Flour.

    PubMed

    Pongjanta, J; Utaipattanaceep, A; Naivikul, O; Piyachomkwan, K

    2008-09-01

    Resistant starch type III (RS III) derived from enzymatically debranched high amylose rice starch was prepared and used to make butter cake at different levels (0, 5, 10, 15 and 20%) in place of wheat flour. Physico-chemical properties, sensory evaluation, and in vitro starch hydrolysis rate of the developed butter cake were investigated. This study showed that the content of resistant starch in butter cake increased significantly (P<0.05) as the level of substitution with RS III increased from 2.1 to 4.4% of resistant starch content. The butter cake with RS III replacement had a significantly lower in vitro starch hydrolysis rate compared to the control cake (0% RS III). The rates of starch hydrolysis from 0 to 180 min digestion time for 0, 5, 10 15, and 20% RS III in place of wheat flour in butter cakes were 3.70 to 67.65%, 2.97 to 64.86%, 2.86 to 59.99%, 2.79 to 55.96 and 2.78 to 53.04% respectively. The physico-chemical properties of 5 to 10% RS III substituted with wheat flour in the butter cake were not significantly different from the control cake and were moderately accepted by panellists in the sensory evaluation test.

  4. Nutritionally "Empty" but "Full" of Meanings: The Socio-Cultural Significance of Birthday Cakes in Four Early Childhood Settings

    ERIC Educational Resources Information Center

    Albon, Deborah

    2015-01-01

    This article examines the socio-cultural significance of birthday cakes with the purpose of reflecting upon birthday cake practices enacted in four early childhood settings in England. I argue that birthday cakes occupy an ambiguous place in early childhood practice: seen to be both "risky"--a term I problematise--"and"…

  5. Neurobehavioral Teratogenicity of Perfluorinated Alkyls in an Avian Model

    PubMed Central

    Pinkas, Adi; Slotkin, Theodore A.; Brick-Turin, Yael; Van der Zee, Eddy A.; Yanai, Joseph

    2010-01-01

    Perfluorinated alkyls are widely-used agents that accumulate in ecosystems and organisms because of their slow rate of degradation. There is increasing concern that these agents may be developmental neurotoxicants and the present study was designed to develop an avian model for the neurobehavioral teratogenicity of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Fertilized chicken eggs were injected with 5 or 10 mg/kg of either compound on incubation day 0. On the day of hatching, imprinting behavior was impaired by both compounds. We then explored underlying mechanisms involving the targeting of protein kinase C (PKC) isoforms (α, β, γ) in the intermedial part of the hyperstriatum ventrale, the region most closely associated with imprinting. With PFOA exposure, cytosolic PKC concentrations were significantly elevated for all three isoforms; despite the overall increase in PKC expression, membrane-associated PKC was unaffected, indicating a defect in PKC translocation. In contrast, PFOS exposure evoked a significant decrease in cytosolic PKC, primarily for the β and γ isoforms, but again without a corresponding change in membrane-associated enzyme; this likely partial, compensatory increases in translocation to offset the net PKC deficiency. Our studies indicate that perfluorinated alkyls are indeed developmental neurotoxicants that affect posthatch cognitive performance but that the underlying synaptic mechanisms may differ substantially among the various members of this class of compounds, setting the stage for disparate outcomes later in life. PMID:19945530

  6. Cerebral protein kinase C and its mRNA level in apolipoprotein E-deficient mice.

    PubMed

    Hung, M C; Hayase, K; Yoshida, R; Sato, M; Imaizumi, K

    2001-08-10

    It is known that protein kinase C (PKC) activity may be one of the fundamental cellular changes associated with memory function. Apolipoprotein E (apoE) deficiency causes cholinergic deficits and memory impairment. ApoE-deficient mouse has been employed as a serviceable model for studying the relation between apoE and the memory deficit induced by cholinergic impairment. Brain-fatty acid binding protein (b-FABP) might be functional during development of the nervous system. Peroxisome proliferator-activated receptor (PPAR) is involved in the early change in lipid metabolism. We investigated the alterations not only in cerebral PKC activity, but also in the gene expressions of PKC-beta, brain-FABP and PPAR-alpha in apoE-deficient mice. The results showed that there was a lower cerebral membrane-bound PKC activity in the apoE-deficient mice than in its wild type strain (C57BL/6). But there were no significant differences in cytosolic PKC activity. PKC-beta, b-FABP and PPAR-alpha mRNA expressions in cerebrum were lowered in apoE-deficient mice. These findings may be involved in the dysfunction of the brain neurotransmission system in apoE-deficient mouse. Alternatively, these results also suggest that cerebral apoE plays an important role in brain PKC activation by maintaining an appropriate expression of b-FABP and PPAR-alpha mRNAs.

  7. Functional Divergence of Platelet Protein Kinase C (PKC) Isoforms in Thrombus Formation on Collagen*

    PubMed Central

    Gilio, Karen; Harper, Matthew T.; Cosemans, Judith M. E. M.; Konopatskaya, Olga; Munnix, Imke C. A.; Prinzen, Lenneke; Leitges, Michael; Liu, Qinghang; Molkentin, Jeffery D.; Heemskerk, Johan W. M.; Poole, Alastair W.

    2010-01-01

    Arterial thrombosis, a major cause of myocardial infarction and stroke, is initiated by activation of blood platelets by subendothelial collagen. The protein kinase C (PKC) family centrally regulates platelet activation, and it is becoming clear that the individual PKC isoforms play distinct roles, some of which oppose each other. Here, for the first time, we address all four of the major platelet-expressed PKC isoforms, determining their comparative roles in regulating platelet adhesion to collagen and their subsequent activation under physiological flow conditions. Using mouse gene knock-out and pharmacological approaches in human platelets, we show that collagen-dependent α-granule secretion and thrombus formation are mediated by the conventional PKC isoforms, PKCα and PKCβ, whereas the novel isoform, PKCθ, negatively regulates these events. PKCδ also negatively regulates thrombus formation but not α-granule secretion. In addition, we demonstrate for the first time that individual PKC isoforms differentially regulate platelet calcium signaling and exposure of phosphatidylserine under flow. Although platelet deficient in PKCα or PKCβ showed reduced calcium signaling and phosphatidylserine exposure, these responses were enhanced in the absence of PKCθ. In summary therefore, this direct comparison between individual subtypes of PKC, by standardized methodology under flow conditions, reveals that the four major PKCs expressed in platelets play distinct non-redundant roles, where conventional PKCs promote and novel PKCs inhibit thrombus formation on collagen. PMID:20479008

  8. Hippocampal Protein Kinase C Signaling Mediates the Short-Term Memory Impairment Induced by Delta9-Tetrahydrocannabinol.

    PubMed

    Busquets-Garcia, Arnau; Gomis-González, Maria; Salgado-Mendialdúa, Victòria; Galera-López, Lorena; Puighermanal, Emma; Martín-García, Elena; Maldonado, Rafael; Ozaita, Andrés

    2018-04-01

    Cannabis affects cognitive performance through the activation of the endocannabinoid system, and the molecular mechanisms involved in this process are poorly understood. Using the novel object-recognition memory test in mice, we found that the main psychoactive component of cannabis, delta9-tetrahydrocannabinol (THC), alters short-term object-recognition memory specifically involving protein kinase C (PKC)-dependent signaling. Indeed, the systemic or intra-hippocampal pre-treatment with the PKC inhibitors prevented the short-term, but not the long-term, memory impairment induced by THC. In contrast, systemic pre-treatment with mammalian target of rapamycin complex 1 inhibitors, known to block the amnesic-like effects of THC on long-term memory, did not modify such a short-term cognitive deficit. Immunoblot analysis revealed a transient increase in PKC signaling activity in the hippocampus after THC treatment. Thus, THC administration induced the phosphorylation of a specific Ser residue in the hydrophobic-motif at the C-terminal tail of several PKC isoforms. This significant immunoreactive band that paralleled cognitive performance did not match in size with the major PKC isoforms expressed in the hippocampus except for PKCθ. Moreover, THC transiently enhanced the phosphorylation of the postsynaptic calmodulin-binding protein neurogranin in a PKC dependent manner. These data demonstrate that THC alters short-term object-recognition memory through hippocampal PKC/neurogranin signaling.

  9. Replacement of eggs with soybean protein isolates and polysaccharides to prepare yellow cakes suitable for vegetarians.

    PubMed

    Lin, Muyang; Tay, Siang Hong; Yang, Hongshun; Yang, Bao; Li, Hongliang

    2017-08-15

    To evaluate the feasibility of substituting eggs in yellow cake by a mixture of soybean proteins, plant polysaccharides, and emulsifiers, the batter properties, including specific gravity and viscosity; cake properties, including specific volume, texture, colour, moisture, microstructures, and structural properties of starch and glutens of the replaced cake and traditional cake containing egg, were evaluated. Replacing eggs with a soy protein isolate and 1% mono-, di-glycerides yielded a similar specific volume, specific gravity, firmness and moisture content (1.92 vs. 2.08cm 3 /g, 0.95 vs. 1.03, 319.8 vs. 376.1g, and 28.03% vs. 29.01%, respectively) compared with the traditional cakes baked with eggs. Structurally, this formulation comprised dominant gliadin aggregates in the size range of 100-200nm and glutenin networking structures containing fewer but larger porosities. The results suggest that a mixture of soybean proteins and emulsifier is a promising substitute for eggs in cakes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Using different fibers to replace fat in sponge cakes: In vitro starch digestion and physico-structural studies.

    PubMed

    Diez-Sánchez, Elena; Llorca, Empar; Quiles, Amparo; Hernando, Isabel

    2018-01-01

    This study assessed the effect of substituting 30% of fat by soluble, insoluble fiber, or a mix of both fibers in sponge cake quality, structure, acceptability, and starch digestibility. The apparent viscosity of the different formulations was measured and micro-baking was simulated. Texture profile tests were carried out and the crumb structure was examined. In vitro digestion was performed to study the digestibility of starch and a sensory test was carried out to know consumer acceptance. The soluble fiber (maltodextrin) affected the structure and quality of the cakes less than the insoluble fiber (potato fiber) and the use of soluble fiber in the formulation resulted in lower glucose release under in vitro conditions. Moreover, the consumer did not find differences among the control cake and the cakes prepared with soluble fiber. Considering the results as a whole, soluble fiber may be used for partial replacement of fat in sponge cake formulations and may constitute an appropriate strategy for obtaining healthy sponge cakes.

  11. Effect of extruded wheat flour as a fat replacer on batter characteristics and cake quality.

    PubMed

    Román, Laura; Santos, Isabel; Martínez, Mario M; Gómez, Manuel

    2015-12-01

    The effects of three levels of fat replacement (1/3, 2/3, and 3/3) by extruded flour paste and the effects of the presence of emulsifier on layer cake batter characteristics and final cake quality were studied. Replacement of oil by extruded flour paste modified the batter density and microscopy, reducing the number of air bubbles and increasing their size, while emulsifier incorporation facilitated air entrapment in batter. Emulsifier addition also increased the elastic and viscous moduli of the batter, while oil reduction resulted in a less structured batter. Emulsifier incorporation leads to good quality cakes, minimizing the negative effect of oil reduction, maintaining the volume and reducing the hardness of cakes. Furthermore, consumer acceptability of the reduced fat cakes was improved by the addition of emulsifier. Thus, the results confirmed the positive effect of partial oil substitution (up to 2/3) by extruded flour paste on the quality of reduced fat cakes when emulsifier was incorporated.

  12. Enrichment of gluten-free cakes with lupin (Lupinus albus L.) or buckwheat (Fagopyrum esculentum M.) flours.

    PubMed

    Levent, Hacer; Bilgiçli, Nermin

    2011-11-01

    In the present study, the effect of debittered lupin flour (LF) and whole buckwheat flour (BF) on the nutritional and sensory quality of gluten-free cake was studied. LF (10, 20, 30 and 40%) and BF (5, 10, 15 and 20%) were partially replaced with corn starch and rice flour mixture (1:1 w/w) in the gluten-free cake recipe. LF increased the protein, calcium, iron, manganese, phosphorus and zinc contents of the cakes, while BF caused a significant increase (P < 0.05) especially in potassium and magnesium contents of the gluten-free cakes. According to the overall acceptability rating, it was concluded that gluten-free cake could be produced with satisfactory results by the addition of LF and BF up to 30% and 10%, respectively.

  13. [Effects of herb cake-separated moxibustion on spleen in immunosuppressive rabbits:a morphology study].

    PubMed

    Tian, Yuefeng; Wu, Aihua; Wang, Jun; Shan, Zengtian

    2016-10-12

    To observe the influence of different methods of moxibustion on spleen morphology in cyclophosphamide-induced immunosuppressive rabbits. A total of 50 rabbits were randomly assigned into a blank group, a model group, a herbal cake-separated moxibustion group, a moxibustion group and a sham cake-separated moxibustion group, 10 rabbits in each group. Except the blank group, the rabbits in each group were treated with intraperitoneal injection of cyclophosphamide (60 mg/kg), once a day, for 7 consecutive days to establish immunosuppressive model. After the model establishment, the rabbits in the herbal cake-separated moxibustion group were treated with herbal cake-separated moxibustion at "Shenque" (CV 8), "Guanyuan" (CV 4), "Zusanli" (ST 36), "Pishu" (BL 20) and "Shenshu" (BL 23); the moxa cone was placed on the herbal cake which was made of Liuwei Dihuang decoction, three cones for each acupoint. The rabbits in the moxibustion group were treated with moxa stick moxibustion which contained equal moxa of three moxa cones. The rabbits in the sham cake-separated moxibustion group were treated with cake which was made of flour. The acupoint selection in the above three groups was identical, and the intervention was given once every other day for totally 10 times. The rabbits in the blank group and model group were immobilized for identical time without any intervention. After treatment, the rabbits were sacrificed to collect the spleen. With routine HE staining, the morphology changes of spleen were observed under microscope. In addition, the white pulp, splenic corpuscle and the counts of lymphatic cells of lymphatic sheath around the arteries were observed. Compared with the blank group, the average size of white pulp and the radius of splenic corpuscle were reduced (both P <0.01), and the lymphatic cells of lymphatic sheath around the arteries were significantly decreased in the model group ( P <0.01), but the counts of splenic nodule were increased without significant difference ( P >0.05). Compared with the model group, the averagesize of white pulp and the radius of splenic corpuscle were significantly increased in the herbal cake-separated moxibustion group and moxibustion group (all P <0.01). The lymphatic cells of lymphatic sheath around the arteries were significantly increased in the herbal cake-separated moxibustion group and sham cake-separated moxibustion group (both P <0.01). Compared with the moxibustion group, the count of lymphatic cells of lymphatic sheath around the arteries was increased in the herbal cake-separated moxibustion ( P <0.01). Compared with the sham cake-separated moxibustion group, the radius of splenic corpuscle was significant increased in the herbal cake-separated moxibustion group ( P <0.01). The improvement of herbal cake-separated moxibustion on immunologic function is superior to moxibustion and sham cake-separated moxibustion in cyclophosphamide-induced rabbits.

  14. Role of protein kinase C in light adaptation of molluscan microvillar photoreceptors

    PubMed Central

    Piccoli, Giuseppe; del Pilar Gomez, Maria; Nasi, Enrico

    2002-01-01

    The mechanisms by which Ca2+ regulates light adaptation in microvillar photoreceptors remain poorly understood. Protein kinase C (PKC) is a likely candidate, both because some sub-types are activated by Ca2+ and because of its association with the macromolecular ‘light-transduction complex’ in Drosophila. We investigated the possible role of PKC in the modulation of the light response in molluscan photoreceptors. Western blot analysis with isoform-specific antibodies revealed the presence of PKCα in retinal homogenates. Immunocytochemistry in isolated cell preparations confirmed PKCα localization in microvillar photoreceptors, preferentially confined to the light-sensing lobe. Light stimulation induced translocation of PKCα immunofluorescence to the photosensitive membrane, an effect that provides independent evidence for PKC activation by illumination; a similar outcome was observed after incubation with the phorbol ester PMA. Several chemically distinct activators of PKC, such as phorbol-12-myristate-13-acetate (PMA), (-)indolactam V and 1,2,-dioctanoyl-sn-glycerol (DOG) inhibited the light response of voltage-clamped microvillar photoreceptors, but were ineffective in ciliary photoreceptors, in which light does not activate the Gq/PLC cascade, nor elevates intracellular Ca2+. Pharmacological inhibition of PKC antagonized the desensitization produced by adapting lights and also caused a small, but consistent enhancement of basal sensitivity. These results strongly support the involvement of PKC activation in the light-dependent regulation of response sensitivity. However, unlike adapting background light or elevation of [Ca2+]i, PKC activators did not speed up the photoresponse, nor did PKC inhibitors antagonize the accelerating effects of background adaptation, suggesting that modulation of photoresponse time course may involve a separate Ca2+-dependent signal. PMID:12205183

  15. Activation of protein kinase C alters the intracellular distribution and mobility of cardiac Na+ channels.

    PubMed

    Hallaq, Haifa; Wang, Dao W; Kunic, Jennifer D; George, Alfred L; Wells, K Sam; Murray, Katherine T

    2012-02-01

    Na(+) current derived from expression of the cardiac isoform SCN5A is reduced by receptor-mediated or direct activation of protein kinase C (PKC). Previous work has suggested a possible role for loss of Na(+) channels at the plasma membrane in this effect, but the results are controversial. In this study, we tested the hypothesis that PKC activation acutely modulates the intracellular distribution of SCN5A channels and that this effect can be visualized in living cells. In human embryonic kidney cells that stably expressed SCN5A with green fluorescent protein (GFP) fused to the channel COOH-terminus (SCN5A-GFP), Na(+) currents were suppressed by an exposure to PKC activation. Using confocal microscopy, colocalization of SCN5A-GFP channels with the plasma membrane under control and stimulated conditions was quantified. A separate population of SCN5A channels containing an extracellular epitope was immunolabeled to permit temporally stable labeling of the plasma membrane. Our results demonstrated that Na(+) channels were preferentially trafficked away from the plasma membrane by PKC activation, with a major contribution by Ca(2+)-sensitive or conventional PKC isoforms, whereas stimulation of protein kinase A (PKA) had the opposite effect. Removal of the conserved PKC site Ser(1503) or exposure to the NADPH oxidase inhibitor apocynin eliminated the PKC-mediated effect to alter channel trafficking, indicating that both channel phosphorylation and ROS were required. Experiments using fluorescence recovery after photobleaching demonstrated that both PKC and PKA also modified channel mobility in a manner consistent with the dynamics of channel distribution. These results demonstrate that the activation of protein kinases can acutely regulate the intracellular distribution and molecular mobility of cardiac Na(+) channels in living cells.

  16. The anti-ALS drug riluzole attenuates pericyte loss in the diabetic retinopathy of streptozotocin-treated mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jeong A.

    Loss of pericytes, considered an early hallmark of diabetic retinopathy, is thought to involve abnormal activation of protein kinase C (PKC). We previously showed that the anti-amyotrophic lateral sclerosis (ALS) drug riluzole functions as a PKC inhibitor. Here, we examined the effects of riluzole on pathological changes in diabetic retinopathy. Pathological endpoints examined in vivo included the number of pericytes and integrity of retinal vessels in streptozotocin (STZ)-induced diabetic mice. In addition, PKC activation and the induction of monocyte chemotactic protein (MCP1) were assessed in diabetic mice and in human retinal pericytes exposed to advanced glycation end product (AGE) ormore » modified low-density lipoprotein (mLDL). The diameter of retinal vessels and the number of pericytes were severely reduced, and the levels of MCP1 and PKC were increased in STZ-induced diabetic mice. Administration of riluzole reversed all of these changes. Furthermore, the increased expression of MCP1 in AGE- or mLDL-treated cultured retinal pericytes was inhibited by treatment with riluzole or the PKC inhibitor GF109203X. In silico modeling showed that riluzole fits well within the catalytic pocket of PKC. Taken together, our results demonstrate that riluzole attenuates both MCP1 induction and pericyte loss in diabetic retinopathy, likely through its direct inhibitory effect on PKC. - Highlights: • The effects of riluzole were examined in streptozotocin-induced diabetic mice. • The diameter of retinal vessels and the number of pericytes were severely reduced. • The levels of MCP1 and PKC were increased, while riluzole reversed all changes. • Riluzole attenuated the level of MCP1 in AGE- or mLDL-treated retinal pericytes. • Riluzole attenuated both MCP1 induction and pericyte loss in diabetic retinopathy.« less

  17. Hyperglycaemia promotes human brain microvascular endothelial cell apoptosis via induction of protein kinase C-ßI and prooxidant enzyme NADPH oxidase

    PubMed Central

    Shao, Beili; Bayraktutan, Ulvi

    2014-01-01

    Blood–brain barrier disruption represents a key feature in hyperglycaemia-aggravated cerebral damage after an ischaemic stroke. Although the underlying mechanisms remain largely unknown, activation of protein kinase C (PKC) is thought to play a critical role. This study examined whether apoptosis of human brain microvascular endothelial cells (HBMEC) might contribute to hyperglycaemia-evoked barrier damage and assessed the specific role of PKC in this phenomenon. Treatments with hyperglycaemia (25 mM) or phorbol myristate acetate (PMA, a protein kinase C activator, 100 nM) significantly increased NADPH oxidase activity, O2•- generation, proapoptotic protein Bax expression, TUNEL-positive staining and caspase-3/7 activities. Pharmacological inhibition of NADPH oxidase, PKC-a, PKC-ß or PKC-ßI via their specific inhibitors and neutralisation of O2•- by a cell-permeable superoxide dismutase mimetic, MnTBAP normalised all the aforementioned increases induced by hyperglycaemia. Suppression of these PKC isoforms also negated the stimulatory effects of hyperglycaemia on the protein expression of NADPH oxidase membrane-bound components, Nox2 and p22-phox which determine the overall enzymatic activity. Silencing of PKC-ßI gene through use of specific siRNAs abolished the effects of both hyperglycaemia and PMA on endothelial cell NADPH oxidase activity, O2•- production and apoptosis and consequently improved the integrity and function of an in vitro model of human cerebral barrier comprising HBMEC, astrocytes and pericytes. Hyperglycaemia-mediated apoptosis of HBMEC contributes to cerebral barrier dysfunction and is modulated by sequential activations of PKC-ßI and NADPH oxidase. PMID:24936444

  18. Modeled Microgravity-Induced Protein Kinase C Isoform Expression in Human Lymphocytes

    NASA Technical Reports Server (NTRS)

    Sundaresan, A.; Risin, D.; Pellis, N. R.

    2003-01-01

    In long-term space travel, the crew is exposed to microgravity and radiation that invoke potential hazards to the immune system. T cell activation is a critical step in the immune response. Receptor-mediated signaling is inhibited both in microgravity and modeled microgravity (MMG) as reflected in diminished DNA synthess in peripheral blood lymphocytes and their locomotion through gelled type 1 collagen. Direct activation of Protein Kinase C (PKC) bypassing cell surface events using the phorbol ester PMA rescues MMG-inhibited lymphocyte activation and locomotion, whereas calcium ionophore ionomycin had no rescue effect. Thus calcium-independent PKC isoforms may be affected in MMG-induced locomotion inhibition and rescue. Both calcium-dependent isoforms and calcium-independent PKC isoforms were investigated to assess their expression in lymphocytes in 19 and MMG-culture. Human lymphocytes were cultured and harvested at 24, 48, 72 and 96 hours and serial samples assessed for locomotion using type I collagen and expression of PKC isoforms. Expression of PKC-alpha, -delta and -epsilon was assessed by RT-PCR, flow cytometry and immunoblotting. Results indicated that PKC isoforms delta and epsilon were down-regulated by more than 50% at the transcriptional and translational levels in MMG-cultured lymphocytes compared with 19 controls. Events upstream of PKC such as phosphorylation of Phospholipase C(gamma) (PLC-gamma) in MMG, revealed accumulation of inactive enzyme. Depressed Ca++ -independent PKC isoforms may be a consequence of an upstream lesion in the signal transduction pathway. The differential response among calcium-dependent and calcium-independent isoforms may actually result from MMG intrusion events earlier than, but after ligand-receptor interaction. Keywords: Signal transduction, locomotion, immunity

  19. Peroxide generation by p47phox-Src activation of Nox2 has a key role in protein kinase C-induced arterial smooth muscle contraction.

    PubMed

    Gupte, Sachin A; Kaminski, Pawel M; George, Shimran; Kouznestova, Lioubov; Olson, Susan C; Mathew, Rajamma; Hintze, Thomas H; Wolin, Michael S

    2009-04-01

    Protein kinase C (PKC) stimulation of NAD(P)H oxidases (Nox) is an important component of multiple vascular disease processes; however, the relationship between oxidase activation and the regulation of vascular smooth muscle contraction by PKC remains poorly understood. Therefore, we examined the signaling cascade of PKC-elicited Nox activation and the role of superoxide and hydrogen peroxide in mediating PKC-induced vascular contraction. Endothelium-denuded bovine coronary arteries showed a PKC-dependent basal production of lucigenin (5 muM)-detected Nox oxidase-derived superoxide, which was stimulated fourfold by PKC activation with 10 muM phorbol 12,13-dibutyrate (PDBu). PDBu appeared to increase superoxide generation by Nox2 through both p47(phox) and peroxide-dependent Src activation mechanisms based on the actions of inhibitors, properties of Src phosphorylation, and the loss of responses in aorta from mice deficient in Nox2 and p47(phox). The actions of inhibitors of contractile regulating mechanisms, scavengers of superoxide and peroxide, and responses in knockout mouse aortas suggest that a major component of the contraction elicited by PDBu appeared to be mediated through peroxide derived from Nox2 activation stimulating force generation through Rho kinase and calmodulin kinase-II mechanisms. Superoxide generated by PDBu also attenuated relaxation to nitroglycerin. Peroxide-derived from Nox2 activation by PKC appeared to be a major contributor to the thromboxane A(2) receptor agonist U46619 (100 nM)-elicited contraction of coronary arteries. Thus a p47(phox) and Src kinase activation of peroxide production by Nox2 appears to be an important contributor to vascular contractile mechanisms mediated through activation of PKC.

  20. PKC phosphorylates residues in the N-terminal of the DA transporter to regulate amphetamine-induced DA efflux.

    PubMed

    Wang, Qiang; Bubula, Nancy; Brown, Jason; Wang, Yunliang; Kondev, Veronika; Vezina, Paul

    2016-05-27

    The DA transporter (DAT), a phosphoprotein, controls extracellular dopamine (DA) levels in the central nervous system through transport or reverse transport (efflux). Multiple lines of evidence support the claim that PKC significantly contributes to amphetamine-induced DA efflux. Other signaling pathways, involving CaMKII and ERK, have also been shown to regulate DAT mediated efflux. Here we assessed the contribution of putative PKC residues (S4, S7, S13) in the N-terminal of the DAT to amphetamine-induced DA efflux by transfecting DATs containing different serine to alanine (S-A) point mutations into DA pre-loaded HEK-293 cells and incubating these cells in amphetamine (2μM). The effects of a S-A mutation at the non-PKC residue S12 and a threonine to alanine (T-A) mutation at the ERK T53 residue were also assessed for comparison. WT-DATs were used as controls. In an initial experiment, we confirmed that inhibiting PKC with Go6976 (130nM) significantly reduced amphetamine-induced DA efflux. In subsequent experiments, cells transfected with the S4A, S12A, S13A, T53A and S4,7,13A mutants showed a reduction in amphetamine-induced DA efflux similar to that observed with Go6976. Interestingly, cells transfected with the S7A mutant, identified by some as a PKC-PKA residue, showed unperturbed WT-DAT levels of amphetamine-induced DA efflux. These results indicate that phosphorylation by PKC of select residues in the DAT N-terminal can regulate amphetamine-induced efflux. PKC can act either independently or in concert with other kinases such as ERK to produce this effect. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Transmitter release in the neuromuscular synapse of the protein kinase C theta-deficient adult mouse.

    PubMed

    Besalduch, Núria; Santafé, Manel M; Garcia, Neus; Gonzalez, Carmen; Tomás, Marta; Tomás, Josep; Lanuza, Maria A

    2011-04-01

    We studied structural and functional features of the neuromuscular junction in adult mice (P30) genetically deficient in the protein kinase C (PKC) theta isoform. Confocal and electron microscopy shows that there are no differences in the general morphology of the endplates between PKC theta-deficient and wild-type (WT) mice. Specifically, there is no difference in the density of the synaptic vesicles. However, the myelin sheath is not as thick in the intramuscular nerve fibers of the PKC theta-deficient mice. We found a significant reduction in the size of evoked endplate potentials and in the frequency of spontaneous, asynchronous, miniature endplate potentials in the PKC theta-deficient neuromuscular preparations in comparison with the WT, but the mean amplitude of the spontaneous potentials is not different. These changes indicate that PKC theta has a presynaptic role in the function of adult neuromuscular synapses. Copyright © 2010 Wiley-Liss, Inc.

  2. Food Preparation Studies

    DTIC Science & Technology

    1974-11-01

    delivery to the satellites. Specialty baked goods such as cakes, brownies, bars, cookies , pies, tortes, and coffee cakes will be made at the CFPF...products (cakes, rolls, brownies, pie crusts, and tortes) will be made with mixes, but cookies , bars, and coffee cakes generally will be made from...scratch. Production of baked goods requires the following specialized equipment: • Planetary mixers • Dough mixers • Sheeters • Pie machines

  3. Development of a novel cup cake with unique properties of essential oil of betel leaf (Piper betle L.) for sustainable entrepreneurship.

    PubMed

    Roy, Arnab; Guha, Proshanta

    2015-08-01

    Betel vine (Piper betle L.) is a root climber with deep green heart shaped leaves. It belongs to the Piperaceae family. There is a huge wastage of the leaves during glut season and it can be reduced by various means including extraction of medicinal essential oil which can be considered as GRAS (generally recognized as safe) materials. Therefore, attempts were made to develop a novel cup cake by incorporating essential oil of betel leaf. The textural properties of the cakes were measured by texture analyzer instrument; whereas the organoleptic properties were adjudged by human preferences using sensory tables containing 9-point hedonic scale. Price estimation was done considering all costs and charges. Finally, all parameters of the developed cake were compared with different cup cakes available in the market for ascertaining consumer acceptability of the newly developed product in terms of quality and market price. Results revealed that the Novel cup cake developed with 0.005 % (v/w) essential oil of betel leaf occupied the 1st place among the four developed novel cup cakes. However, it occupied 4th place among the nine cup cakes in the overall preference list prepared based on the textural and organoleptic qualities, though its market price was calculated to be comparable to all the leading cupcakes available in the market. This indicates that manufacturing of novel cup cake with essential oil of betel leaf would be a profitable and self-sustaining entrepreneurship.

  4. Changes in chemical composition and antioxidative properties of rye ginger cakes during their shelf-life.

    PubMed

    Zieliński, Henryk; del Castillo, Maria Dolores; Przygodzka, Małgorzata; Ciesarova, Zuzana; Kukurova, Kristina; Zielińska, Danuta

    2012-12-15

    Changes in chemical composition and antioxidative properties of rye ginger cakes during their shelf-life were investigated in this study. In particular, the changes in antioxidants content, antioxidative and reducing capacity, and Maillard reaction development in rye ginger cakes after long-term storage were addressed. Ginger cakes produced according to the traditional and current recipe were stored for 5 years at room temperature in a dark place. The total phenolic compounds (TPC), inositol hexaphosphate (IP6), reduced (GSH) and oxidised glutathione (GSSG) contents, antioxidant and reducing capacity and Maillard reaction products (MRPs) were determined in ginger cakes after storage and then compared to those measured after baking. After long-term storage a decrease in TPC and IP6 contents in cakes was noted. In contrast, an increase in antioxidative and reducing capacity of stored cakes was observed. Long-term storage induced formation of furosine, advanced and final Maillard reaction products and caused changes in both reduced and oxidised forms of glutathione. After long-term storage the modest changes in furosine, FAST index and browning in ginger cake formulated with dark rye flour may suggest that this product is the healthiest among others. Therefore, traditional rye ginger cakes can be considered as an example of a healthy food that is also relatively stable during long term storage as noted by the small chemical changes observed in its composition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Characteristics of rapeseed oil cake using nitrogen adsorption

    NASA Astrophysics Data System (ADS)

    Sokołowska, Z.; Bowanko, G.; Boguta, P.; Tys, J.; Skiba, K.

    2013-09-01

    Adsorption of nitrogen on the rapeseed oil cake and rapeseed oil cake with wheat meal extrudates was investigated. The results are presented as adsorption-desorption isotherms. The Brunauer-Emmet and Teller equation was used to analyse the experimental sorption data. To obtain estimates of the surface area and surface fractal dimension, the sorption isotherms were analyzed using the Brunauer-Emmet and Teller and Frenkel-Halsey-Hill equations. Mesopore analysis was carried out using the Dollimore and Heal method. The properties and surface characteristic of rapeseed oil cake extrudates are related to different basic properties of particular samples and duration of the extrusion process. Extrusion conditions lead to essential differences in particular products. For all kinds of rapeseed oil cakes the amount of adsorbed nitrogen was different, but for the rapeseed oil cake extrudates a large amount of adsorbed nitrogenwas observed. The average surface area of the rapeseed oil cake extrudates was about 6.5-7.0 m2 g-1, whereas it was equal to about 4.0-6.0 m2 g-1 for rapeseed oil cake with the wheat meal extrudates. In the case of non-extruded rapeseed oil cake and wheat meal, the dominant group included ca. 2 and 5 nmpores. The values of surface fractal dimension suggested that the surface of the extrudates was more homogenous than that of the raw material. Duration of the extrusion process to 80 s resulted in a decrease in the specific surface area, surface fractal dimension, and porosity of the extrudates.

  6. Fungi in cake production chain: Occurrence and evaluation of growth potential in different cake formulations during storage.

    PubMed

    Morassi, Letícia L P; Bernardi, Angélica O; Amaral, Alexandra L P M; Chaves, Rafael D; Santos, Juliana L P; Copetti, Marina V; Sant'Ana, Anderson S

    2018-04-01

    This study aimed to determine the prevalence and populations of fungi in cake production chain. Besides, the growth potential of twelve fungal strains in different cake formulations was evaluated. Raw materials from two different batches (n=143), chocolate cakes (n=30), orange cakes (n=20), and processing environment air samples (n=147) were analyzed. Among the raw materials, wheat flour (3.2±0.3 log CFU per g) and corn meal (3.8±0.8 log CFU per g) belonging to batch #1 showed significant higher fungal counts (p<0.05). The fungal counts in the processing environment air reached up to 2.56 log CFU per m 3 (p<0.05). The predominant fungi species in the industrialized cakes were Aspergillus flavus (28.15%), Penicillium citrinum (18.45%), Penicillium paxilli (14.56%), and Aspergillus niger (6.8%), which were also detected in the raw materials and processing environment air. Only Penicillium glabrum and Penicillium citrinum showed visible mycelium (>3mm) in the free of preservative cake formulation at 19th and 44th days of storage at 25°C, respectively. Revealing the biodiversity of fungi in ingredients, air and final products, as well as challenging final products with representative fungal strains may assist to implement effective controlling measures as well as to gather data for the development of more robust cake formulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Increased IGFBP-1 phosphorylation in response to leucine deprivation is mediated by CK2 and PKC

    PubMed Central

    Malkani, Niyati; Biggar, Kyle; Shehab, Majida Abu; Li, Shawn; Jansson, Thomas; Gupta, Madhulika B.

    2016-01-01

    Insulin-like growth factor binding protein-1 (IGFBP-1), secreted by fetal liver, is a key regulator of IGF-I bioavailability and fetal growth. IGFBP-1 phosphorylation decreases IGF-I bioavailability and diminishes its growth-promoting effects. Growth-restricted fetuses have decreased levels of circulating essential amino acids. We recently showed that IGFBP-1 hyperphosphorylation (pSer101/119/169) in response to leucine deprivation is regulated via activation of the amino acid response (AAR) in HepG2 cells. Here we investigated nutrient-sensitive protein kinases CK2/PKC/PKA in mediating IGFBP-1 phosphorylation in leucine deprivation. We demonstrated that leucine deprivation stimulated CK2 activity (enzymatic assay) and induced IGFBP-1 phosphorylation (immunoblotting/MRM-MS). Inhibition (pharmacological/siRNA) of CK2/PKC, but not PKA, prevented IGFBP-1 hyperphosphorylation in leucine deprivation. PKC inhibition also prevented leucine deprivation-stimulated CK2 activity. Functionally, leucine deprivation decreased IGF-I-induced-IGF-1R autophosphorylation when CK2/PKC were not inhibited. Our data strongly support that PKC promotes leucine deprivation-induced IGFBP-1 hyperphosphorylation via CK2 activation, mechanistically linking decreased amino acid availability and reduced fetal growth. PMID:26733150

  8. Parathyroid Hormone Activates Phospholipase C (PLC)-Independent Protein Kinase C Signaling Pathway via Protein Kinase A (PKA)-Dependent Mechanism: A New Defined Signaling Route Would Induce Alternative Consideration to Previous Conceptions

    PubMed Central

    Tong, Guojun; Meng, Yue; Hao, Song; Hu, Shaoyu; He, Youhua; Yan, Wenjuan; Yang, Dehong

    2017-01-01

    Background Parathyroid hormone (PTH) is an effective anti-osteoporosis agent, after binding to its receptor PTHR1, several signaling pathways, including cAMP/protein kinase A (PKA) and phospholipase C (PLC)/protein kinase C (PKC), are initiated through G proteins; with the cAMP/PKA pathway as the major pathway. Earlier studies have reported that PTHR1 might also activate PKC via a PLC-independent mechanism, but this pathway remains unclear. Material/Methods In HEK293 cells, cAMP accumulation was measured with ELISA and PKC was measured with fluorescence resonance energy transfer (FRET) analysis using CKAR plasmid. In MC3T3-E1 cells, real-time PCR was performed to examine gene expressions. Then assays for cell apoptosis, cell differentiation, alkaline phosphatase activity, and mineralization were performed. Results The FRET analysis found that PTH(1–34), [G1,R19]PTH(1–34) (GR(1–34), and [G1,R19]PTH(1–28) (GR(1–28) were all activated by PKC. The PKC activation ability of GR(1–28) was blocked by cAMP inhibitor (Rp-cAMP) and rescued with the addition of active PKA-α and PKA-β. The PKC activation ability of GR(1–34) was partially inhibited by Rp-cAMP. In MC3T3-E1 cells, gene expressions of ALP, CITED1, NR4a2, and OSX that was regulated by GR(1–28) were significantly changed by the pan-PKC inhibitor Go6983. After pretreatment with Rp-cAMP, the gene expressions of ALP, CITED1, and OPG were differentially regulated by GR(1–28) or GR(1–34), and the difference was blunted by Go6983. PTH(1–34), GR(1–28), and GR(1–34) significantly decreased early apoptosis and augmented osteoblastic differentiation in accordance with the activities of PKA and PKC. Conclusions PLC-independent PKC activation induced by PTH could be divided into two potential mechanisms: one was PKA-dependent and associated with PTH(1–28); the other was PKA-independent and associated with PTH(29–34). We also found that PTH could activate PLC-independent PKC via PKA-dependent mechanisms. PMID:28424452

  9. Color, sensory and physicochemical attributes of beef burger made using meat from young bulls fed levels of licuri cake.

    PubMed

    de Gouvêa, Ana Al; Oliveira, Ronaldo L; Leão, André G; Assis, Dallyson Yc; Bezerra, Leilson R; Nascimento Júnior, Nilton G; Trajano, Jaqueline S; Pereira, Elzania S

    2016-08-01

    Licuri cake is a biodiesel byproduct and has been tested as an alternative feed additive for use in cattle production. This study analyzed the color, sensory and chemical attributes of burger meat from bovines. Thirty-two young Nellore bulls were used, housed in individual pens and distributed in a randomized experimental design with four treatments: no addition or the addition of 7, 14 or 21% (w/w) licuri cake in the dry matter of the diet. Interactions between the licuri cake level and the physicochemical variables (P > 0.05) were observed. Additionally, an interaction was observed between the licuri cake level and the burger beef color parameter lightness index (L*) (P = 0.0305). The L* value was positively and linearly correlated with the proportion of licuri cake in the diet of young bulls. The level of inclusion of licuri cake did not affect (P > 0.05) the sensory characteristics; the variables were graded between 6 and 7, indicating good overall acceptance. Up to 21% (w/w) licuri cake can be included in the diet of young bulls without negatively impacting on beef burger quality. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  10. Histopathological and Reproductive Evaluation in Male Rats Fed Jatropha curcas Seed Cake with or without Alkaline Hydrolysis and Subjected to Heat Treatment.

    PubMed

    Teixeira Sousa Moura, Laiane; Palomaris Mariano Souza, Domenica; Mendonça, Simone; de Aquino Ribeiro, José Antônio; Fernandes Sousa, Luciano; Tony Ramos, Adriano; Maiorka, Paulo César; de Araújo, Vera Lúcia; Mayumi Maruo, Viviane

    2017-01-01

    Jatropha curcas cake, a by-product of biodiesel production, is rich in protein and has potential to be used in livestock feed; however, the presence of antinutritional factors and phorbol esters limits its use. Thus, this study investigated toxicological and reproductive effects in male Wistar rats after subchronic exposure to J. curcas cake subjected to detoxification procedures. Rats were divided into seven groups ( n = 10) and treated for 60 days. The control group received commercial feed, while experimental groups received a diet containing 5% J . curcas cake nonhydrolyzed or hydrolyzed with 5 M NaOH. The cakes were unwashed or washed with ethanol or water and were autoclaved at 121°C for 30 minutes. Alkaline hydrolysis combined with ethanol washing decreased the phorbol ester concentration in the cake by 98%. Histopathological findings included diffuse degeneration of the liver and edema around the pulmonary vessels in the nonhydrolyzed groups. In addition, nontreated females mated with males of nonhydrolyzed unwashed group showed a decreased number of live fetuses and an increased placental weight. There were no signs of toxicity in rats given hydrolyzed cakes washed and unwashed, indicating that alkaline hydrolysis associated with heat treatment is an efficient method for detoxification of the J. curcas cake.

  11. Histopathological and Reproductive Evaluation in Male Rats Fed Jatropha curcas Seed Cake with or without Alkaline Hydrolysis and Subjected to Heat Treatment

    PubMed Central

    Palomaris Mariano Souza, Domenica; Mendonça, Simone; de Aquino Ribeiro, José Antônio; Fernandes Sousa, Luciano; Maiorka, Paulo César; Mayumi Maruo, Viviane

    2017-01-01

    Jatropha curcas cake, a by-product of biodiesel production, is rich in protein and has potential to be used in livestock feed; however, the presence of antinutritional factors and phorbol esters limits its use. Thus, this study investigated toxicological and reproductive effects in male Wistar rats after subchronic exposure to J. curcas cake subjected to detoxification procedures. Rats were divided into seven groups (n = 10) and treated for 60 days. The control group received commercial feed, while experimental groups received a diet containing 5% J. curcas cake nonhydrolyzed or hydrolyzed with 5 M NaOH. The cakes were unwashed or washed with ethanol or water and were autoclaved at 121°C for 30 minutes. Alkaline hydrolysis combined with ethanol washing decreased the phorbol ester concentration in the cake by 98%. Histopathological findings included diffuse degeneration of the liver and edema around the pulmonary vessels in the nonhydrolyzed groups. In addition, nontreated females mated with males of nonhydrolyzed unwashed group showed a decreased number of live fetuses and an increased placental weight. There were no signs of toxicity in rats given hydrolyzed cakes washed and unwashed, indicating that alkaline hydrolysis associated with heat treatment is an efficient method for detoxification of the J. curcas cake. PMID:28620618

  12. In vitro starch digestion and cake quality: impact of the ratio of soluble and insoluble dietary fiber.

    PubMed

    Oh, Im Kyung; Bae, In Young; Lee, Hyeon Gyu

    2014-02-01

    The influence of the ratio of soluble dietary fiber (SDF) and insoluble dietary fiber (IDF) on the in vitro starch digestion, predicted glycemic index (pGI), and the physicochemical properties of fiber-enriched cakes were evaluated. The hydration and pasting properties were affected by the ratio of SDF and IDF. According to the increase of IDF ratio (SDF ratio reduction) in 3 g fiber-enriched cakes, slowly digestible starch (SDS) contents increased, while the rapidly digestible starch (RDS) contents decreased. The pGI values were significantly different with control in 3 g fiber-enriched cake containing more than 50% IDF contents (p<0.05). But the pGI values of 6g fiber-enriched cake samples were not significantly different by SDF and IDF ratio. With the exception of the SDF 100% cake, volume index, hardness, and color values of the fiber-enriched cakes increased according to reductions in the SDF ratio. The cakes containing 3 g of total dietary fiber (the same ratio of SDF and IDF) per serving were shown to have low pGI and acceptable quality attributes. Specially, total dietary fiber amount and IDF ratio are more effective than SDF ratio to lower the pGI value. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Functional characterization of steam jet-cooked buckwheat flour as a fat replacer in cake-baking.

    PubMed

    Min, Bockki; Lee, Seung Mi; Yoo, Sang-Ho; Inglett, George E; Lee, Suyong

    2010-10-01

    With rising consumer awareness of obesity, the food industry has a market-driven impetus to develop low-fat or fat-free foods with acceptable taste and texture. Fancy buckwheat flour was thus subjected to steam jet-cooking and the performance of the resulting product in cake-baking was evaluated as a fat replacer. Steam jet-cooking caused structural breakdown and starch gelatinization of buckwheat flour, thus increasing its water hydration properties. In the pasting measurements, steam jet-cooked buckwheat flour exhibited high initial viscosity, while no peak viscosity was observed. Also, the suspensions of steam jet-cooked buckwheat flour exhibited shear-thinning behaviors, which were well characterized by the power law model. When shortening in cakes was replaced with steam jet-cooked buckwheat gels, the specific gravity of cake batters significantly increased, consequently affecting cake volume after baking. However, shortening replacement with steam jet-cooked buckwheat up to 20% by weight appeared to be effective in producing cakes as soft as the control without volume loss. When buckwheat flour was thermomechanically modified by steam jet-cooking, it was successfully incorporated into cake formulations for shortening up to 20% by weight, producing low-fat cakes with comparable volume and textural properties to the control. Copyright © 2010 Society of Chemical Industry.

  14. Mycotoxin Cocktail in the Samples of Oilseed Cake from Early Maturing Cotton Varieties Associated with Cattle Feeding Problems.

    PubMed

    Yunus, Agha W; Sulyok, Michael; Böhm, Josef

    2015-06-12

    Cottonseed cake in South East Asia has been associated with health issues in ruminants in the recent years. The present study was carried out to investigate the health issues associated with cottonseed cake feeding in dairy animals in Pakistan. All the cake samples were confirmed to be from early maturing cotton varieties (maturing prior to or during Monsoon). A survey of the resource persons indicated that the feeding problems with cottonseed cake appeared after 4-5 months of post-production storage. All the cake samples had heavy bacterial counts, and contaminated with over a dozen different fungal genera. Screening for toxins revealed co-contamination with toxic levels of nearly a dozen mycotoxins including aflatoxin B1 + B2 (556 to 5574 ppb), ochratoxin A + B (47 to 2335 ppb), cyclopiazonic acid (1090 to 6706 ppb), equisetin (2226 to 12672 ppb), rubrofusarin (81 to 1125), tenuazonic acid (549 to 9882 ppb), 3-nitropropionic acid (111 to 1032 ppb), and citrinin (29 to 359 ppb). Two buffalo calves in a diagnostic feed trial also showed signs of complex toxicity. These results indicate that inappropriate processing and storage of the cake, in the typical conditions of the subcontinent, could be the main contributory factors regarding the low quality of cottonseed cake.

  15. Kibra and aPKC regulate starvation-induced autophagy in Drosophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Ahrum; Neufeld, Thomas P.; Choe, Joonho, E-mail: jchoe@kaist.ac.kr

    Autophagy is a bulk degradation system that functions in response to cellular stresses such as metabolic stress, endoplasmic reticulum stress, oxidative stress, and developmental processes. During autophagy, cytoplasmic components are captured in double-membrane vesicles called autophagosomes. The autophagosome fuses with the lysosome, producing a vacuole known as an autolysosome. The cellular components are degraded by lysosomal proteases and recycled. Autophagy is important for maintaining cellular homeostasis, and the process is evolutionarily conserved. Kibra is an upstream regulator of the hippo signaling pathway, which controls organ size by affecting cell growth, proliferation, and apoptosis. Kibra is mainly localized in the apicalmore » membrane domain of epithelial cells and acts as a scaffold protein. We found that Kibra is required for autophagy to function properly. The absence of Kibra caused defects in the formation of autophagic vesicles and autophagic degradation. We also found that the well-known cell polarity protein aPKC interacts with Kibra, and its activity affects autophagy upstream of Kibra. Constitutively active aPKC decreased autophagic vesicle formation and autophagic degradation. We confirmed the interaction between aPKC and Kibra in S2 cells and Drosophila larva. Taken together, our data suggest that Kibra and aPKC are essential for regulating starvation-induced autophagy. - Highlights: • Loss of Kibra causes defects in autophagosome formation and autophagic degradation. • Constitutively-active aPKCs negatively regulate autophagy. • Kibra interacts with aPKC in vitro and in vivo. • Kibra regulates autophagy downstream of aPKC.« less

  16. Phorbol 12-myristate 13-acetate down-regulates Na,K-ATPase independent of its protein kinase C site: decrease in basolateral cell surface area.

    PubMed Central

    Beron, J; Forster, I; Beguin, P; Geering, K; Verrey, F

    1997-01-01

    The effect of protein kinase C (PKC) stimulation on the pump current (Ip) generated by the Na,K-ATPase was measured in A6 epithelia apically permeabilized with amphotericin B. Phorbol 12-myristate 13-acetate (PMA) produced a decrease in Ip carried by sodium pumps containing the endogenous Xenopus laevis or transfected Bufo marinus alpha 1 subunits (approximately 30% reduction within 25 min, maximum after 40 min) independent of the PKC phosphorylation site (T15A/S16A). In addition to this major effect of PMA, which was independent of the intracellular sodium concentration and was prevented by the PKC inhibitor bisindolylmaleimide GF 109203X (BIM), another BIM-resistant, PKC site-independent decrease was observed when the Ip was measured at low sodium concentrations (total reduction approximately 50% at 5 mM sodium). Using ouabain binding and cell surface biotinylation, stimulation of PKC was shown to reduce surface Na,K-ATPase by 14 to 20% within 25 min. The same treatment stimulated fluid phase endocytosis sevenfold and decreased by 16.5% the basolateral cell surface area measured by transepithelial capacitance measurements. In conclusion, PKC stimulation produces a decrease in sodium pump function which can be attributed, to a large extent, to a withdrawal of sodium pumps from the basolateral cell surface independent of their PKC site. This reduction of the number of sodium pumps is parallel to a decrease in basolateral membrane area. Images PMID:9188092

  17. Involvement of protein kinase C in the modulation of morphine-induced analgesia and the inhibitory effects of exposure to 60-hz magnetic fields in the land snail, Cepaea nemoralis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kavaliers, M.; Ossenkopp, K.P.

    1990-02-26

    One of the more consistent and dramatic effects of exposure to magnetic fields is the attenuation of morphine-induced analgesia. Results of previous studies have implicated alterations in calcium channel functioning and Ca{sup ++} flux in the mediation of these effects. It is generally accepted that Ca{sup ++}-activated-phospholipid-dependent protein kinase (Protein kinase C; PKC) plays an important role in relaying trans-membrane signaling in diverse Ca{sup ++} dependent cellular processes. In experiment 1 we observed that morphine-induced analgesia in the land snail, Cepaea nemoralis, as measured by the latency of an avoidance behavior to a warmed surface, was reduced by the PKCmore » activator, SC-9, and was enhanced by the PKC inhibitors, H-7 and H-9. In contrast, HA-10004, a potent inhibitor of other protein kinases, but only a very weak inhibitor of PKC, had no effect on morphine-induced analgesia. In experiment 2 exposure of snails for 30 minutes to a 1.0 gauss (rms) 60-Hz magnetic field reduced morphine-induced analgesia. This inhibitory effect of the magnetic field was reduced by the PKC inhibitors, H-7 and H-9, and was augmented by the PKC activator SC-9. These results suggest that: (i) PKC is involved in the modulation of morphine-induced analgesia and, (ii) the inhibitory effects of magnetic fields involve PKC.« less

  18. Activation of protein kinase C by mycobacterial cord factor, trehalose 6-monomycolate, resulting in tumor necrosis factor-alpha release in mouse lung tissues.

    PubMed

    Sueoka, E; Nishiwaki, S; Okabe, S; Iida, N; Suganuma, M; Yano, I; Aoki, K; Fujiki, H

    1995-08-01

    Cord factors are mycoloyl glycolipids in cell walls of bacteria belonging to Actinomycetales, such as Mycobacterium, Nocardia and Rhodococcus. They induce granuloma formation in the lung and interstitial pneumonitis, associated with production of macrophage-derived cytokines. We studied how cord factors induce biological activities in the cells. Cord factors isolated from M. tuberculosis, trehalose 6-monomycolate (mTMM) and trehalose 6,6'-dimycolate (mTDM), enhanced protein kinase C (PKC) activation in the presence of phosphatidylserine (PtdSer), diacylglycerol and Ca2+, and mTMM activated PKC alpha more strongly than PKC beta or gamma under the same assay conditions. Kinetic studies of mTMM in response to PKC activation revealed that mTMM increased the apparent affinity of PKC to Ca2+ in the presence of both PtdSer and diolein. Although this is similar to observations with unsaturated fatty acids, such as arachidonic acid, mTMM was synergistic with PtdSer for PKC activation, but arachidonic acid was not. mTMM was also different as regards PKC activation, as phorbol ester was. A single i.p. administration of mTMM to mouse induced tumor necrosis factor-alpha (TNF-alpha) in serum and in the lung, which is a unique target tissue of cord factors. Based on our recent finding that TNF-alpha is an endogenous tumor promoter, the correlation between lung cancer and pulmonary tuberculosis is discussed.

  19. Increased Ca2+ sensitivity of contractile elements via protein kinase C in alpha-toxin permeabilized SMA from young spontaneously hypertensive rats.

    PubMed

    Sasajima, H; Shima, H; Toyoda, Y; Kimura, K; Yoshikawa, A; Hano, T; Nishio, I

    1997-10-01

    The purpose of the present investigation was to examine the Ca2+ sensitivity of the contractile elements via protein kinase C (PKC) in superior mesenteric artery (SMA) from young (5-6 weeks old) spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). Staphylococcal aureus alpha-toxin, which produces pores in the plasma membrane too small to allow passage of proteins such as PKC, was used to investigate the signal transduction system in vascular smooth muscle cells. We investigated the Ca2+ sensitivity of the contractile apparatus via PKC in intact and alpha-toxin skinned SMA from young SHR and WKY. In intact SMA, high K+ responses were not different between SHR and WKY. However, phorbol 12,13-dibutyrate (PDBu, a PKC activator) augmented high K(+)-evoked contractions and PKC inhibitors, such as 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) and calphostin C, suppressed them more in SHR as compared with WKY. In alpha-toxin skinned SMA, the [Ca2+]i-force relationship curve was not significantly different between SHR and WKY. However, PDBu augmented [Ca2+]i-evoked contractions and PKC inhibitors suppressed them more in SHR than in WKY. These results suggest that the Ca2+ sensitivity of the contractile elements via PKC is significantly greater in prehypertensive SHR than in age-matched WKY. This abnormality in small muscular arteries may be involved in the pathogenesis of hypertension in SHR.

  20. Effect of sunflower cake supplementation on meat quality of indigenous goat genotypes of South Africa.

    PubMed

    Xazela, N M; Chimonyo, M; Muchenje, V; Marume, U

    2012-01-01

    The effect of four castrated goat genotypes and sunflower cake supplementation on goat meat quality was determined. Supplemented Boer (BOR) and Xhosa-Boer cross (XBC) goats had significantly higher (P<0.05) SLW and CDM than non-supplemented groups. The Xhosa lop-eared (XLE) and Nguni (NGN) goats had higher pH24 (P<0.05) than BOR and XBC goats. For each genotype, the sunflower cake supplemented and non-supplemented goats had similar a* values, except for the XLE goats. In the XLE goats, the a* values were lower in the sunflower cake supplemented goats. Sunflower cake supplemented BOR goats had higher L*values than their non-supplemented counterparts (P<0.05). The sunflower cake supplemented BOR and NGN goats also had higher b* values as compared to their non-supplemented counterparts. In comparison with the Boer goat, the XLE and NGN goats had lower CDM, L* and WBF values but generally had higher CL and a* values. Sunflower cake supplementation improved meat quality attributes of the goats. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. The role and function of chlorine in the preparation of high-ratio cake flour.

    PubMed

    Gough, B M; Whitehouse, M E; Greenwood, C T

    1978-01-01

    The literature on the role of chlorine treatment of flour for use in high-ratio cake production is discussed in relation to current knowledge of cereal chemistry and cake technology. A brief perspective of the present use of chlorine in high-ratio cake flours is included. Investigations of the uptake of gaseous chlorine by flour and its distribution among and chemical action upon the major flour components (water, protein, lipid, and carbohydrate) are assessed. The physical effects of chlorination as demonstrated by experiments with batters and cakes and by physicochemical observations of flour and its fractions are also considered. The characteristics of the starch in flour appear to be critical in high-ratio cakes. Chlorine treatment modifies the gelatinization behavior of the starch granules yet does not change their gelatinization temperature not is there evidence of chemical attack upon the starch molecules. Therefore, it is suggested that chlorine effects the necessary changes in starch behavior by reacting with the noncarbohydrate surface contaminants on the granules. Alternative methods of improving high-ratio cake flours are mentioned, particularly heat-treatment processes.

  2. Mechanically fractionated flour isolated from green bananas (M. cavendishii var. nanica) as a tool to increase the dietary fiber and phytochemical bioactivity of layer and sponge cakes.

    PubMed

    Segundo, Cristina; Román, Laura; Gómez, Manuel; Martínez, Mario M

    2017-03-15

    This article describes the effect of mechanically fractionated flours from green bananas on the nutritional, physical and sensory attributes of two types of cakes (sponge and layer). A plausible 30% replacement of banana flour in the formulation of layer cakes is demonstrated, finding only a small decline in the sensory perception. On the contrary, sponge cakes were noticeable worsened with the use of banana flours (lower specific volume, worse sensory attributes and higher hardness), which was minimized when using fine flour. Both layer and sponge cakes exhibited an enhancement of the resistant starch and dietary fiber content with the replacement of green banana flour (up to a fivefold improvement in RS performance). Moreover, sponge cakes yielded more polyphenols and antioxidant capacity with banana flours, especially with the coarse fraction. Therefore, results showed that a mechanical fractionation allowed a feasible nutritional enhancement of cakes with the use of banana flours. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. PKC Epsilon: A Novel Oncogenic Player in Prostate Cancer

    DTIC Science & Technology

    2015-11-01

    control laboratory diet . Group 2 mice were fed with rofecoxib diet . Protein expression of (A) Akt, phospho-Akt, mTOR, phospho-mTOR, (B) Stat3 and...DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Protein kinase C epsilon (PKC...mechanisms orchestrating prostate cancer development and progression. Studies have recognized protein kinase C (PKC) isozymes as eminent players of cancer

  4. Nitrogen mineralization from anaerobically digested centrifuge cake and aged air-dried biosolids.

    PubMed

    Kumar, Kuldip; Hundal, Lakhwinder S; Cox, Albert E; Granato, Thomas

    2014-09-01

    This study was conducted to estimate nitrogen (N) mineralization of anaerobically digested centrifuge cake from the Stickney Water Reclamation Plant (SWRP) and Calumet Water Reclamation Plant (CWRP), lagoon-aged air-dried biosolids from the CWRP, and Milorganite at three rates of application (0, 12.5 and 25 Mg ha(-1)). The N mineralized varied among biosolids as follows: Milorganite (44%) > SWRP centrifuge cake (35%) > CWRP centrifuge cake (31%) > aged air-dried (13%). The N mineralized in the SWRP cake (32%) and CWRP aged air-dried biosolids (12%) determined from the 15N study were in agreement with the first study. The N mineralization value for centrifuge cake biosolids observed in our study is higher than the value given in the Part 503 rule and Illinois Part 391 guidelines. These results will be used to fine-tune biosolids application rate to match crop N demand without compromising yield while minimizing any adverse effect on the environment.

  5. Numerical modelling of powder caking at REV scale by using DEM

    NASA Astrophysics Data System (ADS)

    Guessasma, Mohamed; Silva Tavares, Homayra; Afrassiabian, Zahra; Saleh, Khashayar

    2017-06-01

    This work deals with numerical simulation of powder caking process caused by capillary condensation phenomenon. Caking consists in unwanted agglomeration of powder particles. This process is often irreversible and not easy to predict. To reproduce mechanism involved by caking phenomenon we have used the Discrete Elements Method (DEM). In the present work, we mainly focus on the role of capillary condensation and subsequent liquid bridge formation within a granular medium exposed to fluctuations of ambient relative humidity. Such bridges cause an attractive force between particles, leading to the formation of a cake with intrinsic physicochemical and mechanical properties. By considering a Representative Elementary Volume (REV), the DEM is then performed by means of a MULTICOR-3D software tacking into account the properties of the cake (degree of saturation) in order to establish relationships between the microscopic parameters and the macroscopic behaviour (tensile strength).

  6. Effect of pretreatment on purple-fleshed sweet potato flour for cake making

    NASA Astrophysics Data System (ADS)

    Hutasoit, M. S.; Julianti, E.; Lubis, Z.

    2018-02-01

    The purple-fleshed sweet-potato (PFSP) flour was produced by varying pretreatment of washed chips: dipping in 0.5 and 1.0% (w/v) citric acid solution for 30 min, dipping in 0.5 and 1.0% (w/v) citric acid solution for 30 min and followed by steam blanching for 5 min. The pretreatment effect on cake quality was investigated. The results showed that PFSP flour produced from pretreatment with dipping in 0.5% citric acid for 30 min followed by steam blanching for 5 min had higher lightness (L*) value and lower browning index, higher hedonic value of color and aroma and baking expansion. The specific volume of cake from pretreated flour, untreated flour and wheat flour were 44.87, 43.83, and 50.43cm3/g, respectively. The sensory evaluation of cake indicated that cake from pretreated PFSP flour was acceptable compare to those of cake from wheat flour.

  7. Effect of virgin coconut meal (VCM) on the rheological, micro-structure and baking properties of cake and batter.

    PubMed

    Srivastava, Yashi; Semwal, Anil Dutt

    2015-12-01

    Virgin coconut meal (VCM) cakes were prepared by replacing refined wheat flour (maida) (5 to 20 % level) to check its effect on chemical, textural and rheological attributes of cake. The addition of VCM significantly (p ≤ 0.05) increased redness (a*), yellowness (b*) while reduced lightness (L*) of cakes. The incorporation of VCM affects the hardness, adhesiveness gumminess and chewiness of cake. The effect of flour replacement with VCM increased the viscosity of batter which leads to increase in consistency index and lower the shearthining behavior. The viscoelastic behavior of cake batter in which elastic modulus (G') and viscous modulus (G") both were decreased with the increase in percentage of VCM. The differential scanning calorimetry (DSC) analysis revealed that the onset (To), end set (Tc) and enthalpy of gelatinization (ΔH) increased with the increased level of VCM.

  8. Nutritional and sensory quality evaluation of sponge cake prepared by incorporation of high dietary fiber containing mango (Mangifera indica var. Chokanan) pulp and peel flours.

    PubMed

    Aziah, A A Noor; Min, W Lee; Bhat, Rajeev

    2011-09-01

    Sponge cake prepared by partial substitution of wheat flour with mango pulp and mango peel flours (MPuF and MPeF, respectively) at different concentrations (control, 5%, 10%, 20% or 30%) were investigated for the physico-chemical, nutritional and organoleptic characteristics. Results showed sponge cake incorporated with MPuF and MPeF to have high dietary fiber with low fat, calorie, hydrolysis and predicted glycemic index compared with the control. Increasing the levels of MPuF and MPeF in sponge cake had significant impact on the volume, firmness and color. Sensory evaluation showed sponge cake formulated with 10% MPuF and 10% MPeF to be the most acceptable. MPeF and MPuF have high potential as fiber-rich ingredients and can be utilized in the preparation of cake and other bakery products to improve the nutritional qualities.

  9. Carcass traits and meat quality of crossbred Boer goats fed peanut cake as a substitute for soybean meal.

    PubMed

    Silva, T M; de Medeiros, A N; Oliveira, R L; Gonzaga Neto, S; Queiroga, R de C R do E; Ribeiro, R D X; Leão, A G; Bezerra, L R

    2016-07-01

    This study aimed to determine the impact of replacing soybean meal with peanut cake in the diets of crossbred Boer goats as determined by carcass characteristics and quality and by the fatty acid profile of meat. Forty vaccinated and dewormed crossbred Boer goats were used. Goats had an average age of 5 mo and an average BW of 15.6 ± 2.7 kg. Goats were fed Tifton-85 hay and a concentrate consisting of corn bran, soybean meal, and mineral premix. Peanut cake was substituted for soybean meal at levels of 0.0, 33.33, 66.67, and 100%. Biometric and carcass morphometric measurements of crossbred Boer goats were not affected by replacing soybean meal with peanut cake in the diet. There was no influence of the replacement of soybean meal with peanut cake on weight at slaughter ( = 0.28), HCW ( = 0.26), cold carcass weight ( = 0.23), noncarcass components of weight ( = 0.71), or muscularity index values ( = 0.11). However, regression equations indicated that there would be a reduction of 18 and 11% for loin eye area and muscle:bone ratio, respectively, between the treatment without peanut cake and the treatment with total soybean meal replacement. The weights and yields of the commercial cuts were not affected ( > 0.05) by replacing soybean meal with peanut cake in the diet. Replacing soybean meal with peanut cake did not affect the pH ( = 0.79), color index ( > 0.05), and chemical composition ( > 0.05) of the meat (). However, a quadratic trend for the ash content was observed with peanut cake inclusion in the diet ( = 0.09). Peanut cake inclusion in the diet did not affect the concentrations of the sum of SFA ( = 0.29), the sum of unsaturated fatty acids (UFA; = 0.29), or the sum of PUFA ( = 0.97) or the SFA:UFA ratio ( = 0.23) in goat meat. However, there was a linear decrease ( = 0.01) in the sum of odd-chain fatty acids in the meat with increasing peanut cake in the diet. Soybean meal replacement with peanut cake did not affect the n-6:n-3 ratio ( = 0.13) or the medium-chain fatty acid ( = 0.76), long-chain fatty acid ( = 0.74), or atherogenicity index values ( = 0.60) in the meat. The sensory attributes of the longissimus lumborum did not differ with the inclusion of peanut cake in the diet as a replacement for soybean meal. These results suggest that based on carcass and meat characteristics, peanut cake can completely substitute soybean meal in the diet of crossbred Boer goats.

  10. Measurement of broiler litter production rates and nutrient content using recycled litter.

    PubMed

    Coufal, C D; Chavez, C; Niemeyer, P R; Carey, J B

    2006-03-01

    It is important for broiler producers to know litter production rates and litter nutrient content when developing nutrient management plans. Estimation of broiler litter production varies widely in the literature due to factors such as geographical region, type of housing, size of broiler produced, and number of flocks reared on the same litter. Published data for N, P, and K content are also highly variable. In addition, few data are available regarding the rate of production, characteristics, and nutrient content of caked litter (cake). In this study, 18 consecutive flocks of broilers were reared on the same litter in experimental pens under simulated commercial conditions. The mass of litter and cake produced was measured after each flock. Samples of all litter materials were analyzed for pH, moisture, N, P, and K. Average litter and cake moisture content were 26.4 and 46.9%, respectively. Significant variation in litter and cake nutrient content was observed and can largely be attributed to ambient temperature differences. Average litter, cake, and total litter (litter plus cake) production rates were 153.3, 74.8, and 228.2 g of dry litter material per kg of live broiler weight (g/kg) per flock, respectively. Significant variation in litter production rates among flocks was also observed. Cumulative litter, cake, and total litter production rates after 18 flocks were 170.3, 78.7, and 249.0 g/kg, respectively. The data produced from this research can be used by broiler producers to estimate broiler litter and cake production and the nutrient content of these materials.

  11. Frosting on the cake: pictures on food packaging bias serving size.

    PubMed

    Brand, John; Wansink, Brian; Cohen, Abby

    2016-08-01

    Food packaging often pictures supplementary extras, such as toppings or frosting, that are not listed on the nutritional labelling. The present study aimed to assess if these extras might exaggerate how many calories† are pictured and if they lead consumers to overserve. Four studies were conducted in the context of fifty-one different cake mixes. For these cake mixes, Study 1 compared the calories stated on the nutrition label with the calories of the cake (and frosting) pictured on the box. In Studies 2, 3 and 4, undergraduates (Studies 2 and 3) or food-service professionals (Study 4) were given one of these typical cake mix boxes, with some being told that cake frosting was not included on the nutritional labelling whereas others were provided with no additional information. They were then asked to indicate what they believed to be a reasonable serving size of cake. Settings Laboratory setting. Undergraduate students and food-service professionals. Study 1 showed that the average calories of cake and frosting pictured on the package of fifty-one different cake mixes exceed the calories on the nutritional label by 134 %. Studies 2 and 3 showed that informing consumers that the nutritional information does not include frosting reduces how much people serve. Study 4 showed that even food-service professionals overserve if not told that frosting is not included on the nutritional labelling. To be less misleading, packaging should either not depict extras in its pictures or it should more boldly and clearly state that extras are not included in calorie counts.

  12. Mitochondrial PKC-ε deficiency promotes I/R-mediated myocardial injury via GSK3β-dependent mitochondrial permeability transition pore opening.

    PubMed

    Wang, Shijun; Zhang, Feng; Zhao, Gang; Cheng, Yong; Wu, Ting; Wu, Bing; Zhang, You-En

    2017-09-01

    Mitochondrial fission is critically involved in cardiomyocyte apoptosis, which has been considered as one of the leading causes of ischaemia/reperfusion (I/R)-induced myocardial injury. In our previous works, we demonstrate that aldehyde dehydrogenase-2 (ALDH2) deficiency aggravates cardiomyocyte apoptosis and cardiac dysfunction. The aim of this study was to elucidate whether ALDH2 deficiency promotes mitochondrial injury and cardiomyocyte death in response to I/R stress and the underlying mechanism. I/R injury was induced by aortic cross-clamping for 45 min. followed by unclamping for 24 hrs in ALDH2 knockout (ALDH2 -/- ) and wild-type (WT) mice. Then myocardial infarct size, cell apoptosis and cardiac function were examined. The protein kinase C (PKC) isoform expressions and their mitochondrial translocation, the activity of dynamin-related protein 1 (Drp1), caspase9 and caspase3 were determined by Western blot. The effects of N-acetylcysteine (NAC) or PKC-δ shRNA treatment on glycogen synthase kinase-3β (GSK-3β) activity and mitochondrial permeability transition pore (mPTP) opening were also detected. The results showed that ALDH2 -/- mice exhibited increased myocardial infarct size and cardiomyocyte apoptosis, enhanced levels of cleaved caspase9, caspase3 and phosphorylated Drp1. Mitochondrial PKC-ε translocation was lower in ALDH2 -/- mice than in WT mice, and PKC-δ was the opposite. Further data showed that mitochondrial PKC isoform ratio was regulated by cellular reactive oxygen species (ROS) level, which could be reversed by NAC pre-treatment under I/R injury. In addition, PKC-ε inhibition caused activation of caspase9, caspase3 and Drp1Ser 616 in response to I/R stress. Importantly, expression of phosphorylated GSK-3β (inactive form) was lower in ALDH2 -/- mice than in WT mice, and both were increased by NAC pre-treatment. I/R-induced mitochondrial translocation of GSK-3β was inhibited by PKC-δ shRNA or NAC pre-treatment. In addition, mitochondrial membrane potential (∆Ψ m ) was reduced in ALDH2 -/- mice after I/R, which was partly reversed by the GSK-3β inhibitor (SB216763) or PKC-δ shRNA. Collectively, our data provide the evidence that abnormal PKC-ε/PKC-δ ratio promotes the activation of Drp1 signalling, caspase cascades and GSK-3β-dependent mPTP opening, which results in mitochondrial injury-triggered cardiomyocyte apoptosis and myocardial dysfuction in ALDH2 -/- mice following I/R stress. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  13. Structural investigation of protein kinase C inhibitors

    NASA Technical Reports Server (NTRS)

    Barak, D.; Shibata, M.; Rein, R.

    1991-01-01

    The phospholipid and Ca2+ dependent protein kinase (PKC) plays an essential role in a variety of cellular events. Inhibition of PKC was shown to arrest growth in tumor cell cultures making it a target for possible antitumor therapy. Calphostins are potent inhibitors of PKC with high affinity for the enzyme regulatory site. Structural characteristics of calphostins, which confer the inhibitory activity, are investigated by comparing their optimized structures with the existing models for PKC activation. The resulting model of inhibitory activity assumes interaction with two out of the three electrostatic interaction sites postulated for activators. The model shows two sites of hydrophobic interaction and enables the inhibitory activity of gossypol to be accounted for.

  14. Long-term toxicity and carcinogenicity studies of cake made from chlorinated flour. 1. Studies in rats.

    PubMed

    Fisher, N; Hutchinson, J B; Berry, R; Hardy, J; Ginocchio, A V

    1983-08-01

    Wistar rats were fed for 104 wk on cake-based diets in which the cake, prepared from unchlorinated flour, or flour treated with 1250 or 2500 ppm chlorine, formed 79% of the diet on a 12.6% moisture basis. A fourth group was fed stock diet 41B. No differences in appearance, health, behaviour or mortalities attributable to the flour treatment were observed. Female but not male mortalities were significantly higher for cake-fed rats than for those fed diet 41B. Dose-related haematological effects were seen at various stages in cake-fed rats. Dose-related increases in plasma alanine and aspartate aminotransferases were noted at 12 months in males but not in females, for whom all the values were elevated. A dose-related diminution in blood sugar at 12 months was seen only in females. A dose-related increase in urinary aspartate aminotransferase was seen only in males. Urinary N-acetylglucosaminidase activity per mg creatinine did not differ significantly between groups. At post mortem a dose-related reduction in spleen weight was found in the females only. The lesions found were those expected in ageing rats, but were observed earlier in rats fed cake. Glomerulonephrosis affected rats fed cake more than those fed diet 41B. Cake diets promoted nephrocalcinosis, unrelated to flour treatment. Increased splenic haematopoiesis occurred in about half of the females in the cake diet groups but less frequently in males or in rats fed diet 41B. Tumours were mainly chromophobe adenomas of the pituitary, common in rats. Insulomas were seen in two males in each of the groups fed on cake made from chlorinated flour, but an earlier form of this tumour was found in all cake groups and its incidence is thus regarded as unrelated to the flour treatment. The incidence of tumours of the reticuloendothelial system was not related to flour treatment. Covalent chlorine concentrations in the perirenal fat of the cake-fed rats were correlated with treatment levels, with values of 50-912 ppm in males and 59-1174 ppm in females. Since concentrations in the lipid of the diet fed to the animals were much higher than these, accumulation of the additive was absent or negligible. The chlorine concentrations in the perirenal fat of male and female rats fed diet 41B were 62 and 72 ppm respectively.

  15. Direct Estimate of Cocoa Powder Content in Cakes by Colorimetry and Photoacoustic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dóka, O.; Bicanic, D.; Kulcsár, R.

    2014-12-01

    Cocoa is a very important ingredient in the food industry and largely consumed worldwide. In this investigation, colorimetry and photoacoustic spectroscopy were used to directly assess the content of cocoa powder in cakes; both methods provided satisfactory results. The calibration curve was constructed using a series of home-made cakes containing varying amount of cocoa powder. Then, at a later stage, the same calibration curve was used to quantify the cocoa content of several commercially available cakes. For self-made cakes, the relationship between the PAS signal and the content of cocoa powder was linear while a quadratic dependence was obtained for the colorimetric index (brightness) and total color difference ().

  16. Optimization of a sponge cake formulation with inulin as fat replacer: structure, physicochemical, and sensory properties.

    PubMed

    Rodríguez-García, Julia; Puig, Ana; Salvador, Ana; Hernando, Isabel

    2012-02-01

    The effects of several fat replacement levels (0%, 35%, 50%, 70%, and 100%) by inulin in sponge cake microstructure and physicochemical properties were studied. Oil substitution for inulin decreased significantly (P < 0.05) batter viscosity, giving heterogeneous bubbles size distributions as it was observed by light microscopy. Using confocal laser scanning microscopy the fat was observed to be located at the bubbles' interface, enabling an optimum crumb cake structure development during baking. Cryo-SEM micrographs of cake crumbs showed a continuous matrix with embedded starch granules and coated with oil; when fat replacement levels increased, starch granules appeared as detached structures. Cakes with fat replacement up to 70% had a high crumb air cell values; they were softer and rated as acceptable by an untrained sensory panel (n = 51). So, the reformulation of a standard sponge cake recipe to obtain a new product with additional health benefits and accepted by consumers is achieved. Practical Application:  In this study, fat is replaced by inulin in cakes, which is a fiber mainly obtained from chicory roots. Sponge cake formulations with reductions in fat content up to 70% are achieved. These high-quality products can be labeled as "reduced in fat" according to U.S. FDA (2009) and EU regulations (European-Union 2006). © 2012 Institute of Food Technologists®

  17. Secondary Aluminum Processing Waste: Salt Cake ...

    EPA Pesticide Factsheets

    Thirty-nine salt cake samples were collected from 10 SAP facilities across the U.S. The facilities were identified by the Aluminum Association to cover a wide range of processes. Results suggest that while the percent metal leached from the salt cake was relatively low, the leachable metal content may still pose a contamination concern and potential human and ecological exposure if uncontrollably released to the environment. As a result, salt cake should always be managed at facilities that utilize synthetic liner systems with leachate collection (the salt content of the leachate will increase the hydraulic conductivity of clay liners within a few years of installation). The mineral phase analysis showed that various species of aluminum are present in the salt cake samples with a large degree of variability. The relative abundance of various aluminum species was evaluated but it is noted that the method used is a semi-quantitative method and as a result there is a limitation for the data use. The analysis only showed a few aluminum species present in salt cake which does not exclude the presence of other crystalline species especially in light of the variability observed in the samples. Results presented in this document are of particular importance when trying to understand concerns associated with the disposal of salt cake in MSW landfills. From the end-of-life management perspective, data presented here suggest that salt cake should not be size reduce

  18. The influence of carbohydrate-based fat replacers with and without emulsifiers on the quality characteristics of lowfat cake.

    PubMed

    Khalil, A H

    1998-01-01

    Physical and sensory characteristics of cakes prepared with either the carbohydrate-based fat replacers N-Flate, Paselli MD 10 and Litesse (0, 25, 50 and 75% of fat weight) or fat replacers plus emulsifier (mono- and diglycerides; 0 and 3% of flour weight) were studied. Specific gravity of the batter was significantly (p < or = 0.05) improved by using the carbohydrate-based fat replacers, especially at the 25 and 50% replacement levels. The combination of the emulsifier with either Paselli MD 10 or Litesse also enhanced the specific gravity. Cakes prepared with fat replacers at the 25 and 50% levels had higher volumes, specific volume and standing heights than those of the control. Cakes prepared with fat replacers at the 25, 50 and 75% levels were more compressible than the control. Cakes prepared with Paselli MD 10 had the highest volumes, specific volume, standing heights and compressibilities. Incorporation of emulsifier with fat replacers improved cake volumes, standing heights and compressibilities. Cakes prepared with fat replacers exhibited higher crust and crumb color values compared to the control. Cakes prepared with 25 or 50% fat replacers had higher mean scores for flavor, softness and eating quality than the control. Incorporation of emulsifier with fat replacers did not affect the crust color, crumb color and flavor, but significantly (p < or = 0.05) improved softness and eating quality.

  19. Deletion of Protein Kinase C λ in POMC Neurons Predisposes to Diet-Induced Obesity

    PubMed Central

    Dorfman, Mauricio D.; Krull, Jordan E.; Scarlett, Jarrad M.; Guyenet, Stephan J.; Sajan, Mini P.; Damian, Vincent; Nguyen, Hong T.; Leitges, Michael; Morton, Gregory J.; Farese, Robert V.; Schwartz, Michael W.

    2017-01-01

    Effectors of the phosphoinositide 3-kinase (PI3K) signal transduction pathway contribute to the hypothalamic regulation of energy and glucose homeostasis in divergent ways. Here we show that central nervous system (CNS) action of the PI3K signaling intermediate atypical protein kinase C (aPKC) constrains food intake, weight gain, and glucose intolerance in both rats and mice. Pharmacological inhibition of CNS aPKC activity acutely increases food intake and worsens glucose tolerance in chow-fed rodents and causes excess weight gain during high-fat diet (HFD) feeding. Similarly, selective deletion of the aPKC isoform Pkc-λ in proopiomelanocortin (POMC) neurons disrupts leptin action, reduces melanocortin content in the paraventricular nucleus, and markedly increases susceptibility to obesity, glucose intolerance, and insulin resistance specifically in HFD-fed male mice. These data implicate aPKC as a novel regulator of energy and glucose homeostasis downstream of the leptin-PI3K pathway in POMC neurons. PMID:28073831

  20. HMGCR inhibits the early stage of PCV2 infection, while PKC enhances the infection at the late stage.

    PubMed

    Ma, Teng; Chen, Xinrong; Ouyang, Hongsheng; Liu, Xiaohui; Ouyang, Ting; Peng, Zhiyuan; Yang, Xin; Chen, Fuwang; Pang, Daxin; Bai, Jieying; Ren, Linzhu

    2017-02-02

    Porcine circovirus type 2 (PCV2) is the smallest DNA virus, which causes porcine circovirus diseases and porcine circovirus-associated diseases (PCVD/PCVAD). Due the small size of viral genomic DNA, PCV2 replication predominantly relies on the host factors. In this study, effects of PKC and HMGCR on PCV2 infection were evaluated using real time PCR and western blot. We found that PKC and HMGCR participated in different stages of PCV2 infection. HMGCR works on the early stage of the infection to inhibit the virus infection, while PKC enhances the infection at the late stage. Furthermore, PKC enhances PCV2 replication by activating JNK1/2 and inactivating HMGCR via regulating phosphorylation of these two proteins, while HMGCR can suppress phosphorylation of JNK1/2. The results in the present study will provide new sights in the pathogenesis of PCV2 infection, as well as interactions between host factors during PCV2 infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Identification of myristoylated alanine-rich C kinase substrate (MARCKS) in astrocytes.

    PubMed

    Vitkovic, Ljubisa; Aloyo, Vincent J; Maeda, Shigeru; Benzil, Deborha L; Bressler, Joseph P; Hilt, Dana C

    2005-01-01

    We have characterized membrane-associated substrates of Ca2+-dependent kinases in primary rat astrocytes by in vitro phosphorylation, 2-dimensional gel electrophoresis and autoradiography. The most prominent among these were three acidic, protein kinase C (PKC) substrates. These are important because they likely transduce cytokine and other neuro-immune modulatory signals mediated by PKC. We now show that one of these phosphoproteins is myristoylated alanine-rich PKC kinase substrate (MARCKS) or phosphomyristin C. The identity was corroborated by one- and 2- dimensional immunoblotting with an MARCKS-specific polyclonal antibody. Exposing primary astrocytes to phorbol 12-myristate 13-acetate stimulated phosphorylation of this protein. The level of MARCKS appeared inversely proportional to the proliferative potential of astrocytes because it was lower in spontaneously transformed as compared to passaged or confluent cells. These data are consistent with previous reports and indicate that one of three major acidic membrane-associated PKC substrates in astrocytes is MARCKS. Thus, MARCKS is likely near-proximal transducer of PKC-mediated signals in astrocytes.

  2. The kinetics of translocation and cellular quantity of protein kinase C in human leukocytes are modified during spaceflight

    NASA Technical Reports Server (NTRS)

    Hatton, J. P.; Gaubert, F.; Lewis, M. L.; Darsel, Y.; Ohlmann, P.; Cazenave, J. P.; Schmitt, D.

    1999-01-01

    Protein kinase C (PKC) is a family of serine/threonine kinases that play an important role in mediating intracellular signal transduction in eukaryotes. U937 cells were exposed to microgravity during a space shuttle flight and stimulated with a radiolabeled phorbol ester ([3H]PDBu) to both specifically label and activate translocation of PKC from the cytosol to the particulate fraction of the cell. Although significant translocation of PKC occurred at all g levels, the kinetics of translocation in flight were significantly different from those on the ground. In addition, the total quantity of [3H]PDBu binding PKC was increased in flight compared to cells at 1 g on the ground, whereas the quantity in hypergravity (1.4 g) was decreased with respect to 1 g. Similarly, in purified human peripheral blood T cells the quantity of PKCdelta varied in inverse proportion to the g level for some experimental treatments. In addition to these novel findings, the results confirm earlier studies which showed that PKC is sensitive to changes in gravitational acceleration. The mechanisms of cellular gravisensitivity are poorly understood but the demonstrated sensitivity of PKC to this stimulus provides us with a useful means of measuring the effect of altered gravity levels on early cell activation events.

  3. PKC delta activation increases neonatal rat retinal cells survival in vitro: Involvement of neurotrophins and M1 muscarinic receptors.

    PubMed

    Braga, Luis Eduardo Gomes; Miranda, Renan Lyra; Granja, Marcelo Gomes; Giestal-de-Araujo, Elizabeth; Dos Santos, Aline Araujo

    2018-06-12

    Protein kinase C (PKC) is a family of serine/threonine kinases related to several phenomena as cell proliferation, differentiation and survival. Our previous data demonstrated that treatment of axotomized neonatal rat retinal cell cultures for 48 h with phorbol 12-myristate 13-acetate (PMA), a PKC activator, increases retinal ganglion cells (RGCs) survival. Moreover, this treatment decreases M1 receptors (M1R) and modulates BDNF levels. The aim of this work was to assess the possible involvement of neurotrophins BDNF and NGF in the modulation of M1R levels induced by PKC activation, and its involvement on RGCs survival. Our results show that PMA (50 ng/mL) treatment, via PKC delta activation, modulates NGF, BDNF and M1R levels. BDNF and NGF mediate the decrease of M1R levels induced by PMA treatment. M1R activation is essential to PMA neuroprotective effect on RGCs as telenzepine (M1R selective antagonist) abolished it. Based on our results we suggest that PKC delta activation modulates neurotrophins levels by a signaling pathway that involves M1R activation and ultimately leading to an increase in RGCs survival in vitro. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Adaptor proteins in protein kinase C-mediated signal transduction.

    PubMed

    Schechtman, D; Mochly-Rosen, D

    2001-10-01

    Spatial and temporal organization of signal transduction is essential in determining the speed and precision by which signaling events occur. Adaptor proteins are key to organizing signaling enzymes near their select substrates and away from others in order to optimize precision and speed of response. Here, we describe the role of adaptor proteins in determining the specific function of individual protein kinase C (PKC) isozymes. These isozyme-selective proteins were called collectively RACKs (receptors for activated C-kinase). The role of RACKs in PKC-mediated signaling was determined using isozyme-specific inhibitors and activators of the binding of each isozyme to its respective RACK. In addition to anchoring activated PKC isozymes, RACKs anchor other signaling enzymes. RACK1, the anchoring protein for activated betaIIPKC, binds for example, Src tyrosine kinase, integrin, and phosphodiesterase. RACK2, the epsilonPKC-specific RACK, is a coated-vesicle protein and thus is involved in vesicular release and cell-cell communication. Therefore, RACKs are not only adaptors for PKC, but also serve as adaptor proteins for several other signaling enzymes. Because at least some of the proteins that bind to RACKs, including PKC itself, regulate cell growth, modulating their interactions with RACKs may help elucidate signaling pathways leading to carcinogenesis and could result in the identification of novel therapeutic targets.

  5. Insulin stimulates phospholipase D-dependent phosphatidylcholine hydrolysis, Rho translocation, de novo phospholipid synthesis, and diacylglycerol/protein kinase C signaling in L6 myotubes.

    PubMed

    Standaert, M L; Bandyopadhyay, G; Zhou, X; Galloway, L; Farese, R V

    1996-07-01

    Previous studies have provided conflicting findings on whether insulin activates certain, potentially important, phospholipid signaling systems in skeletal muscle preparations. In particular, insulin effects on the hydrolysis of phosphatidylcholine (PC) and subsequent activation of protein kinase C (PKC) have not been apparent in some studies. Presently, we examined insulin effects on phospholipid signaling systems, diacylglycerol (DAG) production, and PKC translocation/activation in L6 myotubes. We found that insulin provoked rapid increases in phospholipase D (PLD)-dependent hydrolysis of PC, as evidenced by increases in choline release and phosphatidylethanol production in cells incubated in the presence of ethanol. In association with PC-PLD activation, Rho, a small G protein that is known to activate PC-PLD activation, translocated from the cytosol to the membrane fraction in response to insulin treatment. PC-PLD activation was also accompanied by increases in total DAG production and increases in the translocation of both PKC enzyme activity and DAG-sensitive PKC-alpha, -beta, -delta, and -epsilon from the cytosol to the membrane fraction. A potential role for PKC or a related protein kinase in insulin action was suggested by the finding that RO 31-8220 inhibited both PKC enzyme activity and insulin-stimulated [3H]2-deoxyglucose uptake. Our findings provide the first evidence that insulin stimulates Rho translocation and activates PC-PLD in L6 skeletal muscle cells. Moreover, this signaling system appears to lead to increases in DAG/PKC signaling, which, along with other related signaling factors, may regulate certain metabolic processes, such as glucose transport, in these cells.

  6. Protein Kinase C Activation Promotes Microtubule Advance in Neuronal Growth Cones by Increasing Average Microtubule Growth Lifetimes

    PubMed Central

    Kabir, Nurul; Schaefer, Andrew W.; Nakhost, Arash; Sossin, Wayne S.; Forscher, Paul

    2001-01-01

    We describe a novel mechanism for protein kinase C regulation of axonal microtubule invasion of growth cones. Activation of PKC by phorbol esters resulted in a rapid, robust advance of distal microtubules (MTs) into the F-actin rich peripheral domain of growth cones, where they are normally excluded. In contrast, inhibition of PKC activity by bisindolylmaleimide and related compounds had no perceptible effect on growth cone motility, but completely blocked phorbol ester effects. Significantly, MT advance occurred despite continued retrograde F-actin flow—a process that normally inhibits MT advance. Polymer assembly was necessary for PKC-mediated MT advance since it was highly sensitive to a range of antagonists at concentrations that specifically interfere with microtubule dynamics. Biochemical evidence is presented that PKC activation promotes formation of a highly dynamic MT pool. Direct assessment of microtubule dynamics and translocation using the fluorescent speckle microscopy microtubule marking technique indicates PKC activation results in a nearly twofold increase in the typical lifetime of a MT growth episode, accompanied by a 1.7-fold increase and twofold decrease in rescue and catastrophe frequencies, respectively. No significant effects on instantaneous microtubule growth, shortening, or sliding rates (in either anterograde or retrograde directions) were observed. MTs also spent a greater percentage of time undergoing retrograde transport after PKC activation, despite overall MT advance. These results suggest that regulation of MT assembly by PKC may be an important factor in determining neurite outgrowth and regrowth rates and may play a role in other cellular processes dependent on directed MT advance. PMID:11238458

  7. Kidney-targeted inhibition of protein kinase C-α ameliorates nephrotoxic nephritis with restoration of mitochondrial dysfunction.

    PubMed

    Kvirkvelia, Nino; McMenamin, Malgorzata; Warren, Marie; Jadeja, Ravirajsinh N; Kodeboyina, Sai Karthik; Sharma, Ashok; Zhi, Wenbo; O'Connor, Paul M; Raju, Raghavan; Lucas, Rudolf; Madaio, Michael P

    2018-05-04

    To investigate the role of protein kinase C-α (PKC-α) in glomerulonephritis, the capacity of PKC-α inhibition to reverse the course of established nephrotoxic nephritis (NTN) was evaluated. Nephritis was induced by a single injection of nephrotoxic serum and after its onset, a PKC-α inhibitor was administered either systemically or by targeted glomerular delivery. By day seven, all mice with NTN had severe nephritis, whereas mice that received PKC-α inhibitors in either form had minimal evidence of disease. To further understand the underlying mechanism, label-free shotgun proteomic analysis of the kidney cortexes were performed, using quantitative mass spectrometry. Ingenuity pathway analysis revealed 157 differentially expressed proteins and mitochondrial dysfunction as the most modulated pathway. Functional protein groups most affected by NTN were mitochondrial proteins associated with respiratory processes. These proteins were down-regulated in the mice with NTN, while their expression was restored with PKC-α inhibition. This suggests a role for proteins that regulate oxidative phosphorylation in recovery. In cultured glomerular endothelial cells, nephrotoxic serum caused a decrease in mitochondrial respiration and membrane potential, mitochondrial morphologic changes and an increase in glycolytic lactic acid production; all normalized by PKC-α inhibition. Thus, PKC-α has a critical role in NTN progression, and the results implicate mitochondrial processes through restoring oxidative phosphorylation, as an essential mechanism underlying recovery. Importantly, our study provides additional support for targeted therapy to glomeruli to reverse the course of progressive disease. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  8. The roles of MCP-1 and protein kinase C delta activation in human eosinophilic leukemia EoL-1 cells.

    PubMed

    Lee, Ji-Sook; Yang, Eun Ju; Kim, In Sik

    2009-12-01

    Idiopathic hypereosinophilc syndrome is a disorder associated with clonally eosinophilic proliferation. The importance of FIP1-like-1-platelet-derived growth factor receptor-alpha (FIP1L1-PDGFRA) in the pathogenesis and classification of HES has been recently reported. In this study, we investigated the contribution of monocyte chemoattractant protein-1 (MCP-1)/CCL2 to chemotactic activity and protein kinase C delta (PKC delta in the human eosinophilic leukemia cell line EoL-1. These cells express CCR2 protein among the CC chemokine receptors (CCR1-5). MCP-1 induces strong migration of EoL-1 cells and the chemotaxis signal in response to MCP-1 involves a G(i)/G(o) protein, phospholipase C (PLC), PKC delta, p38 MAPK and NF-kappaB. MCP-1 activates p38 MAPK via G(i)/G(o) protein, PLC and PKC delta cascade. MCP-1 also induces NF-kappaB translocation and the activation is inhibited by PKC delta activation. The increase in the basal expression and activity of PKC delta in EoL-1 cells, compared to normal eosinophils, inhibits apoptosis in EoL-1 cells. Anti-apoptotic mechanism of PKC delta is related to inhibition of caspase 3 and caspase 9, but not to FIP1L1-PDGFRA. PKC delta functions as an anti-apoptotic molecule, and is involved in EoL-1 cell movement stimulated by MCP-1. This study contributes to an understanding of MCP-1 in eosinophil biology and pathogenic mechanism of eosinophilic disorders.

  9. Staling of cereal bran enriched cakes and the effect of an endoxylanase enzyme on the physicochemical and sensorial characteristics.

    PubMed

    Lebesi, Dimitra M; Tzia, Constantina

    2011-08-01

    The staling of cakes enriched with untreated brans and endoxylanase-treated brans was evaluated by monitoring the changes in physicochemical, thermal, and sensorial properties of cakes during 7-d storage. Oat and rice bran were treated with different levels (0, 70, and 700 ppm) of an endoxylanase enzyme and added to cakes on 30% flour weight basis. Moisture losses, water activity, crumb firmness, starch retrogradation, and sensorial characteristics were used as staling indicators. Avrami-type equations were efficiently used for modeling the starch retrogradation kinetics, while linear models most adequately described crumb firming kinetics. Cake staling induced an increase in crumb firmness and enthalpy of amylopectin retrogradation, and a decrease in crumb moisture and sensory quality and acceptability scores of cakes. Oat bran-containing cakes better maintained their characteristics compared to the ones containing rice bran along the 7-d storage. Endoxylanase treatment of brans delayed the changes naturally induced during staling in crumb moisture content, amylopectin retrogradation enthalpy, and crumb firmness in the respective cakes. Deterioration of the sensorial characteristics was slower for the cakes containing endoxylanase-treated brans, as well. The level of endoxylanase treatment did not differentiate significantly (P < 0.05) any of the staling indicators. Overall, this study demonstrated that addition of endoxylanase-treated brans can result in cakes with improved nutritional characteristics and increased shelf life. The results of the study show the potential of using enzymes to modify underutilized food sources that can be properly incorporated in baked goods, improving their nutritional value, their quality characteristics, and providing longer shelf life. The developed procedure and results can be utilized by the bakery industry to make high fiber and low cost bakery products with improved sensorial characteristics that are appealing to the consumers. © 2011 Institute of Food Technologists®

  10. Protein Kinase C Controls Binding of Igo/ENSA Proteins to Protein Phosphatase 2A in Budding Yeast.

    PubMed

    Thai, Vu; Dephoure, Noah; Weiss, Amit; Ferguson, Jacqueline; Leitao, Ricardo; Gygi, Steven P; Kellogg, Douglas R

    2017-03-24

    Protein phosphatase 2A (PP2A) plays important roles in controlling mitosis in all eukaryotic cells. The form of PP2A that controls mitosis is associated with a conserved regulatory subunit that is called B55 in vertebrates and Cdc55 in budding yeast. The activity of this form of PP2A can be inhibited by binding of conserved Igo/ENSA proteins. Although the mechanisms that activate Igo/ENSA to bind and inhibit PP2A are well understood, little is known about how Igo/Ensa are inactivated. Here, we have analyzed regulation of Igo/ENSA in the context of a checkpoint pathway that links mitotic entry to membrane growth in budding yeast. Protein kinase C (Pkc1) relays signals in the pathway by activating PP2A Cdc55 We discovered that constitutively active Pkc1 can drive cells through a mitotic checkpoint arrest, which suggests that Pkc1-dependent activation of PP2A Cdc55 plays a critical role in checkpoint signaling. We therefore used mass spectrometry to determine how Pkc1 modifies the PP2A Cdc55 complex. This revealed that Pkc1 induces changes in the phosphorylation of multiple subunits of the complex, as well as dissociation of Igo/ENSA. Pkc1 directly phosphorylates Cdc55 and Igo/ENSA, and phosphorylation site mapping and mutagenesis indicate that phosphorylation of Cdc55 contributes to Igo/ENSA dissociation. Association of Igo2 with PP2A Cdc55 is regulated during the cell cycle, yet mutation of Pkc1-dependent phosphorylation sites on Cdc55 and Igo2 did not cause defects in mitotic progression. Together, the data suggest that Pkc1 controls PP2A Cdc55 by multiple overlapping mechanisms. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Conventional protein kinase C-α (PKC-α) and PKC-β negatively regulate RIG-I antiviral signal transduction.

    PubMed

    Maharaj, Natalya P; Wies, Effi; Stoll, Andrej; Gack, Michaela U

    2012-02-01

    Retinoic acid-inducible gene I (RIG-I) is a key sensor for viral RNA in the cytosol, and it initiates a signaling cascade that leads to the establishment of an interferon (IFN)-mediated antiviral state. Because of its integral role in immune signaling, RIG-I activity must be precisely controlled. Recent studies have shown that RIG-I CARD-dependent signaling function is regulated by the dynamic balance between phosphorylation and TRIM25-induced K₆₃-linked ubiquitination. While ubiquitination of RIG-I is critical for RIG-I's ability to induce an antiviral IFN response, phosphorylation of RIG-I at S₈ or T₁₇₀ suppresses RIG-I signal-transducing activity under normal conditions. Here, we not only further define the roles of S₈ and T₁₇₀ phosphorylation for controlling RIG-I activity but also identify conventional protein kinase C-α (PKC-α) and PKC-β as important negative regulators of the RIG-I signaling pathway. Mutational analysis indicated that while the phosphorylation of S₈ or T₁₇₀ potently inhibits RIG-I downstream signaling, the dephosphorylation of RIG-I at both residues is necessary for optimal TRIM25 binding and ubiquitination-mediated RIG-I activation. Furthermore, exogenous expression, gene silencing, and specific inhibitor treatment demonstrated that PKC-α/β are the primary kinases responsible for RIG-I S₈ and T₁₇₀ phosphorylation. Coimmunoprecipitation showed that PKC-α/β interact with RIG-I under normal conditions, leading to its phosphorylation, which suppresses TRIM25 binding, RIG-I CARD ubiquitination, and thereby RIG-I-mediated IFN induction. PKC-α/β double-knockdown cells exhibited markedly decreased S₈/T₁₇₀ phosphorylation levels of RIG-I and resistance to infection by vesicular stomatitis virus. Thus, these findings demonstrate that PKC-α/β-induced RIG-I phosphorylation is a critical regulatory mechanism for controlling RIG-I antiviral signal transduction under normal conditions.

  12. Conventional Protein Kinase C-α (PKC-α) and PKC-β Negatively Regulate RIG-I Antiviral Signal Transduction

    PubMed Central

    Maharaj, Natalya P.; Wies, Effi; Stoll, Andrej

    2012-01-01

    Retinoic acid-inducible gene I (RIG-I) is a key sensor for viral RNA in the cytosol, and it initiates a signaling cascade that leads to the establishment of an interferon (IFN)-mediated antiviral state. Because of its integral role in immune signaling, RIG-I activity must be precisely controlled. Recent studies have shown that RIG-I CARD-dependent signaling function is regulated by the dynamic balance between phosphorylation and TRIM25-induced K63-linked ubiquitination. While ubiquitination of RIG-I is critical for RIG-I's ability to induce an antiviral IFN response, phosphorylation of RIG-I at S8 or T170 suppresses RIG-I signal-transducing activity under normal conditions. Here, we not only further define the roles of S8 and T170 phosphorylation for controlling RIG-I activity but also identify conventional protein kinase C-α (PKC-α) and PKC-β as important negative regulators of the RIG-I signaling pathway. Mutational analysis indicated that while the phosphorylation of S8 or T170 potently inhibits RIG-I downstream signaling, the dephosphorylation of RIG-I at both residues is necessary for optimal TRIM25 binding and ubiquitination-mediated RIG-I activation. Furthermore, exogenous expression, gene silencing, and specific inhibitor treatment demonstrated that PKC-α/β are the primary kinases responsible for RIG-I S8 and T170 phosphorylation. Coimmunoprecipitation showed that PKC-α/β interact with RIG-I under normal conditions, leading to its phosphorylation, which suppresses TRIM25 binding, RIG-I CARD ubiquitination, and thereby RIG-I-mediated IFN induction. PKC-α/β double-knockdown cells exhibited markedly decreased S8/T170 phosphorylation levels of RIG-I and resistance to infection by vesicular stomatitis virus. Thus, these findings demonstrate that PKC-α/β-induced RIG-I phosphorylation is a critical regulatory mechanism for controlling RIG-I antiviral signal transduction under normal conditions. PMID:22114345

  13. ARF6 and GASP-1 are post-endocytic sorting proteins selectively involved in the intracellular trafficking of dopamine D2 receptors mediated by GRK and PKC in transfected cells

    PubMed Central

    Cho, DI; Zheng, M; Min, C; Kwon, KJ; Shin, CY; Choi, HK; Kim, KM

    2013-01-01

    Background and Purpose GPCRs undergo both homologous and heterologous regulatory processes in which receptor phosphorylation plays a critical role. The protein kinases responsible for each pathway are well established; however, other molecular details that characterize each pathway remain unclear. In this study, the molecular mechanisms that determine the differences in the functional roles and intracellular trafficking between homologous and PKC-mediated heterologous internalization pathways for the dopamine D2 receptor were investigated. Experimental Approach All of the S/T residues located within the intracellular loops of D2 receptor were mutated, and the residues responsible for GRK- and PKC-mediated internalization were determined in HEK-293 cells and SH-SY5Y cells. The functional role of receptor internalization and the cellular components that determine the post-endocytic fate of internalized D2 receptors were investigated in the transfected cells. Key Results T134, T225/S228/S229 and S325 were involved in PKC-mediated D2 receptor desensitization. S229 and adjacent S/T residues mediated the PKC-dependent internalization of D2 receptors, which induced down-regulation and desensitization. S/T residues within the second intracellular loop and T225 were the major residues involved in GRK-mediated internalization of D2 receptors, which induced receptor resensitization. ARF6 mediated the recycling of D2 receptors internalized in response to agonist stimulation. In contrast, GASP-1 mediated the down-regulation of D2 receptors internalized in a PKC-dependent manner. Conclusions and Implications GRK- and PKC-mediated internalizations of D2 receptors occur through different intracellular trafficking pathways and mediate distinct functional roles. Distinct S/T residues within D2 receptors and different sorting proteins are involved in the dissimilar regulation of D2 receptors by GRK2 and PKC. PMID:23082996

  14. Zeta Inhibitory Peptide Disrupts Electrostatic Interactions That Maintain Atypical Protein Kinase C in Its Active Conformation on the Scaffold p62.

    PubMed

    Tsai, Li-Chun Lisa; Xie, Lei; Dore, Kim; Xie, Li; Del Rio, Jason C; King, Charles C; Martinez-Ariza, Guillermo; Hulme, Christopher; Malinow, Roberto; Bourne, Philip E; Newton, Alexandra C

    2015-09-04

    Atypical protein kinase C (aPKC) enzymes signal on protein scaffolds, yet how they are maintained in an active conformation on scaffolds is unclear. A myristoylated peptide based on the autoinhibitory pseudosubstrate fragment of the atypical PKCζ, zeta inhibitory peptide (ZIP), has been extensively used to inhibit aPKC activity; however, we have previously shown that ZIP does not inhibit the catalytic activity of aPKC isozymes in cells (Wu-Zhang, A. X., Schramm, C. L., Nabavi, S., Malinow, R., and Newton, A. C. (2012) J. Biol. Chem. 287, 12879-12885). Here we sought to identify a bona fide target of ZIP and, in so doing, unveiled a novel mechanism by which aPKCs are maintained in an active conformation on a protein scaffold. Specifically, we used protein-protein interaction network analysis, structural modeling, and protein-protein docking to predict that ZIP binds an acidic surface on the Phox and Bem1 (PB1) domain of p62, an interaction validated by peptide array analysis. Using a genetically encoded reporter for PKC activity fused to the p62 scaffold, we show that ZIP inhibits the activity of wild-type aPKC, but not a construct lacking the pseudosubstrate. These data support a model in which the pseudosubstrate of aPKCs is tethered to the acidic surface on p62, locking aPKC in an open, signaling-competent conformation. ZIP competes for binding to the acidic surface, resulting in displacement of the pseudosubstrate of aPKC and re-engagement in the substrate-binding cavity. This study not only identifies a cellular target for ZIP, but also unveils a novel mechanism by which scaffolded aPKC is maintained in an active conformation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Protein kinase C negatively regulates Akt activity and modifies UVC-induced apoptosis in mouse keratinocytes.

    PubMed

    Li, Luowei; Sampat, Keeran; Hu, Nancy; Zakari, Julia; Yuspa, Stuart H

    2006-02-10

    Skin keratinocytes are subject to frequent chemical and physical injury and have developed elaborate cell survival mechanisms to compensate. Among these, the Akt/protein kinase B (PKB) pathway protects keratinocytes from the toxic effects of ultraviolet light (UV). In contrast, the protein kinase C (PKC) family is involved in several keratinocyte death pathways. During an examination of potential interactions among these two pathways, we found that the insulin-like growth factor (IGF-1) activates both the PKC and the Akt signaling pathways in cultured primary mouse keratinocytes as indicated by increased phospho-PKC and phospho-Ser-473-Akt. IGF-1 also selectively induced translocation of PKCdelta and PKCepsilon from soluble to particulate fractions in mouse keratinocytes. Furthermore, the PKC-specific inhibitor, GF109203X, increased IGF-1-induced phospho-Ser-473-Akt and Akt kinase activity and enhanced IGF-1 protection from UVC-induced apoptosis. Selective activation of PKC by 12-O-tetradecanoylphorbol-13-acetate (TPA) reduced phospho-Ser-473-Akt, suggesting that activation of PKC inhibits Akt activity. TPA also attenuated IGF-1 and epidermal growth factor-induced phospho-Ser-473-Akt, reduced Akt kinase activity, and blocked IGF-1 protection from UVC-induced apoptosis. The inhibition of Akt activity by TPA was reduced by inhibitors of protein phosphatase 2A, and TPA stimulated the association of phosphatase 2A with Akt. Individual PKC isoforms were overexpressed in cultured keratinocytes by transduction with adenoviral vectors or inhibited with PKC-selective inhibitors. These studies indicated that PKCdelta and PKCepsilon were selectively potent at causing dephosphorylation of Akt and modifying cell survival, whereas PKCalpha enhanced phosphorylation of Akt on Ser-473. Our results suggested that activation of PKCdelta and PKCepsilon provide a negative regulation for Akt phosphorylation and kinase activity in mouse keratinocytes and serve as modulators of cell survival pathways in response to external stimuli.

  16. Effects of protopine on intracellular calcium and the PKC activity of rat aorta smooth muscle.

    PubMed

    Li, Bin; Wu, Qin; Shi, Jing-Shan; Sun, An-Sheng; Huang, Xie-Nan

    2005-04-25

    We have previously shown that the vasodilator effect of protopine (Pro) on rabbit aorta is related to the elevations of cAMP and cGMP. In the present study, the vasodilator mechanisms of Pro were further explored by recording the isotonic contraction of the rat aortic strips, detecting directly the intracellular free Ca(2+) concentration ([Ca(2+)](i)) with Fura-2/AM loaded vascular smooth muscle cells (VSMCs) of rat aorta, and determining the activity of protein kinase C (PKC) in rat aortic tissue with radioactive isotope gamma-32P -ATP-catalyzing assay. By recording the aortic strips contraction induced by noradrenaline (NA) and high potassium (K(+)), Pro shifted nonparallelly the concentration-response curves of NA and high K(+) to right, in which the maximal response was depressed in the presence of Pro (30 and 100 micromol/L), and the values of pD'(2) were 3.70-/+0.25 and 3.97-/+0.15 for NA and high K(+), respectively. In the Fura-2/AM loaded VSMCs, Pro (50 and 100 micromol/L) could not produce any significant change on the resting [Ca(2+)](i), but significantly decreased the [Ca(2+)](i) elevated by NA and high K(+). Pro (30 and 100 micromol/L) had no significant effect on the activity of the cytosolic and membrane PKC in the aortic strips inpretreated by NA. However, in the aortic strips pretreated by NA, the activity of membrane PKC was significantly increased and the activity of cytosolic PKC tended to be decreased by Pro, while the activity of total PKC did not change. These results suggest that Pro seems to promote the translocation of PKC from the cytosol to the membrane in the presence of NA, its vasodilator effect may be the comprehensive result of its decreasing effect on the [Ca(2+)](i) and the increasing effect on cAMP and cGMP, as well as its influence on the PKC.

  17. Efficacy evaluation of a commercial neem cake for control of Haematobia irritans on Nelore cattle.

    PubMed

    Chagas, Ana Carolina de Souza; Oliveira, Márcia Cristina de Sena; Giglioti, Rodrigo; Calura, Fernando Henrique; Ferrenzini, Jenifer; Forim, Moacir Rossi; Barros, Antonio Thadeu Medeiros de

    2010-01-01

    Much attention has been given to the development of botanical insecticides to provide effective natural control of cattle ectoparasites without harming animals, consumers, and environment. This study evaluated the efficacy of a commercial neem cake in controlling Haematobia irritans infestation on cattle. The study was conducted at the Embrapa Southeast Cattle Research Center (CPPSE), in São Carlos, SP, Brazil, from April to July 2008. The neem cake mixed in mineral salt in a 2% concentration was provided to 20 Nelore cows during nine weeks and had its efficacy evaluated by comparison of the infestation level against a control group. Fly infestations were recorded weekly by digital photographs of each animal from both groups and the number of flies was later counted in a computer-assisted image analyzer. Quantification of neem cake components by high-performance liquid chromatography revealed the presence of azadirachtin (421 mg.kg(-1)) and 3-tigloyl-azadirachtol (151 mg.kg(-1)) in the tested neem cake. Addition of the 2% neem cake reduced mineral salt intake in about 22%. The 2% neem cake treatment failed to reduce horn fly infestations on cattle during the 9-week study period.

  18. The Role of miR-330-3p/PKC-α Signaling Pathway in Low-Dose Endothelial-Monocyte Activating Polypeptide-II Increasing the Permeability of Blood-Tumor Barrier

    PubMed Central

    Liu, Jiahui; Liu, Libo; Chao, Shuo; Liu, Yunhui; Liu, Xiaobai; Zheng, Jian; Chen, Jiajia; Gong, Wei; Teng, Hao; Li, Zhen; Wang, Ping; Xue, Yixue

    2017-01-01

    This study was performed to determine whether EMAP II increases the permeability of the blood-tumor barrier (BTB) by affecting the expression of miR-330-3p as well as its possible mechanisms. We determined the over-expression of miR-330-3p in glioma microvascular endothelial cells (GECs) by Real-time PCR. Endothelial monocyte-activating polypeptide-II (EMAP-II) significantly decreased the expression of miR-330-3p in GECs. Pre-miR-330-3p markedly decreased the permeability of BTB and increased the expression of tight junction (TJ) related proteins ZO-1, occludin and claudin-5, however, anti-miR-330-3p had the opposite effects. Anti-miR-330-3p could enhance the effect of EMAP-II on increasing the permeability of BTB, however, pre-miR-330-3p partly reversed the effect of EMAP-II on that. Similarly, anti-miR-330-3p improved the effects of EMAP-II on increasing the expression levels of PKC-α and p-PKC-α in GECs and pre-miR-330-3p partly reversed the effects. MiR-330-3p could target bind to the 3′UTR of PKC-α. The results of in vivo experiments were similar to those of in vitro experiments. These suggested that EMAP-II could increase the permeability of BTB through inhibiting miR-330-3p which target negative regulation of PKC-α. Pre-miR-330-3p and PKC-α inhibitor decreased the BTB permeability and up-regulated the expression levels of ZO-1, occludin and claudin-5 while anti-miR-330-3p and PKC-α activator brought the reverse effects. Compared with EMAP-II, anti-miR-330-3p and PKC-α activator alone, the combination of the three combinations significantly increased the BTB permeability. EMAP-II combined with anti-miR-330-3p and PKCα activator could enhance the DOX’s effects on inhibiting the cell viabilities and increasing the apoptosis of U87 glioma cells. Our studies suggest that low-dose EMAP-II up-regulates the expression of PKC-α and increases the activity of PKC-α by inhibiting the expression of miR-330-3p, reduces the expression of ZO-1, occludin and claudin-5, and thereby increasing the permeability of BTB. The results can provide a new strategy for the comprehensive treatment of glioma. PMID:29311822

  19. Cake: a bioinformatics pipeline for the integrated analysis of somatic variants in cancer genomes

    PubMed Central

    Rashid, Mamunur; Robles-Espinoza, Carla Daniela; Rust, Alistair G.; Adams, David J.

    2013-01-01

    Summary: We have developed Cake, a bioinformatics software pipeline that integrates four publicly available somatic variant-calling algorithms to identify single nucleotide variants with higher sensitivity and accuracy than any one algorithm alone. Cake can be run on a high-performance computer cluster or used as a stand-alone application. Availabilty: Cake is open-source and is available from http://cakesomatic.sourceforge.net/ Contact: da1@sanger.ac.uk Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:23803469

  20. Neem cake: chemical composition and larvicidal activity on Asian tiger mosquito.

    PubMed

    Nicoletti, Marcello; Mariani, Susanna; Maccioni, Oliviero; Coccioletti, Tiziana; Murugan, Kardaray

    2012-07-01

    New pesticides based on natural products are urgently needed, in consideration of their environmental care and lower collateral effects. Neem oil, the main product obtained from Azadiractha indica A. Juss, commonly known as neem tree, is mainly used in medical devices, cosmetics and soaps, as well as important insecticide. Manufacturing of neem oil first includes the collection of the neem seeds as raw material used for the extraction. Neem cake is the waste by-product remaining after extraction processes. The quality of the oil, as that of the cake, strictly depends from the quality of seeds as well as from the type of extraction processes used, which strongly influences the chemical composition of the product. Currently, the different types of commercial neem cake on the market are roughly identified as oiled and deoiled cake, but several other differences can be detected. The differences are relevant and must be determined, to obtain the necessary correlation between chemical constitution and larvicidal activities. Six different batches of neem cake, marketed by several Indian and European companies, were analyzed by HPLC and HPTLC, and their fingerprints compared, obtaining information about the different compositions, focusing in particular on nortriterpenes, considered as the main active components of neem oil. Therefore, the chemical composition of each cake was connected with the biological activitiy, i.e., the effects of the extracts of the six neem cakes were tested on eggs and larvae of Aedes albopictus (Stegomyia albopicta) (Diptera: Culicidae), commonly known as Asian tiger mosquito. The results confirmed the previously reported larvicide effects of neem cake that, however, can now be related to the chemical composition, in particular with nortriterpenes, allowing in that way to discriminate between the quality of the various marketed products, as potential domestic insecticides.

  1. Bioactive properties of faveleira (Cnidoscolus quercifolius) seeds, oil and press cake obtained during oilseed processing.

    PubMed

    Ribeiro, Penha Patrícia Cabral; Silva, Denise Maria de Lima E; Assis, Cristiane Fernandes de; Correia, Roberta Targino Pinto; Damasceno, Karla Suzanne Florentino da Silva Chaves

    2017-01-01

    To the best of our knowledge, this is the first report in the literature concerning the bioactive properties of faveleira products. This work focuses on the physicochemical evaluation of faveleira oil, as well as it investigates the bioactive properties of faveleira seeds, faveleira oil and the press cake obtained during the oilseed processing. The seeds were cold pressed and the following tests were performed: physicochemical characteristics (acidity, peroxide values, moisture and volatile matter, density and viscosity) and fatty acid profile of faveleira oil; total phenolic and flavonoid content of faveleira seed and press cake; antibacterial activity of seed, oil and press cake; and antioxidant activity (DPPH radical scavenging activity, reducing power assay, total antioxidant capacity, superoxide radical scavenging assay and oxygen radical absorbance capacity) of seed, oil and press cake. Our work demonstrated that the faveleira seed oil has low acidity (0.78 ± 0.03% oleic acid) and peroxide value (1.13 ± 0.12 mEq/1000g), associated with the relevant concentration of linoleic acid (53.56%). It was observed that important phenolics (398.89 ± 6.34 mg EAG/100 g), especially flavonoids (29.81 ± 0.71 mg RE/g) remain in the press cake, which indicates that the by-product of the faveleira oilseed production constitutes a rich residual source of bioactive compounds. No bacterial growth inhibition was detected, but all samples including faveleira seeds, press cake, oil and its fractions have potent antioxidant activities, mainly the press cake, with oxygen radical absorbance capacity of 28.39 ± 4.36 μM TE/g. Our results also show that faveleira oil has potential to be used as edible oil and the press cake should be used to contain the most antioxidants from seed.

  2. Bioactive properties of faveleira (Cnidoscolus quercifolius) seeds, oil and press cake obtained during oilseed processing

    PubMed Central

    Silva, Denise Maria de Lima e; de Assis, Cristiane Fernandes; Correia, Roberta Targino Pinto; Damasceno, Karla Suzanne Florentino da Silva Chaves

    2017-01-01

    To the best of our knowledge, this is the first report in the literature concerning the bioactive properties of faveleira products. This work focuses on the physicochemical evaluation of faveleira oil, as well as it investigates the bioactive properties of faveleira seeds, faveleira oil and the press cake obtained during the oilseed processing. The seeds were cold pressed and the following tests were performed: physicochemical characteristics (acidity, peroxide values, moisture and volatile matter, density and viscosity) and fatty acid profile of faveleira oil; total phenolic and flavonoid content of faveleira seed and press cake; antibacterial activity of seed, oil and press cake; and antioxidant activity (DPPH radical scavenging activity, reducing power assay, total antioxidant capacity, superoxide radical scavenging assay and oxygen radical absorbance capacity) of seed, oil and press cake. Our work demonstrated that the faveleira seed oil has low acidity (0.78 ± 0.03% oleic acid) and peroxide value (1.13 ± 0.12 mEq/1000g), associated with the relevant concentration of linoleic acid (53.56%). It was observed that important phenolics (398.89 ± 6.34 mg EAG/100 g), especially flavonoids (29.81 ± 0.71 mg RE/g) remain in the press cake, which indicates that the by-product of the faveleira oilseed production constitutes a rich residual source of bioactive compounds. No bacterial growth inhibition was detected, but all samples including faveleira seeds, press cake, oil and its fractions have potent antioxidant activities, mainly the press cake, with oxygen radical absorbance capacity of 28.39 ± 4.36 μM TE/g. Our results also show that faveleira oil has potential to be used as edible oil and the press cake should be used to contain the most antioxidants from seed. PMID:28846740

  3. Post-anaerobic digestion thermal hydrolysis of sewage sludge and food waste: Effect on methane yields, dewaterability and solids reduction.

    PubMed

    Svensson, Kine; Kjørlaug, Oda; Higgins, Matthew J; Linjordet, Roar; Horn, Svein J

    2018-04-01

    Post-anaerobic digestion (PAD) treatment technologies have been suggested for anaerobic digestion (AD) to improve process efficiency and assure hygenization of organic waste. Because AD reduces the amount of organic waste, PAD can be applied to a much smaller volume of waste compared to pre-digestion treatment, thereby improving efficiency. In this study, dewatered digestate cakes from two different AD plants were thermally hydrolyzed and dewatered, and the liquid fraction was recirculated to a semi-continuous AD reactor. The thermal hydrolysis was more efficient in relation to methane yields and extent of dewaterability for the cake from a plant treating waste activated sludge, than the cake from a plant treating source separated food waste (SSFW). Temperatures above 165 °C yielded the best results. Post-treatment improved volumetric methane yields by 7% and the COD-reduction increased from 68% to 74% in a mesophilic (37 °C) semi-continuous system despite lowering the solid retention time (from 17 to 14 days) compared to a conventional system with pre-treatment of feed substrates at 70 °C. Results from thermogravimetric analysis showed an expected increase in maximum TS content of dewatered digestate cake from 34% up to 46% for the SSFW digestate cake, and from 17% up to 43% in the sludge digestate cake, after the PAD thermal hydrolysis process (PAD-THP). The increased dewatering alone accounts for a reduction in wet mass of cake leaving the plant of 60% in the case of sludge digestate cake. Additionaly, the increased VS-reduction will contribute to further reduce the mass of wet cake. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Solid-State Fermentation Reduces Phytic Acid Level, Improves the Profile of Myo-Inositol Phosphates and Enhances the Availability of Selected Minerals in Flaxseed Oil Cake

    PubMed Central

    2017-01-01

    Summary Flaxseed oil cake was subjected to fermentation with Rhizopus oligosporus (DSM 1964 and ATCC 64063), and the phytate (InsP6) content, myo-inositol phosphate profile and in vitro bioavailability of essential minerals were studied. Flaxseed oil cake had a phytate mass fraction of 13.9 mg/g. A 96-hour fermentation of flaxseed oil cake by R. oligosporus DSM 1964 and R. oligosporus ATCC 64063 decreased the InsP6 content by 48 and 33%, respectively. The strains had different phytate-degrading activities: fermentation of flaxseed oil cake with R. oligosporus DSM 1964 was more advantageous, yielding InsP3-5 as a predominating myo-inositol compound, while fermentation with R. oligosporus ATCC 64603 produced predominantly InsP5-6. Solid-state fermentation of flaxseed oil cake enhanced in vitro bioavailability of calcium by 14, magnesium by 3.3 and phosphorus by 2–4%. PMID:29089855

  5. Membrane fouling in a submerged membrane bioreactor with focus on surface properties and interactions of cake sludge and bulk sludge.

    PubMed

    Yu, Haiying; Lin, Hongjun; Zhang, Meijia; Hong, Huachang; He, Yiming; Wang, Fangyuan; Zhao, Leihong

    2014-10-01

    In this study, the fouling behaviors and surface properties of cake sludge and bulk sludge in a submerged membrane bioreactor (MBR) were investigated and compared. It was found that the specific filtration resistance (SFR) of cake sludge was about 5 times higher than that of bulk sludge. Two types of sludge possessed similar extracellular polymeric substances (EPS) content, particle size distribution (PSD) and zeta potential. However, their surface properties in terms of surface tensions were significantly different. Further analysis showed that cake sludge was more hydrophilic and had worse aggregation ability. Moreover, cake sludge surface possessed more hydrocarbon, less oxygen and nitrogen moieties than bulk sludge surface. It was suggested that, rather than EPS and PSD differences, the differences in the surface composition were the main cause of the great differences in SFR and adhesion ability between cake sludge and bulk sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Designing a Clean Label Sponge Cake with Reduced Fat Content.

    PubMed

    Eslava-Zomeño, Cristina; Quiles, Amparo; Hernando, Isabel

    2016-10-01

    The fat in a sponge cake formulation was partially replaced (0%, 30%, 50%, and 70%) with OptiSol™5300.This natural functional ingredient derived from flax seeds, rich in fiber and alpha-linoleic acid, provides a natural substitute for guar and xanthan gums, avoiding E-numbers on labels. The structure and some physicochemical properties of the formulations were examined, sensory analysis was conducted and changes in starch digestibility due to adding this ingredient were determined. Increasing quantities of OptiSol™5300 gave harder cakes, with less weight loss during baking, without affecting the final cake height. There were no significant differences (P > 0.05) in texture, flavor and overall acceptance between the control and the 30% substitution cake, nor in the rapidly digestible starch values. Consequently, replacing up to 30% of the fat with OptiSol™5300 gives a new product with health benefits and a clean label that resembles the full-fat sponge cake. © 2016 Institute of Food Technologists®.

  7. Effect of replacing ground corn and soybean meal with licuri cake on the performance, digestibility, nitrogen metabolism and ingestive behavior in lactating dairy cows.

    PubMed

    Ferreira, A C; Vieira, J F; Barbosa, A M; Silva, T M; Bezerra, L R; Nascimento, N G; de Freitas, J E; Jaeger, S M P L; Oliveira, P de A; Oliveira, R L

    2017-11-01

    Licuri (Syagrus coronate) cake is a biodiesel by-product used in ruminant feed as a beneficial energy source for supplementation in managed pastures. The objective was to evaluate the performance, digestibility, nitrogen balance, blood metabolites, ingestive behavior and diet profitability of eight crossbred Holstein (3/4)×Gyr (5/8) multiparous cows (480±25 kg BW and 100 days milking) grazing and supplemented with licuri cake partially replacing ground corn and soybean meal in concentrate (0, 200, 400 and 600 g/kg in dry matter (DM)), distributed in an experimental duplicated 4×4 Latin square design. Licuri cake partially replacing ground corn and soybean meal increased (P<0.01) the intake and digestibility of ether extract and decreased the non-fiber carbohydrates; however, there were no influences on the intakes of DM, CP, NDF and total digestible nutrients (TDN). The digestibilities of DM, CP and NDF were not influenced by licuri cake addition. There was a decrease trend on TDN digestibility (P=0.08). Licuri cake replacing ground corn and soybean meal in concentrate did not affect the intake; fecal, urinary and mammary excretions; N balance; and triglycerides concentrations. However, the blood urea nitrogen (P=0.04) concentration decreased with the licuri cakes inclusion in cow supplementation. There was an increasing trend for serum creatinine (P=0.07). Licuri cake inclusion did not affect body condition score, production, yield, protein, lactose, total solids and solid non-fat contents of milk and Minas frescal cheese. There was a linear decrease in average daily weight gain (g/day). The milk fat concentration and cheese fat production (P<0.1) presented a linear increase with partial replacement of ground corn and soybean meal with licuri cakes. The addition of licuri cake did not alter the time spent feeding, ruminating or idling. There was an increasing trend in NDF feeding efficiency (P=0.09). The replacing of ground corn and soybean meal with licuri cake up to 600 g/kg decreased the concentrate cost by US$0.45/cow per day. Licuri cake replacing corn and soybeans (400 g/kg) in concentrate promoted a profit of US$0.07/animal per day. Licuri cake is indicated to concentrate the supplementation of dairy cows with average productions of 10 kg/day at levels up to 400 g/kg in the concentrate supplement because it provides an additional profit of US$0.07/animal per day and increased milk and Minas frescal cheese fat without negative effects on productive parameters.

  8. Factors causing PAC cake fouling in PAC-MF (powdered activated carbon-microfiltration) water treatment systems.

    PubMed

    Zhao, P; Takizawa, S; Katayama, H; Ohgaki, S

    2005-01-01

    Two pilot-scale powdered activated carbon-microfiltration (PAC-MF) reactors were operated using river water pretreated by a biofilter. A high permeate flux (4 m/d) was maintained in two reactors with different particle sizes of PAC. High concentration (20 g/L) in the PAC adsorption zone demonstrated 60-80% of organic removal rates. Analysis on the PAC cake fouling demonstrated that attached metal ions play more important role than organic matter attached on PAC to the increase of PAC cake resistance. Effects of factors which may cause PAC cake fouling in PAC-MF process were investigated and evaluated by batch experiments, further revealing that small particulates and metal ions in raw water impose prominent influence on the PAC cake layer formation. Fe (II) precipitates after being oxidized to Fe (III) during PAC adsorption and thus Fe(ll) colloids display more significant effect than other metal ions. At a high flux, PAC cake layer demonstrated a higher resistance with larger PAC due to association among colloids, metals and PAC particles, and easy migration of small particles in raw water into the void space in the PAC cake layer. Larger PAC possesses much more non-uniform particle size distribution and larger void space, making it easier for small colloids to migrate into the voids and for metal ions to associate with PAC particles by bridge effect, hence speeding up and intensifying the of PAC cake fouling on membrane surface.

  9. Influence of Cassia grandis galactomannan on the properties of sponge cakes: a substitute for fat.

    PubMed

    Andrade, Francisca Joyce E T; de Albuquerque, Priscilla B S; de Seixas, José Roberto P C; Feitoza, George S; Barros Júnior, Wilson; Vicente, António A; Carneiro-da-Cunha, Maria das Graças

    2018-04-25

    Here we have proposed to evaluate potential replacers of fat in sponge cake formulations. Our investigation consisted initially of monitoring the physical-chemical changes in sponge cake batters caused by gradually replacing the vegetable fat/margarine of a control sample (standard sponge cake recipe) with galactomannan extracted from the seeds of Cassia grandis. Several samples were prepared where a 100% concentration of vegetable fat was substituted with galactomannan in different concentrations. We then compared both microscopic and macroscopic characteristics of pure fat cake batter formulations and formulations with controlled fat/galactomannan mixtures. At this first stage, rheometry and optical microscopy were employed to characterize the rheological features and air bubble distribution in the batters. In the second stage, the effects of fat substitution with galactomannan, now for the final baked cakes, were also monitored. Scanning electron microscopy (SEM) and standard sensorial tests were performed in order to correlate the final color, texture, and taste characteristics of the final sponge cake and those characteristics obtained initially for the batter. According to the statistical analysis of the data, a 75% fat replacement with galactomannan at only 1.0% concentration was achieved, while successfully maintaining surface microstructure, sensory acceptance, and rheological behavior similar to the original formulation containing only fat. Regarding vegetable fat substitution with galactomannan, our results allow us to conclude that rheometry and bubble distribution tests on the initial batters are useful indicators of the final cake quality.

  10. [Poisoning by enterotoxin from Staphylococcus aureus associated with mocha pastry. Microbiology and epidemiology].

    PubMed

    Escartín, E F; Saldaña-Lozano, J; Montiel-Falcón, A

    1998-01-01

    A brief description of a foodborne outbreak due to S. aureus enterotoxin associated with the consumption of mocha cake in the city of Guadalajara is presented. The cake was prepared in a bakery and affected nearly 100 persons. S. aureus was isolated from the nose and skin of one of the pastry cooks. A S. aureus strain isolated from the cake involved in the outbreak was not only unable to grow in the mocha cream, but it actually decreased in numbers by 2 log after 72 h of storage at 30 degrees C. The pH of mocha cream ranged from 6.2 to 6.6, and water activity from 0.833 to 0.859, with a media of 0.841. In preparing mocha cake at the shop, one half of the dough used to be sprayed with a sucrose solution in water (20% w/v); mocha cream was spread on the other half of the dough before overlapping the two halves. When mocha cake was prepared in this manner, and stored at 30 degrees C, S. aureus increased in number by more than 4 log after 48 h. S. aureus did not grow in the cake stored at 4-7 degrees C. Contributory factors in this outbreak were an increase of water activity in the interphase of the mocha and the cake dough, storage of the cake in an unrefrigerated area, and an unusually high ambient temperature (28-32 degrees C) at that time.

  11. Extraction, composition and functional properties of pennycress (Thlaspi arvense L.) press cake protein

    USDA-ARS?s Scientific Manuscript database

    This study compared two methods for extracting the protein in pennycress (Thlaspi arvense L.) press cake and determined the composition and functional properties of the protein products. Proteins in pennycress press cake were extracted by using the conventional alkali solubilization-acid precipitati...

  12. Effects of feeding camelina cake to weaned pigs on safety, growth performance, and fatty acid composition of pork.

    PubMed

    Smit, M N; Beltranena, E

    2017-06-01

    Feeding cake with remaining oil contributes dietary energy (fat) in addition to protein (AA) and may provide an opportunity to enrich the n-3 fatty acid content of pork. Information regarding safety, growth performance, and efficacy of feeding camelina cake to pigs is limited. We therefore evaluated the effects of camelina cake inclusion in pig nursery diets. In total, 192 pigs (9.4 kg BW) were randomly allocated by sex to 48 pens, 2 heavy and 2 light pigs per pen. Pigs were fed 1 of 4 wheat-based diets including camelina cake (0%, 6%, 12%, or 18%; variety Celine) replacing soybean meal for 4 wk. Individual pigs, pen feed added, and orts were weighed weekly. Feces were collected on d 26 and 27. A blood sample was taken on d 29 from 24 pigs with the lowest BW/pen, which were then euthanized and necropsied. Gross pathological examination was conducted, and organ weights were measured. Samples of liver, back fat, belly fat, and jowl fat were collected for fatty acid analysis. Increasing dietary camelina cake inclusion linearly decreased ( 0.001) apparent total tract digestibility (ATTD) of DM, OM, GE and ash but did not affect ATTD of CP and P. For the entire trial (d 0 to 28), increasing camelina cake inclusion by 6% linearly decreased ( 0.001) ADFI by 74 g/d, ADG by 51 g/d, and BW by 0.8 kg but did not affect feed efficiency (G:F). Increasing camelina cake inclusion linearly increased ( 0.001) liver weight relative to BW, linearly decreased ( 0.050) kidney weight, but did not affect spleen, heart, and thyroid weights. Increasing camelina cake inclusion did not result in serological (large-animal standard panel, T3, and T4) or gross clinical (morphology) findings that might suggest toxicity. In liver, back fat, belly fat, and jowl fat, increasing dietary camelina cake inclusion linearly increased ( 0.050) total n-3 fatty acids and shorter-chain n-3 and n-6 fatty acids but did not increase docosahexaenoic acid (n-3) or arachidonic acid (n-6). In conclusion, feeding camelina cake to weaned pigs at up to 18% did not elicit clinical signs of toxicity and increased n-3 fatty acids in carcass fat depots. The decrease in ADFI as camelina cake inclusion increased resulted in pigs fed 18% weighing 5 kg less than controls at the end of the nursery period.

  13. Phorbol ester impairs electrical excitation of rat pancreatic beta-cells through PKC-independent activation of KATP channels.

    PubMed

    Suga, S; Wu, J; Ogawa, Y; Takeo, T; Kanno, T; Wakui, M

    2001-01-01

    Phorbol 12-myristate 13-acetate (PMA) is often used as an activating phorbol ester of protein kinase C (PKC) to investigate the roles of the kinase in cellular functions. Accumulating lines of evidence indicate that in addition to activating PKC, PMA also produces some regulatory effects in a PKC-independent manner. In this study, we investigated the non-PKC effects of PMA on electrical excitability of rat pancreatic beta-cells by using patch-clamp techniques. In current-clamp recording, PMA (80 nM) reversibly inhibited 15 mM glucose-induced action potential spikes superimposed on a slow membrane depolarization and this inhibition can not be prevented by pre-treatment of the cell with a specific PKC inhibitor, bisindolylmaleimide (BIM, 1 microM). In the presence of a subthreshold concentration (5.5 mM) of glucose, PMA hyperpolarized beta-cells in a concentration-dependent manner (0.8-240 nM), even in the presence of BIM. Based on cell-attached single channel recordings, PMA increased ATP-sensitive K+ channel (KATP) activity. Based on inside-out patch-clamp recordings, PMA had little effect on KATP activity if no ATP was in the bath, while PMA restored KATP activity that was suppressed by 10 microM ATP in the bath. In voltage-clamp recording, PMA enhanced tolbutamide-sensitive membrane currents elicited by repetitive ramp pulses from -90 to -50 mV in a concentration-dependent manner, and this potentiation could not be prevented by pre-treatment of cell with BIM. 4alpha-phorbol 12,13-didecanoate (4alpha-PDD), a non-PKC-activating phorbol ester, mimicked the effect of PMA on both current-clamp and voltage-clamp recording configurations. With either 5.5 or 16.6 mM glucose in the extracellular solution, PMA (80 nM) increased insulin secretion from rat islets. However, in islets pretreated with BIM (1 microM), PMA did not increase, but rather reduced insulin secretion. In rat pancreatic beta-cells, PMA modulates insulin secretion through a mixed mechanism: increases insulin secretion by activation of PKC, and meanwhile decrease insulin secretion by impairing beta-cell excitability in a PKC-independent manner. The enhancement of KATP activity by reducing sensitivity of KATP to ATP seems to underlie the PMA-induced impairment of beta-cells electrical excitation in response to glucose stimulation.

  14. Baccharis trimera inhibits reactive oxygen species production through PKC and down-regulation p47 phox phosphorylation of NADPH oxidase in SK Hep-1 cells.

    PubMed

    de Araújo, Glaucy Rodrigues; Rabelo, Ana Carolina Silveira; Meira, Janaína Serenato; Rossoni-Júnior, Joamyr Victor; Castro-Borges, William de; Guerra-Sá, Renata; Batista, Maurício Azevedo; Silveira-Lemos, Denise da; Souza, Gustavo Henrique Bianco de; Brandão, Geraldo Célio; Chaves, Míriam Martins; Costa, Daniela Caldeira

    2017-02-01

    Baccharis trimera, popularly known as "carqueja", is a native South-American plant possessing a high concentration of polyphenolic compounds and therefore high antioxidant potential. Despite the antioxidant potential described for B. trimera, there are no reports concerning the signaling pathways involved in this process. So, the aim of the present study was to assess the influence of B. trimera on the modulation of PKC signaling pathway and to characterize the effect of the nicotinamide adenine dinucleotide phosphate oxidase enzyme (NOX) on the generation of reactive oxygen species in SK Hep-1 cells. SK-Hep 1 cells were treated with B. trimera, quercetin, or rutin and then stimulated or not with PMA/ionomycin and labeled with carboxy H 2 DCFDA for detection of reactive oxygen species by flow cytometer. The PKC expression by Western blot and enzyme activity was performed to evaluate the influence of B. trimera and quercetin on PKC signaling pathway. p47 phox and p47 phox phosphorylated expression was performed by Western blot to evaluate the influence of B. trimera on p47 phox phosphorylation. The results showed that cells stimulated with PMA/ionomycin (activators of PKC) showed significantly increased reactive oxygen species production, and this production returned to baseline levels after treatment with DPI (NOX inhibitor). Both B. trimera and quercetin modulated reactive oxygen species production through the inhibition of PKC protein expression and enzymatic activity, also with inhibition of p47 phox phosphorylation. Taken together, these results suggest that B. trimera has a potential mechanism for inhibiting reactive oxygen species production through the PKC signaling pathway and inhibition subunit p47 phox phosphorylation of nicotinamide adenine dinucleotide phosphate oxidase.

  15. Direct Chronic Effect of Steroid Hormones in Attenuating Uterine Arterial Myogenic Tone: Role of PKC/ERK1/2

    PubMed Central

    Xiao, Daliao; Huang, Xiaohui; Yang, Shumei; Zhang, Lubo

    2009-01-01

    Pregnancy is associated with a significant decrease in uterine vascular tone and an increase in uterine blood flow. The present study tested the hypothesis that estrogen and progesterone differentially regulate the ERK1/2 and PKC signaling pathways in vascular smooth muscle resulting in a decrease in uterine vascular myogenic tone in pregnancy. Uterine arteries were isolated from nonpregnant (NPUA) and near-term pregnant (PUA) sheep. Chronic treatment (48 h) of NPUA with 17β-estradiol and progesterone caused a significant decrease in PKC-mediated contractions and pressure-induced myogenic tone. In accordance, treatment of PUA for 48 h with ICI 182,780 and RU 486 significantly increased PKC-induced contractions and myogenic tone. In contrast, acute treatment for 30 min had no effects on uterine artery contractility. An ERK1/2 inhibitor PD098059 restored the chronic effect of steroids on PKC-mediated contractions in NPUA. ERK1/2 protein and mRNA levels were greater in PUA as compared with NPUA. 17β-Estradiol and progesterone increased ERK1/2 protein in NPUA. In agreement, ICI 182,780 and RU 486 caused a significant decrease in ERK1/2 protein in PUA. Western blot showed six PKC isozymes, α, βI, βII, δ, ε and ζ in the uterine arteries. 17β-Estradiol and progesterone decreased the particulate-to-cytosolic ratio of PKCα, ε, and ζ, respectively, in NPUA. ICI 182,780 and RU 486 increased them in PUA. The results indicate a direct chronic effect of the steroid hormones in the up-regulation of ERK1/2 expression and down-regulation of PKC signaling pathway, resulting in attenuated myogenic tone of uterine artery in pregnancy. PMID:19528364

  16. Structural insights into the interactions of phorbol ester and bryostatin complexed with protein kinase C: a comparative molecular dynamics simulation study.

    PubMed

    Thangsunan, Patcharapong; Tateing, Suriya; Hannongbua, Supa; Suree, Nuttee

    2016-07-01

    Protein kinase C (PKC) isozymes are important regulatory enzymes that have been implicated in many diseases, including cancer, Alzheimer's disease, and in the eradication of HIV/AIDS. Given their potential clinical ramifications, PKC modulators, e.g. phorbol esters and bryostatin, are also of great interest in the drug development. However, structural details on the binding between PKC and its modulators, especially bryostatin - the highly potent and non-tumor promoting activator for PKCs, are still lacking. Here, we report the first comparative molecular dynamics study aimed at gaining structural insight into the mechanisms by which the PKC delta cys2 activator domain is used in its binding to phorbol ester and bryostatin-1. As anticipated in the phorbol ester binding, hydrogen bonds are formed through the backbone atoms of Thr242, Leu251, and Gly253 of PKC. However, the opposition of H-bond formation between Thr242 and Gly253 may cause the phorbol ester complex to become less stable when compared with the bryostatin binding. For the PKC delta-bryostatin complex, hydrogen bonds are formed between the Gly253 backbone carbonyl and the C30 carbomethoxy substituent of the ligand. Additionally, the indole Nε1 of the highly homologous Trp252 also forms an H-bond to the C20 ester group on bryostatin. Backbone fluctuations also suggest that this latter H-bond formation may abrogate the transient interaction between Trp252 and His269, thus dampening the fluctuations observed on the nearby Zn(2+)-coordinating residues. This new dynamic fluctuation dampening model can potentially benefit future design of new PKC modulators.

  17. mTOR Complex 2 mediates Akt Phosphorylation that Requires PKCε in Adult Cardiac Muscle Cells

    PubMed Central

    Moschella, Phillip C.; McKillop, John; Pleasant, Dorea L.; Harston, Rebecca K.; Balasubramanian, Sundaravadivel; Kuppuswamy, Dhandapani

    2013-01-01

    Our earlier work showed that mammalian target of rapamycin (mTOR) is essential to the development of various hypertrophic responses, including cardiomyocyte survival. mTOR forms two independent complexes, mTORC1 and mTORC2, by associating with common and distinct cellular proteins. Both complexes are sensitive to a pharmacological inhibitor, torin1, although only mTORC1 is inhibited by rapamycin. Since mTORC2 is known to mediate the activation of a prosurvival kinase, Akt, we analyzed whether mTORC2 directly mediates Akt activation or whether it requires the participation of another prosurvival kinase, PKC ε (epsilon isoform of protein kinase-C). Our studies reveal that treatment of adult feline cardiomyocytes in vitro with insulin results in Akt phosphorylation at S473 for its activation which could be augmented with rapamycin but blocked by torin1. Silencing the expression of Rictor (rapamycin-insensitive companion of mTOR), an mTORC2 component, with a sh-RNA in cardiomyocytes lowers both insulin-stimulated Akt and PKC ε phosphorylation. Furthermore, phosphorylation of PKC ε and Akt at the critical S729 and S473 sites respectively was blocked by torin1 or Rictor knockdown but not by rapamycin, indicating that the phosphorylation at these specific sites occurs downstream of mTORC2. Additionally, expression of DN-PKC ε significantly lowered the insulin-stimulated Akt S473 phosphorylation, indicating an upstream role for PKC ε in the Akt activation. Biochemical analyses also revealed that PKC ε was part of Rictor but not Raptor (a binding partner and component of mTORC1). Together, these studies demonstrate that mTORC2 mediates prosurvival signaling in adult cardiomyocytes where PKC ε functions downstream of mTORC2 leading to Akt activation. PMID:23673367

  18. Arachidonic acid stimulates DNA synthesis in brown preadipocytes through the activation of protein kinase C and MAPK.

    PubMed

    Garcia, Bibian; Martinez-de-Mena, Raquel; Obregon, Maria-Jesus

    2012-10-01

    Arachidonic acid (AA) is a polyunsaturated fatty acid that stimulates the proliferation of many cellular types. We studied the mitogenic potential of AA in rat brown preadipocytes in culture and the signaling pathways involved. AA is a potent mitogen which induces 4-fold DNA synthesis in brown preadipocytes. The AA mitogenic effect increases by NE addition. AA also increases the mitogenic action of different growth factor combinations. Other unsaturated and saturated fatty acids do not stimulate DNA synthesis to the same extent as AA. We analyzed the role of PKC and MEK/MAPK signaling pathways. PKC inhibition by bisindolilmaleimide I (BIS) abolishes AA and phorbol ester stimulation of DNA synthesis and reduces the mitogenic activity of different growth factors in brown preadipocytes. Brown preadipocytes in culture express PKC α, δ, ε and ζ isoforms. Pretreatment with high doses of the phorbol ester PDBu, induces downregulation of PKCs ε and δ and reproduces the effect of BIS indicating that AA-dependent induction of DNA synthesis requires PKC activity. AA also activates MEK/MAPK pathway and the inhibition of MEK activity inhibits AA stimulation of DNA synthesis and brown adipocyte proliferation. Inhibition of PKC δ by rottlerin abolishes AA-dependent stimulation of DNA synthesis and MAPK activation, whereas PKC ε inhibition does not produce any effect. In conclusion, our results identify AA as a potent mitogen for brown adipocytes and demonstrate the involvement of the PDBu-sensitive PKC δ isoform and MEK/MAPK pathway in AA-induced proliferation of brown adipocytes. Increased proliferative activity might increase the thermogenic capacity of brown fat. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Staurosporine, but not Ro 31-8220, induces interleukin 2 production and synergizes with interleukin 1alpha in EL4 thymoma cells.

    PubMed

    Mahon, T M; Matthews, J S; O'Neill, L A

    1997-07-01

    Protein kinase C (PKC) has been implicated in interleukin 1 (IL1) signal transduction in a number of cellular systems, either as a key event in IL1 action or as a negative regulator. Here we have examined the effects of two PKC inhibitors, staurosporine and the more selective agent Ro 31-8220, on IL1 responses in the murine thymoma line EL4.NOB-1. A 1 h pulse of staurosporine was found to strongly potentiate the induction of IL2 by IL1alpha in these cells. In contrast, neither a pulse nor prolonged incubation with Ro 31-8220 affected the response to IL1alpha. Both agents blocked the response to PMA, however. A 1 h pulse of staurosporine was also found to induce IL2 production on its own, activate the transcription factor nuclear factor kappaB (NFkappaB) and increase the expression of a NFkappaB-linked reporter gene. It synergized with IL1alpha in all of these responses. Ro 31-8220 was again without effect, although both staurosporine and Ro 31-8220 blocked the activation of NFkappaB by PMA. Finally, staurosporine caused the translocation of PKC-alpha and -epsilon, and to a lesser extent PKC-beta, but not PKC-θ or -zeta, from the cytosol to the membrane, although a similar effect was observed with Ro 31-8220. The results suggest that PKC is not involved in IL1alpha signalling in EL4 cells. Furthermore, the potentiating effect of staurosporine on IL1alpha action does not involve PKC inhibition, and is likely to be at the level of NFkappaB activation.

  20. PKC-Dependent Human Monocyte Adhesion Requires AMPK and Syk Activation

    PubMed Central

    Chang, Mei-Ying; Huang, Duen-Yi; Ho, Feng-Ming; Huang, Kuo-Chin; Lin, Wan-Wan

    2012-01-01

    PKC plays a pivotal role in mediating monocyte adhesion; however, the underlying mechanisms of PKC-mediated cell adhesion are still unclear. In this study, we elucidated the signaling network of phorbol ester PMA-stimulated human monocyte adhesion. Our results with pharmacological inhibitors suggested the involvement of AMPK, Syk, Src and ERK in PKC-dependent adhesion of THP-1 monocytes to culture plates. Biochemical analysis further confirmed the ability of PMA to activate these kinases, as well as the involvement of AMPK-Syk-Src signaling in this event. Direct protein interaction between AMPK and Syk, which requires the kinase domain of AMPK and linker region of Syk, was observed following PMA stimulation. Notably, we identified Syk as a novel downstream target of AMPK; AICAR can induce Syk phosphorylation at Ser178 and activation of this kinase. However, activation of AMPK alone, either by stimulation with AICAR or by overexpression, is not sufficient to induce monocyte adhesion. Studies further demonstrated that PKC-mediated ERK signaling independent of AMPK activation is also involved in cell adhesion. Moreover, AMPK, Syk, Src and ERK signaling were also required for PMA to induce THP-1 cell adhesion to endothelial cells as well as to induce adhesion response of human primary monocytes. Taken together, we propose a bifurcated kinase signaling pathway involved in PMA-mediated adhesion of monocytes. PKC can activate LKB1/AMPK, leading to phosphorylation and activation of Syk, and subsequent activation of Src and FAK. In addition, PKC-dependent ERK activation induces a coordinated signal for cytoskeleton rearrangement and cell adhesion. For the first time we demonstrate Syk as a novel substrate target of AMPK, and shed new light on the role of AMPK in monocyte adhesion, in addition to its well identified functions in energy homeostasis. PMID:22848421

  1. A Direct Redox Regulation of Protein Kinase C Isoenzymes Mediates Oxidant-induced Neuritogenesis in PC12 Cells*

    PubMed Central

    Gopalakrishna, Rayudu; Gundimeda, Usha; Schiffman, Jason Eric; McNeill, Thomas H.

    2008-01-01

    In this study, we have used the PC12 cell model to elucidate the mechanisms by which sublethal doses of oxidants induce neuritogenesis. The xanthine/xanthine oxidase (X/XO) system was used for the steady state generation of superoxide, and CoCl2 was used as a representative transition metal redox catalyst. Upon treatment of purified protein kinase C (PKC) with these oxidants, there was an increase in its cofactor-independent activation. Redox-active cobalt competed with the redoxinert zinc present in the zinc-thiolates of the PKC regulatory domain and induced the oxidation of these cysteine-rich regions. Both CoCl2 and X/XO induced neurite outgrowth in PC12 cells, as determined by an overexpression of neuronal marker genes. Furthermore, these oxidants induced a translocation of PKC from cytosol to membrane and subsequent conversion of PKC to a cofactor-independent form. Isoenzyme-specific PKC inhibitors demonstrated that PKCε plays a crucial role in neuritogenesis. Moreover, oxidant-induced neurite outgrowth was increased with a conditional overexpression of PKCε and decreased with its knock-out by small interfering RNA. Parallel with PKC activation, an increase in phosphorylation of the growth-associated neuronal protein GAP-43 at Ser41 was observed. Additionally, there was a sustained activation of extracellular signal-regulated kinases 1 and 2, which was correlated with activating phosphorylation (Ser133) of cAMP-responsive element-binding protein. All of these signaling events that are causally linked to neuritogenesis were blocked by antioxidant N-acetylcysteine (both l and d-forms) and by a variety of PKC-specific inhibitors. Taken together, these results strongly suggest that sublethal doses of oxidants induce neuritogenesis via a direct redox activation of PKCε. PMID:18375950

  2. Chromatinized Protein Kinase C-θ: Can It Escape the Clutches of NF-κB?

    PubMed Central

    Sutcliffe, Elissa L.; Li, Jasmine; Zafar, Anjum; Hardy, Kristine; Ghildyal, Reena; McCuaig, Robert; Norris, Nicole C.; Lim, Pek Siew; Milburn, Peter J.; Casarotto, Marco G.; Denyer, Gareth; Rao, Sudha

    2012-01-01

    We recently provided the first description of a nuclear mechanism used by Protein Kinase C-theta (PKC-θ) to mediate T cell gene expression. In this mode, PKC-θ tethers to chromatin to form an active nuclear complex by interacting with proteins including RNA polymerase II, the histone kinase MSK-1, the demethylase LSD1, and the adaptor molecule 14-3-3ζ at regulatory regions of inducible immune response genes. Moreover, our genome-wide analysis identified many novel PKC-θ target genes and microRNAs implicated in T cell development, differentiation, apoptosis, and proliferation. We have expanded our ChIP-on-chip analysis and have now identified a transcription factor motif containing NF-κB binding sites that may facilitate recruitment of PKC-θ to chromatin at coding genes. Furthermore, NF-κB association with chromatin appears to be a prerequisite for the assembly of the PKC-θ active complex. In contrast, a distinct NF-κB-containing module appears to operate at PKC-θ targeted microRNA genes, and here NF-κB negatively regulates microRNA gene transcription. Our efforts are also focusing on distinguishing between the nuclear and cytoplasmic functions of PKCs to ascertain how these kinases may synergize their roles as both cytoplasmic signaling proteins and their functions on the chromatin template, together enabling rapid induction of eukaryotic genes. We have identified an alternative sequence within PKC-θ that appears to be important for nuclear translocation of this kinase. Understanding the molecular mechanisms used by signal transduction kinases to elicit specific and distinct transcriptional programs in T cells will enable scientists to refine current therapeutic strategies for autoimmune diseases and cancer. PMID:22969762

  3. Adenosine A1 receptors link to smooth muscle contraction via CYP4a, PKC-α, and ERK1/2

    PubMed Central

    Kunduri, SS; Mustafa, SJ; Ponnoth, DS; Dick, GM; Nayeem, MA

    2013-01-01

    Adenosine A1 receptor (A1AR) activation contracts smooth muscle, although signaling mechanisms aren’t thoroughly understood. Activation of A1AR leads to metabolism of arachidonic acid, including the production of 20-hydroxyeicosatetraenoic acid (20-HETE) by cytochrome P4504a (CYP4a). 20-HETE can activate protein kinase C-α (PKC-α) which crosstalks with extracellular signal-regulated kinase (ERK1/2) pathway. Both these pathways can regulate smooth muscle contraction, we tested the hypothesis that A1AR contracts smooth muscle through a pathway involving CYP4a, PKC-α, and ERK1/2. Experiments included isometric tension recordings of aortic contraction and Western blots of signaling molecules in wild type (WT) and A1AR knockout (A1KO) mice. Contraction to the A1-selective agonist CCPA was absent in A1KO mice aortae, indicating the contractile role of A1AR. Inhibition of CYP4a (HET0016) abolished CCPA-induced contraction in WT aortae, indicating a critical role for 20-HETE. Both WT and A1KO mice aortae contracted in response to exogenous 20-HETE. Inhibition of PKC-α (Gö6976) or ERK1/2 (PD98059) attenuated 20-HETE-induced contraction equally, suggesting that ERK1/2 is downstream of PKC-α. Contractions to exogenous 20-HETE were significantly less in A1KO mice; reduced protein levels of PKC-α, p-ERK1/2, and total ERK1/2 supported this observation. Our data indicate that A1AR mediates smooth muscle contraction via CYP4a and a PKC-α-ERK1/2 pathway. PMID:23519140

  4. Myristoylated alanine-rich C kinase substrate-mediated neurotensin release via protein kinase C-delta downstream of the Rho/ROK pathway.

    PubMed

    Li, Jing; O'Connor, Kathleen L; Greeley, George H; Blackshear, Perry J; Townsend, Courtney M; Evers, B Mark

    2005-03-04

    Myristoylated alanine-rich protein kinase C substrate (MARCKS) is a cellular substrate for protein kinase C (PKC). Recently, we have shown that PKC isoforms-alpha and -delta, as well as the Rho/Rho kinase (ROK) pathway, play a role in phorbol 12-myristate 13-acetate (PMA)-mediated secretion of the gut peptide neurotensin (NT) in the BON human endocrine cell line. Here, we demonstrate that activation of MARCKS protein is important for PMA- and bombesin (BBS)-mediated NT secretion in BON cells. Small interfering RNA (siRNA) to MARCKS significantly inhibited, whereas overexpression of wild-type MARCKS significantly increased PMA-mediated NT secretion. Endogenous MARCKS and green fluorescent protein-tagged wild-type MARCKS were translocated from membrane to cytosol upon PMA treatment, further confirming MARCKS activation. MARCKS phosphorylation was inhibited by PKC-delta siRNA, ROKalpha siRNA, and C3 toxin (a Rho protein inhibitor), suggesting that the PKC-delta and the Rho/ROK pathways are necessary for MARCKS activation. The phosphorylation of PKC-delta was inhibited by C3 toxin, demonstrating that the role of MARCKS in NT secretion was regulated by PKC-delta downstream of the Rho/ROK pathway. BON cell clones stably transfected with the receptor for gastrin releasing peptide, a physiologic stimulant of NT, and treated with BBS, the amphibian equivalent of gastrin releasing peptide, demonstrated a similar MARCKS phosphorylation as noted with PMA. BBS-mediated NT secretion was attenuated by MARCKS siRNA. Collectively, these findings provide evidence for novel signaling pathways, including the sequential regulation of MARCKS activity by Rho/ROK and PKC-delta proteins, in stimulated gut peptide secretion.

  5. Cholinergic signaling inhibits oxalate transport by human intestinal T84 cells

    PubMed Central

    Cheng, Ming; Aronson, Peter S.

    2012-01-01

    Urolithiasis remains a very common disease in Western countries. Seventy to eighty percent of kidney stones are composed of calcium oxalate, and minor changes in urinary oxalate affect stone risk. Intestinal oxalate secretion mediated by anion exchanger SLC26A6 plays a major constitutive role in limiting net absorption of ingested oxalate, thereby preventing hyperoxaluria and calcium oxalate urolithiasis. Using the relatively selective PKC-δ inhibitor rottlerin, we had previously found that PKC-δ activation inhibits Slc26a6 activity in mouse duodenal tissue. To identify a model system to study physiologic agonists upstream of PKC-δ, we characterized the human intestinal cell line T84. Knockdown studies demonstrated that endogenous SLC26A6 mediates most of the oxalate transport by T84 cells. Cholinergic stimulation with carbachol modulates intestinal ion transport through signaling pathways including PKC activation. We therefore examined whether carbachol affects oxalate transport in T84 cells. We found that carbachol significantly inhibited oxalate transport by T84 cells, an effect blocked by rottlerin. Carbachol also led to significant translocation of PKC-δ from the cytosol to the membrane of T84 cells. Using pharmacological inhibitors, we observed that carbachol inhibits oxalate transport through the M3 muscarinic receptor and phospholipase C. Utilizing the Src inhibitor PP2 and phosphorylation studies, we found that the observed regulation downstream of PKC-δ is partially mediated by c-Src. Biotinylation studies revealed that carbachol inhibits oxalate transport by reducing SLC26A6 surface expression. We conclude that carbachol negatively regulates oxalate transport by reducing SLC26A6 surface expression in T84 cells through signaling pathways including the M3 muscarinic receptor, phospholipase C, PKC-δ, and c-Src. PMID:21956166

  6. PKC-mediated HuD-GAP43 pathway activation in a mouse model of antiretroviral painful neuropathy.

    PubMed

    Sanna, M D; Quattrone, A; Ghelardini, C; Galeotti, N

    2014-03-01

    Patients treated with nucleoside reverse transcriptase inhibitors (NRTIs) develop painful neuropathies that lead to discontinuation of antiretroviral therapy thus limiting viral suppression strategies. The mechanisms by which NRTIs contribute to the development of neuropathy are not known. In order to elucidate the mechanisms underlying this drug-induced neuropathy, we have characterized cellular events in the central nervous system following antiretroviral treatment. Systemic administration of the antiretroviral agent, 2',3'-dideoxycytidine (ddC) considerably increased the expression and phosphorylation of protein kinase C (PKC) γ and ɛ, enzymes highly involved in pain processes, within periaqueductal grey matter (PAG), and, to a lesser extent, within thalamus and prefrontal cortex. These events appeared in coincidence with thermal and mechanical allodynia, but PKC blockade did not prevent the antiretroviral-induced pain hypersensitivity, ruling out a major involvement of PKC in the ddC-induced nociceptive behaviour. An increased expression of GAP43, a marker of neuroregeneration, and decreased levels of ATF3, a marker of neuroregeneration, were detected in all brain areas. ddC treatment also increased the expression of HuD, a RNA-binding protein target of PKC known to stabilize GAP43 mRNA. Pharmacological blockade of PKC prevented HuD and GAP43 overexpression. Silencing of both PKCγ and HuD reduced GAP43 levels in control mice and prevented the ddC-induced GAP43 enhanced expression. Present findings illustrate the presence of a supraspinal PKC-mediated HuD-GAP43 pathway activated by ddC. Based on our results, we speculate that antiretroviral drugs may recruit the HuD-GAP43 pathway, potentially contributing to a response to the antiretroviral neuronal toxicity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. PKC-dependent regulation of Kv7.5 channels by the bronchoconstrictor histamine in human airway smooth muscle cells.

    PubMed

    Haick, Jennifer M; Brueggemann, Lioubov I; Cribbs, Leanne L; Denning, Mitchell F; Schwartz, Jeffrey; Byron, Kenneth L

    2017-06-01

    Kv7 potassium channels have recently been found to be expressed and functionally important for relaxation of airway smooth muscle. Previous research suggests that native Kv7 currents are inhibited following treatment of freshly isolated airway smooth muscle cells with bronchoconstrictor agonists, and in intact airways inhibition of Kv7 channels is sufficient to induce bronchiolar constriction. However, the mechanism by which Kv7 currents are inhibited by bronchoconstrictor agonists has yet to be elucidated. In the present study, native Kv7 currents in cultured human trachealis smooth muscle cells (HTSMCs) were observed to be inhibited upon treatment with histamine; inhibition of Kv7 currents was associated with membrane depolarization and an increase in cytosolic Ca 2+ ([Ca 2+ ] cyt ). The latter response was inhibited by verapamil, a blocker of L-type voltage-sensitive Ca 2+ channels (VSCCs). Protein kinase C (PKC) has been implicated as a mediator of bronchoconstrictor actions, although the targets of PKC are not clearly established. We found that histamine treatment significantly and dose-dependently suppressed currents through overexpressed wild-type human Kv7.5 (hKv7.5) channels in cultured HTSMCs, and this effect was inhibited by the PKC inhibitor Ro-31-8220 (3 µM). The PKC-dependent suppression of hKv7.5 currents corresponded with a PKC-dependent increase in hKv7.5 channel phosphorylation. Knocking down or inhibiting PKCα, or mutating hKv7.5 serine 441 to alanine, abolished the inhibitory effects of histamine on hKv7.5 currents. These findings provide the first evidence linking PKC activation to suppression of Kv7 currents, membrane depolarization, and Ca 2+ influx via L-type VSCCs as a mechanism for histamine-induced bronchoconstriction. Copyright © 2017 the American Physiological Society.

  8. Quercetin inhibits the invasion of murine melanoma B16-BL6 cells by decreasing pro-MMP-9 via the PKC pathway.

    PubMed

    Zhang, Xian-Ming; Huang, Shao-Peng; Xu, Qiang

    2004-01-01

    On the basis of the inhibitory effect of quercetin on the invasion of melanoma B16-BL6 cells previously reported by us, the mechanisms of quercetin-mediated inhibition of invasion were further investigated in the present study. The ability of B16-BL6 cells to invade and migrate was evaluated in terms of the numbers of cells penetrating a reconstituted basement membrane in the Transwell coculture system. The relative levels and activities of matrix metalloproteinase-9 (MMP-9) and MMP-2 were determined by gelatin zymography and quantified using LabWorks 4.0 software. The quercetin-mediated inhibition of invasion was partially blocked by phorbol-12,13-dibutyrate (PDB), a PKC (protein kinase C) activator, and by doxorubicin, a PKC inhibitor. Only the proforms of MMP-9 (92 kDa) and MMP-2 (72 kDa) were detected by gelatin zymography. Quercetin dose-dependently decreased the gelatinolytic activity of pro-MMP-9. Doxorubicin also markedly reversed the quercetin-induced decrease. Quercetin showed a dose-dependent antagonism of increases in gelatinolytic activity of pro-MMP-9 induced by PDB and free fatty acid (another PKC activator). Together with the report that quercetin directly reduces PKC activity, the results reported here suggest that quercetin may inhibit the invasion of B16-BL6 cells by decreasing pro-MMP-9 via the PKC pathway.

  9. A role for protein kinase C in the regulation of membrane fluidity and Ca²(+) flux at the endoplasmic reticulum and plasma membranes of HEK293 and Jurkat cells.

    PubMed

    Chen, Lihong; Meng, Qingli; Jing, Xian; Xu, Pingxiang; Luo, Dali

    2011-02-01

    Protein kinase C (PKC) plays a prominent role in the regulation of a variety of cellular functions, including Ca²(+) signalling. In HEK293 and Jurkat cells, the Ca²(+) release and Ca²(+) uptake stimulated by several different activators were attenuated by activation of PKC with phorbol myristate acetate (PMA) or 1-oleoyl-2-acetyl-sn-glycerol (OAG) and potentiated by PKC inhibition with Gö6983 or knockdown of PKCα or PKCβ using shRNA. Immunostaining and Western blotting analyses revealed that PKCα and PKCβII accumulated at the plasma membrane (PM) and that these isoforms, along with PKCβI, also translocated to the endoplasmic reticulum (ER) upon activation with PMA. Measurements of membrane fluidity showed that, like the cell membrane stabilizers bovine serum albumin (BSA) and ursodeoxycholate (UDCA), PMA and OAG significantly reduced the fluidity of both the PM and ER membranes; these effects were blocked in PKC-knockdown cells. Interestingly, both BSA and UDCA inhibited the Ca²(+) responses to agonists to the same extent as PMA, whereas Tween 20, which increases membrane fluidity, raised the internal Ca²(+) concentration. Thus, activation of PKC induces both translocation of PKC to the PM and ER membranes and downregulation of membrane fluidity, thereby negatively modulating Ca²(+) flux. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Move over protein kinase C, you've got company: alternative cellular effectors of diacylglycerol and phorbol esters.

    PubMed

    Brose, Nils; Rosenmund, Christian

    2002-12-01

    Diacylglycerol is an essential second messenger in mammalian cells. The most prominent intracellular targets of diacylglycerol and of the functionally analogous phorbol esters belong to the protein kinase C (PKC) family. However, at least five alternative types of high-affinity diacylglycerol/phorbol-ester receptor are known: chimaerins, protein kinase D, RasGRPs, Munc13s and DAG kinase gamma. Recent evidence indicates that these have functional roles in diacylglycerol second messenger signalling in vivo and that several cellular processes depend on these targets rather than protein kinase C isozymes. These findings contradict the still prevalent view according to which all diacylglycerol/phorbol-ester effects are caused by the activation of protein kinase C isozymes. RasGRP1 (in Ras/Raf/MEK/ERK signalling) and Munc13-1 (in neurotransmitter secretion) are examples of non-PKC diacylglycerol/phorbol-ester receptors that mediate diacylglycerol and phorbol-ester effects originally thought to be caused by PKC isozymes. In the future, pharmacological studies on PKC must be complemented with alternative experimental approaches to allow the separation of PKC-mediated effects from those caused by alternative targets of the diacylglycerol second messenger pathway. The examples of RasGRP1 and Munc13-1 show that detailed genetic analyses of C(1)-domain-containing non-PKC diacylglycerol/phorbol-ester receptors in mammals are ideally suited to achieve this goal.

  11. eNOS S-nitrosylates β-actin on Cys374 and regulates PKC-θ at the immune synapse by impairing actin binding to profilin-1

    PubMed Central

    García-Ortiz, Almudena; Martín-Cofreces, Noa B.; Ibiza, Sales; Ortega, Ángel; Izquierdo-Álvarez, Alicia; Trullo, Antonio; Victor, Víctor M.; Calvo, Enrique; Sot, Begoña; Martínez-Ruiz, Antonio; Vázquez, Jesús; Sánchez-Madrid, Francisco

    2017-01-01

    The actin cytoskeleton coordinates the organization of signaling microclusters at the immune synapse (IS); however, the mechanisms involved remain poorly understood. We show here that nitric oxide (NO) generated by endothelial nitric oxide synthase (eNOS) controls the coalescence of protein kinase C-θ (PKC-θ) at the central supramolecular activation cluster (c-SMAC) of the IS. eNOS translocated with the Golgi to the IS and partially colocalized with F-actin around the c-SMAC. This resulted in reduced actin polymerization and centripetal retrograde flow of β-actin and PKC-θ from the lamellipodium-like distal (d)-SMAC, promoting PKC-θ activation. Furthermore, eNOS-derived NO S-nitrosylated β-actin on Cys374 and impaired actin binding to profilin-1 (PFN1), as confirmed with the transnitrosylating agent S-nitroso-L-cysteine (Cys-NO). The importance of NO and the formation of PFN1-actin complexes on the regulation of PKC-θ was corroborated by overexpression of PFN1- and actin-binding defective mutants of β-actin (C374S) and PFN1 (H119E), respectively, which reduced the coalescence of PKC-θ at the c-SMAC. These findings unveil a novel NO-dependent mechanism by which the actin cytoskeleton controls the organization and activation of signaling microclusters at the IS. PMID:28394935

  12. The PLC/IP3R/PKC Pathway is Required for Ethanol-enhanced GABA Release

    PubMed Central

    Kelm, M. Katherine; Weinberg, Richard J.; Criswell, Hugh E.; Breese, George R.

    2010-01-01

    Summary Research on the actions of ethanol at the GABAergic synapse has traditionally focused on postsynaptic mechanisms, but recent data demonstrate that ethanol also increases both evoked and spontaneous GABA release in many brain regions. Using whole-cell voltage-clamp recordings, we previously showed that ethanol increases spontaneous GABA release at the rat interneuron-Purkinje cell synapse. This presynaptic ethanol effect is dependent on calcium release from internal stores, possibly through activation of inositol 1,4,5-trisphosphate receptors (IP3Rs). After confirming that ethanol targets vesicular GABA release, in the present study we used electron microscopic immunohistochemistry to demonstrate that IP3Rs are located in presynaptic terminals of cerebellar interneurons. Activation of IP3Rs requires binding of IP3, generated through activation of phospholipase C (PLC). We find that the PLC antagonist edelfosine prevents ethanol from increasing spontaneous GABA release. Diacylglycerol generated by PLC and calcium released by activation of the IP3R activate protein kinase C (PKC). Ethanol-enhanced GABA release was blocked by two PKC antagonists, chelerythrine and calphostin C. When a membrane impermeable PKC antagonist, PKC (19-36), was delivered intracellularly to the postsynaptic neuron, ethanol continued to increase spontaneous GABA release. Overall, these results suggest that activation of the PLC/IP3R/PKC pathway is necessary for ethanol to increase spontaneous GABA release from presynaptic terminals onto Purkinje cells. PMID:20206640

  13. Secondary Aluminum Processing Waste: Salt Cake Characterization and Reactivity

    EPA Science Inventory

    Thirty-nine salt cake samples were collected from 10 SAP facilities across the U.S. The facilities were identified by the Aluminum Association to cover a wide range of processes. Results suggest that while the percent metal leached from the salt cake was relatively low, the leac...

  14. Larvicidal activity of neem and karanja oil cakes against mosquito vectors, Culex quinquefasciatus (say), Aedes aegypti (L.) and Anopheles stephensi (L.).

    PubMed

    Shanmugasundaram, R; Jeyalakshmi, T; Dutt, M Sunil; Murthy, P Balakrishna

    2008-01-01

    Larvicidal effect of neem (Azadirachta indica) and karanja (Pongamia glabra) oil cakes (individuals and combination) was studied against mosquito species. Both the oil cakes showed larvicidal activity against the mosquito species tested. The combination of neem and karanja oil cakes in equal proportion proved to have better effect than the individual treatments. The combination of the two oil cakes recorded an LC95 of 0.93, 0.54 and 0.77% against the mosquitoes, Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi respectively The increase in efficacy of the combination treatment over individuals in all the mosquito larvae tested was found to range about 4 to 10 fold in terms of LC50 and 2 to 6 fold in terms of LC95.

  15. Importance of consumer perceptions in fiber-enriched food products. A case study with sponge cakes.

    PubMed

    Tarrega, Amparo; Quiles, Amparo; Morell, Pere; Fiszman, Susana; Hernando, Isabel

    2017-02-22

    Sponge cakes enriched with fiber from different sources (maltodextrin, wheat, apple, blackcurrant and a mixture of potato and Plantago ovata) were studied. Profiling of the different cakes was carried out, first using a check-all-that-apply (CATA) question then evaluating the consumers' likings using a hedonic scale. The consumers also completed a nutrition knowledge (NK) questionnaire that was used to classify them according to their NK level. The instrumental texture of the cakes was evaluated by the texture profile analysis (TPA) method. The consumers' response was not linked to their NK level, but it mainly depended on the importance they gave to the cakes' distinctive sensory characteristics. In general, liking increased for samples considered easy to chew, spongy, soft and sweet, and decreased for samples perceived as tasteless, dry or having a fruity or an odd flavor. The sponge cakes containing maltodextrin or wheat fiber, which mostly resembled a conventional cake, were the most liked in general. Those containing the other three fibers were rejected by part of the consumers, for being tasteless in the case of potato plus Plantago ovata fiber, for being dry and doughy in the case of apple fiber and for having an odd flavor in the case of blackcurrant fiber.

  16. Research of a possibility of receiving sorbents for a sewage disposal from a wastage of coal preparation factory

    NASA Astrophysics Data System (ADS)

    Buyantuev, S. L.; Kondratenko, A. S.; Shishulkin, S. Y.; Stebenkova, Y. Y.; Khmelev, A. B.

    2017-05-01

    The paper presents the results of the studies of the structure and porosity of the coal cake processed by electric arc plasma. The main limiting factor in processing of coal cakes sorbents is their high water content. As a result of coal washing, the main share of water introduced into the cake falls on hard-hydrate and colloidal components. This makes impossible application of traditional processes of manufacturing from a cake of coal sorbents. Using the electric arc intensifies the processes of thermal activation of coal cakes associated with thermal shock, destruction and vapor-gas reactions occurring at the surfaces of the particles at an exposure temperature of up to 3000 °C, which increases the title product outlet (sorbent) and thereby reduces manufacturing costs and improves environmental performance. The investigation of the thermal activation zone is carried out in the plasma reactor chamber by thermal imaging method followed by mapping-and 3D-modeling of temperature fields. the most important physical and chemical properties of the sorbents from coal cake activated by plasma was studied. The obtained results showed the possibility of coal cake thermal activation by electric arc plasma to change its material composition, the appearance of porosity and associated sorption capacity applied for wastewater treatment.

  17. Ripe Banana Flour as a Source of Antioxidants in Layer and Sponge Cakes.

    PubMed

    Segundo, Cristina; Román, Laura; Lobo, Manuel; Martinez, Mario M; Gómez, Manuel

    2017-12-01

    About one-fifth of all bananas harvested become culls that are normally disposed of improperly. However, ripe banana pulp contains significant amounts of fibre and polyphenol compounds as well as a high content of simple sugars (61.06 g/100 g), making it suitable for sucrose replacement in bakery products. This work studied the feasibility of incorporating ripe banana flour (20 and 40% of replacement) in cake formulation. Physical, nutritional and sensory attributes of sponge and layer cakes were evaluated. The inclusion of ripe banana flour generally led to an increased batter consistency that hindered cake expansion, resulting in a slightly lower specific volume and higher hardness. This effect was minimised in layer cakes where differences in volume were only evident with the higher level of replacement. The lower volume and higher hardness contributed to the decline of the acceptability observed in the sensory test. Unlike physical attributes, the banana flour inclusion significantly improved the nutritional properties of the cakes, bringing about an enhancement in dietary fibre, polyphenols and antioxidant capacity (up to a three-fold improvement in antioxidant capacity performance). Therefore, results showed that sugar replacement by ripe banana flour enhanced the nutritional properties of cakes, but attention should be paid to its inclusion level.

  18. In vitro Fermentation, Digestion Kinetics and Methane Production of Oilseed Press Cakes from Biodiesel Production

    PubMed Central

    Olivares-Palma, S. M.; Meale, S. J.; Pereira, L. G. R.; Machado, F. S.; Carneiro, H.; Lopes, F. C. F.; Maurício, R. M.; Chaves, A. V.

    2013-01-01

    Following the extraction of oil for biodiesel production, oilseed press cakes are high in fat. As the dietary supplementation of fat is currently considered the most promising strategy of consistently depressing methanogenesis, it follows that oilseed press cakes may have a similar potential for CH4 abatement. As such, this study aimed to characterise the nutritive value of several oilseed press cakes, glycerine and soybean meal (SBM) and to examine their effects on in vitro ruminal fermentation, digestion kinetics and CH4 production. Moringa press oil seeds exhibited the greatest in sacco effective degradability (ED) of DM and CP (p<0.05). In vitro gas production (ml/g digested DM) was not affected (p = 0.70) by supplement at 48 h of incubation. In vitro DMD was increased with the supplementation of glycerine and SBM at all levels of inclusion. Moringa oilseed press cakes produced the lowest CH4 (mg/g digested DM) at 6 and 12 h of incubation (p<0.05). The findings suggest that moringa oilseed press cake at 400 g/kg DM has the greatest potential of the oilseed press cakes examined in this study, to reduce CH4 production, without adversely affecting nutrient degradability. PMID:25049890

  19. Assessment of indoor pollutants generated from bio and synthetic fuels in selected villages of Burdwan, West Bengal.

    PubMed

    Mondal, N K; Bhaumik, R; Das, C R; Aditya, P; Datta, J K; Banerjee, A; Das, K

    2013-09-01

    The objective of the present study was to access the pollutant generated from bio-fuels like bamboo sticks, cow dung, paddy straw, carbon dust cake, gobar gas, jute stick, and mustard stick and synthetic fuel like LPG during cooking in rural villages of Burdwan, West Bengal, India and its fluctuation in living room. The average SO2 released from the fuels was found in the following order: bamboo stick > cow dung > paddy straw > carbon cake > gobar gas > jute stick > LPG > mustard stick; NO2 emission was in the following order : mustard stick > carbon dust cake > paddy straw > cow dung cake > LPG, jute stick > gobar gas > bamboo stick > and SPM was obtained in the following sequence: cow dung cake > bamboo stick > carbon dust cake > gobar gas > LPG > mustard stick > paddy straw > jute stick, respectively. The highest living room to kitchen room (L/K) ratio of SO2, NO, and SPM was found in LPG, gobar gas, jute stick respectively in 2009 and followed by bamboo stick > paddy straw > jute stick > cow dung cake, respectively in 2010. Results of this study suggest that different fuels released different amount of air pollutants, but more extensive study is needed to confirm the relationship between fuels and released air pollutants.

  20. Abrogation of TNF-mediated cytotoxicity by space flight involves protein kinase C

    NASA Technical Reports Server (NTRS)

    Woods, K. M.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Experiments conducted on STS-50 indicated that space flight significantly inhibited tumor necrosis factor (TNF)-mediated killing of LM929 cells compared to ground controls. In ground-based studies, activation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate (PMA) also inhibited TNF-mediated killing of LM929 cells. Therefore, we used PKC inhibitors to determine if the inhibitory effects of spaceflight on TNF-mediated cytotoxicity involved the activation of PKC. In experiments conducted onboard space shuttle mission STS-54, we saw that in the presence of the protein kinase C inhibitors H7 and H8, TNF-mediated cytotoxicity was restored to levels of those observed in the ground controls. Subsequent experiments done during the STS-57 mission tested the dose response of two protein kinase inhibitors, H7 and HA1004. We again saw that killing was restored in a dose-dependent manner, with inhibitor concentrations known to inhibit PKC being most effective. These data suggest that space flight ameliorates the action of TNF by affecting PKC in target cells.

  1. Microtubules induce self-organization of polarized PAR domains in C. elegans zygotes

    PubMed Central

    Motegi, Fumio; Zonies, Seth; Hao, Yingsong; Cuenca, Adrian A.; Griffin, Erik; Seydoux, Geraldine

    2011-01-01

    A hallmark of polarized cells is the segregation of the PAR polarity regulators into asymmetric domains at the cell cortex1, 2. Antagonistic interactions involving two conserved kinases, atypical protein kinase C (aPKC) and PAR-1, have been implicated in polarity maintenance1, 2, but the mechanisms that initiate the formation of asymmetric PAR domains are not understood. Here, we describe one pathway used by the sperm-donated centrosome to polarize the PAR proteins in Caenorhabditis elegans zygotes. Before polarization, cortical aPKC excludes PAR-1 kinase and its binding partner PAR-2 by phosphorylation. During symmetry breaking, microtubules nucleated by the centrosome locally protect PAR-2 from phosphorylation by aPKC, allowing PAR-2 and PAR-1 to access the cortex nearest the centrosome. Cortical PAR-1 phosphorylates PAR-3, causing the PAR-3/aPKC complex to leave the cortex. Our findings illustrate how microtubules, independent of actin dynamics, stimulate the self-organization of PAR proteins by providing local protection against a global barrier imposed by aPKC. PMID:21983565

  2. Rho1- and Pkc1-dependent phosphorylation of the F-BAR protein Syp1 contributes to septin ring assembly

    PubMed Central

    Merlini, Laura; Bolognesi, Alessio; Juanes, Maria Angeles; Vandermoere, Franck; Courtellemont, Thibault; Pascolutti, Roberta; Séveno, Martial; Barral, Yves; Piatti, Simonetta

    2015-01-01

    In many cell types, septins assemble into filaments and rings at the neck of cellular appendages and/or at the cleavage furrow to help compartmentalize the plasma membrane and support cytokinesis. How septin ring assembly is coordinated with membrane remodeling and controlled by mechanical stress at these sites is unclear. Through a genetic screen, we uncovered an unanticipated link between the conserved Rho1 GTPase and its effector protein kinase C (Pkc1) with septin ring stability in yeast. Both Rho1 and Pkc1 stabilize the septin ring, at least partly through phosphorylation of the membrane-associated F-BAR protein Syp1, which colocalizes asymmetrically with the septin ring at the bud neck. Syp1 is displaced from the bud neck upon Pkc1-dependent phosphorylation at two serines, thereby affecting the rigidity of the new-forming septin ring. We propose that Rho1 and Pkc1 coordinate septin ring assembly with membrane and cell wall remodeling partly by controlling Syp1 residence at the bud neck. PMID:26179915

  3. Cellular localization of the atypical isoforms of protein kinase C (aPKCζ/PKMζ and aPKCλ/ι) on the neuromuscular synapse.

    PubMed

    Besalduch, Núria; Lanuza, Maria A; Garcia, Neus; Obis, Teresa; Santafe, Manel M; Tomàs, Marta; Priego, Mercedes; Tomàs, Josep

    2013-11-27

    Several classic and novel protein kinase C (PKC) isoforms are selectively distributed in specific cell types of the adult neuromuscular junction (NMJ), in the neuron, glia and muscle components, and are involved in many functions, including neurotransmission. Here, we investigate the presence in this paradigmatic synapse of atypical PKCs, full-length atypical PKC zeta (aPKCζ), its separated catalytic part (PKMζ) and atypical lambda-iota PKC (aPKCλ/ι). High resolution immunohistochemistry was performed using a pan-atypical PKC antibody. Our results show moderate immunolabeling on the three cells (presynaptic motor nerve terminal, teloglial Schwann cell and postsynaptic muscle cell) suggesting the complex involvement of atypical PKCs in synaptic function. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Pharmacologic modulation of protein kinase C isozymes: the role of RACKs and subcellular localisation.

    PubMed

    Csukai, M; Mochly-Rosen, D

    1999-04-01

    Protein kinase C (PKC) isozymes are highly homologous kinases and several different isozymes can be present in a cell. Each isozyme is likely to mediate unique functions, but pharmacological tools to explore their isozyme-specific roles have not been available until recently. In this review, we describe the development and application of isozyme-selective inhibitors of PKC. The identification of these inhibitors stems from the observation that PKC isozymes are each localised to unique subcellular locations following activation. Inhibitors of this isozyme-unique localisation have been shown to act as selective inhibitors of the functions of individual isozymes. The identification of isozyme-specific inhibitors should allow the exploration of individual PKC isozyme function in a wide range of cell systems. Copyright 1999 The Italian Pharmacological Society.

  5. Feasibility study of sucrose and fat replacement using inulin and rebaudioside A in cake formulations.

    PubMed

    Majzoobi, Mahsa; Mohammadi, Mahshid; Mesbahi, Gholamreza; Farahnaky, Asgar

    2018-02-20

    Cake is a popular food around the world, however, it is considered as unhealthy due to its high fat and sucrose content. To satisfy customers' demand for a low fat and sucrose cake, in this research both sucrose and fat content of the cake were reduced by using rebaudioside A (Reb A; as a natural sucrose replacer) and inulin (as a natural fat replacer) at 0%, 25%, 50%, 75%, and 100%. The water content of different formulation was adjusted to obtain a constant batter viscosity similar to the control (3,757 cP). By reducing sucrose and fat content up to 50%, water activity increased and the cakes became more asymmetrical. However, other physical properties including baking weight loss, height, volume, crust color, and texture were similar to those of the control. Higher levels of replacement (75% and 100%) resulted in remarkable loss of different quality attributes. These samples showed higher water activity and baking loss, lower volume, harder texture, darker color, and highly asymmetrical shape. Thus, successful reduction of both fat and sucrose in cakes is possible by using inulin and Reb A at replacement levels no more than 50%. Customers' demand for healthy and yet tasty and high-quality foods is increasing around the world. Therefore, finding applicable and safe methods to produce such products is of great interest in the food manufacturing to satisfy customers. Health conscious customers avoid consumption of cakes because it contains high sucrose and fat content. Many studies have been performed to reduce either fat or sucrose content, while a few studies are available to show the reduction of both fat and sucrose in the same product. This study indicates the results of an applicable method to reduce fat and sucrose content of cakes simultaneously. Using rebaudioside A (as a natural sucrose replacer) and inulin (as a natural fat replacer) up to 50% of sucrose and fat content of cakes were reduced and the resulting cake had very similar physical properties to the control. © 2018 Wiley Periodicals, Inc.

  6. The role of gluten in a pound cake system: A model approach based on gluten-starch blends.

    PubMed

    Wilderjans, Edith; Pareyt, Bram; Goesaert, Hans; Brijs, Kristof; Delcour, Jan A

    2008-10-15

    In order to evaluate the role of gluten in cake-making, gluten-starch (GS) blends with different ratios of gluten to starch were tested in a research pound cake formula. The viscosities of batters made from commercial GS blends in the otherwise standardised formula increased with their gluten content. High viscosities during heating provide the batters with the capacity to retain expanding air nuclei, and thereby led to desired product volumes. In line with the above, increasing gluten levels in the cake recipes led to a more extended oven spring period. Cakes with a starch content exceeding 92.5% in the GS blend suffered from substantial collapse during cooling. They had a coarse crumb with a solid gummy layer at the bottom. Image analysis showed statistical differences in numbers of cells per cm(2), cell to total area ratio and mean cell area (p<0.05). Both density and mean cell area were related to gluten level. Moreover, mean cell area and cell to total area ratio were the highest for cakes with the lowest density and highest gluten levels. Relative sodium dodecyl sulfate (SDS, 2.0%) buffer (pH 6.8) extractabilities of protein from cakes baked with the different GS blends decreased with gluten content and were strongly correlated with the intensity of collapse. Taken together, the results teach that protein gives the cakes resistance to collapse, resulting in desirable volumes and an optimal grain structure with uniform cell distribution. Copyright © 2008 Elsevier Ltd. All rights reserved.

  7. Potentials of biodegraded cashew pomace for cake baking.

    PubMed

    Aderiye, B I; Igbedioh, S O; Caurie, S A

    1992-04-01

    The use of biodegraded cashew pomace processed into flour for cake baking was investigated. The physico-chemical changes during the submerged fermentation of the pomace and the organoleptic qualities of the composite cake were also monitored. There was an increase of about 50% in protein content of the pomace after 96 h of fermentation. However, a reduction of about 61% in the total microbial count after 24 h was due to the toxic effect of the organic acids on the microbial cells during fermentation. The cashew flour had high crude fibre (ca. 20-33%) and carbohydrate (ca. 16-47%) values. The composite cake made from a 10:90 combination of 96 h-degraded cashew flour/wheat flour respectively was the most accepted. The cake which had a specific volume of 0.53 ml/g lost 11.1% moisture when 38 g of its batter was exposed to 190 degrees C for 10 minutes. This cake had a calorie value of 293.8/100 g and may be useful in feeding diabetic patients who require low carbohydrate foods.

  8. Effects of suspended titanium dioxide nanoparticles on cake layer formation in submerged membrane bioreactor.

    PubMed

    Zhou, Lijie; Zhang, Zhiqiang; Xia, Siqing; Jiang, Wei; Ye, Biao; Xu, Xiaoyin; Gu, Zaoli; Guo, Wenshan; Ngo, Huu-Hao; Meng, Xiangzhou; Fan, Jinhong; Zhao, Jianfu

    2014-01-01

    Effects of the suspended titanium dioxide nanoparticles (TiO2 NPs, 50 mg/L) on the cake layer formation in a submerged MBR were systematically investigated. With nanometer sizes, TiO2 NPs were found to aggravate membrane pore blocking but postpone cake layer fouling. TiO2 NPs showed obvious effects on the structure and the distribution of the organic and the inorganic compounds in cake layer. Concentrations of fatty acids and cholesterol in the cake layer increased due to the acute response of bacteria to the toxicity of TiO2 NPs. Line-analysis and dot map of energy-dispersive X-ray were also carried out. Since TiO2 NPs inhibited the interactions between the inorganic and the organic compounds, the inorganic compounds (especially SiO2) were prevented from depositing onto the membrane surface. Thus, the postponed cake layer fouling was due to the changing features of the complexes on the membrane surface caused by TiO2 NPs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Improvement of physical properties of gluten-free steamed cake based on black waxy rice flour using different hydrocolloids.

    PubMed

    Itthivadhanapong, Pimchada; Jantathai, Srinual; Schleining, Gerhard

    2016-06-01

    This study aimed to compare the effects of 1 % addition of four selected hydrocolloids (xanthan, guar, hypdroxypropylmethylcellulose and carrageenan) on quality characteristics of batter and of black waxy rice steamed cake compared to a control without hydrocolloids. Dynamic frequency sweeps of the batters at 25 °C indicated that all formulations exhibited gel-like behaviour with storage moduli (G') higher than loss moduli (G″). Hydrocolloids increased the apparent viscosity and the thixotropic behaviour, depending on the type of hydrocolloids. Xanthan had the greatest effects on both moduli, whereas carrageenan had the smallest effects. During a storage period of 4 days the cakes with xanthan remained softer than control samples. The overall acceptability of cake with xanthan and guar were higher than control. This study is the first report on using black waxy rice flour as a main raw material in gluten free cake. The results of this study provided useful information for selection hydrocolloids as ingredients that can help to improve the physical properties of waxy rice steamed cake.

  10. [Use of flour from sunflower oil cake in the biosynthesis of antigungal antibiotics].

    PubMed

    Sukharevich, V M; Shvetsova, N N; Prodan, S I; Malkov, M A

    1977-04-01

    The possibility of replacing soybean meal and corn-steep liquor by food wastes of the oilpress industry and the meal of the sunflower oil cake in particular is discussed as applied to the fermentation media for production of antifungal antibiotics, such as levorin, mycoheptin, amphotericin. The studies showed that replacement of soybean meal by sunflower oil cake meal with simultaneous increasing of the amount of carbohydrates in the medium increased the levorin levels by 60--70 per cent as compared to the media used at present. When soybean meal and corn-steep liquor were simultaneously replaced by sunflower oil cake meal in amounts of 3--4 per cent the levels of mycoheptin in the fermentation broth increased by 30--65 per cent respectively. Replacement of soybean meal and corn-steep liquor by 3 per cent of sunflow oil cake meal in the medium used presently increased the amphotericin levels by 27 percent as compared to the control. Therefore, sunflower oil cake meal is a substitute of full value for soybean meal and corn-steep liquor in the fermentation media for production of antifungal antibiotics.

  11. Sequential Activation of Classic PKC and Estrogen Receptor α Is Involved in Estradiol 17ß-D-Glucuronide-Induced Cholestasis

    PubMed Central

    Barosso, Ismael R.; Zucchetti, Andrés E.; Boaglio, Andrea C.; Larocca, M. Cecilia; Taborda, Diego R.; Luquita, Marcelo G.; Roma, Marcelo G.; Crocenzi, Fernando A.; Sánchez Pozzi, Enrique J.

    2012-01-01

    Estradiol 17ß-d-glucuronide (E17G) induces acute cholestasis in rat with endocytic internalization of the canalicular transporters bile salt export pump (Abcb11) and multidrug resistance-associated protein 2 (Abcc2). Classical protein kinase C (cPKC) and PI3K pathways play complementary roles in E17G cholestasis. Since non-conjugated estradiol is capable of activating these pathways via estrogen receptor alpha (ERα), we assessed the participation of this receptor in the cholestatic manifestations of estradiol glucuronidated-metabolite E17G in perfused rat liver (PRL) and in isolated rat hepatocyte couplets (IRHC). In both models, E17G activated ERα. In PRL, E17G maximally decreased bile flow, and the excretions of dinitrophenyl-glutathione, and taurocholate (Abcc2 and Abcb11 substrates, respectively) by 60% approximately; preadministration of ICI 182,780 (ICI, ERα inhibitor) almost totally prevented these decreases. In IRHC, E17G decreased the canalicular vacuolar accumulation of cholyl-glycylamido-fluorescein (Abcb11 substrate) with an IC50 of 91±1 µM. ICI increased the IC50 to 184±1 µM, and similarly prevented the decrease in the canalicular vacuolar accumulation of the Abcc2 substrate, glutathione-methylfluorescein. ICI also completely prevented E17G-induced delocalization of Abcb11 and Abcc2 from the canalicular membrane, both in PRL and IRHC. The role of ERα in canalicular transporter internalization induced by E17G was confirmed in ERα-knocked-down hepatocytes cultured in collagen sandwich. In IRHC, the protection of ICI was additive to that produced by PI3K inhibitor wortmannin but not with that produced by cPKC inhibitor Gö6976, suggesting that ERα shared the signaling pathway of cPKC but not that of PI3K. Further analysis of ERα and cPKC activations induced by E17G, demonstrated that ICI did not affect cPKC activation whereas Gö6976 prevented that of ERα, indicating that cPKC activation precedes that of ERα. Conclusion: ERα is involved in the biliary secretory failure induced by E17G and its activation follows that of cPKC. PMID:23209816

  12. Nicergoline stimulates protein kinase C mediated alpha-secretase processing of the amyloid precursor protein in cultured human neuroblastoma SH-SY5Y cells.

    PubMed

    Cedazo-Minguez, A; Bonecchi, L; Winblad, B; Post, C; Wong, E H; Cowburn, R F; Benatti, L

    1999-10-01

    We investigated the ability of the antidementia agents, nicergoline, aniracetam and hydergine to stimulate PKC mediated alpha-secretase amyloid precursor protein (APP) processing in cultured human neuroblastoma SH-SY5Y cells. Western immunoblotting of cell conditioned media using the Mabs 22C11 and 6E10 revealed the presence of 2 bands with molecular mass of 90 and 120 kDa, corresponding to possible alternatively glycosylated forms of secreted APP (APPs). Short-term (30 min and 2 h) treatment of cells with nicergoline gave an increased intensity of both bands, compared to non-treated cells. Maximal nicergoline effects, of the order of 150-200% over basal APPs release, were seen at concentrations between 1 and 10 microM. Under the same condition, 1 microM PdBu, used as a positive control, gave 500-1000% increases of basal APPs release. In contrast, aniracetam and hydergine, did not show any effect on APPs secretion. 2 h treatment with nicergoline had no effect on cellular full-length APP levels, as determined by immunoblotting of cell extracts with 22C11 and CT15 antibodies. Immunoblotting with PKC isoform specific antibodies of soluble and membrane fractions prepared from 2 h treated cells, showed that nicergoline (50 microM) and PdBu (1 microM) both induced translocation of PKC alpha, gamma and epsilon, but not PKC beta. The involvement of PKC in mediating nicergoline stimulated APPs release was also studied using specific inhibitors. 1 microM calphostin C, a broad range PKC inhibitor, significantly reduced both PdBu (1 microM) and nicergoline (10 microM) induced APPs release. In contrast, Go6976 (1 microM), a selective PKC alpha and beta1 inhibitor, as well as the cAMP-dependent protein kinase inhibitor, H89 (1 microM) were without effect. These results indicate that nicergoline can modulate alpha-secretase APP processing by a PKC dependent mechanism that is likely to involve the gamma and epsilon isoforms of this enzyme.

  13. Utilization of biodiesel by-products for mosquito control.

    PubMed

    Pant, Megha; Sharma, Satyawati; Dubey, Saurabh; Naik, Satya Narayan; Patanjali, Phool Kumar

    2016-03-01

    The current paper has elaborated the efficient utilization of non-edible oil seed cakes (NEOC), by-products of the bio-diesel extraction process to develop a herbal and novel mosquitocidal composition against the Aedes aegypti larvae. The composition consisted of botanical active ingredients, inerts, burning agents and preservatives; where the botanical active ingredients were karanja (Pongamia glabra) cake powder and jatropha (Jatropha curcas) cake powder, products left after the extraction of oil from karanja and jatropha seed. The percentage mortality value recorded for the combination with concentration, karanja cake powder (20%) and jatropha cake powder (20%), 1:1 was 96%. The coil formulations developed from these biodiesel by-products are of low cost, environmentally friendly and are less toxic than the synthetic active ingredients. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Investigation of dielectric properties of different cake formulations during microwave and infrared-microwave combination baking.

    PubMed

    Sakiyan, Ozge; Sumnu, Gulum; Sahin, Serpil; Meda, Venkatesh

    2007-05-01

    Dielectric properties can be used to understand the behavior of food materials during microwave processing. Dielectric properties influence the level of interaction between food and high frequency electromagnetic energy. Dielectric properties are, therefore, important in the design of foods intended for microwave preparation. In this study, it was aimed to determine the variation of dielectric properties of different cake formulations during baking in microwave and infrared-microwave combination oven. In addition, the effects of formulation and temperature on dielectric properties of cake batter were examined. Dielectric constant and loss factor of cake samples were shown to be dependent on formulation, baking time, and temperature. The increase in baking time and temperature decreased dielectric constant and loss factor of all formulations. Fat content was shown to increase dielectric constant and loss factor of cakes.

  15. Mycoflora and mycotoxin production in oilseed cakes during farm storage.

    PubMed

    Lanier, Caroline; Heutte, Natacha; Richard, Estelle; Bouchart, Valerie; Lebailly, Pierre; Garon, David

    2009-02-25

    Agricultural activities involve the use of oilseed cakes as a source of proteins for livestock. Because the storage of oilseed cakes could induce the development of molds and the production of mycotoxins, a survey was conducted during the 5 months of farm storage. Mycoflora was studied by microscopic examinations, and the presence of Aspergillus fumigatus was confirmed by polymerase chain reaction. A multimycotoxin method was developed to quantify seven mycotoxins (aflatoxin B(1), alternariol, fumonisin B(1), gliotoxin, ochratoxin A, T-2 toxin, and zearalenone) in oilseed cakes by high-performance liquid chromatography coupled to mass spectrometry. Among 34 fungal species identified, A. fumigatus and Aspergillus repens were observed during 5 and 4 months, respectively. Gliotoxin, an immunosuppressive mycotoxin, was quantified in oilseed cakes up to 45 microg/kg, which was associated with the presence of toxigenic isolates of A. fumigatus.

  16. Feeding sunflower cake from biodiesel production to Santa Ines lambs: Physicochemical composition, fatty acid profile and sensory attributes of meat

    PubMed Central

    Nascimento, Thiago Vinicius Costa; Oliveira, Vinicius da Silva; Ribeiro, Rebeca Dantas Xavier

    2018-01-01

    The aim of this study was to determine the effect of the inclusion of sunflower cake in the diets of lambs on meat quality. Forty male, uncastrated Santa Ines lambs with an initial average body weight of 20.9 ± 0.41 kg were used in a completely randomized design with four treatments. The lambs were fed 500 g/kg hay and 500 g/kg concentrate (corn, soybean meal, urea, ammonium sulfate and sunflower cake) in their diet, and the experimental treatments were 0, 10, 20, and 30% sunflower cake inclusion (DM basis). The inclusion of sunflower cake in the diet did not affect (P > 0.05) the content of ash and protein, overall acceptance, or sensory aroma of the lamb meat. Total lipids and moisture content of the longissimus lumborum muscle increased linearly (P ≤ 0.05) with sunflower cake inclusion. The C16:0, ΣSFA, ΣMUFA:ΣSFA ratio, Δ–9 desaturase enzyme and atherogenicity index in the longissimus lumborum muscle decreased linearly (P ≤ 0.05) with sunflower cake inclusion in lamb diets, whereas a linear increase occurred (P ≤ 0.05) in C12:0, C18:0, ΣMUFA, ΣPUFA, ΣPUFA:ΣSFA and ΣPUFA:ΣMUFA ratios, Σn–6, Σn–3, desirable fatty acids, h:H index, elongase activity, and flavor, tenderness and juiciness sensory qualities in lamb meat. Among the panelists, the highest preference (35.9%) was for meat with 30% sunflower cake inclusion in the diet. Sunflower cake up to 30% of total DM can be included in the diet of Santa Ines lambs, because lipid nutritional quality and the sensory qualities of the lamb meat increase, in addition to improvement in nutraceutical compounds, such as the CLA content, and in the AI, PUFA:SFA and PUFA:MUFA ratios, desirable fatty acids content and h:H ratio, which are beneficial to the health of consumers. PMID:29304058

  17. Increasing dietary inclusions of camelina cake fed to pigs from weaning to slaughter: Safety, growth performance, carcass traits, and n-3 enrichment of pork.

    PubMed

    Smit, M N; Beltranena, E

    2017-07-01

    Feeding cake with remaining oil content not only provides additional dietary energy but may also enrich pork with -3 fatty acids. Limited information is available on feeding camelina cake to pigs relating to feeding safety (toxicity), growth performance, and efficacy of -3 enrichment of pork. Therefore, we evaluated the effects of feeding increasing camelina cake (12.2% crude fat) inclusions in diets for nursery and grower-finisher pigs. In total, 128 pigs (9.2 kg BW) were randomly allocated by sex to 32 nursery pens for 4 wk and were then moved and combined into 16 mixed-sex grower-finisher pens. Pigs were fed 1 of 4 wheat/barley-based diets including camelina variety 'Celine' cake (0%, 6%, 12%, or 18% in the nursery phase and 0%, 5%, 10%, or 15% in the grower-finisher phase) replacing soybean meal over 5 feeding phases (d 0 to 7, d 7 to 28, d 28 to 56, d 56 to 84, and d 84 to slaughter). Individual pigs and pen feed added were weighed. On d 106, a blood sample was collected from the pig with the lowest BW per pen, which was then euthanized. A pathologist conducted a gross clinical examination, and organs were weighed. Liver, back fat, and belly and jowl fat were sampled for fatty acid analysis. Pigs were slaughtered at approximately 125 kg BW. Increasing dietary camelina cake inclusion linearly decreased ( < 0.010) ADFI, ADG, BW, and G:F over the 105-d trial. Increasing dietary camelina cake inclusion linearly increased days to slaughter ( < 0.001) and carcass lean yield ( < 0.010) and linearly decreased farm ship weight ( < 0.010), carcass weight ( < 0.001), dressing percentage ( < 0.050), and back fat thickness ( < 0.010) but did not affect loin depth and index. Increasing camelina cake inclusion linearly increased liver and pancreas weight ( < 0.050) relative to BW but did not affect heart, thyroid, or kidney weights. Increasing camelina cake inclusion did not result in gross clinical or serological findings that would indicate toxicity. Increasing dietary camelina cake inclusion linearly increased ( < 0.050) -3 fatty acids, including docosahexaenoic acid, in back fat and belly and jowl fat. In conclusion, feeding camelina cake to pigs at up to 18% in the nursery phase and 15% in the grower, developer, and finisher phases did not result in clinical signs of toxicity and enriched carcass fat depots with -3 fatty acids. The observed decrease in ADFI and, consequently, ADG as camelina cake inclusion increased resulted in pigs fed 15% reaching slaughter weight 27 d later than controls.

  18. Effects of carrot pomace powder and a mixture of pectin and xanthan on the quality of gluten-free batter and cakes.

    PubMed

    Majzoobi, Mahsa; Vosooghi Poor, Zahra; Mesbahi, Gholamreza; Jamalian, Jalal; Farahnaky, Asgar

    2017-12-01

    Carrot pomace powder (CPP) is a valuable by-product of carrot processing containing nutrients and fiber and can be utilized for enrichment of gluten-free products. The main purpose of this study was to determine the effects of various levels of CPP (0, 10, 20, and 30%) and a mixture of hydrocolloids (HC) including pectin and xanthan (1.5% of each) on the quality of batter and gluten-free cakes. With increasing the level of CPP and inclusion of HC the viscosity of the batter increased significantly from 87 mPa s for the control to >7000 mPa s for 30%CCP + HC sample. The density of the control batter was 1.2 g/cm 3 which reduced significantly to 0.899 g/cm 3 for HC sample. The pH of the cake reduced from 7.23 to 6.78 with addition of CPP but increased slightly with inclusion of HC. The density of the cake reduced from 0.510 g/cm 3 for the control to 0.395 g/cm 3 for 20%CCP + C sample. The texture of the cakes became softer, more springy and chewable with addition of CPP, CPP + HC, and HC. The control sample had the lowest uniformity index (0.178) which improved with addition of CPP and CPP + HC and a highly uniform cake with a uniformity index of 0.045 was obtained for the 30%CCP + HC cake. Addition of CPP increased the dark color of the cakes while inclusion of HC had no effect on the appearance of the cake and color. It was concluded that inclusion of maximum 30%CCP and 20%CPP + HC promoted the quality and sensory attributes of gluten-free cakes. Although different types of gluten-free products are available in the market, most of them contain insufficient amount of fiber and nutrients. Despite popularity, gluten-free cakes are poor in fiber and nutrient contents. Therefore, improving the nutritional value of these products has received an increasing attention by the food industry. Carrot pomace powder (CPP) is an available source of fiber and nutrients and hence can be utilized for enrichment of gluten-free products. This study showed that the inclusion of up to 30% CPP or 20% CPP with a mixture of xanthan and pectin (3%, 1:1) improved the quality and sensory attributes of the cakes. Industrial implications of this study may lead to new product development and improved marketing due to the enhancement of quality, sensory attributes, and nutritional value of the products. © 2017 Wiley Periodicals, Inc.

  19. Prolactin-stimulated ornithine decarboxylase induction in rat hepatocytes: Coupling to diacylglycerol generation and protein kinase C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckley, A.R.; Buckley, D.J.

    1991-01-01

    The trophic effects of prolactin (PRL) in rat liver have been linked to activation of protein kinase C (PKC). Since alterations in PKC activity imply its activation by 1,2-diacylglycerol (DAG), we tested whether PRL treatment stimulated DAG generation coupled to induction of a growth response in primary hepatocytes. Addition of PRL to hepatocyte cultures significantly increased ({sup 3}H)-glycerol incorporation into DAG within 5 minutes which was followed by a loss of cytosolic PKC activity by 10 minutes. Prolactin also significantly enhanced radiolabel incorporation into triacylglycerol and phospholipids within 10 minutes and induced ODC activity at 6 hours. Therefore, prolactin-stimulated alterationsmore » in PKC activity are preceded by enhanced DAG generation. Moreover, these events appear to be coupled to PRL-stimulated entry of hepatocytes into cell cycle.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fouassier, Laura; Nichols, Matthew T.; Gidey, Elizabeth

    Ezrin-Radixin-Moesin (ERM) binding phosphoprotein 50 (EBP50, a.k.a. NHERF-1) is a scaffold protein essential for the localization and coordinated activity of apical transporters, enzymes and receptors in epithelial cells. EBP50 acts via multiple protein binding interactions, including oligomerization through interactions of its PSD95-Dlg-ZO1 (PDZ) domains. EBP50 can be phosphorylated on multiple sites and phosphorylation of specific sites modulates the extent of oligomerization. The aim of the present study was to test the capacity of protein kinase C (PKC) to phosphorylate EBP50 and to regulate its oligomerization. In vitro experiments showed that the catalytic subunit of PKC directly phosphorylates EBP50. In HEK-293more » cells transfected with rat EBP50 cDNA, a treatment with 12 myristate 13-acetate (PMA) induced a translocation of PKC{alpha} and {beta} isoforms to the membrane and increased {sup 32}P incorporation into EBP50. In co-transfection/co-precipitation studies, PMA treatment stimulated EBP50 oligomerization. Mass spectrometry analysis of full-length EBP50 and phosphorylation analyses of specific domains, and of mutated or truncated forms of EBP50, indicated that PKC-induced phosphorylation of EBP50 occurred on the Ser{sup 337}/Ser{sup 338} residue within the carboxyl-tail domain of the protein. Truncation of Ser{sup 337}/Ser{sup 338} also diminished PKC-induced oligomerization of EBP50. These results suggest the PKC signaling pathway can impact EBP50-dependent cellular functions by regulating EBP50 oligomerization.« less

  1. PKC-Dependent GlyT1 Ubiquitination Occurs Independent of Phosphorylation: Inespecificity in Lysine Selection for Ubiquitination

    PubMed Central

    Barrera, Susana P.; Castrejon-Tellez, Vicente; Trinidad, Margarita; Robles-Escajeda, Elisa; Vargas-Medrano, Javier; Varela-Ramirez, Armando; Miranda, Manuel

    2015-01-01

    Neurotransmitter transporter ubiquitination is emerging as the main mechanism for endocytosis and sorting of cargo into lysosomes. In this study, we demonstrate PKC-dependent ubiquitination of three different isoforms of the glycine transporter 1 (GlyT1). Incubation of cells expressing transporter with the PKC activator phorbol ester induced a dramatic, time-dependent increase in GlyT1 ubiquitination, followed by accumulation of GlyT1 in EEA1 positive early endosomes. This occurred via a mechanism that was abolished by inhibition of PKC. GlyT1 endocytosis was confirmed in both retinal sections and primary cultures of mouse amacrine neurons. Replacement of only all lysines in the N-and C-termini to arginines prevented ubiquitination and endocytosis, displaying redundancy in the mechanism of ubiquitination. Interestingly, a 40–50% reduction in glycine uptake was detected in phorbol-ester stimulated cells expressing the WT-GlyT1, whereas no significant change was for the mutant protein, demonstrating that endocytosis participates in the reduction of uptake. Consistent with previous findings for the dopamine transporter DAT, ubiquitination of GlyT1 tails functions as sorting signal to deliver transporter into the lysosome and removal of ubiquitination sites dramatically attenuated the rate of GlyT1 degradation. Finally, we showed for the first time that PKC-dependent GlyT1 phosphorylation was not affected by removal of ubiquitination sites, suggesting separate PKC-dependent signaling events for these posttranslational modifications. PMID:26418248

  2. 77 FR 18270 - Acceptance Decision for the Unrestricted Use of the Former Michigan Chemical Company-Breckenridge...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    .... Louis plant generated a dense, clay-like waste known as ``filter cake,'' which contained elevated levels of uranium and thorium, two naturally- occurring radioactive materials. The radioactive filter cake was buried at the BDS. Burial of the filter cake at the BDS was permitted under AEC license number SMB...

  3. Basic Cake Decorating Workbook.

    ERIC Educational Resources Information Center

    Bogdany, Mel

    Included in this student workbook for basic cake decorating are the following: (1) Drawings of steps in a basic way to ice a layer cake, how to make a paper cone, various sizes of flower nails, various sizes and types of tin pastry tubes, and special rose tubes; (2) recipes for basic decorating icings (buttercream, rose paste, and royal icing);…

  4. The Icing or the Cake?

    ERIC Educational Resources Information Center

    Doubet, Kristina J.; Hockett, Jessica A.

    2016-01-01

    In this article, authors Kristina J. Doubet and Jessica A. Hockett argue that student engagement is more than a decorative icing on a cake; it's the cake itself. They cite research that an engaged student is more likely to invest in and understand the content being taught. With this in mind, the authors detail the following four principles that…

  5. Non-edible Oil Cakes as a Novel Substrate for DPA Production and Augmenting Biocontrol Activity of Paecilomyces variotii

    PubMed Central

    Arora, Kalpana; Sharma, Satyawati; Krishna, Suresh B. N.; Adam, Jamila K.; Kumar, Ashwani

    2017-01-01

    The present study investigated the use of waste non-edible oil cakes (Jatropha, Karanja, Neem, and Mahua) as a substrate for the growth of Paecilomyces variotii and dipicolinic acid (DPA) production. Previous researches proved the efficacy of DPA in suppressing certain pathogens that are deleterious to the plants in the rhizosphere. DPA production was statistical optimized by amending non-edible oil cakes in growing media as nitrogen and sugars (Dextrose, Glucose, and Lactose) as carbon source. Plackett-Burman design (PBD), indicated that Jatropha cake, Karanja cake, and Dextrose were the most significant components (p < 0.05) of the media and were further optimized using response surface methodology (RSM). Jatropha cake, Karanja cake, and Dextrose at the concentration of 12.5, 4.5, and 10 g/l, respectively, yielded 250 mg/l of DPA, which was 2.5 fold more than that obtained from basal medium. HPLC analysis of the optimized medium (peak at retention time of 30 min) confirmed the enhanced DPA production by P. variotii. The scanning electron microscopy (SEM) images showed that optimized medium impose a stress like condition (due to less C:N ratio) for the fungus and generated more spores as compared to the basal medium in which carbon source is easily available for the mycelial growth. The antimicrobial activity of the fungal extract was tested and found to be effective even at 10−2 dilution after 72 h against two plant pathogens, Fusarium oxysporum and Verticillium dahlia. Statistical experimental design of this study and the use of non-edible oil cakes as a substrate offer an efficient and viable approach for DPA production by P. variotii. PMID:28512455

  6. Non-edible Oil Cakes as a Novel Substrate for DPA Production and Augmenting Biocontrol Activity of Paecilomyces variotii.

    PubMed

    Arora, Kalpana; Sharma, Satyawati; Krishna, Suresh B N; Adam, Jamila K; Kumar, Ashwani

    2017-01-01

    The present study investigated the use of waste non-edible oil cakes (Jatropha, Karanja, Neem, and Mahua) as a substrate for the growth of Paecilomyces variotii and dipicolinic acid (DPA) production. Previous researches proved the efficacy of DPA in suppressing certain pathogens that are deleterious to the plants in the rhizosphere. DPA production was statistical optimized by amending non-edible oil cakes in growing media as nitrogen and sugars (Dextrose, Glucose, and Lactose) as carbon source. Plackett-Burman design (PBD), indicated that Jatropha cake, Karanja cake, and Dextrose were the most significant components ( p < 0.05) of the media and were further optimized using response surface methodology (RSM). Jatropha cake, Karanja cake, and Dextrose at the concentration of 12.5, 4.5, and 10 g/l, respectively, yielded 250 mg/l of DPA, which was 2.5 fold more than that obtained from basal medium. HPLC analysis of the optimized medium (peak at retention time of 30 min) confirmed the enhanced DPA production by P. variotii . The scanning electron microscopy (SEM) images showed that optimized medium impose a stress like condition (due to less C:N ratio) for the fungus and generated more spores as compared to the basal medium in which carbon source is easily available for the mycelial growth. The antimicrobial activity of the fungal extract was tested and found to be effective even at 10 -2 dilution after 72 h against two plant pathogens, Fusarium oxysporum and Verticillium dahlia . Statistical experimental design of this study and the use of non-edible oil cakes as a substrate offer an efficient and viable approach for DPA production by P. variotii .

  7. Detoxification and anti-nutrients reduction of Jatropha curcas seed cake by Bacillus fermentation.

    PubMed

    Phengnuam, Thanyarat; Suntornsuk, Worapot

    2013-02-01

    Jatropha curcas seed cake is a by-product generated from oil extraction of J. curcas seed. Although it contains a high amount of protein, it has phorbol esters and anti-nutritional factors such as phytate, trypsin inhibitor, lectin and saponin. It cannot be applied directly in the food or animal feed industries. This investigation was aimed at detoxifying the toxic and anti-nutritional compounds in J. curcas seed cake by fermentation with Bacillus spp. Two GRAS (generally recognized as safe) Bacillus strains used in the study were Bacillus subtilis and Bacillus licheniformis with solid-state and submerged fermentations. Solid-state fermentation was done on 10 g of seed cake with a moisture content of 70% for 7 days, while submerged fermentation was carried out on 10 g of seed cake in 100 ml distilled water for 5 days. The fermentations were incubated at the optimum condition of each strain. After fermentation, bacterial growth, pH, toxic and anti-nutritional compounds were determined. Results showed that B. licheniformis with submerged fermentation were the most effective method to degrade toxic and anti-nutritional compounds in the seed cake. After fermentation, phorbol esters, phytate and trypsin inhibitor were reduced by 62%, 42% and 75%, respectively, while lectin could not be eliminated. The reduction of phorbol esters, phytate and trypsin inhibitor was related to esterase, phytase and protease activities, respectively. J. curcas seed cake could be mainly detoxified by bacterial fermentation and the high-protein fermented seed cake could be potentially applied to animal feed. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Preparation of food supplements from oilseed cakes.

    PubMed

    Sunil, L; Appaiah, Prakruthi; Prasanth Kumar, P K; Gopala Krishna, A G

    2015-05-01

    Oilseed cakes have been in use for feed preparation. Being rich in proteins, antioxidants, fibers, vitamins and minerals, oilseed cakes have been considered ideal for food supplementation. These oilseed cakes can be processed and made more palatable and edible by suitable treatments and then incorporated as food supplements for human consumption. Rice bran pellets (RBP), stabilized rice bran (SRB), coconut cake (CC) and sesame cake (SC) were taken up for the study. These were mixed with distilled water and cooked in such a way to separate the cooked solid residue and liquid extract followed by freeze drying to get two products from each. The raw, cooked dried residue and extract were analyzed for various parameters such as moisture (0.9-27.4 %), fat (2.1-16.1 %), ash (3.3-9.0 %), minerals (2.6-633.2 mg/100 g), total dietary fiber (23.2-58.2 %), crude fiber (2.7-10.5 %), protein (3.2-34.0 %), and the fat further analyzed for fatty acid composition, oryzanol (138-258 mg/100 g) and lignan (99-113 mg/100 g) contents and also evaluated sensory evaluation. Nutritional composition of products as affected by cooking was studied. The cooked products (residue and extract) showed changes in nutrients content and composition from that of the starting cakes and raw materials, but retained more nutrients in cooked residue than in the extract. The sensory evaluation of cooked residue and extract showed overall higher acceptability by the panelists than the starting cakes and raw materials. On the basis of these findings it can be concluded that these cooked residue and extract products are highly valuable for food supplementation than the raw ones.

  9. Degradation of phorbol esters by Pseudomonas aeruginosa PseA during solid-state fermentation of deoiled Jatropha curcas seed cake.

    PubMed

    Joshi, Chetna; Mathur, Priyanka; Khare, S K

    2011-04-01

    Large amount of seed cake is generated as by-product during biodiesel production from Jatropha seeds. Presence of toxic phorbol esters restricts its utilization as livestock feed. Safe disposal or meaningful utilization of this major by-product necessitates the degradation of these phorbol esters. The present study describes the complete degradation of phorbol esters by Pseudomonas aeruginosa PseA strain during solid state fermentation (SSF) of deoiled Jatropha curcas seed cake. Phorbol esters were completely degraded in nine days under the optimized SSF conditions viz. deoiled cake 5.0 g; moistened with 5.0 ml distilled water; inoculum 1.5 ml of overnight grown P. aeruginosa; incubation at temperature 30 °C, pH 7.0 and RH 65%. SSF of deoiled cake seems a potentially viable approach towards the complete degradation of the toxic phorbol esters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Co-composting of physic nut (Jatropha curcas) deoiled cake with rice straw and different animal dung.

    PubMed

    Das, Manab; Uppal, H S; Singh, Reena; Beri, Shanuja; Mohan, K S; Gupta, Vikas C; Adholeya, Alok

    2011-06-01

    To address the dispensing of this growing volume, a study on utilization of jatropha (Jatropha curcas) deoiled cake through compost production was carried out. The deoiled cake was composted with rice straw, four different animal dung (cow dung, buffalo dung, horse dung and goat dung) and hen droppings in different proportions followed by assessment, and comparison of biochemical characteristics among finished composts. Nutrient content in finished compost was within the desired level whereas metals such as copper, lead and nickel were much below the maximum allowable concentrations. Although a few finished material contained phorbol ester (0.12 mg/g), but it was far below the original level found in the deoiled cake. Such a study indicates that a huge volume of jatropha deoiled cake can be eliminated through composting. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Prediction during language processing is a piece of cake--but only for skilled producers.

    PubMed

    Mani, Nivedita; Huettig, Falk

    2012-08-01

    Are there individual differences in children's prediction of upcoming linguistic input and what do these differences reflect? Using a variant of the preferential looking paradigm (Golinkoff, Hirsh-Pasek, Cauley, & Gordon, 1987), we found that, upon hearing a sentence like, "The boy eats a big cake," 2-year-olds fixate edible objects in a visual scene (a cake) soon after they hear the semantically constraining verb eats and prior to hearing the word cake. Importantly, children's prediction skills were significantly correlated with their productive vocabulary size-skilled producers (i.e., children with large production vocabularies) showed evidence of predicting upcoming linguistic input, while low producers did not. Furthermore, we found that children's prediction ability is tied specifically to their production skills and not to their comprehension skills. Prediction is really a piece of cake, but only for skilled producers.

  12. Estimation of shelf life of wikau maombo brownies cake using Accelerated Shelf Life Testing (ASLT) method with Arrhenius model

    NASA Astrophysics Data System (ADS)

    Wahyuni, S.; Holilah; Asranudin; Noviyanti

    2018-02-01

    The shelf life of brownies cake made from wikau maombo flour was predicted by ASLT method through the Arrhenius model. The aim of this study was to estimate the shelf life of brownies cake made from wikau maombo flour. The storage temperature of brownies cake was carried out at 20°C, 30°C and 45°C. The results showed that TBA (Thio Barbaturic Acid) number of brownies cake decreased as the storage temperature increase. Brownies stored at 20°C and 30°C were overgrown with mold on the storage time of six days. Brownies product (WT0 and WT1) had shelf life at 40°C approximately six and fourteen days, respectively. Brownies made from wikau maombo and wheat flour (WT1) was the best product with had the longest of shelf life about fourteen days.

  13. Pea and Broad Bean Pods as a Natural Source of Dietary Fiber: The Impact on Texture and Sensory Properties of Cake.

    PubMed

    Belghith-Fendri, Lilia; Chaari, Fatma; Kallel, Fatma; Zouari-Ellouzi, Soumaya; Ghorbel, Raoudha; Besbes, Souhail; Ellouz-Chaabouni, Semia; Ghribi-Aydi, Dhouha

    2016-10-01

    Attention has focused on bakery products such as cake which is one of the most common bakery products consumed by people in the world. Legume by-products, pea pods (PPs) (Pisum sativum L.) and broad bean pods (BBPs) (Vicia faba L.) mediterranean (Tunisian), has been studied for its high dietary fiber content (PP: 43.87 g/100 g; BBP: 53.01 g/100 g). Protein content was also a considerable component for both by-products. We investigated the effect of substituted of 5%, 10%, 15%, 20%, 25%, and 30% of PP and BBP flours on the sensory and technological properties in cake. Cakes hardness increased whereas L * and a * color values decreased. The overall acceptability rate showed that a maximum of 15% of PP and BBP flours can be added to prepare acceptable quality cakes. © 2016 Institute of Food Technologists®.

  14. Diacylglycerol levels modulate the cellular distribution of the nicotinic acetylcholine receptor.

    PubMed

    Kamerbeek, Constanza B; Mateos, Melina V; Vallés, Ana S; Pediconi, María F; Barrantes, Francisco J; Borroni, Virginia

    2016-05-01

    Diacylglycerol (DAG), a second messenger involved in different cell signaling cascades, activates protein kinase C (PKC) and D (PKD), among other kinases. The present work analyzes the effects resulting from the alteration of DAG levels on neuronal and muscle nicotinic acetylcholine receptor (AChR) distribution. We employ CHO-K1/A5 cells, expressing adult muscle-type AChR in a stable manner, and hippocampal neurons, which endogenously express various subtypes of neuronal AChR. CHO-K1/A5 cells treated with dioctanoylglycerol (DOG) for different periods showed augmented AChR cell surface levels at short incubation times (30min-4h) whereas at longer times (18h) the AChR was shifted to intracellular compartments. Similarly, in cultured hippocampal neurons surface AChR levels increased as a result of DOG incubation for 4h. Inhibition of endogenous DAG catabolism produced changes in AChR distribution similar to those induced by DOG treatment. Specific enzyme inhibitors and Western blot assays revealed that DAGs exert their effect on AChR distribution through the modulation of the activity of classical PKC (cPKC), novel PKC (nPKC) and PKD activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Protein kinase C activation is required for the lead-induced inhibition of proliferation and differentiation of cultured oligodendroglial progenitor cells.

    PubMed

    Deng, Wenbin; Poretz, Ronald D

    2002-03-01

    Lead (Pb) is a common neurotoxicant of major public health concern. Previous studies revealed that cultured oligodendrocyte progenitor cells (OPCs) are highly vulnerable to Pb toxicity. The present study examines the effect of Pb on the survival, proliferation and differentiation of OPCs in vitro. Dose-response studies showed that> or = l5-10 microM Pb is cytotoxic to OPCs within 24 h. However, 1 microM of Pb was found to inhibit the proliferation and differentiation of OPCs without affecting cell viability. Pb markedly decreased the proliferative capability of OPCs and inhibited cell-intrinsic lineage progression of OPCs at a late progenitor stage. The Pb-induced decrease of proliferation and differentiation was abolished by inhibition of protein kinase C (PKC) with bisindolylmaleimide I, while the effect of the PKC-activating agent phorbol-12,13-didecanoate was potentiated by Pb. Furthermore, Pb exposure of OPCs caused the translocation of PKC from the cytoplasm to membrane without an increase in total cellular PKC enzymic activity. These results indicate that Pb inhibits the proliferation and differentiation of oligodendrocyte lineage cells in vitro through a mechanism requiring PKC activation.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, C.-H.; Department of Nursing, Hungkuang University, Sha Lu, Taichung, Taiwan; Tseng, T.-H.

    In our previous study, penta-acetyl geniposide ((AC){sub 5}GP) is suggested to induce tumor cell apoptosis through the specific activation of PKC{delta}. However, the downstream signal pathway of PKC{delta} has not yet been investigated. It was shown that JNK may play an important role in the regulation of apoptosis and could be a possible downstream signal of PKC{delta} isoforms. In the present study, we investigate whether JNK is involved in (AC){sub 5}GP induced apoptosis. The result reveals that (AC){sub 5}GP induces JNK activation and c-Jun phosphorylation thus stimulating the expression of Fas-L and Fas. Using SP600125 to block JNK activation showsmore » that (AC){sub 5}GP-mediated apoptosis and related proteins expression are attenuated. Furthermore, we find that the (AC){sub 5}GP induces apoptosis through the activation of JNK/Jun/Fas L/Fas/caspase 8/caspase 3, a mitochondria-independent pathway. The JNK pathway is suggested to be the downstream signal of PKC{delta}, since rottlerin impedes (AC){sub 5}GP-induced JNK activation. Therefore, (AC){sub 5}GP mediates cell death via activation of PKC{delta}/JNK/FasL cascade signaling.« less

  17. Natural Product Vibsanin A Induces Differentiation of Myeloid Leukemia Cells through PKC Activation.

    PubMed

    Yu, Zu-Yin; Xiao, He; Wang, Li-Mei; Shen, Xing; Jing, Yu; Wang, Lin; Sun, Wen-Feng; Zhang, Yan-Feng; Cui, Yu; Shan, Ya-Jun; Zhou, Wen-Bing; Xing, Shuang; Xiong, Guo-Lin; Liu, Xiao-Lan; Dong, Bo; Feng, Jian-Nan; Wang, Li-Sheng; Luo, Qing-Liang; Zhao, Qin-Shi; Cong, Yu-Wen

    2016-05-01

    All-trans retinoic acid (ATRA)-based cell differentiation therapy has been successful in treating acute promyelocytic leukemia, a unique subtype of acute myeloid leukemia (AML). However, other subtypes of AML display resistance to ATRA-based treatment. In this study, we screened natural, plant-derived vibsane-type diterpenoids for their ability to induce differentiation of myeloid leukemia cells, discovering that vibsanin A potently induced differentiation of AML cell lines and primary blasts. The differentiation-inducing activity of vibsanin A was mediated through direct interaction with and activation of protein kinase C (PKC). Consistent with these findings, pharmacological blockade of PKC activity suppressed vibsanin A-induced differentiation. Mechanistically, vibsanin A-mediated activation of PKC led to induction of the ERK pathway and decreased c-Myc expression. In mouse xenograft models of AML, vibsanin A administration prolonged host survival and inhibited PKC-mediated inflammatory responses correlated with promotion of skin tumors in mice. Collectively, our results offer a preclinical proof of concept for vibsanin A as a myeloid differentiation-inducing compound, with potential application as an antileukemic agent. Cancer Res; 76(9); 2698-709. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. Sunflower cake as a natural composite: composition and plastic properties.

    PubMed

    Geneau-Sbartaï, Céline; Leyris, Juliette; Silvestre, Françoise; Rigal, Luc

    2008-12-10

    Nowadays, the end-of-life of plastic products and the decrease of fossil energy are great environmental problems. Moreover, with the increase of food and nonfood transformations of renewable resources, the quantities of agro-industrial byproducts and wastes increase hugely. These facts allow the development of plastic substitutes made from agro-resources. Many researches show the feasibility of molding biopolymers extracted from plants like a common polymeric matrix. Other natural macromolecules are used like fillers into polyolefins, for example. However, limited works present results about the transformation of a natural blend of biopolymers into a plastic material. The aim of this study is the determination of the composition of sunflower cake (SFC) and also the characterization of its components. These were identified by chemical and biochemical analysis often used in agricultural or food chemistry. Most of the extraction and purification processes modify the macrostructure of several biopolymers (e.g., denaturation of proteins, cleavage or creation of weak bonds, etc.). So, the composition of different parts of the sunflower seed (husk, kernel, and also protein isolate) was determined, and the plasticlike properties of their components were studied with thermogravimetric analysis, differential scanning calorimetry, and a dynamic mechanical thermal analysis apparatus. Finally, this indirect way of characterization showed that SFC can be considered a natural composite. In SFC, several components like lignocellulosic fibers [40%/dry matter (DM)], which essentially come from the husk of sunflower seed, can act as fillers. However, other biopolymers like globulins ( approximately 30% of the 30% of sunflower seed proteins/DM of SFC) can be shaped as a thermoplastic-like material because this kind of protein has a temperature of glass transition and a temperature of denaturation that seems to be similar to a melting temperature. These proteins have also viscoelastic properties. Moreover, SFC has similar rheological properties and other physicochemical properties compatible with shaping or molding behaviors of plastic-processing machinery.

  19. Learning Programming through Baking

    ERIC Educational Resources Information Center

    Moon, Cameron

    2018-01-01

    Baking a cake and programming have many attributes in common. Both baking and programming rely on a specific process to produce an expected outcome. A cake needs the right amount of each ingredient mixed in at the right time, the oven to be set at a specific temperature, and the cake to be baked for a specific length of time. Programs need to be…

  20. Cake Flour Is Not Just Any Old White Powder: A Fun Take-Home Experiment

    ERIC Educational Resources Information Center

    McMullen, Kevin; Rasmus, C.; Virtue, Melinda; Slik, Kate; Wrigley, Colin

    2014-01-01

    Baking cakes with different recipes can provide an exercise in the application of the scientific method, illustrating the need to vary only one ingredient at a time for correct derivation of conclusions. This experiment, most likely to be performed at home, compares a cake flour with flours from durum wheat, rice and cornflour (gluten-free…

  1. [Experiences with the enzymatic determination of sugar and sugar substitutes in dietetic cake for diabetics (author's transl)].

    PubMed

    Klingebiel, L; Grossklaus, R; Pahlke, G

    1979-11-01

    Sorbitol and fructose were determined enzymatically in home-made and commercially produced cake for diabetics. In some commercial products, a loss of fructose depending upon the baking period was found. This loss of fructose is to be attributed to the Maillard reaction. The findings were confirmed by comparative studies will a reference cake.

  2. Can acceptable quality angel food cakes be made using pasteurized shell eggs? The effects of processing factors on functional properties of angel food cakes

    USDA-ARS?s Scientific Manuscript database

    Due to recent incidences of Salmonella contamination, the market for pasteurized shell eggs is rapidly growing. One objection to using pasteurized shell eggs is the belief that they will produce unacceptable baked product (e.g., angel food cakes). In the present study, shell eggs were pasteurized us...

  3. Cytosolic calcium homeostasis in bovine parathyroid cells and its modulation by protein kinase C.

    PubMed Central

    Racke, F K; Nemeth, E F

    1993-01-01

    1. The effects of protein kinase C (PKC) activators and inhibitors on the mechanisms regulating cytosolic Ca2+ homeostasis in dissociated bovine parathyroid cells loaded with fura-2 were examined. 2. Stepwise increases in the concentration of extracellular Ca2+ (from 0.5 to 2 or 3 mM) elicited transient followed by sustained increases in the concentration of intracellular free Ca2+ ([Ca2+]i). Cytosolic Ca2+ transients reflected the mobilization of intracellular Ca2+ and influx of extracellular Ca2+ whereas sustained increases in [Ca2+]i resulted from the influx of extracellular Ca2+. Brief (1-2 min) pretreatment with phorbol myristate acetate (PMA) shifted the concentration-response curve for extracellular Ca(2+)-induced cytosolic Ca2+ transients to the right without affecting the maximal response. Cytosolic Ca2+ transients elicited by extracellular Mg2+ were similarly affected by PMA. 3. These effects of PMA were mimicked by various other activators of PKC with the rank order of potency PMA > phorbol dibutyrate > bryostatin , > (-)indolactam V > mezerein. Isomers or analogues of these compounds that do not alter PKC activity (4 alpha-phorbols and (+)indolactam V) did not alter [Ca2+]i. 4. PKC activators depressed evoked increases in [Ca2+]i when influx of extracellular Ca2+ was blocked with Gd3+. Cytosolic Ca2+ transients elicited by extracellular Mg2+ in the absence of extracellular Ca2+ were similarly inhibited by PKC activators. Activation of PKC thus inhibits the mobilization of intracellular Ca2+ elicited by extracellular divalent cations. 5. Increases in the concentration of extracellular Ca2+ caused corresponding increases in the formation of [3H]inositol 1,4,5-trisphosphate ([3H]InsP3). Pretreatment with PMA shifted the concentration-response curve for extracellular Ca(2+)-induced [3H]InsP3 formation to the right without affecting the maximal response. 6. PKC activators also caused some depression of steady-state increases in [Ca2+]i elicited by extracellular Ca2+. In contrast, PMA did not affect increases in [Ca2+]i elicited by ionomycin or thapsigargin. 7. Ba2+ was used to monitor divalent cation influx. PMA decreased the rate of rise of the fluorescent signal elicited by extracellular Ba2+. 8. All these effects of PKC activators on [Ca2+]i were blocked or reversed by staurosporine at concentrations (30-100 nM) that inhibited PKC activity in parathyroid cells. Staurosporine alone potentiated cytosolic Ca2+ responses evoked by submaximal concentrations of extracellular divalent cations. 9. PKC thus depresses both the mobilization of intracellular Ca2+ and the influx of extracellular Ca2+ in parathyroid cells. The effects on [Ca2+]i provide evidence for a Ca2+ receptor on the surface of parathyroid cells that uses transmembrane signalling mechanisms common to some other Ca(2+)-mobilizing receptors.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:8254504

  4. Antifungal activities of ethanolic extract from Jatropha curcas seed cake.

    PubMed

    Saetae, Dolaporn; Suntornsuk, Worapot

    2010-02-01

    Phorbol ester extraction was carried out from Jatropha curcas seed cake, a by-product from the bio-diesel fuel industry. Four repeated extractions from 5 g J. curcas seed cake using 15 ml of 90% (v/v) ethanol and a shaking speed of 150 rev/min gave the highest yield of phosbol esters. The ethanolic extract of J. curcas seed cake showed antifungal activities against important phytofungal pathogens: Fusarium oxysporum, Pythium aphanidermatum, Lasiodiplodia theobromae, Curvularia lunata, Fusarium semitectum, Colletotrichum capsici and Colletotrichum gloeosporiodes. The extract contained phorbol esters mainly responsible for antifungal activities. The extract could therefore be used as an antifungal agent for agricultural applications.

  5. Processing of commercial peanut cake into food-grade meal and its utilization in preparation of cookies.

    PubMed

    Tate, P V; Chavan, J K; Patil, P B; Kadam, S S

    1990-04-01

    The commercial cake produced during expeller pressing of peanuts was extracted with n-hexane, and 80% ethanol followed by sieving through 80 mesh, to remove residual oil, pigments, bitter taste and fibrous material. The processed meal exhibited comparable composition with defatted peanut flour prepared in the laboratory by solvent extraction of full-fat peanut meal. However, the processed cake meal exhibited low methionine content and in vitro protein digestibility as compared with defatted peanut flour. The processed cake meal can be blended with wheat flour to the extent of 10% (w/w) to prepare acceptable cookies with improved protein and mineral contents.

  6. In vitro starch digestibility and predicted glycemic index of microwaved and conventionally baked pound cake.

    PubMed

    Sánchez-Pardo, María Elena; Ortiz-Moreno, Alicia; Mora-Escobedo, Rosalva; Necoechea-Mondragón, Hugo

    2007-09-01

    The present study compares the effect of baking process (microwave vs conventional oven) on starch bioavailability in fresh pound cake crumbs and in crumbs from pound cake stored for 8 days. Proximal chemical analysis, resistant starch (RS), retrograded starch (RS3) and starch hydrolysis index (HI) were evaluated. The empirical formula suggested by Granfeldt was used to determine the predicted glycemic index (pGI). Pound cake, one of Mexico's major bread products, was selected for analysis because the quality defects often associated with microwave baking might be reduced with the use of high-fat, high-moisture, batted dough. Differences in product moisture, RS and RS3 were observed in fresh microwave-baked and conventionally baked pound cake. RS3 increased significantly in conventionally baked products stored for 8 days at room temperature, whereas no significantly changes in RS3 were observed in the microwaved product. HI values for freshly baked and stored microwaved product were 59 and 62%, respectively (P > 0.05), whereas the HI value for the conventionally baked product decreased significantly after 8 days of storage. A pound cake with the desired HI and GI characteristics might be obtained by adjusting the microwave baking process.

  7. Optimization of formulation of soy-cakes baked in infrared-microwave combination oven by response surface methodology.

    PubMed

    Şakıyan, Özge

    2015-05-01

    The aim of present work is to optimize the formulation of a functional cake (soy-cake) to be baked in infrared-microwave combination oven. For this optimization process response surface methodology was utilized. It was also aimed to optimize the processing conditions of the combination baking. The independent variables were the baking time (8, 9, 10 min), the soy flour concentration (30, 40, 50 %) and the DATEM (diacetyltartaric acid esters of monoglycerides) concentration (0.4, 0.6 and 0.8 %). The quality parameters that were examined in the study were specific volume, weight loss, total color change and firmness of the cake samples. The results were analyzed by multiple regression; and the significant linear, quadratic, and interaction terms were used in the second order mathematical model. The optimum baking time, soy-flour concentration and DATEM concentration were found as 9.5 min, 30 and 0.72 %, respectively. The corresponding responses of the optimum points were almost comparable with those of conventionally baked soy-cakes. So it may be declared that it is possible to produce high quality soy cakes in a very short time by using infrared-microwave combination oven.

  8. β Subunits Control the Effects of Human Kv4.3 Potassium Channel Phosphorylation.

    PubMed

    Abbott, Geoffrey W

    2017-01-01

    The transient outward K + current, I to , activates early in the cardiac myocyte action potential, to begin repolarization. Human I to is generated primarily by two Kv4.3 potassium channel α subunit splice variants (Kv4.3L and Kv4.3S) that diverge only by a C-terminal, membrane-proximal, 19-residue stretch unique to Kv4.3L. Protein kinase C (PKC) phosphorylation of threonine 504 within the Kv4.3L-specific 19-residues mediates α-adrenergic inhibition of I to in human heart. Kv4.3 is regulated in human heart by various β subunits, including cytosolic KChIP2b and transmembrane KCNEs, yet their impact on the functional effects of human Kv4.3 phosphorylation has not been reported. Here, this gap in knowledge was addressed using human Kv4.3 splice variants, T504 mutants, and human β subunits. Subunits were co-expressed in Xenopus laevis oocytes and analyzed by two-electrode voltage-clamp, using phorbol 12-myristate 13-acetate (PMA) to stimulate PKC. Unexpectedly, KChIP2b removed the inhibitory effect of PKC on Kv4.3L (but not Kv4.3L threonine phosphorylation by PKC per-se ), while co-expression with KCNE2, but not KCNE4, restored PKC-dependent inhibition of Kv4.3L-KChIP2b to quantitatively resemble previously reported effects of α-adrenergic modulation of human ventricular I to . In addition, PKC accelerated recovery from inactivation of Kv4.3L-KChIP2b channels and, interestingly, of both Kv4.3L and Kv4.3S alone. Thus, β subunits regulate the response of human Kv4.3 to PKC phosphorylation and provide a potential mechanism for modifying the response of I to to α-adrenergic regulation in vivo .

  9. β Subunits Control the Effects of Human Kv4.3 Potassium Channel Phosphorylation

    PubMed Central

    Abbott, Geoffrey W.

    2017-01-01

    The transient outward K+ current, Ito, activates early in the cardiac myocyte action potential, to begin repolarization. Human Ito is generated primarily by two Kv4.3 potassium channel α subunit splice variants (Kv4.3L and Kv4.3S) that diverge only by a C-terminal, membrane-proximal, 19-residue stretch unique to Kv4.3L. Protein kinase C (PKC) phosphorylation of threonine 504 within the Kv4.3L-specific 19-residues mediates α-adrenergic inhibition of Ito in human heart. Kv4.3 is regulated in human heart by various β subunits, including cytosolic KChIP2b and transmembrane KCNEs, yet their impact on the functional effects of human Kv4.3 phosphorylation has not been reported. Here, this gap in knowledge was addressed using human Kv4.3 splice variants, T504 mutants, and human β subunits. Subunits were co-expressed in Xenopus laevis oocytes and analyzed by two-electrode voltage-clamp, using phorbol 12-myristate 13-acetate (PMA) to stimulate PKC. Unexpectedly, KChIP2b removed the inhibitory effect of PKC on Kv4.3L (but not Kv4.3L threonine phosphorylation by PKC per-se), while co-expression with KCNE2, but not KCNE4, restored PKC-dependent inhibition of Kv4.3L-KChIP2b to quantitatively resemble previously reported effects of α-adrenergic modulation of human ventricular Ito. In addition, PKC accelerated recovery from inactivation of Kv4.3L-KChIP2b channels and, interestingly, of both Kv4.3L and Kv4.3S alone. Thus, β subunits regulate the response of human Kv4.3 to PKC phosphorylation and provide a potential mechanism for modifying the response of Ito to α-adrenergic regulation in vivo. PMID:28919864

  10. Rapid negative inotropic effect induced by TNF-α in rat heart perfused related to PKC activation.

    PubMed

    Jude, B; Vetel, S; Giroux-Metges, M A; Pennec, J P

    2018-07-01

    Myocardial depression, frequently observed in septic shock, is mediated by circulating molecules such as cytokines. TNF-α appears to be the most important pro-inflammatory cytokine released during the early phase of a septic shock. It was previously shown that TNF-α had a negative inotropic effect on myocardium. Now, the aim of this study was to investigate the effects of the activation of PKC by TNF-α on heart function, and to determine if this cytokine could induce a decrease of membrane excitability. Isolated rat hearts (n = 6) were perfused with Tyrode solution containing TNF-α at 20 ng/ml during 30 min by using a Langendorff technique. Expressions of PKC-α and PKC-ε were analysed by western blot on membrane and cytosol proteins extracted from ventricular myocardium. Patch clamp was performed on freshly isolated cardiomyocytes (n = 8). Compared to control situation, 30 min of TNF-α perfusion led to cardiac dysfunction with a decrease of the heart rate (-83%), the force (-20%) and speed of relaxation (-18%) and the coronary flow (-25%). This is associated with an activation and a membrane targeting of both PKC-α and PKC-ε isoforms in ventricle with respectively +123% and +54% compared to control hearts. Nevertheless, TNF-α had no significant effect on voltage-gated sodium current (109.0%+/- 12.5) after addition of the cytokine when compared to control. These results showed that TNF-α had a negative inotropic effect on the isolated rat heart and can induce PKC activation leading to an impaired contractility of the heart. However the early heart dysfunction induced by the cytokine was not associated to a decrease of cardiomyocytes membrane excitability as it has been evidenced in skeletal muscle fibres. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Carbachol-induced rabbit bladder smooth muscle contraction: roles of protein kinase C and Rho kinase.

    PubMed

    Wang, Tanchun; Kendig, Derek M; Smolock, Elaine M; Moreland, Robert S

    2009-12-01

    Smooth muscle contraction is regulated by phosphorylation of the myosin light chain (MLC) catalyzed by MLC kinase and dephosphorylation catalyzed by MLC phosphatase. Agonist stimulation of smooth muscle results in the inhibition of MLC phosphatase activity and a net increase in MLC phosphorylation and therefore force. The two pathways believed to be primarily important for inhibition of MLC phosphatase activity are protein kinase C (PKC)-catalyzed CPI-17 phosphorylation and Rho kinase (ROCK)-catalyzed myosin phosphatase-targeting subunit (MYPT1) phosphorylation. The goal of this study was to determine the roles of PKC and ROCK and their downstream effectors in regulating MLC phosphorylation levels and force during the phasic and sustained phases of carbachol-stimulated contraction in intact bladder smooth muscle. These studies were performed in the presence and absence of the PKC inhibitor bisindolylmaleimide-1 (Bis) or the ROCK inhibitor H-1152. Phosphorylation levels of Thr(38)-CPI-17 and Thr(696)/Thr(850)-MYPT1 were measured at different times during carbachol stimulation using site-specific antibodies. Thr(38)-CPI-17 phosphorylation increased concurrently with carbachol-stimulated force generation. This increase was reduced by inhibition of PKC during the entire contraction but was only reduced by ROCK inhibition during the sustained phase of contraction. MYPT1 showed high basal phosphorylation levels at both sites; however, only Thr(850) phosphorylation increased with carbachol stimulation; the increase was abolished by the inhibition of either ROCK or PKC. Our results suggest that during agonist stimulation, PKC regulates MLC phosphatase activity through phosphorylation of CPI-17. In contrast, ROCK phosphorylates both Thr(850)-MYPT1 and CPI-17, possibly through cross talk with a PKC pathway, but is only significant during the sustained phase of contraction. Last, our results demonstrate that there is a constitutively activate pool of ROCK that phosphorylates MYPT1 in the basal state, which may account for the high resting levels of MLC phosphorylation measured in rabbit bladder smooth muscle.

  12. Measuring the lactate-to-creatine ratio via 1H NMR spectroscopy can be used to noninvasively evaluate apoptosis in glioma cells after X-ray irradiation.

    PubMed

    Li, Hongxia; Cui, Yi; Li, Fuyan; Shi, Wenqi; Gao, Wenjing; Wang, Xiao; Zeng, Qingshi

    2018-01-01

    Radiotherapy is among the commonly applied treatment options for glioma, which is one of the most common types of primary brain tumor. To evaluate the effect of radiotherapy noninvasively, it is vital for oncologists to monitor the effects of X-ray irradiation on glioma cells. Preliminary research had showed that PKC-ι expression correlates with tumor cell apoptosis induced by X-ray irradiation. It is also believed that the lactate-to-creatine (Lac/Cr) ratio can be used as a biomarker to evaluate apoptosis in glioma cells after X-ray irradiation. In this study, we evaluated the relationships between the Lac/Cr ratio, apoptotic rate, and protein kinase C iota (PKC-ι) expression in glioma cells. Cells of the glioma cell lines C6 and U251 were randomly divided into 4 groups, with every group exposed to X-ray irradiation at 0, 1, 5, 10 and 15 Gy. Single cell gel electrophoresis (SCGE) was conducted to evaluate the DNA damage. Flow cytometry was performed to measure the cell cycle blockage and apoptotic rates. Western blot analysis was used to detect the phosphorylated PKC-ι (p-PKC-ι) level. 1 H NMR spectroscopy was employed to determine the Lac/Cr ratio. The DNA damage increased in a radiation dose-dependent manner ( p  < 0.05). With the increase in X-ray irradiation, the apoptotic rate also increased (C6, p  < 0.01; U251, p  < 0.05), and the p-PKC-ι level decreased (C6, p  < 0.01; U251, p  < 0.05). The p-PKC-ι level negatively correlated with apoptosis, whereas the Lac/Cr ratio positively correlated with the p-PKC-ι level. The Lac/Cr ratio decreases with an increase in X-ray irradiation and thus can be used as a biomarker to reflect the effects of X-ray irradiation in glioma cells.

  13. Kinase-dependent activation of voltage-gated Ca2+ channels by ET-1 in pulmonary arterial myocytes during chronic hypoxia.

    PubMed

    Luke, Trevor; Maylor, Julie; Undem, Clark; Sylvester, J T; Shimoda, Larissa A

    2012-05-15

    Exposure to chronic hypoxia (CH) causes pulmonary hypertension. The vasoconstrictor endothelin-1 (ET-1) is thought to play a role in the development of hypoxic pulmonary hypertension. In pulmonary arterial smooth muscle cells (PASMCs) from chronically hypoxic rats, ET-1 signaling is altered, with the ET-1-induced change in intracellular calcium concentration (Δ[Ca(2+)](i)) occurring through activation of voltage-dependent Ca(2+) channels (VDCC) even though ET-1-induced depolarization via inhibition of K(+) channels is lost. The mechanism underlying this response is unclear. We hypothesized that activation of VDCCs by ET-1 following CH might be mediated by protein kinase C (PKC) and/or Rho kinase, both of which have been shown to phosphorylate and activate VDCCs. To test this hypothesis, we examined the effects of PKC and Rho kinase inhibitors on the ET-1-induced Δ[Ca(2+)](i) in PASMCs from rats exposed to CH (10% O(2), 3 wk) using the Ca(2+)-sensitive dye fura 2-AM and fluorescent microscopy techniques. We found that staurosporine and GF109203X, inhibitors of PKC, and Y-27632 and HA 1077, Rho kinase inhibitors, reduced the ET-1-induced Δ[Ca(2+)](i) by >70%. Inhibition of tyrosine kinases (TKs) with genistein or tyrphostin A23, or combined inhibition of PKC, TKs, and Rho kinase, reduced the Δ[Ca(2+)](i) to a similar extent as inhibition of either PKC or Rho kinase alone. The ability of PKC or Rho kinase to activate VDCCs in our cells was verified using phorbol 12-myristate 13-acetate and GTP-γ-S. These results suggest that following CH, the ET-1-induced Δ[Ca(2+)](i) in PASMCs occurs via Ca(2+) influx through VDCCs mediated primarily by PKC, TKs, and Rho kinase.

  14. Protein Kinase C Enzymes in the Hematopoietic and Immune Systems.

    PubMed

    Altman, Amnon; Kong, Kok-Fai

    2016-05-20

    The protein kinase C (PKC) family, discovered in the late 1970s, is composed of at least 10 serine/threonine kinases, divided into three groups based on their molecular architecture and cofactor requirements. PKC enzymes have been conserved throughout evolution and are expressed in virtually all cell types; they represent critical signal transducers regulating cell activation, differentiation, proliferation, death, and effector functions. PKC family members play important roles in a diverse array of hematopoietic and immune responses. This review covers the discovery and history of this enzyme family, discusses the roles of PKC enzymes in the development and effector functions of major hematopoietic and immune cell types, and points out gaps in our knowledge, which should ignite interest and further exploration, ultimately leading to better understanding of this enzyme family and, above all, its role in the many facets of the immune system.

  15. Bcr-Abl-independent mechanism of resistance to imatinib in K562 cells: Induction of cyclooxygenase-2 (COX-2) by histone deacetylases (HDACs).

    PubMed

    Kalle, Arunasree M; Sachchidanand, Sachchidanand; Pallu, Reddanna

    2010-09-01

    Our previous studies have shown that overexpression of MDR1 and cyclooygenase-2 (COX-2) resulted in resistance development to imatinib in chronic myelogenous leukemia (CML) K562 (IR-K562) cells. In the present study, the regulatory mechanism of MDR1 induction by COX-2 was investigated. A gradual overexpression of MDR1 and COX-2 during the process of development was observed. Furthermore, down regulation of MDR1 upon COX-2 knockdown by siRNA showed a decrease in the PKC levels and activation of PKC by addition of PGE(2) to K562 cells, suggesting a role for PKC in the COX-2 mediated induction of MDR1. The present study demonstrates COX-2 induction by HDACs and MDR1 induction by COX-2 via PGE(2)-cAMP-PKC-mediated pathway. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Does the protein kinase C pathway modulate sarcolemma damage and the release of cytosolic proteins in the rat heart?

    PubMed

    Daniels, S; Duncan, C J

    1993-06-01

    1. The release of creatine kinase (CK) in the Langendorff-perfused rat heart during the Ca(2+)-paradox, was critically dependent on the duration and [Ca2+]o of the initial Ca(2+)-depletion phase. 2. When [Ca2+]i was raised by perfusion with caffeine or under N2, activation of the protein kinase C pathway (PKC) produced a small but significant release of CK. PKC stimulation is therefore able to substitute for the Cao(2+)-depletion of the Ca(2+)-paradox. 3. The PKC inhibitor, 1-(5-isoquinolinyl sulphonyl)-2-methyl piperazine, (2 x 10(-6) M) inhibited both the Ca(2+)-paradox and caffeine-induced release of CK. 4. It is concluded that the PKC pathway has a regulatory role for the damage system of the sarcolemma that is responsible for the release of cytosolic proteins.

  17. Carcass characteristics and meat quality of lambs fed babassu cake (Orbignya speciosa) as a replacement for elephant grass silage.

    PubMed

    Luz, Janaina Barros; Alves, Kaliandra Souza; Mezzomo, Rafael; Ribeiro Dos Santos Neta, Ernestina; Gomes, Daiany Íris; Sampaio Oliveira, Luis Rennan; Silva, Josiane Costa; Ramos de Carvalho, Francisco Fernando

    2017-01-01

    The study aimed to evaluate the effect of the partial replacement of elephant grass silage with babassu cake (Orbignya speciosa) on the carcass characteristics and meat quality of feedlot lambs. Forty-five castrated male Santa Ines sheep (19.08 ± 0.41 kg) approximately 4 months old were distributed in a completely randomized design, with five treatments 0.0, 12.5, 25.0, 37.5 and 50 % (%DM) replacement of babassu cake with silage forming isoproteic diets formulated at a ratio of 40 % roughage to 60 % concentrate. All of the studied animals were slaughtered at the end of the experiment. The liver weights and yields increased with the inclusion of babassu cake. The weight of the shoulder increased from 2.31 to 2.61 kg, while the loin yield decreased from 7.38 to 6.64 % with the inclusion of babassu cake, both linearly. The body length, thoracic perimeter, rump perimeter and carcass compactness index showed high and positive correlations with the hot and cold carcass weights. The myofibrillar fragmentation index decreased linearly as a function of the inclusion level of babassu cake, but other quality variables were not affected. The replacement of up to 50 % of the elephant grass silage with babassu cake in the diet of lambs does not cause negative effects on carcass characteristics or meat quality.

  18. Rapid establishment of phenol- and quinoline-degrading consortia driven by the scoured cake layer in an anaerobic baffled ceramic membrane bioreactor.

    PubMed

    Wang, Wei; Wang, Shun; Ren, Xuesong; Hu, Zhenhu; Yuan, Shoujun

    2017-11-01

    Although toxic and refractory organics, such as phenol and quinoline, are decomposed by anaerobic bacteria, the establishment of specific degrading consortia is a relatively slow process. An anaerobic membrane bioreactor allows for complete biomass retention that can aid the establishment of phenol- and quinoline-degrading consortia. In this study, the anaerobic digestion of phenol (500 mg L -1 ) and quinoline (50 mg L -1 ) was investigated using an anaerobic baffled ceramic membrane bioreactor (ABCMBR). The results showed that, within 30 days, 99% of phenol, 98% of quinoline and 88% of chemical oxygen demand (COD) were removed. The substrate utilisation rates of the cake layer for phenol and quinoline, and specific methanogenic activity of the cake layer, were 7.58 mg phenol g -1  mixed liquor volatile suspended solids (MLVSS) day -1 , 8.23 mg quinoline g -1  MLVSS day -1 and 0.55 g COD CH4  g -1  MLVSS day -1 , respectively. The contribution of the cake layer to the removals of phenol and quinoline was extremely underestimated because the uncounted scoured cake layer was disregarded. Syntrophus was the key population for phenol and quinoline degradation, and it was more abundant in the cake layer than in the bulk sludge. The highly active scattered cake layer sped up the establishment of phenol- and quinoline-degrading consortia in the ABCMBR.

  19. Presence of Fe-Al binary oxide adsorbent cake layer in ceramic membrane filtration and their impact for removal of HA and BSA.

    PubMed

    Kim, Kyung-Jo; Jang, Am

    2018-04-01

    To enhance the removal of natural organic matter (NOM) in ceramic (Ce) membrane filtration, an iron-aluminum binary oxide (FAO) was applied to the ceramic membrane surface as the adsorbent cake layer, and it was compared with heated aluminum oxide (HAO) for the evaluation of the control of NOM. Both the HAO and FAO adsorbent cake layers efficiently removed the NOM regardless of NOM's hydrophobic/hydrophilic characteristics, and the dissolved organic carbon (DOC) removal in NOM for FAO was 1-1.12 times greater than that for HAO, which means FAO was more efficient in the removal of DOC in NOM. FAO (0.03 μm), which is smaller in size than HAO (0.4 μm), had greater flux reduction than HAO. The flux reduction increased as the filtration proceeded because most of the organic foulants (colloid/particles and soluble NOM) were captured by the adsorbent cake layer, which caused fouling between the membrane surface and the adsorbent cake layer. However, no chemically irreversible fouling was observed on the Ce membrane at the end of the FAO adsorbent cake layer filtration. This means that a stable adsorbent cake layer by FAO formed on the Ce membrane, and that the reduced pure water flux of the Ce membrane, resulting from the NOM fouling, can easily be recovered through physicochemical cleaning. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Optimization of palm oil extraction from Decanter cake of small crude palm oil mill by aqueous surfactant solution using RSM

    NASA Astrophysics Data System (ADS)

    Ahmadi Pirshahid, Shewa; Arirob, Wallop; Punsuvon, Vittaya

    2018-04-01

    The use of hexane to extract vegetable oil from oilseeds or seed cake is of growing concern due to its environmental impact such as its smelling and toxicity. In our method, used Response Surface Methodology (RSM) was applied to study the optimum condition of decanter cake obtained from small crude palm oil with aqueous surfactant solution. For the first time, we provide an optimum condition of preliminary study with decanter cake extraction to obtain the maximum of oil yield. The result from preliminary was further used in RSM study by using Central Composite Design (CCD) that consisted of thirty experiments. The effect of four independent variables: the concentration of Sodium Dodecyl Sulfate (SDS) as surfactant, temperature, the ratio by weight to volume of cake to surfactant solution and the amount of sodium chloride (NaCl) on dependent variables are studied. Data were analyzed using Design-Expert 8 software. The results showed that the optimum condition of decanter cake extraction were 0.016M of SDS solution concentration, 73°C of extraction temperature, 1:10 (g:ml) of the ratio of decanter cake to SDS solution and 2% (w/w) of NaCl amount. This condition gave 77.05% (w/w) oil yield. The chemical properties of the extracted palm oil from this aqueous surfactant extraction are further investigated compared with the hexane extraction. The obtained result showed that all properties of both extractions were nearly the same.

  1. Melatonin induces neuritogenesis at early stages in N1E-115 cells through actin rearrangements via activation of protein kinase C and Rho-associated kinase.

    PubMed

    Bellon, Alfredo; Ortíz-López, Leonardo; Ramírez-Rodríguez, Gerardo; Antón-Tay, Fernando; Benítez-King, Gloria

    2007-04-01

    Melatonin increases neurite formation in N1E-115 cells through microtubule enlargement elicited by calmodulin antagonism and vimentin intermediate filament reorganization caused by protein kinase C (PKC) activation. Microfilament rearrangement is also a necessary process in growth cone formation during neurite outgrowth. In this work, we studied the effect of melatonin on microfilament rearrangements present at early stages of neurite formation and the possible participation of PKC and the Rho-associated kinase (ROCK), which is a downstream kinase in the PKC signaling pathway. The results showed that 1 nm melatonin increased both the number of cells with filopodia and with long neurites. Similar results were obtained with the PKC activator phorbol 12-myristate 13-acetate (PMA). Both melatonin and PMA increased the quantity of filamentous actin. In contrast, the PKC inhibitor bisindolylmaleimide abolished microfilament organization elicited by either melatonin or PMA, while the Rho inhibitor C3, or the ROCK inhibitor Y27632, abolished the bipolar neurite morphology of N1E-115 cells. Instead, these inhibitors prompted neurite ramification. ROCK activity measured in whole cell extracts and in N1E-115 cells was increased in the presence of melatonin and PMA. The results indicate that melatonin increases the number of cells with immature neurites and suggest that these neurites can be susceptible to differentiation by incoming extracellular signals. Data also indicate that PKC and ROCK are involved at initial stages of neurite formation in the mechanism by which melatonin recruits cells for later differentiation.

  2. Douchi (fermented Glycine max Merr.) alleviates atopic dermatitis-like skin lesions in NC/Nga mice by regulation of PKC and IL-4.

    PubMed

    Jung, A-Ram; Ahn, Sang-Hyun; Park, In-Sik; Park, Sun-Young; Jeong, Seung-Il; Cheon, Jin-Hong; Kim, Kibong

    2016-10-24

    Douchi (fermented Glycine max Merr.) is produced from fermented soybeans, which is widely used in traditional herbal medicine. In this study, we investigated whether Douchi attenuates protein kinase C (PKC) and interleukin (IL)-4 response and cutaneous inflammation in Atopic dermatitis (AD)-like NC/Nga mice. To induce AD-like skin lesions, D. farinae antigen was applied to the dorsal skin of 3-week-old NC/Nga mice. After inducing AD, Douchi extract was administered 20 mg/kg daily for 3 weeks to the Douchi-treated mice group. We identified the changes of skin barrier and Th2 differentiation through PKC and IL-4 by immunohistochemistry. Douchi treatment of NC/Nga mice significantly reduced clinical scores (p < 0.01) and histological features. The levels of PKC and IL-4 were significantly reduced in the Douchi-treated group (p < 0.01). The reduction of IL-4 and PKC led to decrease of inflammatory factors such as substance P, inducible nitric oxide synthase (iNOS) and Matrix metallopeptidase 9 (MMP-9) (all p < 0.01). Douchi also down-regulated Th1 markers (IL-12, TNF-α) as well as Th2 markers (IL-4, p-IκB) (p < 0.01). Douchi alleviates AD-like skin lesions through suppressing of PKC and IL-4. These results also lead to diminish levels of substance P, iNOS and MMP-9 in skin lesions. Therefore, Douchi may have potential applications for the prevention and treatment of AD.

  3. Locomotion in Lymphocytes is Altered by Differential PKC Isoform Expression

    NASA Technical Reports Server (NTRS)

    Sundaresan, A.; Risin, D.; Pellis, N. R.

    1999-01-01

    Lymphocyte locomotion is critical for proper elicitation of the immune response. Locomotion of immune cells via the interstitium is essential for optimal immune function during wound healing, inflammation and infection. There are conditions which alter lymphocyte locomotion and one of them is spaceflight. Lymphocyte locomotion is severely inhibited in true spaceflight (true microgravity) and in rotating wall vessel culture (modeled microgravity). When lymphocytes are activated prior to culture in modeled microgravity, locomotion is not inhibited and the levels are comparable to those of static cultured lymphocytes. When a phorbol ester (PMA) is used in modeled microgravity, lymphocyte locomotion is restored by 87%. This occurs regardless if PMA is added after culture in the rotating wall vessel or during culture. Inhibition of DNA synthesis also does not alter restoration of lymphocyte locomotion by PMA. PMA is a direct activator of (protein kinase C) PKC . When a calcium ionophore, ionomycin is used it does not possess any restorative properties towards locomotion either alone or collectively with PMA. Since PMA brings about restoration without help from calcium ionophores (ionomycin), it is infer-red that calcium independent PKC isoforms are involved. Changes were perceived in the protein levels of PKC 6 where levels of the protein were downregulated at 24,72 and 96 hours in untreated rotated cultures (modeled microgravity) compared to untreated static (1g) cultures. At 48 hours there is an increase in the levels of PKC & in the same experimental set up. Studies on transcriptional and translational patterns of calcium independent isoforms of PKC such as 8 and E are presented in this study.

  4. Role of arachidonic acid and protein kinase C during maturation-inducing hormone-dependent meiotic resumption and ovulation in ovarian follicles of Atlantic croaker

    USGS Publications Warehouse

    Patino, R.; Yoshizaki, G.; Bolamba, D.; Thomas, P.

    2003-01-01

    The roles of arachidonic acid (AA) and protein kinase C (PKC) during in vitro maturation-inducing hormone (MIH)-dependent meiotic resumption (maturation) and ovulation were studied in ovarian follicles of Atlantic croaker (Micropogonias undulatus). The requirement for cyclooxygenase (COX) metabolites of AA was examined using a nonspecific COX inhibitor, indomethacin (IM), as well as two COX products, prostaglandin (PG) F2?? and PGE2, whereas the role of lipoxygenase (LOX) was investigated using a specific LOX inhibitor, nordihydroguaiaretic acid (NDGA). The involvement of PKC was examined using phorbol 12-myristate 13-acetate (PMA), a PKC activator, as well as GF109203X (GF), a specific inhibitor of PKC and 1-(5-isoquin- olinesulfonyl)-2-methylpiperazine (H7), nonspecific inhibitor of protein kinases. Genomic mechanisms were examined with the transcription-inhibitor actinomycin D (ActD) and the functionality of heterologous (oocyte-granulosa) gap junctions (GJ) with a dye transfer assay. The AA (100 ??M) and PGF2?? (5 ??M) did not induce maturation, and NDGA (10 ??M) did not affect MIH-dependent maturation. However, IM (100 ??M) partially inhibited MIH-dependent maturation. Conversely, AA and both PGs induced, and IM and NDGA inhibited, MIH-dependent ovulation in matured follicles. The PMA (1 ??g/ml) did not induce maturation but caused ovulation in matured follicles, whereas PKC inhibitors (GF, 5 ??M; H7, 50??M) did not affect MIH-dependent maturation but inhibited MIH- and PMA-dependent ovulation. The PMA-dependent ovulation was inhibited by IM but not by NDGA. In addition, ActD (5 ??M) blocked MIH-dependent, but not PMA-dependent, ovulation, and PGF2?? restored MIH-dependent ovulation in ActD-blocked follicles. The AA and PGs did not induce, and GF did not inhibit, MIH-dependent heterologous GJ uncoupling. In conclusion, AA and PKC mediate MIH-dependent ovulation but not meiotic resumption or heterologous GJ uncoupling in croaker follicles, but a permissive role of COX products of AA during maturation is possible. A novel model of MIH-dependent ovulation is proposed in which 1) LOX and COX metabolites of AA are both required for ovulation, but at upstream and downstream sites of the pathway, respectively, relative to PKC, and 2) PKC is downstream of genomic activation.

  5. Protein Kinase C Overactivity Impairs Prefrontal Cortical Regulation of Working Memory

    NASA Astrophysics Data System (ADS)

    Birnbaum, S. G.; Yuan, P. X.; Wang, M.; Vijayraghavan, S.; Bloom, A. K.; Davis, D. J.; Gobeske, K. T.; Sweatt, J. D.; Manji, H. K.; Arnsten, A. F. T.

    2004-10-01

    The prefrontal cortex is a higher brain region that regulates thought, behavior, and emotion using representational knowledge, operations often referred to as working memory. We tested the influence of protein kinase C (PKC) intracellular signaling on prefrontal cortical cognitive function and showed that high levels of PKC activity in prefrontal cortex, as seen for example during stress exposure, markedly impair behavioral and electrophysiological measures of working memory. These data suggest that excessive PKC activation can disrupt prefrontal cortical regulation of behavior and thought, possibly contributing to signs of prefrontal cortical dysfunction such as distractibility, impaired judgment, impulsivity, and thought disorder.

  6. Protein kinase C overactivity impairs prefrontal cortical regulation of working memory.

    PubMed

    Birnbaum, S G; Yuan, P X; Wang, M; Vijayraghavan, S; Bloom, A K; Davis, D J; Gobeske, K T; Sweatt, J D; Manji, H K; Arnsten, A F T

    2004-10-29

    The prefrontal cortex is a higher brain region that regulates thought, behavior, and emotion using representational knowledge, operations often referred to as working memory. We tested the influence of protein kinase C (PKC) intracellular signaling on prefrontal cortical cognitive function and showed that high levels of PKC activity in prefrontal cortex, as seen for example during stress exposure, markedly impair behavioral and electrophysiological measures of working memory. These data suggest that excessive PKC activation can disrupt prefrontal cortical regulation of behavior and thought, possibly contributing to signs of prefrontal cortical dysfunction such as distractibility, impaired judgment, impulsivity, and thought disorder.

  7. Protein kinase C isoforms in atherosclerosis: pro- or anti-inflammatory?

    PubMed

    Fan, Hueng-Chuen; Fernández-Hernando, Carlos; Lai, Jenn-Haung

    2014-03-15

    Atherosclerosis is a pathologic condition caused by chronic inflammation in response to lipid deposition in the arterial wall. There are many known contributing factors such as long-term abnormal glucose levels, smoking, hypertension, and hyperlipidemia. Under the influence of such factors, immune and non-immune effectors cells are activated and participate during the progression of atherosclerosis. Protein kinase C (PKC) family isoforms are key players in the signal transduction pathways of cellular activation and have been associated with several aspects of the atherosclerotic vascular disease. This review article summarizes the current knowledge of PKC isoforms functions during atherogenesis, and addresses differential roles and disputable observations of PKC isoforms. Among PKC isoforms, both PKCβ and PKCδ are the most attractive and potential therapeutic targets. This commentary discusses in detail the outcomes and current status of clinical trials on PKCβ and PKCδ inhibitors in atherosclerosis-associated disorders like diabetes and myocardial infarction. The risk and benefit of these inhibitors for clinical purposes will be also discussed. This review summarizes what is already being done and what else needs to be done in further targeting PKC isoforms, especially PKCβ and PKCδ, for therapy of atherosclerosis and atherosclerosis-associated vasculopathies in the future. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. The inhibitory effect of BIM (I) on L-type Ca²⁺ channels in rat ventricular cells.

    PubMed

    Son, Youn Kyoung; Hong, Da Hye; Choi, Tae-Hoon; Choi, Seong Woo; Shin, Dong Hoon; Kim, Sung Joon; Jung, In Duk; Park, Yeong-Min; Jung, Won-Kyo; Kim, Dae-Joong; Choi, Il-Whan; Park, Won Sun

    2012-06-22

    We investigated the effect of a specific protein kinase C (PKC) inhibitor, bisindolylmaleimide I [BIM (I)], on L-type Ca(2+) channels in rat ventricular myocytes. BIM (I) alone inhibited the L-type Ca(2+) current in a concentration-dependent manner, with a K(d) value of 3.31 ± 0.25 μM, and a Hill coefficient of 2.34 ± 0.23. Inhibition was immediate after applying BIM (I) in the bath solution and then it partially washed out. The steady-state activation curve was not altered by applying 3μ M BIM (I), but the steady-state inactivation curve shifted to a more negative potential with a change in the slope factor. Other PKC inhibitors, PKC-IP and chelerythrine, showed no significant effects either on the L-type Ca(2+) current or on the inhibitory effect of BIM (I) on the L-type Ca(2+) current. The results suggest that the inhibitory effect of BIM (I) on the L-type Ca(2+) current is independent of the PKC pathway. Thus, our results should be considered in studies using BIM (I) to inhibit PKC activity and ion channel modulation. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Hoang Thanh, E-mail: kk086406@mgs.k.u-tokyo.ac.jp; Ly, Bui Thi Kim; Kano, Yasuhiko

    Highlights: Black-Right-Pointing-Pointer ETV6-NTRK3 is an oncogene with transformation activity in multiple cell lineages. Black-Right-Pointing-Pointer PKC412 could block ETV6-NTRK3 activation. Black-Right-Pointing-Pointer Loss of ETV6-NTRK3 phosphorylation leads to inactivation of its downstream signaling pathway. Black-Right-Pointing-Pointer Inhibition of ETV6-NTRK3 activation by PKC412 could be a novel strategy for the treatment. -- Abstract: The ETV6-NTRK3 (EN) fusion gene which encodes a chimeric tyrosine kinase was first identified by cloning of the t(12;15)(p13;q25) translocation in congenital fibrosarcoma (CFS). Since then, EN has been also found in congenital mesoblastic nephroma (CMN), secretory breast carcinoma (SBC) and acute myelogenous leukemia (AML). Using IMS-M2 and M0-91 cell linesmore » harboring the EN fusion gene, and Ba/F3 cells stably transfected with EN, we demonstrated that PKC412, also known as midostaurin, is an inhibitor of EN. Inhibition of EN activity by PKC412 suppressed the activity of it downstream molecules leading to inhibition of cell proliferation and induction of apoptosis. Our data for the first time suggested that PKC412 could serve as therapeutic drug for treatment of patients with this fusion.« less

  10. Kibra and aPKC regulate starvation-induced autophagy in Drosophila.

    PubMed

    Jin, Ahrum; Neufeld, Thomas P; Choe, Joonho

    Autophagy is a bulk degradation system that functions in response to cellular stresses such as metabolic stress, endoplasmic reticulum stress, oxidative stress, and developmental processes. During autophagy, cytoplasmic components are captured in double-membrane vesicles called autophagosomes. The autophagosome fuses with the lysosome, producing a vacuole known as an autolysosome. The cellular components are degraded by lysosomal proteases and recycled. Autophagy is important for maintaining cellular homeostasis, and the process is evolutionarily conserved. Kibra is an upstream regulator of the hippo signaling pathway, which controls organ size by affecting cell growth, proliferation, and apoptosis. Kibra is mainly localized in the apical membrane domain of epithelial cells and acts as a scaffold protein. We found that Kibra is required for autophagy to function properly. The absence of Kibra caused defects in the formation of autophagic vesicles and autophagic degradation. We also found that the well-known cell polarity protein aPKC interacts with Kibra, and its activity affects autophagy upstream of Kibra. Constitutively active aPKC decreased autophagic vesicle formation and autophagic degradation. We confirmed the interaction between aPKC and Kibra in S2 cells and Drosophila larva. Taken together, our data suggest that Kibra and aPKC are essential for regulating starvation-induced autophagy. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. PDK1-dependent activation of atypical PKC leads to degradation of the p21 tumour modifier protein

    PubMed Central

    Scott, Mary T.; Ingram, Angela; Ball, Kathryn L.

    2002-01-01

    p21WAF1/CIP1 contributes to positive and negative growth control on multiple levels. We previously mapped phosphorylation sites within the C-terminal domain of p21 that regulate proliferating cell nucear antigen binding. In the current study, a kinase has been fractionated from mammalian cells that stoichiometrically phosphorylates p21 at the Ser146 site, and the enzyme has been identified as an insulin-responsive atypical protein kinase C (aPKC). Expression of PKCζ or activation of the endogenous kinase by 3-phosphoinositide dependent protein kinase-1 (PDK1) decreased the half-life of p21. Conversely, dnPKCζ or dnPDK1 increased p21 protein half-life, and a PDK1-dependent increase in the rate of p21 degradation was mediated by aPKC. Insulin stimulation gave a biphasic response with a rapid transient decrease in p21 protein levels during the initial signalling phase that was dependent on phosphatidylinositol 3- kinase, PKC and proteasome activity. Thus, aPKC provides a physiological signal for the degradation of p21. The rapid degradation of p21 protein during the signalling phase of insulin stimulation identifies a novel link between energy metabolism and a key modulator of cell cycle progression. PMID:12485998

  12. Presynaptic muscarinic receptors, calcium channels, and protein kinase C modulate the functional disconnection of weak inputs at polyinnervated neonatal neuromuscular synapses.

    PubMed

    Santafe, M M; Garcia, N; Lanuza, M A; Tomàs, M; Besalduch, N; Tomàs, J

    2009-04-01

    We studied the relation among calcium inflows, voltage-dependent calcium channels (VDCC), presynaptic muscarinic acetylcholine receptors (mAChRs), and protein kinase C (PKC) activity in the modulation of synapse elimination. We used intracellular recording to determine the synaptic efficacy in dually innervated endplates of the levator auris longus muscle of newborn rats during axonal competition in the postnatal synaptic elimination period. In these dual junctions, the weak nerve terminal was potentiated by partially reducing calcium entry (P/Q-, N-, or L-type VDCC-specific block or 500 muM magnesium ions), M1- or M4-type selective mAChR block, or PKC block. Moreover, reducing calcium entry or blocking PKC or mAChRs results in unmasking functionally silent nerve endings that now recover neurotransmitter release. Our results show interactions between these molecules and indicate that there is a release inhibition mechanism based on an mAChR-PKC-VDCC intracellular cascade. When it is fully active in certain weak motor axons, it can depress ACh release and even disconnect synapses. We suggest that this mechanism plays a central role in the elimination of redundant neonatal synapses, because functional axonal withdrawal can indeed be reversed by mAChRs, VDCCs, or PKC block.

  13. Hippocampal expression of a virus-derived protein impairs memory in mice.

    PubMed

    Bétourné, Alexandre; Szelechowski, Marion; Thouard, Anne; Abrial, Erika; Jean, Arnaud; Zaidi, Falek; Foret, Charlotte; Bonnaud, Emilie M; Charlier, Caroline M; Suberbielle, Elsa; Malnou, Cécile E; Granon, Sylvie; Rampon, Claire; Gonzalez-Dunia, Daniel

    2018-02-13

    The analysis of the biology of neurotropic viruses, notably of their interference with cellular signaling, provides a useful tool to get further insight into the role of specific pathways in the control of behavioral functions. Here, we exploited the natural property of a viral protein identified as a major effector of behavioral disorders during infection. We used the phosphoprotein (P) of Borna disease virus, which acts as a decoy substrate for protein kinase C (PKC) when expressed in neurons and disrupts synaptic plasticity. By a lentiviral-based strategy, we directed the singled-out expression of P in the dentate gyrus of the hippocampus and we examined its impact on mouse behavior. Mice expressing the P protein displayed increased anxiety and impaired long-term memory in contextual and spatial memory tasks. Interestingly, these effects were dependent on P protein phosphorylation by PKC, as expression of a mutant form of P devoid of its PKC phosphorylation sites had no effect on these behaviors. We also revealed features of behavioral impairment induced by P protein expression but that were independent of its phosphorylation by PKC. Altogether, our findings provide insight into the behavioral correlates of viral infection, as well as into the impact of virus-mediated alterations of the PKC pathway on behavioral functions.

  14. A PKC-MARCKS-PI3K regulatory module links Ca2+ and PIP3 signals at the leading edge of polarized macrophages.

    PubMed

    Ziemba, Brian P; Falke, Joseph J

    2018-01-01

    The leukocyte chemosensory pathway detects attractant gradients and directs cell migration to sites of inflammation, infection, tissue damage, and carcinogenesis. Previous studies have revealed that local Ca2+ and PIP3 signals at the leading edge of polarized leukocytes play central roles in positive feedback loop essential to cell polarization and chemotaxis. These prior studies showed that stimulation of the leading edge Ca2+ signal can strongly activate PI3K, thereby triggering a larger PIP3 signal, but did not elucidate the mechanistic link between Ca2+ and PIP3 signaling. A hypothesis explaining this link emerged, postulating that Ca2+-activated PKC displaces the MARCKS protein from plasma membrane PIP2, thereby releasing sequestered PIP2 to serve as the target and substrate lipid of PI3K in PIP3 production. In vitro single molecule studies of the reconstituted pathway on lipid bilayers demonstrated the feasibility of this PKC-MARCKS-PI3K regulatory module linking Ca2+ and PIP3 signals in the reconstituted system. The present study tests the model predictions in live macrophages by quantifying the effects of: (a) two pathway activators-PDGF and ATP that stimulate chemoreceptors and Ca2+ influx, respectively; and (b) three pathway inhibitors-wortmannin, EGTA, and Go6976 that inhibit PI3K, Ca2+ influx, and PKC, respectively; on (c) four leading edge activity sensors-AKT-PH-mRFP, CKAR, MARCKSp-mRFP, and leading edge area that report on PIP3 density, PKC activity, MARCKS membrane binding, and leading edge expansion/contraction, respectively. The results provide additional evidence that PKC and PI3K are both essential elements of the leading edge positive feedback loop, and strongly support the existence of a PKC-MARCKS-PI3K regulatory module linking the leading edge Ca2+ and PIP3 signals. As predicted, activators stimulate leading edge PKC activity, displacement of MARCKS from the leading edge membrane and increased leading edge PIP3 levels, while inhibitors trigger the opposite effects. Comparison of the findings for the ameboid chemotaxis of leukocytes with recently published findings for the mesenchymal chemotaxis of fibroblasts suggests that some features of the emerging leukocyte leading edge core pathway (PLC-DAG-Ca2+-PKC-MARCKS-PIP2-PI3K-PIP3) may well be shared by all chemotaxing eukaryotic cells, while other elements of the leukocyte pathway may be specialized features of these highly optimized, professional gradient-seeking cells. More broadly, the findings suggest a molecular mechanism for the strong links between phospho-MARCKS and many human cancers.

  15. A PKC-MARCKS-PI3K regulatory module links Ca2+ and PIP3 signals at the leading edge of polarized macrophages

    PubMed Central

    Ziemba, Brian P.

    2018-01-01

    The leukocyte chemosensory pathway detects attractant gradients and directs cell migration to sites of inflammation, infection, tissue damage, and carcinogenesis. Previous studies have revealed that local Ca2+ and PIP3 signals at the leading edge of polarized leukocytes play central roles in positive feedback loop essential to cell polarization and chemotaxis. These prior studies showed that stimulation of the leading edge Ca2+ signal can strongly activate PI3K, thereby triggering a larger PIP3 signal, but did not elucidate the mechanistic link between Ca2+ and PIP3 signaling. A hypothesis explaining this link emerged, postulating that Ca2+-activated PKC displaces the MARCKS protein from plasma membrane PIP2, thereby releasing sequestered PIP2 to serve as the target and substrate lipid of PI3K in PIP3 production. In vitro single molecule studies of the reconstituted pathway on lipid bilayers demonstrated the feasibility of this PKC-MARCKS-PI3K regulatory module linking Ca2+ and PIP3 signals in the reconstituted system. The present study tests the model predictions in live macrophages by quantifying the effects of: (a) two pathway activators—PDGF and ATP that stimulate chemoreceptors and Ca2+ influx, respectively; and (b) three pathway inhibitors—wortmannin, EGTA, and Go6976 that inhibit PI3K, Ca2+ influx, and PKC, respectively; on (c) four leading edge activity sensors—AKT-PH-mRFP, CKAR, MARCKSp-mRFP, and leading edge area that report on PIP3 density, PKC activity, MARCKS membrane binding, and leading edge expansion/contraction, respectively. The results provide additional evidence that PKC and PI3K are both essential elements of the leading edge positive feedback loop, and strongly support the existence of a PKC-MARCKS-PI3K regulatory module linking the leading edge Ca2+ and PIP3 signals. As predicted, activators stimulate leading edge PKC activity, displacement of MARCKS from the leading edge membrane and increased leading edge PIP3 levels, while inhibitors trigger the opposite effects. Comparison of the findings for the ameboid chemotaxis of leukocytes with recently published findings for the mesenchymal chemotaxis of fibroblasts suggests that some features of the emerging leukocyte leading edge core pathway (PLC-DAG-Ca2+-PKC-MARCKS-PIP2-PI3K-PIP3) may well be shared by all chemotaxing eukaryotic cells, while other elements of the leukocyte pathway may be specialized features of these highly optimized, professional gradient-seeking cells. More broadly, the findings suggest a molecular mechanism for the strong links between phospho-MARCKS and many human cancers. PMID:29715315

  16. DPPH radical scavenging activity of a mixture of fatty acids and peptide-containing compounds in a protein hydrolysate of Jatropha curcas seed cake.

    PubMed

    Phengnuam, Thanyarat; Goroncy, Alexander K; Rutherfurd, Shane M; Moughan, Paul J; Suntornsuk, Worapot

    2013-12-04

    Jatropha curcas, a tropical plant, has great potential commercial relevance as its seeds have high oil content. The seeds can be processed into high-quality biofuel producing seed cake as a byproduct. The seed cake, however, has not gotten much attention toward its potential usefulness. This work was aimed to determine the antioxidant activity of different fractions of a protein hydrolysate from J. curcas seed cake and to elucidate the molecular structures of the antioxidants. Seed cake was first processed into crude protein isolate and the protein was hydrolyzed by Neutrase. The hydrolysate obtained from 1 h of Neutrase hydrolysis showed the strongest antioxidant activity against DPPH radical (2,2-diphenyl-1-picrylhydrazyl). After a purification series of protein hydrolysate by liquid chromatography, chemicals acting as DPPH radical inhibitors were found to be a mixture of fatty acids, fatty acid derivatives, and a small amount of peptides characterized by mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy.

  17. Evening primrose (Oenothera paradoxa) cake as an unconventional protein source.

    PubMed

    Golabczak, J; Py, R

    2003-01-01

    An efficient procedure of a protein isolate production from the evening primrose cake was developed. The cake is a by-product of oil extraction from seeds by using the cold pressing method. The evening primrose cake contains 22.7% of protein. Its content in the protein isolate derived from the cake is 74%. Proteins present in evening primrose seeds are rich in Trp (7%) and Met (3%), but Lys-deficient (1.3%) as compared to the FAO protein standard. Apart from the proteins, the protein isolate contains 8.5% (w/w per s.s.) dietary fiber, that negatively affects its digestibility. To enhance the bio-availability of the protein isolate, it was partially hydrolyzed with commercial preparations of trypsin and other proteases (Alcalase and Flavourzyme, Novozymes. Denmark). The most advanced proteolysis (52%) was achieved by 6 h digestion of 2% protein suspension with a mixture of Flavourzyme and Alcalase (350 and 600 U per g of protein, respectively) at 50 degrees C and pH 9.0.

  18. Neem cake as a promising larvicide and adulticide against the rural malaria vector Anopheles culicifacies (Diptera: Culicidae): a HPTLC fingerprinting approach.

    PubMed

    Benelli, Giovanni; Chandramohan, Balamurugan; Murugan, Kadarkarai; Madhiyazhagan, Pari; Kovendan, Kalimuthu; Panneerselvam, Chellasamy; Dinesh, Devakumar; Govindarajan, Marimuthu; Higuchi, Akon; Toniolo, Chiara; Canale, Angelo; Nicoletti, Marcello

    2017-05-01

    Mosquitoes are insects of huge public health importance, since they act as vectors for important pathogens and parasites. Here, we focused on the possibility of using the neem cake in the fight against mosquito vectors. The neem cake chemical composition significantly changes among producers, as evidenced by our HPTLC (High performance thin layer chromatography) analyses of different marketed products. Neem cake extracts were tested to evaluate the ovicidal, larvicidal and adulticidal activity against the rural malaria vector Anopheles culicifacies. Ovicidal activity of both types of extracts was statistically significant, and 150 ppm completely inhibited egg hatching. LC 50 values were extremely low against fourth instar larvae, ranging from 1.321 (NM1) to 1.818 ppm (NA2). Adulticidal activity was also high, with LC 50 ranging from 3.015 (NM1) to 3.637 ppm (NM2). This study pointed out the utility of neem cake as a source of eco-friendly mosquitocides in Anopheline vector control programmes.

  19. Proposal of a taste evaluating method of the sponge cake by using 3D range sensor

    NASA Astrophysics Data System (ADS)

    Kato, Kunihito; Yamamoto, Kazuhiko; Ogawa, Noriko

    2002-10-01

    Nowadays, the image processing techniques are while applying to the food industry in many situations. The most of these researches are applications for the quality control in plants, and there are hardly any cases of measuring the 'taste'. We are developing the measuring system of the deliciousness by using the image sensing. In this paper, we propose the estimation method of the deliciousness of a sponge cake. Considering about the deliciousness of the sponge cake, if the size of the bubbles on the surface is small and the number of them is large, then it is defined that the deliciousness of the sponge cake is better in the field of the food science. We proposed a method of detection bubbles in the surface of the sectional sponge cake automatically by using 3-D image processing. By the statistical information of these detected bubbles based on the food science, the deliciousness is estimated.

  20. Solid-State Treatment of Castor Cake Employing the Enzymatic Cocktail Produced from Pleurotus djamor Fungi.

    PubMed

    Sánchez-Cantú, Manuel; Ortiz-Moreno, Liliana; Ramos-Cassellis, María E; Marín-Castro, Marco; De la Cerna-Hernández, C

    2018-06-01

    In this work, the enzymatic cocktail produced by Pleurotus djamor fungi extracted at pH of 4.8 and 5.3 was employed for castor cake solid-state treatment. Proximal, X-ray powder diffraction and scanning electron microscopy analysis of the pristine castor cake were carried out. First, Pleurotus djamor stain was inoculated in castor cake for the enzymatic production and the enzymatic activity was determined. The maximum enzymatic activity was identified at days 14 (65.9 UI/gss) and 11 (140.3 UI/gss) for the enzymatic cocktail obtained at pH 5.3 and 4.8, respectively. Then, the enzymatic cocktail obtained at the highest enzymatic activity days was employed directly over castor cake. Lignin was degraded throughout incubation time achieving a 47 and 45% decrease for the cocktail produced at pH 4.8 and 5.3, correspondingly. These results were corroborated by the SEM and XRD analysis where a higher porosity and xylan degradation were perceived throughout the enzymatic treatment.

  1. Monitoring the crystallization of starch and lipid components of the cake crumb during staling.

    PubMed

    Hesso, N; Le-Bail, A; Loisel, C; Chevallier, S; Pontoire, B; Queveau, D; Le-Bail, P

    2015-11-20

    Cake staling is a complex problem which has still not been fully understood. Starch polymers retrogradation, which is linked to biopolymers recrystallisation, is the most important factor affecting cake firmness in addition to water migration and fat crystallization. In this study, the effect of storage temperatures of 4°C and 20°C on starch retrogradation and fat recrystallization was investigated. Starch retrogradation can be tracked through changes in crystalline structure via X-rays diffraction as well as through melting of crystals via calorimetry. These techniques have been coupled to study the different phenomena occurring during staling. The results revealed that the storage of cakes at 20°C for 25 days showed more starch polymer retrogradation and more intense fat recrystallization in the β form than at 4°C. Consequently, the staling was delayed when a low storage temperature like 4°C was used, which is recommended to retain high quality cakes during storage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Cake: Enabling High-level SLOs on Shared Storage Systems

    DTIC Science & Technology

    2012-11-07

    Cake: Enabling High-level SLOs on Shared Storage Systems Andrew Wang Shivaram Venkataraman Sara Alspaugh Randy H. Katz Ion Stoica Electrical...Date) * * * * * * * Professor R. Katz Second Reader (Date) Cake: Enabling High-level SLOs on Shared Storage Systems Andrew Wang, Shivaram Venkataraman ...Report MIT-LCS-TR-667, MIT, Laboratory for Computer Science, 1995. [39] A. Wang, S. Venkataraman , S. Alspaugh, I. Stoica, and R. Katz. Sweet storage SLOs

  3. Fuzzy Logic-based expert system for evaluating cake quality of freeze-dried formulations.

    PubMed

    Trnka, Hjalte; Wu, Jian X; Van De Weert, Marco; Grohganz, Holger; Rantanen, Jukka

    2013-12-01

    Freeze-drying of peptide and protein-based pharmaceuticals is an increasingly important field of research. The diverse nature of these compounds, limited understanding of excipient functionality, and difficult-to-analyze quality attributes together with the increasing importance of the biosimilarity concept complicate the development phase of safe and cost-effective drug products. To streamline the development phase and to make high-throughput formulation screening possible, efficient solutions for analyzing critical quality attributes such as cake quality with minimal material consumption are needed. The aim of this study was to develop a fuzzy logic system based on image analysis (IA) for analyzing cake quality. Freeze-dried samples with different visual quality attributes were prepared in well plates. Imaging solutions together with image analytical routines were developed for extracting critical visual features such as the degree of cake collapse, glassiness, and color uniformity. On the basis of the IA outputs, a fuzzy logic system for analysis of these freeze-dried cakes was constructed. After this development phase, the system was tested with a new screening well plate. The developed fuzzy logic-based system was found to give comparable quality scores with visual evaluation, making high-throughput classification of cake quality possible. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  4. Bubble structure evaluation method of sponge cake by using image morphology

    NASA Astrophysics Data System (ADS)

    Kato, Kunihito; Yamamoto, Kazuhiko; Nonaka, Masahiko; Katsuta, Yukiyo; Kasamatsu, Chinatsu

    2007-01-01

    Nowadays, many evaluation methods for food industry by using image processing are proposed. These methods are becoming new evaluation method besides the sensory test and the solid-state measurement that have been used for the quality evaluation recently. The goal of our research is structure evaluation of sponge cake by using the image processing. In this paper, we propose a feature extraction method of the bobble structure in the sponge cake. Analysis of the bubble structure is one of the important properties to understand characteristics of the cake from the image. In order to take the cake image, first we cut cakes and measured that's surface by using the CIS scanner, because the depth of field of this type scanner is very shallow. Therefore the bubble region of the surface has low gray scale value, and it has a feature that is blur. We extracted bubble regions from the surface images based on these features. The input image is binarized, and the feature of bubble is extracted by the morphology analysis. In order to evaluate the result of feature extraction, we compared correlation with "Size of the bubble" of the sensory test result. From a result, the bubble extraction by using morphology analysis gives good correlation. It is shown that our method is as well as the subjectivity evaluation.

  5. Chocolate cake. Guilt or celebration? Associations with healthy eating attitudes, perceived behavioural control, intentions and weight-loss.

    PubMed

    Kuijer, Roeline G; Boyce, Jessica A

    2014-03-01

    Food and eating are often associated with ambivalent feelings: pleasure and enjoyment, but also worry and guilt. Guilt has the potential to motivate behaviour change, but may also lead to feelings of helplessness and loss of control. This study firstly examined whether a default association of either 'guilt' or 'celebration' with a prototypical forbidden food item (chocolate cake) was related to differences in attitudes, perceived behavioural control, and intentions in relation to healthy eating, and secondly whether the default association was related to weight change over an 18month period (and short term weight-loss in a subsample of participants with a weight-loss goal). This study did not find any evidence for adaptive or motivational properties of guilt. Participants associating chocolate cake with guilt did not report more positive attitudes or stronger intentions to eat healthy than did those associating chocolate cake with celebration. Instead, they reported lower levels of perceived behavioural control over eating and were less successful at maintaining their weight over an 18month period. Participants with a weight-loss goal who associated chocolate cake with guilt were less successful at losing weight over a 3month period compared to those associating chocolate cake with celebration. Copyright © 2014. Published by Elsevier Ltd.

  6. An observational study of the effect of vibration on the caking of suspensions in oily vehicles.

    PubMed

    Jain, Rohit; Bork, Olaf; Alawi, Fadil; Nanjan, Karthigeyan; Tucker, Ian G

    2016-11-30

    An oily suspension of penethamate (PNT) that was physically stable on storage, caked solidly during road/air transport. This paper reports on the caking behaviour of PNT oily suspension formulations exposed to vibrations in a lab-based test designed to simulate road/air transport. The lab-test was used to study the effects of container type (glass v PET) and formulation (oil, surfactant type and concentration) on the physical stability of suspension under vibration. Redispersibility of the sediment was lower at longer vibrations times and at higher intensity of vibration. Caking on vibration was strongly influenced by the type of container (caking in glass but not in PET) possibly due to tribo-charging of particles. Caking on vibration was dependent on the formulation: type and concentration of surfactant; type of oil. The physical stability of oily suspensions, and the effect of vibration are two areas which have been largely neglected in the pharmaceutical literature. This paper discusses some potential mechanisms for the observations but studies using fully characterised materials are required. Finally we conclude that static testing of physical stability of oily suspensions is not sufficient and that a vibrational stress test is required. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Impact of potassium bromate and potassium iodate in a pound cake system.

    PubMed

    Wilderjans, Edith; Lagrain, Bert; Brijs, Kristof; Delcour, Jan A

    2010-05-26

    This study investigates the impact of the oxidants potassium bromate and potassium iodate (8, 16, 32, 64, and 128 micromol/g dry matter of egg white protein) on pound cake making. The impact of the oxidants on egg white characteristics was studied in a model system. Differential scanning calorimetry showed that the oxidants caused egg white to denature later. During heating in a rapid visco analyzer, the oxidants caused the free sulfhydryl (SH) group levels to decrease more intensively and over a smaller temperature range. The oxidants made the proteins more resistant to decreases in protein extractability in sodium dodecyl sulfate containing buffer during cake recipe mixing and less resistant to such decreases during cake baking. We assume that, during baking, the degree to which SH/disulfide exchange and SH oxidation can occur depends on the properties of the protein at the onset of the process. In our view, the prevention of extractability loss during mixing increased the availability of SH groups and caused more such loss during baking. During cooling, all cakes baked with added oxidants showed less collapse. On the basis of the presented data, we put forward that only those protein reactions that occur during baking contribute to the formation of a network that supports final cake structure and prevents collapse.

  8. [Optimization of formulations for dietetic pastry products].

    PubMed

    Villarroel, M; Uquiche, E; Brito, G; Cancino, M

    2000-03-01

    Optimized formulations of dietetic pastry products such as cake and sponge cake premixes were formulated using the surface response methodology. % Emulsifier agent and baking time were the selected independent variables for cake, as well as % emulsifier agent % chlorinated flour the variables selected for sponge cake. Three different level of each variable summing up thirteen experimental formulae of each product were assessed to optimize the variables that could have some influence in the sensory characteristics of these dietetic products. The total sensory quality was determined for both dietetic products using the composite scoring test and a panel of 18 trained judges. Looking at the contour graphic and considering economic aspects the best combination of variables for cake formulation was 2% emulsifier agent and 48 minutes for baking time, With respect to sponge cake, the best combination was 6% emulsifier agent and 48% chlorinated flour. Shelf life studies showed that both dietetic formulations remained stable during storage conditions of 75 days at 30 degrees C. During this period, significant differences in sensory characteristics were not found (p < 0.05). Data of peroxide values were kept under the critical value reported for detection of organoleptic rancidity. Reported values of hedonic test showed that these dietetics pastry products had good acceptability, and open up marketing opportunities for new products with potential health benefits to consumers.

  9. Degree of roasting of carob flour affecting the properties of gluten-free cakes and cookies.

    PubMed

    Román, Laura; González, Ana; Espina, Teresa; Gómez, Manuel

    2017-06-01

    Carob flour is a product rich in fibre obtained from by-products of the locust bean gum extraction processing. The flour is commercialised with different degrees of roasting in order to improve its organoleptic characteristics. In this study, carob flour with three different roasting degrees was used to replace rice flour (15%) in gluten-free cakes and cookies. The influence of this replacement was studied on the psychochemical characteristics and acceptability of the final products. The incorporation of carob flour increased the viscosity of cake batters and increased the solid elastic-like behaviour of the cookie doughs, indicating a stronger interaction among the formula ingredients. The inclusion of carob flour, with a low time of roasting, did not lead to any significant differences in the specific volume and hardness of the cakes, but reduced cake staling and the thickness and width of the cookies. Darker colours were obtained when carob flour was incorporated into the product. The acceptability of cakes was only reduced with the addition of highly roasted carob flour, while in the case of cookies there was a decline in the acceptability of all carob flour cookies, which was mostly perceived with the highest roasting degree, something mainly attributed to the bitter taste of the products.

  10. Simultaneous allergen inactivation and detoxification of castor bean cake by treatment with calcium compounds

    PubMed Central

    Fernandes, K.V.; Deus-de-Oliveira, N.; Godoy, M.G.; Guimarães, Z.A.S.; Nascimento, V.V.; de Melo, E.J.T.; Freire, D.M.G.; Dansa-Petretski, M.; Machado, O.L.T.

    2012-01-01

    Ricinus communis L. is of great economic importance due to the oil extracted from its seeds. Castor oil has been used for pharmaceutical and industrial applications, as a lubricant or coating agent, as a component of plastic products, as a fungicide or in the synthesis of biodiesel fuels. After oil extraction, a castor cake with a large amount of protein is obtained. However, this by-product cannot be used as animal feed due to the presence of toxic (ricin) and allergenic (2S albumin) proteins. Here, we propose two processes for detoxification and allergen inactivation of the castor cake. In addition, we establish a biological test to detect ricin and validate these detoxification processes. In this test, Vero cells were treated with ricin, and cell death was assessed by cell counting and measurement of lactate dehydrogenase activity. The limit of detection of the Vero cell assay was 10 ng/mL using a concentration of 1.6 × 105 cells/well. Solid-state fermentation (SSF) and treatment with calcium compounds were used as cake detoxification processes. For SSF, Aspergillus niger was grown using a castor cake as a substrate, and this cake was analyzed after 24, 48, 72, and 96 h of SSF. Ricin was eliminated after 24 h of SSF treatment. The cake was treated with 4 or 8% Ca(OH)2 or CaO, and both the toxicity and the allergenic properties were entirely abolished. A by-product free of toxicity and allergens was obtained. PMID:22911344

  11. Fumaric acid production using renewable resources from biodiesel and cane sugar production processes.

    PubMed

    Papadaki, Aikaterini; Papapostolou, Harris; Alexandri, Maria; Kopsahelis, Nikolaos; Papanikolaou, Seraphim; de Castro, Aline Machado; Freire, Denise M G; Koutinas, Apostolis A

    2018-04-13

    The microbial production of fumaric acid by Rhizopus arrhizus NRRL 2582 has been evaluated using soybean cake from biodiesel production processes and very high polarity (VHP) sugar from sugarcane mills. Soybean cake was converted into a nutrient-rich hydrolysate via a two-stage bioprocess involving crude enzyme production via solid state fermentations (SSF) of either Aspergillus oryzae or R. arrhizus cultivated on soybean cake followed by enzymatic hydrolysis of soybean cake. The soybean cake hydrolysate produced using crude enzymes derived via SSF of R. arrhizus was supplemented with VHP sugar and evaluated using different initial free amino nitrogen (FAN) concentrations (100, 200, and 400 mg/L) in fed-batch cultures for fumaric acid production. The highest fumaric acid concentration (27.3 g/L) and yield (0.7 g/g of total consumed sugars) were achieved when the initial FAN concentration was 200 mg/L. The combination of VHP sugar with soybean cake hydrolysate derived from crude enzymes produced by SSF of A. oryzae at 200 mg/L initial FAN concentration led to the production of 40 g/L fumaric acid with a yield of 0.86 g/g of total consumed sugars. The utilization of sugarcane molasses led to low fumaric acid production by R. arrhizus, probably due to the presence of various minerals and phenolic compounds. The promising results achieved through the valorization of VHP sugar and soybean cake suggest that a focused study on molasses pretreatment could lead to enhanced fumaric acid production.

  12. Assessment of Jatropha curcas L. biodiesel seed cake toxicity using the zebrafish (Danio rerio) embryo toxicity (ZFET) test.

    PubMed

    Hallare, Arnold V; Ruiz, Paulo Lorenzo S; Cariño, J C Earl D

    2014-05-01

    Consequent to the growing demand for alternative sources of energy, the seeds from Jatropha curcas remain to be the favorite for biodiesel production. However, a significant volume of the residual organic mass (seed cake) is produced during the extraction process, which raises concerns on safe waste disposal. In the present study, we assessed the toxicity of J. curcas seed cake using the zebrafish (Danio rerio) embryotoxicity test. Within 1-h post-fertilization (hpf), the fertilized eggs were exposed to five mass concentrations of J. curcas seed cake and were followed through 24, 48, and 72 hpf. Toxicity was evaluated based on lethal endpoints induced on zebrafish embryos namely egg coagulation, non-formation of somites, and non-detachment of tail. The lowest concentration tested, 1 g/L, was not able to elicit toxicity on embryos whereas 100 % mortality (based also on lethal endpoints) was recorded at the highest concentration at 2.15 g/L. The computed LC50 for the J. curcas seed cake was 1.61 g/L. No further increase in mortality was observed in the succeeding time points (48 and 72 hpf) indicating that J. curcas seed cake exerted acute toxicity on zebrafish embryos. Sublethal endpoints (yolk sac and pericardial edema) were noted at 72 hpf in zebrafish embryos exposed to higher concentrations. The observed lethal endpoints induced on zebrafish embryos were discussed in relation to the active principles, notably, phorbol esters that have remained in the seed cake even after extraction.

  13. Dielectric properties, optimum formulation and microwave baking conditions of chickpea cakes.

    PubMed

    Alifakı, Yaşar Özlem; Şakıyan, Özge

    2017-03-01

    The aim of this study was to correlate dielectric properties with quality parameters, and to optimize cake formulation and baking conditions by response surface methodology. Weight loss, color, specific volume, hardness and porosity were evaluated. The samples with different DATEM (0.4, 0.8 and 1.2%) and chickpea flour concentrations (30, 40 and 50%) were baked in microwave oven at different power (300, 350, 400 W) and baking times (2.50, 3.0, 3.50 min). It was found that microwave power showed significant effect on color, while baking time showed effect on weight loss, porosity, hardness, specific volume and dielectric properties. Emulsifier level affected porosity, specific volume and dielectric constant. Chickpea flour level affected porosity, color, hardness and dielectric properties of cakes. The optimum microwave power, baking time, DATEM level and chickpea flour level were found as 400 W, 2.84 min, 1.2% and 30%, respectively. The comparison between conventionally baked and the microwave baked cakes at optimum points showed that color difference, weight loss, specific volume and porosity values of microwave baked cakes were less than those of conventionally baked cakes, on the other hand, hardness values were higher. Moreover, a negative correlation between dielectric constant and porosity, and weight loss values were detected for microwave baked samples. A negative correlation between dielectric loss factor and porosity was observed. These correlations indicated that quality characteristics of a microwave baked cake sample can be assessed from dielectric properties. These correlations provides understanding on the behavior of food material during microwave processing.

  14. Rapeseed and Raspberry Seed Cakes as Inexpensive Raw Materials in the Production of Activated Carbon by Physical Activation: Effect of Activation Conditions on Textural and Phenol Adsorption Characteristics

    PubMed Central

    Smets, Koen; De Jong, Mats; Lupul, Iwona; Gryglewicz, Grazyna; Schreurs, Sonja; Carleer, Robert; Yperman, Jan

    2016-01-01

    The production of activated carbons (ACs) from rapeseed cake and raspberry seed cake using slow pyrolysis followed by physical activation of the obtained solid residues is the topic of this study. The effect of activation temperature (850, 900 and 950 °C), activation time (30, 60, 90 and 120 min) and agent (steam and CO2) on the textural characteristics of the ACs is investigated by N2 adsorption. In general, higher activation temperatures and longer activation times increase the BET specific surface area and the porosity of the ACs, regardless of the activation agent or raw material. Steam is more reactive than CO2 in terms of pore development, especially in the case of raspberry seed cake. The performance of the ACs in liquid adsorption is evaluated by batch phenol adsorption tests. Experimental data are best fitted by the Freundlich isotherm model. Based on total yield, textural characteristics and phenol adsorption, steam activation at 900 °C for 90 min and CO2 activation at 900 °C for 120 min are found as the best activation conditions. Raspberry seed cake turns out to be a better raw material than rapeseed cake. Moreover, AC from raspberry seed cake produced by steam activation at 900 °C for 90 min performs as well as commercial AC (Norit GAC 1240) in phenol adsorption. The adsorption kinetics of the selected ACs are best fitted by the pseudo-second-order model. PMID:28773684

  15. Moderate alcohol consumption stimulates food intake and food reward of savoury foods.

    PubMed

    Schrieks, Ilse C; Stafleu, Annette; Griffioen-Roose, Sanne; de Graaf, Cees; Witkamp, Renger F; Boerrigter-Rijneveld, Rianne; Hendriks, Henk F J

    2015-06-01

    The aim of this study was to investigate whether food reward plays a role in the stimulating effect of moderate alcohol consumption on subsequent food intake. In addition, we explored the role of oral and gut sensory pathways in alcohol's effect on food reward by modified sham feeding (MSF) or consumption of a preload after alcohol intake.In a single-blind crossover design, 24 healthy men were randomly assigned to either consumption of vodka/orange juice (20 g alcohol) or orange juice only, followed by consumption of cake, MSF of cake or no cake. Food reward was evaluated by actual food intake measured by an ad libitum lunch 45 min after alcohol ingestion and by behavioural indices of wanting and liking of four food categories (high fat, low fat, sweet and savoury).Moderate alcohol consumption increased food intake during the ad libitum lunch by 11% (+338 kJ, P = 0.004). Alcohol specifically increased intake (+127 kJ, P <0.001) and explicit liking (P = 0.019) of high-fat savoury foods. Moreover, moderate alcohol consumption increased implicit wanting for savoury (P = 0.013) and decreased implicit wanting for sweet (P = 0.017) before the meal. Explicit wanting of low-fat savoury foods only was higher after alcohol followed by no cake as compared to after alcohol followed by cake MSF (P = 0.009), but not as compared to alcohol followed by cake consumption (P = 0.082). Both cake MSF and cake consumption had no overall effect on behavioural indices of food reward.To conclude, moderate alcohol consumption increased subsequent food intake, specifically of high-fat savoury foods. This effect was related to the higher food reward experienced for savoury foods. The importance of oral and gut sensory signalling in alcohol's effect on food reward remains largely unclear. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Extracellular nucleotides inhibit oxalate transport by human intestinal Caco-2-BBe cells through PKC-δ activation

    PubMed Central

    Amin, Ruhul; Sharma, Sapna; Ratakonda, Sireesha

    2013-01-01

    Nephrolithiasis remains a major health problem in Western countries. Seventy to 80% of kidney stones are composed of calcium oxalate, and small changes in urinary oxalate affect risk of kidney stone formation. Intestinal oxalate secretion mediated by the anion exchanger SLC26A6 plays an essential role in preventing hyperoxaluria and calcium oxalate nephrolithiasis, indicating that understanding the mechanisms regulating intestinal oxalate transport is critical for management of hyperoxaluria. Purinergic signaling modulates several intestinal processes through pathways including PKC activation, which we previously found to inhibit Slc26a6 activity in mouse duodenal tissue. We therefore examined whether purinergic stimulation with ATP and UTP affects oxalate transport by human intestinal Caco-2-BBe (C2) cells. We measured [14C]oxalate uptake in the presence of an outward Cl− gradient as an assay of Cl−/oxalate exchange activity, ≥50% of which is mediated by SLC26A6. We found that ATP and UTP significantly inhibited oxalate transport by C2 cells, an effect blocked by the PKC inhibitor Gö-6983. Utilizing pharmacological agonists and antagonists, as well as PKC-δ knockdown studies, we observed that ATP inhibits oxalate transport through the P2Y2 receptor, PLC, and PKC-δ. Biotinylation studies showed that ATP inhibits oxalate transport by lowering SLC26A6 surface expression. These findings are of potential relevance to pathophysiology of inflammatory bowel disease-associated hyperoxaluria, where supraphysiological levels of ATP/UTP are expected and overexpression of the P2Y2 receptor has been reported. We conclude that ATP and UTP inhibit oxalate transport by lowering SLC26A6 surface expression in C2 cells through signaling pathways including the P2Y2 purinergic receptor, PLC, and PKC-δ. PMID:23596171

  17. Glomerular clusterin is associated with PKC-alpha/beta regulation and good outcome of membranous glomerulonephritis in humans.

    PubMed

    Rastaldi, M P; Candiano, G; Musante, L; Bruschi, M; Armelloni, S; Rimoldi, L; Tardanico, R; Sanna-Cherchi, S; Cherchi, S Sanna; Ferrario, F; Montinaro, V; Haupt, R; Parodi, S; Carnevali, M L; Allegri, L; Camussi, G; Gesualdo, L; Scolari, F; Ghiggeri, G M

    2006-08-01

    Mechanisms for human membranous glomerulonephritis (MGN) remain elusive. Most up-to-date concepts still rely on the rat model of Passive Heymann Nephritis that derives from an autoimmune response to glomerular megalin, with complement activation and membrane attack complex assembly. Clusterin has been reported as a megalin ligand in immunodeposits, although its role has not been clarified. We studied renal biopsies of 60 MGN patients by immunohistochemistry utilizing antibodies against clusterin, C5b-9, and phosphorylated-protien kinase C (PKC) isoforms (pPKC). In vitro experiments were performed to investigate the role of clusterin during podocyte damage by MGN serum and define clusterin binding to human podocytes, where megalin is known to be absent. Clusterin, C5b-9, and pPKC-alpha/beta showed highly variable glomerular staining, where high clusterin profiles were inversely correlated to C5b-9 and PKC-alpha/beta expression (P=0.029), and co-localized with the low-density lipoprotein receptor (LDL-R). Glomerular clusterin emerged as the single factor influencing proteinuria at multivariate analysis and was associated with a reduction of proteinuria after a follow-up of 1.5 years (-88.1%, P=0.027). Incubation of podocytes with MGN sera determined strong upregulation of pPKC-alpha/beta that was reverted by pre-incubation with clusterin, serum de-complementation, or protein-A treatment. Preliminary in vitro experiments showed podocyte binding of biotinilated clusterin, co-localization with LDL-R and specific binding inhibition with anti-LDL-R antibodies and with specific ligands. These data suggest a central role for glomerular clusterin in MGN as a modulator of inflammation that potentially influences the clinical outcome. Binding of clusterin to the LDL-R might offer an interpretative key for the pathogenesis of MGN in humans.

  18. Effect of phorbol esters on the macrophage-mediated biodegradation of polyurethanes via protein kinase C activation and other pathways.

    PubMed

    McBane, Joanne Eileen; Santerre, J P; Labow, Rosalind

    2009-01-01

    It was previously found that re-seeding monocyte-derived macrophages (MDM) on polycarbonate-based polyurethanes (PCNUs) in the presence of the protein kinase C (PKC) activator phorbol myristate acetate (PMA) inhibited MDM-mediated degradation of PCNUs synthesized with 1,6-hexane diisocyanate (HDI), as well as esterase activity and monocyte-specific esterase (MSE) protein. However, no effect on the degradation of a 4,4'-methylene bisphenyl (MDI)-derived PCNU (MDI321) occurred. This finding suggested that oxidation, a process linked to the PKC pathway, was not activated in the same manner for all PCNUs. In the current study MDM were re-seeded onto the above PCNU surfaces with PMA, PKC-inactive 4alphaPMA and the PKC inhibitor bisindolylmaleimide I hydrochloride (BIM) for 48 h before assaying for PCNU degradation, esterase activity, MSE protein, DNA, cell viability and cell morphology. 4alphaPMA did not alter MDM-mediated HDI PCNU degradation but MDI321 degradation increased in this condition. BIM alone had no effect on any parameter; however, when BIM and PMA were added together, the PMA inhibition of biodegradation, esterase activity and MSE protein was partially reversed for MDM on HDI PCNUs only. Adding PMA to MDM on HDI PCNUs increased intercellular connections, whereas 4alphaPMA or BIM+PMA increased cell size. Although this study demonstrated a role for oxidation via a PKC-activated pathway in MDM-mediated PCNU degradation, phorbol esters appear to also activate non-PKC pathways that have roles in biodegradation. Moreover, the sensitivity to material surface chemistry in the MDM response to each PCNU dictates a multi-factorial degradative process involving alternate material specific oxidative and hydrolytic mechanisms.

  19. Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD(P)H oxidase pathway in human aortic endothelial cells.

    PubMed

    Batchuluun, Battsetseg; Inoguchi, Toyoshi; Sonoda, Noriyuki; Sasaki, Shuji; Inoue, Tomoaki; Fujimura, Yoshinori; Miura, Daisuke; Takayanagi, Ryoichi

    2014-01-01

    Metformin and glucagon like peptide-1 (GLP-1) prevent diabetic cardiovascular complications and atherosclerosis. However, the direct effects on hyperglycemia-induced oxidative stress in endothelial cells are not fully understood. Thus, we aimed to evaluate the effects of metformin and a GLP-1 analog, liraglutide on high glucose-induced oxidative stress. Production of reactive oxygen species (ROS), activation of protein kinase C (PKC) and NAD(P)H oxidase, and changes in signaling molecules in response to high glucose exposure were evaluated in human aortic endothelial cells with and without treatment of metformin and liraglutide, alone or in combination. PKC-NAD(P)H oxidase pathway was assessed by translocation of GFP-fused PKCβ2 isoform and GFP-fused p47phox, a regulatory subunit of NAD(P)H oxidase, in addition to endogenous PKC phosphorylation and NAD(P)H oxidase activity. High glucose-induced ROS overproduction was blunted by metformin or liraglutide treatment, with a further decrease by a combination of these drugs. Exposure to high glucose caused PKCβ2 translocation and a time-dependent phosphorylation of endogenous PKC but failed to induce its translocation and phosphorylation in the cells treated with metformin and liraglutide. Furthermore, both drugs inhibited p47phox translocation and NAD(P)H oxidase activation, and prevented the high glucose-induced changes in intracellulalr diacylglycerol (DAG) level and phosphorylation of AMP-activated protein kinase (AMPK). A combination of these drugs further enhanced all of these effects. Metformin and liraglutide ameliorate high glucose-induced oxidative stress by inhibiting PKC-NAD(P)H oxidase pathway. A combination of these two drugs provides augmented protective effects, suggesting the clinical usefulness in prevention of diabetic vascular complications. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Immunocytochemical evidence for PDBu-induced activation of RhoA/ROCK in human internal anal sphincter smooth muscle cells

    PubMed Central

    Singh, Jagmohan; Maxwell, Pinckney J.

    2011-01-01

    Studies were performed to determine the unknown status of PKC and RhoA/ROCK in the phorbol 12,13-dibutyrate (PDBu)-stimulated state in the human internal anal sphincter (IAS) smooth muscle cells (SMCs). We determined the effects of PDBu (10−7 M), the PKC activator, on PKCα and RhoA and ROCK II translocation in the human IAS SMCs. We used immunocytochemistry and fluorescence microcopy in the basal state, following PDBu, and before and after PKC inhibitor calphostin C (10−6 M), cell-permeable RhoA inhibitor C3 exoenzyme (2.5 μg/ml), and ROCK inhibitor Y 27632 (10−6 M). We also determined changes in the SMC lengths via computerized digital micrometry. In the basal state PKCα was distributed almost uniformly throughout the cell, whereas RhoA and ROCK II were located in the higher intensities toward the periphery. PDBu caused significant translocation of PKCα, RhoA, and ROCK II. PDBu-induced translocation of PKCα was attenuated by calphostin C and not by C3 exoenzyme and Y 27632. However, PDBu-induced translocation of RhoA was blocked by C3 exoenzyme, and that of ROCK II was attenuated by both C3 exoenzyme and Y 27632. Contraction of the human IAS SMCs caused by PDBu in parallel with RhoA/ROCK II translocation was attenuated by C3 exoenzyme and Y 27632 but not by calphostin C. In human IAS SMCs RhoA/ROCK compared with PKC are constitutively active, and contractility by PDBu is associated with RhoA/ROCK activation rather than PKC. The relative contribution of RhoA/ROCK vs. PKC in the pathophysiology and potential therapy for the IAS dysfunction remains to be determined. PMID:21566015

  1. The Wnt5A/Protein Kinase C Pathway Mediates Motility in Melanoma Cells via the Inhibition of Metastasis Suppressors and Initiation of an Epithelial to Mesenchymal Transition*S

    PubMed Central

    Dissanayake, Samudra K.; Wade, Michael; Johnson, Carrie E.; O’Connell, Michael P.; Leotlela, Poloko D.; French, Amanda D.; Shah, Kavita V.; Hewitt, Kyle J.; Rosenthal, Devin T.; Indig, Fred E.; Jiang, Yuan; Nickoloff, Brian J.; Taub, Dennis D.; Trent, Jeffrey M.; Moon, Randall T.; Bittner, Michael; Weeraratna, Ashani T.

    2008-01-01

    We have shown that Wnt5A increases the motility of melanoma cells. To explore cellular pathways involving Wnt5A, we compared gain-of-function (WNT5A stable transfectants) versus loss-of-function (siRNA knockdown) of WNT5A by microarray analysis. Increasing WNT5A suppressed the expression of several genes, which were re-expressed after small interference RNA-mediated knockdown of WNT5A. Genes affected by WNT5A include KISS-1, a metastasis suppressor, and CD44, involved in tumor cell homing during metastasis. This could be validated at the protein level using both small interference RNA and recombinant Wnt5A (rWnt5A). Among the genes up-regulated by WNT5A was the gene vimentin, associated with an epithelial to mesenchymal transition (EMT), which involves decreases in E-cadherin, due to up-regulation of the transcriptional repressor, Snail. rWnt5A treatment increases Snail and vimentin expression, and decreases E-cadherin, even in the presence of dominant-negativeTCF4, suggesting that this activation is independent of Wnt/β-catenin signaling. Because Wnt5A can signal via protein kinase C (PKC), the role of PKC in Wnt5A-mediated motility and EMT was also assessed using PKC inhibition and activation studies. Treating cells expressing low levels of Wnt5A with phorbol ester increased Snail expression inhibiting PKC in cells expressing high levels of Wnt5A decreased Snail. Furthermore, inhibition of PKC before Wnt5A treatment blocked Snail expression, implying that Wnt5A can potentiate melanoma metastasis via the induction of EMT in a PKC-dependent manner. PMID:17426020

  2. Immune responses of mussel hemocyte subpopulations are differentially regulated by enzymes of the PI 3-K, PKC, and ERK kinase families.

    PubMed

    García-García, Erick; Prado-Alvarez, Maria; Novoa, Beatriz; Figueras, Antonio; Rosales, Carlos

    2008-01-01

    Various hemocyte cell types have been described in invertebrates, but for most species a functional characterization of different hemocyte cell types is still lacking. In order to characterize some immunological properties of mussel (Mytilus galloprovincialis) hemocytes, cells were separated by flow cytometry and their capacity for phagocytosis, production of reactive oxygen species (ROS), and production of nitric oxide (NO), was examined. Phosphatidylinositol 3-kinase (PI 3-K), protein kinase C (PKC), and extracellular signal-regulated kinase (ERK) inhibitors were also used to biochemically characterize these cell responses. Four morphologically distinct subpopulations, designated R1-R4, were detected. R1, R2, and R3 cells presented different levels of phagocytosis towards zymosan, latex beads, and two bacteria species. Similarly, R1 to R3, but not R4, cells produced ROS, while all subpopulations produced NO, in response to zymosan. Internalization of all phagocytic targets was blocked by PI 3-K inhibition. In addition, internalization of latex particles, but not of bacteria, was partially blocked by PKC or ERK inhibition. Interestingly, phagocytosis of zymosan was impaired by PKC, or ERK inhibitors, only in R2 cells. Zymosan-induced ROS production was blocked by PI 3-K inhibition, but not by PKC, or ERK inhibition. In addition, zymosan-stimulated NO production was affected by PI 3-K inhibition in R1 and R2, but not in R3 or R4 cells. NO production in all cell types was unaffected by PKC inhibition, but ERK inhibition blocked it in R2 cells. These data reveal the existence of profound functional and biochemical differences in mussel hemocytes and indicate that M. galloprovincialis hemocytes are specialized cells fulfilling specific tasks in the context of host defense.

  3. Differential Activation of Enkephalin, Galanin, Somatostatin, NPY, and VIP Neuropeptide Production by Stimulators of Protein Kinases A and C in Neuroendocrine Chromaffin Cells

    PubMed Central

    Hook, Vivian; Toneff, Thomas; Baylon, Sheley; Sei, Catherine

    2009-01-01

    Neuropeptides function as peptide neurotransmitters and hormones to mediate cell-cell communication. The goal of this study was to understand how different neuropeptides may be similarly or differentially regulated by protein kinase A (PKA) and protein kinase C (PKC) intracellular signaling mechanisms. Therefore, this study compared the differential effects of treating neuroendocrine chromaffin cells with stimulators of PKA and PKC on the production of the neuropeptides (Met)enkephalin, galanin, somatostatin, NPY, and VIP. Significantly, selective increases in production of these neuropeptides was observed by forskolin or PMA (phorbol myristate acetate) which stimulate PKA and PKC mechanisms, respectively. (Met)enkephalin production was stimulated by up to 2-fold by forskolin treatment, but not by PMA. In contrast, PMA treatment (but not forskolin) resulted in a 2-fold increase in production of galanin and somatostatin, and a 3-fold increase in NPY production. Notably, VIP production was highly stimulated by forskolin and PMA, with increases of 3-fold and 10–15-fold, respectively. Differences in elevated neuropeptides occurred in cell extracts compared to secretion media, which consisted of (i) increased NPY primarily in cell extracts, (ii) increased (Met)enkephalin and somatostatin in secretion media (not cell extracts), and (iii) increased galanin and VIP in both cell extracts and secretion media. Involvement of PKA or PKC for forskolin or PMA regulation of neuropeptide biosynthesis, respectively, was confirmed with direct inhibitors of PKA and PKC. The selective activation of neuropeptide production by forskolin and PMA demonstrates that PKA and PKC pathways are involved in the differential regulation of neuropeptide production. PMID:18619673

  4. Inhibition of spinal protein kinase C-epsilon or -gamma isozymes does not affect halothane minimum alveolar anesthetic concentration in rats.

    PubMed

    Shumilla, Jennifer A; Sweitzer, Sarah M; Eger, Edmond I; Laster, Michael J; Kendig, Joan J

    2004-07-01

    Anesthetic effects on receptor or ion channel phosphorylation by enzymes such as protein kinase C (PKC) have been postulated to underlie some aspects of anesthesia. In vitro studies show that anesthetic effects on several receptors are mediated by PKC. To test the importance of PKC for the immobility produced by inhaled anesthetics, we measured the effect of intrathecal injections of PKC-epsilon and -gamma inhibitors on halothane minimum alveolar anesthetic concentration (MAC) in 7-day-old and 21-day-old Sprague-Dawley rats. The inhibitors were made as solutions of 100 pmol/5 microL and were given in a volume of 5 microL (7-day-old [P7] rats) or 10 microL (21-day-old [P21] rats). Controls were saline injections or injections of the peptide carrier at the same concentration and volumes; there were six animals in each group. In P7 rats, MAC values (in percentage of an atmosphere) were 1.63 +/- 0.0727 (mean +/- SEM) in saline controls, 1.55 +/- 0.141 in carrier controls, 1.54 +/- 0.0800 in rats given PKC-epsilon, and 1.69 +/- 0.0554 in rats given PKC-gamma. In P21 animals, the values were 1.20 +/- 0.0490, 1.31 +/- 0.0124, 1.27 +/- 0.0367, and 1.15 +/- 0.0483, respectively. Injection of the inhibitors did not change MAC in either age group. These results do not support an anesthetic effect on phosphorylation as a mechanism underlying the capacity of inhaled anesthetics to prevent movement in response to noxious stimulation, and they indirectly support a direct action on receptors or ion channels.

  5. ELAC (3,12-di-O-acetyl-8-O-tigloilingol), a plant-derived lathyrane diterpene, induces subventricular zone neural progenitor cell proliferation through PKCβ activation.

    PubMed

    Murillo-Carretero, Maribel; Geribaldi-Doldán, Noelia; Flores-Giubi, Eugenia; García-Bernal, Francisco; Navarro-Quiroz, Elkin A; Carrasco, Manuel; Macías-Sánchez, Antonio J; Herrero-Foncubierta, Pilar; Delgado-Ariza, Antonio; Verástegui, Cristina; Domínguez-Riscart, Jesús; Daoubi, Mourad; Hernández-Galán, Rosario; Castro, Carmen

    2017-07-01

    Pharmacological strategies aimed to facilitate neuronal renewal in the adult brain, by promoting endogenous neurogenesis, constitute promising therapeutic options for pathological or traumatic brain lesions. We have previously shown that non-tumour-promoting PKC-activating compounds (12-deoxyphorbols) promote adult neural progenitor cell (NPC) proliferation in vitro and in vivo, enhancing the endogenous neurogenic response of the brain to a traumatic injury. Here, we show for the first time that a diterpene with a lathyrane skeleton can also activate PKC and promote NPC proliferation. We isolated four lathyranes from the latex of Euphorbia plants and tested their effect on postnatal NPC proliferation, using neurosphere cultures. The bioactive lathyrane ELAC (3,12-di-O-acetyl-8-O-tigloilingol) was also injected into the ventricles of adult mice to analyse its effect on adult NPC proliferation in vivo. The lathyrane ELAC activated PKC and significantly increased postnatal NPC proliferation in vitro, particularly in synergy with FGF2. In addition ELAC stimulated proliferation of NPC, specifically affecting undifferentiated transit amplifying cells. The proliferative effect of ELAC was reversed by either the classical/novel PKC inhibitor Gö6850 or the classical PKC inhibitor Gö6976, suggesting that NPC proliferation is promoted in response to activation of classical PKCs, particularly PKCß. ELAC slightly increased the proportion of NPC expressing Sox2. The effects of ELAC disappeared upon acetylation of its C7-hydroxyl group. We propose lathyranes like ELAC as new drug candidates to modulate adult neurogenesis through PKC activation. Functional and structural comparisons between ELAC and phorboids are included. © 2017 The British Pharmacological Society.

  6. Adenosine A1 receptors link to smooth muscle contraction via CYP4a, protein kinase C-α, and ERK1/2.

    PubMed

    Kunduri, Swati S; Mustafa, S Jamal; Ponnoth, Dovenia S; Dick, Gregory M; Nayeem, Mohammed A

    2013-07-01

    Adenosine A1 receptor (A1AR) activation contracts smooth muscle, although signaling mechanisms are not thoroughly understood. Activation of A1AR leads to metabolism of arachidonic acid, including the production of 20-hydroxyeicosatetraenoic acid (20-HETE) by cytochrome P4504a (CYP4a). The 20-HETE can activate protein kinase C-α (PKC-α), which crosstalks with extracellular signal-regulated kinase (ERK1/2) pathway. Both these pathways can regulate smooth muscle contraction, we tested the hypothesis that A1AR contracts smooth muscle through a pathway involving CYP4a, PKC-α, and ERK1/2. Experiments included isometric tension recordings of aortic contraction and Western blots of signaling molecules in wild type (WT) and A1AR knockout (A1KO) mice. Contraction to the A1-selective agonist 2-chloro-N cyclopentyladenosine (CCPA) was absent in A1KO mice aortae, indicating the contractile role of A1AR. Inhibition of CYP4a (HET0016) abolished 2-chloro-N cyclopentyladenosine-induced contraction in WT aortae, indicating a critical role for 20-HETE. Both WT and A1KO mice aortae contracted in response to exogenous 20-HETE. Inhibition of PKC-α (Gö6976) or ERK1/2 (PD98059) attenuated 20-HETE-induced contraction equally, suggesting that ERK1/2 is downstream of PKC-α. Contractions to exogenous 20-HETE were significantly less in A1KO mice; reduced protein levels of PKC-α, p-ERK1/2, and total ERK1/2 supported this observation. Our data indicate that A1AR mediates smooth muscle contraction via CYP4a and a PKC-α-ERK1/2 pathway.

  7. Mitogenic signaling pathways of growth factors can be distinguished by the involvement of pertussis toxin-sensitive guanosine triphosphate-binding protein and of protein kinase C.

    PubMed Central

    Nishizawa, N; Okano, Y; Chatani, Y; Amano, F; Tanaka, E; Nomoto, H; Nozawa, Y; Kohno, M

    1990-01-01

    We have examined the possible involvements of pertussis toxin (PT)-sensitive guanosine triphosphate (GTP)-binding protein (Gp) and protein kinase C (PKC) in the mitogenic signaling pathways of various growth factors by the use of PT-pretreated and/or 12-O-tetradecanoyl phorbol-13-acetate (TPA)-pretreated mouse fibroblasts. Effects of PT pretreatment (inactivation of PT-sensitive Gp) and TPA pretreatment (depletion of PKC) on mitogen-induced DNA synthesis varied significantly and systematically in response to growth factors: mitogenic responses of cells to thrombin, bombesin, and bradykinin were almost completely abolished both in PT- and TPA-pretreated cells; responses to epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and vanadate were reduced to approximately 50% both in PT- and TPA-pretreated cells compared with native cells; response to basic fibroblast growth factor (bFGF) was not affected in PT-pretreated cells but was inhibited to some extent in TPA-pretreated cells. Thus, growth factors examined have been classified into three groups with regard to the involvements of PT-sensitive Gp and PKC in their signal transduction pathways. Binding of each growth factor to its receptor was not affected significantly by pretreatment of cells with PT or TPA. Inhibitory effects of PT and TPA pretreatment on each mitogen-induced DNA synthesis were not additive, suggesting that the functions of PT-sensitive Gp and PKC lie on an identical signal transduction pathway. Although all three groups of mitogens activated PKC, signaling of each growth factor depends to a varying extent on the function of PKC. Our results indicate that a single peptide growth factor such as EGF, PDGF, or bFGF acts through multiple signaling pathways to induce cell proliferation. Images PMID:2129194

  8. Nox‐4 deletion reduces oxidative stress and injury by PKC‐α‐associated mechanisms in diabetic nephropathy

    PubMed Central

    Thallas‐Bonke, Vicki; Jha, Jay C.; Gray, Stephen P.; Barit, David; Haller, Hermann; Schmidt, Harald H.H.W.; Coughlan, Melinda T.; Cooper, Mark E.; Forbes, Josephine M.; Jandeleit‐Dahm, Karin A.M.

    2014-01-01

    Abstract Current treatments for diabetic nephropathy (DN) only result in slowing its progression, thus highlighting a need to identify novel targets. Increased production of reactive oxygen species (ROS) is considered a key downstream pathway of end‐organ injury with increasing data implicating both mitochondrial and cytosolic sources of ROS. The enzyme, NADPH oxidase, generates ROS in the kidney and has been implicated in the activation of protein kinase C (PKC), in the pathogenesis of DN, but the link between PKC and Nox‐derived ROS has not been evaluated in detail in vivo. In this study, global deletion of a NADPH‐oxidase isoform, Nox4, was examined in mice with streptozotocin‐induced diabetes (C57Bl6/J) in order to evaluate the effects of Nox4 deletion, not only on renal structure and function but also on the PKC pathway and downstream events. Nox4 deletion attenuated diabetes‐associated increases in albuminuria, glomerulosclerosis, and extracellular matrix accumulation. Lack of Nox4 resulted in a decrease in diabetes‐induced renal cortical ROS derived from the mitochondria and the cytosol, urinary isoprostanes, and PKC activity. Immunostaining of renal cortex revealed that major isoforms of PKC, PKC‐α and PKC‐β1, were increased with diabetes and normalized by Nox4 deletion. Downregulation of the PKC pathway was observed in tandem with reduced expression of vascular endothelial growth factor (VEGF), transforming growth factor (TGF)‐β1 and restoration of the podocyte slit pore protein nephrin. This study suggests that deletion of Nox4 may alleviate renal injury via PKC‐dependent mechanisms, further strengthening the view that Nox4 is a suitable target for renoprotection in diabetes. PMID:25367693

  9. Differential Regulation of Multiple Steps in Inositol 1,4,5-Trisphosphate Signaling by Protein Kinase C Shapes Hormone-stimulated Ca2+ Oscillations*

    PubMed Central

    Bartlett, Paula J.; Metzger, Walson; Gaspers, Lawrence D.; Thomas, Andrew P.

    2015-01-01

    How Ca2+ oscillations are generated and fine-tuned to yield versatile downstream responses remains to be elucidated. In hepatocytes, G protein-coupled receptor-linked Ca2+ oscillations report signal strength via frequency, whereas Ca2+ spike amplitude and wave velocity remain constant. IP3 uncaging also triggers oscillatory Ca2+ release, but, in contrast to hormones, Ca2+ spike amplitude, width, and wave velocity were dependent on [IP3] and were not perturbed by phospholipase C (PLC) inhibition. These data indicate that oscillations elicited by IP3 uncaging are driven by the biphasic regulation of the IP3 receptor by Ca2+, and, unlike hormone-dependent responses, do not require PLC. Removal of extracellular Ca2+ did not perturb Ca2+ oscillations elicited by IP3 uncaging, indicating that reloading of endoplasmic reticulum stores via plasma membrane Ca2+ influx does not entrain the signal. Activation and inhibition of PKC attenuated hormone-induced Ca2+ oscillations but had no effect on Ca2+ increases induced by uncaging IP3. Importantly, PKC activation and inhibition differentially affected Ca2+ spike frequencies and kinetics. PKC activation amplifies negative feedback loops at the level of G protein-coupled receptor PLC activity and/or IP3 metabolism to attenuate IP3 levels and suppress the generation of Ca2+ oscillations. Inhibition of PKC relieves negative feedback regulation of IP3 accumulation and, thereby, shifts Ca2+ oscillations toward sustained responses or dramatically prolonged spikes. PKC down-regulation attenuates phenylephrine-induced Ca2+ wave velocity, whereas responses to IP3 uncaging are enhanced. The ability to assess Ca2+ responses in the absence of PLC activity indicates that IP3 receptor modulation by PKC regulates Ca2+ release and wave velocity. PMID:26078455

  10. Dexmedetomidine-induced Contraction Involves Phosphorylation of Caldesmon by JNK in Endothelium-denuded Rat Aortas

    PubMed Central

    Baik, Jiseok; Ok, Seong-Ho; Cho, Hyunhoo; Yu, Jongsun; Kim, Woochan; Nam, In-Koo; Choi, Mun-Jeoung; Lee, Heon-Keun; Sohn, Ju-Tae

    2014-01-01

    Caldesmon, an inhibitory actin binding protein, binds to actin and inhibits actin-myosin interactions, whereas caldesmon phosphorylation reverses the inhibitory effect of caldesmon on actin-myosin interactions, potentially leading to enhanced contraction. The goal of this study was to investigate the cellular signaling pathway responsible for caldesmon phosphorylation, which is involved in the regulation of the contraction induced by dexmedetomidine (DMT), an alpha-2 adrenoceptor agonist, in endothelium-denuded rat aortas. SP600125 (a c-Jun NH2-terminal kinase [JNK] inhibitor) dose-response curves were generated in aortas that were pre-contracted with DMT or phorbol 12,13-dibutyrate (PDBu), a protein kinase C (PKC) activator. Dose-response curves to the PKC inhibitor chelerythrine were generated in rat aortas pre-contracted with DMT. The effects of SP600125 and rauwolscine (an alpha-2 adrenoceptor inhibitor) on DMT-induced caldesmon phosphorylation in rat aortic vascular smooth muscle cells (VSMCs) were investigated by western blot analysis. PDBu-induced caldesmon and DMT-induced PKC phosphorylation in rat aortic VSMCs was investigated by western blot analysis. The effects of GF109203X (a PKC inhibitor) on DMT- or PDBu-induced JNK phosphorylation in VSMCs were assessed. SP600125 resulted in the relaxation of aortas that were pre-contracted with DMT or PDBu, whereas rauwolscine attenuated DMT-induced contraction. Chelerythrine resulted in the vasodilation of aortas pre-contracted with DMT. SP600125 and rauwolscine inhibited DMT-induced caldesmon phosphorylation. Additionally, PDBu induced caldesmon phosphorylation, and GF109203X attenuated the JNK phosphorylation induced by DMT or PDBu. DMT induced PKC phosphorylation in rat aortic VSMCs. These results suggest that alpha-2 adrenoceptor-mediated, DMT-induced contraction involves caldesmon phosphorylation that is mediated by JNK phosphorylation by PKC. PMID:25332685

  11. Regulation of insulin-like growth factor I receptors on vascular smooth muscle cells by growth factors and phorbol esters.

    PubMed

    Ververis, J J; Ku, L; Delafontaine, P

    1993-06-01

    Insulin-like growth factor I (IGF I) is an important mitogen for vascular smooth muscle cells. To characterize regulation of vascular IGF I receptors, we performed radioligand displacement experiments using rat aortic smooth muscle cells (RASMs). Serum deprivation for 48 hours caused a 40% decrease in IGF I receptor number. Exposure of quiescent RASMs to platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), or angiotensin II (Ang II) caused a 1.5-2.0-fold increase in IGF I receptors per cell. After FGF exposure, there was a marked increase in the mitogenic response to IGF I. IGF I downregulated its receptors in the presence of platelet-poor plasma. Stimulation of protein kinase C (PKC) by exposure of quiescent RASMs to phorbol 12-myristate 13-acetate caused a biphasic response in IGF I binding; there was a 42% decrease in receptor number at 45 minutes and a 238% increase at 24 hours. To determine the role of PKC in growth factor-induced regulation of IGF I receptors, we downregulated PKC by exposing RASMs to phorbol 12,13-dibutyrate (PDBu) for 48 hours. PDGF- and FGF- but not Ang II-mediated upregulation of IGF I receptors was completely inhibited in PDBu-treated cells. Thus, acute PKC activation by phorbol esters inhibits IGF I binding, whereas chronic PKC activation increases IGF I binding. PDGF and FGF but not Ang II regulate vascular IGF I receptors through a PKC-dependent pathway. These data provide new insights into the regulation of vascular smooth muscle cell IGF I receptors in vitro and are of potential importance in characterizing vascular proliferative responses in vivo.

  12. Different protein kinase C isoenzymes mediate inhibition of cardiac rapidly activating delayed rectifier K+ current by different G-protein coupled receptors.

    PubMed

    Liu, Xueli; Wang, Yuhong; Zhang, Hua; Shen, Li; Xu, Yanfang

    2017-12-01

    Elevated angiotensin II (Ang II) and sympathetic activity contributes to a high risk of ventricular arrhythmias in heart disease. The rapidly activating delayed rectifier K + current (I Kr ) carried by the hERG channels plays a critical role in cardiac repolarization, and decreased I Kr is involved in increased cardiac arrhythmogenicity. Stimulation of α 1A -adrenoreceptors or angiotensin II AT 1 receptors is known to inhibit I Kr via PKC. Here, we have identified the PKC isoenzymes mediating the inhibition of I Kr by activation of these two different GPCRs. The whole-cell patch-clamp technique was used to record I Kr in guinea pig cardiomyocytes and HEK293 cells co-transfected with hERG and α 1A -adrenoreceptor or AT 1 receptor genes. A broad spectrum PKC inhibitor Gö6983 (not inhibiting PKCε), a selective cPKC inhibitor Gö6976 and a PKCα-specific inhibitor peptide, blocked the inhibition of I Kr by the α 1A -adrenoreceptor agonist A61603. However, these inhibitors did not affect the reduction of I Kr by activation of AT 1 receptors, whereas the PKCε-selective inhibitor peptide did block the effect. The effects of angiotensin II and the PKCε activator peptide were inhibited in mutant hERG channels in which 17 of the 18 PKC phosphorylation sites were deleted, whereas a deletion of the N-terminus of the hERG channels selectively prevented the inhibition elicited by A61603 and the cPKC activator peptide. Our results indicated that inhibition of I Kr by activation of α 1A -adrenoreceptors or AT 1 receptors were mediated by PKCα and PKCε isoforms respectively, through different molecular mechanisms. © 2017 The British Pharmacological Society.

  13. Transforming the Air Traffic Management System -- Why Is It So Hard?

    DTIC Science & Technology

    2012-11-08

    Aircraft Systems Integration The Equity Concept Chocolate Cake Problem: How can I distribute this cake equitably among each of the students sitting...net-centric system. – Timely, common information will be available to all (humans and machines ) to help them make their decisions. – While any change...prioritization done when scarce resources must be allocated? (Remember how hard it was to distribute the chocolate cake!) ADS-B In-Trail Procedures

  14. Protein kinase C is involved with upstream signaling of methyl farnesoate for photoperiod-dependent sex determination in the water flea Daphnia pulex

    PubMed Central

    Toyota, Kenji; Sato, Tomomi; Tatarazako, Norihisa

    2017-01-01

    ABSTRACT Sex determination of Daphnia pulex is decided by environmental conditions. We established a suitable experimental system for this study using D. pulex WTN6 strain, in which the sex of the offspring can be controlled by photoperiod. Long-day conditions induced females and short-day conditions induced males. Using this system, we previously found that methy farnesoate (MF), which is a putative innate juvenile hormone molecule in daphnids, is necessary for male sex determination and that protein kinase C (PKC) is a candidate factor of male sex determiner. In this study, we demonstrated that a PKC inhibitor [bisindolylmaleimide IV (BIM)] application strongly suppressed male offspring induction in the short-day condition. Moreover, co-treatment of BIM with MF revealed that PKC signaling acts upstream of MF signaling for male sex determination. This is the first experimental evidence that PKC is involved in the male sex determination process associated with methyl farnesoate signaling in daphnid species. PMID:27965197

  15. Significance of host cell kinases in herpes simplex virus type 1 egress and lamin-associated protein disassembly from the nuclear lamina.

    PubMed

    Leach, Natalie R; Roller, Richard J

    2010-10-10

    The nuclear lamina is thought to be a steric barrier to the herpesvirus capsid. Disruption of the lamina accompanied by phosphorylation of lamina proteins is a conserved feature of herpesvirus infection. In HSV-1-infected cells, protein kinase C (PKC) alpha and delta isoforms are recruited to the nuclear membrane and PKC delta has been implicated in phosphorylation of emerin and lamin B. We tested two critical hypotheses about the mechanism and significance of lamina disruption. First, we show that chemical inhibition of all PKC isoforms reduced viral growth five-fold and inhibited capsid egress from the nucleus. However, specific inhibition of either conventional PKCs or PKC delta does not inhibit viral growth. Second, we show hyperphosphorylation of emerin by viral and cellular kinases is required for its disassociation from the lamina. These data support hypothesis that phosphorylation of lamina components mediates lamina disruption during HSV nuclear egress. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Significance of host cell kinases in herpes simplex virus type 1 egress and lamin-associated protein disassembly from the nuclear lamina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leach, Natalie R.; Roller, Richard J., E-mail: richard-roller@uiowa.ed

    2010-10-10

    The nuclear lamina is thought to be a steric barrier to the herpesvirus capsid. Disruption of the lamina accompanied by phosphorylation of lamina proteins is a conserved feature of herpesvirus infection. In HSV-1-infected cells, protein kinase C (PKC) alpha and delta isoforms are recruited to the nuclear membrane and PKC delta has been implicated in phosphorylation of emerin and lamin B. We tested two critical hypotheses about the mechanism and significance of lamina disruption. First, we show that chemical inhibition of all PKC isoforms reduced viral growth five-fold and inhibited capsid egress from the nucleus. However, specific inhibition of eithermore » conventional PKCs or PKC delta does not inhibit viral growth. Second, we show hyperphosphorylation of emerin by viral and cellular kinases is required for its disassociation from the lamina. These data support hypothesis that phosphorylation of lamina components mediates lamina disruption during HSV nuclear egress.« less

  17. aPKCλ/ι and aPKCζ Contribute to Podocyte Differentiation and Glomerular Maturation

    PubMed Central

    Hartleben, Björn; Widmeier, Eugen; Suhm, Martina; Worthmann, Kirstin; Schell, Christoph; Helmstädter, Martin; Wiech, Thorsten; Walz, Gerd; Leitges, Michael; Schiffer, Mario

    2013-01-01

    Precise positioning of the highly complex interdigitating podocyte foot processes is critical to form the normal glomerular filtration barrier, but the molecular programs driving this process are unknown. The protein atypical protein kinase C (aPKC)—a component of the Par complex, which localizes to tight junctions and interacts with slit diaphragm proteins—may play a role. Here, we found that the combined deletion of the aPKCλ/ι and aPKCζ isoforms in podocytes associated with incorrectly positioned centrosomes and Golgi apparatus and mislocalized molecules of the slit diaphragm. Furthermore, aPKC-deficient podocytes failed to form the normal network of foot processes, leading to defective glomerular maturation with incomplete capillary formation and mesangiolysis. Our results suggest that aPKC isoforms orchestrate the formation of the podocyte processes essential for normal glomerular development and kidney function. Defective aPKC signaling results in a dramatically simplified glomerular architecture, causing severe proteinuria and perinatal death. PMID:23334392

  18. PKA- and PKC-dependent regulation of angiopoietin 2 mRNA in human granulosa lutein cells.

    PubMed

    Witt, P S; Pietrowski, D; Keck, C

    2004-02-01

    New blood vessels develop from preexisting vessels in response to growth factors or hypoxic conditions. Recent studies have shown that angiopoietin 2 (ANGPT-2) plays an important role in the modulation of angiogenesis and vasculogenesis in humans and mice. The signaling pathways that lead to the regulation of ANGPT-2 are largely unclear. Here, we report that protein kinase C and protein kinase A activators (ADMB, 8-Cl-cAMP) increased the mRNA levels of ANGPT-2 in human Granulosa cells, whereas PKC and PKA Inhibitors (Rp-cAMP, GO 6983) decreased markedly the level of ANGPT-2 mRNA. Due to varying specificity of the modulators for certain protein kinases subunits, we conclude that the conventional PKCs, but not PKC alpha and beta1, the atypical PKCs and the PKA I, are involved in the regulation of ANGPT-2. These findings may help to explain the role of both PKA and PKC dependent signaling cascades in the regulation of ANGPT-2 mRNA.

  19. Metabolism of exogenous fatty acids, fatty acid-mediated cholesterol efflux, PKA and PKC pathways in boar sperm acrosome reaction.

    PubMed

    Hossain, Md Sharoare; Afrose, Sadia; Sawada, Tomio; Hamano, Koh-Ichi; Tsujii, Hirotada

    2010-03-01

    For understanding the roles of fatty acids on the induction of acrosome reaction which occurs under association of cholesterol efflux and PKA or PKC pathways in boar spermatozoa, metabolic fate of alone and combined radiolabeled 14 C-oleic acid and 3 H-linoleic acid incorporated in the sperm was compared, and behavior of cholesterol and effects of PKA and PKC inhibitors upon fatty acid-induced acrosome reaction were examined. Semen was collected from a Duroc boar, and the metabolic activities of fatty acids in the spermatozoa were measured using radioactive compounds and thin layer chromatography. Cholesterol efflux was measured with a cholesterol determination assay kit. Participation of fatty acids on the AR through PKA and PKC pathways was evaluated using a specific inhibitor of these enzymes. Incorporation rate of 14 C-oleic acid into the sperm lipids was significantly higher than that of 3 H-linoleic acid ( P < 0.05). The oxidation of 14 C-oleic acid was higher in combined radiolabeling rather than in one. The highest amounts of 3 H-linoleic acid and 14 C-oleic acid were recovered mainly in the triglycerides and phospholipids fraction, and 14 C-oleic acid distribution was higher than the 3 H-linoleic acid in both labeled ( P < 0.05) sperm lipids. In the 3 H-linoleic and 14 C-oleic acid combined radiolabeling, the incorporation rate of the radioactive fatty acids in all the lipid fractions increased 15 times more than the alone radiolabeling. Boar sperm utilize oleic acid to generate energy for hyperactivation ( P < 0.05). Supplementation of arachidonic acid significantly increased ( P < 0.05) cholesterol efflux in sperm. When spermatozoa were incubated with PKA or PKC inhibitors, there was a significant reduction of arachidonic acid-induced acrosome reaction (AR) ( P < 0.05), and inhibition by PKA inhibitor is stronger than that by PKC inhibitor. Incorporation of unsaturated fatty acids, especially oleic acid, into triglycerides and phospholipids provides prerequisite energy for AR. Cholesterol efflux by arachidonic acid triggers AR. Arachidonic acid activated PKA and PKC pathway participate in induction of the AR.

  20. Expression and proliferation profiles of PKC, JNK and p38MAPK in physiologically stretched human bladder smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wazir, Romel; Luo, De-Yi; Dai, Yi

    2013-08-30

    Highlights: •Stretch induces proliferation in human bladder smooth muscle cells (HBSMC). •5% Equibiaxial elongation produces maximum proliferation. •Physiologic stretch decreases apoptotic cell death. •PKC is involved in functional modulation of bladder. •JNK and p38 are not involved in proliferating HBSMC. -- Abstract: Objective: To determine protein kinase C (PKC), c-Jun NH2-Terminal Kinase (JNK) and P38 mitogen-activated protein kinases (p38MAPK) expression levels and effects of their respective inhibitors on proliferation of human bladder smooth muscle cells (HBSMCs) when physiologically stretched in vitro. Materials and methods: HBSMCs were grown on silicone membrane and stretch was applied under varying conditions; (equibiaxial elongation: 2.5%,more » 5%, 10%, 15%, 20%, 25%), (frequency: 0.05, 0.1, 0.2, 0.5, 1 Hz). Optimal physiological stretch was established by assessing proliferation with 5-Bromo-2-deoxyuridine (BrdU) assay and flow cytometry. PKC, JNK and p38 expression levels were analyzed by Western blot. Specificity was maintained by employing specific inhibitors; (GF109203X for PKC, SP600125 for JNK and SB203580 for p38MAPK), in some experiments. Results: Optimum proliferation was observed at 5% equibiaxial stretch (BrdU: 0.837 ± 0.026 (control) to 1.462 ± 0.023)%, (P < 0.05) and apoptotic cell death rate decreased from 16.4 ± 0.21% (control) to 4.5 ± 0.13% (P < 0.05) applied at 0.1 Hz. Expression of PKC was upregulated with slight increase in JNK and no change in p38MAPK after application of stretch. Inhibition had effects on proliferation (1.075 ± 0.024, P < 0.05 GF109203X); (1.418 ± 0.021, P > 0.05 SP600125) and (1.461 ± 0.01, P > 0.05 SB203580). These findings show that mechanical stretch can promote magnitude-dependent proliferative modulation through PKC and possibly JNK but not via p38MAPK in hBSMCs.« less

  1. Maturation and long-term hypoxia-induced acclimatization responses in PKC-mediated signaling pathways in ovine cerebral arterial contractility

    PubMed Central

    Goyal, Ravi; Mittal, Ashwani; Chu, Nina; Arthur, Rebecca Afiba; Zhang, Lubo

    2010-01-01

    In the developing fetus, cerebral arteries (CA) show striking differences in signal transduction mechanisms compared with the adult, and these differences are magnified in response to high-altitude long-term hypoxia (LTH). In addition, in the mature organism, cerebrovascular acclimatization to LTH may be associated with several clinical problems, the mechanisms of which are unknown. Because PKC plays a key role in regulating CA contractility, in fetal and adult cerebral arteries, we tested the hypothesis that LTH differentially regulates the PKC-mediated Ca2+ sensitization pathways and contractility. In four groups of sheep [fetal normoxic (FN), fetal hypoxic (FH), adult normoxic (AN), and adult hypoxic (AH)], we examined, simultaneously, responses of CA tension and intracellular Ca2+ concentration and measured CA levels of PKC, ERK1/2, RhoA, 20-kDa myosin light chain, and the 17-kDa PKC-potentiated myosin phosphatase inhibitor CPI-17. The PKC activator phorbol 12,13-dibutyrate (PDBu) produced robust contractions in all four groups. However, PDBu-induced contractions were significantly greater in AH CA than in the other groups. In all CA groups except AH, in the presence of MEK inhibitor (U-0126), the PDBu-induced contractions were increased a further 20–30%. Furthermore, in adult CA, PDBu led to increased phosphorylation of ERK1, but not ERK2; in fetal CA, the reverse was the case. PDBu-stimulated ERK2 phosphorylation also was significantly greater in FH than FN CA. Also, although RhoA/Rho kinase played a significant role in PDBu-mediated contractions of FN CA, this was not the case in FH or either adult group. Also, whereas CPI-17 had a significant role in adult CA contractility, this was not the case for the fetus. Overall, in ovine CA, the present study demonstrates several important maturational and LTH acclimatization changes in PKC-induced contractile responses and downstream pathways. The latter may play a key role in the pathophysiologic disorders associated with acclimatization to high altitude. PMID:20702800

  2. Maturation and long-term hypoxia-induced acclimatization responses in PKC-mediated signaling pathways in ovine cerebral arterial contractility.

    PubMed

    Goyal, Ravi; Mittal, Ashwani; Chu, Nina; Arthur, Rebecca Afiba; Zhang, Lubo; Longo, Lawrence D

    2010-11-01

    In the developing fetus, cerebral arteries (CA) show striking differences in signal transduction mechanisms compared with the adult, and these differences are magnified in response to high-altitude long-term hypoxia (LTH). In addition, in the mature organism, cerebrovascular acclimatization to LTH may be associated with several clinical problems, the mechanisms of which are unknown. Because PKC plays a key role in regulating CA contractility, in fetal and adult cerebral arteries, we tested the hypothesis that LTH differentially regulates the PKC-mediated Ca(2+) sensitization pathways and contractility. In four groups of sheep [fetal normoxic (FN), fetal hypoxic (FH), adult normoxic (AN), and adult hypoxic (AH)], we examined, simultaneously, responses of CA tension and intracellular Ca(2+) concentration and measured CA levels of PKC, ERK1/2, RhoA, 20-kDa myosin light chain, and the 17-kDa PKC-potentiated myosin phosphatase inhibitor CPI-17. The PKC activator phorbol 12,13-dibutyrate (PDBu) produced robust contractions in all four groups. However, PDBu-induced contractions were significantly greater in AH CA than in the other groups. In all CA groups except AH, in the presence of MEK inhibitor (U-0126), the PDBu-induced contractions were increased a further 20-30%. Furthermore, in adult CA, PDBu led to increased phosphorylation of ERK1, but not ERK2; in fetal CA, the reverse was the case. PDBu-stimulated ERK2 phosphorylation also was significantly greater in FH than FN CA. Also, although RhoA/Rho kinase played a significant role in PDBu-mediated contractions of FN CA, this was not the case in FH or either adult group. Also, whereas CPI-17 had a significant role in adult CA contractility, this was not the case for the fetus. Overall, in ovine CA, the present study demonstrates several important maturational and LTH acclimatization changes in PKC-induced contractile responses and downstream pathways. The latter may play a key role in the pathophysiologic disorders associated with acclimatization to high altitude.

  3. [Aconite cake-separated moxibustion for knee osteoarthritis with kidney-marrow deficiency].

    PubMed

    Chen, Meiren; Hu, Rong; Lin, Jian; Huang, Yuhui; Mao, Wanping; Wen, Yuanying; Dai, Gaole

    2018-01-12

    To observe the effects among aconite cake-separated moxibustion, moxibustion and acupuncture for knee osteoarthritis (KOA) with kidney-marrow deficiency and to explore the feasibility of cake-separated moxibustion as a home remedy solution. Ninety patients were randomized into an aconite cake-separated moxibustion group, a moxibustion group and an acupuncture group, 30 cases in each one. The acupoints in the three groups were Neixiyan (EX-LE 4), Dubi (ST 35) in the affected side, and bilateral Xuehai (SP 10), Liangqiu (ST 34), Heding (EX-LE 2), Shenshu (BL 23) and Zusanli (ST 36). All the treatment was given for 3 sessions, 10 days as a session with 2 to 3 days between 2 sessions, and once a day. The first 2 courses of aconite cake-separated moxibustion was applied in the hospital and the other 1 session was used at home guided by officer physician. Symptoms and physical signs classification score and life quality scores were recorded before and after treatment and 6 months after treatment, including walking pain, knee pain in stoop and squat, knee discomfort in stair activity and daily discomfort. The effects were evaluated. The symptoms and physical signs classification scores in the three groups after treatment and at follow-up were lower than those before treatment ( P <0.01, P <0.05), and the scores in the aconite cake-separated moxibustion group were better than those in the moxibustion group and acupuncture group (all P <0.01). The scores of walking pain, knee pain in stoop and squat, knee discomfort in stair activity and daily discomfort were lower in the three groups after treatment and 6 months after treatment ( P <0.01, P <0.05), and the scores of walking pain and daily discomfort in the aconite cake-separated moxibustion group were lower than those in the moxibustion group and acupuncture group ( P <0.01, P <0.05). After treatments, the cured and markedly effective rate in the aconite cake-separated moxibustion group was 63.3% (19/30); that in the moxibustion group was 50.0% (15/30) and one in the acupuncture group was 43.3% (13/30). The cured and markedly effective rate of aconite cake-separated moxibustion group was more promising than those in the other two groups (both P <0.05). At follow-up, the cured and markedly effective rate in the aconite cake-separated moxibustion group was 56.7% (17/30), which was better than 36.7% (11/30) in the moxibustion group and 40.0% (12/30) in the acupuncture group (both P <0.05). Aconite cake-separated moxibustion can be used for KOA patients with kidney-marrow deficiency, which can improve patients' life quality and is better than moxibustion and acupuncture. The method is feasible as a home remedy solution.

  4. Efficiency of baited hoop nets for sampling catfish in southeastern U.S. small impoundments

    USGS Publications Warehouse

    Wallace, Benjamin C.; Weaver, Daniel M.; Kwak, Thomas J.

    2011-01-01

    Many U.S. natural resource agencies stock catfish (Ictaluridae) into small impoundments to provide recreational fishing opportunities. However, effective standardized methods for sampling catfish in small impoundments have not been developed for wide application, particularly in the southeastern United States. We evaluated the efficiency of three bait treatments (i.e., soybean cake, sunflower cake, and no bait) of tandem hoop nets in two North Carolina small impoundments during the fall of 2008 and spring of 2009 in a factorial experimental design. The impoundments were stocked with catchable-size channel catfish Ictalurus punctatus at contrastingly low (5.5 fi sh/ha) and high (90.0 fi sh/ha) rates prior to our sampling. Nets baited with soybean cake consistently sampled more channel catfish than any other treatment. Channel catfish catch ranged as high as 3,251 fi sh per net series during the fall in nets baited with soybean cake in the intensively stocked impoundment and was up to 8.5 and 15.3 times higher during the fall than in the spring in each impoundment. Nets baited with soybean cake sampled significantly (12 and 24 times) more channel catfish than those with no bait in the two impoundments. These trends did not occur among other catfish species. Nonictalurid fish and turtle catch was higher during spring compared to that of fall, corresponding with low channel catfish catches. Our results indicate that tandem hoop nets baited with soybean cake during the fall is a more efficient method for sampling channel catfish compared to nets baited with sunflower cake or no bait in spring or fall. Our findings validate this technique for application in southeastern U.S. small impoundments to assess catfish abundance to guide management and evaluate the success of catfish stocking programs.

  5. Aflatoxin levels in sunflower seeds and cakes collected from micro- and small-scale sunflower oil processors in Tanzania.

    PubMed

    Mmongoyo, Juma A; Wu, Felicia; Linz, John E; Nair, Muraleedharan G; Mugula, Jovin K; Tempelman, Robert J; Strasburg, Gale M

    2017-01-01

    Aflatoxin, a mycotoxin found commonly in maize and peanuts worldwide, is associated with liver cancer, acute toxicosis, and growth impairment in humans and animals. In Tanzania, sunflower seeds are a source of snacks, cooking oil, and animal feed. These seeds are a potential source of aflatoxin contamination. However, reports on aflatoxin contamination in sunflower seeds and cakes are scarce. The objective of the current study was to determine total aflatoxin concentrations in sunflower seeds and cakes from small-scale oil processors across Tanzania. Samples of sunflower seeds (n = 90) and cakes (n = 92) were collected across two years, and analyzed for total aflatoxin concentrations using a direct competitive enzyme-linked immunosorbent assay (ELISA). For seed samples collected June-August 2014, the highest aflatoxin concentrations were from Dodoma (1.7-280.6 ng/g), Singida (1.4-261.8 ng/g), and Babati-Manyara (1.8-162.0 ng/g). The highest concentrations for cakes were from Mbeya (2.8-97.7 ng/g), Dodoma (1.9-88.2 ng/g), and Singida (2.0-34.3 ng/g). For seed samples collected August-October 2015, the highest concentrations were from Morogoro (2.8-662.7 ng/g), Singida (1.6-217.6 ng/g) and Mbeya (1.4-174.2 ng/g). The highest concentrations for cakes were from Morogoro (2.7-536.0 ng/g), Dodoma (1.4-598.4 ng/g) and Singida (3.2-52.8 ng/g). In summary, humans and animals are potentially at high risk of exposure to aflatoxins through sunflower seeds and cakes from micro-scale millers in Tanzania; and location influences risk.

  6. Acceptance and purchase intent of US consumers for nonwheat rice butter cakes.

    PubMed

    Sae-Eaw, A; Chompreeda, P; Prinyawiwatkul, W; Haruthaithanasan, V; Suwonsichon, T; Saidu, J E; Xu, Z

    2007-03-01

    This study evaluated consumer acceptance and purchase intent of nonwheat butter cake formulations prepared with Thai jasmine rice flour. Three nonwheat rice butter cakes were prepared with varying amounts of powdered emulsifier (propylene glycol ester:diacetyl tartaric acid ester of monoglyceride, 8:2) at 0% (product A), 7.5% (product B), and 15% (product C) of the margarine content (15%) in the cake formulation. A commercial wheat-based butter cake served as the control. Consumers (n= 400) evaluated acceptability of 9 sensory attributes using a 9-point hedonic scale. Overall acceptance and purchase intent were determined with a binomial (yes/no) scale. At least 81% of consumers accepted products B and C, of which 42.1% and 47%, respectively, would purchase the products if commercially available. Product A was neither liked nor disliked with an overall liking score of 5.39. The butter cake products were differentiated by textural acceptability (overall texture, softness, and moistness) with a canonical correlation of 0.71 to 0.79. Overall liking and taste influenced overall acceptance and purchase intent. Odor influenced purchase intent (P= 0.0014), but not overall acceptance. The odds ratio of overall liking was 3.462 for purchase intent, indicating the probability of the product being purchased is 3.462 times higher (than not being purchased, P < 0.0001) with every 1-unit increase of the overall liking score. Based on the logit model, overall acceptance and purchase intent could be predicted with 89.3% and 83.3% accuracy, respectively. The study demonstrated feasibility of completely substituting wheat flour with Thai jasmine rice flour for production of butter cake products acceptable to American consumers.

  7. Process for treating moisture laden coal fines

    DOEpatents

    Davis, Burl E.; Henry, Raymond M.; Trivett, Gordon S.; Albaugh, Edgar W.

    1993-01-01

    A process is provided for making a free flowing granular product from moisture laden caked coal fines, such as wet cake, by mixing a water immiscible substance, such as oil, with the caked coal, preferably under low shear forces for a period of time sufficient to produce a plurality of free flowing granules. Each granule is preferably comprised of a dry appearing admixture of one or more coal particle, 2-50% by weight water and the water immiscible substance.

  8. Canola Cake as a Potential Substrate for Proteolytic Enzymes Production by a Selected Strain of Aspergillus oryzae: Selection of Process Conditions and Product Characterization

    PubMed Central

    Freitas, Adriana C.; Castro, Ruann J. S.; Fontenele, Maria A.; Egito, Antonio S.; Farinas, Cristiane S.; Pinto, Gustavo A. S.

    2013-01-01

    Oil cakes have excellent nutritional value and offer considerable potential for use in biotechnological processes that employ solid-state fermentation (SSF) for the production of high value products. This work evaluates the feasibility of using canola cake as a substrate for protease production by a selected strain of Aspergillus oryzae cultivated under SSF. The influences of the following process parameters were considered: initial substrate moisture content, incubation temperature, inoculum size, and pH of the buffer used for protease extraction and activity analysis. Maximum protease activity was obtained after cultivating Aspergillus oryzae CCBP 001 at 20°C, using an inoculum size of 107 spores/g in canola cake medium moistened with 40 mL of water to 100 g of cake. Cultivation and extraction under selected conditions increased protease activity 5.8-fold, compared to the initial conditions. Zymogram analysis of the enzymatic extract showed that the protease molecular weights varied between 31 and 200 kDa. The concentrated protease extract induced clotting of casein in 5 min. The results demonstrate the potential application of canola cake for protease production under SSF and contribute to the technological advances needed to increase the efficiency of processes designed to add value to agroindustrial wastes. PMID:24455400

  9. Quantitative evaluation method of the bubble structure of sponge cake by using morphology image processing

    NASA Astrophysics Data System (ADS)

    Tatebe, Hironobu; Kato, Kunihito; Yamamoto, Kazuhiko; Katsuta, Yukio; Nonaka, Masahiko

    2005-12-01

    Now a day, many evaluation methods for the food industry by using image processing are proposed. These methods are becoming new evaluation method besides the sensory test and the solid-state measurement that are using for the quality evaluation. An advantage of the image processing is to be able to evaluate objectively. The goal of our research is structure evaluation of sponge cake by using image processing. In this paper, we propose a feature extraction method of the bobble structure in the sponge cake. Analysis of the bubble structure is one of the important properties to understand characteristics of the cake from the image. In order to take the cake image, first we cut cakes and measured that's surface by using the CIS scanner. Because the depth of field of this type scanner is very shallow, the bubble region of the surface has low gray scale values, and it has a feature that is blur. We extracted bubble regions from the surface images based on these features. First, input image is binarized, and the feature of bubble is extracted by the morphology analysis. In order to evaluate the result of feature extraction, we compared correlation with "Size of the bubble" of the sensory test result. From a result, the bubble extraction by using morphology analysis gives good correlation. It is shown that our method is as well as the subjectivity evaluation.

  10. Improvement of texture and sensory properties of cakes by addition of potato peel powder with high level of dietary fiber and protein.

    PubMed

    Ben Jeddou, Khawla; Bouaziz, Fatma; Zouari-Ellouzi, Soumaya; Chaari, Fatma; Ellouz-Chaabouni, Semia; Ellouz-Ghorbel, Raoudha; Nouri-Ellouz, Oumèma

    2017-02-15

    Demand for health oriented products such as low calories and high fiber product is increasing. The aim of the present work was to determine the effect of the addition of potato peel powders as protein and dietary fiber source on the quality of the dough and the cake. Powders obtained from the two types of peel flour showed interesting water binding capacity and fat absorption capacity. Potato peel flours were incorporated in wheat flours at different concentration. The results showed that peel powders additionally considerably improved the Alveograph profile of dough and the texture of the prepared cakes. In addition color measurements showed a significant difference between the control dough and the dough containing potato peels. The replacement of wheat flour with the potato powders reduced the cake hardness significantly and the L(*) and b(*) dough color values. The increased consumption of cake enriched with potato peel fiber is proposed for health reasons. The study demonstrated that protein/fiber-enriched cake with good sensory quality could be produced by the substitution of wheat flour by 5% of potato peel powder. In addition and technological point of view, the incorporation of potato peel powder at 5% increase the dough strength and elasticity-to-extensibility ratio (P/L). Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Bilberry and bilberry press cake as sources of dietary fibre

    PubMed Central

    Aura, Anna-Marja; Holopainen-Mantila, Ulla; Sibakov, Juhani; Kössö, Tuija; Mokkila, Mirja; Kaisa, Poutanen

    2015-01-01

    Background Dietary recommendations for Nordic countries urge the use of plant foods as a basis for healthy nutrition. Currently, the level of dietary fibre (DF) intake is not adequate. Berries are an elementary part of the recommended Nordic healthy diet and could be consumed in higher amounts. Materials and methods Finnish bilberries and a bilberry press cake from juice processing were studied for DF content, carbohydrate composition, and non-carbohydrate fibre content, which was analysed as sulphuric acid insoluble and soluble material. The microstructure of all samples was also studied using light microscopy and toluidine blue O, calcofluor, and acid fuchsin staining. Results The total DF contents of fresh and freeze-dried bilberries and the press cake were 3.0, 24.1, and 58.9%, respectively. Most of the DF was insoluble. Only about half of it was carbohydrate, the rest being mostly sulphuric acid–insoluble material, waxy cutin from skins, and resilient seeds. Bilberry seeds represented over half of the press cake fraction, and in addition to skin, they were the major DF sources. Microscopy revealed that skins in the press cake were intact and the surface of the seeds had thick-walled cells. Conclusions Bilberry press cake is thus a good source of insoluble non-carbohydrate DF, and could be used to provide DF-rich foods to contribute to versatile intake of DF. PMID:26652738

  12. Evaluation of the effectiveness of olive cake residue as an expansive soil stabilizer

    NASA Astrophysics Data System (ADS)

    Nalbantoglu, Zalihe; Tawfiq, Salma

    2006-08-01

    The quantity of the by-product olive cake residue generated in most parts of the Mediterranean countries continues to increase and expected to double in amount within 10 15 years. This increase intensifies the problems associated with the disposal of this by-product. Olive cake residue has a potential for use as a soil stabilizer and large volumes can be beneficially used. This study is directed toward determining if olive cake residue can be utilized to increase the strength and stability of expansive soils which constitute a costly natural hazard to lightweight structures on shallow foundations. A series of laboratory tests using engineering properties, such as Atterberg limits, moisture-density relationship (compaction), swell, unconfined compressive strength were undertaken to evaluate the effectiveness and performance of the olive cake residue as a soil stabilizer. Test results indicate that an addition of only 3% burned olive waste into the soil causes a reduction in plasticity, volume change and an increase in the unconfined compressive strength. However, it was observed that the presence of burned olive waste in the soil greater than 3% caused an increase in the compressibility and a decrease in the unconfined compressive strength. Test results indicate that the use of olive waste in soil stabilization gives greater benefits to the environment than simply disposing of the by-product, olive cake residue.

  13. PKC delta and NADPH oxidase in retinoic acid-induced neuroblastoma cell differentiation.

    PubMed

    Nitti, Mariapaola; Furfaro, Anna Lisa; Cevasco, Claudia; Traverso, Nicola; Marinari, Umberto Maria; Pronzato, Maria Adelaide; Domenicotti, Cinzia

    2010-05-01

    The role of reactive oxygen species (ROS) in the regulation of signal transduction processes has been well established in many cell types and recently the fine tuning of redox signalling in neurons received increasing attention. With regard to this, the involvement of NADPH oxidase (NOX) in neuronal pathophysiology has been proposed but deserves more investigation. In the present study, we used SH-SY5Y neuroblastoma cells to analyse the role of NADPH oxidase in retinoic acid (RA)-induced differentiation, pointing out the involvement of protein kinase C (PKC) delta in the activation of NOX. Retinoic acid induces neuronal differentiation as revealed by the increased expression of MAP2, the decreased cell doubling rate, and the gain in neuronal morphological features and these events are accompanied by the increased expression level of PKC delta and p67(phox), one of the components of NADPH oxidase. Using DPI to inhibit NOX activity we show that retinoic acid acts through this enzyme to induce morphological changes linked to the differentiation. Moreover, using rottlerin to inhibit PKC delta or transfection experiments to overexpress it, we show that retinoic acid acts through this enzyme to induce MAP2 expression and to increase p67(phox) membrane translocation leading to NADPH oxidase activation. These findings identify the activation of PKC delta and NADPH oxidase as crucial steps in RA-induced neuroblastoma cell differentiation. 2010 Elsevier Inc. All rights reserved.

  14. PKCζ and PKMζ are overexpressed in TCF3-rearranged paediatric acute lymphoblastic leukaemia and are associated with increased thiopurine sensitivity.

    PubMed

    Hartsink-Segers, S A; Beaudoin, J J; Luijendijk, M W J; Exalto, C; Pieters, R; Den Boer, M L

    2015-02-01

    Both tumour suppressor and oncogenic functions have been ascribed to the atypical zeta isoform of protein kinase C (PKCζ), whereas its constitutively active form PKMζ is almost exclusively expressed in the brain where it has a role in long-term memory. Using primers unique for either isoform, we found that both PKCζ and PKMζ were expressed in a subset of paediatric acute lymphoblastic leukaemia (ALL) cases carrying a TCF3 (E2A) chromosomal rearrangement. Combined PKCζ and PKMζ (PKC/Mζ) protein as well as phosphorylation levels were elevated in ALL cases, especially TCF3-rearranged precursor B-ALL cases, compared with normal bone marrow (P<0.01). Furthermore, high PKC/Mζ expression in primary ALL cells was associated with increased sensitivity to 6-thioguanine and 6-mercaptopurine (P<0.01), thiopurines used in ALL treatment. PKCζ is believed to stabilize mismatch-repair protein MSH2, facilitating thiopurine responsiveness in T-ALL. However, PKC/Mζ knockdown in a TCF3-rearranged cell line model decreased MSH2 expression but did not induce thiopurine resistance, indicative that the link between high PKC/Mζ levels and thiopurine sensitivity in paediatric precursor B-ALL is not directly causal. Collectively, our data indicate that thiopurine treatment may be effective, especially in paediatric TCF3-rearranged ALL and other patients with a high expression of PKC/Mζ.

  15. Lymphocyte Functions in Microgravity

    NASA Technical Reports Server (NTRS)

    Pellis, Neal R.; Risin, Diane; Sundaresan, A.; Cooper, D.; Dawson, David L. (Technical Monitor)

    1999-01-01

    To understand the mechanism of immunity impairment in space it is important to analyze the direct effects of space-related conditions on different lymphocytes functions. Since 1992, we are investigating the effect of modeled and true microgravity (MG) on numerous lymphocyte functions. We had shown that modeled (MMG) and true microgravity inhibit lymphocyte locomotion through type I collagen. Modeled microgravity also suppresses polyclonal and antigen-specific lymphocyte activation. Polyclonal activation of lymphocytes prior to exposure to MMG abrogates the MG-induced inhibition of lymphocyte locomotion. The relationship between activation deficits and the loss of locomotion in MG was investigated using PKC activation by phorbol ester (PMA) and calcium ionophore (ionomycin). Direct activation of PKC by PMA substantially restored the MMG-inhibited lymphocyte locomotion and PHA-induced lymphocyte activation lonomycin by itself did not restore either locomotion or activation of the lymphocytes, indicating that these changes are not related to the impairment in the calcium flux in MMG. Treatment of lymphocytes with PMA before exposure to MMG prevented the loss of locomotion. It was observed that DNA synthesis is not necessary for restoration of locomotion since mitomicin C treated and untreated cells recovered their locomotion to the same level after PKC activation. Our recent data indicate that microgravity may selectively effect the expression of novel Ca2+ independent isoforms of PKC, in particularly PKC sigma and delta. This provides a new insight in understanding of the mechanisms of MG-sensitive cellular functions.

  16. The protein kinase C (PKC) inhibitors combined with chemotherapy in the treatment of advanced non-small cell lung cancer: meta-analysis of randomized controlled trials.

    PubMed

    Zhang, L L; Cao, F F; Wang, Y; Meng, F L; Zhang, Y; Zhong, D S; Zhou, Q H

    2015-05-01

    The application of newer signaling pathway-targeted agents has become an important addition to chemotherapy in the treatment of advanced non-small cell lung cancer (NSCLC). In this study, we evaluated the efficacy and toxicities of PKC inhibitors combined with chemotherapy versus chemotherapy alone for patients with advanced NSCLC systematically. Literature retrieval, trials selection and assessment, data collection, and statistic analysis were performed according to the Cochrane Handbook 5.1.0. The outcome measures were tumor response rate, disease control rate, progression-free survival (PFS), overall survival (OS), and adverse effects. Five randomized controlled trials, comprising totally 1,005 patients, were included in this study. Meta-analysis showed significantly decreased response rate (RR 0.79; 95 % CI 0.64-0.99) and disease control rate (RR 0.90; 95 % CI 0.82-0.99) in PKC inhibitors-chemotherapy groups versus chemotherapy groups. There was no significant difference between the two treatment groups regarding progression-free survival (PFS, HR 1.05; 95 % CI 0.91-1.22) and overall survival (OS, HR 1.00; 95 % CI 0.86-1.16). The risk of grade 3/4 neutropenia, leucopenia, and thrombosis/embolism increased significantly in PKC inhibitors combination groups as compared with chemotherapy alone groups. The use of PKC inhibitors in addition to chemotherapy was not a valid alternative for patients with advanced NSCLC.

  17. The multikinase inhibitor midostaurin (PKC412A) lacks activity in metastatic melanoma: a phase IIA clinical and biologic study.

    PubMed

    Millward, M J; House, C; Bowtell, D; Webster, L; Olver, I N; Gore, M; Copeman, M; Lynch, K; Yap, A; Wang, Y; Cohen, P S; Zalcberg, J

    2006-10-09

    Midostaurin (PKC412A), N-benzoyl-staurosporine, potently inhibits protein kinase C alpha (PKCalpha), VEGFR2, KIT, PDGFR and FLT3 tyrosine kinases. In mice, midostaurin slows growth and delays lung metastasis of melanoma cell lines. We aimed to test midostaurin's safety, efficacy and biologic activity in a Phase IIA clinical trial in patients with metastatic melanoma. Seventeen patients with advanced metastatic melanoma received midostaurin 75 mg p.o. t.i.d., unless toxicity or disease progression supervened. Patient safety was assessed weekly, and tumour response was assessed clinically or by CT. Tumour biopsies and plasma samples obtained at entry and after 4 weeks were analysed for midostaurin concentration, PKC activity and multidrug resistance. No tumour responses were seen. Two (12%) patients had stable disease for 50 and 85 days, with minor response in one. The median overall survival was 43 days. Seven (41%) discontinued treatment with potential toxicity, including nausea, vomiting, diarrhoea and/or fatigue. One patient had >50% reduction in PKC activity. Tumour biopsies showed two PKC isoforms relatively insensitive to midostaurin, out of three patients tested. No modulation of multidrug resistance was demonstrated. At this dose schedule, midostaurin did not show clinical or biologic activity against metastatic melanoma. This negative trial reinforces the importance of correlating biologic and clinical responses in early clinical trials of targeted therapies.

  18. Rho1- and Pkc1-dependent phosphorylation of the F-BAR protein Syp1 contributes to septin ring assembly.

    PubMed

    Merlini, Laura; Bolognesi, Alessio; Juanes, Maria Angeles; Vandermoere, Franck; Courtellemont, Thibault; Pascolutti, Roberta; Séveno, Martial; Barral, Yves; Piatti, Simonetta

    2015-09-15

    In many cell types, septins assemble into filaments and rings at the neck of cellular appendages and/or at the cleavage furrow to help compartmentalize the plasma membrane and support cytokinesis. How septin ring assembly is coordinated with membrane remodeling and controlled by mechanical stress at these sites is unclear. Through a genetic screen, we uncovered an unanticipated link between the conserved Rho1 GTPase and its effector protein kinase C (Pkc1) with septin ring stability in yeast. Both Rho1 and Pkc1 stabilize the septin ring, at least partly through phosphorylation of the membrane-associated F-BAR protein Syp1, which colocalizes asymmetrically with the septin ring at the bud neck. Syp1 is displaced from the bud neck upon Pkc1-dependent phosphorylation at two serines, thereby affecting the rigidity of the new-forming septin ring. We propose that Rho1 and Pkc1 coordinate septin ring assembly with membrane and cell wall remodeling partly by controlling Syp1 residence at the bud neck. © 2015 Merlini et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. PKCζ and PKMζ are overexpressed in TCF3-rearranged paediatric acute lymphoblastic leukaemia and are associated with increased thiopurine sensitivity

    PubMed Central

    Hartsink-Segers, S A; Beaudoin, J J; Luijendijk, M W J; Exalto, C; Pieters, R; Den Boer, M L

    2015-01-01

    Both tumour suppressor and oncogenic functions have been ascribed to the atypical zeta isoform of protein kinase C (PKCζ), whereas its constitutively active form PKMζ is almost exclusively expressed in the brain where it has a role in long-term memory. Using primers unique for either isoform, we found that both PKCζ and PKMζ were expressed in a subset of paediatric acute lymphoblastic leukaemia (ALL) cases carrying a TCF3 (E2A) chromosomal rearrangement. Combined PKCζ and PKMζ (PKC/Mζ) protein as well as phosphorylation levels were elevated in ALL cases, especially TCF3-rearranged precursor B-ALL cases, compared with normal bone marrow (P<0.01). Furthermore, high PKC/Mζ expression in primary ALL cells was associated with increased sensitivity to 6-thioguanine and 6-mercaptopurine (P<0.01), thiopurines used in ALL treatment. PKCζ is believed to stabilize mismatch-repair protein MSH2, facilitating thiopurine responsiveness in T-ALL. However, PKC/Mζ knockdown in a TCF3-rearranged cell line model decreased MSH2 expression but did not induce thiopurine resistance, indicative that the link between high PKC/Mζ levels and thiopurine sensitivity in paediatric precursor B-ALL is not directly causal. Collectively, our data indicate that thiopurine treatment may be effective, especially in paediatric TCF3-rearranged ALL and other patients with a high expression of PKC/Mζ. PMID:24990612

  20. Effects of medicinal cake-separated moxibustion on plasma 6-keto-PGF1alpha and TXB2 contents in the rabbit of hyperlipemia.

    PubMed

    Xiaorong, Chang; Jie, Yan; Zenghui, Yue; Jing, Shen; Yaping, Lin; Shouxiang, Yi; Xiangping, Cao

    2005-06-01

    Hyperlipemia rabbit models established with high cholesterol and fat diet were treated with direct moxibustion and medicinal cake-separated moxibustion. The post-treatment plasma 6-keto-prostaglandin F1alpha (6-keto-PGF1alpha) and thromboxane B2 (TXB2) contents were determined by radioimmunoassay. Results indicated that the plasma 6-keto-PGF1alpha content significantly increased, the TXB2 level decreased (P < 0.05) and the TXB2 /6-keto-PGF1alpha ratio also decreased (P < 0.01) in the medicinal cake-separated moxibustion group as compared with those in the model group respectively, but there was no significant difference between the medicinal cake-separated moxibustion group and the direct moxibustion group (P > 0.05), suggesting that both the medicinal cake-separated moxibustion and direct moxibustion can regulate the plasma 6-keto-PGF1alpha and TXB2 contents, and the TXB2/6-keto-PGF1alpha ratio with similar actions, and have a certain protective action on endothelial cells of the aorta in the rabbit of hyperlipemia.

  1. Commercial cuts and chemical and sensory attributes of meat from crossbred Boer goats fed sunflower cake-based diets.

    PubMed

    Oliveira, Ronaldo Lopes; Palmieri, Adriana Dantas; Carvalho, Silvana Teixeira; Leão, André Gustavo; de Abreu, Claudilene Lima; Ribeiro, Claudio Vaz Di Mambro; Pereira, Elzania Sales; de Carvalho, Gleidson Giordano Pinto; Bezerra, Leilson Rocha

    2015-05-01

    This study aimed to evaluate sunflower cake feed in commercial cut yields and chemical and sensory attributes of goat meat. Thirty-two castrated male goats were distributed in four levels (0, 8, 16 and 24%) of sunflower cake supplementation. The animals were slaughtered and the carcasses were placed in a cold chamber and sectioned into five anatomical regions corresponding to commercial cuts. Samples of the Longissimus lumborum muscle were analyzed for chemical composition and sensory quality. The chemical composition and pH were not affected by the treatments. The smell, taste and 'goatiness' of the aroma and flavor of the meat were also unaffected by the treatments. The appearance, tenderness and juiciness of the meat differed by treatment. The highest level (24%) of sunflower cake increased meat tenderness; however, according to the tasters there was reduced softness, although none of the samples were rejected by the tasters. Sunflower cake can be added to the diet at a level of up to 16% without altering the quantitative and qualitative attributes of the meat. © 2014 Japanese Society of Animal Science.

  2. Impact of diverse cultivars on molecular and crystalline structures of rice starch for food processing.

    PubMed

    Lee, Seul; Lee, Ju Hun; Chung, Hyun-Jung

    2017-08-01

    The objective of this study was to determine the molecular and crystalline structures of starches from diverse rice cultivars for three major food processing in Korea (cooked rice, brewing and rice cake). Rice starches were isolated from 10 different rice varieties grown in Korea. Apparent amylose contents of rice starches from cooked rice, brewing and rice cake varieties were 21.1-22.4%, 22.9-24.6%, and 20.1-22.0%, respectively. Rice starches from rice cake varieties showed higher peak viscosity but lower pasting temperature than those from cooked rice and brewing varieties. Swelling factor at 80°C of rice starches from cooked rice, brewing and rice cake varieties was 16.6-19.0, 17.8-19.3, and 17.8-19.2, respectively. Based on structure and physicochemical properties of rice starches extracted from different rice varieties, principal component analysis (PCA) results showed that these rice varieties could be clearly classified according to processing adaptability for cooked rice and rice cake. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Oil cakes - a by-product of agriculture industry as a fortificant in bakery products.

    PubMed

    Behera, Satyabadi; Indumathi, K; Mahadevamma, S; Sudha, M L

    2013-11-01

    Groundnut cake (GNC) and soybean cake (SBC) by-product of agriculture industry had protein and protein digestibility in the range of 42.7-50.5 and 71.3-76.8%, respectively. Polyphenols present in GNC and SBC were cholorogenic acid, syringic acid and p-coumaric acid. The number of bands separated in soybean meal was greater than the bands observed in GNC flour as seen in SDS-PAGE pattern, respectively. SEM of groundnut flour showed distension of protein bodies due to roasting of the oil cakes. The water absorption of wheat flour GNC blends decreased from 59.2 to 57.3% and increased in wheat flour SBC blends from 59.2 to 68.3% with an increase in oil cake from 0 to 20%. With increase in either GNC or SBC, the biscuits became harder. Addition of glycerol monostearate and sodium stearoyl lactylate in combination with 20% blend of GNC/SBC decreased the breaking strength values and increased the sensory parameters of the biscuits. Nutritionally rich biscuits were thus prepared by incorporating GNC/SBC.

  4. Amino acid composition and biological effects of supplementing broad bean and corn proteins with Nigella sativa (black cumin) cake protein.

    PubMed

    al-Gaby, A M

    1998-10-01

    The biological effects of supplementing broad bean (Vicia faba) or corn (Zea maize) meal protein with black cumin (Nigella sativa) cake protein as well as their amino acid composition were investigated. The percentage of total protein content of Nigella cake was 22.7%. Lysine is existent in abundant amounts in faba meal protein, while leucine is the most abundant in corn meal protein (chemical score = 156) and valine is higher in Nagella cake protein. compared with rats fed sole corn or faba meal protein, substitution of 25% of corn or faba meal protein with Nigella cake protein in the diet remarkably raised the growth rate of rats and resulted in significant higher levels of rat total serum lipids and triglycerides. Also, the supplemented diet caused significant increases in serum total protein and its two fractions albumin and globulin and insignificantly increase the activity of serum phosphatases and transaminases within normal ranges. The supplementation did not have any adverse nutritional effects in the levels of lipid fractions in the serum.

  5. Fermentation process improvement of a Chinese traditional food: soybean residue cake.

    PubMed

    Yao, Yingzheng; Pan, Siyi; Wang, Kexing; Xu, Xiaoyun

    2010-09-01

    Fermentation process improvement of soybean residue cake, a Chinese traditional fermented food, and its physicochemical analysis during fermentation were studied. One of the dominant strains in the fermentation was isolated and identified as Mucor racemosus Fresenius. The fermentation process was improved by subsection fermentation. The crude protein content decreased from 19.95 ± 0.03% in the raw soybean residue to 16.85 ± 0.10% in the fermented products, and the formaldehyde nitrogen content increased from 0.068 ± 0.004% to 0.461 ± 0.022% in final fermented cakes. Hardness of samples significantly (P < 0.05) increased whereas springiness, cohesiveness, and resilience significantly (P < 0.05) decreased with increasing fermentation time, respectively. Microstructure observations showed obvious change of the surface of cake samples during the fermentation process. During the soybean processing, it will produce plenty of by-products, and the most part of them is soybean residue. The discarded soybean residue causes economic loss. Fortunately, we can obtain nutritious and delicious fermented soybean residue cakes by fermenting soybean residue as raw material.

  6. CHARGING SIDE OF #130 ELECTRIC FURNACE CO. REHEAT FURNACE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CHARGING SIDE OF #130 ELECTRIC FURNACE CO. REHEAT FURNACE IN REROLL BAY. CAKES FROM THE CASTING SHOP ARE BROUGHT UP TO ROLLING TEMPERATURE IN ONE OF TWO (#130 AND 146) GAS-FIRED FURNACES. A RADIO-CONTROLLED OVERHEAD CRANE TRANSFERS CAKES FROM FLATCARS TO THE ROLLER LINE LEADING INTO THE FURNACE. CAKES ARE HEATED AT 900-1000 DEGREES FAHRENHEIT FOR THREE TO FOUR HOURS. RATED FURNACE CAPACITY IS 100,000 LBS.\\HOUR. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  7. Protracted outbreak of S. Enteritidis PT 21c in a large Hamburg nursing home

    PubMed Central

    Frank, Christina; Buchholz, Udo; Maaß, Monika; Schröder, Arthur; Bracht, Karl-Hans; Domke, Paul-Gerhard; Rabsch, Wolfgang; Fell, Gerhard

    2007-01-01

    Background During August 2006, a protracted outbreak of Salmonella (S.) Enteritidis infections in a large Hamburg nursing home was investigated. Methods A site visit of the home was conducted and food suppliers' premises tested for Salmonella. Among nursing home residents a cohort study was carried out focusing on foods consumed in the three days before the first part of the outbreak. Instead of relying on residents' memory, data from the home's patient food ordering system was used as exposure data. S. Enteritidis isolates from patients and suspected food vehicles were phage typed and compared. Results Within a population of 822 nursing home residents, 94 case patients among residents (1 fatality) and 17 among staff members were counted 6 through 29 August. The outbreak peaked 7 through 9 August, two days after a spell of very warm summer weather. S. Enteritidis was consistently recovered from patients' stools throughout the outbreak. Among the food items served during 5 through 7 August, the cohort study pointed to afternoon cake on all three days as potential risk factors for disease. Investigation of the bakery supplying the cake yielded S. Enteritidis from cakes sampled 31 August. Comparison of the isolates by phage typing demonstrated both isolates from patients and the cake to be the exceedingly rare phage type 21c. Conclusion Cake (various types served on various days) contaminated with S. Enteritidis were the likely vehicle of the outbreak in the nursing home. While the cakes were probably contaminated with low pathogen dose throughout the outbreak period, high ambient summer temperatures and failure to keep the cake refrigerated led to high pathogen dose in cake on some days and in some of the housing units. This would explain the initial peak of cases, but also the drawn out nature of the outbreak with cases until the end of August. Suggestions are made to nursing homes, aiding in outbreak prevention. Early outbreak detection is crucial, such that counter measures can be swift and drawn-out outbreaks of nosocomial food-borne infections avoided. PMID:17854497

  8. Antifungal properties of fermentates and their potential to replace sorbate and propionate in pound cake.

    PubMed

    Samapundo, S; Devlieghere, F; Vroman, A; Eeckhout, M

    2016-11-21

    The major objective of this study was to assess the antifungal activities of commercially available 'clean label' fermentates and their potential to replace the preservative function of sorbate and propionate in cake. This study was performed in two parts. In the first part of the study the inhibitory activities of selected fermentates - FA, FB, FC and FD - towards Aspergillus tritici and Aspergillus amstelodami were assessed as a function of pH (5.0-6.5) on malt extract agar (MEA). In the second part of the study, challenge, shelf-life and sensorial tests were used to determine the suitability of these fermentates to replace potassium sorbate and calcium propionate in quarter pound cake. All the fermentates evaluated in this study all had significant (p<0.05) inhibitory activities towards A. tritici and A. amstelodami within the recommended dosage range for application in bakery products. In all cases, the inhibitory activity of the fermentates increased with a decrease in the pH and an increase in concentration. FC was generally the most inhibitory whilst FD was the least inhibitory. Significant (p<0.05) synergistic interactions were determined to occur between the effects of pH and concentration for all fermentates evaluated in this study. The sensorial tests with FC showed that cakes produced with ≤1% FC (on basis of the batter) did not differ significantly (p>0.05) in flavour from the reference cake (0.5% calcium propionate and 0.54% potassium sorbate). However, the challenge and shelf-life tests showed that cakes produced with ≤1% FC were not as microbiologically shelf-stable as the reference cake, especially when sliced. Therefore, it can be concluded that whilst fermentates have appreciable antifungal effects, their use could potentially result in reduced shelf-stabilities. Robust challenge and shelf-life tests would be recommended before the marketing of cakes were propionate and/or sorbate has been replaced to ensure accurate shelf-lives are stated. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Let Them Eat Faux Cake

    ERIC Educational Resources Information Center

    Peace, Suze

    2012-01-01

    In this article, students create a "faux" cake sculpture. It is a three-dimensional artwork made of paper, colored with markers, and decorated with old marker caps and polystyrene packing peanuts for icing swirls.

  10. Respiratory symptoms and sensitization in bread and cake bakers.

    PubMed

    Smith, T A; Smith, P W

    1998-07-01

    This purpose of this study was to examine the relationship between exposure to wheat flour, soya flour and fungal amylase and the development of work-related symptoms and sensitization in bread and cake bakery employees who have regular exposure to these substances. The study populations consisted of 394 bread bakery workers and 77 cake bakery workers whose normal jobs involved the sieving, weighing and mixing of ingredients. The groups were interviewed with the aim of identifying the prevalence, nature and pattern of any work-related respiratory symptoms. They were also skin-prick tested against the common bakery sensitizing agents, i.e., wheat flour, soya flour, rice flour and fungal amylase. The results of personal sampling for sieving, weighing and mixing operations at the bakeries from which the study groups were taken were collated in order to determine typical exposures to total inhalable dust from the ingredients, expressed as 8 hour time-weighted average exposures. Data from the health surveillance and collated dust measurements were compared with the aim of establishing an exposure-response relationship for sensitization. The prevalence of work-related symptoms in bread bakery and cake bakery ingredient handlers was 20.4% and 10.4% respectively. However, in a large proportion of those reporting symptoms in connection with work, the symptoms were intermittent and of short duration. It is considered that the aetiology of such symptoms is likely to be due to a non-specific irritant effect of high total dust levels, rather than allergy. None of the cake bakers and only 3.1% of the bread bakers had symptoms which were thought to be due to allergy to baking ingredients. Using skin-prick testing as a marker of sensitization, the prevalence of positive tests to wheat flour was 6% for the bread bakers and 3% for the cake bakers. Comparable prevalences for soya flour were 7% and 1% respectively. However, the prevalence of positive skin-prick tests to fungal amylase was 16% amongst the bread baking group with only a single employee (1%) in the cake baking group having a positive test. Furthermore, this employee had previously worked in a bread bakery. The difference in rates of sensitization to wheat flour between the bread and cake bakers is not statistically significant, whereas the difference for soya flour is at the borderline of statistical significance (p = 0.045). In contrast, the difference in fungal amylase sensitization is significant at the 0.1% level. For both bread and cake bakers, the 8 hour time-weighted average exposures for each of the activities showed a wide variation with mixing having the lowest average exposure and sieving the highest. Out of the allergens studied in this investigation, fungal amylase is the principal sensitizer in large scale bread bakeries, with the main source of exposure being the handling of bread improvers. In contrast, the risk of sensitization to wheat flour is low in both bread and cake bakeries. The absence of positive skin-prick tests in the subgroup of cake bakery employees who regularly handle fungal-amylase-containing flour suggests that their levels of exposure are below the threshold for sensitization to amylase.

  11. 21 CFR 172.838 - Polysorbate 65.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... solid-state, edible vegetable fat-water emulsions intended for use as substitutes for milk or cream in... finished edible vegetable fat-water emulsion. (5) As an emulsifier in cake icings and cake fillings, with...

  12. 21 CFR 172.838 - Polysorbate 65.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... solid-state, edible vegetable fat-water emulsions intended for use as substitutes for milk or cream in... finished edible vegetable fat-water emulsion. (5) As an emulsifier in cake icings and cake fillings, with...

  13. Importance of molecular typing in confirmation of the source of a national hepatitis A virus outbreak in Norway and the detection of a related cluster in Germany.

    PubMed

    Guzman-Herrador, Bernardo R; Panning, Marcus; Stene-Johansen, Kathrine; Borgen, Katrine; Einöder-Moreno, Margot; Huzly, Daniela; Jensvoll, Laila; Lange, Heidi; Maassen, Sigrid; Myking, Solveig; Myrmel, Mette; Neumann-Haefelin, Christoph; Nygård, Karin; Wenzel, Jürgen J; Øye, Ann Kristin; Vold, Line

    2015-11-01

    In March 2014, after an increase of notifications of domestically acquired hepatitis A virus infections, an outbreak investigation was launched in Norway. Sequenced-based typing results showed that these cases were associated with a strain that was identical to one causing an ongoing multinational outbreak in Europe linked to frozen mixed berries. Thirty-three confirmed cases with the outbreak strain were notified in Norway from November 2013 to June 2014. Epidemiological evidence and trace-back investigations linked the outbreak to the consumption of a berry mix cake. Identification of the hepatitis A virus outbreak strain in berries from one of the implicated cakes confirmed the cake to be the source. Subsequently, a cluster in Germany linked to the cake was also identified.

  14. Fuel Gas Demonstration Plant Program. Volume I. Demonstration plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    The objective of this project is for Babcock Contractors Inc. (BCI) to provide process designs, and gasifier retort design for a fuel gas demonstration plant for Erie Mining Company at Hoyt Lake, Minnesota. The fuel gas produced will be used to supplement natural gas and fuel oil for iron ore pellet induration. The fuel gas demonstration plant will consist of five stirred, two-stage fixed-bed gasifier retorts capable of handling caking and non-caking coals, and provisions for the installation of a sixth retort. The process and unit design has been based on operation with caking coals; however, the retorts have beenmore » designed for easy conversion to handle non-caking coals. The demonstration unit has been designed to provide for expansion to a commercial plant (described in Commercial Plant Package) in an economical manner.« less

  15. Evaluation of dry heat treatment of soft wheat flour for the production of high ratio cakes.

    PubMed

    Keppler, S; Bakalis, S; Leadley, C E; Sahi, S S; Fryer, P J

    2018-05-01

    An accurate method to heat treat flour samples has been used to quantify the effects of heat treatment on flour functionality. A variety of analytical methods has been used such as oscillatory rheology, rheomixer, solvent retention capacity tests, and Rapid Visco Analysis (RVA) in water and in aqueous solutions of sucrose, lactic acid, and sodium carbonate. This work supports the hypothesis that heat treatment facilitates the swelling of starch granules at elevated temperature. Results furthermore indicated improved swelling ability and increased interactions of flour polymers (in particular arabinoxylans) of heat treated flour at ambient conditions. The significant denaturation of the proteins was indicated by a lack of gluten network formation after severe heat treatments as shown by rheomixer traces. Results of these analyses were used to develop a possible cake flour specification. A method was developed using response surfaces of heat treated flour samples in the RVA using i) water and ii) 50% sucrose solution. This can uniquely characterise the heat treatment a flour sample has received and to establish a cake flour specification. This approach might be useful for the characterisation of processed samples, rather than by baking cakes. Hence, it may no longer be needed to bake a cake after flour heat treatment to assess the suitability of the flour for high ratio cake production, but 2 types of RVA tests suffice. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Toxic compound, anti-nutritional factors and functional properties of protein isolated from detoxified Jatropha curcas seed cake.

    PubMed

    Saetae, Donlaporn; Suntornsuk, Worapot

    2010-12-28

    Jatropha curcas is a multipurpose tree, which has potential as an alternative source for biodiesel. All of its parts can also be used for human food, animal feed, fertilizer, fuel and traditional medicine. J. curcas seed cake is a low-value by-product obtained from biodiesel production. The seed cake, however, has a high amount of protein, with the presence of a main toxic compound: phorbol esters as well as anti-nutritional factors: trypsin inhibitors, phytic acid, lectin and saponin. The objective of this work was to detoxify J. curcas seed cake and study the toxin, anti-nutritional factors and also functional properties of the protein isolated from the detoxified seed cake. The yield of protein isolate was approximately 70.9%. The protein isolate was obtained without a detectable level of phorbol esters. The solubility of the protein isolate was maximal at pH 12.0 and minimal at pH 4.0. The water and oil binding capacities of the protein isolate were 1.76 g water/g protein and 1.07 mL oil/g protein, respectively. The foam capacity and stability, including emulsion activity and stability of protein isolate, had higher values in a range of basic pHs, while foam and emulsion stabilities decreased with increasing time. The results suggest that the detoxified J. curcas seed cake has potential to be exploited as a novel source of functional protein for food applications.

  17. Toxic Compound, Anti-Nutritional Factors and Functional Properties of Protein Isolated from Detoxified Jatropha curcas Seed Cake

    PubMed Central

    Saetae, Donlaporn; Suntornsuk, Worapot

    2011-01-01

    Jatropha curcas is a multipurpose tree, which has potential as an alternative source for biodiesel. All of its parts can also be used for human food, animal feed, fertilizer, fuel and traditional medicine. J. curcas seed cake is a low-value by-product obtained from biodiesel production. The seed cake, however, has a high amount of protein, with the presence of a main toxic compound: phorbol esters as well as anti-nutritional factors: trypsin inhibitors, phytic acid, lectin and saponin. The objective of this work was to detoxify J. curcas seed cake and study the toxin, anti-nutritional factors and also functional properties of the protein isolated from the detoxified seed cake. The yield of protein isolate was approximately 70.9%. The protein isolate was obtained without a detectable level of phorbol esters. The solubility of the protein isolate was maximal at pH 12.0 and minimal at pH 4.0. The water and oil binding capacities of the protein isolate were 1.76 g water/g protein and 1.07 mL oil/g protein, respectively. The foam capacity and stability, including emulsion activity and stability of protein isolate, had higher values in a range of basic pHs, while foam and emulsion stabilities decreased with increasing time. The results suggest that the detoxified J. curcas seed cake has potential to be exploited as a novel source of functional protein for food applications. PMID:21339978

  18. Pak1 Kinase Maintains Apical Membrane Identity in Epithelia.

    PubMed

    Aguilar-Aragon, Mario; Elbediwy, Ahmed; Foglizzo, Valentina; Fletcher, Georgina C; Li, Vivian S W; Thompson, Barry J

    2018-02-13

    Epithelial cells are polarized along their apical-basal axis by the action of the small GTPase Cdc42, which is known to activate the aPKC kinase at the apical domain. However, loss of aPKC kinase activity was reported to have only mild effects on epithelial cell polarity. Here, we show that Cdc42 also activates a second kinase, Pak1, to specify apical domain identity in Drosophila and mammalian epithelia. aPKC and Pak1 phosphorylate an overlapping set of polarity substrates in kinase assays. Inactivating both aPKC kinase activity and the Pak1 kinase leads to a complete loss of epithelial polarity and morphology, with cells losing markers of apical polarization such as Crumbs, Par3/Bazooka, or ZO-1. This function of Pak1 downstream of Cdc42 is distinct from its role in regulating integrins or E-cadherin. Our results define a conserved dual-kinase mechanism for the control of apical membrane identity in epithelia. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Regulation of spinogenesis in mature Purkinje cells via mGluR/PKC-mediated phosphorylation of CaMKIIβ

    PubMed Central

    Sugawara, Takeyuki; Hisatsune, Chihiro; Miyamoto, Hiroyuki; Ogawa, Naoko; Mikoshiba, Katsuhiko

    2017-01-01

    Dendritic spines of Purkinje cells form excitatory synapses with parallel fiber terminals, which are the primary sites for cerebellar synaptic plasticity. Nevertheless, how density and morphology of these spines are properly maintained in mature Purkinje cells is not well understood. Here we show an activity-dependent mechanism that represses excessive spine development in mature Purkinje cells. We found that CaMKIIβ promotes spine formation and elongation in Purkinje cells through its F-actin bundling activity. Importantly, activation of group I mGluR, but not AMPAR, triggers PKC-mediated phosphorylation of CaMKIIβ, which results in dissociation of the CaMKIIβ/F-actin complex. Defective function of the PKC-mediated CaMKIIβ phosphorylation promotes excess F-actin bundling and leads to abnormally numerous and elongated spines in mature IP3R1-deficient Purkinje cells. Thus, our data suggest that phosphorylation of CaMKIIβ through the mGluR/IP3R1/PKC signaling pathway represses excessive spine formation and elongation in mature Purkinje cells. PMID:28607044

  20. Huntingtin Is Required for Epithelial Polarity through RAB11A-Mediated Apical Trafficking of PAR3-aPKC

    PubMed Central

    Elias, Salah; McGuire, John Russel; Yu, Hua; Humbert, Sandrine

    2015-01-01

    The establishment of apical-basolateral polarity is important for both normal development and disease, for example, during tumorigenesis and metastasis. During this process, polarity complexes are targeted to the apical surface by a RAB11A-dependent mechanism. Huntingtin (HTT), the protein that is mutated in Huntington disease, acts as a scaffold for molecular motors and promotes microtubule-based dynamics. Here, we investigated the role of HTT in apical polarity during the morphogenesis of the mouse mammary epithelium. We found that the depletion of HTT from luminal cells in vivo alters mouse ductal morphogenesis and lumen formation. HTT is required for the apical localization of PAR3-aPKC during epithelial morphogenesis in virgin, pregnant, and lactating mice. We show that HTT forms a complex with PAR3, aPKC, and RAB11A and ensures the microtubule-dependent apical vesicular translocation of PAR3-aPKC through RAB11A. We thus propose that HTT regulates polarized vesicular transport, lumen formation and mammary epithelial morphogenesis. PMID:25942483

Top