Kernel-aligned multi-view canonical correlation analysis for image recognition
NASA Astrophysics Data System (ADS)
Su, Shuzhi; Ge, Hongwei; Yuan, Yun-Hao
2016-09-01
Existing kernel-based correlation analysis methods mainly adopt a single kernel in each view. However, only a single kernel is usually insufficient to characterize nonlinear distribution information of a view. To solve the problem, we transform each original feature vector into a 2-dimensional feature matrix by means of kernel alignment, and then propose a novel kernel-aligned multi-view canonical correlation analysis (KAMCCA) method on the basis of the feature matrices. Our proposed method can simultaneously employ multiple kernels to better capture the nonlinear distribution information of each view, so that correlation features learned by KAMCCA can have well discriminating power in real-world image recognition. Extensive experiments are designed on five real-world image datasets, including NIR face images, thermal face images, visible face images, handwritten digit images, and object images. Promising experimental results on the datasets have manifested the effectiveness of our proposed method.
Cai, Jia; Tang, Yi
2018-02-01
Canonical correlation analysis (CCA) is a powerful statistical tool for detecting the linear relationship between two sets of multivariate variables. Kernel generalization of it, namely, kernel CCA is proposed to describe nonlinear relationship between two variables. Although kernel CCA can achieve dimensionality reduction results for high-dimensional data feature selection problem, it also yields the so called over-fitting phenomenon. In this paper, we consider a new kernel CCA algorithm via randomized Kaczmarz method. The main contributions of the paper are: (1) A new kernel CCA algorithm is developed, (2) theoretical convergence of the proposed algorithm is addressed by means of scaled condition number, (3) a lower bound which addresses the minimum number of iterations is presented. We test on both synthetic dataset and several real-world datasets in cross-language document retrieval and content-based image retrieval to demonstrate the effectiveness of the proposed algorithm. Numerical results imply the performance and efficiency of the new algorithm, which is competitive with several state-of-the-art kernel CCA methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kernel canonical-correlation Granger causality for multiple time series
NASA Astrophysics Data System (ADS)
Wu, Guorong; Duan, Xujun; Liao, Wei; Gao, Qing; Chen, Huafu
2011-04-01
Canonical-correlation analysis as a multivariate statistical technique has been applied to multivariate Granger causality analysis to infer information flow in complex systems. It shows unique appeal and great superiority over the traditional vector autoregressive method, due to the simplified procedure that detects causal interaction between multiple time series, and the avoidance of potential model estimation problems. However, it is limited to the linear case. Here, we extend the framework of canonical correlation to include the estimation of multivariate nonlinear Granger causality for drawing inference about directed interaction. Its feasibility and effectiveness are verified on simulated data.
Bilenko, Natalia Y; Gallant, Jack L
2016-01-01
In this article we introduce Pyrcca, an open-source Python package for performing canonical correlation analysis (CCA). CCA is a multivariate analysis method for identifying relationships between sets of variables. Pyrcca supports CCA with or without regularization, and with or without linear, polynomial, or Gaussian kernelization. We first use an abstract example to describe Pyrcca functionality. We then demonstrate how Pyrcca can be used to analyze neuroimaging data. Specifically, we use Pyrcca to implement cross-subject comparison in a natural movie functional magnetic resonance imaging (fMRI) experiment by finding a data-driven set of functional response patterns that are similar across individuals. We validate this cross-subject comparison method in Pyrcca by predicting responses to novel natural movies across subjects. Finally, we show how Pyrcca can reveal retinotopic organization in brain responses to natural movies without the need for an explicit model.
Bilenko, Natalia Y.; Gallant, Jack L.
2016-01-01
In this article we introduce Pyrcca, an open-source Python package for performing canonical correlation analysis (CCA). CCA is a multivariate analysis method for identifying relationships between sets of variables. Pyrcca supports CCA with or without regularization, and with or without linear, polynomial, or Gaussian kernelization. We first use an abstract example to describe Pyrcca functionality. We then demonstrate how Pyrcca can be used to analyze neuroimaging data. Specifically, we use Pyrcca to implement cross-subject comparison in a natural movie functional magnetic resonance imaging (fMRI) experiment by finding a data-driven set of functional response patterns that are similar across individuals. We validate this cross-subject comparison method in Pyrcca by predicting responses to novel natural movies across subjects. Finally, we show how Pyrcca can reveal retinotopic organization in brain responses to natural movies without the need for an explicit model. PMID:27920675
Free Fermions and the Classical Compact Groups
NASA Astrophysics Data System (ADS)
Cunden, Fabio Deelan; Mezzadri, Francesco; O'Connell, Neil
2018-06-01
There is a close connection between the ground state of non-interacting fermions in a box with classical (absorbing, reflecting, and periodic) boundary conditions and the eigenvalue statistics of the classical compact groups. The associated determinantal point processes can be extended in two natural directions: (i) we consider the full family of admissible quantum boundary conditions (i.e., self-adjoint extensions) for the Laplacian on a bounded interval, and the corresponding projection correlation kernels; (ii) we construct the grand canonical extensions at finite temperature of the projection kernels, interpolating from Poisson to random matrix eigenvalue statistics. The scaling limits in the bulk and at the edges are studied in a unified framework, and the question of universality is addressed. Whether the finite temperature determinantal processes correspond to the eigenvalue statistics of some matrix models is, a priori, not obvious. We complete the picture by constructing a finite temperature extension of the Haar measure on the classical compact groups. The eigenvalue statistics of the resulting grand canonical matrix models (of random size) corresponds exactly to the grand canonical measure of free fermions with classical boundary conditions.
Kernel PLS-SVC for Linear and Nonlinear Discrimination
NASA Technical Reports Server (NTRS)
Rosipal, Roman; Trejo, Leonard J.; Matthews, Bryan
2003-01-01
A new methodology for discrimination is proposed. This is based on kernel orthonormalized partial least squares (PLS) dimensionality reduction of the original data space followed by support vector machines for classification. Close connection of orthonormalized PLS and Fisher's approach to linear discrimination or equivalently with canonical correlation analysis is described. This gives preference to use orthonormalized PLS over principal component analysis. Good behavior of the proposed method is demonstrated on 13 different benchmark data sets and on the real world problem of the classification finger movement periods versus non-movement periods based on electroencephalogram.
Applications of temporal kernel canonical correlation analysis in adherence studies.
John, Majnu; Lencz, Todd; Ferbinteanu, Janina; Gallego, Juan A; Robinson, Delbert G
2017-10-01
Adherence to medication is often measured as a continuous outcome but analyzed as a dichotomous outcome due to lack of appropriate tools. In this paper, we illustrate the use of the temporal kernel canonical correlation analysis (tkCCA) as a method to analyze adherence measurements and symptom levels on a continuous scale. The tkCCA is a novel method developed for studying the relationship between neural signals and hemodynamic response detected by functional MRI during spontaneous activity. Although the tkCCA is a powerful tool, it has not been utilized outside the application that it was originally developed for. In this paper, we simulate time series of symptoms and adherence levels for patients with a hypothetical brain disorder and show how the tkCCA can be used to understand the relationship between them. We also examine, via simulations, the behavior of the tkCCA under various missing value mechanisms and imputation methods. Finally, we apply the tkCCA to a real data example of psychotic symptoms and adherence levels obtained from a study based on subjects with a first episode of schizophrenia, schizophreniform or schizoaffective disorder.
A heat kernel proof of the index theorem for deformation quantization
NASA Astrophysics Data System (ADS)
Karabegov, Alexander
2017-11-01
We give a heat kernel proof of the algebraic index theorem for deformation quantization with separation of variables on a pseudo-Kähler manifold. We use normalizations of the canonical trace density of a star product and of the characteristic classes involved in the index formula for which this formula contains no extra constant factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziatdinov, Maxim A.; Fujii, Shintaro; Kiguchi, Manabu
The link between changes in the material crystal structure and its mechanical, electronic, magnetic, and optical functionalities known as the structure-property relationship is the cornerstone of the contemporary materials science research. The recent advances in scanning transmission electron and scanning probe microscopies (STEM and SPM) have opened an unprecedented path towards examining the materials structure property relationships on the single-impurity and atomic-configuration levels. Lacking, however, are the statistics-based approaches for cross-correlation of structure and property variables obtained in different information channels of the STEM and SPM experiments. Here we have designed an approach based on a combination of sliding windowmore » Fast Fourier Transform, Pearson correlation matrix, linear and kernel canonical correlation, to study a relationship between lattice distortions and electron scattering from the SPM data on graphene with defects. Our analysis revealed that the strength of coupling to strain is altered between different scattering channels which can explain coexistence of several quasiparticle interference patterns in the nanoscale regions of interest. In addition, the application of the kernel functions allowed us extracting a non-linear component of the relationship between the lattice strain and scattering intensity in graphene. Lastly, the outlined approach can be further utilized to analyzing correlations in various multi-modal imaging techniques where the information of interest is spatially distributed and has usually a complex multidimensional nature.« less
Ziatdinov, Maxim A.; Fujii, Shintaro; Kiguchi, Manabu; ...
2016-11-09
The link between changes in the material crystal structure and its mechanical, electronic, magnetic, and optical functionalities known as the structure-property relationship is the cornerstone of the contemporary materials science research. The recent advances in scanning transmission electron and scanning probe microscopies (STEM and SPM) have opened an unprecedented path towards examining the materials structure property relationships on the single-impurity and atomic-configuration levels. Lacking, however, are the statistics-based approaches for cross-correlation of structure and property variables obtained in different information channels of the STEM and SPM experiments. Here we have designed an approach based on a combination of sliding windowmore » Fast Fourier Transform, Pearson correlation matrix, linear and kernel canonical correlation, to study a relationship between lattice distortions and electron scattering from the SPM data on graphene with defects. Our analysis revealed that the strength of coupling to strain is altered between different scattering channels which can explain coexistence of several quasiparticle interference patterns in the nanoscale regions of interest. In addition, the application of the kernel functions allowed us extracting a non-linear component of the relationship between the lattice strain and scattering intensity in graphene. Lastly, the outlined approach can be further utilized to analyzing correlations in various multi-modal imaging techniques where the information of interest is spatially distributed and has usually a complex multidimensional nature.« less
Integrated data analysis for genome-wide research.
Steinfath, Matthias; Repsilber, Dirk; Scholz, Matthias; Walther, Dirk; Selbig, Joachim
2007-01-01
Integrated data analysis is introduced as the intermediate level of a systems biology approach to analyse different 'omics' datasets, i.e., genome-wide measurements of transcripts, protein levels or protein-protein interactions, and metabolite levels aiming at generating a coherent understanding of biological function. In this chapter we focus on different methods of correlation analyses ranging from simple pairwise correlation to kernel canonical correlation which were recently applied in molecular biology. Several examples are presented to illustrate their application. The input data for this analysis frequently originate from different experimental platforms. Therefore, preprocessing steps such as data normalisation and missing value estimation are inherent to this approach. The corresponding procedures, potential pitfalls and biases, and available software solutions are reviewed. The multiplicity of observations obtained in omics-profiling experiments necessitates the application of multiple testing correction techniques.
A prototype computer-aided modelling tool for life-support system models
NASA Technical Reports Server (NTRS)
Preisig, H. A.; Lee, Tae-Yeong; Little, Frank
1990-01-01
Based on the canonical decomposition of physical-chemical-biological systems, a prototype kernel has been developed to efficiently model alternative life-support systems. It supports (1) the work in an interdisciplinary group through an easy-to-use mostly graphical interface, (2) modularized object-oriented model representation, (3) reuse of models, (4) inheritance of structures from model object to model object, and (5) model data base. The kernel is implemented in Modula-II and presently operates on an IBM PC.
Random discrete linear canonical transform.
Wei, Deyun; Wang, Ruikui; Li, Yuan-Min
2016-12-01
Linear canonical transforms (LCTs) are a family of integral transforms with wide applications in optical, acoustical, electromagnetic, and other wave propagation problems. In this paper, we propose the random discrete linear canonical transform (RDLCT) by randomizing the kernel transform matrix of the discrete linear canonical transform (DLCT). The RDLCT inherits excellent mathematical properties from the DLCT along with some fantastic features of its own. It has a greater degree of randomness because of the randomization in terms of both eigenvectors and eigenvalues. Numerical simulations demonstrate that the RDLCT has an important feature that the magnitude and phase of its output are both random. As an important application of the RDLCT, it can be used for image encryption. The simulation results demonstrate that the proposed encryption method is a security-enhanced image encryption scheme.
Ha, Unsoo; Lee, Yongsu; Kim, Hyunki; Roh, Taehwan; Bae, Joonsung; Kim, Changhyeon; Yoo, Hoi-Jun
2015-12-01
A multimodal mental management system in the shape of the wearable headband and earplugs is proposed to monitor electroencephalography (EEG), hemoencephalography (HEG) and heart rate variability (HRV) for accurate mental health monitoring. It enables simultaneous transcranial electrical stimulation (tES) together with real-time monitoring. The total weight of the proposed system is less than 200 g. The multi-loop low-noise amplifier (MLLNA) achieves over 130 dB CMRR for EEG sensing and the capacitive correlated-double sampling transimpedance amplifier (CCTIA) has low-noise characteristics for HEG and HRV sensing. Measured three-physiology domains such as neural, vascular and autonomic domain signals are combined with canonical correlation analysis (CCA) and temporal kernel canonical correlation analysis (tkCCA) algorithm to find the neural-vascular-autonomic coupling. It supports highly accurate classification with the 19% maximum improvement with multimodal monitoring. For the multi-channel stimulation functionality, after-effects maximization monitoring and sympathetic nerve disorder monitoring, the stimulator is designed as reconfigurable. The 3.37 × 2.25 mm(2) chip has 2-channel EEG sensor front-end, 2-channel NIRS sensor front-end, NIRS current driver to drive dual-wavelength VCSEL and 6-b DAC current source for tES mode. It dissipates 24 mW with 2 mA stimulation current and 5 mA NIRS driver current.
A powerful score-based test statistic for detecting gene-gene co-association.
Xu, Jing; Yuan, Zhongshang; Ji, Jiadong; Zhang, Xiaoshuai; Li, Hongkai; Wu, Xuesen; Xue, Fuzhong; Liu, Yanxun
2016-01-29
The genetic variants identified by Genome-wide association study (GWAS) can only account for a small proportion of the total heritability for complex disease. The existence of gene-gene joint effects which contains the main effects and their co-association is one of the possible explanations for the "missing heritability" problems. Gene-gene co-association refers to the extent to which the joint effects of two genes differ from the main effects, not only due to the traditional interaction under nearly independent condition but the correlation between genes. Generally, genes tend to work collaboratively within specific pathway or network contributing to the disease and the specific disease-associated locus will often be highly correlated (e.g. single nucleotide polymorphisms (SNPs) in linkage disequilibrium). Therefore, we proposed a novel score-based statistic (SBS) as a gene-based method for detecting gene-gene co-association. Various simulations illustrate that, under different sample sizes, marginal effects of causal SNPs and co-association levels, the proposed SBS has the better performance than other existed methods including single SNP-based and principle component analysis (PCA)-based logistic regression model, the statistics based on canonical correlations (CCU), kernel canonical correlation analysis (KCCU), partial least squares path modeling (PLSPM) and delta-square (δ (2)) statistic. The real data analysis of rheumatoid arthritis (RA) further confirmed its advantages in practice. SBS is a powerful and efficient gene-based method for detecting gene-gene co-association.
Tao, Chenyang; Feng, Jianfeng
2016-03-15
Quantifying associations in neuroscience (and many other scientific disciplines) is often challenged by high-dimensionality, nonlinearity and noisy observations. Many classic methods have either poor power or poor scalability on data sets of the same or different scales such as genetical, physiological and image data. Based on the framework of reproducing kernel Hilbert spaces we proposed a new nonlinear association criteria (NAC) with an efficient numerical algorithm and p-value approximation scheme. We also presented mathematical justification that links the proposed method to related methods such as kernel generalized variance, kernel canonical correlation analysis and Hilbert-Schmidt independence criteria. NAC allows the detection of association between arbitrary input domain as long as a characteristic kernel is defined. A MATLAB package was provided to facilitate applications. Extensive simulation examples and four real world neuroscience examples including functional MRI causality, Calcium imaging and imaging genetic studies on autism [Brain, 138(5):13821393 (2015)] and alcohol addiction [PNAS, 112(30):E4085-E4093 (2015)] are used to benchmark NAC. It demonstrates the superior performance over the existing procedures we tested and also yields biologically significant results for the real world examples. NAC beats its linear counterparts when nonlinearity is presented in the data. It also shows more robustness against different experimental setups compared with its nonlinear counterparts. In this work we presented a new and robust statistical approach NAC for measuring associations. It could serve as an interesting alternative to the existing methods for datasets where nonlinearity and other confounding factors are present. Copyright © 2016 Elsevier B.V. All rights reserved.
Functional Multiple-Set Canonical Correlation Analysis
ERIC Educational Resources Information Center
Hwang, Heungsun; Jung, Kwanghee; Takane, Yoshio; Woodward, Todd S.
2012-01-01
We propose functional multiple-set canonical correlation analysis for exploring associations among multiple sets of functions. The proposed method includes functional canonical correlation analysis as a special case when only two sets of functions are considered. As in classical multiple-set canonical correlation analysis, computationally, the…
Kernel-Correlated Levy Field Driven Forward Rate and Application to Derivative Pricing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bo Lijun; Wang Yongjin; Yang Xuewei, E-mail: xwyangnk@yahoo.com.cn
2013-08-01
We propose a term structure of forward rates driven by a kernel-correlated Levy random field under the HJM framework. The kernel-correlated Levy random field is composed of a kernel-correlated Gaussian random field and a centered Poisson random measure. We shall give a criterion to preclude arbitrage under the risk-neutral pricing measure. As applications, an interest rate derivative with general payoff functional is priced under this pricing measure.
Computation of canonical correlation and best predictable aspect of future for time series
NASA Technical Reports Server (NTRS)
Pourahmadi, Mohsen; Miamee, A. G.
1989-01-01
The canonical correlation between the (infinite) past and future of a stationary time series is shown to be the limit of the canonical correlation between the (infinite) past and (finite) future, and computation of the latter is reduced to a (generalized) eigenvalue problem involving (finite) matrices. This provides a convenient and essentially, finite-dimensional algorithm for computing canonical correlations and components of a time series. An upper bound is conjectured for the largest canonical correlation.
Canonical Correlation: Terms and Descriptions.
ERIC Educational Resources Information Center
Pugh, Richard C.; Hu, Yuehluen
The use of terms to describe and interpret results from canonical correlation analysis has been inconsistent across research studies. This study assembled the terminology related to the use and interpretation of canonical correlation analysis from research articles, textbooks, and computer manuals. Research articles using canonical correlation…
Influence of wheat kernel physical properties on the pulverizing process.
Dziki, Dariusz; Cacak-Pietrzak, Grażyna; Miś, Antoni; Jończyk, Krzysztof; Gawlik-Dziki, Urszula
2014-10-01
The physical properties of wheat kernel were determined and related to pulverizing performance by correlation analysis. Nineteen samples of wheat cultivars about similar level of protein content (11.2-12.8 % w.b.) and obtained from organic farming system were used for analysis. The kernel (moisture content 10 % w.b.) was pulverized by using the laboratory hammer mill equipped with round holes 1.0 mm screen. The specific grinding energy ranged from 120 kJkg(-1) to 159 kJkg(-1). On the basis of data obtained many of significant correlations (p < 0.05) were found between wheat kernel physical properties and pulverizing process of wheat kernel, especially wheat kernel hardness index (obtained on the basis of Single Kernel Characterization System) and vitreousness significantly and positively correlated with the grinding energy indices and the mass fraction of coarse particles (> 0.5 mm). Among the kernel mechanical properties determined on the basis of uniaxial compression test only the rapture force was correlated with the impact grinding results. The results showed also positive and significant relationships between kernel ash content and grinding energy requirements. On the basis of wheat physical properties the multiple linear regression was proposed for predicting the average particle size of pulverized kernel.
Kim, Kyungmin; Kang, Gun Woo; Woo, Jungmin
2018-04-02
The quality of life (QoL) of patients with end-stage renal disease (ESRD) is very poor, plausibly due to both psychosocial and medical factors. This study aimed to determine the relationship among psychosocial factors, medical factors, and QoL in patients with ESRD undergoing hemodialysis (HD). In total, 55 male and 47 female patients were evaluated (mean age, 57.1 ± 12.0 years). The QoL was evaluated using the Korean version of World Health Organization Quality of Life Scale-Abbreviated Version. The psychosocial factors were evaluated using the Hospital Anxiety and Depression Scale, Multidimensional Scale of Perceived Social Support, Montreal Cognitive Assessment, Pittsburgh Sleep Quality Index, and Zarit Burden Interview. The medical factors were assessed using laboratory examinations. Correlation and canonical correlation analyses were performed to investigate the association patterns. The QoL was significantly correlated with the psychosocial factors, and to a lesser extent with the medical factors. The medical and psychosocial factors were also correlated. The canonical correlation analysis indicated a correlation between QoL and psychosocial factors (1st canonical correlation = 0.696, P < 0.001; 2nd canonical correlation = 0.421, P = 0.191), but not medical factors (1st canonical correlation = 0.478, P = 0.475; 2nd canonical correlation = 0.419, P = 0.751). The medical and psychosocial factors were also correlated (1st canonical correlation = 0.689, P < 0.001; 2nd canonical correlation = 0.603, P = 0.009). Psychosocial factors influence QoL in patients with ESRD, and should thus be carefully considered when caring for these patients in clinical practice. © 2018 The Korean Academy of Medical Sciences.
ERIC Educational Resources Information Center
Nimon, Kim; Henson, Robin K.; Gates, Michael S.
2010-01-01
In the face of multicollinearity, researchers face challenges interpreting canonical correlation analysis (CCA) results. Although standardized function and structure coefficients provide insight into the canonical variates produced, they fall short when researchers want to fully report canonical effects. This article revisits the interpretation of…
An atomistic fingerprint algorithm for learning ab initio molecular force fields
NASA Astrophysics Data System (ADS)
Tang, Yu-Hang; Zhang, Dongkun; Karniadakis, George Em
2018-01-01
Molecular fingerprints, i.e., feature vectors describing atomistic neighborhood configurations, is an important abstraction and a key ingredient for data-driven modeling of potential energy surface and interatomic force. In this paper, we present the density-encoded canonically aligned fingerprint algorithm, which is robust and efficient, for fitting per-atom scalar and vector quantities. The fingerprint is essentially a continuous density field formed through the superimposition of smoothing kernels centered on the atoms. Rotational invariance of the fingerprint is achieved by aligning, for each fingerprint instance, the neighboring atoms onto a local canonical coordinate frame computed from a kernel minisum optimization procedure. We show that this approach is superior over principal components analysis-based methods especially when the atomistic neighborhood is sparse and/or contains symmetry. We propose that the "distance" between the density fields be measured using a volume integral of their pointwise difference. This can be efficiently computed using optimal quadrature rules, which only require discrete sampling at a small number of grid points. We also experiment on the choice of weight functions for constructing the density fields and characterize their performance for fitting interatomic potentials. The applicability of the fingerprint is demonstrated through a set of benchmark problems.
Learn the Lagrangian: A Vector-Valued RKHS Approach to Identifying Lagrangian Systems.
Cheng, Ching-An; Huang, Han-Pang
2016-12-01
We study the modeling of Lagrangian systems with multiple degrees of freedom. Based on system dynamics, canonical parametric models require ad hoc derivations and sometimes simplification for a computable solution; on the other hand, due to the lack of prior knowledge in the system's structure, modern nonparametric models in machine learning face the curse of dimensionality, especially in learning large systems. In this paper, we bridge this gap by unifying the theories of Lagrangian systems and vector-valued reproducing kernel Hilbert space. We reformulate Lagrangian systems with kernels that embed the governing Euler-Lagrange equation-the Lagrangian kernels-and show that these kernels span a subspace capturing the Lagrangian's projection as inverse dynamics. By such property, our model uses only inputs and outputs as in machine learning and inherits the structured form as in system dynamics, thereby removing the need for the mundane derivations for new systems as well as the generalization problem in learning from scratches. In effect, it learns the system's Lagrangian, a simpler task than directly learning the dynamics. To demonstrate, we applied the proposed kernel to identify the robot inverse dynamics in simulations and experiments. Our results present a competitive novel approach to identifying Lagrangian systems, despite using only inputs and outputs.
K-Fold Crossvalidation in Canonical Analysis.
ERIC Educational Resources Information Center
Liang, Kun-Hsia; And Others
1995-01-01
A computer-assisted, K-fold cross-validation technique is discussed in the framework of canonical correlation analysis of randomly generated data sets. Analysis results suggest that this technique can effectively reduce the contamination of canonical variates and canonical correlations by sample-specific variance components. (Author/SLD)
Influence in Canonical Correlation Analysis.
ERIC Educational Resources Information Center
Romanazzi, Mario
1992-01-01
The perturbation theory of the generalized eigenproblem is used to derive influence functions of each squared canonical correlation coefficient and the corresponding canonical vector pair. Three sample versions of these functions are described, and some properties are noted. Two obvious applications, multiple correlation and correspondence…
Regularized Generalized Canonical Correlation Analysis
ERIC Educational Resources Information Center
Tenenhaus, Arthur; Tenenhaus, Michel
2011-01-01
Regularized generalized canonical correlation analysis (RGCCA) is a generalization of regularized canonical correlation analysis to three or more sets of variables. It constitutes a general framework for many multi-block data analysis methods. It combines the power of multi-block data analysis methods (maximization of well identified criteria) and…
Structured Kernel Dictionary Learning with Correlation Constraint for Object Recognition.
Wang, Zhengjue; Wang, Yinghua; Liu, Hongwei; Zhang, Hao
2017-06-21
In this paper, we propose a new discriminative non-linear dictionary learning approach, called correlation constrained structured kernel KSVD, for object recognition. The objective function for dictionary learning contains a reconstructive term and a discriminative term. In the reconstructive term, signals are implicitly non-linearly mapped into a space, where a structured kernel dictionary, each sub-dictionary of which lies in the span of the mapped signals from the corresponding class, is established. In the discriminative term, by analyzing the classification mechanism, the correlation constraint is proposed in kernel form, constraining the correlations between different discriminative codes, and restricting the coefficient vectors to be transformed into a feature space, where the features are highly correlated inner-class and nearly independent between-classes. The objective function is optimized by the proposed structured kernel KSVD. During the classification stage, the specific form of the discriminative feature is needless to be known, while the inner product of the discriminative feature with kernel matrix embedded is available, and is suitable for a linear SVM classifier. Experimental results demonstrate that the proposed approach outperforms many state-of-the-art dictionary learning approaches for face, scene and synthetic aperture radar (SAR) vehicle target recognition.
ERIC Educational Resources Information Center
Wilson, Celia M.
2010-01-01
Research pertaining to the distortion of the squared canonical correlation coefficient has traditionally been limited to the effects of sampling error and associated correction formulas. The purpose of this study was to compare the degree of attenuation of the squared canonical correlation coefficient under varying conditions of score reliability.…
Moore, S M; Stalder, K J; Beitz, D C; Stahl, C H; Fithian, W A; Bregendahl, K
2008-04-01
A study was conducted to determine the influence on broiler chicken growth and laying hen performance of chemical and physical traits of corn kernels from different hybrids. A total of 720 male 1-d-old Ross-308 broiler chicks were allotted to floor pens in 2 replicated experiments with a randomized complete block design. A total of 240 fifty-two-week-old Hy-Line W-36 laying hens were allotted to cages in a randomized complete block design. Corn-soybean meal diets were formulated for 3 broiler growth phases and one 14-wk-long laying hen phase to be marginally deficient in Lys and TSAA to allow for the detection of differences or correlations attributable to corn kernel chemical or physical traits. The broiler chicken diets were also marginally deficient in Ca and nonphytate P. Within a phase, corn- and soybean-based diets containing equal amounts of 1 of 6 different corn hybrids were formulated. The corn hybrids were selected to vary widely in chemical and physical traits. Feed consumption and BW were recorded for broiler chickens every 2 wk from 0 to 6 wk of age. Egg production was recorded daily, and feed consumption and egg weights were recorded weekly for laying hens between 53 and 67 wk of age. Physical and chemical composition of kernels was correlated with performance measures by multivariate ANOVA. Chemical and physical kernel traits were weakly correlated with performance in broiler chickens from 0 to 2 wk of age (P<0.05, | r |<0.42). However, from 4 to 6 wk of age and 0 to 6 wk of age, only kernel chemical traits were correlated with broiler chicken performance (P<0.05, | r |<0.29). From 53 to 67 wk of age, correlations were observed between both kernel physical and chemical traits and laying hen performance (P<0.05, | r |<0.34). In both experiments, the correlations of performance measures with individual kernel chemical and physical traits for any single kernel trait were not large enough to base corn hybrid selection on for feeding poultry.
Creativity and Brain-Functioning in Product Development Engineers: A Canonical Correlation Analysis
ERIC Educational Resources Information Center
Travis, Frederick; Lagrosen, Yvonne
2014-01-01
This study used canonical correlation analysis to explore the relation among scores on the Torrance test of figural and verbal creativity and demographic, psychological and physiological measures in Swedish product-development engineers. The first canonical variate included figural and verbal flexibility and originality as dependent measures and…
Yao, H; Hruska, Z; Kincaid, R; Brown, R; Cleveland, T; Bhatnagar, D
2010-05-01
The objective of this study was to examine the relationship between fluorescence emissions of corn kernels inoculated with Aspergillus flavus and aflatoxin contamination levels within the kernels. Aflatoxin contamination in corn has been a long-standing problem plaguing the grain industry with potentially devastating consequences to corn growers. In this study, aflatoxin-contaminated corn kernels were produced through artificial inoculation of corn ears in the field with toxigenic A. flavus spores. The kernel fluorescence emission data were taken with a fluorescence hyperspectral imaging system when corn kernels were excited with ultraviolet light. Raw fluorescence image data were preprocessed and regions of interest in each image were created for all kernels. The regions of interest were used to extract spectral signatures and statistical information. The aflatoxin contamination level of single corn kernels was then chemically measured using affinity column chromatography. A fluorescence peak shift phenomenon was noted among different groups of kernels with different aflatoxin contamination levels. The fluorescence peak shift was found to move more toward the longer wavelength in the blue region for the highly contaminated kernels and toward the shorter wavelengths for the clean kernels. Highly contaminated kernels were also found to have a lower fluorescence peak magnitude compared with the less contaminated kernels. It was also noted that a general negative correlation exists between measured aflatoxin and the fluorescence image bands in the blue and green regions. The correlation coefficients of determination, r(2), was 0.72 for the multiple linear regression model. The multivariate analysis of variance found that the fluorescence means of four aflatoxin groups, <1, 1-20, 20-100, and >or=100 ng g(-1) (parts per billion), were significantly different from each other at the 0.01 level of alpha. Classification accuracy under a two-class schema ranged from 0.84 to 0.91 when a threshold of either 20 or 100 ng g(-1) was used. Overall, the results indicate that fluorescence hyperspectral imaging may be applicable in estimating aflatoxin content in individual corn kernels.
Broken rice kernels and the kinetics of rice hydration and texture during cooking.
Saleh, Mohammed; Meullenet, Jean-Francois
2013-05-01
During rice milling and processing, broken kernels are inevitably present, although to date it has been unclear as to how the presence of broken kernels affects rice hydration and cooked rice texture. Therefore, this work intended to study the effect of broken kernels in a rice sample on rice hydration and texture during cooking. Two medium-grain and two long-grain rice cultivars were harvested, dried and milled, and the broken kernels were separated from unbroken kernels. Broken rice kernels were subsequently combined with unbroken rice kernels forming treatments of 0, 40, 150, 350 or 1000 g kg(-1) broken kernels ratio. Rice samples were then cooked and the moisture content of the cooked rice, the moisture uptake rate, and rice hardness and stickiness were measured. As the amount of broken rice kernels increased, rice sample texture became increasingly softer (P < 0.05) but the unbroken kernels became significantly harder. Moisture content and moisture uptake rate were positively correlated, and cooked rice hardness was negatively correlated to the percentage of broken kernels in rice samples. Differences in the proportions of broken rice in a milled rice sample play a major role in determining the texture properties of cooked rice. Variations in the moisture migration kinetics between broken and unbroken kernels caused faster hydration of the cores of broken rice kernels, with greater starch leach-out during cooking affecting the texture of the cooked rice. The texture of cooked rice can be controlled, to some extent, by varying the proportion of broken kernels in milled rice. © 2012 Society of Chemical Industry.
A hybrid correlation analysis with application to imaging genetics
NASA Astrophysics Data System (ADS)
Hu, Wenxing; Fang, Jian; Calhoun, Vince D.; Wang, Yu-Ping
2018-03-01
Investigating the association between brain regions and genes continues to be a challenging topic in imaging genetics. Current brain region of interest (ROI)-gene association studies normally reduce data dimension by averaging the value of voxels in each ROI. This averaging may lead to a loss of information due to the existence of functional sub-regions. Pearson correlation is widely used for association analysis. However, it only detects linear correlation whereas nonlinear correlation may exist among ROIs. In this work, we introduced distance correlation to ROI-gene association analysis, which can detect both linear and nonlinear correlations and overcome the limitation of averaging operations by taking advantage of the information at each voxel. Nevertheless, distance correlation usually has a much lower value than Pearson correlation. To address this problem, we proposed a hybrid correlation analysis approach, by applying canonical correlation analysis (CCA) to the distance covariance matrix instead of directly computing distance correlation. Incorporating CCA into distance correlation approach may be more suitable for complex disease study because it can detect highly associated pairs of ROI and gene groups, and may improve the distance correlation level and statistical power. In addition, we developed a novel nonlinear CCA, called distance kernel CCA, which seeks the optimal combination of features with the most significant dependence. This approach was applied to imaging genetic data from the Philadelphia Neurodevelopmental Cohort (PNC). Experiments showed that our hybrid approach produced more consistent results than conventional CCA across resampling and both the correlation and statistical significance were increased compared to distance correlation analysis. Further gene enrichment analysis and region of interest (ROI) analysis confirmed the associations of the identified genes with brain ROIs. Therefore, our approach provides a powerful tool for finding the correlation between brain imaging and genomic data.
Gong, Yunchao; Lazebnik, Svetlana; Gordo, Albert; Perronnin, Florent
2013-12-01
This paper addresses the problem of learning similarity-preserving binary codes for efficient similarity search in large-scale image collections. We formulate this problem in terms of finding a rotation of zero-centered data so as to minimize the quantization error of mapping this data to the vertices of a zero-centered binary hypercube, and propose a simple and efficient alternating minimization algorithm to accomplish this task. This algorithm, dubbed iterative quantization (ITQ), has connections to multiclass spectral clustering and to the orthogonal Procrustes problem, and it can be used both with unsupervised data embeddings such as PCA and supervised embeddings such as canonical correlation analysis (CCA). The resulting binary codes significantly outperform several other state-of-the-art methods. We also show that further performance improvements can result from transforming the data with a nonlinear kernel mapping prior to PCA or CCA. Finally, we demonstrate an application of ITQ to learning binary attributes or "classemes" on the ImageNet data set.
Log-Gabor Weber descriptor for face recognition
NASA Astrophysics Data System (ADS)
Li, Jing; Sang, Nong; Gao, Changxin
2015-09-01
The Log-Gabor transform, which is suitable for analyzing gradually changing data such as in iris and face images, has been widely used in image processing, pattern recognition, and computer vision. In most cases, only the magnitude or phase information of the Log-Gabor transform is considered. However, the complementary effect taken by combining magnitude and phase information simultaneously for an image-feature extraction problem has not been systematically explored in the existing works. We propose a local image descriptor for face recognition, called Log-Gabor Weber descriptor (LGWD). The novelty of our LGWD is twofold: (1) to fully utilize the information from the magnitude or phase feature of multiscale and orientation Log-Gabor transform, we apply the Weber local binary pattern operator to each transform response. (2) The encoded Log-Gabor magnitude and phase information are fused at the feature level by utilizing kernel canonical correlation analysis strategy, considering that feature level information fusion is effective when the modalities are correlated. Experimental results on the AR, Extended Yale B, and UMIST face databases, compared with those available from recent experiments reported in the literature, show that our descriptor yields a better performance than state-of-the art methods.
Canonical ensemble ground state and correlation entropy of Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Svidzinsky, Anatoly; Kim, Moochan; Agarwal, Girish; Scully, Marlan O.
2018-01-01
Constraint of a fixed total number of particles yields a correlation between the fluctuation of particles in different states in the canonical ensemble. Here we show that, below the temperature of Bose-Einstein condensation (BEC), the correlation part of the entropy of an ideal Bose gas is cancelled by the ground-state contribution. Thus, in the BEC region, the thermodynamic properties of the gas in the canonical ensemble can be described accurately in a simplified model which excludes the ground state and assumes no correlation between excited levels.
Stürmer, Morgana; Busanello, Marcos; Velho, João Pedro; Heck, Vanessa Isabel; Haygert-Velho, Ione Maria Pereira
2018-06-04
A number of studies have addressed the relations between climatic variables and milk composition, but these works used univariate statistical approaches. In our study, we used a multivariate approach (canonical correlation) to study the impact of climatic variables on milk composition, price, and monthly milk production at a dairy farm using bulk tank milk data. Data on milk composition, price, and monthly milk production were obtained from a dairy company that purchased the milk from the farm, while climatic variable data were obtained from the National Institute of Meteorology (INMET). The data are from January 2014 to December 2016. Univariate correlation analysis and canonical correlation analysis were performed. Few correlations between the climatic variables and milk composition were found using a univariate approach. However, using canonical correlation analysis, we found a strong and significant correlation (r c = 0.95, p value = 0.0029). Lactose, ambient temperature measures (mean, minimum, and maximum), and temperature-humidity index (THI) were found to be the most important variables for the canonical correlation. Our study indicated that 10.2% of the variation in milk composition, pricing, and monthly milk production can be explained by climatic variables. Ambient temperature variables, together with THI, seem to have the most influence on variation in milk composition.
NASA Astrophysics Data System (ADS)
Stürmer, Morgana; Busanello, Marcos; Velho, João Pedro; Heck, Vanessa Isabel; Haygert-Velho, Ione Maria Pereira
2018-06-01
A number of studies have addressed the relations between climatic variables and milk composition, but these works used univariate statistical approaches. In our study, we used a multivariate approach (canonical correlation) to study the impact of climatic variables on milk composition, price, and monthly milk production at a dairy farm using bulk tank milk data. Data on milk composition, price, and monthly milk production were obtained from a dairy company that purchased the milk from the farm, while climatic variable data were obtained from the National Institute of Meteorology (INMET). The data are from January 2014 to December 2016. Univariate correlation analysis and canonical correlation analysis were performed. Few correlations between the climatic variables and milk composition were found using a univariate approach. However, using canonical correlation analysis, we found a strong and significant correlation (r c = 0.95, p value = 0.0029). Lactose, ambient temperature measures (mean, minimum, and maximum), and temperature-humidity index (THI) were found to be the most important variables for the canonical correlation. Our study indicated that 10.2% of the variation in milk composition, pricing, and monthly milk production can be explained by climatic variables. Ambient temperature variables, together with THI, seem to have the most influence on variation in milk composition.
Lu, Deyu
2016-08-05
A systematic route to go beyond the exact exchange plus random phase approximation (RPA) is to include a physical exchange-correlation kernel in the adiabatic-connection fluctuation-dissipation theorem. Previously, [D. Lu, J. Chem. Phys. 140, 18A520 (2014)], we found that non-local kernels with a screening length depending on the local Wigner-Seitz radius, r s(r), suffer an error associated with a spurious long-range repulsion in van der Waals bounded systems, which deteriorates the binding energy curve as compared to RPA. Here, we analyze the source of the error and propose to replace r s(r) by a global, average r s in the kernel.more » Exemplary studies with the Corradini, del Sole, Onida, and Palummo kernel show that while this change does not affect the already outstanding performance in crystalline solids, using an average r s significantly reduces the spurious long-range tail in the exchange-correlation kernel in van der Waals bounded systems. Finally, when this method is combined with further corrections using local dielectric response theory, the binding energy of the Kr dimer is improved three times as compared to RPA.« less
Multicollinearity in canonical correlation analysis in maize.
Alves, B M; Cargnelutti Filho, A; Burin, C
2017-03-30
The objective of this study was to evaluate the effects of multicollinearity under two methods of canonical correlation analysis (with and without elimination of variables) in maize (Zea mays L.) crop. Seventy-six maize genotypes were evaluated in three experiments, conducted in a randomized block design with three replications, during the 2009/2010 crop season. Eleven agronomic variables (number of days from sowing until female flowering, number of days from sowing until male flowering, plant height, ear insertion height, ear placement, number of plants, number of ears, ear index, ear weight, grain yield, and one thousand grain weight), 12 protein-nutritional variables (crude protein, lysine, methionine, cysteine, threonine, tryptophan, valine, isoleucine, leucine, phenylalanine, histidine, and arginine), and 6 energetic-nutritional variables (apparent metabolizable energy, apparent metabolizable energy corrected for nitrogen, ether extract, crude fiber, starch, and amylose) were measured. A phenotypic correlation matrix was first generated among the 29 variables for each of the experiments. A multicollinearity diagnosis was later performed within each group of variables using methodologies such as variance inflation factor and condition number. Canonical correlation analysis was then performed, with and without the elimination of variables, among groups of agronomic and protein-nutritional, and agronomic and energetic-nutritional variables. The canonical correlation analysis in the presence of multicollinearity (without elimination of variables) overestimates the variability of canonical coefficients. The elimination of variables is an efficient method to circumvent multicollinearity in canonical correlation analysis.
Spatio-Chromatic Adaptation via Higher-Order Canonical Correlation Analysis of Natural Images
Gutmann, Michael U.; Laparra, Valero; Hyvärinen, Aapo; Malo, Jesús
2014-01-01
Independent component and canonical correlation analysis are two general-purpose statistical methods with wide applicability. In neuroscience, independent component analysis of chromatic natural images explains the spatio-chromatic structure of primary cortical receptive fields in terms of properties of the visual environment. Canonical correlation analysis explains similarly chromatic adaptation to different illuminations. But, as we show in this paper, neither of the two methods generalizes well to explain both spatio-chromatic processing and adaptation at the same time. We propose a statistical method which combines the desirable properties of independent component and canonical correlation analysis: It finds independent components in each data set which, across the two data sets, are related to each other via linear or higher-order correlations. The new method is as widely applicable as canonical correlation analysis, and also to more than two data sets. We call it higher-order canonical correlation analysis. When applied to chromatic natural images, we found that it provides a single (unified) statistical framework which accounts for both spatio-chromatic processing and adaptation. Filters with spatio-chromatic tuning properties as in the primary visual cortex emerged and corresponding-colors psychophysics was reproduced reasonably well. We used the new method to make a theory-driven testable prediction on how the neural response to colored patterns should change when the illumination changes. We predict shifts in the responses which are comparable to the shifts reported for chromatic contrast habituation. PMID:24533049
Spatio-chromatic adaptation via higher-order canonical correlation analysis of natural images.
Gutmann, Michael U; Laparra, Valero; Hyvärinen, Aapo; Malo, Jesús
2014-01-01
Independent component and canonical correlation analysis are two general-purpose statistical methods with wide applicability. In neuroscience, independent component analysis of chromatic natural images explains the spatio-chromatic structure of primary cortical receptive fields in terms of properties of the visual environment. Canonical correlation analysis explains similarly chromatic adaptation to different illuminations. But, as we show in this paper, neither of the two methods generalizes well to explain both spatio-chromatic processing and adaptation at the same time. We propose a statistical method which combines the desirable properties of independent component and canonical correlation analysis: It finds independent components in each data set which, across the two data sets, are related to each other via linear or higher-order correlations. The new method is as widely applicable as canonical correlation analysis, and also to more than two data sets. We call it higher-order canonical correlation analysis. When applied to chromatic natural images, we found that it provides a single (unified) statistical framework which accounts for both spatio-chromatic processing and adaptation. Filters with spatio-chromatic tuning properties as in the primary visual cortex emerged and corresponding-colors psychophysics was reproduced reasonably well. We used the new method to make a theory-driven testable prediction on how the neural response to colored patterns should change when the illumination changes. We predict shifts in the responses which are comparable to the shifts reported for chromatic contrast habituation.
Bayne, Michael G; Scher, Jeremy A; Ellis, Benjamin H; Chakraborty, Arindam
2018-05-21
Electron-hole or quasiparticle representation plays a central role in describing electronic excitations in many-electron systems. For charge-neutral excitation, the electron-hole interaction kernel is the quantity of interest for calculating important excitation properties such as optical gap, optical spectra, electron-hole recombination and electron-hole binding energies. The electron-hole interaction kernel can be formally derived from the density-density correlation function using both Green's function and TDDFT formalism. The accurate determination of the electron-hole interaction kernel remains a significant challenge for precise calculations of optical properties in the GW+BSE formalism. From the TDDFT perspective, the electron-hole interaction kernel has been viewed as a path to systematic development of frequency-dependent exchange-correlation functionals. Traditional approaches, such as MBPT formalism, use unoccupied states (which are defined with respect to Fermi vacuum) to construct the electron-hole interaction kernel. However, the inclusion of unoccupied states has long been recognized as the leading computational bottleneck that limits the application of this approach for larger finite systems. In this work, an alternative derivation that avoids using unoccupied states to construct the electron-hole interaction kernel is presented. The central idea of this approach is to use explicitly correlated geminal functions for treating electron-electron correlation for both ground and excited state wave functions. Using this ansatz, it is derived using both diagrammatic and algebraic techniques that the electron-hole interaction kernel can be expressed only in terms of linked closed-loop diagrams. It is proved that the cancellation of unlinked diagrams is a consequence of linked-cluster theorem in real-space representation. The electron-hole interaction kernel derived in this work was used to calculate excitation energies in many-electron systems and results were found to be in good agreement with the EOM-CCSD and GW+BSE methods. The numerical results highlight the effectiveness of the developed method for overcoming the computational barrier of accurately determining the electron-hole interaction kernel to applications of large finite systems such as quantum dots and nanorods.
Baczewski, Andrew D; Bond, Stephen D
2013-07-28
Generalized Langevin dynamics (GLD) arise in the modeling of a number of systems, ranging from structured fluids that exhibit a viscoelastic mechanical response, to biological systems, and other media that exhibit anomalous diffusive phenomena. Molecular dynamics (MD) simulations that include GLD in conjunction with external and/or pairwise forces require the development of numerical integrators that are efficient, stable, and have known convergence properties. In this article, we derive a family of extended variable integrators for the Generalized Langevin equation with a positive Prony series memory kernel. Using stability and error analysis, we identify a superlative choice of parameters and implement the corresponding numerical algorithm in the LAMMPS MD software package. Salient features of the algorithm include exact conservation of the first and second moments of the equilibrium velocity distribution in some important cases, stable behavior in the limit of conventional Langevin dynamics, and the use of a convolution-free formalism that obviates the need for explicit storage of the time history of particle velocities. Capability is demonstrated with respect to accuracy in numerous canonical examples, stability in certain limits, and an exemplary application in which the effect of a harmonic confining potential is mapped onto a memory kernel.
Field incidence of mycotoxins in commercial popcorn and potential environmental influences.
Dowd, Patrick F; Johnson, Eric T
2010-02-01
Popcorn ear damage by insects and mycotoxin levels in kernels were monitored in several commercial popcorn fields in central Illinois over a 4-year period. Aflatoxin was rare, but fumonisin and deoxynivalenol (DON) were commonly encountered each year, and occurred at mean levels in fields up to 1.7 mg/kg (sample max. 2.77 mg/kg) and 1.9 mg/kg (sample max. 2.66 mg/kg), respectively. Neither fumonisin nor DON levels were significantly correlated with the percent of ears with visibly moldy insect-damaged kernels. Significant correlations were noted for the percent of ears with early caterpillar damage and both fumonisin and DON levels overall for some years and at specific sites in other years. Fumonisin levels were generally more highly correlated with insect damage than DON levels. Insect damaged kernels had 100- to 500-fold or greater levels of fumonisin compared to noninsect-damaged kernels, while DON levels were closer to 10- to 30-fold higher in insect damaged versus nondamaged kernels. A high percentage of DON-contaminated kernels were not insect damaged in 2007 and 2008. In some cases, differing mycotoxin levels for the same hybrid and same year planted at different locations appeared to be due to the prior crop. Higher DON levels in 2008 than other years were most likely associated with higher levels of rainfall and cooler temperatures than average during ear fill. While kernel sorters are reported to remove mycotoxin-contaminated popcorn kernels to acceptible levels, consideration of environmental factors that promote mycotoxins in popcorn should result in more effective control measures in the field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick, Christopher E., E-mail: chripa@fysik.dtu.dk; Thygesen, Kristian S., E-mail: thygesen@fysik.dtu.dk
2015-09-14
We present calculations of the correlation energies of crystalline solids and isolated systems within the adiabatic-connection fluctuation-dissipation formulation of density-functional theory. We perform a quantitative comparison of a set of model exchange-correlation kernels originally derived for the homogeneous electron gas (HEG), including the recently introduced renormalized adiabatic local-density approximation (rALDA) and also kernels which (a) satisfy known exact limits of the HEG, (b) carry a frequency dependence, or (c) display a 1/k{sup 2} divergence for small wavevectors. After generalizing the kernels to inhomogeneous systems through a reciprocal-space averaging procedure, we calculate the lattice constants and bulk moduli of a testmore » set of 10 solids consisting of tetrahedrally bonded semiconductors (C, Si, SiC), ionic compounds (MgO, LiCl, LiF), and metals (Al, Na, Cu, Pd). We also consider the atomization energy of the H{sub 2} molecule. We compare the results calculated with different kernels to those obtained from the random-phase approximation (RPA) and to experimental measurements. We demonstrate that the model kernels correct the RPA’s tendency to overestimate the magnitude of the correlation energy whilst maintaining a high-accuracy description of structural properties.« less
Correlated Topic Vector for Scene Classification.
Wei, Pengxu; Qin, Fei; Wan, Fang; Zhu, Yi; Jiao, Jianbin; Ye, Qixiang
2017-07-01
Scene images usually involve semantic correlations, particularly when considering large-scale image data sets. This paper proposes a novel generative image representation, correlated topic vector, to model such semantic correlations. Oriented from the correlated topic model, correlated topic vector intends to naturally utilize the correlations among topics, which are seldom considered in the conventional feature encoding, e.g., Fisher vector, but do exist in scene images. It is expected that the involvement of correlations can increase the discriminative capability of the learned generative model and consequently improve the recognition accuracy. Incorporated with the Fisher kernel method, correlated topic vector inherits the advantages of Fisher vector. The contributions to the topics of visual words have been further employed by incorporating the Fisher kernel framework to indicate the differences among scenes. Combined with the deep convolutional neural network (CNN) features and Gibbs sampling solution, correlated topic vector shows great potential when processing large-scale and complex scene image data sets. Experiments on two scene image data sets demonstrate that correlated topic vector improves significantly the deep CNN features, and outperforms existing Fisher kernel-based features.
Zhang, H M; Hui, G Q; Luo, Q; Sun, Y; Liu, X H
2014-01-21
Maize (Zea mays L.) is one of the most important crops in the world. In this study, 13 agronomic traits of a recombinant inbred line population that was derived from the cross between Mo17 and Huangzao4 were investigated in maize: ear diameter, ear length, ear axis diameter, ear weight, plant height, ear height, days to pollen shed (DPS), days to silking (DS), the interval between DPS and DS, 100-kernel weight, kernel test weight, ear kernel weight, and kernel rate. Furthermore, the descriptive statistics and correlation analysis of the 13 traits were performed using the SPSS 11.5 software. The results providing the phenotypic data here are needed for the quantitative trait locus mapping of these agronomic traits.
Time-frequency distributions for propulsion-system diagnostics
NASA Astrophysics Data System (ADS)
Griffin, Michael E.; Tulpule, Sharayu
1991-12-01
The Wigner distribution and its smoothed versions, i.e., Choi-Williams and Gaussian kernels, are evaluated for propulsion system diagnostics. The approach is intended for off-line kernel design by using the ambiguity domain to select the appropriate Gaussian kernel. The features produced by the Wigner distribution and its smoothed versions correlate remarkably well with documented failure indications. The selection of the kernel on the other hand is very subjective for our unstructured data.
NASA Astrophysics Data System (ADS)
Bates, Jefferson; Laricchia, Savio; Ruzsinszky, Adrienn
The Random Phase Approximation (RPA) is quickly becoming a standard method beyond semi-local Density Functional Theory that naturally incorporates weak interactions and eliminates self-interaction error. RPA is not perfect, however, and suffers from self-correlation error as well as an incorrect description of short-ranged correlation typically leading to underbinding. To improve upon RPA we introduce a short-ranged, exchange-like kernel that is one-electron self-correlation free for one and two electron systems in the high-density limit. By tuning the one free parameter in our model to recover an exact limit of the homogeneous electron gas correlation energy we obtain a non-local, energy-optimized kernel that reduces the errors of RPA for both homogeneous and inhomogeneous solids. To reduce the computational cost of the standard kernel-corrected RPA, we also implement RPA renormalized perturbation theory for extended systems, and demonstrate its capability to describe the dominant correlation effects with a low-order expansion in both metallic and non-metallic systems. Furthermore we stress that for norm-conserving implementations the accuracy of RPA and beyond RPA structural properties compared to experiment is inherently limited by the choice of pseudopotential. Current affiliation: King's College London.
Tricoli, Ugo; Macdonald, Callum M; Durduran, Turgut; Da Silva, Anabela; Markel, Vadim A
2018-02-01
Diffuse correlation tomography (DCT) uses the electric-field temporal autocorrelation function to measure the mean-square displacement of light-scattering particles in a turbid medium over a given exposure time. The movement of blood particles is here estimated through a Brownian-motion-like model in contrast to ordered motion as in blood flow. The sensitivity kernel relating the measurable field correlation function to the mean-square displacement of the particles can be derived by applying a perturbative analysis to the correlation transport equation (CTE). We derive an analytical expression for the CTE sensitivity kernel in terms of the Green's function of the radiative transport equation, which describes the propagation of the intensity. We then evaluate the kernel numerically. The simulations demonstrate that, in the transport regime, the sensitivity kernel provides sharper spatial information about the medium as compared with the correlation diffusion approximation. Also, the use of the CTE allows one to explore some additional degrees of freedom in the data such as the collimation direction of sources and detectors. Our results can be used to improve the spatial resolution of DCT, in particular, with applications to blood flow imaging in regions where the Brownian motion is dominant.
NASA Astrophysics Data System (ADS)
Tricoli, Ugo; Macdonald, Callum M.; Durduran, Turgut; Da Silva, Anabela; Markel, Vadim A.
2018-02-01
Diffuse correlation tomography (DCT) uses the electric-field temporal autocorrelation function to measure the mean-square displacement of light-scattering particles in a turbid medium over a given exposure time. The movement of blood particles is here estimated through a Brownian-motion-like model in contrast to ordered motion as in blood flow. The sensitivity kernel relating the measurable field correlation function to the mean-square displacement of the particles can be derived by applying a perturbative analysis to the correlation transport equation (CTE). We derive an analytical expression for the CTE sensitivity kernel in terms of the Green's function of the radiative transport equation, which describes the propagation of the intensity. We then evaluate the kernel numerically. The simulations demonstrate that, in the transport regime, the sensitivity kernel provides sharper spatial information about the medium as compared with the correlation diffusion approximation. Also, the use of the CTE allows one to explore some additional degrees of freedom in the data such as the collimation direction of sources and detectors. Our results can be used to improve the spatial resolution of DCT, in particular, with applications to blood flow imaging in regions where the Brownian motion is dominant.
Korekar, Girish; Stobdan, Tsering; Arora, Richa; Yadav, Ashish; Singh, Shashi Bala
2011-11-01
Fourteen apricot genotypes grown under similar cultural practices in Trans-Himalayan Ladakh region were studied to find out the influence of genotype on antioxidant capacity and total phenolic content (TPC) of apricot kernel. The kernels were found to be rich in TPC ranging from 92.2 to 162.1 mg gallic acid equivalent/100 g. The free radical-scavenging activity in terms of inhibitory concentration (IC(50)) ranged from 43.8 to 123.4 mg/ml and ferric reducing antioxidant potential (FRAP) from 154.1 to 243.6 FeSO(4).7H(2)O μg/ml. A variation of 1-1.7 fold in total phenolic content, 1-2.8 fold in IC(50) by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and 1-1.6 fold in ferric reducing antioxidant potential among the examined kernels underlines the important role played by genetic background for determining the phenolic content and antioxidant potential of apricot kernel. A positive significant correlation between TPC and FRAP (r=0.671) was found. No significant correlation was found between TPC and IC(50); FRAP and IC(50); TPC and physical properties of kernel. Principal component analysis demonstrated that genotypic effect is more pronounced towards TPC and total antioxidant capacity (TAC) content in apricot kernel while the contribution of seed and kernel physical properties are not highly significant.
de la Rosa, Laura A; Alvarez-Parrilla, Emilio; Shahidi, Fereidoon
2011-01-12
The phenolic composition and antioxidant activity of pecan kernels and shells cultivated in three regions of the state of Chihuahua, Mexico, were analyzed. High concentrations of total extractable phenolics, flavonoids, and proanthocyanidins were found in kernels, and 5-20-fold higher concentrations were found in shells. Their concentrations were significantly affected by the growing region. Antioxidant activity was evaluated by ORAC, DPPH•, HO•, and ABTS•-- scavenging (TAC) methods. Antioxidant activity was strongly correlated with the concentrations of phenolic compounds. A strong correlation existed among the results obtained using these four methods. Five individual phenolic compounds were positively identified and quantified in kernels: ellagic, gallic, protocatechuic, and p-hydroxybenzoic acids and catechin. Only ellagic and gallic acids could be identified in shells. Seven phenolic compounds were tentatively identified in kernels by means of MS and UV spectral comparison, namely, protocatechuic aldehyde, (epi)gallocatechin, one gallic acid-glucose conjugate, three ellagic acid derivatives, and valoneic acid dilactone.
Determination of aflatoxin risk components for in-shell Brazil nuts.
Vargas, E A; dos Santos, E A; Whitaker, T B; Slate, A B
2011-09-01
A study was conducted on the risk from aflatoxins associated with the kernels and shells of Brazil nuts. Samples were collected from processing plants in Amazonia, Brazil. A total of 54 test samples (40 kg) were taken from 13 in-shell Brazil nut lots ready for market. Each in-shell sample was shelled and the kernels and shells were sorted in five fractions: good kernels, rotten kernels, good shells with kernel residue, good shells without kernel residue, and rotten shells, and analysed for aflatoxins. The kernel:shell ratio mass (w/w) was 50.2/49.8%. The Brazil nut shell was found to be contaminated with aflatoxin. Rotten nuts were found to be a high-risk fraction for aflatoxin in in-shell Brazil nut lots. Rotten nuts contributed only 4.2% of the sample mass (kg), but contributed 76.6% of the total aflatoxin mass (µg) in the in-shell test sample. The highest correlations were found between the aflatoxin concentration in in-shell Brazil nuts samples and the aflatoxin concentration in all defective fractions (R(2)=0.97). The aflatoxin mass of all defective fractions (R(2)=0.90) as well as that of the rotten nut (R(2)=0.88) were also strongly correlated with the aflatoxin concentration of the in-shell test samples. Process factors of 0.17, 0.16 and 0.24 were respectively calculated to estimate the aflatoxin concentration in the good kernels (edible) and good nuts by measuring the aflatoxin concentration in the in-shell test sample and in all kernels, respectively. © 2011 Taylor & Francis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, D; Danielewicz, P
2002-03-15
This is the manual for a collection of programs that can be used to invert angled-averaged (i.e. one dimensional) two-particle correlation functions. This package consists of several programs that generate kernel matrices (basically the relative wavefunction of the pair, squared), programs that generate test correlation functions from test sources of various types and the program that actually inverts the data using the kernel matrix.
Pearson correlation estimation for irregularly sampled time series
NASA Astrophysics Data System (ADS)
Rehfeld, K.; Marwan, N.; Heitzig, J.; Kurths, J.
2012-04-01
Many applications in the geosciences call for the joint and objective analysis of irregular time series. For automated processing, robust measures of linear and nonlinear association are needed. Up to now, the standard approach would have been to reconstruct the time series on a regular grid, using linear or spline interpolation. Interpolation, however, comes with systematic side-effects, as it increases the auto-correlation in the time series. We have searched for the best method to estimate Pearson correlation for irregular time series, i.e. the one with the lowest estimation bias and variance. We adapted a kernel-based approach, using Gaussian weights. Pearson correlation is calculated, in principle, as a mean over products of previously centralized observations. In the regularly sampled case, observations in both time series were observed at the same time and thus the allocation of measurement values into pairs of products is straightforward. In the irregularly sampled case, however, measurements were not necessarily observed at the same time. Now, the key idea of the kernel-based method is to calculate weighted means of products, with the weight depending on the time separation between the observations. If the lagged correlation function is desired, the weights depend on the absolute difference between observation time separation and the estimation lag. To assess the applicability of the approach we used extensive simulations to determine the extent of interpolation side-effects with increasing irregularity of time series. We compared different approaches, based on (linear) interpolation, the Lomb-Scargle Fourier Transform, the sinc kernel and the Gaussian kernel. We investigated the role of kernel bandwidth and signal-to-noise ratio in the simulations. We found that the Gaussian kernel approach offers significant advantages and low Root-Mean Square Errors for regular, slightly irregular and very irregular time series. We therefore conclude that it is a good (linear) similarity measure that is appropriate for irregular time series with skewed inter-sampling time distributions.
Hadamard Kernel SVM with applications for breast cancer outcome predictions.
Jiang, Hao; Ching, Wai-Ki; Cheung, Wai-Shun; Hou, Wenpin; Yin, Hong
2017-12-21
Breast cancer is one of the leading causes of deaths for women. It is of great necessity to develop effective methods for breast cancer detection and diagnosis. Recent studies have focused on gene-based signatures for outcome predictions. Kernel SVM for its discriminative power in dealing with small sample pattern recognition problems has attracted a lot attention. But how to select or construct an appropriate kernel for a specified problem still needs further investigation. Here we propose a novel kernel (Hadamard Kernel) in conjunction with Support Vector Machines (SVMs) to address the problem of breast cancer outcome prediction using gene expression data. Hadamard Kernel outperform the classical kernels and correlation kernel in terms of Area under the ROC Curve (AUC) values where a number of real-world data sets are adopted to test the performance of different methods. Hadamard Kernel SVM is effective for breast cancer predictions, either in terms of prognosis or diagnosis. It may benefit patients by guiding therapeutic options. Apart from that, it would be a valuable addition to the current SVM kernel families. We hope it will contribute to the wider biology and related communities.
Confinement and Mayer cluster expansions
NASA Astrophysics Data System (ADS)
Bourgine, Jean-Emile
2014-05-01
In this paper, we study a class of grand-canonical partition functions with a kernel depending on a small parameter ɛ. This class is directly relevant to Nekrasov partition functions of 𝒩 = 2 SUSY gauge theories on the 4d Ω-background, for which ɛ is identified with one of the equivariant deformation parameter. In the Nekrasov-Shatashvili limit ɛ→0, we show that the free energy is given by an on-shell effective action. The equations of motion take the form of a TBA equation. The free energy is identified with the Yang-Yang functional of the corresponding system of Bethe roots. We further study the associated canonical model that takes the form of a generalized matrix model. Confinement of the eigenvalues by the short-range potential is observed. In the limit where this confining potential becomes weak, the collective field theory formulation is recovered. Finally, we discuss the connection with the alternative expression of instanton partition functions as sums over Young tableaux.
NASA Astrophysics Data System (ADS)
Miraliakbari, A.; Sok, S.; Ouma, Y. O.; Hahn, M.
2016-06-01
With the increasing demand for the digital survey and acquisition of road pavement conditions, there is also the parallel growing need for the development of automated techniques for the analysis and evaluation of the actual road conditions. This is due in part to the resulting large volumes of road pavement data captured through digital surveys, and also to the requirements for rapid data processing and evaluations. In this study, the Canon 5D Mark II RGB camera with a resolution of 21 megapixels is used for the road pavement condition mapping. Even though many imaging and mapping sensors are available, the development of automated pavement distress detection, recognition and extraction systems for pavement condition is still a challenge. In order to detect and extract pavement cracks, a comparative evaluation of kernel-based segmentation methods comprising line filtering (LF), local binary pattern (LBP) and high-pass filtering (HPF) is carried out. While the LF and LBP methods are based on the principle of rotation-invariance for pattern matching, the HPF applies the same principle for filtering, but with a rotational invariant matrix. With respect to the processing speeds, HPF is fastest due to the fact that it is based on a single kernel, as compared to LF and LBP which are based on several kernels. Experiments with 20 sample images which contain linear, block and alligator cracks are carried out. On an average a completeness of distress extraction with values of 81.2%, 76.2% and 81.1% have been found for LF, HPF and LBP respectively.
Predicting phonetic transcription agreement: Insights from research in infant vocalizations
RAMSDELL, HEATHER L.; OLLER, D. KIMBROUGH; ETHINGTON, CORINNA A.
2010-01-01
The purpose of this study is to provide new perspectives on correlates of phonetic transcription agreement. Our research focuses on phonetic transcription and coding of infant vocalizations. The findings are presumed to be broadly applicable to other difficult cases of transcription, such as found in severe disorders of speech, which similarly result in low reliability for a variety of reasons. We evaluated the predictiveness of two factors not previously documented in the literature as influencing transcription agreement: canonicity and coder confidence. Transcribers coded samples of infant vocalizations, judging both canonicity and confidence. Correlation results showed that canonicity and confidence were strongly related to agreement levels, and regression results showed that canonicity and confidence both contributed significantly to explanation of variance. Specifically, the results suggest that canonicity plays a major role in transcription agreement when utterances involve supraglottal articulation, with coder confidence offering additional power in predicting transcription agreement. PMID:17882695
The path integral on the pseudosphere
NASA Astrophysics Data System (ADS)
Grosche, C.; Steiner, F.
1988-02-01
A rigorous path integral treatment for the d-dimensional pseudosphere Λd-1 , a Riemannian manifold of constant negative curvature, is presented. The path integral formulation is based on a canonical approach using Weyl-ordering and the Hamiltonian path integral defined on midpoints. The time-dependent and energy-dependent Feynman kernels obtain different expressions in the even- and odd-dimensional cases, respectively. The special case of the three-dimensional pseudosphere, which is analytically equivalent to the Poincaré upper half plane, the Poincaré disc, and the hyperbolic strip, is discussed in detail including the energy spectrum and the normalised wave-functions.
Noise kernels of stochastic gravity in conformally-flat spacetimes
NASA Astrophysics Data System (ADS)
Cho, H. T.; Hu, B. L.
2015-03-01
The central object in the theory of semiclassical stochastic gravity is the noise kernel, which is the symmetric two point correlation function of the stress-energy tensor. Using the corresponding Wightman functions in Minkowski, Einstein and open Einstein spaces, we construct the noise kernels of a conformally coupled scalar field in these spacetimes. From them we show that the noise kernels in conformally-flat spacetimes, including the Friedmann-Robertson-Walker universes, can be obtained in closed analytic forms by using a combination of conformal and coordinate transformations.
Ye, Hanhui; Yuan, Jinjin; Wang, Zhengwu; Huang, Aiqiong; Liu, Xiaolong; Han, Xiao; Chen, Yahong
2016-01-01
Human immunodeficiency virus causes a severe disease in humans, referred to as immune deficiency syndrome. Studies on the interaction between host genetic factors and the virus have revealed dozens of genes that impact diverse processes in the AIDS disease. To resolve more genetic factors related to AIDS, a canonical correlation analysis was used to determine the correlation between AIDS restriction and metabolic pathway gene expression. The results show that HIV-1 postentry cellular viral cofactors from AIDS restriction genes are coexpressed in human transcriptome microarray datasets. Further, the purine metabolism pathway comprises novel host factors that are coexpressed with AIDS restriction genes. Using a canonical correlation analysis for expression is a reliable approach to exploring the mechanism underlying AIDS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Deyu
A systematic route to go beyond the exact exchange plus random phase approximation (RPA) is to include a physical exchange-correlation kernel in the adiabatic-connection fluctuation-dissipation theorem. Previously, [D. Lu, J. Chem. Phys. 140, 18A520 (2014)], we found that non-local kernels with a screening length depending on the local Wigner-Seitz radius, r s(r), suffer an error associated with a spurious long-range repulsion in van der Waals bounded systems, which deteriorates the binding energy curve as compared to RPA. Here, we analyze the source of the error and propose to replace r s(r) by a global, average r s in the kernel.more » Exemplary studies with the Corradini, del Sole, Onida, and Palummo kernel show that while this change does not affect the already outstanding performance in crystalline solids, using an average r s significantly reduces the spurious long-range tail in the exchange-correlation kernel in van der Waals bounded systems. Finally, when this method is combined with further corrections using local dielectric response theory, the binding energy of the Kr dimer is improved three times as compared to RPA.« less
ERIC Educational Resources Information Center
Alkharusi, Hussain
2013-01-01
The present study aims at deriving correlational models of students' perceptions of assessment tasks, motivational orientations, and learning strategies using canonical analyses. Data were collected from 198 Omani tenth grade students. Results showed that high degrees of authenticity and transparency in assessment were associated with positive…
Statistical analysis of aerosol species, trace gasses, and meteorology in Chicago.
Binaku, Katrina; O'Brien, Timothy; Schmeling, Martina; Fosco, Tinamarie
2013-09-01
Both canonical correlation analysis (CCA) and principal component analysis (PCA) were applied to atmospheric aerosol and trace gas concentrations and meteorological data collected in Chicago during the summer months of 2002, 2003, and 2004. Concentrations of ammonium, calcium, nitrate, sulfate, and oxalate particulate matter, as well as, meteorological parameters temperature, wind speed, wind direction, and humidity were subjected to CCA and PCA. Ozone and nitrogen oxide mixing ratios were also included in the data set. The purpose of statistical analysis was to determine the extent of existing linear relationship(s), or lack thereof, between meteorological parameters and pollutant concentrations in addition to reducing dimensionality of the original data to determine sources of pollutants. In CCA, the first three canonical variate pairs derived were statistically significant at the 0.05 level. Canonical correlation between the first canonical variate pair was 0.821, while correlations of the second and third canonical variate pairs were 0.562 and 0.461, respectively. The first canonical variate pair indicated that increasing temperatures resulted in high ozone mixing ratios, while the second canonical variate pair showed wind speed and humidity's influence on local ammonium concentrations. No new information was uncovered in the third variate pair. Canonical loadings were also interpreted for information regarding relationships between data sets. Four principal components (PCs), expressing 77.0 % of original data variance, were derived in PCA. Interpretation of PCs suggested significant production and/or transport of secondary aerosols in the region (PC1). Furthermore, photochemical production of ozone and wind speed's influence on pollutants were expressed (PC2) along with overall measure of local meteorology (PC3). In summary, CCA and PCA results combined were successful in uncovering linear relationships between meteorology and air pollutants in Chicago and aided in determining possible pollutant sources.
NASA Astrophysics Data System (ADS)
Inoue, Makoto
2017-12-01
Some new formulae of the canonical correlation functions for the one dimensional quantum transverse Ising model are found by the ST-transformation method using a Morita's sum rule and its extensions for the two dimensional classical Ising model. As a consequence we obtain a time-independent term of the dynamical correlation functions. Differences of quantum version and classical version of these formulae are also discussed.
Convergence behavior of the random phase approximation renormalized correlation energy
NASA Astrophysics Data System (ADS)
Bates, Jefferson E.; Sensenig, Jonathon; Ruzsinszky, Adrienn
2017-05-01
Based on the random phase approximation (RPA), RPA renormalization [J. E. Bates and F. Furche, J. Chem. Phys. 139, 171103 (2013), 10.1063/1.4827254] is a robust many-body perturbation theory that works for molecules and materials because it does not diverge as the Kohn-Sham gap approaches zero. Additionally, RPA renormalization enables the simultaneous calculation of RPA and beyond-RPA correlation energies since the total correlation energy is the sum of a series of independent contributions. The first-order approximation (RPAr1) yields the dominant beyond-RPA contribution to the correlation energy for a given exchange-correlation kernel, but systematically underestimates the total beyond-RPA correction. For both the homogeneous electron gas model and real systems, we demonstrate numerically that RPA renormalization beyond first order converges monotonically to the infinite-order beyond-RPA correlation energy for several model exchange-correlation kernels and that the rate of convergence is principally determined by the choice of the kernel and spin polarization of the ground state. The monotonic convergence is rationalized from an analysis of the RPA renormalized correlation energy corrections, assuming the exchange-correlation kernel and response functions satisfy some reasonable conditions. For spin-unpolarized atoms, molecules, and bulk solids, we find that RPA renormalization is typically converged to 1 meV error or less by fourth order regardless of the band gap or dimensionality. Most spin-polarized systems converge at a slightly slower rate, with errors on the order of 10 meV at fourth order and typically requiring up to sixth order to reach 1 meV error or less. Slowest to converge, however, open-shell atoms present the most challenging case and require many higher orders to converge.
Xie, Lihua; Yu, Yongtao; Mao, Jihua; Liu, Haiying; Hu, Jian Guang; Li, Tong; Guo, Xinbo; Liu, Rui Hai
2017-01-01
Sweet corn kernels were used in this research to study the dynamics of vitamin E, by evaluatingthe expression levels of genes involved in vitamin E synthesis, the accumulation of vitamin E, and the antioxidant activity during the different stage of kernel development. Results showed that expression levels of ZmHPT and ZmTC genes increased, whereas ZmTMT gene dramatically decreased during kernel development. The contents of all the types of vitamin E in sweet corn had a significant upward increase during kernel development, and reached the highest level at 30 days after pollination (DAP). Amongst the eight isomers of vitamin E, the content of γ-tocotrienol was the highest, and increased by 14.9 folds, followed by α-tocopherolwith an increase of 22 folds, and thecontents of isomers γ-tocopherol, α-tocotrienol, δ-tocopherol,δ-tocotrienol, and β-tocopherol were also followed during kernel development. The antioxidant activity of sweet corn during kernel development was increased, and was up to 101.8 ± 22.3 μmol of α-tocopherol equivlent/100 g in fresh weight (FW) at 30 DAP. There was a positive correlation between vitamin E contents and antioxidant activity in sweet corn during the kernel development, and a negative correlation between the expressions of ZmTMT gene and vitamin E contents. These results revealed the relations amongst the content of vitamin E isomers and the gene expression, vitamin E accumulation, and antioxidant activity. The study can provide a harvesting strategy for vitamin E bio-fortification in sweet corn. PMID:29261149
Xie, Lihua; Yu, Yongtao; Mao, Jihua; Liu, Haiying; Hu, Jian Guang; Li, Tong; Guo, Xinbo; Liu, Rui Hai
2017-12-20
Sweet corn kernels were used in this research to study the dynamics of vitamin E, by evaluatingthe expression levels of genes involved in vitamin E synthesis, the accumulation of vitamin E, and the antioxidant activity during the different stage of kernel development. Results showed that expression levels of Zm HPT and Zm TC genes increased, whereas Zm TMT gene dramatically decreased during kernel development. The contents of all the types of vitamin E in sweet corn had a significant upward increase during kernel development, and reached the highest level at 30 days after pollination (DAP). Amongst the eight isomers of vitamin E, the content of γ-tocotrienol was the highest, and increased by 14.9 folds, followed by α-tocopherolwith an increase of 22 folds, and thecontents of isomers γ-tocopherol, α-tocotrienol, δ-tocopherol,δ-tocotrienol, and β-tocopherol were also followed during kernel development. The antioxidant activity of sweet corn during kernel development was increased, and was up to 101.8 ± 22.3 μmol of α-tocopherol equivlent/100 g in fresh weight (FW) at 30 DAP. There was a positive correlation between vitamin E contents and antioxidant activity in sweet corn during the kernel development, and a negative correlation between the expressions of Zm TMT gene and vitamin E contents. These results revealed the relations amongst the content of vitamin E isomers and the gene expression, vitamin E accumulation, and antioxidant activity. The study can provide a harvesting strategy for vitamin E bio-fortification in sweet corn.
Wong, Stephen; Hargreaves, Eric L; Baltuch, Gordon H; Jaggi, Jurg L; Danish, Shabbar F
2012-01-01
Microelectrode recording (MER) is necessary for precision localization of target structures such as the subthalamic nucleus during deep brain stimulation (DBS) surgery. Attempts to automate this process have produced quantitative temporal trends (feature activity vs. time) extracted from mobile MER data. Our goal was to evaluate computational methods of generating spatial profiles (feature activity vs. depth) from temporal trends that would decouple automated MER localization from the clinical procedure and enhance functional localization in DBS surgery. We evaluated two methods of interpolation (standard vs. kernel) that generated spatial profiles from temporal trends. We compared interpolated spatial profiles to true spatial profiles that were calculated with depth windows, using correlation coefficient analysis. Excellent approximation of true spatial profiles is achieved by interpolation. Kernel-interpolated spatial profiles produced superior correlation coefficient values at optimal kernel widths (r = 0.932-0.940) compared to standard interpolation (r = 0.891). The choice of kernel function and kernel width resulted in trade-offs in smoothing and resolution. Interpolation of feature activity to create spatial profiles from temporal trends is accurate and can standardize and facilitate MER functional localization of subcortical structures. The methods are computationally efficient, enhancing localization without imposing additional constraints on the MER clinical procedure during DBS surgery. Copyright © 2012 S. Karger AG, Basel.
Ledbetter, C A
2008-09-01
Researchers are currently developing new value-added uses for almond shells, an abundant agricultural by-product. Almond varieties are distinguished by processors as being either hard or soft shelled, but these two broad classes of almond also exhibit varietal diversity in shell morphology and physical characters. By defining more precisely the physical and chemical characteristics of almond shells from different varieties, researchers will better understand which specific shell types are best suited for specific industrial processes. Eight diverse almond accessions were evaluated in two consecutive harvest seasons for nut and kernel weight, kernel percentage and shell cracking strength. Shell bulk density was evaluated in a separate year. Harvest year by almond accession interactions were highly significant (p0.01) for each of the analyzed variables. Significant (p0.01) correlations were noted for average nut weight with kernel weight, kernel percentage and shell cracking strength. A significant (p0.01) negative correlation for shell cracking strength with kernel percentage was noted. In some cases shell cracking strength was independent of the kernel percentage which suggests that either variety compositional differences or shell morphology affect the shell cracking strength. The varietal characterization of almond shell materials will assist in determining the best value-added uses for this abundant agricultural by-product.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karmakar, Partha; Das, Pradip Kumar; Mondal, Seema Sarkar
2010-10-26
Pb pollution from automobile exhausts around highways is a persistent problem in India. Pb intoxication in mammalian body is a complex phenomenon which is influence by agonistic and antagonistic interactions of several other heavy metals and micronutrients. An attempt has been made to study the association between Pb and Zn accumulation in different physiological systems of cattles (n = 200) by application of both canonical correlation and canonical correspondence analyses. Pb was estimated from plasma, liver, bone, muscle, kidney, blood and milk where as Zn was measured from all these systems except bone, blood and milk. Both statistical techniques demonstratedmore » that there was a strong association among blood-Pb, liver-Zn, kidney-Zn and muscle-Zn. From observations, it can be assumed that Zn accumulation in cattles' muscle, liver and kidney directs Pb mobilization from those organs which in turn increases Pb pool in blood. It indicates antagonistic activity of Zn to the accumulation of Pb. Although there were some contradictions between the observations obtained from the two different statistical methods, the overall pattern of Pb accumulation in various organs as influenced by Zn were same. It is mainly due to the fact that canonical correlation is actually a special type of canonical correspondence analyses where linear relationship is followed between two groups of variables instead of Gaussian relationship.« less
NASA Astrophysics Data System (ADS)
Karmakar, Partha; Das, Pradip Kumar; Mondal, Seema Sarkar; Karmakar, Sougata; Mazumdar, Debasis
2010-10-01
Pb pollution from automobile exhausts around highways is a persistent problem in India. Pb intoxication in mammalian body is a complex phenomenon which is influence by agonistic and antagonistic interactions of several other heavy metals and micronutrients. An attempt has been made to study the association between Pb and Zn accumulation in different physiological systems of cattles (n = 200) by application of both canonical correlation and canonical correspondence analyses. Pb was estimated from plasma, liver, bone, muscle, kidney, blood and milk where as Zn was measured from all these systems except bone, blood and milk. Both statistical techniques demonstrated that there was a strong association among blood-Pb, liver-Zn, kidney-Zn and muscle-Zn. From observations, it can be assumed that Zn accumulation in cattles' muscle, liver and kidney directs Pb mobilization from those organs which in turn increases Pb pool in blood. It indicates antagonistic activity of Zn to the accumulation of Pb. Although there were some contradictions between the observations obtained from the two different statistical methods, the overall pattern of Pb accumulation in various organs as influenced by Zn were same. It is mainly due to the fact that canonical correlation is actually a special type of canonical correspondence analyses where linear relationship is followed between two groups of variables instead of Gaussian relationship.
NASA Astrophysics Data System (ADS)
Woldesellasse, H. T.; Marpu, P. R.; Ouarda, T.
2016-12-01
Wind is one of the crucial renewable energy sources which is expected to bring solutions to the challenges of clean energy and the global issue of climate change. A number of linear and nonlinear multivariate techniques has been used to predict the stochastic character of wind speed. A wind forecast with good accuracy has a positive impact on the reduction of electricity system cost and is essential for the effective grid management. Over the past years, few studies have been done on the assessment of teleconnections and its possible effects on the long-term wind speed variability in the UAE region. In this study Nonlinear Canonical Correlation Analysis (NLCCA) method is applied to study the relationship between global climate oscillation indices and meteorological variables, with a major emphasis on wind speed and wind direction, of Abu Dhabi, UAE. The wind dataset was obtained from six ground stations. The first mode of NLCCA is capable of capturing the nonlinear mode of the climate indices at different seasons, showing the symmetry between the warm states and the cool states. The strength of the nonlinear canonical correlation between the two sets of variables varies with the lead/lag time. The performance of the models is assessed by calculating error indices such as the root mean square error (RMSE) and Mean absolute error (MAE). The results indicated that NLCCA models provide more accurate information about the nonlinear intrinsic behaviour of the dataset of variables than linear CCA model in terms of the correlation and root mean square error. Key words: Nonlinear Canonical Correlation Analysis (NLCCA), Canonical Correlation Analysis, Neural Network, Climate Indices, wind speed, wind direction
Zalay, Osbert C; Serletis, Demitre; Carlen, Peter L; Bardakjian, Berj L
2010-06-01
Most forms of epilepsy are marked by seizure episodes that arise spontaneously. The low-magnesium/high-potassium (low-Mg(2+)/high-K(+)) experimental model of epilepsy is an acute model that produces spontaneous, recurring seizure-like events (SLEs). To elucidate the nature of spontaneous seizure transitions and their relationship to neuronal excitability, whole-cell recordings from the intact hippocampus were undertaken in vitro, and the response of hippocampal CA3 neurons to Gaussian white noise injection was obtained before and after treatment with various concentrations of low-Mg(2+)/high-K(+) solution. A second-order Volterra kernel model was estimated for each of the input-output response pairs. The spectral energy of the responses was also computed, providing a quantitative measure of neuronal excitability. Changes in duration and amplitude of the first-order kernel correlated positively with the spectral energy increase following treatment with low-Mg(2+)/high-K(+) solution, suggesting that variations in neuronal excitability are coded by the system kernels, in part by differences to the profile of the first-order kernel. In particular, kernel duration was more sensitive than amplitude to changes in spectral energy, and correlated more strongly with kernel area. An oscillator network model of the hippocampal CA3 was constructed to investigate the relationship of kernel duration to network excitability, and the model was able to generate spontaneous, recurrent SLEs by increasing the duration of a mode function analogous to the first-order kernel. Results from the model indicated that disruption to the dynamic balance of feedback was responsible for seizure-like transitions and the observed intermittency of SLEs. A physiological candidate for feedback imbalance consistent with the network model is the destabilizing interaction of extracellular potassium and paroxysmal neuronal activation. Altogether, these results (1) validate a mathematical model for epileptiform activity in the hippocampus by quantifying and subsequently correlating its behavior with an experimental, in vitro model of epilepsy; (2) elucidate a possible mechanism for epileptogenesis; and (3) pave the way for control studies in epilepsy utilizing the herein proposed experimental and mathematical setup.
NASA Astrophysics Data System (ADS)
Zalay, Osbert C.; Serletis, Demitre; Carlen, Peter L.; Bardakjian, Berj L.
2010-06-01
Most forms of epilepsy are marked by seizure episodes that arise spontaneously. The low-magnesium/high-potassium (low-Mg2+/high-K+) experimental model of epilepsy is an acute model that produces spontaneous, recurring seizure-like events (SLEs). To elucidate the nature of spontaneous seizure transitions and their relationship to neuronal excitability, whole-cell recordings from the intact hippocampus were undertaken in vitro, and the response of hippocampal CA3 neurons to Gaussian white noise injection was obtained before and after treatment with various concentrations of low-Mg2+/high-K+ solution. A second-order Volterra kernel model was estimated for each of the input-output response pairs. The spectral energy of the responses was also computed, providing a quantitative measure of neuronal excitability. Changes in duration and amplitude of the first-order kernel correlated positively with the spectral energy increase following treatment with low-Mg2+/high-K+ solution, suggesting that variations in neuronal excitability are coded by the system kernels, in part by differences to the profile of the first-order kernel. In particular, kernel duration was more sensitive than amplitude to changes in spectral energy, and correlated more strongly with kernel area. An oscillator network model of the hippocampal CA3 was constructed to investigate the relationship of kernel duration to network excitability, and the model was able to generate spontaneous, recurrent SLEs by increasing the duration of a mode function analogous to the first-order kernel. Results from the model indicated that disruption to the dynamic balance of feedback was responsible for seizure-like transitions and the observed intermittency of SLEs. A physiological candidate for feedback imbalance consistent with the network model is the destabilizing interaction of extracellular potassium and paroxysmal neuronal activation. Altogether, these results (1) validate a mathematical model for epileptiform activity in the hippocampus by quantifying and subsequently correlating its behavior with an experimental, in vitro model of epilepsy; (2) elucidate a possible mechanism for epileptogenesis; and (3) pave the way for control studies in epilepsy utilizing the herein proposed experimental and mathematical setup.
Gaussian processes with optimal kernel construction for neuro-degenerative clinical onset prediction
NASA Astrophysics Data System (ADS)
Canas, Liane S.; Yvernault, Benjamin; Cash, David M.; Molteni, Erika; Veale, Tom; Benzinger, Tammie; Ourselin, Sébastien; Mead, Simon; Modat, Marc
2018-02-01
Gaussian Processes (GP) are a powerful tool to capture the complex time-variations of a dataset. In the context of medical imaging analysis, they allow a robust modelling even in case of highly uncertain or incomplete datasets. Predictions from GP are dependent of the covariance kernel function selected to explain the data variance. To overcome this limitation, we propose a framework to identify the optimal covariance kernel function to model the data.The optimal kernel is defined as a composition of base kernel functions used to identify correlation patterns between data points. Our approach includes a modified version of the Compositional Kernel Learning (CKL) algorithm, in which we score the kernel families using a new energy function that depends both the Bayesian Information Criterion (BIC) and the explained variance score. We applied the proposed framework to model the progression of neurodegenerative diseases over time, in particular the progression of autosomal dominantly-inherited Alzheimer's disease, and use it to predict the time to clinical onset of subjects carrying genetic mutation.
Data analytics using canonical correlation analysis and Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Rickman, Jeffrey M.; Wang, Yan; Rollett, Anthony D.; Harmer, Martin P.; Compson, Charles
2017-07-01
A canonical correlation analysis is a generic parametric model used in the statistical analysis of data involving interrelated or interdependent input and output variables. It is especially useful in data analytics as a dimensional reduction strategy that simplifies a complex, multidimensional parameter space by identifying a relatively few combinations of variables that are maximally correlated. One shortcoming of the canonical correlation analysis, however, is that it provides only a linear combination of variables that maximizes these correlations. With this in mind, we describe here a versatile, Monte-Carlo based methodology that is useful in identifying non-linear functions of the variables that lead to strong input/output correlations. We demonstrate that our approach leads to a substantial enhancement of correlations, as illustrated by two experimental applications of substantial interest to the materials science community, namely: (1) determining the interdependence of processing and microstructural variables associated with doped polycrystalline aluminas, and (2) relating microstructural decriptors to the electrical and optoelectronic properties of thin-film solar cells based on CuInSe2 absorbers. Finally, we describe how this approach facilitates experimental planning and process control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, X; Yi, J; Xie, C
Purpose: To evaluate the impact of complexity indices on the plan quality and deliverability of volumetric modulated arc therapy (VMAT), and to determine the most significant parameters in the generation of an ideal VMAT plan. Methods: A multi-dimensional exploratory statistical method, canonical correlation analysis (CCA) was adopted to study the correlations between VMAT parameters of complexity, quality and deliverability, as well as their contribution weights with 32 two-arc VMAT nasopharyngeal cancer (NPC) patients and 31 one-arc VMAT prostate cancer patients. Results: The MU per arc (MU/Arc) and MU per control point (MU/CP) of NPC were 337.8±25.2 and 3.7±0.3, respectively, whichmore » were significantly lower than those of prostate cancer patients (MU/Arc : 506.9±95.4, MU/CP : 5.6±1.1). The plan complexity indices indicated that two-arc VMAT plans were more complex than one-arc VMAT plans. Plan quality comparison confirmed that one-arc VMAT plans had a high quality than two-arc VMAT plans. CCA results implied that plan complexity parameters were highly correlated with plan quality with the first two canonical correlations of 0.96, 0.88 (both p<0.001) and significantly correlated with deliverability with the first canonical correlation of 0.79 (p<0.001), plan quality and deliverability was also correlated with the first canonical correlation of 0.71 (p=0.02). Complexity parameters of MU/CP, segment area (SA) per CP, percent of MU/CP less 3 and planning target volume (PTV) were weighted heavily in correlation with plan quality and deliveability . Similar results obtained from individual NPC and prostate CCA analysis. Conclusion: Relationship between complexity, quality, and deliverability parameters were investigated with CCA. MU, SA related parameters and PTV volume were found to have strong effect on the plan quality and deliverability. The presented correlation among different quantified parameters could be used to improve the plan quality and the efficiency of the radiotherapy process when creating a complex VMAT plan.« less
ERIC Educational Resources Information Center
Gao, Ying; Du, Wanyi
2013-01-01
This paper traces 9 non-English major EFL students and collects their oral productions in 4 successive oral exams in 2 years. The canonical correlation analysis approach of SPSS is adopted to study the disfluencies developmental traits under the influence of language acquisition development. We find that as language acquisition develops, the total…
Uncertainty relations, zero point energy and the linear canonical group
NASA Technical Reports Server (NTRS)
Sudarshan, E. C. G.
1993-01-01
The close relationship between the zero point energy, the uncertainty relations, coherent states, squeezed states, and correlated states for one mode is investigated. This group-theoretic perspective enables the parametrization and identification of their multimode generalization. In particular the generalized Schroedinger-Robertson uncertainty relations are analyzed. An elementary method of determining the canonical structure of the generalized correlated states is presented.
ERIC Educational Resources Information Center
Jones, Gerald L.; Westen, Risdon J.
The multivariate approach of canonical correlation was used to assess selection procedures of the Air Force Academy. It was felt that improved student selection methods might reduce the number of dropouts while maintaining or improving the quality of graduates. The method of canonical correlation was designed to maximize prediction of academic…
Yanai, Takeshi; Kurashige, Yuki; Neuscamman, Eric; Chan, Garnet Kin-Lic
2010-01-14
We describe the joint application of the density matrix renormalization group and canonical transformation theory to multireference quantum chemistry. The density matrix renormalization group provides the ability to describe static correlation in large active spaces, while the canonical transformation theory provides a high-order description of the dynamic correlation effects. We demonstrate the joint theory in two benchmark systems designed to test the dynamic and static correlation capabilities of the methods, namely, (i) total correlation energies in long polyenes and (ii) the isomerization curve of the [Cu(2)O(2)](2+) core. The largest complete active spaces and atomic orbital basis sets treated by the joint DMRG-CT theory in these systems correspond to a (24e,24o) active space and 268 atomic orbitals in the polyenes and a (28e,32o) active space and 278 atomic orbitals in [Cu(2)O(2)](2+).
Thermodynamics of pairing in mesoscopic systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sumaryada, Tony; Volya, Alexander
Using numerical and analytical methods implemented for different models, we conduct a systematic study of the thermodynamic properties of pairing correlations in mesoscopic nuclear systems. Various quantities are calculated and analyzed using the exact solution of pairing. An in-depth comparison of canonical, grand canonical, and microcanonical ensembles is conducted. The nature of the pairing phase transition in a small system is of a particular interest. We discuss the onset of discontinuity in the thermodynamic variables, fluctuations, and evolution of zeros of the canonical and grand canonical partition functions in the complex plane. The behavior of the invariant correlational entropy ismore » also studied in the transitional region of interest. The change in the character of the phase transition due to the presence of a magnetic field is discussed along with studies of superconducting thermodynamics.« less
Kernel Tuning and Nonuniform Influence on Optical and Electrochemical Gaps of Bimetal Nanoclusters.
He, Lizhong; Yuan, Jinyun; Xia, Nan; Liao, Lingwen; Liu, Xu; Gan, Zibao; Wang, Chengming; Yang, Jinlong; Wu, Zhikun
2018-03-14
Fine tuning nanoparticles with atomic precision is exciting and challenging and is critical for tuning the properties, understanding the structure-property correlation and determining the practical applications of nanoparticles. Some ultrasmall thiolated metal nanoparticles (metal nanoclusters) have been shown to be precisely doped, and even the protecting staple metal atom could be precisely reduced. However, the precise addition or reduction of the kernel atom while the other metal atoms in the nanocluster remain the same has not been successful until now, to the best of our knowledge. Here, by carefully selecting the protecting ligand with adequate steric hindrance, we synthesized a novel nanocluster in which the kernel can be regarded as that formed by the addition of two silver atoms to both ends of the Pt@Ag 12 icosohedral kernel of the Ag 24 Pt(SR) 18 (SR: thiolate) nanocluster, as revealed by single crystal X-ray crystallography. Interestingly, compared with the previously reported Ag 24 Pt(SR) 18 nanocluster, the as-obtained novel bimetal nanocluster exhibits a similar absorption but a different electrochemical gap. One possible explanation for this result is that the kernel tuning does not essentially change the electronic structure, but obviously influences the charge on the Pt@Ag 12 kernel, as demonstrated by natural population analysis, thus possibly resulting in the large electrochemical gap difference between the two nanoclusters. This work not only provides a novel strategy to tune metal nanoclusters but also reveals that the kernel change does not necessarily alter the optical and electrochemical gaps in a uniform manner, which has important implications for the structure-property correlation of nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franco-Pérez, Marco, E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx; Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México, D.F. 09340; Ayers, Paul W., E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx
2015-12-28
We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dualmore » descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.« less
Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto
2015-12-28
We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.
A Kernel-based Lagrangian method for imperfectly-mixed chemical reactions
NASA Astrophysics Data System (ADS)
Schmidt, Michael J.; Pankavich, Stephen; Benson, David A.
2017-05-01
Current Lagrangian (particle-tracking) algorithms used to simulate diffusion-reaction equations must employ a certain number of particles to properly emulate the system dynamics-particularly for imperfectly-mixed systems. The number of particles is tied to the statistics of the initial concentration fields of the system at hand. Systems with shorter-range correlation and/or smaller concentration variance require more particles, potentially limiting the computational feasibility of the method. For the well-known problem of bimolecular reaction, we show that using kernel-based, rather than Dirac delta, particles can significantly reduce the required number of particles. We derive the fixed width of a Gaussian kernel for a given reduced number of particles that analytically eliminates the error between kernel and Dirac solutions at any specified time. We also show how to solve for the fixed kernel size by minimizing the squared differences between solutions over any given time interval. Numerical results show that the width of the kernel should be kept below about 12% of the domain size, and that the analytic equations used to derive kernel width suffer significantly from the neglect of higher-order moments. The simulations with a kernel width given by least squares minimization perform better than those made to match at one specific time. A heuristic time-variable kernel size, based on the previous results, performs on par with the least squares fixed kernel size.
Nakarmi, Ukash; Wang, Yanhua; Lyu, Jingyuan; Liang, Dong; Ying, Leslie
2017-11-01
While many low rank and sparsity-based approaches have been developed for accelerated dynamic magnetic resonance imaging (dMRI), they all use low rankness or sparsity in input space, overlooking the intrinsic nonlinear correlation in most dMRI data. In this paper, we propose a kernel-based framework to allow nonlinear manifold models in reconstruction from sub-Nyquist data. Within this framework, many existing algorithms can be extended to kernel framework with nonlinear models. In particular, we have developed a novel algorithm with a kernel-based low-rank model generalizing the conventional low rank formulation. The algorithm consists of manifold learning using kernel, low rank enforcement in feature space, and preimaging with data consistency. Extensive simulation and experiment results show that the proposed method surpasses the conventional low-rank-modeled approaches for dMRI.
NASA Astrophysics Data System (ADS)
Kidon, Lyran; Wilner, Eli Y.; Rabani, Eran
2015-12-01
The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima-Zwanzig-Mori time-convolution (TC) and the other on the Tokuyama-Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called "memory kernel" or "generator," going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operator in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green's function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed.
Mallikarjuna, Mallana Gowdra; Thirunavukkarasu, Nepolean; Hossain, Firoz; Bhat, Jayant S.; Jha, Shailendra K.; Rathore, Abhishek; Agrawal, Pawan Kumar; Pattanayak, Arunava; Reddy, Sokka S.; Gularia, Satish Kumar; Singh, Anju Mahendru; Manjaiah, Kanchikeri Math; Gupta, Hari Shanker
2015-01-01
Deficiency of iron and zinc causes micronutrient malnutrition or hidden hunger, which severely affects ~25% of global population. Genetic biofortification of maize has emerged as cost effective and sustainable approach in addressing malnourishment of iron and zinc deficiency. Therefore, understanding the genetic variation and stability of kernel micronutrients and grain yield of the maize inbreds is a prerequisite in breeding micronutrient-rich high yielding hybrids to alleviate micronutrient malnutrition. We report here, the genetic variability and stability of the kernel micronutrients concentration and grain yield in a set of 50 maize inbred panel selected from the national and the international centres that were raised at six different maize growing regions of India. Phenotyping of kernels using inductively coupled plasma mass spectrometry (ICP-MS) revealed considerable variability for kernel minerals concentration (iron: 18.88 to 47.65 mg kg–1; zinc: 5.41 to 30.85 mg kg–1; manganese: 3.30 to17.73 mg kg–1; copper: 0.53 to 5.48 mg kg–1) and grain yield (826.6 to 5413 kg ha–1). Significant positive correlation was observed between kernel iron and zinc within (r = 0.37 to r = 0.52, p < 0.05) and across locations (r = 0.44, p < 0.01). Variance components of the additive main effects and multiplicative interactions (AMMI) model showed significant genotype and genotype × environment interaction for kernel minerals concentration and grain yield. Most of the variation was contributed by genotype main effect for kernel iron (39.6%), manganese (41.34%) and copper (41.12%), and environment main effects for both kernel zinc (40.5%) and grain yield (37.0%). Genotype main effect plus genotype-by-environment interaction (GGE) biplot identified several mega environments for kernel minerals and grain yield. Comparison of stability parameters revealed AMMI stability value (ASV) as the better representative of the AMMI stability parameters. Dynamic stability parameter GGE distance (GGED) showed strong and positive correlation with both mean kernel concentrations and grain yield. Inbreds (CM-501, SKV-775, HUZM-185) identified from the present investigation will be useful in developing micronutrient-rich as well as stable maize hybrids without compromising grain yield. PMID:26406470
Mallikarjuna, Mallana Gowdra; Thirunavukkarasu, Nepolean; Hossain, Firoz; Bhat, Jayant S; Jha, Shailendra K; Rathore, Abhishek; Agrawal, Pawan Kumar; Pattanayak, Arunava; Reddy, Sokka S; Gularia, Satish Kumar; Singh, Anju Mahendru; Manjaiah, Kanchikeri Math; Gupta, Hari Shanker
2015-01-01
Deficiency of iron and zinc causes micronutrient malnutrition or hidden hunger, which severely affects ~25% of global population. Genetic biofortification of maize has emerged as cost effective and sustainable approach in addressing malnourishment of iron and zinc deficiency. Therefore, understanding the genetic variation and stability of kernel micronutrients and grain yield of the maize inbreds is a prerequisite in breeding micronutrient-rich high yielding hybrids to alleviate micronutrient malnutrition. We report here, the genetic variability and stability of the kernel micronutrients concentration and grain yield in a set of 50 maize inbred panel selected from the national and the international centres that were raised at six different maize growing regions of India. Phenotyping of kernels using inductively coupled plasma mass spectrometry (ICP-MS) revealed considerable variability for kernel minerals concentration (iron: 18.88 to 47.65 mg kg(-1); zinc: 5.41 to 30.85 mg kg(-1); manganese: 3.30 to 17.73 mg kg(-1); copper: 0.53 to 5.48 mg kg(-1)) and grain yield (826.6 to 5413 kg ha(-1)). Significant positive correlation was observed between kernel iron and zinc within (r = 0.37 to r = 0.52, p < 0.05) and across locations (r = 0.44, p < 0.01). Variance components of the additive main effects and multiplicative interactions (AMMI) model showed significant genotype and genotype × environment interaction for kernel minerals concentration and grain yield. Most of the variation was contributed by genotype main effect for kernel iron (39.6%), manganese (41.34%) and copper (41.12%), and environment main effects for both kernel zinc (40.5%) and grain yield (37.0%). Genotype main effect plus genotype-by-environment interaction (GGE) biplot identified several mega environments for kernel minerals and grain yield. Comparison of stability parameters revealed AMMI stability value (ASV) as the better representative of the AMMI stability parameters. Dynamic stability parameter GGE distance (GGED) showed strong and positive correlation with both mean kernel concentrations and grain yield. Inbreds (CM-501, SKV-775, HUZM-185) identified from the present investigation will be useful in developing micronutrient-rich as well as stable maize hybrids without compromising grain yield.
Liao, Lingwen; Zhuang, Shengli; Wang, Pu; Xu, Yanan; Yan, Nan; Dong, Hongwei; Wang, Chengming; Zhao, Yan; Xia, Nan; Li, Jin; Deng, Haiteng; Pei, Yong; Tian, Shi-Kai; Wu, Zhikun
2017-10-02
Although face-centered cubic (fcc), body-centered cubic (bcc), hexagonal close-packed (hcp), and other structured gold nanoclusters have been reported, it was unclear whether gold nanoclusters with mix-packed (fcc and non-fcc) kernels exist, and the correlation between kernel packing and the properties of gold nanoclusters is unknown. A Au 49 (2,4-DMBT) 27 nanocluster with a shell electron count of 22 has now been been synthesized and structurally resolved by single-crystal X-ray crystallography, which revealed that Au 49 (2,4-DMBT) 27 contains a unique Au 34 kernel consisting of one quasi-fcc-structured Au 21 and one non-fcc-structured Au 13 unit (where 2,4-DMBTH=2,4-dimethylbenzenethiol). Further experiments revealed that the kernel packing greatly influences the electrochemical gap (EG) and the fcc structure has a larger EG than the investigated non-fcc structure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
An alternative covariance estimator to investigate genetic heterogeneity in populations.
Heslot, Nicolas; Jannink, Jean-Luc
2015-11-26
For genomic prediction and genome-wide association studies (GWAS) using mixed models, covariance between individuals is estimated using molecular markers. Based on the properties of mixed models, using available molecular data for prediction is optimal if this covariance is known. Under this assumption, adding individuals to the analysis should never be detrimental. However, some empirical studies showed that increasing training population size decreased prediction accuracy. Recently, results from theoretical models indicated that even if marker density is high and the genetic architecture of traits is controlled by many loci with small additive effects, the covariance between individuals, which depends on relationships at causal loci, is not always well estimated by the whole-genome kinship. We propose an alternative covariance estimator named K-kernel, to account for potential genetic heterogeneity between populations that is characterized by a lack of genetic correlation, and to limit the information flow between a priori unknown populations in a trait-specific manner. This is similar to a multi-trait model and parameters are estimated by REML and, in extreme cases, it can allow for an independent genetic architecture between populations. As such, K-kernel is useful to study the problem of the design of training populations. K-kernel was compared to other covariance estimators or kernels to examine its fit to the data, cross-validated accuracy and suitability for GWAS on several datasets. It provides a significantly better fit to the data than the genomic best linear unbiased prediction model and, in some cases it performs better than other kernels such as the Gaussian kernel, as shown by an empirical null distribution. In GWAS simulations, alternative kernels control type I errors as well as or better than the classical whole-genome kinship and increase statistical power. No or small gains were observed in cross-validated prediction accuracy. This alternative covariance estimator can be used to gain insight into trait-specific genetic heterogeneity by identifying relevant sub-populations that lack genetic correlation between them. Genetic correlation can be 0 between identified sub-populations by performing automatic selection of relevant sets of individuals to be included in the training population. It may also increase statistical power in GWAS.
ERIC Educational Resources Information Center
Holland, Denise D.; Piper, Randy T.
2016-01-01
Intellectual goods can follow the same pattern as physical goods with the product life cycle of birth, growth, maturity, and decline. For the intellectual good of technological, pedagogical, and content knowledge (TPACK), its birth began with Shulman (1986, 1987). Canonical correlation analysis (CCA) was used to test the relationships among five…
NASA Astrophysics Data System (ADS)
Fang, Leyuan; Wang, Chong; Li, Shutao; Yan, Jun; Chen, Xiangdong; Rabbani, Hossein
2017-11-01
We present an automatic method, termed as the principal component analysis network with composite kernel (PCANet-CK), for the classification of three-dimensional (3-D) retinal optical coherence tomography (OCT) images. Specifically, the proposed PCANet-CK method first utilizes the PCANet to automatically learn features from each B-scan of the 3-D retinal OCT images. Then, multiple kernels are separately applied to a set of very important features of the B-scans and these kernels are fused together, which can jointly exploit the correlations among features of the 3-D OCT images. Finally, the fused (composite) kernel is incorporated into an extreme learning machine for the OCT image classification. We tested our proposed algorithm on two real 3-D spectral domain OCT (SD-OCT) datasets (of normal subjects and subjects with the macular edema and age-related macular degeneration), which demonstrated its effectiveness.
Kandianis, Catherine B.; Michenfelder, Abigail S.; Simmons, Susan J.; Grusak, Michael A.; Stapleton, Ann E.
2013-01-01
The improvement of grain nutrient profiles for essential minerals and vitamins through breeding strategies is a target important for agricultural regions where nutrient poor crops like maize contribute a large proportion of the daily caloric intake. Kernel iron concentration in maize exhibits a broad range. However, the magnitude of genotype by environment (GxE) effects on this trait reduces the efficacy and predictability of selection programs, particularly when challenged with abiotic stress such as water and nitrogen limitations. Selection has also been limited by an inverse correlation between kernel iron concentration and the yield component of kernel size in target environments. Using 25 maize inbred lines for which extensive genome sequence data is publicly available, we evaluated the response of kernel iron density and kernel mass to water and nitrogen limitation in a managed field stress experiment using a factorial design. To further understand GxE interactions we used partition analysis to characterize response of kernel iron and weight to abiotic stressors among all genotypes, and observed two patterns: one characterized by higher kernel iron concentrations in control over stress conditions, and another with higher kernel iron concentration under drought and combined stress conditions. Breeding efforts for this nutritional trait could exploit these complementary responses through combinations of favorable allelic variation from these already well-characterized genetic stocks. PMID:24363659
Genomic Prediction of Genotype × Environment Interaction Kernel Regression Models.
Cuevas, Jaime; Crossa, José; Soberanis, Víctor; Pérez-Elizalde, Sergio; Pérez-Rodríguez, Paulino; Campos, Gustavo de Los; Montesinos-López, O A; Burgueño, Juan
2016-11-01
In genomic selection (GS), genotype × environment interaction (G × E) can be modeled by a marker × environment interaction (M × E). The G × E may be modeled through a linear kernel or a nonlinear (Gaussian) kernel. In this study, we propose using two nonlinear Gaussian kernels: the reproducing kernel Hilbert space with kernel averaging (RKHS KA) and the Gaussian kernel with the bandwidth estimated through an empirical Bayesian method (RKHS EB). We performed single-environment analyses and extended to account for G × E interaction (GBLUP-G × E, RKHS KA-G × E and RKHS EB-G × E) in wheat ( L.) and maize ( L.) data sets. For single-environment analyses of wheat and maize data sets, RKHS EB and RKHS KA had higher prediction accuracy than GBLUP for all environments. For the wheat data, the RKHS KA-G × E and RKHS EB-G × E models did show up to 60 to 68% superiority over the corresponding single environment for pairs of environments with positive correlations. For the wheat data set, the models with Gaussian kernels had accuracies up to 17% higher than that of GBLUP-G × E. For the maize data set, the prediction accuracy of RKHS EB-G × E and RKHS KA-G × E was, on average, 5 to 6% higher than that of GBLUP-G × E. The superiority of the Gaussian kernel models over the linear kernel is due to more flexible kernels that accounts for small, more complex marker main effects and marker-specific interaction effects. Copyright © 2016 Crop Science Society of America.
Mapping QTLs controlling kernel dimensions in a wheat inter-varietal RIL mapping population.
Cheng, Ruiru; Kong, Zhongxin; Zhang, Liwei; Xie, Quan; Jia, Haiyan; Yu, Dong; Huang, Yulong; Ma, Zhengqiang
2017-07-01
Seven kernel dimension QTLs were identified in wheat, and kernel thickness was found to be the most important dimension for grain weight improvement. Kernel morphology and weight of wheat (Triticum aestivum L.) affect both yield and quality; however, the genetic basis of these traits and their interactions has not been fully understood. In this study, to investigate the genetic factors affecting kernel morphology and the association of kernel morphology traits with kernel weight, kernel length (KL), width (KW) and thickness (KT) were evaluated, together with hundred-grain weight (HGW), in a recombinant inbred line population derived from Nanda2419 × Wangshuibai, with data from five trials (two different locations over 3 years). The results showed that HGW was more closely correlated with KT and KW than with KL. A whole genome scan revealed four QTLs for KL, one for KW and two for KT, distributed on five different chromosomes. Of them, QKl.nau-2D for KL, and QKt.nau-4B and QKt.nau-5A for KT were newly identified major QTLs for the respective traits, explaining up to 32.6 and 41.5% of the phenotypic variations, respectively. Increase of KW and KT and reduction of KL/KT and KW/KT ratios always resulted in significant higher grain weight. Lines combining the Nanda 2419 alleles of the 4B and 5A intervals had wider, thicker, rounder kernels and a 14% higher grain weight in the genotype-based analysis. A strong, negative linear relationship of the KW/KT ratio with grain weight was observed. It thus appears that kernel thickness is the most important kernel dimension factor in wheat improvement for higher yield. Mapping and marker identification of the kernel dimension-related QTLs definitely help realize the breeding goals.
Liu, Wei; Wang, Zhen-Zhong; Qing, Jian-Ping; Li, Hong-Juan; Xiao, Wei
2014-01-01
Background: Peach kernels which contain kinds of fatty acids play an important role in the regulation of a variety of physiological and biological functions. Objective: To establish an innovative and rapid diffuse reflectance near-infrared spectroscopy (DR-NIR) analysis method along with chemometric techniques for the qualitative and quantitative determination of a peach kernel. Materials and Methods: Peach kernel samples from nine different origins were analyzed with high-performance liquid chromatography (HPLC) as a reference method. DR-NIR is in the spectral range 1100-2300 nm. Principal component analysis (PCA) and partial least squares regression (PLSR) algorithm were applied to obtain prediction models, The Savitzky-Golay derivative and first derivative were adopted for the spectral pre-processing, PCA was applied to classify the varieties of those samples. For the quantitative calibration, the models of linoleic and oleinic acids were established with the PLSR algorithm and the optimal principal component (PC) numbers were selected with leave-one-out (LOO) cross-validation. The established models were evaluated with the root mean square error of deviation (RMSED) and corresponding correlation coefficients (R2). Results: The PCA results of DR-NIR spectra yield clear classification of the two varieties of peach kernel. PLSR had a better predictive ability. The correlation coefficients of the two calibration models were above 0.99, and the RMSED of linoleic and oleinic acids were 1.266% and 1.412%, respectively. Conclusion: The DR-NIR combined with PCA and PLSR algorithm could be used efficiently to identify and quantify peach kernels and also help to solve variety problem. PMID:25422544
ERIC Educational Resources Information Center
Jordan, Lawrence A.
1975-01-01
Calls attention to several errors in a recent application of canonical correlation analysis. The reanalysis contradicts Cropley's conclusion that "creativity tests can be said to possess reasonable and encouraging long-range predictive validity." (Author/SDH)
Kebede, Aida Z; Woldemariam, Tsegaye; Reid, Lana M; Harris, Linda J
2016-01-01
Unique and co-localized chromosomal regions affecting Gibberella ear rot disease resistance and correlated agronomic traits were identified in maize. Dissecting the mechanisms underlying resistance to Gibberella ear rot (GER) disease in maize provides insight towards more informed breeding. To this goal, we evaluated 410 recombinant inbred lines (RIL) for GER resistance over three testing years using silk channel and kernel inoculation techniques. RILs were also evaluated for agronomic traits like days to silking, husk cover, and kernel drydown rate. The RILs showed significant genotypic differences for all traits with above average to high heritability estimates. Significant (P < 0.01) but weak genotypic correlations were observed between disease severity and agronomic traits, indicating the involvement of agronomic traits in disease resistance. Common QTLs were detected for GER resistance and kernel drydown rate, suggesting the existence of pleiotropic genes that could be exploited to improve both traits at the same time. The QTLs identified for silk and kernel resistance shared some common regions on chromosomes 1, 2, and 8 and also had some regions specific to each tissue on chromosomes 9 and 10. Thus, effective GER resistance breeding could be achieved by considering screening methods that allow exploitation of tissue-specific disease resistance mechanisms and include kernel drydown rate either in an index or as indirect selection criterion.
Two-particle correlation function and dihadron correlation approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vechernin, V. V., E-mail: v.vechernin@spbu.ru; Ivanov, K. O.; Neverov, D. I.
It is shown that, in the case of asymmetric nuclear interactions, the application of the traditional dihadron correlation approach to determining a two-particle correlation function C may lead to a form distorted in relation to the canonical pair correlation function {sub C}{sup 2}. This result was obtained both by means of exact analytic calculations of correlation functions within a simple string model for proton–nucleus and deuteron–nucleus collisions and by means of Monte Carlo simulations based on employing the HIJING event generator. It is also shown that the method based on studying multiplicity correlations in two narrow observation windows separated inmore » rapidity makes it possible to determine correctly the canonical pair correlation function C{sub 2} for all cases, including the case where the rapidity distribution of product particles is not uniform.« less
Multiset canonical correlations analysis and multispectral, truly multitemporal remote sensing data.
Nielsen, Allan Aasbjerg
2002-01-01
This paper describes two- and multiset canonical correlations analysis (CCA) for data fusion, multisource, multiset, or multitemporal exploratory data analysis. These techniques transform multivariate multiset data into new orthogonal variables called canonical variates (CVs) which, when applied in remote sensing, exhibit ever-decreasing similarity (as expressed by correlation measures) over sets consisting of 1) spectral variables at fixed points in time (R-mode analysis), or 2) temporal variables with fixed wavelengths (T-mode analysis). The CVs are invariant to linear and affine transformations of the original variables within sets which means, for example, that the R-mode CVs are insensitive to changes over time in offset and gain in a measuring device. In a case study, CVs are calculated from Landsat Thematic Mapper (TM) data with six spectral bands over six consecutive years. Both Rand T-mode CVs clearly exhibit the desired characteristic: they show maximum similarity for the low-order canonical variates and minimum similarity for the high-order canonical variates. These characteristics are seen both visually and in objective measures. The results from the multiset CCA R- and T-mode analyses are very different. This difference is ascribed to the noise structure in the data. The CCA methods are related to partial least squares (PLS) methods. This paper very briefly describes multiset CCA-based multiset PLS. Also, the CCA methods can be applied as multivariate extensions to empirical orthogonal functions (EOF) techniques. Multiset CCA is well-suited for inclusion in geographical information systems (GIS).
Debebe, Abel; Singh, Harijat; Tefera, Hailu
2014-01-01
This experiment was conducted at Debre Zeit and Akaki during 2004-2005 cropping season on F2-derived F4 bulk families of three crosses, viz, DZ-01-974 x DZ-01-2786, DZ-01-974 x DZ-Cr-37 and Alba x Kaye Murri. To estimate the correlations and path coefficients between yield and yield components, 63 F4 families were taken randomly from each of the three crosses. The 189 F4 families, five parents and two checks were space planted following in 14 x 14 simple lattice design. Study of associations among traits indicated that yield was positively associated with shoot biomass, harvest index, lodging index and panicle kernel weight at phenotypic level at Debre Zeit. At Akaki, yield had significant positive correlation with shoot biomass, harvest index, plant height, panicle length and panicle weight. At genotypic level, grain yield per plot exhibited positive association with harvest index, shoot biomass, lodging index and panicle kernel weight at Debre Zeit. By contrast, days to heading, days to maturity, plant height and panicle length showed negative association with yield. At Akaki, kernel yield per plot was positively correlated at genotypic level with all the traits considered where lodging index had the highest correlation followed by shoot biomass, panicle kernel weight and harvest index. Path coefficient analysis at both phenotypic and genotypic levels for both the locations suggested those shoot biomass and harvest indexes are the two important yield determining traits. These two traits might be useful in indirect selection for yield improvement in the material generated from the three crosses under consideration.
Grey Language Hesitant Fuzzy Group Decision Making Method Based on Kernel and Grey Scale
Diao, Yuzhu; Hu, Aqin
2018-01-01
Based on grey language multi-attribute group decision making, a kernel and grey scale scoring function is put forward according to the definition of grey language and the meaning of the kernel and grey scale. The function introduces grey scale into the decision-making method to avoid information distortion. This method is applied to the grey language hesitant fuzzy group decision making, and the grey correlation degree is used to sort the schemes. The effectiveness and practicability of the decision-making method are further verified by the industry chain sustainable development ability evaluation example of a circular economy. Moreover, its simplicity and feasibility are verified by comparing it with the traditional grey language decision-making method and the grey language hesitant fuzzy weighted arithmetic averaging (GLHWAA) operator integration method after determining the index weight based on the grey correlation. PMID:29498699
Grey Language Hesitant Fuzzy Group Decision Making Method Based on Kernel and Grey Scale.
Li, Qingsheng; Diao, Yuzhu; Gong, Zaiwu; Hu, Aqin
2018-03-02
Based on grey language multi-attribute group decision making, a kernel and grey scale scoring function is put forward according to the definition of grey language and the meaning of the kernel and grey scale. The function introduces grey scale into the decision-making method to avoid information distortion. This method is applied to the grey language hesitant fuzzy group decision making, and the grey correlation degree is used to sort the schemes. The effectiveness and practicability of the decision-making method are further verified by the industry chain sustainable development ability evaluation example of a circular economy. Moreover, its simplicity and feasibility are verified by comparing it with the traditional grey language decision-making method and the grey language hesitant fuzzy weighted arithmetic averaging (GLHWAA) operator integration method after determining the index weight based on the grey correlation.
NASA Astrophysics Data System (ADS)
Chmiel, Malgorzata; Roux, Philippe; Herrmann, Philippe; Rondeleux, Baptiste; Wathelet, Marc
2018-05-01
We investigated the construction of diffraction kernels for surface waves using two-point convolution and/or correlation from land active seismic data recorded in the context of exploration geophysics. The high density of controlled sources and receivers, combined with the application of the reciprocity principle, allows us to retrieve two-dimensional phase-oscillation diffraction kernels (DKs) of surface waves between any two source or receiver points in the medium at each frequency (up to 15 Hz, at least). These DKs are purely data-based as no model calculations and no synthetic data are needed. They naturally emerge from the interference patterns of the recorded wavefields projected on the dense array of sources and/or receivers. The DKs are used to obtain multi-mode dispersion relations of Rayleigh waves, from which near-surface shear velocity can be extracted. Using convolution versus correlation with a grid of active sources is an important step in understanding the physics of the retrieval of surface wave Green's functions. This provides the foundation for future studies based on noise sources or active sources with a sparse spatial distribution.
A Comparison of Three Multivariate Models for Estimating Test Battery Reliability.
ERIC Educational Resources Information Center
Wood, Terry M.; Safrit, Margaret J.
1987-01-01
A comparison of three multivariate models (canonical reliability model, maximum generalizability model, canonical correlation model) for estimating test battery reliability indicated that the maximum generalizability model showed the least degree of bias, smallest errors in estimation, and the greatest relative efficiency across all experimental…
Pollen source effects on growth of kernel structures and embryo chemical compounds in maize.
Tanaka, W; Mantese, A I; Maddonni, G A
2009-08-01
Previous studies have reported effects of pollen source on the oil concentration of maize (Zea mays) kernels through modifications to both the embryo/kernel ratio and embryo oil concentration. The present study expands upon previous analyses by addressing pollen source effects on the growth of kernel structures (i.e. pericarp, endosperm and embryo), allocation of embryo chemical constituents (i.e. oil, protein, starch and soluble sugars), and the anatomy and histology of the embryos. Maize kernels with different oil concentration were obtained from pollinations with two parental genotypes of contrasting oil concentration. The dynamics of the growth of kernel structures and allocation of embryo chemical constituents were analysed during the post-flowering period. Mature kernels were dissected to study the anatomy (embryonic axis and scutellum) and histology [cell number and cell size of the scutellums, presence of sub-cellular structures in scutellum tissue (starch granules, oil and protein bodies)] of the embryos. Plants of all crosses exhibited a similar kernel number and kernel weight. Pollen source modified neither the growth period of kernel structures, nor pericarp growth rate. By contrast, pollen source determined a trade-off between embryo and endosperm growth rates, which impacted on the embryo/kernel ratio of mature kernels. Modifications to the embryo size were mediated by scutellum cell number. Pollen source also affected (P < 0.01) allocation of embryo chemical compounds. Negative correlations among embryo oil concentration and those of starch (r = 0.98, P < 0.01) and soluble sugars (r = 0.95, P < 0.05) were found. Coincidently, embryos with low oil concentration had an increased (P < 0.05-0.10) scutellum cell area occupied by starch granules and fewer oil bodies. The effects of pollen source on both embryo/kernel ratio and allocation of embryo chemicals seems to be related to the early established sink strength (i.e. sink size and sink activity) of the embryos.
Comparison of Penalty Functions for Sparse Canonical Correlation Analysis
Chalise, Prabhakar; Fridley, Brooke L.
2011-01-01
Canonical correlation analysis (CCA) is a widely used multivariate method for assessing the association between two sets of variables. However, when the number of variables far exceeds the number of subjects, such in the case of large-scale genomic studies, the traditional CCA method is not appropriate. In addition, when the variables are highly correlated the sample covariance matrices become unstable or undefined. To overcome these two issues, sparse canonical correlation analysis (SCCA) for multiple data sets has been proposed using a Lasso type of penalty. However, these methods do not have direct control over sparsity of solution. An additional step that uses Bayesian Information Criterion (BIC) has also been suggested to further filter out unimportant features. In this paper, a comparison of four penalty functions (Lasso, Elastic-net, SCAD and Hard-threshold) for SCCA with and without the BIC filtering step have been carried out using both real and simulated genotypic and mRNA expression data. This study indicates that the SCAD penalty with BIC filter would be a preferable penalty function for application of SCCA to genomic data. PMID:21984855
A New Ensemble Canonical Correlation Prediction Scheme for Seasonal Precipitation
NASA Technical Reports Server (NTRS)
Kim, Kyu-Myong; Lau, William K. M.; Li, Guilong; Shen, Samuel S. P.; Lau, William K. M. (Technical Monitor)
2001-01-01
Department of Mathematical Sciences, University of Alberta, Edmonton, Canada This paper describes the fundamental theory of the ensemble canonical correlation (ECC) algorithm for the seasonal climate forecasting. The algorithm is a statistical regression sch eme based on maximal correlation between the predictor and predictand. The prediction error is estimated by a spectral method using the basis of empirical orthogonal functions. The ECC algorithm treats the predictors and predictands as continuous fields and is an improvement from the traditional canonical correlation prediction. The improvements include the use of area-factor, estimation of prediction error, and the optimal ensemble of multiple forecasts. The ECC is applied to the seasonal forecasting over various parts of the world. The example presented here is for the North America precipitation. The predictor is the sea surface temperature (SST) from different ocean basins. The Climate Prediction Center's reconstructed SST (1951-1999) is used as the predictor's historical data. The optimally interpolated global monthly precipitation is used as the predictand?s historical data. Our forecast experiments show that the ECC algorithm renders very high skill and the optimal ensemble is very important to the high value.
NASA Astrophysics Data System (ADS)
Karageorgiou, Elissaios; Lewis, Scott M.; Riley McCarten, J.; Leuthold, Arthur C.; Hemmy, Laura S.; McPherson, Susan E.; Rottunda, Susan J.; Rubins, David M.; Georgopoulos, Apostolos P.
2012-10-01
In previous work (Georgopoulos et al 2007 J. Neural Eng. 4 349-55) we reported on the use of magnetoencephalographic (MEG) synchronous neural interactions (SNI) as a functional biomarker in Alzheimer's dementia (AD) diagnosis. Here we report on the application of canonical correlation analysis to investigate the relations between SNI and cognitive neuropsychological (NP) domains in AD patients. First, we performed individual correlations between each SNI and each NP, which provided an initial link between SNI and specific cognitive tests. Next, we performed factor analysis on each set, followed by a canonical correlation analysis between the derived SNI and NP factors. This last analysis optimally associated the entire MEG signal with cognitive function. The results revealed that SNI as a whole were mostly associated with memory and language, and, slightly less, executive function, processing speed and visuospatial abilities, thus differentiating functions subserved by the frontoparietal and the temporal cortices. These findings provide a direct interpretation of the information carried by the SNI and set the basis for identifying specific neural disease phenotypes according to cognitive deficits.
NASA Astrophysics Data System (ADS)
Giraud, Olivier; Grabsch, Aurélien; Texier, Christophe
2018-05-01
We study statistical properties of N noninteracting identical bosons or fermions in the canonical ensemble. We derive several general representations for the p -point correlation function of occupation numbers n1⋯np ¯. We demonstrate that it can be expressed as a ratio of two p ×p determinants involving the (canonical) mean occupations n1¯, ..., np¯, which can themselves be conveniently expressed in terms of the k -body partition functions (with k ≤N ). We draw some connection with the theory of symmetric functions and obtain an expression of the correlation function in terms of Schur functions. Our findings are illustrated by revisiting the problem of Bose-Einstein condensation in a one-dimensional harmonic trap, for which we get analytical results. We get the moments of the occupation numbers and the correlation between ground-state and excited-state occupancies. In the temperature regime dominated by quantum correlations, the distribution of the ground-state occupancy is shown to be a truncated Gumbel law. The Gumbel law, describing extreme-value statistics, is obtained when the temperature is much smaller than the Bose-Einstein temperature.
NASA Astrophysics Data System (ADS)
Okebukola, Peter Akinsola
The relationship between science laboratory behavior strategies of students and performance in and attitude to laboratory work was investigated in an observational study of 160 laboratory sessions involving 600 class five (eleventh grade) biology students. Zero-order correlations between the behavior strategies and outcome measures reveal a set of low to strong relationships. Transmitting information, listening and nonlesson related behaviors exhibited low correlations with practical skills and the attitude measure. The correlations between manipulating apparatus and observation with practical skills measures were found to be strong. Multiple correlation analysis revealed that the behaviors of students in the laboratories observed accounted for a large percentage of the variance in the scores on manipulative skills and a low percentage on interpretation of data, responsibility, initiative, and work habits. One significant canonical correlation emerged. The loadings on this canonical variate indicate that the practical skills measures, i.e., planning and design, manipulative skills and conduct of experiments, observation and recording of data, and attitude to laboratory work made primary contributions to the canonical relationship. Suggestions as to how students can be encouraged to go beyond cookbook-like laboratories and develop a more favorable attitude to laboratory work are made.
Bayesian parameter estimation for the Wnt pathway: an infinite mixture models approach.
Koutroumpas, Konstantinos; Ballarini, Paolo; Votsi, Irene; Cournède, Paul-Henry
2016-09-01
Likelihood-free methods, like Approximate Bayesian Computation (ABC), have been extensively used in model-based statistical inference with intractable likelihood functions. When combined with Sequential Monte Carlo (SMC) algorithms they constitute a powerful approach for parameter estimation and model selection of mathematical models of complex biological systems. A crucial step in the ABC-SMC algorithms, significantly affecting their performance, is the propagation of a set of parameter vectors through a sequence of intermediate distributions using Markov kernels. In this article, we employ Dirichlet process mixtures (DPMs) to design optimal transition kernels and we present an ABC-SMC algorithm with DPM kernels. We illustrate the use of the proposed methodology using real data for the canonical Wnt signaling pathway. A multi-compartment model of the pathway is developed and it is compared to an existing model. The results indicate that DPMs are more efficient in the exploration of the parameter space and can significantly improve ABC-SMC performance. In comparison to alternative sampling schemes that are commonly used, the proposed approach can bring potential benefits in the estimation of complex multimodal distributions. The method is used to estimate the parameters and the initial state of two models of the Wnt pathway and it is shown that the multi-compartment model fits better the experimental data. Python scripts for the Dirichlet Process Gaussian Mixture model and the Gibbs sampler are available at https://sites.google.com/site/kkoutroumpas/software konstantinos.koutroumpas@ecp.fr. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Multivariate analysis of meat production traits in Murciano-Granadina goat kids.
Zurita-Herrera, P; Delgado, J V; Argüello, A; Camacho, M E
2011-07-01
Growth, carcass quality, and meat quality data from Murciano-Granadina kids (n=61) raised under three different systems were collected. Canonical discriminatory analysis and cluster analysis of the entire meat production process and its stages were performed using the rearing systems as grouping criteria. All comparisons resulted in significant differences and indicated the existence of three products with different quality characteristics as a result of the three rearing systems. Differences among groups were greater when comparing carcass and meat qualities as compared with growth differences. The paired analyses of canonical correlations among groups of variables integrated in growth, carcass and meat quality, resulted in all being statistically significant, pointing out the canonical correlation coefficient between carcass quality and meat quality. Copyright © 2011 Elsevier Ltd. All rights reserved.
Chen, Tianle; Zeng, Donglin
2015-01-01
Summary Predicting disease risk and progression is one of the main goals in many clinical research studies. Cohort studies on the natural history and etiology of chronic diseases span years and data are collected at multiple visits. Although kernel-based statistical learning methods are proven to be powerful for a wide range of disease prediction problems, these methods are only well studied for independent data but not for longitudinal data. It is thus important to develop time-sensitive prediction rules that make use of the longitudinal nature of the data. In this paper, we develop a novel statistical learning method for longitudinal data by introducing subject-specific short-term and long-term latent effects through a designed kernel to account for within-subject correlation of longitudinal measurements. Since the presence of multiple sources of data is increasingly common, we embed our method in a multiple kernel learning framework and propose a regularized multiple kernel statistical learning with random effects to construct effective nonparametric prediction rules. Our method allows easy integration of various heterogeneous data sources and takes advantage of correlation among longitudinal measures to increase prediction power. We use different kernels for each data source taking advantage of the distinctive feature of each data modality, and then optimally combine data across modalities. We apply the developed methods to two large epidemiological studies, one on Huntington's disease and the other on Alzheimer's Disease (Alzheimer's Disease Neuroimaging Initiative, ADNI) where we explore a unique opportunity to combine imaging and genetic data to study prediction of mild cognitive impairment, and show a substantial gain in performance while accounting for the longitudinal aspect of the data. PMID:26177419
Fang, Leyuan; Wang, Chong; Li, Shutao; Yan, Jun; Chen, Xiangdong; Rabbani, Hossein
2017-11-01
We present an automatic method, termed as the principal component analysis network with composite kernel (PCANet-CK), for the classification of three-dimensional (3-D) retinal optical coherence tomography (OCT) images. Specifically, the proposed PCANet-CK method first utilizes the PCANet to automatically learn features from each B-scan of the 3-D retinal OCT images. Then, multiple kernels are separately applied to a set of very important features of the B-scans and these kernels are fused together, which can jointly exploit the correlations among features of the 3-D OCT images. Finally, the fused (composite) kernel is incorporated into an extreme learning machine for the OCT image classification. We tested our proposed algorithm on two real 3-D spectral domain OCT (SD-OCT) datasets (of normal subjects and subjects with the macular edema and age-related macular degeneration), which demonstrated its effectiveness. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Fruit position within the canopy affects kernel lipid composition of hazelnuts.
Pannico, Antonio; Cirillo, Chiara; Giaccone, Matteo; Scognamiglio, Pasquale; Romano, Raffaele; Caporaso, Nicola; Sacchi, Raffaele; Basile, Boris
2017-11-01
The aim of this research was to study the variability in kernel composition within the canopy of hazelnut trees. Kernel fresh and dry weight increased linearly with fruit height above the ground. Fat content decreased, while protein and ash content increased, from the bottom to the top layers of the canopy. The level of unsaturation of fatty acids decreased from the bottom to the top of the canopy. Thus, the kernels located in the bottom layers of the canopy appear to be more interesting from a nutritional point of view, but their lipids may be more exposed to oxidation. The content of different phytosterols increased progressively from bottom to top canopy layers. Most of these effects correlated with the pattern in light distribution inside the canopy. The results of this study indicate that fruit position within the canopy is an important factor in determining hazelnut kernel growth and composition. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Optimized data fusion for K-means Laplacian clustering
Yu, Shi; Liu, Xinhai; Tranchevent, Léon-Charles; Glänzel, Wolfgang; Suykens, Johan A. K.; De Moor, Bart; Moreau, Yves
2011-01-01
Motivation: We propose a novel algorithm to combine multiple kernels and Laplacians for clustering analysis. The new algorithm is formulated on a Rayleigh quotient objective function and is solved as a bi-level alternating minimization procedure. Using the proposed algorithm, the coefficients of kernels and Laplacians can be optimized automatically. Results: Three variants of the algorithm are proposed. The performance is systematically validated on two real-life data fusion applications. The proposed Optimized Kernel Laplacian Clustering (OKLC) algorithms perform significantly better than other methods. Moreover, the coefficients of kernels and Laplacians optimized by OKLC show some correlation with the rank of performance of individual data source. Though in our evaluation the K values are predefined, in practical studies, the optimal cluster number can be consistently estimated from the eigenspectrum of the combined kernel Laplacian matrix. Availability: The MATLAB code of algorithms implemented in this paper is downloadable from http://homes.esat.kuleuven.be/~sistawww/bioi/syu/oklc.html. Contact: shiyu@uchicago.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20980271
Zhang, Wencan; Leong, Siew Mun; Zhao, Feifei; Zhao, Fangju; Yang, Tiankui; Liu, Shaoquan
2018-05-01
With an interest to enhance the aroma of palm kernel oil (PKO), Viscozyme L, an enzyme complex containing a wide range of carbohydrases, was applied to alter the carbohydrates in palm kernels (PK) to modulate the formation of volatiles upon kernel roasting. After Viscozyme treatment, the content of simple sugars and free amino acids in PK increased by 4.4-fold and 4.5-fold, respectively. After kernel roasting and oil extraction, significantly more 2,5-dimethylfuran, 2-[(methylthio)methyl]-furan, 1-(2-furanyl)-ethanone, 1-(2-furyl)-2-propanone, 5-methyl-2-furancarboxaldehyde and 2-acetyl-5-methylfuran but less 2-furanmethanol and 2-furanmethanol acetate were found in treated PKO; the correlation between their formation and simple sugar profile was estimated by using partial least square regression (PLS1). Obvious differences in pyrroles and Strecker aldehydes were also found between the control and treated PKOs. Principal component analysis (PCA) clearly discriminated the treated PKOs from that of control PKOs on the basis of all volatile compounds. Such changes in volatiles translated into distinct sensory attributes, whereby treated PKO was more caramelic and burnt after aqueous extraction and more nutty, roasty, caramelic and smoky after solvent extraction. Copyright © 2018 Elsevier Ltd. All rights reserved.
A canonical correlation neural network for multicollinearity and functional data.
Gou, Zhenkun; Fyfe, Colin
2004-03-01
We review a recent neural implementation of Canonical Correlation Analysis and show, using ideas suggested by Ridge Regression, how to make the algorithm robust. The network is shown to operate on data sets which exhibit multicollinearity. We develop a second model which not only performs as well on multicollinear data but also on general data sets. This model allows us to vary a single parameter so that the network is capable of performing Partial Least Squares regression (at one extreme) to Canonical Correlation Analysis (at the other)and every intermediate operation between the two. On multicollinear data, the parameter setting is shown to be important but on more general data no particular parameter setting is required. Finally, we develop a second penalty term which acts on such data as a smoother in that the resulting weight vectors are much smoother and more interpretable than the weights without the robustification term. We illustrate our algorithms on both artificial and real data.
Considering causal genes in the genetic dissection of kernel traits in common wheat.
Mohler, Volker; Albrecht, Theresa; Castell, Adelheid; Diethelm, Manuela; Schweizer, Günther; Hartl, Lorenz
2016-11-01
Genetic factors controlling thousand-kernel weight (TKW) were characterized for their association with other seed traits, including kernel width, kernel length, ratio of kernel width to kernel length (KW/KL), kernel area, and spike number per m 2 (SN). For this purpose, a genetic map was established utilizing a doubled haploid population derived from a cross between German winter wheat cultivars Pamier and Format. Association studies in a diversity panel of elite cultivars supplemented genetic analysis of kernel traits. In both populations, genomic signatures of 13 candidate genes for TKW and kernel size were analyzed. Major quantitative trait loci (QTL) for TKW were identified on chromosomes 1B, 2A, 2D, and 4D, and their locations coincided with major QTL for kernel size traits, supporting the common belief that TKW is a function of other kernel traits. The QTL on chromosome 2A was associated with TKW candidate gene TaCwi-A1 and the QTL on chromosome 4D was associated with dwarfing gene Rht-D1. A minor QTL for TKW on chromosome 6B coincided with TaGW2-6B. The QTL for kernel dimensions that did not affect TKW were detected on eight chromosomes. A major QTL for KW/KL located at the distal tip of chromosome arm 5AS is being reported for the first time. TaSus1-7A and TaSAP-A1, closely linked to each other on chromosome 7A, could be related to a minor QTL for KW/KL. Genetic analysis of SN confirmed its negative correlation with TKW in this cross. In the diversity panel, TaSus1-7A was associated with TKW. Compared to the Pamier/Format bi-parental population where TaCwi-A1a was associated with higher TKW, the same allele reduced grain yield in the diversity panel, suggesting opposite effects of TaCwi-A1 on these two traits.
Guo, Zhiqing; Döll, Katharina; Dastjerdi, Raana; Karlovsky, Petr; Dehne, Heinz-Wilhelm; Altincicek, Boran
2014-01-01
Species of Fusarium have significant agro-economical and human health-related impact by infecting diverse crop plants and synthesizing diverse mycotoxins. Here, we investigated interactions of grain-feeding Tenebrio molitor larvae with four grain-colonizing Fusarium species on wheat kernels. Since numerous metabolites produced by Fusarium spp. are toxic to insects, we tested the hypothesis that the insect senses and avoids Fusarium-colonized grains. We found that only kernels colonized with F. avenaceum or Beauveria bassiana (an insect-pathogenic fungal control) were avoided by the larvae as expected. Kernels colonized with F. proliferatum, F. poae or F. culmorum attracted T. molitor larvae significantly more than control kernels. The avoidance/preference correlated with larval feeding behaviors and weight gain. Interestingly, larvae that had consumed F. proliferatum- or F. poae-colonized kernels had similar survival rates as control. Larvae fed on F. culmorum-, F. avenaceum- or B. bassiana-colonized kernels had elevated mortality rates. HPLC analyses confirmed the following mycotoxins produced by the fungal strains on the kernels: fumonisins, enniatins and beauvericin by F. proliferatum, enniatins and beauvericin by F. poae, enniatins by F. avenaceum, and deoxynivalenol and zearalenone by F. culmorum. Our results indicate that T. molitor larvae have the ability to sense potential survival threats of kernels colonized with F. avenaceum or B. bassiana, but not with F. culmorum. Volatiles potentially along with gustatory cues produced by these fungi may represent survival threat signals for the larvae resulting in their avoidance. Although F. proliferatum or F. poae produced fumonisins, enniatins and beauvericin during kernel colonization, the larvae were able to use those kernels as diet without exhibiting increased mortality. Consumption of F. avenaceum-colonized kernels, however, increased larval mortality; these kernels had higher enniatin levels than F. proliferatum or F. poae-colonized ones suggesting that T. molitor can tolerate or metabolize those toxins. PMID:24932485
Yesbergenova-Cuny, Zhazira; Dinant, Sylvie; Martin-Magniette, Marie-Laure; Quilleré, Isabelle; Armengaud, Patrick; Monfalet, Priscilla; Lea, Peter J; Hirel, Bertrand
2016-11-01
Using a metabolomic approach, we have quantified the metabolite composition of the phloem sap exudate of seventeen European and American lines of maize that had been previously classified into five main groups on the basis of molecular marker polymorphisms. In addition to sucrose, glutamate and aspartate, which are abundant in the phloem sap of many plant species, large quantities of aconitate and alanine were also found in the phloem sap exudates of maize. Genetic variability of the phloem sap composition was observed in the different maize lines, although there was no obvious relationship between the phloem sap composition and the five previously classified groups. However, following hierarchical clustering analysis there was a clear relationship between two of the subclusters of lines defined on the basis of the composition of the phloem sap exudate and the earliness of silking date. A comparison between the metabolite contents of the ear leaves and the phloem sap exudates of each genotype, revealed that the relative content of most of the carbon- and nitrogen-containing metabolites was similar. Correlation studies performed between the metabolite content of the phloem sap exudates and yield-related traits also revealed that for some carbohydrates such as arabitol and sucrose there was a negative or positive correlation with kernel yield and kernel weight respectively. A posititive correlation was also found between kernel number and soluble histidine. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
QTL Mapping of Kernel Number-Related Traits and Validation of One Major QTL for Ear Length in Maize.
Huo, Dongao; Ning, Qiang; Shen, Xiaomeng; Liu, Lei; Zhang, Zuxin
2016-01-01
The kernel number is a grain yield component and an important maize breeding goal. Ear length, kernel number per row and ear row number are highly correlated with the kernel number per ear, which eventually determines the ear weight and grain yield. In this study, two sets of F2:3 families developed from two bi-parental crosses sharing one inbred line were used to identify quantitative trait loci (QTL) for four kernel number-related traits: ear length, kernel number per row, ear row number and ear weight. A total of 39 QTLs for the four traits were identified in the two populations. The phenotypic variance explained by a single QTL ranged from 0.4% to 29.5%. Additionally, 14 overlapping QTLs formed 5 QTL clusters on chromosomes 1, 4, 5, 7, and 10. Intriguingly, six QTLs for ear length and kernel number per row overlapped in a region on chromosome 1. This region was designated qEL1.10 and was validated as being simultaneously responsible for ear length, kernel number per row and ear weight in a near isogenic line-derived population, suggesting that qEL1.10 was a pleiotropic QTL with large effects. Furthermore, the performance of hybrids generated by crossing 6 elite inbred lines with two near isogenic lines at qEL1.10 showed the breeding value of qEL1.10 for the improvement of the kernel number and grain yield of maize hybrids. This study provides a basis for further fine mapping, molecular marker-aided breeding and functional studies of kernel number-related traits in maize.
NASA Astrophysics Data System (ADS)
Erhard, Jannis; Bleiziffer, Patrick; Görling, Andreas
2016-09-01
A power series approximation for the correlation kernel of time-dependent density-functional theory is presented. Using this approximation in the adiabatic-connection fluctuation-dissipation (ACFD) theorem leads to a new family of Kohn-Sham methods. The new methods yield reaction energies and barriers of unprecedented accuracy and enable a treatment of static (strong) correlation with an accuracy of high-level multireference configuration interaction methods but are single-reference methods allowing for a black-box-like handling of static correlation. The new methods exhibit a better scaling of the computational effort with the system size than rivaling wave-function-based electronic structure methods. Moreover, the new methods do not suffer from the problem of singularities in response functions plaguing previous ACFD methods and therefore are applicable to any type of electronic system.
Producing data-based sensitivity kernels from convolution and correlation in exploration geophysics.
NASA Astrophysics Data System (ADS)
Chmiel, M. J.; Roux, P.; Herrmann, P.; Rondeleux, B.
2016-12-01
Many studies have shown that seismic interferometry can be used to estimate surface wave arrivals by correlation of seismic signals recorded at a pair of locations. In the case of ambient noise sources, the convergence towards the surface wave Green's functions is obtained with the criterion of equipartitioned energy. However, seismic acquisition with active, controlled sources gives more possibilities when it comes to interferometry. The use of controlled sources makes it possible to recover the surface wave Green's function between two points using either correlation or convolution. We investigate the convolutional and correlational approaches using land active-seismic data from exploration geophysics. The data were recorded on 10,710 vertical receivers using 51,808 sources (seismic vibrator trucks). The sources spacing is the same in both X and Y directions (30 m) which is known as a "carpet shooting". The receivers are placed in parallel lines with a spacing 150 m in the X direction and 30 m in the Y direction. Invoking spatial reciprocity between sources and receivers, correlation and convolution functions can thus be constructed between either pairs of receivers or pairs of sources. Benefiting from the dense acquisition, we extract sensitivity kernels from correlation and convolution measurements of the seismic data. These sensitivity kernels are subsequently used to produce phase-velocity dispersion curves between two points and to separate the higher mode from the fundamental mode for surface waves. Potential application to surface wave cancellation is also envisaged.
Al-Saleh, Abboud; Brennan, Charles S
2012-11-22
The relationships between breadmaking quality, kernel properties (physical and chemical), and dough rheology were investigated using flours from six genotypes of Syrian wheat lines, comprising both commercially grown cultivars and advanced breeding lines. Genotypes were grown in 2008/2009 season in irrigated plots in the Eastern part of Syria. Grain samples were evaluated for vitreousness, test weight, 1000-kernel weight and then milled and tested for protein content, ash, and water content. Dough rheology of the samples was studied by the determination of the mixing time, stability, weakness, resistance and the extensibility of the dough. Loaf baking quality was evaluated by the measurement of the specific weight, resilience and firmness in addition to the sensory analysis. A comparative study between the six Syrian wheat genotypes and two English flour samples was conducted. Significant differences were observed among Syrian genotypes in vitreousness (69.3%-95.0%), 1000-kernel weight (35.2-46.9 g) and the test weight (82.2-88.0 kg/hL). All samples exhibited high falling numbers (346 to 417 s for the Syrian samples and 285 and 305 s for the English flours). A significant positive correlation was exhibited between the protein content of the flour and its absorption of water (r = 0.84 **), as well as with the vitreousness of the kernel (r = 0.54 *). Protein content was also correlated with dough stability (r = 0.86 **), extensibility (r = 0.8 **), and negatively correlated with dough weakness (r = -0.69 **). Bread firmness and dough weakness were positively correlated (r = 0.66 **). Sensory analysis indicated Doumah-2 was the best appreciated whilst Doumah 40765 and 46055 were the least appreciated which may suggest their suitability for biscuit preparation rather than bread making.
Al-Saleh, Abboud; Brennan, Charles S.
2012-01-01
The relationships between breadmaking quality, kernel properties (physical and chemical), and dough rheology were investigated using flours from six genotypes of Syrian wheat lines, comprising both commercially grown cultivars and advanced breeding lines. Genotypes were grown in 2008/2009 season in irrigated plots in the Eastern part of Syria. Grain samples were evaluated for vitreousness, test weight, 1000-kernel weight and then milled and tested for protein content, ash, and water content. Dough rheology of the samples was studied by the determination of the mixing time, stability, weakness, resistance and the extensibility of the dough. Loaf baking quality was evaluated by the measurement of the specific weight, resilience and firmness in addition to the sensory analysis. A comparative study between the six Syrian wheat genotypes and two English flour samples was conducted. Significant differences were observed among Syrian genotypes in vitreousness (69.3%–95.0%), 1000-kernel weight (35.2–46.9 g) and the test weight (82.2–88.0 kg/hL). All samples exhibited high falling numbers (346 to 417 s for the Syrian samples and 285 and 305 s for the English flours). A significant positive correlation was exhibited between the protein content of the flour and its absorption of water (r = 0.84 **), as well as with the vitreousness of the kernel (r = 0.54 *). Protein content was also correlated with dough stability (r = 0.86 **), extensibility (r = 0.8 **), and negatively correlated with dough weakness (r = −0.69 **). Bread firmness and dough weakness were positively correlated (r = 0.66 **). Sensory analysis indicated Doumah-2 was the best appreciated whilst Doumah 40765 and 46055 were the least appreciated which may suggest their suitability for biscuit preparation rather than bread making. PMID:28239087
NASA Astrophysics Data System (ADS)
Khoromskaia, Venera; Khoromskij, Boris N.
2014-12-01
Our recent method for low-rank tensor representation of sums of the arbitrarily positioned electrostatic potentials discretized on a 3D Cartesian grid reduces the 3D tensor summation to operations involving only 1D vectors however retaining the linear complexity scaling in the number of potentials. Here, we introduce and study a novel tensor approach for fast and accurate assembled summation of a large number of lattice-allocated potentials represented on 3D N × N × N grid with the computational requirements only weakly dependent on the number of summed potentials. It is based on the assembled low-rank canonical tensor representations of the collected potentials using pointwise sums of shifted canonical vectors representing the single generating function, say the Newton kernel. For a sum of electrostatic potentials over L × L × L lattice embedded in a box the required storage scales linearly in the 1D grid-size, O(N) , while the numerical cost is estimated by O(NL) . For periodic boundary conditions, the storage demand remains proportional to the 1D grid-size of a unit cell, n = N / L, while the numerical cost reduces to O(N) , that outperforms the FFT-based Ewald-type summation algorithms of complexity O(N3 log N) . The complexity in the grid parameter N can be reduced even to the logarithmic scale O(log N) by using data-sparse representation of canonical N-vectors via the quantics tensor approximation. For justification, we prove an upper bound on the quantics ranks for the canonical vectors in the overall lattice sum. The presented approach is beneficial in applications which require further functional calculus with the lattice potential, say, scalar product with a function, integration or differentiation, which can be performed easily in tensor arithmetics on large 3D grids with 1D cost. Numerical tests illustrate the performance of the tensor summation method and confirm the estimated bounds on the tensor ranks.
Vahedi, Shahrum; Farrokhi, Farahman; Gahramani, Farahnaz; Issazadegan, Ali
2012-01-01
Approximately 66-80%of graduate students experience statistics anxiety and some researchers propose that many students identify statistics courses as the most anxiety-inducing courses in their academic curriculums. As such, it is likely that statistics anxiety is, in part, responsible for many students delaying enrollment in these courses for as long as possible. This paper proposes a canonical model by treating academic procrastination (AP), learning strategies (LS) as predictor variables and statistics anxiety (SA) as explained variables. A questionnaire survey was used for data collection and 246-college female student participated in this study. To examine the mutually independent relations between procrastination, learning strategies and statistics anxiety variables, a canonical correlation analysis was computed. Findings show that two canonical functions were statistically significant. The set of variables (metacognitive self-regulation, source management, preparing homework, preparing for test and preparing term papers) helped predict changes of statistics anxiety with respect to fearful behavior, Attitude towards math and class, Performance, but not Anxiety. These findings could be used in educational and psychological interventions in the context of statistics anxiety reduction.
NASA Astrophysics Data System (ADS)
Bally, B.; Duguet, T.
2018-02-01
Background: State-of-the-art multi-reference energy density functional calculations require the computation of norm overlaps between different Bogoliubov quasiparticle many-body states. It is only recently that the efficient and unambiguous calculation of such norm kernels has become available under the form of Pfaffians [L. M. Robledo, Phys. Rev. C 79, 021302 (2009), 10.1103/PhysRevC.79.021302]. Recently developed particle-number-restored Bogoliubov coupled-cluster (PNR-BCC) and particle-number-restored Bogoliubov many-body perturbation (PNR-BMBPT) ab initio theories [T. Duguet and A. Signoracci, J. Phys. G 44, 015103 (2017), 10.1088/0954-3899/44/1/015103] make use of generalized norm kernels incorporating explicit many-body correlations. In PNR-BCC and PNR-BMBPT, the Bogoliubov states involved in the norm kernels differ specifically via a global gauge rotation. Purpose: The goal of this work is threefold. We wish (i) to propose and implement an alternative to the Pfaffian method to compute unambiguously the norm overlap between arbitrary Bogoliubov quasiparticle states, (ii) to extend the first point to explicitly correlated norm kernels, and (iii) to scrutinize the analytical content of the correlated norm kernels employed in PNR-BMBPT. Point (i) constitutes the purpose of the present paper while points (ii) and (iii) are addressed in a forthcoming paper. Methods: We generalize the method used in another work [T. Duguet and A. Signoracci, J. Phys. G 44, 015103 (2017), 10.1088/0954-3899/44/1/015103] in such a way that it is applicable to kernels involving arbitrary pairs of Bogoliubov states. The formalism is presently explicated in detail in the case of the uncorrelated overlap between arbitrary Bogoliubov states. The power of the method is numerically illustrated and benchmarked against known results on the basis of toy models of increasing complexity. Results: The norm overlap between arbitrary Bogoliubov product states is obtained under a closed-form expression allowing its computation without any phase ambiguity. The formula is physically intuitive, accurate, and versatile. It equally applies to norm overlaps between Bogoliubov states of even or odd number parity. Numerical applications illustrate these features and provide a transparent representation of the content of the norm overlaps. Conclusions: The complex norm overlap between arbitrary Bogoliubov states is computed, without any phase ambiguity, via elementary linear algebra operations. The method can be used in any configuration mixing of orthogonal and non-orthogonal product states. Furthermore, the closed-form expression extends naturally to correlated overlaps at play in PNR-BCC and PNR-BMBPT. As such, the straight overlap between Bogoliubov states is the zero-order reduction of more involved norm kernels to be studied in a forthcoming paper.
Fu, Xiaoli; Liu, Li; Ping, Zhiguang; Li, Linlin
2013-09-01
To define the general correlation between anthropometric indicators and multiple metabolic abnormalities, and to put forward some particular suggestions for the prevention of multiple metabolic abnormalities. A random cluster sampling was carried out in one county of Henan Province. Questionnaire, physical examination and biochemical tests were admitted to the adult inhabitants. Non-linear canonical correlation analysis (NLCCA) was applied with OVERALS of SPSS 13.0. The coefficients of canonical correlation and multiple correlation were calculated. The plot of centroids labeled by variables showed the correlation among various indicators. In total, 2,914 objects were investigated. It included 1,134 (38.9%) males and 1,780 (61.1%) females (60.0%). The average age was (50.58 +/- 13.70) years old. The fitting result of NLCCA were as follows: the loss of 0.577 accounting for 28.8% of the total variation was relatively small, and indicated that the two sets of variables of this study, namely sets of biochemical indicators (including serum total cholesterol, total triglyceride, high-density lipoprotein cholesterol, low density lipoprotein cholesterol and fasting plasma glucose) and sets of others (including gender, BMI and waist circumference) were closely related and often changed synchronously. Multivariate correlation coefficient showed that internal indicators of the above two sets were closely related respectively and often showed the multiple anomalies of the same set. The diagram of the center of gravity of the association of various indicators showed that the symptoms of metabolic abnormalities increased with age. Women were more liable to have metabolic abnormalities. Overweight and obese people often suffer multiple metabolic disorders. Waist circumference was positively correlated with metabolic abnormalities. (1) Biochemical indicators and anthropometric often change in combination. (2) Much attention should be paid to older people especially middle-aged or older men and older women in primary prevention. (3) Overweight and abdominal obesity can be considered the sensitive predictive indicator of multiple metabolic abnormalities. (4) Nonlinear canonical correlation and center of gravity Figure had the advantage of analyze the correlation between multiple sets of variables.
Chung, Pak-Kwong; Zhao, Yanan; Liu, Jing-Dong; Quach, Binh
This study aimed to explore the relationship between the functional fitness (FF) and health-related quality of life (HRQoL) in older adults, and to identify the key subdimensions of FF and HRQoL influencing their overall relationship. This cross-sectional study was performed among 851 independent community members (65-84 years; men=402). The Senior Fitness Test and the Short Form 36 Health Survey were used to measure FF and HRQoL, respectively. A canonical correlation analysis was conducted using seven fitness variables as predictors of eight HRQoL variables to examine the relationship between FF and HRQoL. The overall FF was positively correlated with the overall HRQoL in both men (canonical correlation=0.350) and women (canonical correlation=0.456). The up-and-go and 2-min step contributed the most to FF, and physical functioning contributed the most to HRQOL among men. Conversely, the up-and-go and 30-s chair stand contributed the most to FF, and physical functioning contributed the most to HRQoL in women. There were positive and moderate relationships between overall FF and overall HRQOL in older adults. The FF has a significant influence on HRQoL, particularly physical functioning. The main FF components influencing the relationship between FF and HRQoL in men are balance and agility and aerobic endurance, whereas in women they are balance and agility and lower extremity muscle strength. Results from this study facilitate comprehensively understanding the relationship between FF and HRQoL, and generating critical insight into HRQoL improvement from the perspective of FF enhancement. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Grosse Frie, Kirstin; Janssen, Christian
2009-01-01
Based on the theoretical and empirical approach of Pierre Bourdieu, a multivariate non-linear method is introduced as an alternative way to analyse the complex relationships between social determinants and health. The analysis is based on face-to-face interviews with 695 randomly selected respondents aged 30 to 59. Variables regarding socio-economic status, life circumstances, lifestyles, health-related behaviour and health were chosen for the analysis. In order to determine whether the respondents can be differentiated and described based on these variables, a non-linear canonical correlation analysis (OVERALS) was performed. The results can be described on three dimensions; Eigenvalues add up to the fit of 1.444, which can be interpreted as approximately 50 % of explained variance. The three-dimensional space illustrates correspondences between variables and provides a framework for interpretation based on latent dimensions, which can be described by age, education, income and gender. Using non-linear canonical correlation analysis, health characteristics can be analysed in conjunction with socio-economic conditions and lifestyles. Based on Bourdieus theoretical approach, the complex correlations between these variables can be more substantially interpreted and presented.
Warren, Frederick J; Perston, Benjamin B; Galindez-Najera, Silvia P; Edwards, Cathrina H; Powell, Prudence O; Mandalari, Giusy; Campbell, Grant M; Butterworth, Peter J; Ellis, Peter R
2015-01-01
Infrared microspectroscopy is a tool with potential for studies of the microstructure, chemical composition and functionality of plants at a subcellular level. Here we present the use of high-resolution bench top-based infrared microspectroscopy to investigate the microstructure of Triticum aestivum L. (wheat) kernels and Arabidopsis leaves. Images of isolated wheat kernel tissues and whole wheat kernels following hydrothermal processing and simulated gastric and duodenal digestion were generated, as well as images of Arabidopsis leaves at different points during a diurnal cycle. Individual cells and cell walls were resolved, and large structures within cells, such as starch granules and protein bodies, were clearly identified. Contrast was provided by converting the hyperspectral image cubes into false-colour images using either principal component analysis (PCA) overlays or by correlation analysis. The unsupervised PCA approach provided a clear view of the sample microstructure, whereas the correlation analysis was used to confirm the identity of different anatomical structures using the spectra from isolated components. It was then demonstrated that gelatinized and native starch within cells could be distinguished, and that the loss of starch during wheat digestion could be observed, as well as the accumulation of starch in leaves during a diurnal period. PMID:26400058
Onset of Speech-Like Vocalizations in Infants with Down Syndrome.
ERIC Educational Resources Information Center
Lynch, Michael P.; And Others
1995-01-01
Evaluation of canonical babbling of 13 infants with Down syndrome found that age of onset of babbling was approximately 2 months later and less stable than that of 27 typically developing infants. Age at onset of canonical babbling for Down syndrome infants was correlated with scores at 27 months on the Early Social-Communication Scales.…
Sensitivity Kernels for the Cross-Convolution Measure: Eliminate the Source in Waveform Tomography
NASA Astrophysics Data System (ADS)
Menke, W. H.
2017-12-01
We use the adjoint method to derive sensitivity kernels for the cross-convolution measure, a goodness-of-fit criterion that is applicable to seismic data containing closely-spaced multiple arrivals, such as reverberating compressional waves and split shear waves. In addition to a general formulation, specific expressions for sensitivity with respect to density, Lamé parameter and shear modulus are derived for a isotropic elastic solid. As is typical of adjoint methods, the kernels depend upon an adjoint field, the source of which, in this case, is the reference displacement field, pre-multiplied by a matrix of cross-correlations of components of the observed field. We use a numerical simulation to evaluate the resolving power of a topographic inversion that employs the cross-convolution measure. The estimated resolving kernel shows is point-like, indicating that the cross-convolution measure will perform well in waveform tomography settings.
Enginyurt, Ozgur; Cankaya, Soner; Aksay, Kadir; Tunc, Taner; Koc, Bozkurt; Bas, Orhan; Ozer, Erdal
2016-04-01
Objective Burnout syndrome can significantly reduce the performance of health workers. Although many factors have been identified as antecedents of burnout, few studies have investigated the role of organisational commitment in its development. The purpose of the present study was to examine the relationships between subdimensions of burnout syndrome (emotional exhaustion, depersonalisation and personal accomplishment) and subdimensions of organisational commitment (affective commitment, continuance commitment and normative commitment). Methods The present study was a cross-sectional survey of physicians and other healthcare employees working in the Ministry of Health Ordu University Education and Research Hospital. The sample consisted of 486 healthcare workers. Data were collected using the Maslach Burnout Inventory and the Organisation Commitment Scale, and were analysed using the canonical correlation approach. Results The first of three canonical correlation coefficients between pairs of canonical variables (Ui , burnout syndrome and Vi, organisational commitment) was found to be statistically significant. Emotional exhaustion was found to contribute most towards the explanatory capacity of canonical variables estimated from the subdimensions of burnout syndrome, whereas affective commitment provided the largest contribution towards the explanatory capacity of canonical variables estimated from the subdimensions of organisational commitment. Conclusions The results of the present study indicate that affective commitment is the primary determinant of burnout syndrome in healthcare professionals. What is known about the topic? Organisational commitment and burnout syndrome are the most important criteria in predicting health workforce performance. An increasing number of studies in recent years have clearly indicated the field's continued relevance and importance. Conversely, canonical correlation analysis (CCA) is a technique for describing the relationship between two variable sets simultaneously to produce both structural and spatial meaning. What does this paper add? To our knowledge, CCA has not been used to determine the relationships between burnout and organisational commitment of physicians and other healthcare staff. Accordingly, the present study adds information regarding the relationship between burnout and organisational commitment variables determined using CCA. This analysis is used to describe the relationship between two variable sets simultaneously and allows for an easy method of interpretation. What are the implications for practitioners? Burnout syndrome is a major threat to both the health workforce and its organisations. In addition, it affects the quality and effectiveness of health care. Thus, the findings of the present study offer a solid foundation from which actions to decrease burnout levels in healthcare professionals can be implemented by successfully increasing levels of organisational commitment.
Miller, Nathan D; Haase, Nicholas J; Lee, Jonghyun; Kaeppler, Shawn M; de Leon, Natalia; Spalding, Edgar P
2017-01-01
Grain yield of the maize plant depends on the sizes, shapes, and numbers of ears and the kernels they bear. An automated pipeline that can measure these components of yield from easily-obtained digital images is needed to advance our understanding of this globally important crop. Here we present three custom algorithms designed to compute such yield components automatically from digital images acquired by a low-cost platform. One algorithm determines the average space each kernel occupies along the cob axis using a sliding-window Fourier transform analysis of image intensity features. A second counts individual kernels removed from ears, including those in clusters. A third measures each kernel's major and minor axis after a Bayesian analysis of contour points identifies the kernel tip. Dimensionless ear and kernel shape traits that may interrelate yield components are measured by principal components analysis of contour point sets. Increased objectivity and speed compared to typical manual methods are achieved without loss of accuracy as evidenced by high correlations with ground truth measurements and simulated data. Millimeter-scale differences among ear, cob, and kernel traits that ranged more than 2.5-fold across a diverse group of inbred maize lines were resolved. This system for measuring maize ear, cob, and kernel attributes is being used by multiple research groups as an automated Web service running on community high-throughput computing and distributed data storage infrastructure. Users may create their own workflow using the source code that is staged for download on a public repository. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
Recio-Spinoso, Alberto; Fan, Yun-Hui; Ruggero, Mario A
2011-05-01
Basilar-membrane responses to white Gaussian noise were recorded using laser velocimetry at basal sites of the chinchilla cochlea with characteristic frequencies near 10 kHz and first-order Wiener kernels were computed by cross correlation of the stimuli and the responses. The presence or absence of minimum-phase behavior was explored by fitting the kernels with discrete linear filters with rational transfer functions. Excellent fits to the kernels were obtained with filters with transfer functions including zeroes located outside the unit circle, implying nonminimum-phase behavior. These filters accurately predicted basilar-membrane responses to other noise stimuli presented at the same level as the stimulus for the kernel computation. Fits with all-pole and other minimum-phase discrete filters were inferior to fits with nonminimum-phase filters. Minimum-phase functions predicted from the amplitude functions of the Wiener kernels by Hilbert transforms were different from the measured phase curves. These results, which suggest that basilar-membrane responses do not have the minimum-phase property, challenge the validity of models of cochlear processing, which incorporate minimum-phase behavior. © 2011 IEEE
Motivators and barriers to participating in health promotion behaviors in Black men.
Calvert, Wilma J; Isaac-Savage, E Paulette
2013-08-01
There is limited research examining the health promotion behaviors (HPBs) of low-income Black men. This study examined the relationship between HPBs, and motivators and barriers to participating in these behaviors in Black men (N = 107), aged 21 to 56. Using descriptive statistics, more than 96% of the participants reported they were motivated because of the desire to be healthy. Canonical correlation analysis and conditional random forest were used to determine the importance of individual motivators and barriers. Canonical correlation analysis yielded one interpretable canonical variate that explained 39.5% of the variance in sets of motivators and barriers, and health promotion lifestyle variables. Men with fewer motivators and more barriers took less responsibility for their health, participated in less physical activity, and reported less spiritual growth. Having too many things to do and not knowing what to do best predicted participation in HPBs.
Chrysanthopoulos, Panagiotis K.; Hodson, Mark P.; Darnell, Ross; Korie, Sam
2018-01-01
Aflatoxin contamination is associated with the development of aflatoxigenic fungi such as Aspergillus flavus and A. parasiticus on food grains. This study was aimed at investigating metabolites produced during fungal development on maize and their correlation with aflatoxin levels. Maize cobs were harvested at R3 (milk), R4 (dough), and R5 (dent) stages of maturity. Individual kernels were inoculated in petri dishes with four doses of fungal spores. Fungal colonisation, metabolite profile, and aflatoxin levels were examined. Grain colonisation decreased with kernel maturity: milk-, dough-, and dent-stage kernels by approximately 100%, 60%, and 30% respectively. Aflatoxin levels increased with dose at dough and dent stages. Polar metabolites including alanine, proline, serine, valine, inositol, iso-leucine, sucrose, fructose, trehalose, turanose, mannitol, glycerol, arabitol, inositol, myo-inositol, and some intermediates of the tricarboxylic acid cycle (TCA—also known as citric acid or Krebs cycle) were important for dose classification. Important non-polar metabolites included arachidic, palmitic, stearic, 3,4-xylylic, and margaric acids. Aflatoxin levels correlated with levels of several polar metabolites. The strongest positive and negative correlations were with arabitol (R = 0.48) and turanose and (R = −0.53), respectively. Several metabolites were interconnected with the TCA; interconnections of the metabolites with the TCA cycle varied depending upon the grain maturity. PMID:29735944
Falade, Titilayo D O; Chrysanthopoulos, Panagiotis K; Hodson, Mark P; Sultanbawa, Yasmina; Fletcher, Mary; Darnell, Ross; Korie, Sam; Fox, Glen
2018-05-07
Aflatoxin contamination is associated with the development of aflatoxigenic fungi such as Aspergillus flavus and A. parasiticus on food grains. This study was aimed at investigating metabolites produced during fungal development on maize and their correlation with aflatoxin levels. Maize cobs were harvested at R3 (milk), R4 (dough), and R5 (dent) stages of maturity. Individual kernels were inoculated in petri dishes with four doses of fungal spores. Fungal colonisation, metabolite profile, and aflatoxin levels were examined. Grain colonisation decreased with kernel maturity: milk-, dough-, and dent-stage kernels by approximately 100%, 60%, and 30% respectively. Aflatoxin levels increased with dose at dough and dent stages. Polar metabolites including alanine, proline, serine, valine, inositol, iso-leucine, sucrose, fructose, trehalose, turanose, mannitol, glycerol, arabitol, inositol, myo-inositol, and some intermediates of the tricarboxylic acid cycle (TCA—also known as citric acid or Krebs cycle) were important for dose classification. Important non-polar metabolites included arachidic, palmitic, stearic, 3,4-xylylic, and margaric acids. Aflatoxin levels correlated with levels of several polar metabolites. The strongest positive and negative correlations were with arabitol ( R = 0.48) and turanose and ( R = −0.53), respectively. Several metabolites were interconnected with the TCA; interconnections of the metabolites with the TCA cycle varied depending upon the grain maturity.
Segmentation of the Speaker's Face Region with Audiovisual Correlation
NASA Astrophysics Data System (ADS)
Liu, Yuyu; Sato, Yoichi
The ability to find the speaker's face region in a video is useful for various applications. In this work, we develop a novel technique to find this region within different time windows, which is robust against the changes of view, scale, and background. The main thrust of our technique is to integrate audiovisual correlation analysis into a video segmentation framework. We analyze the audiovisual correlation locally by computing quadratic mutual information between our audiovisual features. The computation of quadratic mutual information is based on the probability density functions estimated by kernel density estimation with adaptive kernel bandwidth. The results of this audiovisual correlation analysis are incorporated into graph cut-based video segmentation to resolve a globally optimum extraction of the speaker's face region. The setting of any heuristic threshold in this segmentation is avoided by learning the correlation distributions of speaker and background by expectation maximization. Experimental results demonstrate that our method can detect the speaker's face region accurately and robustly for different views, scales, and backgrounds.
NASA Astrophysics Data System (ADS)
Tehrany, Mahyat Shafapour; Pradhan, Biswajeet; Jebur, Mustafa Neamah
2014-05-01
Flood is one of the most devastating natural disasters that occur frequently in Terengganu, Malaysia. Recently, ensemble based techniques are getting extremely popular in flood modeling. In this paper, weights-of-evidence (WoE) model was utilized first, to assess the impact of classes of each conditioning factor on flooding through bivariate statistical analysis (BSA). Then, these factors were reclassified using the acquired weights and entered into the support vector machine (SVM) model to evaluate the correlation between flood occurrence and each conditioning factor. Through this integration, the weak point of WoE can be solved and the performance of the SVM will be enhanced. The spatial database included flood inventory, slope, stream power index (SPI), topographic wetness index (TWI), altitude, curvature, distance from the river, geology, rainfall, land use/cover (LULC), and soil type. Four kernel types of SVM (linear kernel (LN), polynomial kernel (PL), radial basis function kernel (RBF), and sigmoid kernel (SIG)) were used to investigate the performance of each kernel type. The efficiency of the new ensemble WoE and SVM method was tested using area under curve (AUC) which measured the prediction and success rates. The validation results proved the strength and efficiency of the ensemble method over the individual methods. The best results were obtained from RBF kernel when compared with the other kernel types. Success rate and prediction rate for ensemble WoE and RBF-SVM method were 96.48% and 95.67% respectively. The proposed ensemble flood susceptibility mapping method could assist researchers and local governments in flood mitigation strategies.
Improving Genomic Prediction in Cassava Field Experiments Using Spatial Analysis.
Elias, Ani A; Rabbi, Ismail; Kulakow, Peter; Jannink, Jean-Luc
2018-01-04
Cassava ( Manihot esculenta Crantz) is an important staple food in sub-Saharan Africa. Breeding experiments were conducted at the International Institute of Tropical Agriculture in cassava to select elite parents. Taking into account the heterogeneity in the field while evaluating these trials can increase the accuracy in estimation of breeding values. We used an exploratory approach using the parametric spatial kernels Power, Spherical, and Gaussian to determine the best kernel for a given scenario. The spatial kernel was fit simultaneously with a genomic kernel in a genomic selection model. Predictability of these models was tested through a 10-fold cross-validation method repeated five times. The best model was chosen as the one with the lowest prediction root mean squared error compared to that of the base model having no spatial kernel. Results from our real and simulated data studies indicated that predictability can be increased by accounting for spatial variation irrespective of the heritability of the trait. In real data scenarios we observed that the accuracy can be increased by a median value of 3.4%. Through simulations, we showed that a 21% increase in accuracy can be achieved. We also found that Range (row) directional spatial kernels, mostly Gaussian, explained the spatial variance in 71% of the scenarios when spatial correlation was significant. Copyright © 2018 Elias et al.
Complete description of all self-similar models driven by Lévy stable noise
NASA Astrophysics Data System (ADS)
Weron, Aleksander; Burnecki, Krzysztof; Mercik, Szymon; Weron, Karina
2005-01-01
A canonical decomposition of H -self-similar Lévy symmetric α -stable processes is presented. The resulting components completely described by both deterministic kernels and the corresponding stochastic integral with respect to the Lévy symmetric α -stable motion are shown to be related to the dissipative and conservative parts of the dynamics. This result provides stochastic analysis tools for study the anomalous diffusion phenomena in the Langevin equation framework. For example, a simple computer test for testing the origins of self-similarity is implemented for four real empirical time series recorded from different physical systems: an ionic current flow through a single channel in a biological membrane, an energy of solar flares, a seismic electric signal recorded during seismic Earth activity, and foreign exchange rate daily returns.
Vahedi, Shahrum; Farrokhi, Farahman; Gahramani, Farahnaz; Issazadegan, Ali
2012-01-01
Objective: Approximately 66-80%of graduate students experience statistics anxiety and some researchers propose that many students identify statistics courses as the most anxiety-inducing courses in their academic curriculums. As such, it is likely that statistics anxiety is, in part, responsible for many students delaying enrollment in these courses for as long as possible. This paper proposes a canonical model by treating academic procrastination (AP), learning strategies (LS) as predictor variables and statistics anxiety (SA) as explained variables. Methods: A questionnaire survey was used for data collection and 246-college female student participated in this study. To examine the mutually independent relations between procrastination, learning strategies and statistics anxiety variables, a canonical correlation analysis was computed. Results: Findings show that two canonical functions were statistically significant. The set of variables (metacognitive self-regulation, source management, preparing homework, preparing for test and preparing term papers) helped predict changes of statistics anxiety with respect to fearful behavior, Attitude towards math and class, Performance, but not Anxiety. Conclusion: These findings could be used in educational and psychological interventions in the context of statistics anxiety reduction. PMID:24644468
Spatial patterns of aflatoxin levels in relation to ear-feeding insect damage in pre-harvest corn.
Ni, Xinzhi; Wilson, Jeffrey P; Buntin, G David; Guo, Baozhu; Krakowsky, Matthew D; Lee, R Dewey; Cottrell, Ted E; Scully, Brian T; Huffaker, Alisa; Schmelz, Eric A
2011-07-01
Key impediments to increased corn yield and quality in the southeastern US coastal plain region are damage by ear-feeding insects and aflatoxin contamination caused by infection of Aspergillus flavus. Key ear-feeding insects are corn earworm, Helicoverpa zea, fall armyworm, Spodoptera frugiperda, maize weevil, Sitophilus zeamais, and brown stink bug, Euschistus servus. In 2006 and 2007, aflatoxin contamination and insect damage were sampled before harvest in three 0.4-hectare corn fields using a grid sampling method. The feeding damage by each of ear/kernel-feeding insects (i.e., corn earworm/fall armyworm damage on the silk/cob, and discoloration of corn kernels by stink bugs), and maize weevil population were assessed at each grid point with five ears. The spatial distribution pattern of aflatoxin contamination was also assessed using the corn samples collected at each sampling point. Aflatoxin level was correlated to the number of maize weevils and stink bug-discolored kernels, but not closely correlated to either husk coverage or corn earworm damage. Contour maps of the maize weevil populations, stink bug-damaged kernels, and aflatoxin levels exhibited an aggregated distribution pattern with a strong edge effect on all three parameters. The separation of silk- and cob-feeding insects from kernel-feeding insects, as well as chewing (i.e., the corn earworm and maize weevil) and piercing-sucking insects (i.e., the stink bugs) and their damage in relation to aflatoxin accumulation is economically important. Both theoretic and applied ramifications of this study were discussed by proposing a hypothesis on the underlying mechanisms of the aggregated distribution patterns and strong edge effect of insect damage and aflatoxin contamination, and by discussing possible management tactics for aflatoxin reduction by proper management of kernel-feeding insects. Future directions on basic and applied research related to aflatoxin contamination are also discussed.
Spatial Patterns of Aflatoxin Levels in Relation to Ear-Feeding Insect Damage in Pre-Harvest Corn
Ni, Xinzhi; Wilson, Jeffrey P.; Buntin, G. David; Guo, Baozhu; Krakowsky, Matthew D.; Lee, R. Dewey; Cottrell, Ted E.; Scully, Brian T.; Huffaker, Alisa; Schmelz, Eric A.
2011-01-01
Key impediments to increased corn yield and quality in the southeastern US coastal plain region are damage by ear-feeding insects and aflatoxin contamination caused by infection of Aspergillus flavus. Key ear-feeding insects are corn earworm, Helicoverpa zea, fall armyworm, Spodoptera frugiperda, maize weevil, Sitophilus zeamais, and brown stink bug, Euschistus servus. In 2006 and 2007, aflatoxin contamination and insect damage were sampled before harvest in three 0.4-hectare corn fields using a grid sampling method. The feeding damage by each of ear/kernel-feeding insects (i.e., corn earworm/fall armyworm damage on the silk/cob, and discoloration of corn kernels by stink bugs), and maize weevil population were assessed at each grid point with five ears. The spatial distribution pattern of aflatoxin contamination was also assessed using the corn samples collected at each sampling point. Aflatoxin level was correlated to the number of maize weevils and stink bug-discolored kernels, but not closely correlated to either husk coverage or corn earworm damage. Contour maps of the maize weevil populations, stink bug-damaged kernels, and aflatoxin levels exhibited an aggregated distribution pattern with a strong edge effect on all three parameters. The separation of silk- and cob-feeding insects from kernel-feeding insects, as well as chewing (i.e., the corn earworm and maize weevil) and piercing-sucking insects (i.e., the stink bugs) and their damage in relation to aflatoxin accumulation is economically important. Both theoretic and applied ramifications of this study were discussed by proposing a hypothesis on the underlying mechanisms of the aggregated distribution patterns and strong edge effect of insect damage and aflatoxin contamination, and by discussing possible management tactics for aflatoxin reduction by proper management of kernel-feeding insects. Future directions on basic and applied research related to aflatoxin contamination are also discussed. PMID:22069748
Gajera, H P; Gevariya, Shila N; Hirpara, Darshna G; Patel, S V; Golakiya, B A
2017-09-01
Fruit phenolics are important dietary antioxidant and antidiabetic constituents. The fruit parts (pulp, seed, seed coat, kernel) of underutilized indigenous six black jamun landraces ( Syzygium cumini L.), found in Gir forest region of India and differed in their fruit size, shape and weight, are evaluated and correlated with antidiabetic, DPPH radical scavenging and phenolic constituents. The α-amylase inhibitors propose an efficient antidiabetic strategy and the levels of postprandial hyperglycemia were lowered by restraining starch breakdown. The sequential solvent systems with ascending polarity-petroleum ether, ethyl acetate, methanol and water were performed for soxhlet extraction by hot percolation method and extractive yield was found maximum with methanolic fruit part extracts of six landraces. The methanolic extracts of fruit parts also evidenced higher antidiabetic activity and hence utilized for further characterization. Among the six landraces, pulp and kernel of BJLR-6 (very small, oblong fruits) evidenced maximum 53.8 and 98.2% inhibition of α-amylase activity, respectively. The seed attained inhibitory activity mostly contributed by the kernel fraction. The inhibition of DPPH radical scavenging activity was positively correlated with phenol constituents. An HPLC-PDA technique was used to quantify the seven individual phenolics. The seed and kernel of BJLR-6 exhibited higher individual phenolics-gallic, catechin, ellagic, ferulic acids and quercetin, whereas pulp evidenced higher with gallic acid and catechin as α-amylase inhibitors. The IC 50 value indicates concentration of fruit extracts exhibiting ≥50% inhibition on porcine pancreatic α-amylase (PPA) activity. The kernel fraction of BJLR6 evidenced lowest (8.3 µg ml -1 ) IC 50 value followed by seed (12.9 µg ml -1 ), seed coat (50.8 µg ml -1 ) and pulp (270 µg ml -1 ). The seed and kernel of BJLR-6 inhibited PPA at much lower concentrations than standard acarbose (24.7 µg ml -1 ) considering good candidates for antidiabetic herbal formulations.
The Application of a Technique for Vector Correlation to Problems in Meteorology and Oceanography.
NASA Astrophysics Data System (ADS)
Breaker, L. C.; Gemmill, W. H.; Crosby, D. S.
1994-11-01
In a recent study, Crosby et al. proposed a definition for vector correlation that has not been commonly used in meteorology or oceanography. This definition has both a firm theoretical basis and a rather complete set of desirable statistical properties. In this study, the authors apply the definition to practical problems arising in meteorology and oceanography. In the first of two case studies, vector correlations were calculated between subsurface currents for five locations along the southeastern shore of Lake Erie. Vector correlations for one sample size were calculated for all current meter combinations, first including the seiche frequency and then with the seiche frequency removed. Removal of the seiche frequency, which was easily detected in the current spectra, had only a small effect on the vector correlations. Under reasonable assumptions, the vector correlations were in most cases statistically significant and revealed considerable fine structure in the vector correlation sequences. In some cases, major variations in vector correlation coincided with changes in surface wind. The vector correlations for the various current meter combinations decreased rapidly with increasing spatial separation. For one current meter combination, canonical correlations were also calculated; the first canonical correlation tended to retain the underlying trend, whereas the second canonical correlation retained the peaks in the vector correlations.In the second case study, vector correlations were calculated between marine surface winds derived from the National Meteorological Center's Global Data Assimilation System and observed winds acquired from the network of National Data Buoy Center buoys that are located off the continental United States and in the Gulf of Alaska. Results of this comparison indicated that 1) there was a significant decrease in correlation between the predicted and observed winds with increasing forecast interval out to 72 h, 2) the technique provides a sensitive indicator for detecting bad buoy reports, and 3) there was no obvious seasonal cycle in the monthly vector correlations for the period of observation.
Liu, Jing; Drane, Wanzer; Liu, Xuefeng; Wu, Tiejian
2009-01-01
This study was to explore the relationships between personal exposure to ten volatile organic compounds (VOCs) and biochemical liver tests with the application of canonical correlation analysis. Data from a subsample of the 1999–2000 National Health and Nutrition Examination Survey were used. Serum albumin, total bilirubin (TB), alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), alkaline phosphatase (ALP), and γ-glutamyl transferase (GGT) served as the outcome variables. Personal exposures to benzene, chloroform, ethylbenzene, tetrachloroethene, toluene, trichloroethene, o-xylene, m-, p-xylene, 1,4-dichlorobenzene, and methyl tert-butyl ether (MTBE) were assessed through the use of passive exposure monitors worn by study participants. The first two canonical correlations were 0.3218 and 0.2575, suggesting a positive correlation mainly between the six VOCs (benzene, ethylbenzene, toluene, o-xylene, m-, p-xylene, and MTBE) and the three biochemical liver tests (albumin, ALP, and GGT) and a positive correlation mainly between the two VOCs (1,4-dichlorobenzene and tetrachloroethene) and the two biochemical liver tests (LDH and TB). Subsequent multiple linear regressions show that exposure to benzene, toluene, or MTBE was associated with serum albumin, while exposure to tetrachloroethene was associated with LDH and total bilirubin. In conclusion, exposure to certain VOCs as a group or individually may influence certain biochemical liver test results in the general population. PMID:19117555
Liu, Jing; Drane, Wanzer; Liu, Xuefeng; Wu, Tiejian
2009-02-01
This study was to explore the relationships between personal exposure to 10 volatile organic compounds (VOCs) and biochemical liver tests with the application of canonical correlation analysis. Data from a subsample of the 1999-2000 National Health and Nutrition Examination Survey were used. Serum albumin, total bilirubin (TB), alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), alkaline phosphatase (ALP), and gamma-glutamyl transferase (GGT) served as the outcome variables. Personal exposures to benzene, chloroform, ethylbenzene, tetrachloroethene, toluene, trichloroethene, o-xylene, m-,p-xylene, 1,4-dichlorobenzene, and methyl tert-butyl ether (MTBE) were assessed through the use of passive exposure monitors worn by study participants. The first two canonical correlations were 0.3218 and 0.2575, suggesting a positive correlation mainly between the six VOCs (benzene, ethylbenzene, toluene, o-xylene, m-,p-xylene, and MTBE) and the three biochemical liver tests (albumin, ALP, and GGT) and a positive correlation mainly between the two VOCs (1,4-dichlorobenzene and tetrachloroethene) and the two biochemical liver tests (LDH and TB). Subsequent multiple linear regressions show that exposure to benzene, toluene, or MTBE was associated with serum albumin, while exposure to tetrachloroethene was associated with LDH and total bilirubin. In conclusion, exposure to certain VOCs as a group or individually may influence certain biochemical liver test results in the general population.
Infant vocalizations and the early diagnosis of severe hearing impairment.
Eilers, R E; Oller, D K
1994-02-01
To determine whether late onset of canonical babbling could be used as a criterion to determine risk of hearing impairment, we obtained vocalization samples longitudinally from 94 infants with normal hearing and 37 infants with severe to profound hearing impairment. Parents were instructed to report the onset of canonical babbling (the production of well-formed syllables such as "da," "na," "bee," "yaya"). Verification that the infants were producing canonical syllables was collected in laboratory audio recordings. Infants with normal hearing produced canonical vocalizations before 11 months of age (range, 3 to 10 months; mode, 7 months); infants who were deaf failed to produce canonical syllables until 11 months of age or older, often well into the third year of life (range, 11 to 49 months; mode, 24 months). The correlation between age at onset of the canonical stage and age at auditory amplification was 0.68, indicating that early identification and fitting of hearing aids is of significant benefit to infants learning language. The fact that there is no overlap in the distribution of the onset of canonical babbling between infants with normal hearing and infants with hearing impairment means that the failure of otherwise healthy infants to produce canonical syllables before 11 months of age should be considered a serious risk factor for hearing impairment and, when observed, should result in immediate referral for audiologic evaluation.
Correlation between Gini index and mobility in a stochastic kinetic model of economic exchange
NASA Astrophysics Data System (ADS)
Bertotti, Maria Letizia; Chattopadhyay, Amit K.; Modanese, Giovanni
Starting from a class of stochastically driven kinetic models of economic exchange, here we present results highlighting the correlation of the Gini inequality index with the social mobility rate, close to dynamical equilibrium. Except for the "canonical-additive case", our numerical results consistently indicate negative values of the correlation coefficient, in agreement with empirical evidence. This confirms that growing inequality is not conducive to social mobility which then requires an "external source" to sustain its dynamics. On the other hand, the sign of the correlation between inequality and total income in the canonical ensemble depends on the way wealth enters or leaves the system. At a technical level, the approach involves a generalization of a stochastic dynamical system formulation, that further paves the way for a probabilistic formulation of perturbed economic exchange models.
Hacker, Kathryn P; Seto, Karen C; Costa, Federico; Corburn, Jason; Reis, Mitermayer G; Ko, Albert I; Diuk-Wasser, Maria A
2013-10-20
The expansion of urban slums is a key challenge for public and social policy in the 21st century. The heterogeneous and dynamic nature of slum communities limits the use of rigid slum definitions. A systematic and flexible approach to characterize, delineate and model urban slum structure at an operational resolution is essential to plan, deploy, and monitor interventions at the local and national level. We modeled the multi-dimensional structure of urban slums in the city of Salvador, a city of 3 million inhabitants in Brazil, by integrating census-derived socioeconomic variables and remotely-sensed land cover variables. We assessed the correlation between the two sets of variables using canonical correlation analysis, identified land cover proxies for the socioeconomic variables, and produced an integrated map of deprivation in Salvador at 30 m × 30 m resolution. The canonical analysis identified three significant ordination axes that described the structure of Salvador census tracts according to land cover and socioeconomic features. The first canonical axis captured a gradient from crowded, low-income communities with corrugated roof housing to higher-income communities. The second canonical axis discriminated among socioeconomic variables characterizing the most marginalized census tracts, those without access to sanitation or piped water. The third canonical axis accounted for the least amount of variation, but discriminated between high-income areas with white-painted or tiled roofs from lower-income areas. Our approach captures the socioeconomic and land cover heterogeneity within and between slum settlements and identifies the most marginalized communities in a large, complex urban setting. These findings indicate that changes in the canonical scores for slum areas can be used to track their evolution and to monitor the impact of development programs such as slum upgrading.
2013-01-01
Background The expansion of urban slums is a key challenge for public and social policy in the 21st century. The heterogeneous and dynamic nature of slum communities limits the use of rigid slum definitions. A systematic and flexible approach to characterize, delineate and model urban slum structure at an operational resolution is essential to plan, deploy, and monitor interventions at the local and national level. Methods We modeled the multi-dimensional structure of urban slums in the city of Salvador, a city of 3 million inhabitants in Brazil, by integrating census-derived socioeconomic variables and remotely-sensed land cover variables. We assessed the correlation between the two sets of variables using canonical correlation analysis, identified land cover proxies for the socioeconomic variables, and produced an integrated map of deprivation in Salvador at 30 m × 30 m resolution. Results The canonical analysis identified three significant ordination axes that described the structure of Salvador census tracts according to land cover and socioeconomic features. The first canonical axis captured a gradient from crowded, low-income communities with corrugated roof housing to higher-income communities. The second canonical axis discriminated among socioeconomic variables characterizing the most marginalized census tracts, those without access to sanitation or piped water. The third canonical axis accounted for the least amount of variation, but discriminated between high-income areas with white-painted or tiled roofs from lower-income areas. Conclusions Our approach captures the socioeconomic and land cover heterogeneity within and between slum settlements and identifies the most marginalized communities in a large, complex urban setting. These findings indicate that changes in the canonical scores for slum areas can be used to track their evolution and to monitor the impact of development programs such as slum upgrading. PMID:24138776
Warren, Frederick J; Perston, Benjamin B; Galindez-Najera, Silvia P; Edwards, Cathrina H; Powell, Prudence O; Mandalari, Giusy; Campbell, Grant M; Butterworth, Peter J; Ellis, Peter R
2015-11-01
Infrared microspectroscopy is a tool with potential for studies of the microstructure, chemical composition and functionality of plants at a subcellular level. Here we present the use of high-resolution bench top-based infrared microspectroscopy to investigate the microstructure of Triticum aestivum L. (wheat) kernels and Arabidopsis leaves. Images of isolated wheat kernel tissues and whole wheat kernels following hydrothermal processing and simulated gastric and duodenal digestion were generated, as well as images of Arabidopsis leaves at different points during a diurnal cycle. Individual cells and cell walls were resolved, and large structures within cells, such as starch granules and protein bodies, were clearly identified. Contrast was provided by converting the hyperspectral image cubes into false-colour images using either principal component analysis (PCA) overlays or by correlation analysis. The unsupervised PCA approach provided a clear view of the sample microstructure, whereas the correlation analysis was used to confirm the identity of different anatomical structures using the spectra from isolated components. It was then demonstrated that gelatinized and native starch within cells could be distinguished, and that the loss of starch during wheat digestion could be observed, as well as the accumulation of starch in leaves during a diurnal period. © 2015 The Authors The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
Carvalho, A F S; Murgas, L D S; Ferreira-Machad, M R; Andrade, E S; Felizardo, V O; Allaman, I B; de Paula, F G
OBJECTIVE: To identify which sperm characteristics were able to predict more accurately the quality of curimba (Prochilodus lineatus) semen upon freezing using canonical correlation analysis. Eleven fish breeders with initial mean weight of 705.21 ± 111 g were used. For cryopreservation, 200 µL of semen were taken from each animal and diluted in the cryoprotectant solution (10% dimethyl sulfoxide and 5% Beltsville Thawing Solution Minitub) in a 1:4 ratio and placed into 0.5-mL straws. Sperm characteristics (motility, sperm abnormalities, total antioxidant activity and lipid peroxidation) were evaluated. A randomized block design with duplicate samples per treatment (fresh and frozen semen) was used. The block factor was the animals, and the experimental unit the ejaculates. Canonical correlation was used to evaluate the association between sperm characteristics of fresh semen and thawed semen. There was a significant association (P = 0.10) among the variables measured in fresh semen with the variables measured in thawed semen, and 78.6% of the difference observed in the thawed semen can be attributed to variation of variables measured in fresh semen. Sperm motility, motility duration and antioxidant activity of the thawed semen showed an inverse relationship with those of the fresh semen; whereas the minor sperm abnormalities, major sperm abnormalities and lipid peroxidation showed a direct relationship with those of the fresh semen. Only the rate and motility duration of the thawed semen presented high correlation (-0.63 and -0.73, respectively) with the canonical variable represented by the sperm characteristics of fresh semen. The rate and motility duration of fresh semen may be used to predict the quality of the thawed sperm in Prochilodus lineatus.
Influence of Initial Correlations on Evolution of a Subsystem in a Heat Bath and Polaron Mobility
NASA Astrophysics Data System (ADS)
Los, Victor F.
2017-08-01
A regular approach to accounting for initial correlations, which allows to go beyond the unrealistic random phase (initial product state) approximation in deriving the evolution equations, is suggested. An exact homogeneous (time-convolution and time-convolutionless) equations for a relevant part of the two-time equilibrium correlation function for the dynamic variables of a subsystem interacting with a boson field (heat bath) are obtained. No conventional approximation like RPA or Bogoliubov's principle of weakening of initial correlations is used. The obtained equations take into account the initial correlations in the kernel governing their evolution. The solution to these equations is found in the second order of the kernel expansion in the electron-phonon interaction, which demonstrates that generally the initial correlations influence the correlation function's evolution in time. It is explicitly shown that this influence vanishes on a large timescale (actually at t→ ∞) and the evolution process enters an irreversible kinetic regime. The developed approach is applied to the Fröhlich polaron and the low-temperature polaron mobility (which was under a long-time debate) is found with a correction due to initial correlations.
Reaction Kernel Structure of a Slot Jet Diffusion Flame in Microgravity
NASA Technical Reports Server (NTRS)
Takahashi, F.; Katta, V. R.
2001-01-01
Diffusion flame stabilization in normal earth gravity (1 g) has long been a fundamental research subject in combustion. Local flame-flow phenomena, including heat and species transport and chemical reactions, around the flame base in the vicinity of condensed surfaces control flame stabilization and fire spreading processes. Therefore, gravity plays an important role in the subject topic because buoyancy induces flow in the flame zone, thus increasing the convective (and diffusive) oxygen transport into the flame zone and, in turn, reaction rates. Recent computations show that a peak reactivity (heat-release or oxygen-consumption rate) spot, or reaction kernel, is formed in the flame base by back-diffusion and reactions of radical species in the incoming oxygen-abundant flow at relatively low temperatures (about 1550 K). Quasi-linear correlations were found between the peak heat-release or oxygen-consumption rate and the velocity at the reaction kernel for cases including both jet and flat-plate diffusion flames in airflow. The reaction kernel provides a stationary ignition source to incoming reactants, sustains combustion, and thus stabilizes the trailing diffusion flame. In a quiescent microgravity environment, no buoyancy-induced flow exits and thus purely diffusive transport controls the reaction rates. Flame stabilization mechanisms in such purely diffusion-controlled regime remain largely unstudied. Therefore, it will be a rigorous test for the reaction kernel correlation if it can be extended toward zero velocity conditions in the purely diffusion-controlled regime. The objectives of this study are to reveal the structure of the flame-stabilizing region of a two-dimensional (2D) laminar jet diffusion flame in microgravity and develop a unified diffusion flame stabilization mechanism. This paper reports the recent progress in the computation and experiment performed in microgravity.
Validation of Born Traveltime Kernels
NASA Astrophysics Data System (ADS)
Baig, A. M.; Dahlen, F. A.; Hung, S.
2001-12-01
Most inversions for Earth structure using seismic traveltimes rely on linear ray theory to translate observed traveltime anomalies into seismic velocity anomalies distributed throughout the mantle. However, ray theory is not an appropriate tool to use when velocity anomalies have scale lengths less than the width of the Fresnel zone. In the presence of these structures, we need to turn to a scattering theory in order to adequately describe all of the features observed in the waveform. By coupling the Born approximation to ray theory, the first order dependence of heterogeneity on the cross-correlated traveltimes (described by the Fréchet derivative or, more colourfully, the banana-doughnut kernel) may be determined. To determine for what range of parameters these banana-doughnut kernels outperform linear ray theory, we generate several random media specified by their statistical properties, namely the RMS slowness perturbation and the scale length of the heterogeneity. Acoustic waves are numerically generated from a point source using a 3-D pseudo-spectral wave propagation code. These waves are then recorded at a variety of propagation distances from the source introducing a third parameter to the problem: the number of wavelengths traversed by the wave. When all of the heterogeneity has scale lengths larger than the width of the Fresnel zone, ray theory does as good a job at predicting the cross-correlated traveltime as the banana-doughnut kernels do. Below this limit, wavefront healing becomes a significant effect and ray theory ceases to be effective even though the kernels remain relatively accurate provided the heterogeneity is weak. The study of wave propagation in random media is of a more general interest and we will also show our measurements of the velocity shift and the variance of traveltime compare to various theoretical predictions in a given regime.
NASA Astrophysics Data System (ADS)
Qian, Kun; Zhou, Huixin; Rong, Shenghui; Wang, Bingjian; Cheng, Kuanhong
2017-05-01
Infrared small target tracking plays an important role in applications including military reconnaissance, early warning and terminal guidance. In this paper, an effective algorithm based on the Singular Value Decomposition (SVD) and the improved Kernelized Correlation Filter (KCF) is presented for infrared small target tracking. Firstly, the super performance of the SVD-based algorithm is that it takes advantage of the target's global information and obtains a background estimation of an infrared image. A dim target is enhanced by subtracting the corresponding estimated background with update from the original image. Secondly, the KCF algorithm is combined with Gaussian Curvature Filter (GCF) to eliminate the excursion problem. The GCF technology is adopted to preserve the edge and eliminate the noise of the base sample in the KCF algorithm, helping to calculate the classifier parameter for a small target. At last, the target position is estimated with a response map, which is obtained via the kernelized classifier. Experimental results demonstrate that the presented algorithm performs favorably in terms of efficiency and accuracy, compared with several state-of-the-art algorithms.
Aflatoxin contamination of developing corn kernels.
Amer, M A
2005-01-01
Preharvest of corn and its contamination with aflatoxin is a serious problem. Some environmental and cultural factors responsible for infection and subsequent aflatoxin production were investigated in this study. Stage of growth and location of kernels on corn ears were found to be one of the important factors in the process of kernel infection with A. flavus & A. parasiticus. The results showed positive correlation between the stage of growth and kernel infection. Treatment of corn with aflatoxin reduced germination, protein and total nitrogen contents. Total and reducing soluble sugar was increase in corn kernels as response to infection. Sucrose and protein content were reduced in case of both pathogens. Shoot system length, seeding fresh weigh and seedling dry weigh was also affected. Both pathogens induced reduction of starch content. Healthy corn seedlings treated with aflatoxin solution were badly affected. Their leaves became yellow then, turned brown with further incubation. Moreover, their total chlorophyll and protein contents showed pronounced decrease. On the other hand, total phenolic compounds were increased. Histopathological studies indicated that A. flavus & A. parasiticus could colonize corn silks and invade developing kernels. Germination of A. flavus spores was occurred and hyphae spread rapidly across the silk, producing extensive growth and lateral branching. Conidiophores and conidia had formed in and on the corn silk. Temperature and relative humidity greatly influenced the growth of A. flavus & A. parasiticus and aflatoxin production.
Efficient Strategies for Estimating the Spatial Coherence of Backscatter
Hyun, Dongwoon; Crowley, Anna Lisa C.; Dahl, Jeremy J.
2017-01-01
The spatial coherence of ultrasound backscatter has been proposed to reduce clutter in medical imaging, to measure the anisotropy of the scattering source, and to improve the detection of blood flow. These techniques rely on correlation estimates that are obtained using computationally expensive strategies. In this study, we assess existing spatial coherence estimation methods and propose three computationally efficient modifications: a reduced kernel, a downsampled receive aperture, and the use of an ensemble correlation coefficient. The proposed methods are implemented in simulation and in vivo studies. Reducing the kernel to a single sample improved computational throughput and improved axial resolution. Downsampling the receive aperture was found to have negligible effect on estimator variance, and improved computational throughput by an order of magnitude for a downsample factor of 4. The ensemble correlation estimator demonstrated lower variance than the currently used average correlation. Combining the three methods, the throughput was improved 105-fold in simulation with a downsample factor of 4 and 20-fold in vivo with a downsample factor of 2. PMID:27913342
The association between indicators of health and housing in people with Parkinson's disease.
Nilsson, Maria H; Ullén, Susann; Ekström, Henrik; Iwarsson, Susanne
2016-07-27
There are knowledge gaps about the life situation for people ageing with Parkinson's disease (PD), with virtually no understanding of home and health dynamics. Therefore, the aim of the present study was to explore the association between aspects of health and objective as well as perceived housing in people with PD. Participants were recruited from three hospitals in the region of Skåne in southern Sweden. The sample for the present study included 231 (62 % men) participants with PD, with a mean age of 75 (min-max, 45-93) years. The data collection procedure included a self-administered postal survey and a subsequent home visit where structured interviews, observations and clinical assessments were administered. To study the association between aspects of health and housing canonical correlation was applied. Twelve variables (6 in the health and 6 in the housing set) were included. This corresponds to about 20 individuals per variable and is considered sufficient to accurately interpret the largest (i.e., first) canonical correlation. The analysis between the health variables and housing variables set yielded two significant pairs of variates with the canonical correlations 0.68 (p < 0.0001) and 0.33 (p = 0.0112), respectively. For the first pair of variates the canonical R(2) was 0.46. The results showed that external control beliefs and behavioral aspects of meaning of home contributed the most to the housing variate, whereas difficulties/dependence in activities of daily living (ADL) and functional limitations contributed the most to the health variate. Although a significant relationship was found for the second canonical correlation, the shared variance between the two variates was considerably lower; R(2) = 0.11. This study suggests that people with PD who have more functional limitations, difficulties in ADL and are more dependent perceive their homes as less meaningful from a behavioral perspective. Moreover, they tend to rely on external influences managing their housing situation. With this kind of knowledge at hand, health care and social services professionals are in a better position to observe and efficiently address problems related to health and housing among people with PD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Ping; Song, Heda; Wang, Hong
Blast furnace (BF) in ironmaking is a nonlinear dynamic process with complicated physical-chemical reactions, where multi-phase and multi-field coupling and large time delay occur during its operation. In BF operation, the molten iron temperature (MIT) as well as Si, P and S contents of molten iron are the most essential molten iron quality (MIQ) indices, whose measurement, modeling and control have always been important issues in metallurgic engineering and automation field. This paper develops a novel data-driven nonlinear state space modeling for the prediction and control of multivariate MIQ indices by integrating hybrid modeling and control techniques. First, to improvemore » modeling efficiency, a data-driven hybrid method combining canonical correlation analysis and correlation analysis is proposed to identify the most influential controllable variables as the modeling inputs from multitudinous factors would affect the MIQ indices. Then, a Hammerstein model for the prediction of MIQ indices is established using the LS-SVM based nonlinear subspace identification method. Such a model is further simplified by using piecewise cubic Hermite interpolating polynomial method to fit the complex nonlinear kernel function. Compared to the original Hammerstein model, this simplified model can not only significantly reduce the computational complexity, but also has almost the same reliability and accuracy for a stable prediction of MIQ indices. Last, in order to verify the practicability of the developed model, it is applied in designing a genetic algorithm based nonlinear predictive controller for multivariate MIQ indices by directly taking the established model as a predictor. Industrial experiments show the advantages and effectiveness of the proposed approach.« less
Zhe Fan; Zhong Wang; Guanglin Li; Ruomei Wang
2016-08-01
Motion classification system based on surface Electromyography (sEMG) pattern recognition has achieved good results in experimental condition. But it is still a challenge for clinical implement and practical application. Many factors contribute to the difficulty of clinical use of the EMG based dexterous control. The most obvious and important is the noise in the EMG signal caused by electrode shift, muscle fatigue, motion artifact, inherent instability of signal and biological signals such as Electrocardiogram. In this paper, a novel method based on Canonical Correlation Analysis (CCA) was developed to eliminate the reduction of classification accuracy caused by electrode shift. The average classification accuracy of our method were above 95% for the healthy subjects. In the process, we validated the influence of electrode shift on motion classification accuracy and discovered the strong correlation with correlation coefficient of >0.9 between shift position data and normal position data.
Madrigal, Pedro
2017-03-01
Computational evaluation of variability across DNA or RNA sequencing datasets is a crucial step in genomic science, as it allows both to evaluate reproducibility of biological or technical replicates, and to compare different datasets to identify their potential correlations. Here we present fCCAC, an application of functional canonical correlation analysis to assess covariance of nucleic acid sequencing datasets such as chromatin immunoprecipitation followed by deep sequencing (ChIP-seq). We show how this method differs from other measures of correlation, and exemplify how it can reveal shared covariance between histone modifications and DNA binding proteins, such as the relationship between the H3K4me3 chromatin mark and its epigenetic writers and readers. An R/Bioconductor package is available at http://bioconductor.org/packages/fCCAC/ . pmb59@cam.ac.uk. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Montoya-Castillo, Andrés; Reichman, David R
2017-01-14
We derive a semi-analytical form for the Wigner transform for the canonical density operator of a discrete system coupled to a harmonic bath based on the path integral expansion of the Boltzmann factor. The introduction of this simple and controllable approach allows for the exact rendering of the canonical distribution and permits systematic convergence of static properties with respect to the number of path integral steps. In addition, the expressions derived here provide an exact and facile interface with quasi- and semi-classical dynamical methods, which enables the direct calculation of equilibrium time correlation functions within a wide array of approaches. We demonstrate that the present method represents a practical path for the calculation of thermodynamic data for the spin-boson and related systems. We illustrate the power of the present approach by detailing the improvement of the quality of Ehrenfest theory for the correlation function C zz (t)=Re⟨σ z (0)σ z (t)⟩ for the spin-boson model with systematic convergence to the exact sampling function. Importantly, the numerically exact nature of the scheme presented here and its compatibility with semiclassical methods allows for the systematic testing of commonly used approximations for the Wigner-transformed canonical density.
Jung, Jooyeoun; Wang, Wenjie; McGorrin, Robert J; Zhao, Yanyun
2018-02-01
Moisture adsorption isotherms and storability of dried hazelnut inshells and kernels produced in Oregon were evaluated and compared among cultivars, including Barcelona, Yamhill, and Jefferson. Experimental moisture adsorption data fitted to Guggenheim-Anderson-de Boer (GAB) model, showing less hygroscopic properties in Yamhill than other cultivars of inshells and kernels due to lower content of carbohydrate and protein, but higher content of fat. The safe levels of moisture content (MC, dry basis) of dried inshells and kernels for reaching kernel water activity (a w ) ≤0.65 were estimated using the GAB model as 11.3% and 5.0% for Barcelona, 9.4% and 4.2% for Yamhill, and 10.7% and 4.9% for Jefferson, respectively. Storage conditions (2 °C at 85% to 95% relative humidity [RH], 10 °C at 65% to 75% RH, and 27 °C at 35% to 45% RH), times (0, 4, 8, or 12 mo), and packaging methods (atmosphere vs. vacuum) affected MC, a w , bioactive compounds, lipid oxidation, and enzyme activity of dried hazelnut inshells or kernels. For inshells packaged at woven polypropylene bag, MC and a w of inshells and kernels (inside shells) increased at 2 and 10 °C, but decreased at 27 °C during storage. For kernels, lipid oxidation and polyphenol oxidase activity also increased with extended storage time (P < 0.05), and MC and a w of vacuum packaged samples were more stable during storage than those atmospherically packaged ones. Principal component analysis showed correlation of kernel qualities with storage condition, time, and packaging method. This study demonstrated that the ideal storage condition or packaging method varied among cultivars due to their different moisture adsorption and physicochemical and enzymatic stability during storage. Moisture adsorption isotherm of hazelnut inshells and kernels is useful for predicting the storability of nuts. This study found that water adsorption and storability varied among the different cultivars of nuts, in which Yamhill was less hygroscopic than Barcelona and Jefferson, thus more stable during storage. For ensuring food safety and quality of nuts during storage, each cultivar of kernels should be dried to a certain level of MC. Lipid oxidation and enzyme activity of kernel could be increased with extended storage time. Vacuum packaging was recommended to kernels for reducing moisture adsorption during storage. © 2018 Institute of Food Technologists®.
Recognition Using Hybrid Classifiers.
Osadchy, Margarita; Keren, Daniel; Raviv, Dolev
2016-04-01
A canonical problem in computer vision is category recognition (e.g., find all instances of human faces, cars etc., in an image). Typically, the input for training a binary classifier is a relatively small sample of positive examples, and a huge sample of negative examples, which can be very diverse, consisting of images from a large number of categories. The difficulty of the problem sharply increases with the dimension and size of the negative example set. We propose to alleviate this problem by applying a "hybrid" classifier, which replaces the negative samples by a prior, and then finds a hyperplane which separates the positive samples from this prior. The method is extended to kernel space and to an ensemble-based approach. The resulting binary classifiers achieve an identical or better classification rate than SVM, while requiring far smaller memory and lower computational complexity to train and apply.
Taylor, Brandie D; Zheng, Xiaojing; Darville, Toni; Zhong, Wujuan; Konganti, Kranti; Abiodun-Ojo, Olayinka; Ness, Roberta B; O'Connell, Catherine M; Haggerty, Catherine L
2017-01-01
Ideal management of sexually transmitted infections (STI) may require risk markers for pathology or vaccine development. Previously, we identified common genetic variants associated with chlamydial pelvic inflammatory disease (PID) and reduced fecundity. As this explains only a proportion of the long-term morbidity risk, we used whole-exome sequencing to identify biological pathways that may be associated with STI-related infertility. We obtained stored DNA from 43 non-Hispanic black women with PID from the PID Evaluation and Clinical Health Study. Infertility was assessed at a mean of 84 months. Principal component analysis revealed no population stratification. Potential covariates did not significantly differ between groups. Sequencing kernel association test was used to examine associations between aggregates of variants on a single gene and infertility. The results from the sequencing kernel association test were used to choose "focus genes" (P < 0.01; n = 150) for subsequent Ingenuity Pathway Analysis to identify "gene sets" that are enriched in biologically relevant pathways. Pathway analysis revealed that focus genes were enriched in canonical pathways including, IL-1 signaling, P2Y purinergic receptor signaling, and bone morphogenic protein signaling. Focus genes were enriched in pathways that impact innate and adaptive immunity, protein kinase A activity, cellular growth, and DNA repair. These may alter host resistance or immunopathology after infection. Targeted sequencing of biological pathways identified in this study may provide insight into STI-related infertility.
Joint Blind Source Separation by Multi-set Canonical Correlation Analysis
Li, Yi-Ou; Adalı, Tülay; Wang, Wei; Calhoun, Vince D
2009-01-01
In this work, we introduce a simple and effective scheme to achieve joint blind source separation (BSS) of multiple datasets using multi-set canonical correlation analysis (M-CCA) [1]. We first propose a generative model of joint BSS based on the correlation of latent sources within and between datasets. We specify source separability conditions, and show that, when the conditions are satisfied, the group of corresponding sources from each dataset can be jointly extracted by M-CCA through maximization of correlation among the extracted sources. We compare source separation performance of the M-CCA scheme with other joint BSS methods and demonstrate the superior performance of the M-CCA scheme in achieving joint BSS for a large number of datasets, group of corresponding sources with heterogeneous correlation values, and complex-valued sources with circular and non-circular distributions. We apply M-CCA to analysis of functional magnetic resonance imaging (fMRI) data from multiple subjects and show its utility in estimating meaningful brain activations from a visuomotor task. PMID:20221319
Kabir, Alamgir; Merrill, Rebecca D; Shamim, Abu Ahmed; Klemn, Rolf D W; Labrique, Alain B; Christian, Parul; West, Keith P; Nasser, Mohammed
2014-01-01
This analysis was conducted to explore the association between 5 birth size measurements (weight, length and head, chest and mid-upper arm [MUAC] circumferences) as dependent variables and 10 maternal factors as independent variables using canonical correlation analysis (CCA). CCA considers simultaneously sets of dependent and independent variables and, thus, generates a substantially reduced type 1 error. Data were from women delivering a singleton live birth (n = 14,506) while participating in a double-masked, cluster-randomized, placebo-controlled maternal vitamin A or β-carotene supplementation trial in rural Bangladesh. The first canonical correlation was 0.42 (P<0.001), demonstrating a moderate positive correlation mainly between the 5 birth size measurements and 5 maternal factors (preterm delivery, early pregnancy MUAC, infant sex, age and parity). A significant interaction between infant sex and preterm delivery on birth size was also revealed from the score plot. Thirteen percent of birth size variability was explained by the composite score of the maternal factors (Redundancy, RY/X = 0.131). Given an ability to accommodate numerous relationships and reduce complexities of multiple comparisons, CCA identified the 5 maternal variables able to predict birth size in this rural Bangladesh setting. CCA may offer an efficient, practical and inclusive approach to assessing the association between two sets of variables, addressing the innate complexity of interactions.
A shortest-path graph kernel for estimating gene product semantic similarity.
Alvarez, Marco A; Qi, Xiaojun; Yan, Changhui
2011-07-29
Existing methods for calculating semantic similarity between gene products using the Gene Ontology (GO) often rely on external resources, which are not part of the ontology. Consequently, changes in these external resources like biased term distribution caused by shifting of hot research topics, will affect the calculation of semantic similarity. One way to avoid this problem is to use semantic methods that are "intrinsic" to the ontology, i.e. independent of external knowledge. We present a shortest-path graph kernel (spgk) method that relies exclusively on the GO and its structure. In spgk, a gene product is represented by an induced subgraph of the GO, which consists of all the GO terms annotating it. Then a shortest-path graph kernel is used to compute the similarity between two graphs. In a comprehensive evaluation using a benchmark dataset, spgk compares favorably with other methods that depend on external resources. Compared with simUI, a method that is also intrinsic to GO, spgk achieves slightly better results on the benchmark dataset. Statistical tests show that the improvement is significant when the resolution and EC similarity correlation coefficient are used to measure the performance, but is insignificant when the Pfam similarity correlation coefficient is used. Spgk uses a graph kernel method in polynomial time to exploit the structure of the GO to calculate semantic similarity between gene products. It provides an alternative to both methods that use external resources and "intrinsic" methods with comparable performance.
ALMA Correlator Real-Time Data Processor
NASA Astrophysics Data System (ADS)
Pisano, J.; Amestica, R.; Perez, J.
2005-10-01
The design of a real-time Linux application utilizing Real-Time Application Interface (RTAI) to process real-time data from the radio astronomy correlator for the Atacama Large Millimeter Array (ALMA) is described. The correlator is a custom-built digital signal processor which computes the cross-correlation function of two digitized signal streams. ALMA will have 64 antennas with 2080 signal streams each with a sample rate of 4 giga-samples per second. The correlator's aggregate data output will be 1 gigabyte per second. The software is defined by hard deadlines with high input and processing data rates, while requiring interfaces to non real-time external computers. The designed computer system - the Correlator Data Processor or CDP, consists of a cluster of 17 SMP computers, 16 of which are compute nodes plus a master controller node all running real-time Linux kernels. Each compute node uses an RTAI kernel module to interface to a 32-bit parallel interface which accepts raw data at 64 megabytes per second in 1 megabyte chunks every 16 milliseconds. These data are transferred to tasks running on multiple CPUs in hard real-time using RTAI's LXRT facility to perform quantization corrections, data windowing, FFTs, and phase corrections for a processing rate of approximately 1 GFLOPS. Highly accurate timing signals are distributed to all seventeen computer nodes in order to synchronize them to other time-dependent devices in the observatory array. RTAI kernel tasks interface to the timing signals providing sub-millisecond timing resolution. The CDP interfaces, via the master node, to other computer systems on an external intra-net for command and control, data storage, and further data (image) processing. The master node accesses these external systems utilizing ALMA Common Software (ACS), a CORBA-based client-server software infrastructure providing logging, monitoring, data delivery, and intra-computer function invocation. The software is being developed in tandem with the correlator hardware which presents software engineering challenges as the hardware evolves. The current status of this project and future goals are also presented.
NASA Astrophysics Data System (ADS)
Nepal, Niraj K.; Ruzsinszky, Adrienn; Bates, Jefferson E.
2018-03-01
The ground state structural and energetic properties for rocksalt and cesium chloride phases of the cesium halides were explored using the random phase approximation (RPA) and beyond-RPA methods to benchmark the nonempirical SCAN meta-GGA and its empirical dispersion corrections. The importance of nonadditivity and higher-order multipole moments of dispersion in these systems is discussed. RPA generally predicts the equilibrium volume for these halides within 2.4% of the experimental value, while beyond-RPA methods utilizing the renormalized adiabatic LDA (rALDA) exchange-correlation kernel are typically within 1.8%. The zero-point vibrational energy is small and shows that the stability of these halides is purely due to electronic correlation effects. The rAPBE kernel as a correction to RPA overestimates the equilibrium volume and could not predict the correct phase ordering in the case of cesium chloride, while the rALDA kernel consistently predicted results in agreement with the experiment for all of the halides. However, due to its reasonable accuracy with lower computational cost, SCAN+rVV10 proved to be a good alternative to the RPA-like methods for describing the properties of these ionic solids.
Deciphering drought-induced metabolic responses and regulation in developing maize kernels.
Yang, Liming; Fountain, Jake C; Ji, Pingsheng; Ni, Xinzhi; Chen, Sixue; Lee, Robert D; Kemerait, Robert C; Guo, Baozhu
2018-02-12
Drought stress conditions decrease maize growth and yield, and aggravate preharvest aflatoxin contamination. While several studies have been performed on mature kernels responding to drought stress, the metabolic profiles of developing kernels are not as well characterized, particularly in germplasm with contrasting resistance to both drought and mycotoxin contamination. Here, following screening for drought tolerance, a drought-sensitive line, B73, and a drought-tolerant line, Lo964, were selected and stressed beginning at 14 days after pollination. Developing kernels were sampled 7 and 14 days after drought induction (DAI) from both stressed and irrigated plants. Comparative biochemical and metabolomic analyses profiled 409 differentially accumulated metabolites. Multivariate statistics and pathway analyses showed that drought stress induced an accumulation of simple sugars and polyunsaturated fatty acids and a decrease in amines, polyamines and dipeptides in B73. Conversely, sphingolipid, sterol, phenylpropanoid and dipeptide metabolites accumulated in Lo964 under drought stress. Drought stress also resulted in the greater accumulation of reactive oxygen species (ROS) and aflatoxin in kernels of B73 in comparison with Lo964 implying a correlation in their production. Overall, field drought treatments disordered a cascade of normal metabolic programming during development of maize kernels and subsequently caused oxidative stress. The glutathione and urea cycles along with the metabolism of carbohydrates and lipids for osmoprotection, membrane maintenance and antioxidant protection were central among the drought stress responses observed in developing kernels. These results also provide novel targets to enhance host drought tolerance and disease resistance through the use of biotechnologies such as transgenics and genome editing. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bleiziffer, Patrick, E-mail: patrick.bleiziffer@fau.de; Krug, Marcel; Görling, Andreas
A self-consistent Kohn-Sham method based on the adiabatic-connection fluctuation-dissipation (ACFD) theorem, employing the frequency-dependent exact exchange kernel f{sub x} is presented. The resulting SC-exact-exchange-only (EXX)-ACFD method leads to even more accurate correlation potentials than those obtained within the direct random phase approximation (dRPA). In contrast to dRPA methods, not only the Coulomb kernel but also the exact exchange kernel f{sub x} is taken into account in the EXX-ACFD correlation which results in a method that, unlike dRPA methods, is free of self-correlations, i.e., a method that treats exactly all one-electron systems, like, e.g., the hydrogen atom. The self-consistent evaluation ofmore » EXX-ACFD total energies improves the accuracy compared to EXX-ACFD total energies evaluated non-self-consistently with EXX or dRPA orbitals and eigenvalues. Reaction energies of a set of small molecules, for which highly accurate experimental reference data are available, are calculated and compared to quantum chemistry methods like Møller-Plesset perturbation theory of second order (MP2) or coupled cluster methods [CCSD, coupled cluster singles, doubles, and perturbative triples (CCSD(T))]. Moreover, we compare our methods to other ACFD variants like dRPA combined with perturbative corrections such as the second order screened exchange corrections or a renormalized singles correction. Similarly, the performance of our EXX-ACFD methods is investigated for the non-covalently bonded dimers of the S22 reference set and for potential energy curves of noble gas, water, and benzene dimers. The computational effort of the SC-EXX-ACFD method exhibits the same scaling of N{sup 5} with respect to the system size N as the non-self-consistent evaluation of only the EXX-ACFD correlation energy; however, the prefactor increases significantly. Reaction energies from the SC-EXX-ACFD method deviate quite little from EXX-ACFD energies obtained non-self-consistently with dRPA orbitals and eigenvalues, and the deviation reduces even further if the Coulomb kernel is scaled by a factor of 0.75 in the dRPA to reduce self-correlations in the dRPA correlation potential. For larger systems, such a non-self-consistent EXX-ACFD method is a competitive alternative to high-level wave-function-based methods, yielding higher accuracy than MP2 and CCSD methods while exhibiting a better scaling of the computational effort than CCSD or CCSD(T) methods. Moreover, EXX-ACFD methods were shown to be applicable in situation characterized by static correlation.« less
Lymphotoxin β receptor activation promotes bladder cancer in a nuclear factor-κB-dependent manner.
Shen, Mo; Duan, Xiuzhi; Zhou, Ping; Zhou, Wu; Wu, Xiuling; Xu, Siqi; Chen, Yuhua; Tao, Zhihua
2015-02-01
Bladder cancer (BCa) is the most common tumor of the urinary system. Chronic inflammation in the papillary urothelial neoplasm of low malignant potential (PUNLMP)may contribute to carcinogenesis, including that of BCa, via poorly understood mechanisms. In this study, we show that the lymphotoxin β receptor (LTβR) is upregulated in BCa via activation of the canonical and non-canonical nuclear factor-κB (NF-κB) pathways. The mRNA expression of LTβR in 81 BCa, 10 chronic cystitis and 23 healthy bladder mucosa tissues was investigated by reverse transcription-fluorescent quantitative polymerase chain reaction (RT-FQ-PCR), and protein expression was studied in 73 BCa, 30 cystitis and 15 healthy paraffin-embedded tissue sections by immunohistochemistry. Both LTβR mRNA and protein were upregulated in BCa and cystitis compared to the healthy group (P<0.05). The mRNA level of the downstream NF-κB canonical pathway p65 gene and of the non-canonical pathway RelB gene were higher in the BCa and cystitis groups compared to the healthy one. The level of phosphorylated p65 (p-p65) protein of the canonical NF-κB pathway and that of p52, a protein of the non-canonical NF-κB pathway, were also higher in the BCa and cystitis group compared to the healthy group. The levels of these proteins significantly correlated to the pathological grade, clinical stage and lymph node metastasis of BCa patients (P<0.05). In addition, there was a positive correlation between LTβR and NF-κB pathway proteins. Thus, LTβR signaling may be involved in promoting BCa through the NF-κB pathway, and which may represent the molecular link between inflammation and BCa.
Factor Analysis and Counseling Research
ERIC Educational Resources Information Center
Weiss, David J.
1970-01-01
Topics discussed include factor analysis versus cluster analysis, analysis of Q correlation matrices, ipsativity and factor analysis, and tests for the significance of a correlation matrix prior to application of factor analytic techniques. Techniques for factor extraction discussed include principal components, canonical factor analysis, alpha…
Dimensions of Intuition: First-Round Validation Studies
ERIC Educational Resources Information Center
Vrugtman, Rosanne
2009-01-01
This study utilized confirmatory factor analysis (CFA), canonical correlation analysis (CCA), regression analysis (RA), and correlation analysis (CA) for first-round validation of the researcher's Dimensions of Intuition (DOI) instrument. The DOI examined 25 personal characteristics and situations purportedly predictive of intuition. Data was…
Motivation and Burnout in Professional Rugby Players
ERIC Educational Resources Information Center
Cresswell, Scott L.; Eklund, Robert C.
2005-01-01
The authors examined relationships among burnout and motivational types differing in self-determination, using simple correlational analyses as well as more sophisticated canonical correlation analyses allowing for the simultaneous examination of multiple independent and dependent variables. The authors hypothesized that: (a) motivation low in…
Error Estimation of An Ensemble Statistical Seasonal Precipitation Prediction Model
NASA Technical Reports Server (NTRS)
Shen, Samuel S. P.; Lau, William K. M.; Kim, Kyu-Myong; Li, Gui-Long
2001-01-01
This NASA Technical Memorandum describes an optimal ensemble canonical correlation forecasting model for seasonal precipitation. Each individual forecast is based on the canonical correlation analysis (CCA) in the spectral spaces whose bases are empirical orthogonal functions (EOF). The optimal weights in the ensemble forecasting crucially depend on the mean square error of each individual forecast. An estimate of the mean square error of a CCA prediction is made also using the spectral method. The error is decomposed onto EOFs of the predictand and decreases linearly according to the correlation between the predictor and predictand. Since new CCA scheme is derived for continuous fields of predictor and predictand, an area-factor is automatically included. Thus our model is an improvement of the spectral CCA scheme of Barnett and Preisendorfer. The improvements include (1) the use of area-factor, (2) the estimation of prediction error, and (3) the optimal ensemble of multiple forecasts. The new CCA model is applied to the seasonal forecasting of the United States (US) precipitation field. The predictor is the sea surface temperature (SST). The US Climate Prediction Center's reconstructed SST is used as the predictor's historical data. The US National Center for Environmental Prediction's optimally interpolated precipitation (1951-2000) is used as the predictand's historical data. Our forecast experiments show that the new ensemble canonical correlation scheme renders a reasonable forecasting skill. For example, when using September-October-November SST to predict the next season December-January-February precipitation, the spatial pattern correlation between the observed and predicted are positive in 46 years among the 50 years of experiments. The positive correlations are close to or greater than 0.4 in 29 years, which indicates excellent performance of the forecasting model. The forecasting skill can be further enhanced when several predictors are used.
Tang, Lili; Fritzsche, Kurt; Leonhart, Rainer; Pang, Ying; Li, Jinjiang; Song, Lili; Fischer, Irmela; Koch, Maike; Wuensch, Alexander; Mewes, Ricarda; Schaefert, Rainer
2017-12-01
To evaluate the relationship between quality of life (QOL) and physical as well as psychological variables in Chinese breast cancer patients. This multicenter cross-sectional study enrolled 254 Chinese breast cancer patients in different stages and treatment phases. They answered standard instruments assessing QOL (EORTC), somatic symptom severity (PHQ-15), depression (PHQ-9), anxiety (GAD-7), health-related anxiety (WI-7), illness perception (BIPQ), and sense of coherence (SOC-9). Canonical correlation was applied to identify the strongest correlates between the physical, emotional and social QOL scales and the physical and psychological variables. In our sample, a low global QOL was significantly associated with the following physical and psychological variables: symptom-related disability (Karnofsky Index) (r = .211, p < .01), somatic symptom severity (r = -.391, p < .001), depression (r = -.488, p < .001), anxiety (r = -.439, p < .001), health-related anxiety (r = -.398, p < .001), dysfunctional illness perception (r = -.411, p < .001), and sense of coherence (r = .371, p < .001). In the canonical correlation analysis, high somatic symptom severity, depression, anxiety, dysfunctional illness perception, and low sense of coherence showed the strongest correlations with low physical, emotional and social functioning. The first three significant canonical correlations between these two sets of variables were .78, .56, and .45. QOL in Chinese breast cancer patients is strongly associated with psychological factors. Our results suggest that Chinese physicians and nurses should incorporate these factors into their care for women with breast cancer to improve patients' QOL.
Schmitz, Gunnar; Hättig, Christof
2016-12-21
We present an implementation of pair natural orbital coupled cluster singles and doubles with perturbative triples, PNO-CCSD(T), which avoids the quasi-canonical triples approximation (T0) where couplings due to off-diagonal Fock matrix elements are neglected. A numerical Laplace transformation of the canonical expression for the perturbative (T) triples correction is used to avoid an I/O and storage bottleneck for the triples amplitudes. Results for a test set of reaction energies show that only very few Laplace grid points are needed to obtain converged energy differences and that PNO-CCSD(T) is a more robust approximation than PNO-CCSD(T0) with a reduced mean absolute deviation from canonical CCSD(T) results. We combine the PNO-based (T) triples correction with the explicitly correlated PNO-CCSD(F12*) method and investigate the use of specialized F12-PNOs in the conventional triples correction. We find that no significant additional errors are introduced and that PNO-CCSD(F12*)(T) can be applied in a black box manner.
Recent applications of THERMUS
NASA Astrophysics Data System (ADS)
Wheaton, S.; Hauer, M.
2011-12-01
Some of the most recent applications of the statistical-thermal model package, THERMUS, are reviewed. These applications focus on fluctuation and correlation observables in an ideal particle and anti-particle gas in limited momentum space segments, as well as in a hadron resonance gas. In the case of the latter, a Monte Carlo event generator, utilising THERMUS functionality and assuming thermal production of hadrons, is discussed. The system under consideration is sampled grand canonically in the Boltzmann approximation. A re-weighting scheme is then introduced to account for conservation of charges (baryon number, strangeness, electric charge) and energy and momentum, effectively allowing for extrapolation of grand canonical results to the micro canonical limit. The approach utilised in this and other applications suggests improvements to existing THERMUS calculations.
Liu, Jian; Miller, William H
2011-03-14
We show the exact expression of the quantum mechanical time correlation function in the phase space formulation of quantum mechanics. The trajectory-based dynamics that conserves the quantum canonical distribution-equilibrium Liouville dynamics (ELD) proposed in Paper I is then used to approximately evaluate the exact expression. It gives exact thermal correlation functions (of even nonlinear operators, i.e., nonlinear functions of position or momentum operators) in the classical, high temperature, and harmonic limits. Various methods have been presented for the implementation of ELD. Numerical tests of the ELD approach in the Wigner or Husimi phase space have been made for a harmonic oscillator and two strongly anharmonic model problems, for each potential autocorrelation functions of both linear and nonlinear operators have been calculated. It suggests ELD can be a potentially useful approach for describing quantum effects for complex systems in condense phase.
A Canonical Ensemble Correlation Prediction Model for Seasonal Precipitation Anomaly
NASA Technical Reports Server (NTRS)
Shen, Samuel S. P.; Lau, William K. M.; Kim, Kyu-Myong; Li, Guilong
2001-01-01
This report describes an optimal ensemble forecasting model for seasonal precipitation and its error estimation. Each individual forecast is based on the canonical correlation analysis (CCA) in the spectral spaces whose bases are empirical orthogonal functions (EOF). The optimal weights in the ensemble forecasting crucially depend on the mean square error of each individual forecast. An estimate of the mean square error of a CCA prediction is made also using the spectral method. The error is decomposed onto EOFs of the predictand and decreases linearly according to the correlation between the predictor and predictand. This new CCA model includes the following features: (1) the use of area-factor, (2) the estimation of prediction error, and (3) the optimal ensemble of multiple forecasts. The new CCA model is applied to the seasonal forecasting of the United States precipitation field. The predictor is the sea surface temperature.
A locally adaptive kernel regression method for facies delineation
NASA Astrophysics Data System (ADS)
Fernàndez-Garcia, D.; Barahona-Palomo, M.; Henri, C. V.; Sanchez-Vila, X.
2015-12-01
Facies delineation is defined as the separation of geological units with distinct intrinsic characteristics (grain size, hydraulic conductivity, mineralogical composition). A major challenge in this area stems from the fact that only a few scattered pieces of hydrogeological information are available to delineate geological facies. Several methods to delineate facies are available in the literature, ranging from those based only on existing hard data, to those including secondary data or external knowledge about sedimentological patterns. This paper describes a methodology to use kernel regression methods as an effective tool for facies delineation. The method uses both the spatial and the actual sampled values to produce, for each individual hard data point, a locally adaptive steering kernel function, self-adjusting the principal directions of the local anisotropic kernels to the direction of highest local spatial correlation. The method is shown to outperform the nearest neighbor classification method in a number of synthetic aquifers whenever the available number of hard data is small and randomly distributed in space. In the case of exhaustive sampling, the steering kernel regression method converges to the true solution. Simulations ran in a suite of synthetic examples are used to explore the selection of kernel parameters in typical field settings. It is shown that, in practice, a rule of thumb can be used to obtain suboptimal results. The performance of the method is demonstrated to significantly improve when external information regarding facies proportions is incorporated. Remarkably, the method allows for a reasonable reconstruction of the facies connectivity patterns, shown in terms of breakthrough curves performance.
Correlated Hopping in the 1D Falicov--Kimball Model
NASA Astrophysics Data System (ADS)
Gajek, Z.; Lemanski, R.
2001-10-01
Ground state phase diagrams in the canonical ensemble of the one-dimensional Falicov-Kimball Model (FKM) with the correlated hopping are presented for several values of the model parameters. As compare to the conventional FKM, the diagrams exhibit a loss of the particle--hole symmetry.
Personal sleep pattern visualization using sequence-based kernel self-organizing map on sound data.
Wu, Hongle; Kato, Takafumi; Yamada, Tomomi; Numao, Masayuki; Fukui, Ken-Ichi
2017-07-01
We propose a method to discover sleep patterns via clustering of sound events recorded during sleep. The proposed method extends the conventional self-organizing map algorithm by kernelization and sequence-based technologies to obtain a fine-grained map that visualizes the distribution and changes of sleep-related events. We introduced features widely applied in sound processing and popular kernel functions to the proposed method to evaluate and compare performance. The proposed method provides a new aspect of sleep monitoring because the results demonstrate that sound events can be directly correlated to an individual's sleep patterns. In addition, by visualizing the transition of cluster dynamics, sleep-related sound events were found to relate to the various stages of sleep. Therefore, these results empirically warrant future study into the assessment of personal sleep quality using sound data. Copyright © 2017 Elsevier B.V. All rights reserved.
Adolescents' Faith Commitments as Correlates of Their Involvement in Christian Service
ERIC Educational Resources Information Center
Nagy, Andrea; Ostrander, Raymond; Kijai, Jimmy; Matthews, John
2017-01-01
This study sought to determine the relationship between adolescents' involvement in service to others and their commitment to religious values and Seventh-day Adventist beliefs. Canonical correlation indicated that adolescents' involvement in service to others is significantly related to their commitment to religious values and beliefs. Results…
Generalized Langevin equation with tempered memory kernel
NASA Astrophysics Data System (ADS)
Liemert, André; Sandev, Trifce; Kantz, Holger
2017-01-01
We study a generalized Langevin equation for a free particle in presence of a truncated power-law and Mittag-Leffler memory kernel. It is shown that in presence of truncation, the particle from subdiffusive behavior in the short time limit, turns to normal diffusion in the long time limit. The case of harmonic oscillator is considered as well, and the relaxation functions and the normalized displacement correlation function are represented in an exact form. By considering external time-dependent periodic force we obtain resonant behavior even in case of a free particle due to the influence of the environment on the particle movement. Additionally, the double-peak phenomenon in the imaginary part of the complex susceptibility is observed. It is obtained that the truncation parameter has a huge influence on the behavior of these quantities, and it is shown how the truncation parameter changes the critical frequencies. The normalized displacement correlation function for a fractional generalized Langevin equation is investigated as well. All the results are exact and given in terms of the three parameter Mittag-Leffler function and the Prabhakar generalized integral operator, which in the kernel contains a three parameter Mittag-Leffler function. Such kind of truncated Langevin equation motion can be of high relevance for the description of lateral diffusion of lipids and proteins in cell membranes.
Aiyer, Sophie M.; Wilson, Melvin N.; Shaw, Daniel S.; Dishion, Thomas J.
2013-01-01
The ecology of the emergence of psycho-pathology in early childhood is often approached by the analysis of a limited number of contextual risk factors. In the present study, we provide a comprehensive analysis of ecological risk by conducting a canonical correlation analysis of 13 risk factors at child age 2 and seven narrow-band scales of internalizing and externalizing problem behaviors at child age 4, using a sample of 364 geographically and ethnically diverse, disadvantaged primary caregivers, alternative caregivers, and preschool-age children. Participants were recruited from Special Supplemental Nutrition Program for Women, Infants, and Children sites and were screened for family risk. Canonical correlation analysis revealed that (1) a first latent combination of family and individual risks of caregivers predicted combinations of child emotional and behavioral problems, and that (2) a second latent combination of contextual and structural risks predicted child somatic complaints. Specifically, (1) the combination of chaotic home, conflict with child, parental depression, and parenting hassles predicted a co-occurrence of internalizing and externalizing behaviors, and (2) the combination of father absence, perceived discrimination, neighborhood danger, and fewer children living in the home predicted child somatic complaints. The research findings are discussed in terms of the development of psychopathology, as well as the potential prevention needs of families in high-risk contexts. PMID:23700232
Romero, Pascual; Navarro, Josefa Maria; García, Francisco; Botía Ordaz, Pablo
2004-03-01
We investigated the effects of regulated deficit irrigation (RDI) during the pre-harvest period (kernel-filling stage) on water relations, leaf development and crop yield in mature almond (Prunus dulcis (Mill.) D.A. Webb cv. Cartagenera) trees during a 2-year field experiment. Trees were either irrigated at full-crop evapotranspiration (ETc=100%) (well-irrigated control treatment) or subjected to an RDI treatment that consisted of full irrigation for the full season, except from early June to early August (kernel-filling stage), when 20% ETc was applied. The severity of water stress was characterized by measurements of soil water content, predawn leaf water potential (Psipd) and relative water content (RWC). Stomatal conductance (gs), net CO2 assimilation rate (A), transpiration rate (E), leaf abscission, leaf expansion rate and crop yield were also measured. In both years, Psipd and RWC of well-irrigated trees were maintained above -1.0 MPa and 92%, respectively, whereas the corresponding values for trees in the RDI treatment were -2.37 MPa and 82%. Long-term water stress led to a progressive decline in gs, A and E, with significant reductions after 21 days in the RDI treatment. At the time of maximum stress (48 days after commencement of RDI), A, gs and E were 64, 67 and 56% lower than control values, respectively. High correlations between A, E and gs were observed. Plant water status recovered within 15 days after the resumption of irrigation and was associated with recovery of soil water content. A relatively rapid and complete recovery of A and gs was also observed, although the recovery was slower than for Psipd and RWC. Severe water stress during the kernel-filling stage resulted in premature defoliation (caused by increased leaf abscission) and a reduction in leaf growth rate, which decreased tree leaf area. Although kernel yield was correlated with leaf water potential, RDI caused a nonsignificant 7% reduction in kernel yield and had no effect on kernel size. The RDI treatment also improved water-use efficiency because about 30% less irrigation water was applied in the RDI treatment than in the control treatment. We conclude that high-cropping almonds can be successfully grown in semiarid regions in an RDI regime provided that Psipd is maintained above a threshold value of -2 MPa.
Shen, Lanxiao; Chen, Shan; Zhu, Xiaoyang; Han, Ce; Zheng, Xiaomin; Deng, Zhenxiang; Zhou, Yongqiang; Gong, Changfei; Xie, Congying; Jin, Xiance
2018-03-01
A multidimensional exploratory statistical method, canonical correlation analysis (CCA), was applied to evaluate the impact of complexity parameters on the plan quality and deliverability of volumetric-modulated arc therapy (VMAT) and to determine parameters in the generation of an ideal VMAT plan. Canonical correlations among complexity, quality and deliverability parameters of VMAT, as well as the contribution weights of different parameters were investigated with 71 two-arc VMAT nasopharyngeal cancer (NPC) patients, and further verified with 28 one-arc VMAT prostate cancer patients. The average MU and MU per control point (MU/CP) for two-arc VMAT plans were 702.6 ± 55.7 and 3.9 ± 0.3 versus 504.6 ± 99.2 and 5.6 ± 1.1 for one-arc VMAT plans, respectively. The individual volume-based 3D gamma passing rates of clinical target volume (γCTV) and planning target volume (γPTV) for NPC and prostate cancer patients were 85.7% ± 9.0% vs 92.6% ± 7.8%, and 88.0% ± 7.6% vs 91.2% ± 7.7%, respectively. Plan complexity parameters of NPC patients were correlated with plan quality (P = 0.047) and individual volume-based 3D gamma indices γ(IV) (P = 0.01), in which, MU/CP and segment area (SA) per control point (SA/CP) were weighted highly in correlation with γ(IV) , and SA/CP, percentage of CPs with SA < 5 × 5 cm2 (%SA < 5 × 5 cm2) and PTV volume were weighted highly in correlation with plan quality with coefficients of 0.98, 0.68 and -0.99, respectively. Further verification with one-arc VMAT plans demonstrated similar results. In conclusion, MU, SA-related parameters and PTV volume were found to have strong effects on the plan quality and deliverability.
Wang, Shijun; Yao, Jianhua; Liu, Jiamin; Petrick, Nicholas; Van Uitert, Robert L.; Periaswamy, Senthil; Summers, Ronald M.
2009-01-01
Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice—Once supine and once prone—to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined by the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27±52.97 to 14.98 mm±11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline. PMID:20095272
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Shijun; Yao Jianhua; Liu Jiamin
Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice--Once supine and once prone--to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined bymore » the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27{+-}52.97 to 14.98 mm{+-}11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline.« less
Shen, Lanxiao; Chen, Shan; Zhu, Xiaoyang; Han, Ce; Zheng, Xiaomin; Deng, Zhenxiang; Zhou, Yongqiang; Gong, Changfei; Jin, Xiance
2018-01-01
Abstract A multidimensional exploratory statistical method, canonical correlation analysis (CCA), was applied to evaluate the impact of complexity parameters on the plan quality and deliverability of volumetric-modulated arc therapy (VMAT) and to determine parameters in the generation of an ideal VMAT plan. Canonical correlations among complexity, quality and deliverability parameters of VMAT, as well as the contribution weights of different parameters were investigated with 71 two-arc VMAT nasopharyngeal cancer (NPC) patients, and further verified with 28 one-arc VMAT prostate cancer patients. The average MU and MU per control point (MU/CP) for two-arc VMAT plans were 702.6 ± 55.7 and 3.9 ± 0.3 versus 504.6 ± 99.2 and 5.6 ± 1.1 for one-arc VMAT plans, respectively. The individual volume-based 3D gamma passing rates of clinical target volume (γCTV) and planning target volume (γPTV) for NPC and prostate cancer patients were 85.7% ± 9.0% vs 92.6% ± 7.8%, and 88.0% ± 7.6% vs 91.2% ± 7.7%, respectively. Plan complexity parameters of NPC patients were correlated with plan quality (P = 0.047) and individual volume-based 3D gamma indices γ(IV) (P = 0.01), in which, MU/CP and segment area (SA) per control point (SA/CP) were weighted highly in correlation with γ(IV) , and SA/CP, percentage of CPs with SA < 5 × 5 cm2 (%SA < 5 × 5 cm2) and PTV volume were weighted highly in correlation with plan quality with coefficients of 0.98, 0.68 and −0.99, respectively. Further verification with one-arc VMAT plans demonstrated similar results. In conclusion, MU, SA-related parameters and PTV volume were found to have strong effects on the plan quality and deliverability. PMID:29415196
General methodology for nonlinear modeling of neural systems with Poisson point-process inputs.
Marmarelis, V Z; Berger, T W
2005-07-01
This paper presents a general methodological framework for the practical modeling of neural systems with point-process inputs (sequences of action potentials or, more broadly, identical events) based on the Volterra and Wiener theories of functional expansions and system identification. The paper clarifies the distinctions between Volterra and Wiener kernels obtained from Poisson point-process inputs. It shows that only the Wiener kernels can be estimated via cross-correlation, but must be defined as zero along the diagonals. The Volterra kernels can be estimated far more accurately (and from shorter data-records) by use of the Laguerre expansion technique adapted to point-process inputs, and they are independent of the mean rate of stimulation (unlike their P-W counterparts that depend on it). The Volterra kernels can also be estimated for broadband point-process inputs that are not Poisson. Useful applications of this modeling approach include cases where we seek to determine (model) the transfer characteristics between one neuronal axon (a point-process 'input') and another axon (a point-process 'output') or some other measure of neuronal activity (a continuous 'output', such as population activity) with which a causal link exists.
Alamaniotis, Miltiadis; Bargiotas, Dimitrios; Tsoukalas, Lefteri H
2016-01-01
Integration of energy systems with information technologies has facilitated the realization of smart energy systems that utilize information to optimize system operation. To that end, crucial in optimizing energy system operation is the accurate, ahead-of-time forecasting of load demand. In particular, load forecasting allows planning of system expansion, and decision making for enhancing system safety and reliability. In this paper, the application of two types of kernel machines for medium term load forecasting (MTLF) is presented and their performance is recorded based on a set of historical electricity load demand data. The two kernel machine models and more specifically Gaussian process regression (GPR) and relevance vector regression (RVR) are utilized for making predictions over future load demand. Both models, i.e., GPR and RVR, are equipped with a Gaussian kernel and are tested on daily predictions for a 30-day-ahead horizon taken from the New England Area. Furthermore, their performance is compared to the ARMA(2,2) model with respect to mean average percentage error and squared correlation coefficient. Results demonstrate the superiority of RVR over the other forecasting models in performing MTLF.
Screening of the aerodynamic and biophysical properties of barley malt
NASA Astrophysics Data System (ADS)
Ghodsvali, Alireza; Farzaneh, Vahid; Bakhshabadi, Hamid; Zare, Zahra; Karami, Zahra; Mokhtarian, Mohsen; Carvalho, Isabel. S.
2016-10-01
An understanding of the aerodynamic and biophysical properties of barley malt is necessary for the appropriate design of equipment for the handling, shipping, dehydration, grading, sorting and warehousing of this strategic crop. Malting is a complex biotechnological process that includes steeping; germination and finally, the dehydration of cereal grains under controlled temperature and humidity conditions. In this investigation, the biophysical properties of barley malt were predicted using two models of artificial neural networks as well as response surface methodology. Stepping time and germination time were selected as the independent variables and 1 000 kernel weight, kernel density and terminal velocity were selected as the dependent variables (responses). The obtained outcomes showed that the artificial neural network model, with a logarithmic sigmoid activation function, presents more precise results than the response surface model in the prediction of the aerodynamic and biophysical properties of produced barley malt. This model presented the best result with 8 nodes in the hidden layer and significant correlation coefficient values of 0.783, 0.767 and 0.991 were obtained for responses one thousand kernel weight, kernel density, and terminal velocity, respectively. The outcomes indicated that this novel technique could be successfully applied in quantitative and qualitative monitoring within the malting process.
THREE-POINT PHASE CORRELATIONS: A NEW MEASURE OF NONLINEAR LARGE-SCALE STRUCTURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolstenhulme, Richard; Bonvin, Camille; Obreschkow, Danail
2015-05-10
We derive an analytical expression for a novel large-scale structure observable: the line correlation function. The line correlation function, which is constructed from the three-point correlation function of the phase of the density field, is a robust statistical measure allowing the extraction of information in the nonlinear and non-Gaussian regime. We show that, in perturbation theory, the line correlation is sensitive to the coupling kernel F{sub 2}, which governs the nonlinear gravitational evolution of the density field. We compare our analytical expression with results from numerical simulations and find a 1σ agreement for separations r ≳ 30 h{sup −1} Mpc.more » Fitting formulae for the power spectrum and the nonlinear coupling kernel at small scales allow us to extend our prediction into the strongly nonlinear regime, where we find a 1σ agreement with the simulations for r ≳ 2 h{sup −1} Mpc. We discuss the advantages of the line correlation relative to standard statistical measures like the bispectrum. Unlike the latter, the line correlation is independent of the bias, in the regime where the bias is local and linear. Furthermore, the variance of the line correlation is independent of the Gaussian variance on the modulus of the density field. This suggests that the line correlation can probe more precisely the nonlinear regime of gravity, with less contamination from the power spectrum variance.« less
Miao, Jun; Wong, Wilbur C K; Narayan, Sreenath; Wilson, David L
2011-11-01
Partially parallel imaging (PPI) greatly accelerates MR imaging by using surface coil arrays and under-sampling k-space. However, the reduction factor (R) in PPI is theoretically constrained by the number of coils (N(C)). A symmetrically shaped kernel is typically used, but this often prevents even the theoretically possible R from being achieved. Here, the authors propose a kernel design method to accelerate PPI faster than R = N(C). K-space data demonstrates an anisotropic pattern that is correlated with the object itself and to the asymmetry of the coil sensitivity profile, which is caused by coil placement and B(1) inhomogeneity. From spatial analysis theory, reconstruction of such pattern is best achieved by a signal-dependent anisotropic shape kernel. As a result, the authors propose the use of asymmetric kernels to improve k-space reconstruction. The authors fit a bivariate Gaussian function to the local signal magnitude of each coil, then threshold this function to extract the kernel elements. A perceptual difference model (Case-PDM) was employed to quantitatively evaluate image quality. A MR phantom experiment showed that k-space anisotropy increased as a function of magnetic field strength. The authors tested a K-spAce Reconstruction with AnisOtropic KErnel support ("KARAOKE") algorithm with both MR phantom and in vivo data sets, and compared the reconstructions to those produced by GRAPPA, a popular PPI reconstruction method. By exploiting k-space anisotropy, KARAOKE was able to better preserve edges, which is particularly useful for cardiac imaging and motion correction, while GRAPPA failed at a high R near or exceeding N(C). KARAOKE performed comparably to GRAPPA at low Rs. As a rule of thumb, KARAOKE reconstruction should always be used for higher quality k-space reconstruction, particularly when PPI data is acquired at high Rs and/or high field strength.
Miao, Jun; Wong, Wilbur C. K.; Narayan, Sreenath; Wilson, David L.
2011-01-01
Purpose: Partially parallel imaging (PPI) greatly accelerates MR imaging by using surface coil arrays and under-sampling k-space. However, the reduction factor (R) in PPI is theoretically constrained by the number of coils (NC). A symmetrically shaped kernel is typically used, but this often prevents even the theoretically possible R from being achieved. Here, the authors propose a kernel design method to accelerate PPI faster than R = NC. Methods: K-space data demonstrates an anisotropic pattern that is correlated with the object itself and to the asymmetry of the coil sensitivity profile, which is caused by coil placement and B1 inhomogeneity. From spatial analysis theory, reconstruction of such pattern is best achieved by a signal-dependent anisotropic shape kernel. As a result, the authors propose the use of asymmetric kernels to improve k-space reconstruction. The authors fit a bivariate Gaussian function to the local signal magnitude of each coil, then threshold this function to extract the kernel elements. A perceptual difference model (Case-PDM) was employed to quantitatively evaluate image quality. Results: A MR phantom experiment showed that k-space anisotropy increased as a function of magnetic field strength. The authors tested a K-spAce Reconstruction with AnisOtropic KErnel support (“KARAOKE”) algorithm with both MR phantom and in vivo data sets, and compared the reconstructions to those produced by GRAPPA, a popular PPI reconstruction method. By exploiting k-space anisotropy, KARAOKE was able to better preserve edges, which is particularly useful for cardiac imaging and motion correction, while GRAPPA failed at a high R near or exceeding NC. KARAOKE performed comparably to GRAPPA at low Rs. Conclusions: As a rule of thumb, KARAOKE reconstruction should always be used for higher quality k-space reconstruction, particularly when PPI data is acquired at high Rs and∕or high field strength. PMID:22047378
Freezing behavior as a response to sexual visual stimuli as demonstrated by posturography.
Mouras, Harold; Lelard, Thierry; Ahmaidi, Said; Godefroy, Olivier; Krystkowiak, Pierre
2015-01-01
Posturographic changes in motivational conditions remain largely unexplored in the context of embodied cognition. Over the last decade, sexual motivation has been used as a good canonical working model to study motivated social interactions. The objective of this study was to explore posturographic variations in response to visual sexual videos as compared to neutral videos. Our results support demonstration of a freezing-type response in response to sexually explicit stimuli compared to other conditions, as demonstrated by significantly decreased standard deviations for (i) the center of pressure displacement along the mediolateral and anteroposterior axes and (ii) center of pressure's displacement surface. These results support the complexity of the motor correlates of sexual motivation considered to be a canonical functional context to study the motor correlates of motivated social interactions.
Genomic-Enabled Prediction Kernel Models with Random Intercepts for Multi-environment Trials.
Cuevas, Jaime; Granato, Italo; Fritsche-Neto, Roberto; Montesinos-Lopez, Osval A; Burgueño, Juan; Bandeira E Sousa, Massaine; Crossa, José
2018-03-28
In this study, we compared the prediction accuracy of the main genotypic effect model (MM) without G×E interactions, the multi-environment single variance G×E deviation model (MDs), and the multi-environment environment-specific variance G×E deviation model (MDe) where the random genetic effects of the lines are modeled with the markers (or pedigree). With the objective of further modeling the genetic residual of the lines, we incorporated the random intercepts of the lines ([Formula: see text]) and generated another three models. Each of these 6 models were fitted with a linear kernel method (Genomic Best Linear Unbiased Predictor, GB) and a Gaussian Kernel (GK) method. We compared these 12 model-method combinations with another two multi-environment G×E interactions models with unstructured variance-covariances (MUC) using GB and GK kernels (4 model-method). Thus, we compared the genomic-enabled prediction accuracy of a total of 16 model-method combinations on two maize data sets with positive phenotypic correlations among environments, and on two wheat data sets with complex G×E that includes some negative and close to zero phenotypic correlations among environments. The two models (MDs and MDE with the random intercept of the lines and the GK method) were computationally efficient and gave high prediction accuracy in the two maize data sets. Regarding the more complex G×E wheat data sets, the prediction accuracy of the model-method combination with G×E, MDs and MDe, including the random intercepts of the lines with GK method had important savings in computing time as compared with the G×E interaction multi-environment models with unstructured variance-covariances but with lower genomic prediction accuracy. Copyright © 2018 Cuevas et al.
Genomic-Enabled Prediction Kernel Models with Random Intercepts for Multi-environment Trials
Cuevas, Jaime; Granato, Italo; Fritsche-Neto, Roberto; Montesinos-Lopez, Osval A.; Burgueño, Juan; Bandeira e Sousa, Massaine; Crossa, José
2018-01-01
In this study, we compared the prediction accuracy of the main genotypic effect model (MM) without G×E interactions, the multi-environment single variance G×E deviation model (MDs), and the multi-environment environment-specific variance G×E deviation model (MDe) where the random genetic effects of the lines are modeled with the markers (or pedigree). With the objective of further modeling the genetic residual of the lines, we incorporated the random intercepts of the lines (l) and generated another three models. Each of these 6 models were fitted with a linear kernel method (Genomic Best Linear Unbiased Predictor, GB) and a Gaussian Kernel (GK) method. We compared these 12 model-method combinations with another two multi-environment G×E interactions models with unstructured variance-covariances (MUC) using GB and GK kernels (4 model-method). Thus, we compared the genomic-enabled prediction accuracy of a total of 16 model-method combinations on two maize data sets with positive phenotypic correlations among environments, and on two wheat data sets with complex G×E that includes some negative and close to zero phenotypic correlations among environments. The two models (MDs and MDE with the random intercept of the lines and the GK method) were computationally efficient and gave high prediction accuracy in the two maize data sets. Regarding the more complex G×E wheat data sets, the prediction accuracy of the model-method combination with G×E, MDs and MDe, including the random intercepts of the lines with GK method had important savings in computing time as compared with the G×E interaction multi-environment models with unstructured variance-covariances but with lower genomic prediction accuracy. PMID:29476023
Finite-frequency sensitivity kernels for head waves
NASA Astrophysics Data System (ADS)
Zhang, Zhigang; Shen, Yang; Zhao, Li
2007-11-01
Head waves are extremely important in determining the structure of the predominantly layered Earth. While several recent studies have shown the diffractive nature and the 3-D Fréchet kernels of finite-frequency turning waves, analogues of head waves in a continuous velocity structure, the finite-frequency effects and sensitivity kernels of head waves are yet to be carefully examined. We present the results of a numerical study focusing on the finite-frequency effects of head waves. Our model has a low-velocity layer over a high-velocity half-space and a cylindrical-shaped velocity perturbation placed beneath the interface at different locations. A 3-D finite-difference method is used to calculate synthetic waveforms. Traveltime and amplitude anomalies are measured by the cross-correlation of synthetic seismograms from models with and without the velocity perturbation and are compared to the 3-D sensitivity kernels constructed from full waveform simulations. The results show that the head wave arrival-time and amplitude are influenced by the velocity structure surrounding the ray path in a pattern that is consistent with the Fresnel zones. Unlike the `banana-doughnut' traveltime sensitivity kernels of turning waves, the traveltime sensitivity of the head wave along the ray path below the interface is weak, but non-zero. Below the ray path, the traveltime sensitivity reaches the maximum (absolute value) at a depth that depends on the wavelength and propagation distance. The sensitivity kernels vary with the vertical velocity gradient in the lower layer, but the variation is relatively small at short propagation distances when the vertical velocity gradient is within the range of the commonly accepted values. Finally, the depression or shoaling of the interface results in increased or decreased sensitivities, respectively, beneath the interface topography.
Liu, Na; Xue, Yadong; Guo, Zhanyong; Li, Weihua; Tang, Jihua
2016-01-01
Kernel starch content is an important trait in maize (Zea mays L.) as it accounts for 65–75% of the dry kernel weight and positively correlates with seed yield. A number of starch synthesis-related genes have been identified in maize in recent years. However, many loci underlying variation in starch content among maize inbred lines still remain to be identified. The current study is a genome-wide association study that used a set of 263 maize inbred lines. In this panel, the average kernel starch content was 66.99%, ranging from 60.60 to 71.58% over the three study years. These inbred lines were genotyped with the SNP50 BeadChip maize array, which is comprised of 56,110 evenly spaced, random SNPs. Population structure was controlled by a mixed linear model (MLM) as implemented in the software package TASSEL. After the statistical analyses, four SNPs were identified as significantly associated with starch content (P ≤ 0.0001), among which one each are located on chromosomes 1 and 5 and two are on chromosome 2. Furthermore, 77 candidate genes associated with starch synthesis were found within the 100-kb intervals containing these four QTLs, and four highly associated genes were within 20-kb intervals of the associated SNPs. Among the four genes, Glucose-1-phosphate adenylyltransferase (APS1; Gene ID GRMZM2G163437) is known as an important regulator of kernel starch content. The identified SNPs, QTLs, and candidate genes may not only be readily used for germplasm improvement by marker-assisted selection in breeding, but can also elucidate the genetic basis of starch content. Further studies on these identified candidate genes may help determine the molecular mechanisms regulating kernel starch content in maize and other important cereal crops. PMID:27512395
Xing, Lijuan; Zhu, Ming; Zhang, Min; Li, Wenzong; Jiang, Haiyang; Zou, Junjie; Wang, Lei; Xu, Miaoyun
2017-12-14
Maize kernel development is a complex biological process that involves the temporal and spatial expression of many genes and fine gene regulation at a transcriptional and post-transcriptional level, and microRNAs (miRNAs) play vital roles during this process. To gain insight into miRNA-mediated regulation of maize kernel development, a deep-sequencing technique was used to investigate the dynamic expression of miRNAs in the embryo and endosperm at three developmental stages in B73. By miRNA transcriptomic analysis, we characterized 132 known miRNAs and six novel miRNAs in developing maize kernel, among which, 15 and 14 miRNAs were commonly differentially expressed between the embryo and endosperm at 9 days after pollination (DAP), 15 DAP and 20 DAP respectively. Conserved miRNA families such as miR159, miR160, miR166, miR390, miR319, miR528 and miR529 were highly expressed in developing embryos; miR164, miR171, miR393 and miR2118 were highly expressed in developing endosperm. Genes targeted by those highly expressed miRNAs were found to be largely related to a regulation category, including the transcription, macromolecule biosynthetic and metabolic process in the embryo as well as the vitamin biosynthetic and metabolic process in the endosperm. Quantitative reverse transcription-PCR (qRT-PCR) analysis showed that these miRNAs displayed a negative correlation with the levels of their corresponding target genes. Importantly, our findings revealed that members of the miR169 family were highly and dynamically expressed in the developing kernel, which will help to exploit new players functioning in maize kernel development.
Kan, Hirohito; Kasai, Harumasa; Arai, Nobuyuki; Kunitomo, Hiroshi; Hirose, Yasujiro; Shibamoto, Yuta
2016-09-01
An effective background field removal technique is desired for more accurate quantitative susceptibility mapping (QSM) prior to dipole inversion. The aim of this study was to evaluate the accuracy of regularization enabled sophisticated harmonic artifact reduction for phase data with varying spherical kernel sizes (REV-SHARP) method using a three-dimensional head phantom and human brain data. The proposed REV-SHARP method used the spherical mean value operation and Tikhonov regularization in the deconvolution process, with varying 2-14mm kernel sizes. The kernel sizes were gradually reduced, similar to the SHARP with varying spherical kernel (VSHARP) method. We determined the relative errors and relationships between the true local field and estimated local field in REV-SHARP, VSHARP, projection onto dipole fields (PDF), and regularization enabled SHARP (RESHARP). Human experiment was also conducted using REV-SHARP, VSHARP, PDF, and RESHARP. The relative errors in the numerical phantom study were 0.386, 0.448, 0.838, and 0.452 for REV-SHARP, VSHARP, PDF, and RESHARP. REV-SHARP result exhibited the highest correlation between the true local field and estimated local field. The linear regression slopes were 1.005, 1.124, 0.988, and 0.536 for REV-SHARP, VSHARP, PDF, and RESHARP in regions of interest on the three-dimensional head phantom. In human experiments, no obvious errors due to artifacts were present in REV-SHARP. The proposed REV-SHARP is a new method combined with variable spherical kernel size and Tikhonov regularization. This technique might make it possible to be more accurate backgroud field removal and help to achive better accuracy of QSM. Copyright © 2016 Elsevier Inc. All rights reserved.
Two-stage autoignition and edge flames in a high pressure turbulent jet
Krisman, Alex; Hawkes, Evatt R.; Chen, Jacqueline H.
2017-07-04
A three-dimensional direct numerical simulation is conducted for a temporally evolving planar jet of n-heptane at a pressure of 40 atmospheres and in a coflow of air at 1100 K. At these conditions, n-heptane exhibits a two-stage ignition due to low- and high-temperature chemistry, which is reproduced by the global chemical model used in this study. The results show that ignition occurs in several overlapping stages and multiple modes of combustion are present. Low-temperature chemistry precedes the formation of multiple spatially localised high-temperature chemistry autoignition events, referred to as ‘kernels’. These kernels form within the shear layer and core ofmore » the jet at compositions with short homogeneous ignition delay times and in locations experiencing low scalar dissipation rates. An analysis of the kernel histories shows that the ignition delay time is correlated with the mixing rate history and that the ignition kernels tend to form in vortically dominated regions of the domain, as corroborated by an analysis of the topology of the velocity gradient tensor. Once ignited, the kernels grow rapidly and establish edge flames where they envelop the stoichiometric isosurface. A combination of kernel formation (autoignition) and the growth of existing burning surface (via edge-flame propagation) contributes to the overall ignition process. In conclusion, an analysis of propagation speeds evaluated on the burning surface suggests that although the edge-flame speed is promoted by the autoignitive conditions due to an increase in the local laminar flame speed, edge-flame propagation of existing burning surfaces (triggered initially by isolated autoignition kernels) is the dominant ignition mode in the present configuration.« less
Optical properties of alkali halide crystals from all-electron hybrid TD-DFT calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webster, R., E-mail: ross.webster07@imperial.ac.uk; Harrison, N. M.; Bernasconi, L.
2015-06-07
We present a study of the electronic and optical properties of a series of alkali halide crystals AX, with A = Li, Na, K, Rb and X = F, Cl, Br based on a recent implementation of hybrid-exchange time-dependent density functional theory (TD-DFT) (TD-B3LYP) in the all-electron Gaussian basis set code CRYSTAL. We examine, in particular, the impact of basis set size and quality on the prediction of the optical gap and exciton binding energy. The formation of bound excitons by photoexcitation is observed in all the studied systems and this is shown to be correlated to specific features ofmore » the Hartree-Fock exchange component of the TD-DFT response kernel. All computed optical gaps and exciton binding energies are however markedly below estimated experimental and, where available, 2-particle Green’s function (GW-Bethe-Salpeter equation, GW-BSE) values. We attribute this reduced exciton binding to the incorrect asymptotics of the B3LYP exchange correlation ground state functional and of the TD-B3LYP response kernel, which lead to a large underestimation of the Coulomb interaction between the excited electron and hole wavefunctions. Considering LiF as an example, we correlate the asymptotic behaviour of the TD-B3LYP kernel to the fraction of Fock exchange admixed in the ground state functional c{sub HF} and show that there exists one value of c{sub HF} (∼0.32) that reproduces at least semi-quantitatively the optical gap of this material.« less
Pressures, Stresses, Anxieties, and On-Job Safety of the School Superintendent.
ERIC Educational Resources Information Center
Chand, Krishan
Identification of the causes of job stress for public school superintendents, with a focus on personal-experiential and task variables, is the purpose of this study. Methodology involved a mail survey of 1,531 randomly selected superintendents. Canonical correlation analysis (CCA) and multiple regression correlation (MCR) analysis were used to…
Alvarez Prado, Santiago; Sadras, Víctor O; Borrás, Lucas
2014-08-01
Maize kernel weight (KW) is associated with the duration of the grain-filling period (GFD) and the rate of kernel biomass accumulation (KGR). It is also related to the dynamics of water and hence is physiologically linked to the maximum kernel water content (MWC), kernel desiccation rate (KDR), and moisture concentration at physiological maturity (MCPM). This work proposed that principles of phenotypic plasticity can help to consolidated the understanding of the environmental modulation and genetic control of these traits. For that purpose, a maize population of 245 recombinant inbred lines (RILs) was grown under different environmental conditions. Trait plasticity was calculated as the ratio of the variance of each RIL to the overall phenotypic variance of the population of RILs. This work found a hierarchy of plasticities: KDR ≈ GFD > MCPM > KGR > KW > MWC. There was no phenotypic and genetic correlation between traits per se and trait plasticities. MWC, the trait with the lowest plasticity, was the exception because common quantitative trait loci were found for the trait and its plasticity. Independent genetic control of a trait per se and genetic control of its plasticity is a condition for the independent evolution of traits and their plasticities. This allows breeders potentially to select for high or low plasticity in combination with high or low values of economically relevant traits. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Effective Visual Tracking Using Multi-Block and Scale Space Based on Kernelized Correlation Filters
Jeong, Soowoong; Kim, Guisik; Lee, Sangkeun
2017-01-01
Accurate scale estimation and occlusion handling is a challenging problem in visual tracking. Recently, correlation filter-based trackers have shown impressive results in terms of accuracy, robustness, and speed. However, the model is not robust to scale variation and occlusion. In this paper, we address the problems associated with scale variation and occlusion by employing a scale space filter and multi-block scheme based on a kernelized correlation filter (KCF) tracker. Furthermore, we develop a more robust algorithm using an appearance update model that approximates the change of state of occlusion and deformation. In particular, an adaptive update scheme is presented to make each process robust. The experimental results demonstrate that the proposed method outperformed 29 state-of-the-art trackers on 100 challenging sequences. Specifically, the results obtained with the proposed scheme were improved by 8% and 18% compared to those of the KCF tracker for 49 occlusion and 64 scale variation sequences, respectively. Therefore, the proposed tracker can be a robust and useful tool for object tracking when occlusion and scale variation are involved. PMID:28241475
Effective Visual Tracking Using Multi-Block and Scale Space Based on Kernelized Correlation Filters.
Jeong, Soowoong; Kim, Guisik; Lee, Sangkeun
2017-02-23
Accurate scale estimation and occlusion handling is a challenging problem in visual tracking. Recently, correlation filter-based trackers have shown impressive results in terms of accuracy, robustness, and speed. However, the model is not robust to scale variation and occlusion. In this paper, we address the problems associated with scale variation and occlusion by employing a scale space filter and multi-block scheme based on a kernelized correlation filter (KCF) tracker. Furthermore, we develop a more robust algorithm using an appearance update model that approximates the change of state of occlusion and deformation. In particular, an adaptive update scheme is presented to make each process robust. The experimental results demonstrate that the proposed method outperformed 29 state-of-the-art trackers on 100 challenging sequences. Specifically, the results obtained with the proposed scheme were improved by 8% and 18% compared to those of the KCF tracker for 49 occlusion and 64 scale variation sequences, respectively. Therefore, the proposed tracker can be a robust and useful tool for object tracking when occlusion and scale variation are involved.
Ezekiel, C.N.; Udom, I.E.; Frisvad, J.C.; Adetunji, M.C.; Houbraken, J.; Fapohunda, S.O.; Samson, R.A.; Atanda, O.O.; Agi-Otto, M.C.; Onashile, O.A.
2014-01-01
Sixteen fonio millet and 17 sesame samples were analysed for incidence of moulds, especially aflatoxigenic Aspergillus species, in order to determine the safety of both crops to consumers, and to correlate aflatoxin levels in the crops with levels produced by toxigenic isolates on laboratory medium. Diverse moulds including Alternaria, Aspergillus, Cercospora, Fusarium, Mucor, Penicillium, Rhizopus and Trichoderma were isolated. Aspergillus was predominantly present in both crops (46–48%), and amongst the potentially aflatoxigenic Aspergillus species, A. flavus recorded the highest incidence (68% in fonio millet; 86% in sesame kernels). All A. parvisclerotigenus isolates produced B and G aflatoxins in culture while B aflatoxins were produced by only 39% and 20% of A. flavus strains isolated from the fonio millet and sesame kernels, respectively. Aflatoxin concentrations in fonio millet correlated inversely (r = −0.55; p = 0.02) with aflatoxin levels produced by toxigenic isolates on laboratory medium, but no correlation was observed in the case of the sesame samples. Both crops, especially sesame, may not be suitable substrates for aflatoxin biosynthesis. This is the first report on A. parvisclerotigenus in sesame. PMID:24772370
Tateishi-Karimata, Hisae; Isono, Noburu; Sugimoto, Naoki
2014-01-01
The thermal stability and topology of non-canonical structures of G-quadruplexes and hairpins in template DNA were investigated, and the effect of non-canonical structures on transcription fidelity was evaluated quantitatively. We designed ten template DNAs: A linear sequence that does not have significant higher-order structure, three sequences that form hairpin structures, and six sequences that form G-quadruplex structures with different stabilities. Templates with non-canonical structures induced the production of an arrested, a slipped, and a full-length transcript, whereas the linear sequence produced only a full-length transcript. The efficiency of production for run-off transcripts (full-length and slipped transcripts) from templates that formed the non-canonical structures was lower than that from the linear. G-quadruplex structures were more effective inhibitors of full-length product formation than were hairpin structure even when the stability of the G-quadruplex in an aqueous solution was the same as that of the hairpin. We considered that intra-polymerase conditions may differentially affect the stability of non-canonical structures. The values of transcription efficiencies of run-off or arrest transcripts were correlated with stabilities of non-canonical structures in the intra-polymerase condition mimicked by 20 wt% polyethylene glycol (PEG). Transcriptional arrest was induced when the stability of the G-quadruplex structure (-ΔG°37) in the presence of 20 wt% PEG was more than 8.2 kcal mol(-1). Thus, values of stability in the presence of 20 wt% PEG are an important indicator of transcription perturbation. Our results further our understanding of the impact of template structure on the transcription process and may guide logical design of transcription-regulating drugs.
Tateishi-Karimata, Hisae; Isono, Noburu; Sugimoto, Naoki
2014-01-01
The thermal stability and topology of non-canonical structures of G-quadruplexes and hairpins in template DNA were investigated, and the effect of non-canonical structures on transcription fidelity was evaluated quantitatively. We designed ten template DNAs: A linear sequence that does not have significant higher-order structure, three sequences that form hairpin structures, and six sequences that form G-quadruplex structures with different stabilities. Templates with non-canonical structures induced the production of an arrested, a slipped, and a full-length transcript, whereas the linear sequence produced only a full-length transcript. The efficiency of production for run-off transcripts (full-length and slipped transcripts) from templates that formed the non-canonical structures was lower than that from the linear. G-quadruplex structures were more effective inhibitors of full-length product formation than were hairpin structure even when the stability of the G-quadruplex in an aqueous solution was the same as that of the hairpin. We considered that intra-polymerase conditions may differentially affect the stability of non-canonical structures. The values of transcription efficiencies of run-off or arrest transcripts were correlated with stabilities of non-canonical structures in the intra-polymerase condition mimicked by 20 wt% polyethylene glycol (PEG). Transcriptional arrest was induced when the stability of the G-quadruplex structure (−ΔGo 37) in the presence of 20 wt% PEG was more than 8.2 kcal mol−1. Thus, values of stability in the presence of 20 wt% PEG are an important indicator of transcription perturbation. Our results further our understanding of the impact of template structure on the transcription process and may guide logical design of transcription-regulating drugs. PMID:24594642
Negasheva, M A
2008-01-01
669 young men and women aged 16-23 years were examined using a program including the measurements of 40 body, head and face parameters, fingerprinting and determination of personal psychological characteristics. On the basis of the study of the correlations between the different groups of characteristics, the evidence was obtained that supports the concept of a relative autonomy of the morpho-functional systems as an essential condition for the integrity of the organism as a whole. The coefficients of canonical correlation were calculated between the somatic and dermatoglyphic features (R=0.3), somatic sizes and psychological personality characteristics (R=0.4), psychological characteristics and the dermatoglyphic indices (R=0.4). An original model is suggested that describes the correlations of somatic, dermatoglyphic and psychological features in the structure of general human constitution on the basis of statistically significant canonical correlations (revealed by the author) and that takes in consideration the degree of the influence of genetic and social-economic complex of factors (on the basis of the literature data) on the development and formation of the investigated systems of characteristics.
Bayesian Correlation Analysis for Sequence Count Data
Lau, Nelson; Perkins, Theodore J.
2016-01-01
Evaluating the similarity of different measured variables is a fundamental task of statistics, and a key part of many bioinformatics algorithms. Here we propose a Bayesian scheme for estimating the correlation between different entities’ measurements based on high-throughput sequencing data. These entities could be different genes or miRNAs whose expression is measured by RNA-seq, different transcription factors or histone marks whose expression is measured by ChIP-seq, or even combinations of different types of entities. Our Bayesian formulation accounts for both measured signal levels and uncertainty in those levels, due to varying sequencing depth in different experiments and to varying absolute levels of individual entities, both of which affect the precision of the measurements. In comparison with a traditional Pearson correlation analysis, we show that our Bayesian correlation analysis retains high correlations when measurement confidence is high, but suppresses correlations when measurement confidence is low—especially for entities with low signal levels. In addition, we consider the influence of priors on the Bayesian correlation estimate. Perhaps surprisingly, we show that naive, uniform priors on entities’ signal levels can lead to highly biased correlation estimates, particularly when different experiments have widely varying sequencing depths. However, we propose two alternative priors that provably mitigate this problem. We also prove that, like traditional Pearson correlation, our Bayesian correlation calculation constitutes a kernel in the machine learning sense, and thus can be used as a similarity measure in any kernel-based machine learning algorithm. We demonstrate our approach on two RNA-seq datasets and one miRNA-seq dataset. PMID:27701449
Bistoni, Giovanni; Riplinger, Christoph; Minenkov, Yury; Cavallo, Luigi; Auer, Alexander A; Neese, Frank
2017-07-11
The validity of the main approximations used in canonical and domain based pair natural orbital coupled cluster methods (CCSD(T) and DLPNO-CCSD(T), respectively) in standard chemical applications is discussed. In particular, we investigate the dependence of the results on the number of electrons included in the correlation treatment in frozen-core (FC) calculations and on the main threshold governing the accuracy of DLPNO all-electron (AE) calculations. Initially, scalar relativistic orbital energies for the ground state of the atoms from Li to Rn in the periodic table are calculated. An energy criterion is used for determining the orbitals that can be excluded from the correlation treatment in FC coupled cluster calculations without significant loss of accuracy. The heterolytic dissociation energy (HDE) of a series of metal compounds (LiF, NaF, AlF 3 , CaF 2 , CuF, GaF 3 , YF 3 , AgF, InF 3 , HfF 4 , and AuF) is calculated at the canonical CCSD(T) level, and the dependence of the results on the number of correlated electrons is investigated. Although for many of the studied reactions subvalence correlation effects contribute significantly to the HDE, the use of an energy criterion permits a conservative definition of the size of the core, allowing FC calculations to be performed in a black-box fashion while retaining chemical accuracy. A comparison of the CCSD and the DLPNO-CCSD methods in describing the core-core, core-valence, and valence-valence components of the correlation energy is given. It is found that more conservative thresholds must be used for electron pairs containing at least one core electron in order to achieve high accuracy in AE DLPNO-CCSD calculations relative to FC calculations. With the new settings, the DLPNO-CCSD method reproduces canonical CCSD results in both AE and FC calculations with the same accuracy.
Kernel Manifold Alignment for Domain Adaptation.
Tuia, Devis; Camps-Valls, Gustau
2016-01-01
The wealth of sensory data coming from different modalities has opened numerous opportunities for data analysis. The data are of increasing volume, complexity and dimensionality, thus calling for new methodological innovations towards multimodal data processing. However, multimodal architectures must rely on models able to adapt to changes in the data distribution. Differences in the density functions can be due to changes in acquisition conditions (pose, illumination), sensors characteristics (number of channels, resolution) or different views (e.g. street level vs. aerial views of a same building). We call these different acquisition modes domains, and refer to the adaptation problem as domain adaptation. In this paper, instead of adapting the trained models themselves, we alternatively focus on finding mappings of the data sources into a common, semantically meaningful, representation domain. This field of manifold alignment extends traditional techniques in statistics such as canonical correlation analysis (CCA) to deal with nonlinear adaptation and possibly non-corresponding data pairs between the domains. We introduce a kernel method for manifold alignment (KEMA) that can match an arbitrary number of data sources without needing corresponding pairs, just few labeled examples in all domains. KEMA has interesting properties: 1) it generalizes other manifold alignment methods, 2) it can align manifolds of very different complexities, performing a discriminative alignment preserving each manifold inner structure, 3) it can define a domain-specific metric to cope with multimodal specificities, 4) it can align data spaces of different dimensionality, 5) it is robust to strong nonlinear feature deformations, and 6) it is closed-form invertible, which allows transfer across-domains and data synthesis. To authors' knowledge this is the first method addressing all these important issues at once. We also present a reduced-rank version of KEMA for computational efficiency, and discuss the generalization performance of KEMA under Rademacher principles of stability. Aligning multimodal data with KEMA reports outstanding benefits when used as a data pre-conditioner step in the standard data analysis processing chain. KEMA exhibits very good performance over competing methods in synthetic controlled examples, visual object recognition and recognition of facial expressions tasks. KEMA is especially well-suited to deal with high-dimensional problems, such as images and videos, and under complicated distortions, twists and warpings of the data manifolds. A fully functional toolbox is available at https://github.com/dtuia/KEMA.git.
Nonlinear circuits for naturalistic visual motion estimation
Fitzgerald, James E; Clark, Damon A
2015-01-01
Many animals use visual signals to estimate motion. Canonical models suppose that animals estimate motion by cross-correlating pairs of spatiotemporally separated visual signals, but recent experiments indicate that humans and flies perceive motion from higher-order correlations that signify motion in natural environments. Here we show how biologically plausible processing motifs in neural circuits could be tuned to extract this information. We emphasize how known aspects of Drosophila's visual circuitry could embody this tuning and predict fly behavior. We find that segregating motion signals into ON/OFF channels can enhance estimation accuracy by accounting for natural light/dark asymmetries. Furthermore, a diversity of inputs to motion detecting neurons can provide access to more complex higher-order correlations. Collectively, these results illustrate how non-canonical computations improve motion estimation with naturalistic inputs. This argues that the complexity of the fly's motion computations, implemented in its elaborate circuits, represents a valuable feature of its visual motion estimator. DOI: http://dx.doi.org/10.7554/eLife.09123.001 PMID:26499494
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pribram-Jones, Aurora; Grabowski, Paul E.; Burke, Kieron
We present that the van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. Finally, this produces a natural method for generating new thermal exchange-correlation approximations.
Pribram-Jones, Aurora; Grabowski, Paul E.; Burke, Kieron
2016-06-08
We present that the van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. Finally, this produces a natural method for generating new thermal exchange-correlation approximations.
Freezing Behavior as a Response to Sexual Visual Stimuli as Demonstrated by Posturography
Mouras, Harold; Lelard, Thierry; Ahmaidi, Said; Godefroy, Olivier; Krystkowiak, Pierre
2015-01-01
Posturographic changes in motivational conditions remain largely unexplored in the context of embodied cognition. Over the last decade, sexual motivation has been used as a good canonical working model to study motivated social interactions. The objective of this study was to explore posturographic variations in response to visual sexual videos as compared to neutral videos. Our results support demonstration of a freezing-type response in response to sexually explicit stimuli compared to other conditions, as demonstrated by significantly decreased standard deviations for (i) the center of pressure displacement along the mediolateral and anteroposterior axes and (ii) center of pressure’s displacement surface. These results support the complexity of the motor correlates of sexual motivation considered to be a canonical functional context to study the motor correlates of motivated social interactions. PMID:25992571
Gustave Caillebotte, French impressionism, and mere exposure.
Cutting, James E
2003-06-01
Gustave Caillebotte was a painter, a collector of some of his colleagues' most renowned works, and a major force in the creation of the late 19th century French Impressionist canon. Six studies are presented as a naturalistic investigation of the effects of mere exposure to images in his collection and to those matched to them. The probabilities of cultural exposure to the 132 stimulus images were indexed by the frequencies of their separate appearances in Cornell University library books--a total of 4,232 times in 980 different books. Across the studies, adult preferences were correlated with differences in image frequencies, but not with recognition, complexity, or prototypicality judgments; children's preferences were not correlated with frequency. Prior cultural exposure also interacted with experimental exposure in predictable ways. The results suggest that mere exposure helps to maintain an artistic canon.
Hirano, Toshiyuki; Sato, Fumitoshi
2014-07-28
We used grid-free modified Cholesky decomposition (CD) to develop a density-functional-theory (DFT)-based method for calculating the canonical molecular orbitals (CMOs) of large molecules. Our method can be used to calculate standard CMOs, analytically compute exchange-correlation terms, and maximise the capacity of next-generation supercomputers. Cholesky vectors were first analytically downscaled using low-rank pivoted CD and CD with adaptive metric (CDAM). The obtained Cholesky vectors were distributed and stored on each computer node in a parallel computer, and the Coulomb, Fock exchange, and pure exchange-correlation terms were calculated by multiplying the Cholesky vectors without evaluating molecular integrals in self-consistent field iterations. Our method enables DFT and massively distributed memory parallel computers to be used in order to very efficiently calculate the CMOs of large molecules.
NASA Astrophysics Data System (ADS)
Yamamoto, Toru; Kato, Toshinori
2002-04-01
Signal increases in functional magnetic resonance imaging (fMRI) are believed to be a result of decreased paramagnetic deoxygenated haemoglobin (deoxyHb) content in the neural activation area. However, discrepancies in this canonical blood oxygenation level dependent (BOLD) theory have been pointed out in studies using optical techniques, which directly measure haemoglobin changes. To explain the discrepancies, we developed a new theory bridging magnetic resonance (MR) signal and haemoglobin changes. We focused on capillary influences, which have been neglected in most previous fMRI studies and performed a combined fMRI and near-infrared spectroscopy (NIRS) study using a language task. Paradoxically, both the MR signal and deoxyHb content increased in Broca's area. On the other hand, fMRI activation in the auditory area near large veins correlated with a mirror-image decrease in deoxyHb and increase in oxygenated haemoglobin (oxyHb), in agreement with canonical BOLD theory. All fMRI signal changes correlated consistently with changes in oxyHb, the diamagnetism of which is insensitive to MR. We concluded that the discrepancy with the canonical BOLD theory is caused by the fact that the BOLD theory ignores the effect of the capillaries. Our theory explains the paradoxical phenomena of the oxyHb and deoxyHb contributions to the MR signal and gives a new insight into the precise haemodynamics of activation by analysing fMRI and NIRS data.
Zhao, Huan-Yu; Han, Yang; Wang, Jian; Yang, Lian-He; Zheng, Xiao-Ying; Du, Jiang; Wu, Guang-Ping; Wang, En-Hua
2017-06-01
IQ-domain GTPase-activating protein 1 is a scaffolding protein with multidomain which plays a role in modulating dishevelled (Dvl) nuclear translocation in canonical Wnt pathway. However, the biological function and mechanism of IQ-domain GTPase-activating protein 1 in invasive ductal carcinoma (IDC) remain unknown. In this study, we found that IQ-domain GTPase-activating protein 1 expression was elevated in invasive ductal carcinoma, which was positively correlated with tumor grade, lymphatic metastasis, and poor prognosis. Coexpression of IQ-domain GTPase-activating protein 1 and Dvl in the nucleus and cytoplasm of invasive ductal carcinoma was significantly correlated but not in the membrane. Postoperative survival in the patients with their coexpression in the nucleus and cytoplasm was obviously lower than that without coexpression. The positive expression rates of c-myc and cyclin D1 were significantly higher in the patients with nuclear coexpression of Dvl and IQ-domain GTPase-activating protein 1 than that with cytoplasmic coexpression, correlating with poor prognosis. IQ-domain GTPase-activating protein 1 significantly enhanced cell proliferation and invasion in invasive ductal carcinoma cell lines by interacting with Dvl in cytoplasm to promote Dvl nuclear translocation so as to upregulate the expression of c-myc and cyclin D1. Collectively, our data suggest that IQ-domain GTPase-activating protein 1 may promote the malignant phenotype of invasive ductal carcinoma via canonical Wnt signaling, and it could be used as a potential prognostic biomarker for breast cancer patients.
Weight-Loss Expectancies, Relative Weight, and Symptoms of Bulimia in Young Women.
ERIC Educational Resources Information Center
Thombs, Dennis L.; And Others
1996-01-01
A canonical correlation analysis of various weight concerns in a sample of college women revealed that strong expectations of weight loss benefits and a high relative body weight were positively correlated with the four major symptoms of bulimia. Expectations of increased self-worth and social confidence were linked to eating problems. (RJM)
Electron correlation in Hooke's law atom in the high-density limit.
Gill, P M W; O'Neill, D P
2005-03-01
Closed-form expressions for the first three terms in the perturbation expansion of the exact energy and Hartree-Fock energy of the lowest singlet and triplet states of the Hooke's law atom are found. These yield elementary formulas for the exact correlation energies (-49.7028 and -5.807 65 mE(h)) of the two states in the high-density limit and lead to a pair of necessary conditions on the exact correlation kernel G(w) in Hartree-Fock-Wigner theory.
Multivariate Bias Correction Procedures for Improving Water Quality Predictions from the SWAT Model
NASA Astrophysics Data System (ADS)
Arumugam, S.; Libera, D.
2017-12-01
Water quality observations are usually not available on a continuous basis for longer than 1-2 years at a time over a decadal period given the labor requirements making calibrating and validating mechanistic models difficult. Further, any physical model predictions inherently have bias (i.e., under/over estimation) and require post-simulation techniques to preserve the long-term mean monthly attributes. This study suggests a multivariate bias-correction technique and compares to a common technique in improving the performance of the SWAT model in predicting daily streamflow and TN loads across the southeast based on split-sample validation. The approach is a dimension reduction technique, canonical correlation analysis (CCA) that regresses the observed multivariate attributes with the SWAT model simulated values. The common approach is a regression based technique that uses an ordinary least squares regression to adjust model values. The observed cross-correlation between loadings and streamflow is better preserved when using canonical correlation while simultaneously reducing individual biases. Additionally, canonical correlation analysis does a better job in preserving the observed joint likelihood of observed streamflow and loadings. These procedures were applied to 3 watersheds chosen from the Water Quality Network in the Southeast Region; specifically, watersheds with sufficiently large drainage areas and number of observed data points. The performance of these two approaches are compared for the observed period and over a multi-decadal period using loading estimates from the USGS LOADEST model. Lastly, the CCA technique is applied in a forecasting sense by using 1-month ahead forecasts of P & T from ECHAM4.5 as forcings in the SWAT model. Skill in using the SWAT model for forecasting loadings and streamflow at the monthly and seasonal timescale is also discussed.
Vosoogh, Ali; Saeedi, Mohsen; Lak, Raziyeh
2016-11-01
Some pollutants can qualitatively affect aquatic freshwater such as rivers, and heavy metals are one of the most important pollutants in aquatic fresh waters. Heavy metals can be found in the form of components dissolved in these waters or in compounds with suspended particles and surface sediments. It can be said that heavy metals are in equilibrium between water and sediment. In this study, the amount of heavy metals is determined in water and different sizes of sediment. To obtain the relationship between heavy metals in water and size-fractionated sediments, a canonical correlation analysis (CCA) was utilized in rivers of the southwestern Caspian Sea. In this research, a case study was carried out on 18 sampling stations in nine rivers. In the first step, the concentrations of heavy metals (Cu, Zn, Cr, Fe, Mn, Pb, Ni, and Cd) were determined in water and size-fractionated sediment samples. Water sampling sites were classified by hierarchical cluster analysis (HCA) utilizing squared Euclidean distance with Ward's method. In addition, for interpreting the obtained results and the relationships between the concentration of heavy metals in the tested river water and sample sediments, canonical correlation analysis (CCA) was utilized. The rivers were grouped into two classes (those having no pollution and those having low pollution) based on the HCA results obtained for river water samples. CCA results found numerous relationships between rivers in Iran's Guilan province and their size-fractionated sediments samples. The heavy metals of sediments with 0.038 to 0.125 mm size in diameter are slightly correlated with those of water samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kidon, Lyran; The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978; Wilner, Eli Y.
2015-12-21
The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima–Zwanzig–Mori time-convolution (TC) and the other on the Tokuyama–Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called “memory kernel” or “generator,” going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operatormore » in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green’s function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed.« less
Measurements of the Canonical Helicity Evolution of a Gyrating Kinked Flux Rope
NASA Astrophysics Data System (ADS)
von der Linden, J.; Sears, J.; Intrator, T.; You, S.
2017-12-01
Magnetic structures in the solar corona and planetary magnetospheres are often modelled as magnetic flux ropes governed by magnetohydrodynamics (MHD); however, inside these structures, as exhibited in reconnection, conversions between magnetic and kinetic energies occur over a wide range of scales. Flux ropes based on the flux of canonical momentum circulation extend the flux rope concept to include effects of finite particle momentum and present the distinct advantage of reconciling all plasma regimes - e.g. kinetic, two-fluid, and MHD - with the topological concept of helicity: twists, writhes, and linkages. This presentation shows the first visualization and analysis of the 3D dynamics of canonical flux ropes and their relative helicity evolution from laboratory measurements. Ion and electron canonical flux ropes are visualized from a dataset of Mach, triple, and Ḃ probe measurements at over 10,000 spatial locations of a gyrating kinked flux rope. The flux ropes co-gyrate with the peak density and electron temperature in and out of a measurement volume. The electron and ion canonical flux ropes twist with opposite handedness and the ion flux ropes writhe around the electron flux ropes. The relative cross helicity between the magnetic and ion flow vorticity flux ropes dominates the relative ion canonical helicity and is anti-correlated with the relative magnetic helicity. The 3D nature of the kink and a reverse eddy current affect the helicity evolution. This work is supported by DOE Grant DE-SC0010340 and the DOE Office of Science Graduate Student Research Program and prepared in part by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-735426
NASA Astrophysics Data System (ADS)
Nagano, Akira; Hasegawa, Takuya; Ueki, Iwao; Ando, Kentaro
2017-07-01
We examined the covariation of sea surface salinity (SSS) and freshwater flux in the western tropical and northern subtropical Pacific on the El Niño-Southern Oscillation time scale, using a canonical correlation analysis of monthly data between 2001 and 2013. The dominant covariation, i.e., the first canonical mode, has large positive and negative amplitudes in regions east of the Philippines and New Guinea, respectively, and reaches peaks in autumn to winter of El Niño years. The positive SSS anomaly east of the Philippines is advected to the Kuroshio Extension region. We found that the second canonical mode is another coupled variation with localized amplitudes of SSS under the atmospheric convergence zones in winter to spring of La Niña years. However, the negative SSS anomaly is annihilated possibly by the evaporation in the subtropical region.
NASA Technical Reports Server (NTRS)
Johnson, R. A.; Wehrly, T.
1976-01-01
Population models for dependence between two angular measurements and for dependence between an angular and a linear observation are proposed. The method of canonical correlations first leads to new population and sample measures of dependence in this latter situation. An example relating wind direction to the level of a pollutant is given. Next, applied to pairs of angular measurements, the method yields previously proposed sample measures in some special cases and a new sample measure in general.
Kucukboyaci, N. Erkut; Girard, H.M.; Hagler, D.J.; Kuperman, J.; Tecoma, E.S.; Iragui, V.J.; Halgren, E.; McDonald, C.R.
2012-01-01
The objective of this study is to investigate the relationships among frontotemporal fiber tract compromise and task-switching performance in healthy controls and patients with temporal lobe epilepsy (TLE). We performed diffusion tensor imaging (DTI) on 30 controls and 32 patients with TLE (15 left TLE). Fractional anisotropy (FA) was calculated for four fiber tracts [uncinate fasciculus (UncF), arcuate fasciculus (ArcF), dorsal cingulum (CING), and inferior fronto-occipital fasciculus (IFOF)]. Participants completed the Trail Making Test-B (TMT-B) and Verbal Fluency Category Switching (VFCS) test. Multivariate analyses of variances (MANOVAs) were performed to investigate group differences in fiber FA and set-shifting performances. Canonical correlations were used to examine the overall patterns of structural-cognitive relationships and were followed by within-group bivariate correlations. We found a significant canonical correlation between fiber FA and task-switching performance. In controls, TMT-B correlated with left IFOF, whereas VFCS correlated with FA of left ArcF and left UncF. These correlations were not significant in patients with TLE. We report significant correlations between frontotemporal fiber tract integrity and set-shifting performance in healthy controls that appear to be absent or attenuated in patients with TLE. These findings suggest a breakdown of typical structure-function relationships in TLE that may reflect aberrant developmental or degenerative processes. PMID:22014246
Hierarchical classification in high dimensional numerous class cases
NASA Technical Reports Server (NTRS)
Kim, Byungyong; Landgrebe, D. A.
1990-01-01
As progress in new sensor technology continues, increasingly high resolution imaging sensors are being developed. These sensors give more detailed and complex data for each picture element and greatly increase the dimensionality of data over past systems. Three methods for designing a decision tree classifier are discussed: a top down approach, a bottom up approach, and a hybrid approach. Three feature extraction techniques are implemented. Canonical and extended canonical techniques are mainly dependent upon the mean difference between two classes. An autocorrelation technique is dependent upon the correlation differences. The mathematical relationship between sample size, dimensionality, and risk value is derived.
Javanrouh, Niloufar; Daneshpour, Maryam S; Soltanian, Ali Reza; Tapak, Leili
2018-06-05
Obesity is a serious health problem that leads to low quality of life and early mortality. To the purpose of prevention and gene therapy for such a worldwide disease, genome wide association study is a powerful tool for finding SNPs associated with increased risk of obesity. To conduct an association analysis, kernel machine regression is a generalized regression method, has an advantage of considering the epistasis effects as well as the correlation between individuals due to unknown factors. In this study, information of the people who participated in Tehran cardio-metabolic genetic study was used. They were genotyped for the chromosomal region, evaluation 986 variations located at 16q12.2; build 38hg. Kernel machine regression and single SNP analysis were used to assess the association between obesity and SNPs genotyped data. We found that associated SNP sets with obesity, were almost in the FTO (P = 0.01), AIKTIP (P = 0.02) and MMP2 (P = 0.02) genes. Moreover, two SNPs, i.e., rs10521296 and rs11647470, showed significant association with obesity using kernel regression (P = 0.02). In conclusion, significant sets were randomly distributed throughout the region with more density around the FTO, AIKTIP and MMP2 genes. Furthermore, two intergenic SNPs showed significant association after using kernel machine regression. Therefore, more studies have to be conducted to assess their functionality or precise mechanism. Copyright © 2018 Elsevier B.V. All rights reserved.
Multiscale Anomaly Detection and Image Registration Algorithms for Airborne Landmine Detection
2008-05-01
with the sensed image. The two- dimensional correlation coefficient r for two matrices A and B both of size M ×N is given by r = ∑ m ∑ n (Amn...correlation based method by matching features in a high- dimensional feature- space . The current implementation of the SIFT algorithm uses a brute-force...by repeatedly convolving the image with a Guassian kernel. Each plane of the scale
Scene-Aware Adaptive Updating for Visual Tracking via Correlation Filters
Zhang, Sirou; Qiao, Xiaoya
2017-01-01
In recent years, visual object tracking has been widely used in military guidance, human-computer interaction, road traffic, scene monitoring and many other fields. The tracking algorithms based on correlation filters have shown good performance in terms of accuracy and tracking speed. However, their performance is not satisfactory in scenes with scale variation, deformation, and occlusion. In this paper, we propose a scene-aware adaptive updating mechanism for visual tracking via a kernel correlation filter (KCF). First, a low complexity scale estimation method is presented, in which the corresponding weight in five scales is employed to determine the final target scale. Then, the adaptive updating mechanism is presented based on the scene-classification. We classify the video scenes as four categories by video content analysis. According to the target scene, we exploit the adaptive updating mechanism to update the kernel correlation filter to improve the robustness of the tracker, especially in scenes with scale variation, deformation, and occlusion. We evaluate our tracker on the CVPR2013 benchmark. The experimental results obtained with the proposed algorithm are improved by 33.3%, 15%, 6%, 21.9% and 19.8% compared to those of the KCF tracker on the scene with scale variation, partial or long-time large-area occlusion, deformation, fast motion and out-of-view. PMID:29140311
Multi-Target Regression via Robust Low-Rank Learning.
Zhen, Xiantong; Yu, Mengyang; He, Xiaofei; Li, Shuo
2018-02-01
Multi-target regression has recently regained great popularity due to its capability of simultaneously learning multiple relevant regression tasks and its wide applications in data mining, computer vision and medical image analysis, while great challenges arise from jointly handling inter-target correlations and input-output relationships. In this paper, we propose Multi-layer Multi-target Regression (MMR) which enables simultaneously modeling intrinsic inter-target correlations and nonlinear input-output relationships in a general framework via robust low-rank learning. Specifically, the MMR can explicitly encode inter-target correlations in a structure matrix by matrix elastic nets (MEN); the MMR can work in conjunction with the kernel trick to effectively disentangle highly complex nonlinear input-output relationships; the MMR can be efficiently solved by a new alternating optimization algorithm with guaranteed convergence. The MMR leverages the strength of kernel methods for nonlinear feature learning and the structural advantage of multi-layer learning architectures for inter-target correlation modeling. More importantly, it offers a new multi-layer learning paradigm for multi-target regression which is endowed with high generality, flexibility and expressive ability. Extensive experimental evaluation on 18 diverse real-world datasets demonstrates that our MMR can achieve consistently high performance and outperforms representative state-of-the-art algorithms, which shows its great effectiveness and generality for multivariate prediction.
Testosterone and androstanediol glucuronide among men in NHANES III.
Duan, Chuan Wei; Xu, Lin
2018-03-09
Most of the androgen replacement therapies were based on serum testosterone and without measurements of total androgen activities. Whether those with low testosterone also have low levels of androgen activity is largely unknown. We hence examined the association between testosterone and androstanediol glucuronide (AG), a reliable measure of androgen activity, in a nationally representative sample of US men. Cross-sectional analysis was based on 1493 men from the Third National Health and Nutrition examination Survey (NHANES III) conducted from 1988 to 1991. Serum testosterone and AG were measured by immunoassay. Kernel density was used to estimate the average density of serum AG concentrations by quartiles of testosterone. Testosterone was weakly and positively correlated with AG (correlation coefficient = 0.18). The kernel density estimates show that the distributions are quite similar between the quartiles of testosterone. After adjustment for age, the distributions of AG in quartiles of testosterone did not change. The correlation between testosterone and AG was stronger in men with younger age, lower body mass index, non-smoking and good self-rated health and health status. Serum testosterone is weakly correlated with total androgen activities, and the correlation is even weaker for those with poor self-rated health. Our results suggest that measurement of total androgen activity in addition to testosterone is necessary in clinical practice, especially before administration of androgen replacement therapy.
Yenilmez, Firdes; Düzgün, Sebnem; Aksoy, Aysegül
2015-01-01
In this study, kernel density estimation (KDE) was coupled with ordinary two-dimensional kriging (OK) to reduce the number of sampling locations in measurement and kriging of dissolved oxygen (DO) concentrations in Porsuk Dam Reservoir (PDR). Conservation of the spatial correlation structure in the DO distribution was a target. KDE was used as a tool to aid in identification of the sampling locations that would be removed from the sampling network in order to decrease the total number of samples. Accordingly, several networks were generated in which sampling locations were reduced from 65 to 10 in increments of 4 or 5 points at a time based on kernel density maps. DO variograms were constructed, and DO values in PDR were kriged. Performance of the networks in DO estimations were evaluated through various error metrics, standard error maps (SEM), and whether the spatial correlation structure was conserved or not. Results indicated that smaller number of sampling points resulted in loss of information in regard to spatial correlation structure in DO. The minimum representative sampling points for PDR was 35. Efficacy of the sampling location selection method was tested against the networks generated by experts. It was shown that the evaluation approach proposed in this study provided a better sampling network design in which the spatial correlation structure of DO was sustained for kriging.
Kernelized correlation tracking with long-term motion cues
NASA Astrophysics Data System (ADS)
Lv, Yunqiu; Liu, Kai; Cheng, Fei
2018-04-01
Robust object tracking is a challenging task in computer vision due to interruptions such as deformation, fast motion and especially, occlusion of tracked object. When occlusions occur, image data will be unreliable and is insufficient for the tracker to depict the object of interest. Therefore, most trackers are prone to fail under occlusion. In this paper, an occlusion judgement and handling method based on segmentation of the target is proposed. If the target is occluded, the speed and direction of it must be different from the objects occluding it. Hence, the value of motion features are emphasized. Considering the efficiency and robustness of Kernelized Correlation Filter Tracking (KCF), it is adopted as a pre-tracker to obtain a predicted position of the target. By analyzing long-term motion cues of objects around this position, the tracked object is labelled. Hence, occlusion could be detected easily. Experimental results suggest that our tracker achieves a favorable performance and effectively handles occlusion and drifting problems.
Long-term scale adaptive tracking with kernel correlation filters
NASA Astrophysics Data System (ADS)
Wang, Yueren; Zhang, Hong; Zhang, Lei; Yang, Yifan; Sun, Mingui
2018-04-01
Object tracking in video sequences has broad applications in both military and civilian domains. However, as the length of input video sequence increases, a number of problems arise, such as severe object occlusion, object appearance variation, and object out-of-view (some portion or the entire object leaves the image space). To deal with these problems and identify the object being tracked from cluttered background, we present a robust appearance model using Speeded Up Robust Features (SURF) and advanced integrated features consisting of the Felzenszwalb's Histogram of Oriented Gradients (FHOG) and color attributes. Since re-detection is essential in long-term tracking, we develop an effective object re-detection strategy based on moving area detection. We employ the popular kernel correlation filters in our algorithm design, which facilitates high-speed object tracking. Our evaluation using the CVPR2013 Object Tracking Benchmark (OTB2013) dataset illustrates that the proposed algorithm outperforms reference state-of-the-art trackers in various challenging scenarios.
Exploring the Replicability of a Study's Results: Bootstrap Statistics for the Multivariate Case.
ERIC Educational Resources Information Center
Thompson, Bruce
1995-01-01
Use of the bootstrap method in a canonical correlation analysis to evaluate the replicability of a study's results is illustrated. More confidence may be vested in research results that replicate. (SLD)
Moreira, Pedro Silva; Santos, Nadine Correia; Sousa, Nuno
2015-01-01
Executive functioning (EF), which is considered to govern complex cognition, and verbal memory (VM) are constructs assumed to be related. However, it is not known the magnitude of the association between EF and VM, and how sociodemographic and psychological factors may affect this relationship, including in normal aging. In this study, we assessed different EF and VM parameters, via a battery of neurocognitive/psychological tests, and performed a Canonical Correlation Analysis (CCA) to explore the connection between these constructs, in a sample of middle-aged and older healthy individuals without cognitive impairment (N = 563, 50+ years of age). The analysis revealed a positive and moderate association between EF and VM independently of gender, age, education, global cognitive performance level, and mood. These results confirm that EF presents a significant association with VM performance. PMID:28138465
The integrated model of sport confidence: a canonical correlation and mediational analysis.
Koehn, Stefan; Pearce, Alan J; Morris, Tony
2013-12-01
The main purpose of the study was to examine crucial parts of Vealey's (2001) integrated framework hypothesizing that sport confidence is a mediating variable between sources of sport confidence (including achievement, self-regulation, and social climate) and athletes' affect in competition. The sample consisted of 386 athletes, who completed the Sources of Sport Confidence Questionnaire, Trait Sport Confidence Inventory, and Dispositional Flow Scale-2. Canonical correlation analysis revealed a confidence-achievement dimension underlying flow. Bias-corrected bootstrap confidence intervals in AMOS 20.0 were used in examining mediation effects between source domains and dispositional flow. Results showed that sport confidence partially mediated the relationship between achievement and self-regulation domains and flow, whereas no significant mediation was found for social climate. On a subscale level, full mediation models emerged for achievement and flow dimensions of challenge-skills balance, clear goals, and concentration on the task at hand.
Strongly contracted canonical transformation theory
NASA Astrophysics Data System (ADS)
Neuscamman, Eric; Yanai, Takeshi; Chan, Garnet Kin-Lic
2010-01-01
Canonical transformation (CT) theory describes dynamic correlation in multireference systems with large active spaces. Here we discuss CT theory's intruder state problem and why our previous approach of overlap matrix truncation becomes infeasible for sufficiently large active spaces. We propose the use of strongly and weakly contracted excitation operators as alternatives for dealing with intruder states in CT theory. The performance of these operators is evaluated for the H2O, N2, and NiO molecules, with comparisons made to complete active space second order perturbation theory and Davidson-corrected multireference configuration interaction theory. Finally, using a combination of strongly contracted CT theory and orbital-optimized density matrix renormalization group theory, we evaluate the singlet-triplet gap of free base porphin using an active space containing all 24 out-of-plane 2p orbitals. Modeling dynamic correlation with an active space of this size is currently only possible using CT theory.
Hanft, J M; Jones, R J
1986-06-01
Kernels cultured in vitro were induced to abort by high temperature (35 degrees C) and by culturing six kernels/cob piece. Aborting kernels failed to enter a linear phase of dry mass accumulation and had a final mass that was less than 6% of nonaborting field-grown kernels. Kernels induced to abort by high temperature failed to synthesize starch in the endosperm and had elevated sucrose concentrations and low fructose and glucose concentrations in the pedicel during early growth compared to nonaborting kernels. Kernels induced to abort by high temperature also had much lower pedicel soluble acid invertase activities than did nonaborting kernels. These results suggest that high temperature during the lag phase of kernel growth may impair the process of sucrose unloading in the pedicel by indirectly inhibiting soluble acid invertase activity and prevent starch synthesis in the endosperm. Kernels induced to abort by culturing six kernels/cob piece had reduced pedicel fructose, glucose, and sucrose concentrations compared to kernels from field-grown ears. These aborting kernels also had a lower pedicel soluble acid invertase activity compared to nonaborting kernels from the same cob piece and from field-grown ears. The low invertase activity in pedicel tissue of the aborting kernels was probably caused by a lack of substrate (sucrose) for the invertase to cleave due to the intense competition for available assimilates. In contrast to kernels cultured at 35 degrees C, aborting kernels from cob pieces containing all six kernels accumulated starch in a linear fashion. These results indicate that kernels cultured six/cob piece abort because of an inadequate supply of sugar and are similar to apical kernels from field-grown ears that often abort prior to the onset of linear growth.
Decoding the auditory brain with canonical component analysis.
de Cheveigné, Alain; Wong, Daniel D E; Di Liberto, Giovanni M; Hjortkjær, Jens; Slaney, Malcolm; Lalor, Edmund
2018-05-15
The relation between a stimulus and the evoked brain response can shed light on perceptual processes within the brain. Signals derived from this relation can also be harnessed to control external devices for Brain Computer Interface (BCI) applications. While the classic event-related potential (ERP) is appropriate for isolated stimuli, more sophisticated "decoding" strategies are needed to address continuous stimuli such as speech, music or environmental sounds. Here we describe an approach based on Canonical Correlation Analysis (CCA) that finds the optimal transform to apply to both the stimulus and the response to reveal correlations between the two. Compared to prior methods based on forward or backward models for stimulus-response mapping, CCA finds significantly higher correlation scores, thus providing increased sensitivity to relatively small effects, and supports classifier schemes that yield higher classification scores. CCA strips the brain response of variance unrelated to the stimulus, and the stimulus representation of variance that does not affect the response, and thus improves observations of the relation between stimulus and response. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Classification of multipartite entanglement via negativity fonts
NASA Astrophysics Data System (ADS)
Sharma, S. Shelly; Sharma, N. K.
2012-04-01
Partial transposition of state operator is a well-known tool to detect quantum correlations between two parts of a composite system. In this paper, the global partial transpose (GPT) is linked to conceptually multipartite underlying structures in a state—the negativity fonts. If K-way negativity fonts with nonzero determinants exist, then selective partial transposition of a pure state, involving K of the N qubits (K⩽N), yields an operator with negative eigenvalues, identifying K-body correlations in the state. Expansion of GPT in terms of K-way partially transposed (KPT) operators reveals the nature of intricate intrinsic correlations in the state. Classification criteria for multipartite entangled states based on the underlying structure of global partial transpose of canonical state are proposed. The number of N-partite entanglement types for an N-qubit system is found to be 2N-1-N+2, while the number of major entanglement classes is 2N-1-1. Major classes for three- and four-qubit states are listed. Subclasses are determined by the number and type of negativity fonts in canonical states.
Factors associated with the nutritional status of children less than 5 years of age
Miglioli, Teresa Cristina; Fonseca, Vania Matos; Gomes, Saint Clair; da Silva, Katia Silveira; de Lira, Pedro Israel Cabral; Batista, Malaquias
2015-01-01
OBJECTIVE To analyze if the nutritional status of children aged less than five years is related to the biological conditions of their mothers, environmental and socioeconomic factors, and access to health services and social programs. METHODS This cross-sectional population-based study analyzed 664 mothers and 790 children using canonical correlation analysis. Dependent variables were characteristics of the children (weight/age, height/age, BMI/age, hemoglobin, and retinol serum levels). Independent variables were those related to the mothers’ nutritional status (BMI, hemoglobin, and retinol serum levels), age, environmental and socioeconomic factors and access to health service and social programs. A < 0.05 significance level was adopted to select the interpreted canonical functions (CF) and ± 0.40 as canonical load value of the analyzed variables. RESULTS Three canonical functions were selected, concentrating 89.9% of the variability of the relationship among the groups. In the first canonical function, weight/age (-0.73) and height/age (-0.99) of the children were directly related to the mother’s height (-0.82), prenatal appointments (-0.43), geographical area of the residence (-0.41), and household income per capita (-0.42). Inverse relationship between the variables related to the children and people/room (0.44) showed that the larger the number of people/room, the poorer their nutritional status. Rural residents were found to have the worse nutritional conditions. In the second canonical function, the BMI of the mother (-0.48) was related to BMI/age and retinol of the children, indicating that as women gained weight so did their children. Underweight women tended to have children with vitamin A deficiency. In the third canonical function, hemoglobin (-0.72) and retinol serum levels (-0.40) of the children were directly related to the mother’s hemoglobin levels (-0.43). CONCLUSIONS Mothers and children were associated concerning anemia, vitamin A deficiency and anthropometric markers. Living in rural areas is a determining factor for the families health status. PMID:26398874
Studying Canonical Analysis: A Reply to Thorndike's Comments
ERIC Educational Resources Information Center
Barcikowski, Robert S.; Stevens, James P.
1976-01-01
This article is a rejoinder to TM 502 249. Each of Thorndike's comments are examined. A possible solution to the large number of subjects necessary for stable weights and variate-variable correlations using ridge regression procedures is suggested. (RC)
Hesselmann, Andreas; Görling, Andreas
2011-01-21
A recently introduced time-dependent exact-exchange (TDEXX) method, i.e., a response method based on time-dependent density-functional theory that treats the frequency-dependent exchange kernel exactly, is reformulated. In the reformulated version of the TDEXX method electronic excitation energies can be calculated by solving a linear generalized eigenvalue problem while in the original version of the TDEXX method a laborious frequency iteration is required in the calculation of each excitation energy. The lowest eigenvalues of the new TDEXX eigenvalue equation corresponding to the lowest excitation energies can be efficiently obtained by, e.g., a version of the Davidson algorithm appropriate for generalized eigenvalue problems. Alternatively, with the help of a series expansion of the new TDEXX eigenvalue equation, standard eigensolvers for large regular eigenvalue problems, e.g., the standard Davidson algorithm, can be used to efficiently calculate the lowest excitation energies. With the help of the series expansion as well, the relation between the TDEXX method and time-dependent Hartree-Fock is analyzed. Several ways to take into account correlation in addition to the exact treatment of exchange in the TDEXX method are discussed, e.g., a scaling of the Kohn-Sham eigenvalues, the inclusion of (semi)local approximate correlation potentials, or hybrids of the exact-exchange kernel with kernels within the adiabatic local density approximation. The lowest lying excitations of the molecules ethylene, acetaldehyde, and pyridine are considered as examples.
Clinical Trials With Large Numbers of Variables: Important Advantages of Canonical Analysis.
Cleophas, Ton J
2016-01-01
Canonical analysis assesses the combined effects of a set of predictor variables on a set of outcome variables, but it is little used in clinical trials despite the omnipresence of multiple variables. The aim of this study was to assess the performance of canonical analysis as compared with traditional multivariate methods using multivariate analysis of covariance (MANCOVA). As an example, a simulated data file with 12 gene expression levels and 4 drug efficacy scores was used. The correlation coefficient between the 12 predictor and 4 outcome variables was 0.87 (P = 0.0001) meaning that 76% of the variability in the outcome variables was explained by the 12 covariates. Repeated testing after the removal of 5 unimportant predictor and 1 outcome variable produced virtually the same overall result. The MANCOVA identified identical unimportant variables, but it was unable to provide overall statistics. (1) Canonical analysis is remarkable, because it can handle many more variables than traditional multivariate methods such as MANCOVA can. (2) At the same time, it accounts for the relative importance of the separate variables, their interactions and differences in units. (3) Canonical analysis provides overall statistics of the effects of sets of variables, whereas traditional multivariate methods only provide the statistics of the separate variables. (4) Unlike other methods for combining the effects of multiple variables such as factor analysis/partial least squares, canonical analysis is scientifically entirely rigorous. (5) Limitations include that it is less flexible than factor analysis/partial least squares, because only 2 sets of variables are used and because multiple solutions instead of one is offered. We do hope that this article will stimulate clinical investigators to start using this remarkable method.
Quantum canonical ensemble: A projection operator approach
NASA Astrophysics Data System (ADS)
Magnus, Wim; Lemmens, Lucien; Brosens, Fons
2017-09-01
Knowing the exact number of particles N, and taking this knowledge into account, the quantum canonical ensemble imposes a constraint on the occupation number operators. The constraint particularly hampers the systematic calculation of the partition function and any relevant thermodynamic expectation value for arbitrary but fixed N. On the other hand, fixing only the average number of particles, one may remove the above constraint and simply factorize the traces in Fock space into traces over single-particle states. As is well known, that would be the strategy of the grand-canonical ensemble which, however, comes with an additional Lagrange multiplier to impose the average number of particles. The appearance of this multiplier can be avoided by invoking a projection operator that enables a constraint-free computation of the partition function and its derived quantities in the canonical ensemble, at the price of an angular or contour integration. Introduced in the recent past to handle various issues related to particle-number projected statistics, the projection operator approach proves beneficial to a wide variety of problems in condensed matter physics for which the canonical ensemble offers a natural and appropriate environment. In this light, we present a systematic treatment of the canonical ensemble that embeds the projection operator into the formalism of second quantization while explicitly fixing N, the very number of particles rather than the average. Being applicable to both bosonic and fermionic systems in arbitrary dimensions, transparent integral representations are provided for the partition function ZN and the Helmholtz free energy FN as well as for two- and four-point correlation functions. The chemical potential is not a Lagrange multiplier regulating the average particle number but can be extracted from FN+1 -FN, as illustrated for a two-dimensional fermion gas.
Maschietto, Valentina; Marocco, Adriano; Malachova, Alexandra; Lanubile, Alessandra
2015-09-01
Fusarium verticillioides causes ear rot in maize and contaminates the kernels with the fumonisin mycotoxins. It is known that plant lipoxygenase (LOX)-derived oxylipins regulate defence against pathogens and that the host-pathogen lipid cross-talk influences the pathogenesis. The expression profiles of fifteen genes of the LOX pathway were studied in kernels of resistant and susceptible maize lines, grown in field condition, at 3, 7 and 14 days post inoculation (dpi) with F. verticillioides. Plant defence responses were correlated with the pathogen growth, the expression profiles of fungal FUM genes for fumonisin biosynthesis and fumonisin content in the kernels. The resistant genotype limited fungal growth and fumonisin accumulation between 7 and 14 dpi. Pathogen growth became exponential in the susceptible line after 7 dpi, in correspondence with massive transcription of FUM genes and fumonisins augmented exponentially at 14 dpi. LOX pathway genes resulted strongly induced after pathogen inoculation in the resistant line at 3 and 7 dpi, whilst in the susceptible line the induction was reduced or delayed at 14 dpi. In addition, all genes resulted overexpressed before infection in kernels of the resistant genotype already at 3 dpi. The results suggest that resistance in maize may depend on an earlier activation of LOX genes and genes for jasmonic acid biosynthesis. Copyright © 2015 Elsevier GmbH. All rights reserved.
Mohammadi Moghaddam, Toktam; Razavi, Seyed M A; Taghizadeh, Masoud; Sazgarnia, Ameneh
2016-01-01
Roasting is an important step in the processing of pistachio nuts. The effect of hot air roasting temperature (90, 120 and 150 °C), time (20, 35 and 50 min) and air velocity (0.5, 1.5 and 2.5 m/s) on textural and sensory characteristics of pistachio nuts and kernels were investigated. The results showed that increasing the roasting temperature decreased the fracture force (82-25.54 N), instrumental hardness (82.76-37.59 N), apparent modulus of elasticity (47-21.22 N/s), compressive energy (280.73-101.18 N.s) and increased amount of bitterness (1-2.5) and the hardness score (6-8.40) of pistachio kernels. Higher roasting time improved the flavor of samples. The results of the consumer test showed that the roasted pistachio kernels have good acceptability for flavor (score 5.83-8.40), color (score 7.20-8.40) and hardness (score 6-8.40) acceptance. Moreover, Partial Least Square (PLS) analysis of instrumental and sensory data provided important information for the correlation of objective and subjective properties. The univariate analysis showed that over 93.87 % of the variation in sensory hardness and almost 87 % of the variation in sensory acceptability could be explained by instrumental texture properties.
7 CFR 810.602 - Definition of other terms.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Damaged kernels. Kernels and pieces of flaxseed kernels that are badly ground-damaged, badly weather... instructions. Also, underdeveloped, shriveled, and small pieces of flaxseed kernels removed in properly... recleaning. (c) Heat-damaged kernels. Kernels and pieces of flaxseed kernels that are materially discolored...
Hanft, Jonathan M.; Jones, Robert J.
1986-01-01
Kernels cultured in vitro were induced to abort by high temperature (35°C) and by culturing six kernels/cob piece. Aborting kernels failed to enter a linear phase of dry mass accumulation and had a final mass that was less than 6% of nonaborting field-grown kernels. Kernels induced to abort by high temperature failed to synthesize starch in the endosperm and had elevated sucrose concentrations and low fructose and glucose concentrations in the pedicel during early growth compared to nonaborting kernels. Kernels induced to abort by high temperature also had much lower pedicel soluble acid invertase activities than did nonaborting kernels. These results suggest that high temperature during the lag phase of kernel growth may impair the process of sucrose unloading in the pedicel by indirectly inhibiting soluble acid invertase activity and prevent starch synthesis in the endosperm. Kernels induced to abort by culturing six kernels/cob piece had reduced pedicel fructose, glucose, and sucrose concentrations compared to kernels from field-grown ears. These aborting kernels also had a lower pedicel soluble acid invertase activity compared to nonaborting kernels from the same cob piece and from field-grown ears. The low invertase activity in pedicel tissue of the aborting kernels was probably caused by a lack of substrate (sucrose) for the invertase to cleave due to the intense competition for available assimilates. In contrast to kernels cultured at 35°C, aborting kernels from cob pieces containing all six kernels accumulated starch in a linear fashion. These results indicate that kernels cultured six/cob piece abort because of an inadequate supply of sugar and are similar to apical kernels from field-grown ears that often abort prior to the onset of linear growth. PMID:16664846
Out-of-Sample Extensions for Non-Parametric Kernel Methods.
Pan, Binbin; Chen, Wen-Sheng; Chen, Bo; Xu, Chen; Lai, Jianhuang
2017-02-01
Choosing suitable kernels plays an important role in the performance of kernel methods. Recently, a number of studies were devoted to developing nonparametric kernels. Without assuming any parametric form of the target kernel, nonparametric kernel learning offers a flexible scheme to utilize the information of the data, which may potentially characterize the data similarity better. The kernel methods using nonparametric kernels are referred to as nonparametric kernel methods. However, many nonparametric kernel methods are restricted to transductive learning, where the prediction function is defined only over the data points given beforehand. They have no straightforward extension for the out-of-sample data points, and thus cannot be applied to inductive learning. In this paper, we show how to make the nonparametric kernel methods applicable to inductive learning. The key problem of out-of-sample extension is how to extend the nonparametric kernel matrix to the corresponding kernel function. A regression approach in the hyper reproducing kernel Hilbert space is proposed to solve this problem. Empirical results indicate that the out-of-sample performance is comparable to the in-sample performance in most cases. Experiments on face recognition demonstrate the superiority of our nonparametric kernel method over the state-of-the-art parametric kernel methods.
7 CFR 810.1202 - Definition of other terms.
Code of Federal Regulations, 2010 CFR
2010-01-01
... kernels. Kernels, pieces of rye kernels, and other grains that are badly ground-damaged, badly weather.... Also, underdeveloped, shriveled, and small pieces of rye kernels removed in properly separating the...-damaged kernels. Kernels, pieces of rye kernels, and other grains that are materially discolored and...
Czaban, Janusz; Wróblewska, Barbara; Sułek, Alicja; Mikos, Marzena; Boguszewska, Edyta; Podolska, Grażyna; Nieróbca, Anna
2015-01-01
Field experiments were conducted during three consecutive growing seasons (2007/08, 2008/09 and 2009/10) with four winter wheat (Triticum aestivum L.) cultivars - 'Bogatka', 'Kris', 'Satyna' and 'Tonacja' - grown on fields with a three-field crop rotation (winter triticale, spring barley, winter wheat) and in a four-field crop rotation experiment (spring wheat, spring cereals, winter rapeseed, winter wheat). After the harvest, kernels were surface disinfected with 2% NaOCl and then analysed for the internal infection by different species of Fusarium. Fusaria were isolated on Czapek-Dox iprodione dichloran agar medium and identified on the basis of macro- and micro-morphology on potato dextrose agar and synthetic nutrient agar media. The total wheat grain infection by Fusarium depended mainly on relative humidity (RH) and a rainfall during the flowering stage. Intensive rainfall and high RH in 2009 and 2010 in the period meant the proportions of infected kernels by the fungi were much higher than those in 2008 (lack of precipitation during anthesis). Weather conditions during the post-anthesis period changed the species composition of Fusarium communities internally colonising winter wheat grain. The cultivars significantly varied in the proportion of infected kernels by Fusarium spp. The growing season and type of crop rotation had a distinct effect on species composition of Fusarium communities colonising the grain inside. A trend of a higher percentage of the colonised kernels by the fungi in the grain from the systems using more fertilisers and pesticides as well as the buried straw could be perceived. The most frequent species in the grain were F. avenaceum, F. tricinctum and F. poae in 2008, and F. avenaceum, F. graminearum, F. tricinctum and F. poae in 2009 and 2010. The contents of deoxynivalenol and zearalenon in the grain were correlated with the percentage of kernels colonised by F. graminearum and were the highest in 2009 in the grain from the four-field crop rotation. The content of T-2/HT-2 toxins was the highest in 2010 in grain from the three-field crop rotation and it was correlated with the isolation frequency of F. langsethiae.
Chen, Jiafa; Zhang, Luyan; Liu, Songtao; Li, Zhimin; Huang, Rongrong; Li, Yongming; Cheng, Hongliang; Li, Xiantang; Zhou, Bo; Wu, Suowei; Chen, Wei; Wu, Jianyu; Ding, Junqiang
2016-01-01
Kernel size is an important component of grain yield in maize breeding programs. To extend the understanding on the genetic basis of kernel size traits (i.e., kernel length, kernel width and kernel thickness), we developed a set of four-way cross mapping population derived from four maize inbred lines with varied kernel sizes. In the present study, we investigated the genetic basis of natural variation in seed size and other components of maize yield (e.g., hundred kernel weight, number of rows per ear, number of kernels per row). In total, ten QTL affecting kernel size were identified, three of which (two for kernel length and one for kernel width) had stable expression in other components of maize yield. The possible genetic mechanism behind the trade-off of kernel size and yield components was discussed.
Liu, Songtao; Li, Zhimin; Huang, Rongrong; Li, Yongming; Cheng, Hongliang; Li, Xiantang; Zhou, Bo; Wu, Suowei; Chen, Wei; Wu, Jianyu; Ding, Junqiang
2016-01-01
Kernel size is an important component of grain yield in maize breeding programs. To extend the understanding on the genetic basis of kernel size traits (i.e., kernel length, kernel width and kernel thickness), we developed a set of four-way cross mapping population derived from four maize inbred lines with varied kernel sizes. In the present study, we investigated the genetic basis of natural variation in seed size and other components of maize yield (e.g., hundred kernel weight, number of rows per ear, number of kernels per row). In total, ten QTL affecting kernel size were identified, three of which (two for kernel length and one for kernel width) had stable expression in other components of maize yield. The possible genetic mechanism behind the trade-off of kernel size and yield components was discussed. PMID:27070143
Mathematical inference in one point microrheology
NASA Astrophysics Data System (ADS)
Hohenegger, Christel; McKinley, Scott
2016-11-01
Pioneered by the work of Mason and Weitz, one point passive microrheology has been successfully applied to obtaining estimates of the loss and storage modulus of viscoelastic fluids when the mean-square displacement obeys a local power law. Using numerical simulations of a fluctuating viscoelastic fluid model, we study the problem of recovering the mechanical parameters of the fluid's memory kernel using statistical inference like mean-square displacements and increment auto-correlation functions. Seeking a better understanding of the influence of the assumptions made in the inversion process, we mathematically quantify the uncertainty in traditional one point microrheology for simulated data and demonstrate that a large family of memory kernels yields the same statistical signature. We consider both simulated data obtained from a full viscoelastic fluid simulation of the unsteady Stokes equations with fluctuations and from a Generalized Langevin Equation of the particle's motion described by the same memory kernel. From the theory of inverse problems, we propose an alternative method that can be used to recover information about the loss and storage modulus and discuss its limitations and uncertainties. NSF-DMS 1412998.
NASA Technical Reports Server (NTRS)
Acton, Charles H., Jr.; Bachman, Nathaniel J.; Semenov, Boris V.; Wright, Edward D.
2010-01-01
The Navigation Ancillary Infor ma tion Facility (NAIF) at JPL, acting under the direction of NASA s Office of Space Science, has built a data system named SPICE (Spacecraft Planet Instrument Cmatrix Events) to assist scientists in planning and interpreting scientific observations (see figure). SPICE provides geometric and some other ancillary information needed to recover the full value of science instrument data, including correlation of individual instrument data sets with data from other instruments on the same or other spacecraft. This data system is used to produce space mission observation geometry data sets known as SPICE kernels. It is also used to read SPICE kernels and to compute derived quantities such as positions, orientations, lighting angles, etc. The SPICE toolkit consists of a subroutine/ function library, executable programs (both large applications and simple utilities that focus on kernel management), and simple examples of using SPICE toolkit subroutines. This software is very accurate, thoroughly tested, and portable to all computers. It is extremely stable and reusable on all missions. Since the previous version, three significant capabilities have been added: Interactive Data Language (IDL) interface, MATLAB interface, and a geometric event finder subsystem.
Exploring the Brighter-fatter Effect with the Hyper Suprime-Cam
NASA Astrophysics Data System (ADS)
Coulton, William R.; Armstrong, Robert; Smith, Kendrick M.; Lupton, Robert H.; Spergel, David N.
2018-06-01
The brighter-fatter effect has been postulated to arise due to the build up of a transverse electric field, produced as photocharges accumulate in the pixels’ potential wells. We investigate the brighter-fatter effect in the Hyper Suprime-Cam by examining flat fields and moments of stars. We observe deviations from the expected linear relation in the photon transfer curve (PTC), luminosity-dependent correlations between pixels in flat-field images, and a luminosity-dependent point-spread function (PSF) in stellar observations. Under the key assumptions of translation invariance and Maxwell’s equations in the quasi-static limit, we give a first-principles proof that the effect can be parameterized by a translationally invariant scalar kernel. We describe how this kernel can be estimated from flat fields and discuss how this kernel has been used to remove the brighter-fatter distortions in Hyper Suprime-Cam images. We find that our correction restores the expected linear relation in the PTCs and significantly reduces, but does not completely remove, the luminosity dependence of the PSF over a wide range of magnitudes.
Hruska, Zuzana; Rajasekaran, Kanniah; Yao, Haibo; Kincaid, Russell; Darlington, Dawn; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.
2014-01-01
A currently utilized pre-harvest biocontrol method involves field inoculations with non-aflatoxigenic Aspergillus flavus strains, a tactic shown to strategically suppress native aflatoxin-producing strains and effectively decrease aflatoxin contamination in corn. The present in situ study focuses on tracking the invasion and colonization of an aflatoxigenic A. flavus strain (AF70), labeled with green fluorescent protein (GFP), in the presence of a non-aflatoxigenic A. flavus biocontrol strain (AF36), to better understand the competitive interaction between these two strains in seed tissue of corn (Zea mays). Corn kernels that had been co-inoculated with GFP-labeled AF70 and wild-type AF36 were cross-sectioned and observed under UV and blue light to determine the outcome of competition between these strains. After imaging, all kernels were analyzed for aflatoxin levels. There appeared to be a population difference between the co-inoculated AF70-GFP+AF36 and the individual AF70-GFP tests, both visually and with pixel count analysis. The GFP allowed us to observe that AF70-GFP inside the kernels was suppressed up to 82% when co-inoculated with AF36 indicating that AF36 inhibited progression of AF70-GFP. This was in agreement with images taken of whole kernels where AF36 exhibited a more robust external growth compared to AF70-GFP. The suppressed growth of AF70-GFP was reflected in a corresponding (upto 73%) suppression in aflatoxin levels. Our results indicate that the decrease in aflatoxin production correlated with population depression of the aflatoxigenic fungus by the biocontrol strain supporting the theory of competitive exclusion through robust propagation and fast colonization by the non-aflatoxigenic fungus. PMID:24734028
Hruska, Zuzana; Rajasekaran, Kanniah; Yao, Haibo; Kincaid, Russell; Darlington, Dawn; Brown, Robert L; Bhatnagar, Deepak; Cleveland, Thomas E
2014-01-01
A currently utilized pre-harvest biocontrol method involves field inoculations with non-aflatoxigenic Aspergillus flavus strains, a tactic shown to strategically suppress native aflatoxin-producing strains and effectively decrease aflatoxin contamination in corn. The present in situ study focuses on tracking the invasion and colonization of an aflatoxigenic A. flavus strain (AF70), labeled with green fluorescent protein (GFP), in the presence of a non-aflatoxigenic A. flavus biocontrol strain (AF36), to better understand the competitive interaction between these two strains in seed tissue of corn (Zea mays). Corn kernels that had been co-inoculated with GFP-labeled AF70 and wild-type AF36 were cross-sectioned and observed under UV and blue light to determine the outcome of competition between these strains. After imaging, all kernels were analyzed for aflatoxin levels. There appeared to be a population difference between the co-inoculated AF70-GFP+AF36 and the individual AF70-GFP tests, both visually and with pixel count analysis. The GFP allowed us to observe that AF70-GFP inside the kernels was suppressed up to 82% when co-inoculated with AF36 indicating that AF36 inhibited progression of AF70-GFP. This was in agreement with images taken of whole kernels where AF36 exhibited a more robust external growth compared to AF70-GFP. The suppressed growth of AF70-GFP was reflected in a corresponding (upto 73%) suppression in aflatoxin levels. Our results indicate that the decrease in aflatoxin production correlated with population depression of the aflatoxigenic fungus by the biocontrol strain supporting the theory of competitive exclusion through robust propagation and fast colonization by the non-aflatoxigenic fungus.
TEMPORAL EVOLUTION AND SPATIAL DISTRIBUTION OF WHITE-LIGHT FLARE KERNELS IN A SOLAR FLARE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawate, T.; Ishii, T. T.; Nakatani, Y.
2016-12-10
On 2011 September 6, we observed an X2.1-class flare in continuum and H α with a frame rate of about 30 Hz. After processing images of the event by using a speckle-masking image reconstruction, we identified white-light (WL) flare ribbons on opposite sides of the magnetic neutral line. We derive the light curve decay times of the WL flare kernels at each resolution element by assuming that the kernels consist of one or two components that decay exponentially, starting from the peak time. As a result, 42% of the pixels have two decay-time components with average decay times of 15.6 andmore » 587 s, whereas the average decay time is 254 s for WL kernels with only one decay-time component. The peak intensities of the shorter decay-time component exhibit good spatial correlation with the WL intensity, whereas the peak intensities of the long decay-time components tend to be larger in the early phase of the flare at the inner part of the flare ribbons, close to the magnetic neutral line. The average intensity of the longer decay-time components is 1.78 times higher than that of the shorter decay-time components. If the shorter decay time is determined by either the chromospheric cooling time or the nonthermal ionization timescale and the longer decay time is attributed to the coronal cooling time, this result suggests that WL sources from both regions appear in 42% of the WL kernels and that WL emission of the coronal origin is sometimes stronger than that of chromospheric origin.« less
Life skills and subjective well-being of people with disabilities: a canonical correlation analysis.
da Silva Cardoso, Elizabeth; Blalock, Kacie; Allen, Chase A; Chan, Fong; Rubin, Stanford E
2004-12-01
This study examined the canonical relationships between a set of life skill variables and a set of subjective well-being variables among a national sample of vocational rehabilitation clients in the USA. Self-direction, work tolerance, general employability, and self-care were related to physical, family and social, and financial well-being. This analysis also found that communication skill is related to family and social well-being, while psychological well-being is not related to any life skills in the set. The results showed that vocational rehabilitation services aimed to improve life functioning will lead to an improvement in subjective quality of life.
Morine, Melissa J; McMonagle, Jolene; Toomey, Sinead; Reynolds, Clare M; Moloney, Aidan P; Gormley, Isobel C; Gaora, Peadar O; Roche, Helen M
2010-10-07
Currently, a number of bioinformatics methods are available to generate appropriate lists of genes from a microarray experiment. While these lists represent an accurate primary analysis of the data, fewer options exist to contextualise those lists. The development and validation of such methods is crucial to the wider application of microarray technology in the clinical setting. Two key challenges in clinical bioinformatics involve appropriate statistical modelling of dynamic transcriptomic changes, and extraction of clinically relevant meaning from very large datasets. Here, we apply an approach to gene set enrichment analysis that allows for detection of bi-directional enrichment within a gene set. Furthermore, we apply canonical correlation analysis and Fisher's exact test, using plasma marker data with known clinical relevance to aid identification of the most important gene and pathway changes in our transcriptomic dataset. After a 28-day dietary intervention with high-CLA beef, a range of plasma markers indicated a marked improvement in the metabolic health of genetically obese mice. Tissue transcriptomic profiles indicated that the effects were most dramatic in liver (1270 genes significantly changed; p < 0.05), followed by muscle (601 genes) and adipose (16 genes). Results from modified GSEA showed that the high-CLA beef diet affected diverse biological processes across the three tissues, and that the majority of pathway changes reached significance only with the bi-directional test. Combining the liver tissue microarray results with plasma marker data revealed 110 CLA-sensitive genes showing strong canonical correlation with one or more plasma markers of metabolic health, and 9 significantly overrepresented pathways among this set; each of these pathways was also significantly changed by the high-CLA diet. Closer inspection of two of these pathways--selenoamino acid metabolism and steroid biosynthesis--illustrated clear diet-sensitive changes in constituent genes, as well as strong correlations between gene expression and plasma markers of metabolic syndrome independent of the dietary effect. Bi-directional gene set enrichment analysis more accurately reflects dynamic regulatory behaviour in biochemical pathways, and as such highlighted biologically relevant changes that were not detected using a traditional approach. In such cases where transcriptomic response to treatment is exceptionally large, canonical correlation analysis in conjunction with Fisher's exact test highlights the subset of pathways showing strongest correlation with the clinical markers of interest. In this case, we have identified selenoamino acid metabolism and steroid biosynthesis as key pathways mediating the observed relationship between metabolic health and high-CLA beef. These results indicate that this type of analysis has the potential to generate novel transcriptome-based biomarkers of disease.
2010-01-01
Background Currently, a number of bioinformatics methods are available to generate appropriate lists of genes from a microarray experiment. While these lists represent an accurate primary analysis of the data, fewer options exist to contextualise those lists. The development and validation of such methods is crucial to the wider application of microarray technology in the clinical setting. Two key challenges in clinical bioinformatics involve appropriate statistical modelling of dynamic transcriptomic changes, and extraction of clinically relevant meaning from very large datasets. Results Here, we apply an approach to gene set enrichment analysis that allows for detection of bi-directional enrichment within a gene set. Furthermore, we apply canonical correlation analysis and Fisher's exact test, using plasma marker data with known clinical relevance to aid identification of the most important gene and pathway changes in our transcriptomic dataset. After a 28-day dietary intervention with high-CLA beef, a range of plasma markers indicated a marked improvement in the metabolic health of genetically obese mice. Tissue transcriptomic profiles indicated that the effects were most dramatic in liver (1270 genes significantly changed; p < 0.05), followed by muscle (601 genes) and adipose (16 genes). Results from modified GSEA showed that the high-CLA beef diet affected diverse biological processes across the three tissues, and that the majority of pathway changes reached significance only with the bi-directional test. Combining the liver tissue microarray results with plasma marker data revealed 110 CLA-sensitive genes showing strong canonical correlation with one or more plasma markers of metabolic health, and 9 significantly overrepresented pathways among this set; each of these pathways was also significantly changed by the high-CLA diet. Closer inspection of two of these pathways - selenoamino acid metabolism and steroid biosynthesis - illustrated clear diet-sensitive changes in constituent genes, as well as strong correlations between gene expression and plasma markers of metabolic syndrome independent of the dietary effect. Conclusion Bi-directional gene set enrichment analysis more accurately reflects dynamic regulatory behaviour in biochemical pathways, and as such highlighted biologically relevant changes that were not detected using a traditional approach. In such cases where transcriptomic response to treatment is exceptionally large, canonical correlation analysis in conjunction with Fisher's exact test highlights the subset of pathways showing strongest correlation with the clinical markers of interest. In this case, we have identified selenoamino acid metabolism and steroid biosynthesis as key pathways mediating the observed relationship between metabolic health and high-CLA beef. These results indicate that this type of analysis has the potential to generate novel transcriptome-based biomarkers of disease. PMID:20929581
The structural, connectomic and network covariance of the human brain.
Irimia, Andrei; Van Horn, John D
2013-02-01
Though it is widely appreciated that complex structural, functional and morphological relationships exist between distinct areas of the human cerebral cortex, the extent to which such relationships coincide remains insufficiently appreciated. Here we determine the extent to which correlations between brain regions are modulated by either structural, connectomic or network-theoretic properties using a structural neuroimaging data set of magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) volumes acquired from N=110 healthy human adults. To identify the linear relationships between all available pairs of regions, we use canonical correlation analysis to test whether a statistically significant correlation exists between each pair of cortical parcels as quantified via structural, connectomic or network-theoretic measures. In addition to this, we investigate (1) how each group of canonical variables (whether structural, connectomic or network-theoretic) contributes to the overall correlation and, additionally, (2) whether each individual variable makes a significant contribution to the test of the omnibus null hypothesis according to which no correlation between regions exists across subjects. We find that, although region-to-region correlations are extensively modulated by structural and connectomic measures, there are appreciable differences in how these two groups of measures drive inter-regional correlation patterns. Additionally, our results indicate that the network-theoretic properties of the cortex are strong modulators of region-to-region covariance. Our findings are useful for understanding the structural and connectomic relationship between various parts of the brain, and can inform theoretical and computational models of cortical information processing. Published by Elsevier Inc.
7 CFR 810.802 - Definition of other terms.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Damaged kernels. Kernels and pieces of grain kernels for which standards have been established under the.... (d) Heat-damaged kernels. Kernels and pieces of grain kernels for which standards have been...
NASA Astrophysics Data System (ADS)
Nolet, G.; Mercerat, D.; Zaroli, C.
2012-12-01
We present the first complete test of finite frequency tomography with banana-doughnut kernels, from the generation of seismograms in a 3D model to the final inversion, and are able to lay to rest all of the so-called `controversies' that have slowed down its adoption. Cross-correlation delay times are influenced by energy arriving in a time window that includes later arrivals, either scattered from, or diffracted around lateral heterogeneities. We present here the results of a 3D test in which we generate 1716 seismograms using the spectral element method in a cross-borehole experiment conducted in a checkerboard box. Delays are determined for the broadband signals as well as for five frequency bands (each one octave apart) by cross-correlating seismograms for a homogeneous pattern with those for a checkerboard. The large (10 per cent) velocity contrast and the regularity of the checkerboard pattern causes severe reverberations that arrive late in the cross-correlation window. Data errors are estimated by comparing linearity between delays measured for a model with 10 per cent velocity contrast with those with a 4 per cent contrast. Sensitivity kernels are efficiently computed with ray theory using the `banana-doughnut' kernels from Dahlen et al. (GJI 141:157, 2000). The model resulting from the inversion with a data fit with reduced χ2red=1 shows an excellent correspondence with the input model and allows for a complete validation of the theory. Amplitudes in the (well resolved) top part of the model are close to the input amplitudes. Comparing a model derived from one band only shows the power of using multiple frequency bands in resolving detail - essentially the observed dispersion captures some of the waveform information. Finite frequency theory also allows us to image the checkerboard at some distance from the borehole plane. Most disconcertingly for advocates of ray theory are the results obtained when we interpret cross-correlation delays with ray theory. We shall present an extreme case of the devil's checkerboard (the term is from Jacobsen and Sigloch), in which the sign of the anomalies in the checkerboard is reversed in the ray-theoretical solution, a clear demonstration of the reality of effects of the doughnut hole. We conclude that the test fully validates `banana-doughnut' theory, and disqualifies ray theoretical inversions of cross-correlation delays.
7 CFR 981.408 - Inedible kernel.
Code of Federal Regulations, 2014 CFR
2014-01-01
... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... purposes of determining inedible kernels, pieces, or particles of almond kernels. [59 FR 39419, Aug. 3...
7 CFR 981.408 - Inedible kernel.
Code of Federal Regulations, 2011 CFR
2011-01-01
... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... purposes of determining inedible kernels, pieces, or particles of almond kernels. [59 FR 39419, Aug. 3...
7 CFR 981.408 - Inedible kernel.
Code of Federal Regulations, 2012 CFR
2012-01-01
... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... purposes of determining inedible kernels, pieces, or particles of almond kernels. [59 FR 39419, Aug. 3...
7 CFR 981.408 - Inedible kernel.
Code of Federal Regulations, 2013 CFR
2013-01-01
... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... purposes of determining inedible kernels, pieces, or particles of almond kernels. [59 FR 39419, Aug. 3...
Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong
2017-06-19
A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification.
Isolation and characterization of novel RECK tumor suppressor gene splice variants
Trombetta-Lima, Marina; Winnischofer, Sheila Maria Brochado; Demasi, Marcos Angelo Almeida; Filho, Renato Astorino; Carreira, Ana Claudia Oliveira; Wei, Beiyang; de Assis Ribas, Thais; Konig, Michelle Silberspitz; Bowman-Colin, Christian; Oba-Shinjo, Sueli Mieko; Marie, Suely Kazue Nagahashi; Stetler-Stevenson, William; Sogayar, Mari Cleide
2015-01-01
Glioblastoma multiforme is the most common and lethal of the central nervous system glial-derived tumors. RECK suppresses tumor invasion by negatively regulating at least three members of the matrix metalloproteinase family: MMP-9, MMP-2, and MT1-MMP. A positive correlation has been observed between the abundance of RECK expression in tumor samples and a more favorable prognosis for patients with several types of tumors. In the present study, novel alternatively spliced variants of the RECK gene: RECK-B and RECK-I were isolated by RT-PCR and sequenced. The expression levels and profiles of these alternative RECK transcripts, as well as canonical RECK were determined in tissue samples of malignant astrocytomas of different grades and in a normal tissue RNA panel by qRT-PCR. Our results show that higher canonical RECK expression, accompanied by a higher canonical to alternative transcript expression ratio, positively correlates with higher overall survival rate after chemotherapeutic treatment of GBM patients. U87MG and T98G cells over-expressing the RECK-B alternative variant display higher anchorage-independent clonal growth and do not display modulation of, respectively, MMP-2 and MMP-9 expression. Our findings suggest that RECK transcript variants might have opposite roles in GBM biology and the ratio of their expression levels may be informative for the prognostic outcome of GBM patients. PMID:26431549
Orr, Lindsay; Hernández de la Peña, Lisandro; Roy, Pierre-Nicholas
2017-06-07
A derivation of quantum statistical mechanics based on the concept of a Feynman path centroid is presented for the case of generalized density operators using the projected density operator formalism of Blinov and Roy [J. Chem. Phys. 115, 7822-7831 (2001)]. The resulting centroid densities, centroid symbols, and centroid correlation functions are formulated and analyzed in the context of the canonical equilibrium picture of Jang and Voth [J. Chem. Phys. 111, 2357-2370 (1999)]. The case where the density operator projects onto a particular energy eigenstate of the system is discussed, and it is shown that one can extract microcanonical dynamical information from double Kubo transformed correlation functions. It is also shown that the proposed projection operator approach can be used to formally connect the centroid and Wigner phase-space distributions in the zero reciprocal temperature β limit. A Centroid Molecular Dynamics (CMD) approximation to the state-projected exact quantum dynamics is proposed and proven to be exact in the harmonic limit. The state projected CMD method is also tested numerically for a quartic oscillator and a double-well potential and found to be more accurate than canonical CMD. In the case of a ground state projection, this method can resolve tunnelling splittings of the double well problem in the higher barrier regime where canonical CMD fails. Finally, the state-projected CMD framework is cast in a path integral form.
NASA Astrophysics Data System (ADS)
Orr, Lindsay; Hernández de la Peña, Lisandro; Roy, Pierre-Nicholas
2017-06-01
A derivation of quantum statistical mechanics based on the concept of a Feynman path centroid is presented for the case of generalized density operators using the projected density operator formalism of Blinov and Roy [J. Chem. Phys. 115, 7822-7831 (2001)]. The resulting centroid densities, centroid symbols, and centroid correlation functions are formulated and analyzed in the context of the canonical equilibrium picture of Jang and Voth [J. Chem. Phys. 111, 2357-2370 (1999)]. The case where the density operator projects onto a particular energy eigenstate of the system is discussed, and it is shown that one can extract microcanonical dynamical information from double Kubo transformed correlation functions. It is also shown that the proposed projection operator approach can be used to formally connect the centroid and Wigner phase-space distributions in the zero reciprocal temperature β limit. A Centroid Molecular Dynamics (CMD) approximation to the state-projected exact quantum dynamics is proposed and proven to be exact in the harmonic limit. The state projected CMD method is also tested numerically for a quartic oscillator and a double-well potential and found to be more accurate than canonical CMD. In the case of a ground state projection, this method can resolve tunnelling splittings of the double well problem in the higher barrier regime where canonical CMD fails. Finally, the state-projected CMD framework is cast in a path integral form.
Classification With Truncated Distance Kernel.
Huang, Xiaolin; Suykens, Johan A K; Wang, Shuning; Hornegger, Joachim; Maier, Andreas
2018-05-01
This brief proposes a truncated distance (TL1) kernel, which results in a classifier that is nonlinear in the global region but is linear in each subregion. With this kernel, the subregion structure can be trained using all the training data and local linear classifiers can be established simultaneously. The TL1 kernel has good adaptiveness to nonlinearity and is suitable for problems which require different nonlinearities in different areas. Though the TL1 kernel is not positive semidefinite, some classical kernel learning methods are still applicable which means that the TL1 kernel can be directly used in standard toolboxes by replacing the kernel evaluation. In numerical experiments, the TL1 kernel with a pregiven parameter achieves similar or better performance than the radial basis function kernel with the parameter tuned by cross validation, implying the TL1 kernel a promising nonlinear kernel for classification tasks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calixto, M., E-mail: calixto@ugr.es; Pérez-Romero, E.
We revise the unireps. of U(2, 2) describing conformal particles with continuous mass spectrum from a many-body perspective, which shows massive conformal particles as compounds of two correlated massless particles. The statistics of the compound (boson/fermion) depends on the helicity h of the massless components (integer/half-integer). Coherent states (CS) of particle-hole pairs (“excitons”) are also explicitly constructed as the exponential action of exciton (non-canonical) creation operators on the ground state of unpaired particles. These CS are labeled by points Z (2×2 complex matrices) on the Cartan-Bergman domain D₄=U(2,2)/U(2)², and constitute a generalized (matrix) version of Perelomov U(1, 1) coherent statesmore » labeled by points z on the unit disk D₁=U(1,1)/U(1)². First, we follow a geometric approach to the construction of CS, orthonormal basis, U(2, 2) generators and their matrix elements and symbols in the reproducing kernel Hilbert space H{sub λ}(D₄) of analytic square-integrable holomorphic functions on D₄, which carries a unitary irreducible representation of U(2, 2) with index λϵN (the conformal or scale dimension). Then we introduce a many-body representation of the previous construction through an oscillator realization of the U(2, 2) Lie algebra generators in terms of eight boson operators with constraints. This particle picture allows us for a physical interpretation of our abstract mathematical construction in the many-body jargon. In particular, the index λ is related to the number 2(λ – 2) of unpaired quanta and to the helicity h = (λ – 2)/2 of each massless particle forming the massive compound.« less
Interpreting medium ring canonical conformers by a triangular plane tessellation of the macrocycle
NASA Astrophysics Data System (ADS)
Khalili, Pegah; Barnett, Christopher B.; Naidoo, Kevin J.
2013-05-01
Cyclic conformational coordinates are essential for the distinction of molecular ring conformers as the use of Cremer-Pople coordinates have illustrated for five- and six-membered rings. Here, by tessellating medium rings into triangular planes and using the relative angles made between triangular planes we are able to assign macrocyclic pucker conformations into canonical pucker conformers such as chairs, boats, etc. We show that the definition is straightforward compared with other methods popularly used for small rings and that it is computationally simple to implement for complex macrocyclic rings. These cyclic conformational coordinates directly couple to the motion of individual nodes of a ring. Therefore, they are useful for correlating the physical properties of macrocycles with their ring pucker and measuring the dynamic ring conformational behavior. We illustrate the triangular tessellation, assignment, and pucker analysis on 7- and 8-membered rings. Sets of canonical states are given for cycloheptane and cyclooctane that have been previously experimentally analysed.
Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong
2017-01-01
A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification. PMID:28629202
Gabor-based kernel PCA with fractional power polynomial models for face recognition.
Liu, Chengjun
2004-05-01
This paper presents a novel Gabor-based kernel Principal Component Analysis (PCA) method by integrating the Gabor wavelet representation of face images and the kernel PCA method for face recognition. Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial locality, and orientation selectivity to cope with the variations due to illumination and facial expression changes. The kernel PCA method is then extended to include fractional power polynomial models for enhanced face recognition performance. A fractional power polynomial, however, does not necessarily define a kernel function, as it might not define a positive semidefinite Gram matrix. Note that the sigmoid kernels, one of the three classes of widely used kernel functions (polynomial kernels, Gaussian kernels, and sigmoid kernels), do not actually define a positive semidefinite Gram matrix either. Nevertheless, the sigmoid kernels have been successfully used in practice, such as in building support vector machines. In order to derive real kernel PCA features, we apply only those kernel PCA eigenvectors that are associated with positive eigenvalues. The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face recognition, using two data sets from the FERET database and the CMU PIE database, respectively. The FERET data set contains 600 frontal face images of 200 subjects, while the PIE data set consists of 680 images across five poses (left and right profiles, left and right half profiles, and frontal view) with two different facial expressions (neutral and smiling) of 68 subjects. The effectiveness of the Gabor-based kernel PCA method with fractional power polynomial models is shown in terms of both absolute performance indices and comparative performance against the PCA method, the kernel PCA method with polynomial kernels, the kernel PCA method with fractional power polynomial models, the Gabor wavelet-based PCA method, and the Gabor wavelet-based kernel PCA method with polynomial kernels.
Szalisznyó, Krisztina; Silverstein, David; Teichmann, Marc; Duffau, Hugues; Smits, Anja
2017-01-01
A growing body of literature supports a key role of fronto-striatal circuits in language perception. It is now known that the striatum plays a role in engaging attentional resources and linguistic rule computation while also serving phonological short-term memory capabilities. The ventral semantic and the dorsal phonological stream dichotomy assumed for spoken language processing also seems to play a role in cortico-striatal perception. Based on recent studies that correlate deep Broca-striatal pathways with complex syntax performance, we used a previously developed computational model of frontal-striatal syntax circuits and hypothesized that different parallel language pathways may contribute to canonical and non-canonical sentence comprehension separately. We modified and further analyzed a thematic role assignment task and corresponding reservoir computing model of language circuits, as previously developed by Dominey and coworkers. We examined the models performance under various parameter regimes, by influencing how fast the presented language input decays and altering the temporal dynamics of activated word representations. This enabled us to quantify canonical and non-canonical sentence comprehension abilities. The modeling results suggest that separate cortico-cortical and cortico-striatal circuits may be recruited differently for processing syntactically more difficult and less complicated sentences. Alternatively, a single circuit would need to dynamically and adaptively adjust to syntactic complexity. Copyright © 2016. Published by Elsevier Inc.
Stable micron-scale holes are a general feature of canonical holins
Savva, Christos G.; Dewey, Jill S.; Moussa, Samir H.; To, Kam H.; Holzenburg, Andreas; Young, Ry
2014-01-01
Summary At a programmed time in phage infection cycles, canonical holins suddenly trigger to cause lethal damage to the cytoplasmic membrane, resulting in the cessation of respiration and the non-specific release of pre-folded, fully active endolysins to the periplasm. For the paradigm holin S105 of lambda, triggering is correlated with the formation of micron-scale membrane holes, visible as interruptions in the bilayer in cryo-electron microscopic images and tomographic reconstructions. Here we report that the size distribution of the holes is stable for long periods after triggering. Moreover, early triggering caused by an early lysis allele of S105 formed approximately the same number of holes, but the lesions were significantly smaller. In contrast, early triggering prematurely induced by energy poisons resulted in many fewer visible holes, consistent with previous sizing studies. Importantly, the unrelated canonical holins P2 Y and T4 T were found to cause the formation of holes of approximately the same size and number as for lambda. In contrast, no such lesions were visible after triggering of the pinholin S2168. These results generalize the hole formation phenomenon for canonical holins. A model is presented suggesting the unprecedentedly large size of these holes is related to the timing mechanism. PMID:24164554
Stable micron-scale holes are a general feature of canonical holins.
Savva, Christos G; Dewey, Jill S; Moussa, Samir H; To, Kam H; Holzenburg, Andreas; Young, Ry
2014-01-01
At a programmed time in phage infection cycles, canonical holins suddenly trigger to cause lethal damage to the cytoplasmic membrane, resulting in the cessation of respiration and the non-specific release of pre-folded, fully active endolysins to the periplasm. For the paradigm holin S105 of lambda, triggering is correlated with the formation of micron-scale membrane holes, visible as interruptions in the bilayer in cryo-electron microscopic images and tomographic reconstructions. Here we report that the size distribution of the holes is stable for long periods after triggering. Moreover, early triggering caused by an early lysis allele of S105 formed approximately the same number of holes, but the lesions were significantly smaller. In contrast, early triggering prematurely induced by energy poisons resulted in many fewer visible holes, consistent with previous sizing studies. Importantly, the unrelated canonical holins P2 Y and T4 T were found to cause the formation of holes of approximately the same size and number as for lambda. In contrast, no such lesions were visible after triggering of the pinholin S(21) 68. These results generalize the hole formation phenomenon for canonical holins. A model is presented suggesting the unprecedentedly large size of these holes is related to the timing mechanism. © 2013 John Wiley & Sons Ltd.
A multi-label learning based kernel automatic recommendation method for support vector machine.
Zhang, Xueying; Song, Qinbao
2015-01-01
Choosing an appropriate kernel is very important and critical when classifying a new problem with Support Vector Machine. So far, more attention has been paid on constructing new kernels and choosing suitable parameter values for a specific kernel function, but less on kernel selection. Furthermore, most of current kernel selection methods focus on seeking a best kernel with the highest classification accuracy via cross-validation, they are time consuming and ignore the differences among the number of support vectors and the CPU time of SVM with different kernels. Considering the tradeoff between classification success ratio and CPU time, there may be multiple kernel functions performing equally well on the same classification problem. Aiming to automatically select those appropriate kernel functions for a given data set, we propose a multi-label learning based kernel recommendation method built on the data characteristics. For each data set, the meta-knowledge data base is first created by extracting the feature vector of data characteristics and identifying the corresponding applicable kernel set. Then the kernel recommendation model is constructed on the generated meta-knowledge data base with the multi-label classification method. Finally, the appropriate kernel functions are recommended to a new data set by the recommendation model according to the characteristics of the new data set. Extensive experiments over 132 UCI benchmark data sets, with five different types of data set characteristics, eleven typical kernels (Linear, Polynomial, Radial Basis Function, Sigmoidal function, Laplace, Multiquadric, Rational Quadratic, Spherical, Spline, Wave and Circular), and five multi-label classification methods demonstrate that, compared with the existing kernel selection methods and the most widely used RBF kernel function, SVM with the kernel function recommended by our proposed method achieved the highest classification performance.
A Multi-Label Learning Based Kernel Automatic Recommendation Method for Support Vector Machine
Zhang, Xueying; Song, Qinbao
2015-01-01
Choosing an appropriate kernel is very important and critical when classifying a new problem with Support Vector Machine. So far, more attention has been paid on constructing new kernels and choosing suitable parameter values for a specific kernel function, but less on kernel selection. Furthermore, most of current kernel selection methods focus on seeking a best kernel with the highest classification accuracy via cross-validation, they are time consuming and ignore the differences among the number of support vectors and the CPU time of SVM with different kernels. Considering the tradeoff between classification success ratio and CPU time, there may be multiple kernel functions performing equally well on the same classification problem. Aiming to automatically select those appropriate kernel functions for a given data set, we propose a multi-label learning based kernel recommendation method built on the data characteristics. For each data set, the meta-knowledge data base is first created by extracting the feature vector of data characteristics and identifying the corresponding applicable kernel set. Then the kernel recommendation model is constructed on the generated meta-knowledge data base with the multi-label classification method. Finally, the appropriate kernel functions are recommended to a new data set by the recommendation model according to the characteristics of the new data set. Extensive experiments over 132 UCI benchmark data sets, with five different types of data set characteristics, eleven typical kernels (Linear, Polynomial, Radial Basis Function, Sigmoidal function, Laplace, Multiquadric, Rational Quadratic, Spherical, Spline, Wave and Circular), and five multi-label classification methods demonstrate that, compared with the existing kernel selection methods and the most widely used RBF kernel function, SVM with the kernel function recommended by our proposed method achieved the highest classification performance. PMID:25893896
NASA Astrophysics Data System (ADS)
Chen, Xiaogang; Wang, Yijun; Gao, Shangkai; Jung, Tzyy-Ping; Gao, Xiaorong
2015-08-01
Objective. Recently, canonical correlation analysis (CCA) has been widely used in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) due to its high efficiency, robustness, and simple implementation. However, a method with which to make use of harmonic SSVEP components to enhance the CCA-based frequency detection has not been well established. Approach. This study proposed a filter bank canonical correlation analysis (FBCCA) method to incorporate fundamental and harmonic frequency components to improve the detection of SSVEPs. A 40-target BCI speller based on frequency coding (frequency range: 8-15.8 Hz, frequency interval: 0.2 Hz) was used for performance evaluation. To optimize the filter bank design, three methods (M1: sub-bands with equally spaced bandwidths; M2: sub-bands corresponding to individual harmonic frequency bands; M3: sub-bands covering multiple harmonic frequency bands) were proposed for comparison. Classification accuracy and information transfer rate (ITR) of the three FBCCA methods and the standard CCA method were estimated using an offline dataset from 12 subjects. Furthermore, an online BCI speller adopting the optimal FBCCA method was tested with a group of 10 subjects. Main results. The FBCCA methods significantly outperformed the standard CCA method. The method M3 achieved the highest classification performance. At a spelling rate of ˜33.3 characters/min, the online BCI speller obtained an average ITR of 151.18 ± 20.34 bits min-1. Significance. By incorporating the fundamental and harmonic SSVEP components in target identification, the proposed FBCCA method significantly improves the performance of the SSVEP-based BCI, and thereby facilitates its practical applications such as high-speed spelling.
Krüger, Melanie; Straube, Andreas; Eggert, Thomas
2017-01-01
In recent years, theory-building in motor neuroscience and our understanding of the synergistic control of the redundant human motor system has significantly profited from the emergence of a range of different mathematical approaches to analyze the structure of movement variability. Approaches such as the Uncontrolled Manifold method or the Noise-Tolerance-Covariance decomposition method allow to detect and interpret changes in movement coordination due to e.g., learning, external task constraints or disease, by analyzing the structure of within-subject, inter-trial movement variability. Whereas, for cyclical movements (e.g., locomotion), mathematical approaches exist to investigate the propagation of movement variability in time (e.g., time series analysis), similar approaches are missing for discrete, goal-directed movements, such as reaching. Here, we propose canonical correlation analysis as a suitable method to analyze the propagation of within-subject variability across different time points during the execution of discrete movements. While similar analyses have already been applied for discrete movements with only one degree of freedom (DoF; e.g., Pearson's product-moment correlation), canonical correlation analysis allows to evaluate the coupling of inter-trial variability across different time points along the movement trajectory for multiple DoF-effector systems, such as the arm. The theoretical analysis is illustrated by empirical data from a study on reaching movements under normal and disturbed proprioception. The results show increased movement duration, decreased movement amplitude, as well as altered movement coordination under ischemia, which results in a reduced complexity of movement control. Movement endpoint variability is not increased under ischemia. This suggests that healthy adults are able to immediately and efficiently adjust the control of complex reaching movements to compensate for the loss of proprioceptive information. Further, it is shown that, by using canonical correlation analysis, alterations in movement coordination that indicate changes in the control strategy concerning the use of motor redundancy can be detected, which represents an important methodical advance in the context of neuromechanics.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Edible kernel. 981.7 Section 981.7 Agriculture... Regulating Handling Definitions § 981.7 Edible kernel. Edible kernel means a kernel, piece, or particle of almond kernel that is not inedible. [41 FR 26852, June 30, 1976] ...
Kernel K-Means Sampling for Nyström Approximation.
He, Li; Zhang, Hong
2018-05-01
A fundamental problem in Nyström-based kernel matrix approximation is the sampling method by which training set is built. In this paper, we suggest to use kernel -means sampling, which is shown in our works to minimize the upper bound of a matrix approximation error. We first propose a unified kernel matrix approximation framework, which is able to describe most existing Nyström approximations under many popular kernels, including Gaussian kernel and polynomial kernel. We then show that, the matrix approximation error upper bound, in terms of the Frobenius norm, is equal to the -means error of data points in kernel space plus a constant. Thus, the -means centers of data in kernel space, or the kernel -means centers, are the optimal representative points with respect to the Frobenius norm error upper bound. Experimental results, with both Gaussian kernel and polynomial kernel, on real-world data sets and image segmentation tasks show the superiority of the proposed method over the state-of-the-art methods.
NASA Astrophysics Data System (ADS)
Panholzer, Martin; Gatti, Matteo; Reining, Lucia
2018-04-01
The charge-density response of extended materials is usually dominated by the collective oscillation of electrons, the plasmons. Beyond this feature, however, intriguing many-body effects are observed. They cannot be described by one of the most widely used approaches for the calculation of dielectric functions, which is time-dependent density functional theory (TDDFT) in the adiabatic local density approximation (ALDA). Here, we propose an approximation to the TDDFT exchange-correlation kernel which is nonadiabatic and nonlocal. It is extracted from correlated calculations in the homogeneous electron gas, where we have tabulated it for a wide range of wave vectors and frequencies. A simple mean density approximation allows one to use it in inhomogeneous materials where the density varies on a scale of 1.6 rs or faster. This kernel contains effects that are completely absent in the ALDA; in particular, it correctly describes the double plasmon in the dynamic structure factor of sodium, and it shows the characteristic low-energy peak that appears in systems with low electronic density. It also leads to an overall quantitative improvement of spectra.
Panholzer, Martin; Gatti, Matteo; Reining, Lucia
2018-04-20
The charge-density response of extended materials is usually dominated by the collective oscillation of electrons, the plasmons. Beyond this feature, however, intriguing many-body effects are observed. They cannot be described by one of the most widely used approaches for the calculation of dielectric functions, which is time-dependent density functional theory (TDDFT) in the adiabatic local density approximation (ALDA). Here, we propose an approximation to the TDDFT exchange-correlation kernel which is nonadiabatic and nonlocal. It is extracted from correlated calculations in the homogeneous electron gas, where we have tabulated it for a wide range of wave vectors and frequencies. A simple mean density approximation allows one to use it in inhomogeneous materials where the density varies on a scale of 1.6 r_{s} or faster. This kernel contains effects that are completely absent in the ALDA; in particular, it correctly describes the double plasmon in the dynamic structure factor of sodium, and it shows the characteristic low-energy peak that appears in systems with low electronic density. It also leads to an overall quantitative improvement of spectra.
Exploiting graph kernels for high performance biomedical relation extraction.
Panyam, Nagesh C; Verspoor, Karin; Cohn, Trevor; Ramamohanarao, Kotagiri
2018-01-30
Relation extraction from biomedical publications is an important task in the area of semantic mining of text. Kernel methods for supervised relation extraction are often preferred over manual feature engineering methods, when classifying highly ordered structures such as trees and graphs obtained from syntactic parsing of a sentence. Tree kernels such as the Subset Tree Kernel and Partial Tree Kernel have been shown to be effective for classifying constituency parse trees and basic dependency parse graphs of a sentence. Graph kernels such as the All Path Graph kernel (APG) and Approximate Subgraph Matching (ASM) kernel have been shown to be suitable for classifying general graphs with cycles, such as the enhanced dependency parse graph of a sentence. In this work, we present a high performance Chemical-Induced Disease (CID) relation extraction system. We present a comparative study of kernel methods for the CID task and also extend our study to the Protein-Protein Interaction (PPI) extraction task, an important biomedical relation extraction task. We discuss novel modifications to the ASM kernel to boost its performance and a method to apply graph kernels for extracting relations expressed in multiple sentences. Our system for CID relation extraction attains an F-score of 60%, without using external knowledge sources or task specific heuristic or rules. In comparison, the state of the art Chemical-Disease Relation Extraction system achieves an F-score of 56% using an ensemble of multiple machine learning methods, which is then boosted to 61% with a rule based system employing task specific post processing rules. For the CID task, graph kernels outperform tree kernels substantially, and the best performance is obtained with APG kernel that attains an F-score of 60%, followed by the ASM kernel at 57%. The performance difference between the ASM and APG kernels for CID sentence level relation extraction is not significant. In our evaluation of ASM for the PPI task, ASM performed better than APG kernel for the BioInfer dataset, in the Area Under Curve (AUC) measure (74% vs 69%). However, for all the other PPI datasets, namely AIMed, HPRD50, IEPA and LLL, ASM is substantially outperformed by the APG kernel in F-score and AUC measures. We demonstrate a high performance Chemical Induced Disease relation extraction, without employing external knowledge sources or task specific heuristics. Our work shows that graph kernels are effective in extracting relations that are expressed in multiple sentences. We also show that the graph kernels, namely the ASM and APG kernels, substantially outperform the tree kernels. Among the graph kernels, we showed the ASM kernel as effective for biomedical relation extraction, with comparable performance to the APG kernel for datasets such as the CID-sentence level relation extraction and BioInfer in PPI. Overall, the APG kernel is shown to be significantly more accurate than the ASM kernel, achieving better performance on most datasets.
7 CFR 810.2202 - Definition of other terms.
Code of Federal Regulations, 2014 CFR
2014-01-01
... kernels, foreign material, and shrunken and broken kernels. The sum of these three factors may not exceed... the removal of dockage and shrunken and broken kernels. (g) Heat-damaged kernels. Kernels, pieces of... sample after the removal of dockage and shrunken and broken kernels. (h) Other grains. Barley, corn...
7 CFR 981.8 - Inedible kernel.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Inedible kernel. 981.8 Section 981.8 Agriculture... Regulating Handling Definitions § 981.8 Inedible kernel. Inedible kernel means a kernel, piece, or particle of almond kernel with any defect scored as serious damage, or damage due to mold, gum, shrivel, or...
7 CFR 51.1415 - Inedible kernels.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Inedible kernels. 51.1415 Section 51.1415 Agriculture... Standards for Grades of Pecans in the Shell 1 Definitions § 51.1415 Inedible kernels. Inedible kernels means that the kernel or pieces of kernels are rancid, moldy, decayed, injured by insects or otherwise...
An Approximate Approach to Automatic Kernel Selection.
Ding, Lizhong; Liao, Shizhong
2016-02-02
Kernel selection is a fundamental problem of kernel-based learning algorithms. In this paper, we propose an approximate approach to automatic kernel selection for regression from the perspective of kernel matrix approximation. We first introduce multilevel circulant matrices into automatic kernel selection, and develop two approximate kernel selection algorithms by exploiting the computational virtues of multilevel circulant matrices. The complexity of the proposed algorithms is quasi-linear in the number of data points. Then, we prove an approximation error bound to measure the effect of the approximation in kernel matrices by multilevel circulant matrices on the hypothesis and further show that the approximate hypothesis produced with multilevel circulant matrices converges to the accurate hypothesis produced with kernel matrices. Experimental evaluations on benchmark datasets demonstrate the effectiveness of approximate kernel selection.
NASA Astrophysics Data System (ADS)
Ngo, N. H.; Tran, H.; Gamache, R. R.; Bermejo, D.; Domenech, J.-L.
2012-08-01
The modeling of the shape of H2O lines perturbed by N2 (and air) using the Keilson-Storer (KS) kernel for collision-induced velocity changes is revisited with classical molecular dynamics simulations (CMDS). The latter have been performed for a large number of molecules starting from intermolecular-potential surfaces. Contrary to the assumption made in a previous study [H. Tran, D. Bermejo, J.-L. Domenech, P. Joubert, R. R. Gamache, and J.-M. Hartmann, J. Quant. Spectrosc. Radiat. Transf. 108, 126 (2007)], 10.1016/j.jqsrt.2007.03.009, the results of these CMDS show that the velocity-orientation and -modulus changes statistically occur at the same time scale. This validates the use of a single memory parameter in the Keilson-Storer kernel to describe both the velocity-orientation and -modulus changes. The CMDS results also show that velocity- and rotational state-changing collisions are statistically partially correlated. A partially correlated speed-dependent Keilson-Storer model has thus been used to describe the line-shape. For this, the velocity changes KS kernel parameters have been directly determined from CMDS, while the speed-dependent broadening and shifting coefficients have been calculated with a semi-classical approach. Comparisons between calculated spectra and measurements of several lines of H2O broadened by N2 (and air) in the ν3 and 2ν1 + ν2 + ν3 bands for a wide range of pressure show very satisfactory agreement. The evolution of non-Voigt effects from Doppler to collisional regimes is also presented and discussed.
Optimisation of shape kernel and threshold in image-processing motion analysers.
Pedrocchi, A; Baroni, G; Sada, S; Marcon, E; Pedotti, A; Ferrigno, G
2001-09-01
The aim of the work is to optimise the image processing of a motion analyser. This is to improve accuracy, which is crucial for neurophysiological and rehabilitation applications. A new motion analyser, ELITE-S2, for installation on the International Space Station is described, with the focus on image processing. Important improvements are expected in the hardware of ELITE-S2 compared with ELITE and previous versions (ELITE-S and Kinelite). The core algorithm for marker recognition was based on the current ELITE version, using the cross-correlation technique. This technique was based on the matching of the expected marker shape, the so-called kernel, with image features. Optimisation of the kernel parameters was achieved using a genetic algorithm, taking into account noise rejection and accuracy. Optimisation was achieved by performing tests on six highly precise grids (with marker diameters ranging from 1.5 to 4 mm), representing all allowed marker image sizes, and on a noise image. The results of comparing the optimised kernels and the current ELITE version showed a great improvement in marker recognition accuracy, while noise rejection characteristics were preserved. An average increase in marker co-ordinate accuracy of +22% was achieved, corresponding to a mean accuracy of 0.11 pixel in comparison with 0.14 pixel, measured over all grids. An improvement of +37%, corresponding to an improvement from 0.22 pixel to 0.14 pixel, was observed over the grid with the biggest markers.
Model Identification of Integrated ARMA Processes
ERIC Educational Resources Information Center
Stadnytska, Tetiana; Braun, Simone; Werner, Joachim
2008-01-01
This article evaluates the Smallest Canonical Correlation Method (SCAN) and the Extended Sample Autocorrelation Function (ESACF), automated methods for the Autoregressive Integrated Moving-Average (ARIMA) model selection commonly available in current versions of SAS for Windows, as identification tools for integrated processes. SCAN and ESACF can…
Global Optimality of the Successive Maxbet Algorithm.
ERIC Educational Resources Information Center
Hanafi, Mohamed; ten Berge, Jos M. F.
2003-01-01
It is known that the Maxbet algorithm, which is an alternative to the method of generalized canonical correlation analysis and Procrustes analysis, may converge to local maxima. Discusses an eigenvalue criterion that is sufficient, but not necessary, for global optimality of the successive Maxbet algorithm. (SLD)
Using reduncancy (RDA) and canonical correlation analysis (CCA) we assessed relationships between chemical and physical characteristics and periphyton at 105 stream sites sampled by REMAP in the mineral belt of the southern Rockies ecoregion in Colorado. We contrasted results ob...
A Feature Fusion Based Forecasting Model for Financial Time Series
Guo, Zhiqiang; Wang, Huaiqing; Liu, Quan; Yang, Jie
2014-01-01
Predicting the stock market has become an increasingly interesting research area for both researchers and investors, and many prediction models have been proposed. In these models, feature selection techniques are used to pre-process the raw data and remove noise. In this paper, a prediction model is constructed to forecast stock market behavior with the aid of independent component analysis, canonical correlation analysis, and a support vector machine. First, two types of features are extracted from the historical closing prices and 39 technical variables obtained by independent component analysis. Second, a canonical correlation analysis method is utilized to combine the two types of features and extract intrinsic features to improve the performance of the prediction model. Finally, a support vector machine is applied to forecast the next day's closing price. The proposed model is applied to the Shanghai stock market index and the Dow Jones index, and experimental results show that the proposed model performs better in the area of prediction than other two similar models. PMID:24971455
Satomura, Hironori; Adachi, Kohei
2013-07-01
To facilitate the interpretation of canonical correlation analysis (CCA) solutions, procedures have been proposed in which CCA solutions are orthogonally rotated to a simple structure. In this paper, we consider oblique rotation for CCA to provide solutions that are much easier to interpret, though only orthogonal rotation is allowed in the existing formulations of CCA. Our task is thus to reformulate CCA so that its solutions have the freedom of oblique rotation. Such a task can be achieved using Yanai's (Jpn. J. Behaviormetrics 1:46-54, 1974; J. Jpn. Stat. Soc. 11:43-53, 1981) generalized coefficient of determination for the objective function to be maximized in CCA. The resulting solutions are proved to include the existing orthogonal ones as special cases and to be rotated obliquely without affecting the objective function value, where ten Berge's (Psychometrika 48:519-523, 1983) theorems on suborthonormal matrices are used. A real data example demonstrates that the proposed oblique rotation can provide simple, easily interpreted CCA solutions.
Prera, Alejandro J; Grimsrud, Kristine M; Thacher, Jennifer A; McCollum, Dan W; Berrens, Robert P
2014-10-01
As public land management agencies pursue region-specific resource management plans, with meaningful consideration of public attitudes and values, there is a need to characterize the complex mix of environmental attitudes in a diverse population. The contribution of this investigation is to make use of a unique household, mail/internet survey data set collected in 2007 in the Southwestern United States (Region 3 of the U.S. Forest Service). With over 5,800 survey responses to a set of 25 Public Land Value statements, canonical correlation analysis is able to identify 7 statistically distinct environmental attitudinal groups. We also examine the effect of expected changes in regional demographics on overall environmental attitudes, which may help guide in the development of socially acceptable long-term forest management policies. Results show significant support for conservationist management policies and passive environmental values, as well as a greater role for stakeholder groups in generating consensus for current and future forest management policies.
von Spiczak, Jochen; Mannil, Manoj; Peters, Benjamin; Hickethier, Tilman; Baer, Matthias; Henning, André; Schmidt, Bernhard; Flohr, Thomas; Manka, Robert; Maintz, David; Alkadhi, Hatem
2018-05-23
The aims of this study were to assess the value of a dedicated sharp convolution kernel for photon counting detector (PCD) computed tomography (CT) for coronary stent imaging and to evaluate to which extent iterative reconstructions can compensate for potential increases in image noise. For this in vitro study, a phantom simulating coronary artery stenting was prepared. Eighteen different coronary stents were expanded in plastic tubes of 3 mm diameter. Tubes were filled with diluted contrast agent, sealed, and immersed in oil calibrated to an attenuation of -100 HU simulating epicardial fat. The phantom was scanned in a modified second generation 128-slice dual-source CT scanner (SOMATOM Definition Flash, Siemens Healthcare, Erlangen, Germany) equipped with both a conventional energy integrating detector and PCD. Image data were acquired using the PCD part of the scanner with 48 × 0.25 mm slices, a tube voltage of 100 kVp, and tube current-time product of 100 mAs. Images were reconstructed using a conventional convolution kernel for stent imaging with filtered back-projection (B46) and with sinogram-affirmed iterative reconstruction (SAFIRE) at level 3 (I463). For comparison, a dedicated sharp convolution kernel with filtered back-projection (D70) and SAFIRE level 3 (Q703) and level 5 (Q705) was used. The D70 and Q70 kernels were specifically designed for coronary stent imaging with PCD CT by optimizing the image modulation transfer function and the separation of contrast edges. Two independent, blinded readers evaluated subjective image quality (Likert scale 0-3, where 3 = excellent), in-stent diameter difference, in-stent attenuation difference, mathematically defined image sharpness, and noise of each reconstruction. Interreader reliability was calculated using Goodman and Kruskal's γ and intraclass correlation coefficients (ICCs). Differences in image quality were evaluated using a Wilcoxon signed-rank test. Differences in in-stent diameter difference, in-stent attenuation difference, image sharpness, and image noise were tested using a paired-sample t test corrected for multiple comparisons. Interreader and intrareader reliability were excellent (γ = 0.953, ICCs = 0.891-0.999, and γ = 0.996, ICCs = 0.918-0.999, respectively). Reconstructions using the dedicated sharp convolution kernel yielded significantly better results regarding image quality (B46: 0.4 ± 0.5 vs D70: 2.9 ± 0.3; P < 0.001), in-stent diameter difference (1.5 ± 0.3 vs 1.0 ± 0.3 mm; P < 0.001), and image sharpness (728 ± 246 vs 2069 ± 411 CT numbers/voxel; P < 0.001). Regarding in-stent attenuation difference, no significant difference was observed between the 2 kernels (151 ± 76 vs 158 ± 92 CT numbers; P = 0.627). Noise was significantly higher in all sharp convolution kernel images but was reduced by 41% and 59% by applying SAFIRE levels 3 and 5, respectively (B46: 16 ± 1, D70: 111 ± 3, Q703: 65 ± 2, Q705: 46 ± 2 CT numbers; P < 0.001 for all comparisons). A dedicated sharp convolution kernel for PCD CT imaging of coronary stents yields superior qualitative and quantitative image characteristics compared with conventional reconstruction kernels. Resulting higher noise levels in sharp kernel PCD imaging can be partially compensated with iterative image reconstruction techniques.
Coupling individual kernel-filling processes with source-sink interactions into GREENLAB-Maize.
Ma, Yuntao; Chen, Youjia; Zhu, Jinyu; Meng, Lei; Guo, Yan; Li, Baoguo; Hoogenboom, Gerrit
2018-02-13
Failure to account for the variation of kernel growth in a cereal crop simulation model may cause serious deviations in the estimates of crop yield. The goal of this research was to revise the GREENLAB-Maize model to incorporate source- and sink-limited allocation approaches to simulate the dry matter accumulation of individual kernels of an ear (GREENLAB-Maize-Kernel). The model used potential individual kernel growth rates to characterize the individual potential sink demand. The remobilization of non-structural carbohydrates from reserve organs to kernels was also incorporated. Two years of field experiments were conducted to determine the model parameter values and to evaluate the model using two maize hybrids with different plant densities and pollination treatments. Detailed observations were made on the dimensions and dry weights of individual kernels and other above-ground plant organs throughout the seasons. Three basic traits characterizing an individual kernel were compared on simulated and measured individual kernels: (1) final kernel size; (2) kernel growth rate; and (3) duration of kernel filling. Simulations of individual kernel growth closely corresponded to experimental data. The model was able to reproduce the observed dry weight of plant organs well. Then, the source-sink dynamics and the remobilization of carbohydrates for kernel growth were quantified to show that remobilization processes accompanied source-sink dynamics during the kernel-filling process. We conclude that the model may be used to explore options for optimizing plant kernel yield by matching maize management to the environment, taking into account responses at the level of individual kernels. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Unconventional protein sources: apricot seed kernels.
Gabrial, G N; El-Nahry, F I; Awadalla, M Z; Girgis, S M
1981-09-01
Hamawy apricot seed kernels (sweet), Amar apricot seed kernels (bitter) and treated Amar apricot kernels (bitterness removed) were evaluated biochemically. All kernels were found to be high in fat (42.2--50.91%), protein (23.74--25.70%) and fiber (15.08--18.02%). Phosphorus, calcium, and iron were determined in all experimental samples. The three different apricot seed kernels were used for extensive study including the qualitative determination of the amino acid constituents by acid hydrolysis, quantitative determination of some amino acids, and biological evaluation of the kernel proteins in order to use them as new protein sources. Weanling albino rats failed to grow on diets containing the Amar apricot seed kernels due to low food consumption because of its bitterness. There was no loss in weight in that case. The Protein Efficiency Ratio data and blood analysis results showed the Hamawy apricot seed kernels to be higher in biological value than treated apricot seed kernels. The Net Protein Ratio data which accounts for both weight, maintenance and growth showed the treated apricot seed kernels to be higher in biological value than both Hamawy and Amar kernels. The Net Protein Ratio for the last two kernels were nearly equal.
An introduction to kernel-based learning algorithms.
Müller, K R; Mika, S; Rätsch, G; Tsuda, K; Schölkopf, B
2001-01-01
This paper provides an introduction to support vector machines, kernel Fisher discriminant analysis, and kernel principal component analysis, as examples for successful kernel-based learning methods. We first give a short background about Vapnik-Chervonenkis theory and kernel feature spaces and then proceed to kernel based learning in supervised and unsupervised scenarios including practical and algorithmic considerations. We illustrate the usefulness of kernel algorithms by discussing applications such as optical character recognition and DNA analysis.
7 CFR 981.408 - Inedible kernel.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Inedible kernel. 981.408 Section 981.408 Agriculture... Administrative Rules and Regulations § 981.408 Inedible kernel. Pursuant to § 981.8, the definition of inedible kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as...
Design of CT reconstruction kernel specifically for clinical lung imaging
NASA Astrophysics Data System (ADS)
Cody, Dianna D.; Hsieh, Jiang; Gladish, Gregory W.
2005-04-01
In this study we developed a new reconstruction kernel specifically for chest CT imaging. An experimental flat-panel CT scanner was used on large dogs to produce 'ground-truth" reference chest CT images. These dogs were also examined using a clinical 16-slice CT scanner. We concluded from the dog images acquired on the clinical scanner that the loss of subtle lung structures was due mostly to the presence of the background noise texture when using currently available reconstruction kernels. This qualitative evaluation of the dog CT images prompted the design of a new recon kernel. This new kernel consisted of the combination of a low-pass and a high-pass kernel to produce a new reconstruction kernel, called the 'Hybrid" kernel. The performance of this Hybrid kernel fell between the two kernels on which it was based, as expected. This Hybrid kernel was also applied to a set of 50 patient data sets; the analysis of these clinical images is underway. We are hopeful that this Hybrid kernel will produce clinical images with an acceptable tradeoff of lung detail, reliable HU, and image noise.
Quality changes in macadamia kernel between harvest and farm-gate.
Walton, David A; Wallace, Helen M
2011-02-01
Macadamia integrifolia, Macadamia tetraphylla and their hybrids are cultivated for their edible kernels. After harvest, nuts-in-shell are partially dried on-farm and sorted to eliminate poor-quality kernels before consignment to a processor. During these operations, kernel quality may be lost. In this study, macadamia nuts-in-shell were sampled at five points of an on-farm postharvest handling chain from dehusking to the final storage silo to assess quality loss prior to consignment. Shoulder damage, weight of pieces and unsound kernel were assessed for raw kernels, and colour, mottled colour and surface damage for roasted kernels. Shoulder damage, weight of pieces and unsound kernel for raw kernels increased significantly between the dehusker and the final silo. Roasted kernels displayed a significant increase in dark colour, mottled colour and surface damage during on-farm handling. Significant loss of macadamia kernel quality occurred on a commercial farm during sorting and storage of nuts-in-shell before nuts were consigned to a processor. Nuts-in-shell should be dried as quickly as possible and on-farm handling minimised to maintain optimum kernel quality. 2010 Society of Chemical Industry.
Self spectrum window method in wigner-ville distribution.
Liu, Zhongguo; Liu, Changchun; Liu, Boqiang; Lv, Yangsheng; Lei, Yinsheng; Yu, Mengsun
2005-01-01
Wigner-Ville distribution (WVD) is an important type of time-frequency analysis in biomedical signal processing. The cross-term interference in WVD has a disadvantageous influence on its application. In this research, the Self Spectrum Window (SSW) method was put forward to suppress the cross-term interference, based on the fact that the cross-term and auto-WVD- terms in integral kernel function are orthogonal. With the Self Spectrum Window (SSW) algorithm, a real auto-WVD function was used as a template to cross-correlate with the integral kernel function, and the Short Time Fourier Transform (STFT) spectrum of the signal was used as window function to process the WVD in time-frequency plane. The SSW method was confirmed by computer simulation with good analysis results. Satisfactory time- frequency distribution was obtained.
Robust nonlinear canonical correlation analysis: application to seasonal climate forecasting
NASA Astrophysics Data System (ADS)
Cannon, A. J.; Hsieh, W. W.
2008-02-01
Robust variants of nonlinear canonical correlation analysis (NLCCA) are introduced to improve performance on datasets with low signal-to-noise ratios, for example those encountered when making seasonal climate forecasts. The neural network model architecture of standard NLCCA is kept intact, but the cost functions used to set the model parameters are replaced with more robust variants. The Pearson product-moment correlation in the double-barreled network is replaced by the biweight midcorrelation, and the mean squared error (mse) in the inverse mapping networks can be replaced by the mean absolute error (mae). Robust variants of NLCCA are demonstrated on a synthetic dataset and are used to forecast sea surface temperatures in the tropical Pacific Ocean based on the sea level pressure field. Results suggest that adoption of the biweight midcorrelation can lead to improved performance, especially when a strong, common event exists in both predictor/predictand datasets. Replacing the mse by the mae leads to improved performance on the synthetic dataset, but not on the climate dataset except at the longest lead time, which suggests that the appropriate cost function for the inverse mapping networks is more problem dependent.
Roy, Vandana; Shukla, Shailja; Shukla, Piyush Kumar; Rawat, Paresh
2017-01-01
The motion generated at the capturing time of electro-encephalography (EEG) signal leads to the artifacts, which may reduce the quality of obtained information. Existing artifact removal methods use canonical correlation analysis (CCA) for removing artifacts along with ensemble empirical mode decomposition (EEMD) and wavelet transform (WT). A new approach is proposed to further analyse and improve the filtering performance and reduce the filter computation time under highly noisy environment. This new approach of CCA is based on Gaussian elimination method which is used for calculating the correlation coefficients using backslash operation and is designed for EEG signal motion artifact removal. Gaussian elimination is used for solving linear equation to calculate Eigen values which reduces the computation cost of the CCA method. This novel proposed method is tested against currently available artifact removal techniques using EEMD-CCA and wavelet transform. The performance is tested on synthetic and real EEG signal data. The proposed artifact removal technique is evaluated using efficiency matrices such as del signal to noise ratio (DSNR), lambda ( λ ), root mean square error (RMSE), elapsed time, and ROC parameters. The results indicate suitablity of the proposed algorithm for use as a supplement to algorithms currently in use.
A new discriminative kernel from probabilistic models.
Tsuda, Koji; Kawanabe, Motoaki; Rätsch, Gunnar; Sonnenburg, Sören; Müller, Klaus-Robert
2002-10-01
Recently, Jaakkola and Haussler (1999) proposed a method for constructing kernel functions from probabilistic models. Their so-called Fisher kernel has been combined with discriminative classifiers such as support vector machines and applied successfully in, for example, DNA and protein analysis. Whereas the Fisher kernel is calculated from the marginal log-likelihood, we propose the TOP kernel derived; from tangent vectors of posterior log-odds. Furthermore, we develop a theoretical framework on feature extractors from probabilistic models and use it for analyzing the TOP kernel. In experiments, our new discriminative TOP kernel compares favorably to the Fisher kernel.
Implementing Kernel Methods Incrementally by Incremental Nonlinear Projection Trick.
Kwak, Nojun
2016-05-20
Recently, the nonlinear projection trick (NPT) was introduced enabling direct computation of coordinates of samples in a reproducing kernel Hilbert space. With NPT, any machine learning algorithm can be extended to a kernel version without relying on the so called kernel trick. However, NPT is inherently difficult to be implemented incrementally because an ever increasing kernel matrix should be treated as additional training samples are introduced. In this paper, an incremental version of the NPT (INPT) is proposed based on the observation that the centerization step in NPT is unnecessary. Because the proposed INPT does not change the coordinates of the old data, the coordinates obtained by INPT can directly be used in any incremental methods to implement a kernel version of the incremental methods. The effectiveness of the INPT is shown by applying it to implement incremental versions of kernel methods such as, kernel singular value decomposition, kernel principal component analysis, and kernel discriminant analysis which are utilized for problems of kernel matrix reconstruction, letter classification, and face image retrieval, respectively.
Increasing accuracy of dispersal kernels in grid-based population models
Slone, D.H.
2011-01-01
Dispersal kernels in grid-based population models specify the proportion, distance and direction of movements within the model landscape. Spatial errors in dispersal kernels can have large compounding effects on model accuracy. Circular Gaussian and Laplacian dispersal kernels at a range of spatial resolutions were investigated, and methods for minimizing errors caused by the discretizing process were explored. Kernels of progressively smaller sizes relative to the landscape grid size were calculated using cell-integration and cell-center methods. These kernels were convolved repeatedly, and the final distribution was compared with a reference analytical solution. For large Gaussian kernels (σ > 10 cells), the total kernel error was <10 &sup-11; compared to analytical results. Using an invasion model that tracked the time a population took to reach a defined goal, the discrete model results were comparable to the analytical reference. With Gaussian kernels that had σ ≤ 0.12 using the cell integration method, or σ ≤ 0.22 using the cell center method, the kernel error was greater than 10%, which resulted in invasion times that were orders of magnitude different than theoretical results. A goal-seeking routine was developed to adjust the kernels to minimize overall error. With this, corrections for small kernels were found that decreased overall kernel error to <10-11 and invasion time error to <5%.
Statistical manifestation of quantum correlations via disequilibrium
NASA Astrophysics Data System (ADS)
Pennini, F.; Plastino, A.
2017-12-01
The statistical notion of disequilibrium (D) was introduced by López-Ruiz, Mancini, and Calbet (LMC) (1995) [1] more than 20 years ago. D measures the amount of ;correlational structure; of a system. We wish to use D to analyze one of the simplest types of quantum correlations, those present in gaseous systems due to symmetry considerations. To this end we extend the LMC formalism to the grand canonical environment and show that D displays distinctive behaviors for simple gases, that allow for interesting insights into their structural properties.
Barko, V.A.; Herzog, D.P.
2003-01-01
We analyzed fish abundance and environmental data collected over nine years from six side channels of the unimpounded upper Mississippi River between river km 46.7 and 128.7. A partial canonical correspondence analysis revealed differences in fish assemblages and environmental factors correlated with the six side channels. Fishes correlated with open side channels represented large river species tolerant of current and/or turbidity. Fishes correlated with closed side channels represented assemblages preferring either moderate to low turbidity/current or pools.
Reading Ability as a Predictor of Academic Procrastination among African American Graduate Students
ERIC Educational Resources Information Center
Collins, Kathleen M. T.; Onwuegbuzie, Anthony J.; Jiao, Qun G.
2008-01-01
The present study examined the relationship between reading ability (i.e., reading comprehension and reading vocabulary) and academic procrastination among 120 African American graduate students. A canonical correlation analysis revealed statistically significant and practically significant multivariate relationships between these two reading…
A Perspective on Quercus Life History Characteristics and Forest Diturbance
Richard P. Guyette; Rose-Marie Muzika; John Kabrick; Michael C. Stambaugh
2004-01-01
Plant strategy theory suggests that life history characteristics reflect growth and reproductive adaptations to environmental disturbance. Species characteristics and abundance should correspond to predictions based on competitive ability and maximizing fitness in a given disturbance environment. A significant canonical correlation between oak growth attributes (height...
Multidimensional Relationships in the WAIS-R Subscales and Demographic Variables.
ERIC Educational Resources Information Center
Chastain, Robert L.; Joe, George W.
This study attempts to integrate and extend previous research by multivariate investigation to determine multidimensional relationships among both the Wechsler Adult Intelligence Scale-Revised (WAIS-R) subscales and the demographic variables for the 1981 WAIS-R standardization sample. Canonical correlation with orthogonal rotation of composite…
Anthraquinones isolated from the browned Chinese chestnut kernels (Castanea mollissima blume)
NASA Astrophysics Data System (ADS)
Zhang, Y. L.; Qi, J. H.; Qin, L.; Wang, F.; Pang, M. X.
2016-08-01
Anthraquinones (AQS) represent a group of secondary metallic products in plants. AQS are often naturally occurring in plants and microorganisms. In a previous study, we found that AQS were produced by enzymatic browning reaction in Chinese chestnut kernels. To find out whether non-enzymatic browning reaction in the kernels could produce AQS too, AQS were extracted from three groups of chestnut kernels: fresh kernels, non-enzymatic browned kernels, and browned kernels, and the contents of AQS were determined. High performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR) methods were used to identify two compounds of AQS, rehein(1) and emodin(2). AQS were barely exists in the fresh kernels, while both browned kernel groups sample contained a high amount of AQS. Thus, we comfirmed that AQS could be produced during both enzymatic and non-enzymatic browning process. Rhein and emodin were the main components of AQS in the browned kernels.
Tavakoli, Javad; Emadi, Teymour; Hashemi, Seyed Mohammad Bagher; Mousavi Khaneghah, Amin; Munekata, Paulo Eduardo Sichetti; Lorenzo, Jose Manuel; Brnčić, Mladen; Barba, Francisco J
2018-05-01
The oxidative stability, as well as the chemical composition of Amygdalus reuteri kernel oil (ARKO), were evaluated and compared to those of Amygdalus scoparia kernel oil (ASKO) and extra virgin olive oil (EVOO) during and after holding in the oven (170 °C for 8 h). The oxidative stability analysis was carried out by measuring the changes in conjugated dienes, carbonyl and acid values as well as oil/oxidative stability index and their correlation with the antioxidant compounds (tocopherol, polyphenols, and sterol compounds). The oleic acid was determined as the predominant fatty acid of ARKO (65.5%). Calculated oxidizability value and an iodine value of ARKO, ASKO and EVOO were reported as 3.29 and 3.24, 2.00 and 100.0, 101.4 and 81.9, respectively. Due to the high wax content (4.5% and 3.3%, respectively), the saponification number of ARKO and ASKO (96.4 and 99.8, respectively) was lower than that of EVOO (169.7). ARKO had the highest oxidative stability, followed by ASKO and EVOO. Therefore, ARKO can be introduced as a new source of edible oil with high oxidative stability. Copyright © 2018. Published by Elsevier Ltd.
Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures.
Bobb, Jennifer F; Valeri, Linda; Claus Henn, Birgit; Christiani, David C; Wright, Robert O; Mazumdar, Maitreyi; Godleski, John J; Coull, Brent A
2015-07-01
Because humans are invariably exposed to complex chemical mixtures, estimating the health effects of multi-pollutant exposures is of critical concern in environmental epidemiology, and to regulatory agencies such as the U.S. Environmental Protection Agency. However, most health effects studies focus on single agents or consider simple two-way interaction models, in part because we lack the statistical methodology to more realistically capture the complexity of mixed exposures. We introduce Bayesian kernel machine regression (BKMR) as a new approach to study mixtures, in which the health outcome is regressed on a flexible function of the mixture (e.g. air pollution or toxic waste) components that is specified using a kernel function. In high-dimensional settings, a novel hierarchical variable selection approach is incorporated to identify important mixture components and account for the correlated structure of the mixture. Simulation studies demonstrate the success of BKMR in estimating the exposure-response function and in identifying the individual components of the mixture responsible for health effects. We demonstrate the features of the method through epidemiology and toxicology applications. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Modeling utilization distributions in space and time
Keating, K.A.; Cherry, S.
2009-01-01
W. Van Winkle defined the utilization distribution (UD) as a probability density that gives an animal's relative frequency of occurrence in a two-dimensional (x, y) plane. We extend Van Winkle's work by redefining the UD as the relative frequency distribution of an animal's occurrence in all four dimensions of space and time. We then describe a product kernel model estimation method, devising a novel kernel from the wrapped Cauchy distribution to handle circularly distributed temporal covariates, such as day of year. Using Monte Carlo simulations of animal movements in space and time, we assess estimator performance. Although not unbiased, the product kernel method yields models highly correlated (Pearson's r - 0.975) with true probabilities of occurrence and successfully captures temporal variations in density of occurrence. In an empirical example, we estimate the expected UD in three dimensions (x, y, and t) for animals belonging to each of two distinct bighorn sheep {Ovis canadensis) social groups in Glacier National Park, Montana, USA. Results show the method can yield ecologically informative models that successfully depict temporal variations in density of occurrence for a seasonally migratory species. Some implications of this new approach to UD modeling are discussed. ?? 2009 by the Ecological Society of America.
Image re-sampling detection through a novel interpolation kernel.
Hilal, Alaa
2018-06-01
Image re-sampling involved in re-size and rotation transformations is an essential element block in a typical digital image alteration. Fortunately, traces left from such processes are detectable, proving that the image has gone a re-sampling transformation. Within this context, we present in this paper two original contributions. First, we propose a new re-sampling interpolation kernel. It depends on five independent parameters that controls its amplitude, angular frequency, standard deviation, and duration. Then, we demonstrate its capacity to imitate the same behavior of the most frequent interpolation kernels used in digital image re-sampling applications. Secondly, the proposed model is used to characterize and detect the correlation coefficients involved in re-sampling transformations. The involved process includes a minimization of an error function using the gradient method. The proposed method is assessed over a large database of 11,000 re-sampled images. Additionally, it is implemented within an algorithm in order to assess images that had undergone complex transformations. Obtained results demonstrate better performance and reduced processing time when compared to a reference method validating the suitability of the proposed approaches. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bezák, Viktor, E-mail: bezak@fmph.uniba.sk
Quantum theory of the non-harmonic oscillator defined by the energy operator proposed by Yurke and Buks (2006) is presented. Although these authors considered a specific problem related to a model of transmission lines in a Kerr medium, our ambition is not to discuss the physical substantiation of their model. Instead, we consider the problem from an abstract, logically deductive, viewpoint. Using the Yurke–Buks energy operator, we focus attention on the imaginary-time propagator. We derive it as a functional of the Mehler kernel and, alternatively, as an exact series involving Hermite polynomials. For a statistical ensemble of identical oscillators defined bymore » the Yurke–Buks energy operator, we calculate the partition function, average energy, free energy and entropy. Using the diagonal element of the canonical density matrix of this ensemble in the coordinate representation, we define a probability density, which appears to be a deformed Gaussian distribution. A peculiarity of this probability density is that it may reveal, when plotted as a function of the position variable, a shape with two peaks located symmetrically with respect to the central point.« less
Gross, Markus; Gambassi, Andrea; Dietrich, S
2017-08-01
The effect of imposing a constraint on a fluctuating scalar order parameter field in a system of finite volume is studied within statistical field theory. The canonical ensemble, corresponding to a fixed total integrated order parameter (e.g., the total number of particles), is obtained as a special case of the theory. A perturbative expansion is developed which allows one to systematically determine the constraint-induced finite-volume corrections to the free energy and to correlation functions. In particular, we focus on the Landau-Ginzburg model in a film geometry (i.e., in a rectangular parallelepiped with a small aspect ratio) with periodic, Dirichlet, or Neumann boundary conditions in the transverse direction and periodic boundary conditions in the remaining, lateral directions. Within the expansion in terms of ε=4-d, where d is the spatial dimension of the bulk, the finite-size contribution to the free energy of the confined system and the associated critical Casimir force are calculated to leading order in ε and are compared to the corresponding expressions for an unconstrained (grand canonical) system. The constraint restricts the fluctuations within the system and it accordingly modifies the residual finite-size free energy. The resulting critical Casimir force is shown to depend on whether it is defined by assuming a fixed transverse area or a fixed total volume. In the former case, the constraint is typically found to significantly enhance the attractive character of the force as compared to the grand canonical case. In contrast to the grand canonical Casimir force, which, for supercritical temperatures, vanishes in the limit of thick films, in the canonical case with fixed transverse area the critical Casimir force attains for thick films a negative value for all boundary conditions studied here. Typically, the dependence of the critical Casimir force both on the temperaturelike and on the fieldlike scaling variables is different in the two ensembles.
NASA Astrophysics Data System (ADS)
Gross, Markus; Gambassi, Andrea; Dietrich, S.
2017-08-01
The effect of imposing a constraint on a fluctuating scalar order parameter field in a system of finite volume is studied within statistical field theory. The canonical ensemble, corresponding to a fixed total integrated order parameter (e.g., the total number of particles), is obtained as a special case of the theory. A perturbative expansion is developed which allows one to systematically determine the constraint-induced finite-volume corrections to the free energy and to correlation functions. In particular, we focus on the Landau-Ginzburg model in a film geometry (i.e., in a rectangular parallelepiped with a small aspect ratio) with periodic, Dirichlet, or Neumann boundary conditions in the transverse direction and periodic boundary conditions in the remaining, lateral directions. Within the expansion in terms of ɛ =4 -d , where d is the spatial dimension of the bulk, the finite-size contribution to the free energy of the confined system and the associated critical Casimir force are calculated to leading order in ɛ and are compared to the corresponding expressions for an unconstrained (grand canonical) system. The constraint restricts the fluctuations within the system and it accordingly modifies the residual finite-size free energy. The resulting critical Casimir force is shown to depend on whether it is defined by assuming a fixed transverse area or a fixed total volume. In the former case, the constraint is typically found to significantly enhance the attractive character of the force as compared to the grand canonical case. In contrast to the grand canonical Casimir force, which, for supercritical temperatures, vanishes in the limit of thick films, in the canonical case with fixed transverse area the critical Casimir force attains for thick films a negative value for all boundary conditions studied here. Typically, the dependence of the critical Casimir force both on the temperaturelike and on the fieldlike scaling variables is different in the two ensembles.
NASA Technical Reports Server (NTRS)
Lau, William K. M.; Kim, Kyu-Myong; Shen, S. P.
2001-01-01
This paper presents preliminary results of an ensemble canonical correlation (ECC) prediction scheme developed at the Climate and Radiation Branch, NASA/Goddard Space Flight Center for determining the potential predictability of regional precipitation, and for climate downscaling studies. The scheme is tested on seasonal hindcasts of anomalous precipitation over the continental United States using global sea surface temperature (SST) for 1951-2000. To maximize the forecast skill derived from SST, the world ocean is divided into non-overlapping sectors. The canonical SST modes for each sector are used as the predictor for the ensemble hindcasts. Results show that the ECC yields a substantial (10-25%) increase in prediction skills for all the regions of the US in every season compared to traditional CCA prediction schemes. For the boreal winter, the tropical Pacific contributes the largest potential predictability to precipitation in the southwestern and southeastern regions, while the North Pacific and the North Atlantic are responsible to the enhanced forecast skills in the Pacific Northwest, the northern Great Plains and Ohio Valley. Most importantly, the ECC increases skill for summertime precipitation prediction and substantially reduces the spring predictability barrier over all the regions of the US continent. Besides SST, the ECC is designed with the flexibility to include any number of predictor fields, such as soil moisture, snow cover and additional local observations. The enhanced ECC forecast skill provides a new benchmark for evaluating dynamical model forecasts.
Naghii, Mohammad Reza; Mofid, Mahmood
2007-01-01
Iron deficiency, anemia, is the most prevalent nutritional problem in the world today. The objective of this study was to consider the effectiveness of consumption of iron fortified ready-to-eat cereal and pumpkin seed kernels as two sources of dietary iron on status of iron nutrition and response of hematological characteristics of women at reproductive ages. Eight healthy female, single or non pregnant subjects, aged 20-37 y consumed 30 g of iron fortified ready-to-eat cereal (providing 7.1 mg iron/day) plus 30 g of pumpkin seed kernels (providing 4.0 mg iron/day) for four weeks. Blood samples collected on the day 20 of menstrual cycles before and after consumption and indices of iron status such as reticulocyte count, hemoglobin (Hb), hematocrit (Ht), serum ferritin, iron, total iron-binding capacity (TIBC), transferrin and transferrin saturation percent were determined. Better response for iron status was observed after consumption period. The statistical analysis showed a significant difference between the pre and post consumption phase for higher serum iron (60 +/- 22 vs. 85 +/- 23 ug/dl), higher transferrin saturation percent (16.8 +/- 8.0 vs. 25.6 +/- 9.0%), and lower TIBC (367 +/- 31 vs. 339 +/- 31 ug/dl). All individuals had higher serum iron after consumption. A significant positive correlation (r=0.981, p=0.000) between the differences in serum iron levels and differences in transferrin saturation percentages and a significant negative correlation (r=-0.916, p<0.001) between the differences in serum iron levels and differences in TIBC was found, as well. Fortified foods contribute to maintaining optimal nutritional status and minimizing the likelihood of iron insufficiencies and use of fortified ready-to-eat cereals is a common strategy. The results showed that adding another food source of iron such as pumpkin seed kernels improves the iron status. Additional and longer studies using these two food products are recommended to further determine the effect of iron fortification on iron nutrition and status among the target population, and mainly in young children, adolescents, women of reproductive ages and pregnant women.
Nonlinear Deep Kernel Learning for Image Annotation.
Jiu, Mingyuan; Sahbi, Hichem
2017-02-08
Multiple kernel learning (MKL) is a widely used technique for kernel design. Its principle consists in learning, for a given support vector classifier, the most suitable convex (or sparse) linear combination of standard elementary kernels. However, these combinations are shallow and often powerless to capture the actual similarity between highly semantic data, especially for challenging classification tasks such as image annotation. In this paper, we redefine multiple kernels using deep multi-layer networks. In this new contribution, a deep multiple kernel is recursively defined as a multi-layered combination of nonlinear activation functions, each one involves a combination of several elementary or intermediate kernels, and results into a positive semi-definite deep kernel. We propose four different frameworks in order to learn the weights of these networks: supervised, unsupervised, kernel-based semisupervised and Laplacian-based semi-supervised. When plugged into support vector machines (SVMs), the resulting deep kernel networks show clear gain, compared to several shallow kernels for the task of image annotation. Extensive experiments and analysis on the challenging ImageCLEF photo annotation benchmark, the COREL5k database and the Banana dataset validate the effectiveness of the proposed method.
Multineuron spike train analysis with R-convolution linear combination kernel.
Tezuka, Taro
2018-06-01
A spike train kernel provides an effective way of decoding information represented by a spike train. Some spike train kernels have been extended to multineuron spike trains, which are simultaneously recorded spike trains obtained from multiple neurons. However, most of these multineuron extensions were carried out in a kernel-specific manner. In this paper, a general framework is proposed for extending any single-neuron spike train kernel to multineuron spike trains, based on the R-convolution kernel. Special subclasses of the proposed R-convolution linear combination kernel are explored. These subclasses have a smaller number of parameters and make optimization tractable when the size of data is limited. The proposed kernel was evaluated using Gaussian process regression for multineuron spike trains recorded from an animal brain. It was compared with the sum kernel and the population Spikernel, which are existing ways of decoding multineuron spike trains using kernels. The results showed that the proposed approach performs better than these kernels and also other commonly used neural decoding methods. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Haryanto, B.; Bukit, R. Br; Situmeang, E. M.; Christina, E. P.; Pandiangan, F.
2018-02-01
The purpose of this study was to determine the performance, productivity and feasibility of the operation of palm kernel processing plant based on Energy Productivity Ratio (EPR). EPR is expressed as the ratio of output to input energy and by-product. Palm Kernel plan is process in palm kernel to become palm kernel oil. The procedure started from collecting data needed as energy input such as: palm kernel prices, energy demand and depreciation of the factory. The energy output and its by-product comprise the whole production price such as: palm kernel oil price and the remaining products such as shells and pulp price. Calculation the equality of energy of palm kernel oil is to analyze the value of Energy Productivity Ratio (EPR) bases on processing capacity per year. The investigation has been done in Kernel Oil Processing Plant PT-X at Sumatera Utara plantation. The value of EPR was 1.54 (EPR > 1), which indicated that the processing of palm kernel into palm kernel oil is feasible to be operated based on the energy productivity.
2013-01-01
Background Arguably, genotypes and phenotypes may be linked in functional forms that are not well addressed by the linear additive models that are standard in quantitative genetics. Therefore, developing statistical learning models for predicting phenotypic values from all available molecular information that are capable of capturing complex genetic network architectures is of great importance. Bayesian kernel ridge regression is a non-parametric prediction model proposed for this purpose. Its essence is to create a spatial distance-based relationship matrix called a kernel. Although the set of all single nucleotide polymorphism genotype configurations on which a model is built is finite, past research has mainly used a Gaussian kernel. Results We sought to investigate the performance of a diffusion kernel, which was specifically developed to model discrete marker inputs, using Holstein cattle and wheat data. This kernel can be viewed as a discretization of the Gaussian kernel. The predictive ability of the diffusion kernel was similar to that of non-spatial distance-based additive genomic relationship kernels in the Holstein data, but outperformed the latter in the wheat data. However, the difference in performance between the diffusion and Gaussian kernels was negligible. Conclusions It is concluded that the ability of a diffusion kernel to capture the total genetic variance is not better than that of a Gaussian kernel, at least for these data. Although the diffusion kernel as a choice of basis function may have potential for use in whole-genome prediction, our results imply that embedding genetic markers into a non-Euclidean metric space has very small impact on prediction. Our results suggest that use of the black box Gaussian kernel is justified, given its connection to the diffusion kernel and its similar predictive performance. PMID:23763755
Auditory-Phonetic Projection and Lexical Structure in the Recognition of Sine-Wave Words
ERIC Educational Resources Information Center
Remez, Robert E.; Dubowski, Kathryn R.; Broder, Robin S.; Davids, Morgana L.; Grossman, Yael S.; Moskalenko, Marina; Pardo, Jennifer S.; Hasbun, Sara Maria
2011-01-01
Speech remains intelligible despite the elimination of canonical acoustic correlates of phonemes from the spectrum. A portion of this perceptual flexibility can be attributed to modulation sensitivity in the auditory-to-phonetic projection, although signal-independent properties of lexical neighborhoods also affect intelligibility in utterances…
ERIC Educational Resources Information Center
Ozkal, Kudret; Tekkaya, Ceren; Sungur, Semra; Cakiroglu, Jale; Cakiroglu, Erdinc
2010-01-01
This study investigated students' scientific epistemological beliefs in relation to socio-economic status (SES) and gender. Data were obtained from 1,152 eight grade Turkish elementary school students using Scientific Epistemological Beliefs instrument. Canonical correlation analysis indicated that students with a working mother and educated…
The Relationship between Occupational Interests and Values
ERIC Educational Resources Information Center
Smith, Thomas J.; Campbell, Cynthia
2009-01-01
A values characterization of the RIASEC occupational interest categories was developed using the U.S. Department of Labor's O*NET occupational data. Values profile plots were constructed for each interest category, then correspondence analysis and canonical correlation were carried out to assess the relationship between the interest and values…
Five-Factor Model of Personality and Career Exploration
ERIC Educational Resources Information Center
Reed, Mary Beth; Bruch, Monroe A.; Haase, Richard F.
2004-01-01
This study investigates whether the dimensions of the five-factor model (FFM) of personality are related to specific career exploration variables. Based on the FFM, predictions were made about the relevance of particular traits to career exploration variables. Results from a canonical correlation analysis showed that variable loadings on three…
Civic Engagement in College Students: Connections between Involvement and Attitudes
ERIC Educational Resources Information Center
O'Leary, Lisa S.
2014-01-01
This chapter describes how canonical correlation was used in conjunction with an item response theory model to address the relationship between college students' civic engagement involvement and attitudes as undergraduates. The constructs of interest were students' participation in civic, political, and expressive activities, as well as…
An Extension of Dominance Analysis to Canonical Correlation Analysis
ERIC Educational Resources Information Center
Huo, Yan; Budescu, David V.
2009-01-01
Dominance analysis (Budescu, 1993) offers a general framework for determination of relative importance of predictors in univariate and multivariate multiple regression models. This approach relies on pairwise comparisons of the contribution of predictors in all relevant subset models. In this article we extend dominance analysis to canonical…
Inference on the Ranks of the Canonical Correlation Matrices for Elliptically Symmetric Populations.
1985-05-01
robust estimates of the covariance matrix, the reader is referred to Devlin, Gnanadesikan and Kettenring (1975) and Maronna (1976). Murihead and...contoured distributions. J. Multivariate Anal. 11, 368-385. 6. DEVLIN, S.J. GNANADESIKAN , R. and KETTENRING, J. (1975). Robust estima- tion and outlier
Osborn, Daniel P S; Roccasecca, Rosa Maria; McMurray, Fiona; Hernandez-Hernandez, Victor; Mukherjee, Sriparna; Barroso, Inês; Stemple, Derek; Cox, Roger; Beales, Philip L; Christou-Savina, Sonia
2014-01-01
Common intronic variants in the Human fat mass and obesity-associated gene (FTO) are found to be associated with an increased risk of obesity. Overexpression of FTO correlates with increased food intake and obesity, whilst loss-of-function results in lethality and severe developmental defects. Despite intense scientific discussions around the role of FTO in energy metabolism, the function of FTO during development remains undefined. Here, we show that loss of Fto leads to developmental defects such as growth retardation, craniofacial dysmorphism and aberrant neural crest cells migration in Zebrafish. We find that the important developmental pathway, Wnt, is compromised in the absence of FTO, both in vivo (zebrafish) and in vitro (Fto(-/-) MEFs and HEK293T). Canonical Wnt signalling is down regulated by abrogated β-Catenin translocation to the nucleus whilst non-canonical Wnt/Ca(2+) pathway is activated via its key signal mediators CaMKII and PKCδ. Moreover, we demonstrate that loss of Fto results in short, absent or disorganised cilia leading to situs inversus, renal cystogenesis, neural crest cell defects and microcephaly in Zebrafish. Congruently, Fto knockout mice display aberrant tissue specific cilia. These data identify FTO as a protein-regulator of the balanced activation between canonical and non-canonical branches of the Wnt pathway. Furthermore, we present the first evidence that FTO plays a role in development and cilia formation/function.
Waleń, Tomasz; Chojnowski, Grzegorz; Gierski, Przemysław; Bujnicki, Janusz M.
2014-01-01
The understanding of folding and function of RNA molecules depends on the identification and classification of interactions between ribonucleotide residues. We developed a new method named ClaRNA for computational classification of contacts in RNA 3D structures. Unique features of the program are the ability to identify imperfect contacts and to process coarse-grained models. Each doublet of spatially close ribonucleotide residues in a query structure is compared to clusters of reference doublets obtained by analysis of a large number of experimentally determined RNA structures, and assigned a score that describes its similarity to one or more known types of contacts, including pairing, stacking, base–phosphate and base–ribose interactions. The accuracy of ClaRNA is 0.997 for canonical base pairs, 0.983 for non-canonical pairs and 0.961 for stacking interactions. The generalized squared correlation coefficient (GC2) for ClaRNA is 0.969 for canonical base pairs, 0.638 for non-canonical pairs and 0.824 for stacking interactions. The classifier can be easily extended to include new types of spatial relationships between pairs or larger assemblies of nucleotide residues. ClaRNA is freely available via a web server that includes an extensive set of tools for processing and visualizing structural information about RNA molecules. PMID:25159614
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Kernel weight. 981.9 Section 981.9 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Regulating Handling Definitions § 981.9 Kernel weight. Kernel weight means the weight of kernels, including...
An SVM model with hybrid kernels for hydrological time series
NASA Astrophysics Data System (ADS)
Wang, C.; Wang, H.; Zhao, X.; Xie, Q.
2017-12-01
Support Vector Machine (SVM) models have been widely applied to the forecast of climate/weather and its impact on other environmental variables such as hydrologic response to climate/weather. When using SVM, the choice of the kernel function plays the key role. Conventional SVM models mostly use one single type of kernel function, e.g., radial basis kernel function. Provided that there are several featured kernel functions available, each having its own advantages and drawbacks, a combination of these kernel functions may give more flexibility and robustness to SVM approach, making it suitable for a wide range of application scenarios. This paper presents such a linear combination of radial basis kernel and polynomial kernel for the forecast of monthly flowrate in two gaging stations using SVM approach. The results indicate significant improvement in the accuracy of predicted series compared to the approach with either individual kernel function, thus demonstrating the feasibility and advantages of such hybrid kernel approach for SVM applications.
Approximate kernel competitive learning.
Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang
2015-03-01
Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mueck, F G; Michael, L; Deak, Z; Scherr, M K; Maxien, D; Geyer, L L; Reiser, M; Wirth, S
2013-07-01
To compare the image quality in dose-reduced 64-row CT of the chest at different levels of adaptive statistical iterative reconstruction (ASIR) to full-dose baseline examinations reconstructed solely with filtered back projection (FBP) in a realistic upgrade scenario. A waiver of consent was granted by the institutional review board (IRB). The noise index (NI) relates to the standard deviation of Hounsfield units in a water phantom. Baseline exams of the chest (NI = 29; LightSpeed VCT XT, GE Healthcare) were intra-individually compared to follow-up studies on a CT with ASIR after system upgrade (NI = 45; Discovery HD750, GE Healthcare), n = 46. Images were calculated in slice and volume mode with ASIR levels of 0 - 100 % in the standard and lung kernel. Three radiologists independently compared the image quality to the corresponding full-dose baseline examinations (-2: diagnostically inferior, -1: inferior, 0: equal, + 1: superior, + 2: diagnostically superior). Statistical analysis used Wilcoxon's test, Mann-Whitney U test and the intraclass correlation coefficient (ICC). The mean CTDIvol decreased by 53 % from the FBP baseline to 8.0 ± 2.3 mGy for ASIR follow-ups; p < 0.001. The ICC was 0.70. Regarding the standard kernel, the image quality in dose-reduced studies was comparable to the baseline at ASIR 70 % in volume mode (-0.07 ± 0.29, p = 0.29). Concerning the lung kernel, every ASIR level outperformed the baseline image quality (p < 0.001), with ASIR 30 % rated best (slice: 0.70 ± 0.6, volume: 0.74 ± 0.61). Vendors' recommendation of 50 % ASIR is fair. In detail, the ASIR 70 % in volume mode for the standard kernel and ASIR 30 % for the lung kernel performed best, allowing for a dose reduction of approximately 50 %. © Georg Thieme Verlag KG Stuttgart · New York.
Multiple kernels learning-based biological entity relationship extraction method.
Dongliang, Xu; Jingchang, Pan; Bailing, Wang
2017-09-20
Automatic extracting protein entity interaction information from biomedical literature can help to build protein relation network and design new drugs. There are more than 20 million literature abstracts included in MEDLINE, which is the most authoritative textual database in the field of biomedicine, and follow an exponential growth over time. This frantic expansion of the biomedical literature can often be difficult to absorb or manually analyze. Thus efficient and automated search engines are necessary to efficiently explore the biomedical literature using text mining techniques. The P, R, and F value of tag graph method in Aimed corpus are 50.82, 69.76, and 58.61%, respectively. The P, R, and F value of tag graph kernel method in other four evaluation corpuses are 2-5% higher than that of all-paths graph kernel. And The P, R and F value of feature kernel and tag graph kernel fuse methods is 53.43, 71.62 and 61.30%, respectively. The P, R and F value of feature kernel and tag graph kernel fuse methods is 55.47, 70.29 and 60.37%, respectively. It indicated that the performance of the two kinds of kernel fusion methods is better than that of simple kernel. In comparison with the all-paths graph kernel method, the tag graph kernel method is superior in terms of overall performance. Experiments show that the performance of the multi-kernels method is better than that of the three separate single-kernel method and the dual-mutually fused kernel method used hereof in five corpus sets.
Al Harrach, M; Afsharipour, B; Boudaoud, S; Carriou, V; Marin, F; Merletti, R
2016-08-01
The Brachialis (BR) is placed under the Biceps Brachii (BB) deep in the upper arm. Therefore, the detection of the corresponding surface Electromyogram (sEMG) is a complex task. The BR is an important elbow flexor, but it is usually not considered in the sEMG based force estimation process. The aim of this study was to attempt to separate the two sEMG activities of the BR and the BB by using a High Density sEMG (HD-sEMG) grid placed at the upper arm and Canonical Component Analysis (CCA) technique. For this purpose, we recorded sEMG signals from seven subjects with two 8 × 4 electrode grids placed over BB and BR. Four isometric voluntary contraction levels were recorded (5, 10, 30 and 50 %MVC) for 90° elbow angle. Then using CCA and image processing tools the sources of each muscle activity were separated. Finally, the corresponding sEMG signals were reconstructed using the remaining canonical components in order to retrieve the activity of the BB and the BR muscles.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Half kernel. 51.2295 Section 51.2295 Agriculture... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2295 Half kernel. Half kernel means the separated half of a kernel with not more than one-eighth broken off. ...
7 CFR 810.206 - Grades and grade requirements for barley.
Code of Federal Regulations, 2010 CFR
2010-01-01
... weight per bushel (pounds) Sound barley (percent) Maximum Limits of— Damaged kernels 1 (percent) Heat damaged kernels (percent) Foreign material (percent) Broken kernels (percent) Thin barley (percent) U.S... or otherwise of distinctly low quality. 1 Includes heat-damaged kernels. Injured-by-frost kernels and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miner, Jacob Carlson; Garcia, Angel Enrique
Monovalent salt solutions have strongly coupled interactions with biopolymers, from large polyelectrolytes to small RNA oligomers. High salt concentrations have been known to induce transitions in the structure of RNA, producing non-canonical configurations and even driving RNA to precipitate out of solution. Using all-atom molecular dynamics simulations, we model a monovalent salt species (KCL) at high concentrations (0.1–3m) and calculate the equilibrium distributions of water and ions around a small tetraloop-forming RNA oligomer in a variety of structural arrangements: folded A-RNA (canonical) and Z-RNA (non-canonical) tetraloops and unfolded configurations. From these data, we calculate the ion preferential binding coefficients andmore » Donnan coefficients for the RNA oligomer as a function of concentration and structure. We find that cation accumulation is highest around non-canonical Z-RNA configurations at concentrations below 0.5m, while unfolded configurations accumulate the most co-ions in all concentrations. By contrast, canonical A-RNA structures consistently show the lowest accumulations for all ion species. Water distributions vary markedly with RNA configuration but show little dependency on KCL concentration. Based on Donnan coefficient calculations, the net charge of the solution at the surface of the RNA decreases linearly as a function of salt concentration and becomes net-neutral near 2.5–3m KCL for folded configurations, while unfolded configurations still show a positive solution charge. Our findings show that all-atom molecular dynamics can describe the equilibrium distributions of monovalent salt in the presence of small RNA oligomers at KCL concentrations where ion correlation effects become important. Furthermore, these results provide valuable insights into the distributions of water and ions near the RNA oligomer surface as a function of structural configuration.« less
Miner, Jacob Carlson; Garcia, Angel Enrique
2018-05-29
Monovalent salt solutions have strongly coupled interactions with biopolymers, from large polyelectrolytes to small RNA oligomers. High salt concentrations have been known to induce transitions in the structure of RNA, producing non-canonical configurations and even driving RNA to precipitate out of solution. Using all-atom molecular dynamics simulations, we model a monovalent salt species (KCL) at high concentrations (0.1–3m) and calculate the equilibrium distributions of water and ions around a small tetraloop-forming RNA oligomer in a variety of structural arrangements: folded A-RNA (canonical) and Z-RNA (non-canonical) tetraloops and unfolded configurations. From these data, we calculate the ion preferential binding coefficients andmore » Donnan coefficients for the RNA oligomer as a function of concentration and structure. We find that cation accumulation is highest around non-canonical Z-RNA configurations at concentrations below 0.5m, while unfolded configurations accumulate the most co-ions in all concentrations. By contrast, canonical A-RNA structures consistently show the lowest accumulations for all ion species. Water distributions vary markedly with RNA configuration but show little dependency on KCL concentration. Based on Donnan coefficient calculations, the net charge of the solution at the surface of the RNA decreases linearly as a function of salt concentration and becomes net-neutral near 2.5–3m KCL for folded configurations, while unfolded configurations still show a positive solution charge. Our findings show that all-atom molecular dynamics can describe the equilibrium distributions of monovalent salt in the presence of small RNA oligomers at KCL concentrations where ion correlation effects become important. Furthermore, these results provide valuable insights into the distributions of water and ions near the RNA oligomer surface as a function of structural configuration.« less
NASA Astrophysics Data System (ADS)
Miner, Jacob Carlson; García, Angel Enrique
2018-06-01
Monovalent salt solutions have strongly coupled interactions with biopolymers, from large polyelectrolytes to small RNA oligomers. High salt concentrations have been known to induce transitions in the structure of RNA, producing non-canonical configurations and even driving RNA to precipitate out of solution. Using all-atom molecular dynamics simulations, we model a monovalent salt species (KCL) at high concentrations (0.1-3m) and calculate the equilibrium distributions of water and ions around a small tetraloop-forming RNA oligomer in a variety of structural arrangements: folded A-RNA (canonical) and Z-RNA (non-canonical) tetraloops and unfolded configurations. From these data, we calculate the ion preferential binding coefficients and Donnan coefficients for the RNA oligomer as a function of concentration and structure. We find that cation accumulation is highest around non-canonical Z-RNA configurations at concentrations below 0.5m, while unfolded configurations accumulate the most co-ions in all concentrations. By contrast, canonical A-RNA structures consistently show the lowest accumulations for all ion species. Water distributions vary markedly with RNA configuration but show little dependency on KCL concentration. Based on Donnan coefficient calculations, the net charge of the solution at the surface of the RNA decreases linearly as a function of salt concentration and becomes net-neutral near 2.5-3m KCL for folded configurations, while unfolded configurations still show a positive solution charge. Our findings show that all-atom molecular dynamics can describe the equilibrium distributions of monovalent salt in the presence of small RNA oligomers at KCL concentrations where ion correlation effects become important. Furthermore, these results provide valuable insights into the distributions of water and ions near the RNA oligomer surface as a function of structural configuration.
Miner, Jacob Carlson; García, Angel Enrique
2018-06-14
Monovalent salt solutions have strongly coupled interactions with biopolymers, from large polyelectrolytes to small RNA oligomers. High salt concentrations have been known to induce transitions in the structure of RNA, producing non-canonical configurations and even driving RNA to precipitate out of solution. Using all-atom molecular dynamics simulations, we model a monovalent salt species (KCL) at high concentrations (0.1-3m) and calculate the equilibrium distributions of water and ions around a small tetraloop-forming RNA oligomer in a variety of structural arrangements: folded A-RNA (canonical) and Z-RNA (non-canonical) tetraloops and unfolded configurations. From these data, we calculate the ion preferential binding coefficients and Donnan coefficients for the RNA oligomer as a function of concentration and structure. We find that cation accumulation is highest around non-canonical Z-RNA configurations at concentrations below 0.5m, while unfolded configurations accumulate the most co-ions in all concentrations. By contrast, canonical A-RNA structures consistently show the lowest accumulations for all ion species. Water distributions vary markedly with RNA configuration but show little dependency on KCL concentration. Based on Donnan coefficient calculations, the net charge of the solution at the surface of the RNA decreases linearly as a function of salt concentration and becomes net-neutral near 2.5-3m KCL for folded configurations, while unfolded configurations still show a positive solution charge. Our findings show that all-atom molecular dynamics can describe the equilibrium distributions of monovalent salt in the presence of small RNA oligomers at KCL concentrations where ion correlation effects become important. Furthermore, these results provide valuable insights into the distributions of water and ions near the RNA oligomer surface as a function of structural configuration.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Kernel which is “dark amber” or darker color; (e) Kernel having more than one dark kernel spot, or one dark kernel spot more than one-eighth inch in greatest dimension; (f) Shriveling when the surface of the kernel is very conspicuously wrinkled; (g) Internal flesh discoloration of a medium shade of gray...
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Kernel which is “dark amber” or darker color; (e) Kernel having more than one dark kernel spot, or one dark kernel spot more than one-eighth inch in greatest dimension; (f) Shriveling when the surface of the kernel is very conspicuously wrinkled; (g) Internal flesh discoloration of a medium shade of gray...
7 CFR 51.2125 - Split or broken kernels.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Split or broken kernels. 51.2125 Section 51.2125 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... kernels. Split or broken kernels means seven-eighths or less of complete whole kernels but which will not...
7 CFR 51.2296 - Three-fourths half kernel.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Three-fourths half kernel. 51.2296 Section 51.2296 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards...-fourths half kernel. Three-fourths half kernel means a portion of a half of a kernel which has more than...
The Classification of Diabetes Mellitus Using Kernel k-means
NASA Astrophysics Data System (ADS)
Alamsyah, M.; Nafisah, Z.; Prayitno, E.; Afida, A. M.; Imah, E. M.
2018-01-01
Diabetes Mellitus is a metabolic disorder which is characterized by chronicle hypertensive glucose. Automatics detection of diabetes mellitus is still challenging. This study detected diabetes mellitus by using kernel k-Means algorithm. Kernel k-means is an algorithm which was developed from k-means algorithm. Kernel k-means used kernel learning that is able to handle non linear separable data; where it differs with a common k-means. The performance of kernel k-means in detecting diabetes mellitus is also compared with SOM algorithms. The experiment result shows that kernel k-means has good performance and a way much better than SOM.
UNICOS Kernel Internals Application Development
NASA Technical Reports Server (NTRS)
Caredo, Nicholas; Craw, James M. (Technical Monitor)
1995-01-01
Having an understanding of UNICOS Kernel Internals is valuable information. However, having the knowledge is only half the value. The second half comes with knowing how to use this information and apply it to the development of tools. The kernel contains vast amounts of useful information that can be utilized. This paper discusses the intricacies of developing utilities that utilize kernel information. In addition, algorithms, logic, and code will be discussed for accessing kernel information. Code segments will be provided that demonstrate how to locate and read kernel structures. Types of applications that can utilize kernel information will also be discussed.
Detection of maize kernels breakage rate based on K-means clustering
NASA Astrophysics Data System (ADS)
Yang, Liang; Wang, Zhuo; Gao, Lei; Bai, Xiaoping
2017-04-01
In order to optimize the recognition accuracy of maize kernels breakage detection and improve the detection efficiency of maize kernels breakage, this paper using computer vision technology and detecting of the maize kernels breakage based on K-means clustering algorithm. First, the collected RGB images are converted into Lab images, then the original images clarity evaluation are evaluated by the energy function of Sobel 8 gradient. Finally, the detection of maize kernels breakage using different pixel acquisition equipments and different shooting angles. In this paper, the broken maize kernels are identified by the color difference between integrity kernels and broken kernels. The original images clarity evaluation and different shooting angles are taken to verify that the clarity and shooting angles of the images have a direct influence on the feature extraction. The results show that K-means clustering algorithm can distinguish the broken maize kernels effectively.
Modeling adaptive kernels from probabilistic phylogenetic trees.
Nicotra, Luca; Micheli, Alessio
2009-01-01
Modeling phylogenetic interactions is an open issue in many computational biology problems. In the context of gene function prediction we introduce a class of kernels for structured data leveraging on a hierarchical probabilistic modeling of phylogeny among species. We derive three kernels belonging to this setting: a sufficient statistics kernel, a Fisher kernel, and a probability product kernel. The new kernels are used in the context of support vector machine learning. The kernels adaptivity is obtained through the estimation of the parameters of a tree structured model of evolution using as observed data phylogenetic profiles encoding the presence or absence of specific genes in a set of fully sequenced genomes. We report results obtained in the prediction of the functional class of the proteins of the budding yeast Saccharomyces cerevisae which favorably compare to a standard vector based kernel and to a non-adaptive tree kernel function. A further comparative analysis is performed in order to assess the impact of the different components of the proposed approach. We show that the key features of the proposed kernels are the adaptivity to the input domain and the ability to deal with structured data interpreted through a graphical model representation.
Aflatoxin and nutrient contents of peanut collected from local market and their processed foods
NASA Astrophysics Data System (ADS)
Ginting, E.; Rahmianna, A. A.; Yusnawan, E.
2018-01-01
Peanut is succeptable to aflatoxin contamination and the sources of peanut as well as processing methods considerably affect aflatoxin content of the products. Therefore, the study on aflatoxin and nutrient contents of peanut collected from local market and their processed foods were performed. Good kernels of peanut were prepared into fried peanut, pressed-fried peanut, peanut sauce, peanut press cake, fermented peanut press cake (tempe) and fried tempe, while blended kernels (good and poor kernels) were processed into peanut sauce and tempe and poor kernels were only processed into tempe. The results showed that good and blended kernels which had high number of sound/intact kernels (82,46% and 62,09%), contained 9.8-9.9 ppb of aflatoxin B1, while slightly higher level was seen in poor kernels (12.1 ppb). However, the moisture, ash, protein, and fat contents of the kernels were similar as well as the products. Peanut tempe and fried tempe showed the highest increase in protein content, while decreased fat contents were seen in all products. The increase in aflatoxin B1 of peanut tempe prepared from poor kernels > blended kernels > good kernels. However, it averagely decreased by 61.2% after deep-fried. Excluding peanut tempe and fried tempe, aflatoxin B1 levels in all products derived from good kernels were below the permitted level (15 ppb). This suggests that sorting peanut kernels as ingredients and followed by heat processing would decrease the aflatoxin content in the products.
Partial Deconvolution with Inaccurate Blur Kernel.
Ren, Dongwei; Zuo, Wangmeng; Zhang, David; Xu, Jun; Zhang, Lei
2017-10-17
Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.
Dynamics of neurons controlling movements of a locust hind leg. III. Extensor tibiae motor neurons.
Newland, P L; Kondoh, Y
1997-06-01
Imposed movements of the apodeme of the femoral chordotonal organ (FeCO) of the locust hind leg elicit resistance reflexes in extensor and flexor tibiae motor neurons. The synaptic responses of the fast and slow extensor tibiae motor neurons (FETi and SETi, respectively) and the spike responses of SETi were analyzed with the use of the Wiener kernel white noise method to determine their response properties. The first-order Wiener kernels computed from soma recordings were essentially monophasic, or low passed, indicating that the motor neurons were primarily sensitive to the position of the tibia about the femorotibial joint. The responses of both extensor motor neurons had large nonlinear components. The second-order kernels of the synaptic responses of FETi and SETi had large on-diagonal peaks with two small off-diagonal valleys. That of SETi had an additional elongated valley on the diagonal, which was accompanied by two off-diagonal depolarizing peaks at a cutoff frequency of 58 Hz. These second-order components represent a half-wave rectification of the position-sensitive depolarizing response in FETi and SETi, and a delayed inhibitory input to SETi, indicating that both motor neurons were directionally sensitive. Model predictions of the responses of the motor neurons showed that the first-order (linear) characterization poorly predicted the actual responses of FETi and SETi to FeCO stimulation, whereas the addition of the second-order (nonlinear) term markedly improved the performance of the model. Simultaneous recordings from the soma and a neuropilar process of FETi showed that its synaptic responses to FeCO stimulation were phase delayed by about -30 degrees at 20 Hz, and reduced in amplitude by 30-40% when recorded in the soma. Similar configurations of the first and second-order kernels indicated that the primary process of FETi acted as a low-pass filter. Cross-correlation between a white noise stimulus and a unitized spike discharge of SETi again produced well-defined first- and second-order kernels that showed that the SETi spike response was also dependent on positional inputs. An elongated negative valley on the diagonal, characteristic of the second-order kernel of the synaptic response in SETi, was absent in the kernel from the spike component, suggesting that information is lost in the spike production process. The functional significance of these results is discussed in relation to the behavior of the locust.
Laser induced spark ignition of methane-oxygen mixtures
NASA Technical Reports Server (NTRS)
Santavicca, D. A.; Ho, C.; Reilly, B. J.; Lee, T.-W.
1991-01-01
Results from an experimental study of laser induced spark ignition of methane-oxygen mixtures are presented. The experiments were conducted at atmospheric pressure and 296 K under laminar pre-mixed and turbulent-incompletely mixed conditions. A pulsed, frequency doubled Nd:YAG laser was used as the ignition source. Laser sparks with energies of 10 mJ and 40 mJ were used, as well as a conventional electrode spark with an effective energy of 6 mJ. Measurements were made of the flame kernel radius as a function of time using pulsed laser shadowgraphy. The initial size of the spark ignited flame kernel was found to correlate reasonably well with breakdown energy as predicted by the Taylor spherical blast wave model. The subsequent growth rate of the flame kernel was found to increase with time from a value less than to a value greater than the adiabatic, unstretched laminar growth rate. This behavior was attributed to the combined effects of flame stretch and an apparent wrinkling of the flame surface due to the extremely rapid acceleration of the flame. The very large laminar flame speed of methane-oxygen mixtures appears to be the dominant factor affecting the growth rate of spark ignited flame kernels, with the mode of ignition having a small effect. The effect of incomplete fuel-oxidizer mixing was found to have a significant effect on the growth rate, one which was greater than could simply be accounted for by the effect of local variations in the equivalence ratio on the local flame speed.
Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models
Cuevas, Jaime; Crossa, José; Montesinos-López, Osval A.; Burgueño, Juan; Pérez-Rodríguez, Paulino; de los Campos, Gustavo
2016-01-01
The phenomenon of genotype × environment (G × E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G × E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G × E interaction are extensions of a single-environment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects (u) that can be assessed by the Kronecker product of variance–covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP) and Gaussian (Gaussian kernel, GK). The other model has the same genetic component as the first model (u) plus an extra component, f, that captures random effects between environments that were not captured by the random effects u. We used five CIMMYT data sets (one maize and four wheat) that were previously used in different studies. Results show that models with G × E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with u and f over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect u. PMID:27793970
Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models.
Cuevas, Jaime; Crossa, José; Montesinos-López, Osval A; Burgueño, Juan; Pérez-Rodríguez, Paulino; de Los Campos, Gustavo
2017-01-05
The phenomenon of genotype × environment (G × E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G × E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G × E interaction are extensions of a single-environment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects [Formula: see text] that can be assessed by the Kronecker product of variance-covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP) and Gaussian (Gaussian kernel, GK). The other model has the same genetic component as the first model [Formula: see text] plus an extra component, F: , that captures random effects between environments that were not captured by the random effects [Formula: see text] We used five CIMMYT data sets (one maize and four wheat) that were previously used in different studies. Results show that models with G × E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with [Formula: see text] over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect [Formula: see text]. Copyright © 2017 Cuevas et al.
Larson, Nicholas B; McDonnell, Shannon; Cannon Albright, Lisa; Teerlink, Craig; Stanford, Janet; Ostrander, Elaine A; Isaacs, William B; Xu, Jianfeng; Cooney, Kathleen A; Lange, Ethan; Schleutker, Johanna; Carpten, John D; Powell, Isaac; Bailey-Wilson, Joan E; Cussenot, Olivier; Cancel-Tassin, Geraldine; Giles, Graham G; MacInnis, Robert J; Maier, Christiane; Whittemore, Alice S; Hsieh, Chih-Lin; Wiklund, Fredrik; Catalona, William J; Foulkes, William; Mandal, Diptasri; Eeles, Rosalind; Kote-Jarai, Zsofia; Ackerman, Michael J; Olson, Timothy M; Klein, Christopher J; Thibodeau, Stephen N; Schaid, Daniel J
2017-05-01
Next-generation sequencing technologies have afforded unprecedented characterization of low-frequency and rare genetic variation. Due to low power for single-variant testing, aggregative methods are commonly used to combine observed rare variation within a single gene. Causal variation may also aggregate across multiple genes within relevant biomolecular pathways. Kernel-machine regression and adaptive testing methods for aggregative rare-variant association testing have been demonstrated to be powerful approaches for pathway-level analysis, although these methods tend to be computationally intensive at high-variant dimensionality and require access to complete data. An additional analytical issue in scans of large pathway definition sets is multiple testing correction. Gene set definitions may exhibit substantial genic overlap, and the impact of the resultant correlation in test statistics on Type I error rate control for large agnostic gene set scans has not been fully explored. Herein, we first outline a statistical strategy for aggregative rare-variant analysis using component gene-level linear kernel score test summary statistics as well as derive simple estimators of the effective number of tests for family-wise error rate control. We then conduct extensive simulation studies to characterize the behavior of our approach relative to direct application of kernel and adaptive methods under a variety of conditions. We also apply our method to two case-control studies, respectively, evaluating rare variation in hereditary prostate cancer and schizophrenia. Finally, we provide open-source R code for public use to facilitate easy application of our methods to existing rare-variant analysis results. © 2017 WILEY PERIODICALS, INC.
Seismic waveform sensitivity to global boundary topography
NASA Astrophysics Data System (ADS)
Colombi, Andrea; Nissen-Meyer, Tarje; Boschi, Lapo; Giardini, Domenico
2012-09-01
We investigate the implications of lateral variations in the topography of global seismic discontinuities, in the framework of high-resolution forward modelling and seismic imaging. We run 3-D wave-propagation simulations accurate at periods of 10 s and longer, with Earth models including core-mantle boundary topography anomalies of ˜1000 km spatial wavelength and up to 10 km height. We obtain very different waveform signatures for PcP (reflected) and Pdiff (diffracted) phases, supporting the theoretical expectation that the latter are sensitive primarily to large-scale structure, whereas the former only to small scale, where large and small are relative to the frequency. PcP at 10 s seems to be well suited to map such a small-scale perturbation, whereas Pdiff at the same frequency carries faint signatures that do not allow any tomographic reconstruction. Only at higher frequency, the signature becomes stronger. We present a new algorithm to compute sensitivity kernels relating seismic traveltimes (measured by cross-correlation of observed and theoretical seismograms) to the topography of seismic discontinuities at any depth in the Earth using full 3-D wave propagation. Calculation of accurate finite-frequency sensitivity kernels is notoriously expensive, but we reduce computational costs drastically by limiting ourselves to spherically symmetric reference models, and exploiting the axial symmetry of the resulting propagating wavefield that collapses to a 2-D numerical domain. We compute and analyse a suite of kernels for upper and lower mantle discontinuities that can be used for finite-frequency waveform inversion. The PcP and Pdiff sensitivity footprints are in good agreement with the result obtained cross-correlating perturbed and unperturbed seismogram, validating our approach against full 3-D modelling to invert for such structures.
NASA Astrophysics Data System (ADS)
Yang, Hua; Zhong, Donghong; Liu, Chenyi; Song, Kaiyou; Yin, Zhouping
2018-03-01
Object tracking is still a challenging problem in computer vision, as it entails learning an effective model to account for appearance changes caused by occlusion, out of view, plane rotation, scale change, and background clutter. This paper proposes a robust visual tracking algorithm called deep convolutional neural network (DCNNCT) to simultaneously address these challenges. The proposed DCNNCT algorithm utilizes a DCNN to extract the image feature of a tracked target, and the full range of information regarding each convolutional layer is used to express the image feature. Subsequently, the kernelized correlation filters (CF) in each convolutional layer are adaptively learned, the correlation response maps of that are combined to estimate the location of the tracked target. To avoid the case of tracking failure, an online random ferns classifier is employed to redetect the tracked target, and a dual-threshold scheme is used to obtain the final target location by comparing the tracking result with the detection result. Finally, the change in scale of the target is determined by building scale pyramids and training a CF. Extensive experiments demonstrate that the proposed algorithm is effective at tracking, especially when evaluated using an index called the overlap rate. The DCNNCT algorithm is also highly competitive in terms of robustness with respect to state-of-the-art trackers in various challenging scenarios.
7 CFR 981.401 - Adjusted kernel weight.
Code of Federal Regulations, 2012 CFR
2012-01-01
... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...
7 CFR 981.401 - Adjusted kernel weight.
Code of Federal Regulations, 2011 CFR
2011-01-01
... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...
7 CFR 981.401 - Adjusted kernel weight.
Code of Federal Regulations, 2013 CFR
2013-01-01
... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...
7 CFR 981.401 - Adjusted kernel weight.
Code of Federal Regulations, 2010 CFR
2010-01-01
... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...
7 CFR 981.401 - Adjusted kernel weight.
Code of Federal Regulations, 2014 CFR
2014-01-01
... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Half-kernel. 51.1441 Section 51.1441 Agriculture... Standards for Grades of Shelled Pecans Definitions § 51.1441 Half-kernel. Half-kernel means one of the separated halves of an entire pecan kernel with not more than one-eighth of its original volume missing...
7 CFR 51.1403 - Kernel color classification.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Kernel color classification. 51.1403 Section 51.1403... STANDARDS) United States Standards for Grades of Pecans in the Shell 1 Kernel Color Classification § 51.1403 Kernel color classification. (a) The skin color of pecan kernels may be described in terms of the color...
7 CFR 51.1450 - Serious damage.
Code of Federal Regulations, 2010 CFR
2010-01-01
...; (c) Decay affecting any portion of the kernel; (d) Insects, web, or frass or any distinct evidence of insect feeding on the kernel; (e) Internal discoloration which is dark gray, dark brown, or black and...) Dark kernel spots when more than three are on the kernel, or when any dark kernel spot or the aggregate...
7 CFR 51.1450 - Serious damage.
Code of Federal Regulations, 2011 CFR
2011-01-01
...; (c) Decay affecting any portion of the kernel; (d) Insects, web, or frass or any distinct evidence of insect feeding on the kernel; (e) Internal discoloration which is dark gray, dark brown, or black and...) Dark kernel spots when more than three are on the kernel, or when any dark kernel spot or the aggregate...
7 CFR 51.1450 - Serious damage.
Code of Federal Regulations, 2012 CFR
2012-01-01
...; (c) Decay affecting any portion of the kernel; (d) Insects, web, or frass or any distinct evidence of insect feeding on the kernel; (e) Internal discoloration which is dark gray, dark brown, or black and...) Dark kernel spots when more than three are on the kernel, or when any dark kernel spot or the aggregate...
NASA Astrophysics Data System (ADS)
Du, Peijun; Tan, Kun; Xing, Xiaoshi
2010-12-01
Combining Support Vector Machine (SVM) with wavelet analysis, we constructed wavelet SVM (WSVM) classifier based on wavelet kernel functions in Reproducing Kernel Hilbert Space (RKHS). In conventional kernel theory, SVM is faced with the bottleneck of kernel parameter selection which further results in time-consuming and low classification accuracy. The wavelet kernel in RKHS is a kind of multidimensional wavelet function that can approximate arbitrary nonlinear functions. Implications on semiparametric estimation are proposed in this paper. Airborne Operational Modular Imaging Spectrometer II (OMIS II) hyperspectral remote sensing image with 64 bands and Reflective Optics System Imaging Spectrometer (ROSIS) data with 115 bands were used to experiment the performance and accuracy of the proposed WSVM classifier. The experimental results indicate that the WSVM classifier can obtain the highest accuracy when using the Coiflet Kernel function in wavelet transform. In contrast with some traditional classifiers, including Spectral Angle Mapping (SAM) and Minimum Distance Classification (MDC), and SVM classifier using Radial Basis Function kernel, the proposed wavelet SVM classifier using the wavelet kernel function in Reproducing Kernel Hilbert Space is capable of improving classification accuracy obviously.
A trace ratio maximization approach to multiple kernel-based dimensionality reduction.
Jiang, Wenhao; Chung, Fu-lai
2014-01-01
Most dimensionality reduction techniques are based on one metric or one kernel, hence it is necessary to select an appropriate kernel for kernel-based dimensionality reduction. Multiple kernel learning for dimensionality reduction (MKL-DR) has been recently proposed to learn a kernel from a set of base kernels which are seen as different descriptions of data. As MKL-DR does not involve regularization, it might be ill-posed under some conditions and consequently its applications are hindered. This paper proposes a multiple kernel learning framework for dimensionality reduction based on regularized trace ratio, termed as MKL-TR. Our method aims at learning a transformation into a space of lower dimension and a corresponding kernel from the given base kernels among which some may not be suitable for the given data. The solutions for the proposed framework can be found based on trace ratio maximization. The experimental results demonstrate its effectiveness in benchmark datasets, which include text, image and sound datasets, for supervised, unsupervised as well as semi-supervised settings. Copyright © 2013 Elsevier Ltd. All rights reserved.
Murugesan, Gurusamy; Abdulkadhar, Sabenabanu; Natarajan, Jeyakumar
2017-01-01
Automatic extraction of protein-protein interaction (PPI) pairs from biomedical literature is a widely examined task in biological information extraction. Currently, many kernel based approaches such as linear kernel, tree kernel, graph kernel and combination of multiple kernels has achieved promising results in PPI task. However, most of these kernel methods fail to capture the semantic relation information between two entities. In this paper, we present a special type of tree kernel for PPI extraction which exploits both syntactic (structural) and semantic vectors information known as Distributed Smoothed Tree kernel (DSTK). DSTK comprises of distributed trees with syntactic information along with distributional semantic vectors representing semantic information of the sentences or phrases. To generate robust machine learning model composition of feature based kernel and DSTK were combined using ensemble support vector machine (SVM). Five different corpora (AIMed, BioInfer, HPRD50, IEPA, and LLL) were used for evaluating the performance of our system. Experimental results show that our system achieves better f-score with five different corpora compared to other state-of-the-art systems. PMID:29099838
Murugesan, Gurusamy; Abdulkadhar, Sabenabanu; Natarajan, Jeyakumar
2017-01-01
Automatic extraction of protein-protein interaction (PPI) pairs from biomedical literature is a widely examined task in biological information extraction. Currently, many kernel based approaches such as linear kernel, tree kernel, graph kernel and combination of multiple kernels has achieved promising results in PPI task. However, most of these kernel methods fail to capture the semantic relation information between two entities. In this paper, we present a special type of tree kernel for PPI extraction which exploits both syntactic (structural) and semantic vectors information known as Distributed Smoothed Tree kernel (DSTK). DSTK comprises of distributed trees with syntactic information along with distributional semantic vectors representing semantic information of the sentences or phrases. To generate robust machine learning model composition of feature based kernel and DSTK were combined using ensemble support vector machine (SVM). Five different corpora (AIMed, BioInfer, HPRD50, IEPA, and LLL) were used for evaluating the performance of our system. Experimental results show that our system achieves better f-score with five different corpora compared to other state-of-the-art systems.
Filatov, Gleb; Bauwens, Bruno; Kertész-Farkas, Attila
2018-05-07
Bioinformatics studies often rely on similarity measures between sequence pairs, which often pose a bottleneck in large-scale sequence analysis. Here, we present a new convolutional kernel function for protein sequences called the LZW-Kernel. It is based on code words identified with the Lempel-Ziv-Welch (LZW) universal text compressor. The LZW-Kernel is an alignment-free method, it is always symmetric, is positive, always provides 1.0 for self-similarity and it can directly be used with Support Vector Machines (SVMs) in classification problems, contrary to normalized compression distance (NCD), which often violates the distance metric properties in practice and requires further techniques to be used with SVMs. The LZW-Kernel is a one-pass algorithm, which makes it particularly plausible for big data applications. Our experimental studies on remote protein homology detection and protein classification tasks reveal that the LZW-Kernel closely approaches the performance of the Local Alignment Kernel (LAK) and the SVM-pairwise method combined with Smith-Waterman (SW) scoring at a fraction of the time. Moreover, the LZW-Kernel outperforms the SVM-pairwise method when combined with BLAST scores, which indicates that the LZW code words might be a better basis for similarity measures than local alignment approximations found with BLAST. In addition, the LZW-Kernel outperforms n-gram based mismatch kernels, hidden Markov model based SAM and Fisher kernel, and protein family based PSI-BLAST, among others. Further advantages include the LZW-Kernel's reliance on a simple idea, its ease of implementation, and its high speed, three times faster than BLAST and several magnitudes faster than SW or LAK in our tests. LZW-Kernel is implemented as a standalone C code and is a free open-source program distributed under GPLv3 license and can be downloaded from https://github.com/kfattila/LZW-Kernel. akerteszfarkas@hse.ru. Supplementary data are available at Bioinformatics Online.
A framework for optimal kernel-based manifold embedding of medical image data.
Zimmer, Veronika A; Lekadir, Karim; Hoogendoorn, Corné; Frangi, Alejandro F; Piella, Gemma
2015-04-01
Kernel-based dimensionality reduction is a widely used technique in medical image analysis. To fully unravel the underlying nonlinear manifold the selection of an adequate kernel function and of its free parameters is critical. In practice, however, the kernel function is generally chosen as Gaussian or polynomial and such standard kernels might not always be optimal for a given image dataset or application. In this paper, we present a study on the effect of the kernel functions in nonlinear manifold embedding of medical image data. To this end, we first carry out a literature review on existing advanced kernels developed in the statistics, machine learning, and signal processing communities. In addition, we implement kernel-based formulations of well-known nonlinear dimensional reduction techniques such as Isomap and Locally Linear Embedding, thus obtaining a unified framework for manifold embedding using kernels. Subsequently, we present a method to automatically choose a kernel function and its associated parameters from a pool of kernel candidates, with the aim to generate the most optimal manifold embeddings. Furthermore, we show how the calculated selection measures can be extended to take into account the spatial relationships in images, or used to combine several kernels to further improve the embedding results. Experiments are then carried out on various synthetic and phantom datasets for numerical assessment of the methods. Furthermore, the workflow is applied to real data that include brain manifolds and multispectral images to demonstrate the importance of the kernel selection in the analysis of high-dimensional medical images. Copyright © 2014 Elsevier Ltd. All rights reserved.
Macroscopic and microscopic components of exchange-correlation interactions
NASA Astrophysics Data System (ADS)
Sottile, F.; Karlsson, K.; Reining, L.; Aryasetiawan, F.
2003-11-01
We consider two commonly used approaches for the ab initio calculation of optical-absorption spectra, namely, many-body perturbation theory based on Green’s functions and time-dependent density-functional theory (TDDFT). The former leads to the two-particle Bethe-Salpeter equation that contains a screened electron-hole interaction. We approximate this interaction in various ways, and discuss in particular the results obtained for a local contact potential. This, in fact, allows us to straightforwardly make the link to the TDDFT approach, and to discuss the exchange-correlation kernel fxc that corresponds to the contact exciton. Our main results, illustrated in the examples of bulk silicon, GaAs, argon, and LiF, are the following. (i) The simple contact exciton model, used on top of an ab initio calculated band structure, yields reasonable absorption spectra. (ii) Qualitatively extremely different fxc can be derived approximatively from the same Bethe-Salpeter equation. These kernels can however yield very similar spectra. (iii) A static fxc, both with or without a long-range component, can create transitions in the quasiparticle gap. To the best of our knowledge, this is the first time that TDDFT has been shown to be able to reproduce bound excitons.
Non-Gaussian probabilistic MEG source localisation based on kernel density estimation☆
Mohseni, Hamid R.; Kringelbach, Morten L.; Woolrich, Mark W.; Baker, Adam; Aziz, Tipu Z.; Probert-Smith, Penny
2014-01-01
There is strong evidence to suggest that data recorded from magnetoencephalography (MEG) follows a non-Gaussian distribution. However, existing standard methods for source localisation model the data using only second order statistics, and therefore use the inherent assumption of a Gaussian distribution. In this paper, we present a new general method for non-Gaussian source estimation of stationary signals for localising brain activity from MEG data. By providing a Bayesian formulation for MEG source localisation, we show that the source probability density function (pdf), which is not necessarily Gaussian, can be estimated using multivariate kernel density estimators. In the case of Gaussian data, the solution of the method is equivalent to that of widely used linearly constrained minimum variance (LCMV) beamformer. The method is also extended to handle data with highly correlated sources using the marginal distribution of the estimated joint distribution, which, in the case of Gaussian measurements, corresponds to the null-beamformer. The proposed non-Gaussian source localisation approach is shown to give better spatial estimates than the LCMV beamformer, both in simulations incorporating non-Gaussian signals, and in real MEG measurements of auditory and visual evoked responses, where the highly correlated sources are known to be difficult to estimate. PMID:24055702
Evaluating the Gradient of the Thin Wire Kernel
NASA Technical Reports Server (NTRS)
Wilton, Donald R.; Champagne, Nathan J.
2008-01-01
Recently, a formulation for evaluating the thin wire kernel was developed that employed a change of variable to smooth the kernel integrand, canceling the singularity in the integrand. Hence, the typical expansion of the wire kernel in a series for use in the potential integrals is avoided. The new expression for the kernel is exact and may be used directly to determine the gradient of the wire kernel, which consists of components that are parallel and radial to the wire axis.
Kernel Machine SNP-set Testing under Multiple Candidate Kernels
Wu, Michael C.; Maity, Arnab; Lee, Seunggeun; Simmons, Elizabeth M.; Harmon, Quaker E.; Lin, Xinyi; Engel, Stephanie M.; Molldrem, Jeffrey J.; Armistead, Paul M.
2013-01-01
Joint testing for the cumulative effect of multiple single nucleotide polymorphisms grouped on the basis of prior biological knowledge has become a popular and powerful strategy for the analysis of large scale genetic association studies. The kernel machine (KM) testing framework is a useful approach that has been proposed for testing associations between multiple genetic variants and many different types of complex traits by comparing pairwise similarity in phenotype between subjects to pairwise similarity in genotype, with similarity in genotype defined via a kernel function. An advantage of the KM framework is its flexibility: choosing different kernel functions allows for different assumptions concerning the underlying model and can allow for improved power. In practice, it is difficult to know which kernel to use a priori since this depends on the unknown underlying trait architecture and selecting the kernel which gives the lowest p-value can lead to inflated type I error. Therefore, we propose practical strategies for KM testing when multiple candidate kernels are present based on constructing composite kernels and based on efficient perturbation procedures. We demonstrate through simulations and real data applications that the procedures protect the type I error rate and can lead to substantially improved power over poor choices of kernels and only modest differences in power versus using the best candidate kernel. PMID:23471868
Takagi, Satoshi; Nagase, Hiroyuki; Hayashi, Tatsuya; Kita, Tamotsu; Hayashi, Katsumi; Sanada, Shigeru; Koike, Masayuki
2014-01-01
The hybrid convolution kernel technique for computed tomography (CT) is known to enable the depiction of an image set using different window settings. Our purpose was to decrease the number of artifacts in the hybrid convolution kernel technique for head CT and to determine whether our improved combined multi-kernel head CT images enabled diagnosis as a substitute for both brain (low-pass kernel-reconstructed) and bone (high-pass kernel-reconstructed) images. Forty-four patients with nondisplaced skull fractures were included. Our improved multi-kernel images were generated so that pixels of >100 Hounsfield unit in both brain and bone images were composed of CT values of bone images and other pixels were composed of CT values of brain images. Three radiologists compared the improved multi-kernel images with bone images. The improved multi-kernel images and brain images were identically displayed on the brain window settings. All three radiologists agreed that the improved multi-kernel images on the bone window settings were sufficient for diagnosing skull fractures in all patients. This improved multi-kernel technique has a simple algorithm and is practical for clinical use. Thus, simplified head CT examinations and fewer images that need to be stored can be expected.
Fogedby, Hans C
2003-08-01
Using the previously developed canonical phase space approach applied to the noisy Burgers equation in one dimension, we discuss in detail the growth morphology in terms of nonlinear soliton modes and superimposed linear modes. We moreover analyze the non-Hermitian character of the linear mode spectrum and the associated dynamical pinning, and mode transmutation from diffusive to propagating behavior induced by the solitons. We discuss the anomalous diffusion of growth modes, switching and pathways, correlations in the multisoliton sector, and in detail the correlations and scaling properties in the two-soliton sector.
Association between somatotypes and blood pressure in an adult Chuvasha population.
Kalichman, Leonid; Livshits, Gregory; Kobyliansky, Eugene
2004-01-01
The relationship between blood pressure (BP) and anthropometrical characteristics has been indeed examined extensively, but only a few studies have investigated any connection of somatotypes to BP. to evaluate the association between BP and various anthropometrical characteristics, including components of somatotypes (using the methods of Heath and Carter and of Deriabin). The study sample comprised 783 males aged 18-89 years and 720 females aged 18-90 years, all residents of the Chuvasha, Russian Federation. We used multiple regression, Pearson's and canonical correlation analyses. Significant correlations (r = 0.19-0.28, p < 0.05) were obtained between BP and anthropometric characteristics associated with body compositions and somatotypes. The most impressive were the canonical correlations between BP and somatotype components derived according to Heath and Carter (0.275), and according to Deriabin's (0.333) method. Different body types were highly significantly (P < 0.001) associated with systolic and diastolic BP. Individuals of robust physique (with high endomorphy and mesomorphy) showed high mean values of systolic and diastolic BP, whereas the smallest persons had the lowest BP values. These findings suggest the existence of common physiological paths in the development of body physique and blood pressure regulation and may possibly be indicative of the involvement of pleiotropic genetic and/or epigenetic mechanisms in this regulation.
7 CFR 810.202 - Definition of other terms.
Code of Federal Regulations, 2014 CFR
2014-01-01
... barley kernels, other grains, and wild oats that are badly shrunken and distinctly discolored black or... kernels. Kernels and pieces of barley kernels that are distinctly indented, immature or shrunken in...
7 CFR 810.202 - Definition of other terms.
Code of Federal Regulations, 2013 CFR
2013-01-01
... barley kernels, other grains, and wild oats that are badly shrunken and distinctly discolored black or... kernels. Kernels and pieces of barley kernels that are distinctly indented, immature or shrunken in...
7 CFR 810.202 - Definition of other terms.
Code of Federal Regulations, 2012 CFR
2012-01-01
... barley kernels, other grains, and wild oats that are badly shrunken and distinctly discolored black or... kernels. Kernels and pieces of barley kernels that are distinctly indented, immature or shrunken in...
graphkernels: R and Python packages for graph comparison
Ghisu, M Elisabetta; Llinares-López, Felipe; Borgwardt, Karsten
2018-01-01
Abstract Summary Measuring the similarity of graphs is a fundamental step in the analysis of graph-structured data, which is omnipresent in computational biology. Graph kernels have been proposed as a powerful and efficient approach to this problem of graph comparison. Here we provide graphkernels, the first R and Python graph kernel libraries including baseline kernels such as label histogram based kernels, classic graph kernels such as random walk based kernels, and the state-of-the-art Weisfeiler-Lehman graph kernel. The core of all graph kernels is implemented in C ++ for efficiency. Using the kernel matrices computed by the package, we can easily perform tasks such as classification, regression and clustering on graph-structured samples. Availability and implementation The R and Python packages including source code are available at https://CRAN.R-project.org/package=graphkernels and https://pypi.python.org/pypi/graphkernels. Contact mahito@nii.ac.jp or elisabetta.ghisu@bsse.ethz.ch Supplementary information Supplementary data are available online at Bioinformatics. PMID:29028902
Aflatoxin variability in pistachios.
Mahoney, N E; Rodriguez, S B
1996-01-01
Pistachio fruit components, including hulls (mesocarps and epicarps), seed coats (testas), and kernels (seeds), all contribute to variable aflatoxin content in pistachios. Fresh pistachio kernels were individually inoculated with Aspergillus flavus and incubated 7 or 10 days. Hulled, shelled kernels were either left intact or wounded prior to inoculation. Wounded kernels, with or without the seed coat, were readily colonized by A. flavus and after 10 days of incubation contained 37 times more aflatoxin than similarly treated unwounded kernels. The aflatoxin levels in the individual wounded pistachios were highly variable. Neither fungal colonization nor aflatoxin was detected in intact kernels without seed coats. Intact kernels with seed coats had limited fungal colonization and low aflatoxin concentrations compared with their wounded counterparts. Despite substantial fungal colonization of wounded hulls, aflatoxin was not detected in hulls. Aflatoxin levels were significantly lower in wounded kernels with hulls than in kernels of hulled pistachios. Both the seed coat and a water-soluble extract of hulls suppressed aflatoxin production by A. flavus. PMID:8919781
graphkernels: R and Python packages for graph comparison.
Sugiyama, Mahito; Ghisu, M Elisabetta; Llinares-López, Felipe; Borgwardt, Karsten
2018-02-01
Measuring the similarity of graphs is a fundamental step in the analysis of graph-structured data, which is omnipresent in computational biology. Graph kernels have been proposed as a powerful and efficient approach to this problem of graph comparison. Here we provide graphkernels, the first R and Python graph kernel libraries including baseline kernels such as label histogram based kernels, classic graph kernels such as random walk based kernels, and the state-of-the-art Weisfeiler-Lehman graph kernel. The core of all graph kernels is implemented in C ++ for efficiency. Using the kernel matrices computed by the package, we can easily perform tasks such as classification, regression and clustering on graph-structured samples. The R and Python packages including source code are available at https://CRAN.R-project.org/package=graphkernels and https://pypi.python.org/pypi/graphkernels. mahito@nii.ac.jp or elisabetta.ghisu@bsse.ethz.ch. Supplementary data are available online at Bioinformatics. © The Author(s) 2017. Published by Oxford University Press.
Huang, Jessie Y.; Eklund, David; Childress, Nathan L.; Howell, Rebecca M.; Mirkovic, Dragan; Followill, David S.; Kry, Stephen F.
2013-01-01
Purpose: Several simplifications used in clinical implementations of the convolution/superposition (C/S) method, specifically, density scaling of water kernels for heterogeneous media and use of a single polyenergetic kernel, lead to dose calculation inaccuracies. Although these weaknesses of the C/S method are known, it is not well known which of these simplifications has the largest effect on dose calculation accuracy in clinical situations. The purpose of this study was to generate and characterize high-resolution, polyenergetic, and material-specific energy deposition kernels (EDKs), as well as to investigate the dosimetric impact of implementing spatially variant polyenergetic and material-specific kernels in a collapsed cone C/S algorithm. Methods: High-resolution, monoenergetic water EDKs and various material-specific EDKs were simulated using the EGSnrc Monte Carlo code. Polyenergetic kernels, reflecting the primary spectrum of a clinical 6 MV photon beam at different locations in a water phantom, were calculated for different depths, field sizes, and off-axis distances. To investigate the dosimetric impact of implementing spatially variant polyenergetic kernels, depth dose curves in water were calculated using two different implementations of the collapsed cone C/S method. The first method uses a single polyenergetic kernel, while the second method fully takes into account spectral changes in the convolution calculation. To investigate the dosimetric impact of implementing material-specific kernels, depth dose curves were calculated for a simplified titanium implant geometry using both a traditional C/S implementation that performs density scaling of water kernels and a novel implementation using material-specific kernels. Results: For our high-resolution kernels, we found good agreement with the Mackie et al. kernels, with some differences near the interaction site for low photon energies (<500 keV). For our spatially variant polyenergetic kernels, we found that depth was the most dominant factor affecting the pattern of energy deposition; however, the effects of field size and off-axis distance were not negligible. For the material-specific kernels, we found that as the density of the material increased, more energy was deposited laterally by charged particles, as opposed to in the forward direction. Thus, density scaling of water kernels becomes a worse approximation as the density and the effective atomic number of the material differ more from water. Implementation of spatially variant, polyenergetic kernels increased the percent depth dose value at 25 cm depth by 2.1%–5.8% depending on the field size, while implementation of titanium kernels gave 4.9% higher dose upstream of the metal cavity (i.e., higher backscatter dose) and 8.2% lower dose downstream of the cavity. Conclusions: Of the various kernel refinements investigated, inclusion of depth-dependent and metal-specific kernels into the C/S method has the greatest potential to improve dose calculation accuracy. Implementation of spatially variant polyenergetic kernels resulted in a harder depth dose curve and thus has the potential to affect beam modeling parameters obtained in the commissioning process. For metal implants, the C/S algorithms generally underestimate the dose upstream and overestimate the dose downstream of the implant. Implementation of a metal-specific kernel mitigated both of these errors. PMID:24320507
Allozyme markers in breeding zone designation
R. D. Westfall; M. T. Conkle
1992-01-01
Early studies of allozyme variation in plant populations suggested that allelic frequencies in some loci vary by geography. Since then, the expectation that allozymes might be useful in describing geographic patterns has generally not been borne out by single locus analyses, except on the broadest scale. Multi-locus analyses reveal the converse: canonical correlation...
ERIC Educational Resources Information Center
Di Fabio, Annamaria; Kenny, Maureen E.
2015-01-01
Drawing from career construction and positive youth development perspectives, this study explores, among 254 Italian high school students, the relationship between emotional intelligence (EI) and support from friends and teachers with indices of adaptive career development. Results from the full canonical correlational model revealed that…
The Relationship between the Big-Five Model of Personality and Self-Regulated Learning Strategies
ERIC Educational Resources Information Center
Bidjerano, Temi; Dai, David Yun
2007-01-01
The study examined the relationship between the big-five model of personality and the use of self-regulated learning strategies. Measures of self-regulated learning strategies and big-five personality traits were administered to a sample of undergraduate students. Results from canonical correlation analysis indicated an overlap between the…
ERIC Educational Resources Information Center
O'Connell, Ann Aileen
The relationships among types of errors observed during probability problem solving were studied. Subjects were 50 graduate students in an introductory probability and statistics course. Errors were classified as text comprehension, conceptual, procedural, and arithmetic. Canonical correlation analysis was conducted on the frequencies of specific…
Another View of the Relation of Environment to Mental Abilities: A Reply
ERIC Educational Resources Information Center
Marjoribanks, Kevin
1974-01-01
Harris and McArthur concluded that Marjoribanks' measure of the learning environment of the home was not differentially related to mental ability test performance. It is argued, here, that a canonical correlation analysis provides a better explanation of the data than Harris' and McArthur's interbattery factor analysis. (Author/SE)
Word Processing in Children with Autism Spectrum Disorders: Evidence from Event-Related Potentials
ERIC Educational Resources Information Center
Sandbank, Michael; Yoder, Paul; Key, Alexandra P.
2017-01-01
Purpose: This investigation was conducted to determine whether young children with autism spectrum disorders exhibited a canonical neural response to word stimuli and whether putative event-related potential (ERP) measures of word processing were correlated with a concurrent measure of receptive language. Additional exploratory analyses were used…
ERIC Educational Resources Information Center
Waanders, Christine; Mendez, Julia L.; Downer, Jason T.
2007-01-01
This study examines factors related to three dimensions of parent involvement in preschool: school-based involvement, home-based involvement, and the parent-teacher relationship. Participants were 154 predominantly African American parents recruited from two Head Start programs. Results of bivariate and canonical correlation analyses support the…
Al-Shargie, Fares; Tang, Tong Boon; Kiguchi, Masashi
2017-05-01
This paper presents an investigation about the effects of mental stress on prefrontal cortex (PFC) subregions using simultaneous measurement of functional Near-Infrared Spectroscopy (fNIRS) and Electroencephalography (EEG) signals. The aim is to explore canonical correlation analysis (CCA) technique to study the relationship among the bi-modality signals in mental stress assessment, and how we could fuse the signals for better accuracy in stress detection. Twenty-five male healthy subjects participated in the study while performing mental arithmetic task under control and stress (under time pressure with negative feedback) conditions. The fusion of brain signals acquired by fNIRS-EEG was performed at feature-level using CCA by maximizing the inter-subject covariance across modalities. The CCA result discovered the associations across the modalities and estimated the components responsible for these associations. The experiment results showed that mental stress experienced by this cohort of subjects is subregion specific and localized to the right ventrolateral PFC subregion. These suggest the right ventrolateral PFC as a suitable candidate region to extract biomarkers as performance indicators of neurofeedback training in stress coping.
Sullivan, Erin C.; Mendoza, Sally P.; Capitanio, John P.
2011-01-01
Temperament is usually considered biologically based and largely inherited, however the environment can shape the development of temperament. Allelic variation may confer differential sensitivity to early environment resulting in variations in temperament. Here we explore the relationship between measures of temperament in mothers and their first-born offspring and the role of genetic sensitivity in establishing the strength of these associations. Temperament ratings were conducted on 3-4 month old rhesus monkeys after a 25-hour biobehavioral assessment. Factor analysis revealed a four factor structure of temperament. Females assessed as infants have reproduced and their offspring have also been evaluated through the standardized testing paradigm. Canonical correlation analysis revealed statistically significant associations between factor scores of mothers and sons, but not mothers and daughters. Further, offspring possessing the high activity, “low risk”, alleles of the rhMAOA-LPR or rh5-HTTLPR showed statistically significant canonical correlations, whereas those possessing other alleles did not, suggesting differential genetic sensitivity to the normative early experience of maternal temperament. PMID:21866539
Sandoval, S; Torres, A; Pawlowsky-Reusing, E; Riechel, M; Caradot, N
2013-01-01
The present study aims to explore the relationship between rainfall variables and water quality/quantity characteristics of combined sewer overflows (CSOs), by the use of multivariate statistical methods and online measurements at a principal CSO outlet in Berlin (Germany). Canonical correlation results showed that the maximum and average rainfall intensities are the most influential variables to describe CSO water quantity and pollutant loads whereas the duration of the rainfall event and the rain depth seem to be the most influential variables to describe CSO pollutant concentrations. The analysis of partial least squares (PLS) regression models confirms the findings of the canonical correlation and highlights three main influences of rainfall on CSO characteristics: (i) CSO water quantity characteristics are mainly influenced by the maximal rainfall intensities, (ii) CSO pollutant concentrations were found to be mostly associated with duration of the rainfall and (iii) pollutant loads seemed to be principally influenced by dry weather duration before the rainfall event. The prediction quality of PLS models is rather low (R² < 0.6) but results can be useful to explore qualitatively the influence of rainfall on CSO characteristics.
Chung, Moo K; Qiu, Anqi; Seo, Seongho; Vorperian, Houri K
2015-05-01
We present a novel kernel regression framework for smoothing scalar surface data using the Laplace-Beltrami eigenfunctions. Starting with the heat kernel constructed from the eigenfunctions, we formulate a new bivariate kernel regression framework as a weighted eigenfunction expansion with the heat kernel as the weights. The new kernel method is mathematically equivalent to isotropic heat diffusion, kernel smoothing and recently popular diffusion wavelets. The numerical implementation is validated on a unit sphere using spherical harmonics. As an illustration, the method is applied to characterize the localized growth pattern of mandible surfaces obtained in CT images between ages 0 and 20 by regressing the length of displacement vectors with respect to a surface template. Copyright © 2015 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Lee, Yi-Hsuan; von Davier, Alina A.
2008-01-01
The kernel equating method (von Davier, Holland, & Thayer, 2004) is based on a flexible family of equipercentile-like equating functions that use a Gaussian kernel to continuize the discrete score distributions. While the classical equipercentile, or percentile-rank, equating method carries out the continuization step by linear interpolation,…
Code of Federal Regulations, 2010 CFR
2010-01-01
...— Damaged kernels 1 (percent) Foreign material (percent) Other grains (percent) Skinned and broken kernels....0 10.0 15.0 1 Injured-by-frost kernels and injured-by-mold kernels are not considered damaged kernels or considered against sound barley. Notes: Malting barley shall not be infested in accordance with...
Code of Federal Regulations, 2013 CFR
2013-01-01
... well cured; (e) Poorly developed kernels; (f) Kernels which are dark amber in color; (g) Kernel spots when more than one dark spot is present on either half of the kernel, or when any such spot is more...
Code of Federal Regulations, 2014 CFR
2014-01-01
... well cured; (e) Poorly developed kernels; (f) Kernels which are dark amber in color; (g) Kernel spots when more than one dark spot is present on either half of the kernel, or when any such spot is more...
7 CFR 810.205 - Grades and grade requirements for Two-rowed Malting barley.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (percent) Maximum limits of— Wild oats (percent) Foreign material (percent) Skinned and broken kernels... Injured-by-frost kernels and injured-by-mold kernels are not considered damaged kernels or considered...
Moreira, Alexandre; Massa, Marcelo; Thiengo, Carlos R; Rodrigues Lopes, Rafael Alan; Lima, Marcelo R; Vaeyens, Roel; Barbosa, Wesley P; Aoki, Marcelo S
2017-12-01
The aim of this study was to examine the influence of hormonal status, anthropometric profile, sexual maturity level, and physical performance on the technical abilities of 40 young male soccer players during small-sided games (SSGs). Anthropometric profiling, saliva sampling, sexual maturity assessment (Tanner scale), and physical performance tests (Yo-Yo and vertical jumps) were conducted two weeks prior to the SSGs. Salivary testosterone was determined by the enzyme-linked immunosorbent assay method. Technical performance was determined by the frequency of actions during SSGs. Principal component analyses identified four technical actions of importance: total number of passes, effectiveness, goal attempts, and total tackles. A multivariate canonical correlation analysis was then employed to verify the prediction of a multiple dependent variables set (composed of four technical actions) from an independent set of variables, composed of testosterone concentration, stage of pubic hair and genitalia development, vertical jumps and Yo-Yo performance. A moderate-to-large relationship between the technical performance set and the independent set was observed. The canonical correlation was 0.75 with a canonical R 2 of 0.45. The highest structure coefficient in the technical performance set was observed for tackles (0.77), while testosterone presented the highest structure coefficient (0.75) for the variables of the independent set. The current data suggest that the selected independent set of variables might be useful in predicting SSG performance in young soccer players. Coaches should be aware that physical development plays a key role in technical performance to avoid decision-making mistakes during the selection of young players.
Patient engagement: an investigation at a primary care clinic
Gill, Preetinder Singh
2013-01-01
Background Engaged employees are an asset to any organization. They are instrumental in ensuring good commercial outcomes through continuous innovation and incremental improvement. A health care facility is similar to a regular work setting in many ways. A health care provider and a patient have roles akin to a team leader and a team member/stakeholder, respectively. Hence it can be argued that the concept of employee engagement can be applied to patients in health care settings in order to improve health outcomes. Methods Patient engagement data were collected using a survey instrument from a primary care clinic in the northern Indian state of Punjab. Canonical correlation equations were formulated to identify combinations which were strongly related to each other. In addition, the cause-effect relationship between patient engagement and patient-perceived health outcomes was described using structural equation modeling. Results Canonical correlation analysis showed that the first set of canonical variables had a fairly strong relationship, ie, a magnitude > 0.80 at the 95% confidence interval, for five dimensions of patient engagement. Structural equation modeling analysis yielded a β ≥ 0.10 and a Student’s t statistic ≥ 2.96 for these five dimensions. The threshold Student’s t statistic was 1.99. Hence it was found the β values were significant at the 95% confidence interval for all census regions. Conclusion A scaled reliable survey instrument was developed to measured patient engagement. Better patient engagement is associated with better patient-perceived health outcomes. This study provides preliminary evidence that patient engagement has a causal relationship with patient-perceived health outcomes. PMID:23515133
Paes, Geísa Pinheiro; Viana, José Marcelo Soriano; Silva, Fabyano Fonseca e; Mundim, Gabriel Borges
2016-01-01
Abstract The objectives of this study were to assess linkage disequilibrium (LD) and selection-induced changes in single nucleotide polymorphism (SNP) frequency, and to perform association mapping in popcorn chromosome regions containing quantitative trait loci (QTLs) for quality traits. Seven tropical and two temperate popcorn populations were genotyped for 96 SNPs chosen in chromosome regions containing QTLs for quality traits. The populations were phenotyped for expansion volume, 100-kernel weight, kernel sphericity, and kernel density. The LD statistics were the difference between the observed and expected haplotype frequencies (D), the proportion of D relative to the expected maximum value in the population, and the square of the correlation between the values of alleles at two loci. Association mapping was based on least squares and Bayesian approaches. In the tropical populations, D-values greater than 0.10 were observed for SNPs separated by 100-150 Mb, while most of the D-values in the temperate populations were less than 0.05. Selection for expansion volume indirectly led to increase in LD values, population differentiation, and significant changes in SNP frequency. Some associations were observed for expansion volume and the other quality traits. The candidate genes are involved with starch, storage protein, lipid, and cell wall polysaccharides synthesis. PMID:27007903
Paes, Geísa Pinheiro; Viana, José Marcelo Soriano; Silva, Fabyano Fonseca E; Mundim, Gabriel Borges
2016-03-01
The objectives of this study were to assess linkage disequilibrium (LD) and selection-induced changes in single nucleotide polymorphism (SNP) frequency, and to perform association mapping in popcorn chromosome regions containing quantitative trait loci (QTLs) for quality traits. Seven tropical and two temperate popcorn populations were genotyped for 96 SNPs chosen in chromosome regions containing QTLs for quality traits. The populations were phenotyped for expansion volume, 100-kernel weight, kernel sphericity, and kernel density. The LD statistics were the difference between the observed and expected haplotype frequencies (D), the proportion of D relative to the expected maximum value in the population, and the square of the correlation between the values of alleles at two loci. Association mapping was based on least squares and Bayesian approaches. In the tropical populations, D-values greater than 0.10 were observed for SNPs separated by 100-150 Mb, while most of the D-values in the temperate populations were less than 0.05. Selection for expansion volume indirectly led to increase in LD values, population differentiation, and significant changes in SNP frequency. Some associations were observed for expansion volume and the other quality traits. The candidate genes are involved with starch, storage protein, lipid, and cell wall polysaccharides synthesis.
Zhang, Daqing; Xiao, Jianfeng; Zhou, Nannan; Luo, Xiaomin; Jiang, Hualiang; Chen, Kaixian
2015-01-01
Blood-brain barrier (BBB) is a highly complex physical barrier determining what substances are allowed to enter the brain. Support vector machine (SVM) is a kernel-based machine learning method that is widely used in QSAR study. For a successful SVM model, the kernel parameters for SVM and feature subset selection are the most important factors affecting prediction accuracy. In most studies, they are treated as two independent problems, but it has been proven that they could affect each other. We designed and implemented genetic algorithm (GA) to optimize kernel parameters and feature subset selection for SVM regression and applied it to the BBB penetration prediction. The results show that our GA/SVM model is more accurate than other currently available log BB models. Therefore, to optimize both SVM parameters and feature subset simultaneously with genetic algorithm is a better approach than other methods that treat the two problems separately. Analysis of our log BB model suggests that carboxylic acid group, polar surface area (PSA)/hydrogen-bonding ability, lipophilicity, and molecular charge play important role in BBB penetration. Among those properties relevant to BBB penetration, lipophilicity could enhance the BBB penetration while all the others are negatively correlated with BBB penetration. PMID:26504797
TIME-DOMAIN METHODS FOR DIFFUSIVE TRANSPORT IN SOFT MATTER
Fricks, John; Yao, Lingxing; Elston, Timothy C.; Gregory Forest, And M.
2015-01-01
Passive microrheology [12] utilizes measurements of noisy, entropic fluctuations (i.e., diffusive properties) of micron-scale spheres in soft matter to infer bulk frequency-dependent loss and storage moduli. Here, we are concerned exclusively with diffusion of Brownian particles in viscoelastic media, for which the Mason-Weitz theoretical-experimental protocol is ideal, and the more challenging inference of bulk viscoelastic moduli is decoupled. The diffusive theory begins with a generalized Langevin equation (GLE) with a memory drag law specified by a kernel [7, 16, 22, 23]. We start with a discrete formulation of the GLE as an autoregressive stochastic process governing microbead paths measured by particle tracking. For the inverse problem (recovery of the memory kernel from experimental data) we apply time series analysis (maximum likelihood estimators via the Kalman filter) directly to bead position data, an alternative to formulas based on mean-squared displacement statistics in frequency space. For direct modeling, we present statistically exact GLE algorithms for individual particle paths as well as statistical correlations for displacement and velocity. Our time-domain methods rest upon a generalization of well-known results for a single-mode exponential kernel [1, 7, 22, 23] to an arbitrary M-mode exponential series, for which the GLE is transformed to a vector Ornstein-Uhlenbeck process. PMID:26412904
Lack of Host Specialization in Aspergillus flavus
St. Leger, Raymond J.; Screen, Steven E.; Shams-Pirzadeh, Bijan
2000-01-01
Aspergillus spp. cause disease in a broad range of organisms, but it is unknown if strains are specialized for particular hosts. We evaluated isolates of Aspergillus flavus, Aspergillus fumigatus, and Aspergillus nidulans for their ability to infect bean leaves, corn kernels, and insects (Galleria mellonella). Strains of A. flavus did not affect nonwounded bean leaves, corn kernels, or insects at 22°C, but they killed insects following hemocoelic challenge and caused symptoms ranging from moderate to severe in corn kernels and bean leaves injured during inoculation. The pectinase P2c, implicated in aggressive colonization of cotton bolls, is produced by most A. flavus isolates, but its absence did not prevent colonization of bean leaves. Proteases have been implicated in colonization of animal hosts. All A. flavus strains produced very similar patterns of protease isozymes when cultured on horse lung polymers. Quantitative differences in protease levels did not correlate with the ability to colonize insects. In contrast to A. flavus, strains of A. nidulans and A. fumigatus could not invade living insect or plant tissues or resist digestion by insect hemocytes. Our results indicate that A. flavus has parasitic attributes that are lacking in A. fumigatus and A. nidulans but that individual strains of A. flavus are not specialized to particular hosts. PMID:10618242
[Job stress of nursing aides in Swiss nursing homes : Nonlinear canonical analysis].
Ziegler, A; Bernet, M; Metzenthin, P; Conca, A; Hahn, S
2016-08-01
Due to demographic changes, the demand for care in nursing homes for the elderly and infirmed is growing. At the same time nursing staff shortages are also increasing. Nursing aides are the primary care providers and comprise the largest staff group in Swiss nursing homes. They are exposed to various forms of job stress, which threaten job retention. The aim of this study was to discover which features of the work situation and which personal characteristics of the nursing aides were related to the workload. Data from nursing aides in Swiss nursing homes were investigated through a secondary analysis of a national quantitative cross-sectional study, using descriptive statistics and a nonlinear canonical correlation analysis. A total of 1054 nursing aides were included in the secondary analysis, 94.6 % of whom were women between the ages of 42 and 61 years. The job stress most frequently mentioned in the descriptive analysis, almost 60 % of the participants referred to it, was staff shortage. The nonlinear canonical correlation analysis revealed that many job strains are caused by social and organizational issues. In particular, a lack of support from supervisors was associated with staff not feeling appreciated. These job strains correlated with a high level of responsibility, the feeling of being unable to work independently and a feeling of being exploited. These strains were predominant in the nursing aides between 32 and 51 years old who had part time jobs but workloads of 80-90 %. Middle-aged nursing aides who worked to 80-90 % are particularly at risk to resign from the position prematurely. Measures need to be mainly implemented in the social and organizational areas. It can be assumed that a targeted individual support, recognition and promotion of nursing aides may decrease the level of job strain.
Coping styles used by sexual minority men who experience intimate partner violence.
Goldberg-Looney, Lisa D; Perrin, Paul B; Snipes, Daniel J; Calton, Jenna M
2016-12-01
This study examined the coping styles used by sexual minority men who have experienced intimate partner violence, including sexual, emotional and physical victimisation, as well as physical injury. Although sexual minority men experience intimate partner violence at least as often as do heterosexuals, there is currently limited knowledge of intimate partner violence in this community or resources for sexual minority men who experience intimate partner violence. Cross-sectional design. Sexual minority men (N = 89) were recruited as part of a national online survey and completed questionnaires assessing lifetime experiences of intimate partner violence as well as various coping strategies. In terms of intimate partner violence, 34·8% of participants reported having been targets of sexual abuse, 38·2% targets of physical abuse, 69·7% targets of psychological abuse and 28·1% had experienced an injury as a result of intimate partner violence during their lifetime. Canonical correlation analyses found that intimate partner violence victimisation explained 32·5% of the variance in adaptive and 31·4% of the variance in maladaptive coping behaviours. In the adaptive coping canonical correlation, standardised loadings suggested that sexual minority men who experienced intimate partner violence resulting in injury were more likely to use religious coping, but less likely to use planning coping. In the maladaptive coping canonical correlation, sexual minority men who had been targets of intimate partner sexual victimisation and intimate partner violence resulting in injury tended to engage in increased behavioural disengagement coping. This study revealed several coping behaviours that are more or less likely as the severity of different forms of intimate partner violence increases. The identification of these coping styles could be applied to the development and modification of evidence-based interventions to foster effective and discourage ineffective coping styles, thereby improving outcomes for sexual minority men who experience intimate partner violence. © 2016 John Wiley & Sons Ltd.
Detection of ochratoxin A contamination in stored wheat using near-infrared hyperspectral imaging
NASA Astrophysics Data System (ADS)
Senthilkumar, T.; Jayas, D. S.; White, N. D. G.; Fields, P. G.; Gräfenhan, T.
2017-03-01
Near-infrared (NIR) hyperspectral imaging system was used to detect five concentration levels of ochratoxin A (OTA) in contaminated wheat kernels. The wheat kernels artificially inoculated with two different OTA producing Penicillium verrucosum strains, two different non-toxigenic P. verrucosum strains, and sterile control wheat kernels were subjected to NIR hyperspectral imaging. The acquired three-dimensional data were reshaped into readable two-dimensional data. Principal Component Analysis (PCA) was applied to the two dimensional data to identify the key wavelengths which had greater significance in detecting OTA contamination in wheat. Statistical and histogram features extracted at the key wavelengths were used in the linear, quadratic and Mahalanobis statistical discriminant models to differentiate between sterile control, five concentration levels of OTA contamination in wheat kernels, and five infection levels of non-OTA producing P. verrucosum inoculated wheat kernels. The classification models differentiated sterile control samples from OTA contaminated wheat kernels and non-OTA producing P. verrucosum inoculated wheat kernels with a 100% accuracy. The classification models also differentiated between five concentration levels of OTA contaminated wheat kernels and between five infection levels of non-OTA producing P. verrucosum inoculated wheat kernels with a correct classification of more than 98%. The non-OTA producing P. verrucosum inoculated wheat kernels and OTA contaminated wheat kernels subjected to hyperspectral imaging provided different spectral patterns.
Application of kernel method in fluorescence molecular tomography
NASA Astrophysics Data System (ADS)
Zhao, Yue; Baikejiang, Reheman; Li, Changqing
2017-02-01
Reconstruction of fluorescence molecular tomography (FMT) is an ill-posed inverse problem. Anatomical guidance in the FMT reconstruction can improve FMT reconstruction efficiently. We have developed a kernel method to introduce the anatomical guidance into FMT robustly and easily. The kernel method is from machine learning for pattern analysis and is an efficient way to represent anatomical features. For the finite element method based FMT reconstruction, we calculate a kernel function for each finite element node from an anatomical image, such as a micro-CT image. Then the fluorophore concentration at each node is represented by a kernel coefficient vector and the corresponding kernel function. In the FMT forward model, we have a new system matrix by multiplying the sensitivity matrix with the kernel matrix. Thus, the kernel coefficient vector is the unknown to be reconstructed following a standard iterative reconstruction process. We convert the FMT reconstruction problem into the kernel coefficient reconstruction problem. The desired fluorophore concentration at each node can be calculated accordingly. Numerical simulation studies have demonstrated that the proposed kernel-based algorithm can improve the spatial resolution of the reconstructed FMT images. In the proposed kernel method, the anatomical guidance can be obtained directly from the anatomical image and is included in the forward modeling. One of the advantages is that we do not need to segment the anatomical image for the targets and background.
Credit scoring analysis using kernel discriminant
NASA Astrophysics Data System (ADS)
Widiharih, T.; Mukid, M. A.; Mustafid
2018-05-01
Credit scoring model is an important tool for reducing the risk of wrong decisions when granting credit facilities to applicants. This paper investigate the performance of kernel discriminant model in assessing customer credit risk. Kernel discriminant analysis is a non- parametric method which means that it does not require any assumptions about the probability distribution of the input. The main ingredient is a kernel that allows an efficient computation of Fisher discriminant. We use several kernel such as normal, epanechnikov, biweight, and triweight. The models accuracy was compared each other using data from a financial institution in Indonesia. The results show that kernel discriminant can be an alternative method that can be used to determine who is eligible for a credit loan. In the data we use, it shows that a normal kernel is relevant to be selected for credit scoring using kernel discriminant model. Sensitivity and specificity reach to 0.5556 and 0.5488 respectively.
Chung, Moo K.; Qiu, Anqi; Seo, Seongho; Vorperian, Houri K.
2014-01-01
We present a novel kernel regression framework for smoothing scalar surface data using the Laplace-Beltrami eigenfunctions. Starting with the heat kernel constructed from the eigenfunctions, we formulate a new bivariate kernel regression framework as a weighted eigenfunction expansion with the heat kernel as the weights. The new kernel regression is mathematically equivalent to isotropic heat diffusion, kernel smoothing and recently popular diffusion wavelets. Unlike many previous partial differential equation based approaches involving diffusion, our approach represents the solution of diffusion analytically, reducing numerical inaccuracy and slow convergence. The numerical implementation is validated on a unit sphere using spherical harmonics. As an illustration, we have applied the method in characterizing the localized growth pattern of mandible surfaces obtained in CT images from subjects between ages 0 and 20 years by regressing the length of displacement vectors with respect to the template surface. PMID:25791435
The canonical semantic network supports residual language function in chronic post-stroke aphasia
Griffis, Joseph C.; Nenert, Rodolphe; Allendorfer, Jane B.; Vannest, Jennifer; Holland, Scott; Dietz, Aimee; Szaflarski, Jerzy P.
2016-01-01
Current theories of language recovery after stroke are limited by a reliance on small studies. Here, we aimed to test predictions of current theory and resolve inconsistencies regarding right hemispheric contributions to long-term recovery. We first defined the canonical semantic network in 43 healthy controls. Then, in a group of 43 patients with chronic post-stroke aphasia, we tested whether activity in this network predicted performance on measures of semantic comprehension, naming, and fluency while controlling for lesion volume effects. Canonical network activation accounted for 22–33% of the variance in language test scores. Whole-brain analyses corroborated these findings, and revealed a core set of regions showing positive relationships to all language measures. We next evaluated the relationship between activation magnitudes in left and right hemispheric portions of the network, and characterized how right hemispheric activation related to the extent of left hemispheric damage. Activation magnitudes in each hemispheric network were strongly correlated, but four right frontal regions showed heightened activity in patients with large lesions. Activity in two of these regions (inferior frontal gyrus pars opercularis and supplementary motor area) was associated with better language abilities in patients with larger lesions, but poorer language abilities in patients with smaller lesions. Our results indicate that bilateral language networks support language processing after stroke, and that right hemispheric activations related to extensive left hemisphere damage occur outside of the canonical semantic network and differentially relate to behavior depending on the extent of left hemispheric damage. PMID:27981674
Emergence of superconductivity in the canonical heavy-electron metal YbRh₂Si₂.
Schuberth, Erwin; Tippmann, Marc; Steinke, Lucia; Lausberg, Stefan; Steppke, Alexander; Brando, Manuel; Krellner, Cornelius; Geibel, Christoph; Yu, Rong; Si, Qimiao; Steglich, Frank
2016-01-29
The smooth disappearance of antiferromagnetic order in strongly correlated metals commonly furnishes the development of unconventional superconductivity. The canonical heavy-electron compound YbRh2Si2 seems to represent an apparent exception from this quantum critical paradigm in that it is not a superconductor at temperature T ≥ 10 millikelvin (mK). Here we report magnetic and calorimetric measurements on YbRh2Si2, down to temperatures as low as T ≈ 1 mK. The data reveal the development of nuclear antiferromagnetic order slightly above 2 mK and of heavy-electron superconductivity almost concomitantly with this order. Our results demonstrate that superconductivity in the vicinity of quantum criticality is a general phenomenon. Copyright © 2016, American Association for the Advancement of Science.
NASA Technical Reports Server (NTRS)
Otto, Christian; Ploutz-Snyder, R.
2015-01-01
The detection of the first VIIP case occurred in 2005, and adequate eye outcome measures were available for 31 (67.4%) of the 46 long duration US crewmembers who had flown on the ISS since its first crewed mission in 2000. Therefore, this analysis is limited to a subgroup (22 males and 9 females). A "cardiovascular profile" for each astronaut was compiled by examining twelve individual parameters; eleven of these were preflight variables: systolic blood pressure, pulse pressure, body mass index, percentage body fat, LDL, HDL, triglycerides, use of anti-lipid medication, fasting serum glucose, and maximal oxygen uptake in ml/kg. Each of these variables was averaged across three preflight annual physical exams. Astronaut age prior to the long duration mission, and inflight salt intake was also included in the analysis. The group of cardiovascular variables for each crew member was compared with seven VIIP eye outcome variables collected during the immediate post-flight period: anterior-posterior axial length of the globe measured by ultrasound and optical biometry; optic nerve sheath diameter, optic nerve diameter, and optic nerve to sheath ratio- each measured by ultrasound and magnetic resonance imaging (MRI), intraocular pressure (IOP), change in manifest refraction, mean retinal nerve fiber layer (RNFL) on optical coherence tomography (OCT), and RNFL of the inferior and superior retinal quadrants. Since most of the VIIP eye outcome measures were added sequentially beginning in 2005, as knowledge of the syndrome improved, data were unavailable for 22.0% of the outcome measurements. To address the missing data, we employed multivariate multiple imputation techniques with predictive mean matching methods to accumulate 200 separate imputed datasets for analysis. We were able to impute data for the 22.0% of missing VIIP eye outcomes. We then applied Rubin's rules for collapsing the statistical results across our 200 multiply imputed data sets to assess the canonical correlation between the eye outcomes and the twelve astronaut cardiovascular variables available for all 31 subjects. Results: A highly significant canonical correlation was observed among the canonical solutions (p<.00001), with an average best canonical correlation of.97. The results suggest a strong association between astronauts' measures of cardiovascular health and the seven eye outcomes of the VIIP syndrome used in this analysis. Furthermore, the "joint test" revealed a significant difference in cardiovascular profile between male and female astronauts (Prob > F = 0.00001). Overall, female astronauts demonstrated a significantly healthier cardiovascular status. Individually, the female astronauts had significantly healthier profiles on seven of twelve cardiovascular variables than the men (p values ranging from <0.0001 to <0.05). Male astronauts did not demonstrate significantly healthier values on any of the twelve cardiovascular variables measured
Classification of Phylogenetic Profiles for Protein Function Prediction: An SVM Approach
NASA Astrophysics Data System (ADS)
Kotaru, Appala Raju; Joshi, Ramesh C.
Predicting the function of an uncharacterized protein is a major challenge in post-genomic era due to problems complexity and scale. Having knowledge of protein function is a crucial link in the development of new drugs, better crops, and even the development of biochemicals such as biofuels. Recently numerous high-throughput experimental procedures have been invented to investigate the mechanisms leading to the accomplishment of a protein’s function and Phylogenetic profile is one of them. Phylogenetic profile is a way of representing a protein which encodes evolutionary history of proteins. In this paper we proposed a method for classification of phylogenetic profiles using supervised machine learning method, support vector machine classification along with radial basis function as kernel for identifying functionally linked proteins. We experimentally evaluated the performance of the classifier with the linear kernel, polynomial kernel and compared the results with the existing tree kernel. In our study we have used proteins of the budding yeast saccharomyces cerevisiae genome. We generated the phylogenetic profiles of 2465 yeast genes and for our study we used the functional annotations that are available in the MIPS database. Our experiments show that the performance of the radial basis kernel is similar to polynomial kernel is some functional classes together are better than linear, tree kernel and over all radial basis kernel outperformed the polynomial kernel, linear kernel and tree kernel. In analyzing these results we show that it will be feasible to make use of SVM classifier with radial basis function as kernel to predict the gene functionality using phylogenetic profiles.
Steckel, S; Stewart, S D
2015-06-01
Ear-feeding larvae, such as corn earworm, Helicoverpa zea Boddie (Lepidoptera: Noctuidae), can be important insect pests of field corn, Zea mays L., by feeding on kernels. Recently introduced, stacked Bacillus thuringiensis (Bt) traits provide improved protection from ear-feeding larvae. Thus, our objective was to evaluate how injury to kernels in the ear tip might affect yield when this injury was inflicted at the blister and milk stages. In 2010, simulated corn earworm injury reduced total kernel weight (i.e., yield) at both the blister and milk stage. In 2011, injury to ear tips at the milk stage affected total kernel weight. No differences in total kernel weight were found in 2013, regardless of when or how much injury was inflicted. Our data suggested that kernels within the same ear could compensate for injury to ear tips by increasing in size, but this increase was not always statistically significant or sufficient to overcome high levels of kernel injury. For naturally occurring injury observed on multiple corn hybrids during 2011 and 2012, our analyses showed either no or a minimal relationship between number of kernels injured by ear-feeding larvae and the total number of kernels per ear, total kernel weight, or the size of individual kernels. The results indicate that intraear compensation for kernel injury to ear tips can occur under at least some conditions. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Modelling Nonlinear Dynamic Textures using Hybrid DWT-DCT and Kernel PCA with GPU
NASA Astrophysics Data System (ADS)
Ghadekar, Premanand Pralhad; Chopade, Nilkanth Bhikaji
2016-12-01
Most of the real-world dynamic textures are nonlinear, non-stationary, and irregular. Nonlinear motion also has some repetition of motion, but it exhibits high variation, stochasticity, and randomness. Hybrid DWT-DCT and Kernel Principal Component Analysis (KPCA) with YCbCr/YIQ colour coding using the Dynamic Texture Unit (DTU) approach is proposed to model a nonlinear dynamic texture, which provides better results than state-of-art methods in terms of PSNR, compression ratio, model coefficients, and model size. Dynamic texture is decomposed into DTUs as they help to extract temporal self-similarity. Hybrid DWT-DCT is used to extract spatial redundancy. YCbCr/YIQ colour encoding is performed to capture chromatic correlation. KPCA is applied to capture nonlinear motion. Further, the proposed algorithm is implemented on Graphics Processing Unit (GPU), which comprise of hundreds of small processors to decrease time complexity and to achieve parallelism.
Critical reflexivity in financial markets: a Hawkes process analysis
NASA Astrophysics Data System (ADS)
Hardiman, Stephen J.; Bercot, Nicolas; Bouchaud, Jean-Philippe
2013-10-01
We model the arrival of mid-price changes in the E-mini S&P futures contract as a self-exciting Hawkes process. Using several estimation methods, we find that the Hawkes kernel is power-law with a decay exponent close to -1.15 at short times, less than ≈ 103 s, and crosses over to a second power-law regime with a larger decay exponent ≈-1.45 for longer times scales in the range [ 103,106 ] seconds. More importantly, we find that the Hawkes kernel integrates to unity independently of the analysed period, from 1998 to 2011. This suggests that markets are and have always been close to criticality, challenging a recent study which indicates that reflexivity (endogeneity) has increased in recent years as a result of increased automation of trading. However, we note that the scale over which market events are correlated has decreased steadily over time with the emergence of higher frequency trading.
[Determination of acidity and vitamin C in apples using portable NIR analyzer].
Yang, Fan; Li, Ya-Ting; Gu, Xuan; Ma, Jiang; Fan, Xing; Wang, Xiao-Xuan; Zhang, Zhuo-Yong
2011-09-01
Near infrared (NIR) spectroscopy technology based on a portable NIR analyzer, combined with kernel Isomap algorithm and generalized regression neural network (GRNN) has been applied to establishing quantitative models for prediction of acidity and vitamin C in six kinds of apple samples. The obtained results demonstrated that the fitting and the predictive accuracy of the models with kernel Isomap algorithm were satisfactory. The correlation between actual and predicted values of calibration samples (R(c)) obtained by the acidity model was 0.999 4, and for prediction samples (R(p)) was 0.979 9. The root mean square error of prediction set (RMSEP) was 0.055 8. For the vitamin C model, R(c) was 0.989 1, R(p) was 0.927 2, and RMSEP was 4.043 1. Results proved that the portable NIR analyzer can be a feasible tool for the determination of acidity and vitamin C in apples.
van Erp Taalman Kip, Rogier M; Hutschemaekers, Giel J M
2018-03-30
The literature suggests a distinction between illness (negative health) and the ability to cope with challenges such as illness (positive health). The two continua model of mental health distinguishes psychiatric symptoms (illness) from well-being (positive health). Well-being consists of hedonic, eudaimonic, and social well-being, constituting one factor that is moderately correlated with psychopathology in the general population. In a mental health care population, we examined whether the three dimensions of well-being are distinguishable and whether well-being is also moderately correlated with symptoms. A representative sample of 1,069 patients (63% female, 47% male; mean age: 42 years) voluntarily completed the Mental Health Continuum-Short Form (MHC-SF), a 14-item test that assesses three components of well-being. Confirmatory factor analysis revealed a model with strong correlations between the three subscales of the MHC-SF, indicating poor discriminant validity. Furthermore, the MHC-SF was strongly correlated (r = -.71) with the symptomatic distress scale of the OQ-45. Exploratory factor analysis permitted a two-factor solution, providing support for the two continua model of mental health. However, the explained variance of the second factor (well-being) was meager in comparison with the first factor (psychopathology). The results of a canonic correlation did not confirm the two continua model, and only a model with one common canonical factor was significant. For patients with clinical levels of psychopathology, the level of well-being and psychopathology correlate much higher than in the general population. Well-being and psychopathology are so entwined that the supposed distinction should be seriously questioned. © 2018 Wiley Periodicals, Inc.
Evidence-based Kernels: Fundamental Units of Behavioral Influence
Biglan, Anthony
2008-01-01
This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior–influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of its components would render it inert. Existing evidence shows that a variety of kernels can influence behavior in context, and some evidence suggests that frequent use or sufficient use of some kernels may produce longer lasting behavioral shifts. The analysis of kernels could contribute to an empirically based theory of behavioral influence, augment existing prevention or treatment efforts, facilitate the dissemination of effective prevention and treatment practices, clarify the active ingredients in existing interventions, and contribute to efficiently developing interventions that are more effective. Kernels involve one or more of the following mechanisms of behavior influence: reinforcement, altering antecedents, changing verbal relational responding, or changing physiological states directly. The paper describes 52 of these kernels, and details practical, theoretical, and research implications, including calling for a national database of kernels that influence human behavior. PMID:18712600
Integrating the Gradient of the Thin Wire Kernel
NASA Technical Reports Server (NTRS)
Champagne, Nathan J.; Wilton, Donald R.
2008-01-01
A formulation for integrating the gradient of the thin wire kernel is presented. This approach employs a new expression for the gradient of the thin wire kernel derived from a recent technique for numerically evaluating the exact thin wire kernel. This approach should provide essentially arbitrary accuracy and may be used with higher-order elements and basis functions using the procedure described in [4].When the source and observation points are close, the potential integrals over wire segments involving the wire kernel are split into parts to handle the singular behavior of the integrand [1]. The singularity characteristics of the gradient of the wire kernel are different than those of the wire kernel, and the axial and radial components have different singularities. The characteristics of the gradient of the wire kernel are discussed in [2]. To evaluate the near electric and magnetic fields of a wire, the integration of the gradient of the wire kernel needs to be calculated over the source wire. Since the vector bases for current have constant direction on linear wire segments, these integrals reduce to integrals of the form
Ranking Support Vector Machine with Kernel Approximation
Dou, Yong
2017-01-01
Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms. PMID:28293256
Ranking Support Vector Machine with Kernel Approximation.
Chen, Kai; Li, Rongchun; Dou, Yong; Liang, Zhengfa; Lv, Qi
2017-01-01
Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sankar, I. V., E-mail: ivshankar27@gmail.com; Chatterjee, Ashok, E-mail: ivshankar27@gmail.com
2014-04-24
The two-dimensional extended Holstein-Hubbard model (EHH) has been considered at strong correlation regime in the non-half-filled band case to understand the self-trapping transition of electrons in strongly correlated electron system. We have used the method of optimized canonical transformations to transform an EHH model into an effective extended Hubbard (EEH) model. In the strong on-site correlation limit an EH model can be transformed into a t-J model which is finally solved using Hartree-Fock approximation (HFA). We found that, for non-half-filled band case, the transition is abrupt in the adiabatic region whereas it is continuous in the anti-adiabatic region.
Interlayer tunneling in a strongly correlated electron-phonon system
NASA Astrophysics Data System (ADS)
Mierzejewski, M.; Zieliński, J.
1996-10-01
We discuss the role of interlayer tunneling for superconducting properties of strongly correlated (U-->∞ limit) two-layer Hubbard model coupled to phonons. Strong correlations are taken into account within the mean-field approximation for auxiliary boson fields. To consider phonon-mediated and interlayer tunneling contribution to superconductivity on equal footing we incorporate the tunneling term into the generalized Eliashberg equations. This leads to the modification of the phonon-induced pairing kernel and implies a pronounced enhancement of the superconducting transition temperature in the d-wave channel for moderate doping. In numerical calculations the two-dimensional band structure has been explicitly taken into account. The relevance of our results for high-temperature superconductors is briefly discussed.
Code of Federal Regulations, 2011 CFR
2011-04-01
... source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea L. Persic oil (see apricot kernel and peach kernel) Quince seed...
Code of Federal Regulations, 2013 CFR
2013-04-01
... source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea L. Persic oil (see apricot kernel and peach kernel) Quince seed...
Code of Federal Regulations, 2012 CFR
2012-04-01
... source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea L. Persic oil (see apricot kernel and peach kernel) Quince seed...
Wigner functions defined with Laplace transform kernels.
Oh, Se Baek; Petruccelli, Jonathan C; Tian, Lei; Barbastathis, George
2011-10-24
We propose a new Wigner-type phase-space function using Laplace transform kernels--Laplace kernel Wigner function. Whereas momentum variables are real in the traditional Wigner function, the Laplace kernel Wigner function may have complex momentum variables. Due to the property of the Laplace transform, a broader range of signals can be represented in complex phase-space. We show that the Laplace kernel Wigner function exhibits similar properties in the marginals as the traditional Wigner function. As an example, we use the Laplace kernel Wigner function to analyze evanescent waves supported by surface plasmon polariton. © 2011 Optical Society of America
Online learning control using adaptive critic designs with sparse kernel machines.
Xu, Xin; Hou, Zhongsheng; Lian, Chuanqiang; He, Haibo
2013-05-01
In the past decade, adaptive critic designs (ACDs), including heuristic dynamic programming (HDP), dual heuristic programming (DHP), and their action-dependent ones, have been widely studied to realize online learning control of dynamical systems. However, because neural networks with manually designed features are commonly used to deal with continuous state and action spaces, the generalization capability and learning efficiency of previous ACDs still need to be improved. In this paper, a novel framework of ACDs with sparse kernel machines is presented by integrating kernel methods into the critic of ACDs. To improve the generalization capability as well as the computational efficiency of kernel machines, a sparsification method based on the approximately linear dependence analysis is used. Using the sparse kernel machines, two kernel-based ACD algorithms, that is, kernel HDP (KHDP) and kernel DHP (KDHP), are proposed and their performance is analyzed both theoretically and empirically. Because of the representation learning and generalization capability of sparse kernel machines, KHDP and KDHP can obtain much better performance than previous HDP and DHP with manually designed neural networks. Simulation and experimental results of two nonlinear control problems, that is, a continuous-action inverted pendulum problem and a ball and plate control problem, demonstrate the effectiveness of the proposed kernel ACD methods.
do Nascimento Silva, Jaqueline; Mascarin, Gabriel Moura; Dos Santos Gomes, Isabel Cristina; Tinôco, Ricardo Salles; Quintela, Eliane Dias; Dos Reis Castilho, Leda; Freire, Denise Maria Guimarães
2018-03-01
The present study aimed to add value to palm oil by-products as substrates to efficiently produce conidia of Beauveria bassiana and Isaria javanica (Hypocreales: Cordycipitaceae) for biological control of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae), through a solid-state fermentation process using palm kernel cake and palm fiber as nutrient source and solid matrix, respectively. The optimum culture conditions yielded high concentrations of viable conidia after air-drying, when the fungi were grown on palm kernel cake (B. bassiana 7.65 × 10 9 and I. javanica 2.91 × 10 9 conidia g -1 dry substrate) after 6 days under optimal growth conditions set to 60% substrate moisture and 32 °C. Both fungal strains exhibited high efficacy against third-instar whitefly nymphs, inducing mortality up to 62.9 and 56.6% by B. bassiana and I. javanica, respectively, assessed after 9 days post-application in a screenhouse. Furthermore, we noted that insect mortality was strongly correlated with high atmospheric moisture, while B. bassiana appeared to require shorter accumulative hours under high moisture to kill whitefly nymphs compared to I. javanica. Our results underpin a feasible and cost-effective mass production method for aerial conidia, using palm kernel as the main substrate in order to produce efficacious fungal bioinsecticides against an invasive whitefly species in Brazil. Finally, our fermentation process may offer a sustainable and cost-effective means to produce eco-friendly mycoinsecticides, using an abundant agro-industrial by-product from Brazil that will ultimately assist in the integrated management of agricultural insect pests.
Anifah, Lilik; Purnama, I Ketut Eddy; Hariadi, Mochamad; Purnomo, Mauridhi Hery
2013-01-01
Localization is the first step in osteoarthritis (OA) classification. Manual classification, however, is time-consuming, tedious, and expensive. The proposed system is designed as decision support system for medical doctors to classify the severity of knee OA. A method has been proposed here to localize a joint space area for OA and then classify it in 4 steps to classify OA into KL-Grade 0, KL-Grade 1, KL-Grade 2, KL-Grade 3 and KL-Grade 4, which are preprocessing, segmentation, feature extraction, and classification. In this proposed system, right and left knee detection was performed by employing the Contrast-Limited Adaptive Histogram Equalization (CLAHE) and the template matching. The Gabor kernel, row sum graph and moment methods were used to localize the junction space area of knee. CLAHE is used for preprocessing step, i.e.to normalize the varied intensities. The segmentation process was conducted using the Gabor kernel, template matching, row sum graph and gray level center of mass method. Here GLCM (contrast, correlation, energy, and homogeinity) features were employed as training data. Overall, 50 data were evaluated for training and 258 data for testing. Experimental results showed the best performance by using gabor kernel with parameters α=8, θ=0, Ψ=[0 π/2], γ=0,8, N=4 and with number of iterations being 5000, momentum value 0.5 and α0=0.6 for the classification process. The run gave classification accuracy rate of 93.8% for KL-Grade 0, 70% for KL-Grade 1, 4% for KL-Grade 2, 10% for KL-Grade 3 and 88.9% for KL-Grade 4.
Anifah, Lilik; Purnama, I Ketut Eddy; Hariadi, Mochamad; Purnomo, Mauridhi Hery
2013-01-01
Localization is the first step in osteoarthritis (OA) classification. Manual classification, however, is time-consuming, tedious, and expensive. The proposed system is designed as decision support system for medical doctors to classify the severity of knee OA. A method has been proposed here to localize a joint space area for OA and then classify it in 4 steps to classify OA into KL-Grade 0, KL-Grade 1, KL-Grade 2, KL-Grade 3 and KL-Grade 4, which are preprocessing, segmentation, feature extraction, and classification. In this proposed system, right and left knee detection was performed by employing the Contrast-Limited Adaptive Histogram Equalization (CLAHE) and the template matching. The Gabor kernel, row sum graph and moment methods were used to localize the junction space area of knee. CLAHE is used for preprocessing step, i.e.to normalize the varied intensities. The segmentation process was conducted using the Gabor kernel, template matching, row sum graph and gray level center of mass method. Here GLCM (contrast, correlation, energy, and homogeinity) features were employed as training data. Overall, 50 data were evaluated for training and 258 data for testing. Experimental results showed the best performance by using gabor kernel with parameters α=8, θ=0, Ψ=[0 π/2], γ=0,8, N=4 and with number of iterations being 5000, momentum value 0.5 and α0=0.6 for the classification process. The run gave classification accuracy rate of 93.8% for KL-Grade 0, 70% for KL-Grade 1, 4% for KL-Grade 2, 10% for KL-Grade 3 and 88.9% for KL-Grade 4. PMID:23525188
Optimisation of quantitative lung SPECT applied to mild COPD: a software phantom simulation study.
Norberg, Pernilla; Olsson, Anna; Alm Carlsson, Gudrun; Sandborg, Michael; Gustafsson, Agnetha
2015-01-01
The amount of inhomogeneities in a (99m)Tc Technegas single-photon emission computed tomography (SPECT) lung image, caused by reduced ventilation in lung regions affected by chronic obstructive pulmonary disease (COPD), is correlated to disease advancement. A quantitative analysis method, the CVT method, measuring these inhomogeneities was proposed in earlier work. To detect mild COPD, which is a difficult task, optimised parameter values are needed. In this work, the CVT method was optimised with respect to the parameter values of acquisition, reconstruction and analysis. The ordered subset expectation maximisation (OSEM) algorithm was used for reconstructing the lung SPECT images. As a first step towards clinical application of the CVT method in detecting mild COPD, this study was based on simulated SPECT images of an advanced anthropomorphic lung software phantom including respiratory and cardiac motion, where the mild COPD lung had an overall ventilation reduction of 5%. The best separation between healthy and mild COPD lung images as determined using the CVT measure of ventilation inhomogeneity and 125 MBq (99m)Tc was obtained using a low-energy high-resolution collimator (LEHR) and a power 6 Butterworth post-filter with a cutoff frequency of 0.6 to 0.7 cm(-1). Sixty-four reconstruction updates and a small kernel size should be used when the whole lung is analysed, and for the reduced lung a greater number of updates and a larger kernel size are needed. A LEHR collimator and 125 (99m)Tc MBq together with an optimal combination of cutoff frequency, number of updates and kernel size, gave the best result. Suboptimal selections of either cutoff frequency, number of updates and kernel size will reduce the imaging system's ability to detect mild COPD in the lung phantom.
Bischel, Alexander; Stratis, Andreas; Kakar, Apoorv; Bosmans, Hilde; Jacobs, Reinhilde; Gassner, Eva-Maria; Puelacher, Wolfgang; Pauwels, Ruben
2016-01-01
Objective: The aim of this study was to evaluate whether application of ultralow dose protocols and iterative reconstruction technology (IRT) influence quantitative Hounsfield units (HUs) and contrast-to-noise ratio (CNR) in dentomaxillofacial CT imaging. Methods: A phantom with inserts of five types of materials was scanned using protocols for (a) a clinical reference for navigated surgery (CT dose index volume 36.58 mGy), (b) low-dose sinus imaging (18.28 mGy) and (c) four ultralow dose imaging (4.14, 2.63, 0.99 and 0.53 mGy). All images were reconstructed using: (i) filtered back projection (FBP); (ii) IRT: adaptive statistical iterative reconstruction-50 (ASIR-50), ASIR-100 and model-based iterative reconstruction (MBIR); and (iii) standard (std) and bone kernel. Mean HU, CNR and average HU error after recalibration were determined. Each combination of protocols was compared using Friedman analysis of variance, followed by Dunn's multiple comparison test. Results: Pearson's sample correlation coefficients were all >0.99. Ultralow dose protocols using FBP showed errors of up to 273 HU. Std kernels had less HU variability than bone kernels. MBIR reduced the error value for the lowest dose protocol to 138 HU and retained the highest relative CNR. ASIR could not demonstrate significant advantages over FBP. Conclusions: Considering a potential dose reduction as low as 1.5% of a std protocol, ultralow dose protocols and IRT should be further tested for clinical dentomaxillofacial CT imaging. Advances in knowledge: HU as a surrogate for bone density may vary significantly in CT ultralow dose imaging. However, use of std kernels and MBIR technology reduce HU error values and may retain the highest CNR. PMID:26859336
Cabral, Adrian L; Jordan, Mark C; Larson, Gary; Somers, Daryl J; Humphreys, D Gavin; McCartney, Curt A
2018-01-01
Kernel morphology characteristics of wheat are complex and quantitatively inherited. A doubled haploid (DH) population of the cross RL4452/'AC Domain' was used to study the genetic basis of seed shape. Quantitative trait loci (QTL) analyses were conducted on a total of 18 traits: 14 grain shape traits, flour yield (Fyd), and three agronomic traits (Plant height [Plht], 1000 Grain weight [Gwt], Test weight [Twt]), using data from trial locations at Glenlea, Brandon, and Morden in Manitoba, Canada, between 1999 and 2004. Kernel shape was studied through digital image analysis with an Acurum® grain analyzer. Plht, Gwt, Twt, Fyd, and grain shape QTL were correlated with each other and QTL analysis revealed that QTL for these traits often mapped to the same genetic locations. The most significant QTL for the grain shape traits were located on chromosomes 4B and 4D, each accounting for up to 24.4% and 53.3% of the total phenotypic variation, respectively. In addition, the most significant QTL for Plht, Gwt, and Twt were all detected on chromosome 4D at the Rht-D1 locus. Rht-D1b decreased Plht, Gwt, Twt, and kernel width relative to the Rht-D1a allele. A narrow genetic interval on chromosome 4B contained significant QTL for grain shape, Gwt, and Plht. The 'AC Domain' allele reduced Plht, Gwt, kernel length and width traits, but had no detectable effect on Twt. The data indicated that this variation was inconsistent with segregation at Rht-B1. Numerous QTL were identified that control these traits in this population.
Cabral, Adrian L.; Jordan, Mark C.; Larson, Gary; Somers, Daryl J.; Humphreys, D. Gavin
2018-01-01
Kernel morphology characteristics of wheat are complex and quantitatively inherited. A doubled haploid (DH) population of the cross RL4452/‘AC Domain’ was used to study the genetic basis of seed shape. Quantitative trait loci (QTL) analyses were conducted on a total of 18 traits: 14 grain shape traits, flour yield (Fyd), and three agronomic traits (Plant height [Plht], 1000 Grain weight [Gwt], Test weight [Twt]), using data from trial locations at Glenlea, Brandon, and Morden in Manitoba, Canada, between 1999 and 2004. Kernel shape was studied through digital image analysis with an Acurum® grain analyzer. Plht, Gwt, Twt, Fyd, and grain shape QTL were correlated with each other and QTL analysis revealed that QTL for these traits often mapped to the same genetic locations. The most significant QTL for the grain shape traits were located on chromosomes 4B and 4D, each accounting for up to 24.4% and 53.3% of the total phenotypic variation, respectively. In addition, the most significant QTL for Plht, Gwt, and Twt were all detected on chromosome 4D at the Rht-D1 locus. Rht-D1b decreased Plht, Gwt, Twt, and kernel width relative to the Rht-D1a allele. A narrow genetic interval on chromosome 4B contained significant QTL for grain shape, Gwt, and Plht. The ‘AC Domain’ allele reduced Plht, Gwt, kernel length and width traits, but had no detectable effect on Twt. The data indicated that this variation was inconsistent with segregation at Rht-B1. Numerous QTL were identified that control these traits in this population. PMID:29357369
Relationship between processing score and kernel-fraction particle size in whole-plant corn silage.
Dias Junior, G S; Ferraretto, L F; Salvati, G G S; de Resende, L C; Hoffman, P C; Pereira, M N; Shaver, R D
2016-04-01
Kernel processing increases starch digestibility in whole-plant corn silage (WPCS). Corn silage processing score (CSPS), the percentage of starch passing through a 4.75-mm sieve, is widely used to assess degree of kernel breakage in WPCS. However, the geometric mean particle size (GMPS) of the kernel-fraction that passes through the 4.75-mm sieve has not been well described. Therefore, the objectives of this study were (1) to evaluate particle size distribution and digestibility of kernels cut in varied particle sizes; (2) to propose a method to measure GMPS in WPCS kernels; and (3) to evaluate the relationship between CSPS and GMPS of the kernel fraction in WPCS. Composite samples of unfermented, dried kernels from 110 corn hybrids commonly used for silage production were kept whole (WH) or manually cut in 2, 4, 8, 16, 32 or 64 pieces (2P, 4P, 8P, 16P, 32P, and 64P, respectively). Dry sieving to determine GMPS, surface area, and particle size distribution using 9 sieves with nominal square apertures of 9.50, 6.70, 4.75, 3.35, 2.36, 1.70, 1.18, and 0.59 mm and pan, as well as ruminal in situ dry matter (DM) digestibilities were performed for each kernel particle number treatment. Incubation times were 0, 3, 6, 12, and 24 h. The ruminal in situ DM disappearance of unfermented kernels increased with the reduction in particle size of corn kernels. Kernels kept whole had the lowest ruminal DM disappearance for all time points with maximum DM disappearance of 6.9% at 24 h and the greatest disappearance was observed for 64P, followed by 32P and 16P. Samples of WPCS (n=80) from 3 studies representing varied theoretical length of cut settings and processor types and settings were also evaluated. Each WPCS sample was divided in 2 and then dried at 60 °C for 48 h. The CSPS was determined in duplicate on 1 of the split samples, whereas on the other split sample the kernel and stover fractions were separated using a hydrodynamic separation procedure. After separation, the kernel fraction was redried at 60°C for 48 h in a forced-air oven and dry sieved to determine GMPS and surface area. Linear relationships between CSPS from WPCS (n=80) and kernel fraction GMPS, surface area, and proportion passing through the 4.75-mm screen were poor. Strong quadratic relationships between proportion of kernel fraction passing through the 4.75-mm screen and kernel fraction GMPS and surface area were observed. These findings suggest that hydrodynamic separation and dry sieving of the kernel fraction may provide a better assessment of kernel breakage in WPCS than CSPS. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, Fengle; Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Brown, Robert; Bhatnagar, Deepak; Cleveland, Thomas
2015-05-01
Aflatoxins are secondary metabolites produced by certain fungal species of the Aspergillus genus. Aflatoxin contamination remains a problem in agricultural products due to its toxic and carcinogenic properties. Conventional chemical methods for aflatoxin detection are time-consuming and destructive. This study employed fluorescence and reflectance visible near-infrared (VNIR) hyperspectral images to classify aflatoxin contaminated corn kernels rapidly and non-destructively. Corn ears were artificially inoculated in the field with toxigenic A. flavus spores at the early dough stage of kernel development. After harvest, a total of 300 kernels were collected from the inoculated ears. Fluorescence hyperspectral imagery with UV excitation and reflectance hyperspectral imagery with halogen illumination were acquired on both endosperm and germ sides of kernels. All kernels were then subjected to chemical analysis individually to determine aflatoxin concentrations. A region of interest (ROI) was created for each kernel to extract averaged spectra. Compared with healthy kernels, fluorescence spectral peaks for contaminated kernels shifted to longer wavelengths with lower intensity, and reflectance values for contaminated kernels were lower with a different spectral shape in 700-800 nm region. Principal component analysis was applied for data compression before classifying kernels into contaminated and healthy based on a 20 ppb threshold utilizing the K-nearest neighbors algorithm. The best overall accuracy achieved was 92.67% for germ side in the fluorescence data analysis. The germ side generally performed better than endosperm side. Fluorescence and reflectance image data achieved similar accuracy.
Influence of Kernel Age on Fumonisin B1 Production in Maize by Fusarium moniliforme
Warfield, Colleen Y.; Gilchrist, David G.
1999-01-01
Production of fumonisins by Fusarium moniliforme on naturally infected maize ears is an important food safety concern due to the toxic nature of this class of mycotoxins. Assessing the potential risk of fumonisin production in developing maize ears prior to harvest requires an understanding of the regulation of toxin biosynthesis during kernel maturation. We investigated the developmental-stage-dependent relationship between maize kernels and fumonisin B1 production by using kernels collected at the blister (R2), milk (R3), dough (R4), and dent (R5) stages following inoculation in culture at their respective field moisture contents with F. moniliforme. Highly significant differences (P ≤ 0.001) in fumonisin B1 production were found among kernels at the different developmental stages. The highest levels of fumonisin B1 were produced on the dent stage kernels, and the lowest levels were produced on the blister stage kernels. The differences in fumonisin B1 production among kernels at the different developmental stages remained significant (P ≤ 0.001) when the moisture contents of the kernels were adjusted to the same level prior to inoculation. We concluded that toxin production is affected by substrate composition as well as by moisture content. Our study also demonstrated that fumonisin B1 biosynthesis on maize kernels is influenced by factors which vary with the developmental age of the tissue. The risk of fumonisin contamination may begin early in maize ear development and increases as the kernels reach physiological maturity. PMID:10388675
NASA Astrophysics Data System (ADS)
Binol, Hamidullah; Bal, Abdullah; Cukur, Huseyin
2015-10-01
The performance of the kernel based techniques depends on the selection of kernel parameters. That's why; suitable parameter selection is an important problem for many kernel based techniques. This article presents a novel technique to learn the kernel parameters in kernel Fukunaga-Koontz Transform based (KFKT) classifier. The proposed approach determines the appropriate values of kernel parameters through optimizing an objective function constructed based on discrimination ability of KFKT. For this purpose we have utilized differential evolution algorithm (DEA). The new technique overcomes some disadvantages such as high time consumption existing in the traditional cross-validation method, and it can be utilized in any type of data. The experiments for target detection applications on the hyperspectral images verify the effectiveness of the proposed method.
Design of a multiple kernel learning algorithm for LS-SVM by convex programming.
Jian, Ling; Xia, Zhonghang; Liang, Xijun; Gao, Chuanhou
2011-06-01
As a kernel based method, the performance of least squares support vector machine (LS-SVM) depends on the selection of the kernel as well as the regularization parameter (Duan, Keerthi, & Poo, 2003). Cross-validation is efficient in selecting a single kernel and the regularization parameter; however, it suffers from heavy computational cost and is not flexible to deal with multiple kernels. In this paper, we address the issue of multiple kernel learning for LS-SVM by formulating it as semidefinite programming (SDP). Furthermore, we show that the regularization parameter can be optimized in a unified framework with the kernel, which leads to an automatic process for model selection. Extensive experimental validations are performed and analyzed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Novel near-infrared sampling apparatus for single kernel analysis of oil content in maize.
Janni, James; Weinstock, B André; Hagen, Lisa; Wright, Steve
2008-04-01
A method of rapid, nondestructive chemical and physical analysis of individual maize (Zea mays L.) kernels is needed for the development of high value food, feed, and fuel traits. Near-infrared (NIR) spectroscopy offers a robust nondestructive method of trait determination. However, traditional NIR bulk sampling techniques cannot be applied successfully to individual kernels. Obtaining optimized single kernel NIR spectra for applied chemometric predictive analysis requires a novel sampling technique that can account for the heterogeneous forms, morphologies, and opacities exhibited in individual maize kernels. In this study such a novel technique is described and compared to less effective means of single kernel NIR analysis. Results of the application of a partial least squares (PLS) derived model for predictive determination of percent oil content per individual kernel are shown.
Wang, Chao; Liu, Sitong; Xu, Xiaochen; Zhao, Chuanqi; Yang, Fenglin; Wang, Dong
2017-05-01
The objective of this study was to investigate the influence of extracellular polymeric substance (EPS) on the coupling effects between ammonia-oxidizing bacteria (AOB) and anaerobic ammonium-oxidizing (anammox) bacteria for the completely autotrophic nitrogen removal over nitrite (CANON) biofilm formation in a moving bed biofilm reactor (MBBR). Analysis of the quantity of EPS and cyclic diguanylate (c-di-GMP) confirmed that the contents of polysaccharides and c-di-GMP were correlated in the AOB sludge, anammox sludge, and CANON biofilm. The anammox sludge secreted more EPS (especially polysaccharides) than AOB with a markedly higher c-di-GMP content, which could be used by the bacteria to regulate the synthesis of exopolysaccharides that are ultimately used as a fixation matrix, for the adhesion of biomass. Indeed, increased intracellular c-di-GMP concentrations in the anammox sludge enhanced the regulation of polysaccharides to promote the adhesion of AOB and formation of the CANON biofilm. Overall, the results of this study provide new comprehensive information regarding the coupling effects of AOB and anammox bacteria for the nitrogen removal process.
Eukaryotic tRNAs fingerprint invertebrates vis-à-vis vertebrates.
Mitra, Sanga; Das, Pijush; Samadder, Arpa; Das, Smarajit; Betai, Rupal; Chakrabarti, Jayprokas
2015-01-01
During translation, aminoacyl-tRNA synthetases recognize the identities of the tRNAs to charge them with their respective amino acids. The conserved identities of 58,244 eukaryotic tRNAs of 24 invertebrates and 45 vertebrates in genomic tRNA database were analyzed and their novel features extracted. The internal promoter sequences, namely, A-Box and B-Box, were investigated and evidence gathered that the intervention of optional nucleotides at 17a and 17b correlated with the optimal length of the A-Box. The presence of canonical transcription terminator sequences at the immediate vicinity of tRNA genes was ventured. Even though non-canonical introns had been reported in red alga, green alga, and nucleomorph so far, fairly motivating evidence of their existence emerged in tRNA genes of other eukaryotes. Non-canonical introns were seen to interfere with the internal promoters in two cases, questioning their transcription fidelity. In a first of its kind, phylogenetic constructs based on tRNA molecules delineated and built the trees of the vast and diverse invertebrates and vertebrates. Finally, two tRNA models representing the invertebrates and the vertebrates were drawn, by isolating the dominant consensus in the positional fluctuations of nucleotide compositions.
Zhou, Qijing; Jiang, Biao; Dong, Fei; Huang, Peiyu; Liu, Hongtao; Zhang, Minming
2014-01-01
To evaluate the improvement of iterative reconstruction in image space (IRIS) technique in computed tomographic (CT) coronary stent imaging with sharp kernel, and to make a trade-off analysis. Fifty-six patients with 105 stents were examined by 128-slice dual-source CT coronary angiography (CTCA). Images were reconstructed using standard filtered back projection (FBP) and IRIS with both medium kernel and sharp kernel applied. Image noise and the stent diameter were investigated. Image noise was measured both in background vessel and in-stent lumen as objective image evaluation. Image noise score and stent score were performed as subjective image evaluation. The CTCA images reconstructed with IRIS were associated with significant noise reduction compared to that of CTCA images reconstructed using FBP technique in both of background vessel and in-stent lumen (the background noise decreased by approximately 25.4% ± 8.2% in medium kernel (P
Zhang, Guoqing; Sun, Huaijiang; Xia, Guiyu; Sun, Quansen
2016-07-07
Sparse representation based classification (SRC) has been developed and shown great potential for real-world application. Based on SRC, Yang et al. [10] devised a SRC steered discriminative projection (SRC-DP) method. However, as a linear algorithm, SRC-DP cannot handle the data with highly nonlinear distribution. Kernel sparse representation-based classifier (KSRC) is a non-linear extension of SRC and can remedy the drawback of SRC. KSRC requires the use of a predetermined kernel function and selection of the kernel function and its parameters is difficult. Recently, multiple kernel learning for SRC (MKL-SRC) [22] has been proposed to learn a kernel from a set of base kernels. However, MKL-SRC only considers the within-class reconstruction residual while ignoring the between-class relationship, when learning the kernel weights. In this paper, we propose a novel multiple kernel sparse representation-based classifier (MKSRC), and then we use it as a criterion to design a multiple kernel sparse representation based orthogonal discriminative projection method (MK-SR-ODP). The proposed algorithm aims at learning a projection matrix and a corresponding kernel from the given base kernels such that in the low dimension subspace the between-class reconstruction residual is maximized and the within-class reconstruction residual is minimized. Furthermore, to achieve a minimum overall loss by performing recognition in the learned low-dimensional subspace, we introduce cost information into the dimensionality reduction method. The solutions for the proposed method can be efficiently found based on trace ratio optimization method [33]. Extensive experimental results demonstrate the superiority of the proposed algorithm when compared with the state-of-the-art methods.
Improving prediction of heterodimeric protein complexes using combination with pairwise kernel.
Ruan, Peiying; Hayashida, Morihiro; Akutsu, Tatsuya; Vert, Jean-Philippe
2018-02-19
Since many proteins become functional only after they interact with their partner proteins and form protein complexes, it is essential to identify the sets of proteins that form complexes. Therefore, several computational methods have been proposed to predict complexes from the topology and structure of experimental protein-protein interaction (PPI) network. These methods work well to predict complexes involving at least three proteins, but generally fail at identifying complexes involving only two different proteins, called heterodimeric complexes or heterodimers. There is however an urgent need for efficient methods to predict heterodimers, since the majority of known protein complexes are precisely heterodimers. In this paper, we use three promising kernel functions, Min kernel and two pairwise kernels, which are Metric Learning Pairwise Kernel (MLPK) and Tensor Product Pairwise Kernel (TPPK). We also consider the normalization forms of Min kernel. Then, we combine Min kernel or its normalization form and one of the pairwise kernels by plugging. We applied kernels based on PPI, domain, phylogenetic profile, and subcellular localization properties to predicting heterodimers. Then, we evaluate our method by employing C-Support Vector Classification (C-SVC), carrying out 10-fold cross-validation, and calculating the average F-measures. The results suggest that the combination of normalized-Min-kernel and MLPK leads to the best F-measure and improved the performance of our previous work, which had been the best existing method so far. We propose new methods to predict heterodimers, using a machine learning-based approach. We train a support vector machine (SVM) to discriminate interacting vs non-interacting protein pairs, based on informations extracted from PPI, domain, phylogenetic profiles and subcellular localization. We evaluate in detail new kernel functions to encode these data, and report prediction performance that outperforms the state-of-the-art.
Kernel learning at the first level of inference.
Cawley, Gavin C; Talbot, Nicola L C
2014-05-01
Kernel learning methods, whether Bayesian or frequentist, typically involve multiple levels of inference, with the coefficients of the kernel expansion being determined at the first level and the kernel and regularisation parameters carefully tuned at the second level, a process known as model selection. Model selection for kernel machines is commonly performed via optimisation of a suitable model selection criterion, often based on cross-validation or theoretical performance bounds. However, if there are a large number of kernel parameters, as for instance in the case of automatic relevance determination (ARD), there is a substantial risk of over-fitting the model selection criterion, resulting in poor generalisation performance. In this paper we investigate the possibility of learning the kernel, for the Least-Squares Support Vector Machine (LS-SVM) classifier, at the first level of inference, i.e. parameter optimisation. The kernel parameters and the coefficients of the kernel expansion are jointly optimised at the first level of inference, minimising a training criterion with an additional regularisation term acting on the kernel parameters. The key advantage of this approach is that the values of only two regularisation parameters need be determined in model selection, substantially alleviating the problem of over-fitting the model selection criterion. The benefits of this approach are demonstrated using a suite of synthetic and real-world binary classification benchmark problems, where kernel learning at the first level of inference is shown to be statistically superior to the conventional approach, improves on our previous work (Cawley and Talbot, 2007) and is competitive with Multiple Kernel Learning approaches, but with reduced computational expense. Copyright © 2014 Elsevier Ltd. All rights reserved.